WorldWideScience

Sample records for aerial neutron detection

  1. Aerial Neutron Detection: Neutron Signatures for Nonproliferation and Emergency Response Applications

    Energy Technology Data Exchange (ETDEWEB)

    Maurer, Richard J.; Stampahar, Thomas G.; Smith, Ethan X.; Mukhopadhyay, Sanjoy; Wolff, Ronald S.; Rourke, Timothy J.; LeDonne, Jeffrey P.; Avaro, Emanuele; Butler, D. Andre; Borders, Kevin L.; Stampahar, Jezabel; Schuck, William H.; Selfridge, Thomas L.; McKissack, Thomas M.; Duncan, William W.; Hendricks, Thane J.

    2012-10-17

    From 2007 to the present, the Remote Sensing Laboratory has been conducting a series of studies designed to expand our fundamental understanding of aerial neutron detection with the goal of designing an enhanced sensitivity detection system for long range neutron detection. Over 35 hours of aerial measurements in a helicopter were conducted for a variety of neutron emitters such as neutron point sources, a commercial nuclear power reactor, nuclear reactor spent fuel in dry cask storage, depleted uranium hexafluoride and depleted uranium metal. The goals of the project were to increase the detection sensitivity of our instruments such that a 5.4 × 104 neutron/second source could be detected at 100 feet above ground level at a speed of 70 knots and to enhance the long-range detection sensitivity for larger neutron sources, i.e., detection ranges above 1000 feet. In order to increase the sensitivity of aerial neutron detection instruments, it is important to understand the dynamics of the neutron background as a function of altitude. For aerial neutron detection, studies have shown that the neutron background primarily originates from above the aircraft, being produced in the upper atmosphere by galactic cosmic-ray interactions with air molecules. These interactions produce energetic neutrons and charged particles that cascade to the earth’s surface, producing additional neutrons in secondary collisions. Hence, the neutron background increases as a function of altitude which is an impediment to long-range neutron detection. In order to increase the sensitivity for long range detection, it is necessary to maintain a low neutron background as a function of altitude. Initial investigations show the variation in the neutron background can be decreased with the application of a cosmic-ray shield. The results of the studies along with a representative data set are presented.

  2. Aerial Neutron Detection of Cosmic-Ray Interactions with the Earth's Surface

    International Nuclear Information System (INIS)

    Richard Maurer

    2008-01-01

    We have demonstrated the ability to measure the neutron flux produced by the cosmic-ray interaction with nuclei in the ground surface using aerial neutron detection. High energy cosmic-rays (primarily muons with GeV energies) interact with the nuclei in the ground surface and produce energetic neutrons via spallation. At the air-surface interface, the neutrons produced by spallation will either scatter within the surface material, become thermalized and reabsorbed, or be emitted into the air. The mean free path of energetic neutrons in air can be hundreds of feet as opposed to a few feet in dense materials. As such, the flux of neutrons escaping into the air provides a measure of the surface nuclei composition. It has been demonstrated that this effect can be measured at long range using neutron detectors on low flying helicopters. Radiological survey measurements conducted at Government Wash in Las Vegas, Nevada, have shown that the neutron background from the cosmic-soil interactions is repeatable and directly correlated to the geological data. Government Wash has a very unique geology, spanning a wide variety of nuclide mixtures and formations. The results of the preliminary measurements are presented

  3. Spectral anomaly methods for aerial detection using KUT nuisance rejection

    International Nuclear Information System (INIS)

    Detwiler, R.S.; Pfund, D.M.; Myjak, M.J.; Kulisek, J.A.; Seifert, C.E.

    2015-01-01

    This work discusses the application and optimization of a spectral anomaly method for the real-time detection of gamma radiation sources from an aerial helicopter platform. Aerial detection presents several key challenges over ground-based detection. For one, larger and more rapid background fluctuations are typical due to higher speeds, larger field of view, and geographically induced background changes. As well, the possible large altitude or stand-off distance variations cause significant steps in background count rate as well as spectral changes due to increased gamma-ray scatter with detection at higher altitudes. The work here details the adaptation and optimization of the PNNL-developed algorithm Nuisance-Rejecting Spectral Comparison Ratios for Anomaly Detection (NSCRAD), a spectral anomaly method previously developed for ground-based applications, for an aerial platform. The algorithm has been optimized for two multi-detector systems; a NaI(Tl)-detector-based system and a CsI detector array. The optimization here details the adaptation of the spectral windows for a particular set of target sources to aerial detection and the tailoring for the specific detectors. As well, the methodology and results for background rejection methods optimized for the aerial gamma-ray detection using Potassium, Uranium and Thorium (KUT) nuisance rejection are shown. Results indicate that use of a realistic KUT nuisance rejection may eliminate metric rises due to background magnitude and spectral steps encountered in aerial detection due to altitude changes and geographically induced steps such as at land–water interfaces

  4. Neutron detection technique

    International Nuclear Information System (INIS)

    Oblath, N.S.; Poon, A.W.P.

    2000-01-01

    The Sudbury Neutrino Observatory (SNO) has the ability to measure the total flux of all active flavors of neutrinos using the neutral current reaction, whose signature is a neutron. By comparing the rates of the neutral current reaction to the charged current reaction, which only detects electron neutrinos, one can test the neutrino oscillation hypothesis independent of solar models. It is necessary to understand the neutron detection efficiency of the detector to make use of the neutral current reaction. This report demonstrates a coincidence technique to identify neutrons emitted from the 252 Cf neutron calibration source. The source releases on average four neutrons when a 252 Cf nucleus spontaneously fissions. Each neutron is detected as a separate event when the neutron is captured by a deuteron, releasing a gamma ray of approximately 6.25 MeV. This gamma ray is in turn detected by the photomultiplier tube (PMT) array. By investigating the time and spatial separation between neutron-like events, it is possible to obtain a pure sample of neutrons for calibration study. Preliminary results of the technique applied to two calibration runs are presented

  5. Neutrons detection by scintillation; Detection de neutrons par scintillations

    Energy Technology Data Exchange (ETDEWEB)

    Giraudon, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-01-15

    The absence of charge of neutrons and their elevated penetration power make difficult their detection. Techniques vary otherwise with the energy of the particle. The author proposes the realization of a scintillation detector with a big volume of liquid scintillator and containing boron for the detection of slowing-down neutrons in the domain of intermediate energies from 1 to 10{sup 5} eV about. (M.B.) [French] L'absence de charge du neutron et son pouvoir de penetration eleve rendent difficile sa detection. Les techniques par ailleurs varient avec l'energie de cette particule. L'auteur propose la realisation d'un detecteur a scintillations comprenant un grand volume de scintillateur liquide et contenant du bore pour la detection des neutrons en ralentissement dans le domaine des energies intermediaires de 1 a 10{sup 5} eV environ. (M.B.)

  6. Neutrons detection by scintillation; Detection de neutrons par scintillations

    Energy Technology Data Exchange (ETDEWEB)

    Giraudon, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-01-15

    The absence of charge of neutrons and their elevated penetration power make difficult their detection. Techniques vary otherwise with the energy of the particle. The author proposes the realization of a scintillation detector with a big volume of liquid scintillator and containing boron for the detection of slowing-down neutrons in the domain of intermediate energies from 1 to 10{sup 5} eV about. (M.B.) [French] L'absence de charge du neutron et son pouvoir de penetration eleve rendent difficile sa detection. Les techniques par ailleurs varient avec l'energie de cette particule. L'auteur propose la realisation d'un detecteur a scintillations comprenant un grand volume de scintillateur liquide et contenant du bore pour la detection des neutrons en ralentissement dans le domaine des energies intermediaires de 1 a 10{sup 5} eV environ. (M.B.)

  7. Aerial Radiation Detection

    International Nuclear Information System (INIS)

    Quam, W. M.

    1999-01-01

    An airborne system designed for the detection of radioactive sources on the soil surface from an aircraft normally senses gamma rays emitted by the source. Gamma rays have the longest path length (least attenuation) through the air of any of the common radioactive emissions and will thus permit source detection at large distances. A secondary benefit from gamma rays detection if that nearly all radioactive isotopes can be identified by the spectrum of gammas emitted. Major gaseous emissions from fuel processing plants emit gammas that may be detected and identified. Some types of special nuclear material also emit neutrons which are also useful for detection at a distance

  8. Integrating Pavement Crack Detection and Analysis Using Autonomous Unmanned Aerial Vehicle Imagery

    Science.gov (United States)

    2015-03-27

    INTEGRATING PAVEMENT CRACK DETECTION AND ANALYSIS USING AUTONOMOUS UNMANNED AERIAL VEHICLE...protection in the United States. AFIT-ENV-MS-15-M-195 INTEGRATING PAVEMENT CRACK DETECTION AND ANALYSIS USING AUTONOMOUS UNMANNED AERIAL...APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. AFIT-ENV-MS-15-M-195 INTEGRATING PAVEMENT CRACK DETECTION AND ANALYSIS USING AUTONOMOUS

  9. Long-Range Neutron Detection

    International Nuclear Information System (INIS)

    Peurrung, A.J.; Stromswold, D.C.; Hansen, R.R.; Reeder, P.L.; Barnett, D.S.

    1999-01-01

    A neutron detector designed for detecting neutron sources at distances of 50 to 100 m has been constructed and tested. This detector has a large surface area (1 m 2 ) to enhance detection efficiency, and it contains a collimator and shielding to achieve direction sensitivity and reduce background. An unusual feature of the detector is that it contains no added moderator, such as polyethylene, to moderate fast neutrons before they reach the 3 He detector. As a result, the detector is sensitive mainly to thermal neutrons. The moderator-free design reduces the weight of the detector, making it more portable, and it also aids in achieving directional sensitivity and background reduction. Test results show that moderated fission-neutron sources of strength about 3 x 10 5 n/s can be detected at a distance out to 70 m in a counting time of 1000 s. The best angular resolution of the detector is obtained at distances of 30 m or less. As the separation .distance between the source and detector increases, the contribution of scattered neutrons to the measured signal increases with a resultant decrease in the ability to detect the direction to a distant source. Applications for which the long-range detector appears to be suitable include detecting remote neutron sources (including sources in moving vehicles) and monitoring neutron storage vaults for the intrusion of humans and the effects they make on the detected neutron signal. Also, the detector can be used to measure waste for the presence of transuranic material in the presence of high gamma-ray background. A test with a neutron source (3 x 10 5 n/s) in a vehicle showed that the detector could readily measure an increase in count rate at a distance of 10 m for vehicle speeds up to 35 mph (the highest speed tested). These results. indicate that the source should be detectable at this distance at speeds up to 55 mph

  10. Robust Vehicle Detection in Aerial Images Based on Cascaded Convolutional Neural Networks.

    Science.gov (United States)

    Zhong, Jiandan; Lei, Tao; Yao, Guangle

    2017-11-24

    Vehicle detection in aerial images is an important and challenging task. Traditionally, many target detection models based on sliding-window fashion were developed and achieved acceptable performance, but these models are time-consuming in the detection phase. Recently, with the great success of convolutional neural networks (CNNs) in computer vision, many state-of-the-art detectors have been designed based on deep CNNs. However, these CNN-based detectors are inefficient when applied in aerial image data due to the fact that the existing CNN-based models struggle with small-size object detection and precise localization. To improve the detection accuracy without decreasing speed, we propose a CNN-based detection model combining two independent convolutional neural networks, where the first network is applied to generate a set of vehicle-like regions from multi-feature maps of different hierarchies and scales. Because the multi-feature maps combine the advantage of the deep and shallow convolutional layer, the first network performs well on locating the small targets in aerial image data. Then, the generated candidate regions are fed into the second network for feature extraction and decision making. Comprehensive experiments are conducted on the Vehicle Detection in Aerial Imagery (VEDAI) dataset and Munich vehicle dataset. The proposed cascaded detection model yields high performance, not only in detection accuracy but also in detection speed.

  11. Marker Detection in Aerial Images

    KAUST Repository

    Alharbi, Yazeed

    2017-04-09

    The problem that the thesis is trying to solve is the detection of small markers in high-resolution aerial images. Given a high-resolution image, the goal is to return the pixel coordinates corresponding to the center of the marker in the image. The marker has the shape of two triangles sharing a vertex in the middle, and it occupies no more than 0.01% of the image size. An improvement on the Histogram of Oriented Gradients (HOG) is proposed, eliminating the majority of baseline HOG false positives for marker detection. The improvement is guided by the observation that standard HOG description struggles to separate markers from negatives patches containing an X shape. The proposed method alters intensities with the aim of altering gradients. The intensity-dependent gradient alteration leads to more separation between filled and unfilled shapes. The improvement is used in a two-stage algorithm to achieve high recall and high precision in detection of markers in aerial images. In the first stage, two classifiers are used: one to quickly eliminate most of the uninteresting parts of the image, and one to carefully select the marker among the remaining interesting regions. Interesting regions are selected by scanning the image with a fast classifier trained on the HOG features of markers in all rotations and scales. The next classifier is more precise and uses our method to eliminate the majority of the false positives of standard HOG. In the second stage, detected markers are tracked forward and backward in time. Tracking is needed to detect extremely blurred or distorted markers that are missed by the previous stage. The algorithm achieves 94% recall with minimal user guidance. An average of 30 guesses are given per image; the user verifies for each whether it is a marker or not. The brute force approach would return 100,000 guesses per image.

  12. Neutron detection gamma ray sensitivity criteria

    International Nuclear Information System (INIS)

    Kouzes, Richard T.; Ely, James H.; Lintereur, Azaree T.; Mace, Emily K.; Stephens, Daniel L.; Woodring, Mitchell L.

    2011-01-01

    The shortage of 3 He has triggered the search for effective alternative neutron detection technologies for national security and safeguards applications. Any new detection technology must satisfy two basic criteria: (1) it must meet a neutron detection efficiency requirement, and (2) it must be insensitive to gamma-ray interference at a prescribed level, while still meeting the neutron detection requirement. It is the purpose of this paper to define measureable gamma ray sensitivity criteria for neutron detectors. Quantitative requirements are specified for: intrinsic gamma ray detection efficiency and gamma ray absolute rejection. The gamma absolute rejection ratio for neutrons (GARRn) is defined, and it is proposed that the requirement for neutron detection be 0.9 3 He based neutron detector is provided showing that this technology can meet the stated requirements. Results from tests of some alternative technologies are also reported.

  13. Direct Fast-Neutron Detection

    International Nuclear Information System (INIS)

    DC Stromswold; AJ Peurrung; RR Hansen; PL Reeder

    2000-01-01

    Direct fast-neutron detection is the detection of fast neutrons before they are moderated to thermal energy. We have investigated two approaches for using proton-recoil in plastic scintillators to detect fast neutrons and distinguish them from gamma-ray interactions. Both approaches use the difference in travel speed between neutrons and gamma rays as the basis for separating the types of events. In the first method, we examined the pulses generated during scattering in a plastic scintillator to see if they provide a means for distinguishing fast-neutron events from gamma-ray events. The slower speed of neutrons compared to gamma rays results in the production of broader pulses when neutrons scatter several times within a plastic scintillator. In contrast, gamma-ray interactions should produce narrow pulses, even if multiple scattering takes place, because the time between successive scattering is small. Experiments using a fast scintillator confirmed the presence of broader pulses from neutrons than from gamma rays. However, the difference in pulse widths between neutrons and gamma rays using the best commercially available scintillators was not sufficiently large to provide a practical means for distinguishing fast neutrons and gamma rays on a pulse-by-pulse basis. A faster scintillator is needed, and that scintillator might become available in the literature. Results of the pulse-width studies were presented in a previous report (peurrung et al. 1998), and they are only summarized here

  14. Moving object detection using dynamic motion modelling from UAV aerial images.

    Science.gov (United States)

    Saif, A F M Saifuddin; Prabuwono, Anton Satria; Mahayuddin, Zainal Rasyid

    2014-01-01

    Motion analysis based moving object detection from UAV aerial image is still an unsolved issue due to inconsideration of proper motion estimation. Existing moving object detection approaches from UAV aerial images did not deal with motion based pixel intensity measurement to detect moving object robustly. Besides current research on moving object detection from UAV aerial images mostly depends on either frame difference or segmentation approach separately. There are two main purposes for this research: firstly to develop a new motion model called DMM (dynamic motion model) and secondly to apply the proposed segmentation approach SUED (segmentation using edge based dilation) using frame difference embedded together with DMM model. The proposed DMM model provides effective search windows based on the highest pixel intensity to segment only specific area for moving object rather than searching the whole area of the frame using SUED. At each stage of the proposed scheme, experimental fusion of the DMM and SUED produces extracted moving objects faithfully. Experimental result reveals that the proposed DMM and SUED have successfully demonstrated the validity of the proposed methodology.

  15. Multi-Model Estimation Based Moving Object Detection for Aerial Video

    Directory of Open Access Journals (Sweden)

    Yanning Zhang

    2015-04-01

    Full Text Available With the wide development of UAV (Unmanned Aerial Vehicle technology, moving target detection for aerial video has become a popular research topic in the computer field. Most of the existing methods are under the registration-detection framework and can only deal with simple background scenes. They tend to go wrong in the complex multi background scenarios, such as viaducts, buildings and trees. In this paper, we break through the single background constraint and perceive the complex scene accurately by automatic estimation of multiple background models. First, we segment the scene into several color blocks and estimate the dense optical flow. Then, we calculate an affine transformation model for each block with large area and merge the consistent models. Finally, we calculate subordinate degree to multi-background models pixel to pixel for all small area blocks. Moving objects are segmented by means of energy optimization method solved via Graph Cuts. The extensive experimental results on public aerial videos show that, due to multi background models estimation, analyzing each pixel’s subordinate relationship to multi models by energy minimization, our method can effectively remove buildings, trees and other false alarms and detect moving objects correctly.

  16. Neutron imaging integrated circuit and method for detecting neutrons

    Science.gov (United States)

    Nagarkar, Vivek V.; More, Mitali J.

    2017-12-05

    The present disclosure provides a neutron imaging detector and a method for detecting neutrons. In one example, a method includes providing a neutron imaging detector including plurality of memory cells and a conversion layer on the memory cells, setting one or more of the memory cells to a first charge state, positioning the neutron imaging detector in a neutron environment for a predetermined time period, and reading a state change at one of the memory cells, and measuring a charge state change at one of the plurality of memory cells from the first charge state to a second charge state less than the first charge state, where the charge state change indicates detection of neutrons at said one of the memory cells.

  17. Aerial Images and Convolutional Neural Network for Cotton Bloom Detection.

    Science.gov (United States)

    Xu, Rui; Li, Changying; Paterson, Andrew H; Jiang, Yu; Sun, Shangpeng; Robertson, Jon S

    2017-01-01

    Monitoring flower development can provide useful information for production management, estimating yield and selecting specific genotypes of crops. The main goal of this study was to develop a methodology to detect and count cotton flowers, or blooms, using color images acquired by an unmanned aerial system. The aerial images were collected from two test fields in 4 days. A convolutional neural network (CNN) was designed and trained to detect cotton blooms in raw images, and their 3D locations were calculated using the dense point cloud constructed from the aerial images with the structure from motion method. The quality of the dense point cloud was analyzed and plots with poor quality were excluded from data analysis. A constrained clustering algorithm was developed to register the same bloom detected from different images based on the 3D location of the bloom. The accuracy and incompleteness of the dense point cloud were analyzed because they affected the accuracy of the 3D location of the blooms and thus the accuracy of the bloom registration result. The constrained clustering algorithm was validated using simulated data, showing good efficiency and accuracy. The bloom count from the proposed method was comparable with the number counted manually with an error of -4 to 3 blooms for the field with a single plant per plot. However, more plots were underestimated in the field with multiple plants per plot due to hidden blooms that were not captured by the aerial images. The proposed methodology provides a high-throughput method to continuously monitor the flowering progress of cotton.

  18. Detection of High-Density Crowds in Aerial Images Using Texture Classification

    Directory of Open Access Journals (Sweden)

    Oliver Meynberg

    2016-06-01

    Full Text Available Automatic crowd detection in aerial images is certainly a useful source of information to prevent crowd disasters in large complex scenarios of mass events. A number of publications employ regression-based methods for crowd counting and crowd density estimation. However, these methods work only when a correct manual count is available to serve as a reference. Therefore, it is the objective of this paper to detect high-density crowds in aerial images, where counting– or regression–based approaches would fail. We compare two texture–classification methodologies on a dataset of aerial image patches which are grouped into ranges of different crowd density. These methodologies are: (1 a Bag–of–words (BoW model with two alternative local features encoded as Improved Fisher Vectors and (2 features based on a Gabor filter bank. Our results show that a classifier using either BoW or Gabor features can detect crowded image regions with 97% classification accuracy. In our tests of four classes of different crowd-density ranges, BoW–based features have a 5%–12% better accuracy than Gabor.

  19. Wide range neutron detection system

    International Nuclear Information System (INIS)

    Todt, W.H. Sr.

    1978-01-01

    A neutron detection system for reactor control is described which is operable over a wide range of neutron flux levels. The system includes a fission type ionization chamber neutron detector, means for gamma and alpha signal compensation, and means for operating the neutron detector in the pulse counting mode for low neutron flux levels, and in the direct current mode for high neutron flux levels

  20. Contraband detection with fast neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Buffler, Andy E-mail: abuffler@science.uct.ac.za

    2004-11-01

    Recent terror events and the increase in the trade of illicit drugs have fuelled the exploration of the use of fast neutrons as probes for the detection of hidden contraband, especially explosives, in packages ranging in size from small mail items to cargo containers. The various approaches using fast neutrons for contraband detection, presently under development, are reviewed. The role that a neutron system might play in the non-intrusive interrogation of airline luggage is discussed.

  1. Microcantilever-Enabled Neutron Detection

    Directory of Open Access Journals (Sweden)

    Kevin R. Kyle

    2014-04-01

    Full Text Available A new concept for neutron radiation detection was demonstrated using piezoresistive microcantilevers as the active sensing element. Microcantilevers were used to measure the tiny volumetric changes in a sensing material upon absorption of neutron radiation and transmutation into a new element. Highly ordered inorganic crystalline lattices of boron-rich materials dispersed in polymeric rubber matrices were shown to act as volumetric neutron transducers.

  2. The synchronous active neutron detection assay system

    International Nuclear Information System (INIS)

    Pickrell, M.M.; Kendall, P.K.

    1994-01-01

    We have begun to develop a novel technique for active neutron assay of fissile material in spent nuclear fuel. This approach will exploit a 14-MeV neutron generator developed by Schlumberger. The technique, termed synchronous active neutron detection (SAND), follows a method used routinely in other branches of physics to detect very small signals in presence of large backgrounds. Synchronous detection instruments are widely available commercially and are termed ''lock-in'' amplifiers. We have implemented a digital lock-in amplifier in conjunction with the Schlumberger neutron generator to explore the possibility of synchronous detection with active neutrons. The Schlumberger system can operate at up to a 50% duty factor, in effect, a square wave of neutron yield. Results are preliminary but promising. The system is capable of resolving the fissile material contained in a small fraction of the fuel rods in a cold fuel assembly; it also appears resilient to background neutron interference. The interrogating neutrons appear to be non-thermal and penetrating. Work remains to fully explore relevant physics and optimize instrument design

  3. Neutron detection efficiency determinations for the TUNL neutron-neutron and neutron-proton scattering-length measurements

    International Nuclear Information System (INIS)

    Trotter, D.E. Gonzalez; Meneses, F. Salinas; Tornow, W.; Crowell, A.S.; Howell, C.R.; Schmidt, D.; Walter, R.L.

    2009-01-01

    The methods employed and the results obtained from measurements and calculations of the detection efficiency for the neutron detectors used at Triangle Universities Nuclear Laboratory (TUNL) in the simultaneous determination of the 1 S 0 neutron-neutron and neutron-proton scattering lengths a nn and a np , respectively, are described. Typical values for the detector efficiency were 0.3. Very good agreement between the different experimental methods and between data and calculation has been obtained in the neutron energy range below E n =13MeV.

  4. Interface detection by neutron scattering

    International Nuclear Information System (INIS)

    De Monchy, A.R.; Kok, C.A.; Dorrepaal, J.

    1979-01-01

    A method and apparatus for detecting an interface of materials having different hydrogen content present in a metal vessel or pipe eg. made of steel, are described. Steel walls of columns, reactors, pipelines etc can be monitored. It is very suitable for detection of liquid water or hydrocarbons present in gas pipelines and also for the detection of a liquid hydrocarbon in a vessel or column. A series of measurements of the hydrogen density of the contents of a vessel or pipe are made using at least one californium-252 neutron source located near the outer side of the pipe. Neutrons are emitted and are scattered by the contents of the pipe. At least one neutron detector is located near the outer side of the metal wall. The detectors have a higher sensitivity for scattered neutrons (from the light hydrogen nuclei present in water or hydrocarbons). A source of 0.1 - 1 micrograms produces enough neutrons for most technical applications so the handling is relatively safe although shielding is advocated. The detectors contain helium-3 at a pressure of about 10 bar. Current pulses from the detector are counted. (U.K.)

  5. Fast-neutron detecting system with n, γ discrimination

    International Nuclear Information System (INIS)

    Ouyang Xiaoping; Huang Bao; Cao Jinyun

    1997-11-01

    In the present work, a new type neutron detecting system is reported, which can absolutely measure neutron parameters in n + γ mixed fields and has a long continuance of static high vacuum of 10 -4 Pa. The detecting system, with middle neutron-detecting sensitivity, short time response and big linear current output, has applied successfully in pulsed neutron beam measurement

  6. Neutron detection using boron gallium nitride semiconductor material

    Directory of Open Access Journals (Sweden)

    Katsuhiro Atsumi

    2014-03-01

    Full Text Available In this study, we developed a new neutron-detection device using a boron gallium nitride (BGaN semiconductor in which the B atom acts as a neutron converter. BGaN and gallium nitride (GaN samples were grown by metal organic vapor phase epitaxy, and their radiation detection properties were evaluated. GaN exhibited good sensitivity to α-rays but poor sensitivity to γ-rays. Moreover, we confirmed that electrons were generated in the depletion layer under neutron irradiation. This resulted in a neutron-detection signal after α-rays were generated by the capture of neutrons by the B atoms. These results prove that BGaN is useful as a neutron-detecting semiconductor material.

  7. Neutron detection efficiency determinations for the TUNL neutron-neutron and neutron-proton scattering-length measurements

    Energy Technology Data Exchange (ETDEWEB)

    Trotter, D.E. Gonzalez [Department of Physics, Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States)], E-mail: crowell@tunl.duke.edu; Meneses, F. Salinas [Department of Physics, Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Tornow, W. [Department of Physics, Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States)], E-mail: tornow@tunl.duke.edu; Crowell, A.S.; Howell, C.R. [Department of Physics, Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Schmidt, D. [Physikalisch-Technische Bundesanstalt, D-38116, Braunschweig (Germany); Walter, R.L. [Department of Physics, Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States)

    2009-02-11

    The methods employed and the results obtained from measurements and calculations of the detection efficiency for the neutron detectors used at Triangle Universities Nuclear Laboratory (TUNL) in the simultaneous determination of the {sup 1}S{sub 0} neutron-neutron and neutron-proton scattering lengths a{sub nn} and a{sub np}, respectively, are described. Typical values for the detector efficiency were 0.3. Very good agreement between the different experimental methods and between data and calculation has been obtained in the neutron energy range below E{sub n}=13MeV.

  8. Review of current neutron detection systems for emergency response

    Science.gov (United States)

    Mukhopadhyay, Sanjoy; Maurer, Richard; Guss, Paul; Kruschwitz, Craig

    2014-09-01

    Neutron detectors are used in a myriad of applications—from safeguarding special nuclear materials (SNM) to determining lattice spacing in soft materials. The transformational changes taking place in neutron detection and imaging techniques in the last few years are largely being driven by the global shortage of helium-3 (3He). This article reviews the status of neutron sensors used specifically for SNM detection in radiological emergency response. These neutron detectors must be highly efficient, be rugged, have fast electronics to measure neutron multiplicity, and be capable of measuring direction of the neutron sources and possibly image them with high spatial resolution. Neutron detection is an indirect physical process: neutrons react with nuclei in materials to initiate the release of one or more charged particles that produce electric signals that can be processed by the detection system. Therefore, neutron detection requires conversion materials as active elements of the detection system; these materials may include boron-10 (10B), lithium-6 (6Li), and gadollinium-157 (157Gd), to name a few, but the number of materials available for neutron detection is limited. However, in recent years, pulse-shape-discriminating plastic scintillators, scintillators made of helium-4 (4He) under high pressure, pillar and trench semiconductor diodes, and exotic semiconductor neutron detectors made from uranium oxide and other materials have widely expanded the parameter space in neutron detection methodology. In this article we will pay special attention to semiconductor-based neutron sensors. Modern microfabricated nanotubes covered inside with neutron converter materials and with very high aspect ratios for better charge transport will be discussed.

  9. Adapting astronomical source detection software to help detect animals in thermal images obtained by unmanned aerial systems

    Science.gov (United States)

    Longmore, S. N.; Collins, R. P.; Pfeifer, S.; Fox, S. E.; Mulero-Pazmany, M.; Bezombes, F.; Goodwind, A.; de Juan Ovelar, M.; Knapen, J. H.; Wich, S. A.

    2017-02-01

    In this paper we describe an unmanned aerial system equipped with a thermal-infrared camera and software pipeline that we have developed to monitor animal populations for conservation purposes. Taking a multi-disciplinary approach to tackle this problem, we use freely available astronomical source detection software and the associated expertise of astronomers, to efficiently and reliably detect humans and animals in aerial thermal-infrared footage. Combining this astronomical detection software with existing machine learning algorithms into a single, automated, end-to-end pipeline, we test the software using aerial video footage taken in a controlled, field-like environment. We demonstrate that the pipeline works reliably and describe how it can be used to estimate the completeness of different observational datasets to objects of a given type as a function of height, observing conditions etc. - a crucial step in converting video footage to scientifically useful information such as the spatial distribution and density of different animal species. Finally, having demonstrated the potential utility of the system, we describe the steps we are taking to adapt the system for work in the field, in particular systematic monitoring of endangered species at National Parks around the world.

  10. Hybrid Video Stabilization for Mobile Vehicle Detection on SURF in Aerial Surveillance

    Directory of Open Access Journals (Sweden)

    Gao Chunxian

    2015-01-01

    Full Text Available Detection of moving vehicles in aerial video sequences is of great importance with many promising applications in surveillance, intelligence transportation, or public service applications such as emergency evacuation and policy security. However, vehicle detection is a challenging task due to global camera motion, low resolution of vehicles, and low contrast between vehicles and background. In this paper, we present a hybrid method to efficiently detect moving vehicle in aerial videos. Firstly, local feature extraction and matching were performed to estimate the global motion. It was demonstrated that the Speeded Up Robust Feature (SURF key points were more suitable for the stabilization task. Then, a list of dynamic pixels was obtained and grouped for different moving vehicles by comparing the different optical flow normal. To enhance the precision of detection, some preprocessing methods were applied to the surveillance system, such as road extraction and other features. A quantitative evaluation on real video sequences indicated that the proposed method improved the detection performance significantly.

  11. The detection of neutron clusters

    Energy Technology Data Exchange (ETDEWEB)

    Marques, F.M.; Labiche, M.; Orr, N.A.; Angelique, J.C. [Caen Univ., 14 (France). Lab. de Physique Corpusculaire] [and others

    2001-11-01

    A new approach to the production and detection of bound neutron clusters is presented. The technique is based on the breakup of beams of very neutron-rich nuclei and the subsequent detection of the recoiling proton in a liquid scintillator. The method has been tested in the breakup of {sup 11}Li, {sup 14}Be and {sup 15}B beams by a C target. Some 6 events were observed that exhibit the characteristics of a multi-neutron cluster liberated in the breakup of {sup 14}Be, most probably in the channel {sup 10}Be+{sup 4}n. The various backgrounds that may mimic such a signal are discussed in detail. (author)

  12. New Organic Scintillators for Neutron Detection

    Science.gov (United States)

    2016-03-01

    gamma rays. For heterogeneous or dense materials such as samples of metals , oxides , and nuclear waste, gamma ray attenuation can be too high to...highly enriched uranium and weapons grade plutonium. Neutrons and gamma rays are two signatures of these materials. Gamma ray detection techniques are... uranium ). Thus, neutron detection is an important component of the overall detection techniques used in identifying SNMs. Important requirements for

  13. Detection of SNM by Pulsed Neutron Interrogation

    International Nuclear Information System (INIS)

    Pedersen, Bent; Mayorov, Valeriy; Roesgen, Eric; Mosconi, Marita; Crochemore, Jean-Michel; Ocherashvili, Aharon; Beck, Arie; Ettedgui, Hanania

    2014-01-01

    A method for the detection of special nuclear materials (SNM) in shielded containers which is both sensitive and easily applicable under field conditions is presented. The method applies neutron induced fission in SNM by means of an external pulsed neutron source with subsequent detection of the fast prompt fission neutrons. Liquid scintillation detectors surrounding the container under investigation are able to discriminate gamma rays from fast neutrons by the so-called pulse shape discrimination technique (PSD)

  14. Detection of explosives by neutron scattering

    International Nuclear Information System (INIS)

    Brooks, F.D.; Buffler, A.; Allie, M.S.; Nchodu, M.R.; Bharuth-Ram, K.

    1998-01-01

    For non-intrusive detection of hidden explosives or other contraband such as narcotics a fast neutron scattering analysis (FNSA) technique is proposed. An experimental arrangement uses a collimated, pulsed beam of neutrons directed at the sample. Scattered neutrons are detected by liquid scintillation counters at different scattering angles. A scattering signature is derived from two-parameter data, counts vs pulse height and time-of-flight measured for each element (H, C, N or O) at each of two scattering angles and two neutron energies. The elemental signatures are very distinctive and constitute a good response matrix for unfolding elemental components from the scattering signatures measured for different compounds

  15. Advances in neutron based bulk explosive detection

    Science.gov (United States)

    Gozani, Tsahi; Strellis, Dan

    2007-08-01

    Neutron based explosive inspection systems can detect a wide variety of national security threats. The inspection is founded on the detection of characteristic gamma rays emitted as the result of neutron interactions with materials. Generally these are gamma rays resulting from thermal neutron capture and inelastic scattering reactions in most materials and fast and thermal neutron fission in fissile (e.g.235U and 239Pu) and fertile (e.g.238U) materials. Cars or trucks laden with explosives, drugs, chemical agents and hazardous materials can be detected. Cargo material classification via its main elements and nuclear materials detection can also be accomplished with such neutron based platforms, when appropriate neutron sources, gamma ray spectroscopy, neutron detectors and suitable decision algorithms are employed. Neutron based techniques can be used in a variety of scenarios and operational modes. They can be used as stand alones for complete scan of objects such as vehicles, or for spot-checks to clear (or validate) alarms indicated by another inspection system such as X-ray radiography. The technologies developed over the last two decades are now being implemented with good results. Further advances have been made over the last few years that increase the sensitivity, applicability and robustness of these systems. The advances range from the synchronous inspection of two sides of vehicles, increasing throughput and sensitivity and reducing imparted dose to the inspected object and its occupants (if any), to taking advantage of the neutron kinetic behavior of cargo to remove systematic errors, reducing background effects and improving fast neutron signals.

  16. Detection of gamma-neutron radiation by solid-state scintillation detectors. Detection of gamma-neutron radiation by novel solid-state scintillation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Ryzhikov, V.; Grinyov, B.; Piven, L.; Onyshchenko, G.; Sidletskiy, O. [Institute for Scintillation Materials of the NAS of Ukraine, Kharkov, (Ukraine); Naydenov, S. [Institute for Single Crystals of the National Academy of Sciences of Ukraine, Kharkov, (Ukraine); Pochet, T. [DETEC-Europe, Vannes (France); Smith, C. [Naval Postgraduate School, Monterey, CA (United States)

    2015-07-01

    It is known that solid-state scintillators can be used for detection of both gamma radiation and neutron flux. In the past, neutron detection efficiencies of such solid-state scintillators did not exceed 5-7%. At the same time it is known that the detection efficiency of the gamma-neutron radiation characteristic of nuclear fissionable materials is by an order of magnitude higher than the efficiency of detection of neutron fluxes alone. Thus, an important objective is the creation of detection systems that are both highly efficient in gamma-neutron detection and also capable of exhibiting high gamma suppression for use in the role of detection of neutron radiation. In this work, we present the results of our experimental and theoretical studies on the detection efficiency of fast neutrons from a {sup 239}Pu-Be source by the heavy oxide scintillators BGO, GSO, CWO and ZWO, as well as ZnSe(Te, O). The most probable mechanism of fast neutron interaction with nuclei of heavy oxide scintillators is the inelastic scattering (n, n'γ) reaction. In our work, fast neutron detection efficiencies were determined by the method of internal counting of gamma-quanta that emerge in the scintillator from (n, n''γ) reactions on scintillator nuclei with the resulting gamma energies of ∼20-300 keV. The measured efficiency of neutron detection for the scintillation crystals we considered was ∼40-50 %. The present work included a detailed analysis of detection efficiency as a function of detector and area of the working surface, as well as a search for new ways to create larger-sized detectors of lower cost. As a result of our studies, we have found an unusual dependence of fast neutron detection efficiency upon thickness of the oxide scintillators. An explanation for this anomaly may involve the competition of two factors that accompany inelastic scattering on the heavy atomic nuclei. The transformation of the energy spectrum of neutrons involved in the (n, n

  17. Neutron gauging to detect voids in polyurethane

    International Nuclear Information System (INIS)

    Tsang, F.Y.; Alger, D.M.; Brugger, R.M.

    1978-01-01

    Thermal-neutron radiography and fast-neutron gauging measurements were made to evaluate the feasibility of detecting voids in a polyurethane block placed between steel plates. This sandwich of polyurethane and steel simulates the walls of a canister being designed to hold explosive devices. The polyurethane would act as a shock absorber in the canister. A large fabrication cost saving would result by casting the polyurethane, but a nondestructive testing (NDT) method is needed to determine the uniformity of the polyurethane fill. The radiography measurements used a beam of thermal neutrons, while the gauging used filtered beams of 24 keV and fission spectrum neutrons. For the 83-mm-thick polyurethane and 130-mm-thick steel matrix, the thermal-neutron radiography was able to detect only those voids equal to about one-half the polyurethane thickness. The gauging detected voids in the path of the neutron beam of a few millimetres thickness in seconds to minutes. The gauging is feasible as an NDT method for the canister application

  18. Subthreshold neutron interrogator for detection of radioactive materials

    Science.gov (United States)

    Evans, Michael L.; Menlove, Howard O.; Baker, Michael P.

    1980-01-01

    A device for detecting fissionable material such as uranium in low concentrations by interrogating with photoneutrons at energy levels below 500 keV, and typically about 26 keV. Induced fast neutrons having energies above 500 keV by the interrogated fissionable material are detected by a liquid scintillator or recoil proportional counter which is sensitive to the induced fast neutrons. Since the induced fast neutrons are proportional to the concentration of fissionable material, detection of induced fast neutrons indicate concentration of the fissionable material.

  19. Neutron detection with cryogenics and semiconductors

    International Nuclear Information System (INIS)

    Bell, Zane W.; Carpenter, D.A.; Cristy, S.S.; Lamberti, V.E.; Burger, Arnold; Woodfield, Brian F.; Niedermayr, Thomas; Dragos Hau, I.; Labov, Simon E.; Friedrich, Stephan; Geoffrey West, W.; Pohl, Kenneth R.; Berg, Lodewijk van den

    2005-01-01

    The common methods of neutron detection are reviewed with special attention paid to the application of cryogenics and semiconductors to the problem. The authors' work with LiF- and boron-based cryogenic instruments is described as well as the use of CdTe and HgI 2 for direct detection of neutrons. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Complex Building Detection Through Integrating LIDAR and Aerial Photos

    Science.gov (United States)

    Zhai, R.

    2015-02-01

    This paper proposes a new approach on digital building detection through the integration of LiDAR data and aerial imagery. It is known that most building rooftops are represented by different regions from different seed pixels. Considering the principals of image segmentation, this paper employs a new region based technique to segment images, combining both the advantages of LiDAR and aerial images together. First, multiple seed points are selected by taking several constraints into consideration in an automated way. Then, the region growing procedures proceed by combining the elevation attribute from LiDAR data, visibility attribute from DEM (Digital Elevation Model), and radiometric attribute from warped images in the segmentation. Through this combination, the pixels with similar height, visibility, and spectral attributes are merged into one region, which are believed to represent the whole building area. The proposed methodology was implemented on real data and competitive results were achieved.

  1. Neutron Detection with Large Plastic Scintillators for RPM Applications

    International Nuclear Information System (INIS)

    Corre, G.; Boudergui, K.; Sannie, G.; Kondrasovs, V.

    2015-01-01

    Homeland security requests the use Radiation Portal Monitor (RPM). They must be able to detect and differentiate gamma and neutron radiation. Gamma detection is required for illicit transportation of radioactive matter detection. Neutron detection is important to control nonproliferation of enriched material. Manufacturers worldwide propose sensors based on 3 He which give the actual state of art in term of neutron detection. The imminent shortage of 3 He forces manufacturers to find viable alternative. From 10 years sensors providers have the challenge to replace previous 3 He detectors that are known to be the most commonly deployed neutron sensor. As 3 He detectors can only detect neutron, they must be completed with gamma detector. The proposed approach is based on pulse time correlation between adjacent sensors from signal collected by EJ200 plastic scintillators. Results obtained during FP7 Scintilla project test campaigns show the system relevance for replacement of today's 3 He detectors. (authors)

  2. Fission signal detection using helium-4 gas fast neutron scintillation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, J. M., E-mail: lewisj@ufl.edu; Kelley, R. P.; Jordan, K. A. [Nuclear Engineering Program, University of Florida, Gainesville, Florida 32611 (United States); Murer, D. [Arktis Radiation Detectors Ltd., 8045 Zurich (Switzerland)

    2014-07-07

    We demonstrate the unambiguous detection of the fission neutron signal produced in natural uranium during active neutron interrogation using a deuterium-deuterium fusion neutron generator and a high pressure {sup 4}He gas fast neutron scintillation detector. The energy deposition by individual neutrons is quantified, and energy discrimination is used to differentiate the induced fission neutrons from the mono-energetic interrogation neutrons. The detector can discriminate between different incident neutron energies using pulse height discrimination of the slow scintillation component of the elastic scattering interaction between a neutron and the {sup 4}He atom. Energy histograms resulting from this data show the buildup of a detected fission neutron signal at higher energies. The detector is shown here to detect a unique fission neutron signal from a natural uranium sample during active interrogation with a (d, d) neutron generator. This signal path has a direct application to the detection of shielded nuclear material in cargo and air containers. It allows for continuous interrogation and detection while greatly minimizing the potential for false alarms.

  3. Prospects in MPGDs development for neutron detection

    CERN Document Server

    Guerard, Bruno; Murtas, Fabrizio

    2014-01-01

    Compared to Multi Wires Proportional Chambers (MWPC), Micro-Pattern Gas Detectors (MPGD) used in HEP to detect MIPs offer better spatial resolution, counting rate capability, and radiation hardness; their fabrication is also more reproducible. Provided similar advantages are applicable to detect neutrons, MPGDs might contribute significantly to the development of neutron scientific instrumentation. In order to evaluate the prospects of neutron MPGDs, it is worth knowing the applications which would benefit from a gain in performance, and if they offer a competitive alternative to conventional 3He detectors. These questions have been at the focus of the workshop "Neutron Detection with Micro-Pattern Gaseous Detectors" organized by RD51 in collaboration with HEPTech, which took place at CERN on October 14-15, 2013. The goal of this workshop was to help disseminating MPGD technologies beyond High Energy Physics, and to give the possibility to academic institutions, potential users and industry to meet together. ...

  4. A review of conventional explosives detection using active neutron interrogation

    International Nuclear Information System (INIS)

    Whetstone, Z.D.; Kearfott, K.J.

    2014-01-01

    Conventional explosives are relatively easy to obtain and may cause massive harm to people and property. There are several tools employed by law enforcement to detect explosives, but these can be subverted. Active neutron interrogation is a viable alternative to those techniques, and includes: fast neutron analysis, thermal neutron analysis, pulsed fast/thermal neutron analysis, neutron elastic scatter, and fast neutron radiography. These methods vary based on neutron energy and radiation detected. A thorough review of the principles behind, advantages, and disadvantages of the different types of active neutron interrogation is presented. (author)

  5. Automatic Feature Detection, Description and Matching from Mobile Laser Scanning Data and Aerial Imagery

    Science.gov (United States)

    Hussnain, Zille; Oude Elberink, Sander; Vosselman, George

    2016-06-01

    In mobile laser scanning systems, the platform's position is measured by GNSS and IMU, which is often not reliable in urban areas. Consequently, derived Mobile Laser Scanning Point Cloud (MLSPC) lacks expected positioning reliability and accuracy. Many of the current solutions are either semi-automatic or unable to achieve pixel level accuracy. We propose an automatic feature extraction method which involves utilizing corresponding aerial images as a reference data set. The proposed method comprise three steps; image feature detection, description and matching between corresponding patches of nadir aerial and MLSPC ortho images. In the data pre-processing step the MLSPC is patch-wise cropped and converted to ortho images. Furthermore, each aerial image patch covering the area of the corresponding MLSPC patch is also cropped from the aerial image. For feature detection, we implemented an adaptive variant of Harris-operator to automatically detect corner feature points on the vertices of road markings. In feature description phase, we used the LATCH binary descriptor, which is robust to data from different sensors. For descriptor matching, we developed an outlier filtering technique, which exploits the arrangements of relative Euclidean-distances and angles between corresponding sets of feature points. We found that the positioning accuracy of the computed correspondence has achieved the pixel level accuracy, where the image resolution is 12cm. Furthermore, the developed approach is reliable when enough road markings are available in the data sets. We conclude that, in urban areas, the developed approach can reliably extract features necessary to improve the MLSPC accuracy to pixel level.

  6. Detection of Aspens Using High Resolution Aerial Laser Scanning Data and Digital Aerial Images

    Directory of Open Access Journals (Sweden)

    Kalle Eerikäinen

    2008-08-01

    Full Text Available The aim was to use high resolution Aerial Laser Scanning (ALS data and aerial images to detect European aspen (Populus tremula L. from among other deciduous trees. The field data consisted of 14 sample plots of 30 m × 30 m size located in the Koli National Park in the North Karelia, Eastern Finland. A Canopy Height Model (CHM was interpolated from the ALS data with a pulse density of 3.86/m2, low-pass filtered using Height-Based Filtering (HBF and binarized to create the mask needed to separate the ground pixels from the canopy pixels within individual areas. Watershed segmentation was applied to the low-pass filtered CHM in order to create preliminary canopy segments, from which the non-canopy elements were extracted to obtain the final canopy segmentation, i.e. the ground mask was analysed against the canopy mask. A manual classification of aerial images was employed to separate the canopy segments of deciduous trees from those of coniferous trees. Finally, linear discriminant analysis was applied to the correctly classified canopy segments of deciduous trees to classify them into segments belonging to aspen and those belonging to other deciduous trees. The independent variables used in the classification were obtained from the first pulse ALS point data. The accuracy of discrimination between aspen and other deciduous trees was 78.6%. The independent variables in the classification function were the proportion of vegetation hits, the standard deviation of in pulse heights, accumulated intensity at the 90th percentile and the proportion of laser points reflected at the 60th height percentile. The accuracy of classification corresponded to the validation results of earlier ALS-based studies on the classification of individual deciduous trees to tree species.

  7. BUILDING DETECTION USING AERIAL IMAGES AND DIGITAL SURFACE MODELS

    Directory of Open Access Journals (Sweden)

    J. Mu

    2017-05-01

    Full Text Available In this paper a method for building detection in aerial images based on variational inference of logistic regression is proposed. It consists of three steps. In order to characterize the appearances of buildings in aerial images, an effective bag-of-Words (BoW method is applied for feature extraction in the first step. In the second step, a classifier of logistic regression is learned using these local features. The logistic regression can be trained using different methods. In this paper we adopt a fully Bayesian treatment for learning the classifier, which has a number of obvious advantages over other learning methods. Due to the presence of hyper prior in the probabilistic model of logistic regression, approximate inference methods have to be applied for prediction. In order to speed up the inference, a variational inference method based on mean field instead of stochastic approximation such as Markov Chain Monte Carlo is applied. After the prediction, a probabilistic map is obtained. In the third step, a fully connected conditional random field model is formulated and the probabilistic map is used as the data term in the model. A mean field inference is utilized in order to obtain a binary building mask. A benchmark data set consisting of aerial images and digital surfaced model (DSM released by ISPRS for 2D semantic labeling is used for performance evaluation. The results demonstrate the effectiveness of the proposed method.

  8. Systems and methods for neutron detection using scintillator nano-materials

    Science.gov (United States)

    Letant, Sonia Edith; Wang, Tzu-Fang

    2016-03-08

    In one embodiment, a neutron detector includes a three dimensional matrix, having nanocomposite materials and a substantially transparent film material for suspending the nanocomposite materials, a detector coupled to the three dimensional matrix adapted for detecting a change in the nanocomposite materials, and an analyzer coupled to the detector adapted for analyzing the change detected by the detector. In another embodiment, a method for detecting neutrons includes receiving radiation from a source, converting neutrons in the radiation into alpha particles using converter material, converting the alpha particles into photons using quantum dot emitters, detecting the photons, and analyzing the photons to determine neutrons in the radiation.

  9. Detection of land mines using fast and thermal neutron analysis

    International Nuclear Information System (INIS)

    Bach, P.

    1998-01-01

    The detection of land mines is made possible by using nuclear sensor based on neutron interrogation. Neutron interrogation allows to detect the sensitive elements (C, H, O, N) of the explosives in land mines or in unexploded shells: the evaluation of characteristic ratio N/O and C/O in a volume element gives a signature of high explosives. Fast neutron interrogation has been qualified in our laboratories as a powerful close distance method for identifying the presence of a mine or explosive. This method could be implemented together with a multisensor detection system - for instance IR or microwave - to reduce the false alarm rate by addressing the suspected area. Principle of operation is based on the measurement of gamma rays induced by neutron interaction with irradiated nuclei from the soil and from a possible mine. Specific energy of these gamma rays allows to recognise the elements at the origin of neutron interaction. Several detection methods can be used, depending on nuclei to be identified. Analysis of physical data, computations by simulation codes, and experimentations performed in our laboratory have shown the interest of Fast Neutron Analysis (FNA) combined with Thermal Neutron Analysis (TNA) techniques, especially for detection of nitrogen 14 N, carbon 12 C and oxygen 16 O. The FNA technique can be implemented using a 14 MeV sealed neutron tube, and a set of detectors. The mines detection has been demonstrated from our investigations, using a low power neutron generator working in the 10 8 n/s range, which is reasonable when considering safety rules. A fieldable demonstrator would be made with a detection head including tube and detectors, and with remote electronics, power supplies and computer installed in a vehicle. (author)

  10. Performance Test of BF3 Neutron Detection System

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yu Sun; Shin, Ho Cheol [KHNP-CRI, Daejeon (Korea, Republic of); Cho, Jin Bok; Oh, Sae Hyun; Ryou, Seok Jean [USERS, Daejeon (Korea, Republic of)

    2015-10-15

    The neutron detecting system of First-of-a-kind plant such an APR1400 at Shin Kori should have been verified in the condition of low operating temperature and pressure of the primary coolant system before receiving the operation license. Auxiliary Ex-core Neutron Flux Monitoring System (AENFMS) is supposed to be installed using BF3 neutron detector in Shin Kori plant. The performance test of AENFMS was conducted to measure neutron sensitivity, moderation ratio and count rate in the same condition with Ex-core Neutron Flux Monitoring System (ENFMS) of APR1400 to verify its detection characteristics in compliance with the functional requirement. Performance test has been conducted for AENFMS of APR1400 to verify BF3 neutron sensitivity, moderation ration of PE, expecting neutron signal count rate from AENFMS, possible extending cable length from detector to pre-amplifier. As a result of measurement, the neutron sensitivity of 34.246±0.168(95%CI)cps/nv, moderation ratio of 11.343±0.039(95%CI) and AENFMS expecting count rate related to ENFMS of 17.8 times are acceptable in compliance with functional requirement, respectively.

  11. Aerial surveillance based on hierarchical object classification for ground target detection

    Science.gov (United States)

    Vázquez-Cervantes, Alberto; García-Huerta, Juan-Manuel; Hernández-Díaz, Teresa; Soto-Cajiga, J. A.; Jiménez-Hernández, Hugo

    2015-03-01

    Unmanned aerial vehicles have turned important in surveillance application due to the flexibility and ability to inspect and displace in different regions of interest. The instrumentation and autonomy of these vehicles have been increased; i.e. the camera sensor is now integrated. Mounted cameras allow flexibility to monitor several regions of interest, displacing and changing the camera view. A well common task performed by this kind of vehicles correspond to object localization and tracking. This work presents a hierarchical novel algorithm to detect and locate objects. The algorithm is based on a detection-by-example approach; this is, the target evidence is provided at the beginning of the vehicle's route. Afterwards, the vehicle inspects the scenario, detecting all similar objects through UTM-GPS coordinate references. Detection process consists on a sampling information process of the target object. Sampling process encode in a hierarchical tree with different sampling's densities. Coding space correspond to a huge binary space dimension. Properties such as independence and associative operators are defined in this space to construct a relation between the target object and a set of selected features. Different densities of sampling are used to discriminate from general to particular features that correspond to the target. The hierarchy is used as a way to adapt the complexity of the algorithm due to optimized battery duty cycle of the aerial device. Finally, this approach is tested in several outdoors scenarios, proving that the hierarchical algorithm works efficiently under several conditions.

  12. Vision-Based Detection and Distance Estimation of Micro Unmanned Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    Fatih Gökçe

    2015-09-01

    Full Text Available Detection and distance estimation of micro unmanned aerial vehicles (mUAVs is crucial for (i the detection of intruder mUAVs in protected environments; (ii sense and avoid purposes on mUAVs or on other aerial vehicles and (iii multi-mUAV control scenarios, such as environmental monitoring, surveillance and exploration. In this article, we evaluate vision algorithms as alternatives for detection and distance estimation of mUAVs, since other sensing modalities entail certain limitations on the environment or on the distance. For this purpose, we test Haar-like features, histogram of gradients (HOG and local binary patterns (LBP using cascades of boosted classifiers. Cascaded boosted classifiers allow fast processing by performing detection tests at multiple stages, where only candidates passing earlier simple stages are processed at the preceding more complex stages. We also integrate a distance estimation method with our system utilizing geometric cues with support vector regressors. We evaluated each method on indoor and outdoor videos that are collected in a systematic way and also on videos having motion blur. Our experiments show that, using boosted cascaded classifiers with LBP, near real-time detection and distance estimation of mUAVs are possible in about 60 ms indoors (1032 × 778 resolution and 150 ms outdoors (1280 × 720 resolution per frame, with a detection rate of 0.96 F-score. However, the cascaded classifiers using Haar-like features lead to better distance estimation since they can position the bounding boxes on mUAVs more accurately. On the other hand, our time analysis yields that the cascaded classifiers using HOG train and run faster than the other algorithms.

  13. Experimental method research on neutron equal dose-equivalent detection

    International Nuclear Information System (INIS)

    Ji Changsong

    1995-10-01

    The design principles of neutron dose-equivalent meter for neutron biological equi-effect detection are studied. Two traditional principles 'absorption net principle' and 'multi-detector principle' are discussed, and on the basis of which a new theoretical principle for neutron biological equi-effect detection--'absorption stick principle' has been put forward to place high hope on both increasing neutron sensitivity of this type of meters and overcoming the shortages of the two traditional methods. In accordance with this new principle a brand-new model of neutron dose-equivalent meter BH3105 has been developed. Its neutron sensitivity reaches 10 cps/(μSv·h -1 ), 18∼40 times higher than that of all the same kinds of meters 0.23∼0.56 cps/(μSv·h -1 ), available today at home and abroad and the specifications of the newly developed meter reach or surpass the levels of the same kind of meters. Therefore the new theoretical principle of neutron biological equi-effect detection--'absorption stick principle' is proved to be scientific, advanced and useful by experiments. (3 refs., 3 figs., 2 tabs.)

  14. Neutron threshold activation detectors (TAD) for the detection of fissions

    Science.gov (United States)

    Gozani, Tsahi; Stevenson, John; King, Michael J.

    2011-10-01

    Prompt fission neutrons are one of the strongest signatures of the fission process. Depending on the fission inducing radiation, their average number ranges from 2.5 to 4 neutrons per fission. They are more energetic and abundant, by about 2 orders of magnitude, than the delayed neutrons (≈3 vs. ≈0.01) that are commonly used as indicators for the presence of fissionable materials. The detection of fission prompt neutrons, however, has to be done in the presence of extremely intense probing radiation that stimulated them. During irradiation, the fission stimulation radiation, X-rays or neutrons, overwhelms the neutron detectors and temporarily incapacitate them. Consequently, by the time the detectors recover from the source radiation, fission prompt neutrons are no longer emitted. In order to measure the prompt fission signatures under these circumstances, special measures are usually taken with the detectors such as heavy shielding with collimation, use of inefficient geometries, high pulse height bias and gamma-neutron separation via pulse-shape discrimination with an appropriate organic scintillator. These attempts to shield the detector from the flash of radiation result in a major loss of sensitivity. It can lead to a complete inability to detect the fission prompt neutrons. In order to overcome the blinding induced background from the source radiation, the detection of prompt fission neutrons needs to occur long after the fission event and after the detector has fully recovered from the source overload. A new approach to achieve this is to detect the delayed activation induced by the fission neutrons. The approach demonstrates a good sensitivity in adverse overload situations (gamma and neutron "flash") where fission prompt neutrons could normally not be detected. The new approach achieves the required temporal separation between the detection of prompt neutrons and the detector overload by the neutron activation of the detector material. The technique

  15. Neutron threshold activation detectors (TAD) for the detection of fissions

    International Nuclear Information System (INIS)

    Gozani, Tsahi; Stevenson, John; King, Michael J.

    2011-01-01

    Prompt fission neutrons are one of the strongest signatures of the fission process. Depending on the fission inducing radiation, their average number ranges from 2.5 to 4 neutrons per fission. They are more energetic and abundant, by about 2 orders of magnitude, than the delayed neutrons (∼3 vs. ∼0.01) that are commonly used as indicators for the presence of fissionable materials. The detection of fission prompt neutrons, however, has to be done in the presence of extremely intense probing radiation that stimulated them. During irradiation, the fission stimulation radiation, X-rays or neutrons, overwhelms the neutron detectors and temporarily incapacitate them. Consequently, by the time the detectors recover from the source radiation, fission prompt neutrons are no longer emitted. In order to measure the prompt fission signatures under these circumstances, special measures are usually taken with the detectors such as heavy shielding with collimation, use of inefficient geometries, high pulse height bias and gamma-neutron separation via pulse-shape discrimination with an appropriate organic scintillator. These attempts to shield the detector from the flash of radiation result in a major loss of sensitivity. It can lead to a complete inability to detect the fission prompt neutrons. In order to overcome the blinding induced background from the source radiation, the detection of prompt fission neutrons needs to occur long after the fission event and after the detector has fully recovered from the source overload. A new approach to achieve this is to detect the delayed activation induced by the fission neutrons. The approach demonstrates a good sensitivity in adverse overload situations (gamma and neutron 'flash') where fission prompt neutrons could normally not be detected. The new approach achieves the required temporal separation between the detection of prompt neutrons and the detector overload by the neutron activation of the detector material. The technique

  16. Neutron threshold activation detectors (TAD) for the detection of fissions

    Energy Technology Data Exchange (ETDEWEB)

    Gozani, Tsahi, E-mail: tgozani@rapiscansystems.com [Rapiscan Laboratories, Inc., 520 Almanor Ave., Sunnyvale, CA 94085 (United States); Stevenson, John; King, Michael J. [Rapiscan Laboratories, Inc., 520 Almanor Ave., Sunnyvale, CA 94085 (United States)

    2011-10-01

    Prompt fission neutrons are one of the strongest signatures of the fission process. Depending on the fission inducing radiation, their average number ranges from 2.5 to 4 neutrons per fission. They are more energetic and abundant, by about 2 orders of magnitude, than the delayed neutrons ({approx}3 vs. {approx}0.01) that are commonly used as indicators for the presence of fissionable materials. The detection of fission prompt neutrons, however, has to be done in the presence of extremely intense probing radiation that stimulated them. During irradiation, the fission stimulation radiation, X-rays or neutrons, overwhelms the neutron detectors and temporarily incapacitate them. Consequently, by the time the detectors recover from the source radiation, fission prompt neutrons are no longer emitted. In order to measure the prompt fission signatures under these circumstances, special measures are usually taken with the detectors such as heavy shielding with collimation, use of inefficient geometries, high pulse height bias and gamma-neutron separation via pulse-shape discrimination with an appropriate organic scintillator. These attempts to shield the detector from the flash of radiation result in a major loss of sensitivity. It can lead to a complete inability to detect the fission prompt neutrons. In order to overcome the blinding induced background from the source radiation, the detection of prompt fission neutrons needs to occur long after the fission event and after the detector has fully recovered from the source overload. A new approach to achieve this is to detect the delayed activation induced by the fission neutrons. The approach demonstrates a good sensitivity in adverse overload situations (gamma and neutron 'flash') where fission prompt neutrons could normally not be detected. The new approach achieves the required temporal separation between the detection of prompt neutrons and the detector overload by the neutron activation of the detector

  17. Neutron detection in the frame of spatial magnetic spin resonance

    Energy Technology Data Exchange (ETDEWEB)

    Jericha, Erwin, E-mail: jericha@ati.ac.at [TU Wien, Atominstitut, Stadionallee 2, 1020 Wien (Austria); Bosina, Joachim [TU Wien, Atominstitut, Stadionallee 2, 1020 Wien (Austria); Austrian Academy of Sciences, Stefan Meyer Institute, Boltzmanngasse 3, 1090 Wien (Austria); Institut Laue–Langevin, 71 Avenue des Martyrs, 38042 Grenoble (France); Geltenbort, Peter [Institut Laue–Langevin, 71 Avenue des Martyrs, 38042 Grenoble (France); Hino, Masahiro [Kyoto University, Research Reactor Institute, Kumatori, Osaka 590-0494 (Japan); Mach, Wilfried [TU Wien, Atominstitut, Stadionallee 2, 1020 Wien (Austria); Oda, Tatsuro [Kyoto University, Department of Nuclear Engineering, Kyoto 615-8540 (Japan); Badurek, Gerald [TU Wien, Atominstitut, Stadionallee 2, 1020 Wien (Austria)

    2017-02-11

    This work is related to neutron detection in the context of the polarised neutron optics technique of spatial magnetic spin resonance. By this technique neutron beams may be tailored in their spectral distribution and temporal structure. We have performed experiments with very cold neutrons (VCN) at the high-flux research reactor of the Institut Laue Langevin (ILL) in Grenoble to demonstrate the potential of this method. A combination of spatially and temporally resolving neutron detection allowed us to characterize a prototype neutron resonator. With this detector we were able to record neutron time-of-flight spectra, assess and minimise neutron background and provide for normalisation of the spectra owing to variations in reactor power and ambient conditions at the same time.

  18. System to detect nuclear materials by active neutron method

    International Nuclear Information System (INIS)

    Koroev, M.; Korolev, Yu.; Lopatin, Yu.; Filonov, V.

    1999-01-01

    The report presents the results of the development of the system to detect nuclear materials by active neutron method measuring delayed neutrons. As the neutron source the neutron generator was used. The neutron generator was controlled by the system. The detectors were developed on the base of the helium-3 counters. Each detector consist of 6 counters. Using a number of such detectors it is possible to verify materials stored in different geometry. There is an spectrometric scintillator detector in the system which gives an additional functional ability to the system. The system could be used to estimate the nuclear materials in waste, to detect the unauthorized transfer of the nuclear materials, to estimate the material in tubes [ru

  19. Detection of fission signatures induced by a low-energy neutron source

    International Nuclear Information System (INIS)

    Ocherashvili, A.; Becka, A.; Mayorovb, V.; Roesgen, E.; Crochemoreb, J.-M.; Mosconi, M.; Pedersen, B.; Heger, C.

    2015-01-01

    We present a method for the detection of special nuclear materials (SNM) in shielded containers which is both sensitive and applicable under field conditions. The method uses an external pulsed neutron source to induce fission in SNM and subsequent detection of the fast prompt fission neutrons. The detectors surrounding the container under investigation are liquid scintillation detectors able to distinguish gamma rays from fast neutrons by means of the pulse shape discrimination method (PSD). One advantage of these detectors, besides the ability for PSD analysis, is that the analogue signal from a detection event is of very short duration (typically few tens of nanoseconds). This allows the use of very short coincidence gates for the detection of the prompt fission neutrons in multiple detectors while benefiting from a low accidental (background) coincidence rate yielding a low detection limit. Another principle advantage of this method derives from the fact that the external neutron source is pulsed. By proper time gating the interrogation can be conducted by epithermal and thermal source neutrons only. These source neutrons do not appear in the fast neutron signal following the PSD analysis thus providing a fundamental method for separating the interrogating source neutrons from the sample response in form of fast fission neutrons. The paper describes laboratory tests with a configuration of eight detectors in the Pulsed Neutron Interrogation Test Assembly (PUNITA). The sensitivity of the coincidence signal to fissile mass is investigated for different sample configurations and interrogation regimes.

  20. Hexagonal boron nitride neutron detectors with high detection efficiencies

    Science.gov (United States)

    Maity, A.; Grenadier, S. J.; Li, J.; Lin, J. Y.; Jiang, H. X.

    2018-01-01

    Neutron detectors fabricated from 10B enriched hexagonal boron nitride (h-10BN or h-BN) epilayers have demonstrated the highest thermal neutron detection efficiency among solid-state neutron detectors to date at about 53%. In this work, photoconductive-like vertical detectors with a detection area of 1 × 1 mm2 were fabricated from 50 μm thick free-standing h-BN epilayers using Ni/Au and Ti/Al bilayers as ohmic contacts. Leakage currents, mobility-lifetime (μτ) products under UV photoexcitation, and neutron detection efficiencies have been measured for a total of 16 different device configurations. The results have unambiguously identified that detectors incorporating the Ni/Au bilayer on both surfaces as ohmic contacts and using the negatively biased top surface for neutron irradiation are the most desired device configurations. It was noted that high growth temperatures of h-10BN epilayers on sapphire substrates tend to yield a higher concentration of oxygen impurities near the bottom surface, leading to a better device performance by the chosen top surface for irradiation than by the bottom. Preferential scattering of oxygen donors tends to reduce the mobility of holes more than that of electrons, making the biasing scheme with the ability of rapidly extracting holes at the irradiated surface while leaving the electrons to travel a large average distance inside the detector at a preferred choice. When measured against a calibrated 6LiF filled micro-structured semiconductor neutron detector, it was shown that the optimized configuration has pushed the detection efficiency of h-BN neutron detectors to 58%. These detailed studies also provided a better understanding of growth-mediated impurities in h-BN epilayers and their effects on the charge collection and neutron detection efficiencies.

  1. Detection probability in aerial surveys of feral horses

    Science.gov (United States)

    Ransom, Jason I.

    2011-01-01

    Observation bias pervades data collected during aerial surveys of large animals, and although some sources can be mitigated with informed planning, others must be addressed using valid sampling techniques that carefully model detection probability. Nonetheless, aerial surveys are frequently employed to count large mammals without applying such methods to account for heterogeneity in visibility of animal groups on the landscape. This often leaves managers and interest groups at odds over decisions that are not adequately informed. I analyzed detection of feral horse (Equus caballus) groups by dual independent observers from 24 fixed-wing and 16 helicopter flights using mixed-effect logistic regression models to investigate potential sources of observation bias. I accounted for observer skill, population location, and aircraft type in the model structure and analyzed the effects of group size, sun effect (position related to observer), vegetation type, topography, cloud cover, percent snow cover, and observer fatigue on detection of horse groups. The most important model-averaged effects for both fixed-wing and helicopter surveys included group size (fixed-wing: odds ratio = 0.891, 95% CI = 0.850–0.935; helicopter: odds ratio = 0.640, 95% CI = 0.587–0.698) and sun effect (fixed-wing: odds ratio = 0.632, 95% CI = 0.350–1.141; helicopter: odds ratio = 0.194, 95% CI = 0.080–0.470). Observer fatigue was also an important effect in the best model for helicopter surveys, with detection probability declining after 3 hr of survey time (odds ratio = 0.278, 95% CI = 0.144–0.537). Biases arising from sun effect and observer fatigue can be mitigated by pre-flight survey design. Other sources of bias, such as those arising from group size, topography, and vegetation can only be addressed by employing valid sampling techniques such as double sampling, mark–resight (batch-marked animals), mark–recapture (uniquely marked and

  2. Real-time thermal neutron radiographic detection systems

    International Nuclear Information System (INIS)

    Berger, H.; Bracher, D.A.

    1976-01-01

    Systems for real-time detection of thermal neutron images are reviewed. Characteristics of one system are presented; the data include contrast, resolution and speed of response over the thermal neutron intensity range 2.5 10 3 n/cm 2 -sec to 10 7 n/cm 2 -sec

  3. Conflict detection and resolution system architecture for unmanned aerial vehicles in civil airspace

    NARCIS (Netherlands)

    Jenie, Y.I.; van Kampen, E.J.; Ellerbroek, J.; Hoekstra, J.M.

    2015-01-01

    A novel architecture for a general Unmanned Aerial Vehicle (UAV) Conflict Detection and Resolution (CD&R) system, in the context of their integration into the civilian airspace, is proposed in this paper. The architecture consists of layers of safety approaches ,each representing a combination of

  4. Neutron detector for detecting rare events of spontaneous fission

    International Nuclear Information System (INIS)

    Ter-Akop'yan, G.M.; Popeko, A.G.; Sokol, E.A.; Chelnokov, L.P.; Smirnov, V.I.; Gorshkov, V.A.

    1981-01-01

    The neutron detector for registering rare events of spontaneous fission by detecting multiple neutron emission is described. The detector represents a block of plexiglas of 550 mm diameter and 700 mm height in the centre of which there is a through 160 mm diameter channel for the sample under investigation. The detector comprises 56 3 He filled counters (up to 7 atm pressure) with 1% CO 2 addition. The counters have a 500 mm length and a 32 mm diameter. The sampling of fission events is realized by an electron system which allows determining the number of detected neutrons, numbers of operated counters, signal amplitude and time for fission event detecting. A block diagram of a neutron detector electron system is presented and its operation principle is considered. For protection against cosmic radiation the detector is surronded by a system of plastic scintillators and placed behind the concrete shield of 6 m thickness. The results of measurements of background radiation are given. It has been found that the background radiation of single neutron constitutes about 150 counts per hour, the detecting efficiency of single neutron equals 0.483 +- 0.005, for a 10l detector sensitive volume. By means of the detector described the parameters of multiplicity distribution of prompt neutrons for 256 Fm spontaneous fission are measured. The average multiplicity equals 3.59+-0.06 the dispersion being 2.30+-0.65

  5. Mechanical approach to the neutrons spectra collimation and detection

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, H.; Roshan, M. V. [Energy Engineering and Physics Department, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2014-11-15

    Neutrons spectra from most of known sources require being collimated for numerous applications; among them one is the Neutron Activation Analysis. High energy neutrons are collimated through a mechanical procedure as one of the most promising methods. The output energy of the neutron beam depends on the velocity of the rotating Polyethylene disks. The collimated neutrons are then measured by an innovative detection technique with high accuracy.

  6. High sensitivity neutron bursts detecting system

    International Nuclear Information System (INIS)

    Shyam, A.; Kaushik, T.C.; Srinivasan, M.; Kulkarni, L.V.

    1993-01-01

    Technique and instrumentation to detect multiplicity of fast neutrons, emitted in sharp bursts, has been developed. A bank of 16 BF 3 detectors, in an appropriate thermalising assembly, efficiency ∼ 16%, is used to detect neutron bursts. The output from this setup, through appropriate electronics, is divided into two paths. The first is directly connected to a computer controlled scalar. The second is connected to another similar scalar through a delay time unit (DTU). The DTU design is such that once it is triggered by a count pulse than it does not allow any counts to be recorded for a fixed dead time set at ∼ 100 μs. The difference in counts recorded directly and through DTU gives the total number of neutrons produced in bursts. This setup is being used to study lattice cracking, anomalous effects in solid deuterium systems and various reactor physics experiments. (author). 3 refs., 1 fig

  7. The synchronous active neutron detection system for spent fuel assay

    International Nuclear Information System (INIS)

    Pickrell, M.M.; Kendall, P.K.

    1994-01-01

    The authors have begun to develop a novel technique for active neutron assay of fissile material in spent nuclear fuel. This approach will exploit the unique operating features of a 14-MeV neutron generator developed by Schlumberger. This generator and a novel detection system will be applied to the direct measurement of the fissile material content in spent fuel in place of the indirect measures used at present. The technique they are investigating is termed synchronous active neutron detection (SAND). It closely follows a method that has been used routinely in other branches of physics to detect very small signals in the presence of large backgrounds. Synchronous detection instruments are widely available commercially and are termed open-quotes lock-inclose quotes amplifiers. The authors have implemented a digital lock-in amplifier in conjunction with the Schlumberger neutron generator to explore the possibility of synchronous detection with active neutrons. This approach is possible because the Schlumberger system can operate at up to a 50% duty factor, in effect, a square wave of neutron yield. The results to date are preliminary but quite promising. The system is capable of resolving the fissile material contained in a small fraction of the fuel rods in a cold fuel assembly. It also appears to be quite resilient to background neutron interference. The interrogating neutrons appear to be nonthermal and penetrating. Although a significant amount of work remains to fully explore the relevant physics and optimize the instrument design, the underlying concept appears sound

  8. Pulsed White Spectrum Neutron Generator for Explosive Detection

    International Nuclear Information System (INIS)

    King, Michael J.; Miller, Gill T.; Reijonen, Jani; Ji, Qing; Andresen, Nord; Gicquel, Frederic; Kavlas, Taneli; Leung, Ka-Ngo; Kwan, Joe

    2008-01-01

    Successful explosive material detection in luggage and similar sized containers is a critical issue in securing the safety of all airline passengers. Tensor Technology Inc. has recently developed a methodology that will detect explosive compounds with pulsed fast neutron transmission spectroscopy. In this scheme, tritium beams will be used to generate neutrons with a broad energy spectrum as governed by the T(t,2n)4He fission reaction that produces 0-9 MeV neutrons. Lawrence Berkeley National Laboratory (LBNL), in collaboration with Tensor Technology Inc., has designed and fabricated a pulsed white-spectrum neutron source for this application. The specifications of the neutron source are demanding and stringent due to the requirements of high yield and fast pulsing neutron emission, and sealed tube, tritium operation. In a unique co-axial geometry, the ion source uses ten parallel rf induction antennas to externally couple power into a toroidal discharge chamber. There are 20 ion beam extraction slits and 3 concentric electrode rings to shape and accelerate the ion beam into a titanium cone target. Fast neutron pulses are created by using a set of parallel-plate deflectors switching between +-1500 volts and deflecting the ion beams across a narrow slit. The generator is expected to achieve 5 ns neutron pulses at tritium ion beam energies between 80-120 kV. First experiments demonstrated ion source operation and successful beam pulsing

  9. Neutron stars at the dark matter direct detection frontier

    Science.gov (United States)

    Raj, Nirmal; Tanedo, Philip; Yu, Hai-Bo

    2018-02-01

    Neutron stars capture dark matter efficiently. The kinetic energy transferred during capture heats old neutron stars in the local galactic halo to temperatures detectable by upcoming infrared telescopes. We derive the sensitivity of this probe in the framework of effective operators. For dark matter heavier than a GeV, we find that neutron star heating can set limits on the effective operator cutoff that are orders of magnitude stronger than possible from terrestrial direct detection experiments in the case of spin-dependent and velocity-suppressed scattering.

  10. Experimental investigation of thermal neutron analysis based landmine detection technology

    International Nuclear Information System (INIS)

    Zeng Jun; Chu Chengsheng; Ding Ge; Xiang Qingpei; Hao Fanhua; Luo Xiaobing

    2013-01-01

    Background: Recently, the prompt gamma-rays neutron activation analysis method is wildly used in coal analysis and explosive detection, however there were less application about landmine detection using neutron method especially in the domestic research. Purpose: In order to verify the feasibility of Thermal Neutron Analysis (TNA) method used in landmine detection, and explore the characteristic of this technology. Methods: An experimental system of TNA landmine detection was built based on LaBr 3 (Ce) fast scintillator detector and 252 Cf isotope neutron source. The system is comprised of the thermal neutron transition system, the shield system, and the detector system. Results: On the basis of the TNA, the wide energy area calibration method especially to the high energy area was investigated, and the least detection time for a typical mine was defined. In this study, the 72-type anti-tank mine, the 500 g TNT sample and several interferential objects are tested in loess, red soil, magnetic soil and sand respectively. Conclusions: The experimental results indicate that TNA is a reliable demining method, and it can be used to confirm the existence of Anti-Tank Mines (ATM) and large Anti-Personnel Mines (APM) in complicated condition. (authors)

  11. Discussions in symposium 'neutron dosimetry in neutron fields - from detection techniques to medical applications'

    International Nuclear Information System (INIS)

    Tanimura, Y.; Sato, T.; Kumada, H.; Terunuma, T.; Sakae, T.; Harano, H.; Matsumoto, T.; Suzuki, T.; Matsufuji, N.

    2008-01-01

    Recently the traceability system (JCSS) of neutron standard based on the Japanese law 'Measurement Act' has been instituted. In addition, importance of the neutron dose evaluation has been increasing in not only the neutron capture medical treatment but also the proton or heavy particle therapy. Against such a background, a symposium 'Neutron dosimetry in neutron fields - From detection techniques to medical applications-' was held on March 29, 2008 and recent topics on the measuring instruments and their calibration, the traceability system, the simulation technique and the medical applications were introduced. This article summarizes the key points in the discussion at the symposium. (author)

  12. Development of the environmental neutron detection system

    International Nuclear Information System (INIS)

    Kume, Kyo

    2002-03-01

    Environmental neutron detection system was proposed and developed. The main goal of this system was set to detect fast and thermal neutrons with the identical detectors setup without degraders. This system consists of a 10 B doped liquid scintillator for n detection and CsI scintillators for simultaneous γ emission from 10 B doped in the liquid scintillator after the n capture reaction. The first setup was optimized for the thermal n detection, while the second setup was for the fast n detection. It was shown that the thermal n flux was obtained in the first setup by using the method of the γ coincidence method with the help of the Monte Carlo calculation. The second setup was designed to improve the detection efficiency for the fast n, and was shown qualitatively that both the pulse shape discrimination and the coincidence methods are efficient. There will be more improvements, particularly for the quantitative discussion. (author)

  13. Direct fast neutron detection: A status report

    International Nuclear Information System (INIS)

    Peurrung, A.J.; Hansen, R.R.; Craig, R.A.; Hensley, W.K.; Hubbard, C.W.; Keller, P.E.; Reeder, P.L.; Sunberg, D.S.

    1997-12-01

    This report describes the status of efforts to develop direct fast-neutron detection via proton recoil within plastic scintillator. Since recording proton recoil events is of little practical use without a means to discriminate effectively against gamma-ray interactions, the present effort is concentrated on demonstrating a method that distinguishes between pulse types. The proposed method exploits the different pulse shapes that are to be expected primarily on the basis of the slower speed of the recoiling fission neutrons. Should this effort ultimately prove successful, the resulting novel technology will have the potential to significantly lower cost and increase capability for a number of critical neutron-detection applications. Considerable progress has been made toward a clear and compelling demonstration of this new technique. An exhaustive theoretical and numerical investigation of the method has been completed. The authors have been able to better understand the laboratory results and estimate the performance that could ultimately be achieved using the proposed technique. They have assessed the performance of a number of different algorithms for discriminating between neutron and gamma ray events. The results of this assessment will be critical when the construction of low-cost, field-portable neutron detectors becomes necessary. Finally, a laboratory effort to realize effective discrimination is well underway and has resulted in partial success

  14. Conducting Polymers for Neutron Detection

    International Nuclear Information System (INIS)

    Clare Kimblin; Kirk Miller; Bob Vogel; Bill Quam; Harry McHugh; Glen Anthony; Steve Jones; Mike Grover

    2007-01-01

    Conjugated polymers have emerged as an attractive technology for large-area electronic applications. As organic semiconductors, they can be used to make large-area arrays of diodes or transistors using fabrication techniques developed for polymer coatings, such as spraying and screen-printing. We have demonstrated both neutron and alpha detection using diodes made from conjugated polymers and have done preliminary work to integrate a boron carbide layer into the conventional polymer device structure to capture thermal neutrons. The polymer devices appear to be insensitive to gamma rays, due to their small physical thickness and low atomic number

  15. Design of a versatile detector for the detection of charged particles, neutrons and gamma rays. Neutron interaction with the matter

    International Nuclear Information System (INIS)

    Perez P, J.J.

    1991-01-01

    The Fostron detector detects charged particles, neutrons and gamma rays with a reasonable discrimination power. Because the typical detectors for neutrons present a great uncertainty in the detection, this work was focused mainly to the neutron detection in presence of gamma radiation. Also there are mentioned the advantages and disadvantages of the Fostron detector

  16. Low-resolution ship detection from high-altitude aerial images

    Science.gov (United States)

    Qi, Shengxiang; Wu, Jianmin; Zhou, Qing; Kang, Minyang

    2018-02-01

    Ship detection from optical images taken by high-altitude aircrafts such as unmanned long-endurance airships and unmanned aerial vehicles has broad applications in marine fishery management, ship monitoring and vessel salvage. However, the major challenge is the limited capability of information processing on unmanned high-altitude platforms. Furthermore, in order to guarantee the wide detection range, unmanned aircrafts generally cruise at high altitudes, resulting in imagery with low-resolution targets and strong clutters suffered by heavy clouds. In this paper, we propose a low-resolution ship detection method to extract ships from these high-altitude optical images. Inspired by a recent research on visual saliency detection indicating that small salient signals could be well detected by a gradient enhancement operation combined with Gaussian smoothing, we propose the facet kernel filtering to rapidly suppress cluttered backgrounds and delineate candidate target regions from the sea surface. Then, the principal component analysis (PCA) is used to compute the orientation of the target axis, followed by a simplified histogram of oriented gradient (HOG) descriptor to characterize the ship shape property. Finally, support vector machine (SVM) is applied to discriminate real targets and false alarms. Experimental results show that the proposed method actually has high efficiency in low-resolution ship detection.

  17. A large 2D PSD for thermal neutron detection

    International Nuclear Information System (INIS)

    Knott, R.B.; Watt, G.; Boldeman, J.W.; Smith, G.C.

    1996-01-01

    A 2D PSD based on a MWPC has been constructed for a small angle neutron scattering instrument. The active area of the detector was 640 x 640 mm 2 . To meet the specifications for neutron detection efficiency and spatial resolution, and to minimize parallax, the gas mixture was 190 kPa 3 He plus 100 kPa CF 4 and the active volume had a thickness of 30 mm. The design maximum neutron count-rate of the detector was 10 5 events per second. The (calculated) neutron detection efficiency was 60% for 2 angstrom neutrons and the (measured) neutron energy resolution on the anode grid was typically 20% (fwhm). The location of a neutron detection event within the active area was determined using the wire-by-wire method: the spatial resolution (5 x 5 mm 2 ) was thereby defined by the wire geometry. A 16 channel charge-sensitive preamplifier/amplifier/comparator module has been developed with a channel sensitivity of 0.1 V/fC, noise linewidth of 0.4 fC (fwhm) and channel-to-channel cross-talk of less than 5%. The Proportional Counter Operating System (PCOS III) (LeCroy Corp USA) was used for event encoding. The ECL signals produced by the 16 channel modules were latched in PCOS III by a trigger pulse from the anode and the fast encoders produce a position and width for each event. The information was transferred to a UNIX workstation for accumulation and online display

  18. Real‑time, fast neutron detection for stimulated safeguards assay

    International Nuclear Information System (INIS)

    Joyce, Malcolm J.; Adamczyk, Justyna; Plenteda, Romano; Aspinall, Michael D.; Cave, Francis D.

    2015-01-01

    The advent of low‑hazard organic liquid scintillation detectors and real‑time pulse‑shape discrimination (PSD) processing has suggested a variety of modalities by which fast neutrons, as opposed to neutrons moderated prior to detection, can be used directly to benefit safeguards needs. In this paper we describe a development of a fast‑neutron based safeguards assay system designed for the assessment of 235 U content in fresh fuel. The system benefits from real‑time pulse‑shape discrimination processing and auto‑calibration of the detector system parameters to ensure a rapid and effective set‑up protocol. These requirements are essential in optimising the speed and limit of detection of the fast neutron technique, whilst minimising the intervention needed to perform the assay.

  19. Simulation of Neutron Backscattering applied to organic material detection

    International Nuclear Information System (INIS)

    Forero, N. C.; Cruz, A. H.; Cristancho, F.

    2007-01-01

    The Neutron Backscattering technique is tested when performing the task of localizing hydrogenated explosives hidden in soil. Detector system, landmine, soil and neutron source are simulated with Geant4 in order to obtain the number of neutrons detected when several parameters like mine composition, relative position mine-source and soil moisture are varied

  20. Delayed neutron detection in canning burst detection studies (1961); Etude sur la detection des neutrons differes en vue de la detection des ruptures de gaines (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Perlini, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    This paper describes a theoretical and experimental study on the detection of neutrons present in the primary cooling circuit of a reactor cooled by heavy or light water, with a view to the installation of a canning burst detection unit. The concentration of background neutrons is first calculated, taking into account the neutrons from nitrogen 17 decay, and the photoneutrons produced by the decay of nitrogen 16 and sodium 24. The emission of delayed fission neutrons, originating at a given crack in the canning, has been estimated. Using the D{sub 2}O circuit of the pile EL-3, three units have been developed by means of which the following three types of detector may be compared: 1) BF{sub 3} proportional counter 2) Boron scintillator 3) Fission chamber Under the present experimental conditions the BF{sub 3} counter gave the best results. The influence on these detectors of the {gamma} flux, which in certain cases reaches 200 R/h, is analysed. Finally a calibration is carried out with an experimental crack of 30 mm{sup 2} of uranium exposed to a flux of 5.8 x 10{sup 13} n.cm{sup -2}.s{sup -1}. The sensitivity obtained with the BF{sub 3} counter during this test is 2 counts/s per mm{sup 2} of exposed uranium. (author) [French] Le present rapport est une etude theorique et experimentale sur la detection des neutrons presents dans le circuit primaire de refroidissement d'un reacteur refrigere par l'eau lourde ou l'eau legere, en vue d'une installation de detection de ruptures de gaines. On fait d'abord un calcul sur la concentration des neutrons de bruit de fond en tenant compte: des neutrons de decroissance de l'azote 17 et des photoneutrons produits par les decroissances de l'azote 16 et du sodium 24. L'emission des neutrons differes de fission, qui ont pour origine une fissure de gaine donnee, a ete evaluee. Utilisant le circuit D{sub 2}O de la pile EL3, trois installations ont ete mises au point permettant de comparer les trois types de detecteurs suivants: 1

  1. Scintillator Based Coded-Aperture Imaging for Neutron Detection

    International Nuclear Information System (INIS)

    Hayes, Sean-C.; Gamage, Kelum-A-A.

    2013-06-01

    In this paper we are going to assess the variations of neutron images using a series of Monte Carlo simulations. We are going to study neutron images of the same neutron source with different source locations, using a scintillator based coded-aperture system. The Monte Carlo simulations have been conducted making use of the EJ-426 neutron scintillator detector. This type of detector has a low sensitivity to gamma rays and is therefore of particular use in a system with a source that emits a mixed radiation field. From the use of different source locations, several neutron images have been produced, compared both qualitatively and quantitatively for each case. This allows conclusions to be drawn on how suited the scintillator based coded-aperture neutron imaging system is to detecting various neutron source locations. This type of neutron imaging system can be easily used to identify and locate nuclear materials precisely. (authors)

  2. Evaluation of neutron techniques for illicit substance detection

    International Nuclear Information System (INIS)

    Fink, C.L.; Micklich, B.J.; Yule, T.J.; Humm, P.; Sagalovsky, L.; Martin, M.M.

    1995-01-01

    We are studying inspection systems based on the use of fast neutrons for detecting illicit substances such as explosives and drugs in luggage and cargo containers. Fast-neutron techniques can determine the quantities of light elements such as carbon, nitrogen, and oxygen in a volume element. Illicit substances containing these elements are characterized by distinctive elemental densities or density ratios. We discuss modeling and tomographic reconstruction studies for fast-neutron transmission spectroscopy. (orig.)

  3. Evaluation of neutron techniques for illicit substance detection

    International Nuclear Information System (INIS)

    Fink, C.L.; Micklich, B.J.; Yule, T.J.; Humm, P.; Sagalovsky, L.; Martin, M.M.

    1994-01-01

    The authors are studying inspection systems based on the use of fast neutrons for detecting illicit substances such as explosives and drugs in luggage and cargo containers. Fast neutron techniques can determine the quantities of light elements such as carbon, nitrogen, and oxygen in a volume element. Illicit substances containing these elements are characterized by distinctive elemental densities or density ratios. They discuss modeling and tomographic reconstruction studies for fast-neutron transmission spectroscopy

  4. Illicit substance detection using fast-neutron transmission spectroscopy

    International Nuclear Information System (INIS)

    Micklich, B.J.; Harper, M.K.; Novick, A.H.; Smith, D.L.

    1994-01-01

    Fast-neutron interrogation techniques are of interest for detecting illicit substances such as explosives and drugs because of their ability to identify light elements such as carbon, nitrogen, and oxygen. Fast-Neutron Transmission Spectroscopy (FNTS) uses standard time-of-flight techniques to measure the energy spectrum of neutrons emitted from a collimated continuum source before and after transmission through the interrogated sample. The Monte Carlo transport code MCNP is used to model fast-neutron transmission experiments using a 9 Be(d, n) source (E d =5 MeV). The areal densities (number of atoms per cm 2 ), and the uncertainties, of various elements present in the sample are determined by an unfolding algorithm which includes the effects of cross-section errors and correlations. Results are displayed in the form of normalized densities, including their errors and correlations, which are then compared to the values for explosives and benign substances. Probabilistic interpretations of the results are discussed in terms of substance detection and identification. ((orig.))

  5. Illicit substance detection using Fast-Neutron Transmission Spectroscopy

    International Nuclear Information System (INIS)

    Micklich, B.J.; Harper, M.K.; Novick, A.H.; Smith, D.L.

    1994-01-01

    Fast-neutron interrogation techniques are of interest for detecting illicit substances such as explosives and drugs because of their ability to identify light elements such as carbon, nitrogen, and oxygen. Fast-Neutron Transmission Spectroscopy (FNTS) uses standard time-of-flight techniques to measure the energy spectrum of neutrons emitted from a collimated continuum source before and after transmission through the interrogated sample. The Monte Carlo transport code MCNP is used to model fast-neutron transmission experiments using a 9 Be(d,n) source [E d = 5 MeV]. The areal densities (number of atoms per cm 2 ), and the uncertainties, of various elements present in the sample are determined by an unfolding algorithm which includes the effects of cross-section errors and correlations. Results are displayed in the form of normalized densities, including their errors and correlations, which are then compared to the values for explosives and benign substances. Probabilistic interpretations of the results are discussed in terms of substance detection and identification

  6. YAP scintillators for resonant detection of epithermal neutrons at pulsed neutron sources

    International Nuclear Information System (INIS)

    Tardocchi, M.; Gorini, G.; Pietropaolo, A.; Andreani, C.; Senesi, R.; Rhodes, N.; Schooneveld, E. M.

    2004-01-01

    Recent studies indicate the resonance detector (RD) technique as an interesting approach for neutron spectroscopy in the electron volt energy region. This work summarizes the results of a series of experiments where RD consisting of YAlO 3 (YAP) scintillators were used to detect scattered neutrons with energy in the range 1-200 eV. The response of YAP scintillators to radiative capture γ emission from a 238 U analyzer foil was characterized in a series of experiments performed on the VESUVIO spectrometer at the ISIS pulsed neutron source. In these experiments a biparametric data acquisition allowed the simultaneous measurements of both neutron time-of-flight and γ pulse height (energy) spectra. The analysis of the γ pulse height and neutron time of flight spectra permitted to identify and distinguish the signal and background components. These measurements showed that a significant improvement in the signal-to-background ratio can be achieved by setting a lower level discrimination on the pulse height at about 600 keV equivalent photon energy. Present results strongly indicate YAP scintillators as the ideal candidate for neutron scattering studies with epithermal neutrons at both very low (<5 deg.) and intermediate scattering angles

  7. Calibration experiments of neutron source identification and detection in soil

    International Nuclear Information System (INIS)

    Gorin, N. V.; Lipilina, E. N.; Rukavishnikov, G. V.; Shmakov, D. V.; Ulyanov, A. I.

    2007-01-01

    In the course of detection of fissile materials in soil, series of calibration experiments were carried out on in laboratory conditions on an experimental installation, presenting a mock-up of an endless soil with various heterogeneous bodies in it, fissile material, measuring boreholes. A design of detecting device, methods of neutrons detection are described. Conditions of neutron background measuring are given. Soil density, humidity, chemical composition of soil was measured. Sensitivity of methods of fissile materials detection and identification in soil was estimated in the calibration experiments. Minimal detectable activity and the distance at which it can be detected were defined. Characteristics of neutron radiation in a borehole mock-up were measured; dependences of method sensitivities from water content in soil, source-detector distance and presence of heterogeneous bodies were examined. Possibility of direction detection to a fissile material as neutron source from a borehole using a collimator is shown. Identification of fissile material was carried out by measuring the gamma-spectrum. Mathematical modeling was carried out using the PRIZMA code (Developed in RFNC-VNIITF) and MCNP code (Developed in LANL). Good correlation of calculational and experimental values was shown. The methodic were shown to be applicable in the field conditions

  8. A large 2D PSD for thermal neutron detection

    Energy Technology Data Exchange (ETDEWEB)

    Knott, R.B.; Watt, G.; Boldeman, J.W. [Australian Nucl. Sci. and Tech. Organ., Menai, NSW (Australia). Phys. Div.; Smith, G.C. [Instrumentation Division, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    1997-06-21

    A 2D PSD based on a MWPC has been constructed for a small angle neutron scattering instrument. The active area of the detector was 640 x 640 mm{sup 2}. To meet the specifications for neutron detection efficiency and spatial resolution, and to minimise parallax, the gas mixture was 190 kPa {sup 3}He plus 100 kPa CF{sub 4}, and the active volume had a thickness of 30 mm. The design maximum neutron count rate of the detector was 10{sup 5} events per second. The (calculated) neutron detection efficiency was 60% for 2 A neutrons and the (measured) neutron energy resolution on the anode grid was typically 20% (fwhm). The location of a neutron detection event within the active area was determined using the wire-by-wire method: the spatial resolution (5 x 5 mm{sup 2}) was thereby defined by the wire geometry. A 16-channel charge-sensitive preamplifier/amplifier/comparator module has been developed with a channel sensitivity of 0.1 V/fC, noise line width of 0.4 fC (fwhm) and channel-to-channel cross-talk of less than 5%. The proportional counter operating system (PCOS III) (LeCroy Corp, USA) was used for event encoding. The ECL signals produced by the 16 channel modules were latched in PCOS III by a trigger pulse from the anode and the fast encoders produce a position and width for each event. The information was transferred to a UNIX workstation for accumulation and online display. (orig.).

  9. Archaeological Feature Detection from Archive Aerial Photography with a Sfm-Mvs and Image Enhancement Pipeline

    Science.gov (United States)

    Peppa, M. V.; Mills, J. P.; Fieber, K. D.; Haynes, I.; Turner, S.; Turner, A.; Douglas, M.; Bryan, P. G.

    2018-05-01

    Understanding and protecting cultural heritage involves the detection and long-term documentation of archaeological remains alongside the spatio-temporal analysis of their landscape evolution. Archive aerial photography can illuminate traces of ancient features which typically appear with different brightness values from their surrounding environment, but are not always well defined. This research investigates the implementation of the Structure-from-Motion - Multi-View Stereo image matching approach with an image enhancement algorithm to derive three epochs of orthomosaics and digital surface models from visible and near infrared historic aerial photography. The enhancement algorithm uses decorrelation stretching to improve the contrast of the orthomosaics so as archaeological features are better detected. Results include 2D / 3D locations of detected archaeological traces stored into a geodatabase for further archaeological interpretation and correlation with benchmark observations. The study also discusses the merits and difficulties of the process involved. This research is based on a European-wide project, entitled "Cultural Heritage Through Time", and the case study research was carried out as a component of the project in the UK.

  10. Taxonomy of Conflict Detection and Resolution Approaches for Unmanned Aerial Vehicle in an Integrated Airspace

    NARCIS (Netherlands)

    Jenie, Y.I.; van Kampen, E.; Ellerbroek, J.; Hoekstra, J.M.

    2016-01-01

    This paper proposes a taxonomy of Conflict Detection and Resolution (CD&R) approaches for Unmanned Aerial Vehicles (UAV) operation in an integrated airspace. Possible approaches for UAVs are surveyed and broken down based on their types of surveillance, coordination, maneuver, and autonomy. The

  11. Accelerating fissile material detection with a neutron source

    Science.gov (United States)

    Rowland, Mark S.; Snyderman, Neal J.

    2018-01-30

    A neutron detector system for discriminating fissile material from non-fissile material wherein a digital data acquisition unit collects data at high rate, and in real-time processes large volumes of data directly to count neutrons from the unknown source and detecting excess grouped neutrons to identify fission in the unknown source. The system includes a Poisson neutron generator for in-beam interrogation of a possible fissile neutron source and a DC power supply that exhibits electrical ripple on the order of less than one part per million. Certain voltage multiplier circuits, such as Cockroft-Walton voltage multipliers, are used to enhance the effective of series resistor-inductor circuits components to reduce the ripple associated with traditional AC rectified, high voltage DC power supplies.

  12. Device for detecting neutron flux in nuclear reactor. [BWR

    Energy Technology Data Exchange (ETDEWEB)

    Bessho, Y; Nishizawa, Y

    1976-07-30

    The object of the invention is to ensure accuracy in the operation of the nuclear reactor by reducing the difference that results between the readings of a Traversing Incore Probe (TIP) and a Local Power Range Monitor (LPRM) when the neutron flux distribution undergoes a change. In an apparatus for detecting neutrons in a nuclear reactor, an LPRM sensor comprising a layer containing a substance capable of nuclear fission, a section filled with argon gas and a collector is constructed so as to surround a TIP within a TIP guide tube at the height of the reactor axis. In this way, the LPRM detects the average value of neutron distribution in the region surrounding the TIP, so that no great difference between the readings of both the sensors is produced even if the neutron flux distribution is changed.

  13. Gadolinium-Based GaN for Neutron Detection with Gamma Discrimination

    Science.gov (United States)

    2016-06-01

    Gadolinium-Based GaN for Neutron Detection with Gamma Discrimination Distribution Statement A. Approved for public release; distribution is...Final Technical Report BRBAA08-Per5-Y-1-2-0030 Title: “Gadolinium-Based GaN for Neutron Detection with Gamma Discrimination ” Grant...Analysis  .............................................................................................  23   6.   Gamma-ray Discrimination

  14. Gadolinium for neutron detection in current nuclear instrumentation research: A review

    Science.gov (United States)

    Dumazert, J.; Coulon, R.; Lecomte, Q.; Bertrand, G. H. V.; Hamel, M.

    2018-02-01

    Natural gadolinium displays a number of remarkable physical properties: it is a rare earth element, composed of seven stable or quasi-stable isotopes, with an exceptionally high magnetization and a Curie point near room temperature. Its use in the field of nuclear instrumentation historically relates to its efficiency as a neutron poison in power reactors. Gadolinium is indeed the naturally occurring element with the highest interaction probability with neutrons at thermal energy, shared between Gd-157 (15.65%, 254000 b cross section) and Gd-155 (14.8%, 60900 b) isotopes. Considering that neutron capture results in an isotopic change, followed by a radiative rearrangement of nuclear and atomic structures, Gd may be embodied not merely as a neutron poison but as a neutron converter into a prompt photon and an electron source term. Depending on the nature and energy of the reaction products (from a few-keV Auger electrons up to 8 MeV gamma rays) that the detector aims at isolating as an indirect neutron signature, a variety of sensor media and counting methods have been introduced during the last decades. This review first draws a theoretical description of the radiative cascade following Gd(n , γ) capture. The cascade may be subdivided into regions of interest, each corresponding to dedicated detection designs and optimizations whose current status is detailed. This inventory has allowed the authors to extract and benchmark key figures of merit for the definition of a detection scheme: neutron attenuation, neutron sensitivity (cps/nv), gamma rejection, neutron detection limit in a mixed field, intrinsic or extrinsic moderation, and transportability. On this basis, the authors have identified promising paths for Gd-based neutron detection in contemporary instrumentation.

  15. Novel concept for neutron detection: proportional counter filled with 10B nanoparticle aerosol

    Science.gov (United States)

    Amaro, F. D.; Monteiro, C. M. B.; dos Santos, J. M. F.; Antognini, A.

    2017-01-01

    The high neutron detection efficiency, good gamma-ray discrimination and non-toxicity of 3He made of proportional counters filled with this gas the obvious choice for neutron detection, particularly in radiation portal monitors (RPM), used to control the illicit transport of nuclear material, of which neutron detectors are key components. 3He is very rare and during the last decade this gas has become increasingly difficult to acquire. With the exception of BF3, which is toxic, no other gas can be used for neutron detection in proportional counters. We present an alternative where the 3He atoms are replaced by nanoparticles made of another neutron sensitive material, 10B. The particles are dispersed in a gaseous volume, forming an aerosol with neutron sensitive properties. A proportional counter filled with such aerosol was exposed to a thermal neutron beam and the recorded response indicates that the neutrons have interacted with the particles in the aerosol. This original technique, which transforms a standard proportional gas mixture into a neutron sensitive aerosol, is a breakthrough in the field of radiation detection and has the potential to become an alternative to the use of 3He in proportional counters. PMID:28181520

  16. Neutron kinetics in moderators and SNM detection through epithermal-neutron-induced fissions

    Energy Technology Data Exchange (ETDEWEB)

    Gozani, Tsahi, E-mail: tgmaven@gmail.com [1050 Harriet St., Palo Alto, CA 94301 (United States); King, Michael J. [Rapiscan Laboratories Inc., 520 Almanor Ave., Sunnyvale, CA 94085 (United States)

    2016-01-01

    Extension of the well-established Differential Die Away Analysis (DDAA) into a faster time domain, where more penetrating epithermal neutrons induce fissions, is proposed and demonstrated via simulations and experiments. In the proposed method the fissions stimulated by thermal, epithermal and even higher-energy neutrons are measured after injection of a narrow pulse of high-energy 14 MeV (d,T) or 2.5 MeV (d,D) source neutrons, appropriately moderated. The ability to measure these fissions stems from the inherent correlation of neutron energy and time (“E–T” correlation) during the process of slowing down of high-energy source neutrons in common moderating materials such as hydrogenous compounds (e.g., polyethylene), heavy water, beryllium and graphite. The kinetic behavior following injection of a delta-function-shaped pulse (in time) of 14 MeV neutrons into such moderators is studied employing MCNPX simulations and, when applicable, some simple “one-group” models. These calculations served as a guide for the design of a source moderator which was used in experiments. Qualitative relationships between slowing-down time after the pulse and the prevailing neutron energy are discussed. A laboratory system consisting of a 14 MeV neutron generator, a polyethylene-reflected Be moderator, a liquid scintillator with pulse-shape discrimination (PSD) and a two-parameter E–T data acquisition system was set up to measure prompt neutron and delayed gamma-ray fission signatures in a 19.5% enriched LEU sample. The measured time behavior of thermal and epithermal neutron fission signals agreed well with the detailed simulations. The laboratory system can readily be redesigned and deployed as a mobile inspection system for SNM in, e.g., cars and vans. A strong pulsed neutron generator with narrow pulse (<75 ns) at a reasonably high pulse frequency could make the high-energy neutron induced fission modality a realizable SNM detection technique.

  17. A neutron Albedo system with time rejection for landmine and IED detection

    Science.gov (United States)

    Kovaltchouk, V. D.; Andrews, H. R.; Clifford, E. T. H.; Faust, A. A.; Ing, H.; McFee, J. E.

    2011-10-01

    A neutron Albedo system has been developed for imaging of buried landmines and improvised explosive devices (IEDs). It involves irradiating the ground with fast neutrons and subsequently detecting the thermalized neutrons that return. A scintillating 6Li loaded ZnS(Ag) screen with a sensitive area of 40 cm×40 cm is used as a thermal neutron detector. Scintillation light is captured by orthogonal arrays of wavelength-shifting fibers placed on either side of the scintillator surface and then transferred to X and Y multi-pixel PMTs. A timing circuit, used with pulsed neutron sources, records the time when a neutron detection takes place relative to an external synchronization pulse from the pulsed source. Experimental tests of the Albedo system performance have been done in a sand box with a 252Cf neutron source (no time gating) and with pulsed D-D (2.6 MeV) neutrons from the Defense R&D Ottawa Van de Graaff accelerator (with time gating). Information contained in the time evolution of the thermal neutron field provided improved detection capability and image reconstruction. The detector design is described and experimental results are discussed.

  18. Near real-time shadow detection and removal in aerial motion imagery application

    Science.gov (United States)

    Silva, Guilherme F.; Carneiro, Grace B.; Doth, Ricardo; Amaral, Leonardo A.; Azevedo, Dario F. G. de

    2018-06-01

    This work presents a method to automatically detect and remove shadows in urban aerial images and its application in an aerospace remote monitoring system requiring near real-time processing. Our detection method generates shadow masks and is accelerated by GPU programming. To obtain the shadow masks, we converted images from RGB to CIELCh model, calculated a modified Specthem ratio, and applied multilevel thresholding. Morphological operations were used to reduce shadow mask noise. The shadow masks are used in the process of removing shadows from the original images using the illumination ratio of the shadow/non-shadow regions. We obtained shadow detection accuracy of around 93% and shadow removal results comparable to the state-of-the-art while maintaining execution time under real-time constraints.

  19. Detection system for neutron β decay correlations in the UCNB and Nab experiments

    Energy Technology Data Exchange (ETDEWEB)

    Broussard, L.J., E-mail: broussardlj@ornl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Zeck, B.A. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); North Carolina State University, Raleigh, NC 27695 (United States); Adamek, E.R. [Indiana University, Bloomington, IN 47405 (United States); Baeßler, S. [University of Virginia, Charlottesville, VA 22904 (United States); Birge, N. [University of Tennessee, Knoxville, TN 37996 (United States); Blatnik, M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Cleveland State University, Cleveland, OH 44115 (United States); Bowman, J.D. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Brandt, A.E. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); North Carolina State University, Raleigh, NC 27695 (United States); Brown, M. [University of Kentucky, Lexington, KY 40506 (United States); Burkhart, J. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Callahan, N.B. [Indiana University, Bloomington, IN 47405 (United States); Clayton, S.M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Crawford, C. [University of Kentucky, Lexington, KY 40506 (United States); Cude-Woods, C. [North Carolina State University, Raleigh, NC 27695 (United States); Currie, S. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Dees, E.B. [North Carolina State University, Raleigh, NC 27695 (United States); Ding, X. [Virginia Polytechnic Institute & State University, Blacksburg, VA 24061 (United States); Fomin, N. [University of Tennessee, Knoxville, TN 37996 (United States); Frlez, E.; Fry, J. [University of Virginia, Charlottesville, VA 22904 (United States); and others

    2017-03-21

    We describe a detection system designed for precise measurements of angular correlations in neutron β decay. The system is based on thick, large area, highly segmented silicon detectors developed in collaboration with Micron Semiconductor, Ltd. The prototype system meets specifications for β electron detection with energy thresholds below 10 keV, energy resolution of ∼3 keV FWHM, and rise time of ∼50 ns with 19 of the 127 detector pixels instrumented. Using ultracold neutrons at the Los Alamos Neutron Science Center, we have demonstrated the coincident detection of β particles and recoil protons from neutron β decay. The fully instrumented detection system will be implemented in the UCNB and Nab experiments to determine the neutron β decay parameters B, a, and b.

  20. Building Change Detection from Bi-Temporal Dense-Matching Point Clouds and Aerial Images.

    Science.gov (United States)

    Pang, Shiyan; Hu, Xiangyun; Cai, Zhongliang; Gong, Jinqi; Zhang, Mi

    2018-03-24

    In this work, a novel building change detection method from bi-temporal dense-matching point clouds and aerial images is proposed to address two major problems, namely, the robust acquisition of the changed objects above ground and the automatic classification of changed objects into buildings or non-buildings. For the acquisition of changed objects above ground, the change detection problem is converted into a binary classification, in which the changed area above ground is regarded as the foreground and the other area as the background. For the gridded points of each period, the graph cuts algorithm is adopted to classify the points into foreground and background, followed by the region-growing algorithm to form candidate changed building objects. A novel structural feature that was extracted from aerial images is constructed to classify the candidate changed building objects into buildings and non-buildings. The changed building objects are further classified as "newly built", "taller", "demolished", and "lower" by combining the classification and the digital surface models of two periods. Finally, three typical areas from a large dataset are used to validate the proposed method. Numerous experiments demonstrate the effectiveness of the proposed algorithm.

  1. Verification of threshold activation detection (TAD) technique in prompt fission neutron detection using scintillators containing 19F

    Science.gov (United States)

    Sibczynski, P.; Kownacki, J.; Moszyński, M.; Iwanowska-Hanke, J.; Syntfeld-Każuch, A.; Gójska, A.; Gierlik, M.; Kaźmierczak, Ł.; Jakubowska, E.; Kędzierski, G.; Kujawiński, Ł.; Wojnarowicz, J.; Carrel, F.; Ledieu, M.; Lainé, F.

    2015-09-01

    In the present study ⌀ 5''× 3'' and ⌀ 2''× 2'' EJ-313 liquid fluorocarbon as well as ⌀ 2'' × 3'' BaF2 scintillators were exposed to neutrons from a 252Cf neutron source and a Sodern Genie 16GT deuterium-tritium (D+T) neutron generator. The scintillators responses to β- particles with maximum endpoint energy of 10.4 MeV from the n+19F reactions were studied. Response of a ⌀ 5'' × 3'' BC-408 plastic scintillator was also studied as a reference. The β- particles are the products of interaction of fast neutrons with 19F which is a component of the EJ-313 and BaF2 scintillators. The method of fast neutron detection via fluorine activation is already known as Threshold Activation Detection (TAD) and was proposed for photofission prompt neutron detection from fissionable and Special Nuclear Materials (SNM) in the field of Homeland Security and Border Monitoring. Measurements of the number of counts between 6.0 and 10.5 MeV with a 252Cf source showed that the relative neutron detection efficiency ratio, defined as epsilonBaF2 / epsilonEJ-313-5'', is 32.0% ± 2.3% and 44.6% ± 3.4% for front-on and side-on orientation of the BaF2, respectively. Moreover, the ⌀ 5'' EJ-313 and side-on oriented BaF2 were also exposed to neutrons from the D+T neutron generator, and the relative efficiency epsilonBaF2 / epsilonEJ-313-5'' was estimated to be 39.3%. Measurements of prompt photofission neutrons with the BaF2 detector by means of data acquisition after irradiation (out-of-beam) of nuclear material and between the beam pulses (beam-off) techniques were also conducted on the 9 MeV LINAC of the SAPHIR facility.

  2. Proton detection in the neutron lifetime experiment PENeLOPE

    Energy Technology Data Exchange (ETDEWEB)

    Tietze, Christian [Technische Universitaet Muenchen, Physik Department E18 (Germany); Collaboration: PENeLOPE-Collaboration

    2015-07-01

    Although neutron lifetime plays an important role in the Standard Model of particle physics, τ{sub n} is not very precisely know and often discussed. The official PDG mean value has been lowered during the last years by more than 6σ to the new value of 880.3 ± 1.1 s. The new precision experiment PENeLOPE, which is currently developed at Technische Universitaet Muenchen, will help to clear this up. Ultra-cold neutrons are lossless stored in a magneto-gravitational trap, formed by superconducting coils. The combined determination of τ{sub n} by counting the surviving neutrons after each storage cycle on one side and in-situ detection of the decay protons on the other side together with a very good handle on systematic errors leads to an unprecedented precision of the neutron lifetime value of 0.1s. This contribution will give an overview of the challenges concerning proton detection under the exceptional requirements of this experiment. The developed concept of using avalanche photodiodes for direct proton detection will be presented as well as results from first measurements with a prototype detector read out by particular developed electronics.

  3. Fission meter and neutron detection using poisson distribution comparison

    Science.gov (United States)

    Rowland, Mark S; Snyderman, Neal J

    2014-11-18

    A neutron detector system and method for discriminating fissile material from non-fissile material wherein a digital data acquisition unit collects data at high rate, and in real-time processes large volumes of data directly into information that a first responder can use to discriminate materials. The system comprises counting neutrons from the unknown source and detecting excess grouped neutrons to identify fission in the unknown source. Comparison of the observed neutron count distribution with a Poisson distribution is performed to distinguish fissile material from non-fissile material.

  4. DETERMINATION OF LIMIT DETECTION OF THE ELEMENTS N, P, K, Si, Al, Fe, Cu, Cd, WITH FAST NEUTRON ACTIVATION USING NEUTRON GENERATOR

    Directory of Open Access Journals (Sweden)

    Sunardi Sunardi

    2010-06-01

    Full Text Available Determination of limit detection of the elements N, P, K, Si, Al, Fe, Cu, Cd, with fast neutron activation using neutron generator has been done.  Samples prepared from SRM 2704, N, P, K elements from MERCK, Cu, Cd, Al from activation foil made in San Carlos, weighted and packed for certain weight then iradiated during 30 minutes with 14 MeV fast neutron using the neutron generator and then counted with gamma spectrometry (accuspec.  At this research condition of neutron generator was set at current 1 mA that produced neutron flux about 5,47.107 n/cm2.s and  experimental result shown that the limit detection for the elements N, P, K, Si, Al, Fe, Cu, Cd are  2,44 ppm, 1,88 ppm, 2,15 ppm, 1,44 ppm, 1,26 ppm, 1,35 ppm, 1,05 ppm, 2,99 ppm, respectively.  The data  indicate that the limit detection or sensitivity of appliance of neutron generator to analyze the element is very good, which is feasible to get accreditation AANC laboratory using neutron generator.   Keywords: limit detection, AANC, neutron generator

  5. Position sensitive detection of neutrons in high radiation background field.

    Science.gov (United States)

    Vavrik, D; Jakubek, J; Pospisil, S; Vacik, J

    2014-01-01

    We present the development of a high-resolution position sensitive device for detection of slow neutrons in the environment of extremely high γ and e(-) radiation background. We make use of a planar silicon pixelated (pixel size: 55 × 55 μm(2)) spectroscopic Timepix detector adapted for neutron detection utilizing very thin (10)B converter placed onto detector surface. We demonstrate that electromagnetic radiation background can be discriminated from the neutron signal utilizing the fact that each particle type produces characteristic ionization tracks in the pixelated detector. Particular tracks can be distinguished by their 2D shape (in the detector plane) and spectroscopic response using single event analysis. A Cd sheet served as thermal neutron stopper as well as intensive source of gamma rays and energetic electrons. Highly efficient discrimination was successful even at very low neutron to electromagnetic background ratio about 10(-4).

  6. DETECTION OF COATING FAILURES IN A NEUTRONIC REACTOR

    Science.gov (United States)

    Snell, A.H.; Allison, S.K.

    1958-02-11

    This patent relates to water-cooled reactor systems and discloses a means to detect leaks in the jackets of jacketed fuel elements comprising a neutron detector located in the cooling water discharge pipe,the pipe being provided with an enlarged portion for housing the detector so that the latter is completely surrounded by the water in its passage through the pipe, said enlarged portion and detector being shielded from the reactor for the purpose of detecting only those delayed neutrons emitted in the cooling water and due to the latter picking up fission fragments from the defective fuel elements.

  7. Road Extraction and Car Detection from Aerial Image Using Intensity and Color

    Directory of Open Access Journals (Sweden)

    Vahid Ghods

    2011-07-01

    Full Text Available In this paper a new automatic approach to road extraction from aerial images is proposed. The initialization strategies are based on the intensity, color, and Hough transform. After road elements extraction, chain codes are calculated. In the last step, using shadow, cars on the roads are detected. We implemented our method on the 25 images from "Google Earth" database. The experiments show an increase in both the completeness and the quality indexes for the extracted road.

  8. Studies on neutron detection with solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Khouri, M.C.; Vilela, E.C.; Andrade, C. de.

    1993-03-01

    The detection of thermal and fast neutrons was studied. For thermal neutrons, alpha sensitive plastic was used in order to register the products of nuclear reactions taking place in boron and /or lithium converters. Fast neutrons produce recoil tracks within the detector. In the present case, CR-39 and Makrofol E were used. Chemical and electrochemical etching processes were used for thermal and fast neutron detectors, respectively. (F.E.). 6 refs, 4 figs, 6 tabs

  9. Real-Time Human Detection for Aerial Captured Video Sequences via Deep Models

    Directory of Open Access Journals (Sweden)

    Nouar AlDahoul

    2018-01-01

    Full Text Available Human detection in videos plays an important role in various real life applications. Most of traditional approaches depend on utilizing handcrafted features which are problem-dependent and optimal for specific tasks. Moreover, they are highly susceptible to dynamical events such as illumination changes, camera jitter, and variations in object sizes. On the other hand, the proposed feature learning approaches are cheaper and easier because highly abstract and discriminative features can be produced automatically without the need of expert knowledge. In this paper, we utilize automatic feature learning methods which combine optical flow and three different deep models (i.e., supervised convolutional neural network (S-CNN, pretrained CNN feature extractor, and hierarchical extreme learning machine for human detection in videos captured using a nonstatic camera on an aerial platform with varying altitudes. The models are trained and tested on the publicly available and highly challenging UCF-ARG aerial dataset. The comparison between these models in terms of training, testing accuracy, and learning speed is analyzed. The performance evaluation considers five human actions (digging, waving, throwing, walking, and running. Experimental results demonstrated that the proposed methods are successful for human detection task. Pretrained CNN produces an average accuracy of 98.09%. S-CNN produces an average accuracy of 95.6% with soft-max and 91.7% with Support Vector Machines (SVM. H-ELM has an average accuracy of 95.9%. Using a normal Central Processing Unit (CPU, H-ELM’s training time takes 445 seconds. Learning in S-CNN takes 770 seconds with a high performance Graphical Processing Unit (GPU.

  10. Vision-Based Corrosion Detection Assisted by a Micro-Aerial Vehicle in a Vessel Inspection Application

    Directory of Open Access Journals (Sweden)

    Alberto Ortiz

    2016-12-01

    Full Text Available Vessel maintenance requires periodic visual inspection of the hull in order to detect typical defective situations of steel structures such as, among others, coating breakdown and corrosion. These inspections are typically performed by well-trained surveyors at great cost because of the need for providing access means (e.g., scaffolding and/or cherry pickers that allow the inspector to be at arm’s reach from the structure under inspection. This paper describes a defect detection approach comprising a micro-aerial vehicle which is used to collect images from the surfaces under inspection, particularly focusing on remote areas where the surveyor has no visual access, and a coating breakdown/corrosion detector based on a three-layer feed-forward artificial neural network. As it is discussed in the paper, the success of the inspection process depends not only on the defect detection software but also on a number of assistance functions provided by the control architecture of the aerial platform, whose aim is to improve picture quality. Both aspects of the work are described along the different sections of the paper, as well as the classification performance attained.

  11. Neutron detection and applications using a BC454/BGO array

    International Nuclear Information System (INIS)

    Miller, M.C.; Biddle, R.S.; Bourret, S.C.

    1998-01-01

    Neutron detection and multiplicity counting has been investigated using a boron-loaded plastic scintillator (BC454)/bismuth germanate (BGO) phoswich detector array. Boron-loaded plastic combines neutron moderation (H) and detection ( 10 B) at the molecular level, thereby physically coupling increasing detection efficiency and decreasing die-away time with detector volume. Separation of the phoswich response into its plastic scintillator and bismuth germanate components was accomplished on an event-by-event basis using custom integrator and timing circuits, enabling a prompt coincidence requirement between the BC454 and BGO to be used to identify neutron captures. In addition, a custom time-tag module was used to provide a time for each detector event. Time-correlation analysis was subsequently performed on the filtered event stream to obtain shift-register-type singles and doubles count rates

  12. Neutron detection and applications using a BC454/BGO array

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M.C.; Biddle, R.S.; Bourret, S.C.; Byrd, R.C.; Ensslin, N.; Feldman, W.C.; Kuropatwinski, J.J.; Longmire, J.L.; Krick, M.S.; Mayo, D.R.; Russo, P.A.; Sweet, M.R

    1999-02-11

    Neutron detection and multiplicity counting has been investigated using a boron-loaded plastic scintillator/bismuth germanate phoswich detector array. The boron-loaded plastic combines neutron moderation (H) and detection ({sup 10}B) at the molecular level, thereby physically coupling increasing detection efficiency and decreasing die-away time with detector volume. Separation of the phoswich response into its plastic scintillator and bismuth germanate components was accomplished on an event-by-event basis using custom integrator and timing circuits, enabling a prompt coincidence requirement between the BC454 and BGO to be used to identify neutron captures. In addition, a custom time-tag module was used to provide a time for each detector event. Time-correlation analysis was subsequently performed on the filtered event stream to obtain shift-register-type singles and doubles count rates.

  13. Neutron detection and applications using a BC454/BGO array

    International Nuclear Information System (INIS)

    Miller, M.C.; Biddle, R.S.; Bourret, S.C.; Byrd, R.C.; Ensslin, N.; Feldman, W.C.; Kuropatwinski, J.J.; Longmire, J.L.; Krick, M.S.; Mayo, D.R.; Russo, P.A.; Sweet, M.R.

    1999-01-01

    Neutron detection and multiplicity counting has been investigated using a boron-loaded plastic scintillator/bismuth germanate phoswich detector array. The boron-loaded plastic combines neutron moderation (H) and detection ( 10 B) at the molecular level, thereby physically coupling increasing detection efficiency and decreasing die-away time with detector volume. Separation of the phoswich response into its plastic scintillator and bismuth germanate components was accomplished on an event-by-event basis using custom integrator and timing circuits, enabling a prompt coincidence requirement between the BC454 and BGO to be used to identify neutron captures. In addition, a custom time-tag module was used to provide a time for each detector event. Time-correlation analysis was subsequently performed on the filtered event stream to obtain shift-register-type singles and doubles count rates

  14. Hearing of the African lungfish (Protopterus annectens) suggests underwater pressure detection and rudimentary aerial hearing in early tetrapods.

    Science.gov (United States)

    Christensen, Christian Bech; Christensen-Dalsgaard, Jakob; Madsen, Peter Teglberg

    2015-02-01

    In the transition from an aquatic to a terrestrial lifestyle, vertebrate auditory systems have undergone major changes while adapting to aerial hearing. Lungfish are the closest living relatives of tetrapods and their auditory system may therefore be a suitable model of the auditory systems of early tetrapods such as Acanthostega. Therefore, experimental studies on the hearing capabilities of lungfish may shed light on the possible hearing capabilities of early tetrapods and broaden our understanding of hearing across the water-to-land transition. Here, we tested the hypotheses that (i) lungfish are sensitive to underwater pressure using their lungs as pressure-to-particle motion transducers and (ii) lungfish can detect airborne sound. To do so, we used neurophysiological recordings to estimate the vibration and pressure sensitivity of African lungfish (Protopterus annectens) in both water and air. We show that lungfish detect underwater sound pressure via pressure-to-particle motion transduction by air volumes in their lungs. The morphology of lungfish shows no specialized connection between these air volumes and the inner ears, and so our results imply that air breathing may have enabled rudimentary pressure detection as early as the Devonian era. Additionally, we demonstrate that lungfish in spite of their atympanic middle ear can detect airborne sound through detection of sound-induced head vibrations. This strongly suggests that even vertebrates with no middle ear adaptations for aerial hearing, such as the first tetrapods, had rudimentary aerial hearing that may have led to the evolution of tympanic middle ears in recent tetrapods. © 2015. Published by The Company of Biologists Ltd.

  15. Gamma and neutron detection modeling in the nuclear detection figure of merit (NDFOM) portal

    International Nuclear Information System (INIS)

    Stroud, Phillip D.; Saeger, Kevin J.

    2009-01-01

    The Nuclear Detection Figure Of Merit (NDFOM) portal is a database of objects and algorithms for evaluating the performance of radiation detectors to detect nuclear material. This paper describes the algorithms used to model the physics and mathematics of radiation detection. As a first-principles end-to-end analysis system, it starts with the representation of the gamma and neutron spectral fluxes, which are computed with the particle and radiation transport code MCNPX. The gamma spectra emitted by uranium, plutonium, and several other materials of interest are described. The impact of shielding and other intervening material is computed by the method of build-up factors. The interaction of radiation with the detector material is computed by a detector response function approach. The construction of detector response function matrices based on MCNPX simulation runs is described in detail. Neutron fluxes are represented in a three group formulation to treat differences in detector sensitivities to thermal, epithermal, and fast neutrons.

  16. Explosives detection via fast neutron transmission spectroscopy

    International Nuclear Information System (INIS)

    Overley, J.C.; Chmelik, M.S.; Rasmussen, R.J.; Schofield, R.M.S.; Sieger, G.E.; Lefevre, H.W.

    2006-01-01

    A review of a five-year project on detection of explosives in luggage is presented. Experimental methods are described. Explosive detection algorithms based on elemental distributions in a 5-dimensional space are also described. Single-blind tests of the method suggest that a false-alarm rate of 4% and a detection rate of 93% are possible. Improvements in the method are suggested. Measurements of neutron total cross sections for chlorine are presented

  17. Apparatus and method for the simultaneous detection of neutrons and ionizing electromagnetic radiation

    Science.gov (United States)

    Bell, Zane W.

    2000-01-01

    A sensor for simultaneously detecting neutrons and ionizing electromagnetic radiation comprising: a sensor for the detection of gamma radiation, the sensor defining a sensing head; the sensor further defining an output end in communication with the sensing head; and an exterior neutron-sensitive material configured to form around the sensing head; wherein the neutron-sensitive material, subsequent to the capture of the neutron, fissions into an alpha-particle and a .sup.7 Li ion that is in a first excited state in a majority of the fissions, the first excited state decaying via the emission of a single gamma ray at 478 keV which can in turn be detected by the sensing head; and wherein the sensing head can also detect the ionizing electromagnetic radiation from an incident radiation field without significant interference from the neutron-sensitive material. A method for simultaneously detecting neutrons and ionizing electromagnetic radiation comprising the steps of: providing a gamma ray sensitive detector comprising a sensing head and an output end; conforming an exterior neutron-sensitive material configured to form around the sensing head of the detector; capturing neutrons by the sensing head causing the neutron-sensitive material to fission into an alpha-particle and a .sup.7 Li ion that is in a first excited state in a majority of the fissions, the state decaying via the emission of a single gamma ray at 478 keV; sensing gamma rays entering the detector through the neutron-sensitive material; and producing an output through a readout device coupled to the output end; wherein the detector provides an output which is proportional to the energy of the absorbed ionizing electromagnetic radiation.

  18. Detection of supernova neutrinos at spallation neutron sources

    Science.gov (United States)

    Huang, Ming-Yang; Guo, Xin-Heng; Young, Bing-Lin

    2016-07-01

    After considering supernova shock effects, Mikheyev-Smirnov-Wolfenstein effects, neutrino collective effects, and Earth matter effects, the detection of supernova neutrinos at the China Spallation Neutron Source is studied and the expected numbers of different flavor supernova neutrinos observed through various reaction channels are calculated with the neutrino energy spectra described by the Fermi-Dirac distribution and the “beta fit” distribution respectively. Furthermore, the numerical calculation method of supernova neutrino detection on Earth is applied to some other spallation neutron sources, and the total expected numbers of supernova neutrinos observed through different reactions channels are given. Supported by National Natural Science Foundation of China (11205185, 11175020, 11275025, 11575023)

  19. Neutron-Star Merger Detected By Many Eyes and Ears

    Science.gov (United States)

    Kohler, Susanna

    2017-10-01

    Where were you on Thursday, 17 August 2017? I was in Idaho, getting ready for Monday mornings solar eclipse. What I didnt know was that, at the time, around 70 teams around the world were mobilizing to point their ground- and space-based telescopes at a single patch of sky suspected to host the first gravitational-wave-detected merger of two neutron stars.Sudden Leaps for ScienceThe masses for black holes detected through electromagnetic observations (purple), black holes measured by gravitational-wave observations (blue), neutron stars measured with electromagnetic observations (yellow), and the neutron stars that merged in GW170817 (orange). [LIGO-Virgo/Frank Elavsky/NorthwesternUniversity]The process of science is long and arduous, generally occurring at a slow plod as theorists make predictions, and observations are then used to chip away at these theories, gradually confirming or disproving them. It is rare that science progresses forward in a giant leap, with years upon years of theories confirmed in one fell swoop.14 September 2015 marked the day of one such leap, as the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected gravitational waves for the first time simultaneously verifying that black holes exist, that black-hole binaries exist, and that they can merge on observable timescales, emitting signals that directly confirm the predictions of general relativity.As it turns out, 17 August 2017 was another such day. On this day, LIGO observed a gravitational-wave signal unlike its previous black-hole detections. Instead, this was a signal consistent with the merger of two neutron stars.Artists illustrations of the stellar-merger model for short gamma-ray bursts. In the model, 1) two neutron stars inspiral, 2) they merge and produce a gamma-ray burst, 3) a small fraction of their mass is flung out and radiates as a kilonova, 4) a massive neutron star or black hole with a disk remains after the event. [NASA, ESA, and A. Feild (STScI)]What We

  20. Vehicle Detection in Aerial Images Based on Region Convolutional Neural Networks and Hard Negative Example Mining.

    Science.gov (United States)

    Tang, Tianyu; Zhou, Shilin; Deng, Zhipeng; Zou, Huanxin; Lei, Lin

    2017-02-10

    Detecting vehicles in aerial imagery plays an important role in a wide range of applications. The current vehicle detection methods are mostly based on sliding-window search and handcrafted or shallow-learning-based features, having limited description capability and heavy computational costs. Recently, due to the powerful feature representations, region convolutional neural networks (CNN) based detection methods have achieved state-of-the-art performance in computer vision, especially Faster R-CNN. However, directly using it for vehicle detection in aerial images has many limitations: (1) region proposal network (RPN) in Faster R-CNN has poor performance for accurately locating small-sized vehicles, due to the relatively coarse feature maps; and (2) the classifier after RPN cannot distinguish vehicles and complex backgrounds well. In this study, an improved detection method based on Faster R-CNN is proposed in order to accomplish the two challenges mentioned above. Firstly, to improve the recall, we employ a hyper region proposal network (HRPN) to extract vehicle-like targets with a combination of hierarchical feature maps. Then, we replace the classifier after RPN by a cascade of boosted classifiers to verify the candidate regions, aiming at reducing false detection by negative example mining. We evaluate our method on the Munich vehicle dataset and the collected vehicle dataset, with improvements in accuracy and robustness compared to existing methods.

  1. Advanced Multilayer Composite Heavy-Oxide Scintillator Detectors for High Efficiency Fast Neutron Detection

    Science.gov (United States)

    Ryzhikov, Vladimir D.; Naydenov, Sergei V.; Pochet, Thierry; Onyshchenko, Gennadiy M.; Piven, Leonid A.; Smith, Craig F.

    2018-01-01

    We have developed and evaluated a new approach to fast neutron and neutron-gamma detection based on large-area multilayer composite heterogeneous detection media consisting of dispersed granules of small-crystalline scintillators contained in a transparent organic (plastic) matrix. Layers of the composite material are alternated with layers of transparent plastic scintillator material serving as light guides. The resulting detection medium - designated as ZEBRA - serves as both an active neutron converter and a detection scintillator which is designed to detect both neutrons and gamma-quanta. The composite layers of the ZEBRA detector consist of small heavy-oxide scintillators in the form of granules of crystalline BGO, GSO, ZWO, PWO and other materials. We have produced and tested the ZEBRA detector of sizes 100x100x41 mm and greater, and determined that they have very high efficiency of fast neutron detection (up to 49% or greater), comparable to that which can be achieved by large sized heavy-oxide single crystals of about Ø40x80 cm3 volume. We have also studied the sensitivity variation to fast neutron detection by using different types of multilayer ZEBRA detectors of 100 cm2 surface area and 41 mm thickness (with a detector weight of about 1 kg) and found it to be comparable to the sensitivity of a 3He-detector representing a total cross-section of about 2000 cm2 (with a weight of detector, including its plastic moderator, of about 120 kg). The measured count rate in response to a fast neutron source of 252Cf at 2 m for the ZEBRA-GSO detector of size 100x100x41 mm3 was 2.84 cps/ng, and this count rate can be doubled by increasing the detector height (and area) up to 200x100 mm2. In summary, the ZEBRA detectors represent a new type of high efficiency and low cost solid-state neutron detector that can be used for stationary neutron/gamma portals. They may represent an interesting alternative to expensive, bulky gas counters based on 3He or 10B neutron

  2. SWAN - Detection of explosives by means of fast neutron activation analysis

    International Nuclear Information System (INIS)

    Gierlik, M.; Borsuk, S.; Guzik, Z.; Iwanowska, J.; Kaźmierczak, Ł.; Korolczuk, S.; Kozłowski, T.; Krakowski, T.; Marcinkowski, R.; Swiderski, L.; Szeptycka, M.; Szewiński, J.; Urban, A.

    2016-01-01

    In this work we report on SWAN, the experimental, portable device for explosives detection. The device was created as part of the EU Structural Funds Project “Accelerators & Detectors” (POIG.01.01.02-14-012/08-00), with the goal to increase beneficiary's expertise and competencies in the field of neutron activation analysis. Previous experiences and budged limitations lead toward a less advanced design based on fast neutron interactions and unsophisticated data analysis with the emphasis on the latest gamma detection and spectrometry solutions. The final device has been designed as a portable, fast neutron activation analyzer, with the software optimized for detection of carbon, nitrogen and oxygen. SWAN's performance in the role of explosives detector is elaborated in this paper. We demonstrate that the unique features offered by neutron activation analysis might not be impressive enough when confronted with practical demands and expectations of a generic homeland security customer.

  3. Detection of hidden explosives by fast neutron activation analysis

    International Nuclear Information System (INIS)

    Li Xinnian; Guo Junpeng; Luo Wenyun; Wang Chuanshan; Fang Xiaoming; Yu Tailiu

    2008-01-01

    The paper describes the method and principle for detection of hidden explosive by fast neutron activation analysis (FNAA). The method of detection of explosives by FNAA has the specific properties of simple determination equipments, high reliability, and low detecting cost, and would be beneficial to the applicability and popularization in the field of protecting and securing nation. The contents of nitrogen and oxygen in four explosives, more then ten common materials and TNT samples covered with soil, were measured by FNAA. 14 MeV fast neutrons were generated from (d, t) reaction with a 400 kV Cockcroft Walton type accelerator. The two-dimension distributions for nitro- gen and oxygen counting rates per unit mass of determined matters were obtained, and the characteristic area of explosives and non-explosives can be defined. By computer aided pattern recognition, the samples were identified with low false alarm or omission rates. The Monte-Carlo simulation indicates that there is no any radiation at 15 m apart from neutron source and is safe for irradiation after 1 h. It is suggested that FNAA may be potential in remote controlling for detection hidden explosive system with multi-probe large array. (authors)

  4. Thermal neutron detection by means of an organic solid-state track detector

    International Nuclear Information System (INIS)

    Doerschel, B.; Streubel, G.

    1979-01-01

    Thermal neutrons can be detected by means of organic solid-state track detectors if they are combined with radiators in which charged secondary particles are produced in neutron interaction processes. The secondary particles can produce etchable tracks in the detector material. For thermal neutron fluence determination from the track densities, the thermal neutron sensitivity was calculated for cellulose triacetate detectors with LiF radiators, taking into account energy and angular distribution of the alpha particles produced in the LiF radiator. This value is in good agreement with the sensitivity measured during irradiation in different neutron fields if corrections are considered the production of etchable or visuable tracks. Measuring range and measuring accuracy meet the requirements of thermal neutron detection in personnel dosimetry. Possibilities of extending the measuring range are discussed. (author)

  5. Monte Carlo simulations of a D-T neutron generator shielding for landmine detection

    International Nuclear Information System (INIS)

    Reda, A.M.

    2011-01-01

    Shielding for a D-T sealed neutron generator has been designed using the MCNP5 Monte Carlo radiation transport code. The neutron generator will be used in field for the detection of explosives, landmines, drugs and other 'threat' materials. The optimization of the detection of buried objects was started by studying the signal-to-noise ratio for different geometric conditions. - Highlights: → A landmine detection system based on neutron fast/slow analysis has been designed. → Shielding for a D-T sealed neutron generator tube has been designed using Monte Carlo radiation transport code. → Detection of buried objects was started by studying the signal-to-noise ratio for different geometric conditions. → The signal-to-background ratio optimized at one position for all depths.

  6. Chemical warfare agents identification by thermal neutron detection

    International Nuclear Information System (INIS)

    Liu Boxue; Ai Xianyun; Tan Daoyuan; Zhang Dianqin

    2000-01-01

    The hydrogen concentration determination by thermal neutron detection is a non-destructive, fast and effective method to identify chemical warfare agents and TNT that contain different hydrogen fraction. When an isotropic neutron source is used to irradiate chemical ammunition, hydrogen atoms of the agent inside shell act as a moderator and slow down neutrons. The number of induced thermal neutrons depends mainly upon hydrogen content of the agent. Therefore measurement of thermal neutron influence can be used to determine hydrogen atom concentration, thereby to determine the chemical warfare agents. Under a certain geometry three calibration curves of count rate against hydrogen concentration were measured. According to the calibration curves, response of a chemical agent or TNT could be calculated. Differences of count rate among chemical agents and TNT for each kind of shells is greater than five times of standard deviations of count rate for any agent, so chemical agents or TNT could be identified correctly. Meanwhile, blast tube or liquid level of chemical warfare agent could affect the response of thermal neutron count rate, and thereby the result of identification. (author)

  7. Feasibility study of Self Powered Neutron Detectors in Fast Reactors for detecting local change in neutron flux distribution

    International Nuclear Information System (INIS)

    Jammes, Christian; Filliatre, Philippe; Verma, Vasudha; Hellesen, Carl; Jacobsson Svard, Staffan

    2015-01-01

    Neutron flux monitoring system forms an integral part of the design of a Generation IV sodium cooled fast reactor system. Diverse possibilities of detector systems installation have to be investigated with respect to practicality and feasibility according to the detection parameters. In this paper, we demonstrate the feasibility of using self powered neutron detectors as in-core detectors in fast reactors for detecting local change in neutron flux distribution. We show that the gamma contribution from fission products decay in the fuel and activation of structural materials is very small compared to the fission gammas. Thus, it is possible for the in-core SPND signal to follow changes in local neutron flux as they are proportional to each other. This implies that the signal from an in-core SPND can provide dynamic information on the neutron flux perturbations occurring inside the reactor core. (authors)

  8. Feasibility study of Self Powered Neutron Detectors in Fast Reactors for detecting local change in neutron flux distribution

    Energy Technology Data Exchange (ETDEWEB)

    Jammes, Christian; Filliatre, Philippe [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St Paul-Lez-Durance, (France); Verma, Vasudha; Hellesen, Carl; Jacobsson Svard, Staffan [Division of Applied Nuclear Physics, Uppsala University, SE-75120 Uppsala, (Sweden)

    2015-07-01

    Neutron flux monitoring system forms an integral part of the design of a Generation IV sodium cooled fast reactor system. Diverse possibilities of detector systems installation have to be investigated with respect to practicality and feasibility according to the detection parameters. In this paper, we demonstrate the feasibility of using self powered neutron detectors as in-core detectors in fast reactors for detecting local change in neutron flux distribution. We show that the gamma contribution from fission products decay in the fuel and activation of structural materials is very small compared to the fission gammas. Thus, it is possible for the in-core SPND signal to follow changes in local neutron flux as they are proportional to each other. This implies that the signal from an in-core SPND can provide dynamic information on the neutron flux perturbations occurring inside the reactor core. (authors)

  9. APSTNG: Neutron interrogation for detection of nuclear and CW weapons, explosives, and drugs

    International Nuclear Information System (INIS)

    Rhodes, E.; Dickerman, C.E.; De Volpi, A.; Peters, C.W.

    1992-01-01

    A recently developed neutron diagnostic probe system has the potential to satisfy a significant number of van-mobile and fixed- portal requirements for nondestructive verification of sealed munitions and detection of contraband explosives and drugs. The probe is based on a unique associated-particle sealed-tube neutron generator (APSTNG) that interrogates the object of interest with a low-intensity beam of 14-MeV neutrons generated from the deuterium-tritium reaction and that detects the alpha-particle associated with each neutron. Gamma-ray spectra of resulting neutron inelastic scattering and fission reactions identify nuclides associated with all major chemicals in chemical warfare agents, explosives, and drugs, as well as many pollutants and fissile and fertile special nuclear material. Flight times determined from determined from detection times of the gamma-rays and alpha-particles yield a separate tomographic image of each identified nuclide. The APSTNG also forms the basis for a compact fast-neutron transmission imaging system that can be used along with or instead of the emission imaging system; a collimator is not required since scattered neutrons are removed by ''electronic collimation'' (detected neutrons not having the proper flight time to be uncollided are discarded). The small and relatively inexpensive APSTNG exhibits high reliability and can be quickly replaced. Proof-of-concept experiments have been performed under laboratory conditions for simulated nuclear and chemical warfare munitions and for explosives and drugs

  10. SWAN - Detection of explosives by means of fast neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gierlik, M., E-mail: m.gierlik@ncbj.gov.pl; Borsuk, S.; Guzik, Z.; Iwanowska, J.; Kaźmierczak, Ł.; Korolczuk, S.; Kozłowski, T.; Krakowski, T.; Marcinkowski, R.; Swiderski, L.; Szeptycka, M.; Szewiński, J.; Urban, A.

    2016-10-21

    In this work we report on SWAN, the experimental, portable device for explosives detection. The device was created as part of the EU Structural Funds Project “Accelerators & Detectors” (POIG.01.01.02-14-012/08-00), with the goal to increase beneficiary's expertise and competencies in the field of neutron activation analysis. Previous experiences and budged limitations lead toward a less advanced design based on fast neutron interactions and unsophisticated data analysis with the emphasis on the latest gamma detection and spectrometry solutions. The final device has been designed as a portable, fast neutron activation analyzer, with the software optimized for detection of carbon, nitrogen and oxygen. SWAN's performance in the role of explosives detector is elaborated in this paper. We demonstrate that the unique features offered by neutron activation analysis might not be impressive enough when confronted with practical demands and expectations of a generic homeland security customer.

  11. Parameters of explosives detection through tagged neutron method

    Energy Technology Data Exchange (ETDEWEB)

    Bagdasaryan, Kh.E.; Batyaev, V.F.; Belichenko, S.G., E-mail: consul757@mail.ru; Bestaev, R.R.; Gavryuchenkov, A.V.; Karetnikov, M.D.

    2015-06-01

    The potentialities of tagged neutron method (TNM) for explosives detection are examined on the basis of an idealized geometrical model. The model includes ING-27 14 MeV neutron generator with a built-in α-detector, a LYSO γ-detector and samples of material to be identified of approximately 0.3 kg each: explosives imitators (trinitrotoluene - TNT, tetryl, RDX and ammonium nitrate), legal materials (sugar, water, silk and polyethylene). The samples were unshielded or shielded by a paper layer of various thicknesses. The experimental data were interpreted by numerical simulation using a Poisson distribution of signals with the statistical parameters defined experimentally. The detection parameters were obtained by a pattern classification theory and a Bayes classifier.

  12. Detecting blind building façades from highly overlapping wide angle aerial imagery

    Science.gov (United States)

    Burochin, Jean-Pascal; Vallet, Bruno; Brédif, Mathieu; Mallet, Clément; Brosset, Thomas; Paparoditis, Nicolas

    2014-10-01

    This paper deals with the identification of blind building façades, i.e. façades which have no openings, in wide angle aerial images with a decimeter pixel size, acquired by nadir looking cameras. This blindness characterization is in general crucial for real estate estimation and has, at least in France, a particular importance on the evaluation of legal permission of constructing on a parcel due to local urban planning schemes. We assume that we have at our disposal an aerial survey with a relatively high stereo overlap along-track and across-track and a 3D city model of LoD 1, that can have been generated with the input images. The 3D model is textured with the aerial imagery by taking into account the 3D occlusions and by selecting for each façade the best available resolution texture seeing the whole façade. We then parse all 3D façades textures by looking for evidence of openings (windows or doors). This evidence is characterized by a comprehensive set of basic radiometric and geometrical features. The blindness prognostic is then elaborated through an (SVM) supervised classification. Despite the relatively low resolution of the images, we reach a classification accuracy of around 85% on decimeter resolution imagery with 60 × 40 % stereo overlap. On the one hand, we show that the results are very sensitive to the texturing resampling process and to vegetation presence on façade textures. On the other hand, the most relevant features for our classification framework are related to texture uniformity and horizontal aspect and to the maximal contrast of the opening detections. We conclude that standard aerial imagery used to build 3D city models can also be exploited to some extent and at no additional cost for facade blindness characterisation.

  13. Aerial vehicles collision avoidance using monocular vision

    Science.gov (United States)

    Balashov, Oleg; Muraviev, Vadim; Strotov, Valery

    2016-10-01

    In this paper image-based collision avoidance algorithm that provides detection of nearby aircraft and distance estimation is presented. The approach requires a vision system with a single moving camera and additional information about carrier's speed and orientation from onboard sensors. The main idea is to create a multi-step approach based on a preliminary detection, regions of interest (ROI) selection, contour segmentation, object matching and localization. The proposed algorithm is able to detect small targets but unlike many other approaches is designed to work with large-scale objects as well. To localize aerial vehicle position the system of equations relating object coordinates in space and observed image is solved. The system solution gives the current position and speed of the detected object in space. Using this information distance and time to collision can be estimated. Experimental research on real video sequences and modeled data is performed. Video database contained different types of aerial vehicles: aircrafts, helicopters, and UAVs. The presented algorithm is able to detect aerial vehicles from several kilometers under regular daylight conditions.

  14. Search Strategy of Detector Position For Neutron Source Multiplication Method by Using Detected-Neutron Multiplication Factor

    International Nuclear Information System (INIS)

    Endo, Tomohiro

    2011-01-01

    In this paper, an alternative definition of a neutron multiplication factor, detected-neutron multiplication factor kdet, is produced for the neutron source multiplication method..(NSM). By using kdet, a search strategy of appropriate detector position for NSM is also proposed. The NSM is one of the practical subcritical measurement techniques, i.e., the NSM does not require any special equipment other than a stationary external neutron source and an ordinary neutron detector. Additionally, the NSM method is based on steady-state analysis, so that this technique is very suitable for quasi real-time measurement. It is noted that the correction factors play important roles in order to accurately estimate subcriticality from the measured neutron count rates. The present paper aims to clarify how to correct the subcriticality measured by the NSM method, the physical meaning of the correction factors, and how to reduce the impact of correction factors by setting a neutron detector at an appropriate detector position

  15. Sensitive and transportable gadolinium-core plastic scintillator sphere for neutron detection and counting

    Energy Technology Data Exchange (ETDEWEB)

    Dumazert, Jonathan; Coulon, Romain; Carrel, Frédérick; Corre, Gwenolé; Normand, Stéphane [CEA, LIST, Laboratoire Capteurs Architectures Electroniques, 91191 Gif-sur-Yvette (France); Méchin, Laurence [CNRS, UCBN, Groupe de Recherche en Informatique, Image, Automatique et Instrumentation de Caen, 14050 Caen (France); Hamel, Matthieu [CEA, LIST, Laboratoire Capteurs Architectures Electroniques, 91191 Gif-sur-Yvette (France)

    2016-08-21

    Neutron detection forms a critical branch of nuclear-related issues, currently driven by the search for competitive alternative technologies to neutron counters based on the helium-3 isotope. The deployment of plastic scintillators shows a high potential for efficient detectors, safer and more reliable than liquids, more easily scalable and cost-effective than inorganic. In the meantime, natural gadolinium, through its 155 and mostly 157 isotopes, presents an exceptionally high interaction probability with thermal neutrons. This paper introduces a dual system including a metal gadolinium core inserted at the center of a high-scale plastic scintillator sphere. Incident fast neutrons are thermalized by the scintillator shell and then may be captured with a significant probability by gadolinium 155 and 157 nuclei in the core. The deposition of a sufficient fraction of the capture high-energy prompt gamma signature inside the scintillator shell will then allow discrimination from background radiations by energy threshold, and therefore neutron detection. The scaling of the system with the Monte Carlo MCNPX2.7 code was carried out according to a tradeoff between the moderation of incident fast neutrons and the probability of slow neutron capture by a moderate-cost metal gadolinium core. Based on the parameters extracted from simulation, a first laboratory prototype for the assessment of the detection method principle has been synthetized. The robustness and sensitivity of the neutron detection principle are then assessed by counting measurement experiments. Experimental results confirm the potential for a stable, highly sensitive, transportable and cost-efficient neutron detector and orientate future investigation toward promising axes.

  16. Sensitive and transportable gadolinium-core plastic scintillator sphere for neutron detection and counting

    International Nuclear Information System (INIS)

    Dumazert, Jonathan; Coulon, Romain; Carrel, Frédérick; Corre, Gwenolé; Normand, Stéphane; Méchin, Laurence; Hamel, Matthieu

    2016-01-01

    Neutron detection forms a critical branch of nuclear-related issues, currently driven by the search for competitive alternative technologies to neutron counters based on the helium-3 isotope. The deployment of plastic scintillators shows a high potential for efficient detectors, safer and more reliable than liquids, more easily scalable and cost-effective than inorganic. In the meantime, natural gadolinium, through its 155 and mostly 157 isotopes, presents an exceptionally high interaction probability with thermal neutrons. This paper introduces a dual system including a metal gadolinium core inserted at the center of a high-scale plastic scintillator sphere. Incident fast neutrons are thermalized by the scintillator shell and then may be captured with a significant probability by gadolinium 155 and 157 nuclei in the core. The deposition of a sufficient fraction of the capture high-energy prompt gamma signature inside the scintillator shell will then allow discrimination from background radiations by energy threshold, and therefore neutron detection. The scaling of the system with the Monte Carlo MCNPX2.7 code was carried out according to a tradeoff between the moderation of incident fast neutrons and the probability of slow neutron capture by a moderate-cost metal gadolinium core. Based on the parameters extracted from simulation, a first laboratory prototype for the assessment of the detection method principle has been synthetized. The robustness and sensitivity of the neutron detection principle are then assessed by counting measurement experiments. Experimental results confirm the potential for a stable, highly sensitive, transportable and cost-efficient neutron detector and orientate future investigation toward promising axes.

  17. Robust vehicle detection in aerial images based on salient region selection and superpixel classification

    Science.gov (United States)

    Sahli, Samir; Duval, Pierre-Luc; Sheng, Yunlong; Lavigne, Daniel A.

    2011-05-01

    For detecting vehicles in large scale aerial images we first used a non-parametric method proposed recently by Rosin to define the regions of interest, where the vehicles appear with dense edges. The saliency map is a sum of distance transforms (DT) of a set of edges maps, which are obtained by a threshold decomposition of the gradient image with a set of thresholds. A binary mask for highlighting the regions of interest is then obtained by a moment-preserving thresholding of the normalized saliency map. Secondly, the regions of interest were over-segmented by the SLIC superpixels proposed recently by Achanta et al. to cluster pixels into the color constancy sub-regions. In the aerial images of 11.2 cm/pixel resolution, the vehicles in general do not exceed 20 x 40 pixels. We introduced a size constraint to guarantee no superpixels exceed the size of a vehicle. The superpixels were then classified to vehicle or non-vehicle by the Support Vector Machine (SVM), in which the Scale Invariant Feature Transform (SIFT) features and the Linear Binary Pattern (LBP) texture features were used. Both features were extracted at two scales with two size patches. The small patches capture local structures and the larger patches include the neighborhood information. Preliminary results show a significant gain in the detection. The vehicles were detected with a dense concentration of the vehicle-class superpixels. Even dark color cars were successfully detected. A validation process will follow to reduce the presence of isolated false alarms in the background.

  18. Vehicle detection from very-high-resolution (VHR) aerial imagery using attribute belief propagation (ABP)

    Science.gov (United States)

    Wang, Yanli; Li, Ying; Zhang, Li; Huang, Yuchun

    2016-10-01

    With the popularity of very-high-resolution (VHR) aerial imagery, the shape, color, and context attribute of vehicles are better characterized. Due to the various road surroundings and imaging conditions, vehicle attributes could be adversely affected so that vehicle is mistakenly detected or missed. This paper is motivated to robustly extract the rich attribute feature for detecting the vehicles of VHR imagery under different scenarios. Based on the hierarchical component tree of vehicle context, attribute belief propagation (ABP) is proposed to detect salient vehicles from the statistical perspective. With the Max-tree data structure, the multi-level component tree around the road network is efficiently created. The spatial relationship between vehicle and its belonging context is established with the belief definition of vehicle attribute. To effectively correct single-level belief error, the inter-level belief linkages enforce consistency of belief assignment between corresponding components at different levels. ABP starts from an initial set of vehicle belief calculated by vehicle attribute, and then iterates through each component by applying inter-level belief passing until convergence. The optimal value of vehicle belief of each component is obtained via minimizing its belief function iteratively. The proposed algorithm is tested on a diverse set of VHR imagery acquired in the city and inter-city areas of the West and South China. Experimental results show that the proposed algorithm can detect vehicle efficiently and suppress the erroneous effectively. The proposed ABP framework is promising to robustly classify the vehicles from VHR Aerial imagery.

  19. Detection of the weak γ activities from new neutron-rich nuclei

    International Nuclear Information System (INIS)

    Zhang Li; Wang Jicheng; Zhao Jinhua; Yang Yongfeng; Zheng Jiwen; Hu Qingyuan; Guo Tianrui

    2003-01-01

    Energic signals of γ rays detected by a HPGe γ detector were coincided with γ-ray, energy-loss signals detected by a 4πΔEβ detector. Then the coinciding β-ray spectra was anticoincided with timing logical signals of 511 keV γ ray created in positron annihilate, detected by a large BGO detector. This special coincidence-anticoincidence system has played an important role in the first observation of the new neutron-rich nuclide 209 Hg. It is shown that this is an effective method to detecting very weak γ-ray activities of neutron-rich isotope in an element-separation sample

  20. Associated-particle sealed-tube neutron probe: Detection of explosives, contraband, and nuclear materials

    International Nuclear Information System (INIS)

    Rhodes, E.; Dickerman, C.E.

    1996-01-01

    Continued research and development of the APSTNG shows the potential for practical field use of this technology for detection of explosives, contraband, and nuclear materials. The APSTNG (associated-particle sealed-tube generator) inspects the item to be examined using penetrating 14-MeV neutrons generated by the deuterium-tritium reaction inside a compact accelerator tube. An alpha detector built into the sealed tube detects the alpha-particle associated with each neutron emitted in a cone encompassing the volume to be inspected. Penetrating high-energy gamma-rays from the resulting neutron reactions identify specific nuclides inside the volume. Flight-times determined from the detection times of gamma-rays and alpha-particles separate the prompt and delayed gamma-ray spectra and allow a coarse 3-D image to be obtained of nuclides identified in the prompt spectrum. The generator and detectors can be on the same side of the inspected object, on opposite sides, or with intermediate orientations. Thus, spaces behind walls and other confined regions can be inspected. Signals from container walls can be discriminated against using the flight-time technique. No collimators or shielding are required, the neutron generator is relatively small, and commercial-grade electronics are employed. The use of 14-MeV neutrons yields a much higher cross-section for detecting nitrogen than that for systems based on thermal-neutron reactions alone, and the broad range of elements with significant 14-MeV neutron cross-sections extends explosives detection to other elements including low-nitrogen compounds, and allows detection of many other substances. Proof-of-concept experiments have been successfully performed for conventional explosives, chemical warfare agents, cocaine, and fissionable materials

  1. Detecting gravitational waves from accreting neutron stars

    NARCIS (Netherlands)

    Watts, A.L.; Krishnan, B.

    2009-01-01

    The gravitational waves emitted by neutron stars carry unique information about their structure and composition. Direct detection of these gravitational waves, however, is a formidable technical challenge. In a recent study we quantified the hurdles facing searches for gravitational waves from the

  2. Utilization of Local Law Enforcement Aerial Resources in Consequence Management (CM) Response

    Energy Technology Data Exchange (ETDEWEB)

    Wasiolek, Piotr T.; Malchow, Russell L.

    2013-03-12

    During the past decade the U.S. Department of Homeland Security (DHS) was instrumental in enhancing the nation’s ability to detect and prevent a radiological or nuclear attack in the highest risk cities. Under the DHS Securing the Cities initiative, nearly 13,000 personnel in the New York City region have been trained in preventive radiological and nuclear detection operations, and nearly 8,500 pieces of radiological detection equipment have been funded. As part of the preventive radiological/nuclear detection (PRND) mission, several cities have received funding to purchase commercial aerial radiation detection systems. In 2008, the U.S. Department of Energy, National Nuclear Security Administration Aerial Measuring System (AMS) program started providing Mobile Aerial Radiological Surveillance (MARS) training to such assets, resulting in over 150 HAZMAT teams’ officers and pilots from 10 law enforcement organizations and fire departments being trained in the aerial radiation detection. From the beginning, the MARS training course covered both the PRND and consequence management (CM) missions. Even if the law enforcement main focus is PRND, their aerial assets can be utilized in the collection of initial radiation data for post-event radiological CM response. Based on over 50 years of AMS operational experience and information collected during MARS training, this presentation will focus on the concepts of CM response using aerial assets as well as utilizing law enforcement/fire department aerial assets in CM. Also discussed will be the need for establishing closer relationships between local jurisdictions’ aerial radiation detection capabilities and state and local radiation control program directors, radiological health department managers, etc. During radiological events these individuals may become primary experts/advisers to Incident Commanders for radiological emergency response, especially in the early stages of a response. The knowledge of the existence

  3. Characterization of the internal background for thermal and fast neutron detection with CLLB

    Energy Technology Data Exchange (ETDEWEB)

    Woolf, Richard S., E-mail: richard.woolf@nrl.navy.mil; Phlips, Bernard F.; Wulf, Eric A.

    2016-12-01

    We report on a set of experiments conducted to determine what effects, if any, the internal background in the CLLB scintillation detector has on the thermal neutron detection performance. We conducted source measurements using an unmoderated and moderated {sup 252}Cf neutron/γ-ray source and long (48-h), unshielded and shielded, background measurements to characterize the internal background with and without a source present. These measurements allowed us to determine the 2-d event selections needed to isolate the thermal neutron peak observed in pulse shape vs. energy space and apply those selections to our background measurements. Our results indicate that the thermal neutron detection capabilities of the CLLB are marginally affected by the presence of internal background. An unmoderated 113-µCi {sup 252}Cf source at 15 cm from the detector yields a thermal neutron rate of 8×10{sup −2}/s cm{sup 3}, while moderating the source with 5 cm of polyethylene yields a thermal neutron rate of 5.5×10{sup −1}/s cm{sup 3}. The measured background rate for events that fall within the selected thermal neutron region is 1.2×10{sup −3}/s cm{sup 3}. Lastly, the potential for CLLB for detecting fast neutrons was investigated.

  4. Estimation for aerial detection effectiveness with cooperation efficiency factors of early-warning aircraft in early-warning detection SoS under BSC framework

    Science.gov (United States)

    Zhu, Feng; Hu, Xiaofeng; He, Xiaoyuan; Guo, Rui; Li, Kaiming; Yang, Lu

    2017-11-01

    In the military field, the performance evaluation of early-warning aircraft deployment or construction is always an important problem needing to be explored. As an effective approach of enterprise management and performance evaluation, Balanced Score Card (BSC) attracts more and more attentions and is studied more and more widely all over the world. It can also bring feasible ideas and technical approaches for studying the issue of the performance evaluation of the deployment or construction of early-warning aircraft which is the important component in early-warning detection system of systems (SoS). Therefore, the deep explored researches are carried out based on the previously research works. On the basis of the characteristics of space exploration and aerial detection effectiveness of early-warning detection SoS and the cardinal principle of BSC are analyzed simply, and the performance evaluation framework of the deployment or construction of early-warning aircraft is given, under this framework, aimed at the evaluation issue of aerial detection effectiveness of early-warning detection SoS with the cooperation efficiency factors of the early-warning aircraft and other land based radars, the evaluation indexes are further designed and the relative evaluation model is further established, especially the evaluation radar chart being also drawn to obtain the evaluation results from a direct sight angle. Finally, some practical computer simulations are launched to prove the validity and feasibility of the research thinking and technologic approaches which are proposed in the paper.

  5. Apparatus and method for detecting contraband using fast neutron activation

    International Nuclear Information System (INIS)

    Gozani, T.; Sawa, Z.P.; Shea, P.M.

    1992-01-01

    This patent describes a method of detecting contraband within an object under investigation. It comprises: generating a beam of case neutrons; irradiating the object with the beam of fast neutrons, the fast neutrons interacting with atomic nuclei of the elements contained within the object to produce a gamma-ray spectrum having spectral lines characteristic of the elements contained within the object; measuring the spectral lines of the gamma-ray spectrum using a multiplicity of gamma-ray detectors judiciously positioned around the object; detecting the number of neutrons that pass through the object without interacting substantially with atomic nuclei within the object; determining the spatial and density distributions of the atomic nuclei of the elements contained within the object from the measured gamma-ray spectrum obtained from the multiplicity of gamma-ray detectors and the number of neutrons that pass through the object; comparing the measured spatial and density distributions of the atomic nuclei of the elements within the object with known spatial and density distributions of atomic nuclei for elements characteristic of contraband; and determining that contraband is present within the object when the comparison indicates a substantial match

  6. Fissile material detection and control facility with pulsed neutron sources and digital data processing

    International Nuclear Information System (INIS)

    Romodanov, V.L.; Chernikova, D.N.; Afanasiev, V.V.

    2010-01-01

    Full text: In connection with possible nuclear terrorism, there is long-felt need of devices for effective control of radioactive and fissile materials in the key points of crossing the state borders (airports, seaports, etc.), as well as various customs check-points. In International Science and Technology Center Projects No. 596 and No. 2978, a new physical method and digital technology have been developed for the detection of fissile and radioactive materials in models of customs facilities with a graphite moderator, pulsed neutron source and digital processing of responses from scintillation PSD detectors. Detectability of fissile materials, even those shielded with various radiation-absorbing screens, has been shown. The use of digital processing of scintillation signals in this facility is a necessary element, as neutrons and photons are discriminated in the time dependence of fissile materials responses at such loads on the electronic channels that standard types of spectrometers are inapplicable. Digital processing of neutron and photon responses practically resolves the problem of dead time and allows implementing devices, in which various energy groups of neutrons exist for some time after a pulse of source neutrons. Thus, it is possible to detect fissile materials deliberately concealed with shields having a large cross-section of absorption of photons and thermal neutrons. Two models of detection and the control of fissile materials were advanced: 1. the model based on graphite neutrons moderator and PSD scintillators with digital technology of neutrons and photons responses separation; 2. the model based on plastic scintillators and detecting of time coincidences of fission particles by digital technology. Facilities that count time coincidences of neutrons and photons occurring in the fission of fissile materials can use an Am Li source of neutrons, e.g. that is the case with the AWCC system. The disadvantages of the facility are related to the issues

  7. Detection of unmanned aerial vehicles using a visible camera system.

    Science.gov (United States)

    Hu, Shuowen; Goldman, Geoffrey H; Borel-Donohue, Christoph C

    2017-01-20

    Unmanned aerial vehicles (UAVs) flown by adversaries are an emerging asymmetric threat to homeland security and the military. To help address this threat, we developed and tested a computationally efficient UAV detection algorithm consisting of horizon finding, motion feature extraction, blob analysis, and coherence analysis. We compare the performance of this algorithm against two variants, one using the difference image intensity as the motion features and another using higher-order moments. The proposed algorithm and its variants are tested using field test data of a group 3 UAV acquired with a panoramic video camera in the visible spectrum. The performance of the algorithms was evaluated using receiver operating characteristic curves. The results show that the proposed approach had the best performance compared to the two algorithmic variants.

  8. Neutron detection of the Triga Mark III reactor, using nuclear track methodology

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa, G., E-mail: espinosa@fisica.unam.mx; Golzarri, J. I. [Instituto de Física, Universidad Nacional Autónoma de México Circuito de la Investigación Científica, Ciudad Universitaria. México, DF (Mexico); Raya-Arredondo, R.; Cruz-Galindo, S. [Instituto Nacional de Investigaciones Nucleares (Mexico); Sajo-Bohus, L. [Universidad Simón Bolivar, Laboratorio de Física Nuclear, Caracas (Venezuela, Bolivarian Republic of)

    2015-07-23

    Nuclear Track Methodology (NTM), based on the neutron-proton interaction is one often employed alternative for neutron detection. In this paper we apply NTM to determine the Triga Mark III reactor operating power and neutron flux. The facility nuclear core, loaded with 85 Highly Enriched Uranium as fuel with control rods in a demineralized water pool, provide a neutron flux around 2 × 10{sup 12} n cm{sup −2} s{sup −1}, at the irradiation channel TO-2. The neutron field is measured at this channel, using Landauer{sup ®} PADC as neutron detection material, covered by 3 mm Plexiglas{sup ®} as converter. After exposure, plastic detectors were chemically etched to make observable the formed latent tracks induced by proton recoils. The track density was determined by a custom made Digital Image Analysis System. The resulting average nuclear track density shows a direct proportionality response for reactor power in the range 0.1-7 kW. We indicate several advantages of the technique including the possibility to calibrate the neutron flux density measured at low reactor power.

  9. Electret ionization chamber: a new method for detection and dosimetry of thermal neutrons

    International Nuclear Information System (INIS)

    Ghilardi, A.J.P.

    1988-01-01

    An electret ionization chamber with boron coated walls is presented as a new method for detecting thermal neutrons. The efficiency of electret ionization chambers with different wall materials for the external electrode was inferred from the results. Detection of slow neutrons with discrimination against the detection of γ-rays and energetic neutrons was shown to depend on the selection of these materials. The charge stability over a long period of time and the charge decay owing to natural radiation were also studied. Numerical analysis was developed by the use of a micro-computer PC-XT. Both the experimental and numerical results show that the sensitivity of the electret ionization chamber for detection of thermal neutrons is comparable with that of the BF 3 ionization chamber and that new technologies for deposition of the boron layer will produce higher efficiency detectors. (author). 102 refs, 32 fig, 10 tabs

  10. An automatic high precision registration method between large area aerial images and aerial light detection and ranging data

    Science.gov (United States)

    Du, Q.; Xie, D.; Sun, Y.

    2015-06-01

    The integration of digital aerial photogrammetry and Light Detetion And Ranging (LiDAR) is an inevitable trend in Surveying and Mapping field. We calculate the external orientation elements of images which identical with LiDAR coordinate to realize automatic high precision registration between aerial images and LiDAR data. There are two ways to calculate orientation elements. One is single image spatial resection using image matching 3D points that registered to LiDAR. The other one is Position and Orientation System (POS) data supported aerotriangulation. The high precision registration points are selected as Ground Control Points (GCPs) instead of measuring GCPs manually during aerotriangulation. The registration experiments indicate that the method which registering aerial images and LiDAR points has a great advantage in higher automation and precision compare with manual registration.

  11. Coded moderator approach for fast neutron source detection and localization at standoff

    Energy Technology Data Exchange (ETDEWEB)

    Littell, Jennifer [Department of Nuclear Engineering, University of Tennessee, 305 Pasqua Engineering Building, Knoxville, TN 37996 (United States); Lukosi, Eric, E-mail: elukosi@utk.edu [Department of Nuclear Engineering, University of Tennessee, 305 Pasqua Engineering Building, Knoxville, TN 37996 (United States); Institute for Nuclear Security, University of Tennessee, 1640 Cumberland Avenue, Knoxville, TN 37996 (United States); Hayward, Jason; Milburn, Robert; Rowan, Allen [Department of Nuclear Engineering, University of Tennessee, 305 Pasqua Engineering Building, Knoxville, TN 37996 (United States)

    2015-06-01

    Considering the need for directional sensing at standoff for some security applications and scenarios where a neutron source may be shielded by high Z material that nearly eliminates the source gamma flux, this work focuses on investigating the feasibility of using thermal neutron sensitive boron straw detectors for fast neutron source detection and localization. We utilized MCNPX simulations to demonstrate that, through surrounding the boron straw detectors by a HDPE coded moderator, a source-detector orientation-specific response enables potential 1D source localization in a high neutron detection efficiency design. An initial test algorithm has been developed in order to confirm the viability of this detector system's localization capabilities which resulted in identification of a 1 MeV neutron source with a strength equivalent to 8 kg WGPu at 50 m standoff within ±11°.

  12. The electronic band structures of gadolinium chalcogenides: a first-principles prediction for neutron detecting.

    Science.gov (United States)

    Li, Kexue; Liu, Lei; Yu, Peter Y; Chen, Xiaobo; Shen, D Z

    2016-05-11

    By converting the energy of nuclear radiation to excited electrons and holes, semiconductor detectors have provided a highly efficient way for detecting them, such as photons or charged particles. However, for detecting the radiated neutrons, those conventional semiconductors hardly behave well, as few of them possess enough capability for capturing these neutral particles. While the element Gd has the highest nuclear cross section, here for searching proper neutron-detecting semiconductors, we investigate theoretically the Gd chalcogenides whose electronic band structures have never been characterized clearly. Among them, we identify that γ-phase Gd2Se3 should be the best candidate for neutron detecting since it possesses not only the right bandgap of 1.76 eV for devices working under room temperature but also the desired indirect gap nature for charge carriers surviving longer. We propose further that semiconductor neutron detectors with single-neutron sensitivity can be realized with such a Gd-chalcogenide on the condition that their crystals can be grown with good quality.

  13. High Altitude Aerial Natural Gas Leak Detection System

    Energy Technology Data Exchange (ETDEWEB)

    Richard T. Wainner; Mickey B. Frish; B. David Green; Matthew C. Laderer; Mark G. Allen; Joseph R. Morency

    2006-12-31

    The objective of this program was to develop and demonstrate a cost-effective and power-efficient advanced standoff sensing technology able to detect and quantify, from a high-altitude (> 10,000 ft) aircraft, natural gas leaking from a high-pressure pipeline. The advanced technology is based on an enhanced version of the Remote Methane Leak Detector (RMLD) platform developed previously by Physical Sciences Inc. (PSI). The RMLD combines a telecommunications-style diode laser, fiber-optic components, and low-cost DSP electronics with the well-understood principles of Wavelength Modulation Spectroscopy (WMS), to indicate the presence of natural gas located between the operator and a topographic target. The transceiver transmits a laser beam onto a topographic target and receives some of the laser light reflected by the target. The controller processes the received light signal to deduce the amount of methane in the laser's path. For use in the airborne platform, we modified three aspects of the RMLD, by: (1) inserting an Erbium-doped optical fiber laser amplifier to increase the transmitted laser power from 10 mW to 5W; (2) increasing the optical receiver diameter from 10 cm to 25 cm; and (3) altering the laser wavelength from 1653 nm to 1618 nm. The modified RMLD system provides a path-integrated methane concentration sensitivity {approx}5000 ppm-m, sufficient to detect the presence of a leak from a high capacity transmission line while discriminating against attenuation by ambient methane. In ground-based simulations of the aerial leak detection scenario, we demonstrated the ability to measure methane leaks within the laser beam path when it illuminates a topographic target 2000 m away. We also demonstrated simulated leak detection from ranges of 200 m using the 25 cm optical receiver without the fiber amplifier.

  14. Neutronic analysis of the 1D and 1E banks reflux detection system

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, A.

    1999-12-21

    Two H Canyon neutron monitoring systems for early detection of postulated abnormal reflux conditions in the Second Uranium Cycle 1E and 1D Mixer-Settle Banks have been designed and built. Monte Carlo neutron transport simulations using the general purpose, general geometry, n-particle MCNP code have been performed to model expected response of the monitoring systems to varying conditions.The confirmatory studies documented herein conclude that the 1E and 1D neutron monitoring systems are able to achieve adequate neutron count rates for various neutron source and detector configurations, thereby eliminating excessive integration count time. Neutron count rate sensitivity studies are also performed. Conversely, the transport studies concluded that the neutron count rates are statistically insensitive to nitric acid content in the aqueous region and to the transition region length. These studies conclude that the 1E and 1D neutron monitoring systems are able to predict the postulated reflux conditions for all examined perturbations in the neutron source and detector configurations. In the cases examined, the relative change in the neutron count rates due to postulated transitions from normal {sup 235}U concentration levels to reflux levels remain satisfactory detectable.

  15. Neutronic analysis of the 1D and 1E banks reflux detection system

    International Nuclear Information System (INIS)

    Blanchard, A.

    1999-01-01

    Two H Canyon neutron monitoring systems for early detection of postulated abnormal reflux conditions in the Second Uranium Cycle 1E and 1D Mixer-Settle Banks have been designed and built. Monte Carlo neutron transport simulations using the general purpose, general geometry, n-particle MCNP code have been performed to model expected response of the monitoring systems to varying conditions.The confirmatory studies documented herein conclude that the 1E and 1D neutron monitoring systems are able to achieve adequate neutron count rates for various neutron source and detector configurations, thereby eliminating excessive integration count time. Neutron count rate sensitivity studies are also performed. Conversely, the transport studies concluded that the neutron count rates are statistically insensitive to nitric acid content in the aqueous region and to the transition region length. These studies conclude that the 1E and 1D neutron monitoring systems are able to predict the postulated reflux conditions for all examined perturbations in the neutron source and detector configurations. In the cases examined, the relative change in the neutron count rates due to postulated transitions from normal 235 U concentration levels to reflux levels remain satisfactory detectable

  16. A portable neutron spectroscope (NSPECT) for detection, imaging and identification of nuclear material

    Science.gov (United States)

    Ryan, James M.; Bancroft, Christopher; Bloser, Peter; Bravar, Ulisse; Fourguette, Dominique; Frost, Colin; Larocque, Liane; McConnell, Mark L.; Legere, Jason; Pavlich, Jane; Ritter, Greg; Wassick, Greg; Wood, Joshua; Woolf, Richard

    2010-08-01

    We have developed, fabricated and tested a prototype imaging neutron spectrometer designed for real-time neutron source location and identification. Real-time detection and identification is important for locating materials. These materials, specifically uranium and transuranics, emit neutrons via spontaneous or induced fission. Unlike other forms of radiation (e.g. gamma rays), penetrating neutron emission is very uncommon. The instrument detects these neutrons, constructs images of the emission pattern, and reports the neutron spectrum. The device will be useful for security and proliferation deterrence, as well as for nuclear waste characterization and monitoring. The instrument is optimized for imaging and spectroscopy in the 1-20 MeV range. The detection principle is based upon multiple elastic neutron-proton scatters in organic scintillator. Two detector panel layers are utilized. By measuring the recoil proton and scattered neutron locations and energies, the direction and energy spectrum of the incident neutrons can be determined and discrete and extended sources identified. Event reconstruction yields an image of the source and its location. The hardware is low power, low mass, and rugged. Its modular design allows the user to combine multiple units for increased sensitivity. We will report the results of laboratory testing of the instrument, including exposure to a calibrated Cf-252 source. Instrument parameters include energy and angular resolution, gamma rejection, minimum source identification distances and times, and projected effective area for a fully populated instrument.

  17. MCNPX Simulation Study of STRAW Neutron Detectors - Summary Paper

    International Nuclear Information System (INIS)

    Mukhopadhyay, Sanjoy; Maurer, Richard; Mitchell, Stephen

    2010-01-01

    of the straws provides imaging capability with high enough resolution for radiation emitting sources. The prototype will provide the first aerial neutron detection system with directional sensitivity.

  18. Monte Carlo simulation of explosive detection system based on a Deuterium-Deuterium (D-D) neutron generator.

    Science.gov (United States)

    Bergaoui, K; Reguigui, N; Gary, C K; Brown, C; Cremer, J T; Vainionpaa, J H; Piestrup, M A

    2014-12-01

    An explosive detection system based on a Deuterium-Deuterium (D-D) neutron generator has been simulated using the Monte Carlo N-Particle Transport Code (MCNP5). Nuclear-based explosive detection methods can detect explosives by identifying their elemental components, especially nitrogen. Thermal neutron capture reactions have been used for detecting prompt gamma emission (10.82MeV) following radiative neutron capture by (14)N nuclei. The explosive detection system was built based on a fully high-voltage-shielded, axial D-D neutron generator with a radio frequency (RF) driven ion source and nominal yield of about 10(10) fast neutrons per second (E=2.5MeV). Polyethylene and paraffin were used as moderators with borated polyethylene and lead as neutron and gamma ray shielding, respectively. The shape and the thickness of the moderators and shields are optimized to produce the highest thermal neutron flux at the position of the explosive and the minimum total dose at the outer surfaces of the explosive detection system walls. In addition, simulation of the response functions of NaI, BGO, and LaBr3-based γ-ray detectors to different explosives is described. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Research and development of a compact fusion neutron source for humanitarian landmine detection

    International Nuclear Information System (INIS)

    Yoshikawa, K.; Masuda, K.; Yamamoto, Y.; Takamatsu, T.; Toku, H.; Nagasaki, K.; Hotta, E.; Yamauchi, K.; Ohnishi, M.; Osawa, H.

    2005-01-01

    Research and development of the advanced anti-personnel landmine detection system by using a compact discharge-type D-D fusion neutron source called IECF (Inertial-Electrostatic Confinement Fusion) are described. Landmines are to be identified through increased backscattering of neutrons by the hydrogen atoms, and specific-energy capture γ-ray emission by hydrogen and nitrogen atoms with thermalized neutrons in the landmine explosives. For this purpose, improvements of the IECF device were studied for drastic enhancement of neutron production rates of more than 10 8 n/s in pulsed operation including R and D of robust power sources, as well as analyses of envisaged detection system with multi-sensors in parallel in order to show promising and practical features of this detection system for humanitarian landmine detection, particularly, in the aridic, or dry Afghanistan deserted area, where the soil moisture remains between 3-8%, which eventually enables effectively detection of hydrogen anomaly inherent in the landmine explosives. In this paper, improvements of the IECF are focused to be described. (author)

  20. Detection of drugs and plastic explosives using neutron tomography

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, F.J.O. [Instituto de Engenharia Nuclear (IEN), Rio de Janeiro, RJ (Brazil)], E-mail: fferreira@ien.gov.br; Crispim, V.R; Silva, A.X. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Programa de Engenharia Nuclear], E-mail: ademir@con.ufrj.br, E-mail: verginia@com.ufrj.br

    2007-07-01

    The unique ability of neutrons to image certain elements and isotopes that are either completely undetectable or poorly detected by other Non-Destructive-Assay (NDA) methods makes neutron radiography an important tool for the NDA community. Neutron radiography, like other imaging techniques takes a number of different forms (i.e. / that is film, radioscopic, transfer methods, tomography, etc.) In this work report the Neutron Tomography System developed, which will allow inspections NDA of samples with high efficiency, in terms of minors measure time and the result analysis, and the application for detection of drugs and plastic explosives, which is very important for the combat to the terrorism and drug trafficking. The neutron tomography system developed is third generation. Therefore a rotary table driven by a step motor connected to a computerized motion control system has been installed at the sample position. In parallel to this a suitable electronic imaging device has been designed and can be controlled by a computer in order to synchronize the software the detector and of the rotary table with the aim of an automation of measurements. To obtain 2D tomography image, a system with an electronic imaging system for producing real time neutron radiography. Images are processing digital for cancel random noise effects and to optimize spatial resolution. Finally, using a (ARIEN) algorithm reconstruction of tomography images by finite element maximum entropy. The system was installed adjacent to the exit of the J-9 irradiation channel of the Argonauta Reactor in the Nuclear Engineering Institute (IEN) - which is an organ of the National Nuclear Energy Commission (CNEN - Brazil).The Argonauta reactor operates at 340 watts, being that the characteristics of the neutron beam on the plane of the image: thermal neutron flux 4,46 x10{sup 5} n/cm{sup 2}s. In the tomography assays, several encapsulated samples of paste, rock and cocaine powder and plastic explosives devices

  1. Detection of drugs and plastic explosives using neutron tomography

    International Nuclear Information System (INIS)

    Ferreira, F.J.O.; Crispim, V.R; Silva, A.X.

    2007-01-01

    The unique ability of neutrons to image certain elements and isotopes that are either completely undetectable or poorly detected by other Non-Destructive-Assay (NDA) methods makes neutron radiography an important tool for the NDA community. Neutron radiography, like other imaging techniques takes a number of different forms (i.e. / that is film, radioscopic, transfer methods, tomography, etc.) In this work report the Neutron Tomography System developed, which will allow inspections NDA of samples with high efficiency, in terms of minors measure time and the result analysis, and the application for detection of drugs and plastic explosives, which is very important for the combat to the terrorism and drug trafficking. The neutron tomography system developed is third generation. Therefore a rotary table driven by a step motor connected to a computerized motion control system has been installed at the sample position. In parallel to this a suitable electronic imaging device has been designed and can be controlled by a computer in order to synchronize the software the detector and of the rotary table with the aim of an automation of measurements. To obtain 2D tomography image, a system with an electronic imaging system for producing real time neutron radiography. Images are processing digital for cancel random noise effects and to optimize spatial resolution. Finally, using a (ARIEN) algorithm reconstruction of tomography images by finite element maximum entropy. The system was installed adjacent to the exit of the J-9 irradiation channel of the Argonauta Reactor in the Nuclear Engineering Institute (IEN) - which is an organ of the National Nuclear Energy Commission (CNEN - Brazil).The Argonauta reactor operates at 340 watts, being that the characteristics of the neutron beam on the plane of the image: thermal neutron flux 4,46 x10 5 n/cm 2 s. In the tomography assays, several encapsulated samples of paste, rock and cocaine powder and plastic explosives devices. (author)

  2. A cement channel-detection technique using the pulsed-neutron log

    International Nuclear Information System (INIS)

    Myers, G.D.

    1991-01-01

    A channel-detection technique has been developed using boron solutions and pulsed-neutron logging (PNL) tools. This technique relies on the extremely high-neutron-absorption cross section that boron exhibits relative to other common elements, including chlorine. The PNL tool is used to detect movement of a boron solution in a log-inject-log procedure. The technique has identified channels in such difficult applications as logging through two strings of pipe and in highly deviated wellbores. Logging procedures are simple and cement channels can be readily identified. The boron solutions are relatively inexpensive, safe to handle, and nonradioactive. Additional PNL information for reservoir performance evaluation is collected simultaneously during channel-detection logging. This paper describes the theory, development, field application, and limitations of this channel-detection logging technique

  3. Detection of plastic explosives using thermal neutron radiography

    International Nuclear Information System (INIS)

    Hacidume, Leo Ryoske

    1999-12-01

    The work aims to demonstrate the potentiality of the neutron radiography technique, allied to the computerized tomography by transmission, to both detect and visualize plastic explosive samples in several hidden conditions, using a simple scanner as a digitalisation instrument. Each tomographic essay was obtained in the J-9 channel of the Argonauta Research Reactor of IEN/CNEN, in groups of six neutron radiographic projections, performed with an angular increment of 30 deg C, in a period of time of 30 minutes for each projection. Two groups of tomographic reconstructions were generated, distinguished by the digitalisation process of the interested lines in the reconstruction plane coming from the projection groups, utilization a scanner and a microdensitometer, respectively. The reconstruction of the bi-dimensional image of the transverse section, in relation to this plane, was processed making use of the Image Reconstruction Algorithmic of an Image based on the Maximum Entropy principle (ARIEM). From the qualitative analysis of the images, we conclude that the neutron radiographic system was able to detect the explosive sample in a satisfactory way while the quantitative analysis confirmed the application effectiveness of a scanner to acquire the projection dates whose objective is only a reconnaissance. (author)

  4. Detection of plastic explosives by thermic neutron radiography

    International Nuclear Information System (INIS)

    Hacidume, Leo R.; Crispim, Verginia R.; Silva, Ademir X. da

    2000-01-01

    This work aims to demonstrate the potentiality of the neutron radiography technique, allied to the computerized tomography by transmission, to both detect and visualize plastic explosive samples in several hidden conditions, using a simple scanner as a digitalisation instrument. Each tomographic essay was obtained in the J-9 channel of the Argonauta Research Reactor of IEN/CNEN, in groups of six neutron radiographic projections, performed with an angular increment of 30 in a period of time of 30 minutes for each projection. Two groups of tomographic reconstructions were generated, distinguished by the digitalisation process of the interested lines in the reconstruction plane coming from the projection groups, utilizing a scanner and a microdensitometer, respectively. The reconstruction of the bi-dimensional image of the transverse section, in relation to this plane, was processed making use of the Image reconstruction algorithmic of an image based on the maximum entropy principle (ARIEM). From the qualitative analysis of the images, we conclude that the neutron radiographic system was able to detect the explosive sample in a satisfactory way while the quantitative analysis confirmed the application effectiveness of a scanner to acquire the projection dates whose objective is only a reconnaissance. (author)

  5. Detection of renal cell carcinoma using neutron time of flight spectroscopy

    International Nuclear Information System (INIS)

    Viana, Rodrigo S.; Yoriyaz, Helio; Lakshmanan, Manu N.; Agasthya, Greeshma A.; Kapadia, Anuj J.

    2013-01-01

    The diagnosis of renal cell carcinoma (RCC) is challenging because the symptoms accompanying it are not unique to the disease, and can therefore be misdiagnosed as other diseases. Due to this characteristic, detection of renal cancer is incidental most of time, occurring via abdominal radiographic examinations unrelated to the disease. Presently, biopsy, which is invasive and an unpleasant procedure for the patient, is the most commonly used technique to diagnose RCC. In this study, we demonstrate the application of a novel noninvasive technique for detecting and imaging RCC in vivo. The elemental composition of biological tissues including kidneys has been investigated using a new technique called Neutron Stimulated Emission Computed Tomography (NSECT). This technique is based on detecting the energy signature emitted by the stable isotopes of elements in the body, which are stimulated to emit gamma radiation via inelastic neutron scattering. Methods for improving detection sensitivity and reducing dose, such as time-of-flight neutron spectroscopy have been explored. MCNP5 simulations were used to model the NSECT scanning of the human kidney where the energy and time of arrival of gamma photons were recorded in an ideal detector placed around the human torso. A 5 MeV collimated neutron beam was used to irradiate the kidney containing an RCC lesion. The resulting spectra were resolved in 100 picosecond and 1 keV time and energy bins, respectively. The preliminary results demonstrate the ability to localize the lesion through neutron time of flight spectroscopy and generate a tomographic image at a low dose to the patient. (author)

  6. Sodium boiling detection in LMFBRs by acoustic-neutronic cross correlation

    International Nuclear Information System (INIS)

    Wright, S.A.

    1977-01-01

    The acoustic and neutronic noise signals caused by boiling are the signals primarily considered likely to detect sodium boiling in an LMFBR. Unfortunately, these signals may have serious signal-to-noise problems due to strong background noise sources. Neutronic-acoustic cross correlation techniques are expected to provide a means of improving the signal-to-noise ratio. This technique can improve the signal-to-noise ratio because the neutronic and acoustic signals due to boiling are highly correlated near the bubble repetition frequency, while the background noise sources are expected to be uncorrelated (or at most weakly correlated). An experiment was designed to show that the neutronic and acoustic noise signals are indeed highly correlated. The experiment consisted of simulating the void and pressure effects of local sodium boiling in the core of a zero-power reactor (ARK). The analysis showed that the neutronic and acoustic noise signals caused by boiling are almost perfectly correlated in a wide frequency band about the bubble repetition frequency. The results of the experiments were generalized to full-scale reactors to compare the inherent effectiveness of the methods which use the neutronic or acoustic signals alone with a hybrid method, which cross correlates the neutronic and acoustic signals. It was concluded that over a zone of the reactor where the void coefficient is sufficiently large (approximately 85 percent the core volume), the cross correlation method can provide a more rapid detection system for a given signal-to-noise ratio. However, where the void coefficient is small, one must probably rely on the acoustic method alone

  7. Neutron detection using a planar array of superheated superconductors

    International Nuclear Information System (INIS)

    Meagher, G.

    1996-01-01

    A new thermal neutron detector consisting of an indium/mylar PASS array with a filler of boron powder has been tested successfully. A boron nucleus captures a neutron and the α-particle emitted in this reaction nucleates the transition to the normal state in a neighbouring grain. A PASS with grain radius r=12 μm showed very low response to irradiation by 835 keV γ-rays. The same PASS responded to α-particles with high efficiency, and thermal neutrons were detected with good efficiency and very low background. Thermal neutrons were also counted with an R=25 μm PASS. The use of large granules will allow spatial resolution to a single grain to be obtained and a read-out based on conventional inductive coupling and fast electronics to be utilized. (orig.)

  8. Detection and Tracking Strategies for Autonomous Aerial Refuelling Tasks Based on Monocular Vision

    Directory of Open Access Journals (Sweden)

    Yingjie Yin

    2014-07-01

    Full Text Available Detection and tracking strategies based on monocular vision are proposed for autonomous aerial refuelling tasks. The drogue attached to the fuel tanker aircraft has two important features. The grey values of the drogue's inner part are different from the external umbrella ribs, as shown in the image. The shape of the drogue's inner dark part is nearly circular. According to crucial prior knowledge, the rough and fine positioning algorithms are designed to detect the drogue. Particle filter based on the drogue's shape is proposed to track the drogue. A strategy to switch between detection and tracking is proposed to improve the robustness of the algorithms. The inner dark part of the drogue is segmented precisely in the detecting and tracking process and the segmented circular part can be used to measure its spatial position. The experimental results show that the proposed method has good performance in real-time and satisfied robustness and positioning accuracy.

  9. Chlorine detection in fly ash concrete using a portable neutron generator.

    Science.gov (United States)

    Naqvi, A A; Kalakada, Zameer; Al-Matouq, Faris A; Maslehuddin, M; Al-Amoudi, O S B

    2012-08-01

    The chlorine concentration in chloride-contaminated FA cement concrete specimens was measured using a portable neutron generator based prompt gamma-ray neutron activation (PGNAA) setup with the neutron generator and the gamma-ray detector placed side-by-side on one side of the concrete sample. The minimum detectable concentration of chlorine in FA cement concrete measured in the present study was comparable with previous results for larger accelerator based PGNAA setup. It shows the successful application of a portable neutron generator in concrete corrosion studies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Logic based feature detection on incore neutron spectra

    International Nuclear Information System (INIS)

    Bende-Farkas, S.; Kiss, S.; Racz, A.

    1992-09-01

    A methodology is proposed to investigate neutron spectra in such a way which is similar to human thinking. The goal was to save experts from tedious, mechanical tasks of browsing a large amount of signals in order to recognize changes in the underlying mechanisms. The general framework for detecting features of incore neutron spectra with a rulebased methodology is presented. As an example, the meaningful peaks in the APSDs are determined. This method is a part of a wider project to develop a noise diagnostic expert system. (R.P.) 6 refs.; 6 figs.; 1 tab

  11. Thermal neutron detection by activation of CaSO4:Dy + KBr thermoluminescent phosphors

    International Nuclear Information System (INIS)

    Gordon, A.M.P.L.; Muccillo, R.

    1979-01-01

    Thermoluminescence (TL) studies to detect thermal neutrons were performed in cold-pressed CaSO 4 :0,1%Dy + KBr samples. The detection is based on the self-irradiation of the CaSO 4 :Dy TL phosphor by the Br isotopes activated by exposure to a mixed neutron-gamma field. (Author) [pt

  12. Suppression background device in neutron detection by a scintillation detector

    International Nuclear Information System (INIS)

    Degtyarev, A.P.; Kozyr', Yu.E.; Prokopets, G.A.

    1980-01-01

    A pulse shape discriminator for suppression of cosmic and gamma background as well as for suppression of intrinsic noises of a photomultiplier is described. Identification of signals of background and neutrons is performed by means of comparison of relative intensity of fast and slow components of scintillator luminescence. Basic discriminator flowsheet which contains integrating and differential RC circuits and time-to-amplitude converter is given. The discriminator provides minimum energy of detected neutrons equal to 500 keV when using a FEhU-36 neutron detector with a stilbene crystal [ru

  13. Model-Based Building Detection from Low-Cost Optical Sensors Onboard Unmanned Aerial Vehicles

    Science.gov (United States)

    Karantzalos, K.; Koutsourakis, P.; Kalisperakis, I.; Grammatikopoulos, L.

    2015-08-01

    The automated and cost-effective building detection in ultra high spatial resolution is of major importance for various engineering and smart city applications. To this end, in this paper, a model-based building detection technique has been developed able to extract and reconstruct buildings from UAV aerial imagery and low-cost imaging sensors. In particular, the developed approach through advanced structure from motion, bundle adjustment and dense image matching computes a DSM and a true orthomosaic from the numerous GoPro images which are characterised by important geometric distortions and fish-eye effect. An unsupervised multi-region, graphcut segmentation and a rule-based classification is responsible for delivering the initial multi-class classification map. The DTM is then calculated based on inpaininting and mathematical morphology process. A data fusion process between the detected building from the DSM/DTM and the classification map feeds a grammar-based building reconstruction and scene building are extracted and reconstructed. Preliminary experimental results appear quite promising with the quantitative evaluation indicating detection rates at object level of 88% regarding the correctness and above 75% regarding the detection completeness.

  14. Measurement and simulation of neutron detection efficiency in lead-scintillating fiber calorimeters

    Energy Technology Data Exchange (ETDEWEB)

    Anelli, M.; Bertolucci, S. [Laboratori Nazionali di Frascati, INFN (Italy); Bini, C. [Dipartimento di Fisica dell' Universita ' La Sapienza' , Roma (Italy); INFN Sezione di Roma, Roma (Italy); Branchini, P. [INFN Sezione di Roma Tre, Roma (Italy); Curceanu, C. [Laboratori Nazionali di Frascati, INFN (Italy); De Zorzi, G.; Di Domenico, A. [Dipartimento di Fisica dell' Universita ' La Sapienza' , Roma (Italy); INFN Sezione di Roma, Roma (Italy); Di Micco, B. [Dipartimento di Fisica dell' Universita ' Roma Tre' , Roma (Italy); INFN Sezione di Roma Tre, Roma (Italy); Ferrari, A. [Fondazione CNAO, Milano (Italy); Fiore, S.; Gauzzi, P. [Dipartimento di Fisica dell' Universita ' La Sapienza' , Roma (Italy); INFN Sezione di Roma, Roma (Italy); Giovannella, S., E-mail: simona.giovannella@lnf.infn.i [Laboratori Nazionali di Frascati, INFN (Italy); Happacher, F. [Laboratori Nazionali di Frascati, INFN (Italy); Iliescu, M. [Laboratori Nazionali di Frascati, INFN (Italy); IFIN-HH, Bucharest (Romania); Martini, M. [Laboratori Nazionali di Frascati, INFN (Italy); Dipartimento di Energetica dell' Universita ' La Sapienza' , Roma (Italy); Miscetti, S. [Laboratori Nazionali di Frascati, INFN (Italy); Nguyen, F. [Dipartimento di Fisica dell' Universita ' Roma Tre' , Roma (Italy); INFN Sezione di Roma Tre, Roma (Italy); Passeri, A. [INFN Sezione di Roma Tre, Roma (Italy); Prokofiev, A. [Svedberg Laboratory, Uppsala University (Sweden); Sciascia, B. [Laboratori Nazionali di Frascati, INFN (Italy)

    2009-12-15

    The overall detection efficiency to neutrons of a small prototype of the KLOE lead-scintillating fiber calorimeter has been measured at the neutron beam facility of The Svedberg Laboratory, TSL, Uppsala, in the kinetic energy range [5-175] MeV. The measurement of the neutron detection efficiency of a NE110 scintillator provided a reference calibration. At the lowest trigger threshold, the overall calorimeter efficiency ranges from 30% to 50%. This value largely exceeds the estimated 8-15% expected if the response were proportional only to the scintillator equivalent thickness. A detailed simulation of the calorimeter and of the TSL beam line has been performed with the FLUKA Monte Carlo code. First data-MC comparisons are encouraging and allow to disentangle a neutron halo component in the beam.

  15. Measurement and simulation of neutron detection efficiency in lead-scintillating fiber calorimeters

    International Nuclear Information System (INIS)

    Anelli, M.; Bertolucci, S.; Bini, C.; Branchini, P.; Curceanu, C.; De Zorzi, G.; Di Domenico, A.; Di Micco, B.; Ferrari, A.; Fiore, S.; Gauzzi, P.; Giovannella, S.; Happacher, F.; Iliescu, M.; Martini, M.; Miscetti, S.; Nguyen, F.; Passeri, A.; Prokofiev, A.; Sciascia, B.

    2009-01-01

    The overall detection efficiency to neutrons of a small prototype of the KLOE lead-scintillating fiber calorimeter has been measured at the neutron beam facility of The Svedberg Laboratory, TSL, Uppsala, in the kinetic energy range [5-175] MeV. The measurement of the neutron detection efficiency of a NE110 scintillator provided a reference calibration. At the lowest trigger threshold, the overall calorimeter efficiency ranges from 30% to 50%. This value largely exceeds the estimated 8-15% expected if the response were proportional only to the scintillator equivalent thickness. A detailed simulation of the calorimeter and of the TSL beam line has been performed with the FLUKA Monte Carlo code. First data-MC comparisons are encouraging and allow to disentangle a neutron halo component in the beam.

  16. Development of 2-d position-sensitive neutron detector with individual readout. Operation test and establishment of detection system by means of neutron beam

    International Nuclear Information System (INIS)

    Tanaka, Hiroki; Yamagishi, Hideshi; Nakamura, Tatsuya; Soyama, Kazuhiko; Aizawa, Kazuya

    2005-04-01

    We have been developing the 2-d position-sensitive neutron detector with individual readout as next-generation-type detector system for neutron scattering experiments using intense pulsed neutron source. The detection system is designed to fulfill the specifications required for each neutron spectrometer, such as a count rate, efficiency, neutron/gamma-ray ratio, a spatial resolution and a size, by using suitable detector heads. The fundamental and imaging performances of the developed system assembled with a Multi-wire proportional counter head were evaluated using a collimated neutron beam. The system worked stably for long hours at the 4 He gas pressure of 5 atm with a mixture of 30% C 2 H 6 (0.26 atom 3 He) at gas gain of 450. The spatial resolutions were 1.4, 1.6 mm (FWHM) for a cathode- and a back strip- direction, respectively, considering a beam size. It was also confirmed that the spatial uniformity of the detection efficiency over the whole sensitive detection area was rather good, ±8% deviation from the average with the optimum discrimination level. (author)

  17. Neutron detection devices with 6LiF converter layers

    Science.gov (United States)

    Finocchiaro, Paolo; Cosentino, Luigi; Meo, Sergio Lo; Nolte, Ralf; Radeck, Desiree

    2018-01-01

    The demand for new thermal neutron detectors as an alternative to 3He tubes in research, industrial, safety and homeland security applications, is growing. These needs have triggered research and development activities about new generations of thermal neutron detectors, characterized by reasonable efficiency and gamma rejection comparable to 3He tubes. In this paper we show the state of art of a promising lowcost technique, based on commercial solid state silicon detectors coupled with thin neutron converter layers of 6LiF deposited onto carbon fiber substrates. Several configurations were studied with the GEANT4 simulation code, and then calibrated at the PTB Thermal Neutron Calibration Facility. The results show that the measured detection efficiency is well reproduced by the simulations, therefore validating the simulation tool in view of new designs. These neutron detectors have also been tested at neutron beam facilities like ISIS (Rutherford Appleton Laboratory, UK) and n_TOF (CERN) where a few samples are already in operation for beam flux and 2D profile measurements. Forthcoming applications are foreseen for the online monitoring of spent nuclear fuel casks in interim storage sites.

  18. Neutron-based techniques for detection of explosives and drugs

    International Nuclear Information System (INIS)

    Kiraly, B.; Olah, L.; Csikai, G.J.

    2000-01-01

    Neutron reflection, scattering and transmission methods combined with the detection of characteristic gamma rays have an increasing role in the identification of hidden explosives, illicit drugs and other contraband materials. There are about 100 million land mines buried in some 70 countries. Among the abandoned anti-personnel land mines (APL) certain types have low mass (about 100 g) and contain little or no metal. Therefore, these plastic APL cannot be detected by the usual metal detectors. The IAEA Physics Section has organized a CRP in 1999 for the development of novel methods in order to speed up the removing process of APL. The transportation of illicit drugs has shown an increasing trend during the last decade. Developments of fast, non-destructive interrogation methods are required for the inspection of cargo containers, trucks and airline baggage. The major constituents of plastic APL and drugs are H, C, N and O which can be identified by the different neutron interactions. The atom fractions of these elements, in particular the C/O, C/N and C/H ratios, are quite different for drugs and explosives as compared to other materials used to hide them. Recently, we have carried out systematic measurements and calculations on the neutron fields from the 9 Be(d,n), 2 H(d,n), 252 Cf and Pu-Be sources passing through different bulky samples, on the possible use of elastically backscattered Pu-Be neutrons in elemental analysis and on the advantages and limitations of the thermal neutron reflection method in the identification of land mines and illicit drugs. The measured spectral shapes of neutrons were compared with the calculated results using the MCNP-4A and MCNP-4B codes. (author)

  19. Neutron-based techniques for detection of explosives and drugs

    Energy Technology Data Exchange (ETDEWEB)

    Kiraly, B.; Olah, L.; Csikai, J. E-mail: csikai@falcon.phys.klte.hu

    2001-06-01

    Systematic measurements were carried out on the possible use of elastically backscattered Pu-Be neutrons combined with the thermal neutron reflection method for the identification of land mines and illicit drugs via he detection of H, C, N, and O elements as their major constituents. While ur present results show that these methods are capable of indicating the anomalies in bulky materials and observation of the major elements, e termination of the exact atom fractions needs further investigation.

  20. Neutron-based techniques for detection of explosives and drugs

    CERN Document Server

    Kiraly, B; Csikai, J

    2001-01-01

    Systematic measurements were carried out on the possible use of elastically backscattered Pu-Be neutrons combined with the thermal neutron reflection method for the identification of land mines and illicit drugs via he detection of H, C, N, and O elements as their major constituents. While ur present results show that these methods are capable of indicating the anomalies in bulky materials and observation of the major elements, e termination of the exact atom fractions needs further investigation.

  1. Study and building of a detection array for delayed neutrons: TONNERRE; Etude et realisation d`un ensemble de detection pour neutrons retardes: TONNERRE

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Thierry [Lab. de Physique Corpusculaire, Caen Univ., 14 - Caen (France)

    1998-11-09

    This work has been undertaken within a French-Romanian collaboration in order to build a high efficiency detector array for delayed neutrons: barrel-shaped TONNERRE. Some neutron-rich nuclei decay through 1, 2 or 3 neutron emission after {beta}{sup -} decay. More exotic nuclei will be produced by SPIRAL at GANIL. An array with high efficiency and good resolution is then required. Thirty two BC400 plastic scintillators (160 x 20 x 4 cm{sup 3}) allow us to get the time of flight neutron spectra. They are bent for uniform flight path and viewed by a photomultiplier tube at both ends. Simulations have allowed to establish scintillator size and to minimize light attenuation. Intrinsic efficiency and crosstalk have been measured with {sup 252}Cf and compared to GEANT. 1 to 5 MeV neutrons are detected with good timing and position properties. Other counters will be built for neutrons from 300 keV to 1 MeV. Planned to run at several particle accelerators (GANIL, CERN, and others), TONNERRE is modular and many geometries are possible. (author) 48 refs., 78 figs., 20 tabs.

  2. Detectable radio flares following gravitational waves from mergers of binary neutron stars.

    Science.gov (United States)

    Nakar, Ehud; Piran, Tsvi

    2011-09-28

    Mergers of neutron-star/neutron-star binaries are strong sources of gravitational waves. They can also launch subrelativistic and mildly relativistic outflows and are often assumed to be the sources of short γ-ray bursts. An electromagnetic signature that persisted for weeks to months after the event would strengthen any future claim of a detection of gravitational waves. Here we present results of calculations showing that the interaction of mildly relativistic outflows with the surrounding medium produces radio flares with peak emission at 1.4 gigahertz that persist at detectable (submillijansky) levels for weeks, out to a redshift of 0.1. Slower subrelativistic outflows produce flares detectable for years at 150 megahertz, as well as at 1.4 gigahertz, from slightly shorter distances. The radio transient RT 19870422 (ref. 11) has the properties predicted by our model, and its most probable origin is the merger of a compact neutron-star/neutron-star binary. The lack of radio detections usually associated with short γ-ray bursts does not constrain the radio transients that we discuss here (from mildly relativistic and subrelativistic outflows) because short γ-ray burst redshifts are typically >0.1 and the appropriate timescales (longer than weeks) have not been sampled.

  3. ATLAS-TPX: a two-layer pixel detector setup for neutron detection and radiation field characterization

    International Nuclear Information System (INIS)

    Bergmann, B.; Caicedo, I.; Pospisil, S.; Vykydal, Z.; Leroy, C.

    2016-01-01

    A two-layer pixel detector setup (ATLAS-TPX), designed for thermal and fast neutron detection and radiation field characterization is presented. It consists of two segmented silicon detectors (256 × 256 pixels, pixel pitch 55 μm, thicknesses 300 μm and 500 μm) facing each other. To enhance the neutron detection efficiency a set of converter layers is inserted in between these detectors. The pixelation and the two-layer design allow a discrimination of neutrons against γs by pattern recognition and against charged particles by using the coincidence and anticoincidence information. The neutron conversion and detection efficiencies are measured in a thermal neutron field and fast neutron fields with energies up to 600 MeV. A Geant4 simulation model is presented, which is validated against the measured detector responses. The reliability of the coincidence and anticoincidence technique is demonstrated and possible applications of the detector setup are briefly outlined.

  4. Neutron detection and radiography

    International Nuclear Information System (INIS)

    Bollen, R.H.; Van Esch, R.F.

    1975-01-01

    An improved method of recording neutron images is described which comprises imagewise irradiating with neutrons an intensifying screen containing a gadolinium compound that fluoresces when struck by x-rays and subjecting the fluorescent light pattern resulting from the impact of the neutrons on the screen onto a photographic material. (auth)

  5. Particle and photon detection for a neutron radiative decay experiment

    Energy Technology Data Exchange (ETDEWEB)

    Gentile, T.R. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States)], E-mail: thomas.gentile@nist.gov; Dewey, M.S.; Mumm, H.P.; Nico, J.S.; Thompson, A.K. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Chupp, T.E. [University of Michigan, Ann Arbor, MI 48109 (United States); Cooper, R.L. [University of Michigan, Ann Arbor, MI 48109 (United States)], E-mail: cooperrl@umich.edu; Fisher, B.M.; Kremsky, I.; Wietfeldt, F.E. [Tulane University, New Orleans, LA 70118 (United States); Kiriluk, K.G.; Beise, E.J. [University of Maryland, College Park, MD 20742 (United States)

    2007-08-21

    We present the particle and photon detection methods employed in a program to observe neutron radiative beta-decay. The experiment is located at the NG-6 beam line at the National Institute of Standards and Technology Center for Neutron Research. Electrons and protons are guided by a 4.6 T magnetic field and detected by a silicon surface barrier detector. Photons with energies between 15 and 750 keV are registered by a detector consisting of a bismuth germanate scintillator coupled to a large area avalanche photodiode. The photon detector operates at a temperature near 80 K in the bore of a superconducting magnet. We discuss CsI as an alternative scintillator, and avalanche photodiodes for direct detection of photons in the 0.1-10 keV range.

  6. The thermal neutron detection using 4H-SiC detectors with 6LiF conversion layer

    International Nuclear Information System (INIS)

    Zatko, B.; Bohacek, P.; Sekacova, M.; Arbet, J.; Sagatova, A.; Necas, V.

    2016-01-01

    In this paper we have examined 4H-SiC detector using a thermal neutron source and studied its detection properties. The detector was exposed to neutrons generated by 238 Pu-Be radiation source. The detection properties of 4H-SiC detectors were evaluated considering the use of the 6 LiF conversion. We prepared 4H-SiC Schottky contact detectors based on high-quality of epitaxial layer. The current-voltage characteristic show operating region between 100 V and 400 V. The detector was connected to the spectrometric set-up and used for detection of alpha particles from 241 Am. Following the 6 LiF conversion layer was applied on the Schottky contact of detector and the detection of thermal neutrons was performed. We are able to resolve alpha particles and tritons which are products of nuclear reaction between thermal neutrons and conversion layer. Also bare detector was used for neutron detection to clearly show significant influence of the used conversion layer.(authors)

  7. Bismuth- and lithium-loaded plastic scintillators for gamma and neutron detection

    International Nuclear Information System (INIS)

    Cherepy, Nerine J.; Sanner, Robert D.; Beck, Patrick R.; Swanberg, Erik L.; Tillotson, Thomas M.; Payne, Stephen A.; Hurlbut, Charles R.

    2015-01-01

    Transparent plastic scintillators based on polyvinyltoluene (PVT) have been fabricated with high loading of bismuth carboxylates for gamma spectroscopy, and with lithium carboxylates for neutron detection. When activated with a combination of standard fluors, 2,5-diphenyloxazole (PPO) and tetraphenylbutadiene (TPB), gamma light yields with 15 wt% bismuth tripivalate of 5000 Ph/MeV are measured. A PVT plastic formulation including 30 wt% lithium pivalate and 30 wt% PPO offers both pulse shape discrimination, and a neutron capture peak at ~400 keVee. In another configuration, a bismuth-loaded PVT plastic is coated with ZnS( 6 Li) paint, permitting simultaneous gamma and neutron detection via pulse shape discrimination with a figure-of-merit of 3.8, while offering gamma spectroscopy with energy resolution of R(662 keV)=15%

  8. Motion Component Supported Boosted Classifier for CAR Detection in Aerial Imagery

    Science.gov (United States)

    Tuermer, S.; Leitloff, J.; Reinartz, P.; Stilla, U.

    2011-04-01

    Research of automatic vehicle detection in aerial images has been done with a lot of innovation and constantly rising success for years. However information was mostly taken from a single image only. Our aim is using the additional information which is offered by the temporal component, precisely the difference of the previous and the consecutive image. On closer viewing the moving objects are mainly vehicles and therefore we provide a method which is able to limit the search space of the detector to changed areas. The actual detector is generated of HoG features which are composed and linearly weighted by AdaBoost. Finally the method is tested on a motorway section including an exit and congested traffic near Munich, Germany.

  9. Neutron detection performance of silicon carbide and diamond detectors with incomplete charge collection properties

    Energy Technology Data Exchange (ETDEWEB)

    Hodgson, M., E-mail: michael.hodgson@becq.co.uk [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Lohstroh, A.; Sellin, P. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Thomas, D. [NPL, Teddington TW11 0LW (United Kingdom)

    2017-03-01

    The benefits of neutron detection and spectroscopy with carbon based, wide band gap, semiconductor detectors have previously been discussed within the literature. However, at the time of writing there are still limitations with these detectors related to availability, cost, size and perceived quality. This study demonstrates that lower quality materials—indicated by lower charge collection efficiency (CCE), poor resolution and polarisation effect—available at wafer scale and lower cost, can fulfil requirements for fast neutron detection and spectroscopy for fluxes over several orders of magnitude, where only coarse energy discrimination is required. In this study, a single crystal diamond detector (D-SC, with 100% CCE), a polycrystalline diamond (D-PC, with ≈4% CCE) and semi-insulating silicon carbide (SiC-SI, with ≈35% CCE) have been compared for alpha and fast neutron performance. All detectors demonstrated alpha induced polarisation effects in the form of a change of both energy peak position and count rate with irradiation time. Despite these operational issues the ability to detect fast neutrons and distinguish neutron energies was observed. This performance was demonstrated over a wide dynamic range (500–40,000 neutrons/s), with neutron induced polarisation being demonstrated in D-PC and SiC-SI at high fluxes.

  10. Proton Neutron Gamma-X Detection (PNGXD): An introduction to contrast agent detection during proton therapy via prompt gamma neutron activation

    Science.gov (United States)

    Gräfe, James L.

    2017-09-01

    experimental work are required to determine the feasibility of this new technique termed Proton Neutron Gamma-X Detection (PNGXD). The initial concept of this procedure is presented in this paper as well as future research directions.

  11. Research and Development of Landmine Detection System by a Compact Fusion Neutron Source

    International Nuclear Information System (INIS)

    Yoshikawa, Kiyoshi; Masuda, Kai; Toku, Hisayuki; Nagasaki, Kazunobu; Mizutani, Toshiyuki; Takamatsu, Teruhisa; Imoto, Masaki; Yamamoto, Yasushi; Ohnishi, Masami; Osawa, Hodaka; Hotta, Eiki; Kohno, Toshiyuki; Okino, Akitoshi; Watanabe, Masato; Yamauchi, Kunihito; Yuura, Morimasa; Shiroya, Seiji; Misawa, Tsuyoshi; Mori, Takamasa

    2005-01-01

    Current results are described on the research and development of an advanced anti-personnel landmine detection system by using a compact discharge-type fusion neutron source called IECF (Inertial-Electrostatic Confinement Fusion). Landmines are to be identified through backscattering of neutrons, and specific-energy capture γ-rays by hydrogen and nitrogen atoms in the landmine explosives.For this purpose, improvements in the IECF were made by various methods to achieve a drastic enhancement of neutron yields of more than 10 8 n/s in pulsed operation. This required R and D on the power source, as well as analysis of envisaged detection systems with multi-sensors. The results suggest promising and practical features for humanitarian landmine detection, particularly, in Afghanistan

  12. Development of neutron interrogation techniques for detection of hazardous substances in containers port

    International Nuclear Information System (INIS)

    D’Amico, N. M. B; Mayer, R.E; Tartaglione, A.

    2013-01-01

    This work is aimed at contributing to the effort of nations seeking to control international borders movement of dangerous chemical substances and nuclear material, in accordance with a multitude of agreements signed to that purpose. At this stage, we try to identify the signature of pure substances: chlorine (Cl), nitrogen (N), chromium (Cr), mercury (Hg), cadmium (Cd), uranium (U) y arsenic (As) and, later, to detect their presence in simulated large cargo containers. The technique employed in previous and in current work, consists in the detection of prompt and early decay gammas induced by incident thermal neutrons or fast neutrons thermalized in the cargo array. Uranium has also been detected through the counting of fast neutrons originated in induced fissions. (author)

  13. Passive neutron interrogation in systems with a poorly characterized detection efficiency

    International Nuclear Information System (INIS)

    Dubi, Chen; Oster, Elad; Ocherashvilli, Aharon; Pedersen, Bent; Hutszy, Janus

    2014-01-01

    Passive neutron interrogation for fissile mass estimation, relying on neutrons coming from spontaneous fission events, is considered a standard NDT procedure in the nuclear safeguard and safety community. Since most structure materials are (relatively) transparent to neutron radiation, passive neutron interrogation is considered highly effective in the analysis of dirty, poorly characterized samples. On the other hand, since a typical passive interrogation assembly is based on 3He detectors, neutrons from additional neutron sources (mainly (α,n) reactions and induced fissions in the tested sample) cannot be separated from the main spontaneous fission source through energetic spectral analysis. There for, applying the passive interrogation methods the implementation of Neutron Multiplicity Counting (NMC) methods for separation between the main fission source and the additional sources. Applying NMC methods requires a well characterized system, in the sense that both system die away time and detection efficiency must be well known (and in particular, independent of the tested sample)

  14. Measuring element for the detection and determination of radiation doses of gamma radiation and neutrons

    International Nuclear Information System (INIS)

    Jahn, W.; Piesch, E.

    1975-01-01

    A measuring element detects and proves both gamma and neutron radiation. The element includes a photoluminescent material which stores gamma radiation and particles of arsenic and phosphorus embedded in the photoluminescent material for detecting neutron radiation. (U.S.)

  15. Neutron detection using a current biased kinetic inductance detector

    International Nuclear Information System (INIS)

    Shishido, Hiroaki; Miyajima, Shigeyuki; Ishida, Takekazu; Narukami, Yoshito; Oikawa, Kenichi; Harada, Masahide; Oku, Takayuki; Arai, Masatoshi; Hidaka, Mutsuo; Fujimaki, Akira

    2015-01-01

    We demonstrate neutron detection using a solid state superconducting current biased kinetic inductance detector (CB-KID), which consists of a superconducting Nb meander line of 1 μm width and 40 nm thickness. 10 B-enriched neutron absorber layer of 150 nm thickness is placed on top of the CB-KID. Our neutron detectors are able to operate in a wide superconducting region in the bias current–temperature diagram. This is in sharp contrast with our preceding current-biased transition edge detector, which can operate only in a narrow range just below the superconducting critical temperature. The full width at half maximum of the signals remains of the order of a few tens of ns, which confirms the high speed operation of our detectors

  16. Simulation and prototyping of 2 m long resistive plate chambers for detection of fast neutrons and multi-neutron event identification

    Energy Technology Data Exchange (ETDEWEB)

    Elekes, Z., E-mail: z.elekes@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Aumann, T. [GSI Helmholtzzentrumfür Schwerionenforschung, Darmstadt (Germany); Technische Universität Darmstadt, Darmstadt (Germany); Bemmerer, D. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Boretzky, K. [GSI Helmholtzzentrumfür Schwerionenforschung, Darmstadt (Germany); Caesar, C. [GSI Helmholtzzentrumfür Schwerionenforschung, Darmstadt (Germany); Technische Universität Darmstadt, Darmstadt (Germany); Cowan, T.C. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Technische Universität Dresden, Dresden (Germany); Hehner, J.; Heil, M. [GSI Helmholtzzentrumfür Schwerionenforschung, Darmstadt (Germany); Kempe, M. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Rossi, D. [GSI Helmholtzzentrumfür Schwerionenforschung, Darmstadt (Germany); Röder, M. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Technische Universität Dresden, Dresden (Germany); Simon, H. [GSI Helmholtzzentrumfür Schwerionenforschung, Darmstadt (Germany); Sobiella, M.; Stach, D. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Reinhardt, T. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Technische Universität Dresden, Dresden (Germany); Wagner, A.; Yakorev, D. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Zilges, A. [Universität zu Köln, Köln (Germany); Zuber, K. [Technische Universität Dresden, Dresden (Germany)

    2013-02-11

    Resistive plate chamber (RPC) prototypes of 2 m length were simulated and built. The experimental tests using a 31 MeV electron beam, discussed in details, showed an efficiency higher than 90% and an excellent time resolution of around σ=100ps. Furthermore, comprehensive simulations were performed by GEANT4 toolkit in order to study the possible use of these RPCs for fast neutron (200 MeV–1 GeV) detection and multi-neutron event identification. The validation of simulation parameters was carried out via a comparison to experimental data. A possible setup for invariant mass spectroscopy of multi-neutron emission is presented and the characteristics are discussed. The results show that the setup has a high detection efficiency. Its capability of determining the momentum of the outgoing neutrons and reconstructing the relative energy between the fragments from nuclear reactions is demonstrated for different scenarios.

  17. Logic based feature detection on incore neutron spectra

    Energy Technology Data Exchange (ETDEWEB)

    Racz, A.; Kiss, S.; Bende-Farkas, S. (Hungarian Academy of Sciences, Budapest (Hungary). Central Research Inst. for Physics)

    1993-04-01

    A general framework for detecting features of incore neutron spectra with a rule-based methodology is presented. As an example, we determine the meaningful peaks in the APSD-s. This work is part of a larger project, aimed at developing a noise diagnostic expert system. (Author).

  18. Active neutron technique for detecting attempted special nuclear material diversion

    International Nuclear Information System (INIS)

    Smith, G.W.; Rice, L.G. III.

    1979-01-01

    The identification of special nuclear material (SNM) diversion is necessary if SNM inventory control is to be maintained at nuclear facilities. (Special nuclear materials are defined for this purpose as either 235 U of 239 Pu.) Direct SNM identification by the detection of natural decay or fission radiation is inadequate if the SNM is concealed by appropriate shielding. The active neutron interrogation technique described combines direct SNM identification by delayed fission neutron (DFN) detection with implied SNM detection by the identification of materials capable of shielding SNM from direct detection. This technique is being developed for application in an unattended material/equipment portal through which items such as electronic instruments, packages, tool boxes, etc., will pass. The volume of this portal will be 41-cm wide, 53-cm high and 76-cm deep. The objective of this technique is to identify an attempted diversion of at least 20 grams of SNM with a measurement time of 30 seconds

  19. In-Pile Qualification of the Fast-Neutron-Detection-System

    Science.gov (United States)

    Fourmentel, D.; Villard, J.-F.; Destouches, C.; Geslot, B.; Vermeeren, L.; Schyns, M.

    2018-01-01

    In order to improve measurement techniques for neutron flux assessment, a unique system for online measurement of fast neutron flux has been developed and recently qualified in-pile by the French Alternative Energies and Atomic Energy Commission (CEA) in cooperation with the Belgian Nuclear Research Centre (SCK•ECEN). The Fast-Neutron-Detection-System (FNDS) has been designed to monitor accurately high-energy neutrons flux (E > 1 MeV) in typical Material Testing Reactor conditions, where overall neutron flux level can be as high as 1015 n.cm-2.s-1 and is generally dominated by thermal neutrons. Moreover, the neutron flux is coupled with a high gamma flux of typically a few 1015 γ.cm-2.s-1, which can be highly disturbing for the online measurement of neutron fluxes. The patented FNDS system is based on two detectors, including a miniature fission chamber with a special fissile material presenting an energy threshold near 1 MeV, which can be 242Pu for MTR conditions. Fission chambers are operated in Campbelling mode for an efficient gamma rejection. FNDS also includes a specific software that processes measurements to compensate online the fissile material depletion and to adjust the sensitivity of the detectors, in order to produce a precise evaluation of both thermal and fast neutron flux even after long term irradiation. FNDS has been validated through a two-step experimental program. A first set of tests was performed at BR2 reactor operated by SCK•CEN in Belgium. Then a second test was recently completed at ISIS reactor operated by CEA in France. FNDS proved its ability to measure online the fast neutron flux with an overall accuracy better than 5%.

  20. Detection efficiency of the neutron detector BELEN-48 measured at the PTB Braunschweig

    Energy Technology Data Exchange (ETDEWEB)

    Marta, Michele [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); II. Physikalisches Institut, Justus-Liebig Universitaet Giessen (Germany); Agramunt, Jorge; Tain, Jose Luis [IFIC-CSIC University of Valencia, Valencia (Spain); Caballero-Folch, Roger; Cortes, Guillem; Riego, Albert [INTE-DFEN, Universitat Politecnica de Catalunya, Barcelona (Spain); Dillmann, Iris [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); II. Physikalisches Institut, Justus-Liebig Universitaet Giessen (Germany); TRIUMF, Vancouver (Canada); Erhard, Martin; Giesen, Ulrich; Nolte, Ralf; Roettger, Stefan [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany); Fraile, Luis M. [Universidad Complutense de Madrid (Spain)

    2014-07-01

    The BEta-deLayEd Neutron detector BELEN-48 is a highly efficient detector of β-delayed neutrons, for nuclear structure, nuclear astrophysics and reactor studies. It consists of 48 {sup 3}He proportional counters arranged in a polyethylene matrix in a way that the detection efficiency remains constant for neutron energies from thermal up to a few MeV. In order to validate MCNPX simulations, the detection efficiency has been calibrated with well-known (p,n) and (α,n) reactions on {sup 7}Li, {sup 13}C and {sup 51}V producing neutrons with energies between 0.1 and 5 MeV. The experiment has been performed at the neutron metrology facility of PTB, which allowed the measurement of yields and angular distributions with a calibrated monitor. The new results indicate anisotropies, which are not reported in literature and have been taken into account to obtain the experimental efficiencies for BELEN.

  1. A fast, high light output scintillator for gamma ray and neutron detection. Fifth Semi-Annual Report

    International Nuclear Information System (INIS)

    Entine, Gerald; Kanai, S.; Shah, M.S.; Leonard Cirignano, M.S.; Jarek Glodo; Van Loef, Edgar V.

    2003-01-01

    In view of the attractive properties of RbGd2Br7:Ce for gamma-ray and thermal neutron detection, and the lack of larger volume crystals, the goal of the Phase I project was to perform a rigorous investigation of the crystal growth of this exciting material and explore its capabilities for gamma-ray and thermal neutron detection. The Phase I research was very successful. All technical objectives were met and in many cases exceeded expectations. We were able to produce large (>1 cm3) RbGd2Br7:Ce crystals with excellent scintillation properties and demonstrated the possibility to detect thermal neutrons. As far as we are aware, our Phase I experiment was the first to demonstrate thermal neutron detection with RbGd2Br7:Ce. Clearly, the feasibility of the proposed research was adequately proven. The Phase II research builds on the successful results obtained during Phase I. Phase II will initially focus on optimizing the RbGd2Br7:Ce growth process to produce high quality, larger volume RbGd2Br7:Ce crystals. We will continue to use the versatile Bridgman technique. During this process, crystal growth parameters will be adjusted for optimal growth conditions. Our goal is to produce high quality RbGd2Br7:Ce crystals of size 1 inch x 1 inch x 1 inch (∼16 cm3). We will work on packaging aspects that allow efficient light collection and prevent crystal degradation. We will study and measure emission spectra, light yield, scintillation decay, energy and time resolution. The effects of variation in Ce concentration on the scintillation properties of RbGd2Br7:Ce will be examined in detail. Comprehensive gamma-ray spectroscopic and imaging studies will be conducted. Also, optimization of RbGd2Br7:Ce for thermal neutron detection will be addressed. Our initial studies will determine the optimal geometry of the RbGd2Br7:Ce crystals for neutron detection. For thermal neutron detection experiments, we will produce large area, thin samples in order to minimize gamma-ray sensitivity

  2. Development of a modular directional and spectral neutron detection system using solid-state detectors

    Energy Technology Data Exchange (ETDEWEB)

    Weltz, A., E-mail: weltza3@gmail.com; Torres, B.; McElwain, L.; Dahal, R.; Huang, J.; Bhat, I.; Lu, J.; Danon, Y.

    2015-08-21

    A detection system using room-temperature, microstructured solid-state thermal neutron detectors with very low leakage current has been developed at Rensselaer Polytechnic Institute (RPI) with the ability to provide positional and spectral information about an unknown neutron source. The Directional and Spectral Neutron Detection System (DSNDS) utilizes a set of small-but-scalable, zero-bias solid-state thermal neutron detectors which have demonstrated high thermal neutron efficiency and adequate gamma insensitivity. The DSNDS can gather spectral information about an unknown neutron source with a relatively small number of detectors, simplifying the detector electronics and minimizing cost; however, the DSNDS is modular in design, providing the capability to increase the detection efficiency and angular resolution. The system used in this paper was comprised of a stack of five high-density polyethylene (HDPE) disks with a thickness of 5 cm and a diameter of 30 cm, the middle disk containing 16 detectors positioned as one internal (moderated) and one external (unmoderated) ring of solid-state neutron detectors. These two detector rings provide the ability to determine the directionality of a neutron source. The system gathers spectral information about a neutron source in two ways: by measuring the relative responses of the internal ring of detectors as well as measuring the ratio of the internal-to-external detector responses. Experiments were performed with variable neutron spectra: a {sup 252}Cf spontaneous fission neutron source which was HDPE moderated, HDPE reflected, lead (Pb) shielded, and bare in order to benchmark the system for spectral sensitivity. Simulations were performed in order to characterize the neutron spectra corresponding to each of the source configurations and showed agreement with experimental measurements. The DSNDS demonstrates the ability to determine the relative angle of the source and the hardness of the neutron spectrum. By using the

  3. Neutron detector

    International Nuclear Information System (INIS)

    Endo, Hiroshi.

    1993-01-01

    The device of the present invention detects neutrons in a reactor container under a high temperature and reduces the noise level in an FBR type reactor. That is, the detection section comprises a high heat resistant vessel containing a scintillator therein for detecting neutrons. Neutron signals sent from the detection section are inputted to a neutron measuring section by way of a signal transmission section. The detection section is disposed at the inside of the reactor container. Further, the signal transmission section is connected optically to the detection section. With such a constitution, since the detection section comprising the high temperature resistant vessel is disposed at the inside of the reactor container, neutron fluxes can be detected and measured at high sensitivity even under a high temperature circumstance. Since the signal transmission section is optically connected to the detection section, influence of radiation rays upon transmission of the neutron detection signals can be reduced. Accordingly, the noise level can be kept low. (I.S.)

  4. DETERMINATION OF LIMIT DETECTION OF THE ELEMENTS N, P, K, Si, Al, Fe, Cu, Cd, WITH FAST NEUTRON ACTIVATION USING NEUTRON GENERATOR

    OpenAIRE

    Sunardi, Sunardi; Muryono, Muryono

    2010-01-01

    Determination of limit detection of the elements N, P, K, Si, Al, Fe, Cu, Cd, with fast neutron activation using neutron generator has been done.  Samples prepared from SRM 2704, N, P, K elements from MERCK, Cu, Cd, Al from activation foil made in San Carlos, weighted and packed for certain weight then iradiated during 30 minutes with 14 MeV fast neutron using the neutron generator and then counted with gamma spectrometry (accuspec).  At this research condition of neutron generator was set at...

  5. Measurement of the detection efficiency of the KLOE calorimeter for neutrons between 22 and 174 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Anelli, M. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Battistoni, G. [Sezione INFN di Milano (Italy); Bertolucci, S. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Bini, C. [Sapienza Universita di Roma (Italy); Sezione INFN di Roma (Italy); Branchini, P. [Sezione INFN di Roma Tre (Italy); Curceanu, C. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); De Zorzi, G.; Di Domenico, A. [Sapienza Universita di Roma (Italy); Sezione INFN di Roma (Italy); Di Micco, B. [Universita degli di Studi ' Roma Tre' (Italy); Sezione INFN di Roma Tre (Italy); Ferrari, A. [Fondazione CNAO, Milano (Italy); Fiore, S. [Sapienza Universita di Roma (Italy); Sezione INFN di Roma (Italy)], E-mail: salvatore.fiore@roma1.infn.it; Gauzzi, P. [Sapienza Universita di Roma (Italy); Sezione INFN di Roma (Italy); Giovannella, S.; Happacher, F. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Iliescu, M. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); IFIN-HH, Bucharest (Romania); Martini, M.; Miscetti, S. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Nguyen, F. [Universita degli di Studi ' Roma Tre' (Italy); Sezione INFN di Roma Tre (Italy); Passeri, A. [Sezione INFN di Roma Tre (Italy); Prokofiev, A. [Svedberg Laboratory, Uppsala University (Sweden)] (and others)

    2009-01-01

    A prototype of the high-sampling lead-scintillating fiber KLOE calorimeter has been exposed to neutron beams of 21, 46 and 174 MeV, provided by the The Svedberg Laboratory, Uppsala, to test its neutron detection efficiency. The measurement of the neutron detection efficiency of an NE110 scintillator provided a reference calibration. The measured efficiency is larger than what expected considering the scintillator thickness of the KLOE prototype only. This result proves the existence of a contribution from the passive material to neutron detection efficiency, in a high-sampling calorimeter configuration.

  6. Comparison between Silicon-Carbide and diamond for fast neutron detection at room temperature

    Directory of Open Access Journals (Sweden)

    Obraztsova O.

    2018-01-01

    Full Text Available Neutron radiation detector for nuclear reactor applications plays an important role in getting information about the actual neutron yield and reactor environment. Such detector must be able to operate at high temperature (up to 600° C and high neutron flux levels. It is worth nothing that a detector for industrial environment applications must have fast and stable response over considerable long period of use as well as high energy resolution. Silicon Carbide is one of the most attractive materials for neutron detection. Thanks to its outstanding properties, such as high displacement threshold energy (20-35 eV, wide band gap energy (3.27 eV and high thermal conductivity (4.9 W/cm·K, SiC can operate in harsh environment (high temperature, high pressure and high radiation level without additional cooling system. Our previous analyses reveal that SiC detectors, under irradiation and at elevated temperature, respond to neutrons showing consistent counting rates as function of external reverse bias voltages and radiation intensity. The counting-rate of the thermal neutron-induced peak increases with the area of the detector, and appears to be linear with respect to the reactor power. Diamond is another semi-conductor considered as one of most promising materials for radiation detection. Diamond possesses several advantages in comparison to other semiconductors such as a wider band gap (5.5 eV, higher threshold displacement energy (40-50 eV and thermal conductivity (22 W/cm·K, which leads to low leakage current values and make it more radiation resistant that its competitors. A comparison is proposed between these two semiconductors for the ability and efficiency to detect fast neutrons. For this purpose the deuterium-tritium neutron generator of Technical University of Dresden with 14 MeV neutron output of 1010 n·s-1 is used. In the present work, we interpret the first measurements and results with both 4H-SiC and chemical vapor deposition (CVD

  7. Comparison between Silicon-Carbide and diamond for fast neutron detection at room temperature

    Science.gov (United States)

    Obraztsova, O.; Ottaviani, L.; Klix, A.; Döring, T.; Palais, O.; Lyoussi, A.

    2018-01-01

    Neutron radiation detector for nuclear reactor applications plays an important role in getting information about the actual neutron yield and reactor environment. Such detector must be able to operate at high temperature (up to 600° C) and high neutron flux levels. It is worth nothing that a detector for industrial environment applications must have fast and stable response over considerable long period of use as well as high energy resolution. Silicon Carbide is one of the most attractive materials for neutron detection. Thanks to its outstanding properties, such as high displacement threshold energy (20-35 eV), wide band gap energy (3.27 eV) and high thermal conductivity (4.9 W/cm·K), SiC can operate in harsh environment (high temperature, high pressure and high radiation level) without additional cooling system. Our previous analyses reveal that SiC detectors, under irradiation and at elevated temperature, respond to neutrons showing consistent counting rates as function of external reverse bias voltages and radiation intensity. The counting-rate of the thermal neutron-induced peak increases with the area of the detector, and appears to be linear with respect to the reactor power. Diamond is another semi-conductor considered as one of most promising materials for radiation detection. Diamond possesses several advantages in comparison to other semiconductors such as a wider band gap (5.5 eV), higher threshold displacement energy (40-50 eV) and thermal conductivity (22 W/cm·K), which leads to low leakage current values and make it more radiation resistant that its competitors. A comparison is proposed between these two semiconductors for the ability and efficiency to detect fast neutrons. For this purpose the deuterium-tritium neutron generator of Technical University of Dresden with 14 MeV neutron output of 1010 n·s-1 is used. In the present work, we interpret the first measurements and results with both 4H-SiC and chemical vapor deposition (CVD) diamond

  8. Pedestrian Detection and Tracking from Low-Resolution Unmanned Aerial Vehicle Thermal Imagery

    Directory of Open Access Journals (Sweden)

    Yalong Ma

    2016-03-01

    Full Text Available Driven by the prominent thermal signature of humans and following the growing availability of unmanned aerial vehicles (UAVs, more and more research efforts have been focusing on the detection and tracking of pedestrians using thermal infrared images recorded from UAVs. However, pedestrian detection and tracking from the thermal images obtained from UAVs pose many challenges due to the low-resolution of imagery, platform motion, image instability and the relatively small size of the objects. This research tackles these challenges by proposing a pedestrian detection and tracking system. A two-stage blob-based approach is first developed for pedestrian detection. This approach first extracts pedestrian blobs using the regional gradient feature and geometric constraints filtering and then classifies the detected blobs by using a linear Support Vector Machine (SVM with a hybrid descriptor, which sophisticatedly combines Histogram of Oriented Gradient (HOG and Discrete Cosine Transform (DCT features in order to achieve accurate detection. This research further proposes an approach for pedestrian tracking. This approach employs the feature tracker with the update of detected pedestrian location to track pedestrian objects from the registered videos and extracts the motion trajectory data. The proposed detection and tracking approaches have been evaluated by multiple different datasets, and the results illustrate the effectiveness of the proposed methods. This research is expected to significantly benefit many transportation applications, such as the multimodal traffic performance measure, pedestrian behavior study and pedestrian-vehicle crash analysis. Future work will focus on using fused thermal and visual images to further improve the detection efficiency and effectiveness.

  9. Measurement of the neutron detection efficiency of a 80% absorber-20% scintillating fibers calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Anelli, M.; Bertolucci, S. [Laboratori Nazionali di Frascati dell' INFN, Via E.Fermi 40, I-00044 Frascati (Italy); Bini, C., E-mail: cesare.bini@roma1.infn.i [Dipartimento di Fisica, Sapienza Universita di Roma, P.le A.Moro, 2 I-00185 Roma (Italy); INFN Sezione di Roma, P.le A.Moro, 2 I-00185 Roma (Italy); Branchini, P. [INFN Sezione di Roma Tre, Via della Vasca Navale, 84 I-00146 Roma (Italy); Corradi, G.; Curceanu, C. [Laboratori Nazionali di Frascati dell' INFN, Via E.Fermi 40, I-00044 Frascati (Italy); De Zorzi, G.; Di Domenico, A. [Dipartimento di Fisica, Sapienza Universita di Roma, P.le A.Moro, 2 I-00185 Roma (Italy); INFN Sezione di Roma, P.le A.Moro, 2 I-00185 Roma (Italy); Di Micco, B. [Dipartimento di Fisica dell' Universita ' Roma Tre' , Via della Vasca Navale, 84 I-00146 Roma (Italy); INFN Sezione di Roma Tre, Via della Vasca Navale, 84 I-00146 Roma (Italy); Ferrari, A. [Institute of Safety Research and Institute of Radiation Physics, Forschungszentrum Dresden-Rossendorf, PF 510119, 01314 Dresden (Germany); Fiore, S. [Dipartimento di Fisica, Sapienza Universita di Roma, P.le A.Moro, 2 I-00185 Roma (Italy); INFN Sezione di Roma, P.le A.Moro, 2 I-00185 Roma (Italy); Gauzzi, P., E-mail: paolo.gauzzi@roma1.infn.i [Dipartimento di Fisica, Sapienza Universita di Roma, P.le A.Moro, 2 I-00185 Roma (Italy); INFN Sezione di Roma, P.le A.Moro, 2 I-00185 Roma (Italy); Giovannella, S.; Happacher, F. [Laboratori Nazionali di Frascati dell' INFN, Via E.Fermi 40, I-00044 Frascati (Italy); Iliescu, M. [Laboratori Nazionali di Frascati dell' INFN, Via E.Fermi 40, I-00044 Frascati (Italy); ' Horia Hulubei' National Institute of Physics and Nuclear Engineering, Str. Atomistilor no. 407, P.O. Box MG-6 Bucharest-Magurele (Romania); Luca, A.; Martini, M.; Miscetti, S. [Laboratori Nazionali di Frascati dell' INFN, Via E.Fermi 40, I-00044 Frascati (Italy)

    2011-01-21

    The neutron detection efficiency of a sampling calorimeter made of 1 mm diameter scintillating fibers embedded in a lead/bismuth structure has been measured at the neutron beam of The Svedberg Laboratory at Uppsala. A significant enhancement of the detection efficiency with respect to a bulk organic scintillator detector with the same thickness is observed.

  10. Measurement and simulation of the neutron detection efficiency with a Pb-scintillating fiber calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Anelli, M; Bertolucci, S; Curceanu, C; Giovannella, S; Happacher, F; Iliescu, M; Martini, M; Miscetti, S [Laboratori Nazionali di Frascati, INFN (Italy); Battistoni, G [Sezione INFN di Milano (Italy); Bini, C; Zorzi, G De; Domenico, Adi; Gauzzi, P [Ubiversita degli Studi ' La Sapienza' e Sezine INFN di Roma (Italy); Branchini, P; Micco, B Di; Ngugen, F; Paseri, A [Universita degli di Studi ' Roma Tre' e Sezione INFN di Roma Tre (Italy); Ferrari, A [Fondazione CNAO, Milano (Italy); Prokfiev, A [Svedberg Laboratory, Uppsala University (Sweden); Fiore, S, E-mail: matteo.martino@inf.infn.i

    2009-04-01

    We have measured the overall detection efficiency of a small prototype of the KLOE PB-scintillation fiber calorimeter to neutrons with kinetic energy range [5,175] MeV. The measurement has been done in a dedicated test beam in the neutron beam facility of the Svedberg Laboratory, TSL Uppsala. The measurements of the neutron detection efficiency of a NE110 scintillator provided a reference calibration. At the lowest trigger threshold, the overall calorimeter efficiency ranges from 28% to 33%. This value largely exceeds the estimated {approx}8% expected if the response were proportional only to the scintillator equivalent thickness. A detailed simulation of the calorimeter and of the TSL beam line has been performed with the FLUKA Monte Carlo code. The simulated response of the detector to neutrons is presented together with the first data to Monte Carlo comparison. The results show an overall neutron efficiency of about 35%. The reasons for such an efficiency enhancement, in comparison with the typical scintillator-based neutron counters, are explained, opening the road to a novel neutron detector.

  11. RE-EVALUATION OF THE NEUTRON EMISSION FROM THE SOLAR FLARE OF 2005 SEPTEMBER 7, DETECTED BY THE SOLAR NEUTRON TELESCOPE AT SIERRA NEGRA

    Energy Technology Data Exchange (ETDEWEB)

    González, L. X. [SCiESMEX, Instituto de Geofísica Unidad Michoacán, Universidad Nacional Autónoma de México, 58190, Morelia, Michoacán (Mexico); Valdés-Galicia, J. F.; Musalem, O.; Hurtado, A. [Instituto de Geofísica, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, D. F. Mexico (Mexico); Sánchez, F. [Instituto de Tecnologías en Detección de Astropartículas, Comisión Nacional de Energía Atómica, 1429, Buenos Aires (Argentina); Muraki, Y.; Sako, T.; Matsubara, Y.; Nagai, Y. [Solar-Terrestrial Environment Laboratory, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan); Watanabe, K. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Yoshinodai, chuo-ku, Sagamihara 252-5210 (Japan); Shibata, S. [College of Engineering, Chubu University, Kasugai, Aichi 487-8501 (Japan); Sakai, T. [College of Industrial Technologies, Nihon University, Narashino 275-0005 (Japan)

    2015-12-01

    The X17.0 solar flare of 2005 September 7 released high-energy neutrons that were detected by the Solar Neutron Telescope (SNT) at Sierra Negra, Mexico. In three separate and independent studies of this solar neutron event, several of its unique characteristics were studied; in particular, a power-law energy spectra was estimated. In this paper, we present an alternative analysis, based on improved numerical simulations of the detector using GEANT4, and a different technique for processing the SNT data. The results indicate that the spectral index that best fits the neutron flux is around 3, in agreement with previous works. Based on the numerically calculated neutron energy deposition on the SNT, we confirm that the detected neutrons might have reached an energy of 1 GeV, which implies that 10 GeV protons were probably produced; these could not be observed at Earth, as their parent flare was an east limb event.

  12. Design, building and evaluation of a neutron detection device based on boron loaded plastic scintillator

    International Nuclear Information System (INIS)

    Normand, St.

    2001-10-01

    This work focuses on the study, the characterization and the fabrication of Boron-loaded plastic scintillators. Their use in thermal and fast neutron detection devices is also investigated. Fabrication process, especially boron doping, is explained in the first part of this work. Several FTIR, UV-visible and NMR analysis methods were used in order to characterize the material and to check its structure and stoichiometry. Experiences were done using alpha particles and proton beams to measure the scintillation characteristics. Light emission could therefore be completely determined by the Birks semi-empirical relation. In the second part, the whole detector simulation is undergone: interaction between material and radiation, light generation, paths and signal generation. Neutron simulation by MCNP (Monte Carlo N-Particles) is coupled to a light generation and propagation code developed especially during this work. These simulation tools allow us to optimize the detector geometry for neutron detection and to determine the geometry influence to the photon collection efficiency. Neutron detection efficiency and mean lifetime in this scintillator are also simulated. The close fit obtained between experimental measurements and simulations demonstrate the reliability of the method used. The third part deals with the discrimination methods between neutron and gamma, such as analog (zero crossing) and digital (charge comparison) ones. Their performances were explained and compared. The last part of this work reports on few applications where neutron detection is essential and can be improved with the use of boron loaded plastic scintillators. In particular, the cases of doped scintillation fibers, neutron spectrometry devices and more over neutron multiplicity counting devices are presented. (author)

  13. Final LDRD report : advanced plastic scintillators for neutron detection.

    Energy Technology Data Exchange (ETDEWEB)

    Vance, Andrew L.; Mascarenhas, Nicholas; O' Bryan, Greg; Mrowka, Stanley

    2010-09-01

    This report summarizes the results of a one-year, feasibility-scale LDRD project that was conducted with the goal of developing new plastic scintillators capable of pulse shape discrimination (PSD) for neutron detection. Copolymers composed of matrix materials such as poly(methyl methacrylate) (PMMA) and blocks containing trans-stilbene (tSB) as the scintillator component were prepared and tested for gamma/neutron response. Block copolymer synthesis utilizing tSBMA proved unsuccessful so random copolymers containing up to 30% tSB were prepared. These copolymers were found to function as scintillators upon exposure to gamma radiation; however, they did not exhibit PSD when exposed to a neutron source. This project, while falling short of its ultimate goal, demonstrated the possible utility of single-component, undoped plastics as scintillators for applications that do not require PSD.

  14. Neutron detection using a current biased kinetic inductance detector

    Energy Technology Data Exchange (ETDEWEB)

    Shishido, Hiroaki, E-mail: shishido@pe.osakafu-u.ac.jp; Miyajima, Shigeyuki; Ishida, Takekazu [Department of Physics and Electronics, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Institute for Nanofabrication Research, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Narukami, Yoshito [Department of Physics and Electronics, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Oikawa, Kenichi; Harada, Masahide; Oku, Takayuki; Arai, Masatoshi [Materials and Life Science Division, J-PARC Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Hidaka, Mutsuo [National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568 (Japan); Fujimaki, Akira [Department of Quantum Engineering, Nagoya University, Nagoya, Aichi 464-8603 (Japan)

    2015-12-07

    We demonstrate neutron detection using a solid state superconducting current biased kinetic inductance detector (CB-KID), which consists of a superconducting Nb meander line of 1 μm width and 40 nm thickness. {sup 10}B-enriched neutron absorber layer of 150 nm thickness is placed on top of the CB-KID. Our neutron detectors are able to operate in a wide superconducting region in the bias current–temperature diagram. This is in sharp contrast with our preceding current-biased transition edge detector, which can operate only in a narrow range just below the superconducting critical temperature. The full width at half maximum of the signals remains of the order of a few tens of ns, which confirms the high speed operation of our detectors.

  15. B{sub 4}C thin films for neutron detection

    Energy Technology Data Exchange (ETDEWEB)

    Hoeglund, Carina [European Spallation Source ESS AB, P.O. Box 176, SE-221 00 Lund (Sweden); Department of Physics, Chemistry and Biology (IFM), Thin Film Physics Division, Linkoeping University, SE-581 83 Linkoeping (Sweden); Birch, Jens; Jensen, Jens; Hultman, Lars [Department of Physics, Chemistry and Biology (IFM), Thin Film Physics Division, Linkoeping University, SE-581 83 Linkoeping (Sweden); Andersen, Ken; Hall-Wilton, Richard [European Spallation Source ESS AB, P.O. Box 176, SE-221 00 Lund (Sweden); Bigault, Thierry; Buffet, Jean-Claude; Correa, Jonathan; Esch, Patrick van; Guerard, Bruno; Piscitelli, Francesco [Institute Laue Langevin, Rue Jules Horowitz, FR-380 00 Grenoble (France); Khaplanov, Anton [European Spallation Source ESS AB, P.O. Box 176, SE-221 00 Lund (Sweden); Institute Laue Langevin, Rue Jules Horowitz, FR-380 00 Grenoble (France); Vettier, Christian [European Spallation Source ESS AB, P.O. Box 176, SE-221 00 Lund (Sweden); European Synchrotron Radiation Facility, BP 220, FR-380 43 Grenoble Cedex 9 (France); Vollenberg, Wilhelmus [Vacuum, Surfaces and Coatings Group (TE/VSC), CERN, CH-1211 Geneva 23 (Switzerland)

    2012-05-15

    Due to the very limited availability of {sup 3}He, new kinds of neutron detectors, not based on {sup 3}He, are urgently needed. Here, we present a method to produce thin films of {sup 10}B{sub 4}C, with maximized detection efficiency, intended to be part of a new generation of large area neutron detectors. B{sub 4}C thin films have been deposited onto Al-blade and Si wafer substrates by dc magnetron sputtering from {sup nat}B{sub 4}C and {sup 10}B{sub 4}C targets in an Ar discharge, using an industrial deposition system. The films were characterized with scanning electron microscopy, elastic recoil detection analysis, x-ray reflectivity, and neutron radiography. We show that the film-substrate adhesion and film purity are improved by increased substrate temperature and deposition rate. A deposition rate of 3.8 A/s and substrate temperature of 400 deg. C result in films with a density close to bulk values and good adhesion to film thickness above 3 {mu}m. Boron-10 contents of almost 80 at. % are obtained in 6.3 m{sup 2} of 1 {mu}m thick {sup 10}B{sub 4}C thin films coated on Al-blades. Initial neutron absorption measurements agree with Monte Carlo simulations and show that the layer thickness, number of layers, neutron wavelength, and amount of impurities are determining factors. The study also shows the importance of having uniform layer thicknesses over large areas, which for a full-scale detector could be in total {approx}1000 m{sup 2} of two-side coated Al-blades with {approx}1 {mu}m thick {sup 10}B{sub 4}C films.

  16. Optimization of combined delayed neutron and differential die-away prompt neutron signal detection for characterization of spent nuclear fuel assemblies

    International Nuclear Information System (INIS)

    Blanc, Pauline; Tobin, Stephen J.; Croft, Stephen; Menlove, Howard O.; Swinhoe, M.; Lee, T.

    2010-01-01

    The Next Generation Safeguards Initiative (NGSI) of the U.S. Department of Energy (DOE) has funded multiple laboratories and universities to develop a means to accurately quantify the Plutonium (Pu) mass in spent nuclear fuel assemblies and ways to also detect potential diversion of fuel pins. Delayed Neutron (DN) counting provides a signature somewhat more sensitive to 235 U than Pu while Differential Die-Away (DDA) is complementary in that it has greater sensitivity to Pu. The two methods can, with care, be combined into a single instrument which also provides passive neutron information. Individually the techniques cannot robustly quantify the Pu content but coupled together the information content in the signatures enables Pu quantification separate to the total fissile content. The challenge of merging DN and DDA, prompt neutron (PN) signal, capabilities in the same design is the focus of this paper. Other possibilities also suggest themselves, such as a direct measurement of the reactivity (multiplication) by either the boost in signal obtained during the active interrogation itself or by the extension of the die-away profile. In an early study, conceptual designs have been modeled using a neutron detector comprising fission chambers or 3He proportional counters and a ∼14 MeV neutron Deuterium-Tritium (DT) generator as the interrogation source. Modeling was performed using the radiation transport code Monte Carlo N-Particles eXtended (MCNPX). Building on this foundation, the present paper quantifies the capability of a new design using an array of 3 He detectors together with fission chambers to optimize both DN and PN detections and active characterization, respectively. This new design was created in order to minimize fission in 238 U (a nuisance DN emitter), to use a realistic neutron generator, to reduce the cost and to achieve near spatial interrogation and detection of the DN and PN, important for detection of diversion, all within the constraints of

  17. Angular resolution study of a combined gamma-neutron coded aperture imager for standoff detection

    International Nuclear Information System (INIS)

    Ayaz-Maierhafer, Birsen; Hayward, Jason P.; Ziock, Klaus P.; Blackston, Matthew A.; Fabris, Lorenzo

    2013-01-01

    Nuclear threat source observables at standoff distances of tens of meters from mCi class sources include both gamma-rays and neutrons. This work uses simulations to investigate the effects of the angular resolution of a mobile gamma-ray and neutron coded aperture imaging system upon orphan source detection significance and specificity. The design requires maintaining high sensitivity and specificity while keeping the system size as compact as possible to reduce weight, footprint, and cost. A mixture of inorganic and organic scintillators was considered in the detector plane for high sensitivity to both gamma-rays and fast neutrons. For gamma-rays (100 to 2500 keV) and fission spectrum neutrons, angular resolutions of 1–9° and radiation angles of incidence appropriate for mobile search were evaluated. Detection significance for gamma-rays considers those events that contribute to the photopeak of the image pixel corresponding the orphan source location. For detection of fission spectrum neutrons, energy depositions above a set pulse shape discrimination threshold were tallied. The results show that the expected detection significance for the system at an angular resolution of 1° is significantly lower compared to its detection significance an angular resolution of ∼3–4°. An angular resolution of ∼3–4° is recommended both for better detection significance and improved false alarm rate, considering that finer angular resolution does not result in improved background rejection when the coded aperture method is used. Instead, over-pixelating the search space may result in an unacceptably high false alarm rate

  18. Experimental detection of iron overload in liver through neutron stimulated emission spectroscopy

    International Nuclear Information System (INIS)

    Kapadia, A J; Tourassi, G D; Sharma, A C; Crowell, A S; Kiser, M R; Howell, C R

    2008-01-01

    Iron overload disorders have been the focus of several quantification studies involving non-invasive imaging modalities. Neutron spectroscopic techniques have demonstrated great potential in detecting iron concentrations within biological tissue. We are developing a neutron spectroscopic technique called neutron stimulated emission computed tomography (NSECT), which has the potential to diagnose iron overload in the liver at clinically acceptable patient dose levels through a non-invasive scan. The technique uses inelastic scatter interactions between atomic nuclei in the sample and incoming fast neutrons to non-invasively determine the concentration of elements in the sample. This paper discusses a non-tomographic application of NSECT investigating the feasibility of detecting elevated iron concentrations in the liver. A model of iron overload in the human body was created using bovine liver tissue housed inside a human torso phantom and was scanned with a 5 MeV pulsed beam using single-position spectroscopy. Spectra were reconstructed and analyzed with algorithms designed specifically for NSECT. Results from spectroscopic quantification indicate that NSECT can currently detect liver iron concentrations of 6 mg g -1 or higher and has the potential to detect lower concentrations by optimizing the acquisition geometry to scan a larger volume of tissue. The experiment described in this paper has two important outcomes: (i) it demonstrates that NSECT has the potential to detect clinically relevant concentrations of iron in the human body through a non-invasive scan and (ii) it provides a comparative standard to guide the design of iron overload phantoms for future NSECT liver iron quantification studies

  19. Detection of laurel wilt disease in avocado using low altitude aerial imaging.

    Science.gov (United States)

    de Castro, Ana I; Ehsani, Reza; Ploetz, Randy C; Crane, Jonathan H; Buchanon, Sherrie

    2015-01-01

    Laurel wilt is a lethal disease of plants in the Lauraceae plant family, including avocado (Persea americana). This devastating disease has spread rapidly along the southeastern seaboard of the United States and has begun to affect commercial avocado production in Florida. The main objective of this study was to evaluate the potential to discriminate laurel wilt-affected avocado trees using aerial images taken with a modified camera during helicopter surveys at low-altitude in the commercial avocado production area. The ability to distinguish laurel wilt-affected trees from other factors that produce similar external symptoms was also studied. RmodGB digital values of healthy trees and laurel wilt-affected trees, as well as fruit stress and vines covering trees were used to calculate several vegetation indices (VIs), band ratios, and VI combinations. These indices were subjected to analysis of variance (ANOVA) and an M-statistic was performed in order to quantify the separability of those classes. Significant differences in spectral values among laurel wilt affected and healthy trees were observed in all vegetation indices calculated, although the best results were achieved with Excess Red (ExR), (Red-Green) and Combination 1 (COMB1) in all locations. B/G showed a very good potential for separate the other factors with symptoms similar to laurel wilt-affected trees, such as fruit stress and vines covering trees, from laurel wilt-affected trees. These consistent results prove the usefulness of using a modified camera (RmodGB) to discriminate laurel wilt-affected avocado trees from healthy trees, as well as from other factors that cause the same symptoms and suggest performing the classification in further research. According to our results, ExR and B/G should be utilized to develop an algorithm or decision rules to classify aerial images, since they showed the highest capacity to discriminate laurel wilt-affected trees. This methodology may allow the rapid detection

  20. Detection of laurel wilt disease in avocado using low altitude aerial imaging.

    Directory of Open Access Journals (Sweden)

    Ana I de Castro

    rapid detection of laurel wilt-affected trees using low altitude aerial images and be a valuable tool in mitigating this important threat to Florida avocado production.

  1. Efficient Forest Fire Detection Index for Application in Unmanned Aerial Systems (UASs

    Directory of Open Access Journals (Sweden)

    Henry Cruz

    2016-06-01

    Full Text Available This article proposes a novel method for detecting forest fires, through the use of a new color index, called the Forest Fire Detection Index (FFDI, developed by the authors. The index is based on methods for vegetation classification and has been adapted to detect the tonalities of flames and smoke; the latter could be included adaptively into the Regions of Interest (RoIs with the help of a variable factor. Multiple tests have been performed upon database imagery and present promising results: a detection precision of 96.82% has been achieved for image sizes of 960 × 540 pixels at a processing time of 0.0447 seconds. This achievement would lead to a performance of 22 f/s, for smaller images, while up to 54 f/s could be reached by maintaining a similar detection precision. Additional tests have been performed on fires in their early stages, achieving a precision rate of p = 96.62%. The method could be used in real-time in Unmanned Aerial Systems (UASs, with the aim of monitoring a wider area than through fixed surveillance systems. Thus, it would result in more cost-effective outcomes than conventional systems implemented in helicopters or satellites. UASs could also reach inaccessible locations without jeopardizing people’s safety. On-going work includes implementation into a commercially available drone.

  2. Advances in associated-particle sealed-tube neutron probe diagnostics for substance detection

    International Nuclear Information System (INIS)

    Rhodes, E.; Dickerman, C.E.; Frey, M.

    1995-01-01

    The development and investigation of a small associated-particle sealed-tube neutron generator (APSTNG) shows potential to allow the associated-particle diagnostic method to be moved out of the laboratory into field applications. The APSTNG interrogates the inspected object with 14-MeV neutrons generated from the deuterium-tritium reaction and detects the alpha-particle associated with each neutron inside a cone encompassing the region of interest. Gamma-ray spectra of resulting neutron reactions identify many nuclides. Flight-times determined from detection times of the gamma-rays and alpha-particles can yield a separate coarse tomographic image of each identified nuclide, from a single orientation. Chemical substances are identified by comparing relative spectral line intensities with ratios of elements in reference compounds. The high-energy neutrons and gamma-rays penetrate large objects and dense materials. Generally no collimators or radiation shielding are needed. Proof-of-concept laboratory experiments have been successfully performed for simulated nuclear, chemical warfare, and conventional munitions. Most recently, inspection applications have been investigated for radioactive waste characterization, presence of cocaine in propane tanks, and uranium and plutonium smuggling. Based on lessons learned with the present APSTNG system, an advanced APSTNG tube (along with improved high voltage supply and control units) is being designed and fabricated that will be transportable and rugged, yield a substantial neutron output increase, and provide sufficiently improved lifetime to allow operation at more than an order of magnitude increase in neutron flux

  3. Neutron detection time distributions of multisphere LiI detectors and AB rem meter at a 20 MeV electron linac

    International Nuclear Information System (INIS)

    Liu, J.C.; Rokni, S.; Vylet, V.; Arora, R.; Semones, E.; Justus, A.

    1997-01-01

    Neutron detection time distribution is an important factor for the dead-time correction for moderator type neutron detectors used in pulsed radiation fields. Measurements of the neutron detection time distributions of multisphere LiL detectors (2''3'' , 5'', 8'', 10'' and 12'' in diameter) and an AB rem meter were made inside an ANL 20 MeV electron linac room. Calculations of the neutron detection time distributions were also made using Monte Carlo codes. The first step was to calculate the neutron energy spectra at the target and detector positions, using a coupled EGS4-MORSE code with a giant-resonant photoneutron generation scheme. The calculated detector spectrum was found in agreement with the multisphere measurements. Then, neutrons hitting the detector surface were scored as a function of energy and the travel time in the room using MCNP. Finally, the above neutron fluence as a function of energy and travel time was used as the source term, and the neutrons detected by 6 Li or 10 B in the sensor were scored as a function of detection time for each detector using MCNP. The calculations of the detection time distributions agree with the measurements. The results also show that the detection time distributions of detectors with large moderators depend mainly on the moderator thickness and neutron spectrum. However, for small detectors, the neutron travel time in the field is also crucial. Therefore, all four factors (neutron spectrum, neutron travel time in the field, detector moderator thickness and detector response function) may play inter-related roles in the detection time distribution of moderator type detectors. (Author)

  4. Fast Neutron Detection Using Pixelated CdZnTe Spectrometers

    Science.gov (United States)

    Streicher, Michael; Goodman, David; Zhu, Yuefeng; Brown, Steven; Kiff, Scott; He, Zhong

    2017-07-01

    Fast neutrons are an important signature of special nuclear materials (SNMs). They have a low natural background rate and readily penetrate high atomic number materials that easily shield gamma-ray signatures. Therefore, they provide a complementary signal to gamma rays for detecting shielded SNM. Scattering kinematics dictate that a large nucleus (such as Cd or Te) will recoil with small kinetic energy after an elastic collision with a fast neutron. Charge carrier recombination and quenching further reduce the recorded energy deposited. Thus, the energy threshold of CdZnTe detectors must be very low in order to sense the small signals from these recoils. In this paper, the threshold was reduced to less than 5 keVee to demonstrate that the 5.9-keV X-ray line from 55Fe could be separated from electronic noise. Elastic scattering neutron interactions were observed as small energy depositions (less than 20 keVee) using digitally sampled pulse waveforms from pixelated CdZnTe detectors. Characteristic gamma-ray lines from inelastic neutron scattering were also observed.

  5. Extensive Air Showers Detected by Aragats Neutron Monitor

    International Nuclear Information System (INIS)

    Badalyan, A.; Chilingarian, A.; Hovsepyan, G.; Grigoryan, A.; Khanikyants, Y.; Manukyan, A.; Pokhsraryan, D.; Soghomonyan, S.

    2017-01-01

    Extensive Air Shower (EAS) duration as registered by the surface particle detectors does not exceed a few tens of nanosecond. However, Neutron monitors containing plenty of absorbing matter can respond to EAS core traversal during 1 ∼ms by registering secondary slow neutrons born by EAS hadrons in the soil, walls of buildings and in the matter of detector itself. Thus, the time distribution of the pulses from the proportional counters of the neutron monitor after EAS propagation extends to ∼l ms, ∼5 orders of magnitude larger than the EAS passing time. The Aragats Neutron Monitor (ArNM) has a special option for the EAS core detection. In general, the dead time of NM is ∼1 ms that provides the one-to-one relation of incident hadrons and detector counts. The pulses generated by the neutrons possibly entering the proportional chamber after the first one will be neglected. In ArNM, we use several “electronic” dead times, and with the shortest one, 400 ns, the detector counts all pulses that enter the proportional chambers. If ArNM one-second time series corresponding to the shortest dead time contain much more signals (a neutron burst) than with l-ms dead time, then we conclude that the EAS core hits the detector. We assume that he distribution of registered burst multiplicities is proportional to the energy of the primary particle. The primary cosmic ray energy spectrum was obtained by the frequency analysis through the counting frequencies of the multiplicities of different magnitudes and relating them to the integral energy spectrum measured by the MAKET array at the same place several years ago. (author)

  6. Peach Flower Monitoring Using Aerial Multispectral Imaging

    Directory of Open Access Journals (Sweden)

    Ryan Horton

    2017-01-01

    Full Text Available One of the tools for optimal crop production is regular monitoring and assessment of crops. During the growing season of fruit trees, the bloom period has increased photosynthetic rates that correlate with the fruiting process. This paper presents the development of an image processing algorithm to detect peach blossoms on trees. Aerial images of peach (Prunus persica trees were acquired from both experimental and commercial peach orchards in the southwestern part of Idaho using an off-the-shelf unmanned aerial system (UAS, equipped with a multispectral camera (near-infrared, green, blue. The image processing algorithm included contrast stretching of the three bands to enhance the image and thresholding segmentation method to detect the peach blossoms. Initial results showed that the image processing algorithm could detect peach blossoms with an average detection rate of 84.3% and demonstrated good potential as a monitoring tool for orchard management.

  7. Boiling detection using signals of self-powered neutron detectors and thermocouples

    International Nuclear Information System (INIS)

    Kozma, R.

    1989-01-01

    A specially-equipped simulated fuel assembly has been placed into the core of the 2 MW research reactor of the IRI, Delft. In this paper the recent results concerning the detection of coolant boiling in the simulated fuel assembly are introduced. Applying the theory of boiling temperature noise, different stages of boiling, i.e. one-phase flow, subcooled boiling, volume boiling, were identified in the measurements using the low-frequency noise components of the thermocouple signals. It has been ascertained that neutron noise spectra remained unchanged when subcooled boiling appeared, and that they changed reasonably only when developed volume boiling took place in the channels. At certain neutron detector positions neutron spectra did not vary at all, although developed volume boiling occurred at a distance of 3-4 cm from these neutron detectors. This phenomenon was applied in studying the field-of-view of neutron detectors

  8. Building change detection via a combination of CNNs using only RGB aerial imageries

    Science.gov (United States)

    Nemoto, Keisuke; Hamaguchi, Ryuhei; Sato, Masakazu; Fujita, Aito; Imaizumi, Tomoyuki; Hikosaka, Shuhei

    2017-10-01

    Building change information extracted from remote sensing imageries is important for various applications such as urban management and marketing planning. The goal of this work is to develop a methodology for automatically capturing building changes from remote sensing imageries. Recent studies have addressed this goal by exploiting 3-D information as a proxy for building height. In contrast, because in practice it is expensive or impossible to prepare 3-D information, we do not rely on 3-D data but focus on using only RGB aerial imageries. Instead, we employ deep convolutional neural networks (CNNs) to extract effective features, and improve change detection accuracy in RGB remote sensing imageries. We consider two aspects of building change detection, building detection and subsequent change detection. Our proposed methodology was tested on several areas, which has some differences such as dominant building characteristics and varying brightness values. On all over the tested areas, the proposed method provides good results for changed objects, with recall values over 75 % with a strict overlap requirement of over 50% in intersection-over-union (IoU). When the IoU threshold was relaxed to over 10%, resulting recall values were over 81%. We conclude that use of CNNs enables accurate detection of building changes without employing 3-D information.

  9. Detection of fast burst of neutrons in the background of intense electromagnetic pulse

    International Nuclear Information System (INIS)

    Shyam, Anurag

    1999-01-01

    There are many experiments, in which fast neutron burst is emitted along with strong electromagnetic pulse. This pulse has frequency spectrum starting from few tens of khz to hard x-rays. Detecting these neutrons bursts require special measurement techniques, which are described. (author)

  10. An investigation on detection and measurement of fusion neutron spectrum and radiation flux in large tokamak

    International Nuclear Information System (INIS)

    Yang Jinwei; Li Wenzhong; Zhang Wei

    2003-01-01

    The detection methods, detectors and spectrometers of D-D and D-T fusion neutron have been overviewed in large tokamaks. Some options are proposed for developing new detection systems of fusion neutrons suitable to the HL-2A tokamak. (authors)

  11. Digital-to-analog device for continuous detection of neutron damping decrement in logging

    International Nuclear Information System (INIS)

    Sokolov, Yu.I.; Zinchenko, A.I.; Rudenko, Eh.L.

    1976-01-01

    Algorithms are analyzed for a continuous detection of the damping decrement (DD) of the thermal neutron density in time, characterizing absorptive and diffusion properties of a bed; an an automated measuring device has been developed. The design of a digital calculator involving reguired mathematical and logical operations in the DD measurement by the specified algorithms necessitated the use of a system of elements with a diode-transistor RC logic. Following laboratory tests the mock-up of the calculator was subjected to borehole tests as part of the pulsed neutron logging apparatus of the IGN-4 type. A continuous detection of the DD reciprocal with a parallel recording of the differential and integral curves of pulsed neutron-neutron logging has been performed. The borehole tests revealed the efficiency of the new device and the possibility of its use together with the apparatus of the IGN-4 type

  12. Design of a versatile detector for the detection of charged particles, neutrons and gamma rays. Neutron interaction with the matter; Diseno de un detector versatil para la deteccion de particulas cargadas, neutrones y rayos gamma. Interaccion neutronica con la materia

    Energy Technology Data Exchange (ETDEWEB)

    Perez P, J J [Comision Nacional de Seguridad Nuclear y Salvaguardias, Mexico, D.F. (Mexico)

    1991-07-01

    The Fostron detector detects charged particles, neutrons and gamma rays with a reasonable discrimination power. Because the typical detectors for neutrons present a great uncertainty in the detection, this work was focused mainly to the neutron detection in presence of gamma radiation. Also there are mentioned the advantages and disadvantages of the Fostron detector.

  13. APSTNG: Neutron interrogation for detection of explosives and drugs and nuclear and CW materials

    International Nuclear Information System (INIS)

    Rhodes, E.; Peters, C.W.

    1993-01-01

    A recently developed neutron diagnostic probe system has the potential to satisfy a significant number of van-mobile and fixed-portal requirements for nondestructive detection, including monitoring of contraband explosives, drugs, and weapon materials, and treaty verification of sealed munitions. The probe is based on a unique associated-particle sealed-tube neutron generator (APSTNG) that interrogates the object of interest with a low-intensity beam of 14-MeV neutron generated from the deuterium-tritium reaction and that detects the alpha-particle associated with each neutron. Gamma-ray spectra of resulting neutron reactions identify nuclides associated with all major chemicals in explosives, drugs, and chemical warfare agents, as well as many pollutants and fissile and fertile special nuclear material. Flight times determined from detection times of the gamma rays and alpha-particles yield a separate coarse tomographic image of each identified nuclide. The APSTNG also forms the basis for a compact fast-neutron transmission imaging system that can be used along with or instead of the emission imaging system. Proof-of-concept experiments have been performed under laboratory conditions for simulated nuclear and chemical warfare munitions and for explosives and drugs. The small and relatively inexpensive APSTNG exhibits high reliability and can be quickly replaced. Surveillance systems based on APSTNG technology can avoid the large physical size, high capital and operating expenses, and reliability problems associated with complex accelerators

  14. A novel detector assembly for detecting thermal neutrons, fast neutrons and gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    Cester, D., E-mail: davide.cester@gmail.com [Dipartimento di Fisica ed Astronomia dell' Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); Lunardon, M.; Moretto, S. [Dipartimento di Fisica ed Astronomia dell' Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Nebbia, G. [INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Pino, F. [Dipartimento di Fisica ed Astronomia dell' Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); Sajo-Bohus, L. [Dipartimento di Fisica ed Astronomia dell' Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); Laboratorio de Fisica Nuclear, Universidad Simon Bolivar, Apartado 89000, 1080 A Caracas (Venezuela, Bolivarian Republic of); Stevanato, L.; Bonesso, I.; Turato, F. [Dipartimento di Fisica ed Astronomia dell' Università di Padova, Via Marzolo 8, I-35131 Padova (Italy)

    2016-09-11

    A new composite detector has been developed by combining two different commercial scintillators. The device has the capability to detect gamma rays as well as thermal and fast neutrons; the signal discrimination between the three types is performed on-line by means of waveform digitizers and PSD algorithms. This work describes the assembled detector and its discrimination performance to be employed in the applied field.

  15. A novel detector assembly for detecting thermal neutrons, fast neutrons and gamma rays

    International Nuclear Information System (INIS)

    Cester, D.; Lunardon, M.; Moretto, S.; Nebbia, G.; Pino, F.; Sajo-Bohus, L.; Stevanato, L.; Bonesso, I.; Turato, F.

    2016-01-01

    A new composite detector has been developed by combining two different commercial scintillators. The device has the capability to detect gamma rays as well as thermal and fast neutrons; the signal discrimination between the three types is performed on-line by means of waveform digitizers and PSD algorithms. This work describes the assembled detector and its discrimination performance to be employed in the applied field.

  16. The sensitivity studies of a landmine explosive detection system based on neutron backscattering using Monte Carlo simulation

    Directory of Open Access Journals (Sweden)

    Khan Hamda

    2017-01-01

    Full Text Available This paper carries out a Monte Carlo simulation of a landmine detection system, using the MCNP5 code, for the detection of concealed explosives such as trinitrotoluene and cyclonite. In portable field detectors, the signal strength of backscattered neutrons and gamma rays from thermal neutron activation is sensitive to a number of parameters such as the mass of explosive, depth of concealment, neutron moderation, background soil composition, soil porosity, soil moisture, multiple scattering in the background material, and configuration of the detection system. In this work, a detection system, with BF3 detectors for neutrons and sodium iodide scintillator for g-rays, is modeled to investigate the neutron signal-to-noise ratio and to obtain an empirical formula for the photon production rate Ri(n,γ= SfGfMf(d,m from radiative capture reactions in constituent nuclides of trinitrotoluene. This formula can be used for the efficient landmine detection of explosives in quantities as small as ~200 g of trinitrotoluene concealed at depths down to about 15 cm. The empirical formula can be embedded in a field programmable gate array on a field-portable explosives' sensor for efficient online detection.

  17. Study and building of a detection array for delayed neutrons: TONNERRE

    International Nuclear Information System (INIS)

    Martin, Thierry

    1998-01-01

    This work has been undertaken within a French-Romanian collaboration in order to build a high efficiency detector array for delayed neutrons: barrel-shaped TONNERRE. Some neutron-rich nuclei decay through 1, 2 or 3 neutron emission after β - decay. More exotic nuclei will be produced by SPIRAL at GANIL. An array with high efficiency and good resolution is then required. Thirty two BC400 plastic scintillators (160 x 20 x 4 cm 3 ) allow us to get the time of flight neutron spectra. They are bent for uniform flight path and viewed by a photomultiplier tube at both ends. Simulations have allowed to establish scintillator size and to minimize light attenuation. Intrinsic efficiency and crosstalk have been measured with 252 Cf and compared to GEANT. 1 to 5 MeV neutrons are detected with good timing and position properties. Other counters will be built for neutrons from 300 keV to 1 MeV. Planned to run at several particle accelerators (GANIL, CERN, and others), TONNERRE is modular and many geometries are possible. (author)

  18. Applications of Monte Carlo technique in the detection of explosives, narcotics and fissile material using neutron sources

    International Nuclear Information System (INIS)

    Sinha, Amar; Kashyap, Yogesh; Roy, Tushar; Agrawal, Ashish; Sarkar, P.S.; Shukla, Mayank

    2009-01-01

    The problem of illicit trafficking of explosives, narcotics or fissile materials represents a real challenge to civil security. Neutron based detection systems are being actively explored worldwide as a confirmatory tool for applications in the detection of explosives either hidden inside a vehicle or a cargo container or buried inside soil. The development of a system and its experimental testing is a tedious process and to develop such a system each experimental condition needs to be theoretically simulated. Monte Carlo based methods are used to find an optimized design for such detection system. In order to design such systems, it is necessary to optimize source and detector system for each specific application. The present paper deals with such optimization studies using Monte Carlo technique for tagged neutron based system for explosives and narcotics detection hidden in a cargo and landmine detection using backscatter neutrons. We will also discuss some simulation studies on detection of fissile material and photo-neutron source design for applications on cargo scanning. (author)

  19. Neutron detection using CR-39 and Atomic Force Microscopy (AFM)

    International Nuclear Information System (INIS)

    Vazquez L, C.; Fragoso, R.; Felix, R.; Golzarri, J.I.; Espinosa, G.; Castillo, F.

    2007-01-01

    AFM has been applied in many CR-39 track formation analyses. In this paper, the use of AFM in the neutron detection and analysis of the track formation is reported. The irradiation was made with an 1.5 GBq (0.5 Ci) 241 Am-Be neutron source, with and without a polyethylene radiator. The surface analysis was made to the CR-39 fresh material without irradiation, after the irradiation, and after a very short etching time. The results show important differences between the irradiation, with and without polyethylene radiator, and the latent tracks of the neutron in the CR-39 polycarbonate. The development of track formation after very short etching time and pits characterization were measured too using the AFM facilities. (Author)

  20. High Hydrogen Content Graphene Hydride Compounds & High Cross-Section Cladding Coatings for Fast Neutron Detection

    International Nuclear Information System (INIS)

    Chandrashekhar, MVS

    2017-01-01

    The objective is to develop and implement a superior low-cost, large area (potentially >32in), easily deployable, close proximity, harsh environment innovative neutron sensor needed for next generation fuel cycle monitoring. We will exploit recent breakthroughs at the PI's lab on the electrochemistry of epitaxial graphene (EG) formed on commercial SiC wafers, a transformative nanomaterial system with superior radiation detection and durability properties to develop a new paradigm in detection for fast neutrons, a by-product of fission reactors. There are currently few effective detection/monitoring schemes, especially solid-state ones at present. This is essential for monitoring and control of future fuel cycles to make them more efficient and reliable. By exploiting these novel materials, as well as innovative hybrid SiC/EG/Cladding device architectures conceived by the team, will develop low-cost, high performance solutions to fast-neutron detection. Finally, we will also explore 3-terminal device implementations for neutron detectors with built-in electronic gain to further shrink these devices and improve their sensitivity.

  1. The Muon-Induced Neutron Indirect-Detection EXperiment. MINIDEX

    Energy Technology Data Exchange (ETDEWEB)

    Palermo, Matteo

    2016-06-06

    A new experiment to measure muon-induced neutrons is introduced. The design of the Muon-Induced Neutron Indirect Detection EXperiment, MINIDEX, is presented and its installation and commissioning in the Tuebingen Shallow Underground Laboratory are described. Results from its first data taking period, run I, are presented. Muon-induced neutrons are not only an interesting physics topic by itself, but they are also an important source of background in searches for possible new rare phenomena like neutrinoless double beta decay or directly observable interactions of dark matter. These subjects are of great importance to understand the development of the early universe. Therefore, a new generation of ton-scale experiments which require extremely low background levels is under consideration. Reliable Monte Carlo simulations are needed to design such future experiments and estimate their background levels and sensitivities. The background due to muon-induced neutrons is hard to estimate, because of inconsistencies between different experimental results and discrepancies between measurements and Monte Carlo predictions. Especially for neutron production in high-Z materials, more experimental data and related simulation studies are clearly needed. MINIDEX addresses exactly this subject. Already the first five months of data taking provided valuable data on neutron production, propagation and interaction in lead. A first round of comparisons between MINIDEX data and Monte Carlo predictions are presented. In particular, the predictions of two Monte Carlo packages, based on GEANT4, are compared to the data. The data show an overall 70-100% higher rate of muon-induced events than predicted by the Monte Carlo packages. These packages also predict a faster time evolution of the muon-induced signal than observed in the data. Nevertheless, the time until the signal from the muon-induced events is completely collected was correctly predicted by the Monte Carlos. MINIDEX is foreseen

  2. Detecting neutrons by forward recoil protons at the Energy & Transmutation facility: Detector development and calibration with 14.1-MeV neutrons

    Science.gov (United States)

    Afanasev, S.; Vishnevskiy, A.; Vishnevskiy, D.; Rogachev, A.; Tyutyunnikov, S.

    2017-05-01

    As part of the Energy & Transmutation project, we are developing a detector for neutrons with energies in the 10-100 MeV range emitted from the target irradiated by a charged-particle beam. The neutron is detected by measuring the time-of-flight and total kinetic energy of the forward-going recoil proton [1] knocked out at a small angle from a thin layer of plastic scintillator, which has to be selected against an intense background created by γ quanta, scattered neutrons, and charged particles. On the other hand, neutron energy has to be measured over the full range with no extra tuning of the detector operation regime. Initial measurements with a source of 14.1-MeV neutrons are reported.

  3. Detection of rice sheath blight using an unmanned aerial system with high-resolution color and multispectral imaging.

    Science.gov (United States)

    Zhang, Dongyan; Zhou, Xingen; Zhang, Jian; Lan, Yubin; Xu, Chao; Liang, Dong

    2018-01-01

    Detection and monitoring are the first essential step for effective management of sheath blight (ShB), a major disease in rice worldwide. Unmanned aerial systems have a high potential of being utilized to improve this detection process since they can reduce the time needed for scouting for the disease at a field scale, and are affordable and user-friendly in operation. In this study, a commercialized quadrotor unmanned aerial vehicle (UAV), equipped with digital and multispectral cameras, was used to capture imagery data of research plots with 67 rice cultivars and elite lines. Collected imagery data were then processed and analyzed to characterize the development of ShB and quantify different levels of the disease in the field. Through color features extraction and color space transformation of images, it was found that the color transformation could qualitatively detect the infected areas of ShB in the field plots. However, it was less effective to detect different levels of the disease. Five vegetation indices were then calculated from the multispectral images, and ground truths of disease severity and GreenSeeker measured NDVI (Normalized Difference Vegetation Index) were collected. The results of relationship analyses indicate that there was a strong correlation between ground-measured NDVIs and image-extracted NDVIs with the R2 of 0.907 and the root mean square error (RMSE) of 0.0854, and a good correlation between image-extracted NDVIs and disease severity with the R2 of 0.627 and the RMSE of 0.0852. Use of image-based NDVIs extracted from multispectral images could quantify different levels of ShB in the field plots with an accuracy of 63%. These results demonstrate that a customer-grade UAV integrated with digital and multispectral cameras can be an effective tool to detect the ShB disease at a field scale.

  4. Building Change Detection from Harvey using Unmanned Aerial System (UAS)

    Science.gov (United States)

    Chang, A.; Yeom, J.; Jung, J.; Choi, I.

    2017-12-01

    Unmanned Aerial System (UAS) is getting to be the most important technique in recent days since the fine spatial and high temporal resolution data previously unobtainable from traditional remote sensing platforms. Advanced UAS data can provide a great opportunity for disaster monitoring. Especially, building change detection is the one of the most important topics for damage assessment and recovery from disasters. This study is proposing a method to monitor building change with UAS data for Holiday Beach in Texas, where was directly hit by Harvey on 25 August 2017. This study adopted 3D change detection to monitor building damage and recovery levels with building height as well as natural color information. We used a rotorcraft UAS to collect RGB data twice on 9 September and 18 October 2017 after the hurricane. The UAS data was processed using Agisoft Photoscan Pro Software to generate super high resolution dataset including orthomosaic, DSM (Digital Surface Model), and 3D point cloud. We compared the processed dataset with an airborne image considerable as before-hurricane data, which was acquired on January 2016. Building damage and recovery levels were determined by height and color change. The result will show that UAS data is useful to assess building damage and recovery for affected area by the natural disaster such as Harvey.

  5. Neutron capture on nitrogen as a means of detecting explosives

    International Nuclear Information System (INIS)

    Thompson, M.N.; Rassool, R.P.

    1995-01-01

    A research prototype was developed on the basis of neutron capture on nitrogen and is demonstrated to be able to detect parcel and letter bombs. Is the gamma radiation that is detected as an indication of the presence of nitrogen, and the probable presence of nitrogen-containing explosive. The conceptual design of the explosive detector and some experimental results are briefly presented. figs., ills

  6. Thermal neutron detection using a silicon pad detector and {sup 6}LiF removable converters

    Energy Technology Data Exchange (ETDEWEB)

    Barbagallo, Massimo [Istituto Nazionale di Fisica Nucleare, Sezione di Bari (Italy); Cosentino, Luigi; Marchetta, Carmelo; Pappalardo, Alfio; Scire, Carlotta; Scire, Sergio; Schillaci, Maria; Vecchio, Gianfranco; Finocchiaro, Paolo [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Catania (Italy); Forcina, Vittorio; Peerani, Paolo [European Commission, Joint Research Centre, Institute of Transuranium Elements, Ispra (Italy); Vaccaro, Stefano [European Commission, Directorate-General for Energy (Luxembourg)

    2013-03-15

    A semiconductor detector coupled with a neutron converter is a good candidate for neutron detection, especially for its compactness and reliability if compared with other devices, such as {sup 3}He tubes, even though its intrinsic efficiency is rather lower. In this paper we show a neutron detector design consisting of a 3 cm Multiplication-Sign 3 cm silicon pad detector coupled with one or two external {sup 6}LiF layers, enriched in {sup 6}Li at 95%, placed in contact with the Si active surfaces. This prototype, first characterized and tested at INFN Laboratori Nazionali del Sud and then at JRC Ispra, was successfully shown to detect thermal neutrons with the expected efficiency and an outstanding gamma rejection capability.

  7. Bis(pinacolato)diboron as an additive for the detection of thermal neutrons in plastic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Mahl, Adam [Department of Physics and the Nuclear Science and Engineering Center (NuSEC), Colorado School of Mines, Golden, CO 80401 (United States); Yemam, Henok A.; Stuntz, John [Department of Chemistry and Geochemistry and the Materials Science Program Colorado School of Mines, Golden, CO 80401 (United States); Remedes, Tyler [Department of Physics and the Nuclear Science and Engineering Center (NuSEC), Colorado School of Mines, Golden, CO 80401 (United States); Sellinger, Alan [Department of Chemistry and Geochemistry and the Materials Science Program Colorado School of Mines, Golden, CO 80401 (United States); Greife, Uwe, E-mail: ugreife@mines.edu [Department of Physics and the Nuclear Science and Engineering Center (NuSEC), Colorado School of Mines, Golden, CO 80401 (United States)

    2016-04-21

    A readily available and inexpensive boron compound was tested as an additive for the detection of thermal neutrons in plastic scintillators. Bis(pinacolato)diboron (B{sub 2}Pin{sub 2}) was determined to be a compatible boron source (8.51 wt% boron, 1.70 wt% {sup 10}B) in poly(vinyltoluene) based matrices. Plastic scintillator blends of 1–20 wt% 2,5-diphenyloxazole (PPO), 0.1 wt% 1,4-bis(5-phenyloxazol-2-yl) benzene (POPOP) and 1–15 wt% B{sub 2}Pin{sub 2} were prepared that provided optical clarity, good mechanical properties, and the capability of thermal neutron detection. Independent of B{sub 2}Pin{sub 2} concentration, strong {sup 10}B neutron capture signals around 90 keV{sub ee} were observed at essentially constant light output. Increasing PPO concentration allowed for the use of pulse shape discrimination (PSD) in both fast and thermal neutron detection. High PPO concentrations appear to cause additional alpha quenching that affected the {sup 10}B neutron capture signal. Aging effects after storage in air for several months were observed, which led to degradation of performance and in some samples of mechanical stability.

  8. Bis(pinacolato)diboron as an additive for the detection of thermal neutrons in plastic scintillators

    International Nuclear Information System (INIS)

    Mahl, Adam; Yemam, Henok A.; Stuntz, John; Remedes, Tyler; Sellinger, Alan; Greife, Uwe

    2016-01-01

    A readily available and inexpensive boron compound was tested as an additive for the detection of thermal neutrons in plastic scintillators. Bis(pinacolato)diboron (B_2Pin_2) was determined to be a compatible boron source (8.51 wt% boron, 1.70 wt% "1"0B) in poly(vinyltoluene) based matrices. Plastic scintillator blends of 1–20 wt% 2,5-diphenyloxazole (PPO), 0.1 wt% 1,4-bis(5-phenyloxazol-2-yl) benzene (POPOP) and 1–15 wt% B_2Pin_2 were prepared that provided optical clarity, good mechanical properties, and the capability of thermal neutron detection. Independent of B_2Pin_2 concentration, strong "1"0B neutron capture signals around 90 keV_e_e were observed at essentially constant light output. Increasing PPO concentration allowed for the use of pulse shape discrimination (PSD) in both fast and thermal neutron detection. High PPO concentrations appear to cause additional alpha quenching that affected the "1"0B neutron capture signal. Aging effects after storage in air for several months were observed, which led to degradation of performance and in some samples of mechanical stability.

  9. Carbon filter property detection with thermal neutron technique

    International Nuclear Information System (INIS)

    Deng Zhongbo; Han Jun; Li Wenjie

    2003-01-01

    The paper discussed the mechanism that the antigas property of the carbon filter will decrease because of its carbon bed absorbing water from the air while the carbon filter is being stored, and introduced the principle and method of detection the amount of water absorption with thermal neutron technique. Because some certain relation between the antigas property of the carbon filter and the amount of water absorption exists, the decrease degree of the carbon filter antigas property can be estimated through the amount of water absorption, offering a practicable facility technical pathway to quickly non-destructively detect the carbon filter antigas property

  10. The Nuclear Car Wash: Neutron interrogation of cargo containers to detect hidden SNM

    Science.gov (United States)

    Hall, J. M.; Asztalos, S.; Biltoft, P.; Church, J.; Descalle, M.-A.; Luu, T.; Manatt, D.; Mauger, G.; Norman, E.; Petersen, D.; Pruet, J.; Prussin, S.; Slaughter, D.

    2007-08-01

    LLNL is actively involved in the development of advanced technologies for use in detecting threats in sea-going cargo containers, particularly the presence of hidden special nuclear materials (SNM). The "Nuclear Car Wash" (NCW) project presented here uses a high-energy (En ≈ 3.5-7.0 MeV) neutron probe to scan a container and then takes high-energy (Eγ ⩾ 2.5 MeV), β-delayed γ-rays emitted during the subsequent decay of any short-lived, neutron-induced fission products as a signature of fissionable material. The components of the proposed system (e.g. neutron source, gamma detectors, etc.) will be discussed along with data processing schemes, possible threat detection metrics and potential interference signals. Results from recent laboratory experiments using a prototype system at LLNL will also be presented.

  11. The Nuclear Car Wash: Neutron interrogation of cargo containers to detect hidden SNM

    International Nuclear Information System (INIS)

    Hall, J.M.; Asztalos, S.; Biltoft, P.; Church, J.; Descalle, M.-A.; Luu, T.; Manatt, D.; Mauger, G.; Norman, E.; Petersen, D.; Pruet, J.; Prussin, S.; Slaughter, D.

    2007-01-01

    LLNL is actively involved in the development of advanced technologies for use in detecting threats in sea-going cargo containers, particularly the presence of hidden special nuclear materials (SNM). The 'Nuclear Car Wash' (NCW) project presented here uses a high-energy (E n ∼ 3.5-7.0 MeV) neutron probe to scan a container and then takes high-energy (E γ ≥ 2.5 MeV), β-delayed γ-rays emitted during the subsequent decay of any short-lived, neutron-induced fission products as a signature of fissionable material. The components of the proposed system (e.g. neutron source, gamma detectors, etc.) will be discussed along with data processing schemes, possible threat detection metrics and potential interference signals. Results from recent laboratory experiments using a prototype system at LLNL will also be presented

  12. Application of neutron/gamma transport codes for the design of explosive detection systems

    International Nuclear Information System (INIS)

    Elias, E.; Shayer, Z.

    1994-01-01

    Applications of neutron and gamma transport codes to the design of nuclear techniques for detecting concealed explosives material are discussed. The methodology of integrating radiation transport computations in the development, optimization and analysis phases of these new technologies is discussed. Transport and Monte Carlo codes are used for proof of concepts, guide the system integration, reduce the extend of experimental program and provide insight into the physical problem involved. The paper concentrates on detection techniques based on thermal and fast neutron interactions in the interrogated object. (authors). 6 refs., 1 tab., 5 figs

  13. Detection and identification of explosives and illicit drugs using neutron based techniques

    International Nuclear Information System (INIS)

    Papp, A.; Csikai, J.; Debrecen University,

    2011-01-01

    Some methods developed in collaboration between the ATOMKI and IEP for bulk hydrogen analysis and for the detection and identification of illicit drugs are presented. Advantages and limitations of neutron techniques (reflection, transmission, elastic and inelastic scatterings, leakage spectra and angular yields of Be(d,n), Pu-Be, D-D, D-T and 252 Cf neutrons transmitted from thick samples, effects of hidden materials) are discussed. (author)

  14. Neutron-neutron probe for uranium exploration

    International Nuclear Information System (INIS)

    Smith, R.C.

    1979-01-01

    A neutron activation probe for assaying the amount of fissionable isotopes in an ore body is described which comprises a casing which is movable through a borehole in the ore body, a neutron source and a number of delayed neutron detectors arranged colinearly in the casing below the neutron source for detecting delayed neutrons

  15. A Monte-Carlo study of landmines detection by neutron backscattering method

    International Nuclear Information System (INIS)

    Maucec, M.; De Meijer, R.J.

    2000-01-01

    The use of Monte-Carlo simulations for modelling a simplified landmine detector system with a 252 Cf- neutron source is presented in this contribution. Different aspects and variety of external conditions, affecting the localisation and identification of a buried suspicious object (such as landmine) have been tested. Results of sensitivity calculations confirm that the landmine detection methods, based on the analysis of the backscattered neutron radiation can be applicable in higher density formations, with the mass fraction of present pore-water <15 %. (author)

  16. Mapping hardwood mortality for the early detection of P. ramorum: an assessment of aerial surveys and object-oriented image analysis

    Science.gov (United States)

    Erik Haunreiter; Zhanfeng Liu; Jeff Mai; Zachary Heath; Lisa Fischer

    2008-01-01

    Effective monitoring and identification of areas of hardwood mortality is a critical component in the management of sudden oak death (SOD). From 2001 to 2005, aerial surveys covering 13.5 million acres in California were conducted to map and monitor hardwood mortality for the early detection of Phytophthora ramorum, the pathogen responsible for SOD....

  17. High Hydrogen Content Graphene Hydride Compounds & High Cross-­ Section Cladding Coatings for Fast Neutron Detection

    Energy Technology Data Exchange (ETDEWEB)

    Chandrashekhar, MVS [Univ. of South Carolina, Columbia, SC (United States)

    2017-06-21

    The objective is to develop and implement a superior low-cost, large area (potentially >32in), easily deployable, close proximity, harsh environment innovative neutron sensor needed for next generation fuel cycle monitoring. We will exploit recent breakthroughs at the PI’s lab on the electrochemistry of epitaxial graphene (EG) formed on commercial SiC wafers, a transformative nanomaterial system with superior radiation detection and durability properties to develop a new paradigm in detection for fast neutrons, a by-product of fission reactors. There are currently few effective detection/monitoring schemes, especially solid-state ones at present. This is essential for monitoring and control of future fuel cycles to make them more efficient and reliable. By exploiting these novel materials, as well as innovative hybrid SiC/EG/Cladding device architectures conceived by the team, will develop low-cost, high performance solutions to fast-neutron detection. Finally, we will also explore 3-terminal device implementations for neutron detectors with built-in electronic gain to further shrink these devices and improve their sensitivity.

  18. Aerial Radiological Surveys of the Las Vegas Strip and Adjacent Areas

    International Nuclear Information System (INIS)

    Hendricks, Thane; Reed, Michael

    2008-01-01

    As proficiency training for the Remote Sensing Laboratory's (RSL) Aerial Measuring System (AMS) radiological mapping mission, a survey team from RSL-Nellis conducted aerial radiological surveys of the Las Vegas Strip and adjacent areas on four separate occasions. The dates of the surveys were: December 11, 2006; December 26, 2007; December 31, 2007; and July 1, 2008. The AMS operation and appropriate law enforcement agencies selected the survey area as an appropriate urban location in which to exercise the AMS capability for mapping environmental radiation and searching for man-made radioactive sources. The surveys covered approximately 11 square miles. Each survey required a 2.5 hour-long flight, performed at an altitude of 300 ft above ground level (AGL), at a line spacing of 600 ft. Water line and test line flights were conducted over the Lake Mead and Government Wash areas in order to quantify the non-terrestrial background contributed by the aircraft, radon, and cosmic activity, and in order to determine the altitude-dependent air mass correction. The gamma data was collected by the AMS data acquisition system (REDAR V) using an array of twelve 2-inch x 4-inch x 16-inch sodium iodide (NaI) detectors flown on-board a twin-engine Bell 412 helicopter. One second gamma-energy spectral data were recorded continuously while in flight. This spectral data allows the system to distinguish between natural terrestrial background contributions and man-made radioisotope contributions. Spectral data can also be used to identify specific man-made radioactive isotopes. Data geo-locations were determined with a Real-Time Differential Global Positioning System (RDGPS). For the surveys occurring on December 26, 2007, and December 31, 2007, a neutron detection system was also flown. The neutron system consists of an array of eight moderated helium tubes, each cylindrical in nature measuring 6-feet in length with a diameter of 2-inches

  19. A MARKED POINT PROCESS MODEL FOR VEHICLE DETECTION IN AERIAL LIDAR POINT CLOUDS

    Directory of Open Access Journals (Sweden)

    A. Börcs

    2012-07-01

    Full Text Available In this paper we present an automated method for vehicle detection in LiDAR point clouds of crowded urban areas collected from an aerial platform. We assume that the input cloud is unordered, but it contains additional intensity and return number information which are jointly exploited by the proposed solution. Firstly, the 3-D point set is segmented into ground, vehicle, building roof, vegetation and clutter classes. Then the points with the corresponding class labels and intensity values are projected to the ground plane, where the optimal vehicle configuration is described by a Marked Point Process (MPP model of 2-D rectangles. Finally, the Multiple Birth and Death algorithm is utilized to find the configuration with the highest confidence.

  20. Investigation on feasibility and detection limits for determination of coating film thickness by neutron activation analysis

    International Nuclear Information System (INIS)

    Yao Maoying; Xu Jiayun; Zhang Dida; Yang Zunyong; Yao Zhenqiang; Wang Mingqiu; Gao Dangzhong

    2010-01-01

    A method for the determination of coating film thickness by neutron activation was proposed in this paper. After Au, Al and Cu et al.films were activated with a Am-Be neutron source, the characteristic γ-rays emitted by the activated nuclides in the films were counted with a HPGe γ spectrometer. The detection limits of film thickness by using a nuclear reactor neutron source were deduced on the basis of the γ-ray counts and the Monte-Carlo simulated detection efficiencies. The possible detection limits are typically 4-5 orders of magnitude better than those by fluorescent X-ray method, which is currently widely used to determine coating film thickness. (authors)

  1. Electret ionization chamber: a new method for detection and dosimetry of thermal neutrons; Camara de ionizacao de eletretos: um novo metodo para deteccao e dosimetria de neutrons termicos

    Energy Technology Data Exchange (ETDEWEB)

    Ghilardi, A J.P.

    1988-12-31

    An electret ionization chamber with boron coated walls is presented as a new method for detecting thermal neutrons. The efficiency of electret ionization chambers with different wall materials for the external electrode was inferred from the results. Detection of slow neutrons with discrimination against the detection of {gamma}-rays and energetic neutrons was shown to depend on the selection of these materials. The charge stability over a long period of time and the charge decay owing to natural radiation were also studied. Numerical analysis was developed by the use of a micro-computer PC-XT. Both the experimental and numerical results show that the sensitivity of the electret ionization chamber for detection of thermal neutrons is comparable with that of the BF{sub 3} ionization chamber and that new technologies for deposition of the boron layer will produce higher efficiency detectors. (author). 102 refs, 32 fig, 10 tabs.

  2. Fast neutron spectrometry by bolometers lithium target for the reduction of background experiences of direct detection of dark matter

    International Nuclear Information System (INIS)

    Gironnet, J.

    2010-01-01

    Fast neutron spectrometry is a common interest for both direct dark matter detection and for nuclear research centres. Fast neutrons are usually detected indirectly. Neutrons are first slowed down by moderating materials for being detected in low energy range. Nevertheless, these detection techniques are and are limited in energy resolution. A new kind of fast neutron spectroscopy has been developed at the Institut d'Astrophysique Spatiale (IAS) in the aim of having a better knowledge of neutron backgrounds by the association of the bolometric technique with neutron sensitive crystals containing Li. Lithium-6 is indeed an element which has one the highest cross section for neutron capture with the 6 Li(n,α) 3 H reaction. This reaction releases 4,78 MeV tagging energetically each neutron capture. In particular for fast neutrons, the total energy measured by the bolometer would be the sum of this energy reaction and of the incoming fast neutron energy. To validate this principle, a spectrometer for fast neutrons, compact and semi-transportable, was built in IAS. This cryogenic detector, operated at 300 - 400 mK, consists of a 0.5 g LiF 95% 6 Li enriched crystal read out by a NTD-Ge sensor. This PhD thesis was on the study of the spectrometer characteristics, from the first measurements at IAS, to the measurements in the nuclear research centre of the Paul Scherrer Institute (PSI) until the final calibration with the Amande instrument of the Institut de Radioprotection et de Surete Nucleaire (IRSN). (author)

  3. Study on the novel neutron-to-proton convertor for improving the detection efficiency of a triple GEM based fast neutron detector

    International Nuclear Information System (INIS)

    Wang Xiaodong; Yang Lei; Zhang Chunhui; Hu Bitao; Yang Herun; Zhang Junwei; Ren Zhongguo; Ha Ri-Ba-La; An Luxing

    2015-01-01

    A high-efficiency fast neutron detector prototype based on a triple Gas Electron Multiplier (GEM) detector, which, coupled with a novel multi-layered high-density polyethylene (HDPE) as a neutron-to-proton converter for improving the neutron detection efficiency, is introduced and tested with the Am-Be neutron source in the Institute of Modern Physics (IMP) at Lanzhou in the present work. First, the developed triple GEM detector is tested by measuring its effective gain and energy resolution with "5"5Fe X-ray source to ensure that it has a good performance. The effective gain and obtained energy resolution is 5.0 × 10"4 and around 19.2%, respectively. Secondly, the novel multi-layered HDPE converter is coupled with the cathode of the triple GEM detector making it a high-efficiency fast neutron detector. Its effective neutron response is four times higher than that of the traditional single-layered conversion technique when the converter layer number is 38. (authors)

  4. Detection probability of gyrfalcons and other cliff-nesting raptors during aerial surveys in Alaska

    Science.gov (United States)

    Booms, Travis L.; Fuller, Mark R.; Schempf, Philip F.; McCaffery, Brian J.; Lindberg, Mark S.; Watson, Richard T.; Cade, Tom J.; Fuller, Mark; Hunt, Grainger; Potapov, Eugene

    2011-01-01

    Assessing the status of Gyrfalcons (Falco rusticolus) and other cliffnesting raptors as the Arctic climate changes often requires aerial surveys of their breeding habitats. Because traditional, count-based surveys that do not adjust for differing detection probabilities can provide faulty inference about population status (Link and Sauer 1998, Thompson 2002), it will be important to incorporate measures of detection probability into survey methods whenever possible. To evaluate the feasibility of this, we conducted repeated aerial surveys for breeding cliff-nesting raptors on the Yukon Delta National Wildlife Refuge (YDNWR) in western Alaska to estimate detection probabilities of Gyrfalcons, Golden Eagles (Aquila chrysaetos), Rough-legged Hawks (Buteo lagopus), and also Common Ravens (Corvus corax). Using the program PRESENCE, we modeled detection histories of each species based on single species occupancy modeling following MacKenzie et al. (2002, 2006). We used different observers during four helicopter replicate surveys in the Kilbuck Mountains and five fixed-wing replicate surveys in the Ingakslugwat Hills (hereafter called Volcanoes) near Bethel, Alaska. We used the following terms and definitions throughout: Survey Site: site of a nest used previously by a raptor and marked with a GPS-obtained latitude and longitude accurate to within 20 m. All GPS locations were obtained in prior years from a helicopter hovering approximately 10?20 m from a nest. The site was considered occupied if a bird or an egg was detected within approximately 500 m of the nest and this area served as our sampling unit. When multiple historical nests were located on a single cliff, we used only one GPS location to locate the survey site. Detection probability (p): the probability of a species being detected at a site given the site is occupied. Occupancy (?): the probability that the species of interest is present at a site during the survey period. A site was considered occupied if the

  5. Novel semiconducting boron carbide/pyridine polymers for neutron detection at zero bias

    Energy Technology Data Exchange (ETDEWEB)

    Echeverria, Elena; Enders, A.; Dowben, P.A. [University of Nebraska-Lincoln, Department of Physics and Astronomy, Lincoln, NE (United States); James, Robinson; Chiluwal, Umesh; Gapfizi, Richard; Tae, Jae-Do; Driver, M. Sky; Kelber, Jeffry A. [University of North Texas, Department of Chemistry, Denton, TX (United States); Pasquale, Frank L. [University of North Texas, Department of Chemistry, Denton, TX (United States); Lam Research Corporation, PECVD Business Unit, Tualatin, OR (United States); Colon Santana, Juan A. [Center for Energy Sciences Research, Lincoln, NE (United States)

    2014-09-19

    Thin films containing aromatic pyridine moieties bonded to boron, in the partially dehydrogenated boron-rich icosahedra (B{sub 10}C{sub 2}H{sub X}), prove to be an effective material for neutron detection applications when deposited on n-doped (100) silicon substrates. The characteristic I-V curves for the heterojunction diodes exhibit strong rectification and largely unperturbed normalized reverse bias leakage currents with increasing pyridine content. The neutron capture generated pulses from these heterojunction diodes were obtained at zero bias voltage although without the signatures of complete electron-hole collection. These results suggest that modifications to boron carbide may result in better neutron voltaic materials. (orig.)

  6. Spectroscopic and neutron detection properties of rare earth and titanium doped LiAlO 2 single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Dickens, Peter T.; Marcial, José; McCloy, John; McDonald, Benjamin S.; Lynn, Kelvin G.

    2017-10-01

    In this study, LiAlO2 crystals doped with rare-earth elements and Ti were produced by the CZ method and spectroscopic and neutron detection properties were investigated. Photoluminescence revealed no clear luminescent activation of LiAlO2 by the rare-earth dopants though some interesting luminescence was observed from secondary phases within the crystal. Gamma-ray pulse height spectra collected using a 137Cs source exhibited only a Compton edge for the crystals. Neutron modeling using Monte Carlo N-Particle Transport Code revealed most neutrons used in the detection setup are thermalized, and while using natural lithium in the crystal growth, which contains 7.6 % 6Li, a 10 mm Ø by 10 mm sample of LiAlO2 has a 70.7 % intrinsic thermal neutron capture efficiency. Furthermore, the pulse height spectra collected using a 241Am-Be neutron source demonstrated a distinct neutron peak.

  7. Transparent lithiated polymer films for thermal neutron detection

    Energy Technology Data Exchange (ETDEWEB)

    Mabe, Andrew N., E-mail: andrew.n.mabe@gmail.com [Department of Chemistry, University of Tennessee, Knoxville, TN 37996 (United States); Auxier, John D. [Department of Chemistry, University of Tennessee, Knoxville, TN 37996 (United States); Urffer, Matthew J. [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Penumadu, Dayakar [Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Schweitzer, George K. [Department of Chemistry, University of Tennessee, Knoxville, TN 37996 (United States); Miller, Laurence F. [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States)

    2013-09-11

    Novel water-soluble {sup 6}Li loaded copolymer scintillation films have been designed and fabricated to detect thermal neutrons. Styrene and maleic anhydride were copolymerized to form an alternating copolymer, then the anhydride functionality was hydrolyzed using {sup 6}Li hydroxide. The resulting poly(styrene-co-lithium maleate) was mixed with salicylic acid as a fluor and cast as a thin film from water. The maximum {sup 6}Li loading obtained that resulted in a transparent film was 4.36% by mass ({sup 6}Li to polymer). The optimum fluorescence output was obtained for 11.7% salicylic acid by mass, presumably in the form of lithium salicylate, resulting in an optimum film containing 3.85% by mass of {sup 6}Li. A facile and robust synthesis method, film fabrication protocol, photoluminescence results, and scintillation responses are reported herein. -- Highlights: • A transparent polymer scintillator containing 3.85 wt% {sup 6}Li has been synthesized. • This class of polymeric thermal neutron scintillation detector is water-soluble. • Salicylic acid, presumably in the form of lithium salicylate, is used as a fluor. • The material emits 373 photons/α ({sup 241}Am) and an average of 139 photons/β ({sup 36}Cl). • The material emits 360 photons per thermal neutron capture event.

  8. Neutron detector

    Science.gov (United States)

    Stephan, Andrew C [Knoxville, TN; Jardret,; Vincent, D [Powell, TN

    2011-04-05

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  9. Aerial radiation surveys

    International Nuclear Information System (INIS)

    Jobst, J.

    1980-01-01

    A recent aerial radiation survey of the surroundings of the Vitro mill in Salt Lake City shows that uranium mill tailings have been removed to many locations outside their original boundary. To date, 52 remote sites have been discovered within a 100 square kilometer aerial survey perimeter surrounding the mill; 9 of these were discovered with the recent aerial survey map. Five additional sites, also discovered by aerial survey, contained uranium ore, milling equipment, or radioactive slag. Because of the success of this survey, plans are being made to extend the aerial survey program to other parts of the Salt Lake valley where diversions of Vitro tailings are also known to exist

  10. Unmanned Aerial Systems and Spectroscopy for Remote Sensing Applications in Archaeology

    Science.gov (United States)

    Themistocleous, K.; Agapiou, A.; Cuca, B.; Hadjimitsis, D. G.

    2015-04-01

    Remote sensing has open up new dimensions in archaeological research. Although there has been significant progress in increasing the resolution of space/aerial sensors and image processing, the detection of the crop (and soil marks) formations, which relate to buried archaeological remains, are difficult to detect since these marks may not be visible in the images if observed over different period or at different spatial/spectral resolution. In order to support the improvement of earth observation remote sensing technologies specifically targeting archaeological research, a better understanding of the crop/soil marks formation needs to be studied in detail. In this paper the contribution of both Unmanned Aerial Systems as well ground spectroradiometers is discussed in a variety of examples applied in the eastern Mediterranean region (Cyprus and Greece) as well in Central Europe (Hungary). In- situ spectroradiometric campaigns can be applied for the removal of atmospheric impact to simultaneous satellite overpass images. In addition, as shown in this paper, the systematic collection of ground truth data prior to the satellite/aerial acquisition can be used to detect the optimum temporal and spectral resolution for the detection of stress vegetation related to buried archaeological remains. Moreover, phenological studies of the crops from the area of interest can be simulated to the potential sensors based on their Relative Response Filters and therefore prepare better the satellite-aerial campaigns. Ground data and the use of Unmanned Aerial Systems (UAS) can provide an increased insight for studying the formation of crop and soil marks. New algorithms such as vegetation indices and linear orthogonal equations for the enhancement of crop marks can be developed based on the specific spectral characteristics of the area. As well, UAS can be used for remote sensing applications in order to document, survey and model cultural heritage and archaeological sites.

  11. Neutron flux monitor

    International Nuclear Information System (INIS)

    Oda, Naotaka.

    1993-01-01

    The device of the present invention greatly saves an analog processing section such as an analog filter and an analog processing circuit. That is, the device of the present invention comprises (1) a neutron flux detection means for detecting neutron fluxed in the reactor, (2) a digital filter means for dividing signals corresponding to the detected neutron fluxes into predetermined frequency band regions, (3) a calculation processing means for applying a calculation processing corresponding to the frequency band regions to the neutron flux detection signals divided by the digital filter means. With such a constitution, since the neutron detection signals are processed by the digital filter means, the accuracy is improved and the change for the property of the filter is facilitated. Further, when a neutron flux level is obtained, a calculation processing corresponding to the frequency band region can be conducted without the analog processing circuit. Accordingly, maintenance and accuracy are improved by greatly decreasing the number of parts. Further, since problems inherent to the analog circuit are solved, neutron fluxes are monitored at high reliability. (I.S.)

  12. Detection of trees damaged by pests in Abies religiosa forests in the Monarch Butterfly Biosphere Reserve using infrared aerial photography

    Directory of Open Access Journals (Sweden)

    Pablo Leautaud Valenzuela

    2017-03-01

    Full Text Available Forest pests are pathogens that cause mechanical or physiological damage to trees, such as deformations, disrupted growth, weakening, or even death, leading to important ecological, economic and social impacts. This study focused on the development of a technique for the detection of forest pests using infrared aerial photography. The general reflectance characteristics of healthy and damaged leaves are currently well known; Reid (1987 already described these features, with a shift toward blue and a reduced infrared reflectance as the dominant effects. As the plant disease progresses, the above effects become more apparent. The use of infrared digital aerial photographs allowed to obtain VIR (visible + infrared images with four bands and a resolution of approximately one meter per pixel. Trees with some degree of deterioration and even dead individuals were identified and located through visual interpretation. Color and infrared digital aerial photographs captured in March 2009 were used; two cameras were used: a Nikon D2X camera for the acquisition of images in the visible range (EV, and a Canon EOS Digital Rebel camera for infrared (IR images. Once individual photographs were processed and organized, V and IR images were superimposed using the Photoshop editing program (Adobe™ Once composite V+IR (VIR images were obtained, those covering the sampling area were selected and georeferenced. Rectified images were required to elaborate a mosaic encompassing the sampling area. The rectified images and the final mosaic had a spatial resolution of 90 centimeters per pixel. The detection technique was designed using three methodological approaches: automatic, semi-automatic and manual processes. The semi-automatic and automatic modalities correspond to an assisted and unassisted spectral classification, respectively, while the manual method consisted in the direct observation of the photographs processed. The technique developed used as basis the

  13. Neutron detection and multiplicity counting using a boron-loaded plastic scintillator/bismuth germanate phoswich detector array

    International Nuclear Information System (INIS)

    Miller, M.C.

    1998-03-01

    Neutron detection and multiplicity counting has been investigated using a boron-loaded plastic scintillator/bismuth germanate phoswich detector array. Boron-loaded plastic combines neutron moderation (H) and detection ( 10 B) at the molecular level, thereby physically coupling increasing detection efficiency and decreasing die-away time with detector volume. Both of these characteristics address a fundamental limitation of thermal-neutron multiplicity counters, where 3 He proportional counters are embedded in a polyethylene matrix. Separation of the phoswich response into its plastic scintillator and bismuth germanate components was accomplished on a pulse-by-pulse basis using custom integrator and timing circuits. In addition, a custom time-tag module was used to provide a time for each detector event. Analysis of the combined energy and time event stream was performed by calibrating each detector's response and filtering based on the presence of a simultaneous energy deposition corresponding to the 10 B(n,alpha) reaction products in the plastic scintillator (93 keV ee ) and the accompanying neutron-capture gamma ray in the bismuth germanate (478 keV). Time-correlation analysis was subsequently performed on the filtered event stream to obtain shift-register-type singles and doubles count rates. Proof-of-principle measurements were conducted with a variety of gamma-ray and neutron sources including 137 Cs, 54 Mn, AmLi, and 252 Cf. Results of this study indicate that a neutron-capture probability of ∼10% and a die-away time of ∼10 micros are possible with a 4-detector array with a detector volume of 1600 cm 3 . Simulations were performed that indicate neutron-capture probabilities on the order of 50% and die-away times of less than 4 micros are realistically achievable. While further study will be required for practical application of such a detection system, the results obtained in this investigation are encouraging and may lead to a new class of high

  14. Calculation of neutron detection efficiency for the thick lithium glass using Monte Carlo method

    International Nuclear Information System (INIS)

    Tang Guoyou; Bao Shanglian; Li Yulin; Zhong Wenguan

    1989-08-01

    The neutron detector efficiencies of a NE912 (45mm in diameter, 9.55 mm in thickness) and 2 pieces of ST601 (40mm in diameter, 3 and 10 mm in thickness respectively) lithium glasses have been calculated with a Monte Carlo computer code. The energy range in the calculation is 10 keV to 2.0 MeV. The effect of time delayed caused by neutron multiple scattering in the detectors (prompt neutron detection efficiency) has been considered

  15. Confirmation of identity and detection limit in neutron activation analysis

    International Nuclear Information System (INIS)

    Yustina Tri Handayani; Slamet Wiyuniati; Tulisna

    2010-01-01

    Neutron Activation Analysis (NAA) based on neutron capture by nuclides. Of the various possibilities of radionuclides that occur, radionuclides and gamma radiation which provides the identity of the element were analyzed and the best sensitivity should be determined. Confirmation for elements in sediment samples was done theoretically and experimentally. The result of confirmation shows that Al, V, Cr K, Na, Ca and Zn were analyzed based on radionuclides of Al-28, V-52, Cr-51 , K-42, Na-24, Ca-48, Zn-65. Elements of Mg, Mn, Fe, Co were analyzed based on radionuclides of Mg-27, Mn-56, Fe-59, Co-60 through peak which the highest value of combined probability of radiation emission and efficiency. Cu can be analyzed through Cu-64 or Cu-66, but the second is more sensitive. Detection limit is determined at a certain measurement conditions carried out by a laboratory. Detection limit in the NAA is determined based on the Compton continue area by Curie method. The detection limit of Al, V, Ca, Mg, Mn, As, K, Na, Mg, Ce, Co, Cr, Fe, La, Sc, and Zn in sediment samples are 240, 27, 4750, 2600, 21, 3.3 , 75, 1.4, 1.8, 0.5, 2.7, 29, 1, 0.05, and 37 ppm. Analysis of Cu in sediments which concentrations of 98.6 ppm, Cu-66 is not detected. Tests using pure standard solutions of Cu obtained detection limit of 0.12 µg, or 7.9 ppm in samples of 15 mg. In general, the detection limit obtained was higher than the detection limit of the reference, it was caused by the differences in the sample matrix and analytical conditions. (author)

  16. Development of the Very Low Angle Detector (VLAD) for detection of epithermal neutrons at low momentum transfers

    International Nuclear Information System (INIS)

    Tardocchi, M.; Andreani, C.; Cremonesi, O.; Gorini, G.; Perelli-Cippo, E.; Pietropaolo, A.; Rhodes, N.; Schooneveld, E.; Senesi, R.

    2006-01-01

    New perspectives for epithermal neutron spectroscopy are opened up by the recent development of new instrumentation for inverse geometry time of flight spectrometers at pulsed neutron sources. One example is the Very Low Angle Detector (VLAD) bank which will be installed as an upgrade of the VESUVIO neutron spectrometer, at the ISIS pulsed neutron source. VLAD is developed for detecting epithermal neutrons in the 1-100 eV energy range at very low scattering angles (l deg. - 5 deg.). VLAD will extend the kinematical region covered by today's neutron scattering experiments to the region of low wave vector transfers ( -1 ) and high energy transfers (>1 eV). Accessing such kinematical region will allow new experimental studies in condensed matter systems. The neutron detection is based on Resonance Detectors (RD), which consist of the combination of a resonance foil used as neutron-to-gamma converter and a photon detector. The results obtained with a prototype VLAD detector confirm the potential of this kind of experiments at scattering angles as low as 2 deg. - 5 deg. GEANT4 simulations are used to address issues, such as detector cross talk, which arise with the construction of compact RD arrays

  17. Detection mechanisms in silicon diodes used as α-particle and thermal neutron detectors

    International Nuclear Information System (INIS)

    Cerofolini, G.F.; Ferla, G.; Foglio Para, A.

    1981-01-01

    Some common silicon devices (diodes, RAMs etc.) can be used as α and thermal neutron detectors. An α resolution of approx. equal to 3% can be obtained utilizing p + /n or n + /p diodes with no external bias. Thermal neutrons are detected by means of the reaction 10 B(n,α) 7 Li on the 10 B present in the devices. Neutron efficiency has been substantially improved by implantation of 10 B ions in the p + region of the diodes. Experimental results allow us to clarify the carrier collection mechanisms throughout the device. Some current opinions in the field are contradicted. (orig.)

  18. A CNN-Based Method of Vehicle Detection from Aerial Images Using Hard Example Mining

    Directory of Open Access Journals (Sweden)

    Yohei Koga

    2018-01-01

    Full Text Available Recently, deep learning techniques have had a practical role in vehicle detection. While much effort has been spent on applying deep learning to vehicle detection, the effective use of training data has not been thoroughly studied, although it has great potential for improving training results, especially in cases where the training data are sparse. In this paper, we proposed using hard example mining (HEM in the training process of a convolutional neural network (CNN for vehicle detection in aerial images. We applied HEM to stochastic gradient descent (SGD to choose the most informative training data by calculating the loss values in each batch and employing the examples with the largest losses. We picked 100 out of both 500 and 1000 examples for training in one iteration, and we tested different ratios of positive to negative examples in the training data to evaluate how the balance of positive and negative examples would affect the performance. In any case, our method always outperformed the plain SGD. The experimental results for images from New York showed improved performance over a CNN trained in plain SGD where the F1 score of our method was 0.02 higher.

  19. Investigation of the neutron detection statistics in fast critical assembly BFS-24-1

    International Nuclear Information System (INIS)

    Avramov, A.M.; Tyutyunnikov, P.L.; Mikulski, A.T.; Rafalska, E.; Chwaszczewski, S.; Jablonski, K.

    1974-01-01

    The results of the neutron detection statistics investigation at the fast critical assembly BFS-24-1 are given. The Ross-α measurements were carried out using: digital flash-start unit and 256 channel time analyzer, 10 channel time analyzer, alphameter device. Parallely the measurements using the variable dead time method and zero probability method were performed. The prompt neutron decay constants, the effectiveness of neutron detector and the intensity of external neutron source are determined using the experimental data. The experimental values of prompt neutron decay constant are compared with the calculated ones. The codes used in the calculation are following: one dimensional, diffusion, 26-group code 26-M and EWA-1, one dimensional, multiregion, nonstationary diffusion 3-group code SPECTR, 26-group, diffusion code in buckling approximation, MIXSPECTR. In all codes the 26 group nuclear constants BNAB-26 and BNAB-70 are used. (author)

  20. A dual neutron/gamma source for the Fissmat Inspection for Nuclear Detection (FIND) system.

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, Barney Lee (Sandia National Laboratories, Albuquerque, NM); King, Michael; Rossi, Paolo (Sandia National Laboratories, Albuquerque, NM); McDaniel, Floyd Del (Sandia National Laboratories, Albuquerque, NM); Morse, Daniel Henry; Antolak, Arlyn J.; Provencio, Paula Polyak (Sandia National Laboratories, Albuquerque, NM); Raber, Thomas N.

    2008-12-01

    Shielded special nuclear material (SNM) is very difficult to detect and new technologies are needed to clear alarms and verify the presence of SNM. High-energy photons and neutrons can be used to actively interrogate for heavily shielded SNM, such as highly enriched uranium (HEU), since neutrons can penetrate gamma-ray shielding and gamma-rays can penetrate neutron shielding. Both source particles then induce unique detectable signals from fission. In this LDRD, we explored a new type of interrogation source that uses low-energy proton- or deuteron-induced nuclear reactions to generate high fluxes of mono-energetic gammas or neutrons. Accelerator-based experiments, computational studies, and prototype source tests were performed to obtain a better understanding of (1) the flux requirements, (2) fission-induced signals, background, and interferences, and (3) operational performance of the source. The results of this research led to the development and testing of an axial-type gamma tube source and the design/construction of a high power coaxial-type gamma generator based on the {sup 11}B(p,{gamma}){sup 12}C nuclear reaction.

  1. Detection of wood discoloration in a canker fungus-inoculated Japanese cedar by neutron radiography

    International Nuclear Information System (INIS)

    Yamada, T.; Aoki, Y.; Yamato, M.; Komatsu, M.; Kusumoto, D.; Suzuki, K.; Nakanishi, T.M.

    2005-01-01

    Neutron radiography (NRG) was applied to trace the development of discolored tissue in the wood of Japanese cedar (Cryptomeria japonica) after being infected with a canker fungus. Japanese cedar seedlings were wound inoculated with a virulent and avirulent isolate of a canker fungus, Guignardia cryptomeriae. Three, 7, 13 and 22 days after the inoculation, the seedlings were irradiated with thermal neutrons. The image on the X-ray film showed that the whiteness in the image corresponded to the water content in the sample. Discolored tissue and surrounding dry zones induced by the fungal inoculation were detected as dark areas, indicating water deficiency with a high resolution. Through image analysis, the dry zones were detected as early as 3 days after inoculation. Neutron images also showed the difference in the size of water deficient parts due to the tissue damage among the treatments. The neutron beam dose used in this experiment had no effect on the growth rate of the fungus on a medium, showing that NRG is an effective method for pathological research of trees. (author)

  2. Detection and identification of unexploded ordnance (UXO) by neutron interrogation

    International Nuclear Information System (INIS)

    Caffrey, A.J.; Hartwell, J.K.; Krebs, K.M.; McLaughlin, G.D.

    1998-01-01

    This document reviews the principle of operation and unexploded ordnance (UXO) signatures of the PINS Chemical Assay System, a prompt-gamma-ray neutron activation analysis (PGNAA) for the identification of recovered UXO. Two related low cost methods for buried landmine detection are also suggested. Nuclear methods may compliment existing search techniques to improve the overall probability of detection and to reduce the false positive rate of other technologies. In addition, nuclear methods are a proven method for identification of UXO such as landmines

  3. Fast neutron attenuation measurements for detection of illicit materials

    International Nuclear Information System (INIS)

    Lee, Hee Seock; Chung, Chin Wha; Guon, Ki Il; Lee, Bo Young; Ko, Seung Kook; Shin, Yong Mu

    2002-01-01

    Experiments were carried out to develop a novel method using neutron attenuation for the detection of illicit materials. By using pulsed fast neutrons generated from a Bi target bombarded with a 2 GeV electron beam, attenuation spectra of C, N, and O have been measured to study the feasibility of a practical application. The spectral dependence on the material thickness and the geometrical distribution as well as the ability to identify different elements in a layered environment have been studied. For the elements mentioned here, the total cross sections have been obtained from the measured attenuation spectra and compared with ENDF-VI, which showed good agreement. The study confirms that a conventional low energy electron linac can be put into a practical use, and some practical idea is presented

  4. Radiation portal monitor with {sup 10}B+ZnS(Ag) neutron detector performance for the detection of special nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    Guzman G, K. A.; Gallego, E.; Lorente, A.; Ibanez F, S. [Universidad Politecnica de Madrid, Departamento de Ingenieria Energetica, ETSI Industriales, C. Jose Gutierrez Abascal 2, 28006 Madrid (Spain); Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico); Gonzalez, J. A. [Universidad Politecnica de Madrid, Laboratorio de Ingenieria Nuclear, ETSI Caminos, Canales y Puertos, C. Prof. Aranguren 3, 28040 Madrid (Spain); Mendez, R., E-mail: ingkarenguzman@gmail.com [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Laboratorio de Patrones Neutronicos, Av. Complutense 40, 28040 Madrid (Spain)

    2016-10-15

    In homeland security, neutron detection is used to prevent the smuggling of special nuclear materials. Thermal neutrons are normally detected with {sup 3}He proportional counters, in the radiation portal monitors, Rpms, however due to the {sup 3}He shortage new procedures are being studied. In this work Monte Carlo methods, using the MCNP6 code, have been used to study the neutron detection features of a {sup 10}B+ZnS(Ag) under real conditions inside of a Rpm. The performance for neutron detection was carried out for {sup 252}Cf, {sup 238}U and {sup 239}Pu under different conditions. In order to mimic an actual situation occurring at border areas, a sample of SNM sited inside a vehicle was simulated and the Rpm with {sup 10}B+ZnS(Ag) response was calculated. At 200 cm the {sup 10}B+ZnS(Ag) on Rpm response is close to 2.5 cps-ng {sup 252}Cf, when the {sup 252}Cf neutron source is shielded with 0.5 cm-thick lead and 2.5 cm-thick polyethylene fulfilling the ANSI recommendations. Three different geometries of neutron detectors of {sup 10}B+ZnS(Ag) in a neutron detection system in Rpm were modeled. Therefore, the {sup 10}B+ZnS(Ag) detectors are an innovative and viable replacement for the {sup 3}He detectors in the Rpm. (Author)

  5. The Statistics of Emission and Detection of Neutrons and Photons from Fissile Samples for Safeguard Applications

    International Nuclear Information System (INIS)

    Enqvist, Andreas

    2008-03-01

    One particular purpose of nuclear safeguards, in addition to accounting for known materials, is the detection, identifying and quantifying unknown material, to prevent accidental and clandestine transports and uses of nuclear materials. This can be achieved in a non-destructive way through the various physical and statistical properties of particle emission and detection from such materials. This thesis addresses some fundamental aspects of nuclear materials and the way they can be detected and quantified by such methods. Factorial moments or multiplicities have long been used within the safeguard area. These are low order moments of the underlying number distributions of emission and detection. One objective of the present work was to determine the full probability distribution and its dependence on the sample mass and the detection process. Derivation and analysis of the full probability distribution and its dependence on the above factors constitutes the first part of the thesis. Another possibility of identifying unknown samples lies in the information in the 'fingerprints' (pulse shape distribution) left by a detected neutron or photon. A study of the statistical properties of the interaction of the incoming radiation (neutrons and photons) with the detectors constitutes the second part of the thesis. The interaction between fast neutrons and organic scintillation detectors is derived, and compared to Monte Carlo simulations. An experimental approach is also addressed in which cross correlation measurements were made using liquid scintillation detectors. First the dependence of the pulse height distribution on the energy and collision number of an incoming neutron was derived analytically and compared to numerical simulations. Then an algorithm was elaborated which can discriminate neutron pulses from photon pulses. The resulting cross correlation graphs are analyzed and discussed whether they can be used in applications to distinguish possible sample

  6. The Statistics of Emission and Detection of Neutrons and Photons from Fissile Samples for Safeguard Applications

    Energy Technology Data Exchange (ETDEWEB)

    Enqvist, Andreas

    2008-03-15

    One particular purpose of nuclear safeguards, in addition to accounting for known materials, is the detection, identifying and quantifying unknown material, to prevent accidental and clandestine transports and uses of nuclear materials. This can be achieved in a non-destructive way through the various physical and statistical properties of particle emission and detection from such materials. This thesis addresses some fundamental aspects of nuclear materials and the way they can be detected and quantified by such methods. Factorial moments or multiplicities have long been used within the safeguard area. These are low order moments of the underlying number distributions of emission and detection. One objective of the present work was to determine the full probability distribution and its dependence on the sample mass and the detection process. Derivation and analysis of the full probability distribution and its dependence on the above factors constitutes the first part of the thesis. Another possibility of identifying unknown samples lies in the information in the 'fingerprints' (pulse shape distribution) left by a detected neutron or photon. A study of the statistical properties of the interaction of the incoming radiation (neutrons and photons) with the detectors constitutes the second part of the thesis. The interaction between fast neutrons and organic scintillation detectors is derived, and compared to Monte Carlo simulations. An experimental approach is also addressed in which cross correlation measurements were made using liquid scintillation detectors. First the dependence of the pulse height distribution on the energy and collision number of an incoming neutron was derived analytically and compared to numerical simulations. Then an algorithm was elaborated which can discriminate neutron pulses from photon pulses. The resulting cross correlation graphs are analyzed and discussed whether they can be used in applications to distinguish possible

  7. Detection of Catchment-Scale Gully-Affected Areas Using Unmanned Aerial Vehicle (UAV on the Chinese Loess Plateau

    Directory of Open Access Journals (Sweden)

    Kai Liu

    2016-12-01

    Full Text Available The Chinese Loess Plateau suffers from serious gully erosion induced by natural and human causes. Gully-affected areas detection is the basic work in this region for gully erosion assessment and monitoring. For the first time, an unmanned aerial vehicle (UAV was applied to extract gully features in this region. Two typical catchments in Changwu and Ansai were selected to represent loess tableland and loess hilly regions, respectively. A high-powered quadrocopter (md4-1000 equipped with a non-metric camera was used for image acquisition. InPho and MapMatrix were applied for semi-automatic workflow including aerial triangulation and model generation. Based on the stereo-imaging and the ground control points, the highly detailed digital elevation models (DEMs and ortho-mosaics were generated. Subsequently, an object-based approach combined with the random forest classifier was designed to detect gully-affected areas. Two experiments were conducted to investigate the influences of segmentation strategy and feature selection. Results showed that vertical and horizontal root-mean-square errors were below 0.5 and 0.2 m, respectively, which were ideal for the Loess Plateau region. The overall extraction accuracy in Changwu and Ansai achieved was 84.62% and 86.46%, respectively, which indicated the potential of the proposed workflow for extracting gully features. This study demonstrated that UAV can bridge the gap between field measurement and satellite-based remote sensing, obtaining a balance in resolution and efficiency for catchment-scale gully erosion research.

  8. Field Prototype of the ENEA Neutron Active Interrogation Device for the Detection of Dirty Bombs

    Directory of Open Access Journals (Sweden)

    Nadia Cherubini

    2016-10-01

    Full Text Available The Italian National Agency for New Technologies, Energy, and Sustainable Economic Development (ENEA Neutron Active Interrogation (NAI device is a tool designed to improve CBRNE defense. It is designed to uncover radioactive and nuclear threats including those in the form of Improvised Explosive Devices (IEDs, the so-called “dirty bombs”. The NAI device, at its current development stage, allows to detect 6 g of 235U hidden in a package. It is easily transportable, light in weight, and with a real-time response. Its working principle is based on two stages: (1 an “active” stage in which neutrons are emitted by a neutron generator to interact with the item under inspection, and (2 a “passive” stage in which secondary neutrons are detected originating a signal that, once processed, allows recognition of the offence. In particular, a clear indication of the potential threat is obtained by a dedicated software based on the Differential Die-Away Time Analysis method.

  9. Theoretical determination of the neutron detection efficiency of plastic track detectors. Pt. 1

    International Nuclear Information System (INIS)

    Pretzsch, G.

    1982-01-01

    A theoretical model to determine the neutron detection efficiency of organic solid state nuclear track detectors without external radiator is described. The model involves the following calculation steps: production of heavy charged particles within the detector volume, characterization of the charged particles by appropriate physical quantities, application of suitable registration criteria, formation of etch pits. The etch pits formed are described by means of a distribution function which is doubly differential in both diameter and depth of the etch pits. The distribution function serves as the input value for the calculation of the detection efficiency. The detection efficiency is defined as the measured effect per neutron fluence. Hence it depends on the evaluation technique considered. The calculation of the distribution function is carried out for cellulose triacetate. The determination of the concrete detection efficiency using the light microscope and light transmission measurements as the evaluation technique will be described in further publications. (orig.)

  10. A study on measurement of neutrons generated in radiation therapy – Measurement of neurons in CR-39 detection method

    International Nuclear Information System (INIS)

    Park, Cheol-Soo; Cho, Jae-Hwan; Lee, Hae-Kag; Lee, Sun-Yeob; Jang, Hyon-Chol; Dong, Kyung-Rae; Chung, Woon-Kwan; Jin, Lee; Moon, Deog-Hwan; Lee, Kwang-Sung; Yang, Nam-Oh; Cho, Moo-Seong

    2013-01-01

    Highlights: ► To measure the neutrons generated in a linear accelerator. ► Both fast neutrons and thermal neutrons produced an increase in the dose of neutrons generated with increasing irradiation dose. ► The generation of neutrons increased when a wedge filter was used. ► When the SRS cone that required a high dose was used, more neutrons were detected. -- Abstract: The CR-39 [diethylene glycol bis-(allylcarbonate)] neuron detection method was used to measure the dose of neutrons generated in X-ray (photon) therapy conducted in a linear accelerator, and to use high-energy photons as part of the clinical applications to examine the problems associated with the dose for patients caused by the generation of neutrons from high-energy photons used for cancer therapy. According to the experimental results, 0.35 mSv, 0.65 mSv 1.82 mSv of fast neutrons on average were generated from 1 Gy, 2 Gy and 5 Gy of photon irradiation, respectively, whereas 0.26 mSv, 0.56 mSv and 1.23 mSv of thermal neutrons were generated. Both fast neutrons and thermal neutrons produced an increase in the dose of neutrons generated with increasing irradiation dose. With in regard to the dose generated within and around the irradiation area of the photon rays, it was confirmed that more neutrons were generated within the irradiation area. A wedge filer was used to measure the generation of neutrons. According to the measurement results, the generation of neutrons increased when a wedge filter was used. When the SRS cone that required a high dose was used, more neutrons were detected than those in the previous experiment. When fast neutrons were used, 2.85 mSv neutrons on average were generated from 5 Gy of photon irradiation. When thermal neutrons were used, 1.37 mSv neutrons on average were generated from 5 Gy of photon irradiation. Overall, approximately 1.6 times and 1.12 times more fast and thermal neutrons, respectively, were generated than in the case of a general treatment with 5 Gy

  11. Detection of special nuclear material from delayed neutron emission induced by a dual-particle monoenergetic source

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, M. [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Nattress, J.; Jovanovic, I., E-mail: ijov@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2016-06-27

    Detection of unique signatures of special nuclear materials is critical for their interdiction in a variety of nuclear security and nonproliferation scenarios. We report on the observation of delayed neutrons from fission of uranium induced in dual-particle active interrogation based on the {sup 11}B(d,n γ){sup 12}C nuclear reaction. Majority of the fissions are attributed to fast fission induced by the incident quasi-monoenergetic neutrons. A Li-doped glass–polymer composite scintillation neutron detector, which displays excellent neutron/γ discrimination at low energies, was used in the measurements, along with a recoil-based liquid scintillation detector. Time-dependent buildup and decay of delayed neutron emission from {sup 238}U were measured between the interrogating beam pulses and after the interrogating beam was turned off, respectively. Characteristic buildup and decay time profiles were compared to the common parametrization into six delayed neutron groups, finding a good agreement between the measurement and nuclear data. This method is promising for detecting fissile and fissionable materials in cargo scanning applications and can be readily integrated with transmission radiography using low-energy nuclear reaction sources.

  12. Detection of Special Nuclear Material in Cargo Containers Using Neutron Interrogation

    International Nuclear Information System (INIS)

    Slaughter, D.; Accatino, M.; Bernstein, A.; Candy, J.; Dougan, A.; Hall, J.; Loshak, A.; Manatt, D.; Meyer, A.; Pohl, B.; Prussin, S.; Walling, R.; Weirup, D.

    2003-01-01

    The goal of the work reported here is to develop a concept for an active neutron interrogation system that can detect small targets of SNM contraband in cargo containers, roughly 5 kg HEU or 1 kg Pu, even when well shielded by a thick cargo. It is essential that the concept be reliable and have low false-positive and false-negative error rates. It also must be rapid to avoid interruption of commerce, completing the analysis in minutes. A new radiation signature unique to SNM has been identified that utilizes high-energy (E γ = 3-7 MeV) fission product γ-ray emission. Fortunately, this high-energy γ-ray signature is robust in that it is very distinct compared to normal background radiation where there is no comparable high-energy γ-ray radiation. Equally important, it has a factor of 10 higher yield than delayed neutrons that are the basis of classical interrogation technique normally used on small unshielded specimens of SNM. And it readily penetrates two meters of low-Z and high-Z cargo at the expected density of ∼ 0.5 gm/cm 3 . Consequently, we expect that in most cases the signature flux at the container wall is at least 2-3 decades more intense than delayed neutron signals used historically and facilitates the detection of SNM even when shielded by thick cargo. Experiments have verified this signature and its predicted characteristics. However, they revealed an important interference due to the activation of 16 O by the 16 O(n,p) 16 N reaction that produces a 6 MeV γ-ray following a 7-sec β-decay of the 16 N. This interference is important when irradiating with 14 MeV neutrons but is eliminated when lower energy neutron sources are utilized since the reaction threshold for 16 O(n,p) 16 N is 10 MeV. The signature γ-ray fluxes exiting a thick cargo can be detected in large arrays of scintillation detectors to produce useful signal count rates of 2-4 x 10 4 cps. That is high enough to quickly identify SNM fission by its characteristic high energy

  13. 350 keV accelerator-based neutron transmission setup at KFUPM for hydrogen detection

    CERN Document Server

    Naqvi, A; Maslehuddin, M; Kidwai, S; Nassar, R

    2002-01-01

    An experimental setup has been developed to determine hydrogen contents of bulk samples using fast neutron transmission technique. Neutrons with 3 MeV energy were produced via D(d, n) reaction. The neutrons transmitted through the sample were detected by a NE213 scintillation detector. Preliminary tests of the setup were carried out using soil samples with different moisture contents. In addition to experimental study, Monte Carlo simulations were carried out to generate calibration curve of the experimental setup. Finally, experimental tests results were compared with the results of Monte Carlo simulations. A good agreement has been obtained between the simulation results and experimental results.

  14. Neutron Detection with a Cryogenic Spectrometer

    CERN Document Server

    Bell, Z W; Cristy, S S; Lamberti, V E

    2003-01-01

    Cryogenic calorimeters are used for x-ray detection because of their exquisite energy resolution and have found application in x-ray astronomy, and the search for dark matter. These devices operate by detecting the heat pulse produced by ionization in an absorber cooled to temperatures below 1 K. Such temperatures are needed to lower the absorber's heat capacity to the point that the deposition of even a few eV results in a measurable temperature excursion. Typical absorbers for dark matter measurements are massive Si or Ge crystals, and, with Ge, have achieved a resolution of 650 eV at 10 keV. Chow, et al., report the measurement of the 60 keV emission from sup 2 sup 4 sup 1 Am with 230 eV resolution using a superconducting tin absorber. Cunningham, et al., also using a superconducting tin absorber, have recently reported a four-fold improvement over Chow. With such results being reported from the x- and gamma-ray world it is natural to examine the possibilities for cryogenic neutron spectroscopy. Such a det...

  15. Experimental determination of the neutron detection efficiency for the testing of the results of a measurement of the magnetic neutron form factor at ELSA

    International Nuclear Information System (INIS)

    Maschke, P.

    2001-08-01

    A pion production experiment with almost real photons on 1 H has been carried out at the electron stretcher accelerator ELSA to determine the neutron detection efficiency of the large solid angle acceptance nonmagnetic ELAN Time-of-Flight spectrometer. The source of unknown discrepancy between the neutron magnetic form factor values measured at ELSA and MAMI could no longer be attributed to a wrong detection efficiency of the ELSA data. A GEANT Monte Carlo calculation has been adapted to determine the detection efficiency for the ToF spectrometer. The result of this simulation is η Geant =3.1%±0.2% in very good agreement with the experimental value of η Exp =3.2%±0.2%. (orig.)

  16. Medical applications of in vivo neutron inelastic scattering and neutron activation analysis: Technical similarities to detection of explosives and contraband

    International Nuclear Information System (INIS)

    Kehayias, J.J.

    2001-01-01

    Nutritional status of patients can be evaluated by monitoring changes in elemental body composition. Fast neutron activation (for N and P) and neutron inelastic scattering (for C and O) are used in vivo to assess elements characteristic of specific body compartments. There are similarities between the body composition techniques and the detection of hidden explosives and narcotics. All samples have to be examined in depth and the ratio of elements provides a 'signature' of the chemical of interest. The N/H and C/O ratios measure protein and fat content in the body. Similarly, a high C/O ratio is characteristic of narcotics and a low C/O together with a strong presence of N is a signature of some explosives. The available time for medical applications is about 20 min - compared to a few seconds for the detection of explosives - but the permitted radiation exposure is limited. In vivo neutron analysis is used to measure H, O, C, N, P, Na, Cl, and Ca for the study of the mechanisms of lean tissue depletion with aging and wasting diseases, and to investigate methods of preserving function and quality of life in the elderly

  17. Radiation portal monitor with "1"0B+ZnS(Ag) neutron detector performance for the detection of special nuclear materials

    International Nuclear Information System (INIS)

    Guzman G, K. A.; Gallego, E.; Lorente, A.; Ibanez F, S.; Vega C, H. R.; Gonzalez, J. A.; Mendez, R.

    2016-10-01

    In homeland security, neutron detection is used to prevent the smuggling of special nuclear materials. Thermal neutrons are normally detected with "3He proportional counters, in the radiation portal monitors, Rpms, however due to the "3He shortage new procedures are being studied. In this work Monte Carlo methods, using the MCNP6 code, have been used to study the neutron detection features of a "1"0B+ZnS(Ag) under real conditions inside of a Rpm. The performance for neutron detection was carried out for "2"5"2Cf, "2"3"8U and "2"3"9Pu under different conditions. In order to mimic an actual situation occurring at border areas, a sample of SNM sited inside a vehicle was simulated and the Rpm with "1"0B+ZnS(Ag) response was calculated. At 200 cm the "1"0B+ZnS(Ag) on Rpm response is close to 2.5 cps-ng "2"5"2Cf, when the "2"5"2Cf neutron source is shielded with 0.5 cm-thick lead and 2.5 cm-thick polyethylene fulfilling the ANSI recommendations. Three different geometries of neutron detectors of "1"0B+ZnS(Ag) in a neutron detection system in Rpm were modeled. Therefore, the "1"0B+ZnS(Ag) detectors are an innovative and viable replacement for the "3He detectors in the Rpm. (Author)

  18. Swelling behavior detection of irradiated U-10Zr alloy fuel using indirect neutron radiography

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yong; Huo, He-yong; Wu, Yang [Institute of Nuclear Physics and Chemistry, Chinese Academy of Engineering Physics, Mianyang (China); Key Laboratory of Neutron Physics, Chinese Academy of Engineering Physics, Mianyang (China); Li, Jiangbo [Institute of Nuclear Physics and Chemistry, Chinese Academy of Engineering Physics, Mianyang (China); Zhou, Wei; Guo, Hai-bing [Institute of Nuclear Physics and Chemistry, Chinese Academy of Engineering Physics, Mianyang (China); Key Laboratory of Neutron Physics, Chinese Academy of Engineering Physics, Mianyang (China); Li, Hang, E-mail: lihang32@gmail.com [Institute of Nuclear Physics and Chemistry, Chinese Academy of Engineering Physics, Mianyang (China); Key Laboratory of Neutron Physics, Chinese Academy of Engineering Physics, Mianyang (China); Cao, Chao; Yin, Wei; Wang, Sheng; Liu, Bin; Feng, Qi-jie; Tang, Bin [Institute of Nuclear Physics and Chemistry, Chinese Academy of Engineering Physics, Mianyang (China); Key Laboratory of Neutron Physics, Chinese Academy of Engineering Physics, Mianyang (China)

    2016-11-21

    It is hopeful that fusion-fission hybrid energy system will become an effective approach to achieve long-term sustainable development of fission energy. U-10Zr alloy (which means the mass ratio of Zr is 10%) fuel is the key material of subcritical blanket for fusion-fission hybrid energy system which the irradiation performance need to be considered. Indirect neutron radiography is used to detect the irradiated U-10Zr alloy because of the high residual dose in this paper. Different burnup samples (0.1%, 0.3%, 0.5% and 0.7%) have been tested with a special indirect neutron radiography device at CMRR (China Mianyang Research Reactor). The resolution of the device is better than 50 µm and the quantitative analysis of swelling behaviors was carried out. The results show that the swelling behaviors relate well to burnup character which can be detected accurately by indirect neutron radiography.

  19. Random Access Memories: A New Paradigm for Target Detection in High Resolution Aerial Remote Sensing Images.

    Science.gov (United States)

    Zou, Zhengxia; Shi, Zhenwei

    2018-03-01

    We propose a new paradigm for target detection in high resolution aerial remote sensing images under small target priors. Previous remote sensing target detection methods frame the detection as learning of detection model + inference of class-label and bounding-box coordinates. Instead, we formulate it from a Bayesian view that at inference stage, the detection model is adaptively updated to maximize its posterior that is determined by both training and observation. We call this paradigm "random access memories (RAM)." In this paradigm, "Memories" can be interpreted as any model distribution learned from training data and "random access" means accessing memories and randomly adjusting the model at detection phase to obtain better adaptivity to any unseen distribution of test data. By leveraging some latest detection techniques e.g., deep Convolutional Neural Networks and multi-scale anchors, experimental results on a public remote sensing target detection data set show our method outperforms several other state of the art methods. We also introduce a new data set "LEarning, VIsion and Remote sensing laboratory (LEVIR)", which is one order of magnitude larger than other data sets of this field. LEVIR consists of a large set of Google Earth images, with over 22 k images and 10 k independently labeled targets. RAM gives noticeable upgrade of accuracy (an mean average precision improvement of 1% ~ 4%) of our baseline detectors with acceptable computational overhead.

  20. Electronic neutron sensor based on coincidence detection

    International Nuclear Information System (INIS)

    Barelaud, B.; Decossas, J.L.; Mokhtari, F.; Vareille, J.C.

    1996-01-01

    The last symposium on neutron dosimetry which took place in Paris in November 1995 have shown again that it doesn't exist any individual active neutron dosemeter. The state of art on electronic device, the needs of the nuclear power industry in individual neutron monitoring and the new trends of The last symposium on neutron dosimetry which took place in Paris in November 1995 have shown again that it doesn't exist any individual active neutron dosemeter. The state of art on electronic device, the needs of the nuclear power industry in individual neutron monitoring and the new trends of researches were presented. They confirm the relevance of our studies in progress in the C2M team of the University of Limoges. The aim of this work is to realize an individual electronic neutron dosemeter. The device in the progress of being development will operate either as a dosemeter or as ratemeter giving H p (10) and H p (10) either as a spectrometer permitting to characterize the primary neutron beam. (author)

  1. Characteristics of Fabricated SiC Neutron Detectors for Neutron Flux Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Han Soo; Ha, Jang Ho; Park, Se Hwan; Lee, Kyu Hong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Cheol Ho [Hanyang University, Seoul (Korea, Republic of)

    2011-05-15

    An SPND (Self-powered Neutron Detector) is commonly used for neutron detection in NPP (Nuclear Power Plant) by virtue of un-reactivity for gamma-rays. But it has a drawback, which is that it cannot detect neutrons in real time due to beta emissions (about > 48 s) after reactions between neutrons and {sup 103}Rh in an SPND. And Generation IV reactors such as MSR (Molten-salt reactor), SFR (Sodium-cooled fast reactor), and GFR (Gas-cooled fast reactor) are designed to compact size and integration type. For GEN IV reactor, neutron monitor also must be compact-sized to apply such reactor easily and much more reliable. The wide band-gap semiconductors such as SiC, AlN, and diamond make them an attractive alternative in applications in harsh environments by virtue of the lower operating voltage, faster charge-collection times compared with gas-filled detectors, and compact size.1) In this study, two PIN-type SiC semiconductor neutron detectors, which are for fast neutron detection by elastic and inelastic scattering SiC atoms and for thermal neutron detection by charged particle emissions of 6LiF reaction, were designed and fabricated for NPP-related applications. Preliminary tests such as I-V and alpha response were performed and neutron responses at ENF in HANARO research reactor were also addressed. The application feasibility of the fabricated SiC neutron detector as an in-core neutron monitor was discussed

  2. Neutron Detection at JET Using Artificial Diamond Detectors

    International Nuclear Information System (INIS)

    Pillon, M.; Angelone, M.; Lattanzi, D.; Milani, E.; Tucciarone, A.; Verona-Rinati, G.; Popovichev, S.; Murari, A.

    2006-01-01

    Three CVD diamond detectors are installed and operated at Joint European Torus, Culham laboratory. Diamond detectors are very promising detectors to be used in fusion environment due to their radiation hardness, gamma discrimination properties, fast response and spectroscopy properties. The aim of this work is to test and qualify artificial diamond detectors as neutron counters and spectrometers on a large fusion device. Two of these detectors are polycrystalline CVD diamond films of thickness 30 mm and 40 mm respectively while the third detector is a monocrystalline CVD of 110 mm thickness. The first polycrystalline diamond is covered with 4 mm of LiF 95 % enriched in 6 Li and enclosed inside a polyethylene moderator cap. This detector is used with a standard electronic chain made with a charge preamplifier, shaping amplifier and threshold discriminator. It is used to measure the time-dependent total neutron yield produced by JET plasma and its signal is compared with JET fission chambers. The second polycrystalline diamond is connected with a fast (1 GHz) preamplifier and a threshold discriminator via a long (about 100 m) double screened cable. This detector is used to detect the 14 MeV neutrons produced by triton burn-up using the reaction 12 C (n, α) 9 Be which occurs in diamond and a proper discriminator threshold. The response of this detector is fast and the electronic is far from the high radiation environment. Its signal is used in comparison with JET silicon diodes. The third monocrystalline diamond is also connected using a standard electronic and is used to demonstrate the feasibility of 14 MeV neutron spectrometry at about 3% peak resolution taking advantage of the spectrometer properties of monocrystalline diamonds. The results obtained are presented in this work. (author)

  3. Multi-Unmanned Aerial Vehicle (UAV) Cooperative Fault Detection Employing Differential Global Positioning (DGPS), Inertial and Vision Sensors.

    Science.gov (United States)

    Heredia, Guillermo; Caballero, Fernando; Maza, Iván; Merino, Luis; Viguria, Antidio; Ollero, Aníbal

    2009-01-01

    This paper presents a method to increase the reliability of Unmanned Aerial Vehicle (UAV) sensor Fault Detection and Identification (FDI) in a multi-UAV context. Differential Global Positioning System (DGPS) and inertial sensors are used for sensor FDI in each UAV. The method uses additional position estimations that augment individual UAV FDI system. These additional estimations are obtained using images from the same planar scene taken from two different UAVs. Since accuracy and noise level of the estimation depends on several factors, dynamic replanning of the multi-UAV team can be used to obtain a better estimation in case of faults caused by slow growing errors of absolute position estimation that cannot be detected by using local FDI in the UAVs. Experimental results with data from two real UAVs are also presented.

  4. Neutron interrogation system using high gamma ray signature to detect contraband special nuclear materials in cargo

    Science.gov (United States)

    Slaughter, Dennis R [Oakland, CA; Pohl, Bertram A [Berkeley, CA; Dougan, Arden D [San Ramon, CA; Bernstein, Adam [Palo Alto, CA; Prussin, Stanley G [Kensington, CA; Norman, Eric B [Oakland, CA

    2008-04-15

    A system for inspecting cargo for the presence of special nuclear material. The cargo is irradiated with neutrons. The neutrons produce fission products in the special nuclear material which generate gamma rays. The gamma rays are detecting indicating the presence of the special nuclear material.

  5. Using aerial infrared thermography to detect utility theft of service

    Science.gov (United States)

    Stockton, Gregory R.; Lucas, R. Gillem

    2012-06-01

    Natural gas and electric utility companies, public utility commissions, consumer advocacy groups, city governments, state governments and the federal government United States continue to turn a blind eye towards utility energy theft of service which we conservatively estimate is in excess of 10 billion a year. Why? Many in the United States have exhausted their unemployment benefits. The amounts for federal funding for low income heating assistance programs (LIHEAP) funds were cut by nearly 40% for 2012 to 3.02 billion. "At peak funding ($5.1 billion in 2009), the program was national in scale but still only had enough resources to support roughly 1/4 of the eligible households.i" Contributions to charities are down and the number of families below the poverty line who are unable to pay to heat their houses continues to rise. Many of the less fortunate in our society now consider theft and fraud to be an attractive option for their supply of natural gas and/or electricity. A record high mild winter in 2011-2012 coupled with 10-year low natural gas prices temporarily obscured the need for low income heating assistance programs (LIHEAPs) from the news and federal budgets, but cold winters will return. The proliferation of smart meters and automated meter infrastructures across our nation can do little to detect energy theft because the thieves can simply by-pass the meters, jumper around the meters and/or steal meters from abandoned houses and use them. Many utility systems were never set-up to stop these types of theft. Even with low-cost per identified thief method using aerial infrared thermography, utilities continue to ignore theft detection.

  6. Elemental analysis technique based on detecting gamma-rays from interactions of neutrons with medium

    International Nuclear Information System (INIS)

    Pospisil, S.; Janout, Z.; Vobecky, M.

    1979-01-01

    The methods are discussed of carbon content determination in large amounts of material by detecting 4438 keV gamma radiation accompanying inelastic scattering of neutrons from a radionuclide neutron source. Presented are the methodological analysis of the problem, the results of test measurements, and methodological recommendations for the practical application of the method. Test measurements were conducted on fly ash, limestone and brown coal in amounts of approximately 5 kg for each material sample, using an Am-Be neutron source. The determined sensitivity thresholds corresponded to the carbon concentration of 5 to 10% w.w. (S.P.)

  7. Quantitative detection of microscopic lithium distributions with neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Neri, Giulia; Gernhaeuser, Roman; Lichtinger, Josef; Winkler, Sonja; Seiler, Dominik; Bendel, Michael [Technische Universitaet Muenchen, Physik-Department (Germany); Kunze-Liebhaeuser, Julia; Brumbarov, Jassen; Portenkirchner, Engelbert [Institut fuer Physikalische Chemie, Leopold-Franzens-Universitaet Innsbruck (Austria); Renno, Axel; Rugel, Georg [Helmholtz Zentrum Dresden Rossendorf, Helmholtz-Institut Freiberg fuer Ressourcentechnologie (Germany)

    2016-07-01

    The importance of lithium in the modern industrial society is continuously increasing. Spatially resolved detection of tritium particles from {sup 6}Li(n,α){sup 3}H nuclear reactions is used to reconstruct microscopic lithium distributions. Samples are exposed to a flux of cold neutrons. Emitted charged particles are detected with a PSD. Introducing a pinhole aperture between target and detector, the experimental setup works like a ''camera obscura'', allowing to perform spatially resolved measurements. Tritium detection analysis was successfully used to reconstruct the lithium content in self-organized TiO{sub 2-x}-C and Si/TiO{sub 2-x}-C nanotubes electrochemically lithiated, for the first time. Titanium dioxide nanotubes are a candidate for a safe anode material in lithium-ion batteries. Also lithium distributions in geological samples, so called ''pathfinder-minerals'' containing lithium, like lepidolite from a pegmatite, were analyzed. With this development we present a new precision method using nuclear physics for material science.

  8. Neutron recognition in the LAND detector for large neutron multiplicity

    Energy Technology Data Exchange (ETDEWEB)

    Pawlowski, P., E-mail: piotr.pawlowski@ifj.edu.pl [Institute of Nuclear Physics, PAN, Radzikowskiego 152, 31-342 Krakow (Poland); Brzychczyk, J. [Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Krakow (Poland); Leifels, Y.; Trautmann, W. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Adrich, P. [National Centre for Nuclear Research, PL-00681 Warsaw (Poland); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Aumann, T. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Bacri, C.O. [Institut de Physique Nucleaire, IN2P3-CNRS et Universite, F-91406 Orsay (France); Barczyk, T. [Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Krakow (Poland); Bassini, R. [Istituto di Scienze Fisiche, Universita degli Studi and INFN, I-20133 Milano (Italy); Bianchin, S. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Boiano, C. [Istituto di Scienze Fisiche, Universita degli Studi and INFN, I-20133 Milano (Italy); Boretzky, K. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Boudard, A. [IRFU/SPhN, CEA/Saclay, F-91191 Gif-sur-Yvette (France); Chbihi, A. [GANIL, CEA et IN2P3-CNRS, F-14076 Caen (France); Cibor, J.; Czech, B. [Institute of Nuclear Physics, PAN, Radzikowskiego 152, 31-342 Krakow (Poland); De Napoli, M. [Dipartimento di Fisica e Astronomia-Universita and INFN-CT and LNS, I-95123 Catania (Italy); and others

    2012-12-01

    The performance of the LAND neutron detector is studied. Using an event-mixing technique based on one-neutron data obtained in the S107 experiment at the GSI laboratory, we test the efficiency of various analytic tools used to determine the multiplicity and kinematic properties of detected neutrons. A new algorithm developed recently for recognizing neutron showers from spectator decays in the ALADIN experiment S254 is described in detail. Its performance is assessed in comparison with other methods. The properties of the observed neutron events are used to estimate the detection efficiency of LAND in this experiment.

  9. Detection of 10B distributions in histological samples by NCAR using thermal and cold neutrons and photoluminiscent imaging plates. New results

    International Nuclear Information System (INIS)

    Rant, J.; Skvarc, J.; Ilic, R.; Gabel, D.; Bayon, G.; Yanagie, H.; Kobayashi, H.; Lehmann, E.; Kuehne, G.

    1999-01-01

    The Neutron Capture Autoradiography (NCAR) using various Solid State Nuclear Track Detectors (SSNTDs) is a well established and accurate method to detect and measure the distributions of 10 B in the ppm range on macroscopic and microscopic level in biological samples, such as histological sections of tumours loaded with 10 B compounds used for BNCT (e.g. 1,2). recently a new technique of NCAR using sensitive photoluminescent Imaging Plates (IP) has been proposed to detect 10 B distributions in histological sections (3), exploiting excellent detection properties of IP systems such as very high detection sensitivity and quantum detection efficiency, broad linear response and dynamic range, very small image distortion, reusability of IP and possibilities of digital autoradiography. The advantage of IP-NCAR vs. NCAR with SSNTDs should be the much lower neutron fluence (10 7 10 9 vs. 10 10 10 13 n/cm 2 with SSNTDs), no intermediate chemical treatment (track etching) and direct and fast compuitational handling and evaluation of the digitized autoradiographic image. However, the spatial resolution of the present available IP detection systems is somewhat lower (∼ 0,04 mm) than with SSNTDs (∼ 0,01 mm). Another problem with IP NCAR is rather high sensitivity of IP to all types of ionizing radiations. Therefore the background of direct and induced gamma-rays as well as of epithermal and fast neutrons has to be filtered out of thermal neutron beam to be used for IP-NCAR. To improve the signal/background ratio and to increase the detectibility of 10 B we propose to use clean cold neutron beams for the IP-NCAR of 10 B distributions in histological samples in BNCT experiments (4,5). In the present work the recent results of experiments in IP-NCAR with cold neutrons from the neutron radiographic channel of the ORPHEE reactor in Saclay and with the rather clean thermal neutron beam of the NEUTRA neutron radiography facility of the PSI (Villingen) will be presented. For the

  10. Moving object detection in top-view aerial videos improved by image stacking

    Science.gov (United States)

    Teutsch, Michael; Krüger, Wolfgang; Beyerer, Jürgen

    2017-08-01

    Image stacking is a well-known method that is used to improve the quality of images in video data. A set of consecutive images is aligned by applying image registration and warping. In the resulting image stack, each pixel has redundant information about its intensity value. This redundant information can be used to suppress image noise, resharpen blurry images, or even enhance the spatial image resolution as done in super-resolution. Small moving objects in the videos usually get blurred or distorted by image stacking and thus need to be handled explicitly. We use image stacking in an innovative way: image registration is applied to small moving objects only, and image warping blurs the stationary background that surrounds the moving objects. Our video data are coming from a small fixed-wing unmanned aerial vehicle (UAV) that acquires top-view gray-value images of urban scenes. Moving objects are mainly cars but also other vehicles such as motorcycles. The resulting images, after applying our proposed image stacking approach, are used to improve baseline algorithms for vehicle detection and segmentation. We improve precision and recall by up to 0.011, which corresponds to a reduction of the number of false positive and false negative detections by more than 3 per second. Furthermore, we show how our proposed image stacking approach can be implemented efficiently.

  11. Status of aerial survey emergency preparedness and ground support equipment, calibration, and sensitivities

    International Nuclear Information System (INIS)

    Dahlstrom, T.S.

    1986-01-01

    During the course of EG and G Energy Measurements, Inc. history in aerial surveillance, the scope of response has broadened from routine surveys and accident response with aerial systems, to being prepared to respond to any radiological incident with aerial, ground mobile, and hand-held instrumentation. The aerial survey system presently consists of four MBB BO-105 helicopters outfitted with gamma pods and specialized navigation systems (MRS or URS) that allow the operator and pilot to fly well-defined survey lines. Minimum detectable activities (MDA) for various isotopes range from a few tenths of a mCi to 100 mCI for point sources and from 1 to 200 pCi/g for volume sources

  12. Training courses on neutron detection systems on the ISIS research reactor: on-site and through internet training

    Energy Technology Data Exchange (ETDEWEB)

    Lescop, B.; Badeau, G.; Ivanovic, S.; Foulon, F. [National Institute for Nuclear science and Technology French Atomic Energy and Alternative Energies Commission (CEA), Saclay Research Center, 91191 Gif-sur-Yvette (France)

    2015-07-01

    Today, ISIS research reactor is an essential tool for Education and Training programs organized by the National Institute for Nuclear Science and Technology (INSTN) from CEA. In the field of nuclear instrumentation, the INSTN offers both, theoretical courses and training courses on the use of neutron detection systems taking advantage of the ISIS research reactor for the supply of a wide range of neutron fluxes. This paper describes the content of the training carried out on the use of neutron detectors and detection systems, on-site or remote. The ISIS reactor is a 700 kW open core pool type reactor. The facility is very flexible since neutron detectors can be inserted into the core or its vicinity, and be used at different levels of power according to the needs of the course. Neutron fluxes, typically ranging from 1 to 10{sup 12} n/cm{sup 2}.s, can be obtained for the characterisation of the neutron detectors and detection systems. For the monitoring of the neutron density at low level of power, the Instrumentation and Control (I and C) system of the reactor is equipped with two detection systems, named BN1 and BN2. Each way contains a fission chamber, type CFUL01, connected to an electronic system type SIREX.The system works in pulse mode and exhibits two outputs: the counting rate and the doubling time. For the high level of power, the I and C is equipped with two detection systems HN1 and HN2.Each way contain a boron ionization chamber (type CC52) connected to an electronics system type SIREX. The system works in current mode and has two outputs: the current and the doubling time. For each mode, the trainees can observe and measure the signal at the different stages of the electronic system, with an oscilloscope. They can understand the role of each component of the detection system: detector, cable and each electronic block. The limitation of the detection modes and their operating range can be established from the measured signal. The trainees can also

  13. Training courses on neutron detection systems on the ISIS research reactor: on-site and through internet training

    International Nuclear Information System (INIS)

    Lescop, B.; Badeau, G.; Ivanovic, S.; Foulon, F.

    2015-01-01

    Today, ISIS research reactor is an essential tool for Education and Training programs organized by the National Institute for Nuclear Science and Technology (INSTN) from CEA. In the field of nuclear instrumentation, the INSTN offers both, theoretical courses and training courses on the use of neutron detection systems taking advantage of the ISIS research reactor for the supply of a wide range of neutron fluxes. This paper describes the content of the training carried out on the use of neutron detectors and detection systems, on-site or remote. The ISIS reactor is a 700 kW open core pool type reactor. The facility is very flexible since neutron detectors can be inserted into the core or its vicinity, and be used at different levels of power according to the needs of the course. Neutron fluxes, typically ranging from 1 to 10 12 n/cm 2 .s, can be obtained for the characterisation of the neutron detectors and detection systems. For the monitoring of the neutron density at low level of power, the Instrumentation and Control (I and C) system of the reactor is equipped with two detection systems, named BN1 and BN2. Each way contains a fission chamber, type CFUL01, connected to an electronic system type SIREX.The system works in pulse mode and exhibits two outputs: the counting rate and the doubling time. For the high level of power, the I and C is equipped with two detection systems HN1 and HN2.Each way contain a boron ionization chamber (type CC52) connected to an electronics system type SIREX. The system works in current mode and has two outputs: the current and the doubling time. For each mode, the trainees can observe and measure the signal at the different stages of the electronic system, with an oscilloscope. They can understand the role of each component of the detection system: detector, cable and each electronic block. The limitation of the detection modes and their operating range can be established from the measured signal. The trainees can also modify the

  14. An aerial radiological survey of the project Rio Blanco and surrounding area

    International Nuclear Information System (INIS)

    Singman, L.V.

    1994-11-01

    A team from the Remote Sensing Laboratory in Las Vegas, Nevada, conducted an aerial radiation survey of the area surrounding ground zero of Project Rio Blanco in the northwestern section of Colorado in June 1993. The object of the survey was to determine if there were man-made radioisotopes on or near the surface resulting from a nuclear explosion in 1972. No indications of surface contamination were found. A search for the cesium-137 radioisotope was negative. The Minimum Detectable Activity for cesium-137 is presented for several detection probabilities. The natural terrestrial exposure rates in units of Roentgens per hour were mapped and are presented in the form of a contour map over-laid on an aerial photograph. A second team made independent ground-based measurements in four places within the survey area. The average agreement of the ground-based with aerial measurements was six percent

  15. Transmission and signal loss in mask designs for a dual neutron and gamma imager applied to mobile standoff detection

    International Nuclear Information System (INIS)

    Ayaz-Maierhafer, Birsen; Hayward, Jason P.; Ziock, Klaus P.; Blackston, Matthew A.; Fabris, Lorenzo

    2013-01-01

    In order to design a next-generation, dual neutron and gamma imager for mobile standoff detection which uses coded aperture imaging as its primary detection modality, the following design parameters have been investigated for gamma and neutron radiation incident upon a hybrid, coded mask: (1) transmission through mask elements for various mask materials and thicknesses; and (2) signal attenuation in the mask versus angle of incidence. Each of these parameters directly affects detection significance, as quantified by the signal-to-noise ratio. The hybrid mask consists of two or three layers: organic material for fast neutron attenuation and scattering, Cd for slow neutron absorption (if applied), and one of three of the following photon or photon and slow neutron attenuating materials—Linotype alloy, CLYC, or CZT. In the MCNP model, a line source of gamma rays (100–2500 keV), fast neutrons (1000–10,000 keV) or thermal neutrons was positioned above the hybrid mask. The radiation penetrating the mask was simply tallied at the surface of an ideal detector, which was located below the surface of the last mask layer. The transmission was calculated as the ratio of the particles transmitted through the fixed aperture to the particles passing through the closed mask. In order to determine the performance of the mask considering relative motion between the source and detector, simulations were used to calculate the signal attenuation for incident radiation angles of 0–50°. The results showed that a hybrid mask can be designed to sufficiently reduce both transmission through the mask and signal loss at large angles of incidence, considering both gamma ray and fast neutron radiations. With properly selected material thicknesses, the signal loss of a hybrid mask, which is necessarily thicker than the mask required for either single mode imaging, is not a setback to the system's detection significance

  16. Study on development and actual application of scientific crime detection technique using small scale neutron radiation source

    International Nuclear Information System (INIS)

    Suzuki, Yasuhiro; Kishi, Toru; Tachikawa, Noboru; Ishikawa, Isamu.

    1997-01-01

    PGA (Prompt γ-ray Analysis) is an analytic method of γ-ray generated from atomic nuclei of elements in the specimen just after irradiation (within 10(exp-14)sec.) of neutron to it. As using neutron with excellent transmission for an exciting source, this method can be used for inspecting the matters in closed containers non-destructively, and can also detect non-destructively light elements such as boron, nitrogen and others difficult by other non-destructive analysis. Especially, it is found that this method can detect such high concentration of nitrogen, chlorine and others which are characteristic elements for the explosives. However, as there are a number of limitations at the nuclear reactor site, development of an analytical apparatus for small scale neutron radiation source was begun, at first. In this fiscal year, analysis of the light elements such as nitrogen, chlorine and others using PGA was attempted by using 252-Cf as the simplest neutron source in its operation. As the 252-Cf neutron flux was considerably lower than that of nuclear reactor, its analytical sensitivity was also investigated. (G.K.)

  17. Nitrogen Detection in Bulk Samples Using a D-D Reaction-Based Portable Neutron Generator

    Directory of Open Access Journals (Sweden)

    A. A. Naqvi

    2013-01-01

    Full Text Available Nitrogen concentration was measured via 2.52 MeV nitrogen gamma ray from melamine, caffeine, urea, and disperse orange bulk samples using a newly designed D-D portable neutron generator-based prompt gamma ray setup. Inspite of low flux of thermal neutrons produced by D-D reaction-based portable neutron generator and interference of 2.52 MeV gamma rays from nitrogen in bulk samples with 2.50 MeV gamma ray from bismuth in BGO detector material, an excellent agreement between the experimental and calculated yields of nitrogen gamma rays indicates satisfactory performance of the setup for detection of nitrogen in bulk samples.

  18. Detection of drugs and explosives using neutron computerized tomography and artificial intelligence techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, F.J.O. [Instituto de Engenharia Nuclear, Cidade Universitaria, Rio de Janeiro, CEP 21945-970, Caixa Postal 68550 (Brazil)], E-mail: fferreira@ien.gov.br; Crispim, V.R.; Silva, A.X. [DNC/Poli, PEN COPPE CT, UFRJ Universidade Federal do Rio de Janeiro, CEP 21941-972, Caixa Postal 68509, Rio de Janeiro (Brazil)

    2010-06-15

    In this study the development of a methodology to detect illicit drugs and plastic explosives is described with the objective of being applied in the realm of public security. For this end, non-destructive assay with neutrons was used and the technique applied was the real time neutron radiography together with computerized tomography. The system is endowed with automatic responses based upon the application of an artificial intelligence technique. In previous tests using real samples, the system proved capable of identifying 97% of the inspected materials.

  19. Detection of drugs and explosives using neutron computerized tomography and artificial intelligence techniques

    International Nuclear Information System (INIS)

    Ferreira, F.J.O.; Crispim, V.R.; Silva, A.X.

    2010-01-01

    In this study the development of a methodology to detect illicit drugs and plastic explosives is described with the objective of being applied in the realm of public security. For this end, non-destructive assay with neutrons was used and the technique applied was the real time neutron radiography together with computerized tomography. The system is endowed with automatic responses based upon the application of an artificial intelligence technique. In previous tests using real samples, the system proved capable of identifying 97% of the inspected materials.

  20. Observation of Neutron Skyshine from an Accelerator Based Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Franklyn, C. B. [Radiation Science Department, Necsa, PO Box 582, Pretoria 0001 (South Africa)

    2011-12-13

    A key feature of neutron based interrogation systems is the need for adequate provision of shielding around the facility. Accelerator facilities adapted for fast neutron generation are not necessarily suitably equipped to ensure complete containment of the vast quantity of neutrons generated, typically >10{sup 11} n{center_dot}s{sup -1}. Simulating the neutron leakage from a facility is not a simple exercise since the energy and directional distribution can only be approximated. Although adequate horizontal, planar shielding provision is made for a neutron generator facility, it is sometimes the case that vertical shielding is minimized, due to structural and economic constraints. It is further justified by assuming the atmosphere above a facility functions as an adequate radiation shield. It has become apparent that multiple neutron scattering within the atmosphere can result in a measurable dose of neutrons reaching ground level some distance from a facility, an effect commonly known as skyshine. This paper describes a neutron detection system developed to monitor neutrons detected several hundred metres from a neutron source due to the effect of skyshine.

  1. Aerial infrared monitoring for nuclear fuel cycle facilities in Ukraine

    International Nuclear Information System (INIS)

    Stankevich, S.A.; Dudar, T.V.; Kovalenko, G.D.; Kartashov, V.V.

    2015-01-01

    The scientific research overall objective is rapid express detection and preliminary identification of pre-accidental conditions at nuclear fuel cycle facilities. We consider development of a miniature unmanned aerial vehicle equipped with high-precision infrared spectroradiometer able to detect remotely internal warming up of hazardous facilities by its thermal infrared radiation. The possibility of remote monitoring using unmanned aerial vehicle is considered at the example of the dry spent fuel storage facility of the Zaporizhzhya Nuclear Power Plant. Infrared remote monitoring is supposed to present additional information on the monitored facilities based on different physical principles rather than those currently in use. Models and specifications towards up-to-date samples of infrared surveying equipment and its small-sized unmanned vehicles are presented in the paper.

  2. Training courses on the use of neutron detection systems carried out on the ISIS research reactor

    International Nuclear Information System (INIS)

    Lescop, Bernard; Foulon, Francois

    2013-06-01

    Training courses on the use of the neutron detection systems for the control of the nuclear reactors are carried out by the National Institute for Nuclear Science using the ISIS research reactor. The study and the comprehension of the operation of these systems are facilitated by the use a research reactor in order to observe the electronic signals in real conditions. Thus, ISIS reactor offers a wide range of neutron fluxes and the level of power can be easily set to any value from zero to nominal power (700 kW). Different kinds of detectors (counters, ionization chambers), which operate in the different modes of detection (pulse, current and Campbelling) can be placed in the periphery of the core for the courses. The electronic signal can be analyzed at each step of the detection process. One goal of the courses is to understand the role of each component of the detection system: detector, cable and each electronic module. A comparison with the nuclear instrumentation used by the instrumentation and control of ISIS reactor is also made. This comparison is very useful to understand the role of the neutron instrumentation in terms of safety, availability, reliability and maintainability. (authors)

  3. Note: Coincidence measurements of 3He and neutrons from a compact D-D neutron generator

    Science.gov (United States)

    Ji, Q.; Lin, C.-J.; Tindall, C.; Garcia-Sciveres, M.; Schenkel, T.; Ludewigt, B. A.

    2017-05-01

    Tagging of neutrons (2.45 MeV) with their associated 3He particles from deuterium-deuterium (D-D) fusion reactions has been demonstrated in a compact neutron generator setup enabled by a high brightness, microwave-driven ion source with a high fraction of deuterons. Energy spectra with well separated peaks of the D-D fusion reaction products, 3He, tritons, and protons, were measured with a silicon PIN diode. The neutrons were detected using a liquid scintillator detector with pulse shape discrimination. By correlating the 3He detection events with the neutron detection in time, we demonstrated the tagging of emitted neutrons with 3He particles detected with a Si PIN diode detector mounted inside the neutron generator vacuum vessel.

  4. Fundamental of neutron radiography and the present of neutron radiography in Japan

    International Nuclear Information System (INIS)

    Sekita, Junichiro

    1988-01-01

    Neutron radiography refers to the application of transmitted neutrons to analysis. In general, thermal neutron is used for neutron radiography. Thermal neutron is easily absorbed by light atoms, including hydrogen, boron and lithium, while it is not easily absorbed by such heavy atoms as tungsten, lead and uranium, permitting detection of impurities in heavy metals. Other neutrons than thermal neutron can also be applied. Cold neutron is produced from fast neutron using a moderator to reduce its energy down to below that of thermal neutron. Cold neutron is usefull for analysis of thick material. Epithermal neutron can induce resonance characteristic of each substance. With a relatively small reaction area, fast neutron permits observation of thick samples. Being electrically neutral, neutrons are difficult to detect by direct means. Thus a substance that releases charged particles is put in the path of neutrons for indirect measurement. X-ray film combined with converter screen for conversion of neutrons to charge particles is placed behind the sample. Photographing is carried out by a procedure similar to X-ray photography. Major institues and laboratories in Japan provided with neutron radiography facilities are listed. (Nogami, K.)

  5. Neutron detection in an atomic reactor core using semi-conductors; Detection des neutrons par semi-conducteur dans un coeur de reacteur atomique

    Energy Technology Data Exchange (ETDEWEB)

    Divoux, F [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1968-07-01

    In this paper, the first part describes the principle of nuclear particle detection by means of semiconductor diodes and the general application of these. The second part describes fabrication of the device used to estimate thermic neutron fluxes in core of a swimming pool type reactor. The useful volume (2.9 mm thickness) is in the light water moderator, between combustible elements plates. The results, principally obtained in the core of Siloette reactor at the 'Centre d'Etudes Nucleaires de Grenoble' at low power, are mentioned in the third part. Flux maps have been set and comparison between converter's products: Bore 10, Lithium 6, Uranium 235 is made. (author) [French] Dans ce rapport, une premiere partie porte sur la description du principe de detection des particules nucleaires par diodes a semi-conducteur et sur l'application generale de celles-ci. Une deuxieme partie s'attache a decrire la fabrication du materiel utilise pour evaluer les flux de neutrons thermiques dans un coeur de reacteur type pile piscine. L'espace de mesure (2,9 mm d'epaisseur) se situe entre les plaques des elements combustibles, dans le moderateur eau legere. Les resultats, obtenus principalement dans le coeur du reacteur Siloette du Centre d'Etudes Nucleaires de Grenoble aux basses puissances de fonctionnement, sont rapportes dans la troisieme partie. Des cartes de flux ont ete dressees et une comparaison est faite entre les produits 'convertisseurs' suivants: Bore 10, Lithium 6, Uranium 235. (auteur)

  6. Is timing noise important in the gravitational wave detection of neutron stars?

    International Nuclear Information System (INIS)

    Jones, D.I.

    2004-01-01

    In this paper we ask whether the phenomenon of timing noise long known in electromagnetic pulsar astronomy is likely to be important in gravitational wave (GW) observations of spinning-down neutron stars. We find that timing noise is strong enough to be of importance only in the young pulsars, which must have larger triaxialities than theory predicts for their GW emission to be detectable. However, assuming that their GW emission is detectable, we list the pulsars for which timing noise is important, either because it is strong enough that its neglect by the observer would render the source undetectable or else because it is a measurable feature of the GW signal. We also find that timing noise places a limit on the observation duration of a coherent blind GW search, and suggest that hierarchical search techniques might be able to cope with this problem. Demonstration of the presence or absence of timing noise in the GW channel would give a new probe of neutron star physics

  7. A fast large-area position-sensitive time-of-flight neutron detection system

    International Nuclear Information System (INIS)

    Crawford, R.K.; Haumann, J.R.

    1989-01-01

    A new position-sensitive time-of-flight neutron detection and histograming system has been developed for use at the Intense Pulsed Neutron Source. Spatial resolution of roughly 1 cm x 1 cm and time-of-flight resolution of ∼1 μsec are combined in a detection system which can ultimately be expanded to cover several square meters of active detector area. This system is based on the use of arrays of cylindrical one-dimensional position-sensitive proportional counters, and is capable of collecting the x-y-t data and sorting them into histograms at time-averaged data rates up to ∼300,000 events/sec over the full detector area and with instantaneous data rates up to more than fifty times that. Numerous hardware features have been incorporated to facilitate initial tuning of the position encoding, absolute calibration of the encoded positions, and automatic testing for drifts. 7 refs., 11 figs., 1 tabs

  8. An aerial radiological survey of the Ames Laboratory and surrounding area, Ames, Iowa

    International Nuclear Information System (INIS)

    Maurer, R.J.

    1993-04-01

    An aerial radiological survey of the Ames Laboratory and surrounding area in Ames, Iowa, was conducted during the period July 15--25, 1991. The purpose of the survey was to measure and document the terrestrial radiological environment at the Ames Laboratory and the surrounding area for use in effective environmental management and emergency response planning. The aerial survey was flown at an altitude of 200 feet (61 meters) along a series of parallel lines 350 feet (107 meters) apart. The survey encompassed an area of 36 square miles (93 square kilometers) and included the city of Ames, Iowa, and the Iowa State University. The results are reported as exposure rates at 1 meter above ground level (inferred from the aerial data) in the form of a gamma radiation contour map. Typical background exposure rates were found to vary from 7 to 9 microroentgens per hour (μR/h). No anomalous radiation levels were detected at the Ames Laboratory. However, one anomalous radiation source was detected at an industrial storage yard in the city of Ames. In support of the aerial survey, ground-based exposure rate and soil sample measurements were obtained at several sites within the survey perimeter. The results of the aerial and ground-based measurements were found to agree within the expected uncertainty of ±15%

  9. Six years of aerial and ground monitoring surveys for sudden oak death in California

    Science.gov (United States)

    Lisa Bell; Jeff Mai; Zachary Heath; Erik Haunreiter; Lisa M. Fischer

    2008-01-01

    Aerial surveys have been conducted since 2001 to map recent hardwood mortality and consequently target ground visits for detection of Phytophthora ramorum, the pathogen that causes sudden oak death (SOD). Each year the aerial and ground surveys monitored much of California?s forests at risk for SOD resulting in new maps of hardwood mortality,...

  10. The experimental method for neutron dose-equivalent detection

    International Nuclear Information System (INIS)

    Ji Changsong

    1992-01-01

    A new method, for getting neutron dose-equivalent Cd rode absorption method is described. The method adopts Cd-rode-swarm buck absorption, which greatly improved the neutron sensitivity and simplified the adjustment method. By this method, the author has developed BH3105 model neutron dose equivalent meter, the sensitivity of this instrument reach 10 cps/μSvh -1 . γ-ray depression rate reaches 4000:1, the measurement range is 0.1 μSv/h-10 6 μSv/h. The energy response is good (from thermal neutron-14 MeV neutron), this instrument can be used to measure the dose equivalent of the neutron areas

  11. Anomalies from aerial spectrometric and total count radiometric surveys in the southeastern United States

    International Nuclear Information System (INIS)

    Lee, C.H.; Lawton, D.E.

    1978-01-01

    Aerial radiometric reconnaissance surveys are conducted because of their cost, time, and manpower savings compared to surface studies. Two types of aerial surveys are being flown in the southeastern United States: total count gamma-ray surveys for the Coastal Plains Regional Commission and the US Geological Survey, and differential gamma-ray spectrometric surveys for the US Department of Energy. Anomalous radioactivity detected during aerial surveys is related to higher concentrations of naturally occurring uranium, or to cultural activities, natural causes, or mapping errors which simulate real uranium anomalies. Each anomaly should be ground checked; however, several types of anomalies may be eliminated by evaluation of the aerial data in the office if field time is limited

  12. Fast neutron detection at near-core location of a research reactor with a SiC detector

    Science.gov (United States)

    Wang, Lei; Jarrell, Josh; Xue, Sha; Tan, Chuting; Blue, Thomas; Cao, Lei R.

    2018-04-01

    The measurable charged-particle produced from the fast neutron interactions with the Si and C nucleuses can make a wide bandgap silicon carbide (SiC) sensor intrinsically sensitive to neutrons. The 4H-SiC Schottky detectors have been fabricated and tested at up to 500 °C, presenting only a slightly degraded energy resolution. The response spectrum of the SiC detectors were also obtained by exposing the detectors to external neutron beam irradiation and at a near-core location where gamma-ray field is intense. The fast neutron flux of these two locations are ∼ 4 . 8 × 104cm-2 ṡs-1 and ∼ 2 . 2 × 107cm-2 ṡs-1, respectively. At the external beam location, a Si detector was irradiated side-by-side with SiC detector to disjoin the neutron response from Si atoms. The contribution of gamma ray, neutron scattering, and charged-particles producing reactions in the SiC was discussed. The fast neutron detection efficiencies were determined to be 6 . 43 × 10-4 for the external fast neutron beam irradiation and 6 . 13 × 10-6 for the near-core fast neutron irradiation.

  13. Persistent Aerial Tracking

    KAUST Repository

    Mueller, Matthias

    2016-01-01

    persistent, robust and autonomous object tracking system for unmanned aerial vehicles (UAVs) called Persistent Aerial Tracking (PAT). A computer vision and control strategy is applied to a diverse set of moving objects (e.g. humans, animals, cars, boats, etc

  14. Neutron multiplicity measurements with 3He alternative: Straw neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, Sanjoy [Arnold Avenue Andrews AFB, Joint Base Andrews, MD (United States); Wolff, Ronald [Arnold Avenue Andrews AFB, Joint Base Andrews, MD (United States); Detwiler, Ryan [Arnold Avenue Andrews AFB, Joint Base Andrews, MD (United States); Maurer, Richard [Arnold Avenue Andrews AFB, Joint Base Andrews, MD (United States); Mitchell, Stephen [National Security Technologies, LLC, Las Vegas, NV (United States); Guss, Paul [Remote Sensing Lab. - Nellis, Las Vegas, NV (United States); Lacy, Jeffrey L. [Proportional Technologies, Inc., Houston, TX (United States); Sun, Liang [Proportional Technologies, Inc., Houston, TX (United States); Athanasiades, Athanasios [Proportional Technologies, Inc., Houston, TX (United States)

    2015-01-27

    Counting neutrons emitted by special nuclear material (SNM) and differentiating them from the background neutrons of various origins is the most effective passive means of detecting SNM. Unfortunately, neutron detection, counting, and partitioning in a maritime environment are complex due to the presence of high-multiplicity spallation neutrons (commonly known as ‘‘ship effect ’’) and to the complicated nature of the neutron scattering in that environment. A prototype neutron detector was built using 10B as the converter in a special form factor called ‘‘straws’’ that would address the above problems by looking into the details of multiplicity distributions of neutrons originating from a fissioning source. This paper describes the straw neutron multiplicity counter (NMC) and assesses the performance with those of a commercially available fission meter. The prototype straw neutron detector provides a large-area, efficient, lightweight, more granular (than fission meter) neutron-responsive detection surface (to facilitate imaging) to enhance the ease of application of fission meters. Presented here are the results of preliminary investigations, modeling, and engineering considerations leading to the construction of this prototype. This design is capable of multiplicity and Feynman variance measurements. This prototype may lead to a near-term solution to the crisis that has arisen from the global scarcity of 3He by offering a viable alternative to fission meters. This paper describes the work performed during a 2-year site-directed research and development (SDRD) project that incorporated straw detectors for neutron multiplicity counting. The NMC is a two-panel detector system. We used 10B (in the form of enriched boron carbide: 10B4C) for neutron detection instead of 3He. In the first year, the project worked with a panel of straw neutron detectors, investigated its characteristics, and

  15. Detection of explosives and other illicit materials by a single nanosecond neutron pulses - Monte-Carlo simulations of the detection process

    International Nuclear Information System (INIS)

    Miklaszewski, R.; Drozdowicz, K.; Wiacek, U.; Dworak, D.; Gribkov, V.

    2011-01-01

    Recent progress in the development of a single-pulse Nanosecond Impulse Neutron Investigation System (NINIS) intended for interrogation of hidden objects (explosives and other illicit materials) by means of measuring elastically scattered neutrons is presented in this paper. The method is based on the well know fact that nuclide-specific information is present in the scattered neutron field. The method uses very bright neutron pulses having duration of the order of few nanoseconds, generated by a dense plasma focus (DPF) devices filled with a pure deuterium or deuterium-tritium mixture as a working gas. Very short duration of the neutron pulse, its high brightness and mono-chromaticity allow to use the time-of-flight method with bases of about few meters to distinguish signals from neutrons scattered by different elements. Results of the Monte Carlo simulations of the scattered neutron field from several compounds (explosives and everyday use materials) are presented in the paper. The MCNP5 code has been used to get information on the angular and energy distributions of the neutrons scattered by the above mentioned compounds assuming the initial neutron energy equal to 2.45 MeV (D-D). A new input has been elaborated that allows the modelling of not only a spectrum of the neutrons scattered at different angles but also their time history from the moment of generation up to detection. Such an approach allows getting approximate signals as registered by scintillator + photomultiplier probes placed at various distances from the scattering object, demonstrating a principal capability of the method to identify an elemental content of the inspected objects. Preliminary results of the MCNP modelling of the interrogation process of the airport luggage containing several illicit objects are presented as well. (authors)

  16. CONSTRAINING THE R-MODE SATURATION AMPLITUDE FROM A HYPOTHETICAL DETECTION OF R-MODE GRAVITATIONAL WAVES FROM A NEWBORN NEUTRON STAR: SENSITIVITY STUDY

    International Nuclear Information System (INIS)

    Mytidis, Antonis; Whiting, Bernard; Coughlin, Michael

    2015-01-01

    This paper consists of two related parts: in the first part we derive an expression of the moment of inertia (MOI) of a neutron star as a function of observables from a hypothetical r-mode gravitational-wave detection. For a given r-mode detection we show how the value of the MOI of a neutron star constrains the equation of state (EOS) of the matter in the core of the neutron star. Subsequently, for each candidate EOS, we derive a possible value of the saturation amplitude, α, of the r-mode oscillations on the neutron star. Additionally, we argue that an r-mode detection will provide clues about the cooling rate mechanism of the neutron star. The above physics that can be derived from a hypothetical r-mode detection constitutes our motivation for the second part of the paper. In that part we present a detection strategy to efficiently search for r-modes in gravitational-wave data. R-mode signals were injected into simulated noise colored with the advanced LIGO (aLIGO) and Einstein Telescope (ET) sensitivity curves. The r-mode waveforms used are those predicted by early theories based on polytropic EOS neutron star matter. In our best case scenario (α of order 10 −1 ), the maximum detection distance when using the aLIGO sensitivity curve is ∼1 Mpc (supernova event rate of 3–4 per century) while the maximum detection distance when using the ET sensitivity curve is ∼10 Mpc (supernova event rate of 1–2 per year)

  17. A Preliminary Study on Detecting Fake Gold Bars Using Prompt Gamma Activation Analysis: Simulation of Neutron Transmission in Gold Bar

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. M.; Sun, G. M. [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The purpose of this study is to develop fake gold bar detecting method by using Prompt-gamma activation analysis (PGAA) facility at the Korea Atomic Energy Research Institute (KAERI). PGAA is an established nuclear analytical technique for non-destructive determination of elemental and isotopic compositions. For a preliminary study on detecting fake gold bar, Monte Carlo simulation of neutron transmission in gold bar was conducted and the possibility for detecting fake gold bar was confirmed. Under the gold bullion standard, it guaranteed the government would redeem any amount of currency for its value in gold. After the gold bullion standard ended, gold bars have been the target for investment as ever. But it is well known that fake gold bar exist in the gold market. This cannot be identified easily without performing a testing as it has the same appearance as the pure gold bar. In order to avoid the trading of fake gold bar in the market, they should be monitored thoroughly. Although the transmissivity of cold neutrons are low comparing that of thermal neutrons, the slower neutrons are more apt to be absorbed in a target, and can increase the prompt gamma emission rate. Also the flux of both thermal and cold neutron beam is high enough to activate thick target. If the neutron beam is irradiated on the front and the reverse side of gold bar, all insides of it can be detected.

  18. A Preliminary Study on Detecting Fake Gold Bars Using Prompt Gamma Activation Analysis: Simulation of Neutron Transmission in Gold Bar

    International Nuclear Information System (INIS)

    Lee, K. M.; Sun, G. M.

    2016-01-01

    The purpose of this study is to develop fake gold bar detecting method by using Prompt-gamma activation analysis (PGAA) facility at the Korea Atomic Energy Research Institute (KAERI). PGAA is an established nuclear analytical technique for non-destructive determination of elemental and isotopic compositions. For a preliminary study on detecting fake gold bar, Monte Carlo simulation of neutron transmission in gold bar was conducted and the possibility for detecting fake gold bar was confirmed. Under the gold bullion standard, it guaranteed the government would redeem any amount of currency for its value in gold. After the gold bullion standard ended, gold bars have been the target for investment as ever. But it is well known that fake gold bar exist in the gold market. This cannot be identified easily without performing a testing as it has the same appearance as the pure gold bar. In order to avoid the trading of fake gold bar in the market, they should be monitored thoroughly. Although the transmissivity of cold neutrons are low comparing that of thermal neutrons, the slower neutrons are more apt to be absorbed in a target, and can increase the prompt gamma emission rate. Also the flux of both thermal and cold neutron beam is high enough to activate thick target. If the neutron beam is irradiated on the front and the reverse side of gold bar, all insides of it can be detected

  19. Neutron techniques

    International Nuclear Information System (INIS)

    Charlton, J.S.

    1986-01-01

    The way in which neutrons interact with matter such as slowing-down, diffusion, neutron absorption and moderation are described. The use of neutron techniques in industry, in moisture gages, level and interface measurements, the detection of blockages, boron analysis in ore feedstock and industrial radiography are discussed. (author)

  20. Measurement of neutron detection efficiency between 22 and 174 MeV using two different kinds of Pb-scintillating fiber sampling calorimeters

    Energy Technology Data Exchange (ETDEWEB)

    Anelli, M.; Bertolucci, S. [Laboratori Nazionali di Frascati, INFN (Italy); Bini, C. [Dipartimento di Fisica dell' Universita ' La Sapienza' , Roma (Italy); INFN Sezione di Roma, Roma (Italy); Branchini, P. [INFN Sezione di Roma Tre, Roma (Italy); Corradi, G.; Curceanu, C. [Laboratori Nazionali di Frascati, INFN (Italy); De Zorzi, G.; Di Domenico, A. [Dipartimento di Fisica dell' Universita ' La Sapienza' , Roma (Italy); INFN Sezione di Roma, Roma (Italy); Di Micco, B. [Dipartimento di Fisica dell' Universita ' Roma Tre' , Roma (Italy); INFN Sezione di Roma Tre, Roma (Italy); Ferrari, A. [Fondazione CNAO, Milano (Italy); Fiore, S.; Gauzzi, P. [Dipartimento di Fisica dell' Universita ' La Sapienza' , Roma (Italy); INFN Sezione di Roma, Roma (Italy); Giovannella, S.; Happacher, F. [Laboratori Nazionali di Frascati, INFN (Italy); Iliescu, M. [Laboratori Nazionali di Frascati, INFN (Italy); IFIN-HH, Bucharest (Romania); Luca, A.; Martini, M. [Laboratori Nazionali di Frascati, INFN (Italy); Miscetti, S., E-mail: stefano.miscetti@lnf.infn.i [Laboratori Nazionali di Frascati, INFN (Italy); Nguyen, F. [Dipartimento di Fisica dell' Universita ' Roma Tre' , Roma (Italy); INFN Sezione di Roma Tre, Roma (Italy); Passeri, A. [INFN Sezione di Roma Tre, Roma (Italy)

    2010-05-21

    We exposed a prototype of the lead-scintillating fiber KLOE calorimeter to neutron beam of 21, 46 and 174 MeV at The Svedberg Laboratory, Uppsala, to study its neutron detection efficiency. This has been found larger than what expected considering the scintillator thickness of the prototype. We show preliminary measurement carried out with a different prototype with a larger lead/fiber ratio, which proves the relevance of passive material to neutron detection efficiency in this kind of calorimeters.

  1. Neutron measuring device

    International Nuclear Information System (INIS)

    Hatayama, Akiyoshi; Seki, Eiji; Kita, Yoshio; Nishitani, Takeo.

    1993-01-01

    The device of the present invention concerns measurement for neutrons in a tokamak type thermonuclear device and it can measure total amount of generated neutrons accurately throughout the operation period even if an error is caused in counted values by plasma disruption. That is, the device comprises (1) a means for detecting presence or absence of occurrence of plasma disruption and the time for the initiation of the occurrence, (2) a first data processing means for processing detection signals, (3) a means for detecting neutrons generated in plasmas and (4) a second data processing means for calculating integrated values for the number of neutrons generated from the start to the completion of electric discharge when no disruption occurs and calculating integrated values for the number of generated neutrons from the start of electric discharge to the time at the initiation of occurrence of the disruption when disruption is present. In the thus constituted device, even if an error is caused by frequent occurrence of plasma disruption, total time integrated amount of neutrons generated in the plasmas can be measured accurately. (I.S.)

  2. Automated recognition of forest patterns using aerial photographs

    Science.gov (United States)

    Barbezat, Vincent; Kreiss, Philippe; Sulzmann, Armin; Jacot, Jacques

    1996-12-01

    In Switzerland, aerial photos are indispensable tools for research into ecosystems and their management. Every six years since 1950, the whole of Switzerland has been systematically surveyed by aerial photos. In the forestry field, these documents not only provide invaluable information but also give support to field activities such as the drawing up of tree population maps, intervention planning, precise positioning of the upper forest limit, evaluation of forest damage and rates of tree growth. Up to now, the analysis of aerial photos has been carried out by specialists who painstakingly examine every photograph, which makes it a very long, exacting and expensive job. The IMT-DMT of the EPFL and Antenne romande of FNP, aware of the special interest involved and the necessity of automated classification of aerial photos, have pooled their resources to develop a software program capable of differentiating between single trees, copses and dense forests. The developed algorithms detect the crowns of the trees and the surface of the orthogonal projection. Form the shadow of each tree they calculate its height. They also determine the position of the tree in the Swiss national coordinate thanks to the implementation of a numeric altitude model. For the future, we have the prospect of many new and better uses of aerial photos being available to us, particularly where isolated stands are concerned and also when evolutions based on a diachronic series of photos have to be assessed: from timberline monitoring in the research on global change to the exploitation of wooded pastures on small surface areas.

  3. Random pulsing of neutron source for inelastic neutron scattering gamma ray spectroscopy

    International Nuclear Information System (INIS)

    Hertzog, R.C.

    1981-01-01

    Method and apparatus are described for use in the detection of inelastic neutron scattering gamma ray spectroscopy. Data acquisition efficiency is enhanced by operating a neutron generator such that a resulting output burst of fast neutrons is maintained for as long as practicably possible until a gamma ray is detected. Upon the detection of a gamma ray the generator burst output is terminated. Pulsing of the generator may be accomplished either by controlling the burst period relative to the burst interval to achieve a constant duty cycle for the operation of the generator or by maintaining the burst period constant and controlling the burst interval such that the resulting mean burst interval corresponds to a burst time interval which reduces contributions to the detected radiation of radiation occasioned by other than the fast neutrons

  4. Device for characterization of fissile materials comprising at least a neutron detector embedded inside a scintillator for gamma radiation detection

    International Nuclear Information System (INIS)

    Bernard, P.; Dherbey, J.R.; Bosser, R.; Berne, R.

    1989-01-01

    Fissile materials, for instance in radioactive wastes, are characterized by measurement of prompt and delayed neutrons and gamma radiation from induced fission by a neutron source. Gamma radiation is detected with a scintillation detector associated to a photomultiplier, the scintillation material is at the same time a moderator for thermalization of fast neutrons emitted by the neutron source and also of neutrons from spontaneous fission, (α, n) reactions and neutrons from induced fission in the fissile material. Preferentially the moderator is made of Altustipe (Plexiglas with anthracene as additive) [fr

  5. Comparison of methods for the detection of gravitational waves from unknown neutron stars

    Science.gov (United States)

    Walsh, S.; Pitkin, M.; Oliver, M.; D'Antonio, S.; Dergachev, V.; Królak, A.; Astone, P.; Bejger, M.; Di Giovanni, M.; Dorosh, O.; Frasca, S.; Leaci, P.; Mastrogiovanni, S.; Miller, A.; Palomba, C.; Papa, M. A.; Piccinni, O. J.; Riles, K.; Sauter, O.; Sintes, A. M.

    2016-12-01

    Rapidly rotating neutron stars are promising sources of continuous gravitational wave radiation for the LIGO and Virgo interferometers. The majority of neutron stars in our galaxy have not been identified with electromagnetic observations. All-sky searches for isolated neutron stars offer the potential to detect gravitational waves from these unidentified sources. The parameter space of these blind all-sky searches, which also cover a large range of frequencies and frequency derivatives, presents a significant computational challenge. Different methods have been designed to perform these searches within acceptable computational limits. Here we describe the first benchmark in a project to compare the search methods currently available for the detection of unknown isolated neutron stars. The five methods compared here are individually referred to as the PowerFlux, sky Hough, frequency Hough, Einstein@Home, and time domain F -statistic methods. We employ a mock data challenge to compare the ability of each search method to recover signals simulated assuming a standard signal model. We find similar performance among the four quick-look search methods, while the more computationally intensive search method, Einstein@Home, achieves up to a factor of two higher sensitivity. We find that the absence of a second derivative frequency in the search parameter space does not degrade search sensitivity for signals with physically plausible second derivative frequencies. We also report on the parameter estimation accuracy of each search method, and the stability of the sensitivity in frequency and frequency derivative and in the presence of detector noise.

  6. Development of neutron detectors for neutron scattering experiments

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Myungkook; Kim, Jongyul; Kim, Jeong ho; Lee, Suhyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Changhwy [Korea Research Institute of Ships and Ocean Engineering, Daejeon (Korea, Republic of)

    2015-10-15

    Various kinds of detectors are used in accordance with the experimental purpose, such as zero dimensional detector, 1-D or 2-D position-sensitive detectors. Most of neutron detectors use He-3 gas because of its high neutron sensitivity. Since the He-3 supply shortage took place in early 2010, various He-3 alternative detectors have been developed even for the other neutron application. We have developed a new type alternative detector on the basis of He-3 detector technology. Although B- 10 has less neutron detection efficiency compared with He-3, it can be covered by the use of multiple B-10 layers. In this presentation, we would like to introduce the neutron detectors under development and developed detectors. Various types of detector were successfully developed and result of the technical test performance is promising. Even though the detection efficiency of the B-10 detector lower than He-3 one, the continuous research and development is needed for currently not available He-3.

  7. Investigation of Natural Gas Fugitive Leak Detection Using an Unmanned Aerial Vehicle

    Science.gov (United States)

    Yang, S.; Talbot, R. W.; Frish, M. B.; Golston, L.; Aubut, N. F.; Zondlo, M. A.

    2017-12-01

    The U.S is now the world's largest natural gas producer, of which methane (CH4) is the main component. About 2% of the CH4 is lost through fugitive leaks. This research is under the DOE Methane Observation Networks with Innovative Technology to Obtain Reductions (MONITOR) program of ARPA-E. Our sentry measurement system is composed of four state-of-the-art technologies centered around the RMLDTM (Remote Methane Leak Detector). An open path RMLDTM measures column-integrated CH4 concentration that incorporates fluctuations in the vertical CH4 distribution. Based on Backscatter Tunable Diode Laser Absorption Spectroscopy and Small Unmanned Aerial Vehicles, the sentry system can autonomously, consistently and cost-effectively monitor and quantify CH4 leakage from sites associated with natural gas production. This system provides an advanced capability in detecting leaks at hard-to-access sites (e.g., wellheads) compared to traditional manual methods. Automated leak detecting and reporting algorithms combined with wireless data link implement real-time leak information reporting. Early data were gathered to set up and test the prototype system, and to optimize the leak localization and calculation strategies. The flight pattern is based on a raster scan which can generate interpolated CH4 concentration maps. The localization and quantification algorithms can be derived from the plume images combined with wind vectors. Currently, the accuracy of localization algorithm can reach 2 m and the calculation algorithm has a factor of 2 accuracy. This study places particular emphasis on flux quantification. The data collected at Colorado and Houston test fields were processed, and the correlation between flux and other parameters analyzed. Higher wind speeds and lower wind variation are preferred to optimize flux estimation. Eventually, this system will supply an enhanced detection capability to significantly reduce fugitive CH4 emissions in the natural gas industry.

  8. Detection of explosive substances by tomographic inspection using neutron and gamma-ray spectroscopy

    International Nuclear Information System (INIS)

    Farahmand, M.; Boston, A.J.; Grint, A.N.; Nolan, P.J.; Joyce, M.J.; Mackin, R.O.; D'Mellow, B.; Aspinall, M.; Peyton, A.J.; Silfhout, R. van

    2007-01-01

    In recent years the detection and identification of hazardous materials has become increasingly important. This work discusses research and development of a technique which is capable of detecting and imaging hidden explosives. It is proposed to utilise neutron interrogation of the substances under investigation facilitating the detection of emitted gamma radiation and scattered neutrons. Pulsed fast neutron techniques are attractive because they can be used to determine the concentrations of the light elements (hydrogen, carbon, nitrogen, and oxygen) which can be the primary components of explosive materials. Using segmented High Purity Ge (HPGe) detectors and digital pulse processing [R.J. Cooper, G. Turk, A.J. Boston, H.C. Boston, J.R. Cresswell, A.R. Mather, P.J. Nolan, C.J. Hall, I. Lazarus, J. Simpson, A. Berry, T. Beveridge, J. Gillam, R.A. Lewis, in: Proceedings of the 7th International Conference on Position Sensitive Detectors, Nuclear Instruments and Methods A, in press; I. Lazarus, D.E. Appelbe, A. J. Boston, P.J. Coleman-Smith, J.R. Cresswell, M. Descovich, S.A.A. Gros, M. Lauer, J. Norman, C.J. Pearson, V.F.E. Pucknell, J.A. Sampson, G. Turk, J.J. Valiente-Dobon, IEEE Trans. Nucl. Sci., 51 (2004) 1353; R.J. Cooper, A.J. Boston, H.C. Boston, J.R. Cresswell, A.N. Grint, A.R. Mather, P.J. Nolan, D.P. Scraggs, G. Turk, C.J. Hall, I. Lazarus, A. Berry, T. Beveridge, J. Gillam, R.A. Lewis, in: Proceedings of the 11th International Symposium on Radiation Measurements and Application, 2006. ] the scatter path of incident photons can be reconstructed to determine the origin of the gamma-rays without the need for mechanical collimation by applying the Compton camera principle [V. Schonfelder, A. Hirner, K. Schneider, Nucl. Instr. and Meth. 107 (1973) 385; R.W. Todd, J.M. Nightingale, D.B. Everett, Nature 251 (1974) 132. ]. In addition, it is proposed to utilise the scattered neutrons which recoil from the materials being assayed, detecting them with a fast

  9. Pulsed neutron uranium borehole logging with prompt fission neutrons

    International Nuclear Information System (INIS)

    Bivens, H.M.; Smith, G.W.; Jensen, D.H.

    1976-01-01

    The gross count natural gamma log normally used for uranium borehole logging is seriously affected by disequilibrium. Methods for the direct measurement of uranium, such as neutron logging, which are not affected by disequilibrium have been the object of considerable effort in recent years. This paper describes a logging system for uranium which uses a small accelerator to generate pulses of 14 MeV neutrons to detect and assay uranium by the measurement of prompt fission neutrons in the epithermal energy range. After an initial feasibility study, a prototype logging probe was built for field evaluation which began in January 1976. Physical and operational characteristics of the prototype probe, the neutron tube-transformer assembly, and the neutron tube are described. In logging operations, only the epithermal prompt fission neutrons detected between 250 microseconds to 2500 microseconds following the excitation neutron pulse are counted. Comparison of corrected neutron logs with the conventional gross count natural gamma logs and the chemical assays of cores from boreholes are shown. The results obtained with this neutron probe clearly demonstrate its advantages over the gross count natural gamma log, although at this time the accuracy of the neutron log assay is not satisfactory under some conditions. The necessary correction factors for various borehole and formation parameters are being determined and, when applied, should improve the assay accuracy

  10. Compensation scheme for online neutron detection using a Gd-covered CdZnTe sensor

    Energy Technology Data Exchange (ETDEWEB)

    Dumazert, Jonathan, E-mail: jonathan.dumazert@cea.fr; Coulon, Romain; Kondrasovs, Vladimir; Boudergui, Karim

    2017-06-11

    The development of portable and personal neutron dosimeters requires compact and efficient radiation sensors. Gd-157, Gd-155 and Cd-113 nuclei present the highest cross-sections for thermal neutron capture among natural isotopes. In order to allow for the exploitation of the low and medium-energy radiative signature of the said captures, the contribution of gamma background radiation, falling into the same energy range, needs to be cancelled out. This paper introduces a thermal neutron detector based on a twin-dense semiconductor scheme. The neutron-sensitive channel takes the form of a Gd-covered CdZnTe crystal, a high density and effective atomic number detection medium. The background compensation will be carried out by means of an identical CdZnTe sensor with a Tb cover. The setting of a hypothesis test aims at discriminating the signal generated by the signature of thermal neutron captures in Gd from statistical fluctuations over the compensation of both independent channels. The measurement campaign conducted with an integrated single-channel chain and two metal Gd and Tb covers, under Cs-137 and Cf-252 irradiations, provides first quantitative results on gamma-rejection and neutron sensitivity. The described study of concept gives grounds for a portable, online-compatible device, operable in conventional to controlled environments.

  11. Scintillating-Glass-Fiber neutron sensors, their application and performance for plutonium detection and monitoring

    International Nuclear Information System (INIS)

    Seymour, R.S.; Richardson, B.; Morichi, M.; Bliss, M.; Craig, R.A.; Sunberg, D.S.

    1998-01-01

    Most neutron detection sensors presently employ 3 He gas-filled detectors. Despite their excellent performance and widespread use, there are significant limitations to this technology. A significant alternative neutron sensor utilizing neutron-active material incorporated into a glass scintillator is presented that offers novel commercial sensors not possible or practical with gas tube technology. The scintillating optical fiber permits sensors with a multitude of sizes ranging from devices of a single fiber of 150μm to sensors with tens of thousands of fibers with areas as large as 5m 2 depending on the neutron flux to be measured. A second significant advantage is the use of high-speed electronics that allow a greater dynamic range, not possible with gas detectors. These sensors are flexible, conformable and less sensitive to vibration that optimizes the source-to-detector geometry and provides robust performance in field applications. The glass-fibers are sensitive to both gamma rays and neutrons. However the coincidence electronics are optimized for neutron to gamma ray discrimination allowing very sensitive measurements with a low false-alarm rate. Applications include SNM surveillance, material control and accountability (MC and A), safeguard inspections, Pu health physics / bioassay and environmental characterization. (author)

  12. Gadolinium-loaded gel scintillators for neutron and antineutrino detection

    Science.gov (United States)

    Riddle, Catherine Lynn; Akers, Douglas William; Demmer, Ricky Lynn; Paviet, Patricia Denise; Drigert, Mark William

    2016-11-29

    A gadolinium (Gd) loaded scintillation gel (Gd-ScintGel) compound allows for neutron and gamma-ray detection. The unique gel scintillator encompasses some of the best features of both liquid and solid scintillators, yet without many of the disadvantages associated therewith. Preferably, the gel scintillator is a water soluble Gd-DTPA compound and water soluble fluorophores such as: CdSe/ZnS (or ZnS) quantum dot (Q-dot) nanoparticles, coumarin derivatives 7-hydroxy-4-methylcoumarin, 7-hydroxy-4-methylcoumarin-3-acetic acid, 7-hydroxycoumarin-3-carboxylic acid, and Alexa Fluor 350 as well as a carbostyril compound, carbostyril 124 in a stable water-based gel, such as methylcellulose or polyacrylamide polymers. The Gd-loaded ScintGel allows for a homogenious distribution of the Gd-DTPA and the fluorophores, and yields clean fluorescent emission peaks. A moderator, such as deuterium or a water-based clear polymer, can be incorporated in the Gd-ScintGel. The gel scintillators can be used in compact detectors, including neutron and antineutrino detectors.

  13. Aerial radiological survey of the Three Mile Island Nuclear Station and surrounding area, Middletown, Pennsylvania

    International Nuclear Information System (INIS)

    Colton, D.P.

    1983-08-01

    An aerial radiological survey was performed over the area surrounding the Three Mile Island Nuclear Station during October 26 to 30, 1982. The survey covered an 82-square-kilometer area centered on the nuclear plant and encompassed the communities of Middletown, York Haven, Goldsboro and Royalton, Pennsylvania. The highest radiation exposure rates, up to a maximum of 200 microroentgens per hour (μR/h), were inferred from data measured directly over the TMI facilities. This detected radiation was due to the presence of cobalt-58, cobalt-60 and cesium-137, which was consistent with normal plant operations. Similar activity is routinely observed in aerial surveys over nuclear power plants which have been or are presently in an operational mode. For the remainder of the survey area, the inferred radiation exposure rates varied from 6 to 14 μR/h. The reported exposure rate values include an estimated cosmic ray contribution of 3.7 μR/h. Ground-based measurements, conducted during the time of the aerial survey, were compared to the aerial results. Pressurized ionization chamber readings and a group of soil samples were acquired at several locations within the survey area, along the river banks upstream and downstream of the survey area, and at the ground-based locations used for a previous aerial survey which was conducted in 1976. The exposure rate values obtained from these measurements were in agreement with the corresponding aerial data. With the exception of the activity observed within the TMI facilities, no evidence of any contamination which might have occurred as a result of past reactor operations or the 1979 TMI Unit 2 accident was detected from the aerial survey data. This was further supported by the results of the soil sample analyses and the comparison with the 1976 aerial survey data. 7 references, 12 figures, 4 tables

  14. Method and apparatus for determination of temperature, neutron absorption cross section and neutron moderating power

    Science.gov (United States)

    Vagelatos, Nicholas; Steinman, Donald K.; John, Joseph; Young, Jack C.

    1981-01-01

    A nuclear method and apparatus determines the temperature of a medium by injecting fast neutrons into the medium and detecting returning slow neutrons in three first energy ranges by producing three respective detection signals. The detection signals are combined to produce three derived indicia each systematically related to the population of slow neutrons returning from the medium in a respective one of three second energy ranges, specifically exclusively epithermal neutrons, exclusively substantially all thermal neutrons and exclusively a portion of the thermal neutron spectrum. The derived indicia are compared with calibration indicia similarly systematically related to the population of slow neutrons in the same three second energy ranges returning from similarly irradiated calibration media for which the relationships temperature, neutron absorption cross section and neutron moderating power to such calibration indicia are known. The comparison indicates the temperature at which the calibration indicia correspond to the derived indicia and consequently the temperature of the medium. The neutron absorption cross section and moderating power of the medium can be identified at the same time.

  15. Exciton luminescence characteristic of ZnO. Ga scintillator for neutron detection

    International Nuclear Information System (INIS)

    Kinoshita, A.; Fujiwara, A.; Koyama, S.; Takei, Y.; Nanto, H.; Katagiri, Masaki

    2008-01-01

    ZnO family phosphors as novel phosphor materials for neutron detector have prepared using Spark Plasma Sintering method. The optical properties of ZnO phosphor prepared are investigated. The following results were obtained. Two dominant PL emission peaks at 395 nm and 495 nm were observed. The lifetime of the PL emission peak at 395 nm (UV emission band) is about 20 ns, which is suitable for neutron detection. The Ga (30 mol%)-doped ZnO phosphor exhibited an intense UV emission band without the visible emission band. The Ga-doped ZnO phosphor can be prepared at the atmospheric pressure of about 8 Pa using SPS method. It was found that the PL intensity of UV emission band is increased with improving the crystallinity of the ZnO phosphor. (author)

  16. Development of a neutron detector with high detection efficiency and high spatial resolution and its applications to reactor physics experiments

    International Nuclear Information System (INIS)

    Tojo, Takao

    1979-09-01

    For detection of thermal neutrons in multiplying systems, a scintillator mixture of ZnS(Ag), 6 LiF and polyethylene was prepared, and its characteristics were shown. A sintillation detector using the mixture and a long acrylic-resin light guide was developed for measuring thermal neutrons in an U-H 2 O subcritical assembly(JAERISA). The detector was applied in the following reactor physics measurements with JAERISA: (1) cadmium ratio, (2) infinite multiplication factor, (3) material buckling, and (4) prompt neutron lifetime by pulsed neutron method. These experiments revealed that neutrons in the assembly are successfully detected by the detector owing to its outstanding characteristics of gamma-ray insensitivity, high detection efficiency and high spatial resolution. In the process of activity measurement of a foil activation detector with a GM counter, it was shown that accurate counting loss correction are difficult by usual method, because of the appreciable resolving time dependence on counting rates. In accurate correction, a new method was introduced for precise measurement of the resolving time; the dependence was made clear. A new correction method was developed, which enables direct reading of the corrected counting rates, even at high counting rates. (author)

  17. Detectability of thermal neutrinos from binary neutron-star mergers and implications for neutrino physics

    Science.gov (United States)

    Kyutoku, Koutarou; Kashiyama, Kazumi

    2018-05-01

    We propose a long-term strategy for detecting thermal neutrinos from the remnant of binary neutron-star mergers with a future M-ton water-Cherenkov detector such as Hyper-Kamiokande. Monitoring ≳2500 mergers within ≲200 Mpc , we may be able to detect a single neutrino with a human time-scale operation of ≈80 Mtyears for the merger rate of 1 Mpc-3 Myr-1 , which is slightly lower than the median value derived by the LIGO-Virgo Collaboration with GW170817. Although the number of neutrino events is minimal, contamination from other sources of neutrinos can be reduced efficiently to ≈0.03 by analyzing only ≈1 s after each merger identified with gravitational-wave detectors if gadolinium is dissolved in the water. The contamination may be reduced further to ≈0.01 if we allow the increase of waiting time by a factor of ≈1.7 . The detection of even a single neutrino can pin down the energy scale of thermal neutrino emission from binary neutron-star mergers and could strongly support or disfavor formation of remnant massive neutron stars. Because the dispersion relation of gravitational waves is now securely constrained to that of massless particles with a corresponding limit on the graviton mass of ≲10-22 eV /c2 by binary black-hole mergers, the time delay of a neutrino from gravitational waves can be used to put an upper limit of ≲O (10 ) meV /c2 on the absolute neutrino mass in the lightest eigenstate. Large neutrino detectors will enhance the detectability, and, in particular, 5 Mt Deep-TITAND and 10 Mt MICA planned in the future will allow us to detect thermal neutrinos every ≈16 and 8 years, respectively, increasing the significance.

  18. Low-Energy Neutron Production in Solar Flares and the Importance of their Detection in the Inner Heliosphere

    Science.gov (United States)

    Murphy, Ronald; Kozlovsky, B.; Share, G.

    2012-05-01

    Neutron detectors on spacecraft in the inner-heliosphere can observe the low-energy (computer code incorporating up-dated neutron-production cross sections of the accelerated proton and alpha-particle reactions with heavier elements at low ion energies (Mercury. We conclude that a full understanding of ion acceleration, transport, and interaction at the Sun requires observations of both neutrons and gamma rays. We find that a measurement of the 2.223 MeV neutron-capture line, even with a modest instrument at 1 AU, is as sensitive to the presence of low-energy interacting ions at the Sun as a 1-10 MeV neutron detector at 0.5 AU. However, as the distance from the Sun to the neutron detector decreases, the tremendous increase of the low-energy neutron flux will allow exploration of ion acceleration in weak flares not previously observable and may reveal ion acceleration at other sites not previously detected where low-energy neutron production could be the only high-energy signature of ion acceleration.

  19. Detection and measurement of neutron-irradiated gemstones

    International Nuclear Information System (INIS)

    Bunnak, S.; Jerachanchai, S.; Chinudomsub, K.; Saiyut, K.

    1990-01-01

    Color enhance gemstone, neutron-irradiated topaz, was analyzed by gamma spectrometry for examining characteristic and activity. Topaz was irradiated in the wet-tube facility of the Research Reactor TRR/1 which neutron fluence is 2.52x10 17 neutron per square centimeter. After 100 days of decay, topaz was sampling to the qualitative and quantitative analysis using multichannel analyzer of Nuclear Data Model ND65 and hyper pure germanium detector. Calculation and evaluation were done by microcomputer IBM/PC 640 KB RAM. The qualitative analysis showed that the neutron-irradiated topaz has 2 major isotopes, i.e., Ta-182 and Sc-46. Quantitative activity was compared with reference standard source Eu-152 (NBS) and the results were shown in the table 1. The Health Physics Division, OAEP, inspected on 6240.9 gm of the neutron-irradiated topaz using standard release limit 2 nCi/gm (74 Bq/gm). It was found that only 423.9 gm out of the total amount were over the standard release limit

  20. Generating Impact Maps from Automatically Detected Bomb Craters in Aerial Wartime Images Using Marked Point Processes

    Science.gov (United States)

    Kruse, Christian; Rottensteiner, Franz; Hoberg, Thorsten; Ziems, Marcel; Rebke, Julia; Heipke, Christian

    2018-04-01

    The aftermath of wartime attacks is often felt long after the war ended, as numerous unexploded bombs may still exist in the ground. Typically, such areas are documented in so-called impact maps which are based on the detection of bomb craters. This paper proposes a method for the automatic detection of bomb craters in aerial wartime images that were taken during the Second World War. The object model for the bomb craters is represented by ellipses. A probabilistic approach based on marked point processes determines the most likely configuration of objects within the scene. Adding and removing new objects to and from the current configuration, respectively, changing their positions and modifying the ellipse parameters randomly creates new object configurations. Each configuration is evaluated using an energy function. High gradient magnitudes along the border of the ellipse are favored and overlapping ellipses are penalized. Reversible Jump Markov Chain Monte Carlo sampling in combination with simulated annealing provides the global energy optimum, which describes the conformance with a predefined model. For generating the impact map a probability map is defined which is created from the automatic detections via kernel density estimation. By setting a threshold, areas around the detections are classified as contaminated or uncontaminated sites, respectively. Our results show the general potential of the method for the automatic detection of bomb craters and its automated generation of an impact map in a heterogeneous image stock.

  1. Detection of neutrons of intermediate energy using 10B, enclosed in a coaxial Ge(Li) counter

    International Nuclear Information System (INIS)

    Huck, A.; Klotz, G.; Walter, G.

    1976-01-01

    A neutron detector operating in the energy range 1keV to roughly 1MeV with a time response that is fast enough to be used in time-of-flight experiments, has been designed and built. The neutron is absorbed in boron-10, placed inside a coaxial Ge(Li) counter. Efficient detection of the 478keV line from 7 Li, resulting from 10 B(n,α) 7 Li*, is realized. At the same time, the measurement of accompanying γ radiations, emitted by the neutron source, can be performed. Examples of results, obtained using (p,nγ) reactions, are given [fr

  2. Advanced Neutron Detection Methods: new Tools for Countering Nuclear Terrorism (412th Brookhaven Lecture)

    International Nuclear Information System (INIS)

    Vanier, Peter

    2006-01-01

    Acts of terrorism have become almost daily occurrences in the international news. Yet one of the most feared types of terrorism - nuclear terrorism - has not yet happened. One important way of preventing nuclear terrorism is to safeguard nuclear materials, and many people worldwide work continuously to achieve that goal. A second, vital defense is being developed: greatly improved methods of detecting material that a nuclear terrorist would need so that timely discovery of the material could become more probable. Special nuclear materials can emit neutrons, either spontaneously or when excited by a source of high-energy gamma rays, such as an electron accelerator. Traditional neutron detectors can sense these neutrons, but not the direction from which the neutrons come, or their energy. The odds against finding smuggled nuclear materials using conventional detectors are great. However, innovative designs of detectors are producing images that show the locations and even the shapes of man-made neutron sources, which stand out against the uniform background produced by cosmic rays. With the new detectors, finding needles in haystacks - or smuggled nuclear materials in a huge container among thousands of others in a busy port - suddenly becomes possible.

  3. Ultracold neutrons

    International Nuclear Information System (INIS)

    Steenstrup, S.

    Briefly surveys recent developments in research work with ultracold neutrons (neutrons of very low velocity, up to 10 m/s at up to 10 -7 eV and 10 -3 K). Slow neutrons can be detected in an ionisation chamber filled with B 10 F 3 . Very slow neutrons can be used for investigations into the dipole moment of neutrons. Neutrons of large wave length have properties similar to those of light. The limit angle for total reflection is governed by the wave length and by the material. Total reflection can be used to filter ultracold neutrons out of the moderator material of a reactor. Total reflection can also be used to store ultracold neutrons but certain problems with storage have not yet been clarified. Slow neutrons can be made to lose speed in a neutron turbine, and come out as ultracold neutrons. A beam of ultracold neutrons could be used in a neutron microscope. (J.S.)

  4. Lower detectable limit of sulfur by fast neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shani, G; Cohen, D [Ben-Gurion Univ. of the Negev, Beersheba (Israel). Dept. of Nuclear Engineering

    1976-07-01

    For the purpose of air pollution research, the possibility of fast neutron activation analysis of sulfur was investigated. The only reaction that can be used for this purpose is S/sup 34/(n, p)P/sup 34/. A rabbit system was installed, synchronized with a 150 kV D-T neutron generator and an electronic analysing system. The whole system was operated so that the sample was irradiated for 10 sec and the 2.13 MeV ..gamma..-ray was counted for 10 sec. 5 samples were prepared containing sulfur from 0.5 to 0.1 g. Each measurement lasted 30 min and the activity was plotted as a function of sulfur weight. The relative error is increased very much when the amount of sulfur is below 0.1 g. This is what sets the lower detectable limit. Collection of more than 0.1 g of sulfur even during a long collection time means a very high SO/sub 2/ concentration in the air.

  5. Analysis of boron utilization in sample preparation for microorganisms detection by neutron radiography technique

    International Nuclear Information System (INIS)

    Wacha, Reinaldo; Crispim, Verginia R.

    2000-01-01

    The neutron radiography technique applied to the microorganisms detection is the study of a new and faster alternative for diagnosis of infectious means. This work presents the parameters and the effects involved in the use of the boron as a conversion agent, that convert neutrons in a particles, capable ones of generating latent tracks in a solid state nuclear tracks detector, CR-39. The collected samples are doped with the boron by the incubation method, propitiating an interaction microorganisms/boron, that will guarantee the identification of the images of those microorganisms, through your morphology. (author)

  6. Locating chimpanzee nests and identifying fruiting trees with an unmanned aerial vehicle.

    Science.gov (United States)

    van Andel, Alexander C; Wich, Serge A; Boesch, Christophe; Koh, Lian Pin; Robbins, Martha M; Kelly, Joseph; Kuehl, Hjalmar S

    2015-10-01

    Monitoring of animal populations is essential for conservation management. Various techniques are available to assess spatiotemporal patterns of species distribution and abundance. Nest surveys are often used for monitoring great apes. Quickly developing technologies, including unmanned aerial vehicles (UAVs) can be used to complement these ground-based surveys, especially for covering large areas rapidly. Aerial surveys have been used successfully to detect the nests of orang-utans. It is unknown if such an approach is practical for African apes, which usually build their nests at lower heights, where they might be obscured by forest canopy. In this 2-month study, UAV-derived aerial imagery was used for two distinct purposes: testing the detectability of chimpanzee nests and identifying fruiting trees used by chimpanzees in Loango National Park (Gabon). Chimpanzee nest data were collected through two approaches: we located nests on the ground and then tried to detect them in UAV photos and vice versa. Ground surveys were conducted using line transects, reconnaissance trails, and opportunistic sampling during which we detected 116 individual nests in 28 nest groups. In complementary UAV images we detected 48% of the individual nests (68% of nest groups) in open coastal forests and 8% of individual nests (33% of nest groups) in closed canopy inland forests. The key factor for nest detectability in UAV imagery was canopy openness. Data on fruiting trees were collected from five line transects. In 122 UAV images 14 species of trees (N = 433) were identified, alongside 37 tree species (N = 205) in complementary ground surveys. Relative abundance of common tree species correlated between ground and UAV surveys. We conclude that UAVs have great potential as a rapid assessment tool for detecting chimpanzee presence in forest with open canopy and assessing fruit tree availability. UAVs may have limited applicability for nest detection in closed canopy forest.

  7. Neutron detection using Dy2O3 activation detectors

    International Nuclear Information System (INIS)

    Gomaa, M.A.; Mohamed, E.J.

    1979-01-01

    The aim of the present study is to examine the usefulness of Dy 2 O 3 not only as thermal neutron activation detector but also as a fast neutron detector. For thermal neutrons, the half life of 165 Dy is measured to be (141 +- 6) min, its response to thermal neutrons is (2.18 +- 0.01) cpm/ncm -2 s -1 for a 250 mg Dy 2 O 3 pellet. For fast neutrons the Dy 2 O 3 detector is placed within a 20 cm polyethylene sphere and its response is found to be (2.2 +- 0.1) cpm/ncm -2 s -1 for 4 MeV neutrons and (2.10 +- 0.04) cpm/ncm -2 s -1 for 14 MeV neutrons. For neutron dosimetry, its response is found to be (16.7 +- 0.4) cpm per mrem h -1 . (author)

  8. Limits of detection in instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Guinn, V.P.

    1990-01-01

    Lower limits of detection (LLODs), frequently referred to simply as limits of detection and abbreviated as LODs, often appear in the literature of analytical chemistry - for numerous different methods of elemental and/or molecular analysis. In this chapter, one particular method of quantitative elemental analysis, that of instrumental neutron activation analysis (INAA), is the subject discussed, with reference to LODs. Particularly in the literature of neutron activation analysis (NAA), many tables of 'interference-free' NAA LODs are available. Not all of these are of much use, because (1) for many the definition used for LOD is not clear, or reasonable, (2) for many, the analysis conditions used are not clearly specified, and (3) for many, the analysis conditions used are specified, but not very practicable for most laboratories. For NAA work, such tables of interference-free LODs are, in any case, only applicable to samples in which, at the time of counting, only one radionuclide is present to any significant extent in the activated sample. It is important to note that tables of INAA LODs, per se, do not exist - since the LOD for a given element, under stated analysis conditions, can vary by orders of magnitude, depending on the elemental composition of the matrix in which it is present. For any given element, its INAA LOD will always be as large as, and usually much larger than, its tabulated 'interference-free' NAA LOD - how much larger depending upon the elemental composition of the matrix in which it is present. As discussed in this chapter, however, an INAA computer program exists that can calculate realistic INAA LODs for any elements of interest, in any kind of specified sample matrix, under any given set of analysis conditions

  9. Wide range neutron flux monitor

    International Nuclear Information System (INIS)

    Endo, Yorimasa; Fukushima, Toshiki.

    1983-01-01

    Purpose: To provide a wide range neutron-flux monitor adapted such that the flux monitoring function and alarming function can automatically by shifted from pulse counting system to cambel method system. Constitution: A wide range neutron-flux monitor comprises (la) pulse counting system and (lb) cambel-method system for inputting detection signals from neutron detectors and separating them into signals for the pulse measuring system and the cambel measuring system, (2) overlap detection and calculation circuit for detecting the existence of the overlap of two output signals from the (la) and (lb) systems, and (3) trip circuit for judging the abnormal state of neutron detectors upon input of the detection signals. (Seki, T.)

  10. Subcritical Neutron Multiplication Measurements of HEU Using Delayed Neutrons as the Driving Source

    International Nuclear Information System (INIS)

    Hollas, C.L.; Goulding, C.A.; Myers, W.L.

    1999-01-01

    A new method for the determination of the multiplication of highly enriched uranium systems is presented. The method uses delayed neutrons to drive the HEU system. These delayed neutrons are from fission events induced by a pulsed 14-MeV neutron source. Between pulses, neutrons are detected within a medium efficiency neutron detector using 3 He ionization tubes within polyethylene enclosures. The neutron detection times are recorded relative to the initiation of the 14-MeV neutron pulse, and subsequently analyzed with the Feynman reduced variance method to extract singles, doubles and triples neutron counting rates. Measurements have been made on a set of nested hollow spheres of 93% enriched uranium, with mass values from 3.86 kg to 21.48 kg. The singles, doubles and triples counting rates for each uranium system are compared to calculations from point kinetics models of neutron multiplicity to assign multiplication values. These multiplication values are compared to those from MC NP K-Code calculations

  11. AMRMS Aerial survey database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — An aerial monitoring program was conducted during the period 1962 - 2003 in cooperation with aerial spotters working for the commercial purse seine fleet. Flights...

  12. AMS/NRCan Joint Survey Report: Aerial Campaign

    Energy Technology Data Exchange (ETDEWEB)

    Wasiolek, Piotr [National Security Technologies, LLC. (NSTec), Mercury, NV (United States); Stampahar, Jez [National Security Technologies, LLC. (NSTec), Mercury, NV (United States); Malchow, Rusty [National Security Technologies, LLC. (NSTec), Mercury, NV (United States); Stampahar, Tom [National Security Technologies, LLC. (NSTec), Mercury, NV (United States); Lukens, Mike [National Security Technologies, LLC. (NSTec), Mercury, NV (United States); Seywerd, Henry [Natural Resources Canada (Canada); Fortin, Richard [Natural Resources Canada (Canada); Harvey, Brad [Natural Resources Canada (Canada); Sinclair, Laurel [Natural Resources Canada (Canada)

    2014-12-31

    In January 2014 the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) Aerial Measuring System (AMS) and the Natural Resources Canada (NRCan) Nuclear Emergency Response project conducted a series of joint surveys at a number of locations in Nevada including the Nevada National Security Site (NNSS). The goal of this project was to compare the responses of the two agencies’ aerial radiation detection systems and data analysis techniques. This test included varied radioactive surface contamination levels and isotopic composition experienced at the NNSS and the differing data processing techniques utilized by the respective teams. Because both teams used the commercial aerial radiation detection systems from Radiation Solutions, Inc., the main focus of the campaign was to investigate the data acquisition techniques, data analysis, and ground-truth verification. The NRCan system consisted of four 4" × 4" × 16" NaI(Tl) scintillator crystals of which two were externally mounted in a modified commercial cargo basket certified for the Eurocopter AS350; the NNSA AMS system consisted of twelve 2" × 4" × 16" NaI(Tl) crystals in externally mounted dedicated pods. For NRCan, the joint survey provided an opportunity to characterize their system’s response to extended sources of various fission products at the NNSS. Since both systems play an important role in their respective countries’ national framework of radiological emergency response and are subject to multiple mutual cooperation agreements, it was important for each country to obtain more thorough knowledge of how they would employ these important assets and define the roles that they would each play in an actual response.

  13. Research of aerial imaging spectrometer data acquisition technology based on USB 3.0

    Science.gov (United States)

    Huang, Junze; Wang, Yueming; He, Daogang; Yu, Yanan

    2016-11-01

    With the emergence of UAV (unmanned aerial vehicle) platform for aerial imaging spectrometer, research of aerial imaging spectrometer DAS(data acquisition system) faces new challenges. Due to the limitation of platform and other factors, the aerial imaging spectrometer DAS requires small-light, low-cost and universal. Traditional aerial imaging spectrometer DAS system is expensive, bulky, non-universal and unsupported plug-and-play based on PCIe. So that has been unable to meet promotion and application of the aerial imaging spectrometer. In order to solve these problems, the new data acquisition scheme bases on USB3.0 interface.USB3.0 can provide guarantee of small-light, low-cost and universal relying on the forward-looking technology advantage. USB3.0 transmission theory is up to 5Gbps.And the GPIF programming interface achieves 3.2Gbps of the effective theoretical data bandwidth.USB3.0 can fully meet the needs of the aerial imaging spectrometer data transmission rate. The scheme uses the slave FIFO asynchronous data transmission mode between FPGA and USB3014 interface chip. Firstly system collects spectral data from TLK2711 of high-speed serial interface chip. Then FPGA receives data in DDR2 cache after ping-pong data processing. Finally USB3014 interface chip transmits data via automatic-dma approach and uploads to PC by USB3.0 cable. During the manufacture of aerial imaging spectrometer, the DAS can achieve image acquisition, transmission, storage and display. All functions can provide the necessary test detection for aerial imaging spectrometer. The test shows that system performs stable and no data lose. Average transmission speed and storage speed of writing SSD can stabilize at 1.28Gbps. Consequently ,this data acquisition system can meet application requirements for aerial imaging spectrometer.

  14. Detection of boron in metal alloys with solid state nuclear track detector by neutron induced autoradiography

    International Nuclear Information System (INIS)

    Ali Nabipour; Hosseini, A.; Afarideh, H.

    2002-01-01

    Neutron induced autoradiography is very useful technique for detection as well as measurement of Boron densities in metal alloys. The method is relatively simple and quite sensitive in comparison with other techniques with resolution in the range of PPM. Using this technique with it is also possible to investigate microscopic scattering of Boron in metal alloys. In comparison with most techniques neutron induced autoradiography has its own difficulties and limitations. In this research measurement of Boron densities and investigation of that diffusion in metal alloys has been carried out. A flat nicely polished Boron doped metal samples is covered with a track detecting plastic (CR-39 solid state nuclear track detector) and exposed to thermal neutron dose. After irradiation the plastic detector have been removed and put in an etching solution. Since the diffusion rate of corrosive solution in those area, which heavy ions have been, produces as the result of nuclear reaction with thermal neutron are more than the other areas, some cavities are formed. The diameter of cavities or tracks cross section are increased with increasing the etching time, to some extent that it is possible to observe the cavities with optical microscopes. The density of tracks on the detector surface is directly related to the Boron concentration in the sample and thermal neutron dose. So by measuring the number of tracks on surface of the detector it would possible to calculate the concentration of Boron in metal samples. (Author)

  15. The “neutron channel design”—A method for gaining the desired neutrons

    Directory of Open Access Journals (Sweden)

    G. Hu

    2016-12-01

    Full Text Available The neutrons with desired parameters can be obtained after initial neutrons penetrating various structure and component of the material. A novel method, the “neutron channel design”, is proposed in this investigation for gaining the desired neutrons. It is established by employing genetic algorithm (GA combining with Monte Carlo software. This method is verified by obtaining 0.01eV to 1.0eV neutrons from the Compact Accelerator-driven Neutron Source (CANS. One layer polyethylene (PE moderator was designed and installed behind the beryllium target in CANS. The simulations and the experiment for detection the neutrons were carried out. The neutron spectrum at 500cm from the PE moderator was simulated by MCNP and PHITS software. The counts of 0.01eV to 1.0eV neutrons were simulated by MCNP and detected by the thermal neutron detector in the experiment. These data were compared and analyzed. Then this method is researched on designing the complex structure of PE and the composite material consisting of PE, lead and zirconium dioxide.

  16. Thermoluminescence albedo-neutron dosimetry

    International Nuclear Information System (INIS)

    Strand, T.; Storruste, A.

    1986-10-01

    The report discusses neutron detection with respect to dosimetry and compares different thermoluminescent dosimetry materials for neutron dosimetry. Construction and calibration of a thermoluminescence albedo neutron dosemeter, developed by the authors, is described

  17. BUILDING FAÇADE SEPARATION IN VERTICAL AERIAL IMAGES

    Directory of Open Access Journals (Sweden)

    P. Meixner

    2012-07-01

    Full Text Available Three-dimensional models of urban environments have great appeal and offer promises of interesting applications. While initially it was of interest to just have such 3D data, it increasingly becomes evident that one really would like to have interpreted urban objects. To be able to interpret buildings we have to split a visible whole building block into its different single buildings. Usually this is done using cadastral information to divide the single land parcels. The problem in this case is that sometimes the building boundaries derived from the cadastre are insufficiently accurate due to several reasons like old databases with lower accuracies or inaccuracies due to transformation between two coordinate systems. For this reason it can happen that a cadastral boundary coming from an old map is displaced by up to several meters and therefore divides two buildings incorrectly. To overcome such problems we incorporate the information from vertical aerial images. We introduce a façade separation method that is able to find individual building façades using multi view stereo. The purpose is to identify the individual façades and separate them from one another before on proceeds with the analysis of a façade's details. The source was a set of overlapping, thus "redundant" vertical aerial images taken by an UltraCam digital aerial camera. Therefore in a first step we determine the building block outlines using the building classification and use the height values from the Digital Surface Model (DSM to determine approximate "façade quadrilaterals". We also incorporate height discontinuities using the height profiles along the building outlines to enhance our façade separation. In a next step we detect repeated pattern in these "façade images" and use them to separate the façades respectively building blocks from one another. We show that this method can be successfully used to separate building façades using vertical aerial images with a

  18. Neutron detection in a high gamma-ray background with EJ-301 and EJ-309 liquid scintillators

    International Nuclear Information System (INIS)

    Stevanato, L.; Cester, D.; Nebbia, G.; Viesti, G.

    2012-01-01

    Using a fast digitizer, the neutron–gamma discrimination capability of the new liquid scintillator EJ-309 is compared with that obtained using standard EJ-301. Moreover the capability of both the scintillation detectors to identify a weak neutron source in a high gamma-ray background is demonstrated. The probability of neutron detection is PD=95% at 95% confidence level for a gamma-ray background corresponding to a dose rate of 100 μSv/h.

  19. Basics of Neutrons for First Responders

    Energy Technology Data Exchange (ETDEWEB)

    Rees, Brian G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-02-05

    These are slides from a presentation on the basics of neutrons. A few topics covered are: common origins of terrestrial neutron radiation, neutron sources, neutron energy, interactions, detecting neutrons, gammas from neutron interactions, neutron signatures in gamma-ray spectra, neutrons and NaI, neutron fluence to dose (msV), instruments' response to neutrons.

  20. Final Technical Report for the Neutron Detection without Helium-3 Project

    Energy Technology Data Exchange (ETDEWEB)

    Ely, James H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bliss, Mary [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kouzes, Richard T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lintereur, Azaree T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Robinson, Sean M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Siciliano, Edward R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Swinhoe, Martyn T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Woodring, Mitchell L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-11-01

    This report details the results of the research and development work accomplished for the ‘Neutron Detection without Helium-3’ project conducted during the 2011-2013 fiscal years. The primary focus of the project was to investigate commercially available technologies that might be used in safeguards applications in the relatively near term. Other technologies that are being developed may be more applicable in the future, but were outside the scope of this study.

  1. Ion conducting behavior in secondary battery materials detected by quasi-elastic neutron scattering measurements

    International Nuclear Information System (INIS)

    Nozaki, Hiroshi

    2014-01-01

    Ionic conducting behaviors in secondary battery materials, i.e. cathode and solid electrolyte, were studied with quasi-elastic neutron scattering (QENS) measurements. Although the incoherent scattering length for Li and Na is lower by two orders of magnitude than that for H, the QENS spectra were clearly detected using the combination of an intense neutron source and a low background spectrometer. The fundamental parameters, such as, the activation energy, the jump distance, and the diffusion coefficient were obtained by analyzing QENS spectra. These parameters are consistent with the previous results estimated by muon-spin relaxation (μSR) measurements and first principles calculations. (author)

  2. Design of incoming neutron-beam for detecting oil dirt

    International Nuclear Information System (INIS)

    Zhao Jingwu; Chen Xiaocheng; Alimujiang Naimaiti; Aierken Abuliemu

    2012-01-01

    For the technique of neutron back-scattering, the neutron counts are non-linear and have a tendency toward saturation because of the neutron self-shielding. As a result, the measurement accuracy is reduced and the measurement range is limited. Using a simply model and comparing with experimental data, it is shown that, in the measurement of the thickness of oil dirt, by adjusting the ratio of thermal to epithermal neutrons, the neutron self: shielding is weakened. As a result, the non-linearity can be reduced and the measurement accuracy and range can be improved. (authors)

  3. Regional snow-avalanche detection using object-based image analysis of near-infrared aerial imagery

    Directory of Open Access Journals (Sweden)

    K. Korzeniowska

    2017-10-01

    Full Text Available Snow avalanches are destructive mass movements in mountain regions that continue to claim lives and cause infrastructural damage and traffic detours. Given that avalanches often occur in remote and poorly accessible steep terrain, their detection and mapping is extensive and time consuming. Nonetheless, systematic avalanche detection over large areas could help to generate more complete and up-to-date inventories (cadastres necessary for validating avalanche forecasting and hazard mapping. In this study, we focused on automatically detecting avalanches and classifying them into release zones, tracks, and run-out zones based on 0.25 m near-infrared (NIR ADS80-SH92 aerial imagery using an object-based image analysis (OBIA approach. Our algorithm takes into account the brightness, the normalised difference vegetation index (NDVI, the normalised difference water index (NDWI, and its standard deviation (SDNDWI to distinguish avalanches from other land-surface elements. Using normalised parameters allows applying this method across large areas. We trained the method by analysing the properties of snow avalanches at three 4 km−2 areas near Davos, Switzerland. We compared the results with manually mapped avalanche polygons and obtained a user's accuracy of > 0.9 and a Cohen's kappa of 0.79–0.85. Testing the method for a larger area of 226.3 km−2, we estimated producer's and user's accuracies of 0.61 and 0.78, respectively, with a Cohen's kappa of 0.67. Detected avalanches that overlapped with reference data by > 80 % occurred randomly throughout the testing area, showing that our method avoids overfitting. Our method has potential for large-scale avalanche mapping, although further investigations into other regions are desirable to verify the robustness of our selected thresholds and the transferability of the method.

  4. Detection of explosives and illicit drugs using neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Kiraly, B. E-mail: kiralyb@tigris.klte.hu; Sanami, T.; Doczi, R.; Csikai, J

    2004-01-01

    A procedure developed for the determination of the flux perturbation factor required for the thermal neutron activation analysis of bulky samples of unknown composition has been extended for epithermal neutrons using hydrogenous and graphite moderators. Measurements on the diffusion and backscattering of thermal neutrons in soil components were carried out for the development of novel nuclear methods in order to speed up the humanitarian demining process. Results obtained for the diffusion length were checked by MCNP-4C calculations. In addition, the effect of the weight and density of the explosives on the observation of the anomaly in the reflected thermal neutrons was examined by using different dummy landmines.

  5. Low-Altitude Aerial Methane Concentration Mapping

    Directory of Open Access Journals (Sweden)

    Bara J. Emran

    2017-08-01

    Full Text Available Detection of leaks of fugitive greenhouse gases (GHGs from landfills and natural gas infrastructure is critical for not only their safe operation but also for protecting the environment. Current inspection practices involve moving a methane detector within the target area by a person or vehicle. This procedure is dangerous, time consuming, labor intensive and above all unavailable when access to the desired area is limited. Remote sensing by an unmanned aerial vehicle (UAV equipped with a methane detector is a cost-effective and fast method for methane detection and monitoring, especially for vast and remote areas. This paper describes the integration of an off-the-shelf laser-based methane detector into a multi-rotor UAV and demonstrates its efficacy in generating an aerial methane concentration map of a landfill. The UAV flies a preset flight path measuring methane concentrations in a vertical air column between the UAV and the ground surface. Measurements were taken at 10 Hz giving a typical distance between measurements of 0.2 m when flying at 2 m/s. The UAV was set to fly at 25 to 30 m above the ground. We conclude that besides its utility in landfill monitoring, the proposed method is ready for other environmental applications as well as the inspection of natural gas infrastructure that can release methane with much higher concentrations.

  6. Basic of Neutron NDA

    Energy Technology Data Exchange (ETDEWEB)

    Trahan, Alexis Chanel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-15

    The objectives of this presentation are to introduce the basic physics of neutron production, interactions and detection; identify the processes that generate neutrons; explain the most common neutron mechanism, spontaneous and induced fission and (a,n) reactions; describe the properties of neutron from different sources; recognize advantages of neutron measurements techniques; recognize common neutrons interactions; explain neutron cross section measurements; describe the fundamental of 3He detector function and designs; and differentiate between passive and active assay techniques.

  7. Persistent Aerial Tracking

    KAUST Repository

    Mueller, Matthias

    2016-04-13

    In this thesis, we propose a new aerial video dataset and benchmark for low altitude UAV target tracking, as well as, a photo-realistic UAV simulator that can be coupled with tracking methods. Our benchmark provides the rst evaluation of many state of-the-art and popular trackers on 123 new and fully annotated HD video sequences captured from a low-altitude aerial perspective. Among the compared trackers, we determine which ones are the most suitable for UAV tracking both in terms of tracking accuracy and run-time. We also present a simulator that can be used to evaluate tracking algorithms in real-time scenarios before they are deployed on a UAV "in the field", as well as, generate synthetic but photo-realistic tracking datasets with free ground truth annotations to easily extend existing real-world datasets. Both the benchmark and simulator will be made publicly available to the vision community to further research in the area of object tracking from UAVs. Additionally, we propose a persistent, robust and autonomous object tracking system for unmanned aerial vehicles (UAVs) called Persistent Aerial Tracking (PAT). A computer vision and control strategy is applied to a diverse set of moving objects (e.g. humans, animals, cars, boats, etc.) integrating multiple UAVs with a stabilized RGB camera. A novel strategy is employed to successfully track objects over a long period, by \\'handing over the camera\\' from one UAV to another. We integrate the complete system into an off-the-shelf UAV, and obtain promising results showing the robustness of our solution in real-world aerial scenarios.

  8. Development of resonant detectors for epithermal neutron spectroscopy at pulsed neutron sources

    International Nuclear Information System (INIS)

    Tardocchi, M.; Pietropaolo, A.; Senesi, R.; Andreani, C.; Gorini, G.

    2004-01-01

    New perspectives for epithermal neutron spectroscopy are opened by the development of new detectors for inverse geometry time of flight spectrometers at pulsed neutron sources. One example is the Very Low Angle Detector (VLAD) bank planned to be delivered, within the next 4 years, within the eVERDI project, on the neutron spectrometer VESUVIO, at the ISIS pulsed neutron source (UK). VLAD will extend the (q,ω) kinematical region for neutron scattering to low wavefactor transfer (q -1 ) still keeping energy transfer >1 eV, thus allowing the investigations of new experimental studies in condensed matter systems. The technique being developed for detection of epithermal neutrons, within this low q and high-energy transfer region, is the Resonance Detection Technique. In this work, the state of the detector development will be presented with special focus on the results obtained with some prototype detectors, namely YAP scintillators and cadmium-zinc-telluride semiconductors

  9. Neutron scintillator using Ga-doped ZnO phosphor with high detection efficiency

    International Nuclear Information System (INIS)

    Koyama, Shin; Kinoshita, Atsushi; Fujiwara, Akihiko; Kobayashi, Haruki; Takei, Yoshinori; Nanto, Hidehito; Katagiri, Masaki

    2009-01-01

    Zinc Oxide (ZnO) family phosphors as phosphor for neutron detector have prepared using Spark Plasma Sintering (SPS) method. The optical properties of ZnO phosphor prepared are investigated. The following results were obtained. Two dominant photoluminescence (PL) emission peaks at 395 nm and 495 nm were observed. The lifetime of the PL emission peak at 395 nm (UV emission band) is about 20 ns, which is suitable for neutron detection. The Ga (30 mol%)-doped ZnO phosphor exhibited an intense UV emission band without the visible emission band. The Ga-doped ZnO phosphor can be prepared at the atmospheric pressure of about 8 Pa using SPS method. It was found that the PL intensity of UV emission band is increased with improving the crystallinity of the ZnO phosphor. (author)

  10. Selective Filtration of Gadolinium Trichloride for Use in Neutron Detection in Large Water Cherenkov Detectors

    International Nuclear Information System (INIS)

    Vagins, Mark R.

    2013-01-01

    Super-??Kamiokande Water Cherenkov detectors have been used for many years as inexpensive, effective detectors for neutrino interactions and nucleon decay searches. While many important measurements have been made with these detectors a major drawback has been their inability to detect the absorption of thermal neutrons. We believe an inexpensive, effective technique could be developed to overcome this situation via the addition to water of a solute with a large neutron cross section and energetic gamma daughters which would make neutrons detectable. Gadolinium seems an excellent candidate especially since in recent years it has become very inexpensive, now less than $8 per kilogram in the form of commercially-available gadolinium trichloride, GdCl 3 . This non-toxic, non-reactive substance is highly soluble in water. Neutron capture on gadolinium yields a gamma cascade which would be easily seen in detectors like Super-Kamiokande. We have been investigating the use of GdCl 3 as a possible upgrade for the Super-Kamiokande detector with a view toward improving its performance as a detector for atmospheric neutrinos, supernova neutrinos, wrong-sign solar neutrinos, reactor neutrinos, proton decay, and also as a target for the coming T2K long-baseline neutrino experiment. This focused study of selective water filtration and GdCl 3 extraction techniques, conducted at UC Irvine, followed up on highly promising benchtop-scale and kiloton-scale work previously carried out with the assistance of 2003 and 2005 Advanced Detector Research Program grants

  11. Hearing of the African lungfish (Protopterus annectens) suggests underwater pressure detection and rudimentary aerial hearing in early tetrapods

    DEFF Research Database (Denmark)

    Christensen, Christian Bech; Christensen-Dalsgaard, Jakob; Madsen, Professor Peter Teglberg

    2015-01-01

    of early tetrapods such as Acanthostega. Therefore, experimental studies on the hearing capabilities of lungfish may shed light on the possible hearing capabilities of early tetrapods and broaden our understanding of hearing across the water-to-land transition. Here, we tested the hypotheses that (i......In the transition from an aquatic to a terrestrial lifestyle, vertebrate auditory systems have undergone major changes while adapting to aerial hearing. Lungfish are the closest living relatives of tetrapods and their auditory system may therefore be a suitable model of the auditory systems...... for aerial hearing, such as the first tetrapods, had rudimentary aerial hearing that may have led to the evolution of tympanic middle ears in recent tetrapods....

  12. A Collaborative Approach for Surface Inspection Using Aerial Robots and Computer Vision

    Directory of Open Access Journals (Sweden)

    Martin Molina

    2018-03-01

    Full Text Available Aerial robots with cameras on board can be used in surface inspection to observe areas that are difficult to reach by other means. In this type of problem, it is desirable for aerial robots to have a high degree of autonomy. A way to provide more autonomy would be to use computer vision techniques to automatically detect anomalies on the surface. However, the performance of automated visual recognition methods is limited in uncontrolled environments, so that in practice it is not possible to perform a fully automatic inspection. This paper presents a solution for visual inspection that increases the degree of autonomy of aerial robots following a semi-automatic approach. The solution is based on human-robot collaboration in which the operator delegates tasks to the drone for exploration and visual recognition and the drone requests assistance in the presence of uncertainty. We validate this proposal with the development of an experimental robotic system using the software framework Aerostack. The paper describes technical challenges that we had to solve to develop such a system and the impact on this solution on the degree of autonomy to detect anomalies on the surface.

  13. Neutron activation analysis detection limits using 252Cf sources

    International Nuclear Information System (INIS)

    DiPrete, D.P.; Sigg, R.A.

    2000-01-01

    The Savannah River Technology Center (SRTC) developed a neutron activation analysis (NAA) facility several decades ago using low-flux 252 Cf neutron sources. Through this time, the facility has addressed areas of applied interest in managing the Savannah River Site (SRS). Some applications are unique because of the site's operating history and its chemical-processing facilities. Because sensitivity needs for many applications are not severe, they can be accomplished using an ∼6-mg 252 Cf NAA facility. The SRTC 252 Cf facility continues to support applied research programs at SRTC as well as other SRS programs for environmental and waste management customers. Samples analyzed by NAA include organic compounds, metal alloys, sediments, site process solutions, and many other materials. Numerous radiochemical analyses also rely on the facility for production of short-lived tracers, yielding by activation of carriers and small-scale isotope production for separation methods testing. These applications are more fully reviewed in Ref. 1. Although the flux [approximately2 x 10 7 n/cm 2 ·s] is low relative to reactor facilities, more than 40 elements can be detected at low and sub-part-per-million levels. Detection limits provided by the facility are adequate for many analytical projects. Other multielement analysis methods, particularly inductively coupled plasma atomic emission and inductively coupled plasma mass spectrometry, can now provide sensitivities on dissolved samples that are often better than those available by NAA using low-flux isotopic sources. Because NAA allows analysis of bulk samples, (a) it is a more cost-effective choice when its sensitivity is adequate than methods that require digestion and (b) it eliminates uncertainties that can be introduced by digestion processes

  14. Neutron detection with integrated sub-2 nm Pt nanoparticles and 10B enriched dielectrics—A direct conversion device

    Directory of Open Access Journals (Sweden)

    Haisheng Zheng

    2016-07-01

    Full Text Available We report a direct conversion solid-state neutron detection device fabricated by combining the large neutron capture cross-section of 10B with the charge trapping attributes of sub-2 nm Pt nanoparticles (Pt NPs in MOSCAP structures. The 10B embedded polystyrene based neutron conversion layer also serves as the dielectric layer. Neutron sensing is achieved through carrier generation within the active 10B based dielectric layer and subsequent transfer to the embedded Pt NP layers, resulting in a significant change of the device's flat-band voltage upon ex-situ characterization. Both single and dual Pt NP layer embedded architectures, with varying electron addition energies, were tested within this study. While dual-layer Pt NPs embedded direct conversion devices with higher electron addition energy are shown to successfully capture charges generated through energetic reaction product upon neutron capture, the single Pt NP layer embedded device structure with lower electron addition energy displays signs of charge loss attributable to direct tunneling in the ex-situ capacitance–voltage measurement. Although only ex-situ detector operation is demonstrated within the realms of this study, sensitive in-situ neutron detectors and ultra-stable ex-situ dosimeters may be achievable utilizing a similar structure by fine-tuning the Pt NP size and the number of Pt NP layers in the device. Keywords: Neutron detection, Sub-2 nm Pt nanoparticles, 10B enriched dielectrics, Direct conversion, MOSCAP, Coulomb blockade

  15. Can reliable sage-grouse lek counts be obtained using aerial infrared technology

    Science.gov (United States)

    Gillette, Gifford L.; Coates, Peter S.; Petersen, Steven; Romero, John P.

    2013-01-01

    More effective methods for counting greater sage-grouse (Centrocercus urophasianus) are needed to better assess population trends through enumeration or location of new leks. We describe an aerial infrared technique for conducting sage-grouse lek counts and compare this method with conventional ground-based lek count methods. During the breeding period in 2010 and 2011, we surveyed leks from fixed-winged aircraft using cryogenically cooled mid-wave infrared cameras and surveyed the same leks on the same day from the ground following a standard lek count protocol. We did not detect significant differences in lek counts between surveying techniques. These findings suggest that using a cryogenically cooled mid-wave infrared camera from an aerial platform to conduct lek surveys is an effective alternative technique to conventional ground-based methods, but further research is needed. We discuss multiple advantages to aerial infrared surveys, including counting in remote areas, representing greater spatial variation, and increasing the number of counted leks per season. Aerial infrared lek counts may be a valuable wildlife management tool that releases time and resources for other conservation efforts. Opportunities exist for wildlife professionals to refine and apply aerial infrared techniques to wildlife monitoring programs because of the increasing reliability and affordability of this technology.

  16. Semiconductor Thermal Neutron Detector

    Directory of Open Access Journals (Sweden)

    Toru Aoki

    2014-02-01

    Full Text Available The  CdTe  and  GaN  detector  with  a  Gd  converter  have  been developed  and  investigated  as  a  neutron  detector  for neutron  imaging.  The  fabricated  Gd/CdTe  detector  with  the  25  mm  thick  Gd  was  designed  on  the  basis  of  simulation results  of  thermal  neutron  detection  efficiency  and  spatial  resolution.  The  Gd/CdTe  detector  shows  the  detection  of neutron  capture  gamma  ray  emission  in  the  155Gd(n,  g156Gd,  157Gd(n,  g158Gd  and  113Cd(n,  g114Cd  reactions  and characteristic X-ray emissions due to conversion-electrons generated inside the Gd film. The observed efficient thermal neutron detection with the Gd/CdTe detector shows its promise in neutron radiography application. Moreover, a BGaN detector has also investigated to separate neutron signal from gamma-ray clearly. 

  17. A Novel Detector for High Neutron Flux Measurements

    International Nuclear Information System (INIS)

    Singo, T. D.; Wyngaardt, S. M.; Papka, P.; Dobson, R. T.

    2010-01-01

    Measuring alpha particles from a neutron induced break-up reaction with a mass spectrometer can be an excellent tool for detecting neutrons in a high neutron flux environment. Break-up reactions of 6 Li and 12 C can be used in the detection of slow and fast neutrons, respectively. A high neutron flux detection system that integrates the neutron energy sensitive material and helium mass spectrometer has been developed. The description of the detector configuration is given and it is soon to be tested at iThemba LABS, South Africa.

  18. AMS/NRCan Joint Survey Report: Aerial Campaign

    International Nuclear Information System (INIS)

    Wasiolek, Piotr; Stampahar, Jez; Malchow, Rusty; Stampahar, Tom; Lukens, Mike; Seywerd, Henry; Fortin, Richard; Harvey, Brad; Sinclair, Laurel

    2014-01-01

    In January 2014 the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) Aerial Measuring System (AMS) and the Natural Resources Canada (NRCan) Nuclear Emergency Response project conducted a series of joint surveys at a number of locations in Nevada including the Nevada National Security Site (NNSS). The goal of this project was to compare the responses of the two agencies' aerial radiation detection systems and data analysis techniques. This test included varied radioactive surface contamination levels and isotopic composition experienced at the NNSS and the differing data processing techniques utilized by the respective teams. Because both teams used the commercial aerial radiation detection systems from Radiation Solutions, Inc., the main focus of the campaign was to investigate the data acquisition techniques, data analysis, and ground-truth verification. The NRCan system consisted of four 4'' x 4'' x 16'' NaI(Tl) scintillator crystals of which two were externally mounted in a modified commercial cargo basket certified for the Eurocopter AS350; the NNSA AMS system consisted of twelve 2'' x 4'' x 16'' NaI(Tl) crystals in externally mounted dedicated pods. For NRCan, the joint survey provided an opportunity to characterize their system's response to extended sources of various fission products at the NNSS. Since both systems play an important role in their respective countries' national framework of radiological emergency response and are subject to multiple mutual cooperation agreements, it was important for each country to obtain more thorough knowledge of how they would employ these important assets and define the roles that they would each play in an actual response.

  19. Proposed tethered unmanned aerial system for the detection of pollution entering the Chesapeake Bay area

    Science.gov (United States)

    Goodman, J.; McKay, J.; Evans, W.; Gadsden, S. Andrew

    2016-05-01

    This paper is based on a proposed unmanned aerial system platform that is to be outfitted with high-resolution sensors. The proposed system is to be tethered to a moveable ground station, which may be a research vessel or some form of ground vehicle (e.g., car, truck, or rover). The sensors include, at a minimum: camera, infrared sensor, thermal, normalized difference vegetation index (NDVI) camera, global positioning system (GPS), and a light-based radar (LIDAR). The purpose of this paper is to provide an overview of existing methods for pollution detection of failing septic systems, and to introduce the proposed system. Future work will look at the high-resolution data from the sensors and integrating the data through a process called information fusion. Typically, this process is done using the popular and well-published Kalman filter (or its nonlinear formulations, such as the extended Kalman filter). However, future work will look at using a new type of strategy based on variable structure estimation for the information fusion portion of the data processing. It is hypothesized that fusing data from the thermal and NDVI sensors will be more accurate and reliable for a multitude of applications, including the detection of pollution entering the Chesapeake Bay area.

  20. Tree detection in urban regions from aerial imagery and DSM based on local maxima points

    Science.gov (United States)

    Korkmaz, Özgür; Yardımcı ćetin, Yasemin; Yilmaz, Erdal

    2017-05-01

    In this study, we propose an automatic approach for tree detection and classification in registered 3-band aerial images and associated digital surface models (DSM). The tree detection results can be used in 3D city modelling and urban planning. This problem is magnified when trees are in close proximity to each other or other objects such as rooftops in the scenes. This study presents a method for locating individual trees and estimation of crown size based on local maxima from DSM accompanied by color and texture information. For this purpose, segment level classifier trained for 10 classes and classification results are improved by analyzing the class probabilities of neighbour segments. Later, the tree classes under a certain height were eliminated using the Digital Terrain Model (DTM). For the tree classes, local maxima points are obtained and the tree radius estimate is made from the vertical and horizontal height profiles passing through these points. The final tree list containing the centers and radius of the trees is obtained by selecting from the list of tree candidates according to the overlapping and selection parameters. Although the limited number of train sets are used in this study, tree classification and localization results are competitive.

  1. A Two-Stream Deep Fusion Framework for High-Resolution Aerial Scene Classification

    Directory of Open Access Journals (Sweden)

    Yunlong Yu

    2018-01-01

    Full Text Available One of the challenging problems in understanding high-resolution remote sensing images is aerial scene classification. A well-designed feature representation method and classifier can improve classification accuracy. In this paper, we construct a new two-stream deep architecture for aerial scene classification. First, we use two pretrained convolutional neural networks (CNNs as feature extractor to learn deep features from the original aerial image and the processed aerial image through saliency detection, respectively. Second, two feature fusion strategies are adopted to fuse the two different types of deep convolutional features extracted by the original RGB stream and the saliency stream. Finally, we use the extreme learning machine (ELM classifier for final classification with the fused features. The effectiveness of the proposed architecture is tested on four challenging datasets: UC-Merced dataset with 21 scene categories, WHU-RS dataset with 19 scene categories, AID dataset with 30 scene categories, and NWPU-RESISC45 dataset with 45 challenging scene categories. The experimental results demonstrate that our architecture gets a significant classification accuracy improvement over all state-of-the-art references.

  2. Combining Constraint Types From Public Data in Aerial Image Segmentation

    DEFF Research Database (Denmark)

    Jacobsen, Thomas Stig; Jensen, Jacob Jon; Jensen, Daniel Rune

    2013-01-01

    We introduce a method for image segmentation that constraints the clustering with map and point data. The method is showcased by applying the spectral clustering algorithm on aerial images for building detection with constraints built from a height map and address point data. We automatically det...

  3. An empirical fast-neutron technique for detection of explosive-like materials

    International Nuclear Information System (INIS)

    Hussein, E.M.A.; Lord, P.M.; Bot, D.L.

    1990-01-01

    A method for detecting explosives in airport baggage using fast-neutron scattering and transmission measurements is presented. Ammonium nitrate (a commercial fertilizer) is used in the laboratory to simulate an explosive-like substance. The measurements are combined in Cartesian maps of normalized pairs of measurements. The existence of fertilizer manifests itself in these maps within a distinct region which is not significantly altered by the presence of surrounding materials. Monte Carlo simulations further confirm this phenomenon. (orig.)

  4. Neutron detection at jet using artificial diamond detectors

    International Nuclear Information System (INIS)

    Pillon, M.; Angelone, M.; Lattanzi, D.; Marinelli, M.; Milani, E.; Tucciarone, A.; Verona-Rinati, G.; Popovichev, S.; Montereali, R.M.; Vincenti, M.A.; Murari, A.

    2007-01-01

    Artificial diamond neutron detectors recently proved to be promising devices to measure the neutron production on large experimental fusion machines. Diamond detectors are very promising detectors to be used in fusion environment due to their radiation hardness, low sensitivity to gamma rays, fast response and high energy resolution. High quality 'electronic grade' diamond films are produced through microwave chemical vapour deposition (CVD) technique. Two CVD diamond detectors have been installed and operated at joint European torus (JET), Culham Science Centre, UK. One of these detectors was a polycrystalline CVD diamond film; about 12 mm 2 area and 30 μm thickness while the second was a monocrystalline film of about 5 mm 2 area and 20 μm thick. Both diamonds were covered with 2 μm of lithium fluoride (LiF) 95% enriched in 6 Li. The LiF layer works as a neutron-to-charged particle converter so these detectors can measure thermalized neutrons. Their output signals were compared to JET total neutron yield monitors (KN1 diagnostic) realized with a set of uranium fission chambers. Despite their small active volumes the diamond detectors were able to measure total neutron yields with good reliability and stability during the recent JET experimental campaign of 2006

  5. The Neutron-Gamma Pulse Shape Discrimination Method for Neutron Flux Detection in the ITER

    International Nuclear Information System (INIS)

    Xu Xiufeng; Li Shiping; Cao Hongrui; Yin Zejie; Yuan Guoliang; Yang Qingwei

    2013-01-01

    The neutron flux monitor (NFM), as a significant diagnostic system in the International Thermonuclear Experimental Reactor (ITER), will play an important role in the readings of a series of key parameters in the fusion reaction process. As the core of the main electronic system of the NFM, the neutron-gamma pulse shape discrimination (n-γ PSD) can distinguish the neutron pulse from the gamma pulse and other disturbing pulses according to the thresholds of the rising time and the amplitude pre-installed on the board, the double timing point CFD method is used to get the rising time of the pulse. The n-γ PSD can provide an accurate neutron count. (magnetically confined plasma)

  6. The potential of detecting intermediate-scale biomass and canopy interception in a coniferous forest using cosmic-ray neutron intensity measurements and neutron transport modeling

    Science.gov (United States)

    Andreasen, M.; Looms, M. C.; Bogena, H. R.; Desilets, D.; Zreda, M. G.; Sonnenborg, T. O.; Jensen, K. H.

    2014-12-01

    The water stored in the various compartments of the terrestrial ecosystem (in snow, canopy interception, soil and litter) controls the exchange of the water and energy between the land surface and the atmosphere. Therefore, measurements of the water stored within these pools are critical for the prediction of e.g. evapotranspiration and groundwater recharge. The detection of cosmic-ray neutron intensity is a novel non-invasive method for the quantification of continuous intermediate-scale soil moisture. The footprint of the cosmic-ray neutron probe is a hemisphere of a few hectometers and subsurface depths of 10-70 cm depending on wetness. The cosmic-ray neutron method offers measurements at a scale between the point-scale measurements and large-scale satellite retrievals. The cosmic-ray neutron intensity is inversely correlated to the hydrogen stored within the footprint. Overall soil moisture represents the largest pool of hydrogen and changes in the soil moisture clearly affect the cosmic-ray neutron signal. However, the neutron intensity is also sensitive to variations of hydrogen in snow, canopy interception and biomass offering the potential to determine water content in such pools from the signal. In this study we tested the potential of determining canopy interception and biomass using cosmic-ray neutron intensity measurements within the framework of the Danish Hydrologic Observatory (HOBE) and the Terrestrial Environmental Observatories (TERENO). Continuous measurements at the ground and the canopy level, along with profile measurements were conducted at towers at forest field sites. Field experiments, including shielding the cosmic-ray neutron probes with cadmium foil (to remove lower-energy neutrons) and measuring reference intensity rates at complete water saturated conditions (on the sea close to the HOBE site), were further conducted to obtain an increased understanding of the physics controlling the cosmic-ray neutron transport and the equipment used

  7. Red Emitting Phenyl-Polysiloxane Based Scintillators for Neutron Detection

    International Nuclear Information System (INIS)

    Dalla Palma, Matteo; Quaranta, Alberto; Marchi, Tommaso; Gramegna, Fabiana; Cinausero, Marco; Carturan, Sara; Collazuol, Gianmaria

    2013-06-01

    In this work, the performances of new red emitting phenyl- substituted polysiloxane based scintillators are described. Three dyes were dispersed in a phenyl-polysiloxane matrix in order to shift the scintillation wavelength towards the red part of the visible spectrum. PPO, Lumogen Violet (BASF) and Lumogen Red (BASF) were mixed to the starting resins with different wt. % and the analysis of the different samples was performed by means of fluorescence measurements. The scintillation yield to alpha particles at the different dye ratios was monitored by detecting either the full spectrum or the red part of the emitted light. Finally, thin red scintillators with selected compositions were coupled to Avalanche Photodiode sensors, which are usually characterized by higher efficiency in the red part of the spectrum. An increased light output of about 17% has been obtained comparing the red scintillators to standard blue emitting systems. Preliminary results on the detection of fast neutrons with the APD-red scintillator system are also presented. (authors)

  8. Recent advances in neutron tomography

    International Nuclear Information System (INIS)

    McFarland, E.; Massachusetts Inst. of Technology, Cambridge, MA; Lanza, R.

    1993-01-01

    Neutron imaging has been shown to be an excellent imaging tool for many nondestructive evaluation applications. Significantly improved contrast over X-ray images is possible for materials commonly found in engineering assemblies. The major limitations have been the neutron source and detection. A low cost, position sensitive neutron tomography detector system has been designed and built based on an electro-optical detector system using a LiF-ZnS scintillator screen and a cooled charge coupled device. This detector system can be used for neutron radiography as well as two and three-dimensional neutron tomography. Calculated performance of the system predicted near-quantum efficiency for position sensitive neutron detection. Experimental data was recently taken using this system at McClellan Air Force Base, Air Logistics Center, Sacramento, CA. With increased availability of low cost neutron sources and advanced image processing, neutron tomography will become an increasingly important nondestructive imaging method

  9. Aerial release of Rhinoncomimus latipes (Coleoptera: Curculionidae) to control Persicaria perfoliata (Polygonaceae) using an unmanned aerial system.

    Science.gov (United States)

    Park, Yong-Lak; Gururajan, Srikanth; Thistle, Harold; Chandran, Rakesh; Reardon, Richard

    2018-01-01

    Rhinoncomimus latipes (Coleoptera: Curculionidae) is a major biological control agent against the invasive plant Persicaria perfoliata. Release of R. latipes is challenging with the current visit-and-hand release approach because P. perfoliata shows a high degree of patchiness in the landscape, possesses recurved barbs on its stems, and often spreads into hard-to-access areas. This 3-year study developed and evaluated unmanned aerial systems (UAS) for precise aerial release of R. latipes to control P. perfoliata. We have developed two UAS (i.e. quad-rotor and tri-rotor) and an aerial release system to disseminate R. latipes. These include pods containing R. latipes and a dispenser to accommodate eight pods. Results of field tests to evaluate the systems showed no significant (P > 0.05) effects on survivorship and feeding ability of R. latipes after aerial release. Our study demonstrates the potential of UAS for precision aerial release of biological control agents to control invasive plants. The aerial deployment systems we have developed, including both pods and a dispenser, are low cost, logistically practical, and effective with no negative effects on aerially released R. latipes. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. T-violation in neutron optics

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Y. [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1996-08-01

    Experimental method to detect a T-odd correlation term in neutron propagation through a nuclear target is discussed. The correlation term is between the neutron spin, neutron momentum and nuclear spin. (author)

  11. Spatially explicit rangeland erosion monitoring using high-resolution digital aerial imagery

    Science.gov (United States)

    Gillan, Jeffrey K.; Karl, Jason W.; Barger, Nichole N.; Elaksher, Ahmed; Duniway, Michael C.

    2016-01-01

    Nearly all of the ecosystem services supported by rangelands, including production of livestock forage, carbon sequestration, and provisioning of clean water, are negatively impacted by soil erosion. Accordingly, monitoring the severity, spatial extent, and rate of soil erosion is essential for long-term sustainable management. Traditional field-based methods of monitoring erosion (sediment traps, erosion pins, and bridges) can be labor intensive and therefore are generally limited in spatial intensity and/or extent. There is a growing effort to monitor natural resources at broad scales, which is driving the need for new soil erosion monitoring tools. One remote-sensing technique that can be used to monitor soil movement is a time series of digital elevation models (DEMs) created using aerial photogrammetry methods. By geographically coregistering the DEMs and subtracting one surface from the other, an estimate of soil elevation change can be created. Such analysis enables spatially explicit quantification and visualization of net soil movement including erosion, deposition, and redistribution. We constructed DEMs (12-cm ground sampling distance) on the basis of aerial photography immediately before and 1 year after a vegetation removal treatment on a 31-ha Piñon-Juniper woodland in southeastern Utah to evaluate the use of aerial photography in detecting soil surface change. On average, we were able to detect surface elevation change of ± 8−9cm and greater, which was sufficient for the large amount of soil movement exhibited on the study area. Detecting more subtle soil erosion could be achieved using the same technique with higher-resolution imagery from lower-flying aircraft such as unmanned aerial vehicles. DEM differencing and process-focused field methods provided complementary information and a more complete assessment of soil loss and movement than any single technique alone. Photogrammetric DEM differencing could be used as a technique to

  12. High-pressure 3He-Xe gas scintillators for simultaneous detection of neutrons and gamma rays over a large energy range

    International Nuclear Information System (INIS)

    Tornow, W.; Esterline, J.H.; Leckey, C.A.; Weisel, G.J.

    2011-01-01

    We report on features of high-pressure 3 He-Xe gas scintillators which have not been sufficiently addressed in the past. Such gas scintillators can be used not only for the efficient detection of low-energy neutrons but at the same time for the detection and identification of γ-rays as well. Furthermore, 3 He-Xe gas scintillators are also very convenient detectors for fast neutrons in the 1-10 MeV energy range and for high-energy γ-rays in the 7-15 MeV energy range. Due to their linear pulse-height response and self calibration via the 3 He(n,p) 3 H reaction, neutron and γ-ray energies can easily be determined in this high-energy regime.

  13. Neutron detection system for extremely low count rate. Calculation, construction and employment in search for 'cold fusion'

    International Nuclear Information System (INIS)

    Mayer, R.E.; Patino, N.E.; Florido, P.C.; Gomez, S.E.; Granada, J.R.; Gillette, V.H.

    1993-01-01

    A 22% efficiency thermal neutron detection system was designed for the investigation of neutron emission from pulsed D 2 O electrolysis. Reasons are discussed for the choice of 10 atm 3 He proportional counters. Optimization calculations carried out through standard reactor code system (AMPX-II) are presented along with construction details and characteristics of the associated electronics. Experimental verification of calculated efficiency and examples of measurements performed with the detector are included. (orig.)

  14. Fast Aerial Video Stitching

    Directory of Open Access Journals (Sweden)

    Jing Li

    2014-10-01

    Full Text Available The highly efficient and robust stitching of aerial video captured by unmanned aerial vehicles (UAVs is a challenging problem in the field of robot vision. Existing commercial image stitching systems have seen success with offline stitching tasks, but they cannot guarantee high-speed performance when dealing with online aerial video sequences. In this paper, we present a novel system which has an unique ability to stitch high-frame rate aerial video at a speed of 150 frames per second (FPS. In addition, rather than using a high-speed vision platform such as FPGA or CUDA, our system is running on a normal personal computer. To achieve this, after the careful comparison of the existing invariant features, we choose the FAST corner and binary descriptor for efficient feature extraction and representation, and present a spatial and temporal coherent filter to fuse the UAV motion information into the feature matching. The proposed filter can remove the majority of feature correspondence outliers and significantly increase the speed of robust feature matching by up to 20 times. To achieve a balance between robustness and efficiency, a dynamic key frame-based stitching framework is used to reduce the accumulation errors. Extensive experiments on challenging UAV datasets demonstrate that our approach can break through the speed limitation and generate an accurate stitching image for aerial video stitching tasks.

  15. Integrated navigation of aerial robot for GPS and GPS-denied environment

    International Nuclear Information System (INIS)

    Suzuki, Satoshi; Min, Hongkyu; Nonami, Kenzo; Wada, Tetsuya

    2016-01-01

    In this study, novel robust navigation system for aerial robot in GPS and GPS- denied environments is proposed. Generally, the aerial robot uses position and velocity information from Global Positioning System (GPS) for guidance and control. However, GPS could not be used in several environments, for example, GPS has huge error near buildings and trees, indoor, and so on. In such GPS-denied environment, Laser Detection and Ranging (LIDER) sensor based navigation system have generally been used. However, LIDER sensor also has an weakness, and it could not be used in the open outdoor environment where GPS could be used. Therefore, it is desired to develop the integrated navigation system which is seamlessly applied to GPS and GPS-denied environments. In this paper, the integrated navigation system for aerial robot using GPS and LIDER is developed. The navigation system is designed based on Extended Kalman Filter, and the effectiveness of the developed system is verified by numerical simulation and experiment. (paper)

  16. Detection of 14 MeV neutrons in high temperature environment up to 500 deg. C using 4H-SiC based diode detector

    Energy Technology Data Exchange (ETDEWEB)

    Szalkai, D.; Klix, A. [KIT- Karlsruhe Institute of Technology, Institute of Neutron Physics and Reactor Technology Karlsruhe 76344 (Germany); Ferone, R.; Issa, F.; Ottaviani, L.; Vervisch, V. [IM2NP, UMR CNRS 7334, Aix-Marseille University, Case 231 -13397 Marseille Cedex 20 (France); Gehre, D. [Inst. for Nucl.- and Particle-Phys., Dresden University of Technology, Dresden 01069 (Germany); Lyoussi, A. [CEA, DEN, Departement d' Etudes des Reacteurs, Service de Physique Experimentale, Laboratoire Dosimetrie Capteurs Instrumentation, 13108 Saint-Paul-lez-Durance (France)

    2015-07-01

    In reactor technology and industrial applications detection of fast and thermal neutrons plays a crucial role in getting relevant information about the reactor environment and neutron yield. The inevitable elevated temperatures make neutron yield measurements problematic. Out of the currently available semiconductors 4H-SiC seems to be the most suitable neutron detector material under extreme conditions due to its high heat and radiation resistance, large band-gap and lower cost of production than in case of competing diamond detectors. In the framework of the European I-Smart project, optimal {sup 4}H-SiC diode geometries were developed for high temperature neutron detection and have been tested with 14 MeV fast neutrons supplied by a deuterium-tritium neutron generator with an average neutron flux of 10{sup 10}-10{sup 11} n/(s*cm{sup 2}) at Neutron Laboratory of the Technical University of Dresden in Germany from room temperatures up to several hundred degrees Celsius. Based on the results of the diode measurements, detector geometries appear to play a crucial role for high temperature measurements up to 500 deg. C. Experimental set-ups using SiC detectors were constructed to simulate operation in the harsh environmental conditions found in the tritium breeding blanket of the ITER fusion reactor, which is planned to be the location of neutron flux characterization measurements in the near future. (authors)

  17. The Production of Low-energy Neutrons in Solar Flares and the Importance of Their Detection in the Inner Heliosphere

    Science.gov (United States)

    Murphy, R. J.; Kozlovsky, B.; Share, G. H.

    2012-09-01

    Neutron detectors on spacecraft in the inner heliosphere can observe the low-energy (computer code incorporating updated neutron-production cross sections for the proton and α-particle reactions with heavier elements at all ion energies, especially at low energies (E ion Mercury has such a detector. We conclude that a full understanding of ion acceleration, transport, and interaction at the Sun requires observation of both neutrons and gamma rays with detectors of comparable sensitivity. We find that the neutron-capture line fluence at 1 AU is comparable to the 1-10 MeV neutron fluence at 0.5 AU, and therefore as effective for revealing low-energy ion acceleration. However, as the distance from the Sun to the neutron detector decreases, the tremendous increase of the low-energy neutron flux allows exploration of ion acceleration in weak flares not previously observable and may reveal acceleration at other sites not previously detected where low-energy neutrons could be the only high-energy signature of ion acceleration. Also, a measurement of the low-energy neutron spectrum will provide important information about the accelerated-ion spectrum that is not available from the capture line fluence measurement alone.

  18. Superconducting Strips: A Concept in Thermal Neutron Detection

    Directory of Open Access Journals (Sweden)

    Vittorio Merlo

    2018-03-01

    Full Text Available In the never-ending quest for better detection efficiency and spatial resolution, various thermal neutron detection schemes have been proposed over the years. Given the presence of some converting layers (typically boron, but 6LiF is also widely used nowadays, the shift towards concepts based on solid state detectors has been steadily increasing and ingenious schemes thereby proposed. However, a trade-off has been always sought for between efficiency and spatial resolution; the problem can be (at least partially circumvented using more elaborate geometries, but this complicates the sample preparation and detector construction. Thus, viable alternatives must be found. What we proposed (and verified experimentally is a detection scheme based on the superconducting to normal transition. More precisely, using a boron converting layer, the α particles (generated in the (n, α reaction crossing a low critical temperature superconducting strip some 10 µm wide have been detected; the process, bolometric in nature and based on the ionization energy loss, is intrinsically fast and the spatial resolution very appealing. In this work, some of the work done so far will be illustrated, together with the principles of the measurement and various related problems. The realization of the detector is based on industrial deposition and photolitographic techniques well within the grasp of a condensed matter laboratory, so that there is substantial room for improvement over our elementary strip geometry. Some of the plans for future work will also be presented, together with some improvements both in the choice of the materials and the geometry of the detector.

  19. Aerial radiological survey of the Princeton Plasma Physics Laboratory and surrounding area, Princeton, New Jersey. Date of survey: August 1980

    International Nuclear Information System (INIS)

    Steiner, P.A.

    1981-08-01

    An aerial radiological survey was conducted during August 1980 to radiometrically survey a 10.4 km 2 area centered on the future site of the Tokamak Fusion Test Reactor (TFTR) located near Princeton, New Jersey. All detected radionuclides were consistent with normal background emitters and no man-made gamma emitters were detected. Average aerial exposure rates normalized to one meter above the ground are presented in the form of an isopleth map

  20. THE PRODUCTION OF LOW-ENERGY NEUTRONS IN SOLAR FLARES AND THE IMPORTANCE OF THEIR DETECTION IN THE INNER HELIOSPHERE

    International Nuclear Information System (INIS)

    Murphy, R. J.; Kozlovsky, B.; Share, G. H.

    2012-01-01

    Neutron detectors on spacecraft in the inner heliosphere can observe the low-energy ( ion –1 ) most important for producing low-energy neutrons from these reactions. We calculate escaping-neutron spectra and neutron-capture line yields from ions propagating in a magnetic loop with various kinetic-energy spectra. This study provides the basis for planning inner-heliospheric missions having a low-energy neutron detector. The MESSENGER spacecraft orbiting Mercury has such a detector. We conclude that a full understanding of ion acceleration, transport, and interaction at the Sun requires observation of both neutrons and gamma rays with detectors of comparable sensitivity. We find that the neutron-capture line fluence at 1 AU is comparable to the 1-10 MeV neutron fluence at 0.5 AU, and therefore as effective for revealing low-energy ion acceleration. However, as the distance from the Sun to the neutron detector decreases, the tremendous increase of the low-energy neutron flux allows exploration of ion acceleration in weak flares not previously observable and may reveal acceleration at other sites not previously detected where low-energy neutrons could be the only high-energy signature of ion acceleration. Also, a measurement of the low-energy neutron spectrum will provide important information about the accelerated-ion spectrum that is not available from the capture line fluence measurement alone.

  1. Neutron and/or gamma radiation detecting system

    International Nuclear Information System (INIS)

    Cerff, K.

    1985-01-01

    A large reception surface for the radiation to be detected is formed on a body of scintillation material (ZnS-AG with B matrix) which is adapted to convert neutron or gamma radiation into light energy. A large number of fiber light conductors is embedded in the body of scintillation material such that the fibers extend essentially parallel and fully across the reception surface of the body of scintillation material. The light energy, upon propagation along the fiber light conductors, is coupled into the conductors along the surface of the fibers which are unisotropic. This arrangement permits the use of unisotropic light conductor systems which provide for a separation of light collecting and light transmitting functions which results in a substantial reduction of light absorption losses during light transmission so that most of the light energy coupled into the fiber light conductors reaches the optoelectronic amplifier coupled to the end of the light conductors. (orig./HP) [de

  2. Computerized tomography using fast neutrons

    International Nuclear Information System (INIS)

    Maier-Schuler, P.

    1992-03-01

    The equipment is transportable and can be used at different neutron sources. CT-images are presented showing that it is possible to get good results by using CT with fast neutrons in non destructive testing. Small defects with high contrasts can be detected as well as larger defects with small differences in material density. Since the neutrons interact with the nuclei and not with the electron density the CT-images contain different information compared with X-ray or γ images. As neutron sources always emit γ-radiation too, this radiation can be detected simultaneously with the neutrons. Therefore one can get a γ CT-image along with the neutron image. For the examination of small samples or objects containing materials with great differences in the linear attenuation coefficients like Al and H 2 thermal neutrons have been used for CT-measurements too. A spatial resolution and a density resolution of 0.1 mm and about 5% respectively could be achieved in the CT-images with fast neutrons and 0.04 mm with thermal neutrons. (orig./HP) [de

  3. Neutron imaging plates

    International Nuclear Information System (INIS)

    Niimura, Nobuo

    1995-01-01

    Imaging plates have been used in the field of medical diagnosis since long ago, but their usefulness was verified as the two-dimensional detector for analyzing the X-ray crystalline structure of high bio molecules like protein, and they have contributed to the remarkable progress in this field. The great contribution is due to the excellent features, such as the detection efficiency of about 100%, the positional resolution smaller than 0.2 mm, the dynamic range of five digits, and the area of several hundreds mm square. The neutron imaging plates have not yet obtained the sufficient results. It was planned to construct the neutron diffractometer for biological matters, and to put imaging plate neutron detectors (IP-ND) to practical use as the detector. The research on the development of IP-NDs was carried out, and the IPp-NDs having the performance comparable with that for X-ray were able to be produced. Imaging plates are the integral type two-dimensional radiation detector using photostimulated luminescence matters, and their principle is explained. As to neutron imaging plates, the converter, neutron detection efficiency and the flight of secondary particles in photo-stimulated luminescence matters are described. As for the present state of development of neutron imaging plates, the IP-NDs made for trial, the dynamic range, the positional resolution, the detection efficiency and the kinds of converters, and the application of IP-NDs are reported. (K.I.)

  4. Integration of aerial imaging and variable-rate technology for site-specific aerial herbicide application

    Science.gov (United States)

    As remote sensing and variable rate technology are becoming more available for aerial applicators, practical methodologies on effective integration of these technologies are needed for site-specific aerial applications of crop production and protection materials. The objectives of this study were to...

  5. An aerial radiological survey of the Davis-Monthan Air Force Base and surrounding area, Tucson, Arizona

    International Nuclear Information System (INIS)

    1995-09-01

    An aerial radiological survey, which was conducted from March 1 to 13, 1995, covered a 51-square-mile (132-square-kilometer) area centered on the Davis-Monthan Air Force Base (DMAFB) in Tucson, Arizona. The results of the survey are reported as contours of bismuth-214 ( 214 Bi) soil concentrations, which are characteristic of natural uranium and its progeny, and as contours of the total terrestrial exposure rates extrapolated to one meter above ground level. All data were scaled and overlaid on an aerial photograph of the DMAFB area. The terrestrial exposure rates varied from 9 to 20 microroentgens per hour at one meter above the ground. Elevated levels of terrestrial radiation due to increased concentrations of 214 Bi (natural uranium) were observed over the Southern Pacific railroad yard and along portions of the railroad track bed areas residing both within and outside the base boundaries. No man-made, gamma ray-emitting radioactive material was observed by the aerial survey. High-purity germanium spectrometer and pressurized ionization chamber measurements at eight locations within the base boundaries were used to verify the integrity of the aerial results. The results of the aerial and ground-based measurements were found to be in agreement. However, the ground-based measurements were able to detect minute quantities of cesium-137 ( 137 Cs) at six of the eight locations examined. The presence of 137 Cs is a remnant of fallout from foreign and domestic atmospheric nuclear weapons testing that occurred in the 1950s and early 1960s. Cesium-137 concentrations varied from 0.1 to 0.3 picocuries per gram, which is below the minimum detectable activity of the aerial system

  6. Detection and Segmentation of Vine Canopy in Ultra-High Spatial Resolution RGB Imagery Obtained from Unmanned Aerial Vehicle (UAV: A Case Study in a Commercial Vineyard

    Directory of Open Access Journals (Sweden)

    Carlos Poblete-Echeverría

    2017-03-01

    Full Text Available The use of Unmanned Aerial Vehicles (UAVs in viticulture permits the capture of aerial Red-Green-Blue (RGB images with an ultra-high spatial resolution. Recent studies have demonstrated that RGB images can be used to monitor spatial variability of vine biophysical parameters. However, for estimating these parameters, accurate and automated segmentation methods are required to extract relevant information from RGB images. Manual segmentation of aerial images is a laborious and time-consuming process. Traditional classification methods have shown satisfactory results in the segmentation of RGB images for diverse applications and surfaces, however, in the case of commercial vineyards, it is necessary to consider some particularities inherent to canopy size in the vertical trellis systems (VSP such as shadow effect and different soil conditions in inter-rows (mixed information of soil and weeds. Therefore, the objective of this study was to compare the performance of four classification methods (K-means, Artificial Neural Networks (ANN, Random Forest (RForest and Spectral Indices (SI to detect canopy in a vineyard trained on VSP. Six flights were carried out from post-flowering to harvest in a commercial vineyard cv. Carménère using a low-cost UAV equipped with a conventional RGB camera. The results show that the ANN and the simple SI method complemented with the Otsu method for thresholding presented the best performance for the detection of the vine canopy with high overall accuracy values for all study days. Spectral indices presented the best performance in the detection of Plant class (Vine canopy with an overall accuracy of around 0.99. However, considering the performance pixel by pixel, the Spectral indices are not able to discriminate between Soil and Shadow class. The best performance in the classification of three classes (Plant, Soil, and Shadow of vineyard RGB images, was obtained when the SI values were used as input data in trained

  7. PANDORA, a large volume low-energy neutron detector with real-time neutron-gamma discrimination

    Science.gov (United States)

    Stuhl, L.; Sasano, M.; Yako, K.; Yasuda, J.; Baba, H.; Ota, S.; Uesaka, T.

    2017-09-01

    The PANDORA (Particle Analyzer Neutron Detector Of Real-time Acquisition) system, which was developed for use in inverse kinematics experiments with unstable isotope beams, is a neutron detector based on a plastic scintillator coupled to a digital readout. PANDORA can be used for any reaction study involving the emission of low energy neutrons (100 keV-10 MeV) where background suppression and an increased signal-to-noise ratio are crucial. The digital readout system provides an opportunity for pulse shape discrimination (PSD) of the detected particles as well as intelligent triggering based on PSD. The figure of merit results of PANDORA are compared to the data in literature. Using PANDORA, 91 ± 1% of all detected neutrons can be separated, while 91 ± 1% of the detected gamma rays can be excluded, reducing the gamma ray background by one order of magnitude.

  8. Phytochemical profile of aerial parts and roots of Wachendorfia thyrsiflora L. studied by LC-DAD-SPE-NMR.

    Science.gov (United States)

    Fang, Jingjing; Kai, Marco; Schneider, Bernd

    2012-09-01

    Hyphenated liquid chromatography - diode array detection - solid phase extraction - nuclear magnetic resonance spectroscopy (LC-DAD-SPE-NMR) was used to investigate the phytochemical composition of aerial parts and roots of Wachendorfia thyrsiflora (Haemodoraceae). Eleven phenylphenalenones and related compounds were identified in the aerial parts of the plant, ten compounds were found in the roots, and four additional compounds occurred in both plant parts. Twelve compounds are previously unreported natural products including five alkaloids (phenylbenzoisoquinolinones) are described here for the first time. In the work presented here, phenylphenalenones with an intact C(19) core structure were found only in the roots. Oxa analogs with a C(18)O scaffold occurred both in the roots and in the aerial plant parts, while most of the aza analogs with a C(18)N scaffold were detected in the aerial plant parts. This distribution pattern suggests that phenylphenalenones form in the roots, then the intact C(19) skeleton is converted into oxa analogs in the roots, translocated into the leaves and further reacted with amines or amino acids to form aza analogs (phenylbenzoisoquinolin-1,6-dione alkaloids). Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Neutron techniques in Safeguards

    International Nuclear Information System (INIS)

    Zucker, M.S.

    1982-01-01

    An essential part of Safeguards is the ability to quantitatively and nondestructively assay those materials with special neutron-interactive properties involved in nuclear industrial or military technology. Neutron techniques have furnished most of the important ways of assaying such materials, which is no surprise since the neutronic properties are what characterizes them. The techniques employed rely on a wide selection of the many methods of neutron generation, detection, and data analysis that have been developed for neutron physics and nuclear science in general

  10. The perturbation of backscattered fast neutrons spectrum caused by the resonances of C, N and O for possible use in pyromaterial detection

    Energy Technology Data Exchange (ETDEWEB)

    Abedin, Ahmad Firdaus Zainal, E-mail: firdaus087@gmail.com; Ibrahim, Noorddin; Zabidi, Noriza Ahmad; Abdullah, Abqari Luthfi Albert [Department of Defence Science, Universiti Pertahanan Nasional Malaysia, Kem Sungai Besi, Kuala Lumpur 57000 (Malaysia)

    2015-04-29

    Neutron radiation is able to determine the signature of land mine detection based on backscattering energy spectrum of landmine. In this study, the Monte Carlo simulation of backscattered fast neutrons was performed on four basic elements of land mine; hydrogen, nitrogen, oxygen and carbon. The moderation of fast neutrons to thermal neutrons and their resonances cross-section between 0.01 eV until 14 MeV were analysed. The neutrons energies were divided into 29 groups and ten million neutrons particles histories were used. The geometries consist of four main components: neutrons source, detectors, landmine and soil. The neutrons source was placed at the origin coordinate and shielded with carbon and polyethylene. Americium/Beryllium neutron source was placed inside lead casing of 1 cm thick and 2.5 cm height. Polyethylene was used to absorb and disperse radiation and was placed outside the lead shield of width 10 cm and height 7 cm. Two detectors were placed between source with distance of 8 cm and radius of 1.9 cm. Detectors of Helium-3 was used for neutron detection as it has high absorption cross section for thermal neutrons. For the anomaly, the physical is in cylinder form with radius of 10 cm and 8.9 cm height. The anomaly is buried 5 cm deep in the bed soil measured 80 cm radius and 53.5 cm height. The results show that the energy spectrum for the four basic elements of landmine with specific pattern which can be used as indication for the presence of landmines.

  11. The perturbation of backscattered fast neutrons spectrum caused by the resonances of C, N and O for possible use in pyromaterial detection

    International Nuclear Information System (INIS)

    Abedin, Ahmad Firdaus Zainal; Ibrahim, Noorddin; Zabidi, Noriza Ahmad; Abdullah, Abqari Luthfi Albert

    2015-01-01

    Neutron radiation is able to determine the signature of land mine detection based on backscattering energy spectrum of landmine. In this study, the Monte Carlo simulation of backscattered fast neutrons was performed on four basic elements of land mine; hydrogen, nitrogen, oxygen and carbon. The moderation of fast neutrons to thermal neutrons and their resonances cross-section between 0.01 eV until 14 MeV were analysed. The neutrons energies were divided into 29 groups and ten million neutrons particles histories were used. The geometries consist of four main components: neutrons source, detectors, landmine and soil. The neutrons source was placed at the origin coordinate and shielded with carbon and polyethylene. Americium/Beryllium neutron source was placed inside lead casing of 1 cm thick and 2.5 cm height. Polyethylene was used to absorb and disperse radiation and was placed outside the lead shield of width 10 cm and height 7 cm. Two detectors were placed between source with distance of 8 cm and radius of 1.9 cm. Detectors of Helium-3 was used for neutron detection as it has high absorption cross section for thermal neutrons. For the anomaly, the physical is in cylinder form with radius of 10 cm and 8.9 cm height. The anomaly is buried 5 cm deep in the bed soil measured 80 cm radius and 53.5 cm height. The results show that the energy spectrum for the four basic elements of landmine with specific pattern which can be used as indication for the presence of landmines

  12. Construction of prototype of on-line analyzer detection system for coal on belt conveyor using neutron activation technique

    International Nuclear Information System (INIS)

    Rony Djokorayono; Agus Cahyono; MP Indarzah; SG Usep; Sukandar

    2015-01-01

    The use of on-line neutron activation technique for coal analysis is proposed as an alternative method for analysis based on sampling technique. Compared to this conventional technique, the on-line neutron activation technique has much shorter time of analysis and more accurate results. The construction of detection system prototype for the on-line analyzer is described in this paper. This on-line analyzer consists of detection system, data acquisition system, and computer console. This detection system comprises several modules, i.e. NaI(Tl) scintillation detector completed with a photomultiplier tube (PMT), pre-amplifier, single channel analyzer (SCA), and analog signal transmitter and pulse counter processor. The construction processes of these four modules include the development of configuration block, lay out, and selection of electronic components. The modules have been integrated and tested. This detection system was tested using radioactive element Zn-65 having energy of 1115.5 keV and activity of 1 μCi. The test results show that the prototype of the on-line analyzer detection system has functioned as expected. (author)

  13. Commissioning of a new photon detection system for charge radii measurements of neutron-deficient Ca

    Science.gov (United States)

    Watkins, J.; Garand, D.; Miller, A. J.; Minamisono, K.; Everett, N.; Powel, R. C.; Maaß, B.; Nörtershäuser, W.; Kalman, C.; Lantis, J.; Kujawa, C.; Mantica, P.

    2017-09-01

    Calcium is unique for its possession of two stable isotopes of ``doubly magic'' nuclei at proton and neutron numbers (Z , N) = (20 , 20) and (20 , 28) . Recent charge radii measurements of neutron-rich calcium isotopes yielded an upward trend beyond current theoretical predictions. At the BECOLA facility at NSCL/MSU, Ca charge radii measurements will be extended to the neutron-deficient regime using collinear laser spectroscopy. A new photon detection system with an ellipsoidal reflector and a compound parabolic concentrator has been commissioned for the experiment. The system increases the signal-to-noise ratio by reducing background, which is critical for the low production rates of the Ca experiment. Details of the system and results of the characterization tests will be discussed. Work supported in part by NSF Grant PHY-15-65546, U.S. DOE Grant DE-NA0002924 and by the Deutsche Forschungsgemeinschaft Grant SFB 1245.

  14. Monocular Vision System for Fixed Altitude Flight of Unmanned Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    Kuo-Lung Huang

    2015-07-01

    Full Text Available The fastest and most economical method of acquiring terrain images is aerial photography. The use of unmanned aerial vehicles (UAVs has been investigated for this task. However, UAVs present a range of challenges such as flight altitude maintenance. This paper reports a method that combines skyline detection with a stereo vision algorithm to enable the flight altitude of UAVs to be maintained. A monocular camera is mounted on the downside of the aircraft’s nose to collect continuous ground images, and the relative altitude is obtained via a stereo vision algorithm from the velocity of the UAV. Image detection is used to obtain terrain images, and to measure the relative altitude from the ground to the UAV. The UAV flight system can be set to fly at a fixed and relatively low altitude to obtain the same resolution of ground images. A forward-looking camera is mounted on the upside of the aircraft’s nose. In combination with the skyline detection algorithm, this helps the aircraft to maintain a stable flight pattern. Experimental results show that the proposed system enables UAVs to obtain terrain images at constant resolution, and to detect the relative altitude along the flight path.

  15. Novel methods for measuring afterglow in developmental scintillators for X-ray and neutron detection

    Science.gov (United States)

    Bartle, C. M.; Edgar, A.; Dixie, L.; Varoy, C.; Piltz, R.; Buchanan, S.; Rutherford, K.

    2011-09-01

    In this paper we discuss two novel methods of measuring afterglow in scintillators. One method is designed for X-ray detection and the other for neutron detection applications. In the first method a commercial fan-beam scanner of basic design similar to those seen at airports is used to deliver a typically 12 ms long X-ray pulse to a scintillator by passing the test equipment through the scanner on the conveyor belt. In the second method the thermal neutron beam from a research reactor is incident on the scintillator. The beam is cut-off in about 1 ms using a 10B impregnated aluminum pneumatic shutter, and the afterglow is recorded on a dual range storage oscilloscope to capture both the steady state intensity and the weak decay. We describe these measurement methods and the results obtained for a range of developmental ceramic and glass scintillators, as well as some standard scintillators such as NaI(Tl), LiI(Eu) and the plastic scintillator NE102A. Preliminary modeling of the afterglow is presented.

  16. Novel methods for measuring afterglow in developmental scintillators for X-ray and neutron detection

    Energy Technology Data Exchange (ETDEWEB)

    Bartle, C.M., E-mail: m.bartle@gns.cri.nz [National Isotope Centre, GNS Science, PO Box 31312, Lower Hutt 5040 (New Zealand); Edgar, A.; Dixie, L.; Varoy, C. [School of Chemistry and Physics, Victoria University of Wellington, Wellington 6140 (New Zealand); Piltz, R. [Bragg Institute, ANSTO, PMB 1, Menai NSW 2234 (Australia); Buchanan, S.; Rutherford, K. [School of Chemistry and Physics, Victoria University of Wellington, Wellington 6140 (New Zealand)

    2011-09-21

    In this paper we discuss two novel methods of measuring afterglow in scintillators. One method is designed for X-ray detection and the other for neutron detection applications. In the first method a commercial fan-beam scanner of basic design similar to those seen at airports is used to deliver a typically 12 ms long X-ray pulse to a scintillator by passing the test equipment through the scanner on the conveyor belt. In the second method the thermal neutron beam from a research reactor is incident on the scintillator. The beam is cut-off in about 1 ms using a {sup 10}B impregnated aluminum pneumatic shutter, and the afterglow is recorded on a dual range storage oscilloscope to capture both the steady state intensity and the weak decay. We describe these measurement methods and the results obtained for a range of developmental ceramic and glass scintillators, as well as some standard scintillators such as NaI(Tl), LiI(Eu) and the plastic scintillator NE102A. Preliminary modeling of the afterglow is presented.

  17. Measurement of neutron detection efficiencies in NaI using the Crystal Ball detector

    Energy Technology Data Exchange (ETDEWEB)

    Stanislaus, T.D.S.; Koetke, D.D. E-mail: donald.koetke@valpo.edu; Allgower, C.; Bekrenev, V.; Benslama, K.; Berger, E.; Briscoe, W.J.; Clajus, M.; Comfort, J.R.; Craig, K.; Gibson, A.; Grosnick, D.; Huber, G.M.; Isenhower, D.; Kasprzyk, T.; Knecht, N.; Koulbardis, A.; Kozlenko, N.; Kruglov, S.; Kycia, T.; Lolos, G.J.; Lopatin, I.; Manley, D.M.; Manweiler, R.; Marusic, A.; McDonald, S.; Nefkens, B.M.K.; Olmsted, J.; Papandreou, Z.; Peaslee, D.; Peterson, R.J.; Phaisangittisakul, N.; Pulver, M.; Ramirez, A.F.; Sadler, M.; Shafi, A.; Slaus, I.; Spinka, H.; Starostin, A.; Staudenmaier, H.M.; Supek, I.; Thoms, J.; Tippens, W.B

    2001-04-21

    We report on a measurement of the neutron detection efficiency in NaI crystals in the Crystal Ball (CB) detector obtained from a study of {pi}{sup -}p{yields}{pi} degree sign n reactions at the Brookhaven National Laboratory AGS. A companion GEANT-based Monte Carlo study has been done to simulate these reactions in the CB, and a comparison with the data is provided.

  18. Detection of buried land mines using back scattered neutron induced γ-ray analysis

    International Nuclear Information System (INIS)

    Aziz, M.; Megahd, R.

    2003-01-01

    The application of nuclear technique to detection buried land mine is examined. MCNP code was used to design a computer model that calculate the back scattered neutron induced γ rays from buried simulate explosive materials. The characteristic γ rays for each isotopes were used to distinguish materials. The advantage of the nuclear technique was discussed. The results were compared with experimental measurements which show good agreement

  19. Error Detection, Factorization and Correction for Multi-View Scene Reconstruction from Aerial Imagery

    Energy Technology Data Exchange (ETDEWEB)

    Hess-Flores, Mauricio [Univ. of California, Davis, CA (United States)

    2011-11-10

    reconstruction pre-processing, where an algorithm detects and discards frames that would lead to inaccurate feature matching, camera pose estimation degeneracies or mathematical instability in structure computation based on a residual error comparison between two different match motion models. The presented algorithms were designed for aerial video but have been proven to work across different scene types and camera motions, and for both real and synthetic scenes.

  20. A high-sensitivity neutron counter and waste-drum counting with the high-sensitivity neutron instrument

    International Nuclear Information System (INIS)

    Hankins, D.E.; Thorngate, J.H.

    1993-04-01

    At Lawrence Livermore National Laboratory (LLNL), a highly sensitive neutron counter was developed that can detect and accurately measure the neutrons from small quantities of plutonium or from other low-level neutron sources. This neutron counter was originally designed to survey waste containers leaving the Plutonium Facility. However, it has proven to be useful in other research applications requiring a high-sensitivity neutron instrument

  1. High-pressure {sup 3}He-Xe gas scintillators for simultaneous detection of neutrons and gamma rays over a large energy range

    Energy Technology Data Exchange (ETDEWEB)

    Tornow, W., E-mail: tornow@tunl.duke.edu [Department of Physics, Duke University, Durham, NC 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Esterline, J.H. [Department of Physics, Duke University, Durham, NC 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Leckey, C.A. [Department of Physics, The College of William and Mary, Williamsburg, VA 23187 (United States); Weisel, G.J. [Department of Physics, Penn State Altoona, Altoona, PA 16601 (United States)

    2011-08-11

    We report on features of high-pressure {sup 3}He-Xe gas scintillators which have not been sufficiently addressed in the past. Such gas scintillators can be used not only for the efficient detection of low-energy neutrons but at the same time for the detection and identification of {gamma}-rays as well. Furthermore, {sup 3}He-Xe gas scintillators are also very convenient detectors for fast neutrons in the 1-10 MeV energy range and for high-energy {gamma}-rays in the 7-15 MeV energy range. Due to their linear pulse-height response and self calibration via the {sup 3}He(n,p){sup 3}H reaction, neutron and {gamma}-ray energies can easily be determined in this high-energy regime.

  2. Detection of Reflection Features in the Neutron Star Low-mass X-Ray Binary Serpens X-1 with NICER

    DEFF Research Database (Denmark)

    Ludlam, R. M.; Miller, J. M.; Arzoumanian, Z.

    2018-01-01

    We present Neutron Star Interior Composition Explorer (NICER) observations of the neutron star (NS) low-mass X-ray binary Serpens X-1 during the early mission phase in 2017. With the high spectral sensitivity and low-energy X-ray passband of NICER, we are able to detect the Fe L line complex in a...

  3. DETEC, a Subprogram for Simulation of the Fast-Neutron Detection Process in a Hydro-Carbonous Plastic Scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, B; Aspelund, O

    1966-07-15

    A description is given of the subprogram DETEC, which for energies below 5 MeV simulates the detection process of a fast-neutron within a large cylindrical plastic scintillator. DETEC has been coded in FORTRAN IV, and consists of a subroutine and a BLOCK-DATA subprogram. The latter is in its present form adapted to the dimensions 5 cm diam. x 8 cm of the scintillating materials NE102 and NE102A. The character of DETEC as a subprogram is manifest through the requirement of a main routine for generation of the following input parameters: 1. fast-neutron position; 2. direction; 3. energy; 4. entrance time; 5. input weight (all referred to the detector surface), and 6. the discriminator threshold. When these are provided, the virtues of DETEC are recording of the detected weight and the time elapsed prior to the detection event. The merits of DETEC are finally demonstrated in two typical applications.

  4. DETEC, a Subprogram for Simulation of the Fast-Neutron Detection Process in a Hydro-Carbonous Plastic Scintillator

    International Nuclear Information System (INIS)

    Gustafsson, B.; Aspelund, O.

    1966-07-01

    A description is given of the subprogram DETEC, which for energies below 5 MeV simulates the detection process of a fast-neutron within a large cylindrical plastic scintillator. DETEC has been coded in FORTRAN IV, and consists of a subroutine and a BLOCK-DATA subprogram. The latter is in its present form adapted to the dimensions 5 cm diam. x 8 cm of the scintillating materials NE102 and NE102A. The character of DETEC as a subprogram is manifest through the requirement of a main routine for generation of the following input parameters: 1. fast-neutron position; 2. direction; 3. energy; 4. entrance time; 5. input weight (all referred to the detector surface), and 6. the discriminator threshold. When these are provided, the virtues of DETEC are recording of the detected weight and the time elapsed prior to the detection event. The merits of DETEC are finally demonstrated in two typical applications

  5. Field validation of 1930s aerial photography: What are we missing?

    Science.gov (United States)

    Aerial photography from the 1930s serves as the earliest synoptic depiction of vegetation cover. We generated a spatially explicit database of shrub (Prosopis velutina) stand structure within two 1.8 ha field plots established in 1932 to address two questions: (1) What are the detection limits of p...

  6. Neutron rich matter, neutron stars, and their crusts

    International Nuclear Information System (INIS)

    Horowitz, C J

    2011-01-01

    Neutron rich matter is at the heart of many fundamental questions in Nuclear Physics and Astrophysics. What are the high density phases of QCD? Where did the chemical elements come from? What is the structure of many compact and energetic objects in the heavens, and what determines their electromagnetic, neutrino, and gravitational-wave radiations? Moreover, neutron rich matter is being studied with an extraordinary variety of new tools such as Facility for Rare Isotope Beams (FRIB) and the Laser Interferometer Gravitational Wave Observatory (LIGO). We describe the Lead Radius Experiment (PREX) that is using parity violation to measure the neutron radius in 208Pb. This has important implications for neutron stars and their crusts. Using large scale molecular dynamics, we model the formation of solids in both white dwarfs and neutron stars. We find neutron star crust to be the strongest material known, some 10 billion times stronger than steel. It can support mountains on rotating neutron stars large enough to generate detectable gravitational waves. Finally, we describe a new equation of state for supernova and neutron star merger simulations based on the Virial expansion at low densities, and large scale relativistic mean field calculations.

  7. Monte Carlo simulation of neutron detection efficiency for NE213 scintillation detector

    International Nuclear Information System (INIS)

    Xi Yinyin; Song Yushou; Chen Zhiqiang; Yang Kun; Zhangsu Yalatu; Liu Xingquan

    2013-01-01

    A NE213 liquid scintillation neutron detector was simulated by using the FLUKA code. The light output of the detector was obtained by transforming the secondary particles energy deposition using Birks formula. According to the measurement threshold, detection efficiencies can be calculated by integrating the light output. The light output, central efficiency and the average efficiency as a function of the front surface radius of the detector, were simulated and the results agreed well with experimental results. (authors)

  8. Aerial radiological survey of the Shoreham Nuclear Power Station and surrounding area Brookhaven, New York

    International Nuclear Information System (INIS)

    1984-03-01

    An aerial radiological survey was performed over the area surrounding the Shoreham Nuclear Power Station during 5 to 9 June 1983. The survey, which covered an area of 338 square kilometers (131 square miles), also encompassed the entire Brookhaven National Laboratory (BNL) facility. The highest radiation exposure rate, over 1 milliroentgen per hour (mR/h), was inferred from data measured directly over the BNL facility. This detected activity was due to the presence of cobalt-58, cobalt-60 and cesium-137, which was consistent with normal BNL operations. With the exception of the BNL facility, the only detected man-made radioactivity was found near a cottage in Moriches, New York and was due to the presence of cobalt-60. For the remainder of the survey area, the inferred radiation exposure rates varied generally from 6 to 12 microroentgens per hour (μR/h). The reported exposure rate values include an estimated cosmic ray contribution of 3.7 μR/h. Ground-based measurements, conducted concurrently with the aerial survey, were compared to the inferred aerial results. Pressurized ionization chamber readings and a group of soil samples were acquired from five locations within the survey area. The exposure rate values obtained from these measurements were consistent with those inferred from the aerial results. 11 references, 12 figures, 3 tables

  9. Monte Carlo Simulation on Compensated Neutron Porosity Logging in LWD With D-T Pulsed Neutron Generator

    International Nuclear Information System (INIS)

    Zhang Feng; Hou Shuang; Jin Xiuyun

    2010-01-01

    The process of neutron interaction induced by D-T pulsed neutron generator and 241 Am-Be source was simulated by using Monte Carlo method. It is concluded that the thermal neutron count descend exponentially as the spacing increasing. The smaller porosity was, the smaller the differences between the two sources were. When the porosity reached 40%, the ratio of thermal neutron count generated by D-T pulsed neutron source was much larger than that generated by 241 Am-Be neutron source, and its distribution range was wider. The near spacing selected was 20-30 cm, and that of far spacing was about 60-70 cm. The detection depth by using D-T pulsed neutron source was almost unchanged under condition of the same sapcing, and the sensitivity of measurement to the formation porosity decreases. The results showed that it can not only guarantee the statistic of count, but also improve detection sensitivity and depth at the same time of increasing spacing. Therefore, 241 Am-Be neutron source can be replaced by D-T neutron tube in LWD tool. (authors)

  10. Thermal neutron equivalent doses assessment around KFUPM neutron source storage area using NTDs

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Jarad, F.; Fazal-ur-Rehman; Al-Haddad, M.N.; Al-Jarrallah, M.I.; Nassar, R

    2002-07-01

    Area passive neutron dosemeters based on nuclear track detectors (NTDs) have been used for 13 days to assess accumulated low doses of thermal neutrons around neutron source storage area of the King Fahd University of Petroleum and Minerals (KFUPM). Moreover, the aim of this study is to check the effectiveness of shielding of the storage area. NTDs were mounted with the boron converter on their surface as one compressed unit. The converter is a lithium tetraborate (Li{sub 2}B{sub 4}O{sub 7}) layer for thermal neutron detection via {sup 10}B(N,{alpha}){sup 7}Li and {sup 6}Li(n,{alpha}){sup 3}H nuclear reactions. The area passive dosemeters were installed on 26 different locations around the source storage area and adjacent rooms. The calibration factor for NTD-based area passive neutron dosemeters was found to be 8.3 alpha tracks.cm{sup -2}.{mu}Sv{sup -1} using active snoopy neutron dosemeters in the KFUPM neutron irradiation facility. The results show the variation of accumulated dose with locations around the storage area. The range of dose rates varied from as low as 40 nSv.h{sup -1} up to 11 {mu}Sv.h{sup -1}. The study indicates that the area passive neutron dosemeter was able to detect accumulated doses as low as 40 nSv.h{sup -1}, which could not be detected with the available active neutron dosemeters. The results of the study also indicate that an additional shielding is required to bring the dose rates down to background level. The present investigation suggests extending this study to find the contribution of doses from fast neutrons around the neutron source storage area using NTDs through proton recoil. The significance of this passive technique is that it is highly sensitive and does not require any electronics or power supplies, as is the case in active systems. (author)

  11. Planning and decision making for aerial robots

    CERN Document Server

    Bestaoui Sebbane, Yasmina

    2014-01-01

    This book provides an introduction to the emerging field of planning and decision making for aerial robots. An aerial robot is the ultimate form of Unmanned Aerial Vehicle, an aircraft endowed with built-in intelligence, requiring no direct human control and able to perform a specific task. It must be able to fly within a partially structured environment, to react and adapt to changing environmental conditions and to accommodate for the uncertainty that exists in the physical world. An aerial robot can be termed as a physical agent that exists and flies in the real 3D world, can sense its environment and act on it to achieve specific goals. So throughout this book, an aerial robot will also be termed as an agent.   Fundamental problems in aerial robotics include the tasks of spatial motion, spatial sensing and spatial reasoning. Reasoning in complex environments represents a difficult problem. The issues specific to spatial reasoning are planning and decision making. Planning deals with the trajectory algori...

  12. A set-up for measuring neutron cross sections and radiation multiplicity from neutron-nucleus interaction

    International Nuclear Information System (INIS)

    Georgiev, G.P.; Ermakov, V.A.; Grigor'ev, Yu.V.

    1988-01-01

    A multiplicity detector of the ''Romashka'' type has been used on the 500 m flight part of the IBR-30 pulsed reactor. The detector consists of 16 independent sections with NaJ(Tl) crystals with a total volume of 36 liters. The geometric efficiency of single-ray detection is ∼ 80%. The gamma-ray to neutron detection efficiency ratio is ≥600 for neutrons with energies below 200 keV. This detector allows one to perform neutron capture and fission cross section measurements and to study gamma-ray multiplicity and resonance selfabsorption effects in the 20 eV-200keV neutron energy range

  13. Improved Fission Neutron Data Base for Active Interrogation of Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Pozzi, Sara; Czirr, J. Bart; Haight, Robert; Kovash, Michael; Tsvetkov, Pavel

    2013-11-06

    This project will develop an innovative neutron detection system for active interrogation measurements. Many active interrogation methods to detect fissionable material are based on the detection of neutrons from fission induced by fast neutrons or high-energy gamma rays. The energy spectrum of the fission neutrons provides data to identify the fissionable isotopes and materials such as shielding between the fissionable material and the detector. The proposed path for the project is as follows. First, the team will develop new neutron detection systems and algorithms by Monte Carlo simulations and bench-top experiments. Next, They will characterize and calibrate detection systems both with monoenergetic and white neutron sources. Finally, high-fidelity measurements of neutron emission from fissions induced by fast neutrons will be performed. Several existing fission chambers containing U-235, Pu-239, U-238, or Th-232 will be used to measure the neutron-induced fission neutron emission spectra. The challenge for making confident measurements is the detection of neutrons in the energy ranges of 0.01 – 1 MeV and above 8 MeV, regions where the basic data on the neutron energy spectrum emitted from fission is least well known. In addition, improvements in the specificity of neutron detectors are required throughout the complete energy range: they must be able to clearly distinguish neutrons from other radiations, in particular gamma rays and cosmic rays. The team believes that all of these challenges can be addressed successfully with emerging technologies under development by this collaboration. In particular, the collaboration will address the area of fission neutron emission spectra for isotopes of interest in the advanced fuel cycle initiative (AFCI).

  14. Eu and Rb co-doped LiCaAlF6 scintillators for neutron detection

    International Nuclear Information System (INIS)

    Yamaji, Akihiro; Yanagida, Takayuki; Kawaguchi, Noriaki; Yokota, Yuui; Fujimoto, Yutaka; Kurosawa, Shunsuke; Pejchal, Jan; Watanabe, Kenichi; Yamazaki, Atsushi; Yoshikawa, Akira

    2013-01-01

    Eu and Rb co-doped LiCaAlF 6 (LiCAF) single crystals with different dopant concentrations were grown by the micro-pulling-down method for neutron detection. Their transmittance spectra showed strong absorption bands at 200–220 and 290–350 nm, and under 241 Am alpha-ray excitation, their radioluminescence spectra exhibited an intense emission peak at 373 nm that was attributed to the Eu 2+ 5d–4f transition. These results were consistent with those for the Rb-free Eu:LiCAF. The highest light yield among the grown crystals was 36,000 ph/n, which was 20% greater than that of the Rb-free crystal. In addition, the neutron-excited scintillation decay times were 650–750 ns slower than that of the Rb-free Eu:LiCAF. -- Highlights: •Eu and Rb co-doped LiCaAlF 6 crystals were grown by the micro-pulling down method. •Transmittance, photoluminescence and radioluminescence spectra were measured. •The light yields and scintillation decays were evaluated under 252 Cf neutron irradiation

  15. NEULAND at R{sup 3}B: Multi-neutron response and resolution of the novel neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    Kresan, Dmytro; Aumann, Thomas [Technische Universitaet Darmstadt, Darmstadt (Germany); Boretzky, Konstanze; Bertini, Denis; Heil, Michael; Rossi, Dominic; Simon, Haik [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany)

    2012-07-01

    NEULAND (New Large Area Neutron Detector) will serve for the detection of fast neutrons (200 - 1000 MeV) in the R3B experiment at the future FAIR. A high detection efficiency (> 90%), a high resolution (down to 20 keV) and a large multi-neutron-hit resolving power ({>=}5 neutrons) are demanded. The detector concept foresees a fully active and highly granular design of plastic scintillators. We present the detector capabilities, based on simulations performed within the FairRoot framework. The relevance of calorimetric properties for the multi-hit recognition is discussed, and exemplarily the performance for specific physics cases is presented.

  16. An aerial radiological survey of the Paducah Gaseous Diffusion Plant and surrounding area, Paducah, Kentucky

    International Nuclear Information System (INIS)

    1992-11-01

    An aerial radiological survey of the Paducah Gaseous Diffusion Plant (PGDP) and surrounding area in Paducah, Kentucky, was conducted during May 15--25, 1990. The purpose of the survey was to measure and document the terrestrial radiological environment at the PGDP and surrounding area for use in effective environmental management and emergency response planning. The aerial survey was flown at an altitude of 61 meters (200 feet) along a series of parallel lines 107 meters (350 feet) apart. The survey encompassed an area of 62 square kilometers (24 square miles), bordered on the north by the Ohio River. The results of the aerial survey are reported as inferred exposure rates at 1 meter above ground level in the form of a gamma radiation contour map. Typical background exposure rates were found to vary from 5 to 12 microroentgens per hour (μR/h). Protactinium-234m, a radioisotope indicative of uranium-238, was detected at several facilities at the PGDR. In support of the aerial survey, ground-based exposure rate and soil sample measurements were obtained at several sites within the survey perimeter. The results of the aerial and ground-based measurements were found to agree within ±15%

  17. Study of neutron rich nuclei by delayed neutron decay using the Tonnerre multidetector; Etude de la decroissance par neutrons retardes de noyaux legers riches en neutrons avec le multidetecteur tonnerre

    Energy Technology Data Exchange (ETDEWEB)

    Timis, C.N

    2001-07-01

    A new detection array for beta delayed neutrons was built. It includes up to 32 plastic scintillation counters 180 cm long located at 120 cm from the target. Neutron energy spectra are measured by time-of-flight in the 300 keV-15 MeV range with good energy resolution. The device was tested with several known nuclei. Its performances are discussed in comparison with Monte Carlo simulations. They very high overall detection efficiency on the TONNERRE array made it possible to study one and two neutron emission of {sup 11}Li. A complete decay scheme was obtained. The {sup 33}Mg and {sup 35}Al beta decays were investigated for the first time by neutron and gamma spectroscopy. Complete decay schemes were established and compared to large scale shell-model calculations. (authors)

  18. A neutron detector for measurement of total neutron production cross sections

    International Nuclear Information System (INIS)

    Sekharan, K.K.; Laumer, H.; Kern, B.D.; Gabbard, F.

    1976-01-01

    A neutron detector has been constructed and calibrated for the accurate measurement of total neutron production cross sections. The detector consists of a polyethylene sphere of 60 cm diameter in which eight 10 BF 3 counters have been installed radially. The relative efficiency of this detector has been determined for average neutron energies from 30 keV to 1.5 MeV by counting neutrons from 7 Li(p, n) 7 Be. By adjusting the radial positions of the BF 3 counters in the polyethylene sphere the efficiency for neutron detection was made nearly constant for this energy range. Measurement of absolute efficiency for the same neutron energy range has been done by counting the neutrons from 51 V(p, n) 51 Cr and 57 Fe(p, n) 57 Co reactions and determining the absolute number of residual nuclei produced during the measurement of neutron yield. Details of absolute efficiency measurements and the use of the detector for determination of neutron production cross sections are given. (Auth.)

  19. The comparison of four neutron sources for Prompt Gamma Neutron Activation Analysis (PGNAA) in vivo detections of boron.

    Science.gov (United States)

    Fantidis, J G; Nicolaou, G E; Potolias, C; Vordos, N; Bandekas, D V

    A Prompt Gamma Ray Neutron Activation Analysis (PGNAA) system, incorporating an isotopic neutron source has been simulated using the MCNPX Monte Carlo code. In order to improve the signal to noise ratio different collimators and a filter were placed between the neutron source and the object. The effect of the positioning of the neutron beam and the detector relative to the object has been studied. In this work the optimisation procedure is demonstrated for boron. Monte Carlo calculations were carried out to compare the performance of the proposed PGNAA system using four different neutron sources ( 241 Am/Be, 252 Cf, 241 Am/B, and DT neutron generator). Among the different systems the 252 Cf neutron based PGNAA system has the best performance.

  20. The Use of Landsat and Aerial Photography for the Assessment of ...

    African Journals Online (AJOL)

    Coastal erosion is a worldwide hazard, the consequences of which can only be mitigated via thorough and efficient monitoring of erosion. This study aimed to employ remote sensing techniques on aerial photographs and Landsat TM/ETM+ imagery for the detection and monitoring of coastal erosion in False Bay, South ...

  1. Report of the strategical geochemical prospect ion in Alferez aerial photo

    International Nuclear Information System (INIS)

    Carambula, M.

    1990-01-01

    In this work are remarked four anomalous zones in the west of the Alferez aerial photo.The best interest of its is the the existence of niobium and the possible existence of enriched mining in rare land. By the geochemical treatment carried out was detected the differentiation of Vallle Chico formation.

  2. Volatile constituents of the aerial parts of Vietnamese Polygonum odoratum L.

    NARCIS (Netherlands)

    Dung, N.X.; Le, Van Hac; Leclercq, P.A.

    1995-01-01

    The volatile compds. isolated from the aerial parts of Vietnamese P. odoratum were analyzed by a combination of high resoln. GC and HR-GC/MS. More than 50 compds. were detected, of which 28 were identified. The main compds. were b-caryophyllene (36.5%), dodecanal (11.4%) and caryophyllene oxide

  3. A theoretical model for predicting neutron fluxes for cyclic Neutron ...

    African Journals Online (AJOL)

    A theoretical model has been developed for prediction of thermal neutron fluxes required for cyclic irradiations of a sample to obtain the same activity previously used for the detection of any radionuclide of interest. The model is suitable for radiotracer production or for long-lived neutron activation products where the ...

  4. Dynamics of the echolocation beam during prey pursuit in aerial hawking bats

    DEFF Research Database (Denmark)

    Jakobsen, Lasse; Olsen, Mads Nedergaard; Surlykke, Annemarie

    2015-01-01

    " than the vespertilionids, but ensonifying objects far ahead suggesting more clutter. Thus, beam broadening is not a fundamental property of the echolocation system. However, based on the results, we hypothesize that increased peripheral detection is crucial to all aerial hawking bats in the final...

  5. Using the Doppler broadened γ line of the {sup 10}B(n,αγ){sup 7}Li reaction for thermal neutron detection

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Galim, Y., E-mail: ybgx3@walla.com [Department of Nuclear Engineering, Ben Gurion University (BGU) of the Negev (Israel); Wengrowicz, U. [Department of Nuclear Engineering, Ben Gurion University (BGU) of the Negev (Israel); NRC-Negev, P.O. Box 9001, Beer-Sheva 84190 (Israel); Moreh, R. [Physics Department, Ben Gurion University (BGU) of the Negev, Beer-Sheva 84105 (Israel); Orion, I. [Department of Nuclear Engineering, Ben Gurion University (BGU) of the Negev (Israel); Raveh, A. [Advanced Coatings Center at Rotem Industries Ltd., MishorYamin D.N. Arava 86800 (Israel)

    2016-02-21

    When a thermal neutron is absorbed by {sup 10}B in the {sup 10}B(n,α){sup 7}Li reaction, there is a chance of 94% that a 478 keV photon be emitted by an excited {sup 7}Li nucleus. This reaction is exothermic with a Q-value of 2.31 MeV and the nuclei are emitted with kinetic energies of E(α)=1.47 MeV and E({sup 7}Li*)=0.84 MeV. This implies that the 478 keV γ line is emitted by a moving {sup 7}Li nucleus and hence is expected to be Doppler broadened. In the present work we suggest to use this broadening of the γ line as a fingerprint for the detection of thermal neutrons using a high resolution gamma spectrometer. We thus developed a Monte Carlo program using a MATLAB code based on a High Purity Germanium (HPGe) detector coupled with a Boron Carbide (B{sub 4}C) sheet to calculate the γ line broadening. Our simulation shows that the FWHM width of the resulting γ line is 12.6 keV, in good agreement with our measurement. Hence the broadened γ line emitted by the {sup 10}B(n,αγ){sup 7}Li reaction and detected by a HPGe detector shows that this method is an effective tool for neutron detection while maintaining good gamma discrimination. - Highlights: • Thermal neutron detection by measuring the Doppler broadened 478 keV γ line from the {sup 10}B(n,αγ){sup 7}Li interaction. • Natural Boron Carbide coupled with a HPGe detector were used in this study. • A mathematical Monte-Carlo model for the suggested detector was introduced. • A calibration tool for the suggested detector is introduced. • Experimental results show that the suggested method can be used for neutron detection.

  6. Investigation of the response characteristics of OSL albedo neutron dosimeters in a 241AmBe reference neutron field

    Science.gov (United States)

    Liamsuwan, T.; Wonglee, S.; Channuie, J.; Esoa, J.; Monthonwattana, S.

    2017-06-01

    The objective of this work was to systematically investigate the response characteristics of optically stimulated luminescence Albedo neutron (OSLN) dosimeters to ensure reliable personal dosimetry service provided by Thailand Institute of Nuclear Technology (TINT). Several batches of InLight® OSLN dosimeters were irradiated in a reference neutron field generated by the in-house 241AmBe neutron irradiator. The OSL signals were typically measured 24 hours after irradiation using the InLight® Auto 200 Reader. Based on known values of delivered neutron dose equivalent, the reading correction factor to be used by the reader was evaluated. Subsequently, batch homogeneity, dose linearity, lower limit of detection and fading of the OSLN dosimeters were examined. Batch homogeneity was evaluated to be 0.12 ± 0.05. The neutron dose response exhibited a linear relationship (R2=0.9974) within the detectable neutron dose equivalent range under test (0.4-3 mSv). For this neutron field, the lower limit of detection was between 0.2 and 0.4 mSv. Over different post-irradiation storage times of up to 180 days, the readings fluctuated within ±5%. Personal dosimetry based on the investigated OSLN dosimeter is considered to be reliable under similar neutron exposure conditions, i.e. similar neutron energy spectra and dose equivalent values.

  7. ANL--LASL workshop on advanced neutron detection systems

    International Nuclear Information System (INIS)

    Kitchens, T.A.

    1979-06-01

    A two-day workshop on advanced neutron detectors and associated electronics was held in Los Alamos on April 5--6, 1979, as a part of the Argonne National Laboratory--Los Alamos Scientific Laboratory Coordination on neutron scattering instrumentation. This report contains an account of the information presented and conclusions drawn at the workshop

  8. Microstructured silicon neutron detectors for security applications

    International Nuclear Information System (INIS)

    Esteban, S; Fleta, C; Jumilla, C; Pellegrini, G; Quirion, D; Rodriguez, J; Lozano, M; Guardiola, C

    2014-01-01

    In this paper we present the design and performance of a perforated thermal neutron silicon detector with a 6 LiF neutron converter. This device was manufactured within the REWARD project workplace whose aim is to develop and enhance technologies for the detection of nuclear and radiological materials. The sensor perforated structure results in a higher efficiency than that obtained with an equivalent planar sensor. The detectors were tested in a thermal neutron beam at the nuclear reactor at the Instituto Superior Técnico in Lisbon and the intrinsic detection efficiency for thermal neutrons and the gamma sensitivity were obtained. The Geant4 Monte Carlo code was used to simulate the experimental conditions, i.e. thermal neutron beam and the whole detector geometry. An intrinsic thermal neutron detection efficiency of 8.6%±0.4% with a discrimination setting of 450 keV was measured

  9. A new neutron counter for fission research

    Energy Technology Data Exchange (ETDEWEB)

    Laurent, B., E-mail: benoit.laurent@cea.fr [CEA, DAM, DIF, F-91297 Arpajon (France); Granier, T.; Bélier, G.; Chatillon, A.; Martin, J.-F.; Taieb, J. [CEA, DAM, DIF, F-91297 Arpajon (France); Hambsch, F.-J. [EC-JRC Institute for Reference Materials and Measurements (IRMM), Retieseweg, 2440 Geel (Belgium); Tovesson, F.; Laptev, A.B.; Haight, R.C.; Nelson, R.O.; O' Donnell, J.M. [Los Alamos Neutron Science Center, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2014-05-01

    A new neutron counter for research experiments on nuclear fission has been developed. This instrument is designed for the detection of prompt fission neutrons within relatively high levels of gamma and neutron background. It is composed of a set of {sup 3}He proportional counters arranged within a block of polyethylene which serves as moderator. The detection properties have been studied by means of Monte Carlo simulations and experiments with radioactive sources. These properties are confirmed by an experiment on neutron-induced fission of {sup 238}U at the WNR facility of the Los Alamos Neutron Science Center during which the mean prompt fission neutron multiplicity, or ν{sup ¯} has been measured from 1 to 20 MeV of incident neutron energy.

  10. Aerial 3D display by use of a 3D-shaped screen with aerial imaging by retro-reflection (AIRR)

    Science.gov (United States)

    Kurokawa, Nao; Ito, Shusei; Yamamoto, Hirotsugu

    2017-06-01

    The purpose of this paper is to realize an aerial 3D display. We design optical system that employs a projector below a retro-reflector and a 3D-shaped screen. A floating 3D image is formed with aerial imaging by retro-reflection (AIRR). Our proposed system is composed of a 3D-shaped screen, a projector, a quarter-wave retarder, a retro-reflector, and a reflective polarizer. Because AIRR forms aerial images that are plane-symmetric of the light sources regarding the reflective polarizer, the shape of the 3D screen is inverted from a desired aerial 3D image. In order to expand viewing angle, the 3D-shaped screen is surrounded by a retro-reflector. In order to separate the aerial image from reflected lights on the retro- reflector surface, the retro-reflector is tilted by 30 degrees. A projector is located below the retro-reflector at the same height of the 3D-shaped screen. The optical axis of the projector is orthogonal to the 3D-shaped screen. Scattered light on the 3D-shaped screen forms the aerial 3D image. In order to demonstrate the proposed optical design, a corner-cube-shaped screen is used for the 3D-shaped screen. Thus, the aerial 3D image is a cube that is floating above the reflective polarizer. For example, an aerial green cube is formed by projecting a calculated image on the 3D-shaped screen. The green cube image is digitally inverted in depth by our developed software. Thus, we have succeeded in forming aerial 3D image with our designed optical system.

  11. Flexible micro flow sensor for micro aerial vehicles

    Science.gov (United States)

    Zhu, Rong; Que, Ruiyi; Liu, Peng

    2017-12-01

    This article summarizes our studies on micro flow sensors fabricated on a flexible polyimide circuit board by a low-cost hybrid process of thin-film deposition and circuit printing. The micro flow sensor has merits of flexibility, structural simplicity, easy integrability with circuits, and good sensing performance. The sensor, which adheres to an object surface, can detect the surface flow around the object. In our study, we install the fabricated micro flow sensors on micro aerial vehicles (MAVs) to detect the surface flow variation around the aircraft wing and deduce the aerodynamic parameters of the MAVs in flight. Wind tunnel experiments using the sensors integrated with the MAVs are also conducted.

  12. Neutron-gamma discrimination of boron loaded plastic scintillator

    International Nuclear Information System (INIS)

    Wang Dong; He Bin; Zhang Quanhu; Wu Chuangxin; Luo Zhonghui

    2010-01-01

    Boron loaded plastic scintillator could detect both fast neutrons thanks to hydrogen and thermal neutrons thanks to 10B. Both reactions have large cross sections, and results in high detection efficiency of incident neutrons. However, similar with other organic scintillators, boron loaded plastic scintillator is sensitive to gamma rays and neutrons. So gamma rays must be rejected from neutrons using their different behavior in the scintillator. In the present research zero crossing method was used to test neutron-gamma discrimination of BC454 boron loaded plastic scintillator. There are three Gaussian peaks in the time spectrum, they are corresponding to gamma rays, fast neutrons and flow neutrons respectively. Conclusion could be made that BC454 could clear discriminate slow neutrons and gamma, but the discrimination performance turns poor as the neutrons' energy becomes larger. (authors)

  13. Hearing in the Juvenile Green Sea Turtle (Chelonia mydas: A Comparison of Underwater and Aerial Hearing Using Auditory Evoked Potentials.

    Directory of Open Access Journals (Sweden)

    Wendy E D Piniak

    Full Text Available Sea turtles spend much of their life in aquatic environments, but critical portions of their life cycle, such as nesting and hatching, occur in terrestrial environments, suggesting that it may be important for them to detect sounds in both air and water. In this study we compared underwater and aerial hearing sensitivities in five juvenile green sea turtles (Chelonia mydas by measuring auditory evoked potential responses to tone pip stimuli. Green sea turtles detected acoustic stimuli in both media, responding to underwater stimuli between 50 and 1600 Hz and aerial stimuli between 50 and 800 Hz, with maximum sensitivity between 200 and 400 Hz underwater and 300 and 400 Hz in air. When underwater and aerial hearing sensitivities were compared in terms of pressure, green sea turtle aerial sound pressure thresholds were lower than underwater thresholds, however they detected a wider range of frequencies underwater. When thresholds were compared in terms of sound intensity, green sea turtle sound intensity level thresholds were 2-39 dB lower underwater particularly at frequencies below 400 Hz. Acoustic stimuli may provide important environmental cues for sea turtles. Further research is needed to determine how sea turtles behaviorally and physiologically respond to sounds in their environment.

  14. An aerial radiological survey of the Portsmouth Gaseous Diffusion Plant and surrounding area

    International Nuclear Information System (INIS)

    Sampoll-Ramirez, G.

    1994-09-01

    An aerial radiological survey was conducted from August 10-16, 1993, over a 78-square-kilometer (30-square-mile) area of the Portsmouth Gaseous Diffusion Plant and surrounding area located near Portsmouth, Ohio. The survey was performed at a nominal altitude of 46 meters (150 feet) with a line spacing of 76 meters (250 feet). A contour map of the terrestrial gamma exposure rate extrapolated to 1 meter above ground level was prepared and overlaid on a set of United States Geological Survey topographic maps of the area and an aerial photograph of the plant. The terrestrial gamma exposure rates varied from about 7 to 14 microroentgens per hour at 1 meter above the ground. Protactinium-234m was observed at six sites within the boundaries of the plant. At a seventh site, only uranium-235 was observed. No other man-made, gamma ray-emitting radioactive material was present in a detectable quantity, either on or off the plant property. Soil sample and pressurized ion chamber measurements were obtained at four locations within the survey boundaries to support the aerial data. The results of the aerial and ground-based measurements were found to agree within ± 7.5%

  15. Deduction of solar neutron fluences from large gamma-ray flares

    International Nuclear Information System (INIS)

    Yoshimori, Masato; Watanabe, Hiroyuki; Takahashi, Kazuyoshi.

    1986-01-01

    Solar neutron fluences from large gamma-ray flares are deduced from accelerated proton spectra and numbers derived from the gamma-ray observations. The deduced solar neutron fluences range from 1 to 200 neutrons cm -2 . The present result indicates a possibility that high sensitivity ground-based neutron monitors can detect solar neutron events, just as detected by the Jungfraujoch and Rome neutron monitors. (author)

  16. An Effective Method for Detecting Potential Woodland Vernal Pools Using High-Resolution LiDAR Data and Aerial Imagery

    Directory of Open Access Journals (Sweden)

    Qiusheng Wu

    2014-11-01

    Full Text Available Effective conservation of woodland vernal pools—important components of regional amphibian diversity and ecosystem services—depends on locating and mapping these pools accurately. Current methods for identifying potential vernal pools are primarily based on visual interpretation and digitization of aerial photographs, with variable accuracy and low repeatability. In this paper, we present an effective and efficient method for detecting and mapping potential vernal pools using stochastic depression analysis with additional geospatial analysis. Our method was designed to take advantage of high-resolution light detection and ranging (LiDAR data, which are becoming increasingly available, though not yet frequently employed in vernal pool studies. We successfully detected more than 2000 potential vernal pools in a ~150 km2 study area in eastern Massachusetts. The accuracy assessment in our study indicated that the commission rates ranged from 2.5% to 6.0%, while the proxy omission rate was 8.2%, rates that are much lower than reported errors of previous vernal pool studies conducted in the northeastern United States. One significant advantage of our semi-automated approach for vernal pool identification is that it may reduce inconsistencies and alleviate repeatability concerns associated with manual photointerpretation methods. Another strength of our strategy is that, in addition to detecting the point-based vernal pool locations for the inventory, the boundaries of vernal pools can be extracted as polygon features to characterize their geometric properties, which are not available in the current statewide vernal pool databases in Massachusetts.

  17. Neutron monitoring for radiological protection

    International Nuclear Information System (INIS)

    Gibson, J.A.B.

    1985-01-01

    Neutron monitoring is a subject of increasing general interest and considerable attention is being paid to the development of improved techniques and methods for neutron monitoring. The Agency, therefore, considered it important to prepare a guide on the subject of neutron monitoring for radiation protection purposes. The present Manual is intended for those persons or authorities in Member States, particularly developing countries, who are responsible for the organization of neutron monitoring programmes and practical neutron monitoring. This Manual consequently, deals with topics such as neutron dosimetry, sources of neutrons and neutron detection as well as field instruments and operational systems used in this context

  18. Fast counting electronics for neutron coincidence counting

    International Nuclear Information System (INIS)

    Swansen, J.E.

    1987-01-01

    This patent describes a high speed circuit for accurate neutron coincidence counting comprising: neutron detecting means for providing an above-threshold signal upon neutron detection; amplifying means inputted by the neutron detecting means for providing a pulse output having a pulse width of about 0.5 microseconds upon the input of each above threshold signal; digital processing means inputted by the pulse output of the amplifying means for generating a pulse responsive to each input pulse from the amplifying means and having a pulse width of about 50 nanoseconds effective for processing an expected neutron event rate of about 1 Mpps: pulse stretching means inputted by the digital processing means for producing a pulse having a pulse width of several milliseconds for each pulse received form the digital processing means; visual indicating means inputted by the pulse stretching means for producing a visual output for each pulse received from the digital processing means; and derandomizing means effective to receive the 50 ns neutron event pulses from the digital processing means for storage at a rate up to the neutron event rate of 1 Mpps and having first counter means for storing the input neutron event pulses

  19. Performance of an RPM based on Gd-lined plastic scintillator for neutron and gamma detection [ANIMMA--2015-IO-372

    Energy Technology Data Exchange (ETDEWEB)

    Fanchini, Erica [INFN/ANN and SCINTILLA groups, Isituto Nazionale di Fisica Nucleare - INFN (Italy)

    2015-07-01

    A Radiation Portal Monitor (RPM) was developed by the Istituto Nazionale di Fisica Nucleare (INFN) and Ansaldo Nucleare (ANN) within the FP7 SCINTILLA European project. The system was designed to detect both gamma and neutron radiation with a single technology. It is conceived to monitor vehicle and cargo containers in transits across borders or ports, to find radioactive elements and to avoid illegal trafficking of strategic nuclear materials. The system is based on a {sup 3}He-free neutron detection technology using plastic scintillators coupled to Gadolinium to detect and discriminate gamma from neutron signals. During the 3 years of the SCINTILLA project the construction and test of the first two prototypes drove the definition of the final layout of a full RPM system consisting of two twin pillars as a portal for vehicle and cargo container scan. A custom System Control Software (SCS) manages the electronics of the RPM, the ancillary devices and the data analysis. The combination of the detector layout and of the software functionalities enables both to distinguish neutrons and gammas and to identify the energy range of a detected gamma source. The system was initially characterized via static tests with gamma and neutron sources in the INFN laboratory. These measurements were used to calibrate the detector, evaluate the response of the single pillars as well as of the full system, and optimize the RPM configuration and discrimination algorithm. During this phase, specific tests were performed to study the stability over time of the system, monitoring the measured the neutron and gamma count rates over periods of several weeks. The results allow us to demonstrate the reliability and robustness of the RPM. In a second time the RPM performance was studied via dynamic tests performed during the SCINTILLA test and benchmark campaigns. These measurements took place in the JRC ITRAP+10 facility at Ispra (Varese-Italy). The laboratory is equipped with an experimental

  20. Neutron dosimetry; Dosimetria de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Fratin, Luciano

    1993-12-31

    A neutron irradiation facility was designed and built in order to establish a procedure for calibrating neutron monitors and dosemeters. A 185 GBq {sup 241} Am Be source of known is used as a reference source. The irradiation facility using this source in the air provides neutron dose rates between 9 nSv s{sup -1} and 0,5 {sup {mu}}Sv s{sup -1}. A calibrated 50 nSv s{sup -1} thermal neutron field is obtained by using a specially designed paraffin block in conjunction with the {sup 241} Am Be source. A Bonner multisphere spectrometer was calibrated, using a procedure based on three methods proposed by international standards. The unfold {sup 241} Am Be neutron spectrum was determined from the Bonner spheres data and resulted in a good agreement with expected values for fluence rate, dose rate and mean energy. A dosimetric system based on the electrochemical etching of CR-39 was developed for personal dosimetry. The dosemeter badge using a (n,{alpha}) converter, the etching chamber and high frequency power supply were designed and built specially for this project. The electrochemical etching (ECE) parameters used were: a 6N KOH solution, 59 deg C, 20 kV{sub pp} cm{sup -1}, 2,0 kHz, 3 hours of ECE for thermal and intermediate neutrons and 6 hours for fast neutrons. The calibration factors for thermal, intermediate and fast neutrons were determined for this personal dosemeter. The sensitivities determined for the developed dosimetric system were (1,46{+-} 0,09) 10{sup 4} tracks cm{sup -2} mSv{sup -1} for thermal neutrons, (9{+-}3) 10{sup 2} tracks cm{sup -2} mSV{sup -1} for intermediate neutrons and (26{+-}4) tracks cm{sup -2} mSv{sup -1} for fast neutrons. The lower and upper limits of detection were respectively 0,002 mSv and 0,6 mSv for thermal neutrons, 0,04 mSv and 8 mSv for intermediate neutrons and 1 mSv and 12 mSv for fast neutrons. In view of the 1990`s ICRP recommendations, it is possible to conclude that the personal dosemeter described in this work is

  1. Neutron dosimetry; Dosimetria de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Fratin, Luciano

    1994-12-31

    A neutron irradiation facility was designed and built in order to establish a procedure for calibrating neutron monitors and dosemeters. A 185 GBq {sup 241} Am Be source of known is used as a reference source. The irradiation facility using this source in the air provides neutron dose rates between 9 nSv s{sup -1} and 0,5 {sup {mu}}Sv s{sup -1}. A calibrated 50 nSv s{sup -1} thermal neutron field is obtained by using a specially designed paraffin block in conjunction with the {sup 241} Am Be source. A Bonner multisphere spectrometer was calibrated, using a procedure based on three methods proposed by international standards. The unfold {sup 241} Am Be neutron spectrum was determined from the Bonner spheres data and resulted in a good agreement with expected values for fluence rate, dose rate and mean energy. A dosimetric system based on the electrochemical etching of CR-39 was developed for personal dosimetry. The dosemeter badge using a (n,{alpha}) converter, the etching chamber and high frequency power supply were designed and built specially for this project. The electrochemical etching (ECE) parameters used were: a 6N KOH solution, 59 deg C, 20 kV{sub pp} cm{sup -1}, 2,0 kHz, 3 hours of ECE for thermal and intermediate neutrons and 6 hours for fast neutrons. The calibration factors for thermal, intermediate and fast neutrons were determined for this personal dosemeter. The sensitivities determined for the developed dosimetric system were (1,46{+-} 0,09) 10{sup 4} tracks cm{sup -2} mSv{sup -1} for thermal neutrons, (9{+-}3) 10{sup 2} tracks cm{sup -2} mSV{sup -1} for intermediate neutrons and (26{+-}4) tracks cm{sup -2} mSv{sup -1} for fast neutrons. The lower and upper limits of detection were respectively 0,002 mSv and 0,6 mSv for thermal neutrons, 0,04 mSv and 8 mSv for intermediate neutrons and 1 mSv and 12 mSv for fast neutrons. In view of the 1990`s ICRP recommendations, it is possible to conclude that the personal dosemeter described in this work is

  2. Fast neutron detection using solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Vilela, E.C.

    1990-01-01

    CR-39 and Makrofol-E solid state nuclear track detectors were studied aiming their application to fast neutron detection. Optimum etching conditions of those two kinds of materials were determined the followings - the Makrofol-E detector is electrochemically etched in a PEW solution (15% KOH, 40% ethilic alcohol and 45% water) for 2 h., with an applied electric field strength of 30 kV/cm (r/m/s/) and frequency of 2 kHz, at room temperature; - the CR-39 detector is chemically pre-etched during 1 h in a 20% (w/v) NaOH solution at 70 sup(0)C, followed by 13 h electrochemical etch using the same solution at room temperature and an electric field strength of 30 kV/cm (r.m.s.) and frequency of 2 kHz.(E.G.)

  3. Detection of Materials Used for Improvised Explosive Devices Employing D-T (14 MeV) Neutron Source

    International Nuclear Information System (INIS)

    Shyam, Anurag; Sharma, Surender Kumar; Das, Basanta

    2010-01-01

    There is an increased use of improvised explosive devices (IED), especially for human targets. One of the substances used in these devices is ammonium nitrate. Since this IED substance also contains elements - hydrogen (H), carbon (C), nitrogen (N), oxygen (O). The elemental density (of H, C, O, and N) and elemental density ratio (C/O, N/O, H/N etc) can be used to differentiate it from other substances. Neutrons based techniques are one of the methods for non-destructive these elemental characterization. For our experiments we are using two sealed neutron tubes. First tubes can produce 10 8 (maximum) D-T neutrons in ∼0.8 μs pulse and 100 (maximum) pulses can be generated per second. Second tube can produce (maximum) 10 10 D-T neutrons/s. The neutron output can be pulsed. Pulses of 1.5 μs duration and pulse repetition rate of 10 Hz to 10 kHz can be obtained. D-T neutrons pulses are impinged on ammonium nitrate samples (0.5 to 1.5 kg) and resultant gamma rays (prompt and due to activation) are recorded using sodium iodide (NaI) and bismuth germanium orthosilicate (BGO) scintillation detectors. To facilitate recording of high count rate a 2 GS/s high speed digitizer with large on board memory and high transfer rate has been used (instead of conventional multi channel analyzer). Preliminary results and analysis will be presented at the conference. To further refine the technique we are also developing a D-T neutron generator with associated particle detection facility. For this system we have already developed a penning ion source and a 140 kV battery operated SMPS. (author)

  4. Study of general digital DC/pulse neutron generator

    International Nuclear Information System (INIS)

    Li Gang; Liu Zheng; Li Wensheng; Liu Hanlin; Liu Linmao

    2014-01-01

    Preliminary experimental results of digital DC/pulse neutron generator based on a ceramic drive-in target neutron tube for explosives detection are presented. The generator is a portable and on-off neutron source, and it can be controlled by remote PC. The generator can produce DC neutrons, pulse neutrons and multiple pulse neutrons. The maximum neutron yield is about 2 × 10"8 n/s, the minimum pulse width is 10 μs and the maximum pulse frequency is 10 kHz. Neutron yield and time-spectrum is measured in China Academy of Engineering Physics. The generator is suitable for explosive detection with PFTNA technology, and it can be used in other areas such as reactor measurements and on-line industrial test systems. (authors)

  5. Neutron storage

    International Nuclear Information System (INIS)

    Strelkov, A.V.

    2004-01-01

    The report is devoted to neutron storage (NS) and describes the history of experiments on the NS development. Great attention is paid to ultracold neutron (UCN) storage. The experiments on the UCN generation, transport, spectroscopy, storage and detection are described. Experiments on searching the UCN electric-dipole moment and electric charge are continued. Possible using of UCN for studying the nanoparticles is discussed [ru

  6. Aerial measurements in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Winkelmann, I.; Thomas, M.; Buchroeder, H.; Brummer, C. [Federal Office for Radiation Protection, Berlin (Germany); Carloff, G. [German Federal Border Police, Grenzschutz-Fliegergruppe, Sankt Augustin (Germany)

    1997-12-31

    Aerial measurements were performed to determine the {sup 137}Cs soil contamination in a given region to detect unknown radiation sources and to assess their activity. For these measurements a computerized gamma ray spectrometer, equipped with a high purity Ge-semiconductor detector and a 12 l volume Nal(Tl)-detector was used. HPGe-detector measurements from different altitudes over area I were done to test and re-calibrate the aerial measuring system. The known {sup 137}Cs contamination of (50.7 {+-} 5.2) kBq m{sup -2} could be confirmed by the measured value of (57 {+-} 10) kBq m{sup -2}. the Nal(Tl)-detector was re-calibrated at that site for further {sup 137}Cs measurements over area II. The area II was surveyed from an altitude of about 70 m and at a parallel line distance of 150 m at an flying speed of 100 km h{sup -1} to determine the {sup 137}Cs soil contamination. The measuring time was two seconds for the Nal(Tl)-detector. For the spectra measured with the HPGe-detector, a measuring time of 30 s each was chosen. From the Nal(Tl)-measurements, a mean {sup 137}Cs value of (60 {+-} 20) kBq m{sup -2} was determined with a maximum value of 90 kBq m{sup -2}. The corresponding values measured by HPGe-detector were (70 {+-} 20) kBq m{sup -2} and 120 kBq m{sup -2}, respectively. For the evaluation of the HPGe-spectra a depth distribution parameter {alpha}/{rho} = (0.44 {+-} 0.21) cm{sup 2} g{sup -1} for {sup 137}Cs was used measured from soil samples. From data measured with the Nal(Tl)-detector during flights over area III, three{sup 60}Co-sources and one {sup 137}Cs source could be detected, localized and their activity assessed. By HPGe-detector measurements, only scattered {sup 192}lr radiation was registered. (au).

  7. Aerial measurements in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Winkelmann, I; Thomas, M; Buchroeder, H; Brummer, C [Federal Office for Radiation Protection, Berlin (Germany); Carloff, G [German Federal Border Police, Grenzschutz-Fliegergruppe, Sankt Augustin (Germany)

    1998-12-31

    Aerial measurements were performed to determine the {sup 137}Cs soil contamination in a given region to detect unknown radiation sources and to assess their activity. For these measurements a computerized gamma ray spectrometer, equipped with a high purity Ge-semiconductor detector and a 12 l volume Nal(Tl)-detector was used. HPGe-detector measurements from different altitudes over area I were done to test and re-calibrate the aerial measuring system. The known {sup 137}Cs contamination of (50.7 {+-} 5.2) kBq m{sup -2} could be confirmed by the measured value of (57 {+-} 10) kBq m{sup -2}. the Nal(Tl)-detector was re-calibrated at that site for further {sup 137}Cs measurements over area II. The area II was surveyed from an altitude of about 70 m and at a parallel line distance of 150 m at an flying speed of 100 km h{sup -1} to determine the {sup 137}Cs soil contamination. The measuring time was two seconds for the Nal(Tl)-detector. For the spectra measured with the HPGe-detector, a measuring time of 30 s each was chosen. From the Nal(Tl)-measurements, a mean {sup 137}Cs value of (60 {+-} 20) kBq m{sup -2} was determined with a maximum value of 90 kBq m{sup -2}. The corresponding values measured by HPGe-detector were (70 {+-} 20) kBq m{sup -2} and 120 kBq m{sup -2}, respectively. For the evaluation of the HPGe-spectra a depth distribution parameter {alpha}/{rho} = (0.44 {+-} 0.21) cm{sup 2} g{sup -1} for {sup 137}Cs was used measured from soil samples. From data measured with the Nal(Tl)-detector during flights over area III, three{sup 60}Co-sources and one {sup 137}Cs source could be detected, localized and their activity assessed. By HPGe-detector measurements, only scattered {sup 192}lr radiation was registered. (au).

  8. {sup 6}LiF oleic acid capped nanoparticles entrapment in siloxanes for thermal neutron detection

    Energy Technology Data Exchange (ETDEWEB)

    Carturan, S., E-mail: sara.carturan@lnl.infn.it; Maggioni, G., E-mail: Gianluigi.maggioni@lnl.infn.it [Department of Physics and Astronomy, University of Padova, Via Marzolo 8, 35100 Padova (Italy); INFN, Laboratori Nazionali di Legnaro, Viale dell’Università 2, 35020 Legnaro (Italy); Marchi, T.; Gramegna, F.; Cinausero, M. [INFN, Laboratori Nazionali di Legnaro, Viale dell’Università 2, 35020 Legnaro (Italy); Quaranta, A. [Department of Industrial Engineering, University of Trento, Trento (Italy); INFN, Tifpa, Trento (Italy); Palma, M. Dalla [INFN, Laboratori Nazionali di Legnaro, Viale dell’Università 2, 35020 Legnaro (Italy); Department of Industrial Engineering, University of Trento, Trento (Italy)

    2016-07-07

    The good light output of siloxane based scintillators as displayed under γ-rays and α particles has been exploited here to obtain clear and reliable response toward thermal neutrons. Sensitization towards thermal neutrons has been pursued by adding {sup 6}LiF, in form of nanoparticles. Aiming at the enhancement of compatibility between the inorganic nanoparticles and the low polarity, siloxane based surrounding medium, oleic acid-capped {sup 6}LiF nanoparticles have been synthesized by thermal decomposition of Li trifluoroacetate. Thin pellets siloxane scintillator maintained their optical transmittance up to weight load of 2% of {sup 6}Li. Thin samples with increasing {sup 6}Li concentration and thicker ones with fixed {sup 6}Li amount have been prepared and tested with several sources (α, γ-rays, moderated neutrons). Light output as high as 80% of EJ212 under α irradiation was measured with thin samples, and negligible changes have been observed as a result of {sup 6}LiF addition. In case of thick samples, severe light loss has been observed, as induced by opacity. Nevertheless, thermal neutrons detection has been assessed and the data have been compared with GS20, based on Li glass, taken as a reference material.

  9. Aerial shaking performance of wet Anna's hummingbirds

    Science.gov (United States)

    Ortega-Jimenez, Victor Manuel; Dudley, Robert

    2012-01-01

    External wetting poses problems of immediate heat loss and long-term pathogen growth for vertebrates. Beyond these risks, the locomotor ability of smaller animals, and particularly of fliers, may be impaired by water adhering to the body. Here, we report on the remarkable ability of hummingbirds to perform rapid shakes in order to expel water from their plumage even while in flight. Kinematic performance of aerial versus non-aerial shakes (i.e. those performed while perching) was compared. Oscillation frequencies of the head, body and tail were lower in aerial shakes. Tangential speeds and accelerations of the trunk and tail were roughly similar in aerial and non-aerial shakes, but values for head motions in air were twice as high when compared with shakes while perching. Azimuthal angular amplitudes for both aerial and non-aerial shakes reached values greater than 180° for the head, greater than 45° for the body trunk and slightly greater than 90° for the tail and wings. Using a feather on an oscillating disc to mimic shaking motions, we found that bending increased average speeds by up to 36 per cent and accelerations of the feather tip up to fourfold relative to a hypothetical rigid feather. Feather flexibility may help to enhance shedding of water and reduce body oscillations during shaking. PMID:22072447

  10. 1944 AAF 661 Aerial Photo Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial photographs are retrievable on a frame by frame basis. The aerial photo inventory contains imagery from various sources that are now archived at the Earth...

  11. 1943 AAF 332 Aerial Photo Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial photographs are retrievable on a frame by frame basis. The aerial photo inventory contains imagery from various sources that are now archived at the Earth...

  12. 1944 AAF 547 Aerial Photo Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial photographs are retrievable on a frame by frame basis. The aerial photo inventory contains imagery from various sources that are now archived at the Earth...

  13. 1944 AAF 649 Aerial Photo Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial photographs are retrievable on a frame by frame basis. The aerial photo inventory contains imagery from various sources that are now archived at the Earth...

  14. Integrated neutron/gamma-ray portal monitors for nuclear safeguards

    International Nuclear Information System (INIS)

    Fehlau, P.E.

    1994-01-01

    Radiation monitoring is one nuclear-safeguards measure used to protect against the theft of special nuclear materials (SNM) by pedestrians departing from SNM access areas. The integrated neutron/gamma-ray portal monitor is an ideal radiation monitor for the task when the SNM is plutonium. It achieves high sensitivity for detecting both bare and shielded plutonium by combining two types of radiation detector. One type is a neutron-chamber detector, comprising a large, hollow, neutron moderator that contains a single thermal-neutron proportional counter. The entrance wall of each chamber is thin to admit slow neutrons from plutonium contained in a moderating shield, while the other walls are thick to moderate fast neutrons from bare or lead-shielded plutonium so that they can be detected. The other type of detector is a plastic scintillator that is primarily for detecting gamma rays from small amounts of unshielded plutonium. The two types of detector are easily integrated by making scintillators part of the thick back wall of each neutron chamber or by inserting them into each chamber void. The authors compared the influence of the two methods of integration on detecting neutrons and gamma rays, and they examined the effectiveness of other design factors and the methods for signal detection as well

  15. System to detect contraband in cargo containers using fast and slow neutron irradiation and collimated gamma detectors

    International Nuclear Information System (INIS)

    Smith, R.C.; Hurwitz, M.J.; Tran, K.C.

    1995-01-01

    We have produced a product design concept for an automatic, shipping-container inspection system to be used for detection of contraband, including illicit drugs, and for trade regulation enforcement via shipping manifest confirmation. Using nondestructive nuclear techniques the system can see deeply into the cargo and generate a 3-D spatial image of an entire container's contents automatically and in real time. A pulsed, sealed-tube, neutron generator is employed. The approach divides a container into numerous, small, volume elements that are individually interrogated using concurrent fast and slow neutron activation and gamma detection by collimated scintillators. We have designed, built, and operated a laboratory apparatus which has demonstrated the attractiveness of this approach. Experimental data were found to agree with design expectations derived from computer modeling. By combining selected element signatures and phenomenological measures, together with discrimination algorithms, we have demonstrated that a full-scale inspection system would need from less than 5 min to 30 min (depending on cargo type) to process an 8 ftx8 ftx40 ft container in order to detect hidden contraband. (orig.)

  16. Assessing the performance of aerial image point cloud and spectral metrics in predicting boreal forest canopy cover

    Science.gov (United States)

    Melin, M.; Korhonen, L.; Kukkonen, M.; Packalen, P.

    2017-07-01

    Canopy cover (CC) is a variable used to describe the status of forests and forested habitats, but also the variable used primarily to define what counts as a forest. The estimation of CC has relied heavily on remote sensing with past studies focusing on satellite imagery as well as Airborne Laser Scanning (ALS) using light detection and ranging (lidar). Of these, ALS has been proven highly accurate, because the fraction of pulses penetrating the canopy represents a direct measurement of canopy gap percentage. However, the methods of photogrammetry can be applied to produce point clouds fairly similar to airborne lidar data from aerial images. Currently there is little information about how well such point clouds measure canopy density and gaps. The aim of this study was to assess the suitability of aerial image point clouds for CC estimation and compare the results with those obtained using spectral data from aerial images and Landsat 5. First, we modeled CC for n = 1149 lidar plots using field-measured CCs and lidar data. Next, this data was split into five subsets in north-south direction (y-coordinate). Finally, four CC models (AerialSpectral, AerialPointcloud, AerialCombi (spectral + pointcloud) and Landsat) were created and they were used to predict new CC values to the lidar plots, subset by subset, using five-fold cross validation. The Landsat and AerialSpectral models performed with RMSEs of 13.8% and 12.4%, respectively. AerialPointcloud model reached an RMSE of 10.3%, which was further improved by the inclusion of spectral data; RMSE of the AerialCombi model was 9.3%. We noticed that the aerial image point clouds managed to describe only the outermost layer of the canopy and missed the details in lower canopy, which was resulted in weak characterization of the total CC variation, especially in the tails of the data.

  17. A neutron detector for measurement of total neutron production cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Sekharan, K K; Laumer, H; Kern, B D; Gabbard, F [Kentucky Univ., Lexington (USA). Dept. of Physics and Astronomy

    1976-03-01

    A neutron detector has been constructed and calibrated for the accurate measurement of total neutron production cross sections. The detector consists of a polyethylene sphere of 60 cm diameter in which eight /sup 10/BF/sub 3/ counters have been installed radially. The relative efficiency of this detector has been determined for average neutron energies from 30 keV to 1.5 MeV by counting neutrons from /sup 7/Li(p, n)/sup 7/Be. By adjusting the radial positions of the BF/sub 3/ counters in the polyethylene sphere the efficiency for neutron detection was made nearly constant for this energy range. Measurement of absolute efficiency for the same neutron energy range has been done by counting the neutrons from /sup 51/V(p, n)/sup 51/Cr and /sup 57/Fe(p, n)/sup 57/Co reactions and determining the absolute number of residual nuclei produced during the measurement of neutron yield. Details of absolute efficiency measurements and the use of the detector for determination of neutron production cross sections are given.

  18. Surveying Drifting Icebergs and Ice Islands: Deterioration Detection and Mass Estimation with Aerial Photogrammetry and Laser Scanning

    Directory of Open Access Journals (Sweden)

    Anna J. Crawford

    2018-04-01

    Full Text Available Icebergs and ice islands (large, tabular icebergs are challenging targets to survey due to their size, mobility, remote locations, and potentially difficult environmental conditions. Here, we assess the precision and utility of aerial photography surveying with structure-from-motion multi-view stereo photogrammetry processing (SfM and vessel-based terrestrial laser scanning (TLS for iceberg deterioration detection and mass estimation. For both techniques, we determine the minimum amount of change required to reliably resolve iceberg deterioration, the deterioration detection threshold (DDT, using triplicate surveys of two iceberg survey targets. We also calculate their relative uncertainties for iceberg mass estimation. The quality of deployed Global Positioning System (GPS units that were used for drift correction and scale assignment was a major determinant of point cloud precision. When dual-frequency GPS receivers were deployed, DDT values of 2.5 and 0.40 m were calculated for the TLS and SfM point clouds, respectively. In contrast, values of 6.6 and 3.4 m were calculated when tracking beacons with lower-quality GPS were used. The SfM dataset was also more precise when used for iceberg mass estimation, and we recommend further development of this technique for iceberg-related end-uses.

  19. CaF{sub 2}(Eu{sup 2+}):LiF - Structural and spectroscopic properties of a new system for neutron detection

    Energy Technology Data Exchange (ETDEWEB)

    Trojan-Piegza, Joanna, E-mail: jtp@eto.wchuwr.p [Department of Manufacturing Engineering, Boston University, 15 St. Mary' s Street, Boston, MA 02215 (United States); Faculty of Chemistry, Wroclaw University, 14 F. Joliot-Curie Street, Wroclaw 50-383 (Poland); Glodo, Jarek [RMD Inc., Watertown, MA (United States); Sarin, Vinod Kumar [Department of Manufacturing Engineering, Boston University, 15 St. Mary' s Street, Boston, MA 02215 (United States)

    2010-02-15

    A series of composites of CaF{sub 2}(Eu{sup 2+}) and LiF with different Ca/Li ratios were fabricated via liquid phase consolidation. Luminescent properties of these samples were investigated. Radioluminescence shows the typical Eu{sup 2+} blue emission in all the compositions. The energy spectra measured under gamma and neutron irradiation indicates that the most promising composition for neutron detection is the eutectic.

  20. Simulation study of a hydrostat design for detecting underground leakage of water supply using neutron backscattering

    International Nuclear Information System (INIS)

    Kurosawa, Tadahiro; Nakamura, Takashi; Suzuki, Takashi; Okano, Yasuhiro; Chisaka, Haruo

    1998-01-01

    We have embarked upon the development of a new detection method for underground water leakage using a neutron backscattering system. We have estimated the performance capabilities of such a system using Monte Carlo simulation. It is indicated that a leak which results in 40% water content in the surrounding soils could be detected at depths of up to 40 cm from the surface to the center of the source of leakage. This new detection system could be useful as a hydrostat of underground water supply in noisy areas such as Tokyo, in place of presently-used hydrostats which are based on detection of changes in sound