WorldWideScience

Sample records for aerated lung volume

  1. Spatiotemporal Aeration and Lung Injury Patterns Are Influenced by the First Inflation Strategy at Birth.

    Science.gov (United States)

    Tingay, David G; Rajapaksa, Anushi; Zonneveld, C Elroy; Black, Don; Perkins, Elizabeth J; Adler, Andy; Grychtol, Bartłomiej; Lavizzari, Anna; Frerichs, Inéz; Zahra, Valerie A; Davis, Peter G

    2016-02-01

    Ineffective aeration during the first inflations at birth creates regional aeration and ventilation defects, initiating injurious pathways. This study aimed to compare a sustained first inflation at birth or dynamic end-expiratory supported recruitment during tidal inflations against ventilation without intentional recruitment on gas exchange, lung mechanics, spatiotemporal regional aeration and tidal ventilation, and regional lung injury in preterm lambs. Lambs (127 ± 2 d gestation), instrumented at birth, were ventilated for 60 minutes from birth with either lung-protective positive pressure ventilation (control) or as per control after either an initial 30 seconds of 40 cm H2O sustained inflation (SI) or an initial stepwise end-expiratory pressure recruitment maneuver during tidal inflations (duration 180 s; open lung ventilation [OLV]). At study completion, molecular markers of lung injury were analyzed. The initial use of an OLV maneuver, but not SI, at birth resulted in improved lung compliance, oxygenation, end-expiratory lung volume, and reduced ventilatory needs compared with control, persisting throughout the study. These changes were due to more uniform inter- and intrasubject gravity-dependent spatiotemporal patterns of aeration (measured using electrical impedance tomography). Spatial distribution of tidal ventilation was more stable after either recruitment maneuver. All strategies caused regional lung injury patterns that mirrored associated regional volume states. Irrespective of strategy, spatiotemporal volume loss was consistently associated with up-regulation of early growth response-1 expression. Our results show that mechanical and molecular consequences of lung aeration at birth are not simply related to rapidity of fluid clearance; they are also related to spatiotemporal pressure-volume interactions within the lung during inflation and deflation.

  2. Automatic system for quantification and visualization of lung aeration on chest computed tomography images: the Lung Image System Analysis - LISA

    Energy Technology Data Exchange (ETDEWEB)

    Felix, John Hebert da Silva; Cortez, Paulo Cesar, E-mail: jhsfelix@gmail.co [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Engenharia de Teleinformatica; Holanda, Marcelo Alcantara [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Hospital Universitario Walter Cantidio. Dept. de Medicina Clinica

    2010-12-15

    High Resolution Computed Tomography (HRCT) is the exam of choice for the diagnostic evaluation of lung parenchyma diseases. There is an increasing interest for computational systems able to automatically analyze the radiological densities of the lungs in CT images. The main objective of this study is to present a system for the automatic quantification and visualization of the lung aeration in HRCT images of different degrees of aeration, called Lung Image System Analysis (LISA). The secondary objective is to compare LISA to the Osiris system and also to specific algorithm lung segmentation (ALS), on the accuracy of the lungs segmentation. The LISA system automatically extracts the following image attributes: lungs perimeter, cross sectional area, volume, the radiological densities histograms, the mean lung density (MLD) in Hounsfield units (HU), the relative area of the lungs with voxels with density values lower than -950 HU (RA950) and the 15th percentile of the least density voxels (PERC15). Furthermore, LISA has a colored mask algorithm that applies pseudo-colors to the lung parenchyma according to the pre-defined radiological density chosen by the system user. The lungs segmentations of 102 images of 8 healthy volunteers and 141 images of 11 patients with Chronic Obstructive Pulmonary Disease (COPD) were compared on the accuracy and concordance among the three methods. The LISA was more effective on lungs segmentation than the other two methods. LISA's color mask tool improves the spatial visualization of the degrees of lung aeration and the various attributes of the image that can be extracted may help physicians and researchers to better assess lung aeration both quantitatively and qualitatively. LISA may have important clinical and research applications on the assessment of global and regional lung aeration and therefore deserves further developments and validation studies. (author)

  3. Respiratory compliance but not gas exchange correlates with changes in lung aeration after a recruitment maneuver: an experimental study in pigs with saline lavage lung injury

    Science.gov (United States)

    Henzler, Dietrich; Pelosi, Paolo; Dembinski, Rolf; Ullmann, Annette; Mahnken, Andreas H; Rossaint, Rolf; Kuhlen, Ralf

    2005-01-01

    Introduction Atelectasis is a common finding in acute lung injury, leading to increased shunt and hypoxemia. Current treatment strategies aim to recruit alveoli for gas exchange. Improvement in oxygenation is commonly used to detect recruitment, although the assumption that gas exchange parameters adequately represent the mechanical process of alveolar opening has not been proven so far. The aim of this study was to investigate whether commonly used measures of lung mechanics better detect lung tissue collapse and changes in lung aeration after a recruitment maneuver as compared to measures of gas exchange Methods In eight anesthetized and mechanically ventilated pigs, acute lung injury was induced by saline lavage and a recruitment maneuver was performed by inflating the lungs three times with a pressure of 45 cmH2O for 40 s with a constant positive end-expiratory pressure of 10 cmH2O. The association of gas exchange and lung mechanics parameters with the amount and the changes in aerated and nonaerated lung volumes induced by this specific recruitment maneuver was investigated by multi slice CT scan analysis of the whole lung. Results Nonaerated lung correlated with shunt fraction (r = 0.68) and respiratory system compliance (r = 0.59). The arterial partial oxygen pressure (PaO2) and the respiratory system compliance correlated with poorly aerated lung volume (r = 0.57 and 0.72, respectively). The recruitment maneuver caused a decrease in nonaerated lung volume, an increase in normally and poorly aerated lung, but no change in the distribution of a tidal breath to differently aerated lung volumes. The fractional changes in PaO2, arterial partial carbon dioxide pressure (PaCO2) and venous admixture after the recruitment maneuver did not correlate with the changes in lung volumes. Alveolar recruitment correlated only with changes in the plateau pressure (r = 0.89), respiratory system compliance (r = 0.82) and parameters obtained from the pressure-volume curve

  4. Bronchoscopic lung volume reduction

    Directory of Open Access Journals (Sweden)

    M. I. Polkey

    2006-12-01

    Full Text Available Surgical lung volume reduction can improve exercise performance and forced expiratory volume in one second in patients with emphysema. However, the procedure is associated with a 5% mortality rate and a nonresponse rate of 25%. Accordingly, interest has focused on alternative ways of reducing lung volume. Two principle approaches are used: collapse of the diseased area using blockers placed endobronchially and the creation of extrapulmonary pathways. Preliminary data from the former approach suggest that it can be successful and that the magnitude of success is related to reduction in dynamic hyperinflation.

  5. Expired CO2 levels indicate degree of lung aeration at birth.

    Directory of Open Access Journals (Sweden)

    Stuart B Hooper

    Full Text Available As neonatal resuscitation critically depends upon lung aeration at birth, knowledge of the progression of this process is required to guide ongoing care. We investigated whether expired CO2 (ECO2 levels indicate the degree of lung aeration immediately after birth in two animal models and in preterm infants. Lambs were delivered by caesarean section and ventilated from birth. In lambs, ECO2 levels were significantly (p10 mmHg 28 (median (21-36 seconds before the heart rate increased above 100 beats per minute. These data demonstrate that ECO2 levels can indicate the relative degree of lung aeration after birth and can be used to clinically assess ventilation in the immediate newborn period.

  6. Longitudinal micro-CT provides biomarkers of lung disease that can be used to assess the effect of therapy in preclinical mouse models, and reveal compensatory changes in lung volume.

    Science.gov (United States)

    Vande Velde, Greetje; Poelmans, Jennifer; De Langhe, Ellen; Hillen, Amy; Vanoirbeek, Jeroen; Himmelreich, Uwe; Lories, Rik J

    2016-01-01

    In vivo lung micro-computed tomography (micro-CT) is being increasingly embraced in pulmonary research because it provides longitudinal information on dynamic disease processes in a field in which ex vivo assessment of experimental disease models is still the gold standard. To optimize the quantitative monitoring of progression and therapy of lung diseases, we evaluated longitudinal changes in four different micro-CT-derived biomarkers [aerated lung volume, lung tissue (including lesions) volume, total lung volume and mean lung density], describing normal development, lung infections, inflammation, fibrosis and therapy. Free-breathing mice underwent micro-CT before and repeatedly after induction of lung disease (bleomycin-induced fibrosis, invasive pulmonary aspergillosis, pulmonary cryptococcosis) and therapy (imatinib). The four lung biomarkers were quantified. After the last time point, we performed pulmonary function tests and isolated the lungs for histology. None of the biomarkers remained stable during longitudinal follow-up of adult healthy mouse lungs, implying that biomarkers should be compared with age-matched controls upon intervention. Early inflammation and progressive fibrosis led to a substantial increase in total lung volume, which affects the interpretation of aerated lung volume, tissue volume and mean lung density measures. Upon treatment of fibrotic lung disease, the improvement in aerated lung volume and function was not accompanied by a normalization of the increased total lung volume. Significantly enlarged lungs were also present in models of rapidly and slowly progressing lung infections. The data suggest that total lung volume changes could partly reflect a compensatory mechanism that occurs during disease progression in mice. Our findings underscore the importance of quantifying total lung volume in addition to aerated lung or lesion volumes to accurately document growth and potential compensatory mechanisms in mouse models of lung

  7. Control of the aeration volume in an activated sludge process for nitrogen removal.

    Science.gov (United States)

    Samuelsson, P; Carlsson, B

    2002-01-01

    Biological nitrogen removal in an activated sludge process is obtained by two biological processes; nitrification and denitrification. Nitrifying bacteria need dissolved oxygen and a sufficiently large aeration volume for converting ammonium to nitrate in the wastewater. The objective of this paper is to develop an automatic control strategy for adjusting the aerated volume so that the effluent ammonium level can be kept close to a desired value despite major changes in the influent load. The strategy is based on applying exact linearization of the IAWO Activated Sludge Process Model No 1. Simulation results show that the suggested controller effectively attenuates process disturbances.

  8. Dynamic measures of regional lung air volume using phase contrast x-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kitchen, M J; Lewis, R A; Morgan, M J; Siu, K K W; Habib, A [School of Physics, Monash University, Melbourne VIC 3800 (Australia); Wallace, M J; Siew, M L; Hooper, S B [Department of Physiology, Monash University, Melbourne VIC 3800 (Australia); Fouras, A [Division of Biological Engineering, Monash University, Melbourne VIC 3800 (Australia); Yagi, N; Uesugi, K [SPring-8/JASRI, Sayo, Hyogo 679-5198 (Japan)], E-mail: Marcus.Kitchen@sci.monash.edu.au

    2008-11-07

    Phase contrast x-ray imaging can provide detailed images of lung morphology with sufficient spatial resolution to observe the terminal airways (alveoli). We demonstrate that quantitative functional and anatomical imaging of lung ventilation can be achieved in vivo using two-dimensional phase contrast x-ray images with high contrast and spatial resolution (<100 {mu}m) in near real time. Changes in lung air volume as small as 25 {mu}L were calculated from the images of term and preterm rabbit pup lungs (n = 28) using a single-image phase retrieval algorithm. Comparisons with plethysmography and computed tomography showed that the technique provided an accurate and robust method of measuring total lung air volumes. Furthermore, regional ventilation was measured by partitioning the phase contrast images, which revealed differences in aeration for different ventilation strategies.

  9. FCT (functional computed tomography) evaluation of the lung volumes at different PEEP (positive-end expiratory pressure) ventilation pattern, in mechanical ventilated patients

    Energy Technology Data Exchange (ETDEWEB)

    Papi, M.G.; Di Segni, R.; Mazzetti, G.; Staffa, F. [Dept. of Radiology, S. Giovanni HS, Rome (Italy); Conforto, F.; Calimici, R.; Salvi, A. [Dept. of Anesthesiology, S. Giovanni HS, Rome (Italy); Matteucci, G. [Dept. of Pneumology, S. Giovanni HS, Rome (Italy)

    2007-06-15

    Purpose To evaluate with FCT (functional computed tomography) total lung volume and fractional lung volumes at different PEEP (positive end expiratory pressure) values in acute mechanically ventilated patients. Methods Nine ICU (intensive care unity) patients (1 lung pneumonia, 2 polytrauma, 2 sepsis, 3 brain surgery, 1 pulmonary embolism); mean age 48 {+-} 15 years, 6 male, 3 female; GE 16 MDCT scan was performed with acquisition from apex to diaphragma in seven seca at different PEEP values. Raw CT data were analysed by an advantage workstation to obtain volume density masks and histograms of both lungs and each lung and these density ranges were applied: - 1000 - 950 = hyper-ventilated lung, -900 - 650 well aerated lung, -950 - 500 all aerated lung, -500 + 200 lung tissue. Total and fractional lung volumes, Hounsfield unit (HU) were calculated and compared at different PEEP values (0, 5, 10, 15 cm H{sub 2}O). In four patients lung volumes were compared between the more and the less involved lung at increased PEEP. Statistic analysis: comparison means-medians tests. Results Data calculated at five PEEP showed unexpected decrease of total lung volume and increase of lung density (HU); proportionally no significant improvement of oxigenation. (orig.)

  10. Influence of inoculum density and aeration volume on biomass and bioactive compound production in bulb-type bubble bioreactor cultures of Eleutherococcus koreanum Nakai.

    Science.gov (United States)

    Lee, Eun-Jung; Moh, Sang-Hyun; Paek, Kee-Yoeup

    2011-07-01

    This study deals with the effects of initial inoculum density and aeration volume on biomass and bioactive compound production in adventitious roots of Eleutherococcus koreanum Nakai in bulb-type bubble bioreactors (3-L capacity). While the fresh and dry weights of the roots increased with increasing inoculum density, the highest percentage dry weight and accumulation of total target compounds (eleutheroside B and E, chlorogenic acid, total phenolics, and flavonoids) were noted at an inoculum density of 5.0 g L(-1). Poor aeration volume (0.05 vvm) stunted root growth, and high aeration volume (0.4 vvm) caused physiological disorders. Moreover, an inoculum density of 5.0 g L(-1) and an aeration volume of 0.1 vvm resulted in the highest concentration of total target compounds and least root death. Such optimization of culture conditions will be beneficial for the large-scale production of E. koreanum biomass and bioactive compounds.

  11. Sequential unilateral lung volume reduction for emphysema - Stretching the benefit.

    Science.gov (United States)

    Khorramnia, Sadie; Holsworth, Lynda; Mestitz, Hugh; Westall, Glen P; Williams, Trevor J; Gooi, Julian H; Snell, Gregory I

    2017-01-01

    Bronchoscopic Lung Volume Reduction (BLVR) and Surgical Lung Volume Reduction (SLVR) and are two different approaches used to remodel severely emphysematous lungs to improve lung function and quality-of-life. We present a case initially referred for lung transplantation, where sequential left upper lobe BLVR and 7 years later right upper lobe SLVR, providing enduring physiological and functional improvement. The potential for sustained benefit via sequential unilateral lung volume reduction is under-appreciated.

  12. Update on Nonsurgical Lung Volume Reduction Procedures

    Directory of Open Access Journals (Sweden)

    J. Alberto Neder

    2016-01-01

    Full Text Available There has been a surge of interest in endoscopic lung volume reduction (ELVR strategies for advanced COPD. Valve implants, coil implants, biological LVR (BioLVR, bronchial thermal vapour ablation, and airway stents are used to induce lung deflation with the ultimate goal of improving respiratory mechanics and chronic dyspnea. Patients presenting with severe air trapping (e.g., inspiratory capacity/total lung capacity (TLC 225% predicted and thoracic hyperinflation (TLC > 150% predicted have the greatest potential to derive benefit from ELVR procedures. Pre-LVRS or ELVR assessment should ideally include cardiological evaluation, high resolution CT scan, ventilation and perfusion scintigraphy, full pulmonary function tests, and cardiopulmonary exercise testing. ELVR procedures are currently available in selected Canadian research centers as part of ethically approved clinical trials. If a decision is made to offer an ELVR procedure, one-way valves are the first option in the presence of complete lobar exclusion and no significant collateral ventilation. When the fissure is not complete, when collateral ventilation is evident in heterogeneous emphysema or when emphysema is homogeneous, coil implants or BioLVR (in that order are the next logical alternatives.

  13. October 2015 Phoenix pulmonary journal club: lung volume reduction

    Directory of Open Access Journals (Sweden)

    Mathew M

    2015-11-01

    Full Text Available No abstract available. Article truncated at 150 words. The October 2015 pulmonary journal club focused on the review of older studies evaluating lung volume reduction surgery and how this has transitioned toward the development of non-surgical modes of lung volume reduction. The physiology behind dyspnea in chronic obstructive pulmonary disease (COPD is a complex process. One of the proposed mechanisms has been hyperinflation associated with air trapping. In the mid 1990s studies by Cooper and Peterson (1 offered a promising approach in which lung volume reduction (LVR could improve ventilatory mechanics and improve dyspnea. As the procedure gained more popularity, additional larger scale trials were performed to support its validity. We reviewed 2 studies looking at lung volume reduction. The first was "The Effect of Lung Volume Reduction Surgery In Patients With Severe Emphysema” (2 . This was a smaller, randomized controlled trial (RCT that looked at 2 groups of 24 patients. Once group received LVR while the ...

  14. VARIATION OF LUNG DEPOSITION OF MICRON SIZE PARTICLES WITH LUNG VOLUME AND BREATHING PATTERN

    Science.gov (United States)

    Lung volume and breathing pattern are the source of inter-and intra-subject variability of lung deposition of inhaled particles. Controlling these factors may help optimize delivery of aerosol medicine to the target site within the lung. In the present study we measured total lu...

  15. MR assessment of fetal lung development using lung volumes and signal intensities

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Thomas M.; Michel, Sven C.A.; Marincek, Borut [Institute of Diagnostic Radiology, University Hospital Zurich, Raemistrasse 100, 8091, Zurich (Switzerland); Rake, Annett; Wisser, Josef [Department of Obstetrics, University Hospital Zurich, Raemistrasse 100, 8091, Zurich (Switzerland); Seifert, Burkhardt [Department of Biostatistics, University of Zurich, Sumatrastrasse 30, 8006, Zurich (Switzerland); Kubik-Huch, Rahel A. [Institute of Diagnostic Radiology, University Hospital Zurich, Raemistrasse 100, 8091, Zurich (Switzerland); Institute of Radiology, Kantonsspital Baden, 5404, Baden (Switzerland)

    2004-06-01

    The purpose of this study was to evaluate the monitoring and diagnostic potential of MRI in fetal lung development and disease using lung volume and signal intensity changes through gestation. Thirty-five healthy fetuses (22-42 weeks) were examined on a 1.5- T MR system using sagittal T2w single-shot fast spin-echo imaging (TR indefinite, TE 90 ms, slice thickness/gap 3-5/0 mm, FOV 26-40 cm, NEX 0.5). Fetal body and lung were segmented manually and volumes calculated. Signal intensities (SI) of fetal lung and three reference values were measured on the section best displaying the lung. Regions of interests were defined by including the maximal organ area possible. The following SI ratios were generated: lung/liver, lung/amniotic fluid, lung/muscle, liver/fluid and liver/muscle. Volumes and ratios were correlated with gestational age. Data from seven fetuses with pulmonary pathology were compared with these normative values. Absolute lung volume varied from 12.3 to 143.5 cm{sup 3} in correlation with gestational age (P<0.001); lung volume relative to total body volume ranged from 1.6 to 5.0%, decreasing with gestational age (P=0.001). (orig.)

  16. Radiation dose-volume effects in the lung

    DEFF Research Database (Denmark)

    Marks, Lawrence B; Bentzen, Soren M; Deasy, Joseph O;

    2010-01-01

    The three-dimensional dose, volume, and outcome data for lung are reviewed in detail. The rate of symptomatic pneumonitis is related to many dosimetric parameters, and there are no evident threshold "tolerance dose-volume" levels. There are strong volume and fractionation effects....

  17. Effect of increases in lung volume on clearance of aerosolized solute from human lungs

    Energy Technology Data Exchange (ETDEWEB)

    Marks, J.D.; Luce, J.M.; Lazar, N.M.; Wu, J.N.; Lipavsky, A.; Murray, J.F.

    1985-10-01

    To study the effect of increases in lung volume on solute uptake, we measured clearance of /sup 99m/Tc-diethylenetriaminepentaacetic acid (Tc-DTPA) at different lung volumes in 19 healthy humans. Seven subjects inhaled aerosols (1 micron activity median aerodynamic diam) at ambient pressure; clearance and functional residual capacity (FRC) were measured at ambient pressure (control) and at increased lung volume produced by positive pressure (12 cmH2O continuous positive airway pressure (CPAP)) or negative pressure (voluntary breathing). Six different subjects inhaled aerosol at ambient pressure; clearance and FRC were measured at ambient pressure and CPAP of 6, 12, and 18 cmH2O pressure. Six additional subjects inhaled aerosol at ambient pressure or at CPAP of 12 cmH2O; clearance and FRC were determined at CPAP of 12 cmH2O. According to the results, Tc-DTPA clearance from human lungs is accelerated exponentially by increases in lung volume, this effect occurs whether lung volume is increased by positive or negative pressure breathing, and the effect is the same whether lung volume is increased during or after aerosol administration. The effect of lung volume must be recognized when interpreting the results of this method.

  18. High spatiotemporal resolution measurement of regional lung air volumes from 2D phase contrast x-ray images

    Energy Technology Data Exchange (ETDEWEB)

    Leong, Andrew F. T.; Islam, M. Sirajul; Kitchen, Marcus J. [School of Physics, Monash University, Victoria 3800 (Australia); Fouras, Andreas [Division of Biological Engineering, Monash University, Victoria 3800 (Australia); Wallace, Megan J.; Hooper, Stuart B. [Ritchie Centre and Department of Obstetrics and Gynaecology, Monash Institute of Medical Research, Monash University, Victoria 3168 (Australia)

    2013-04-15

    Purpose: Described herein is a new technique for measuring regional lung air volumes from two-dimensional propagation-based phase contrast x-ray (PBI) images at very high spatial and temporal resolution. Phase contrast dramatically increases lung visibility and the outlined volumetric reconstruction technique quantifies dynamic changes in respiratory function. These methods can be used for assessing pulmonary disease and injury and for optimizing mechanical ventilation techniques for preterm infants using animal models. Methods: The volumetric reconstruction combines the algorithms of temporal subtraction and single image phase retrieval (SIPR) to isolate the image of the lungs from the thoracic cage in order to measure regional lung air volumes. The SIPR algorithm was used to recover the change in projected thickness of the lungs on a pixel-by-pixel basis (pixel dimensions {approx}16.2 {mu}m). The technique has been validated using numerical simulation and compared results of measuring regional lung air volumes with and without the use of temporal subtraction for removing the thoracic cage. To test this approach, a series of PBI images of newborn rabbit pups mechanically ventilated at different frequencies was employed. Results: Regional lung air volumes measured from PBI images of newborn rabbit pups showed on average an improvement of at least 20% in 16% of pixels within the lungs in comparison to that measured without the use of temporal subtraction. The majority of pixels that showed an improvement was found to be in regions occupied by bone. Applying the volumetric technique to sequences of PBI images of newborn rabbit pups, it is shown that lung aeration at birth can be highly heterogeneous. Conclusions: This paper presents an image segmentation technique based on temporal subtraction that has successfully been used to isolate the lungs from PBI chest images, allowing the change in lung air volume to be measured over regions as small as the pixel size. Using

  19. High lung volume increases stress failure in pulmonary capillaries

    Science.gov (United States)

    Fu, Z.; Costello, M. L.; Tsukimoto, K.; Prediletto, R.; Elliott, A. R.; Mathieu-Costello, O.; West, J. B.

    1992-01-01

    We previously showed that when pulmonary capillaries in anesthetized rabbits are exposed to a transmural pressure (Ptm) of approximately 40 mmHg, stress failure of the walls occurs with disruption of the capillary endothelium, alveolar epithelium, or sometimes all layers. The present study was designed to test whether stress failure occurred more frequently at high than at low lung volumes for the same Ptm. Lungs of anesthetized rabbits were inflated to a transpulmonary pressure of 20 cmH2O, perfused with autologous blood at 32.5 or 2.5 cmH2O Ptm, and fixed by intravascular perfusion. Samples were examined by both transmission and scanning electron microscopy. The results were compared with those of a previous study in which the lung was inflated to a transpulmonary pressure of 5 cmH2O. There was a large increase in the frequency of stress failure of the capillary walls at the higher lung volume. For example, at 32.5 cmH2O Ptm, the number of endothelial breaks per millimeter cell lining was 7.1 +/- 2.2 at the high lung volume compared with 0.7 +/- 0.4 at the low lung volume. The corresponding values for epithelium were 8.5 +/- 1.6 and 0.9 +/- 0.6. Both differences were significant (P less than 0.05). At 52.5 cmH2O Ptm, the results for endothelium were 20.7 +/- 7.6 (high volume) and 7.1 +/- 2.1 (low volume), and the corresponding results for epithelium were 32.8 +/- 11.9 and 11.4 +/- 3.7. At 32.5 cmH2O Ptm, the thickness of the blood-gas barrier was greater at the higher lung volume, consistent with the development of more interstitial edema. Ballooning of the epithelium caused by accumulation of edema fluid between the epithelial cell and its basement membrane was seen at 32.5 and 52.5 cmH2O Ptm. At high lung volume, the breaks tended to be narrower and fewer were oriented perpendicular to the axis of the pulmonary capillaries than at low lung volumes. Transmission and scanning electron microscopy measurements agreed well. Our findings provide a physiological

  20. Horse-shoe lung-rediscovered via volume rendered images

    Directory of Open Access Journals (Sweden)

    Alpa Bharati

    2013-01-01

    Full Text Available Horseshoe lung, usually associated with pulmonary venolobar syndrome, is a rare congenital anomaly involving the fusion of the postero-basal segments of the right and left lungs across the midline. The fused segment or the isthmus lies posterior to the pericardium and anterior to the aorta.The associated pulmonary venolobar syndrome involves anomalous systemic arterial supply and anomlaous systemic venous drainage of the right lung. With the advent of MDCT imaging, we can diagnose this rare condition as well all its associated anomalies non-invasively. Volume-rendered techniques greatly simplify the complex anatomy and provide easy understanding of the same.

  1. [INFLUENCE OF LIPOSUCTION OF LARGE VOLUME ON SYSTEMIC AND LUNG CIRCULATION, OXIGENATED LUNG FUNCTION].

    Science.gov (United States)

    Nikolaeva, I P; Kapranova, A S; Popova, V B; Lodyagin, A N; Frolova, T A

    2015-01-01

    The authors measured the changes of hemodynamics in 72 patients. It was also estimated a blood oxygenation and volume of liquid sectors of the organism in different degree of obesity before and after liposuction of the large volume. It was shown, that this operation facilitated to an improvement of respiratory lung function due to changes of pulmonary circulation.

  2. Lung Volume Reduction After Stereotactic Ablative Radiation Therapy of Lung Tumors: Potential Application to Emphysema

    Energy Technology Data Exchange (ETDEWEB)

    Binkley, Michael S. [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States); Shrager, Joseph B. [Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California (United States); Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California (United States); Leung, Ann N. [Department of Radiology, Stanford University School of Medicine, Stanford, California (United States); Popat, Rita [Department of Health Research and Policy, Stanford University School of Medicine, Stanford, California (United States); Trakul, Nicholas [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States); Department of Radiation Oncology, University of Southern California Keck School of Medicine, Los Angeles, California (United States); Atwood, Todd F.; Chaudhuri, Aadel [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States); Maxim, Peter G. [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States); Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California (United States); Diehn, Maximilian, E-mail: Diehn@Stanford.edu [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States); Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California (United States); Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California (United States); Loo, Billy W., E-mail: BWLoo@Stanford.edu [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States); Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California (United States)

    2014-09-01

    Purpose: Lung volume reduction surgery (LVRS) improves dyspnea and other outcomes in selected patients with severe emphysema, but many have excessive surgical risk for LVRS. We analyzed the dose-volume relationship for lobar volume reduction after stereotactic ablative radiation therapy (SABR) of lung tumors, hypothesizing that SABR could achieve therapeutic volume reduction if applied in emphysema. Methods and Materials: We retrospectively identified patients treated from 2007 to 2011 who had SABR for 1 lung tumor, pre-SABR pulmonary function testing, and ≥6 months computed tomographic (CT) imaging follow-up. We contoured the treated lobe and untreated adjacent lobe(s) on CT before and after SABR and calculated their volume changes relative to the contoured total (bilateral) lung volume (TLV). We correlated lobar volume reduction with the volume receiving high biologically effective doses (BED, α/β = 3). Results: 27 patients met the inclusion criteria, with a median CT follow-up time of 14 months. There was no grade ≥3 toxicity. The median volume reduction of the treated lobe was 4.4% of TLV (range, −0.4%-10.8%); the median expansion of the untreated adjacent lobe was 2.6% of TLV (range, −3.9%-11.6%). The volume reduction of the treated lobe was positively correlated with the volume receiving BED ≥60 Gy (r{sup 2}=0.45, P=.0001). This persisted in subgroups determined by high versus low pre-SABR forced expiratory volume in 1 second, treated lobe CT emphysema score, number of fractions, follow-up CT time, central versus peripheral location, and upper versus lower lobe location, with no significant differences in effect size between subgroups. Volume expansion of the untreated adjacent lobe(s) was positively correlated with volume reduction of the treated lobe (r{sup 2}=0.47, P<.0001). Conclusions: We identified a dose-volume response for treated lobe volume reduction and adjacent lobe compensatory expansion after lung tumor SABR, consistent across

  3. Bronchoscopic lung volume reduction in a single-lung transplant recipient with natal lung hyperinflation: a case report.

    Science.gov (United States)

    Pato, O; Rama, P; Allegue, M; Fernández, R; González, D; Borro, J M

    2010-06-01

    After single lung transplantation for emphysema native lung hyperinflation is a common complication that may cause respiratory failure. Herein we have reported satisfactory bronchoscopic lung volume reduction in a left single-lung transplant recipient with native lung hyperinflation, who suffered from Medical Research Council (MRC) class 3 dyspnea and chest pain. Three endobronchial valves (Zephyr; Emphasys Medical, Redwood, Calif, United States) were placed into the segmental bronchi of the right upper lobe, using videobronchoscopy under general anesthesia. Postoperative chest computed tomography revealed subsegmental atelectasis in that lobe. The clinical benefit was an improved MRC dyspnea class from 3 to 2, which was still present at 4 months after the procedure, although there were no remarkable changes in spirometric parameters.

  4. Endobronchial Valves for Endoscopic Lung Volume Reduction : Best Practice Recommendations from Expert Panel on Endoscopic Lung Volume Reduction

    NARCIS (Netherlands)

    Slebos, Dirk-Jan; Herth, Felix J F; Valipour, Arschang

    2016-01-01

    Endoscopic lung volume reduction (ELVR) is being adopted as a treatment option for carefully selected patients suffering from severe emphysema. ELVR with the one-way endobronchial Zephyr valves (EBV) has been demonstrated to improve pulmonary function, exercise capacity, and quality of life in patie

  5. Comparison of actual tidal volume in neonatal lung model volume control ventilation using three ventilators.

    Science.gov (United States)

    Toyama, H; Endo, Y; Ejima, Y; Matsubara, M; Kurosawa, S

    2011-07-01

    In neonates, small changes in tidal volumes (V(T)) may lead to complications. Previous studies have shown a significant difference between ventilator-measured tidal volume and tidal volume delivered (actual V(T)). We evaluated the accuracy of three different ventilators to deliver small V(T) during volume-controlled ventilation. We tested Servo 300, 840 ventilator and Evita 4 Neoflow ventilators with lung models simulating normal and injured neonatal lung compliance models. Gas volume delivered from the ventilator into the test circuit (V(TV)) and actual V(T) to the test lung were measured using Ventrak respiration monitors at set V(T) (30 ml). The gas volume increase of the breathing circuit was then calculated. Tidal volumes of the SV300 and PB840 in both lung models were similar to the set V(T) and the actual tidal volumes in the injured model (20.7 ml and 19.8 ml, respectively) were significantly less than that in the normal model (27.4 ml and 23.4 ml). PB840 with circuit compliance compensation could not improve the actual V(T). V(TV) of the EV4N in the normal and the injured models (37.8 ml and 46.6 ml) were markedly increased compared with set V(T), and actual V(T) were similar to set V(T) in the normal and injured model (30.2 ml and 31.9 ml, respectively). EV4N measuring V(T) close to the lung could match actual V(T) to almost the same value as the set V(T) however the gas volume of the breathing circuit was increased. If an accurate value for the patient's actual V(T) is needed, this V(T) must be measured by a sensor located between the Y-piece and the tracheal tube.

  6. Pneumothorax as a complication of lung volume recruitment

    Directory of Open Access Journals (Sweden)

    Erik J.A. Westermann

    2013-06-01

    Full Text Available Lung volume recruitment involves deep inflation techniques to achieve maximum insufflation capacity in patients with respiratory muscle weakness, in order to increase peak cough flow, thus helping to maintain airway patency and improve ventilation. One of these techniques is air stacking, in which a manual resuscitator is used in order to inflate the lungs. Although intrathoracic pressures can rise considerably, there have been no reports of respiratory complications due to air stacking. However, reaching maximum insufflation capacity is not recommended in patients with known structural abnormalities of the lungs or chronic obstructive airway disease. We report the case of a 72-year-old woman who had poliomyelitis as a child, developed torsion scoliosis and post-polio syndrome, and had periodic but infrequent asthma attacks. After performing air stacking for 3 years, the patient suddenly developed a pneumothorax, indicating that this technique should be used with caution or not at all in patients with a known pulmonary pathology

  7. Low cost biological lung volume reduction therapy for advanced emphysema

    Directory of Open Access Journals (Sweden)

    Bakeer M

    2016-08-01

    Full Text Available Mostafa Bakeer,1 Taha Taha Abdelgawad,1 Raed El-Metwaly,1 Ahmed El-Morsi,1 Mohammad Khairy El-Badrawy,1 Solafa El-Sharawy2 1Chest Medicine Department, 2Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt Background: Bronchoscopic lung volume reduction (BLVR, using biological agents, is one of the new alternatives to lung volume reduction surgery.Objectives: To evaluate efficacy and safety of biological BLVR using low cost agents including autologous blood and fibrin glue.Methods: Enrolled patients were divided into two groups: group A (seven patients in which autologous blood was used and group B (eight patients in which fibrin glue was used. The agents were injected through a triple lumen balloon catheter via fiberoptic bronchoscope. Changes in high resolution computerized tomography (HRCT volumetry, pulmonary function tests, symptoms, and exercise capacity were evaluated at 12 weeks postprocedure as well as for complications.Results: In group A, at 12 weeks postprocedure, there was significant improvement in the mean value of HRCT volumetry and residual volume/total lung capacity (% predicted (P-value: <0.001 and 0.038, respectively. In group B, there was significant improvement in the mean value of HRCT volumetry and (residual volume/total lung capacity % predicted (P-value: 0.005 and 0.004, respectively. All patients tolerated the procedure with no mortality.Conclusion: BLVR using autologous blood and locally prepared fibrin glue is a promising method for therapy of advanced emphysema in term of efficacy, safety as well as cost effectiveness. Keywords: BLVR, bronchoscopy, COPD, interventional pulmonology

  8. Lung volumes during sustained microgravity on Spacelab SLS-1

    Science.gov (United States)

    Elliott, Ann R.; Prisk, G. Kim; Guy, Harold J. B.; West, John B.

    1994-01-01

    Gravity is known to influence the mechanical behavior of the lung and chest wall. However, the effect of sustained microgravity (microgravity) on lung volumes has not been reported. Pulmonary function tests were performed by four subjects before, during, and after 9 days of microgravity exposure. Ground measurements were made in standing and supine postures. Tests were performed using a bag-in-box-and-flowmeter system and a respiratory mass spectrometer. Measurements included functional residual capacity (FRC), expiratory reserve volume (ERV), residual volume (RV), inspiratory and expiratory vital capacities (IVC and EVC), and tidal volume (V9sub T)). Total lung capacity (TLC) was derived from the measured EVC and RV values. With preflight standing values as a comparison, FRC was significantly reduced by 15% (approximately 500 ml) in microgravity and 32% in the supine posture. ERV was reduced by 10 - 20% in microgravity and decreased by 64% in the supine posture. RV was significantly reduced by 18% (310 ml) in microgravity but did not significantly change in the supine posture compared with standing. IVC and EVC were slightly reduced during the first 24 h of microgravity but returned to 1-G standing values within 72 h of microgravity exposure. IVC and EVC in the supine posture were significantly reduced by 12% compared with standing. During microgravity, V(sub T) decreased by 15% (approximately 90 ml), but supine V(sub T) was unchanged compared with preflight standing values. TLC decreased by approximately 8% during microgravity and in the supine posture compared with preflight standing. The reductions in FRC, ERV, and RV during microgravity are probably due to the cranial shift of the diaphragm, an increase in intrathoracic blood volume, and more uniform alveolar expansion.

  9. Evaluation of postoperative change in lung volume in adolescent idiopathic scoliosis: Measured by computed tomography

    Directory of Open Access Journals (Sweden)

    Dong Kyu Lee

    2014-01-01

    Conclusion: Patients with AIS who have preoperative reduced lung volumes or lung functions can achieve further increased lung volume after surgical correction. Pulmonary complications during perioperative period were mostly treated with proper management without severe sequale. Therefore, although surgery for AIS is considered to be a high risk procedure, we can recommend to correct spine deformity in patients with severe AIS in order to improve lung function and long term prognosis.

  10. Lung Volume during Swallowing: Single Bolus Swallows in Healthy Young Adults

    Science.gov (United States)

    Hegland, Karen M. Wheeler; Huber, Jessica E.; Pitts, Teresa; Sapienza, Christine M.

    2009-01-01

    Purpose: This study examined the relationship between swallowing and lung volume initiation in healthy adults during single swallows of boluses differing in volume and consistency. Differences in lung volume according to respiratory phase surrounding the swallow were also assessed. Method: Nine men and 11 women between the ages of 19 and 28 years…

  11. Estimation of lung volume and pressure from electrocardiogram

    KAUST Repository

    Elsayed, Gamal Eldin Fathy Amin

    2011-05-01

    The Electrocardiography (ECG) is a tool measuring the electrical excitation of the heart that is extensively used for diagnosis and monitoring of heart diseases. The ECG signal reflects not only the heart activity but also many other physiological processes. The respiratory activity is a prominent process that affects the ECG signal due to the close proximity of the heart and the lungs and, on the other hand, due to neural regulatory processes. In this paper, several means for the estimation of the respiratory process from the ECG signal are presented. The results show a strong correlation of the voltage difference between the R and S peak of the ECG and the lung\\'s volume and pressure. Correlation was also found for some features of the vector ECG, which is a two dimensional graph of two different ECG signals. The potential benefit of the multiparametric evaluation of the ECG signal is a reduction of the number of sensors connected to patients, which will increase the patients\\' comfort and reduce the costs associated with healthcare. In particular, it is relevant for sleep monitoring, where a reduction of the number of different sensors would facilitate a more natural sleeping environment and hence a higher sensitivity of the diagnosis. © 2011 IEEE.

  12. Time for the Global Rollout of Endoscopic Lung Volume Reduction.

    Science.gov (United States)

    Koegelenberg, Coenraad F N; Slebos, Dirk-Jan; Shah, Pallav L; Theron, Johan; Dheda, Keertan; Allwood, Brian W; Herth, Felix J F

    2015-01-01

    Chronic obstructive pulmonary disease remains one of the most common causes of morbidity and mortality globally. The disease is generally managed with pharmacotherapy, as well as guidance about smoking cessation and pulmonary rehabilitation. Endoscopic lung volume reduction (ELVR) has been proposed for the treatment of advanced emphysema, with the aim of obtaining the same clinical and functional advantages of surgical lung volume reduction whilst potentially reducing risks and costs. There is a growing body of evidence that certain well-defined sub-groups of patients with advanced emphysema may benefit from ELVR, provided the selection criteria are met and a systematic approach is followed. ELVR devices, particularly unidirectional valves and coils, are currently being rolled out to many countries outside of the U.S.A. and Europe, although very few centres currently have the capacity to correctly evaluate and provide ELVR to prospective candidates. The high cost of these interventions underpins the need for careful patient selection to best identify those who may or may not benefit from ELVR-related procedures. The aim of this review is to provide the practicing pulmonologist with an overview of the practical aspects and current evidence for the use of the various techniques available, and to suggest an evidence-based approach for the appropriate use of these devices, particularly in emerging markets, where there should be a drive to develop and equip key specialised ELVR units.

  13. Pressure-volume characteristics of lungs of rats during pregnancy and postpartum.

    Science.gov (United States)

    Faridy, E E

    1981-01-01

    Measurements of lung volumes in pregnant women show that the functional residual capacity and residual volume are reduced by 17-25% at late pregnancy. The present study was conducted to test the hypothesis that a decrease in FRC at pregnancy may result from an increase in retractive forces of the lung. The air and saline pressure-volume characteristics of excised lungs were studied in rats daily during pregnancy and the postpartum period. In comparison to non-pregnancy rats, the air PV measurements indicated that: (1) the retractive forces of the lungs were increased late in pregnancy resulting in reduction in both MLV (lung air volume at 40 cm H2O Ptp) and in V%10 (volume at 10/volume at 40 cm H2O Ptp X 100); (2) MLV was greater in lactating than in non-lactating and in non-pregnant rats. Lung saline volume was also greater in lactating than in non-lactating rats at early postpartum period. Lung phospholipids content was increased at late pregnancy and in lactating rats; (3) there was an increase in MLV and in V% immediately after delivery and 2-3 days after an abrupt cessation of lactation ("dried" rats). The minimal surface tension of lung lavages also decreased in these rats. A shift to that left of the air PV curve in "dried" rats suggest that under normal circumstances lung surface forces are not at their lowest.

  14. Multislice spiral computed tomography to determine the effects of a recruitment maneuver in experimental lung injury

    Energy Technology Data Exchange (ETDEWEB)

    Henzler, Dietrich; Rossaint, Rolf [University Hospital, RWTH Aachen, Anesthesiology Department, Aachen (Germany); Mahnken, Andreas H.; Wildberger, Joachim E.; Guenther, Rolf W. [University Hospital of the RWTH Aachen, Clinic of Diagnostic Radiology, Aachen (Germany); Kuhlen, Ralf [University Hospital of the RWTH Aachen, Operative Intensive Care Department, Aachen (Germany)

    2006-06-15

    Although recruitment of atelectatic lung is a common aim in acute respiratory distress syndrome (ARDS), the effects of a recruitment maneuver have not been assessed quantitatively. By multislice spiral CT (MSCT), we analyzed the changes in lung volumes calculated from the changes in the CT values of hyperinflated (V{sub HYP}), normally (V{sub NORM}), poorly (V{sub POOR}) and nonaerated (V{sub NON}) lung in eight mechanically ventilated pigs with saline lavage-induced acute lung injury before and after a recruitment maneuver. This was compared to single slice analysis near the diaphragm. The increase in aerated lung was mainly for V{sub POOR} and the less in V{sub NORM}. Total lung volume and intrathoracic gas increased. No differences were found for tidal volumes measured by spirometry or determined by CT. The inspiratory-expiratory volume differences were not different after the recruitment maneuver in V{sub NON} (from 62{+-}18 ml to 43{+-}26 ml, P=0.114), and in V{sub NORM} (from 216{+-}51 ml to 251{+-}37 ml, P=0.102). Single slice analysis significantly underestimated the increase in normally and poorly aerated lung. Quantitative analysis of lung volumes by whole lung MSCT revealed the increase of poorly aerated lung as the main mechanism of a standard recruitment maneuver. MSCT can provide additional information as compared to single slice CT. (orig.)

  15. Bronchoscopic Lung Volume Reduction Coil Treatment of Patients With Severe Heterogeneous Emphysema

    NARCIS (Netherlands)

    Slebos, Dirk-Jan; Klooster, Karin; Ernst, Armin; Herth, Felix J. F.; Kerstjens, Huib A. M.

    2012-01-01

    Background: The lung volume reduction coil (LVR-coil), a new experimental device to achieve lung volume reduction by bronchoscopy in patients with severe emphysema, works in a manner unaffected by collateral airflow. We investigated the safety and efficacy of LVR-coil treatment in patients with hete

  16. The lung volume reduction coil for the treatment of emphysema : a new therapy in development

    NARCIS (Netherlands)

    Klooster, Karin; ten Hacken, Nick H. T.; Slebos, Dirk-Jan

    2014-01-01

    Lung volume reduction (LVR) coil treatment is a novel therapy for patients with severe emphysema. In this bilateral bronchoscopic treatment, approximately 10 LVR coils per lobe are delivered under fluoroscopic guidance in two sequential procedures. The LVR coil reduces lung volume by compressing the

  17. Effects of obesity on lung volume and capacity in children and adolescents: a systematic review

    Science.gov (United States)

    Winck, Aline Dill; Heinzmann-Filho, João Paulo; Soares, Rafaela Borges; da Silva, Juliana Severo; Woszezenki, Cristhiele Taís; Zanatta, Letiane Bueno

    2016-01-01

    Abstract Objective: To assess the effects of obesity on lung volume and capacity in children and adolescents. Data source: This is a systematic review, carried out in Pubmed, Lilacs, Scielo and PEDro databases, using the following Keywords: Plethysmography; Whole Body OR Lung Volume Measurements OR Total Lung Capacity OR Functional Residual Capacity OR Residual Volume AND Obesity. Observational studies or clinical trials that assessed the effects of obesity on lung volume and capacity in children and adolescents (0-18 years) without any other associated disease; in English; Portuguese and Spanish languages were selected. Methodological quality was assessed by the Agency for Healthcare Research and Quality. Data synthesis: Of the 1,030 articles, only four were included in the review. The studies amounted to 548 participants, predominantly males, with sample size ranging from 45 to 327 individuals. 100% of the studies evaluated nutritional status through BMI (z-score) and 50.0% reported the data on abdominal circumference. All demonstrated that obesity causes negative effects on lung volume and capacity, causing a reduction mainly in functional residual capacity in 75.0% of the studies; in the expiratory reserve volume in 50.0% and in the residual volume in 25.0%. The methodological quality ranged from moderate to high, with 75.0% of the studies classified as having high methodological quality. Conclusions: Obesity causes deleterious effects on lung volume and capacity in children and adolescents, mainly by reducing functional residual capacity, expiratory reserve volume and residual volume. PMID:27130483

  18. Effects of obesity on lung volume and capacity in children and adolescents: a systematic review

    Directory of Open Access Journals (Sweden)

    Aline Dill Winck

    Full Text Available Abstract Objective: To assess the effects of obesity on lung volume and capacity in children and adolescents. Data source: This is a systematic review, carried out in Pubmed, Lilacs, Scielo and PEDro databases, using the following Keywords: Plethysmography; Whole Body OR Lung Volume Measurements OR Total Lung Capacity OR Functional Residual Capacity OR Residual Volume AND Obesity. Observational studies or clinical trials that assessed the effects of obesity on lung volume and capacity in children and adolescents (0-18 years without any other associated disease; in English; Portuguese and Spanish languages were selected. Methodological quality was assessed by the Agency for Healthcare Research and Quality. Data synthesis: Of the 1,030 articles, only four were included in the review. The studies amounted to 548 participants, predominantly males, with sample size ranging from 45 to 327 individuals. 100% of the studies evaluated nutritional status through BMI (z-score and 50.0% reported the data on abdominal circumference. All demonstrated that obesity causes negative effects on lung volume and capacity, causing a reduction mainly in functional residual capacity in 75.0% of the studies; in the expiratory reserve volume in 50.0% and in the residual volume in 25.0%. The methodological quality ranged from moderate to high, with 75.0% of the studies classified as having high methodological quality. Conclusions: Obesity causes deleterious effects on lung volume and capacity in children and adolescents, mainly by reducing functional residual capacity, expiratory reserve volume and residual volume.

  19. Quantitative measurement of regional lung gas volume by synchrotron radiation computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Monfraix, Sylvie [European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble (France); Bayat, Sam [European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble (France); Porra, Liisa [Department of Physical Sciences, University of Helsinki, POB 64, FIN-00014 Helsinki (Finland); Berruyer, Gilles [European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble (France); Nemoz, Christian [European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble (France); Thomlinson, William [Canadian Light Source, 101 Perimeter Road, Saskatoon, SK S7N 0X4 (Canada); Suortti, Pekka [Department of Physical Sciences, University of Helsinki, POB 64, FIN-00014 Helsinki (Finland); Sovijaervi, Anssi R A [Department of Clinical Physiology and Nuclear Medicine, Helsinki University Central Hospital, POB 340, FIN-00029 HUS, Helsinki (Finland)

    2005-01-07

    The aim of this study was to assess the feasibility of a novel respiration-gated spiral synchrotron radiation computed tomography (SRCT) technique for direct quantification of absolute regional lung volumes, using stable xenon (Xe) gas as an inhaled indicator. Spiral SRCT with K-edge subtraction using two monochromatic x-ray beams was used to visualize and directly quantify inhaled Xe concentrations and airspace volumes in three-dimensional (3D) reconstructed lung images. Volume measurements were validated using a hollow Xe-filled phantom. Spiral images spanning 49 mm in lung height were acquired following 60 breaths of an 80% Xe-20% O{sub 2} gas mixture, in two anaesthetized and mechanically ventilated rabbits at baseline and after histamine aerosol inhalation. Volumetric images of 20 mm lung sections were obtained at functional residual capacity (FRC) and at end-inspiration. 3D images showed large patchy filling defects in peripheral airways and alveoli following histamine provocation. Local specific lung compliance was calculated based on FRC/end-inspiration images in normal lung. This study demonstrates spiral SRCT as a new technique for direct determination of regional lung volume, offering possibilities for non-invasive investigation of regional lung function and mechanics, with a uniquely high spatial resolution. An example of non-uniform volume distribution in rabbit lung following histamine inhalation is presented.

  20. Efficacy of bronchoscopic lung volume reduction: a meta-analysis

    Directory of Open Access Journals (Sweden)

    Iftikhar IH

    2014-05-01

    Full Text Available Imran H Iftikhar,1 Franklin R McGuire,1 Ali I Musani21Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of South Carolina, Columbia, SC, USA; 2Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO, USABackground: Over the last several years, the morbidity, mortality, and high costs associated with lung volume reduction (LVR surgery has fuelled the development of different methods for bronchoscopic LVR (BLVR in patients with emphysema. In this meta-analysis, we sought to study and compare the efficacy of most of these methods.Methods: Eligible studies were retrieved from PubMed and Embase for the following BLVR methods: one-way valves, sealants (BioLVR, LVR coils, airway bypass stents, and bronchial thermal vapor ablation. Primary study outcomes included the mean change post-intervention in the lung function tests, the 6-minute walk distance, and the St George's Respiratory Questionnaire. Secondary outcomes included treatment-related complications.Results: Except for the airway bypass stents, all other methods of BLVR showed efficacy in primary outcomes. However, in comparison, the BioLVR method showed the most significant findings and was the least associated with major treatment-related complications. For the BioLVR method, the mean change in forced expiratory volume (in first second was 0.18 L (95% confidence interval [CI]: 0.09 to 0.26; P<0.001; in 6-minute walk distance was 23.98 m (95% CI: 12.08 to 35.88; P<0.01; and in St George's Respiratory Questionnaire was −8.88 points (95% CI: −12.12 to −5.64; P<0.001.Conclusion: The preliminary findings of our meta-analysis signify the importance of most methods of BLVR. The magnitude of the effect on selected primary outcomes shows noninferiority, if not equivalence, when compared to what is known for surgical LVR.Keyword: emphysema, endobronchial valves, sealants, stents, coils

  1. Lung volume reduction surgery: an overview Cirurgia redutora de volume pulmonar: uma revisão

    Directory of Open Access Journals (Sweden)

    Rodrigo Afonso da Silva Sardenberg

    2010-01-01

    Full Text Available This study intends to review the literature on the efficacy, safety and feasibility of lung volume reduction surgery (LVRS in patients with advanced emphysema. Studies on LVRS from January 1995 to December 2009 were included by using Pubmed (MEDLINE and Cochrane Library literature in English. Search words such as lung volume reduction surgery or lung reduction surgery, pneumoplasty or reduction pneumoplasty, COPD or chronic obstructive pulmonary disease and surgery, were used. We also compared medical therapy and surgical technique. Studies consisting of randomized controlled trials, controlled clinical trials (randomized and nonrandomized, reviews and case series were analyzed. Questions regarding validity of the early clinical reports, incomplete follow-up bias, selection criteria and survival, confounded the interpretation of clinical data on LVRS. Patients with upper, lower and diffuse distribution of emphysema were included; we also analyzed as key points perioperative morbidity and mortality and lung function measurement as FEV1. Bullous emphysema was excluded from this review. Surgical approach included median sternotomy, unilateral or bilateral thoracotomy, and videothoracoscopy with stapled or laser ablation. Results of prospective randomized trials between medical management and LVRS are essential before final assessment can be established.O objetivo deste estudo é revisar a literatura acerca da eficácia, segurança e viabilidade da cirurgia redutora de volume pulmonar (CRVP em pacientes com enfisema pulmonar avançado. Estudos de CRVP de janeiro de 1995 a dezembro de 2009 foram incluídos através de pesquisa na Pubmed (MEDLINE e Cochrane Library, na literatura inglesa. Palavras de busca tais como lung volume reduction surgery ou lung reduction surgery, pneumoplasty ou reduction pneumoplasty, COPD ou chronic obstructive pulmonary disease e surgery foram utilizadas. Também realizamos comparação entre terapia médica e cir

  2. Lung volumes related to physical activity, physical fitness, aerobic capacity and body mass index in students

    Directory of Open Access Journals (Sweden)

    Mihailova A.

    2016-01-01

    Reduced lung volumes were associated with lower aerobic fitness, lower physical fitness and lower amount of weekly physical activity. Healthier body mass index was associated with higher aerobic fitness (relative VO2max in both female and male.

  3. High procedure volume is strongly associated with improved survival after lung cancer surgery

    DEFF Research Database (Denmark)

    Lüchtenborg, Margreet; Riaz, Sharma P; Coupland, Victoria H

    2013-01-01

    Studies have reported an association between hospital volume and survival for non-small-cell lung cancer (NSCLC). We explored this association in England, accounting for case mix and propensity to resect.......Studies have reported an association between hospital volume and survival for non-small-cell lung cancer (NSCLC). We explored this association in England, accounting for case mix and propensity to resect....

  4. Severe Emphysema Treated by Endoscopic Bronchial Volume Reduction with Lung Sealant (AeriSeal

    Directory of Open Access Journals (Sweden)

    R. F. Falkenstern-Ge

    2013-01-01

    Full Text Available Endoscopic lung volume reduction using lung sealant is a very new and innovative treatment option for patients with severe progressive and irreversible lung emphysema. A 55-year-old ex-smoker (60 pack years referred to our center because of severe lung emphysema with progressive worsening of the obstructive ventilator pattern and clinical condition. We detected collateral channels of this patient by using the Chartis system. Therefore, we decided to treat the advanced emphysema of our patient with endoscopic volume reduction using lung sealant (AeriSeal. The foam of lung sealant AeriSeal is instilled into the peripheral airways and alveoli where it polymerizes and functions as tissue glue on the lung surface in order to seal the target region to cause durable irreversible absorption atelectasis. The follow-up evaluation 12 weeks later showed improved lung function (increased FEV 1/partial oxygen pressure/peripheral oxygen saturation and a reduction of TLC and RV with improved quality of life. Correlation between changes in primary and secondary outcome measures in the lung function parameters and 6-minute-walking test before and 12 weeks after the application of lung sealant revealed significant reduction of hyperinflation and improvement both in the flow rates and in the physical capability of this patient.

  5. Automatic segmentation of tumor-laden lung volumes from the LIDC database

    Science.gov (United States)

    O'Dell, Walter G.

    2012-03-01

    The segmentation of the lung parenchyma is often a critical pre-processing step prior to application of computer-aided detection of lung nodules. Segmentation of the lung volume can dramatically decrease computation time and reduce the number of false positive detections by excluding from consideration extra-pulmonary tissue. However, while many algorithms are capable of adequately segmenting the healthy lung, none have been demonstrated to work reliably well on tumor-laden lungs. Of particular challenge is to preserve tumorous masses attached to the chest wall, mediastinum or major vessels. In this role, lung volume segmentation comprises an important computational step that can adversely affect the performance of the overall CAD algorithm. An automated lung volume segmentation algorithm has been developed with the goals to maximally exclude extra-pulmonary tissue while retaining all true nodules. The algorithm comprises a series of tasks including intensity thresholding, 2-D and 3-D morphological operations, 2-D and 3-D floodfilling, and snake-based clipping of nodules attached to the chest wall. It features the ability to (1) exclude trachea and bowels, (2) snip large attached nodules using snakes, (3) snip small attached nodules using dilation, (4) preserve large masses fully internal to lung volume, (5) account for basal aspects of the lung where in a 2-D slice the lower sections appear to be disconnected from main lung, and (6) achieve separation of the right and left hemi-lungs. The algorithm was developed and trained to on the first 100 datasets of the LIDC image database.

  6. Lung volume reduction for severe emphysema: do we need a scalpel or a scope?

    Directory of Open Access Journals (Sweden)

    D. Van Raemdonck

    2010-09-01

    Full Text Available Resectional lung volume reduction has proven to be superior to medical treatment in reducing dyspnoea and in increasing lung function, survival and quality of life in a very well selected, low risk group of hyperinflated patients with heterogeneous emphysema predominantly in the upper lobe. Nevertheless, this intervention is hampered by an important pulmonary (30% and cardiovascular (20% morbidity, mainly as a result of prolonged (>7 days air leak, and a 5% risk of death as a result of the surgical intervention. Results from ongoing randomised trials are awaited in order to determine whether less invasive, non-resectional lung volume treatment of emphysema via the bronchoscope using endobronchial valves, airway bypass stents or biological adhesives/heated water vapour will yield similar improvement with less morbidity and reduced mortality, compared with surgical resection. Furthermore, it is hoped that endoscopic lung volume reduction techniques may help patients with homogeneous emphysema currently excluded by most teams for the resectional procedure.

  7. Reference Equations for Static Lung Volumes and TLCO from a Population Sample in Northern Greece.

    Science.gov (United States)

    Michailopoulos, Pavlos; Kontakiotis, Theodoros; Spyratos, Dionisios; Argyropoulou-Pataka, Paraskevi; Sichletidis, Lazaros

    2015-02-14

    Background: The most commonly used reference equations for the measurement of static lung volumes/capacities and transfer factor of the lung for CO (TLCO) are based on studies around 30-40 years old with significant limitations. Objectives: Our aim was to (1) develop reference equations for static lung volumes and TLCO using the current American Thoracic Society/European Respiratory Society guidelines, and (2) compare the equations derived with those most commonly used. Methods: Healthy Caucasian subjects (234 males and 233 females) aged 18-91 years were recruited. All of them were healthy never smokers with a normal chest X-ray. Static lung volumes and TLCO were measured with a single-breath technique according to the latest guidelines. Results: Curvilinear regression prediction equations derived from the present study were compared with those that are most commonly used. Our reference equations in accordance with the latest studies show lower values for all static lung volume parameters and TLCO as well as a different way of deviation of those parameters (i.e. declining with age total lung capacity, TLCO age decline in both sex and functional residual capacity age rise in males). Conclusions: We suggest that old reference values of static lung volumes and TLCO should be updated, and our perception of deviation of some spirometric parameters should be revised. Our new reference curvilinear equations derived according to the latest guidelines could contribute to the updating by respiratory societies of old existing reference values and result in a better estimation of the lung function of contemporary populations with similar Caucasian characteristics. © 2015 S. Karger AG, Basel.

  8. Mediastinal staging for lung cancer: the influence of biopsy volume

    DEFF Research Database (Denmark)

    Nelson, Elof; Pape, Christian; Jørgensen, Ole Dan;

    2010-01-01

    biopsy volume has any influence on the result of conventional cervical mediastinoscopy. In this study, we investigated the influence of biopsy volume and the number of lymph node stations biopsied during mediastinoscopy on the probability of demonstrating N2-disease in patients with NSCLC. METHODS: We...... retrospectively. Demographics and the number of lymph node stations biopsied were recorded, and the volume of biopsies from each lymph node station was calculated. RESULTS: Multivariate logistic regression analysis demonstrated that larger biopsy volume was significantly associated with increased probability...... of demonstrating N2-disease (pBiopsy volume from lymph...

  9. Catfish production using intensive aeration

    Science.gov (United States)

    For the last 3 years, researchers at UAPB and NWAC have been monitoring and verifying production yields in intensively aerated catfish ponds with aeration rates greater than 6 hp/acre. We now have three years of data on commercial catfish production in intensively aerated ponds. With stocking densi...

  10. Reduction of Pulmonary Function After Surgical Lung Resections of Different Volume

    Science.gov (United States)

    Cukic, Vesna

    2014-01-01

    Introduction: In recent years an increasing number of lung resections are being done because of the rising prevalence of lung cancer that occurs mainly in patients with limited lung function, what is caused with common etiologic factor - smoking cigarettes. Objective: To determine how big the loss of lung function is after surgical resection of lung of different range. Methods: The study was done on 58 patients operated at the Clinic for thoracic surgery KCU Sarajevo, previously treated at the Clinic for pulmonary diseases “Podhrastovi” in the period from 01.06.2012. to 01.06.2014. The following resections were done: pulmectomy (left, right), lobectomy (upper, lower: left and right). The values of postoperative pulmonary function were compared with preoperative ones. As a parameter of lung function we used FEV1 (forced expiratory volume in one second), and changes in FEV1 are expressed in liters and in percentage of the recorded preoperative and normal values of FEV1. Measurements of lung function were performed seven days before and 2 months after surgery. Results: Postoperative FEV1 was decreased compared to preoperative values. After pulmectomy the maximum reduction of FEV1 was 44%, and after lobectomy it was 22% of the preoperative values. Conclusion: Patients with airway obstruction are limited in their daily life before the surgery, and an additional loss of lung tissue after resection contributes to their inability. Potential benefits of lung resection surgery should be balanced in relation to postoperative morbidity and mortality. PMID:25568542

  11. Entropy Production and the Pressure-Volume Curve of the Lung

    Directory of Open Access Journals (Sweden)

    Cláudio Lucas Oliveira

    2016-03-01

    Full Text Available We investigate analytically the production of entropy during a breathing cycle in healthy and diseased lungs. First, we calculate entropy production in healthy lungs by applying the laws of thermodynamics to the well-known transpulmonary pressure-volume (P-V curves of the lung under the assumption that lung tissue behaves as an entropy spring-like rubber. The bulk modulus, $B$, of the lung is also derived from these calculations. Second, we extend this approach to elastic recoil disorders of the lung such as occur in pulmonary fibrosis and emphysema. These diseases are characterized by particular alterations in the P-V relationship. For example, in fibrotic lungs B increases monotonically with disease progression, while in emphysema the opposite occurs. These diseases can thus be mimicked simply by making appropriate adjustments to the parameters of the P-V curve. Using Clausius's formalism, we show that entropy production, Delta_S, is related to the hysteresis area, Delta_A, enclosed by the P-V curve during a breathing cycle, namely, Delta_S = Delta_A/T, where T is the body temperature. Although Delta_A is highly dependent on the disease, such formula applies to healthy as well as diseased lungs, regardless of the disease stage. Finally, we use ansatzs to predict analytically the entropy produced by the fibrotic and emphysematous lungs.

  12. Experimental study of acute lung injury induced by different tidal volume ventilation in rats

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xin-ri; DU Yong-cheng; JIANG Hong-ying; XU Jian-ying; XU Yong-jian

    2005-01-01

    @@ Mechanical ventilation (MV) is a dual blade sward which if misused could lead to lung injury, called ventilator induced lung injury (VILI). Pathogenesis of VILI is very complex with various manifestations, which is the focus in MV field in recent years.1 In our research, the rats were ventilated with different tidal volume, then the pathological changes of the lungs were observed under macroscopy, light and electronic microscope, and various laboratory tests in blood and bronchoalveolar lavage fluid (BALF) were also carried out in order to probe further the pathologic characteristics and the pathogenesis of VILI.

  13. Relationship between costovertebral joint kinematics and lung volume in supine humans.

    Science.gov (United States)

    Beyer, Benoît; Van Sint Jan, Serge; Chèze, Laurence; Sholukha, Victor; Feipel, Véronique

    2016-10-01

    This study investigates the relationship between the motion of the first ten costovertebral joints (CVJ) and lung volume over the inspiratory capacity (IC) using detailed kinematic analysis in a sample of 12 asymptomatic subjects. Retrospective codified spiral-CT data obtained at total lung capacity (TLC), middle of inspiratory capacity (MIC) and at functional residual capacity (FRC) were analysed. CVJ 3D kinematics were processed using previously-published methods. We tested the influence of the side, CVJ level and lung volume on CVJ kinematics. In addition, the correlations between anthropologic/pulmonary variables and CVJ kinematics were analysed. No linear correlation was found between lung volumes and CVJ kinematics. Major findings concerning 3D kinematics can be summarized as follows: 1) Ranges-of-motion decrease gradually with increasing CVJ level; 2) rib displacements are significantly reduced at lung volumes above the MIC and do not differ between CVJ levels; 3) the axes of rotation of the ribs are similarly oriented for all CVJ levels.

  14. Structural and functional changes in the minipig lung following irradiation of different lung volumes at a constant mean lung dose; Strukturelle und funktionelle Veraenderungen an der Lunge von Minischweinen nach Bestrahlung unterschiedlich grosser Lungenvolumina mit gleicher mittlerer Lungendosis

    Energy Technology Data Exchange (ETDEWEB)

    Kusche, S.; Herrmann, T.; Appold, S.; Hoelscher, T.; Bruechner, K.; Geyer, P.; Baumann, M.; Kumpf, R.

    2004-07-01

    Minipigs were subjected to irradiation of different lung volumes at approximately the same mean lung dose (D{sub m}ean) and examined for structural and morphological changes of the lung. The outcome confirmed earlier findings on the pig lung. While no significant differences between irradiation groups was found in terms of functional lung changes, there was a clear correlation between functional changes observed and the mean lung dose. This is in good agreement with data from clinical studies. It follows that the mean lung dose is of predictive value in considering functional lung damage in the assessment of different irradiation regimes. By contrast structural damage was found to correlate with applied dose. [German] Es wurden an Minischweinen unterschiedliche grosse Lungenvolumina mit vergleichbaren mittleren Lungendosen (mean lung dose, D{sub mean}) bestrahlt und die funktionellen und morphologischen Veraenderungen bestimmt. Die Untersuchungen zu funktionellen und morphologischen Veaenderungen bestaetigen fruehere Untersuchungen an der Schweinelunge. Hinsichtlich funktioneller Lungenveraenderungen fand sich kein signifikanter Unterschied zwischen den Bestrahlungsarmen, aber es konnte eine eindeutige Korrelation dieser Veraenderungen mit der mittleren Lungendosis D{sub mean} nachgewiesen werden. Dies steht in gutem Einklang mit Daten aus klinischen Untersuchungen. Somit bestaetigt sich, dass die mean lung dose eine praediktive Bedeutung zur Abschaetzung funktionaler Schaeden der Lunge bei der Beurteilung unterschiedlicher Bestrahlungsplaene hat. Die strukturellen Schaeden korrelieren hingegen mit der applizierten Dosis. (orig.)

  15. Evaluation of dose-volume histogram parameters (V20 and mean dose) in lung cancer adaptive radiotherapy with design of composite lung volumes (ITV; Evaluacion de parametros del histograma dosis-volumen (V20 y dosis media) en radioterapia adaptada de cancer de pulmon con diseno de volumenes pulmonares compuestos (Internal Target Volume, ITV)

    Energy Technology Data Exchange (ETDEWEB)

    Monroy Anton, J. L.; Solar Tortosa, M.; Lopez Munoz, M.; Navarro Bergada, A.; Estornell gualde, M. A.; Melchor Iniguez, M.

    2013-07-01

    Physiological respiratory motion is a challenge in external radiotherapy for lung tumors. In adaptive radiotherapy, changing position of the target volume should be reflected in the simulation procedure and taken into account in the design of volumes for CTV/PTV proper coverage. This may be achieved through the design of an Internal Target Volume (ITV) as indicated in ICRU-62. However, the Dose-Volume Histogram (DVH) evaluation of the doses received by the healthy lung may vary in the case of designing a single lung volume, compared to the composite lung volume obtained with the fusion of normal breathing, inspiration and expiration (ITV{sub l}ung). (Author)

  16. The relationships between tracheal index and lung volume parameters in mild-to-moderate COPD

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Jung Seop, E-mail: ejs00@hanmail.net [Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 135-710 (Korea, Republic of); Lee, Geewon, E-mail: rabkingdom@naver.com [Department of Radiology, Pusan National University Hospital, 179 Gudeok-ro, Seo-gu, Busan 602-739 (Korea, Republic of); Lee, Ho Yun, E-mail: hoyunlee96@gmail.com [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 135-710 (Korea, Republic of); Oh, Jin Young, E-mail: indr71@hanmail.net [Division of Pulmonology, Department of Internal Medicine, Dongguk University Ilsan Medical Center, 814 Siksa-dong, Ilsandong-gu, Goyang-si, Gyeonggi-do 410-773 (Korea, Republic of); Woo, Sook-young, E-mail: sookyoung12.woo@samsung.com [Biostatistics Team, Samsung Biomedical Research Institute, 81 Irwon-ro, Gangnam-gu, Seoul 135-710 (Korea, Republic of); Jeon, Kyeongman, E-mail: kjeon@skku.edu [Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 135-710 (Korea, Republic of); Um, Sang-Won, E-mail: sangwonum@skku.edu [Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 135-710 (Korea, Republic of); Koh, Won-Jung, E-mail: wjkoh@skku.edu [Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 135-710 (Korea, Republic of); Suh, Gee Young, E-mail: suhgy@skku.edu [Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 135-710 (Korea, Republic of); and others

    2013-12-01

    Background: Although elongated morphological changes in the trachea are known to be related to lung function in chronic obstructive pulmonary disease (COPD), whether the tracheal morphological changes are associated with airflow limitations or overinflation of the lung in the early stages of COPD has not yet been determined. Thus, our aim was to investigate the association of tracheal index (TI) with lung function parameters, including lung volume parameters, in COPD patients with mild-to-moderate airflow limitations. Materials and methods: A retrospective study was conducted in 193 COPD patients with GOLD grades 1–2 (post-bronchodilator forced expiratory volume in 1 s [FEV{sub 1}] ≥ 50% predicted with FEV{sub 1}/forced vital capacity ratio ≤ 70%; age range, 40–81) and 193 age- and gender-matched subjects with normal lung function as a control group (age range, 40–82). Two independent observers measured TI at three anatomical levels on chest radiographs and CT scans. Results: Compared with the control group, TI was reduced significantly and “saber-sheath trachea” was observed more frequently in COPD patients. Patients with GOLD grade 2 disease had a lower TI than those with GOLD grade 1. TI had apparent inverse correlations with total lung capacity, functional residual capacity, and residual volume, regardless of the anatomical level of the trachea. Even after adjustments for covariates, this association persisted. Conclusions: TI is reduced even in mild-to-moderate COPD patients, and TI measured on chest CT shows significant inverse relationships with all lung volume parameters assessed, suggesting that tracheal morphology may change during the early stages of COPD.

  17. Dynamic volume perfusion CT in patients with lung cancer: Baseline perfusion characteristics of different histological subtypes

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Jingyun, E-mail: shijingyun89179@126.com [Department of Radiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine (China); Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim (Germany); Schmid-Bindert, Gerald, E-mail: gerald.schmid-bindert@medma.uni-heidelberg.de [Division of Surgical Oncology and Thoracic Surgery, Department of Surgery, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim (Germany); Fink, Christian, E-mail: Christian.Fink@akh-celle.de [Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim (Germany); Sudarski, Sonja, E-mail: sonja_sudarski@gmx.de [Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim (Germany); Apfaltrer, Paul, E-mail: Paul.Apfaltrer@medma.uni-heidelberg.de [Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim (Germany); Pilz, Lothar R., E-mail: Lothar.Pilz@medma.uni-heidelberg.de [Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1, 68167 Mannheim (Germany); Liu, Bo, E-mail: bo.liu@siemens.com [Siemens Healthcare, No. 278, Zhouzhu Road, Shanghai, 201318 (China); Haberland, Ulrike, E-mail: ulrike.haberland@siemens.com [Siemens Healthcare Sector, H IM CR R and D PA SC, Siemensstraße 1, 91301 Forchheim (Germany); Klotz, Ernst, E-mail: ernst.klotz@siemens.com [Siemens Healthcare Sector, H IM CR R and D PA SC, Siemensstraße 1, 91301 Forchheim (Germany); and others

    2013-12-01

    Objective: To evaluate dynamic volume perfusion CT (dVPCT) tumor baseline characteristics of three different subtypes of lung cancer in untreated patients. Materials and methods: 173 consecutive patients (131 men, 42 women; mean age 61 ± 10 years) with newly diagnosed lung cancer underwent dVPCT prior to biopsy. Tumor permeability, blood flow (BF), blood volume (BV) and mean transit time (MTT) were quantitatively assessed as well as tumor diameter and volume. Tumor subtypes were histologically determined and compared concerning their dVPCT results. dVPCT results were correlated to tumor diameter and volume. Results: Histology revealed adenocarcinoma in 88, squamous cell carcinoma in 54 and small cell lung cancer (SCLC) in 31 patients. Tumor permeability was significantly differing between adenocarcinoma, squamous cell carcinoma and SCLC (all p < 0.05). Tumor BF and BV were higher in adenocarcinomathan in SCLC (p = 0.001 and p = 0.0002 respectively). BV was also higher in squamous cell carcinoma compared to SCLC (p = 0.01). MTT was not differing between tumor subtypes. Regarding all tumors, tumor diameter did not correlate with any of the dVPCT parameters, whereas tumor volume was negatively associated with permeability, BF and BV (r = −0.22, −0.24, −0.24, all p < 0.05). In squamous cell carcinoma, tumor diameter und volume correlated with BV (r = 0.53 and r = −0.40, all p < 0.05). In SCLC, tumor diameter und volume correlated with MTT (r = 0.46 and r = 0.39, all p < 0.05). In adenocarcinoma, no association between morphological and functional tumor characteristics was observed. Conclusions: dVPCT parameters are only partially related to tumor diameter and volume and are significantly differing between lung cancer subtypes.

  18. Study of limiting dosimetric parameters on lung pathology. Differences in the use of the lung-gtv and lung-ptv volumes; Estudio de los parametros dosimetricos limitantes en la patologia de pulmon diferencias en ul uso de los volumenes pulmon-gtv y pulmo-ptv

    Energy Technology Data Exchange (ETDEWEB)

    Granero Cabanero, D.; Almendros Blanco, P.; Garcia Hernanez, T.; Vicedo gonzalez, A.; Brualla, L.; Hernandez, A.; Solera, C.; Serrano, A.; Rosello, J.

    2013-07-01

    The objective of this work is to study the differences between the use of the volume of lung-GTV and lung-PTV to assess pulmonary toxicity and also to study the relationships between parameters V13, V20, V30, and mean dose of volumes lung, lung-PTV and lung-GTV. It was studied also the possible relationship between volumes of GTV, PTV and volume of lung with the dosimetric parameters described above. (Author)

  19. Inspiratory and expiratory computed tomographic volumetry for lung volume reduction surgery.

    Science.gov (United States)

    Morimura, Yuki; Chen, Fengshi; Sonobe, Makoto; Date, Hiroshi

    2013-06-01

    Three-dimensional (3D) computed tomographic (CT) volumetry has been introduced into the field of thoracic surgery, and a combination of inspiratory and expiratory 3D-CT volumetry provides useful data on regional pulmonary function as well as the volume of individual lung lobes. We report herein a case of a 62-year-old man with severe emphysema who had undergone lung volume reduction surgery (LVRS) to assess this technique as a tool for the evaluation of regional lung function and volume before and after LVRS. His postoperative pulmonary function was maintained in good condition despite a gradual slight decrease 2 years after LVRS. This trend was also confirmed by a combination of inspiratory and expiratory 3D-CT volumetry. We confirm that a combination of inspiratory and expiratory 3D-CT volumetry might be effective for the preoperative assessment of LVRS in order to determine the amount of lung tissue to be resected as well as for postoperative evaluation. This novel technique could, therefore, be used more widely to assess local lung function.

  20. Normal Expiratory Flow Rate and Lung Volumes in Patients with Combined Emphysema and Interstitial Lung Disease: A Case Series and Literature Review

    Directory of Open Access Journals (Sweden)

    Karen L Heathcote

    2011-01-01

    Full Text Available Pulmonary function tests in patients with idiopathic pulmonary fibrosis characteristically show a restrictive pattern including small lung volumes and increased expiratory flow rates resulting from a reduction in pulmonary compliance due to diffuse fibrosis. Conversely, an obstructive pattern with hyperinflation results in emphysema by loss of elastic recoil, expiratory collapse of the peripheral airways and air trapping. When the diseases coexist, pulmonary volumes are compensated, and a smaller than expected reduction or even normal lung volumes can be found. The present report describes 10 patients with progressive breathlessness, three of whom experienced severe limitation in their quality of life. All patients showed lung interstitial involvement and emphysema on computed tomography scan of the chest. The 10 patients showed normal spirometry and lung volumes with severe compromise of gas exchange. Normal lung volumes do not exclude diagnosis of idiopathic pulmonary fibrosis in patients with concomitant emphysema. The relatively preserved lung volumes may underestimate the severity of idiopathic pulmonary fibrosis and attenuate its effects on lung function parameters.

  1. Tumor Volume-Adapted Dosing in Stereotactic Ablative Radiotherapy of Lung Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Trakul, Nicholas; Chang, Christine N.; Harris, Jeremy [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States); Chapman, Christopher [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States); University of Michigan School of Medicine, Ann Arbor, MI (United States); Rao, Aarti [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States); University of California, Davis, School of Medicine, Davis, CA (United States); Shen, John [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States); University of California, Irvine, School of Medicine, Irvine, CA (United States); Quinlan-Davidson, Sean [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States); Department of Radiation Oncology, McMaster University, Juravinski Cancer Centre, Hamilton, Ontario (Canada); Filion, Edith J. [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States); Departement de Medecine, Service de Radio-Oncologie, Centre Hospitalier de l' Universite de Montreal, Montreal, Quebec (Canada); Wakelee, Heather A.; Colevas, A. Dimitrios [Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA (United States); Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA (United States); Whyte, Richard I. [Department of Cardiothoracic Surgery, Division of General Thoracic Surgery, Stanford University School of Medicine, Stanford, CA (United States); Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA (United States); and others

    2012-09-01

    Purpose: Current stereotactic ablative radiotherapy (SABR) protocols for lung tumors prescribe a uniform dose regimen irrespective of tumor size. We report the outcomes of a lung tumor volume-adapted SABR dosing strategy. Methods and Materials: We retrospectively reviewed the outcomes in 111 patients with a total of 138 primary or metastatic lung tumors treated by SABR, including local control, regional control, distant metastasis, overall survival, and treatment toxicity. We also performed subset analysis on 83 patients with 97 tumors treated with a volume-adapted dosing strategy in which small tumors (gross tumor volume <12 mL) received single-fraction regimens with biologically effective doses (BED) <100 Gy (total dose, 18-25 Gy) (Group 1), and larger tumors (gross tumor volume {>=}12 mL) received multifraction regimens with BED {>=}100 Gy (total dose, 50-60 Gy in three to four fractions) (Group 2). Results: The median follow-up time was 13.5 months. Local control for Groups 1 and 2 was 91.4% and 92.5%, respectively (p = 0.24) at 12 months. For primary lung tumors only (excluding metastases), local control was 92.6% and 91.7%, respectively (p = 0.58). Regional control, freedom from distant metastasis, and overall survival did not differ significantly between Groups 1 and 2. Rates of radiation pneumonitis, chest wall toxicity, and esophagitis were low in both groups, but all Grade 3 toxicities developed in Group 2 (p = 0.02). Conclusion: A volume-adapted dosing approach for SABR of lung tumors seems to provide excellent local control for both small- and large-volume tumors and may reduce toxicity.

  2. The feasibility of CT lung volume as a surrogate marker of donor-recipient size matching in lung transplantation.

    Science.gov (United States)

    Jung, Woo Sang; Haam, Seokjin; Shin, Jae Min; Han, Kyunghwa; Park, Chul Hwan; Byun, Min Kwang; Chang, Yoon Soo; Kim, Hyung Jung; Kim, Tae Hoon

    2016-07-01

    Donor-recipient size matching in lung transplantation (LTx) by computed tomography lung volume (CTvol) may be a reasonable approach because size matching is an anatomical issue. The purpose of this study is to evaluate the feasibility of CTvol as a surrogate marker of size matching in LTx by comparing CTvol and predicted total lung capacity (pTLC) to reference total lung capacity (TLC) values.From January to December 2014, data from 400 patients who underwent plethysmography, pulmonary function testing (PFT), and chest computed tomography scans were reviewed retrospectively. Enrolled 264 patients were divided into 3 groups according to PFT results: Group I, obstructive pattern; Group II, restrictive pattern; Group III, normal range. The correlations between pTLC and TLC and between CTvol and TLC were analyzed, and the linear correlation coefficients were compared. The percentage error rates of pTLC and CTvol were calculated and absolute error rates were compared.The correlation coefficient between CTvol and TLC in Group I was larger than that of pTLC and TLC (0.701 vs 0.432, P = 0.002). The absolute percentage error rate between CTvol and pTLC was lower than that of pTLC in Group II (15.3% ± 11.9% vs 42.2% ± 28.1%, P matching in LTx.

  3. A STUDY ON SPIROMETRIC EVALUATION OF LUNG VOLUME RESTRICTION IN PREDIAGNOSED CASES OF SKELETAL FLUOROSIS

    Directory of Open Access Journals (Sweden)

    Abhijit

    2014-07-01

    Full Text Available Fluorosis is an important public health problem in India. Skeletal changes and mottled enamel may result when drinking water contains excess fluoride. Due to involvement of ribcage skeletal fluorosis causes restrictive lung disease causing reduction in vital capacity. This cross sectional observational study has been done on 55 pre diagnosed patients of skeletal fluorosis, they have been classified according to MMRC dyspnea grading & lung volume has been measured. Among 55 patients, 43 patients (78.18% have shortness of breath, it also has been seen that 13.95% patients have MMRC grade 4 dyspnea, i.e. too breathless to leave the home & 21.81% of cases have FVC < 34% of predicted, i.e. very severe lung volume restriction.

  4. Lung volume reduction coil treatment for patients with severe emphysema : a European multicentre trial

    NARCIS (Netherlands)

    Deslee, Gaetan; Klooster, Karin; Hetzel, Martin; Stanzel, Franz; Kessler, Romain; Marquette, Charles-Hugo; Witt, Christian; Blaas, Stefan; Gesierich, Wolfgang; Herth, Felix J. F.; Hetzel, Juergen; van Rikxoort, Eva M.; Slebos, Dirk-Jan

    2014-01-01

    Background The lung volume reduction (LVR) coil is a minimally invasive bronchoscopic nitinol device designed to reduce hyperinflation and improve elastic recoil in severe emphysema. We investigated the feasibility, safety and efficacy of LVR coil treatment in a prospective multicentre cohort trial

  5. Measurement of end-expiratory lung volume in intubated children without interruption of mechanical ventilation

    NARCIS (Netherlands)

    I.G. Bikker (Ido); T.V. Scohy (Thierry); A.J.J.C. Bogers (Ad); J. Bakker (Jan); D.A.M.P.J. Gommers (Diederik)

    2009-01-01

    textabstractPurpose: Monitoring end-expiratory lung volume (EELV) is a valuable tool to optimize respiratory settings that could be of particular importance in mechanically ventilated pediatric patients. We evaluated the feasibility and precision of an intensive care unit (ICU) ventilator with an in

  6. Treatment of emphysema using bronchoscopic lung volume reduction coil technology : an update on efficacy and safety

    NARCIS (Netherlands)

    Hartman, Jorine E.; Klooster, Karin; ten Hacken, Nick H. T.; Slebos, Dirk-Jan

    2015-01-01

    In the last decade several promising bronchoscopic lung volume reduction (BLVR) treatments were developed and investigated. One of these treatments is BLVR treatment with coils. The advantage of this specific treatment is that it works independently of collateral flow, and also shows promise for pat

  7. Mechanisms controlling the volume of pleural fluid and extravascular lung water

    Directory of Open Access Journals (Sweden)

    G. Miserocchi

    2009-12-01

    Full Text Available Pleural and interstitial lung fluid volumes are strictly controlled and maintained at the minimum thanks to the ability of lymphatics to match the increase in filtration rate. In the pleural cavity, fluid accumulation is easily accommodated by retraction of lung and chest wall (high compliance of the pleural space; the increase of lymph flow per unit increase in pleural fluid volume is high due to the great extension of the parietal lymphatic. However, for the lung interstitium, the increase in lymph flow to match increased filtration does not need to be so great. In fact, increased filtration only causes a minor increase in extravascular water volume (<10% due to a marked increase in interstitial pulmonary pressure (low compliance of the extracellular matrix which, in turn, buffers further filtration. Accordingly, a less extended lymphatic network is needed. The efficiency of lymphatic control is achieved through a high lymphatic conductance in the pleural fluid and through a low interstitial compliance for the lung interstitium. Fluid volume in both compartments is so strictly controlled that it is difficult to detect initial deviations from the physiological state; thus, a great physiological advantage turns to be a disadvantage on a clinical basis as it prevents an early diagnosis of developing disease.

  8. Volume controlled fixation of the lung by formalin vapor. Pt. 1

    Energy Technology Data Exchange (ETDEWEB)

    Rau, W.S.; Mittermayer, C.

    1980-09-01

    A new method of lung fixation by formalin vapor is presented. A simple Engstrom type respirator modified for postmortem formalin insufflation of the lung was developed. Rapid fixation requires use of hot formalin vapor which would destroy available equipment. The main advantage compared to other described methods beside the constant volume is sufficient stirring of formalin and formalin vapor. In order to prevent condensation of water within the lung parenchyma any cooling of the vapor should be avoided. If the lungs are fixed by this method the tissue will stiffen in a position between in- and exspiration. Slices of 1 cm are cut. Radiographs in soft tissue technique guarantee unusual high resolution. Positive findings are identified easily and furthermore studied by microscopy: the direct correlation between X-ray finding and microscopy becomes possible.

  9. Entropy Production and the Pressure-Volume Curve of the Lung

    CERN Document Server

    Oliveira, Cláudio L N; Bates, Jason H T; Andrade, José S; Suki, Béla

    2015-01-01

    We investigate analytically the production of entropy during a breathing cycle in healthy and diseased lungs. First, we calculate entropy production in healthy lungs by applying the laws of thermodynamics to the well-known transpulmonary pressure-volume ($P-V$) curves of the lung under the assumption that lung tissue behaves as an entropy spring-like rubber. The bulk modulus, $B$, of the lung is also derived from these calculations. Second, we extend this approach to elastic recoil disorders of the lung such as occur in pulmonary fibrosis and emphysema. These diseases are characterized by particular alterations in the $P-V$ relationship. For example, in fibrotic lungs $B$ increases monotonically with disease progression, while in emphysema the opposite occurs. These diseases can thus be mimicked simply by making appropriate adjustments to the parameters of the $P-V$ curve. Using Clausius's formalism, we show that entropy production, $\\Delta S$, is related to the hysteresis area, $\\Delta A$, enclosed by the $P...

  10. Pulmonary blood volume and transit time in cirrhosis: relation to lung function

    DEFF Research Database (Denmark)

    Møller, Søren; Burchardt, H; Øgard, CG

    2006-01-01

    BACKGROUND/AIMS: In cirrhosis a systemic vasodilatation leads to an abnormal distribution of the blood volume with a contracted central blood volume. In addition, the patients have a ventilation/perfusion imbalance with a low diffusing capacity. As the size of the pulmonary blood volume (PBV) has...... not been determined separately we assessed PBV and pulmonary transit time (PTT) in relation to lung function in patients with cirrhosis and in controls. METHODS: Pulmonary and cardiac haemodynamics and transit times were determined by radionuclide techniques in 22 patients with alcoholic cirrhosis...... and in 12 controls. The lung function including diffusing capacity for carbon monoxide (DL, CO) was determined by conventional single breath technique. RESULTS: In the patients, PTT was shorter, 3.9+/-1.2 vs 5.7+/-1.0 s in the controls, P

  11. Pulmonary blood volume and transit time in cirrhosis: relation to lung function

    DEFF Research Database (Denmark)

    Møller, Søren; Burchardt, H; Øgard, CG;

    2006-01-01

    not been determined separately we assessed PBV and pulmonary transit time (PTT) in relation to lung function in patients with cirrhosis and in controls. METHODS: Pulmonary and cardiac haemodynamics and transit times were determined by radionuclide techniques in 22 patients with alcoholic cirrhosis......BACKGROUND/AIMS: In cirrhosis a systemic vasodilatation leads to an abnormal distribution of the blood volume with a contracted central blood volume. In addition, the patients have a ventilation/perfusion imbalance with a low diffusing capacity. As the size of the pulmonary blood volume (PBV) has...... and in 12 controls. The lung function including diffusing capacity for carbon monoxide (DL, CO) was determined by conventional single breath technique. RESULTS: In the patients, PTT was shorter, 3.9+/-1.2 vs 5.7+/-1.0 s in the controls, P

  12. Increased oxygen pulse after lung volume reduction surgery is associated with reduced dynamic hyperinflation.

    Science.gov (United States)

    Lammi, Matthew R; Ciccolella, David; Marchetti, Nathaniel; Kohler, Malcolm; Criner, Gerard J

    2012-10-01

    Stroke volume augmentation during exercise is limited in chronic obstructive pulmonary disease patients because of decreased preload from dynamic hyperinflation (DH). We hypothesised that oxygen pulse and pulse pressure (PP) improve following lung volume reduction surgery (LVRS), and the magnitude of improvement correlates with reduction in DH. We compared 16 emphysema patients undergoing LVRS with six emphysema patients not undergoing LVRS. Oxygen pulse and PP were calculated from maximal cardiopulmonary exercise tests at baseline and 6 months. End-expiratory lung volume (EELV)/total lung capacity (TLC) represented DH. Comparisons were made between baseline and 6 months at metabolic isotimes (per cent maximal carbon dioxide production (V'(CO(2),max))). At baseline, the LVRS group was older with higher forced expiratory volume in 1 s, but had similar hyperinflation to the non-LVRS group. At 6 months, oxygen pulse (50%, 75%, and 100% V'(CO(2),max)) and PP (50% and 75% V'(CO(2),max)) increased in the LVRS, but not in the non-LVRS group. Baseline functional residual capacity/TLC inversely correlated with resting oxygen pulse (r= -0.449, p=0.04). Decreased EELV/TLC correlated with increased oxygen pulse at 75% (r= -0.487, p=0.02) and 100% V'(CO(2),max) (r= -0.548, p=0.008). LVRS led to increased oxygen pulse and PP during exercise at metabolic isotimes 6 months following surgery. Reductions in DH correlated with increases in oxygen pulse during exercise. Reducing lung volume may improve stroke volume response to exercise by decreasing DH.

  13. Effect of low tidal volume ventilation on lung function and inflammation in mice

    Directory of Open Access Journals (Sweden)

    Goldmann Torsten

    2010-04-01

    Full Text Available Abstract Background A large number of studies have investigated the effects of high tidal volume ventilation in mouse models. In contrast data on very short term effects of low tidal volume ventilation are sparse. Therefore we investigated the functional and structural effects of low tidal volume ventilation in mice. Methods 38 Male C57/Bl6 mice were ventilated with different tidal volumes (Vt 5, 7, and 10 ml/kg without or with application of PEEP (2 cm H2O. Four spontaneously breathing animals served as controls. Oxygen saturation and pulse rate were monitored. Lung function was measured every 5 min for at least 30 min. Afterwards lungs were removed and histological sections were stained for measurement of infiltration with polymorphonuclear leukocytes (PMN. Moreover, mRNA expression of macrophage inflammatory protein (MIP-2 and tumor necrosis factor (TNFα in the lungs was quantified using real time PCR. Results Oxygen saturation did not change significantly over time of ventilation in all groups (P > 0.05. Pulse rate dropped in all groups without PEEP during mechanical ventilation. In contrast, in the groups with PEEP pulse rate increased over time. These effects were not statistically significant (P > 0.05. Tissue damping (G and tissue elastance (H were significantly increased in all groups after 30 min of ventilation (P 0.05. Mechanical ventilation significantly increased infiltration of the lungs with PMN (P Conclusions Our data show that very short term mechanical ventilation with lower tidal volumes than 10 ml/kg did not reduce inflammation additionally. Formation of atelectasis and inadequate oxygenation with very low tidal volumes may be important factors. Application of PEEP attenuated inflammation.

  14. Lung volume, breathing pattern and ventilation inhomogeneity in preterm and term infants.

    Directory of Open Access Journals (Sweden)

    Philipp Latzin

    Full Text Available BACKGROUND: Morphological changes in preterm infants with bronchopulmonary dysplasia (BPD have functional consequences on lung volume, ventilation inhomogeneity and respiratory mechanics. Although some studies have shown lower lung volumes and increased ventilation inhomogeneity in BPD infants, conflicting results exist possibly due to differences in sedation and measurement techniques. METHODOLOGY/PRINCIPAL FINDINGS: We studied 127 infants with BPD, 58 preterm infants without BPD and 239 healthy term-born infants, at a matched post-conceptional age of 44 weeks during quiet natural sleep according to ATS/ERS standards. Lung function parameters measured were functional residual capacity (FRC and ventilation inhomogeneity by multiple breath washout as well as tidal breathing parameters. Preterm infants with BPD had only marginally lower FRC (21.4 mL/kg than preterm infants without BPD (23.4 mL/kg and term-born infants (22.6 mL/kg, though there was no trend with disease severity. They also showed higher respiratory rates and lower ratios of time to peak expiratory flow and expiratory time (t(PTEF/t(E than healthy preterm and term controls. These changes were related to disease severity. No differences were found for ventilation inhomogeneity. CONCLUSIONS: Our results suggest that preterm infants with BPD have a high capacity to maintain functional lung volume during natural sleep. The alterations in breathing pattern with disease severity may reflect presence of adaptive mechanisms to cope with the disease process.

  15. Comparison of the dose to lung volume between supine and prone position during treatment planning

    Institute of Scientific and Technical Information of China (English)

    Yu Li; Huijun Xu ; Sujing Zhang; Xiaoliang Liu

    2015-01-01

    Objective The aim of the study was to compare the dose to lung volume in the supine and prone posi-tion while designing CyberKnife treatment plans to treat metastatic tumors in the spinous processes of the thoracic vertebrae, and of er a reference for reducing damage to normal tissues. Methods Nine cases of metastatic tumors in the spinous processes of the thoracic vertebrae were se-lected, and then we designed treatment plans based on the supine and prone positions and compared the results. Results In contrast with the treatment plan based on the prone position, the one for the supine position required 14862–36337 MU more; the lung D5% was 5.20–7.90 Gy higher; and the lung D20% was 2.61–5.73 Gy higher. The dif erence of dose to spine volume between the two plans was –2.21–2.67 Gy; to the skin volume was –3.93–7.85 Gy; and to the esophagus was 0.28–6.39 Gy. Conclusion The treatment plan based on the prone position of patients can better protect lung tissues than the one based on the supine position, and can also improve the availability of beams.

  16. Expiratory flow limitation and operating lung volumes during exercise in older and younger adults.

    Science.gov (United States)

    Smith, Joshua R; Kurti, Stephanie P; Meskimen, Kayla; Harms, Craig A

    2017-02-20

    We determined the effect of aging on expiratory flow limitation (EFL) and operating lung volumes when matched for lung size. We hypothesized that older adults will exhibit greater EFL and increases in EELV during exercise compared to younger controls. Ten older (5M/5W; >60years old) and nineteen height-matched young adults (10M/9W) were recruited. Young adults were matched for%predicted forced vital capacity (FVC) (Y-matched%Pred FVC; n=10) and absolute FVC (Y-matched FVC; n=10). Tidal flow-volume loops were recorded during the incremental exercise test with maximal flow-volume loops measured pre- and post-exercise. Compared to younger controls, older adults exhibited more EFL at ventilations of 26, 35, 51, and 80L/min. The older group had higher end-inspiratory lung volume compared to Y-matched%Pred FVC group during submaximal ventilations. The older group increased EELV during exercise, while EELV stayed below resting in the Y-matched%Pred FVC group. These data suggest older adults exhibit more EFL and increase EELV earlier during exercise compared to younger adults.

  17. Expiratory computed tomographic techniques: a cause of a poor rate of change in lung volume.

    Science.gov (United States)

    Morikawa, Keiko; Okada, Fumito; Mori, Hiromu

    2015-01-01

    Ninety-nine patients (29 males and 70 females; mean age, 57.1 years; range, 22-81 years) were included in this study to evaluate the factors affecting smaller lung volume changes in expiratory high-resolution computed tomography performed to depict air trapping. All patients underwent inspiratory and expiratory chest thin-section CT examinations and pulmonary function tests. Air trapping on CT images was graded subjectively. All variables (age, sex, diagnosis, pulmonary function index, and air trapping score) were compared with the degree of change in lung volume between the inspiratory and expiratory CT examinations. The variables affecting a lower degree of volume change were vital capacity, forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1.0), and the FEV1.0/FVC ratio. Bronchiolitis obliterans was the dominant diagnosis in patients with insufficient degrees of breath holding and in patients with negative air trapping scores despite an abnormal air trapping index. An insufficient degree of lung changes between inspiration and expiration on CT examinations represented bronchiolitis obliterans, which resulted in low FEV1.0 and FEV1.0/FVC values. Changes in the time gap from the announcement of exhalation and breath holding to the start of scanning most effectively indicated air trapping in patients with bronchiolar disorders.

  18. Quantitative assessment of irradiated lung volume and lung mass in breast cancer patients treated with tangential fields in combination with deep inspiration breath hold (DIBH)

    Energy Technology Data Exchange (ETDEWEB)

    Kapp, Karin Sigrid [Univ. Clinic of Therapeutic Radiology and Oncology, Medical Univ. of Graz (Austria); Zurl, Brigitte; Stranzl, Heidi; Winkler, Peter

    2010-03-15

    Purpose: Comparison of the amount of irradiated lung tissue volume and mass in patients with breast cancer treated with an optimized tangential-field technique with and without a deep inspiration breath-hold (DIBH) technique and its impact on the normal-tissue complication probability (NTCP). Material and Methods: Computed tomography datasets of 60 patients in normal breathing (NB) and subsequently in DIBH were compared. With a Real-Time Position Management Respiratory Gating System (RPM), anteroposterior movement of the chest wall was monitored and a lower and upper threshold were defined. Ipsilateral lung and a restricted tangential region of the lung were delineated and the mean and maximum doses calculated. Irradiated lung tissue mass was computed based on density values. NTCP for lung was calculated using a modified Lyman-Kutcher-Burman (LKB) model. Results: Mean dose to the ipsilateral lung in DIBH versus NB was significantly reduced by 15%. Mean lung mass calculation in the restricted area receiving {<=} 20 Gy (M{sub 20}) was reduced by 17% in DIBH but associated with an increase in volume. NTCP showed an improvement in DIBH of 20%. The correlation of individual breathing amplitude with NTCP proved to be independent. Conclusion: The delineation of a restricted area provides the lung mass calculation in patients treated with tangential fields. DIBH reduces ipsilateral lung dose by inflation so that less tissue remains in the irradiated region and its efficiency is supported by a decrease of NTCP. (orig.)

  19. Evaluation of dose according to the volume and respiratory range during SBRT in lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Deuk Hee [Dept. of Radiation Oncology, Busan Paik Hospital, Inje University, Busan (Korea, Republic of); Park, Eun Tae; Kim, Jung Hoon; Kang, Se Seik [Dept. of Radiological Science, College of Health Sciences, Catholic University of Pusan, Busan (Korea, Republic of)

    2016-09-15

    Stereotactic body radiotherapy is effective technic in radiotherapy for low stage lung cancer. But lung cancer is affected by respiratory so accurately concentrate high dose to the target is very difficult. In this study, evaluated the target volume according to how to take the image. And evaluated the dose by photoluminescence glass dosimeter according to how to contour the volume and respiratory range. As a result, evaluated the 4D CT volume was 10.4 cm{sup 3} which was closest value of real size target. And in dose case is internal target volume dose was 10.82, 16.88, 21.90 Gy when prescribed dose was 10, 15, 20 Gy and it was the highest dose. Respiratory gated radiotherapy dose was more higher than internal target volume. But it made little difference by respiratory range. Therefore, when moving cancer treatment, acquiring image by 4D CT, contouring internal target volume and respiratory gated radiotherapy technic would be the best way.

  20. Relation between trunk fat volume and reduction of total lung capacity in obese men.

    Science.gov (United States)

    Watson, R A; Pride, N B; Thomas, E Louise; Ind, P W; Bell, J D

    2012-01-01

    Reduction in total lung capacity (TLC) in obese men is associated with restricted expansion of the thoracic cavity at full inflation. We hypothesized that thoracic expansion was reduced by the load imposed by increased total trunk fat volume or its distribution. Using MRI, we measured internal and subcutaneous trunk fat and total abdominal and thoracic volumes at full inflation in 14 obese men [mean age: 52.4 yr, body mass index (BMI): 38.8 (range: 36-44) kg/m(2)] and 7 control men [mean age: 50.1 yr, BMI: 25.0 (range: 22-27.5) kg/m(2)]. TLC was measured by multibreath helium dilution and was restricted (fat volume was 16.65 (range: 12.6-21.8) liters in obese men and 6.98 (range: 3.0-10.8) liters in control men. Anthropometry and mean total trunk fat volumes were similar in OR men and obese men without restriction (the ON subgroup). Mean total intraabdominal volume was 9.41 liters in OR men and 11.15 liters in ON men. In obese men, reduced thoracic expansion at full inflation and restriction of TLC were not inversely related to a large volume of 1) intra-abdominal or total abdominal fat, 2) subcutaneous fat volume around the thorax, or 3) total trunk fat volume. In addition, trunk fat volumes in obese men were not inversely related to gas volume or estimated intrathoracic volume at supine functional residual capacity. In conclusion, this study failed to support the hypotheses that restriction of TLC or impaired expansion of the thorax at full inflation in middle-aged obese men was simply a consequence of a large abdominal volume or total trunk fat volume or its distribution.

  1. Clinical study of simultaneous lung volume reduction surgery during resection of pulmonary or esophageal neoplasms

    Institute of Scientific and Technical Information of China (English)

    TANG Yi-jun; WANG Chao-yang; WANG Cheng-de; DONG Yao-zhong

    2009-01-01

    Background If the emphysema lesions are not symmetrical, unilateral lung volume reduction surgery (LVRS) can be carried out on the more severe side. The aim of this research was to evaluate the feasibility and effects of LVRS performed simultaneously with resection of pulmonary and esophageal neoplasms.Methods Forty-five patients with pulmonary neoplasm and 37 patients with esophageal neoplasm were randomly assigned to group A or group B. In group A, LVRS was performed simultaneously on the same side as thoracotomy. In group B, only tumor resection was performed. The nonfunctional lung area was determined by preoperative chest computed tomography and lung ventilation/perfusion scan. The lung volume removed was about 20% to 30% of the lobes on one side. Preoperative and postoperative indexes including pulmonary function testing variables, arterial blood gas analysis variables, dyspnea scale, 6-minute walk distance, etc., were compared between the groups.Results There were no surgical deaths in this study. The postoperative forced vital capacity in 1 second, PaO_2, PaCO_2,dyspnea scale, and 6-minute walk distance were improved significantly in group A, whereas these indexes did not change or decreased slightly in group B.Conclusions For tumor patients who have associated emphysema, simultaneous LVRS not only increases the chance of receiving surgical therapy, but also improves the postoperative quality of life of the patient. LVRS has expanded thesurgical indication for tumor patients.

  2. Reduction of total lung capacity in obese men: comparison of total intrathoracic and gas volumes.

    Science.gov (United States)

    Watson, R A; Pride, N B; Thomas, E Louise; Fitzpatrick, J; Durighel, G; McCarthy, J; Morin, S X; Ind, P W; Bell, J D

    2010-06-01

    Restriction of total lung capacity (TLC) is found in some obese subjects, but the mechanism is unclear. Two hypotheses are as follows: 1) increased abdominal volume prevents full descent of the diaphragm; and 2) increased intrathoracic fat reduces space for full lung expansion. We have measured total intrathoracic volume at full inflation using magnetic resonance imaging (MRI) in 14 asymptomatic obese men [mean age 52 yr, body mass index (BMI) 35-45 kg/m2] and 7 control men (mean age 50 yr, BMI 22-27 kg/m2). MRI volumes were compared with gas volumes at TLC. All measurements were made with subjects supine. Obese men had smaller functional residual capacity (FRC) and FRC-to-TLC ratio than control men. There was a 12% predicted difference in mean TLC between obese (84% predicted) and control men (96% predicted). In contrast, differences in total intrathoracic volume (MRI) at full inflation were only 4% predicted TLC (obese 116% predicted TLC, control 120% predicted TLC), because mediastinal volume was larger in obese than in control [heart and major vessels (obese 1.10 liter, control 0.87 liter, P=0.016) and intrathoracic fat (obese 0.68 liter, control 0.23 liter, P80% predicted (ON) was 26% predicted TLC. Mediastinal volume was similar in OR (1.84 liter) and ON (1.73 liter), but total intrathoracic volume was 19% predicted TLC smaller in OR than in ON. We conclude that the major factor restricting TLC in some obese men was reduced thoracic expansion at full inflation.

  3. Intraobserver and interobserver agreement of volume perfusion CT (VPCT) measurements in patients with lung lesions

    Energy Technology Data Exchange (ETDEWEB)

    Sauter, Alexander W., E-mail: alexander.sauter@klinikum.uni-tuebingen.de [Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tuebingen (Germany); Merkle, Anne, E-mail: anne_merkle@web.de [Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tuebingen (Germany); Schulze, Maximilian, E-mail: maximilian.schulze@med.uni-tuebingen.de [Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tuebingen (Germany); Spira, Daniel, E-mail: daniel.spira@med.uni-tuebingen.de [Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tuebingen (Germany); Hetzel, Juergen, E-mail: juergen.hetzel@med.uni-tuebingen.de [Departments of Oncology, Hematology, Immunology, Rheumatology and Pulmonology, University Hospital of Tuebingen, Otfried-Mueller-Str. 10, 72076 Tuebingen (Germany); Claussen, Claus D., E-mail: claus.claussen@med.uni-tuebingen.de [Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tuebingen (Germany); Horger, Marius S., E-mail: marius.horger@med.uni-tuebingen.de [Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tuebingen (Germany)

    2012-10-15

    Objectives: To evaluate intraobserver and interobserver agreement of manually encompassed lung lesions for perfusion measurements using volume-perfusion computed tomography (VPCT). Materials and methods: Institutional review board approval and informed consent were obtained. HIPAA guidelines were followed. A 65-s dynamic study was acquired with scan parameters 80 kV, 60 mA s (80 mA s for patients ≥70 kg), 128 × 0.6 mm collimation. Blood flow (BF), blood volume (BV) and K{sup trans} parameters were determined by syngo volume perfusion CT body with 88 lesions analyzed retrospectively. Results: Within-subject coefficients of variation for intraobserver agreement (range 6.59–12.82%) were superior to those for interobserver agreement (range 21.75–38.30%). Size-dependent analysis revealed lower agreements for lesions <4 cm as compared to larger lesions. Additionally, agreements of the upper, middle and lower lung zones were different. Conclusions: Intraobserver agreement was substantial for VPCT lung cancer perfusion measurements encouraging the use for tumor characterization and therapy response monitoring. Interobserver agreement is limited and unexperienced readers should be trained before using this new method.

  4. Effects of tongue position and lung volume on voluntary maximal tongue protrusion force in humans.

    Science.gov (United States)

    Saboisky, Julian P; Luu, Billy L; Butler, Jane E; Gandevia, Simon C

    2015-01-15

    Maximal voluntary protrusion force of the human tongue has not been examined in positions beyond the incisors or at different lung volumes. Tongue force was recorded with the tongue tip at eight positions relative to the incisors (12 and 4mm protrusion, neutral and 4, 12, 16, 24 and 32mm retraction) at functional residual capacity (FRC), total lung capacity (TLC) and residual volume (RV) in 15 healthy subjects. Maximal force occurred between 12mm and 32mm retraction (median 16mm). Maximum force at FRC was reproducible at the optimal tongue position across sessions (P=0.68). Across all positions at FRC the average force was highest at 24mm retraction (28.3±5.3N, mean±95% CI) and lowest at 12mm protrusion (49.1±4.6% maximum; Ptongue positions, maximal force was on average 9.3% lower at FRC than TLC and RV (range: 4.5-12.7% maximum, P<0.05). Retracted positions produce higher-force protrusions with a small effect of lung volume.

  5. Effect of aeration on fast gas pressure tests

    Institute of Scientific and Technical Information of China (English)

    CHEN Yu-jia; JIANG Cheng-lin; LI Xiao-wei; TANG Jun; WANG Chen; YANG Fei-long; WANG Fa-kai; ZHANG Chao-jie; DENG Shu-hua

    2009-01-01

    Given the problem of the long time required for testing gas pressure, we propose a fast-test method in which we used a technique of fast borehole sealing and air replenishing. Based on the characteristics of gas emission from boreholes to be tested, we built a theoretical model for calculating parameters during the process of increasing natural pressure and aeration. Using this model, we investigated the effect of different aeration conditions on velocity of pressure tests. The result shows that: 1) aerating air into boreholes can speed up gas pressure tests and 2) the more similar the pressure of the aerated air to the original gas pressure, the smaller the gas volume absorbed by coal and the shorter the time needed in pressure test. A case study in the Lu'an mining area shows that the time needed for gas pressure test is only 4 h using our method of aeration and 29 h under conditions of increasing natural pressure, saving time by 86.2%. This case study also indicates that, by using the aeration method, only one hour is needed for gas pressure to reach a stable state, which breaks the record of the shortest time needed for gas pressure tests in China.

  6. Lung Volume Reduction Coil Treatment in Chronic Obstructive Pulmonary Disease Patients with Homogeneous Emphysema: A Prospective Feasibility Trial

    NARCIS (Netherlands)

    Klooster, K.; Hacken, N. Ten; Franz, I.; Kerstjens, H.; Rikxoort, E.M. van; Slebos, D.J.

    2014-01-01

    Background: In patients with heterogeneous emphysema, surgical and bronchoscopic lung volume reduction ({LVR}) treatments are available. However, for patients with homogeneous emphysema these treatments are hardly investigated and seem less effective. Bronchoscopic {LVR} coil treatment has been show

  7. Lung Volume Reduction Coil Treatment in Chronic Obstructive Pulmonary Disease Patients with Homogeneous Emphysema : A Prospective Feasibility Trial

    NARCIS (Netherlands)

    Klooster, Karin; ten Hacken, Nick H. T.; Franz, Ina; Kerstjens, Huib A. M.; van Rikxoort, Eva M.; Slebos, Dirk-Jan

    2014-01-01

    Background: In patients with heterogeneous emphysema, surgical and bronchoscopic lung volume reduction (LVR) treatments are available. However, for patients with homogeneous emphysema these treatments are hardly investigated and seem less effective. Bronchoscopic LVR coil treatment has been shown to

  8. Volume change determination of metastatic lung tumors in CT images using 3-D template matching

    Science.gov (United States)

    Ambrosini, Robert D.; Wang, Peng; O'Dell, Walter G.

    2009-02-01

    The ability of a clinician to properly detect changes in the size of lung nodules over time is a vital element to both the diagnosis of malignant growths and the monitoring of the response of cancerous lesions to therapy. We have developed a novel metastasis sizing algorithm based on 3-D template matching with spherical tumor appearance models that were created to match the expected geometry of the tumors of interest while accounting for potential spatial offsets of nodules in the slice thickness direction. The spherical template that best-fits the overall volume of each lung metastasis was determined through the optimization of the 3-D normalized cross-correlation coefficients (NCCC) calculated between the templates and the nodules. A total of 17 different lung metastases were extracted manually from real patient CT datasets and reconstructed in 3-D using spherical harmonics equations to generate simulated nodules for testing our algorithm. Each metastasis 3-D shape was then subjected to 10%, 25%, 50%, 75% and 90% scaling of its volume to allow for 5 possible volume change combinations relative to the original size per each reconstructed nodule and inserted back into CT datasets with appropriate blurring and noise addition. When plotted against the true volume change, the nodule volume changes calculated by our algorithm for these 85 data points exhibited a high degree of accuracy (slope = 0.9817, R2 = 0.9957). Our results demonstrate that the 3-D template matching method can be an effective, fast, and accurate tool for automated sizing of metastatic tumors.

  9. Combined use of positron emission tomography and volume doubling time in lung cancer screening with low-dose CT scanning

    DEFF Research Database (Denmark)

    Ashraf, H; Dirksen, A; Jakobsen, Annika Loft

    2011-01-01

    In lung cancer screening the ability to distinguish malignant from benign nodules is a key issue. This study evaluates the ability of positron emission tomography (PET) and volume doubling time (VDT) to discriminate between benign and malignant nodules.......In lung cancer screening the ability to distinguish malignant from benign nodules is a key issue. This study evaluates the ability of positron emission tomography (PET) and volume doubling time (VDT) to discriminate between benign and malignant nodules....

  10. Reliability and validity of the lung volume measurement made by the BOD POD body composition system.

    Science.gov (United States)

    Davis, James A; Dorado, Silvia; Keays, Kathleen A; Reigel, Kimberly A; Valencia, Kristoffer S; Pham, Patrick H

    2007-01-01

    The BOD POD Body Composition System uses air-displacement plethysmography to measure body volume. To correct the body volume measurement for the subject's lung volume, the BOD POD utilizes pulmonary plethysmography to measure functional residual capacity (FRC) at mid-exhalation as that is the subject's lung volume during the body volume measurement. Normally, FRC is measured at end-exhalation. The BOD POD FRC measurement can be corrected to an end-exhalation volume by subtracting approximately one-half of the measured tidal volume. Our purpose was to determine the reliability and validity of the BOD POD FRC measurement at end-exhalation. Ninety-two healthy adults (half female) underwent duplicate FRC measurements by the BOD POD and one FRC measurement by a traditional gas dilution technique. The latter method was used as the reference method for the validity component of the study. The order of the FRC measurements by the two methods was randomized. The test-retest correlation coefficients for the duplicate BOD POD FRC measurements for the male and female subjects were 0.966 and 0.948, respectively. The mean differences between the BOD POD FRC trial #1 measurement and gas dilution FRC measurement for the male and female subjects were -32 and -23 ml, respectively. Neither difference was statistically significant. The correlation coefficients for these two measurements in the male and female subjects were 0.925 and 0.917, respectively. Based on these results, we conclude that the BOD POD FRC measurement in healthy males and females is both reliable and valid.

  11. (3)He MRI in healthy volunteers: preliminary correlation with smoking history and lung volumes.

    Science.gov (United States)

    Guenther, D; Eberle, B; Hast, J; Lill, J; Markstaller, K; Puderbach, M; Schreiber, W G; Hanisch, G; Heussel, C P; Surkau, R; Grossmann, T; Weiler, N; Thelen, M; Kauczor, H U

    2000-06-01

    MRI with hyperpolarized helium-3 ((3)He) provides high-resolution imaging of ventilated airspaces. The first aim of this (3)He-study was to compare observations of localized signal defects in healthy smokers and non-smokers. A second aim was to describe relationships between parameters of lung function, volume of inspired (3)He and signal-to-noise ratio. With Ethics Committee approval and informed consent, 12 healthy volunteers (seven smokers and five non-smokers) were studied. Imaging was performed in a 1.5 T scanner using a two-dimensional FLASH sequence at 30V transmitter amplitude (TR/TE/alpha = 11 ms/4.2 ms/microprocessor-controlled delivery device and imaged during single breath-holds. Images were evaluated visually, and scored using a prospectively defined 'defect-index'. Signal-to-noise ratio of the images were correlated with localization, (3)He volumes and static lung volumes. Due to poor image quality studies of two smokers were not eligible for the evaluation. Smokers differed from non-smokers in total number and size of defects: the 'defect-index' of smokers ranged between 0.8 and 6.0 (median = 1.1), that of non-smokers between 0.1 and 0.8 (median = 0.4). Intraindividually, an anteroposterior gradient of signal-to-noise ratio was apparent. Signal-to-noise ratio correlated with the estimated amount of hyperpolarization administered (r = 0. 77), but not with static lung volumes. We conclude that (3)He MRI is a sensitive measure to detect regional abnormalities in the distribution of ventilation in clinically healthy persons with normal pulmonary function tests.

  12. [Interpretation and use of routine pulmonary function tests: Spirometry, static lung volumes, lung diffusion, arterial blood gas, methacholine challenge test and 6-minute walk test].

    Science.gov (United States)

    Bokov, P; Delclaux, C

    2016-02-01

    Resting pulmonary function tests (PFT) include the assessment of ventilatory capacity: spirometry (forced expiratory flows and mobilisable volumes) and static volume assessment, notably using body plethysmography. Spirometry allows the potential definition of obstructive defect, while static volume assessment allows the potential definition of restrictive defect (decrease in total lung capacity) and thoracic hyperinflation (increase in static volumes). It must be kept in mind that this evaluation is incomplete and that an assessment of ventilatory demand is often warranted, especially when facing dyspnoea: evaluation of arterial blood gas (searching for respiratory insufficiency) and measurement of the transfer coefficient of the lung, allowing with the measurement of alveolar volume to calculate the diffusing capacity of the lung for CO (DLCO: assessment of alveolar-capillary wall and capillary blood volume). All these pulmonary function tests have been the subject of an Americano-European Task force (standardisation of lung function testing) published in 2005, and translated in French in 2007. Interpretative strategies for lung function tests have been recommended, which define abnormal lung function tests using the 5th and 95th percentiles of predicted values (lower and upper limits of normal values). Thus, these recommendations need to be implemented in all pulmonary function test units. A methacholine challenge test will only be performed in the presence of an intermediate pre-test probability for asthma (diagnostic uncertainty), which is an infrequent setting. The most convenient exertional test is the 6-minute walk test that allows the assessment of walking performance, the search for arterial desaturation and the quantification of dyspnoea complaint.

  13. Prenatal assessment of normal fetal pulmonary grey-scale and lung volume by three-dimensional ultrasonography

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Objective To quantitatively analyze the fetal lung echo and right lung volume in the third trimester by real-time three-dimensional ultrasound(3-D US)and evaluate the feasibility of fetal lung maturity.Methods A total of 732 women with normal singleton pregnancies between 28 and 42 weeks of gestation underwent ultrasound examination.The 3-D US equipment with a 3.5-5 MHz transabdominal transducer was used for the fetal biometric measurement.The echogenicity ratio between fetal lung and liver was compared.The...

  14. GGO nodule volume-preserving nonrigid lung registration using GLCM texture analysis.

    Science.gov (United States)

    Park, Seongjin; Kim, Bohyoung; Lee, Jeongjin; Goo, Jin Mo; Shin, Yeong-Gil

    2011-10-01

    In lung cancer screening, benign and malignant nodules can be classified through nodule growth assessment by the registration and, then, subtraction between follow-up computed tomography scans. During the registration, the volume of nodule regions in the floating image should be preserved, whereas the volume of other regions in the floating image should be aligned to that in the reference image. However, ground glass opacity (GGO) nodules are very elusive to automatically segment due to their inhomogeneous interior. In other words, it is difficult to automatically define the volume-preserving regions of GGO nodules. In this paper, we propose an accurate and fast nonrigid registration method. It applies the volume-preserving constraint to candidate regions of GGO nodules, which are automatically detected by gray-level cooccurrence matrix (GLCM) texture analysis. Considering that GGO nodules can be characterized by their inner inhomogeneity and high intensity, we identify the candidate regions of GGO nodules based on the homogeneity values calculated by the GLCM and the intensity values. Furthermore, we accelerate our nonrigid registration by using Compute Unified Device Architecture (CUDA). In the nonrigid registration process, the computationally expensive procedures of the floating-image transformation and the cost-function calculation are accelerated by using CUDA. The experimental results demonstrated that our method almost perfectly preserves the volume of GGO nodules in the floating image as well as effectively aligns the lung between the reference and floating images. Regarding the computational performance, our CUDA-based method delivers about 20× faster registration than the conventional method. Our method can be successfully applied to a GGO nodule follow-up study and can be extended to the volume-preserving registration and subtraction of specific diseases in other organs (e.g., liver cancer).

  15. Influence of heart failure on resting lung volumes in patients with COPD

    Science.gov (United States)

    de Souza, Aline Soares; Sperandio, Priscila Abreu; Mazzuco, Adriana; Alencar, Maria Clara; Arbex, Flávio Ferlin; de Oliveira, Mayron Faria; O'Donnell, Denis Eunan; Neder, José Alberto

    2016-01-01

    ABSTRACT Objective: To evaluate the influence of chronic heart failure (CHF) on resting lung volumes in patients with COPD, i.e., inspiratory fraction-inspiratory capacity (IC)/TLC-and relative inspiratory reserve-[1 − (end-inspiratory lung volume/TLC)]. Methods: This was a prospective study involving 56 patients with COPD-24 (23 males/1 female) with COPD+CHF and 32 (28 males/4 females) with COPD only-who, after careful clinical stabilization, underwent spirometry (with forced and slow maneuvers) and whole-body plethysmography. Results: Although FEV1, as well as the FEV1/FVC and FEV1/slow vital capacity ratios, were higher in the COPD+CHF group than in the COPD group, all major "static" volumes-RV, functional residual capacity (FRC), and TLC-were lower in the former group (p < 0.05). There was a greater reduction in FRC than in RV, resulting in the expiratory reserve volume being lower in the COPD+CHF group than in the COPD group. There were relatively proportional reductions in FRC and TLC in the two groups; therefore, IC was also comparable. Consequently, the inspiratory fraction was higher in the COPD+CHF group than in the COPD group (0.42 ± 0.10 vs. 0.36 ± 0.10; p < 0.05). Although the tidal volume/IC ratio was higher in the COPD+CHF group, the relative inspiratory reserve was remarkably similar between the two groups (0.35 ± 0.09 vs. 0.44 ± 0.14; p < 0.05). Conclusions: Despite the restrictive effects of CHF, patients with COPD+CHF have relatively higher inspiratory limits (a greater inspiratory fraction). However, those patients use only a part of those limits, probably in order to avoid critical reductions in inspiratory reserve and increases in elastic recoil. PMID:27832235

  16. Influence of heart failure on resting lung volumes in patients with COPD

    Directory of Open Access Journals (Sweden)

    Aline Soares de Souza

    Full Text Available ABSTRACT Objective: To evaluate the influence of chronic heart failure (CHF on resting lung volumes in patients with COPD, i.e., inspiratory fraction-inspiratory capacity (IC/TLC-and relative inspiratory reserve-[1 − (end-inspiratory lung volume/TLC]. Methods: This was a prospective study involving 56 patients with COPD-24 (23 males/1 female with COPD+CHF and 32 (28 males/4 females with COPD only-who, after careful clinical stabilization, underwent spirometry (with forced and slow maneuvers and whole-body plethysmography. Results: Although FEV1, as well as the FEV1/FVC and FEV1/slow vital capacity ratios, were higher in the COPD+CHF group than in the COPD group, all major "static" volumes-RV, functional residual capacity (FRC, and TLC-were lower in the former group (p < 0.05. There was a greater reduction in FRC than in RV, resulting in the expiratory reserve volume being lower in the COPD+CHF group than in the COPD group. There were relatively proportional reductions in FRC and TLC in the two groups; therefore, IC was also comparable. Consequently, the inspiratory fraction was higher in the COPD+CHF group than in the COPD group (0.42 ± 0.10 vs. 0.36 ± 0.10; p < 0.05. Although the tidal volume/IC ratio was higher in the COPD+CHF group, the relative inspiratory reserve was remarkably similar between the two groups (0.35 ± 0.09 vs. 0.44 ± 0.14; p < 0.05. Conclusions: Despite the restrictive effects of CHF, patients with COPD+CHF have relatively higher inspiratory limits (a greater inspiratory fraction. However, those patients use only a part of those limits, probably in order to avoid critical reductions in inspiratory reserve and increases in elastic recoil.

  17. Aeration equipment for small depths

    Science.gov (United States)

    Sluše, Jan; Pochylý, František

    2015-05-01

    Deficit of air in water causes complications with cyanobacteria mainly in the summer months. Cyanobacteria is a bacteria that produces poison called cyanotoxin. When the concentration of cyanobacteria increases, the phenomena "algal bloom" appears, which is very toxic and may kill all the organisms. This article describes new equipment for aeration of water in dams, ponds and reservoirs with small depth. This equipment is mobile and it is able to work without any human factor because its control is provided by a GPS module. The main part of this equipment consists of a floating pump which pumps water from the surface. Another important part of this equipment is an aerator where water and air are blended. Final aeration process runs in the nozzles which provide movement of all this equipment and aeration of the water. Simulations of the flow are solved by multiphase flow with diffusion in open source program called OpenFOAM. Results will be verified by an experiment.

  18. Lung protection: an intervention for tidal volume reduction in a teaching intensive care unit

    Science.gov (United States)

    Briva, Arturo; Gaiero, Cristina

    2016-01-01

    Objective To determine the effect of feedback and education regarding the use of predicted body weight to adjust tidal volume in a lung-protective mechanical ventilation strategy. Methods The study was performed from October 2014 to November 2015 (12 months) in a single university polyvalent intensive care unit. We developed a combined intervention (education and feedback), placing particular attention on the importance of adjusting tidal volumes to predicted body weight bedside. In parallel, predicted body weight was estimated from knee height and included in clinical charts. Results One hundred fifty-nine patients were included. Predicted body weight assessed by knee height instead of visual evaluation revealed that the delivered tidal volume was significantly higher than predicted. After the inclusion of predicted body weight, we observed a sustained reduction in delivered tidal volume from a mean (standard error) of 8.97 ± 0.32 to 7.49 ± 0.19mL/kg (p < 0.002). Furthermore, the protocol adherence was subsequently sustained for 12 months (delivered tidal volume 7.49 ± 0.54 versus 7.62 ± 0.20mL/kg; p = 0.103). Conclusion The lack of a reliable method to estimate the predicted body weight is a significant impairment for the application of a worldwide standard of care during mechanical ventilation. A combined intervention based on education and repeated feedbacks promoted sustained tidal volume education during the study period (12 months). PMID:27925055

  19. Lung function in North American Indian children: reference standards for spirometry, maximal expiratory flow volume curves, and peak expiratory flow.

    Science.gov (United States)

    Wall, M A; Olson, D; Bonn, B A; Creelman, T; Buist, A S

    1982-02-01

    Reference standards of lung function was determined in 176 healthy North American Indian children (94 girls, 82 boys) 7 to 18 yr of age. Spirometry, maximal expiratory flow volume curves, and peak expiratory flow rate were measured using techniques and equipment recommended by the American Thoracic Society. Standing height was found to be an accurate predictor of lung function, and prediction equations for each lung function variable are presented using standing height as the independent variable. Lung volumes and expiratory flow rates in North American Indian children were similar to those previously reported for white and Mexican-American children but were greater than those in black children. In both boys and girls, lung function increased in a curvilinear fashion. Volume-adjusted maximal expiratory flow rates after expiring 50 or 75% of FVC tended to decrease in both sexes as age and height increased. Our maximal expiratory flow volume curve data suggest that as North American Indian children grow, lung volume increases at a slightly faster rate than airway size does.

  20. Wind-powered dugout aeration

    Energy Technology Data Exchange (ETDEWEB)

    Buchanan, B. [Alberta Agriculture, Barrhead, AB (Canada); Chang, J. [Engineering Services, Edmonton, AB (Canada)

    1993-12-31

    A review is presented of past and present use of wind power on Alberta farms, concentrating on the merits of wind-powered aeration systems for improving water quality in farm dugouts. Dugout water quality is seriously affected by nutrient-rich sediments causing excessive algae and plant growth. If dissolved oxygen is not maintained anaerobic decomposition begins, resulting in black, smelly water. Aeration assures an adequate level of dissolved oxygen to control taste and odor and maintains good water quality. There are two common means of aerating dugouts from windmills: use of a floating mechanical type aerator, and a bank-mounted windmill and diaphragm-type pump. Bank-mounted windmill aerators were studied as they were considered to have the most potential for aerating dugouts. Windmill monitoring was carried out on a farm near Manning, Alberta using a Koenders windmill (12 blade rotor). Tests showed that the windmill maintained the dissolved oxygen levels near saturation, and averaged ca 1.0 cubic feet of air pumped per minute. Operating pressure was 5 psi, windmill starting speed was 12 km/h wind, and stopping speed was 8 km/h winds. Tests were also carried out on a Breeze-1 windmill, a 3 blade airplane propeller type windmill. The system average 3.3 cubic feet of air per minute, and started at very low wind speeds of 5-8 km/h. 2 figs.

  1. Lung function, transfusion, pulmonary capillary blood volume and sickle cell disease.

    Science.gov (United States)

    Lunt, Alan; McGhee, Emily; Robinson, Polly; Rees, David; Height, Susan; Greenough, Anne

    2016-02-01

    Lung function abnormalities occur in children with sickle cell disease (SCD) and may be associated with elevated pulmonary blood volume. To investigate that association, we determined whether blood transfusion in SCD children acutely increased pulmonary capillary blood volume (PCBV) and increased respiratory system resistance (Rrs5). Measurements of Rrs5 and spirometry were made before and after blood transfusion in 18 children, median age 14.2 (6.6-18.5) years. Diffusing capacity for carbon monoxide and nitric oxide were assessed to calculate the PCBV. Post transfusion, the median Rrs5 had increased from 127.4 to 141.3% predicted (pvolume from 39.7 to 64.1 ml/m2 (pvolume in one second (p=0.0056) and vital capacity (p=0.0008) decreased. The increase in Rrs5 correlated with the increase in PCBV (r=0.50, p=0.0493). Increased pulmonary capillary blood volume may at least partially explain the lung function abnormalities in SCD children.

  2. Overweight Is an Independent Risk Factor for Reduced Lung Volumes in Myotonic Dystrophy Type 1.

    Directory of Open Access Journals (Sweden)

    Charlotte G W Seijger

    Full Text Available In this large observational study population of 105 myotonic dystrophy type 1 (DM1 patients, we investigate whether bodyweight is a contributor of total lung capacity (TLC independent of the impaired inspiratory muscle strength.Body composition was assessed using the combination of body mass index (BMI and fat-free mass index. Pulmonary function tests and respiratory muscle strength measurements were performed on the same day. Patients were stratified into normal (BMI < 25 kg/m(2 and overweight (BMI ≥ 25 kg/m(2 groups. Multiple linear regression was used to find significant contributors for TLC.Overweight was present in 59% of patients, and body composition was abnormal in almost all patients. In overweight patients, TLC was significantly (p = 2.40×10(-3 decreased, compared with normal-weight patients, while inspiratory muscle strength was similar in both groups. The decrease in TLC in overweight patients was mainly due to a decrease in expiratory reserve volume (ERV further illustrated by a highly significant (p = 1.33×10(-10 correlation between BMI and ERV. Multiple linear regression showed that TLC can be predicted using only BMI and the forced inspiratory volume in 1 second, as these were the only significant contributors.This study shows that, in DM1 patients, overweight further reduces lung volumes, as does impaired inspiratory muscle strength. Additionally, body composition is abnormal in almost all DM1 patients.

  3. PRESSURE-VOLUME ANALYSIS OF THE LUNG WITH AN EXPONENTIAL AND LINEAR-EXPONENTIAL MODEL IN ASTHMA AND COPD

    NARCIS (Netherlands)

    BOGAARD, JM; OVERBEEK, SE; VERBRAAK, AFM; VONS, C; FOLGERING, HTM; VANDERMARK, TW; ROOS, CM; STERK, PJ

    1995-01-01

    The prevalence of abnormalities in lung elasticity in patients with asthma or chronic obstructive pulmonary disease (COPD) is still unclear, This might be due to uncertainties concerning the method of analysis of quasistatic deflation long pressure-volume curves. Pressure-volume curves were obtained

  4. [Bronchoscopic lung volume reduction is a treatment offered to patients with severe heterogenous emphysema].

    Science.gov (United States)

    Perch, Michael; Titlestad, Ingrid L; Rychwicha-Kielek, Beata A; Bendstrup, Elisabeth; Iversen, Martin; Siemsen, Mette; Jørgensen, Ole D; Haahr, Poul Erik

    2014-07-14

    Introduction of bronchoscopic lung volume reduction as a treatment for severe emphysema has been defined as an area of development by The Danish Health and Medicines Authority. We here present the rationale for treatment, in- and exclusion criteria, and ultimately the organization for assessment, treatment and follow-up in Denmark. The treatment aim is to lower dyspnoea. There is a national protocol for patient selection according to in- and exclusion criteria. Different commercial devices are available, but endobronchial valves have been the devices mostly applied. A national database has been established to evaluate cost-effectiveness.

  5. Neonatal chest wall suspension splint: a novel and noninvasive method for support of lung volume.

    Science.gov (United States)

    Miller, Thomas L; Palmer, Charles; Shaffer, Thomas H; Wolfson, Marla R

    2005-06-01

    Surfactant and musculoskeletal immaturity results in lower compliance of the lung relative to the chest wall, with clinical manifestations of low lung volume, marked chest wall retractions (CWR), and thoracoabdominal asynchrony. Inspiratory efforts are dissipated on distorting the chest wall inward rather than recruiting lung volumes. The current study tests the hypothesis that a novel neonatal chest wall suspension splint (SP), designed to provide stability to the compliant chest wall, would reduce inspiratory chest wall retractions and improve lung volumes. Nine preterm infants (29 +/- 1 SE weeks of gestation; 1.59 +/- 0.27 SE kg study weight) were studied at 16 +/- 5 SE days of life at baseline (BL) and following application of the front plate (FP) and the full SP (Hug n Snug Neonatal Chest Splint, Respironics, Inc.). Phase angle of thoracoabdominal motion, CWR, functional residual capacity (FRC), and pulmonary function were evaluated during spontaneous breathing. Compared to BL, there was a significant decrease in anterior CWR (2.21 +/- 0.91 SE vs. 0.25 +/- 0.09 SE mm; P < 0.05), an increase in FRC (16.6 +/- 2.8 SE vs. 27.8 +/- 5.5 SE ml/kg; P < 0.05) and tidal volume (4.8 +/- 1.5 SE vs. 7.3 +/- 1.4 SE ml/kg; P < 0.05), minimal effect on pulmonary compliance (1.98 +/- 0.50 SE vs. 1.72 +/- 0.30 SE ml/cmH2O/kg), and a trend for a decrease in phase angle (128.4 +/- 10.9 SE vs. 111.8 +/- 19.3 SE) with the application of the splint. FRC correlated inversely with severity of CWR across all conditions (P < 0.05, r = -0.68). Phase angle was directly correlated to anterior CWR (r = 0.72; P < 0.05) and correlated inversely with FRC (P < 0.005; r = -0.56). We speculate that by improving CW stability, the use of this splint may reduce the energetic requirements of breathing and, potentially, the need for more invasive ventilatory support in the neonate.

  6. RE-AERATION LAW OF WATER FLOW OVER SPILLWAYS

    Institute of Scientific and Technical Information of China (English)

    CHENG Xiang-ju; LUO Lin; CHEN Yong-can; ZHAO Wen-qian

    2006-01-01

    In order to explore the re-aeration law of water flow over spillway, the transfer process of oxygen in water flow over spillway was studied. The interfacial mass transfer coefficients were obtained by experiments. The flow fields and the turbulence characteristics are simulated by numerical methods. The fractional volume of fluid model (VOF) of the air-water two phase flows was introduced to track the interface. Consequently, the quantitative expression of the interfacial mass transfer coefficients related with velocity and kinetic energy at the free surface was derived and the re-aeration model for the water flow over spillway was established. The examination with the experimental data of different conditions shows the validity of the re-aeration model for the water flow over spillways. This study will be important to evaluate the dissolved oxygen concentration and self-purification ability of rivers.

  7. Emphysema. Imaging for endoscopic lung volume reduction; Lungenemphysem. Bildgebung bei endoskopischer Lungenvolumenreduktion

    Energy Technology Data Exchange (ETDEWEB)

    Storbeck, B. [LungenClinic Grosshansdorf (Germany). Dept. of Radiology; Schroeder, T.H. [Amalie Sieveking-Hospital, Diagnostic and Interventional Radiology, Hamburg (Germany); Oldigs, M.; Rabe, K.F. [LungenClinic Grosshansdorf (Germany). Dept. of Pulmonology; Weber, C. [Amalie Sieveking-Hospital, Diagnostic and Interventional Radiology, Hamburg (Germany); University Medical Center Hamburg-Eppendorf (Germany). Diagnostic and Interventional Radiology

    2015-07-15

    Chronic obstructive pulmonary disease (COPD) is characterized by two entities, the more airway-predominant type (''bronchitis'') on the one hand, and emphysema-predominant type on the other. Imaging via high-resolution computed tomography plays an important role in phenotyping COPD. For patients with advanced lung emphysema, new endoscopic lung volume reduction therapies (ELVR) have been developed. Proper selection of suitable patients requires thin-section reconstruction of volumetric CT image data sets also in coronal and sagittal orientation are required. In the current manuscript we will describe emphysema subtypes (centrilobular, paraseptal, panlobular), options for quantifying emphysema and this importance of regional distribution (homogeneous or heterogeneous, target area) as this is crucial for patient selection. Analysis of the interlobular fissures is obligatory despite the lack of standardization, as incomplete fissures indicate collateral ventilation (CV) via parenchymal bridges, which is an important criterion in choosing endoscopic methods of LVR. Every radiologist should be familiar with modern LVR therapies such as valves and coils, and furthermore should know what a lung doctor expects from radiologic evaluation (before and after ELVR). Finally we present a checklist as a quick reference for all steps concerning imaging for ELVR.

  8. Expression Changes of Early Response Genes in Lung Due to High Volume Ventilation

    Institute of Scientific and Technical Information of China (English)

    WANG Yuelan; YAO Shanglong; XIONG Ping

    2005-01-01

    Summary: The expression changes of early response genes due to ventilation with high volume in adult rats in vivo were observed. Forty SD male rats were randomly divided into control and 30, 60, 90 and 120 min ventilation groups, respectively (n=8 in each group). The animals were ventilated with tidal volume of 42 ml/kg and a PEEP level of 0 cmH2O at a rate of 40 breaths per minute in room air with a ventilator was given to the small animals. The expression of Egr-1, C-jun and IL-1β mRNA and proteins was detected by RT-PCR and immunohistochemical technique, respectively. The pathological changes in lung tissues were examined by HE staining. The results indicated that the expression of Egr-1, C-jun and IL-1β mRNA was detectable at 30th min after overventilation, but there was no significant difference in comparison with that in control group until overventilation for 60 min. However, at 90 and 120 min there was a significent increase as compared with 30 min or control group (P<0.05). The expression of Egr-1, C-jun and IL-1β deteced by immunohistochemical assay also showed a similar tendency of the gradual increase. In the 120 min ventilation group, the expression intensity of Egr-1, C-jun and IL-1β proteins in lung cells was the strongest and the nuclear translocation was increased markedly in comparison with any other groups (P<0.05). HE staining suggested that the degree of lung injury was aggravated gradually with the ventialtion going on and had a similar tendency to the expression of these early response genes and proteins. The current data suggested that overventilation activated and upregulated the expression of early response genes and the expression of these genes may be taken as the early signal to predict the onset and degree of lung injury. These results may demonstrated partially that the expression of early response genes induced by the mechanical stretch is associated with biochamic lung injury.

  9. Volume-monitored chest CT: a simplified method for obtaining motion-free images near full inspiratory and end expiratory lung volumes

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Kathryn S. [The Ohio State University College of Medicine, Columbus, OH (United States); Long, Frederick R. [Nationwide Children' s Hospital, The Children' s Radiological Institute, Columbus, OH (United States); Flucke, Robert L. [Nationwide Children' s Hospital, Department of Pulmonary Medicine, Columbus, OH (United States); Castile, Robert G. [The Research Institute at Nationwide Children' s Hospital, Center for Perinatal Research, Columbus, OH (United States)

    2010-10-15

    Lung inflation and respiratory motion during chest CT affect diagnostic accuracy and reproducibility. To describe a simple volume-monitored (VM) method for performing reproducible, motion-free full inspiratory and end expiratory chest CT examinations in children. Fifty-two children with cystic fibrosis (mean age 8.8 {+-} 2.2 years) underwent pulmonary function tests and inspiratory and expiratory VM-CT scans (1.25-mm slices, 80-120 kVp, 16-40 mAs) according to an IRB-approved protocol. The VM-CT technique utilizes instruction from a respiratory therapist, a portable spirometer and real-time documentation of lung volume on a computer. CT image quality was evaluated for achievement of targeted lung-volume levels and for respiratory motion. Children achieved 95% of vital capacity during full inspiratory imaging. For end expiratory scans, 92% were at or below the child's end expiratory level. Two expiratory exams were judged to be at suboptimal volumes. Two inspiratory (4%) and three expiratory (6%) exams showed respiratory motion. Overall, 94% of scans were performed at optimal volumes without respiratory motion. The VM-CT technique is a simple, feasible method in children as young as 4 years to achieve reproducible high-quality full inspiratory and end expiratory lung CT images. (orig.)

  10. Cavity length below chute aerators

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    It is proved that air entrainment is one of the efficient measures dealing with cavi-tation control for the release works of hydropower projects. There are many factors to be considered in designing a chute aerator. One of the most important factors concerns the cavity length below the aerator,which has outstanding effects on air entrainment against cavitation damage. It is crucial to determine reasonable emergence angle for the calculation of the cavity length. In the present paper the overall effects of structural and hydraulic parameters on the emergence angle of the flow from the aerator were analyzed. Four improved expressions of the emer-gence angle with weight coefficient were investigated through experimental data of 68 points observed from 12 aerators of 6 hydropower projects,of both model and prototype,on the basis of error theory. A method to calculate the cavity length be-low aerators was suggested,which considers overall effects of the above men-tioned parameters. Comparison between the method in this paper and the other five methods of calculating the cavity length showed that the present method is much more reliable than the existing methods while the mean error of the method is less than others.

  11. Cavity length below chute aerators

    Institute of Scientific and Technical Information of China (English)

    WU JianHua; RUAN ShiPing

    2008-01-01

    It is proved that air entrainment is one of the efficient measures dealing with cavitation control for the release works of hydropower projects. There are many factors to be considered in designing a chute aerator. One of the most important factors concerns the cavity length below the aerator, which has outstanding effects on air entrainment against cavitation damage. It is crucial to determine reasonable emergence angle for the calculation of the cavity length. In the present paper the overall effects of structural and hydraulic parameters on the emergence angle of the flow from the aerator were analyzed. Four improved expressions of the emergence angle with weight coefficient were investigated through experimental data of 68 points observed from 12 aerators of 6 hydropower projects, of both model and prototype, on the basis of error theory. A method to calculate the cavity length below aerators was suggested, which considers overall effects of the above mentioned parameters. Comparison between the method in this paper and the other five methods of calculating the cavity length showed that the present method is much more reliable than the existing methods while the mean error of the method is less than others.

  12. Multidisciplinary collaborative gross tumour volume definition for lung cancer radiotherapy: a prospective study.

    Science.gov (United States)

    Hollingdale, Abigail E; Roques, Tom W; Curtin, John; Martin, W M Craig; Horan, Gail; Barrett, Ann

    2011-12-07

    Variability in gross tumour volume (GTV) definition is a major source of systematic error in conformal radiotherapy. This prospective study assesses the role of multidisciplinary collaboration between oncologists and radiologists in defining lung cancer volumes. Twenty patients with non-small cell lung cancer due to receive three-dimensional conformal radiotherapy formed the study population. GTVs were defined by a radiologist (GTVrad) and an oncologist (GTVonc) using available clinical information and imaging. A collaborative meeting was then held to agree on a final, common GTV (GTVfin) to be used for treatment planning, and differences analysed. The collaboration changed the GTV in 19/20 patients with a total of 50 regions being edited. Changes made were categorized as (a) differentiation of tumour from atelectasis or ground glass shadowing, (b) separation of tumour from vasculature, and (c) defining mediastinal extent of tumour. Oncologists were more confident in the GTVfin than the GTVonc. The radiologist took longer to define the GTV than the oncologist. Real-time collaborative GTV definition by a radiologist and oncologist is practical and feasible. This approach allows specific areas of uncertainty to be categorized and focussed on, reducing systematic error in GTV definition. The physician's approach to risk and decision making for each patient may also play a role.

  13. Effects of swim training on lung volumes and inspiratory muscle conditioning.

    Science.gov (United States)

    Clanton, T L; Dixon, G F; Drake, J; Gadek, J E

    1987-01-01

    Lung volumes and inspiratory muscle (IM) function tests were measured in 16 competitive female swimmers (age 19 +/- 1 yr) before and after 12 wk of swim training. Eight underwent additional IM training; the remaining eight were controls. Vital capacity (VC) increased 0.25 +/- 0.25 liters (P less than 0.01), functional residual capacity (FRC) increased 0.39 +/- 0.29 liters (P less than 0.001), and total lung capacity (TLC) increased 0.35 +/- 0.47 (P less than 0.025) in swimmers, irrespective of IM training. Residual volume (RV) did not change. Maximum inspiratory mouth pressure (PImax) measured at FRC changed -43 +/- 18 cmH2O (P less than 0.005) in swimmers undergoing IM conditioning and -29 +/- 25 (P less than 0.05) in controls. The time that 65% of prestudy PImax could be endured increased in IM trainers (P less than 0.001) and controls (P less than 0.05). All results were compared with similar IM training in normal females (age 21.1 +/- 0.8 yr) in which significant increases in PImax and endurance were observed in IM trainers only with no changes in VC, FRC, or TLC (Clanton et al., Chest 87: 62-66, 1985). We conclude that 1) swim training in mature females increases VC, TLC, and FRC with no effect on RV, and 2) swim training increases IM strength and endurance measured near FRC.

  14. PET-based delineation of tumour volumes in lung cancer: comparison with pathological findings

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Andrea; Mai, Sebastian; Bohnenberger, Hendrik; Kirsch, Carl-Martin; Grgic, Aleksandar [Saarland University Medical Center, Department of Nuclear Medicine, Homburg (Germany); Kim, Yoo Jin; Bohle, Rainer M. [Saarland University Medical Center, Department of Pathology, Homburg (Germany); Kremp, Stephanie; Fleckenstein, Jochen; Ruebe, Christian [Saarland University Medical Center, Department of Radiooncology, Homburg (Germany); Schaefers, Hans-Joachim [Saarland University Medical Center, Department of Thoracic and Cardiovascular Surgery, Homburg (Germany); Kuhnigk, Jan-Martin [MeVis Research Center for Medical Diagnostic Systems and Visualization, Bremen (Germany)

    2013-08-15

    The objective of the study was to validate an adaptive, contrast-oriented thresholding algorithm (COA) for tumour delineation in {sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography (PET) for non-small cell lung cancer (NSCLC) in comparison with pathological findings. The impact of tumour localization, tumour size and uptake heterogeneity on PET delineation results was also investigated. PET tumour delineation by COA was compared with both CT delineation and pathological findings in 15 patients to investigate its validity. Correlations between anatomical volume, metabolic volume and the pathology reference as well as between the corresponding maximal diameters were determined. Differences between PET delineations and pathological results were investigated with respect to tumour localization and uptake heterogeneity. The delineated volumes and maximal diameters measured on PET and CT images significantly correlated with the pathology reference (both r > 0.95, p < 0.0001). Both PET and CT contours resulted in overestimation of the pathological volume (PET 32.5 {+-} 26.5 %, CT 46.6 {+-} 27.4 %). CT volumes were larger than those delineated on PET images (CT 60.6 {+-} 86.3 ml, PET 48.3 {+-} 61.7 ml). Maximal tumour diameters were similar for PET and CT (51.4 {+-} 19.8 mm for CT versus 53.4 {+-} 19.1 mm for PET), slightly overestimating the pathological reference (mean difference CT 4.3 {+-} 3.2 mm, PET 6.2 {+-} 5.1 mm). PET volumes of lung tumours located in the lower lobe were significantly different from those determined from pathology (p = 0.037), whereas no significant differences were observed for tumours located in the upper lobe (p = 0.066). Only minor correlation was found between pathological tumour size and PET heterogeneity (r = -0.24). PET tumour delineation by COA showed a good correlation with pathological findings. Tumour localization had an influence on PET delineation results. The impact of tracer uptake heterogeneity on PET delineation

  15. Effect of high tidal volume ventilation and lipopolysaccharide on mitogen-activated protein kinase in rat lung tissue

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Mechanical ventilation, a crucial therapy to acute respiratory distress syndrome (ARDS), could exacerbate lung injury, and even result in ventilator-induced lung injury (VILI) if misused in some condition1. Over-activating inflammatory cells and expanding inflammatory responses, which are induced by infection, are fundamental reasons for ARDS. Among them, mitogen-activated protein kinase (MAPK) intracellular signal transduction pathways are key processes. This study aimed to investigate the time course of MAPK activation in rat lung tissue after high tidal volume (VT) ventilation and the role of lipopolysaccharide (LPS) in high-sensitivity, and to elucidate the effect of the pathway on VILI.

  16. Lung volume reduction surgery for emphysema: Radiologic findings; Valutazione radiologica nell`intervento di riduzione del volume polmonare per enfisema

    Energy Technology Data Exchange (ETDEWEB)

    Bonfioli, Claudio; Motta, Fabio; Bergonzi, Marco; Urani, Antonio; Montali, Giuseppe [Ospedale Generale `San Giuseppe`, Milan (Italy). Servizio di Radiologia; Varoli, Federico; Vergani, Contardo; Roviaro, Gian Carlo [Ospedale Generale `San Giuseppe`, Milan (Italy). Divisione di Chirurgia

    1997-04-01

    Aim of this work is to present and discuss the radiologic protocol they have developed for the preoperative assessment of patients with severe pulmonary emphysema candidate to lung volume reduction surgery (LVRS). The operation aims at improving respiratory mechanics and reducing small airway obstruction by removing variable amounts of emphysematous parenchyma. January to September, 1996, twelve patients were submitted to LVRS. Before surgery all patients were examined with standard chest radiographs during maximal inspiration and expiration, chest Computed Tomography (CT), High Resolution Computed Tomography (HRCT) and air trapping quantitation on HRCT scans. Diaphragm and chest wall excursions, patterns, site and distribution of emphysema, as well as heterogeneity were investigated, Air trapping was quantitate with a dedicated software. Post-operative studies were carried out 2 months later in 6 patients and included: maximal inspiratory and expiratory chest radiographs and air trapping assessment on 3 standardized HRCT scans. All parameters considered improved in every patient. Radiologic studies proved to be of crucial importance for patient selection and LVRS planning. The diagnostic protocol adopted in their Hospital appears a valuable tool for both pre- and post-operative assessment of the patients candidate to LVRS.

  17. Disodium cromoglycate attenuates hypoxia induced enlargement of end-expiratory lung volume in rats.

    Science.gov (United States)

    Maxová, H; Hezinová, A; Vízek, M

    2011-01-01

    Mechanism responsible for the enlargement of end-expiratory lung volume (EELV) induced by chronic hypoxia remains unclear. The fact that the increase in EELV persists after return to normoxia suggests involvement of morphological changes. Because hypoxia has been also shown to activate lung mast cells, we speculated that they could play in the mechanism increasing EELV similar role as in vessel remodeling in hypoxic pulmonary hypertension (HPH). We, therefore, tested an effect of mast cells degranulation blocker disodium cromoglycate (DSCG) on hypoxia induced EELV enlargement. Ventilatory parameters, EELV and right to left heart weight ratio (RV/LV+S) were measured in male Wistar rats. The experimental group (H+DSCG) was exposed to 3 weeks of normobaric hypoxia and treated with DSCG during the first four days of hypoxia, control group was exposed to hypoxia only (H), two others were kept in normoxia as non-treated (N) and treated (N+DSCG) groups. DSCG treatment significantly attenuated the EELV enlargement (H+DSCG = 6.1+/-0.8; H = 9.2+/-0.9; ml +/-SE) together with the increase in minute ventilation (H + DSCG = 190+/-8; H = 273 +/- 10; ml/min +/- SE) and RV/LV + S (H + DSCG = 0.39 +/- 0.03; H = 0.50 +/- 0.06).

  18. Modeling of photon migration in the human lung using a finite volume solver

    Science.gov (United States)

    Sikorski, Zbigniew; Furmanczyk, Michal; Przekwas, Andrzej J.

    2006-02-01

    The application of the frequency domain and steady-state diffusive optical spectroscopy (DOS) and steady-state near infrared spectroscopy (NIRS) to diagnosis of the human lung injury challenges many elements of these techniques. These include the DOS/NIRS instrument performance and accurate models of light transport in heterogeneous thorax tissue. The thorax tissue not only consists of different media (e.g. chest wall with ribs, lungs) but its optical properties also vary with time due to respiration and changes in thorax geometry with contusion (e.g. pneumothorax or hemothorax). This paper presents a finite volume solver developed to model photon migration in the diffusion approximation in heterogeneous complex 3D tissues. The code applies boundary conditions that account for Fresnel reflections. We propose an effective diffusion coefficient for the void volumes (pneumothorax) based on the assumption of the Lambertian diffusion of photons entering the pleural cavity and accounting for the local pleural cavity thickness. The code has been validated using the MCML Monte Carlo code as a benchmark. The code environment enables a semi-automatic preparation of 3D computational geometry from medical images and its rapid automatic meshing. We present the application of the code to analysis/optimization of the hybrid DOS/NIRS/ultrasound technique in which ultrasound provides data on the localization of thorax tissue boundaries. The code effectiveness (3D complex case computation takes 1 second) enables its use to quantitatively relate detected light signal to absorption and reduced scattering coefficients that are indicators of the pulmonary physiologic state (hemoglobin concentration and oxygenation).

  19. Automated localization and segmentation of lung tumor from PET-CT thorax volumes based on image feature analysis.

    Science.gov (United States)

    Cui, Hui; Wang, Xiuying; Feng, Dagan

    2012-01-01

    Positron emission tomography - computed tomography (PET-CT) plays an essential role in early tumor detection, diagnosis, staging and treatment. Automated and more accurate lung tumor detection and delineation from PET-CT is challenging. In this paper, on the basis of quantitative analysis of contrast feature of PET volume in SUV (standardized uptake value), our method firstly automatically localized the lung tumor. Then based on analysing the surrounding CT features of the initial tumor definition, our decision strategy determines the tumor segmentation from CT or from PET. The algorithm has been validated on 20 PET-CT studies involving non-small cell lung cancer (NSCLC). Experimental results demonstrated that our method was able to segment the tumor when adjacent to mediastinum or chest wall, and the algorithm outperformed the other five lung segmentation methods in terms of overlapping measure.

  20. Evaluation of aeration energy saving in two modified activated sludge processes.

    Science.gov (United States)

    Lee, Ingyu; Lim, Honglae; Jung, Byunghun; Colosimo, Mark F; Kim, Hyunook

    2015-12-01

    A variety of modified activated sludge processes are widely used in wastewater treatment plants (WWTPs) for removing organics and nutrients (N and P). Since energy consumption in aeration basin accounts for the major part of the overall energy usage in WWTPs, efforts have been made to find ways to reduce aeration energy. In this study, two modified activated sludge processes in a pilot scale designed for nutrient removal were evaluated for the extent of energy saving: (1) ABA(2) process - adjusting air on/off period (i.e., with a temporal change); and (2) MB-A(2)O process - changing volume ratio of aerobic tank to anoxic tank (i.e., with a spatial change). For the 1st process, the air on/off period was fixed at 60min/45min with aerobic fraction being 0.57, while for the 2nd process, the aerobic/anoxic volume ratio was reduced from 0.58 to 0.42. The results demonstrate that the effluent COD, TN, NH4(+) and TP concentrations are acceptable while reduced aeration time/volume certainly saves significant energy consumption. To the best of our knowledge, this is 1st attempt to reduce the aeration period or aeration volume to save the aeration energy in these two modified activated sludge processes. The implication of these observations is further discussed.

  1. Reduction of Pulmonary Function After Surgical Lung Resections of Different Volume

    OpenAIRE

    Cukic, Vesna

    2014-01-01

    Introduction: In recent years an increasing number of lung resections are being done because of the rising prevalence of lung cancer that occurs mainly in patients with limited lung function, what is caused with common etiologic factor - smoking cigarettes. Objective: To determine how big the loss of lung function is after surgical resection of lung of different range. Methods: The study was done on 58 patients operated at the Clinic for thoracic surgery KCU Sarajevo, previously treated at th...

  2. Interventional pulmonology for asthma and emphysema: bronchial thermoplasty and bronchoscopic lung volume reduction.

    Science.gov (United States)

    Miller, Russell J; Murgu, Septimiu D

    2014-12-01

    Emphysema and asthma are responsible for economic and social burden. Altering the natural course of these diseases is a field of intense research. The National Emphysema Treatment Trial showed that lung volume reduction surgery (LVRS) could significantly reduce both morbidity and mortality in properly selected patients. LVRS is seldom performed, however, due to the high morbidity associated with the surgery. Numerous bronchoscopic interventions have been introduced with the goal of providing the clinical benefits of LVRS without the surgical complications. Thus far, these modalities have not produced the results once hoped. However, through active modification of both technique and patient selection, the role of minimally invasive modalities in the treatment of emphysema continues to evolve. Bronchial thermoplasty (BT) is a method of delivering controlled heat to airway mucosa with the goal of reducing airway smooth muscle mass and hence bronchoconstriction. In patients suffering from asthma who cannot achieve control with standard medical care, BT has been shown to be safe and improves symptoms, with long lasting benefit. BT does not seem to affect traditional markers of asthma severity such as forced expiratory volume in 1 second and questions remain regarding proper patient selection for this therapy and its true physiologic effects. This article is a review of bronchoscopic modalities for emphysema and asthma.

  3. Landfill aeration for emission control before and during landfill mining.

    Science.gov (United States)

    Raga, Roberto; Cossu, Raffaello; Heerenklage, Joern; Pivato, Alberto; Ritzkowski, Marco

    2015-12-01

    The landfill of Modena, in northern Italy, is now crossed by the new high velocity railway line connecting Milan and Bologna. Waste was completely removed from a part of the landfill and a trench for the train line was built. With the aim of facilitating excavation and further disposal of the material extracted, suitable measures were defined. In order to prevent undesired emissions into the excavation area, the aerobic in situ stabilisation by means of the Airflow technology took place before and during the Landfill Mining. Specific project features involved the pneumatic leachate extraction from the aeration wells (to keep the leachate table low inside the landfill and increase the volume of waste available for air migration) and the controlled moisture addition into a limited zone, for a preliminary evaluation of the effects on process enhancement. Waste and leachate were periodically sampled in the landfill during the aeration before the excavation, for quality assessment over time; the evolution of biogas composition in the landfill body and in the extraction system for different plant set-ups during the project was monitored, with specific focus on uncontrolled migration into the excavation area. Waste biological stability significantly increased during the aeration (waste respiration index dropped to 33% of the initial value after six months). Leachate head decreased from 4 to 1.5m; leachate recirculation tests proved the beneficial effects of moisture addition on temperature control, without hampering waste aerobization. Proper management of the aeration plant enabled the minimization of uncontrolled biogas emissions into the excavation area.

  4. An evaluation of the feasibility of assessment of volume perfusion for the whole lung by 128-slice spiral CT

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Haitao [Imaging Center of Taian Central Hospital, Taian, Shandong (China); Gao, Fei; Li, Ning; Liu, Cheng [Shandong Univ., Shandong Medical Imaging Research Inst., CT Room, Shandong (China)], e-mail: liucheng491025@sina.com

    2013-10-15

    Background: Lung perfusion based on dynamic scanning cannot provide a quantitative assessment of the whole lung because of the limited coverage of the current computed tomography (CT) detector designs. Purpose: To evaluate the feasibility of dynamic volume perfusion CT (VPCT) of the whole lung using a 128-slice CT for the quantitative assessment and visualization of pulmonary perfusion. Material and Methods: Imaging was performed in a control group of 17 subjects who had no signs of disturbance of pulmonary function or diffuse lung disease, and 15 patients (five patients with acute pulmonary embolism and 10 with emphysema) who constituted the abnormal lung group. Dynamic VPCT was performed in all subjects, and pulmonary blood flow (PBF), pulmonary blood volume (PBV), and mean transit time (MTT) were calculated from dynamic contrast images with a coverage of 20.7 cm. Regional and volumetric PBF, PBV, and MTT were statistically evaluated and comparisons were made between the normal and abnormal lung groups. Results: Regional PBF (94.2{+-}36.5, 161.8 {+-}29.6, 185.7 {+-}38.1 and 125.5 {+-}46.1, 161.9 {+-}31.4, 169.3 {+-}51.7), PBV (6.7 {+-}2.8, 10.9 {+-}3.0, 12.9 {+-}4.5 and 9.9 {+-}4.6, 10.3 {+-}2.9, 11.9 {+-}4.5), and MTT (5.8 {+-}2.4, 4.5 {+-}1.3, 4.7 {+-}2.1 and 5.6 {+-}2.3, 4.3 {+-}1.5, 4.9 {+-}1.5) demonstrated significant differences in the gravitational and isogravitational directions in the normal lung group (P < 0.05). The PBF (154.2 {+-}30.6 vs. 94.9 {+-}15.9) and PBV (11.1 {+-}4.0 vs. 6.6 {+-}1.7) by dynamic VPCT showed significant differences between normal and abnormal lungs (P < 0.05), notwithstanding the four large lungs that had coverage > 20.7 cm. Conclusion: Dynamic VPCT of the whole lung is feasible for the quantitative assessment of pulmonary perfusion by 128-slice CT, and may in future permit the evaluation of both morphological and functional features of the whole lung in a single examination.

  5. A Gaussian mixture model for definition of lung tumor volumes in positron emission tomography.

    Science.gov (United States)

    Aristophanous, Michalis; Penney, Bill C; Martel, Mary K; Pelizzari, Charles A

    2007-11-01

    The increased interest in 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) in radiation treatment planning in the past five years necessitated the independent and accurate segmentation of gross tumor volume (GTV) from FDG-PET scans. In some studies the radiation oncologist contours the GTV based on a computed tomography scan, while incorporating pertinent data from the PET images. Alternatively, a simple threshold, typically 40% of the maximum intensity, has been employed to differentiate tumor from normal tissue, while other researchers have developed algorithms to aid the PET based GTV definition. None of these methods, however, results in reliable PET tumor segmentation that can be used for more sophisticated treatment plans. For this reason, we developed a Gaussian mixture model (GMM) based segmentation technique on selected PET tumor regions from non-small cell lung cancer patients. The purpose of this study was to investigate the feasibility of using a GMM-based tumor volume definition in a robust, reliable and reproducible way. A GMM relies on the idea that any distribution, in our case a distribution of image intensities, can be expressed as a mixture of Gaussian densities representing different classes. According to our implementation, each class belongs to one of three regions in the image; the background (B), the uncertain (U) and the target (T), and from these regions we can obtain the tumor volume. User interaction in the implementation is required, but is limited to the initialization of the model parameters and the selection of an "analysis region" to which the modeling is restricted. The segmentation was developed on three and tested on another four clinical cases to ensure robustness against differences observed in the clinic. It also compared favorably with thresholding at 40% of the maximum intensity and a threshold determination function based on tumor to background image intensities proposed in a recent paper. The parts of the

  6. Impact of endoscopic lung volume reduction on right ventricular myocardial function.

    Directory of Open Access Journals (Sweden)

    Carmen Pizarro

    Full Text Available Endoscopic lung volume reduction (ELVR provides a minimally invasive therapy for patients with severe lung emphysema. As its impact on right ventricular (RtV function is undefined, we examined the extent of RtV functional changes following ELVR, as assessed by use of speckle tracking-based RtV deformation analysis.We enrolled 32 patients with severe emphysematous COPD scheduled for bronchoscopic LVR using endobronchial valves (Zephyr, PulmonX, Inc., comprising 16 matched clinical responders and 16 non-responders. Echocardiography was conducted one day prior to ELVR and at an eight-week postprocedural interval.Patients were predominantly of late middle-age (65.8 ± 8.7 yrs, male (62.5% and presented advanced COPD emphysema (means FEV1 and RV: 32.6% and 239.1% of predicted, respectively. After ELVR, RtV apical longitudinal strain improved significantly in the total study cohort (-7.96 ± 7.02% vs. -13.35 ± 11.48%, p = 0.04, whereas there were no significant changes in other parameters of RtV function such as RtV global longitudinal strain, TAPSE or pulmonary arterial systolic pressure. In responding patients, 6MWT-improvement correlated with a decrease in NT-proBNP (Pearson´s r: -0.53, p = 0.03. However, clinical non-responders did not exhibit any RtV functional improvement.ELVR beneficially impacts RtV functional parameters. Speckle tracking-based RtV apical longitudinal strain analysis allows early determination of RtV contractile gain and identification of clinical responsiveness.

  7. SU-E-J-78: Internal Target Volume Delineation for Lung Tumors in Patients Treated with Robotic Radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Descovich, M; Pinnaduwage, D; Kirby, N; Gottschalk, A; Yom, S; Pouliot, J; Braunstein, S [UC San Francisco, San Francisco, CA (United States)

    2014-06-01

    Purpose: To compare different approaches for Internal Target Volume (ITV) delineation for patients treated with fiducial-free robotic radiosurgery for primary and metastatic lung tumors. Methods: Ten patients undergoing Lung-Optimized Treatment (LOT) for robotic radiosurgery were imaged with inhale and exhale breath-hold CT scans and 8-phase 4DCT scan. We evaluated the differences in internal target volume (ITV) delineated using three approaches: 1) maximum intensity projection (MIP) images reconstructed from 4DCT scan (ITV-MIP); 2) linear interpolation of Gross Tumor Volumes (GTV) segmented on inhale and exhale breath-hold scans (ITV-BH); 3) linear interpolation of GTV segmented on inhale and exhale phases of 4DCT scan (ITV-2Phase). All contours were independently generated by the same radiation oncologist using lung window settings. Patients had ITV-MIP volumes ranging from 1.5 to 146.9 cc (mean 36.8 cc) located in various parts of the lung. Volume overlap and matching index (MI) were calculated and compared. The MI between two volumes was defined as the ratio of their intersection to their union. MI of 1 indicates the volumes are identical; MI of 0 indicates that there is no overlap. Results: The three approaches generated very different results. The average (SD) MI for ITV-MIP and ITV-BH was 0.52 (0.24); for ITV-MIP and ITV-2Phase it was 0.69 (0.13); and for ITV-BH and ITV-2Phase was 0.57 (0.21), (ANOVA, p=0.16). Relative to the ITV-MIP, the percentage of volume overlap was 72% (26%) and 90% (7%) for ITV-BH and ITV-2Phase, respectively (t-test, p=0.05). Conclusion: Differences between ITV-BH and ITV-MIP are due to inconsistent lung filling at breath-hold and nonlinear tumor motion. Therefore, methods to check breath-hold scanning against regular patient breathing patterns should be developed. Whenever possible, ITV-BH generated by the LOT workflow should be verified by 4DCT data.

  8. Mid-term effects of lung volume reduction surgery on pulmonary function in patients with chronic obstructive pulmonary disease

    Institute of Scientific and Technical Information of China (English)

    LIU Jin-ming; WU Wen; LI Xia; Jonson Bjorn; YANG Wen-lan; JIANG Ge-ning; DING Jia-an; ZHENG Wei; LIU Wen-zeng; WANG Ying-min; GAO Bei-lan; JIANG Ping

    2007-01-01

    Background Now lung volume reduction surgery (LVRS) has become one of the most effective methods for the management of some cases of severe chronic obstructive pulmonary disease (COPD). We evaluated the mid-term effects of LVRS on pulmonary function in patients with severe COPD.Methods Ten male patients with severe COPD aged 38-70 years underwent LVRS and their pulmonary function was assessed before, 3 months and 3 years after surgery. The spirometric and gas exchange parameters included residual volume, total lung capacity, inspiratory capacity, forced vital capacity, forced expiratory volume in one second, diffusion capacity for CO, and arterial blood gas. A 6-minute walk distance (6MWD) test was performed.Results As to preoperative assessment, most spirometric parameters and 6MWD were significantly improved after 3 months and slightly 3 years after LVRS. Gas exchange parameters were significantly improved 3 months after surgery,but returned to the preoperative levels after 3 years.Conclusions LVRS may significantly improve pulmonary function in patients with severe COPD indicating for LVRS.Mid-term pulmonary function 3 years after surgery can be decreased to the level at 3 months after surgery. Three years after LVRS, lung volume and pulmonary ventilation function can be significantly improved, but the improvement in gas exchange function was not significant.

  9. Autotrophic Nitrogen Removal in a Membrane-Aerated Biofilm Reactor Under Continuous Aeration: A Demonstration

    DEFF Research Database (Denmark)

    Gilmore, Kevin R.; Terada, Akihiko; Smets, Barth F.

    2013-01-01

    This work describes the successful coupling of partial nitrification (nitritation) and anaerobic ammonium oxidation in a membrane-aerated biofilm reactor (MABR) with continuous aeration. Controlling the relative surface loadings of oxygen versus ammonium prevented complete nitrite oxidation and a...

  10. Intermittent Aeration in Biological Treatment of Wastewater

    Directory of Open Access Journals (Sweden)

    H. Doan

    2009-01-01

    Full Text Available Problem statement: E-coating process is widely used to provide a protective coating layer on metal parts in the automotive and metal finishing industry. The wastewater from the coating process contains organic compounds that are used in the cleaning, pretreatment and coating steps. Organic pollutants can be removed biologically. In the aerobic biological treatment, water aeration accounts for a significant portion of the total operating cost of the treatment process. Intermittent aeration is thus of benefit since it would reduce the energy consumption in the wastewater treatment. In the present study, wastewater from an electro-coating process was treated biologically using a packed column as an aerator where the wastewater was aerated by a countercurrent air flow. The objective was to obtain an optimum aeration cycle. Approach: Intermittent aeration time was varied at different preset cycles. An operational optimum of the aeration time (or air-water contacting time in the column was determined from the BOD5 removal after a certain treatment period. For continuous aeration of the wastewater, the air-liquid contacting time in the column was 52 min for 24 h of treatment. A unit energy consumption for pumping liquid and air, which was defined as the energy consumption per percent BOD5 removed, was used as a criterion to determine the optimum contacting time. Results: Optimum air-liquid contacting times were found to be about 38, 26 and 22 min for the treatment times of 24, 48 and 72 h, consecutively. This indicates that 27-58% saving on the unit energy consumption can be achieved using intermittent aeration of the wastewater. On the basis of the overall BOD5 removal, 17% and 23% savings in energy were observed with the intermittent aeration as compared to the continuous aeration of the wastewater for 48 and 72 h. Conclusion: The results obtained indicate that an appropriate intermittent aeration cycle can bring about a substantial energy saving

  11. Purging dissolved oxygen by nitrogen bubble aeration

    Science.gov (United States)

    Yamashita, Tatsuya; Ando, Keita

    2016-11-01

    We apply aeration with nitrogen microbubbles to water in order to see whether oxygen gas originally dissolved in the water at one atmosphere is purged by the aeration. The concentration of dissolved oxygen (DO) is detected by a commercial DO meter. To detect the dissolved nitrogen (DN) level, we observe the growth of millimetre-sized bubbles nucleated at glass surfaces in contact with the aerated water and compare it with the Epstein-Plesset theory that accounts for DO/DN diffusions and the presence of the glass surfaces. Comparisons between the experiment and the theory suggest that the DO in the water are effectively purged by the aeration.

  12. Xenobiotic metabolizing enzyme gene polymorphisms predict response to lung volume reduction surgery

    Directory of Open Access Journals (Sweden)

    DeMeo Dawn L

    2007-08-01

    Full Text Available Abstract Background In the National Emphysema Treatment Trial (NETT, marked variability in response to lung volume reduction surgery (LVRS was observed. We sought to identify genetic differences which may explain some of this variability. Methods In 203 subjects from the NETT Genetics Ancillary Study, four outcome measures were used to define response to LVRS at six months: modified BODE index, post-bronchodilator FEV1, maximum work achieved on a cardiopulmonary exercise test, and University of California, San Diego shortness of breath questionnaire. Sixty-four single nucleotide polymorphisms (SNPs were genotyped in five genes previously shown to be associated with chronic obstructive pulmonary disease susceptibility, exercise capacity, or emphysema distribution. Results A SNP upstream from glutathione S-transferase pi (GSTP1; p = 0.003 and a coding SNP in microsomal epoxide hydrolase (EPHX1; p = 0.02 were each associated with change in BODE score. These effects appeared to be strongest in patients in the non-upper lobe predominant, low exercise subgroup. A promoter SNP in EPHX1 was associated with change in BODE score (p = 0.008, with the strongest effects in patients with upper lobe predominant emphysema and low exercise capacity. One additional SNP in GSTP1 and three additional SNPs in EPHX1 were associated (p Conclusion Genetic variants in GSTP1 and EPHX1, two genes encoding xenobiotic metabolizing enzymes, were predictive of response to LVRS. These polymorphisms may identify patients most likely to benefit from LVRS.

  13. Lymphopenia Association With Gross Tumor Volume and Lung V5 and Its Effects on Non-Small Cell Lung Cancer Patient Outcomes

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Chad [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Liao, Zhongxing, E-mail: zliao@mdanderson.org [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Gomez, Daniel; Levy, Lawrence; Zhuang, Yan; Gebremichael, Rediet A. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Hong, David S. [Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Komaki, Ritsuko; Welsh, James W. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2014-08-01

    Purpose: Radiation therapy (RT) can both suppress and stimulate the immune system. We sought to investigate the mechanisms underlying radiation-induced lymphopenia and its associations with patient outcomes in non-small cell lung cancer (NSCLC). Methods and Materials: Subjects consisted of 711 patients who had received definitive RT for NSCLC. A lymphocyte nadir was calculated as the minimum lymphocyte value measured during definitive RT. Associations between gross tumor volumes (GTVs) and lung dose-volume histogram (DVH) parameters with lymphocyte nadirs were assessed with Spearman correlation coefficients. Relationships between lymphocyte nadirs with overall survival (OS) and event free survival (EFS) were evaluated with Kaplan-Meier analysis and compared with log-rank test results. Multivariate regressions were conducted with linear and Cox regression analyses. All variables were analyzed as continuous if possible. Results: Larger GTVs were correlated with lower lymphocyte nadirs regardless of concurrent chemotherapy receipt (with concurrent: r = −0.26, P<.0001; without: r = −0.48, P<.0001). Analyses of lung DVH parameters revealed significant correlations at lower doses (lung V5-V10: P<.0001) that incrementally decreased and became nonsignificant at higher doses (lung V60-V70: P>.05). Of note, no significant associations were detected between GTV and lung DVH parameters with total leukocyte, neutrophil, or monocyte nadirs during RT or with lymphocyte count prior to RT. Multivariate analysis revealed larger GTV (P<.0001), receipt of concurrent chemotherapy (P<.0001), twice-daily radiation fractionation (P=.02), and stage III disease (P=.05) to be associated with lower lymphocyte nadirs. On univariate analysis, patients with higher lymphocyte nadirs exhibited significantly improved OS (hazard ratio [HR] = 0.51 per 10{sup 3} lymphocytes/μL, P=.01) and EFS (HR = 0.46 per 10{sup 3} lymphocytes/μL, P<.0001). These differences held on multivariate analyses

  14. Aeration of the teuftal landfill: Field scale concept and lab scale simulation.

    Science.gov (United States)

    Ritzkowski, Marco; Walker, Beat; Kuchta, Kerstin; Raga, Roberto; Stegmann, Rainer

    2016-09-01

    Long lasting post-closure care (PCC) is often the major financial burden for operators of municipal solid waste (MSW) landfills. Beside costs for the installation and maintenance of technical equipment and barriers, in particular long term treatment of leachate and landfill gas has to be paid from capital surplus. Estimations based on laboratory experiments project time periods of many decades until leachate quality allows for direct discharge (i.e. no need for further purification). Projections based on leachate samples derived from the last 37years for 35 German landfills confirm these assumption. Moreover, the data illustrate that in particular ammonium nitrogen concentrations are likely to fall below limit values only after a period of 300years. In order to avoid long lasting PCC the operator of Teuftal landfill, located in the Swiss canton Bern, decided to biologically stabilize the landfill by means of a combined in situ aeration and moisturization approach. In December 2014 the aeration started at a landfill section containing approximately 30% of the total landfill volume. From summer 2016 onwards the remaining part of the landfill will be aerated. Landfill aeration through horizontal gas and leachate drains is carried out for the first time in field scale in Europe. The technical concept is described in the paper. Parallel to field scale aeration, investigations for the carbon and nitrogen turnover are carried out by means of both simulated aerated landfills and simulated anaerobic landfills. The results presented in this paper demonstrate that aeration is capable to enhance, both carbon mobilization and discharge via the gas phase. This effect comes along with a significant increase in bio-stabilization of the waste organic fraction, which positively affects the landfill emission behavior in the long run. In terms of leachate pollution reduction it could be demonstrated that the organic load decrease fast and widely independent of the adjusted aeration

  15. Relationship between dose-volume parameters and pulmonary complications after neoadjuvant chemoradiotherapy followed by surgery for lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Shigeo; Shibata, Toru [Kagawa University Hospital, Department of Radiation Oncology, Kagawa (Japan); Go, Tetsuhiko; Kasai, Yoshitaka; Yokomise, Hiroyasu [Kagawa University, Department of General Thoracic, Breast and Endocrine Surgery, Faculty of Medicine, Kagawa (Japan)

    2016-09-15

    This study evaluated the relationship between dose-volume histogram (DVH) parameters and pulmonary complications after neoadjuvant chemoradiotherapy (NACRT) followed by surgery for lung cancer. We also examined a new DVH parameter, because the unresected lung should be more spared than the later resected lung. Data from 43 non-small cell lung cancer patients were retrospectively analyzed. The DVH parameters of the lung were calculated from the total bilateral lung volume minus (1) the gross tumor volume (DVHg) or (2) the later resected lung volume (DVHr). Radiation pneumonitis (RP) and fistula, including bronchopleural and pulmonary fistula, were graded as the pulmonary complications. Factors affecting the incidences of grade 2 or higher RP (≥G2 RP) and fistula were analyzed. Sixteen patients (37 %) experienced ≥G2 RP and a V20 value of the total lung minus the later resected lung (V20r) ≥ 12 % was a significant factor affecting the incidence of ≥G2 RP (p = 0.032). Six patients (14 %) developed a fistula and a V35 value of the total lung minus the gross tumor (V35g) ≥ 19 % and a V40g ≥ 16 % were significant factors affecting the incidence of fistula (p = 0.002 and 0.009, respectively). These DVH parameters may be related to the incidences of ≥G2 RP and fistula. (orig.) [German] In dieser Studie wurde die Beziehung zwischen Dosis-Volumen-Histogramm-(DVH-)Parametern und pulmonalen Komplikationen nach neoadjuvanter Radiochemotherapie (NARCT) und nachfolgender Operation beim Lungenkarzinom untersucht. Zudem wurde ein neuer DVH-Parameter untersucht, da das nichtresezierte Lungengewebe mehr geschont werden sollte als reseziertes Gewebe. Daten von 43 Patienten mit nicht-kleinzelligem Bronchialkarzinom wurden retrospektiv analysiert. Die DVH-Parameter der Lunge wurden aus dem gesamten beidseitigen Lungenvolumen minus (1) das makroskopische Tumorvolumen (DVHg) oder (2) das resezierte Lungenvolumen (DVHr) ermittelt. Strahlenpneumonitis (RP) und Fisteln

  16. Assessment of bronchodilator response through changes in lung volumes in chronic airflow obstruction

    Directory of Open Access Journals (Sweden)

    J.B. Figueroa-Casas

    2003-10-01

    Full Text Available Although FEV1 improvement is routinely used to define bronchodilator (BD response, it correlates poorly with clinical effects. Changes in lung volumes (LV have shown better correlation with exercise tolerance and might be more sensitive to detect BD effects. We assessed the additional contribution of measuring LV before and after BD to detect acute improvement in lung function not demonstrated by FEV1, and the influence of the response criteria selected on this contribution. We analyzed 98 spirometries and plethismographies performed pre and post BD in patients with airflow obstruction (FEV1/FVC 10% of baseline (D>5 anD>15% were also analyzed. FEV1 identified as responders 32% of patients. Greater proportions were uncovered by slow vital capacity (51%, p5 anD>15%. Mean change and proportions of responders for each LV varied significantly (pSi bien el aumento del VEF1 es habitualmente utilizado para definir respuesta a broncodilatadores (BD, su correlación con efectos clínicos es pobre. Los cambios en volúmenes pulmonares (VP han demostrado mejor correlación con tolerancia al ejercicio y podrían ser más sensibles para detectar efectos de los BD. Nosotros evaluamos la contribución adicional de medir VP antes y después de BD para detectar mejoría funcional aguda no demostrada por cambios del VEF1, y la influencia del criterio de respuesta seleccionado en esta contribución. Se analizaron 98 espirometrías y pletismografías realizadas pre y post BD en pacientes con obstrucción al flujo aéreo (VEF1/CVF 10% del basal (D>5 y 15% fueron también analizados. El VEF1 identificó como respondedores a 32% de los pacientes. Proporciones mayores fueron identificadas por capacidad vital lenta (51%, p5 y 15%. El cambio promedio y las proporciones de respondedores para cada VP variaron significativamente (p<0.05 según que el cambio fuese expresado como porcentaje del basal o del valor predicho. Una proporción considerable de pacientes con obstrucci

  17. “High Frequency/Small Tidal Volume Differential Lung Ventilation”: A Technique of Ventilating the Nondependent Lung of One Lung Ventilation for Robotically Assisted Thoracic Surgery

    Directory of Open Access Journals (Sweden)

    Bassam M. Shoman

    2015-01-01

    Full Text Available With the introduction of new techniques and advances in the thoracic surgery fields, challenges to the anesthesia techniques had became increasingly exponential. One of the great improvements that took place in the thoracic surgical field was the use of the robotically assisted thoracic surgical procedure and minimally invasive endoscopic thoracic surgery. One lung ventilation technique represents the core anesthetic management for the success of those surgical procedures. Even with the use of effective one lung ventilation, the patient hemodynamics and respiratory parameters could be deranged and could not be tolerating the procedure that could compromise the end result of surgery. We are presenting our experience in managing one patient who suffered persistent hypoxia and hemodynamic instability with one lung ventilation for robotically assisted thymectomy procedure and how it was managed till the completion of the surgery successfully.

  18. Poor man medical pneumoplasty: Bronchoscopic lung volume reduction with hot saline versus dissolved doxycycline as a neoteric remedy of pulmonary emphysema

    Directory of Open Access Journals (Sweden)

    A.M. Abumossalam

    2016-01-01

    Conclusion: Bronchoscopic lung volume reduction by hot saline and dissolved doxycycline comes into sight to be a safe and feasible profile with an acceptable outcome that presents an attractive substitute to COPD patients who are physiologically friable.

  19. Computed tomography assessment of lung structure in patients undergoing cardiac surgery with cardiopulmonary bypass

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, R.R.; Sawada, A.Y.; Fukuda, M.J.; Neves, F.H.; Carmona, M.J.; Auler, J.O.; Malbouisson, L.M.S., E-mail: malbouisson@hcnet.usp.b [Universidade de Sao Paulo (USP), SP (Brazil). Faculdade de Medicina. Hospital das Clinicas; Pelosi, P. [Universita' degli Studi dell' Insubria, Varese (Italy). Dipt. Ambiente, Salute e Sicurezza; Rouby, J.-J. [University Pierre and Marie Curie, Paris (France). La Pitie Salpetriere Hospital. Dept. of Anesthesiology and Critical Care and Medicine

    2011-06-15

    Hypoxemia is a frequent complication after coronary artery bypass graft (CABG) with cardiopulmonary bypass (CPB), usually attributed to atelectasis. Using computed tomography (CT), we investigated postoperative pulmonary alterations and their impact on blood oxygenation. Eighteen non-hypoxemic patients (15 men and 3 women) with normal cardiac function scheduled for CABG under CPB were studied. Hemodynamic measurements and blood samples were obtained before surgery, after intubation, after CPB, at admission to the intensive care unit, and 12, 24, and 48 h after surgery. Pre- and postoperative volumetric thoracic CT scans were acquired under apnea conditions after a spontaneous expiration. Data were analyzed by the paired Student t-test and one-way repeated measures analysis of variance. Mean age was 63 {+-} 9 years. The PaO{sub 2}/FiO{sub 2} ratio was significantly reduced after anesthesia induction, reaching its nadir after CPB and partially improving 12 h after surgery. Compared to preoperative CT, there was a 31% postoperative reduction in pulmonary gas volume (P < 0.001) while tissue volume increased by 19% (P < 0.001). Non-aerated lung increased by 253 {+-} 97 g (P < 0.001), from 3 to 27%, after surgery and poorly aerated lung by 72 {+-} 68 g (P < 0.001), from 24 to 27%, while normally aerated lung was reduced by 147 {+-} 119 g (P < 0.001), from 72 to 46%. No correlations (Pearson) were observed between PaO{sub 2}/FiO{sub 2} ratio or shunt fraction at 24 h postoperatively and postoperative lung alterations. The data show that lung structure is profoundly modified after CABG with CPB. Taken together, multiple changes occurring in the lungs contribute to postoperative hypoxemia rather than atelectasis alone. (author)

  20. Lung Volume Reduction in Chronic Obstructive Pulmonary Disease (COPD AND#8211; An Updated Review of Surgical and Endoscopic Procedures

    Directory of Open Access Journals (Sweden)

    Ramakant Dixit

    2012-08-01

    Full Text Available The conventional medical management of emphysema using bronchodilators and anti-inflammatory agents has a limited benefit in patients having advanced hyperinflation of lungs due to destruction of elastic tissue. The natural course of Chronic Obstructive Pulmonary Disease (COPD has been shown to be altered by only smoking cessation and oxygen therapy so far. The lung volume reduction surgery is viewed as another modality to change the natural history of emphysema in recent years. For patients with more generalized emphysema, resection of lung parenchyma improves elastic recoil and chest wall mechanics. An extensive literature search has demonstrated that carefully selected patients of emphysema (i.e. upper lobe predominant disease, low exercise capacity and Forced Expiratory Volume in First Second (FEV1 and DLco and #8804; 20% of predicted receive benefits in terms of symptomatic improvement and physiologic response following Lung Volume Reduction Surgery (LVRS. The resurgent interest in LVRS and National Emphysema Treatment Trial findings for emphysema have stimulated a range of innovative methods, to improve the outcome and reduce complications associated with current LVRS techniques. These novel approaches include surgical resection with compression/banding devices, endobronchial blockers, sealants, obstructing devices and valves and endobronchial bronchial bypass approaches. Experimental data and preliminary results are becoming available for some of these approaches. Most of the published studies so far have been uncontrolled and unblinded. Overall, extensive research in the near future will help to determine the potential clinical applicability of these new approaches to the treatment of emphysema symptoms. [Arch Clin Exp Surg 2012; 1(4.000: 249-257

  1. Design of the Endobronchial Valve for Emphysema Palliation Trial (VENT: a non-surgical method of lung volume reduction

    Directory of Open Access Journals (Sweden)

    Noppen Marc

    2007-07-01

    Full Text Available Abstract Background Lung volume reduction surgery is effective at improving lung function, quality of life, and mortality in carefully selected individuals with advanced emphysema. Recently, less invasive bronchoscopic approaches have been designed to utilize these principles while avoiding the associated perioperative risks. The Endobronchial Valve for Emphysema PalliatioN Trial (VENT posits that occlusion of a single pulmonary lobe through bronchoscopically placed Zephyr® endobronchial valves will effect significant improvements in lung function and exercise tolerance with an acceptable risk profile in advanced emphysema. Methods The trial design posted on Clinical trials.gov, on August 10, 2005 proposed an enrollment of 270 subjects. Inclusion criteria included: diagnosis of emphysema with forced expiratory volume in one second (FEV1 100%; residual volume > 150% predicted, and heterogeneous emphysema defined using a quantitative chest computed tomography algorithm. Following standardized pulmonary rehabilitation, patients were randomized 2:1 to receive unilateral lobar placement of endobronchial valves plus optimal medical management or optimal medical management alone. The co-primary endpoint was the mean percent change in FEV1 and six minute walk distance at 180 days. Secondary end-points included mean percent change in St. George's Respiratory Questionnaire score and the mean absolute changes in the maximal work load measured by cycle ergometry, dyspnea (mMRC score, and total oxygen use per day. Per patient response rates in clinically significant improvement/maintenance of FEV1 and six minute walk distance and technical success rates of valve placement were recorded. Apriori response predictors based on quantitative CT and lung physiology were defined. Conclusion If endobronchial valves improve FEV1 and health status with an acceptable safety profile in advanced emphysema, they would offer a novel intervention for this progressive and

  2. Variability in the cardiac EIT image as a function of electrode position, lung volume and body position.

    Science.gov (United States)

    Patterson, R P; Zhang, J; Mason, L I; Jerosch-Herold, M

    2001-02-01

    A study was conducted using the Sheffield electrical impedance tomography (EIT) portable system DAS-01 P to determine the change in the cardiac image with electrode position, lung volume and body position. Sixteen electrodes were positioned in three transverse planes around the thorax at the level of the second intercostal space, at the level of the xiphisternal joint, and midway between upper and lower locations. Data were collected at each electrode level with the breath held at end expiration and after inspiring 0.5, 1 and 1.5 l of air with the subject in both the supine and sitting position. These data were analysed using a Matlab developed program that calculates the average resistivity change in the cardiac region from automatically determined borders. Results show significant individual variability with electrode position and air volume. The middle electrode most consistently shows an increase in impedance in the region of the heart during systole. In some subjects the change in the ventricular-volume-like curve showed a greater than 50% change as a function of lung volume. The pattern of variability with electrode position was not consistent among subjects. In one subject MRI images were obtained to compare actual structures with those seen in the EIT image. The results suggest that using these electrode locations reliable and consistent data, which could be used in clinical applications, cannot be obtained.

  3. Impact of PET - CT motion correction in minimising the gross tumour volume in non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Michael Masoomi

    2013-10-01

    Full Text Available AbstractObjective: To investigate the impact of respiratory motion on localization, and quantification lung lesions for the Gross Tumour Volume utilizing an in-house developed Auto3Dreg programme and dynamic NURBS-based cardiac-torso digitised phantom (NCAT. Methods: Respiratory motion may result in more than 30% underestimation of the SUV values of lung, liver and kidney tumour lesions. The motion correction technique adopted in this study was an image-based motion correction approach using, an in-house developed voxel-intensity-based and a multi-resolution multi-optimisation (MRMO algorithm. All the generated frames were co-registered to a reference frame using a time efficient scheme. The NCAT phantom was used to generate CT attenuation maps and activity distribution volumes for the lung regions. Quantitative assessment including Region of Interest (ROI, image fidelity and image correlation techniques, as well as semi-quantitative line profile analysis and qualitatively overlaying non-motion and motion corrected image frames were performed. Results: the largest transformation was observed in the Z-direction. The greatest translation was for the frame 3, end inspiration, and the smallest for the frame 5 which was closet frame to the reference frame at 67% expiration. Visual assessment of the lesion sizes, 20-60mm at 3 different locations, apex, mid and base of lung showed noticeable improvement for all the foci and their locations. The maximum improvements for the image fidelity were from 0.395 to 0.930 within the lesion volume of interest. The greatest improvement in activity concentration underestimation, post motion correction, was 7% below the true activity for the 20 mm lesion. The discrepancies in activity underestimation were reduced with increasing the lesion sizes. Overlay activity distribution on the attenuation map showed improved localization of the PET metabolic information to the anatomical CT images. Conclusion: The respiratory

  4. Factors affecting the lung perfused blood volume in patients with intrapulmonary clots after anti-coagulation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Munemasa, E-mail: radokada@yamaguchi-u.ac.jp [Department of Radiology, Yamaguchi University Graduate School of Medicine 1-1-1 Minamikogushi, Ube, Yamaguchi 755-8505 (Japan); Masuda, Yu [4th Grade of 6-year Medicine Doctor Program, Department of Medicine, Yamaguchi University Faculty of Medicine and Health Sciences 1-1-1 Minamikogushi, Ube, Yamaguchi 755-8505 (Japan); Nakashima, Yoshiteru [Department of Radiology, Yamaguchi Grand Medical Center, Oosaki 77, Hofu, Yamaguchi 747-8511 (Japan); Nomura, Takafumi; Nakao, Sei [Department of Radiology, Yamaguchi University Graduate School of Medicine 1-1-1 Minamikogushi, Ube, Yamaguchi 755-8505 (Japan); Suga, Kazuyoshi [Department of Radiology, St Hills Hospital, Imamurakita 3-7-18, Ube, Yamaguchi 755-0155 (Japan); Kido, Shoji [Computer-aided Diagnosis and Biomedical Imaging Research Biomedical Engineering, Applied Medical Engineering Science Graduate School of Medicine, Yamaguchi University, Tokiwadai 2-16-1, Ube, Yamaguchi 755-8611 (Japan); Matsunaga, Naofumi [Department of Radiology, Yamaguchi University Graduate School of Medicine 1-1-1 Minamikogushi, Ube, Yamaguchi 755-8505 (Japan)

    2015-08-15

    Highlights: • Dual-energy CT can provide morphological and functional lung images in the same examination. • The subsequent dual-energy CT demonstrates the increased whole lung perfused blood volume (V{sub 120}) despite the residual intrapulmonary clots after treatment in one examination. • The increased whole lung perfusion (V{sub 120}) and a decreased low perfusion volume (V{sub 5}) result in the improvement in the low perfusion rate (%V{sub 5}) in the patients with acute pulmonary embolism after treatment. - Abstract: Objectives: Factors affecting the improvement in the lung perfused blood volume (LPBV) were evaluated based on the presence of intrapulmonary clots (IPCs) after anti-coagulation therapy using 64-slice dual-energy CT. Materials and methods: 96 patients exhibiting venous thromboembolism underwent initial and repeated LPBV examinations between December 2008 and July 2014. Fifteen patients were excluded due to pulmonary comorbidities, and a total of 81 patients were included in this study. Acute pulmonary embolism (PE) was diagnosed in 46 of the patients (56.7%). LPBV images were three-dimensionally reconstructed with two threshold ranges: 1–120 HU (V{sub 120}) and 1–5 HU (V{sub 5}), and the relative value of V{sub 5} per V{sub 120} expressed as %V{sub 5}. These values were subsequently compared with indicators of the severity of PE, such as the D-dimer level, heart rate and CT measurements. This study was approved by the local ethics committee. Results: In patients with IPCs, the D-dimer, V{sub 5} and %V{sub 5}values were significantly larger (p ≤ 0.01) in the initial LPBV, although these differences disappeared in subsequent LPBV after treatment. The right ventricular (RV) diameter, RV/left ventricular (RV/LV) diameter ratio and %V{sub 5} values were also significantly reduced, whereas the V{sub 5} value did not significantly decrease (p = 0.07), but V{sub 120} value significantly increased (p < 0.001) after treatment. However, in

  5. Inclusion of functional information from perfusion SPECT improves predictive value of dose-volume parameters in lung toxicity outcome after radiotherapy for non-small cell lung cancer: A prospective study

    DEFF Research Database (Denmark)

    Farr, Katherina P; Kallehauge, Jesper F; Møller, Ditte S;

    2015-01-01

    BACKGROUND AND PURPOSE: To compare functional and standard dose-volume parameters as predictors of postradiation pulmonary toxicity in lung cancer patients undergoing curative chemo-radiotherapy (RT) studied prospectively. MATERIAL AND METHODS: A total of 58 patients treated with Intensity...... pneumonitis (RP) grade 2-5. RESULTS: Functional mean lung dose (MLD) and lung volumes receiving 5, 10, 20 and 30Gy (V5-V30, respectively) revealed high correlation with corresponding standard parameters (r>0.8). Standard MLD, V20 and V30 were significantly higher in patients with RP (p=0.01). All functional...... Modulated RT (60-66Gy) were analysed. Standard dose-volume parameters were extracted from treatment planning computed tomography (CT) scans. Corresponding functional dose-volume parameters were calculated from perfusion single-photon emission computed tomography (SPECT). Primary end-point was radiation...

  6. “High Frequency/Small Tidal Volume Differential Lung Ventilation”: A Technique of Ventilating the Nondependent Lung of One Lung Ventilation for Robotically Assisted Thoracic Surgery

    OpenAIRE

    Shoman, Bassam M.; Hany O. Ragab; Ammar Mustafa; Rashid Mazhar

    2015-01-01

    With the introduction of new techniques and advances in the thoracic surgery fields, challenges to the anesthesia techniques had became increasingly exponential. One of the great improvements that took place in the thoracic surgical field was the use of the robotically assisted thoracic surgical procedure and minimally invasive endoscopic thoracic surgery. One lung ventilation technique represents the core anesthetic management for the success of those surgical procedures. Even with the use o...

  7. Modelisation of the contribution of sediments in the treatment process case of aerated lagoons.

    Science.gov (United States)

    Jupsin, H; Vasel, J L

    2007-01-01

    In aerated lagoons and even more in stabilization ponds the specific power (W/m3) is not high enough to maintain all the suspended solids in suspension. Some part of the suspended solids (including biomass) settles directly into the reactor and not in the final settling pond. The gradual accumulation of those sediments on the pond bottom affects performance by reducing the pond volume and shortening the Hydraulic Residence Time. However, the role played by these deposits is not restricted to such a physical effect. Far from being inert sediments they are also an important oxygen sink that must be taken into account when designing aerator power and oxygen supply, for example. On the other hand, under aerobic conditions, the upper layer of sediments may contribute to the treatment as a biofilm compartment in the reactor. In aerated lagoon systems another process contributes to the interaction of deposits and the liquid phase: the operating (often sequencing) of aerators may induce a drastic resuspension of deposits. In a 3,000 m3 aerated lagoon we evaluated that 3 tons of deposits were resuspended when aerators were started. Due to those processes we consider that a mathematical model of an aerated lagoon or of a stabilization pond has to take into account the contribution (positive and negative aspects) of deposits in the process. In this paper we propose a model for sediments including production but also biological processes. Simulations of the aerated lagoon with or without the "sediment compartment" demonstrate the effect and the importance of this compartment on the process. Of course a similar approach could be used for facultative or even maturation ponds. The next step would be to include anaerobic activities in the bottom layer.

  8. Winery Wastewater Treatment Applying Aerated Submerged

    Directory of Open Access Journals (Sweden)

    Alessandra Pellizzaro Bento

    2010-06-01

    Full Text Available The winery wastewater usually shows conditions of low pH, high organic loads and concentrations of carbon, nitrogen and phosphorus that are inappropriate for biologic treatment. The purpose of this research was to apply the technology of aerated submerged biofilter (ASB for the winery effluent treatment during the harvest (ASB 1 and non harvest (ASB 2 at lab scale. Therefore, two up flow biofilter built on glass (5 liters volume were installed. The nutrient balance of the winery wastewater was adjusted and the correction of the pH was done by oyster shell used as filter material. The efficiency removal (COD for the harvest reactor was 90% while for the non harvest was 82%. The oyster shells contributed to an increase on average of 180 mg/L of alkalinity to the BAS 1 and 318 mg/L for the BAS 2. As regards the metals, the average values in the treated effluent to meet iron and zinc is permitted by the environmental standards of Santa Catarina. Under the experimental conditions applied in this research, this kind of reactor has presented potential for the treatment of winery wastewater. However, operational improvements would be required in the reactors to adequate them to the specific management into the wineries.

  9. HYDRAULIC RESEARCH OF AERATORS ON TUNNEL SPILLWAYS

    Institute of Scientific and Technical Information of China (English)

    RUAN Shi-ping; WU Jian-hua; WU Wei-wei; XI Ru-ze

    2007-01-01

    The selection of the configuration and size of an aerator was of importance for a tunnel spillway under the conditions of high speed flows. Experimental investigations were conducted on the effects of entrained air on the tunnel spillway in the Goupitan Project, based on the criterion of gravity similarity and the condition of aerated flow velocity of over 6 m/s, with physical models. The configurations of the aerators were presented of a larger bottom air concentration, to protect the tunnel spillway from cavitation as well as to see no water fills in the grooves.

  10. Evaluation of parameters of the HDV (V20 and dose average) in radiotherapy of lung cancer with lung volumes design adapted compounds (ITV); Evaluacion de parametros del HDV (V20 Y Dmed) en radioterapia adaptada de cancer de pulmon con diseno de volumenes pulmonares compuestos (ITV)

    Energy Technology Data Exchange (ETDEWEB)

    Monroy Anton, J. L.; Solar Tortosa, M.; Lopez Munoz, M.; Navarro Bergada, A.; Estornell Gualde, M. A.; Melchor Iniguez, M.

    2013-07-01

    Our objective was to evaluate the V20 parameters and dose average compared to a single lung volume designed with a CT study in normal breathing of the patient and the corresponding to a lung volume composed, designed from three studies of CT in different phases of the respiratory cycle. Check if there are important differences in these cases that determine the necessity of creating a composite lung volume to evaluate dose volume histogram. (Author)

  11. Effect of regional lung inflation on ventilation heterogeneity at different length scales during mechanical ventilation of normal sheep lungs.

    Science.gov (United States)

    Wellman, Tyler J; Winkler, Tilo; Costa, Eduardo L V; Musch, Guido; Harris, R Scott; Venegas, Jose G; Vidal Melo, Marcos F

    2012-09-01

    Heterogeneous, small-airway diameters and alveolar derecruitment in poorly aerated regions of normal lungs could produce ventilation heterogeneity at those anatomic levels. We modeled the washout kinetics of (13)NN with positron emission tomography to examine how specific ventilation (sV) heterogeneity at different length scales is influenced by lung aeration. Three groups of anesthetized, supine sheep were studied: high tidal volume (Vt; 18.4 ± 4.2 ml/kg) and zero end-expiratory pressure (ZEEP) (n = 6); low Vt (9.2 ± 1.0 ml/kg) and ZEEP (n = 6); and low Vt (8.2 ± 0.2 ml/kg) and positive end-expiratory pressure (PEEP; 19 ± 1 cmH(2)O) (n = 4). We quantified fractional gas content with transmission scans, and sV with emission scans of infused (13)NN-saline. Voxel (13)NN-washout curves were fit with one- or two-compartment models to estimate sV. Total heterogeneity, measured as SD[log(10)(sV)], was divided into length-scale ranges by measuring changes in variance of log(10)(sV), resulting from progressive filtering of sV images. High-Vt ZEEP showed higher sV heterogeneity at 36-mm (r = -0.72) length scales (P < 0.001). We conclude that sV heterogeneity at length scales <60 mm increases in poorly aerated regions of mechanically ventilated normal lungs, likely due to heterogeneous small-airway narrowing and alveolar derecruitment. PEEP reduces sV heterogeneity by maintaining lung expansion and airway patency at those small length scales.

  12. [Role of functional imaging in the definition of target volumes for lung cancer radiotherapy].

    Science.gov (United States)

    Thureau, S; Hapdey, S; Vera, P

    2016-10-01

    Functional imaging with positron emission tomography (PET) is interesting to optimize lung radiotherapy planning, and probably to deliver a heterogeneous dose or adapt the radiation dose during treatment. Only fluorodeoxyglucose (FDG) PET-computed tomography (CT) is validated for staging lung cancer and planning radiotherapy. The optimal segmentation methods remain to be defined as well as the interest of "dose painting" from pre-treatment PET (metabolism: FDG) or hypoxia (fluoromisonidazole: FMISO) and the interest of replanning based on pertherapeutic PET.

  13. Interfractional changes in tumour volume and position during entire radiotherapy courses for lung cancer with respiratory gating and image guidance

    Energy Technology Data Exchange (ETDEWEB)

    Juhler-Noettrup, Trine; Korreman, Stine S.; Pedersen, Anders N.; Persson, Gitte F.; Aarup, Lasse R.; Nystroem, Haakan; Olsen, Mikael; Tarnavski, Nikolai; Specht, Lena (Dept. of Radiation Oncology, The Finsen Centre, Copenhagen (Denmark))

    2008-08-15

    Introduction. With the purpose of implementing gated radiotherapy for lung cancer patients, this study investigated the interfraction variations in tumour size and internal displacement over entire treatment courses. To explore the potential of image guided radiotherapy (IGRT) the variations were measured using a set-up strategy based on imaging of bony landmarks and compared to a strategy using in room lasers, skin tattoos and cupper landmarks. Materials and methods. During their six week treatment course of 60Gy in 2Gy fractions, ten patients underwent 3 respiratory gated CT scans. The tumours were contoured on each CT scan to evaluate the variations in volumes and position. The lung tumours and the mediastinal tumours were contoured separately. The positional variations were measured as 3D mobility vectors and correlated to matching of the scans using the two different strategies. Results. The tumour size was significantly reduced from the first to the last CT scan. For the lung tumours the reduction was 19%, p=0.03, and for the mediastinal tumours the reduction was 34%, p=0.0007. The mean 3D mobility vector and the SD for the lung tumours was 0.51cm (+-0.21) for matching using bony landmarks and 0.85cm (+-0.54) for matching using skin tattoos. For the mediastinal tumours the corresponding vectors and SD's were 0.55cm (+-0.19) and 0.72cm (+-0.43). The differences between the vectors were significant for the lung tumours p=0.004. The interfractional overlap of lung tumours was 80-87% when matched using bony landmarks and 70-76% when matched using skin tattoos. The overlap of the mediastinal tumours were 60-65% and 41-47%, respectively. Conclusions. Despite the use of gating the tumours varied considerably, regarding both position and volume. The variations in position were dependent on the set-up strategy. Set-up using IGRT was superior to set-up using skin tattoos.

  14. Lung membrane conductance and capillary volume derived from the NO and CO transfer in high-altitude newcomers.

    Science.gov (United States)

    Martinot, Jean-Benoît; Mulè, Massimiliano; de Bisschop, Claire; Overbeek, Maria J; Le-Dong, Nhat-Nam; Naeije, Robert; Guénard, Hervé

    2013-07-15

    Acute exposure to high altitude may induce changes in carbon monoxide (CO) membrane conductance (DmCO) and capillary lung volume (Vc). Measurements were performed in 25 lowlanders at Brussels (D0), at 4,300 m after a 2- or 3-day exposure (D2,3) without preceding climbing, and 5 days later (D7,8), before and after an exercise test, under a trial with two arterial pulmonary vasodilators or a placebo. The nitric oxide (NO)/CO transfer method was used, assuming both infinite and finite values to the NO blood conductance (θNO). Doppler echocardiography provided hemodynamic data. Compared with sea level, lung diffusing capacity for CO increased by 24% at D2,3 and is returned to control at D7,8. The acute increase in lung diffusing capacity for CO resulted from increases in DmCO and Vc with finite and infinite θNO assumptions. The alveolar volume increased by 16% at D2,3 and normalized at D7,8. The mean increase in systolic arterial pulmonary pressure at rest at D2,3 was minimal. In conclusion, the acute increase in Vc may be related to the increase in alveolar volume and to the increase in capillary pressure. Compared with the infinite θNO value, the use of a finite θNO value led to about a twofold increase in DmCO value and to a persistent increase in DmCO at D7,8 compared with D0. After exercise, DmCO decreased slightly less in subjects treated by the vasodilators, suggesting a beneficial effect on interstitial edema.

  15. Limits of dose escalation in lung cancer: a dose-volume histogram analysis comparing coplanar and non-coplanar techniques

    Energy Technology Data Exchange (ETDEWEB)

    Derycke, S.; Van Duyse, B.; Schelfhout, J.; De Neve, W.

    1995-12-01

    To evaluate the feasibility of dose escalation in radiotherapy of inoperable lung cancer, a dose-volume histogram analysis was performed comparing standard coplanar (2D) with non-coplanar (3D) beam arrangements on a non-selected group of 20 patients planned by Sherouse`s GRATISTM 3D-planning system. Serial CT-scanning was performed and 2 Target Volumes (Tvs) were defined. Gross Tumor Volume (GTV) defined a high-dose Target Volume (TV-1). GTV plus location of node stations with > 10% probability of invasion (Minet et al.) defined an intermediate-dose Target Volume (TV-2). However, nodal regions which are incompatible with cure were excluded from TV-2. These are ATS-regions 1, 8, 9 and 14 all left and right as well as heterolateral regions. For 3D-planning, Beam`s Eye View selected (by an experienced planner) beam arrangements were optimised using Superdot, a method of target dose-gradient annihilation developed by Sherouse. A second 3D-planning was performed using 4 beam incidences with maximal angular separation. The linac`s isocenter for the optimal arrangement was located at the geometrical center of gravity of a tetraheder, the tetraheder`s comers being the consecutive positions of the virtual source. This ideal beam arrangement was approximated as close as possible, taking into account technical limitations (patient-couch-gantry collisions). Criteria for tolerance were met if no points inside the spinal cord exceeded 50 Gy and if at least 50% of the lung volume received less than 20Gy. If dose regions below 50 Gy were judged acceptable at TV-2, 2D- as well as 3D-plans allow safe escalation to 80 Gy at TV-1. When TV-2 needed to be encompassed by isodose surfaces exceeding 50Gy, 3D-plans were necessary to limit dose at the spinal cord below tolerance. For large TVs dose is limited by lung tolerance for 3D-plans. An analysis (including NTCP-TCP as cost functions) of rival 3D-plans is being performed.

  16. DESIGN INFORMATION ON FINE PORE AERATION SYSTEMS

    Science.gov (United States)

    Field studies were conducted over several years at municipal wastewater treatment plants employing line pore diffused aeration systems. These studies were designed to produce reliable information on the performance and operational requirements of fine pore devices under process ...

  17. EMERGENCE ANGLE OF FLOW OVER AN AERATOR

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Aerator is an important device for release works of hydraulic structures with high-speed flow in order to protect them from cavitation damage. This kind of protecting effect is related closely to cavity length below the aerator, while the cavity length is dominated by the emergence angle over the aerator. Therefore it is crucial to determine this angle accurately. In the present paper the affecting intensities of flow depth and the fluctuating velocity on this angle were analyzed through two introduced parameters. Furthermore, the improved expressions of emergence angle estimation, for both ramp-type and step-type aerators, were presented by means of 68 sets of experimental data from 6 projects based on error theory. The results showed that the present method has higher accuracy than the previously reported methods.

  18. Inflation and deflation pressure-volume loops in anesthetized pinnipeds confirms compliant chest and lungs

    Directory of Open Access Journals (Sweden)

    Andreas eFahlman

    2014-11-01

    Full Text Available We examined structural properties of the marine mammal respiratory system, and tested Scholander’s hypothesis that the chest is highly compliant by measuring the mechanical properties of the respiratory system in five species of pinniped under anesthesia (Pacific harbor seal, Phoca vitulina; northern elephant seal, Mirounga angustirostris; northern fur seal Callorhinus ursinus; California sea lion, Zalophus californianus; and Steller sea lion, Eumetopias jubatus. We found that the chest wall compliance (CCW of all five species was greater than lung compliance (airways and alveoli, CL as predicted by Scholander, which suggests that the chest provides little protection against alveolar collapse or lung squeeze. We also found that specific respiratory compliance was significantly greater in wild animals than in animals raised under human care. While differences in ages between the two groups may affect this incidental finding, it is also possible that lung conditioning in free-living animals may increase pulmonary compliance and reduce the risk of lung squeeze during diving. Overall, our data indicate that compliance of excised pinniped lungs provide a good estimate of total respiratory compliance.

  19. Oxygen demand for the stabilization of the organic fraction of municipal solid waste in passively aerated bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Kasinski, Slawomir, E-mail: slawomir.kasinski@uwm.edu.pl; Wojnowska-Baryla, Irena

    2014-02-15

    Highlights: • The use of an passively aerated reactor enables effective stabilization of OFMSW. • Convective air flow does not inhibit the aerobic stabilization of waste. • The use of an passively aerated reactor reduces the heat loss due to convection. • The volume of supplied air exceeds 1.7–2.88 times the microorganisms demand. - Abstract: Conventional aerobic waste treatment technologies require the use of aeration devices that actively transport air through the stabilized waste mass, which greatly increases operating costs. In addition, improperly operated active aeration systems, may have the adverse effect of cooling the stabilized biomass. Because active aeration can be a limiting factor for the stabilization process, passive aeration can be equally effective and less expensive. Unfortunately, there are few reports documenting the use of passive aeration systems in municipal waste stabilization. There have been doubts raised as to whether a passive aeration system provides enough oxygen to the organic matter mineralization processes. In this paper, the effectiveness of aeration during aerobic stabilization of four different organic fractions of municipal waste in a reactor with an integrated passive ventilation system and leachate recirculation was analyzed. For the study, four fractions separated by a rotary screen were chosen. Despite the high temperatures in the reactor, the air flow rate was below 0.016 m{sup 3}/h. Using Darcy’s equation, theoretical values of the air flow rate were estimated, depending on the intensity of microbial metabolism and the amount of oxygen required for the oxidation of organic compounds. Calculations showed that the volume of supplied air exceeded the microorganisms demand for oxidation and endogenous activity by 1.7–2.88-fold.

  20. Oxygen transfer in circular surface aeration tanks.

    Science.gov (United States)

    Rao, Achanta Ramakrishna; Patel, Ajey Kumar; Kumar, Bimlesh

    2009-06-01

    Surface aeration systems employed in activated sludge plants are the most energy-intensive units of the plants and typically account for a higher percentage of the treatment facility's total energy use. The geometry of the aeration tank imparts a major effect on the system efficiency. It is said that at optimal geometric conditions, systems exhibits the maximum efficiency. Thus the quantification of the optimal geometric conditions in surface aeration tanks is needed. Optimal geometric conditions are also needed to scale up the laboratory result to the field installation. In the present work, experimental studies have been carried out on baffled and unbaffled circular surface aeration tanks to ascertain the optimal geometric conditions. It is found that no optimal geometric conditions exist for the liquid/water depth in circular surface aeration tanks; however, for design purposes, a standard value has been assumed. Based on the optimal geometric conditions, a scale-up equation has been developed for the baffled circular surface aeration tanks.

  1. Effects of preoperative inspiratory muscle training in obese women undergoing open bariatric surgery: respiratory muscle strength, lung volumes, and diaphragmatic excursion

    Directory of Open Access Journals (Sweden)

    Marcela Cangussu Barbalho-Moulim

    2011-01-01

    Full Text Available OBJECTIVE: To determine whether preoperative inspiratory muscle training is able to attenuate the impact of surgical trauma on the respiratory muscle strength, in the lung volumes, and diaphragmatic excursion in obese women undergoing open bariatric surgery. DESIGN: Randomized controlled trial. SETTING: Meridional Hospital, Cariacica/ES, Brazil. SUBJECTS: Thirty-two obese women undergoing elective open bariatric surgery were randomly assigned to receive preoperative inspiratory muscle training (inspiratory muscle training group or usual care (control group. MAIN MEASURES: Respiratory muscle strength (maximal static respiratory pressure - maximal inspiratory pressure and maximal expiratory pressure, lung volumes, and diaphragmatic excursion. RESULTS: After training, there was a significant increase only in the maximal inspiratory pressure in the inspiratory muscle training group. The maximal expiratory pressure, the lung volumes and the diaphragmatic excursion did not show any significant change with training. In the postoperative period there was a significant decrease in maximal inspiratory pressure in both the groups. However, there was a decrease of 28% in the inspiratory muscle training group, whereas it was 47% in the control group. The decrease in maximal expiratory pressure and in lung volumes in the postoperative period was similar between the groups. There was a significant reduction in the measures of diaphragmatic excursion in both the groups. CONCLUSION: The preoperative inspiratory muscle training increased the inspiratory muscle strength (maximal inspiratory pressure and attenuated the negative postoperative effects of open bariatric surgery in obese women for this variable, though not influencing the lung volumes and the diaphragmatic excursion.

  2. The Prognostic Value of Residual Volume/Total Lung Capacity in Patients with Chronic Obstructive Pulmonary Disease.

    Science.gov (United States)

    Shin, Tae Rim; Oh, Yeon-Mok; Park, Joo Hun; Lee, Keu Sung; Oh, Sunghee; Kang, Dae Ryoung; Sheen, Seungsoo; Seo, Joon Beom; Yoo, Kwang Ha; Lee, Ji-Hyun; Kim, Tae-Hyung; Lim, Seong Yong; Yoon, Ho Il; Rhee, Chin Kook; Choe, Kang-Hyeon; Lee, Jae Seung; Lee, Sang-Do

    2015-10-01

    The prognostic role of resting pulmonary hyperinflation as measured by residual volume (RV)/total lung capacity (TLC) in chronic obstructive pulmonary disease (COPD) remains poorly understood. Therefore, this study aimed to identify the factors related to resting pulmonary hyperinflation in COPD and to determine whether resting pulmonary hyperinflation is a prognostic factor in COPD. In total, 353 patients with COPD in the Korean Obstructive Lung Disease cohort recruited from 16 hospitals were enrolled. Resting pulmonary hyperinflation was defined as RV/TLC ≥ 40%. Multivariate logistic regression analysis demonstrated that older age (P = 0.001), lower forced expiratory volume in 1 second (FEV1) (P hyperinflation. Multivariate Cox regression model that included age, gender, dyspnea scale, SGRQ, RV/TLC, and 6-min walking distance revealed that an older age (HR = 1.07, P = 0.027), a higher RV/TLC (HR = 1.04, P = 0.025), and a shorter 6-min walking distance (HR = 0.99, P hyperinflation in COPD. RV/TLC is an independent risk factor for all-cause mortality in COPD.

  3. Overweight Is an Independent Risk Factor for Reduced Lung Volumes in Myotonic Dystrophy Type 1

    NARCIS (Netherlands)

    Seijger, Charlotte G W; Drost, Gea; Posma, Joram M; van Engelen, Baziel G M; Heijdra, Yvonne F

    2016-01-01

    BACKGROUND: In this large observational study population of 105 myotonic dystrophy type 1 (DM1) patients, we investigate whether bodyweight is a contributor of total lung capacity (TLC) independent of the impaired inspiratory muscle strength. METHODS: Body composition was assessed using the combinat

  4. AERATION OF THE ICE-COVERED WATER POOLS USING THE WAVE FLOW AERATOR

    Directory of Open Access Journals (Sweden)

    Solomin E.E

    2013-12-01

    Full Text Available This article describes the technical advantages and economic benefits of the ice-covered pool aeration plants consuming power from renewable energy sources. We made a comparative evaluation of the wave flow-aeration method and other methods of pool aeration. We showed the indexes and the characteristics of the wave flow-maker for aeration of ice-covered pools on the territory of Russia. We also made calculations of the economic benefits of aeration plants using the devices converting renewable energy. The project can be scaled and extended to the territory of the CIS, Europe, USA and Canada in the changing climate conditions and the variety of feed reservoirs around the world.

  5. EXPERIMENTAL AND NUMERICAL SIMULATION OF THREE-PHASE FLOW IN AN AERATION TANK

    Institute of Scientific and Technical Information of China (English)

    Cheng Wen; Zhou Xiao-de; Song Ce; Min Tao; Murai Yuichi; Yamamoto Fujio

    2003-01-01

    Aeration plays an important role in the treatment of activated sludge due to the interactions among bubbles, sewage and activated sludge in an aeration tank. The aeration performance is directly concerned with the efficiency of sewage disposal. So the three-dimensional two-fluid model was established with emphasis on the phase interaction terms in this paper. This model, as an extension of the two-phase flow model, involved the motion laws of three-phases, and was compared with experimental studies. The finite volume method was used in the numerical simulation of gas-liquid two-phase flow and gas-liquid-solid three-phase flow. In order to discuss the influence of gas-phase, liquid-phase and solid-phase motions in an aeration tank on the sewage disposal, three kinds of boundary and initial conditions were adopted. The simulated results of the flow structure show qualitatively good agreement with the experimental data. And the theoretical basis for designing the best aeration tank was discussed according to the simulated results.

  6. Effect of lung volume on airway luminal area assessed by computed tomography in chronic obstructive pulmonary disease.

    Directory of Open Access Journals (Sweden)

    Kenta Kambara

    Full Text Available BACKGROUND: Although airway luminal area (Ai is affected by lung volume (LV, how is not precisely understood. We hypothesized that the effect of LV on Ai would differ by airway generation, lung lobe, and chronic obstructive pulmonary disease (COPD severity. METHODS: Sixty-seven subjects (15 at risk, 18, 20, and 14 for COPD stages 1, 2, and 3 underwent pulmonary function tests and computed tomography scans at full inspiration and expiration (at functional residual capacity. LV and eight selected identical airways were measured in the right lung. Ai was measured at the mid-portion of the 3(rd, the segmental bronchus, to 6(th generation of the airways, leading to 32 measurements per subject. RESULTS: The ratio of expiratory to inspiratory LV (LV E/I ratio and Ai (Ai E/I ratio was defined for evaluation of changes. The LV E/I ratio increased as COPD severity progressed. As the LV E/I ratio was smaller, the Ai E/I ratio was smaller at any generation among the subjects. Overall, the Ai E/I ratios were significantly smaller at the 5(th (61.5% and 6(th generations (63.4% and than at the 3(rd generation (73.6%, p<0.001 for each, and also significantly lower in the lower lobe than in the upper or middle lobe (p<0.001 for each. And, the Ai E/I ratio decreased as COPD severity progressed only when the ratio was corrected by the LV E/I ratio (at risk v.s. stage 3 p<0.001, stage 1 v.s. stage 3 p<0.05. CONCLUSIONS: From full inspiration to expiration, the airway luminal area shrinks more at the distal airways compared with the proximal airways and in the lower lobe compared with the other lobes. Generally, the airways shrink more as COPD severity progresses, but this phenomenon becomes apparent only when lung volume change from inspiration to expiration is taken into account.

  7. A Temporal Study of Gene Expression in Rat Lung Following Fixed-volume Hemorrhage

    Science.gov (United States)

    2005-09-13

    2000. 2. Abraham E, Bursten S, Shenkar R, Allbee J, Tuder R, Woodson P, Guidot DM, Rice G, Singer JW, and Repine JE. Phosphatidic acid signaling...other immune cells. Other recent research has focused on free radicals, proteinases, and soluble agents in- cluding cytokines, arachidonic acid ...electrophoresis. A reference preparation consisting of equal amounts of RNA pooled from nine organs (liver, lung, kidney, spleen, heart, skeletal muscle

  8. EFFECTS OF A BASKETBALL ACTIVITY ON LUNG CAPILLARY BLOOD VOLUME AND MEMBRANE DIFFUSING CAPACITY, MEASURED BY NO/CO TRANSFER IN CHILDREN

    Directory of Open Access Journals (Sweden)

    Rim Dridi

    2006-09-01

    Full Text Available In both children and adults, acute exercise increases lung capillary blood volume (Vc and membrane factor (DmCO. We sought to determine whether basketball training affected this adaptation to exercise in children. The purpose of this study was to determine the effects of two years sport activity on the components of pulmonary gas transfer in children. Over a 2-yr period, we retested 60 nine year old boys who were initially separated in two groups: 30 basketball players (P (9.0 ± 1.0 yrs; 35.0 ± 5.2 kg; 1.43 ± 0.05 m, and matched non players controls (C (8.9 ± 1.0 yrs; 35.0 ± 6.0 kg; 1.44 ± 0.06 m who did not perform any extracurricular activity, Vc and DmCO were measured by the NO/CO transfer method at rest and during sub-maximal exercise. Maximal aerobic power and peak power output was 12% higher in the trained group compared to matched controls (p < 0.05. Nitric oxide lung transfer (TLNO per unit lung volume and thus, DmCO per unit of lung volume (VA were higher at rest and during exercise in the group which had undergone regular basketball activity compared to matched controls (p < 0.05. Neither lung capillary blood volume nor total lung transfer for carbon monoxide (TLCO were significantly different between groups. These results suggest that active sport can alter the properties of the lung alveolo-capillary membrane by improving alveolar membrane conductance in children

  9. Soil Aeration deficiencies in urban sites

    Science.gov (United States)

    Weltecke, Katharina; Gaertig, Thorsten

    2010-05-01

    Soil aeration deficiencies in urban sites Katharina Weltecke and Thorsten Gaertig On urban tree sites reduction of soil aeration by compaction or sealing is an important but frequently underestimated factor for tree growth. Up to 50% of the CO2 assimilated during the vegetation period is respired in the root space (Qi et al. 1994). An adequate supply of the soil with oxygen and a proper disposal of the exhaled carbon dioxide are essential for an undisturbed root respiration. If the soil surface is smeared, compacted or sealed, soil aeration is interrupted. Several references show that root activity and fine root growth are controlled by the carbon dioxide concentration in soil air (Qi et al.1994, Burton et al. 1997). Gaertig (2001) found that decreasing topsoil gas permeability leads to reduced fine root density and hence to injury in crown structure of oaks. In forest soils a critical CO2 concentration of more than 0.6 % indicates a bad aeration status (Gaertig 2001). The majority of urban tree sites are compacted or sealed. The reduction of soil aeration may lead to dysfunctions in the root space and consequently to stress during periods of drought, which has its visible affects in crown structure. It is reasonable to assume that disturbances in soil aeration lead to reduced tree vigour and roadworthiness, resulting in high maintenance costs. The assessment of soil aeration in urban sites is difficult. In natural ecosystems the measurement of gas diffusivity and the gas-chromatical analysis of CO2 in soil air are accepted procedures in analyzing the state of aeration (Schack-Kirchner et al. 2001, Gaertig 2001). It has been found that these methods can also be applied for analyzing urban sites. In particular CO2 concentration in the soil atmosphere can be considered as a rapidly assessable, relevant and integrating indicator of the aeration situation of urban soils. This study tested the working hypothesis that soil aeration deficiencies lead to a decrease of fine

  10. FLOW REGIMES BELOW AERATORS FOR DISCHARGE TUNNELS

    Institute of Scientific and Technical Information of China (English)

    MA Fei; WU Jian-hua

    2012-01-01

    The flow regimes below an aerator influence directly the air entrainment and the cavitation damage control.Based on the theoretical considerations,the experiments of the aerator for a discharge tunnel were conducted,and the relationships between the flow regime and hydraulic and geometric parameters were investigated.The results showed that,there are two kinds of threshold values for the flow regime conversions.One is Fr1-2 standing for the conversion from the fully filled cavity to the partially filled cavity,and the other is Fr2-3 which shows the change from the partially filled cavity to the net air cavity.Two empirical expressions were obtained for the conversions of the flow regimes,which can be used in the designs of the aerators.

  11. Sawdust discharge rate from aerated hoppers

    Institute of Scientific and Technical Information of China (English)

    Pan Chen; Zhulin Yuan; Chien-Song Chyang; Fu-Xiong Zhuan

    2011-01-01

    This paper presents a numerical and experimental study of the discharge rate of sawdust from an aerated hopper as an important parameter in many industrial processes involving the handling of other granular materials. Numerical experiments are conducted by means of an Eulerian-Eulerian approach coupled with the kinetic theory of granular flow (KTGF). Emphasis is given to the effects of particle size, hopper outlet width, hopper half angle, aeration height and air flow rate. The results show that the discharge rate is significantly affected by hopper outlet width, particle size and air flow rate, but is not sensitive to the hopper half angle and aeration height: increasing hopper outlet width or air flow rate increases discharge rate, while increasing particle size decreases discharge rate. Close agreement between numerical predictions and experimental results is obtained.

  12. Dependence of lung injury on inflation rate during low-volume ventilation in normal open-chest rabbits.

    Science.gov (United States)

    D'Angelo, Edgardo; Pecchiari, Matteo; Saetta, Marina; Balestro, Elisabetta; Milic-Emili, Joseph

    2004-07-01

    Lung mechanics and morphometry were assessed in two groups of nine normal open-chest rabbits mechanically ventilated (MV) for 3-4 h at zero end-expiratory pressure (ZEEP) with physiological tidal volumes (Vt; 11 ml/kg) and high (group A) or low (group B) inflation flow (44 and 6.1 ml x kg(-1) x s(-1), respectively). Relative to initial MV on positive end-expiratory pressure (PEEP; 2.3 cmH(2)O), MV on ZEEP increased quasi-static elastance and airway and viscoelastic resistance more in group A (+251, +393, and +225%, respectively) than in group B (+180, +247, and +183%, respectively), with no change in viscoelastic time constant. After restoration of PEEP, quasi-static elastance and viscoelastic resistance returned to control, whereas airway resistance, still relative to initial values, remained elevated more in group A (+86%) than in group B (+33%). In contrast, prolonged high-flow MV on PEEP had no effect on lung mechanics of seven open-chest rabbits (group C). Gas exchange on PEEP was equally preserved in all groups, and the lung wet-to-dry ratios were normal. Relative to group C, both groups A and B had an increased percentage of abnormal alveolar-bronchiolar attachments and number of polymorphonuclear leukocytes in alveolar septa, the latter being significantly larger in group A than in group B. Thus prolonged MV on ZEEP with cyclic opening-closing of peripheral airways causes alveolar-bronchiolar uncoupling and parenchymal inflammation with concurrent, persistent increase in airway resistance, which are worsened by high-inflation flow.

  13. Interfractional changes in tumour volume and position during entire radiotherapy courses for lung cancer with respiratory gating and image guidance

    DEFF Research Database (Denmark)

    Juhler-Nøttrup, Trine; Korreman, Stine Sofia; Pedersen, Anders N;

    2008-01-01

    measured using a set-up strategy based on imaging of bony landmarks and compared to a strategy using in room lasers, skin tattoos and cupper landmarks. MATERIALS AND METHODS: During their six week treatment course of 60Gy in 2Gy fractions, ten patients underwent 3 respiratory gated CT scans. The tumours...... landmarks and 0.85 cm (+/-0.54) for matching using skin tattoos. For the mediastinal tumours the corresponding vectors and SD's were 0.55 cm (+/-0.19) and 0.72 cm (+/-0.43). The differences between the vectors were significant for the lung tumours p=0.004. The interfractional overlap of lung tumours was 80......-87% when matched using bony landmarks and 70-76% when matched using skin tattoos. The overlap of the mediastinal tumours were 60-65% and 41-47%, respectively. CONCLUSIONS: Despite the use of gating the tumours varied considerably, regarding both position and volume. The variations in position were...

  14. Preparation of cell blocks for lung cancer diagnosis and prediction: protocol and experience of a high-volume center.

    Science.gov (United States)

    Kossakowski, Claudia A; Morresi-Hauf, Alicia; Schnabel, Philipp A; Eberhardt, Ralf; Herth, Felix J F; Warth, Arne

    2014-01-01

    Minimally invasive diagnostic techniques are increasingly being used to obtain specimens for pathological diagnosis and prediction. Referring to lung cancer, both endobronchial and endoesophageal ultrasound are used worldwide as diagnostic routine methods. Consequently, an increasing number of pathological samples are cytological and fewer are histological. On the other hand, the requirements for specific and sensitive tumor subtyping complemented by predictive analyses are steadily increasing and are an essential basis for evidence-based treatment decisions. In this article we focus on the cell block method as a helpful tool for diagnostic and predictive analyses in lung cancer and point out its advantages and disadvantages in comparison to conventional cytological and biopsy specimens. Furthermore, we retrospectively analyze the diagnostic results of the cell block method in a high-volume center over 5 years. The main advantages of cell blocks are the availability of established and validated protocols, archiving and the opportunity to have serial sections from the same specimens to provide or repeat molecular analyses. Actually, in case of tumor progression, even additional biomarkers can be tested using the original cell block when re-biopsies are not feasible. The cell block method should be considered as a reliable, complimentary approach to conventional cytological or biopsy procedures, which is helpful to fulfill the increasing requirements of high-quality diagnostics and prediction.

  15. Lung volume reduction in pulmonary emphysema from the radiologist's perspective; Lungenvolumenreduktion beim Lungenemphysem aus der Sicht des Radiologen

    Energy Technology Data Exchange (ETDEWEB)

    Doellinger, F.; Poellinger, A. [Charite Universitaetsmedizin Berlin (Germany). Dept. of Radiology; Huebner, R.H. [Charite Universitaetsmedizin Berlin (Germany). Dept. of Internal Medicine/Infectious and Respiratory Diseases; Kuhnigk, J.M. [Fraunhofer MEVIS, Bremen (Germany). Inst. for Medical Image Computing

    2015-08-15

    Pulmonary emphysema causes decrease in lung function due to irreversible dilatation of intrapulmonary air spaces, which is linked to high morbidity and mortality. Lung volume reduction (LVR) is an invasive therapeutical option for pulmonary emphysema in order to improve ventilation mechanics. LVR can be carried out by lung resection surgery or different minimally invasive endoscopical procedures. All LVR-options require mandatory preinterventional evaluation to detect hyperinflated dysfunctional lung areas as target structures for treatment. Quantitative computed tomography can determine the volume percentage of emphysematous lung and its topographical distribution based on the lung's radiodensity. Modern techniques allow for lobebased quantification that facilitates treatment planning. Clinical tests still play the most important role in post-interventional therapy monitoring, but CT is crucial in the detection of postoperative complications and foreshadows the method's high potential in sophisticated experimental studies. Within the last ten years, LVR with endobronchial valves has become an extensively researched minimally-invasive treatment option. However, this therapy is considerably complicated by the frequent occurrence of functional interlobar shunts. The presence of ''collateral ventilation'' has to be ruled out prior to valve implantations, as the presence of these extraanatomical connections between different lobes may jeopardize the success of therapy. Recent experimental studies evaluated the automatic detection of incomplete lobar fissures from CT scans, because they are considered to be a predictor for the existence of shunts. To date, these methods are yet to show acceptable results.

  16. Shear reinforced beams in autoclaved aerated concrete

    DEFF Research Database (Denmark)

    Cornelius, Thomas

    2010-01-01

    Shear behaviour in concrete materials is very well documented, for normal density concrete materials. In this paper results of various tests on low density concrete materials like aerated autoclaved concrete (in the following denoted aircrete) will be presented and analyzed for different combinat......Shear behaviour in concrete materials is very well documented, for normal density concrete materials. In this paper results of various tests on low density concrete materials like aerated autoclaved concrete (in the following denoted aircrete) will be presented and analyzed for different...

  17. PRESSURE CHARACTERISTICS OF CAVITATION CONTROL BY AERATION

    Institute of Scientific and Technical Information of China (English)

    DONG Zhi-yong; LU Yang-quan; JU Wen-jie; CAI Xin-ming; DING Chun-sheng

    2005-01-01

    This experimental investigation was systematically conducted with the aid of a non-circulating water tunnel in the Hydraulics Laboratory at Zhejiang University of Technology in China.The test velocity is between 20m/s and 40m/s.The least air concentration to prevent cavitation erosion lies between 1.7% and 4.5%.Pressure waveforms with and without aeration in cavitation and cavitation erosion regions were measured.Time-averaged pressure profiles with and without aeration were compared.Pressure characteristics corresponding to least air concentration to prevent cavitation erosion in cavitation and cavitation erosion regions were analyzed.

  18. Mild hypothermia attenuates changes in respiratory system mechanics and modifies cytokine concentration in bronchoalveolar lavage fluid during low lung volume ventilation.

    Science.gov (United States)

    Dostál, P; Senkeřík, M; Pařízková, R; Bareš, D; Zivný, P; Zivná, H; Cerný, V

    2010-01-01

    Hypothermia was shown to attenuate ventilator-induced lung injury due to large tidal volumes. It is unclear if the protective effect of hypothermia is maintained under less injurious mechanical ventilation in animals without previous lung injury. Tracheostomized rats were randomly allocated to non-ventilated group (group C) or ventilated groups of normothermia (group N) and mild hypothermia (group H). After two hours of mechanical ventilation with inspiratory fraction of oxygen 1.0, respiratory rate 60 min(-1), tidal volume 10 ml x kg(-1), positive end-expiratory pressure (PEEP) 2 cm H2O or immediately after tracheostomy in non-ventilated animals inspiratory pressures were recorded, rats were sacrificed, pressure-volume (PV) curve of respiratory system constructed, bronchoalveolar lavage (BAL) fluid and aortic blood samples obtained. Group N animals exhibited a higher rise in peak inspiratory pressures in comparison to group H animals. Shift of the PV curve to right, higher total protein and interleukin-6 levels in BAL fluid were observed in normothermia animals in comparison with hypothermia animals and non-ventilated controls. Tumor necrosis factor-alpha was lower in the hypothermia group in comparison with normothermia and non-ventilated groups. Mild hypothermia attenuated changes in respiratory system mechanics and modified cytokine concentration in bronchoalveolar lavage fluid during low lung volume ventilation in animals without previous lung injury.

  19. Comparison of values in critically ill patients for global end-diastolic volume and extravascular lung water measured by transcardiopulmonary thermodilution : A metaanalysis of the literature

    NARCIS (Netherlands)

    Eichhorn, V.; Goepfert, M. S.; Eulenburg, C.; Malbrain, M. L. N. G.; Reuter, D. A.

    2012-01-01

    Introduction: Hemodynamic parameters such as the global end-diastolic volume index (GEDVI) and extravascular lung water index (EVLWI), derived by transpulmonary thermodilution, have gained increasing interest for guiding fluid therapy in critically ill patients. The proposed normal values (680-800 m

  20. Assessment of minute volume of lung in NPP workers for Korean reference man

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. J.; Song, S. H.; Lee, J.; Jin, Y. W.; Yim, Y. K.; Kim, J. S. [KNETEC, Seoul (Korea, Republic of)

    2001-05-01

    To formulation of the reference Korean for radiation protection purpose, we measured the forced vital capacity(FVC), forced expiratory volume in second(FEVI), minute ventilation(MV) of Nuclear Power Plant workers using SP-1 Spirometry Unit(Schiller AG. 1998) and eatimated the liters of breathed for working and resting, also compared these data with ICRP 23.

  1. Package plant of extended aeration membrane bioreactors: a study on aeration intensity and biofouling control.

    Science.gov (United States)

    Ujang, Z; Ng, S S; Nagaoka, H

    2005-01-01

    Biofouling control is important for effective process of membrane bioreactor (MBR). In this study, phenomena of biofouling for immersed type extended aeration MBR with two different anti-fouling aeration intensities were studied through a laboratory set up. The objectives of this study were (a) to observe biofouling phenomena of MBR that operates under different anti-fouling bubbling intensity, and simultaneously monitors performance of the MBR in organic carbon and nutrients removal; (b) to compare effectiveness of detergent and detergent-enzyme cleaning solutions in recovering biofouled membranes that operated in the extended aeration MBR. For MBR, which operated under continuous anti-fouling aeration, deposition and accumulation of suspended biomass on membrane surface were prohibited. However, flux loss was inescapable that biofilm layer was the main problem. Membrane cleaning was successfully carried out with detergent-enzyme mixture solutions and its effectiveness was compared with result from cleaning with just detergent solution.

  2. Aerated bunker discharge of fine dilating powders

    NARCIS (Netherlands)

    Ouwerkerk, C.E.D.; Molenaar, H.J.; Frank, M.J.W.

    1992-01-01

    The discharge rate of coarse powders (mean particle size 500 ¿m) from bunkers without aeration can be described by both empirical relations and theoretical models. In the case of small particles the discharge rate is largely overestimated. As the powder dilates during flow a negative pressure gradie

  3. Soil Aeration Variability as Affected by Reoxidation

    Institute of Scientific and Technical Information of China (English)

    A.WOLI(N)SKA; Z.ST(E)PNIEWSKA

    2013-01-01

    The interplay between soil physical parameters during the recovery from anoxic stresses (reoxidation) is largely unrecognized.This study was conducted to characterise the soil aeration status and derive correlations between variable aeration factors during reoxidation.Surface layers (0-30 cm) of three soil types,Haplic Phaeozem,Mollic Gleysol,and Eutric Cambisol (FAO soil group),were selected for analysis.The moisture content was determined for a range of pF values (0,1.5,2.2,2.7,and 3.2),corresponding to the available water for microorganisms and plant roots.The variability of a number of soil aeration parameters,such as water potential (pF),air-filled porosity (Eg),oxygen diffusion rate (ODR),and redox potential (Eh),were investigated.These parameters were found to be interrelated in most cases.There were significant (P < 0.001) negative correlations of pF,Eg,and ODR with Eh.A decrease in water content as a consequence of soil reoxidation was manifested by an increase in the values of aeration factors in the soil environment.These results contributed to understanding of soil redox processes during recovery from flooding and might be useful for development of agricultural techniques aiming at soil reoxidation and soil fertility optimisation.

  4. Ammonia-based intermittent aeration control optimized for efficient nitrogen removal.

    Science.gov (United States)

    Regmi, Pusker; Bunce, Ryder; Miller, Mark W; Park, Hongkeun; Chandran, Kartik; Wett, Bernhard; Murthy, Sudhir; Bott, Charles B

    2015-10-01

    This work describes the development of an intermittently aerated pilot-scale process (V = 0.45 m(3) ) operated for optimized efficient nitrogen removal in terms of volume, supplemental carbon and alkalinity requirements. The intermittent aeration pattern was controlled using a strategy based on effluent ammonia concentration set-points. The unique feature of the ammonia-based aeration control was that a fixed dissolved oxygen (DO) set-point was used and the length of the aerobic and anoxic time (anoxic time ≥25% of total cycle time) were changed based on the effluent ammonia concentration. Unlike continuously aerated ammonia-based aeration control strategies, this approach offered control over the aerobic solids retention time (SRT) to deal with fluctuating ammonia loading without solely relying on changes to the total SRT. This approach allowed the system to be operated at a total SRT with a small safety factor. The benefits of operating at an aggressive SRT were reduced hydraulic retention time (HRT) for nitrogen removal. As a result of such an operation, nitrite oxidizing bacteria (NOB) out-selection was also obtained (ammonia oxidizing bacteria [AOB] maximum activity: 400 ± 79 mgN/L/d, NOB maximum activity: 257 ± 133 mgN/L/d, P ammonia (COD/NH4 (+) -N) ratio of 10.2 ± 2.2 at 25°C within the hydraulic retention time (HRT) of 4 h and within a total SRT of 5-10 days. The TIN removal efficiency up to 91% was observed during the study, while effluent TIN was 9.6 ± 4.4 mgN/L. Therefore, this pilot-scale study demonstrates that application of the proposed on-line aeration control is capable of relatively high nitrogen removal without supplemental carbon and alkalinity addition at a low HRT.

  5. Evaluation of oxygen transfer parameters of fine-bubble aeration system in plug flow aeration tank of wastewater treatment plant

    Institute of Scientific and Technical Information of China (English)

    Xiaohong Zhou; Yuanyuan Wu; Hanchang Shi; Yanqing Song

    2013-01-01

    Knowledge of the oxygen mass transfer of aerators under operational conditions in a full-scale wastewater treatment plant (WWTP) is meaningful for the optimization of WWTP,however,scarce to best of our knowledge.Through analyzing a plug flow aeration tank in the Lucun WWTP,in Wuxi,China,the oxygenation capacity of fine-bubble aerators under process conditions have been measured insitu using the off-gas method and the non-steady-state method.The off-gas method demonstrated that the aerators in different corridors in the aeration tank of WWTP had significantly different oxygen transfer performance; furthermore,the aerators in the same corridor shared almost equal oxygen transfer performance over the course of a day.Results measured by the two methods showed that the oxygen transfer performance of fine-bubble aerators in the aeration tank decreased dramatically compared with that in the clean water.The loss of oxygen transfer coefficient was over 50% under low-aeration conditions (aeration amount < 0.67 Nm3/hr).However,as the aeration amount reached 0.96 Nm3/hr,the discrepancy of oxygen transfer between the process condition and clean water was negligible.The analysis also indicated that the non-steady-state and off-gas methods resulted in comparable estimates of oxygen transfer parameters for the aerators under process conditions.

  6. Evaluation of oxygen transfer parameters of fine-bubble aeration system in plug flow aeration tank of wastewater treatment plant.

    Science.gov (United States)

    Zhou, Xiaohong; Wu, Yuanyuan; Shi, Hanchang; Song, Yanqing

    2013-02-01

    Knowledge of the oxygen mass transfer of aerators under operational conditions in a full-scale wastewater treatment plant (WWTP) is meaningful for the optimization of WWTP, however, scarce to best of our knowledge. Through analyzing a plug flow aeration tank in the Lucun WWTP, in Wuxi, China, the oxygenation capacity of fine-bubble aerators under process conditions have been measured in-situ using the off-gas method and the non-steady-state method. The off-gas method demonstrated that the aerators in different corridors in the aeration tank of WWTP ha d significantly different oxygen transferperformance; furthermore, the aerators in the samecorridor shared almost equal oxygen transfer performance over the course of a day. Results measured by the two methods showed that the oxygen transfer performance of fine-bubble aerators in the aeration tank decreased dramatically compared with that in the clean water. The loss of oxygen transfer coefficient was over 50% under low-aeration conditions (aeration amount aeration amount reached 0.96 Nm3/hr, the discrepancy of oxygen transfer between the process condition and clean water was negligible. The analysis also indicated that the non-steady-state and off-gas methods resulted in comparable estimates of oxygen transfer parameters for the aerators under process conditions.

  7. Effect of intermittent aeration strategies on treatment performance and microbial community of an IFAS reactor treating municipal waste water.

    Science.gov (United States)

    Singh, Nitin Kumar; Bhatia, Akansha; Kazmi, Absar Ahmad

    2017-01-31

    This study investigated the effect of various intermittent aeration (IA) cycles on organics and nutrient removal, and microbial communities in an integrated fixed-film activated sludge (IFAS) reactor treating municipal waste water. Average effluent biological oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids, total nitrogen (TN) and total phosphorus (TP) values were noted as 20, 50, 30, 12 and 1.5 mgL(-1), respectively, in continuous aeration mode. A total of four operational conditions (run 1, continuous aeration; run 2, 150/30 min aeration on/off time; run 3, 120/60 min aeration on/off time and run 4, 90/60 min aeration on/off time) were investigated in IFAS reactor assessment. Among the all examined IA cycles, IA phase 2 gave the maximum COD and BOD removals with values recorded as 97% and 93.8%, respectively. With respect to nutrient removal (TN and TP), IA phase 1 was found to be optimum. Pathogen removal efficiency of present system was recorded as 90-95% during the three phases. With regard to settling characteristics, pilot showed poor settling during IA schedules, which was also evidenced by high sludge volume index values. Overall, IA could be used as a feasible way to improve the overall performance of IFAS system.

  8. The Impact of Homogeneous Versus Heterogeneous Emphysema on Dynamic Hyperinflation in Patients With Severe COPD Assessed for Lung Volume Reduction.

    Science.gov (United States)

    Boutou, Afroditi K; Zoumot, Zaid; Nair, Arjun; Davey, Claire; Hansell, David M; Jamurtas, Athanasios; Polkey, Michael I; Hopkinson, Nicholas S

    2015-01-01

    Dynamic hyperinflation (DH) is a pathophysiologic hallmark of Chronic Obstructive Pulmonary Disease (COPD). The aim of this study was to investigate the impact of emphysema distribution on DH during a maximal cardiopulmonary exercise test (CPET) in patients with severe COPD. This was a retrospective analysis of prospectively collected data among severe COPD patients who underwent thoracic high-resolution computed tomography, full lung function measurements and maximal CPET with inspiratory manouvers as assessment for a lung volume reduction procedure. ΔIC was calculated by subtracting the end-exercise inspiratory capacity (eIC) from resting IC (rIC) and expressed as a percentage of rIC (ΔIC%). Emphysema quantification was conducted at 3 predefined levels using the syngo PULMO-CT (Siemens AG); a difference >25% between best and worse slice was defined as heterogeneous emphysema. Fifty patients with heterogeneous (62.7% male; 60.9 ± 7.5 years old; FEV1% = 32.4 ± 11.4) and 14 with homogeneous emphysema (61.5% male; 62.5 ± 5.9 years old; FEV1% = 28.1 ± 10.3) fulfilled the enrolment criteria. The groups were matched for all baseline variables. ΔIC% was significantly higher in homogeneous emphysema (39.8% ± 9.8% vs.31.2% ± 13%, p = 0.031), while no other CPET parameter differed between the groups. Upper lobe predominance of emphysema correlated positively with peak oxygen pulse, peak oxygen uptake and peak respiratory rate, and negatively with ΔIC%. Homogeneous emphysema is associated with more DH during maximum exercise in COPD patients.

  9. The value of nitrogen washout/washin method in assessing alveolar recruitment volume in acute lung injury patients

    Institute of Scientific and Technical Information of China (English)

    李洋

    2013-01-01

    Objective To evaluate the precision and feasibility of nitrogen washout/washin method in assessing lung recruitment of acute lung injury(ALI)patients.Methods Fifteen ALI patients underwent mechanical ventilation

  10. Bronchoscopic lung volume reduction by endobronchial valve in advanced emphysema: the first Asian report

    Directory of Open Access Journals (Sweden)

    Park TS

    2015-07-01

    Full Text Available Tai Sun Park,1 Yoonki Hong,2 Jae Seung Lee,1 Sang Young Oh,3 Sang Min Lee,3 Namkug Kim,3 Joon Beom Seo,3 Yeon-Mok Oh,1 Sang-Do Lee,1 Sei Won Lee1 1Department of Pulmonary and Critical Care Medicine and Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea; 2Department of Internal Medicine, College of Medicine, Kangwon National University, Chuncheon, Korea; 3Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea Purpose: Endobronchial valve (EBV therapy is increasingly being seen as a therapeutic option for advanced emphysema, but its clinical utility in Asian populations, who may have different phenotypes to other ethnic populations, has not been assessed.Patients and methods: This prospective open-label single-arm clinical trial examined the clinical efficacy and the safety of EBV in 43 consecutive patients (mean age 68.4±7.5, forced expiratory volume in 1 second [FEV1] 24.5%±10.7% predicted, residual volume 208.7%±47.9% predicted with severe emphysema with complete fissure and no collateral ventilation in a tertiary referral hospital in Korea.Results: Compared to baseline, the patients exhibited significant improvements 6 months after EBV therapy in terms of FEV1 (from 0.68±0.26 L to 0.92±0.40 L; P<0.001, 6-minute walk distance (from 233.5±114.8 m to 299.6±87.5 m; P=0.012, modified Medical Research Council dyspnea scale (from 3.7±0.6 to 2.4±1.2; P<0.001, and St George’s Respiratory Questionnaire (from 65.59±13.07 to 53.76±11.40; P=0.028. Nine patients (20.9% had a tuberculosis scar, but these scars did not affect target lobe volume reduction or pneumothorax frequency. Thirteen patients had adverse events, ten (23.3% developed pneumothorax, which included one death due to tension pneumothorax.Conclusion: EBV therapy was as effective and safe in Korean

  11. 重度肺气肿的内镜下肺减容治疗技术%Application of endoscopic lung volume reduction technique in severe emphysema

    Institute of Scientific and Technical Information of China (English)

    迟晶; 郭述良; 贾晋伟; 李一诗

    2013-01-01

    慢性阻塞性肺病(chronic obstructive pulmonary diseases,COPD)在世界范围的发病率和死亡率占主要因素.COPD发展至重度肺气肿阶段时严重影响患者生活质量.内镜肺减容术(endoscopic lung volume reduction,ELVR)是通过支气管镜技术使过度充气的肺叶产生不张,疗效较传统的内科治疗更为确切,与外科肺减容术相比,ELVR以其微创,操作相对简单,并发症和死亡率降低等优点,引起了世界医学界的广泛研究.目前国内外研究较多的内镜下肺减容技术主要包括支气管内单向活瓣技术(one-way endobronchial valves,EBV)、气道旁路支架(airway bypass stents,ABS)、聚合物肺减容术(polymeric lung volume reduction,PLVR)、经支气管镜热蒸汽消融术(bronchoscopic thermal vapor ablation,BTVA)和肺减容弹簧圈(lung volume reduction coil,LVRC)等5种.本文将就上述内镜肺减容技术作一综述.%Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and mortality worldwide.Once the disease develops into severe emphysema,it seriously affects the patients' life quality.Endoscopic lung volume reduction(ELVR) with bronchoscopic techniques to bring about atelectasis of the hyperinflated lobe has been developed and studied widely over the past decade,because it has a better clinical effect than the traditional medicine treatment.The techniques have the advantages of minimally invasive and simple with less complications and lower mortality compared to the open surgical approach.Nowadays the most commonly used ELVR techniques include one-way endobronchial valves (EBV),airway bypass stents (ABS),polymeric lung volume reduction (PLVR),bronchoscopic thermal vapor ablation (BTVA) and lung volume reduction coil (LVRC).In this paper the ELVR techniques are reviewed.

  12. THREE-DIMENSIONAL NUMERICAL SIMULATION OF AERATED FLOWS DOWNSTREAM SUDDEN FALL AERATOR EXPANSION-IN A TUNNEL

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jian-min; CHEN Jian-gang; XU Wei-lin; WANG Yu-rong; LI Gui-ji

    2011-01-01

    Air entrainment is known to be one of efficient and inexpensive methods to prevent cavitation damages in hydropower projects.The shape of sudden expansion-fall is used as a common device for mitigating cavitation erosions.The complex flow patterns with cavitation are numerically simulated by using the realizable k-ε turbulence model and the air-water mixture model.The calculated results are compared well with the experimental results as well as those obtained with the k -ε turbulence model with the Volume Of Fluid (VOF) Model.The calculated results agree well with the experimental data for the aeration cavity and wall pressure.Moreover, the air concentration near sidewall is simulated by a mixture model.It is found that the mixture turbulence model is superior to the VOF turbulence model.

  13. CFD model of an aerating hydrofoil

    Science.gov (United States)

    Scott, D.; Sabourin, M.; Beaulieu, S.; Papillon, B.; Ellis, C.

    2014-03-01

    Improving water quality in the tailrace below hydroelectric dams has become a priority in many river systems. In warm climates, water drawn by the turbine from deep in a reservoir can be deficient in dissolved oxygen (DO), a critical element in maintaining a healthy aquatic ecosystem. Many different solutions have been proposed in order to increase the DO levels in turbine discharge, including: turbine aeration systems (adding air to the water through either the turbine hub, the periphery or through distributed aeration in the runner blades); bubble diffusers in the reservoir or in the tailrace; aerating weirs downstream of the dams; and surface water pumps in the reservoir near the dam. There is a significant potential to increase the effectiveness of these solutions by improving the way that oxygen is introduced into the water; better distributions of bubbles will result in better oxygen transfer. In the present study, a two-phase Computational Fluid Dynamics model has been formulated using a commercial code to study the distribution of air downstream of a simple aerating hydrofoil. The two-phase model uses the Eulerian-Eulerian approach. Appropriate relations are used to model the interphase forces, including the Grace drag force model, the Favre averaged drag force and the Sato enhanced eddy viscosity. The model is validated using experimental results obtained in the water tunnel at the University of Minnesota's Saint Anthony Falls Laboratory. Results are obtained for water velocities between 5 and 10 m/s, air flow rates between 0.5 and 1.5 sL/min and for angles of attack between 0° and -8°. The results of this study show that the CFD model provides a good qualitative comparison to the experimental results by well predicting the wake location at the different flow rates and angles of attack used.

  14. Novel muscle and connective tissue design enables high extensibility and controls engulfment volume in lunge-feeding rorqual whales.

    Science.gov (United States)

    Shadwick, Robert E; Goldbogen, Jeremy A; Potvin, Jean; Pyenson, Nicholas D; Vogl, A Wayne

    2013-07-15

    Muscle serves a wide variety of mechanical functions during animal feeding and locomotion, but the performance of this tissue is limited by how far it can be extended. In rorqual whales, feeding and locomotion are integrated in a dynamic process called lunge feeding, where an enormous volume of prey-laden water is engulfed into a capacious ventral oropharyngeal cavity that is bounded superficially by skeletal muscle and ventral groove blubber (VGB). The great expansion of the cavity wall presents a mechanical challenge for the physiological limits of skeletal muscle, yet its role is considered fundamental in controlling the flux of water into the mouth. Our analyses of the functional properties and mechanical behaviour of VGB muscles revealed a crimped microstructure in an unstrained, non-feeding state that is arranged in parallel with dense and straight elastin fibres. This allows the muscles to accommodate large tissue deformations of the VGB yet still operate within the known strain limits of vertebrate skeletal muscle. VGB transverse strains in routine-feeding rorquals were substantially less than those observed in dead ones, where decomposition gas stretched the VGB to its elastic limit, evidence supporting the idea that eccentric muscle contraction modulates the rate of expansion and ultimate size of the ventral cavity during engulfment.

  15. Cavity filling water control below aerator devices

    Institute of Scientific and Technical Information of China (English)

    钱尚拓; 吴建华; 马飞; 徐建荣; 彭育; 汪振

    2014-01-01

    With the rapid development of high dam projects within China, the dragon-drop-tail spillway tunnel is introduced and widely used. In view of the high water head and the large flow velocity on the dragon-drop-tail section, aerator devices are usually placed for the cavitation damage control. For the device placed in its initial position, it is a serious concern to design a suitable flow regime of the cavity and to control the cavity filling water due to the large flow depth and the low Froude number through this aera-tor. In this study, the relationships between the geometries of the aerator device and the jet impact angle of the lower trajectory of the flow are theoretically analyzed with/without a local slope. Nine test cases with different geometries are designed, the effectiveness of the filling water control is experimentally investigated under different operation conditions, and two criteria of the local slope design are proposed. It is concluded that the cavity flow regime and the filling water can be improved if a small impact angle and some sui-table geometries of the local slope are designed.

  16. Supersonic Injection of Aerated Liquid Jet

    Science.gov (United States)

    Choudhari, Abhijit; Sallam, Khaled

    2016-11-01

    A computational study of the exit flow of an aerated two-dimensional jet from an under-expanded supersonic nozzle is presented. The liquid sheet is operating within the annular flow regime and the study is motivated by the application of supersonic nozzles in air-breathing propulsion systems, e.g. scramjet engines, ramjet engines and afterburners. The simulation was conducted using VOF model and SST k- ω turbulence model. The test conditions included: jet exit of 1 mm and mass flow rate of 1.8 kg/s. The results show that air reaches transonic condition at the injector exit due to the Fanno flow effects in the injector passage. The aerated liquid jet is alternately expanded by Prandtl-Meyer expansion fan and compressed by oblique shock waves due to the difference between the back (chamber) pressure and the flow pressure. The process then repeats itself and shock (Mach) diamonds are formed at downstream of injector exit similar to those typical of exhaust plumes of propulsion system. The present results, however, indicate that the flow field of supersonic aerated liquid jet is different from supersonic gas jets due to the effects of water evaporation from the liquid sheet. The contours of the Mach number, static pressure of both cases are compared to the theory of gas dynamics.

  17. Improved CT-based estimate of pulmonary gas trapping accounting for scanner and lung-volume variations in a multicenter asthmatic study.

    Science.gov (United States)

    Choi, Sanghun; Hoffman, Eric A; Wenzel, Sally E; Castro, Mario; Lin, Ching-Long

    2014-09-15

    Lung air trapping is estimated via quantitative computed tomography (CT) using density threshold-based measures on an expiration scan. However, the effects of scanner differences and imaging protocol adherence on quantitative assessment are known to be problematic. This study investigates the effects of protocol differences, such as using different CT scanners and breath-hold coaches in a multicenter asthmatic study, and proposes new methods that can adjust intersite and intersubject variations. CT images of 50 healthy subjects and 42 nonsevere and 52 severe asthmatics at total lung capacity (TLC) and functional residual capacity (FRC) were acquired using three different scanners and two different coaching methods at three institutions. A fraction threshold-based approach based on the corrected Hounsfield unit of air with tracheal density was applied to quantify air trapping at FRC. The new air-trapping method was enhanced by adding a lung-shaped metric at TLC and the lobar ratio of air-volume change between TLC and FRC. The fraction-based air-trapping method is able to collapse air-trapping data of respective populations into distinct regression lines. Relative to a constant value-based clustering scheme, the slope-based clustering scheme shows the improved performance and reduced misclassification rate of healthy subjects. Furthermore, both lung shape and air-volume change are found to be discriminant variables for differentiating among three populations of healthy subjects and nonsevere and severe asthmatics. In conjunction with the lung shape and air-volume change, the fraction-based measure of air trapping enables differentiation of severe asthmatics from nonsevere asthmatics and nonsevere asthmatics from healthy subjects, critical for the development and evaluation of new therapeutic interventions.

  18. Efficacy evaluation of retrospectively applying the Varian normal breathing predictive filter for volume definition and artifact reduction in 4D CT lung patients.

    Science.gov (United States)

    Malone, Ciaran; Rock, Luke; Skourou, Christina

    2014-05-08

    Phase-based sorting of four-dimensional computed tomography (4D CT) datasets is prone to image artifacts due to patient's breathing irregularities that occur during the image acquisition. The purpose of this study is to investigate the effect of the Varian normal breathing predictive filter (NBPF) as a retrospective phase-sorting parameter in 4D CT. Ten 4D CT lung cancer datasets were obtained. The volumes of all tumors present, as well as the total lung volume, were calculated on the maximum intensity projection (MIP) images as well as each individual phase image. The NBPF was varied retrospectively within the available range, and changes in volume and image quality were recorded. The patients' breathing trace was analysed and the magnitude and location of any breathing irregularities were correlated to the behavior of the NBPF. The NBPF was found to have a considerable effect on the quality of the images in MIP and single-phase datasets. When used appropriately, the NBPF is shown to have the ability to account for and correct image artifacts. However, when turned off (0%) or set above a critical level (approximately 40%), it resulted in erroneous volume reconstructions with variations in tumor volume up to 26.6%. Those phases associated with peak inspiration were found to be more susceptible to changes in the NBPF. The NBPF settings selected prior to exporting the breathing trace for patients evaluated using 4D CT directly affect the accuracy of the targeting and volume estimation of lung tumors. Recommendations are made to address potential errors in patient anatomy introduced by breathing irregularities, specifically deep breath or cough irregularities, by implementing the proper settings and use of this tool.

  19. Effects of preoperative inspiratory muscle training in obese women undergoing open bariatric surgery: respiratory muscle strength, lung volumes, and diaphragmatic excursion

    OpenAIRE

    Marcela Cangussu Barbalho-Moulim; Gustavo Peixoto Soares Miguel; Eli Maria Pazzianotto Forti; Flavio do Amaral Campos; Dirceu Costa

    2011-01-01

    OBJECTIVE: To determine whether preoperative inspiratory muscle training is able to attenuate the impact of surgical trauma on the respiratory muscle strength, in the lung volumes, and diaphragmatic excursion in obese women undergoing open bariatric surgery. DESIGN: Randomized controlled trial. SETTING: Meridional Hospital, Cariacica/ES, Brazil. SUBJECTS: Thirty-two obese women undergoing elective open bariatric surgery were randomly assigned to receive preoperative inspiratory muscle trainin...

  20. Evaluation of residual functional lung volume on Tc-99m DTPA aerosol ventilation and Tc-99m MAA perfusion scintigraphy in primary ciliary dyskinesia (Kartagener syndrome).

    Science.gov (United States)

    Chen, Yu-Wen; Chang, Chin-Chuan; Lai, Yung-Chuang; Lu, Chia-Ying; Dai, Zen-Kong

    2008-12-01

    Kartagener syndrome is diagnosed as sinusitis, bronchitis (bronchiectasis), and situs inversus by the clinical features. It is a subclass of primary ciliary dyskinesia (PCD) disease. A 12-year-old girl who had frequent upper and lower airway infections since birth, which was confirmed as Kartagener syndrome by HRCT imaging. We present the residual functional lung volume and mucociliary clearance findings seen on Tc-99m DTPA aerosol ventilation and Tc-99m MAA perfusion scintigraphy.

  1. Effects of aeration method and aeration rate on greenhouse gas emissions during composting of pig feces in pilot scale.

    Science.gov (United States)

    Jiang, Tao; Li, Guoxue; Tang, Qiong; Ma, Xuguang; Wang, Gang; Schuchardt, Frank

    2015-05-01

    The aim of this study was to uncover ways to mitigate greenhouse gas (GHG) emissions and reduce energy consumption during the composting process. We assessed the effects of different aeration rates (0, 0.18, 0.36, and 0.54 L/(kg dry matter (dm)·min)) and methods (continuous and intermittent) on GHG emissions. Pig feces and corn stalks were mixed at a ratio of 7:1. The composting process lasted for 10 weeks, and the compost was turned approximately every 2 weeks. Results showed that both aeration rate and method significantly affected GHG emissions. Higher aeration rates increased NH3 and N2O losses, but reduced CH4 emissions. The exception is that the CH4 emission of the passive aeration treatment was lower than that of the low aeration rate treatment. Without forced aeration, the CH4 diffusion rates in the center of the piles were very low and part of the CH4 was oxidized in the surface layer. Intermittent aeration reduced NH3 and CH4 losses, but significantly increased N2O production during the maturing periods. Intermittent aeration increased the nitrification/denitrification alternation and thus enhanced the N2O production. Forced aeration treatments had higher GHG emission rates than the passive aeration treatment. Forced aeration accelerated the maturing process, but could not improve the quality of the end product. Compared with continuous aeration, intermittent aeration could increase the O2 supply efficiency and reduced the total GHG emission by 17.8%, and this reduction increased to 47.4% when composting was ended after 36 days.

  2. Modeling of Non-Small Cell Lung Cancer Volume Changes during CT-Based Image Guided Radiotherapy: Patterns Observed and Clinical Implications

    Directory of Open Access Journals (Sweden)

    Hiram A. Gay

    2013-01-01

    Full Text Available Background. To characterize the lung tumor volume response during conventional and hypofractionated radiotherapy (RT based on diagnostic quality CT images prior to each treatment fraction. Methods. Out of 26 consecutive patients who had received CT-on-rails IGRT to the lung from 2004 to 2008, 18 were selected because they had lung lesions that could be easily distinguished. The time course of the tumor volume for each patient was individually analyzed using a computer program. Results. The model fits of group L (conventional fractionation patients were very close to experimental data, with a median Δ% (average percent difference between data and fit of 5.1% (range 3.5–10.2%. The fits obtained in group S (hypofractionation patients were generally good, with a median Δ% of 7.2% (range 3.7–23.9% for the best fitting model. Four types of tumor responses were observed—Type A: “high” kill and “slow” dying rate; Type B: “high” kill and “fast” dying rate; Type C: “low” kill and “slow” dying rate; and Type D: “low” kill and “fast” dying rate. Conclusions. The models used in this study performed well in fitting the available dataset. The models provided useful insights into the possible underlying mechanisms responsible for the RT tumor volume response.

  3. Inverse problem of bottom slope design for aerator devices

    Institute of Scientific and Technical Information of China (English)

    吴建华; 樊博; 许唯临

    2013-01-01

    Air entrainment is an effective approach to protect release works from cavitation damage. The traditional method of aera-tor device designs is that, for given flow conditions, the geometries of the aerator device are designed and then the effects are experi-mentally tested for cavitation damage control. The present paper proposes an inverse problem method of determining the bottom slopes in front of and behind an aerator if the requirements of air entrainment, flow conditions and some of aerator geometric para-meters are given. An RBF neural network model is developed and the relevant bottom slopes are calculated in different conditions of flow and geometry on the basis of the data of 19 aerator devices from different discharge tunnels with safe operation. The case study shows that the methodology provides an effective way to design aerator devices under given target conditions.

  4. SU-E-J-123: Assessing Segmentation Accuracy of Internal Volumes and Sub-Volumes in 4D PET/CT of Lung Tumors Using a Novel 3D Printed Phantom

    Energy Technology Data Exchange (ETDEWEB)

    Soultan, D [University of California-San Diego, San Diego State University, La Jolla, CA (United States); Murphy, J; James, C; Hoh, C; Moiseenko, V; Cervino, L [University of California, San Diego, La Jolla, CA (United States); Gill, B [British Columbia Cancer Agency, Windsor, ON (Canada)

    2015-06-15

    Purpose: To assess the accuracy of internal target volume (ITV) segmentation of lung tumors for treatment planning of simultaneous integrated boost (SIB) radiotherapy as seen in 4D PET/CT images, using a novel 3D-printed phantom. Methods: The insert mimics high PET tracer uptake in the core and 50% uptake in the periphery, by using a porous design at the periphery. A lung phantom with the insert was placed on a programmable moving platform. Seven breathing waveforms of ideal and patient-specific respiratory motion patterns were fed to the platform, and 4D PET/CT scans were acquired of each of them. CT images were binned into 10 phases, and PET images were binned into 5 phases following the clinical protocol. Two scenarios were investigated for segmentation: a gate 30–70 window, and no gating. The radiation oncologist contoured the outer ITV of the porous insert with on CT images, while the internal void volume with 100% uptake was contoured on PET images for being indistinguishable from the outer volume in CT images. Segmented ITVs were compared to the expected volumes based on known target size and motion. Results: 3 ideal breathing patterns, 2 regular-breathing patient waveforms, and 2 irregular-breathing patient waveforms were used for this study. 18F-FDG was used as the PET tracer. The segmented ITVs from CT closely matched the expected motion for both no gating and gate 30–70 window, with disagreement of contoured ITV with respect to the expected volume not exceeding 13%. PET contours were seen to overestimate volumes in all the cases, up to more than 40%. Conclusion: 4DPET images of a novel 3D printed phantom designed to mimic different uptake values were obtained. 4DPET contours overestimated ITV volumes in all cases, while 4DCT contours matched expected ITV volume values. Investigation of the cause and effects of the discrepancies is undergoing.

  5. Symposium Entitled: Particle Lung Interactions: ’Overload’ Related Phenomena. A Journal of Aerosol Medicine - Deposition, Clearance, and Effects in the Lung. Volume 3, Supplement 1

    Science.gov (United States)

    1991-04-01

    bleomycin. J. Clin. Invest. 78:1150-1154. MURAD. S .. and PINNELL , S.R. 1987 Suppression of fibroblast proliferation and lysyl hydroxylase activity by...82170 SD 143 I 4 W . I~43II 4 - S m O211001gAi M 12100 p9I ’ T 11021000 mI Figure 2. Effect of 24 hr pretreatment with 500 u/al rat y- interferon on TiO2...Fe in the lungs and in other organs could not be ruled out. Hence, neither exclusive particle re- tention in the lungs nor estimates of S (t) were given

  6. Added value of lung perfused blood volume images using dual-energy CT for assessment of acute pulmonary embolism

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Munemasa, E-mail: radokada@yamaguchi-u.ac.jp [Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi 755-8505 (Japan); Kunihiro, Yoshie [Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi 755-8505 (Japan); Nakashima, Yoshiteru [Department of Radiology, Yamaguchi Grand Medical Center, Oosaki 77, Hofu, Yamaguchi 747-8511 (Japan); Nomura, Takafumi [Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi 755-8505 (Japan); Kudomi, Shohei; Yonezawa, Teppei [Department of Radiology, Yamaguchi University Hospital, 1-1-1 Minamikogushi, Ube, Yamaguchi 755-8505 (Japan); Suga, Kazuyoshi [Department of Radiology, St. Hills Hospital, Imamurakita 3-7-18, Ube, Yamaguchi 755-0155 (Japan); Matsunaga, Naofumi [Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi 755-8505 (Japan)

    2015-01-15

    Purpose: To investigate the added value of lung perfused blood volume (LPBV) using dual-energy CT for the evaluation of intrapulmonary clot (IPC) in patients suspected of having acute pulmonary embolism (PE). Materials and methods: Institutional review board approval was obtained for this retrospective study. Eighty-three patients suspected of having PE who underwent CT pulmonary angiography (CTPA) using a dual-energy technique were enrolled in this study. Two radiologists who were blinded retrospectively and independently reviewed CTPA images alone and the combined images with color-coded LPBV over a 4-week interval, and two separate sessions were performed with a one-month interval. Inter- and intraobserver variability and diagnostic accuracy were evaluated for each reviewer with receiver operating characteristic (ROC) curve analysis. Results: Values for inter- and intraobserver agreement, respectively, were better for CTPA combined with LPBV (ICC = 0.847 and 0.937) than CTPA alone (ICC = 0.748 and 0.861). For both readers, diagnostic accuracy (area under the ROC curve [A{sub z}]) were also superior, when CTPA alone (A{sub z} = 0.888 [reader 1] and 0.912 [reader 2]) was compared with that after the combination with LPBV images (A{sub z} = 0.966 [reader 1] and 0.959 [reader 2]) (p < 0.001). However, A{sub z} values of both images might not have significant difference in statistics, because A{sub z} value of CTPA alone was high and 95% confidence intervals overlapped in both images. Conclusion: Addition of dual-energy perfusion CT to CTPA improves detection of peripheral IPCs with better interobserver agreement.

  7. A Prospective Randomized Study of the Radiotherapy Volume for Limited-stage Small Cell Lung Cancer: A Preliminary Report

    Directory of Open Access Journals (Sweden)

    Xiao HU

    2010-07-01

    Full Text Available Background and objective Controversies exists with regard to target volumes as far as thoracic radiotherapy (TRT is concerned in the multimodality treatment for limited-stage small cell lung cancer (LSCLC. The aim of this study is to prospectively compare the local control rate, toxicity profiles, and overall survival (OS between patients received different target volumes irradiation after induction chemotherapy. Methods LSCLC patients received 2 cycles of etoposide and cisplatin (EP induction chemotherapy and were randomly assigned to receive TRT to either the post- or pre-chemotherapy tumor extent (GTV-T as study arm and control arm, CTV-N included the positive nodal drainage area for both arms. One to 2 weeks after induction chemotherapy, 45 Gy/30 Fx/19 d TRT was administered concurrently with the third cycle of EP regimen. After that, additional 3 cycles of EP consolidation were administered. Prophylactic cranial irradiation (PCI was administered to patients with a complete response. Results Thirty-seven and 40 patients were randomly assigned to study arm and control arm. The local recurrence rates were 32.4% and 28.2% respectively (P=0.80; the isolated nodal failure (INF rate were 3.0% and 2.6% respectively (P=0.91; all INF sites were in the ipsilateral supraclavicular fossa. Medastinal N3 disease was the risk factor for INF (P=0.02, OR=14.13, 95%CI: 1.47-136.13. During radiotherapy, grade I, II weight loss was observed in 29.4%, 5.9% and 56.4%, 7.7% patients respectively (P=0.04. Grade 0-I and II-III late pulmonary injury was developed in 97.1%, 2.9% and 86.4%, 15.4% patients respectively (P=0.07. Median survival time was 22.1 months and 26.9 months respectively. The 1 to 3-year OS were 77.9%, 44.4%, 37.3% and 75.8%, 56.3%, 41.7% respectively (P=0.79. Conclusion The preliminary results of this study indicate that irradiant the post-chemotherapy tumor extent (GTV-T and positive nodal drainage area did not decrease local control and overall

  8. Assessment of positive end-expiratory pressure induced lung volume change by ultrasound in mechanically ventilated patients%床旁超声对机械通气患者呼气末正压诱导肺容积改变的评估价值

    Institute of Scientific and Technical Information of China (English)

    沈鹏; 罗汝斌; 高玉芝; 王吉文; 张茂

    2014-01-01

    Objective To investigate the value of lung ultrasound for assessing positive endexpiratory pressure (PEEP)-induced lung volume change in mechanically ventilated patients with acute lung injury(ALI) or acute respiratory distress syndrome (ARDS).Methods Eighteen patients with ALI or ARDS were prospectively studied.P-V curves and lung ultrasound were performed at PEEP 12,8,4 and 0 cmH2O(1 cmH2O =0.098 kPa).PEEP-induced lung volume change was measured using the P-V curve method and lung ultrasound.Results Four lung ultrasound entities were defined:consolidation,multiple irregularly spaced B lines,multiple abutting B lines and normal aeration.For each of the 12 lung regions examined,PEEP-induced ultrasound changes were measured and an lung ultrasound score (LUS)was calculated.A highly significant correlation was found between PEEP-induced lung volume change measured by P-V curves and LUS change (r =0.82,P < 0.01).A statistically significant correlation was found between LUS change and PEEP-induced increase in PaO2 (r =0.66,P < 0.01).Conclusion PEEP-induced lung volume change can be adequately estimated with bedside lung ultrasound.Since lung ultrasound cannot assess PEEP-induced lung hyperinflation,it should not be the sole method for PEEP titration.%目的 探讨床旁超声在机械通气患者呼气末正压(PEEP)诱导肺容积改变的评估价值.方法 选取2011年6月至2012年12月浙江大学医学院附属第二医院急诊监护室(EICU)内符合急性肺损伤(ALI)或ARDS并接受机械通气的患者,采用Taema XTEND系列呼吸机专利的压力容积曲线测定程序自动测定PEEP为12、8、4、0 cmH2O(1 cmH2O =0.098 kPa)时的压力容积曲线,得到不同PEEP水平下的呼气末肺容积(EELV)并计算呼气末肺容积变化(△EELV),根据△EELV变化确定合适PEEP,在呼吸机测定压力容积曲线的同时使用床旁超声评估肺容积变化,计算肺部超声评分(LUS)及肺部超声评分变化(△LUS),相关计量数据进

  9. [Lung hyperinflation after single lung transplantation to treat emphysema].

    Science.gov (United States)

    Samano, Marcos Naoyuki; Junqueira, Jader Joel Machado; Teixeira, Ricardo Henrique de Oliveira Braga; Caramori, Marlova Luzzi; Pêgo-Fernandes, Paulo Manuel; Jatene, Fabio Biscegli

    2010-01-01

    Despite preventive measures, lung hyperinflation is a relatively common complication following single lung transplantation to treat pulmonary emphysema. The progressive compression of the graft can cause mediastinal shift and respiratory failure. In addition to therapeutic strategies such as independent ventilation, the treatment consists of the reduction of native lung volume by means of lobectomy or lung volume reduction surgery. We report two cases of native lung hyperinflation after single lung transplantation. Both cases were treated by means of lobectomy or lung volume reduction surgery.

  10. Lung volumes, ventricular function and pulmonary arterial flow in children operated on for left-sided congenital diaphragmatic hernia: long-term results

    Energy Technology Data Exchange (ETDEWEB)

    Abolmaali, Nasreddin; Koch, Arne [Dresden University of Technology, OncoRay - Molecular and Biological Imaging, Medical Faculty Carl Gustav Carus, Dresden (Germany); Goetzelt, Knut; Vogelberg, Christian [University Clinics Carl Gustav Carus, Dresden University of Technology, Clinic and Policlinic for Pediatrics - Pediatric Pulmonology, Dresden (Germany); Hahn, Gabriele [University Clinics Carl Gustav Carus, Dresden University of Technology, Institute and Policlinic for Radiology - Pediatric Radiology, Dresden (Germany); Fitze, Guido [University Clinics Carl Gustav Carus, Dresden University of Technology, Clinic and Policlinic for Pediatric Surgery, Dresden (Germany)

    2010-07-15

    To compare MRI-based functional pulmonary and cardiac measurements in the long-term follow-up of children operated on for left-sided congenital diaphragmatic hernia (CDH) with age- and body size-matched healthy controls. Twelve children who received immediate postnatal surgery for closure of isolated left-sided CDH were included and received basic medical examinations, pulmonary function testing and echocardiography. MRI included measurement of lung volume, ventricular function assessment and velocity-encoded imaging of the pulmonary arteries and was compared with the data for 12 healthy children matched for age and body size. While patients' clinical test results were not suspicious, comparison between the MRI data for patients and those for healthy controls revealed significant differences. In patients, the volumes of the left lungs were increased and the tidal volume was larger on the right side. While the stroke volumes of both ventricles were reduced, heart rate and ejection fraction were increased. Flow, acceleration time and cross-sectional area of the left pulmonary artery were reduced. Functional MRI detected pulmonary and cardiac findings in the late follow-up of CDH children which may be missed by standard clinical methods and might be relevant for decisions regarding late outcome and treatment. (orig.)

  11. Positive effect of reduced aeration rate on growth and stereospecificity of DL-malic acid consumption by Azospirillum brasilense: improving the shelf life of a liquid inoculant formulation.

    Science.gov (United States)

    Carrasco-Espinosa, Karen; García-Cabrera, Ramsés I; Bedoya-López, Andrea; Trujillo-Roldán, Mauricio A; Valdez-Cruz, Norma A

    2015-02-10

    Azospirillum brasilense has significance as a growth promoter in plants of commercial interest. Two industrial native strains (Start and Calf), used as a part of an inoculant formulation in Mexico during the last 15 years, were incubated in laboratory-scale pneumatic bioreactors at different aeration rates. In both strains, the positive effect of decreased aeration was observed. At the lowest (0.1 vvm, air volume/liquid volume×minute), the highest biomass were obtained for Calf (7.8 × 10(10)CFU/ml), and Start (2.9 × 10(9)CFU/ml). These were higher in one magnitude order compared to cultures carried out at 0.5 vvm, and two compared to those at 1.0 vvm. At lower aeration, both stereoisomeric forms of malic acid were consumed, but at higher aeration, just L-malate was consumed. A reduction in aeration allows an increase of the shelf life and the microorganism saved higher concentrations of polyhydroxybutyrate. The selected fermentation conditions are closely related to those prevalent in large-scale bioreactors and offer the possibility of achieving high biomass titles with high shelf life at a reduced costs, due to the complete use of a carbon source at low aeration of a low cost raw material as DL-malic acid mixture in comparison with the L-malic acid stereoisomer.

  12. Evaluation of aerated biofilter systems for microbial methane oxidation of poor landfill gas.

    Science.gov (United States)

    Haubrichs, R; Widmann, R

    2006-01-01

    In the long-term, landfills are producing landfill gas (LFG) with low calorific values. Therefore, the utilization of LFG in combined heat and power plants (CHP) is limited to a certain period of time. A feasible method for LFG treatment is microbial CH(4) oxidation. Different materials were tested in actively aerated lab-scale bio-filter systems with a volume of 0.167 m(3). The required oxygen for the microbial CH(4) oxidation was provided through perforated probes, which distributed ambient air into the filter material. Three air input levels were installed along the height of the filter, each of them adjusted to a particular flow rate. During the tests, stable degradation rates of around 28 g/(m(3) h) in a fine-grained compost material were observed at a CH(4) inlet concentration of 30% over a period of 148 days. Compared with passive (not aerated) tests, the CH(4) oxidation rate increased by a factor of 5.5. Therefore, the enhancement of active aeration on the microbial CH(4) oxidation was confirmed. At a O(2)/CH(4) ratio of 2.5, nearly 100% of the CH(4) load was decomposed. By lowering the ratio from 2.5 to 2, the efficiency fell to values from 88% to 92%. By varying the distribution to the three air input levels, the CH(4) oxidation process was spread more evenly over the filter volume.

  13. Volúmenes pulmonares normales en pacientes con fibrosis pulmonar idiopática y enfisema Normal lung volumes in patients with idiopathic pulmonary fibrosis and emphysema

    Directory of Open Access Journals (Sweden)

    Juan Pablo Casas

    2008-08-01

    pattern with hyperinflation results in emphysema by loss of elastic recoil, expiratory collapse of the peripheral airways and air trapping. Previous reports suggest that when both diseases coexist, pulmonary volumes are compensated and a smaller than expected reduction or even normal lung volumes can be found. We report 4 male patients of 64, 60, 73 and 70 years, all with heavy cigarette smoking history and progressive breathlessness. Three of them had severe limitation in their quality of life. All four showed advanced lung interstitial involvement, at high resolution CT scan, fibrotic changes predominantly in the subpleural areas of lower lung fields and concomitant emphysema in the upper lobes. Emphysema and pulmonary fibrosis was confirmed by open lung biopsy in one patient. The four patients showed normal spirometry and lung volumes with severe compromise of gas exchange and poor exercise tolerance evaluated by 6 minute walk test. Severe pulmonary arterial hypertension was also confirmed in three patients. Normal lung volumes does not exclude diagnosis of idiopathic pulmonary fibrosis in patients with concomitant emphysema. The relatively preserved lung volumes may underestimate the severity of idiopathic pulmonary fibrosis and attenuate its effects on lung function parameters.

  14. Improvement of internal tumor volumes of non-small cell lung cancer patients for radiation treatment planning using interpolated average CT in PET/CT.

    Directory of Open Access Journals (Sweden)

    Yao-Ching Wang

    Full Text Available Respiratory motion causes uncertainties in tumor edges on either computed tomography (CT or positron emission tomography (PET images and causes misalignment when registering PET and CT images. This phenomenon may cause radiation oncologists to delineate tumor volume inaccurately in radiotherapy treatment planning. The purpose of this study was to analyze radiology applications using interpolated average CT (IACT as attenuation correction (AC to diminish the occurrence of this scenario. Thirteen non-small cell lung cancer patients were recruited for the present comparison study. Each patient had full-inspiration, full-expiration CT images and free breathing PET images by an integrated PET/CT scan. IACT for AC in PET(IACT was used to reduce the PET/CT misalignment. The standardized uptake value (SUV correction with a low radiation dose was applied, and its tumor volume delineation was compared to those from HCT/PET(HCT. The misalignment between the PET(IACT and IACT was reduced when compared to the difference between PET(HCT and HCT. The range of tumor motion was from 4 to 17 mm in the patient cohort. For HCT and PET(HCT, correction was from 72% to 91%, while for IACT and PET(IACT, correction was from 73% to 93% (*p<0.0001. The maximum and minimum differences in SUVmax were 0.18% and 27.27% for PET(HCT and PET(IACT, respectively. The largest percentage differences in the tumor volumes between HCT/PET and IACT/PET were observed in tumors located in the lowest lobe of the lung. Internal tumor volume defined by functional information using IACT/PET(IACT fusion images for lung cancer would reduce the inaccuracy of tumor delineation in radiation therapy planning.

  15. OXIDATION OF AS(III) BY AERATION AND STORAGE

    Science.gov (United States)

    A study of the effects of aeration and storage on the oxidation of arsenic(III) was undertaken at three utilities in the US to establish the engineering significance of aeration as a potential pre-treatment method for arsenic removal. The results of this study clearly establish t...

  16. Enhancement of ultrasonic disintegration of sewage sludge by aeration.

    Science.gov (United States)

    Zhao, He; Zhang, Panyue; Zhang, Guangming; Cheng, Rong

    2016-04-01

    Sonication is an effective way for sludge disintegration, which can significantly improve the efficiency of anaerobic digestion to reduce and recycle use of sludge. But high energy consumption limits the wide application of sonication. In order to improve ultrasonic sludge disintegration efficiency and reduce energy consumption, aeration was introduced. Results showed that sludge disintegration efficiency was improved significantly by combining aeration with ultrasound. The aeration flow rate, gas bubble size, ultrasonic density and aeration timing had impacts on sludge disintegration efficiency. Aeration that used in later stage of ultrasonic irradiation with low aeration flow rate, small gas bubbles significantly improved ultrasonic disintegration sludge efficiency. At the optimal conditions of 0.4 W/mL ultrasonic irradiation density, 30 mL/min of aeration flow rate, 5 min of aeration in later stage and small gas bubbles, ultrasonic sludge disintegration efficiency was increased by 45% and one third of ultrasonic energy was saved. This approach will greatly benefit the application of ultrasonic sludge disintegration and strongly promote the treatment and recycle of wastewater sludge.

  17. Positive end-expiratory pressure and variable ventilation in lung-healthy rats under general anesthesia.

    Directory of Open Access Journals (Sweden)

    Luciana M Camilo

    Full Text Available OBJECTIVES: Variable ventilation (VV seems to improve respiratory function in acute lung injury and may be combined with positive end-expiratory pressure (PEEP in order to protect the lungs even in healthy subjects. We hypothesized that VV in combination with moderate levels of PEEP reduce the deterioration of pulmonary function related to general anesthesia. Hence, we aimed at evaluating the alveolar stability and lung protection of the combination of VV at different PEEP levels. DESIGN: Randomized experimental study. SETTING: Animal research facility. SUBJECTS: Forty-nine male Wistar rats (200-270 g. INTERVENTIONS: Animals were ventilated during 2 hours with protective low tidal volume (VT in volume control ventilation (VCV or VV and PEEP adjusted at the level of minimum respiratory system elastance (Ers, obtained during a decremental PEEP trial subsequent to a recruitment maneuver, and 2 cmH2O above or below of this level. MEASUREMENTS AND MAIN RESULTS: Ers, gas exchange and hemodynamic variables were measured. Cytokines were determined in lung homogenate and plasma samples and left lung was used for histologic analysis and diffuse alveolar damage scoring. A progressive time-dependent increase in Ers was observed independent on ventilatory mode or PEEP level. Despite of that, the rate of increase of Ers and lung tissue IL-1 beta concentration were significantly lower in VV than in VCV at the level of the PEEP of minimum Ers. A significant increase in lung tissue cytokines (IL-6, IL-1 beta, CINC-1 and TNF-alpha as well as a ventral to dorsal and cranial to caudal reduction in aeration was observed in all ventilated rats with no significant differences among groups. CONCLUSIONS: VV combined with PEEP adjusted at the level of the PEEP of minimal Ers seemed to better prevent anesthesia-induced atelectasis and might improve lung protection throughout general anesthesia.

  18. Goal-directed fluid optimization based on stroke volume variation and cardiac index during one-lung ventilation in patients undergoing thoracoscopy lobectomy operations: a pilot study

    Directory of Open Access Journals (Sweden)

    Jian Zhang

    2013-07-01

    Full Text Available OBJECTIVES: This pilot study was designed to utilize stroke volume variation and cardiac index to ensure fluid optimization during one-lung ventilation in patients undergoing thoracoscopic lobectomies. METHODS: Eighty patients undergoing thoracoscopic lobectomy were randomized into either a goal-directed therapy group or a control group. In the goal-directed therapy group, the stroke volume variation was controlled at 10%±1%, and the cardiac index was controlled at a minimum of 2.5 L.min-1.m-2. In the control group, the MAP was maintained at between 65 mm Hg and 90 mm Hg, heart rate was maintained at between 60 BPM and 100 BPM, and urinary output was greater than 0.5 mL/kg-1/h-1. The hemodynamic variables, arterial blood gas analyses, total administered fluid volume and side effects were recorded. RESULTS: The PaO2/FiO2-ratio before the end of one-lung ventilation in the goal-directed therapy group was significantly higher than that of the control group, but there were no differences between the goal-directed therapy group and the control group for the PaO2/FiO2-ratio or other arterial blood gas analysis indices prior to anesthesia. The extubation time was significantly earlier in the goal-directed therapy group, but there was no difference in the length of hospital stay. Patients in the control group had greater urine volumes, and they were given greater colloid and overall fluid volumes. Nausea and vomiting were significantly reduced in the goal-directed therapy group. CONCLUSION: The results of this study demonstrated that an optimization protocol, based on stroke volume variation and cardiac index obtained with a FloTrac/Vigileo device, increased the PaO2/FiO2-ratio and reduced the overall fluid volume, intubation time and postoperative complications (nausea and vomiting in thoracic surgery patients requiring one-lung ventilation.

  19. Two-phase flow simulation of aeration on stepped spillway

    Institute of Scientific and Technical Information of China (English)

    CHENG Xiangju; LUO Lin; ZHAO Wenqian; LI Ran

    2004-01-01

    Stepped spillways have existed as escape works for a very long time. It is found that water can trap a lot of air when passing through steps and then increasing oxygen content in water body, so stepped spillways can be used as a measure of re-aeration and to improve water quality of water body. However, there is no reliable theoretical method on quantitative calculation of re-aeration ability for the stepped spillways. By introducing an air-water two-phase flow model, this paper used k-ε turbulence model to calculate the characteristic variables of free-surface aeration on stepped spillway. The calculated results fit with the experimental results well. It supports that the numerical modeling method is reasonable and offers firm foundation on calculating re-aeration ability of stepped spillways. The simulation approach can provide a possible optimization tool for designing stepped spillways of more efficient aeration capability.

  20. EFFECT OF AERATOR ON HYDRAULIC DRAG ACTING ON A CHUTE

    Institute of Scientific and Technical Information of China (English)

    NI Han-gen; LI Xin; ZHOU Jing; JIN Qiao

    2005-01-01

    The formulae used to calculate the friction in the non-uniform flow chute were examined with the experimental data, and the results show that the accuracy of the formula is enough for engineering applications. A comparison between the results of friction respectively from the uniform flow assumption and the non-uniform flow approximation indicates that the former is an order of magnitude larger than the latter in the case of steep chute. The hydraulic drag on a steep chute with aerators was measured on the hydraulic model directly and the coefficient of the aerator effect on the drag was obtained. The variation patterns of the wall shear just downstream of the aerators were investigated and the mechanism of the increase in the drag by aerator were analyzed qualitatively with the measured water-depths just downstream the aerators.

  1. Goal-Directed Fluid Therapy Using Stroke Volume Variation Does Not Result in Pulmonary Fluid Overload in Thoracic Surgery Requiring One-Lung Ventilation

    Directory of Open Access Journals (Sweden)

    Sebastian Haas

    2012-01-01

    Full Text Available Background. Goal-directed fluid therapy (GDT guided by functional parameters of preload, such as stroke volume variation (SVV, seems to optimize hemodynamics and possibly improves clinical outcome. However, this strategy is believed to be rather fluid aggressive, and, furthermore, during surgery requiring thoracotomy, the ability of SVV to predict volume responsiveness has raised some controversy. So far it is not known whether GDT is associated with pulmonary fluid overload and a deleterious reduction in pulmonary function in thoracic surgery requiring one-lung-ventilation (OLV. Therefore, we assessed the perioperative course of extravascular lung water index (EVLWI and paO2/FiO2-ratio during and after thoracic surgery requiring lateral thoracotomy and OLV to evaluate the hypothesis that fluid therapy guided by SVV results in pulmonary fluid overload. Methods. A total of 27 patients (group T were enrolled in this prospective study with 11 patients undergoing lung surgery (group L and 16 patients undergoing esophagectomy (group E. Goal-directed fluid management was guided by SVV (SVV 0.05 in EVLWI during the observation period (BL: 7.8 ± 2.5, 24postop: 8.1 ± 2.4 mL/kg. A subgroup analysis for group L and group E also did not reveal significant changes of EVLWI. The paO2/FiO2-ratio decreased significantly during the observation period (group L: BL: 462 ± 140, OLVterm15: 338 ± 112 mmHg; group E: BL: 389 ± 101, 24postop: 303 ± 74 mmHg but remained >300 mmHg except during OLV. Conclusions. SVV-guided fluid management in thoracic surgery requiring lateral thoracotomy and one-lung ventilation does not result in pulmonary fluid overload. Although oxygenation was reduced, pulmonary function remained within a clinically acceptable range.

  2. SU-E-J-179: Assessment of Tumor Volume Change and Movement During Stereotactic Body Radiotherapy (SBRT) for Lung Cancer: Is Adaptive Radiation Therapy (ART) Necessary?

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C; Lee, C [Asan Medical Center, Seoul (Korea, Republic of)

    2015-06-15

    Purpose: Delineation of gross tumor volumes (GTVs) is important for stereotactic body radiotherapy (SBRT). However, tumor volume changes during treatment response. Here, we have investigated tumor volume changes and movement during SBRT for lung cancer, as a means of examining the need for adaptive radiation therapy (ART). Methods: Fifteen tumors in 15 patients with lung cancer were treated with SBRT (total dose: 60 Gy in 4 fractions). GTVs were obtained from cone-beam computed tomography scans (CBCT1–4) taken before each of the 4 fractions was administered. GTVs were delineated and measured by radiation oncologists using a treatment planning system. Variance in the tumor position was assessed between the planning CT and the CBCT images. To investigate the dosimetric effects of tumor volume changes, planning CT and CBCT4 treatment plans were compared using the conformity index (CI), homogeneity index (HI), and Paddick’s index (PCI). Results: The GTV on CBCT1 was employed as a baseline for comparisons. GTV had decreased by a mean of 20.4% (range: 0.7% to 47.2%) on CBCT4. Most patients had smaller GTVs on CBCT4 than on CBCT1. The interfractional shifts of the tumor position between the planning CT and CBCT1–4 were as follows: right-left, −0.4 to 1.3 mm; anterior-posterior, −0.8 to 0.5 mm; and superiorinferior, −0.9 to 1.1 mm. Indices for plans from the planning CT and CBCT4 were as follows: CI = 0.94±0.02 and 1.11±0.03; HI= 1.1±0.02 and 1.10±0.03; and PCI = 1.35±0.16 and 1.11±0.02, respectively. Conclusion: CI, HI, and PCI did not differ between the planning CT and CBCTs. However, daily CBCT revealed a significant decrease in the GTV during lung SBRT. Furthermore, there was an obvious interfractional shift in tumor position. Using ART could potentially lead to a reduced GTV margin and improved regional tumor control for lung cancer patients with significantly decreased GTV.

  3. 支气管镜肺减容现状和展望%Current status and prospects of lung volume reduction surgery

    Institute of Scientific and Technical Information of China (English)

    孙沁莹; 林冰

    2013-01-01

    The application of lung volume reduction surgery (LVRS) in clinical practice is limited by high postoperative morbidity and stringent selection criteria. Bronchoscopic lung-volume reduction has recently been explored as safer alternatives to LVRS for treating advanced emphysema. The currently available data on efficacy of bronchoscopic lung volume reduction are not conclusive and subjective benefit in dyspnoea scores,6MWT distance (6MWD) ,quality of life (SCRQ) are more frequent findings than improvements on spirometry or exercise tolerance. Safety data are more promising with rare procedure-related mortality, short hospital length of stay and few complications such as COPD exacerbation, peumonia, pneumo-thorax. The field of bronrhoscopic lung volume reduction continues to evolve as ongoing prospective randomized trials build on earlier feasibility data to clarify the true efficacy of such techniques.%外科肺减容手术治疗重度肺气肿术后病死率较高,适应证少,不适宜临床推广.支气管镜肺减容术通过支气管镜下的技术操作,简便、安全,有望替代外科肺减容术治疗重度肺气肿.目前研究比较有效的方法有支气管腔内单向阀、生物胶、蒸汽消融和肺减容线圈.支气管镜肺减容术治疗重度肺气肿,可以明显改善气促指数、6 min步行距离及生活质量(SGRQ)评分等主观指标,但对于评价该项技术有效性的客观指标如肺功能指标及运动耐力仅有部分改善.采用该项技术安全性好,住院时间短,极少出现危及生命的严重并发症,可能出现的并发症包括慢性阻塞性肺疾病急性加重、肺炎和气胸.下一步需开展前瞻性的随机对照研究,证实支气管镜肺减容术的确切疗效.

  4. Thermophilic aeration of cattle slurry with whey and/or jam wastes.

    Science.gov (United States)

    Heinonen-Tanski, Helvi; Kiuru, Tapio; Ruuskanen, Juhani; Korhonen, Kari; Koivunen, Jari; Ruokojärvi, Arja

    2005-01-01

    Thermophilic aeration of cattle slurry and food industrial by-products was studied with the aim to improve hygienic qualities of the slurry so that it could be used as a safe fertiliser for berries to be eaten raw. We also wanted to study if the process would be energetically favourable in an arctic climate. Cattle slurry alone or with whey and/or jam waste was treated. The tests were done in a well heat-insulated reactor with a 10 m(3) volume. Temperature increases up to over 70 degrees C could be recorded in 19 days even though some processes were carried out in winter time when the ambient air temperature was less than 0 degrees C. The heat energy formed was higher than the electrical energy needed to carry out the aeration. The hygienic qualities of the aerated product were good with only minor nitrogen losses. The end product could be useful as a fertiliser and soil improving compound to increase the organic matter content of agricultural soil. Cattle slurry alone was well suited as the raw material if attaining a high temperature was the main goal. A part of slurry could be replaced with food-industrial side products. Whey waste suited better for co-composting than jam waste but the mixture of whey, jam waste, and slurry was optimal for composting.

  5. Treatment of sewage sludge in a thermophilic membrane reactor (TMR) with alternate aeration cycles.

    Science.gov (United States)

    Collivignarelli, Maria Cristina; Castagnola, Federico; Sordi, Marco; Bertanza, Giorgio

    2015-10-01

    The management of sewage sludge is becoming a more and more important issue, both at national and international level, in particular due to the uncertain recovery/disposal future options. Therefore, it is clear that the development of new technologies that can mitigate the problem at the source by reducing sludge production is necessary, such as the European Directive 2008/98/EC prescribes. This work shows the results obtained with a thermophilic membrane reactor, for processing a biological sludge derived from a wastewater treatment plant (WWTP) that treats urban and industrial wastewater. Sewage sludge was treated in a thermophilic membrane reactor (TMR), at pilot-scale (1 m(3) volume), with alternate aeration cycles. The experimentation was divided into two phases: a "startup phase" during which, starting with a psychrophilic/mesophilic biomass, thermophilic conditions were progressively reached, while feeding a highly biodegradable substrate; the obtained thermophilic biomass was then used, in the "regime phase", to digest biological sludge which was fed to the plant. Good removal yields were observed: 64% and 57% for volatile solids (VS) and total COD (CODtot), respectively, with an average hydraulic retention time (HRT) equal to 20 d, an organic loading rate (OLR) of about 1.4-1.8 kg COD m(-3) d(-1) and aeration/non aeration cycles alternated every 4 h.

  6. Effect of aeration rate on composting of penicillin mycelial dreg.

    Science.gov (United States)

    Chen, Zhiqiang; Zhang, Shihua; Wen, Qinxue; Zheng, Jun

    2015-11-01

    Pilot scale experiments with forced aeration were conducted to estimate effects of aeration rates on the performance of composting penicillin mycelial dreg using sewage sludge as inoculation. Three aeration rates of 0.15, 0.50 and 0.90L/(min·kg) organic matter (OM) were examined. The principal physicochemical parameters were monitored during the 32day composting period. Results showed that the higher aeration rate of 0.90L/(min·kg) did not corresponded to a longer thermophilic duration and higher rates of OM degradation; but the lower aeration rate of 0.15L/(min·kg) did induce an accumulation of NH4(+)-N contents due to the inhibition of nitrification. On the other hand, aeration rate has little effect on degradation of penicillin. The results show that the longest phase of thermophilic temperatures≥55°C, the maximum NO3(-)-N content and seed germination, and the minimum C/N ratio were obtained with 0.50L/(min·kg) OM. Therefore, aeration rates of 0.50L/(min·kg) OM can be recommended for composting penicillin mycelial dreg.

  7. Interaction between afternoon aeration and tilapia stocking density

    Directory of Open Access Journals (Sweden)

    Francisco Roberto dos Santos Lima

    2016-01-01

    Full Text Available The present study aimed at determining the effects of the interaction between afternoon aeration and stocking density of Nile tilapia on variables of water and soil quality, growth performance and effluent quality. The experiment was a 3 x 2 factorial randomized block design, with three stocking densities (8, 12 and 16 fish per tank or 43.5, 65.3, and 87.0 g m-3 under two mechanical aeration regimes, absence (control; three replicates and afternoon aeration (four replicates. The afternoon aeration was carried out from 12.00 a.m. up to 18.00 p.m. from the 3rd week until the end of the experiment. Except for the 16-fish tanks, the lowest concentrations of total ammonia nitrogen were found in the tanks with higher density of fish provided with afternoon aeration. Nitrite concentrations were lower in the 8-fish aerated tanks. In intensive system, the afternoon aeration of the fish culture water is an efficient management of water quality to remove gaseous ammonia and nitrite from water, but it is not appropriate to remove hydrogen sulfide from water.

  8. Unilateral pleural effusion in an animal model: evaluation of lung function with EBCT

    Science.gov (United States)

    Recheis, Wolfgang A.; Pallwein, Leo; Soegner, Peter; Faschingbauer, Ralph; Schmidbauer, Georg; Kleinsasser, Axel; Loeckinger, Alexander; Hoermann, Christoph; zur Nedden, Dieter

    2003-05-01

    The purpsoe was to evaluate the influence of a right-sided pleural effusion on the lung aeration dynamics in the respiratory cycle during pressure controlled ventilation. Pleural effusion was simulated by infusion of 3% gelatin into the pleural cavity in steps of 300ml totaling 1200ml in four anesthetized pigs. After each step, volume scans and respirator gated 50ms scans at a constant table position (carina niveau) were taken. The dynamic changes of the previously defined air-tissue ratios (in steps of 100HU) were evaluated in three separate regions of left and right lung: a ventral, an intermediate and a dorsal area. The affected side revealed dramatic alveolar collapse. There was a shift of the lung density to higher air-tissue ratios (+200HU) but showing the same air-tissue ratio dynamics. A slight lateral shift of 32mm (+/-14mm) the mediastinum was measured. The unaffected side showed no increase in the air-tissue ratios caused by hyperinflation but an increase of density due to mediastinal shift. Air-tissue ratio dynamics remained unchanged on the unaffected side compared to baseline measurements. We visualized the ventilation mismatch caused by pleural effusion. The contra-lateral lung is not affected by unilateral pleural effusion. Pressure controlled ventilation prevents hyper-inflation of non-dependent lung areas.

  9. A two-fluid model for violent aerated flows

    CERN Document Server

    Dias, Frédéric; Ghidaglia, Jean-Michel

    2008-01-01

    In the study of ocean wave impact on structures, one often uses Froude scaling since the dominant force is gravity. However the presence of trapped or entrained air in the water can significantly modify wave impacts. When air is entrained in water in the form of small bubbles, the acoustic properties in the water change dramatically. While some work has been done to study small-amplitude disturbances in such mixtures, little work has been done on large disturbances in air-water mixtures. We propose a basic two-fluid model in which both fluids share the same velocities and analyze some of its properties. It is shown that this model can successfully mimic water wave impacts on coastal structures. The governing equations are discretized by a second-order finite volume method. Numerical results are presented for two examples: the dam break problem and the drop test problem. It is shown that this basic model can be used to study violent aerated flows, especially by providing fast qualitative estimates.

  10. 基于四维CT的肺体积及呼吸运动分析%Four-dimensional CT in the study of lung volume and respiratory movement

    Institute of Scientific and Technical Information of China (English)

    孙宗文; 黄晓延; 包勇; 张黎; 黄劭敏; 樊卫; 陈明; 邓小武

    2008-01-01

    Objective To evaluate the respiratory movement of the both lungs with four-dimensional CT(4DCT), and determine the optimal respiratory phase series CT images for radiation dose calculation. Methods From November 2005 to November 2006,thirty patients with lung cancer who received 4DCT scan were enrolled,including 15 left and 15 right lung cancer cases,25 men and 5 women. The media age was 55 (35-78) years old. After 4DCT scanning, the image was treated with Advantage 4D workstation,and then transmitted into Pinnacle station( Adac 7.4). The both lungs were automatically outlined using Pinnacle station with CT recognition value of-900 to-200 Hu. Then-the same physician examined the unreasonable parts and revised them. After the delineation was completed,the volume of 10 respiratory phases of lung was obtained. Results The average respiratory phase in inspiratory and expiratory phases was 78.87%±2.71% and 26.32%±3.17% in the tumor located lung,77.55%±2.81% and 24.73%±2.55% in the healthy lung. The maximum and minimum mean volume was 106.48%±3.00% and 94.23%±2.78% in the tumor located lung,107.47%±2.43% and 93.65%±2.32% in the healthy lung. The volume at the end of inspiratory and expiratory was 106.43%±3.07% and 94.63%±2.71% in the tumor located lung, 107.37%±4.62% and 93.98%±2.34% in the healthy lung. Conclusions The series CT images scan on 20% ,30% and 80% respiratory phases are reasonable for radiation dose calculation. The maximum and minimum average lung volumes are almost equal to those at the end of inspiratory and expiratory.%目的 应用四维CT(4DCT)评价肺癌患者肺的运动,并初步选择适合进行剂量计算的呼吸时相.方法 选择30例在中山大学肿瘤医院接受4DCT扫描的肺癌患者,左、右肺患者均为15例;男25例、女5例;中位年龄55岁(35~78岁).CT扫描完成后所得到的影像资料经4D软件处理后传至Pinnacle工作站,应用该软件自动勾画功能勾画双侧肺轮廓,自动怪勾画

  11. Prone position prevents regional alveolar hyperinflation and mechanical stress and strain in mild experimental acute lung injury.

    Science.gov (United States)

    Santana, Maria Cristina E; Garcia, Cristiane S N B; Xisto, Débora G; Nagato, Lilian K S; Lassance, Roberta M; Prota, Luiz Felipe M; Ornellas, Felipe M; Capelozzi, Vera L; Morales, Marcelo M; Zin, Walter A; Pelosi, Paolo; Rocco, Patricia R M

    2009-06-30

    Prone position may delay the development of ventilator-induced lung injury (VILI), but the mechanisms require better elucidation. In experimental mild acute lung injury (ALI), arterial oxygen partial pressure (Pa O2), lung mechanics and histology, inflammatory markers [interleukin (IL)-6 and IL-1 beta], and type III procollagen (PCIII) mRNA expressions were analysed in supine and prone position. Wistar rats were randomly divided into two groups. In controls, saline was intraperitoneally injected while ALI was induced by paraquat. After 24-h, the animals were mechanically ventilated for 1-h in supine or prone positions. In ALI, prone position led to a better blood flow/tissue ratio both in ventral and dorsal regions and was associated with a more homogeneous distribution of alveolar aeration/tissue ratio reducing lung static elastance and viscoelastic pressure, and increasing end-expiratory lung volume and Pa O2. PCIII expression was higher in the ventral than dorsal region in supine position, with no regional changes in inflammatory markers. In conclusion, prone position may protect the lungs against VILI, thus reducing pulmonary stress and strain.

  12. Research on Aeration Systems Efficiency in Small Wastewater Treatment Plants

    OpenAIRE

    Ala Sokolova

    2011-01-01

    Large amount of small wastewater treatment plants does not work properly. One of the reasons could be wrong design of the aeration system. Therefore, the aim of this research is to analyse the performance of two aeration systems used in Lithuanian small wastewater treatment plants. Both aeration systems are designed for the following parameters: 4 PE and 0,8 m3/d wastewater flow. These data correspond to the oxygen requirement of 40,9 g O2/h. Summarizing the results of the research, it was fo...

  13. Long-term Exposure to PM10 and NO2 in Association with Lung Volume and Airway Resistance in the MAAS Birth Cohort

    Science.gov (United States)

    Agius, Raymond M.; de Vocht, Frank; Lindley, Sarah; Gerrard, William; Lowe, Lesley; Belgrave, Danielle; Custovic, Adnan; Simpson, Angela

    2013-01-01

    Background: Findings from previous studies on the effects of air pollution exposure on lung function during childhood have been inconsistent. A common limitation has been the quality of exposure data used, and few studies have modeled exposure longitudinally throughout early life. Objectives: We sought to study the long-term effects of exposure to particulate matter with an aerodynamic diameter ≤ 10 μm (PM10) and to nitrogen dioxide (NO2) on specific airway resistance (sRaw) and forced expiratory volume in 1 sec (FEV1) before and after bronchodilator treatment. Subjects were from the Manchester Asthma and Allergy Study (MAAS) birth cohort (n = 1,185). Methods: Spirometry was performed during clinic visits at ages 3, 5, 8, and 11 years. Individual-level PM10 and NO2 exposures were estimated from birth to 11 years of age through a microenvironmental exposure model. Longitudinal and cross-sectional associations were estimated using generalized estimating equations and multivariable linear regression models. Results: Lifetime exposure to PM10 and NO2 was associated with significantly less growth in FEV1 (percent predicted) over time, both before (–1.37%; 95% CI: –2.52, –0.23 for a 1-unit increase in PM10 and –0.83%; 95% CI: –1.39, –0.28 for a 1-unit increase in NO2) and after bronchodilator treatment (–3.59%; 95% CI: –5.36, –1.83 and –1.20%; 95% CI: –1.97, –0.43, respectively). We found no association between lifetime exposure and sRaw over time. Cross-sectional analyses of detailed exposure estimates for the summer and winter before 11 years of age and lung function at 11 years indicated no significant associations. Conclusions: Long-term PM10 and NO2 exposures were associated with small but statistically significant reductions in lung volume growth in children of elementary-school age. Citation: Mölter A, Agius RM, de Vocht F, Lindley S, Gerrard W, Lowe L, Belgrave D, Custovic A, Simpson A. 2013. Long-term exposure to PM10 and NO2 in

  14. INVESTIGATIONS INTO BIOFOULING PHENOMENA IN FINE PORE AERATION DEVICES

    Science.gov (United States)

    Microbiologically-based procedures were used to describe biofouling phenomena on fine pore aeration devices and to determine whether biofilm characteristics could be related to diffuser process performance parameters. Fine pore diffusers were obtained from five municipal wastewa...

  15. Comparison of Energy Dissipation with and without Aerators

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Experimental results showed that aerators increase the energy dissipation of the flow in the channel by reducing the velocity coefficient φ in the deflector bucket and the jet-trajectory length, by increasing energy dissipation of the jet flow in the air and the diffusion length of the jet falling into the pool and by reducing the energy intensity of the jet falling into the pool. The energy dissipation prevents wash out downstream.When air is not entrained in the water flow, the aerators act as artificial irregularities in the channel. The energy dissipation due to the aerators in the channel without entrained air is greater than when air is entrained in the water flow.Correlations of the experimental data can be used to estimate the energy dissipation effect of the aerators on the outlet structure for the three test cases.

  16. Correlation of {sup 18}F-FDG Avid Volumes on Pre–Radiation Therapy and Post–Radiation Therapy FDG PET Scans in Recurrent Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Shusharina, Nadya, E-mail: nshusharina@partners.org; Cho, Joseph; Sharp, Gregory C.; Choi, Noah C.

    2014-05-01

    Purpose: To investigate the spatial correlation between high uptake regions of 2-deoxy-2-[{sup 18}F]-fluoro-D-glucose positron emission tomography ({sup 18}F-FDG PET) before and after therapy in recurrent lung cancer. Methods and Materials: We enrolled 106 patients with inoperable lung cancer into a prospective study whose primary objectives were to determine first, the earliest time point when the maximum decrease in FDG uptake representing the maximum metabolic response (MMR) is attainable and second, the optimum cutoff value of MMR based on its predicted tumor control probability, sensitivity, and specificity. Of those patients, 61 completed the required 4 serial {sup 18}F-FDG PET examinations after therapy. Nineteen of 61 patients experienced local recurrence at the primary tumor and underwent analysis. The volumes of interest (VOI) on pretherapy FDG-PET were defined by use of an isocontour at ≥50% of maximum standard uptake value (SUV{sub max}) (≥50% of SUV{sub max}) with correction for heterogeneity. The VOI on posttherapy images were defined at ≥80% of SUV{sub max}. The VOI of pretherapy and posttherapy {sup 18}F-FDG PET images were correlated for the extent of overlap. Results: The size of VOI at pretherapy images was on average 25.7% (range, 8.8%-56.3%) of the pretherapy primary gross tumor volume (GTV), and their overlap fractions were 0.8 (95% confidence interval [CI]: 0.7-0.9), 0.63 (95% CI: 0.49-0.77), and 0.38 (95% CI: 0.19-0.57) of VOI of posttherapy FDG PET images at 10 days, 3 months, and 6 months, respectively. The residual uptake originated from the pretherapy VOI in 15 of 17 cases. Conclusions: VOI defined by the SUV{sub max}-≥50% isocontour may be a biological target volume for escalated radiation dose.

  17. CAVITATION CONTROL BY AERATION AND ITS COMPRESSIBLE CHARACTERISTICS

    Institute of Scientific and Technical Information of China (English)

    DONG Zhi-yong; SU Pei-lan

    2006-01-01

    This paper presents an experimental investigation and a theoretical analysis of cavitation control by aeration and its compressible characteristics at the flow velocity V=20m/s-50m/s. Pressure waveforms with and without aeration in cavitation region were measured. The variation of compression ratio with air concentration was described, and the relation between the least air concentration to prevent cavitation erosion and flow velocity proposed based on our experimental study. The experimental results show that aeration remarkably increases the pressure in cavitation region, and the corresponding pressure wave exhibits a compression wave/shock wave. The pressure increase in cavitation region of high-velocity flow with aeration is due to the fact that the compression waves/shock wave after the flow is aerated. The compression ratio increases with air concentration rising. The relation between flow velocity and least air concentration to prevent cavitation erosion follows a semi-cubical parabola. Also, the speed of sound and Mach number of high-velocity aerated flow were analyzed.

  18. Treatment of Non-Small Cell Lung Cancer (NSCLC) Using CT in Combination with a PET Examination to Minimize the Clinical Target Volume of the Mediastinum

    Institute of Scientific and Technical Information of China (English)

    Yusheng Shi; Xiaogang Deng; Longhua Chen

    2007-01-01

    OBJECTIVE To decrease radiation injury of the esophagus and lungs by utilizing a CT scan in combination with PET tumor imaging in order to minimize the clinical target area of locally advanced non-small cell lung cancer, without preventive radiation on the lymphatic drainage area. METHODS Of 76 patients with locally advanced non-small cell lung cancer (NSCLC), 32 received a PET examination before radiotherapy. Preventive radiation was not conducted in the mediastinum area without lymphatic metastasis, which was confirmed by CT and PET. For the other 44 patients, preventive radiation was performed in the lymphatic drainage area. PET examinations showed that the clinical target volume of the patients was decreased on average to about one third. The radiation therapy for patients of the two groups was the same, I.e. The dose for accelerated fractionated irradiation was 3 Gy/time and 5 time/week. The preventive dose was 42 to 45 Gy/time, 14 to 15 time/week, with 3-week treatment, and the therapeutic dose was 60 to 63 Gy/time, 20 to 21 time/week, with a period of 4 to 5 weeks.RESULTS The rate of missed lymph nodes beyond the irradiation field was 6.3% and 4.5% respectively in the group with and without PET examination (P = 0.831). The incidence of acute radioactive esophagitis was 15.6 % and 45.5% in the two groups respectively (P = 0.006). The incidence of acute radiation pneumonia and long-term pulmonary fibrosis in the two groups was 6.3% and 9.1%, and 68.8% and 75.0%, respectively (P = 0.982 and P = 0.547).CONCLUSION The recurrence rate in the lymph nodes beyond the target area was not increased after minimizing the clinical target volume (CTV), whereas radioactive injury to the lungs and esophageal injury was reduced, and especially with a significant decrease in the rate of acute radioactive esophagitis. The method of CT in combination with PET for minimizing the mediastinal CTV is superior to the conventional preventive radiation of the mediastinum.

  19. What Are Lung Function Tests?

    Science.gov (United States)

    ... include tests that measure lung size and air flow, such as spirometry and lung volume tests. Other tests measure how well gases such as oxygen get in and out of your blood. These tests include pulse oximetry and arterial blood ...

  20. Sludge reduction by direct addition of chlorine dioxide into a sequencing batch reactor under operational mode of repeatedly alternating aeration/non-aeration.

    Science.gov (United States)

    Peng, Hong; Liu, Weiyi; Li, Yuanmei; Xiao, Hong

    2015-01-01

    The effect of direct addition of chlorine dioxide (ClO2) into a repeatedly alternating aeration/non-aeration sequencing batch reactor (SBR) on its sludge reduction and process performance was investigated. The experimental results showed that the sludge reduction efficiency was 32.9% and the observed growth yield (Yobs) of SBR was 0.11 kg VSS (volatile suspended solids) /kg COD (chemical oxygen demand) for 80 days' operation at the optimum ClO2 dosage of 2.0 mg/g TSS (total suspended solids). It was speculated that cell lysis and cryptic growth, uncoupled metabolism and endogenous metabolism were jointly responsible for the sludge reduction in this study. COD, NH3-N, total nitrogen (TN) and total phosphorus (TP) in the effluent increased on average 29.47, 4.44, 1.97 and 0.05 mg/L, respectively. However, the effluent quality still satisfied the first-class B discharge standards for municipal wastewater treatment plants in China. In that case, the sludge maintained fine viability with the specific oxygen uptake rate (SOUR) being 14.47 mg O2/(g VSS·h) and demonstrated good settleability with the sludge volume index (SVI) being 116 mL/g. The extra cost of sludge reduction at the optimum ClO2 dosage was estimated to be 2.24 CNY (or 0.36 dollar)/kg dry sludge.

  1. A new step aeration approach towards the improvement of nitrogen removal in a full scale Carrousel oxidation ditch.

    Science.gov (United States)

    Jin, Pengkang; Wang, Xianbao; Wang, Xiaochang; Ngo, Huu Hao; Jin, Xin

    2015-12-01

    Two aeration modes, step aeration and point aeration, were used in a full-scale Carrousel oxidation ditch with microporous aeration. The nitrogen removal performance and mechanism were analyzed. With the same total aeration input, both aeration modes demonstrated good nitrification outcomes with the average efficiency in removing NH4(+)-N of more than 98%. However, the average removal efficiencies for total nitrogen were 89.3% and 77.6% under step aeration and point aeration, respectively. The results indicated that an extended aerobic zone followed the aeration zones could affect the proportion of anoxic and oxic zones. The step aeration with larger anoxic zones indicated better TN removal efficiency. More importantly, step aeration provided the suitable environment for both nitrifiers and denitrifiers. The diversity and relative abundance of denitrifying bacteria under the step aeration (1.55%) was higher than that under the point aeration (1.12%), which resulted in an overall higher TN removal efficiency.

  2. [Research of controlling condition for aeration stabilization pond dealing with sanitary waste of countryside].

    Science.gov (United States)

    Li, Huai-Zheng; Yao, Shu-Jun; Xu, Zu-Xin; Chen, Wei-Bing

    2012-10-01

    According to research of some problems, such as the hydraulic detention time that aeration stabilization pond deals with sanitary waste of countryside, dissolved oxygen in pond during the process of aeration, the concentration distribution of sludge and different aeration periods affecting on the treatment efficiency, we can acquire good treatment efficiency and energy consumption of economy. The results indicate that under the aeration stabilization pond of this experiment, 4 d is the best hydraulic detention time with this aeration stabilization pond. Time of the discontinuous running aeration should be greater than 15 min. The concentration distribution of sludge can reach equilibrium at each point of aeration stabilization pond between 2 min and 10 min. The best aeration period of dislodging the pollutant is 0.5 h aeration/1.0 h cut-off.

  3. Seasonal variations and aeration effects on water quality improvements and physiological responses of Nymphaea tetragona Georgi.

    Science.gov (United States)

    Lu, Xiao-Ming; Lu, Peng-Zhen; Huang, Min-Sheng; Dai, Ling-Peng

    2013-01-01

    Seasonal variations and aeration effects on water quality improvements and the physiological responses of Nymphaea tetragona Georgi were investigated with mesocosm experiments. Plants were hydroponically cultivated in six purifying tanks (aerated, non-aerated) and the characteristics of the plants were measured. Water quality improvements in purifying tanks were evaluated by comparing to the control tanks. The results showed that continuous aeration affected the plant morphology and physiology. The lengths of the roots, petioles and leaf limbs in aeration conditions were shorter than in non-aeration conditions. Chlorophyll and soluble protein contents of the leaf limbs in aerated tanks decreased, while peroxidase and catalase activities of roots tissues increased. In spring and summer, effects of aeration on the plants were less than in autumn. Total nitrogen (TN) and ammonia nitrogen (NH4(+)-N) in aerated tanks were lower than in non-aerated tanks, while total phosphorus (TP) and dissolved phosphorus (DP) increased in spring and summer. In autumn, effects of aeration on the plants became more significant. TN, NH4(+)-N, TP and DP became higher in aerated tanks than in non-aerated tanks in autumn. This work provided evidences for regulating aeration techniques based on seasonal variations of the plant physiology in restoring polluted stagnant water.

  4. A planning study of radiotherapy dose escalation of PET-active tumour volumes in non-small cell lung cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Sloth Moeller, Ditte; Hoffmann, Lone (Dept. of Medical Physics, Aarhus Univ. Hospital, Aarhus (Denmark)), e-mail: dittmoel@rm.dk; Khalil, Azza Ahmed; Marquard Knap, Marianne (Dept. of Oncology, Aarhus Univ. Hospital, Aarhus (Denmark)); Muren, Ludvig Paul (Dept. of Medical Physics, Aarhus Univ. Hospital, Aarhus (Denmark); Dept. of Oncology, Aarhus Univ. Hospital, Aarhus (Denmark))

    2011-08-15

    Background. Patients with non-small cell lung cancer (NSCLC) have poor prognosis partly because of high local failure rates. Escalating the dose to the tumour may decrease the local failure rates and thereby, improve overall survival, but the risk of complications will limit the possibility to dose-escalate a broad range of patients. Escalating only PET-active areas of the tumour may increase the potential for reaching high doses for a variety of tumour sizes and locations. Material and methods. Ten patients were randomly chosen for a dose escalation planning study. A planning target volume (PTV) was defined on the mid-ventilation scan of a four-dimensional computed tomography (4D-CT) scan and a boost planning target volume (PTV-boost) was defined based on a positron emission tomography computed tomography (PET-CT) scan. Treatment plans were created aiming to reach the highest achievable of 74 Gy, 78 Gy or 82 Gy in 2 Gy per fraction prescribed to the PTV-boost without compromising normal tissue constraints and with the PTV prescribed in all cases a biological equivalent dose in 2 Gy fractions of 66 Gy. Results. Nine of ten patients could be escalated to the highest dose level (82 Gy), while one patient was limited by the oesophagus dose constraint and could only reach 74 Gy. Four patients could be dose-escalated above 82 Gy without compromising normal tissue constraints. Conclusion. Dose-escalating only the PET-active areas of lung tumours to doses of 82 Gy while respecting normal tissue constraints is feasible, also in a series of unselected patients including cases with relatively large tumours

  5. Growth and final product formation by Bifidobacterium infantis in aerated fermentations.

    Science.gov (United States)

    González, R; Blancas, A; Santillana, R; Azaola, A; Wacher, C

    2004-10-01

    Fermentation conditions were developed to allow Bifidobacterium infantis to grow in the presence of air. Batch fermentations in TPYG medium, starting from anoxic conditions followed by the application of low airflow rates [0.02-0.1 air volume, per liquid media volume, per minute (vvm)], were analyzed for growth, oxygen uptake, and product formation by the bacterium. Under all aerated fermentations, B. infantis showed high aerotolerance, with a maximum oxygen-specific consumption rate of 0.34 mmol oxygen per gram dry cell weight per hour in the presence of 0.06 vvm. Similar growth yields were obtained under oxic and anoxic conditions (0.11-0.13 and 0.11 g dry cell weight per mmol glucose, respectively). Oxygen also influenced metabolite formation since lactate production and its molar relation to acetate increased and formate decreased with aeration rate. Under anoxic conditions, a maximum concentration of 8.1 mM lactate and an acetate/lactate ratio of 3.5:1 were obtained, while under oxic conditions the lactate concentration increased more than two-fold and the acetate/lactate molar ratio decreased to 1.5:1. The possibility of balancing acetate/lactate molar ratios for organoleptic purposes as well as for obtaining good growth under microaerated conditions was demonstrated.

  6. Numerical simulation of landfill aeration using computational fluid dynamics.

    Science.gov (United States)

    Fytanidis, Dimitrios K; Voudrias, Evangelos A

    2014-04-01

    The present study is an application of Computational Fluid Dynamics (CFD) to the numerical simulation of landfill aeration systems. Specifically, the CFD algorithms provided by the commercial solver ANSYS Fluent 14.0, combined with an in-house source code developed to modify the main solver, were used. The unsaturated multiphase flow of air and liquid phases and the biochemical processes for aerobic biodegradation of the organic fraction of municipal solid waste were simulated taking into consideration their temporal and spatial evolution, as well as complex effects, such as oxygen mass transfer across phases, unsaturated flow effects (capillary suction and unsaturated hydraulic conductivity), temperature variations due to biochemical processes and environmental correction factors for the applied kinetics (Monod and 1st order kinetics). The developed model results were compared with literature experimental data. Also, pilot scale simulations and sensitivity analysis were implemented. Moreover, simulation results of a hypothetical single aeration well were shown, while its zone of influence was estimated using both the pressure and oxygen distribution. Finally, a case study was simulated for a hypothetical landfill aeration system. Both a static (steadily positive or negative relative pressure with time) and a hybrid (following a square wave pattern of positive and negative values of relative pressure with time) scenarios for the aeration wells were examined. The results showed that the present model is capable of simulating landfill aeration and the obtained results were in good agreement with corresponding previous experimental and numerical investigations.

  7. Pure and aerated water entry of a flat plate

    Science.gov (United States)

    Ma, Z. H.; Causon, D. M.; Qian, L.; Mingham, C. G.; Mai, T.; Greaves, D.; Raby, A.

    2016-01-01

    This paper presents an experimental and numerical investigation of the entry of a rigid square flat plate into pure and aerated water. Attention is focused on the measurement and calculation of the slamming loads on the plate. The experimental study was carried out in the ocean basin at Plymouth University's COAST laboratory. The present numerical approach extends a two-dimensional hydro-code to compute three-dimensional hydrodynamic impact problems. The impact loads on the structure computed by the numerical model compare well with laboratory measurements. It is revealed that the impact loading consists of distinctive features including (1) shock loading with a high pressure peak, (2) fluid expansion loading associated with very low sub-atmospheric pressure close to the saturated vapour pressure, and (3) less severe secondary reloading with super-atmospheric pressure. It is also disclosed that aeration introduced into water can effectively reduce local pressures and total forces on the flat plate. The peak impact loading on the plate can be reduced by half or even more with 1.6% aeration in water. At the same time, the lifespan of shock loading is prolonged by aeration, and the variation of impulse is less sensitive to the change of aeration than the peak loading.

  8. Methanogenesis acceleration of fresh landfilled waste by micro-aeration

    Institute of Scientific and Technical Information of China (English)

    SHAO Li-ming; HE Pin-jing; ZHANG Hua; YU Xiao-hua; LI Guo-jian

    2005-01-01

    When municipal solid waste(MSW) with high content of food waste is landfilled, the rapid hydrolysis of food waste results in the imbalance of anaerobic metabolism in the landfill layer, indicated by accumulation of volatile fatty acids(VFA) and decrease of pH value.This occurrence could lead to long lag time before the initiation of methanogenesis and to the production of strong leachate. Simulated landfill columns with forced aeration, with natural ventilation, and with no aeration, were monitored regarding their organics degradation rate with leachate recirculation. Hydrolysis reactions produced strong leachate in the column with no aeration. With forced aeration, the produced VFA could be effectively degraded, leading to the reduction in COD of the leachate effluent since the week 3. The CH4 in the frequency of twice/d, could amount to 40% (v/v) after only 20 weeks. This amount had increased up to 50% afterward even with no aeration. Most of COD in the recirculated leachate was removed. Using natural ventilation, CH4 could also be produced and the COD of the leachate effluent be reduced after 10 weeks of operation. However, the persistent existence of oxygen in the landfill layer yielded instability in methanogenesis process.

  9. Application of Partial Volume Effect Correction and 4D PET in the Quantification of FDG Avid Lung Lesions

    NARCIS (Netherlands)

    Salavati, Ali; Borofsky, Samuel; Boon-Keng, Teo K.; Houshmand, Sina; Khiewvan, Benjapa; Saboury, Babak; Codreanu, Ion; Torigian, Drew A.; Zaidi, Habib; Alavi, Abass

    2015-01-01

    Purpose: The aim of this study is to assess a software-based method with semiautomated correction for partial volume effect (PVE) to quantify the metabolic activity of pulmonary malignancies in patients who underwent non-gated and respiratory-gated 2-deoxy-2-[F-18]fluoro-D-glucose (FDG)-positron emi

  10. Comparison of internal target volumes defined on 3-dimensional, 4-dimensonal, and cone-beam CT images of non-small-cell lung cancer

    Directory of Open Access Journals (Sweden)

    Li F

    2016-11-01

    Full Text Available Fengxiang Li,1 Jianbin Li,1 Zhifang Ma,1 Yingjie Zhang,1 Jun Xing,1 Huanpeng Qi,1 Dongping Shang21Department of Radiation Oncology, 2Department of Big Bore CT Room, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of ChinaPurpose: The purpose of this study was to compare the positional and volumetric differences of internal target volumes defined on three-dimensional computed tomography (3DCT, four-dimensional CT (4DCT, and cone-beam CT (CBCT images of non-small-cell lung cancer (NSCLC. Materials and methods: Thirty-one patients with NSCLC sequentially underwent 3DCT and 4DCT simulation scans of the thorax during free breathing. The first CBCT was performed and registered to the planning CT using the bony anatomy registration during radiotherapy. The gross tumor volumes were contoured on the basis of 3DCT, maximum intensity projection (MIP of 4DCT, and CBCT. CTV3D (clinical target volume, internal target volumes, ITVMIP and ITVCBCT, were defined with a 7 mm margin accounting for microscopic disease. ITV10 mm and ITV5 mm were defined on the basis of CTV3D: ITV10 mm with a 5 mm margin in left–right (LR, anterior–posterior (AP directions and 10 mm in cranial–caudal (CC direction; ITV5 mm with an isotropic internal margin (IM of 5 mm. The differences in the position, size, Dice’s similarity coefficient (DSC and inclusion relation of different volumes were evaluated.Results: The median size ratios of ITV10 mm, ITV5 mm, and ITVMIP to ITVCBCT were 2.33, 1.88, and 1.03, respectively, for tumors in the upper lobe and 2.13, 1.76, and 1.1, respectively, for tumors in the middle-lower lobe. The median DSCs of ITV10 mm, ITV5 mm, ITVMIP, and ITVCBCT were 0.6, 0.66, and 0.83 for all patients. The median percentages of ITVCBCT not included in ITV10 mm, ITV5 mm, and ITVMIP were 0.1%, 1.63%, and 15.21%, respectively, while the median percentages of ITV10 mm, ITV5 mm

  11. Dosimetric consequences of tumor volume changes after kilovoltage cone-beam computed tomography for non-operative lung cancer during adaptive intensity-modulated radiotherapy or fractionated stereotactic radiotherapy

    Institute of Scientific and Technical Information of China (English)

    Jian Hu; Ximing Xu; Guangjin Yuan; Wei Ge; Liming Xu; Aihua Zhang; Junjian Deng

    2015-01-01

    Objective The aim of this study was to investigate tumor volume changes with kilovoltage cone-beam computed tomography (kV-CBCT) and their dosimetric consequences for non-operative lung cancer during intensity-modulated radiotherapy (IMRT) or fractionated stereotactic radiotherapy. Methods Eighteen patients with non-operative lung cancer who received IMRT consisting of 1.8-2.2 Gy/fraction and five fractions per week or stereotactic radiotherapy with 5-8 Gy/fraction and three fractions a week were studied. kV-CBCT was performed once per week during IMRT and at every fraction during stereotactic radiotherapy. The gross tumor volume (GTV) was contoured on the kV-CBCT images, and adaptive treatment plans were created using merged kV-CBCT and primary planning computed tomogra-phy image sets. Tumor volume changes and dosimetric parameters, including the minimum dose to 95%(D95) or 1% (D1) of the planning target volume (PTV), mean lung dose (MLD), and volume of lung tissue that received more than 5 (V5), 10 (V10), 20 (V20), and 30 (V30) Gy were retrospectively analyzed. Results The average maximum change in GTV observed during IMRT or fractionated stereotactic radio-therapy was -25.85% (range, -13.09% --56.76%). The D95 and D1 of PTV for the adaptive treatment plans in all patients were not significantly different from those for the initial or former adaptive treatment plans. In patients with tumor volume changes of >20% in the third or fourth week of treatment during IMRT, adap-tive treatment plans offered clinically meaningful decreases in MLD and V5, V10, V20, and V30; however, in patients with tumor volume changes of 20% in the third or fourth week of treatment.

  12. Semiautomatic technique for defining the internal gross tumor volume of lung tumors close to liver/spleen cupola by 4D-CT

    Energy Technology Data Exchange (ETDEWEB)

    Mancosu, Pietro; Sghedoni, Roberto; Bettinardi, Valentino; Aquilina, Mark Anthony; Navarria, Piera; Cattaneo, Giovanni Mauro; Di Muzio, Nadia; Cozzi, Luca; Scorsetti, Marta [Department of Radiotherapy, IRCCS Istituto Clinico Humanitas, Rozzano, 20089 Milano (Italy); Department of Medical Physics, Arcispedale S. Maria Nuova, Reggio, 42100 Emilia (Italy); Department of Nuclear Medicine, Scientific Institute H. S. Raffaele, 20089 Milan (Italy); Department of Radiotherapy, IRCCS Istituto Clinico Humanitas, 20089 Rozzano, Milano (Italy); Department of Medical Physics, San Raffaele Scientific Institute, 20133 Milan (Italy); Department of Radiotherapy, San Raffaele Scientific Institute, 20133 Milan (Italy); Medical Physics Unit, Oncology Institute of Southern Switzerland, 6504 Bellinzona (Switzerland); Department of Radiotherapy, IRCCS Istituto Clinico Humanitas, 20089 Rozzano, Milano (Italy)

    2010-09-15

    Purpose: It has been shown that in cases of lung tumors close to the liver cupola, the four dimensional (4D)-CT postprocessing maximum intensity projection (MIP) algorithm does not fully recover the radiotherapy internal gross tumor volume (IGTV). In this work, a semiautomatic technique was evaluated by which the residual IGTV that was not included into the IGTV by MIP algorithm was actually added. Methods: A moving phantom and five selected patients were considered. The various IGTVs produced by the semiautomatic approach were compared to those generated by 4D-CT manual contouring. Results: In all cases, the radiation oncologist qualitatively concurred with the semiautomatic IGTV. A quantitative difference in volume of 2.6% was found in the phantom study, whereas a mean difference of 0.1{+-}4.6% was obtained in the patient studies. Conclusions: A semiautomatic technique to include the residual part of IGTV covered by liver/spleen cupola when using MIP algorithm was validated on phantom and on selected patients, revealing the possibility of defining the IGTV for patients with lesions located near liver/spleen cupola by performing only the contours on the MIP series.

  13. Experimental Analysis of Pressure Fluctuations behind a Bottom Aerator

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Experimental observations show that the random process of two-phase flow beh ind an aerator is an ergodic process and its amplitude distribution is similar t o a normal distribution. The maximum pressure fluctuation is at the re-attachme n t point where the jet-trajectory flow over the aerator re-attaches to bottom o f the channel, and its amplitude is 2-3 times larger than when there is no aerato r. There is a dominant frequency of 1.24 Hz in the model, but the coherence in th e frequency domain is not obvious for other frequencies beside the dominant frequ ency. There is a large vortex at the re-attachment point behind the aerator but correlation among the measurement points is not obvious in the time domain.

  14. Early treatment volume reduction rate as a prognostic factor in patients treated with chemoradiotherapy for limited stage small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joo Hwan; Lee, Jeong Shin; Lee, Chang Geol; Cho, Jae Ho [Dept. of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul (Korea, Republic of); Choi, Jin Hyun; Kim, Jun Won [Dept. of Radiation Oncology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2015-06-15

    To investigate the relationship between early treatment response to definitive chemoradiotherapy (CRT) and survival outcome in patients with limited stage small cell lung cancer (LS-SCLC). We retrospectively reviewed 47 patients with LS-SCLC who received definitive CRT between January 2009 and December 2012. Patients were treated with systemic chemotherapy regimen of etoposide/carboplatin (n = 15) or etoposide/cisplatin (n = 32) and concurrent thoracic radiotherapy at a median dose of 54 Gy (range, 46 to 64 Gy). Early treatment volume reduction rate (ETVRR) was defined as the percentage change in gross tumor volume between diagnostic computed tomography (CT) and simulation CT for adaptive RT planning and was used as a parameter for early treatment response. The median dose at adaptive RT planning was 36 Gy (range, 30 to 43 Gy), and adaptive CT was performed in 30 patients (63.8%). With a median follow-up of 27.7 months (range, 5.9 to 75.8 months), the 2-year locoregional progression-free survival (LRPFS) and overall survival (OS) rates were 74.2% and 56.5%, respectively. The mean diagnostic and adaptive gross tumor volumes were 117.9 mL (range, 5.9 to 447 mL) and 36.8 mL (range, 0.3 to 230.6 mL), respectively. The median ETVRR was 71.4% (range, 30 to 97.6%) and the ETVRR >45% group showed significantly better OS (p < 0.0001) and LRPFS (p = 0.009) than the other group. ETVRR as a parameter for early treatment response may be a useful prognostic factor to predict treatment outcome in LS-SCLC patients treated with CRT.

  15. AERATION EFFECT OF SUBMERGED JET ON HYDRAULIC CHARACTERISTICS

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A water-air two-phase turbulence mathematical model was proposed, The mass-weighted average was adoptedfor velocity, air mass fraction and turbulent parameters. Thealgebraic stress equation was used to calculate the Reynoldsstress. The pulsating flux of air mass fraction was simulatedby employing the concept of the eddy viscosity. The numericalsimulation of aerated flow in plunge pool shows that, for the same depth, aeration may decrease the time-averaged pressureon pool floor and increase slightly the turbulent intensity. Thecomputed concentration and pressure distributions coincidewith the experimental data.

  16. Hydrodynamic behaviour of the lateral flow biological aerated filter

    Institute of Scientific and Technical Information of China (English)

    HE Qiang; WANG Yin; FANG Jun-hua; ZHANG Hong-jing; XU Jing

    2006-01-01

    Pulsed signal experiment was carried out to determine the hydrodynamic behaviours of lateral flow biological aerated filter(LBAF). With the analysis of experimental results, LBAF is viewed as an approximate plug flow reactor, and hydraulic retention time distribution function was derived based on LBAF. The results show that flow rate and aeration strength are two critical factors which influence flow patterns in LBAF reactor. The hydrodynamic behaviour analysis of LBAF is the theoretical basis of future research on improving capacity factor and developing kinetic model for the reactor.

  17. Fault detection and isolation of sensors in aeration control systems.

    Science.gov (United States)

    Carlsson, Bengt; Zambrano, Jesús

    2016-01-01

    In this paper, we consider the problem of fault detection (FD) and isolation in the aeration system of an activated sludge process. For this study, the dissolved oxygen in each aerated zone is assumed to be controlled automatically. As the basis for an FD method we use the ratio of air flow rates into different zones. The method is evaluated in two scenarios: using the Benchmark Simulation Model no. 1 (BSM1) by Monte Carlo simulations and using data from a wastewater treatment plant. The FD method shows good results for a correct and early FD and isolation.

  18. Characteristics of integrated biological aerated filter in municipal wastewater treatment

    Institute of Scientific and Technical Information of China (English)

    HE Qiang; ZHANG Yu-ping; XU Jian-bin

    2005-01-01

    In this paper, the characteristics of integrated biological aerated filter (IBAF) applied to municipal wastewater treatment were studied in a pilot scale experiment. The experimental results showed that IBAF has high efficiencies in removing organic pollutants, such as CODCr and SS, in municipal wastewater. The removal rates of CODCr and SS can reach over 90% and 80%, respectively, when COD and SS in the influent are 234 mg L-1 and 112 mg L-1, hydraulic retention time (HRT) is 8 h, and the aerated intensity is in the range of (0.5 to 0.6) L m-2 s-1.

  19. INVESTIGATION ON THE SPLASH LENGTH OF THE AERATED JET

    Institute of Scientific and Technical Information of China (English)

    Liu Shi-he; Qu Bo

    2003-01-01

    Atomized flow forms as an aerated jet from high dams impacts against the downstream water surface at high speed. Of all the regions of atomized flow the splash region is in the center of storm rainfall, which might cause certain damage to the hydropower stations and thence more attention should be paid. In this paper the impact of the water drop at the outer edge of the aerated jet against the downstream water surface was analyzed, and the motion of the splash water drop was investigated. Furthermore, a new formula for the calculation of the splash length was suggested, which is in good agreement with the data of model tests and prototype observation.

  20. SU-C-BRE-02: BED Vs. Local Control: Radiobiological Effect of Tumor Volume in Monte Carlo (MC) Lung SBRT Planning

    Energy Technology Data Exchange (ETDEWEB)

    Pokhrel, D; Badkul, R; Jiang, H; Estes, C; Park, J; Kumar, P; Wang, F [UniversityKansas Medical Center, Kansas City, KS (United States)

    2014-06-15

    Purpose: SBRT with hypofractionated dose schemata has emerged a compelling treatment modality for medically inoperable early stage lung cancer patients. It requires more accurate dose calculation and treatment delivery technique. This report presents the relationship between tumor control probability(TCP) and size-adjusted biological effective dose(sBED) of tumor volume for MC lung SBRT patients. Methods: Fifteen patients who were treated with MC-based lung SBRT to 50Gy in 5 fractions to PTVV100%=95% were studied. ITVs were delineated on MIP images of 4DCT-scans. PTVs diameter(ITV+5mm margins) ranged from 2.7–4.9cm (mean 3.7cm). Plans were generated using non-coplanar conformal arcs/beams using iPlan XVMC algorithm (BrainLABiPlan ver.4.1.2) for Novalis-TX with HD-MLCs and 6MVSRS(1000MU/min) mode, following RTOG-0813 dosimetric guidelines. To understand the known uncertainties of conventional heterogeneities-corrected/uncorrected pencil beam (PBhete/ PB-homo) algorithms, dose distributions were re-calculated with PBhete/ PB-homo using same beam configurations, MLCs and monitor units. Biologically effective dose(BED10) was computed using LQ-model with α/β=10Gy for meanPTV and meanITV. BED10-c*L, gave size-adjusted BED(sBED), where c=10Gy/cm and L=PTV diameter in centimeter. The TCP model was adopted from Ohri et al.(IJROBP, 2012): TCP = exp[sBEDTCD50]/ k /(1.0 + exp[sBED-TCD50]/k), where k=31Gy corresponding to TCD50=0Gy; and more realistic MC-based TCP was computed for PTV(V99%). Results: Mean PTV PB-hete TCP value was 6% higher, but, mean PTV PB-homo TCP value was 4% lower compared to mean PTV MC TCP. Mean ITV PB-hete/PB-homo TCP values were comparable (within ±3.0%) to mean ITV MC TCP. The mean PTV(V99%)had BED10=90.9±3.7%(median=92.2%),sBED=54.1±8.2%(median=53.5%) corresponding to mean MC TCP value of 84.8±3.3%(median=84.9%) at 2- year local control. Conclusion: The TCP model which incorporates BED10 and tumor diameter indicates that radiobiological

  1. SU-E-T-289: Dose-Volume-Effect Relationships for Lung Cancer Patients Treated with SBRT On a Prospective Protocol

    Energy Technology Data Exchange (ETDEWEB)

    Mayyas, E; Brown, S; Liu, J; Kim, J; Sun, Z; Devpura, S; Ajlouni, M; Siddiqui, F; Movsas, B; Chetty, I [Henry Ford Hospital, Detroit, MI (United States)

    2015-06-15

    Purpose: Stereotactic body radiotherapy (SBRT) is commonly used to treat early stage lung tumors. This study was designed to evaluate associations between dose, volume and clinical outcomes including analysis of both clinical toxicity scores and quality of life (QOL) data for non-small cell lung cancer patients treated with SBRT. Preliminary results are presented. Methods: Sixty-seven NSCLC patients, 46 primarily with early stage, and 21 with recurrent disease were treated with dose regimens consisting mainly of 12 Gy x 4 fractions, and 3 or 5 fractions at lower dose, for patients with recurrent disease (Table 1). Follow-up data is being collected at baseline, after treatment and at 3, 6, 12, 18 and 24 months post-treatment. Clinical follow-up data acquired to date was assessed using the Charlson Comorbidity Clinical and Toxicity Scoring forms. QOL data was evaluated using the EQ-5D, and FACT-TOI validated surveys. All outcomes surveys are collected within an “in-house” developed outcomes database. Results: The median follow-up was 3.5±0.8 months. Mean lung doses (MLD) were converted to BED-2 Gy using the linear-quadratic model with an alpha/beta=3.0. Average MLD was 3.7+3.1 Gy (range: 0.4–20.9 Gy). The percentages of patients with > grade 2 cough, dyspnea and fatigue were 13.3, 17.0, 6.3%, respectively. Preliminary analyses (at 3 months after SBRT) show a mild correlation between MLD > 2 Gy and > grade 2 cough (borderline significant) and dyspnea (significant, p<0.05). One patient was observed with a grade 3 cough. Given the short follow-up, tumor control is not yet assessable. Conclusion: The SBRT dose fractionation regimen of 12 Gy x 4 was well tolerated at early time points. Additional follow-up is required to assess the long-term clinical outcome efficacy and toxicity profiles of the dose regimen.

  2. 7 CFR 201.55a - Moisture and aeration of substratum.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Moisture and aeration of substratum. 201.55a Section... and aeration of substratum. (a) The substratum must be moist enough to supply the needed moisture to the seeds at all times. Excessive moisture which will restrict aeration of the seeds should be...

  3. Intermittent aeration to improve wastewater treatment efficiency in pilot-scale constructed wetland.

    Science.gov (United States)

    Uggetti, Enrica; Hughes-Riley, Theodore; Morris, Robert H; Newton, Michael I; Trabi, Christophe L; Hawes, Patrick; Puigagut, Jaume; García, Joan

    2016-07-15

    Forced aeration of horizontal subsurface flow constructed wetlands (HSSF CWs) is nowadays a recognized method to improve treatment efficiency, mainly in terms of ammonium removal. While numerous investigations have been reported testing constant aeration, scarce information can be found about the efficiency of intermittent aeration. This study aims at comparing continuous and intermittent aeration, establishing if there is an optimal regime that will increase treatment efficiency of HSSF CWs whilst minimizing the energy requirement. Full and intermittent aeration were tested in a pilot plant of three HSSF CWs (2.64m(2) each) fed with primary treated wastewater. One unit was fully aerated; one intermittently aerated (i.e. by setting a limit of 0.5mg/L dissolved oxygen within the bed) with the remaining unit not aerated as a control. Results indicated that intermittent aeration was the most successful operating method. Indeed, the coexistence of aerobic and anoxic conditions promoted by the intermittent aeration resulted in the highest COD (66%), ammonium (99%) and total nitrogen (79%) removals. On the other hand, continuous aeration promotes ammonium removal (99%), but resulted in nitrate concentrations in the effluent of up to 27mg/L. This study demonstrates the high potential of the intermittent aeration to increase wastewater treatment efficiency of CWs providing an extreme benefit in terms of the energy consumption.

  4. Effect of cyclic aeration on fouling in submerged membrane bioreactor for wastewater treatment.

    Science.gov (United States)

    Wu, Jun; He, Chengda

    2012-07-01

    Due to the inefficiency of aeration measures in preventing fouling by soluble and colloidal particles. The effect of alternating high/low cyclic aeration mode on the membrane fouling in the submerged membrane bioreactor was studied by comparing to fouling in a constant aeration mode. Results indicated a higher overall fouling rate in the cyclic aeration mode than in the constant aeration. However, a higher percentage of reversible fouling was observed for the cyclic aeration mode. The membrane permeability can be more easily recovered from physical cleaning such as backwashing in the cyclic aeration mode. The activated sludge floc size distribution analysis revealed a floc destruction and re-flocculation processes caused by the alternating high/low aeration. The short high aeration period could prevent the destruction of strong strength bonds within activated sludge flocs. Therefore, less soluble and colloidal material was observed in the supernatant due to the preservation of the strong strength bonds. The weak strength bonds damaged in the high aeration period could be recovered in the re-flocculation process in the low aeration period. The floc destruction and re-flocculation processes were suggested to be the main reason for the low irreversible fouling in the cyclic aeration mode.

  5. Towards advanced aeration modelling: from blower to bubbles to bulk.

    Science.gov (United States)

    Amaral, Andreia; Schraa, Oliver; Rieger, Leiv; Gillot, Sylvie; Fayolle, Yannick; Bellandi, Giacomo; Amerlinck, Youri; Mortier, Séverine T F C; Gori, Riccardo; Neves, Ramiro; Nopens, Ingmar

    2017-02-01

    Aeration is an essential component of aerobic biological wastewater treatment and is the largest energy consumer at most water resource recovery facilities. Most modelling studies neglect the inherent complexity of the aeration systems used. Typically, the blowers, air piping, and diffusers are not modelled in detail, completely mixed reactors in a series are used to represent plug-flow reactors, and empirical correlations are used to describe the impact of operating conditions on bubble formation and transport, and oxygen transfer from the bubbles to the bulk liquid. However, the mechanisms involved are very complex in nature and require significant research efforts. This contribution highlights why and where there is a need for more detail in the different aspects of the aeration system and compiles recent efforts to develop physical models of the entire aeration system (blower, valves, air piping and diffusers), as well as adding rigour to the oxygen transfer efficiency modelling (impact of viscosity, bubble size distribution, shear and hydrodynamics). As a result of these model extensions, more realistic predictions of dissolved oxygen profiles and energy consumption have been achieved. Finally, the current needs for further model development are highlighted.

  6. Nutrients removal using moving beds with aeration cycles

    Energy Technology Data Exchange (ETDEWEB)

    Martin Martin, A.; Foresti, E.; Garcia-Encina, P. A.

    2009-07-01

    Moving Bed Biofilm Reactors (MBBR) are based on the biomass growth over a media that moves into the reactor due to aeration, mechanical agitation or recirculation. These reactors have been gaining popularity and they are employed in hundreds of plants everywhere with different treatment purposes (organic matter removal, nitrification/denitrification), both for urban and industrial wastewater. (Author)

  7. Aeration of bread dough influenced by different way processing

    NARCIS (Netherlands)

    Peighambardoust, S.H.; Fallah, E.; Hamer, R.J.; Goot, van der A.J.

    2010-01-01

    The effect of steady shearing versus z-blade mixing on mechanical aeration and gas retaining ability of the dough during processing and subsequent proofing and bread baking stages was investigated. Reduction in moisture content led to reduction in both static and dynamic densities of z-blade mixed d

  8. Fin characteristics of aerator devices with lateral deflectors

    Institute of Scientific and Technical Information of China (English)

    WU Jian-hua; LI Dan; MA Fei; QIAN Shang-tuo

    2013-01-01

    The fins will be formed if the lateral deflectors in the side-walls with a bottom aerator device are improperly designed,and the flow regime downstream of the aerator device will be worsened.In this paper,the height and the length of the fins induced by the lateral deflectors are theoretically analyzed along with their influencing factors,and the fin characteristics are experimentally investigated on the basis of the theoretical analysis.It is shown that the intensities of the fins are strongly dependent on the ratio of the lateral cavity length to the bottom cavity length,and other factors,like the working head,the height and the angle of the lateral deflector,the flow Froude number around the aerator device,affect the fins indirectly through the changes of the lateral cavity length.When an aerator device with lateral deflectors is designed,it is crucial to match the above mentioned ratio,and to make the ratio of the two cavity lengths less than 1.0 in order to avoid the generation of the fins.

  9. Internal aeration development and the zonation of plants in wetlands

    DEFF Research Database (Denmark)

    Sorrell, Brian Keith

    support many species which have root aeration adaptations but are otherwise unspecialised for aquatic life. Permanent standing water is a much greater challenge for plants, and survival here is restricted to species with special adaptations to their oxygen transport physiology such as the development...

  10. HYDRAULIC CHARACTERISTICS OF CHUTE AERATORS FOR RELEASE WORKS

    Institute of Scientific and Technical Information of China (English)

    RUAN Shi-ping

    2008-01-01

    On the basis of model tests and theoretical analysis, hydraulic characteristics, air demand, air concentration distribution and their relationships between prototype and model of an aerator were studied. Some computational examples show that the present methods have higher accuracy, and can meet the need of engineering design.

  11. Regional tidal lung strain in mechanically ventilated normal lungs.

    Science.gov (United States)

    Paula, Luis Felipe; Wellman, Tyler J; Winkler, Tilo; Spieth, Peter M; Güldner, Andreas; Venegas, Jose G; Gama de Abreu, Marcelo; Carvalho, Alysson R; Vidal Melo, Marcos F

    2016-12-01

    Parenchymal strain is a key determinant of lung injury produced by mechanical ventilation. However, imaging estimates of volumetric tidal strain (ε = regional tidal volume/reference volume) present substantial conceptual differences in reference volume computation and consideration of tidally recruited lung. We compared current and new methods to estimate tidal volumetric strains with computed tomography, and quantified the effect of tidal volume (VT) and positive end-expiratory pressure (PEEP) on strain estimates. Eight supine pigs were ventilated with VT = 6 and 12 ml/kg and PEEP = 0, 6, and 12 cmH2O. End-expiratory and end-inspiratory scans were analyzed in eight regions of interest along the ventral-dorsal axis. Regional reference volumes were computed at end-expiration (with/without correction of regional VT for intratidal recruitment) and at resting lung volume (PEEP = 0) corrected for intratidal and PEEP-derived recruitment. All strain estimates demonstrated vertical heterogeneity with the largest tidal strains in middependent regions (P < 0.01). Maximal strains for distinct estimates occurred at different lung regions and were differently affected by VT-PEEP conditions. Values consistent with lung injury and inflammation were reached regionally, even when global measurements were below critical levels. Strains increased with VT and were larger in middependent than in nondependent lung regions. PEEP reduced tidal-strain estimates referenced to end-expiratory lung volumes, although it did not affect strains referenced to resting lung volume. These estimates of tidal strains in normal lungs point to middependent lung regions as those at risk for ventilator-induced lung injury. The different conditions and topography at which maximal strain estimates occur allow for testing the importance of each estimate for lung injury.

  12. Methane production and ebullition in a shallow, artificially aerated, eutrophic temperate lake (Lake Elsinore, CA).

    Science.gov (United States)

    Martinez, Denise; Anderson, Michael A

    2013-06-01

    Methane is an important component of the gases released from lakes. Understanding the factors influencing the release is important for mitigating this greenhouse gas. The volume of methane (CH4) and other gases in sediments, and the rate of CH4 ebullition, were determined for an artificially aerated, shallow, eutrophic freshwater lake in Southern California. Gas volume was measured at 28 sites in July 2010, followed by monthly sampling at 7 sites through December 2011. Gas volumes measured in July 2010 at the 28 sites exhibited a complex dependence on sediment properties; the volume of CH4 and other gases was negligible in very coarse-textured sediment with low water and organic carbon contents. Gas volumes increased strongly with increased silt content, and were highest in sediments with intermediate water contents (60 to 70%), organic carbon contents (2 to 3%) and depths (approximately 4m). Methane was the dominant gas collected from sediment (80 to 90%), while carbon dioxide comprised roughly 2 to 3% of sediment gas in the lake. Gas sampling during cool winter months revealed very low or undetectable volumes of gas present, while sediment gas volumes increased markedly during the spring and early summer months, and then declined in late summer and fall. The rate of CH4 ebullition, quantified with an echosounder, also varied markedly across the lake and seasonally. High rates of ebullition were measured at all 7 sites in July 2011 (up to 96mmolCH4m(-2)d(-1)), while the rates were >50% lower in September and negligible in December 2010. Ebullition rates were inversely correlated with depth and most other sediment properties, but strongly positively correlated with sand content. No simple relationship between ebullition rate and sediment gas volume across the set of sites was found, although ebullition rates at individual sites were strongly related to gas volume.

  13. Microgravity and the lung

    Science.gov (United States)

    West, John B.

    1991-01-01

    Results are presented from studies of the effect of microgravity on the lungs of rats flown on the Cosmos 2044 mission, and from relevant laboratory experiments. The effects of microgravity fall into five categories: topographical structure and function, the lung volumes and mechanics, the intrathoracic blood pressures and volumes, the pulmonary deposition of aerosol, and denitrogenaton during EVA. The ultrastructure of the left lungs of rats flown for 14 days on the Cosmos 2044 spacecraft and that of some tail-suspended rats disclosed presence of red blood cells in the alveolar spaces, indicating that pulmonary hemorrhage and pulmonary edema occurred in these rats. Possible causes for this phenomenon are discussed.

  14. Correlation between [{sup 18}F]FDG PET/CT and volume perfusion CT in primary tumours and mediastinal lymph nodes of non-small-cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Sauter, Alexander W.; Spira, Daniel; Schulze, Maximilian; Pfannenberg, Christina; Claussen, Claus D.; Horger, Marius S. [Eberhard Karls University, Diagnostic and Interventional Radiology, Department of Radiology, Tuebingen (Germany); Hetzel, Juergen [Eberhard Karls University, Department of Oncology, Hematology, Immunology, Rheumatology and Pulmonology, Tuebingen (Germany); Reimold, Matthias [Eberhard Karls University, Nuclear Medicine, Department of Radiology, Tuebingen (Germany); Klotz, Ernst [Siemens Healthcare, Computed Tomography, Forchheim (Germany)

    2013-05-15

    The aim of this study was to investigate correlations between glucose metabolism as determined by [{sup 18}F]FDG PET/CT and tumour perfusion as quantified by volume perfusion CT in primary tumours and mediastinal lymph nodes (MLN) of patients with non-small-cell lung cancer (NSCLC). Enrolled in the study were 17 patients with NSCLC. [{sup 18}F]FDG uptake was quantified in terms of SUV{sub max} and SUV{sub avg}. Blood flow (BF), blood volume (BV) and flow extraction product (K{sup trans}) were determined as perfusion parameters. The correlations between the perfusion parameters and [{sup 18}F]FDG uptake values were subsequently evaluated. For the primary tumours, no correlations were found between perfusion parameters and [{sup 18}F]FDG uptake. In MLN, there were negative correlations between BF and SUV{sub avg} (r = -0.383), BV and SUV{sub avg} (r = -0.406), and BV and SUV{sub max} (r = -0.377), but not between BF and SUV{sub max}, K{sup trans} and SUV{sub avg}, or K{sup trans} and SUV{sub max}. Additionally, in MLN with SUV{sub max} >2.5 there were negative correlations between BF and SUV{sub avg} (r = -0.510), BV and SUV{sub avg} (r = -0.390), BF and SUV{sub max} (r = -0.536), as well as BV and SUV{sub max} (r = -0.346). Perfusion and glucose metabolism seemed to be uncoupled in large primary tumours, but an inverse correlation was observed in MLN. This information may help improve therapy planning and response evaluation. (orig.)

  15. Effect of spray aeration on organics and nitrogen removal in vertical subsurface flow constructed wetland.

    Science.gov (United States)

    Ding, Yi; Wang, Wei; Song, Xin-Shan; Wang, Gang; Wang, Yu-Hui

    2014-12-01

    The objective of present study was to assess the simultaneous removal of organics and nitrogen by four lab-scale vertical subsurface flow constructed wetlands (V-SFCWs). The emergent plants employed were Canna indica. Five-month experiments showed that the planted and aerated system largely reduced the COD by 95%, NH4 by 88% and total inorganic nitrogen (TIN) by 83%. It outperformed the unplanted or simple aerated system and was much better than non-aerated system. The study provided a strong evidence to support widespread research and application of spray aeration as a low-cost and energy-efficient aeration technology in V-SFCWs.

  16. Sequential Aeration of Membrane-Aerated Biofilm Reactors for High-Rate Autotrophic Nitrogen Removal: Experimental Demonstration

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Sun, Sheng-Peng; Lackner, Susanne;

    2010-01-01

    One-stage autotrophic nitrogen (N) removal, requiring the simultaneous activity of aerobic and anaerobic ammonium oxidizing bacteria (AOB and AnAOB), can be obtained in spatially redox-stratified biofilms. However, previous experience with Membrane-Aerated Biofilm Reactors (MABRs) has revealed...

  17. Protolichesterinic acid, isolated from the lichen Cetraria islandica, reduces LRRC8A expression and volume-sensitive release of organic osmolytes in human lung epithelial cancer cells

    DEFF Research Database (Denmark)

    Thorsteinsdottir, Unnur Arna; Thorsteinsdottir, Margret; Lambert, Ian Henry

    2016-01-01

    We have tested the effect of protolichesterinic acid (PA) on the activity of the volume-sensitive release pathway for the organic osmolyte taurine (VSOAC) and the expression of the leucine-rich-repeat-channel 8A (LRRC8A) protein, which constitutes an essential VSOAC component. Exposing human lung...... of apoptosis) and p21 (regulator of cell cycle progression), respectively. PA reduces cell viability by 30% but has no effect on p21/Bax expression. This excludes PA as a pro-apoptotic drug in A549 cells....... cancer cells (A549) to PA (20 μg/mL, 24 h) reduces LRRC8A protein expression by 25% and taurine release following osmotic cell swelling (320 → 200 mOsm) by 60%. C75 (20 μg/mL, 24 h), a γ-lactone with a C8 carbon fatty acid chain, reduces VSOAC activity by 30%, i.e. less than PA. Stearic acid (20 μg......, excluding that PA mediated inhibition of VSOAC involves 5-LO inhibition. A549 cells exposed to the chemotherapeutic drug cisplatin (10 μM, 24 h) reveal signs of apoptosis, i.e. 25% reduction in cell viability as well as 1.3-, 1.5- and 3.3-fold increase in the expression of LRRC8A, Bax (regulator...

  18. Redox potential driven aeration during very-high-gravity ethanol fermentation by using flocculating yeast.

    Science.gov (United States)

    Liu, Chen-Guang; Hao, Xue-Mi; Lin, Yen-Han; Bai, Feng-Wu

    2016-05-10

    Ethanol fermentation requires oxygen to maintain high biomass and cell viability, especially under very-high-gravity (VHG) condition. In this work, fermentation redox potential (ORP) was applied to drive the aeration process at low dissolved oxygen (DO) levels, which is infeasible to be regulated by a DO sensor. The performance and characteristics of flocculating yeast grown under 300 and 260 g glucose/L conditions were subjected to various aeration strategies including: no aeration; controlled aeration at -150, -100 and -50 mV levels; and constant aeration at 0.05 and 0.2 vvm. The results showed that anaerobic fermentation produced the least ethanol and had the highest residual glucose after 72 h of fermentation. Controlled aerations, depending on the real-time oxygen demand, led to higher cell viability than the no-aeration counterpart. Constant aeration triggered a quick biomass formation, and fast glucose utilization. However, over aeration at 0.2 vvm caused a reduction of final ethanol concentration. The controlled aeration driven by ORP under VHG conditions resulted in the best fermentation performance. Moreover, the controlled aeration could enhance yeast flocculating activity, promote an increase of flocs size, and accelerate yeast separation near the end of fermentation.

  19. Performance of completely autotrophic nitrogen removal over nitrite process under different aeration modes and dissolved oxygen

    Institute of Scientific and Technical Information of China (English)

    Jinsong GUO; Guohong YANG; Fang FANG; Yu QIN

    2008-01-01

    In this study, three sequential batch biofilm reactors (SBBRs) were operated for 155 days to evaluate the performance of completely autotrophic nitrogen removal over nitrite (CANON) process under different aeration modes and dissolved oxygen (DO). Synthetic wastewater with 160-mg NH4+-N/L was fed into the reac-tors. In the continuously-aerated reactor, the efficiency of the ammonium nitrogen conversion and total nitrogen (TN) removal reached 80% and 70%, respectively, with DO between 0.8-1.0 mg/L. Whereas in the intermit-tently-aerated reactor, at the aeration/non-aeration ratio of 1.0, ammonium was always under the detection limit and 86% of TN was removed with DO between 2.0 2.5 mg/L during the aeration time. Results show that CANON could be achieved in both continuous and inter-mittent aeration pattern. However, to achieve the same nitrogen removal efficiency, the DO needed in the inter-mittently-aerated sequential batch biofilm reactor (SBBR) during the aeration period was higher than that in the continuously-aerated SBBR. In addition, the DO in the CANON system should be adjusted to the aeration mode, and low DO was not a prerequisite to CANON process.

  20. Treatment of Slightly Polluted Wastewater in an Oil Refinery Using a Biological Aerated Filter Process

    Institute of Scientific and Technical Information of China (English)

    XIE Wenyu; ZHONG Li; CHEN Jianjun

    2007-01-01

    The slightly polluted wastewater from oil refinery contains some COD, oil pollutants and suspended solids (SS). A small-scale fixed film biological aerated filter (BAF) process was used to treat the wastewater. The influences of hydraulic retention time (HRT), air/water volume flow ratio and backwashing cycle on treatment efficiencies were investigated. The wastewater was treated by the BAF process under optimal conditions: the HRT of backwashing cycle of every 4-7 days. The results showed that the average removal efficiency of COD, oil pollutants and SS was 84.5%, 94.0% and 83.4%, respectively. And the average effluent concentration of COD, oil pollutants and SS was 12.5, 0.27, 14.5the BAF process is a suitable and highly efficient method to treat the wastewater.

  1. 三维超声在隔疝胎儿肺容积测量中的应用%3D sonographic measurement of lung volume in fetuses with congenital diaphragmatic hernia

    Institute of Scientific and Technical Information of China (English)

    张波; 杨太珠

    2011-01-01

    目的:评价三维超声测量先天性膈疝(Congenital diaphragmatic hernia,CDH)胎儿肺容积的准确性,并初步探讨CDH胎儿肺容积改变规律.方法:对10例拟引产的CDH胎儿于引产前1-3d应用三维超声体积自动测量技术(Virtual organ computer-aided analysis,VOCAL)测得其肺容积值,引产后6h内对胎儿进行病检,用水置换法得到其实际容积.同时测量150例正常对照组胎儿肺容积.并与CDH胎儿进行统计学比较.结果:①三维超声测量CDH胎儿肺容积与病检结果间有较好的相关性,相关系数(r)为0.79,偏倚及95%一致性界限分别为0.68cm3及(-4.59-3.24)cm';②CDH胎儿肺容积较同孕周对照组明显减小.结论:先天性隔疝时胎儿肺脏受压体积明显缩小;三维超声测量CDH胎儿肺容积的准确性较好,可能成为评估其肺发育不良程度的重要方法.%Objective: To evaluate the accuracy of 3D ultrasound in estimating lung volume of fetuses with congenital diaphragmatic hernia (CDH), and to determine their volume change by comparing with the normal fetuses.Methods: Fetal lung volumes were measured during 3D ultrasound examination using VOCAL technique in 10 cases with CDH, 1~3 days before termination.Postmortem autopsy was conducted within 6 hours after labor and the lung volume was achieved by water displacement.Using VOCAL technique, lung volumes were also measured in controls and compared with those in CDHs.Results: ①The correlation between measured volume by 3D ultrasound and postmortem examination was good, with correlation coefficient 0.79 in CDH fetuses.The mean bias, 95% limits of agreement were, -0.68cm3 and (-4.59~3.24)cm3, respectively.②In fetuses with CDH, lung volumes were substantially lower than in normal fetuses.Conclusion: The lung volumes were significantly reduced in CDH fetuses, due to pulmonary compression.Prenatal 3D ultrasound can estimate accurately fetal lung volumes in CDHs, which may become a potential predictor

  2. BIOVENTING - Groundwater Aeration by Discontinuous Oxygen Gas Pulse Injections

    Science.gov (United States)

    Schirmer, M.

    2003-12-01

    Groundwater aeration by discontinuous oxygen gas pulse injections appears to be a promising concept for enhanced natural attenuation of dissolved contaminants that are susceptible for oxygenase enzyme attacks. Oxygen amendments facilitate indigenous microbiota to catabolize groundwater pollutants, such as aromatics, that are considered to be recalcitrant in absence of dissolved oxygen. As a rule, natural attenuation of many pollutants under aerobic conditions is considerably faster than under anaerobic conditions. Thus, enhancing the dissolved oxygen level appears to be worthwhile. In situ aeration of groundwater has been accomplished by air sparging, H2O2-supply, or by utilization of oxygen release compounds. However, continuous aeration of previously anaerobic groundwater is not desirable for several reasons: (a) economic efforts too high, (b) pollutant dislocation towards surface (desired only in air sparging), (c) risk of aquifer clogging (gas clogging, oxidation of ferrous iron, formation of bioslimes). In contrast, discontinuous oxygen gas sparging provides only for periodical groundwater aeration which is followed by microaerobic and suboxic conditions. Microaerobic conditions can prevail spatially (e.g., at plume fringes or within biofilms) or temporarily (e.g., at discontinuous bioventing). They still allow adapted bacteria to transform environmental pollutants to less toxic compounds, e.g., aromatic ring cleavage after dioxygenasis attack. Ring cleavage products, on the other hand, may be degraded more easily by anaerobic consortia than the initial aromatic compounds, making oxygen depletion periods highly intriguing in regard to an initiation of natural attenuation processes at plume fringes. In our work we outline the effect of oxygen depletion conditions on biodegradation of monchlorobenzene (MCB) as they occur subsequently to temporary aeration periods. For microaerobic conditions, relative to the oxygen supply, a stoichiometric transformation of MCB

  3. Optimum air-demand ratio for maximum aeration efficiency in high-head gated circular conduits.

    Science.gov (United States)

    Ozkan, Fahri; Tuna, M Cihat; Baylar, Ahmet; Ozturk, Mualla

    2014-01-01

    Oxygen is an important component of water quality and its ability to sustain life. Water aeration is the process of introducing air into a body of water to increase its oxygen saturation. Water aeration can be accomplished in a variety of ways, for instance, closed-conduit aeration. High-speed flow in a closed conduit involves air-water mixture flow. The air flow results from the subatmospheric pressure downstream of the gate. The air entrained by the high-speed flow is supplied by the air vent. The air entrained into the flow in the form of a large number of bubbles accelerates oxygen transfer and hence also increases aeration efficiency. In the present work, the optimum air-demand ratio for maximum aeration efficiency in high-head gated circular conduits was studied experimentally. Results showed that aeration efficiency increased with the air-demand ratio to a certain point and then aeration efficiency did not change with a further increase of the air-demand ratio. Thus, there was an optimum value for the air-demand ratio, depending on the Froude number, which provides maximum aeration efficiency. Furthermore, a design formula for aeration efficiency was presented relating aeration efficiency to the air-demand ratio and Froude number.

  4. Soil aeration status in a lowland wet grassland

    Science.gov (United States)

    Barber, K. R.; Leeds-Harrison, P. B.; Lawson, C. S.; Gowing, D. J. G.

    2004-02-01

    The maintenance or development of plant community diversity in species-rich wet grasslands has been a focus of water management considerations in the UK for the past 20 years. Much attention has been given to the control of water levels in the ditch systems within these wet grassland systems. In this paper we report measurements of aeration status and water-table fluctuation made on a peat soil site at Tadham Moor in Somerset, UK, where water management has focused on the maintenance of wet conditions that often result in flooding in winter and wet soil conditions in the spring and summer. Measurement and modelling of the water-table fluctuation indicates the possibility of variability in the aeration of the root environment and anoxic conditions for much of the winter period and for part of the spring and summer. We have used water content and redox potential measurements to characterize the aeration status of the peat soil. We find that air-filled porosity is related to water-table depth in these situations. Redox potentials in the spring were generally found to be low, implying a reducing condition for nitrate and iron. A significant relationship (p < 0.01) between redox potential and water-table depth exists for data measured at 0.1 m depth, but no relationship could be found for data from 0.4 m depth.

  5. Development of a novel membrane aerated hollow-fiber microbioreactor.

    Science.gov (United States)

    Villain, Louis; Meyer, Lina; Kroll, Stephen; Beutel, Sascha; Scheper, Thomas

    2008-01-01

    A new challenge in biotechnological processes is the development of flexible bioprocessing platforms, allowing strain selection, facilitating scale-up and integrating separation steps. Miniaturization of such a cultivation system allows parallel use and the saving of resources but makes the supply of oxygen to the cells difficult. In this work we present a membrane aerated hollow-fiber microbioreactor (HFMBR) which consists of an acrylic glass module equipped with two different types of membrane fibers. Fibers of polyethersulfone and polyvinyldifluoride were used for substrate and oxygen supply, respectively. Cultivation of E. coli as model organism and production of His-tagged GFP were carried out in the extracapillary space of the membrane aerated HFMBR and compared with cultivations in shaking flask which are commonly used for screening experiments. The measurement of the oxygen transfer capacity and the online monitoring of the dissolved oxygen during the cultivation were performed using a fiber optic oxygen sensor. Online measurement of the optical density was also integrated to the bioreactor. Due to efficient oxygen transfer, a better cell growth than in the shaking flask experiments was achieved, while no negative influence on the GFP productivity was observed in the membrane aerated bioreactor. Thus the feasibility of a future integrated downstreaming could also be demonstrated.

  6. Prenatal MR imaging of congenital diaphragmatic hernias: association of MR fetal lung volume with the need for postnatal prosthetic patch repair

    Energy Technology Data Exchange (ETDEWEB)

    Hagelstein, Claudia; Weidner, Meike; Schoenberg, Stefan O.; Buesing, Karen A.; Neff, K.W. [University of Heidelberg, Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Mannheim (Germany); Zahn, Katrin [University of Heidelberg, Department of Pediatric Surgery, University Medical Center Mannheim, Mannheim (Germany); Weiss, Christel [University of Heidelberg, Department of Medical Statistics and Biomathematics, University Medical Center Mannheim, Mannheim (Germany); Schaible, Thomas [University of Heidelberg, Department of Pediatrics, University Medical Center Mannheim, Mannheim (Germany)

    2015-01-15

    To assess whether the need for postnatal prosthetic patch repair of the diaphragmatic defect in neonates with a congenital diaphragmatic hernia (CDH) is associated with the antenatal measured observed-to-expected magnetic resonance fetal lung volume (o/e MR-FLV). The o/e MR-FLV was calculated in 247 fetuses with isolated CDH. Logistic regression analysis was used to assess the prognostic value of the individual o/e MR-FLV for association with the need for postnatal patch repair. Seventy-seven percent (77 %) of patients with a CDH (190/247) required prosthetic patch repair and the defect was closed primarily in 23 % (57/247). Patients requiring a patch had a significantly lower o/e MR-FLV (27.7 ± 10.2 %) than patients with primary repair (40.8 ± 13.8 %, p < 0.001, AUC = 0.786). With an o/e MR-FLV of 20 %, 92 % of the patients required patch repair, compared to only 24 % with an o/e MR-FLV of 60 %. The need for a prosthetic patch was further influenced by the fetal liver position (herniation/no herniation) as determined by magnetic resonance imaging (MRI; p < 0.001). Fetal liver position, in addition to the o/e MR-FLV, improves prognostic accuracy (AUC = 0.827). Logistic regression analysis based on the o/e MR-FLV is useful for prenatal estimation of the prosthetic patch requirement in patients with a CDH. In addition to the o/e MR-FLV, the position of the liver as determined by fetal MRI helps improve prognostic accuracy. (orig.)

  7. Effect of low tidal volume one lung ventilation plus positive end-expiratory pressure on inflammatory responses of pulmonary in patients with lung cancer operation%低潮气量单肺通气复合呼气末正压对肺癌手术患者肺部炎症反应的影响

    Institute of Scientific and Technical Information of China (English)

    孔岚

    2014-01-01

    Objective To compare the effect of low tidal volume and normal tidal volume one lung ventilation plus positive end-expiratory pressure(PEEP) on inflammatory responses of pulmonary in patients with lung cancer operation.Methods Divided 40 patients with lung cancer operation into PEEP group(group L) and normal tidal volume one lung ventilation group(goup N), 20 cases in each group, tumor necrosis factor-α(TNF-α), Interleukin-6(IL-6), Interleukin-8(IL-8) and Interleukin-10(IL-10) were assessed with ELISA on the following time①two lung ventilation after anesthesia induction(T1); ②60 min after one lung ventilation (T2); ③90 min after one lung ventilation (T3); ④60 min after two lung ventilation(T4); ⑤1d after operation (T5). Results Compared to T1, TNF-α、IL-6、IL-8 and IL-10 were increased in other time point in both groups. The TNF-α、IL-6、IL -8 in group L were significant decreased than group N in T2, T3, T4, T5 time point(P<0.05). The IL-10 in group L were significant increased than group N in T2, T3, T4, T5 time point(P<0.05).Conclusion Low tidal volume one lung ventilation plus positive end-expiratory pressure can lessen pulmonary inflammatory response obviously than normal tidal volume and relieve the lung injury.%目的:对比低潮气量单肺通气复合呼气末正压(PEEP)与正常潮气量单肺通气对肺癌手术患者肺部炎症反应的影响。方法40例择期肺癌手术患者随机分为低潮气量单肺通气复合PEEP组(L组)和正常潮气量单肺通气组(N组),每组20例。两组患者分别在麻醉诱导后双肺通气时(T1)、单肺通气60 min时(T2)、单肺通气90 min时(T3)、术毕双肺通气60 min时(T4)、术后1 d(T5)采取外周静脉血,采用放射酶联免疫吸附法(ELISA)测量肿瘤坏死因子-α(TNF-α)、白细胞介素-6(IL-6)、白细胞介素-8(IL-8)及白细胞介素-10(IL-10)水平。结果与T1比较,两组各时点血浆TNF-α, IL-6, IL-8及IL-10水平均持续升高(P<0.05)

  8. Methane production and ebullition in a shallow, artificially aerated, eutrophic temperate lake (Lake Elsinore, CA)

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Denise; Anderson, Michael A., E-mail: michael.anderson@ucr.edu

    2013-06-01

    Methane is an important component of the gases released from lakes. Understanding the factors influencing the release is important for mitigating this greenhouse gas. The volume of methane (CH{sub 4}) and other gases in sediments, and the rate of CH{sub 4} ebullition, were determined for an artificially aerated, shallow, eutrophic freshwater lake in Southern California. Gas volume was measured at 28 sites in July 2010, followed by monthly sampling at 7 sites through December 2011. Gas volumes measured in July 2010 at the 28 sites exhibited a complex dependence on sediment properties; the volume of CH{sub 4} and other gases was negligible in very coarse-textured sediment with low water and organic carbon contents. Gas volumes increased strongly with increased silt content, and were highest in sediments with intermediate water contents (60 to 70%), organic carbon contents (2 to 3%) and depths (approximately 4 m). Methane was the dominant gas collected from sediment (80 to 90%), while carbon dioxide comprised roughly 2 to 3% of sediment gas in the lake. Gas sampling during cool winter months revealed very low or undetectable volumes of gas present, while sediment gas volumes increased markedly during the spring and early summer months, and then declined in late summer and fall. The rate of CH{sub 4} ebullition, quantified with an echosounder, also varied markedly across the lake and seasonally. High rates of ebullition were measured at all 7 sites in July 2011 (up to 96 mmol CH{sub 4} m{sup −2} d{sup −1}), while the rates were > 50% lower in September and negligible in December 2010. Ebullition rates were inversely correlated with depth and most other sediment properties, but strongly positively correlated with sand content. No simple relationship between ebullition rate and sediment gas volume across the set of sites was found, although ebullition rates at individual sites were strongly related to gas volume. - Highlights: • Volume of gas in sediments and rate

  9. Effects of aeration position on organics, nitrogen and phosphorus removal in combined oxidation pond-constructed wetland systems.

    Science.gov (United States)

    Wang, Xiaoou; Tian, Yimei; Zhao, Xinhua; Peng, Sen; Wu, Qing; Yan, Lijian

    2015-12-01

    Given that few studies investigated the effects of aeration position (AP) on the performance of aerated constructed wetlands, the aim of this study was to evaluate the effects of AP on organics, nitrogen and phosphorus removal in lab-scale combined oxidation pond-constructed wetland (OP-CW) systems. Results showed that middle aeration allowed the CW to possess more uniform oxygen distribution and to achieve greater removals of COD and NH3-N, while the CW under bottom aeration and surface aeration demonstrated more distinct stratification of oxygen distribution and surface aeration brought about better TN removal capacity for the OP-CW system. However, no significant influence of artificial aeration or AP on TP removal was observed. Overall, AP could significantly affect the spatial distribution of dissolved oxygen by influencing the oxygen diffusion paths in aerated CWs, thereby influencing the removal of pollutants, especially organics and nitrogen, which offers a reference for the design of aerated CWs.

  10. Experience of drilling wells using pump-compressor unit to inject aerated fluid

    Energy Technology Data Exchange (ETDEWEB)

    Oleynik, S.P.; Beley, I.V.; Lopatin, Yu.S.; Pytel, S.P.; Vasilak, I.I.; Yushkevich, V.I.

    1979-01-01

    Results are described from drilling wells with flushing by highly aerated clay fluid with the help of a UNGA unit which includes pumps and compressors of the drilling unit UBSh-1 which permits injection of an aerated mixture under pressures considerably exceeding the pressure of its formation. Qualitative and technical-economic advantages of drilling with flushing by aerated solutions with the use of a unit for injecting gas-liquid agents are presented.

  11. Aeration-Induced Changes in Temperature and Nitrogen Dynamics in a Dimictic Lake.

    Science.gov (United States)

    Holmroos, Heidi; Horppila, Jukka; Laakso, Sanna; Niemistö, Juha; Hietanen, Susanna

    2016-07-01

    Low levels of oxygen (O) in the hypolimnion layer of lakes are harmful to benthic animals and fish; they may also adversely affect nutrient cycles. Artificial aeration is often used in lake management to counteract these problems, but the effects of aeration on nitrogen (N) cycling are not known. We studied the effects of hypolimnetic aeration on N dynamics and temperature in a eutrophic lake by comparing continuous and pulsed aeration with a nonaerated station. Aeration decreased the accumulation of NH-N deep in the lake (20-33 m) by supplying O for nitrification, which in turn provided substrate for denitrification and promoted N removal. Aeration also increased the temperature in the hypolimnion. Denitrification rate was highest in the nonaerated deep areas (average, 7.62 mg N m d) due to very high rates during spring turnover of the water column, demonstrating that natural turnover provides O for nitrification. During stratification, denitrification was highest at the continuously aerated station (4.06 mg N m d) and lowest at the nonaerated station (3.02 mg N m d). At the periodically aerated station, aeration pauses did not restrict the increase in temperature but resulted in accumulation of NH-N and decreased the contribution of denitrification as a nitrate reduction process. Our findings demonstrate that hypolimnetic aeration can substantially affect N cycling in lakes and that the effect depends on the aeration strategy. Because N is one of the main nutrients controlling eutrophication, the effects of aeration methods on N removal should be considered as part of strategies to manage water quality in lakes.

  12. Fouling behavior of microstructured hollow fiber membranes in submerged and aerated filtrations.

    Science.gov (United States)

    Culfaz, P Z; Wessling, M; Lammertink, R G H

    2011-02-01

    The performance of microstructured hollow fiber membranes in submerged and aerated systems was investigated using colloidal silica as a model foulant. The microstructured fibers were compared to round fibers and to twisted microstructured fibers in flux-stepping experiments. The fouling resistances in the structured fibers were found to be higher than those of round fibers. This was attributed to stagnant zones in the grooves of the structured fibers. As the bubble sizes were larger than the size of the grooves of the structured fibers, it is possible that neither the bubbles nor the secondary flow caused by the bubbles can reach the bottom parts of the grooves. Twisting the structured fibers around their axes resulted in decreased fouling resistances. Large, cap-shaped bubbles and slugs were found to be the most effective in fouling removal, while small bubbles of sizes similar to the convolutions in the structured fiber did not cause an improvement in these fibers. Modules in a vertical orientation performed better than horizontal modules when coarse bubbling was used. For small bubbles, the difference between vertical and horizontal modules was not significant. When the structured and twisted fibers were compared to round fibers with respect to the permeate flowrate produced per fiber length instead of the actual flux through the convoluted membrane area, they showed lower fouling resistance than round fibers. This is because the enhancement in surface area is more than the increase in resistance caused by stagnant zones in the grooves of the structured fibers. From a practical point of view, although the microstructure does not promote further turbulence in submerged and aerated systems, it can still be possible to enhance productivity per module with the microstructured fibers due to their high surface area-to-volume ratio.

  13. Nitrogen-removal performance and community structure of nitrifying bacteria under different aeration modes in an oxidation ditch.

    Science.gov (United States)

    Guo, Chang-Zi; Fu, Wei; Chen, Xue-Mei; Peng, Dang-Cong; Jin, Peng-Kang

    2013-07-01

    Oxidation-ditch operation modes were simulated using sequencing batch reactors (SBRs) with alternate stirring and aerating. The nitrogen-removal efficiencies and nitrifying characteristics of two aeration modes, point aeration and step aeration, were investigated. Under the same air-supply capacity, oxygen dissolved more efficiently in the system with point aeration, forming a larger aerobic zone. The nitrifying effects were similar in point aeration and step aeration, where the average removal efficiencies of NH4(+) N were 98% and 96%, respectively. When the proportion of anoxic and oxic zones was 1, the average removal efficiencies of total nitrogen (TN) were 45% and 66% under point aeration and step aeration, respectively. Step aeration was more beneficial to both anoxic denitrification and simultaneous nitrification and denitrification (SND). The maximum specific ammonia-uptake rates (AUR) of point aeration and step aeration were 4.7 and 4.9 mg NH4(+)/(gMLVSS h), respectively, while the maximum specific nitrite-uptake rates (NUR) of the two systems were 7.4 and 5.3 mg NO2(-)-N/(gMLVSS h), respectively. The proportions of ammonia-oxidizing bacteria (AOB) to all bacteria were 5.1% under point aeration and 7.0% under step aeration, and the proportions of nitrite-oxidizing bacteria (NOB) reached 6.5% and 9.0% under point and step aeration, respectively. The dominant genera of AOB and NOB were Nitrosococcus and Nitrospira, which accounted for 90% and 91%, respectively, under point aeration, and the diversity of nitrifying bacteria was lower than under step aeration. Point aeration was selective of nitrifying bacteria. The abundance of NOB was greater than that of AOB in both of the operation modes, and complete transformation of NH4(+) N to NO3(-)-N was observed without NO2(-)-N accumulation.

  14. Violent breaking wave impacts. Part 3. Effects of scale and aeration

    DEFF Research Database (Denmark)

    Bredmose, Henrik; Bullock, G. N.; Hogg, A. J.

    2015-01-01

    . The Bagnold-Mitsuyasu scaling law for the compression of an air pocket by a piston of incompressible water is rederived and generalised to 3D air pockets of arbitrary shape. Numerical results for wall pressure, force and impulse are then presented for a flip-through impact, a low-aeration impact and a high......-aeration impact, for nine scales and five levels of initial aeration. Two of these impact types trap a pocket of air at the wall. Among the findings of the paper is that for fixed initial aeration, impact pressures from the flip-through impact broadly follow Froude scaling. This is also the case for the two...

  15. Monitoring transitory profiles of leachate humic substances in landfill aeration reactors in mesophilic and thermophilic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Huanhuan [Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141 (Singapore); School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Yin, Ke; Ge, Liya; Giannis, Apostolos [Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141 (Singapore); Chuan, Valerie W.L. [School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Wang, Jing-Yuan, E-mail: JYWANG@ntu.edu.sg [Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141 (Singapore); School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore)

    2015-04-28

    Highlights: • Polymerization and condensation of humic substances (HS) were enhanced by aeration. • Carboxylic group was enriched in HS by aeration presenting improved hydrophilicity. • Mobility of humic acid, as a result was enhanced by aeration especially in young landfill. • Waste age plays an important role in leachate management during aeration. - Abstract: The presence of humic substances (HS) in landfill leachate is of great interest because of their structural stability and potential toxicity. This study examined the effects of temperature and waste age on the transformation of HS during in situ aeration of bioreactor landfills. By establishing aerobic conditions, dissolved organic carbon (DOC) rapidly accumulated in the bioreactor leachate. Fractional analysis showed that the elevated concentration of humic acids (HAs) was primarily responsible for the increment of leachate strength. Further structural characterization indicated that the molecular weight (MW) and aromacity of HS were enhanced by aeration in conjunction with thermophilic temperature. Interestingly, elevation of HAs concentration was not observed in the aeration reactor with a prolonged waste age, as the mobility of HAs was lowered by the high MW derived from extended waste age. Based on these results, aeration may be more favorable in aged landfills, since dissolution of HAs could be minimized by the evolution to larger MW compared to young landfills. Moreover, increased operation temperature during aeration likely offers benefits for the rapid maturation of HS.

  16. Partial nitritation ANAMMOX in submerged attached growth bioreactors with smart aeration at 20 °C.

    Science.gov (United States)

    Shannon, James M; Hauser, Lee W; Liu, Xikun; Parkin, Gene F; Mattes, Timothy E; Just, Craig L

    2015-01-01

    Submerged attached growth bioreactors (SAGBs) were operated at 20 °C for 30 weeks in smart-aerated, partial nitritation ANAMMOX mode and in a timer-controlled, cyclic aeration mode. The smart-aerated SAGBs removed 48-53% of total nitrogen (TN) compared to 45% for SAGBs with timed aeration. Low dissolved oxygen concentrations and cyclic pH patterns in the smart-aerated SAGBs suggested conditions favorable to partial nitritation ANAMMOX and stoichiometrically-derived and numerically modeled estimations attributed 63-68% and 14-44% of TN removal to partial nitritation ANAMMOX in these bioreactors, respectively. Ammonia removals of 36-67% in the smart-aerated SAGBs, with measured oxygen and organic carbon limitations, further suggest partial nitritation ANAMMOX. The smart-aerated SAGBs required substantially less aeration to achieve TN removals similar to SAGBs with timer-controlled aeration. Genomic DNA testing confirmed that the dominant ANAMMOX seed bacteria, received from a treatment plant utilizing the DEMON® sidestream deammonification process, was a Candidatus Brocadia sp. (of the Planctomycetales order). The DNA from these bacteria was also present in the SAGBs at the conclusion of the study providing evidence for attached growth and limited biomass washout.

  17. Landfill aeration in the framework of a reclamation project in Northern Italy.

    Science.gov (United States)

    Raga, Roberto; Cossu, Raffaello

    2014-03-01

    In situ aeration by means of the Airflow technology was proposed for landfill conditioning before landfill mining in the framework of a reclamation project in Northern Italy. A 1-year aeration project was carried out on part of the landfill with the objective of evaluating the effectiveness of the Airflow technology for landfill aerobization, the evolution of waste biological stability during aeration and the effects on leachate and biogas quality and emissions. The main outcomes of the 1-year aeration project are presented in the paper. The beneficial effect of the aeration on waste biological stability was clear (63% reduction of the respiration index); however, the effectiveness of aeration on the lower part of the landfill is questionable, due to the limited potential for air migration into the leachate saturated layers. During the 1-year in situ aeration project approx. 275 MgC were discharged from the landfill body with the extracted gas, corresponding to 4.6 gC/kgDM. However, due to the presence of anaerobic niches in the aerated landfill, approx. 46% of this amount was extracted as CH4, which is higher than reported in other aeration projects. The O2 conversion quota was lower than reported in other similar projects, mainly due to the higher air flow rates applied. The results obtained enabled valuable recommendations to be made for the subsequent application of the Airflow technology to the whole landfill.

  18. Microstructure and Properties of Silty Siliceous Crushed Stone-lime Aerated Concrete

    Institute of Scientific and Technical Information of China (English)

    WANG Qiankun; CHEN Youzhi; LI Fangxian; SUN Tao; XU Bingbo

    2006-01-01

    The clayish crushed stone was used for making aerated concrete. Through studying hydro-thermal synthesis reaction, mix ratio, gas-forming and performance analysis, Grade-B05 and Grade-B06 aerated concrete were prepared successfully. The proper mix ratio and key processing parameters were achieved. The microstructure of aerated concrete with crush stone was analyzed by means of XRD and SEM. The experimental results indicate that the hydration products are poorly crystalline C-S-H (B), tobermorite and hydrogarnet. No component of clay was found. Unreacted SiO2 can be in existence, and the structure system of aerated concrete is homogeneous and dense.

  19. [Effect of aeration intensity on the nitrogen and phosphorus removal performance of AOA membrane bioreactors].

    Science.gov (United States)

    Chen, Xiao-Yang; Xue, Zhi-Yong; Xiao, Jing-Ni; Zhang, Han-Min; Yang, Feng-Lin; Wang, Wei-Ping; Hong, Chun-Lai; Zhu, Feng-Xiang

    2011-10-01

    The ability of simultaneous phosphorus and nitrogen removal of sequencing batch membrane bioreactor run in anaerobic/oxic/ anoxic mode (AOA MBR) was examined under three aeration intensities [2.5, 3.75 and 5.0 m3 x (m2 x h)(-10]. The results showed that the averaged removals of COD were over 90% at different aeration intensities. And the higher aeration intensity was, the more ammonia nitrogen removal rate achieved. The removal rates of NH4(+) under the three aeration intensities were 84.7%, 90.6% and 93.8%, respectively. Total nitrogen removal rate increased with the increasing aeration intensity. But excessive aeration intensity reduced TN removal. The removal rates of TN under the three aeration intensities were 83.4%, 87.4% and 80.6%, respectively. Aeration intensity affected the denitrifying phosphorus ability of the AOA MBR. The ratio of denitrification phosphorus removal under the three aeration intensities were 20%, 30.2% and 26.7%, respectively.

  20. Estimation of Lung Ventilation

    Science.gov (United States)

    Ding, Kai; Cao, Kunlin; Du, Kaifang; Amelon, Ryan; Christensen, Gary E.; Raghavan, Madhavan; Reinhardt, Joseph M.

    Since the primary function of the lung is gas exchange, ventilation can be interpreted as an index of lung function in addition to perfusion. Injury and disease processes can alter lung function on a global and/or a local level. MDCT can be used to acquire multiple static breath-hold CT images of the lung taken at different lung volumes, or with proper respiratory control, 4DCT images of the lung reconstructed at different respiratory phases. Image registration can be applied to this data to estimate a deformation field that transforms the lung from one volume configuration to the other. This deformation field can be analyzed to estimate local lung tissue expansion, calculate voxel-by-voxel intensity change, and make biomechanical measurements. The physiologic significance of the registration-based measures of respiratory function can be established by comparing to more conventional measurements, such as nuclear medicine or contrast wash-in/wash-out studies with CT or MR. An important emerging application of these methods is the detection of pulmonary function change in subjects undergoing radiation therapy (RT) for lung cancer. During RT, treatment is commonly limited to sub-therapeutic doses due to unintended toxicity to normal lung tissue. Measurement of pulmonary function may be useful as a planning tool during RT planning, may be useful for tracking the progression of toxicity to nearby normal tissue during RT, and can be used to evaluate the effectiveness of a treatment post-therapy. This chapter reviews the basic measures to estimate regional ventilation from image registration of CT images, the comparison of them to the existing golden standard and the application in radiation therapy.

  1. Lung transplant

    Science.gov (United States)

    Solid organ transplant - lung ... the chance that the body will reject the transplant . Lungs can also be given by living donors. ... the person who is receiving it. During lung transplant surgery, you are asleep and pain-free (under ...

  2. Reduction in Tumor Volume by Cone Beam Computed Tomography Predicts Overall Survival in Non-Small Cell Lung Cancer Treated With Chemoradiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Jabbour, Salma K., E-mail: jabbousk@cinj.rutgers.edu [Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers The State University of New Jersey, New Brunswick, New Jersey (United States); Kim, Sinae [Division of Biometrics, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers The State University of New Jersey, New Brunswick, New Jersey (United States); Department of Biostatistics, School of Public Health, Rutgers University, New Brunswick, New Jersey (United States); Haider, Syed A. [Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers The State University of New Jersey, New Brunswick, New Jersey (United States); Xu, Xiaoting [Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers The State University of New Jersey, New Brunswick, New Jersey (United States); Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Soochow (China); Wu, Alson [Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers The State University of New Jersey, New Brunswick, New Jersey (United States); Surakanti, Sujani; Aisner, Joseph [Division of Medical Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers The State University of New Jersey, New Brunswick, New Jersey (United States); Langenfeld, John [Division of Surgery, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers The State University of New Jersey, New Brunswick, New Jersey (United States); Yue, Ning J.; Haffty, Bruce G.; Zou, Wei [Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers The State University of New Jersey, New Brunswick, New Jersey (United States)

    2015-07-01

    Purpose: We sought to evaluate whether tumor response using cone beam computed tomography (CBCT) performed as part of the routine care during chemoradiation therapy (CRT) could forecast the outcome of unresectable, locally advanced, non-small cell lung cancer (NSCLC). Methods and Materials: We manually delineated primary tumor volumes (TV) of patients with NSCLC who were treated with radical CRT on days 1, 8, 15, 22, 29, 36, and 43 on CBCTs obtained as part of the standard radiation treatment course. Percentage reductions in TV were calculated and then correlated to survival and pattern of recurrence using Cox proportional hazard models. Clinical information including histologic subtype was also considered in the study of such associations. Results: We evaluated 38 patients with a median follow-up time of 23.4 months. The median TV reduction was 39.3% (range, 7.3%-69.3%) from day 1 (D1) to day 43 (D43) CBCTs. Overall survival was associated with TV reduction from D1 to D43 (hazard ratio [HR] 0.557, 95% CI 0.39-0.79, P=.0009). For every 10% decrease in TV from D1 to D43, the risk of death decreased by 44.3%. For patients whose TV decreased ≥39.3 or <39.3%, log-rank test demonstrated a separation in survival (P=.02), with median survivals of 31 months versus 10 months, respectively. Neither local recurrence (HR 0.791, 95% CI 0.51-1.23, P=.29), nor distant recurrence (HR 0.78, 95% CI 0.57-1.08, P=.137) correlated with TV decrease from D1 to D43. Histologic subtype showed no impact on our findings. Conclusions: TV reduction as determined by CBCT during CRT as part of routine care predicts post-CRT survival. Such knowledge may justify intensification of RT or application of additional therapies. Assessment of genomic characteristics of these tumors may permit a better understanding of behavior or prediction of therapeutic outcomes.

  3. Pseudomonads rule degradation of polyaromatic hydrocarbons in aerated sediment

    Directory of Open Access Journals (Sweden)

    Jiri eWald

    2015-11-01

    Full Text Available Given that the degradation of aromatic pollutants in anaerobic environments such as sediment is generally very slow, aeration could be an efficient bioremediation option. Using stable isotope probing (SIP coupled with pyrosequencing analysis of 16S rRNA genes, we identified naphthalene-utilizing populations in aerated polyaromatic hydrocarbon (PAH-polluted sediment. The results showed that naphthalene was metabolized at both 10°C and 20°C following oxygen delivery, with increased degradation at 20°C as compared to 10°C – a temperature more similar to that found in situ. Naphthalene-derived 13C was primarily assimilated by pseudomonads. Additionally, Stenotrophomonas, Acidovorax, Comamonas and other minor taxa were determined to incorporate 13C throughout the measured time course. The majority of SIP-detected bacteria were also isolated in pure cultures, which facilitated more reliable identification of naphthalene-utilizing populations as well as proper differentiation between primary consumers and cross-feeders. The pseudomonads acquiring the majority of carbon were identified as Pseudomonas veronii and P. gessardii. Stenotrophomonads and Acidovorax defluvii, however, were identified as cross-feeders unable to directly utilize naphthalene as a growth substrate. PAH degradation assays with the isolated bacteria revealed that all pseudomonads as well as Comamonas testosteroni degraded acenaphthene, fluorene and phenanthrene in addition to naphthalene. Furthermore, P. veronii and C. testosteroni were capable of transforming anthracene, fluoranthene and pyrene. Screening of isolates for naphthalene dioxygenase genes using a set of in-house designed primers for Gram-negative bacteria revealed the presence of such genes in pseudomonads and Comamonas testosteroni. Overall, our results indicated an apparent dominance of pseudomonads in the sequestration of carbon from naphthalene and potential degradation of other PAHs upon aeration of the

  4. DIGITAL IMAGE MEASUREMENT OF BUBBLE MOTION IN AERATED WATER FLOWS

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Digital image measurement method, as an ex-tension of Particle Image Velocimetry of single-phase flowmeasurement, was investigated for application to air-watertwo-phase flows. The method has strong potential ability inmeasuring bubble geometrical features and moving velocitiesfor complex bubble motion in aerated water flow. Both dilutedand dense bubble rising flows are measured using the digitalimage method. Measured bubble shapes and sizes, and bubblevelocities are affected by threshold selection for binary image.Several algorithms for selecting threshold are compared andmethods for calculating the time-averaged void fraction arediscussed.

  5. Pulverizing aeration as a method of lakes restoration

    Science.gov (United States)

    Kaczorowska, E.; Podsiadłowski, S.

    2012-04-01

    The principal threat to lakes of the temperate zone is posed by factors accelerating their eutrophication and causing marked deoxygenation of the deeper layers of water, mainly the hypo- and metalimnion. Among their effects are frequent phytoplankton blooms, including those of blue-green algae, and general deterioration of water quality also affecting the abundance and health status of fish. The chief concern is a disturbed proportion between the amount of complex chemical compounds, especially organic, and the oxygen content of lake waters. Natural processes of water oxygenation are not too intensive, because they are practically limited to the epilimnion layer, connected as they are with the activity of aquatic plants of the littoral and sublittoral zone (which tends to disappear in contaminated lakes) and wind energy (the effect of waving). In summer conditions, with a relatively great chemical activity of bottom deposits, the intensity of those processes is usually inadequate. Hence, in 1995 a research was launched in the Institute of Agricultural Engineering of the Agricultural University in Poznań on an integrated lake restoration technology whose core was a self-powered aerator capable of oxygenating also the bottom layers of water (the hypolimnion) of deep lakes. The aerator uses energy obtained from a Savonius rotor mainly to diffuse gases: to release hydrogen sulphide, which usually saturates the hypolimnion water completely, and then to saturate this water with oxygen. Even early studies showed the constructed device to be highly efficient in improving oxygen conditions in the bottom zone. They also made it clear that it should be equipped with an autonomous system designed to inactivate phosphorus, one of the principal factors determining the rate of lake degradation. In 2003 the first wind-driven pulverising aerator equipped with such a system was installed in Town Lake in Chodzież. The aim of this work is to present the principles of operation of a

  6. Modelling and test of aeration tank settling (ATS)

    DEFF Research Database (Denmark)

    Nielsen, M. K.; Bechmann, H.; Henze, Mogens

    2000-01-01

    that a qualitatively correct model can be established. The simplicity of the model allows for on-line identification of the necessary parameters, so that no maintenance is needed to use of the on-line model for control. The practical implementation on three plants indicates that implementation of STAR with ATS control......The use of aeration tank settling during high hydraulic loads on large wastewater treatment plants has previously been demonstrated as a reliable technique and proven valuable. The paper proposes a simplified deterministic model to predict the efficiency of the method. It is shown...

  7. Study of fetal lung volume using virtual organ computer aided analytical technique%三维超声体积自动测量技术对胎儿肺体积的研究

    Institute of Scientific and Technical Information of China (English)

    陈骊珠; 王晓光; 蔡爱露; 王冰

    2012-01-01

    Objective: To evaluate the correlation between fetal lung volumes and gestational age, and estimated fetal weight, and to evaluate the potential diagnostic value of ultrasound fetal lung to body weight ratio (UFLB) in fetal pulmonary hypoplasia (PH). Methods: The fetal lung volumes were assessed in 315 normal fetuses and 28 fetuses with high risk of PH using the technique of virtual organ computer-aided analysis (VOCAL). The relationships between the lung volumes and gestational age, and fetal weight were assessed by correlation and regression analysis. The value of UFLB in the diagnosis of fetal PH was acquired by compared with the postnatal findings. Results: Fetal lung volumes were highly correlated with gestational age(r=0.93,P<0.05), and with fetal weight(r=0.97,P<0.05). The sensitivity, specificity, positive and negative predictive values of UFLB in diagnosing fetal PH was 89.47%, 85.71%, 94.44% and 75.00%, respectively, and the accuracy was 88.46%. Conclusion: In normal fetuses, fetal lung volumes increase with gestational age and fetal weight. UFLB may be useful in the prenatal diagnosis of fetal PH.%目的:探讨正常孕中晚期胎儿肺体积随孕周、胎儿体重的变化规律,以及超声肺重比(UFLB)对胎儿肺发育不良(PH)的诊断价值.方法:超声检查315例正常胎儿和28例PH高危胎儿,应用三维超声体积自动测量(VOCAL)技术测量胎儿肺体积,采用二维超声测得的生物参数经Hadlock方程系统获得胎儿质量,计算得到胎儿UFLB,随访胎儿产后及引产结果,并与产前诊断结果作对照.结果:正常胎儿肺体积与胎儿质量(r=0.97,P<0.05)的相关性高于胎儿肺体积与孕周(r=0.93,P<0.05)的相关性.28例PH高危胎儿中,2例因羊水过少未能获得满意的三维图像,PH高危胎儿应用VOCAL技术获得肺体积的成功率为92.90%.在成功获得肺体积的26例胎儿中,应用UFLB诊断胎儿PH的敏感度为89.47%,特异度为85.71%,阳性预测值为94.44

  8. Galvanic corrosion of nitinol under deaerated and aerated conditions.

    Science.gov (United States)

    Pound, Bruce G

    2016-10-01

    Various studies have examined the corrosion rate of nitinol generally under deaerated conditions. Likewise, galvanic corrosion studies have typically involved deaerated solutions. This work addressed the effect of galvanic coupling on the corrosion current of electropolished nitinol in phosphate buffered saline and 0.9% sodium chloride under dearated and aerated conditions for times up to 24 h. Tests were performed on nitinol alone and coupled with MP35N in both the mechanically polished and passivated conditions. Aeration and galvanic coupling were found to have relatively little effect, indicating that the corrosion current is controlled by the anodic reaction. The current can be attributed entirely to Ni(2+) dissolution, which appears to be governed by solid-state mass transport of Ni(2+) through the passive oxide film. Because corrosion of EP nitinol is controlled by the anodic reaction, contact between EP nitinol and MP35N or other biomedical Co-Cr alloys is unlikely to result in significant galvanic effects in vivo. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1322-1327, 2016.

  9. The Potential of Extended Aeration System for Sago Effluent Treatment

    Directory of Open Access Journals (Sweden)

    Wahi A. Rashid

    2010-01-01

    Full Text Available Problem statement: Sago effluent contains large amount of organic material which has a potential to cause water pollution. In order to reduce this problem, an experiment was conducted to remove organic material from sago effluent using lab scale of Extended Aeration (EA system. Approach: The EA system consisted of the combination of physical and biological treatment unit. For Physical Treatment Unit (PTU, the sago effluent was filtered using 710 µm mesh size filter. For Biological Treatment Unit (BTU, the effluent were mixed and aerated with activated sago sludge for 48 h. The treatment efficiency with respect to Biological Oxygen Demand (BOD, Chemical Oxygen Demand (COD and Total Suspended Solid (TSS removal were evaluated and compared with regulatory requirement by Department of Environment, Malaysia. Results: The result showed, the EA system could reduce BOD, COD and TSS up to 84, 87.8 and 73% respectively, however it did not comply with the regulatory requirement. Conclusion: This study suggested the EA system have potential to be apply on sago effluent, however it should be integrated with additional treatment unit to achieve the effluent quality standard.

  10. The use of bottle caps as submerged aerated filter medium.

    Science.gov (United States)

    Damasceno de Oliveira, Laurence; Motlagh, Amir Mohaghegh; Goel, Ramesh; de Souza Missagia, Beatriz; Alves de Abreu Filho, Benício; Lautenschlager, Sandro Rogério

    2014-01-01

    In this study, a submerged aerated filter (SAF) using bottle caps as a support medium was evaluated. The system was fed with effluent from an upflow anaerobic sludge blanket system at ETE 2-South wastewater treatment plant, under different volumetric organic load rates (VOLRs). The population of a particular nitrifying microbial community was assessed by fluorescent in situ hybridization with specific oligonucleotide probes. The system showed an average removal of chemical oxygen demand (COD) equal to 76% for VOLRs between 2.6 and 13.6 kg COD m(-3)_media.day(-1). The process of nitrification in conjunction with the removal of organic matter was observed from applying VOLRs lower than 5.5 kg COD m(-3)_media.day(-1) resulting in 78% conversion of NH4(+)-N. As the applied organic load was reduced, an increase in the nitrifying bacteria population was observed compared with total 4'-6-diamidino-2-phenylindole (DAPI) stained cells. Generally, SAF using bottle caps as a biological aerated filter medium treating wastewater from an anaerobic system showed promising removal of chemical oxygen demand (COD) and conversion of NH4(+)-N.

  11. Water quality and bacteriology in an aquaculture facility equipped with a new aeration system

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, S.O.; Kulkarni, S.S.; Shirodkar, R.R.; Karekar, S.V.; PraveenKumar, R.; Sreepada, R.A.; Vogelsang, C.; LokaBharathi, P.A.

    l sup(-1). Non-aerated conditions promoted denitrification maintaining nitrate concentration between 0.32 and 0.98 Mu M NO sub(3) sup(-) - N l sup(-1). However, a marked increase in ammonium content was observed in the non-aerated pond at the end...

  12. Surfactant effects on alpha factors in full-scale wastewater aeration systems.

    Science.gov (United States)

    Rosso, D; Larson, L E; Stenstrom, M K

    2006-01-01

    Aeration is an essential process in the majority of wastewater treatment processes, and accounts for the largest fraction of plant energy costs. Aeration systems can achieve wastewater oxygenation by shearing the surface (surface aerators) or releasing bubbles at the bottom of the tank (coarse- or fine-bubble aerators). Surfactants accumulate on gas-liquid interfaces and reduce mass transfer rates. This reduction in general is larger for fine-bubble aerators. This study was conducted to evaluate mass transfer effects on the characterization and specification of aeration systems in clean and process water conditions. Tests at different interfacial turbulence regimes were analysed, showing higher gas transfer depression for lower turbulence regimes. Higher turbulence regimes can offset contamination effects, at the expense of operating efficiency. This phenomenon is characteristic of surface aerators and coarse bubble diffusers and is here discussed. The results explain the variability of alpha factors measured at small scale, due to uncontrolled energy density. Results are also reported in dimensionless empirical correlations that describe mass transfer as a function of physiochemical and geometrical characteristics of the aeration process.

  13. Effect of new aeration technology on the bacteriology of shrimp ponds growing Penaeus monodon

    Digital Repository Service at National Institute of Oceanography (India)

    Karekar, S.V.; Sreepada, R.A.; Shirodkar, R.R.; Kulkarni, S.; Kumar, P.; LokaBharathi, P.A.; Bergheim, A.; Vogelsang, C.

    , particularly the disease causing bacteria in response to aeration during the cultivation of tiger shrimp, Penaeus monodon. In HOBAS aerated pond (P1) showed more stable DO levels and the pond sediment was healthier with no visual black sulphur deposits. However...

  14. 40 CFR 265.278 - Unsaturated zone (zone of aeration) monitoring.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Unsaturated zone (zone of aeration) monitoring. 265.278 Section 265.278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED..., STORAGE, AND DISPOSAL FACILITIES Land Treatment § 265.278 Unsaturated zone (zone of aeration)...

  15. Sequentially aerated membrane biofilm reactors for autotrophic nitrogen removal: microbial community composition and dynamics

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Franck, Stephanie; Gülay, Arda;

    2014-01-01

    Membrane-aerated biofilm reactors performing autotrophic nitrogen removal can be successfully applied to treat concentrated nitrogen streams. However, their process performance is seriously hampered by the growth of nitrite oxidizing bacteria (NOB). In this work we document how sequential aeration...

  16. Evaluation of re-aeration equations for river Ghataprabha, Karnataka, India and development of refined equation.

    Science.gov (United States)

    Kalburgi, P B; Jha, R; Ojha, C S P; Deshannavar, U B

    2015-01-01

    Stream re-aeration is an extremely important component to enhance the self-purification capacity of streams. To estimate the dissolved oxygen (DO) present in the river, estimation of re-aeration coefficient is mandatory. Normally, the re-aeration coefficient is expressed as a function of several stream variables, such as mean stream velocity, shear stress velocity, bed slope, flow depth and Froude number. Many empirical equations have been developed in the last years. In this work, 13 most popular empirical re-aeration equations, used for re-aeration prediction, have been tested for their applicability in Ghataprabha River system, Karnataka, India, at various locations. Extensive field data were collected during the period March 2008 to February 2009 from seven different sites located in the river to observe re-aeration coefficient using mass balance approach. The performance of re-aeration equations have been evaluated using various error estimations, namely, the standard error (SE), mean multiplicative error (MME), normalized mean error (NME) and correlation statistics. The results show that the predictive equation developed by Jha et al. (Refinement of predictive re-aeration equations for a typical Indian river. Hydrological Process. 2001;15(6):1047-1060), for a typical Indian river, yielded the best agreement with the values of SE, MME, NME and correlation coefficient r. Furthermore, a refined predictive equation has been developed for river Ghataprabha using least-squares algorithm that minimizes the error estimates.

  17. Experimental investigations of aeration efficiency in high-head gated circular conduits.

    Science.gov (United States)

    Cihat Tuna, M; Ozkan, Fahri; Baylar, Ahmet

    2014-01-01

    The primary purpose of water aeration is to increase the oxygen saturation of the water. This can be achieved by using hydraulic structures because of substantial air bubble entrainment at these structures. Closed conduit aeration is a particular instance of this. While there has been a great deal of research on air-demand ratio within closed conduit, very little research has specifically addressed aeration efficiency of closed conduit. In the present work an experimental study was conducted to investigate the aeration efficiency of high-head gated circular conduits. Results showed that high-head gated circular conduits were effective for oxygen transfer. The effects of Froude number and ratio of the water cross-sectional flow area to the conduit cross-sectional area on aeration efficiency were particularly significant, whereas the effect of conduit length was only moderate. Further, a design formula for the aeration efficiency was presented relating the aeration efficiency to ratio of water cross-sectional flow area to conduit cross-sectional area and Froude number. The obtained results will be useful in future modeling processes and aid the practicing engineer in predicting aeration efficiency for design purposes.

  18. EXPERIMENTAL STUDY ON A NEW TYPE OF AERATOR IN SPILLWAY WITH LOW FROUDE NUMBER AND MILD SLOPE FLOW

    Institute of Scientific and Technical Information of China (English)

    SU Pei-lan; LIAO Hua-sheng; QIU Yue; LI Chen-juan

    2009-01-01

    Experimental study on aeration characteristics of various aeration devices was conducted in the spillway tunnel of the Pubugou hydropower project, Sichuan Province, China. It is shown by comparison that the new type of aeration device, namely, the aerator with a trapezoidal-shaped slot and a steep-slope section(ATSS), can avoid water accumulation in the cavity of the aeration device in the project, thus can effectively solve the backwater problems arising from this project and be used for a wide range of different water levels, without any drain facilities. Above the water level of 840 m, the water contained in the cavity can be eliminated completely, which means that the recommended new type of aerator can meet the aeration demands in the spillway of the project with low Froude number and may be of practical significance and of interest to other projects with similar types of aeration devices.

  19. Automated lung segmentation of low resolution CT scans of rats

    Science.gov (United States)

    Rizzo, Benjamin M.; Haworth, Steven T.; Clough, Anne V.

    2014-03-01

    Dual modality micro-CT and SPECT imaging can play an important role in preclinical studies designed to investigate mechanisms, progression, and therapies for acute lung injury in rats. SPECT imaging involves examining the uptake of radiopharmaceuticals within the lung, with the hypothesis that uptake is sensitive to the health or disease status of the lung tissue. Methods of quantifying lung uptake and comparison of right and left lung uptake generally begin with identifying and segmenting the lung region within the 3D reconstructed SPECT volume. However, identification of the lung boundaries and the fissure between the left and right lung is not always possible from the SPECT images directly since the radiopharmaceutical may be taken up by other surrounding tissues. Thus, our SPECT protocol begins with a fast CT scan, the lung boundaries are identified from the CT volume, and the CT region is coregistered with the SPECT volume to obtain the SPECT lung region. Segmenting rat lungs within the CT volume is particularly challenging due to the relatively low resolution of the images and the rat's unique anatomy. Thus, we have developed an automated segmentation algorithm for low resolution micro-CT scans that utilizes depth maps to detect fissures on the surface of the lung volume. The fissure's surface location is in turn used to interpolate the fissure throughout the lung volume. Results indicate that the segmentation method results in left and right lung regions consistent with rat lung anatomy.

  20. EXPERIMENTAL INVESTIGATION ON SOUND SPEED PROPAGATING THROUGH HIGH SPEED AERATED FLOW IN OPEN CHANNEL

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    An experiment concerning the sound propaga-tion in aerated open channel flow was designed and conductedin a variable slope chute. The acquisition of sound data wasdone by the hydro-phones installed into the bottom wall of thechute. The data were analyzed and processed by the tape re-corder and a 3562A analyzer. The primary experimetal resultsindicated that the sound speed in aerated flow is varied with the air concentration and highly lower than each of the soundspeed in pure water or air. As released by the derived theoryformula, the minimum sound of 24m/s in aerated flow hap-pened when the air concentration achieved to 50%. This resultshows that the compressibility of high speed aerated flowshould be considered when the air concentration is near to50%. A criterion of compressibility of high speed aerated flowwas also giv. En in this paper.

  1. Effects of intermittent aeration on pollutants removal in subsurface wastewater infiltration system.

    Science.gov (United States)

    Pan, Jing; Fei, Hexin; Song, Siyu; Yuan, Fang; Yu, Long

    2015-09-01

    In this study, the pollutant removal performances in two pilot-scale subsurface wastewater infiltration systems (SWISs) with and without intermittent aeration were investigated. Matrix oxidation reduction potential (ORP) results showed that intermittent aeration well developed aerobic conditions in upper matrix and anoxic or anaerobic conditions in the subsequent sections, which resulted in high NH4(+)-N and TN removal. Moreover, intermittent aeration increased removal rates of COD and TP. Microbial populations and enzyme activities analysis proved that intermittent aeration not only obviously boosted the growth and reproduction of bacteria, fungus, actinomyces, nitrifying bacteria and denitrifying bacteria, but also successfully increased nitrate reductase (NR) and nitrite reductase (NIR) in the depth of 80 and 110 cm. The results suggest that the intermittent aeration could be a widespread research and application strategy for achieving the high removal performance in SWISs.

  2. Nitrous oxide emissions from an intermittent aeration activated sludge system of an urban wastewater treatment plant

    Directory of Open Access Journals (Sweden)

    William Z. de Mello

    2013-01-01

    Full Text Available This study investigated the emission of N2O during the sequential aerated (60-min and non-aerated (30-min stages of an intermittent aeration cycle in an activated sludge wastewater treatment plant (WWTP. N2O emission occurred during both stages; however, emission was much higher during aeration. Air stripping is the major factor controlling transfer of N2O from the sewage to the atmosphere. The N2O emissions exclusively from the aeration tank represented 0.10% of the influent total nitrogen load and the per capita emission factor was almost 3 times higher than that suggested by the IPCC for inventories of N2O emission from WWTPs.

  3. Effect of high volume mechanical ventilation on radiation-induced lung toxicity in rats%机械通气对大鼠照射后肺组织及细胞凋亡的影响

    Institute of Scientific and Technical Information of China (English)

    金胜; 陈军; 叶繁; 冯丹

    2015-01-01

    Objective To evaluate the effects of mechanical ventilation on radiation induced lung injuries of apoptosis,acute inflammation,and oxidative stress by establishing a rat mechanical ventilation model and animal model.Methods Totally 40 male Sprague-Dawley(SD) rats were randomly divided into 4 groups with 10 rats in each group:control,radiation alone,high tidal volume ventilation,and high tidal volume ventilation following by radiation.After treatment,the pathological changes in lung tissue were observed,NF-κB activity was detected by electrophoretic mobility shift assay (EMSA),the expression of NF-κB subunit P65 protein level in lung cell nucleus was detected by Western blot,and the apoptosis of lung cells was detected by terminal dexynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) method.The wet to dry weight ratio (W/D) of lung,myeloperoxidase (MPO),malondialdehyde (MDA) and superoxide dismutase (SOD) were detected.In addition,the total protein and white blood cell number in lung lavage fluid were also measured.Results Compared to the control,the acute lung injury (ALI) score,W/D ratio,MPO activity,total protein level,white blood cell number,apoptosis index (AI),lung tissue MDA,NF-κB activity and P65 protein expression were increased significantly (q =0.000 32-0.004 81,P <0.05),while SOD values was decreased significantly (q =0.000 18-0.002 53,P <0.01),in other three groups.Compared with radiation and high tidal volume ventilation group,the above indexes were significantly higher (q =0.004 3-0.022 6,P < 0.05) but the SOD value was significantly lower (q =0.002 9-0.008 3,P < 0.05) than those in the high tidal volume ventilation plus radiation group.Conclusions High tidal volume ventilation delivered to the radiation group produced more transparent ventilator-induced lung injury (VILI) than the high tidal volume ventilation alone induced VILI including permeable pulmonary edema,acute inflammation,oxidative stress and apoptosis in

  4. [Optimization and comparison of nitrogen and phosphorus removal by different aeration modes in oxidation ditch].

    Science.gov (United States)

    Guo, Chang-Zi; Peng, Dang-Cong; Cheng, Xue-Mei; Wang, Dan

    2012-03-01

    The oxidation ditch operation mode was simulated by sequencing batch reactor (SBR) system with alternate stirring and aeration. The nitrogen and phosphorus removal efficiencies were investigated in two different aeration modes: point aeration and step aeration. Experimental results show that oxygen is dissolved more efficiently in point aeration mode with a longer aerobic region in the same air supply capacity, but dissolved oxygen (DO) utilization efficiency for nitrogen and phosphorus removal is high in step aeration mode. Nitrification abilities of the two modes are equal with ammonia-nitrogen (NH4(+) -N) removal efficiency of 96.68% and 97.03%, respectively. Nitrifier activities are 4.65 and 4.66 mg x (g x h)(-1) respectively. When the ratio of anoxic zones and the aerobic zones were 1, the total nitrogen (TN) removal efficiency of point aeration mode in 2, 4 or 7 partitions was respectively 60.14%, 47.93% and 33.7%. The total phosphorus (TP) removal efficiency was respectively 28.96%, 23.75% and 24.31%. The less the partitions, the higher the nitrogen and phosphorus removal efficiencies, but it is in more favor of TN removal. As for step aeration mode with only one partitioning zone, the TN and TP removal efficiencies are respectively 64.21% and 49.09%, which is better than in point aeration mode, but more conducive to the improvement of TP removal efficiency. Under the condition of sufficient nitrification in step aeration mode, the nitrogen and phosphorus removal is better with the increase of anoxic zone. The removal efficiencies of TN and TP respectively rose to 73.94% and 54.18% when the ratio of anoxic zones and the aerobic zones was increased from 1 : 1 to 1. 8 : 1. As the proportion of anoxic zones was enlarged further, nitrification and operation stability were weakened so as to affect the nitrogen and phosphorus removal efficiencies.

  5. Magnetic resonance (MR) imaging for tumor staging and definition of tumor volumes on radiation treatment planning in nonsmall cell lung cancer: A prospective radiographic cohort study of single center clinical outcome.

    Science.gov (United States)

    Zhao, Dan; Hu, Qiaoqiao; Qi, Liping; Wang, Juan; Wu, Hao; Zhu, Guangying; Yu, Huiming

    2017-02-01

    We investigate the impact of magnetic resonance (MR) on the staging and radiotherapy planning for patients with nonsmall cell lung cancer (NSCLC).A total of 24 patients with NSCLC underwent MRI, which was fused with radiotherapy planning CT using rigid registration. Gross tumor volume (GTV) was delineated not only according to CT image alone (GTVCT), but also based on both CT and MR image (GTVCT/MR). For each patient, 2 conformal treatment plans were made according to GTVCT and GTVCT/MR, respectively. Dose-volume histograms (DVH) for lesion and normal organs were generated using both GTVCT and GTVCT/MR treatment plans. All patients were irradiated according to GTVCT/MR plan.Median volume of the GTVCT/MR and GTVCT were 105.42 cm and 124.45 cm, respectively, and the mean value of GTVCT/MR was significantly smaller than that of GTVCT (145.71 ± 145.04 vs 174.30 ± 150.34, P definition of tumor volume, reduces organs at risk dose and does not increase the local recurrence rate.

  6. Patterns of Local-Regional Failure in Completely Resected Stage IIIA(N2) Non-Small Cell Lung Cancer Cases: Implications for Postoperative Radiation Therapy Clinical Target Volume Design

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Wen [Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai (China); Fu, Xiao-Long, E-mail: xlfu1964@hotmail.com [Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai (China); Cai, Xu-Wei; Yang, Huan-Jun; Wu, Kai-Liang; Fan, Min [Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai (China); Xiang, Jia-Qing; Zhang, Ya-Wei; Chen, Hai-Quan [Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai (China)

    2014-04-01

    Purpose: To analyze patterns of local-regional failure (LRF) for completely resected stage IIIA(N2) non-small cell lung cancer (NSCLC) patients treated in our hospital and to propose a clinical target volume (CTV) for postoperative radiation therapy (PORT) in these patients. Methods and Materials: From 2005 to 2011, consecutive patients with pT1-3N2 NSCLC who underwent complete resection in our hospital but who did not receive PORT were identified. The patterns of first LRF were assessed and evaluated as to whether these areas would be encompassed by our proposed PORT CTV. Results: With a median follow-up of 24 months, 173 of 250 patients (69.2%) experienced disease recurrence. Of the 54 patients with LRF as the first event, 48 (89%) had recurrence within the proposed PORT CTV, and 6 (11%) had failures occurring both within and outside the proposed CTV (all of which occurred in patients with right-lung cancer). Ninety-three percent of failure sites (104 of 112) would have been contained within the proposed PORT CTV. For left-sided lung cancer, the most common lymph node station failure site was 4R, followed by 7, 4L, 6, 10L, and 5. For right-sided lung cancer, the most common site was station 2R, followed by 10R, 4R, and 7. Conclusions: LRF following complete surgery was an important and potentially preventable pattern of failure in stage IIIA(N2) patients. Ipsilateral superior mediastinal recurrences dominated for right-sided tumors, whereas left-sided tumors frequently involved the bilateral superior mediastinum. Most of the LRF sites would have been covered by the proposed PORT CTV. A prospective investigation of patterns of failure after PORT (following our proposed CTV delineation guideline) is presently underway and will be reported in a separate analysis.

  7. Spleen Volume Variation in Patients with Locally Advanced Non-Small Cell Lung Cancer Receiving Platinum-Based Chemo-Radiotherapy.

    Science.gov (United States)

    Wen, Shu Wen; Everitt, Sarah J; Bedő, Justin; Chabrot, Marine; Ball, David L; Solomon, Benjamin; MacManus, Michael; Hicks, Rodney J; Möller, Andreas; Leimgruber, Antoine

    2015-01-01

    There is renewed interest in the immune regulatory role of the spleen in oncology. To date, very few studies have examined macroscopic variations of splenic volume in the setting of cancer, prior to or during therapy, especially in humans. Changes in splenic volume may be associated with changes in splenic function. The purpose of this study was to investigate variations in spleen volume in NSCLC patients during chemo-radiotherapy. Sixty patients with stage I-IIIB NSCLC underwent radiotherapy (60 Gy/30 fractions) for six weeks with concomitant carboplatin/paclitaxel (Ca/P; n = 32) or cisplatin/etoposide (Ci/E; n = 28). A baseline PET/CT scan was performed within 2 weeks prior to treatment and during Weeks 2 and 4 of chemo-radiotherapy. Spleen volume was measured by contouring all CT slices. Significant macroscopic changes in splenic volume occurred early after the commencement of treatment. A significant decrease in spleen volume was observed for 66% of Ca/P and 79% of Ci/E patients between baseline and Week 2. Spleen volume was decreased by 14.2% for Ca/P (pspleen volume was still significantly decreased for Ca/P patients compared to baseline, while for Ci/E patients, spleen volume returned to above baseline levels. This is the first report demonstrating macroscopic changes in the spleen in NSCLC patients undergoing radical chemo-radiotherapy that can be visualized by non-invasive imaging.

  8. Time-Adjusted Internal Target Volume: A Novel Approach Focusing on Heterogeneity of Tumor Motion Based on 4-Dimensional Computed Tomography Imaging for Radiation Therapy Planning of Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Nishibuchi, Ikuno [Department of Radiation Oncology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima (Japan); Department of Radiation Oncology, Hiroshima Prefectural Hospital, Hiroshima (Japan); Kimura, Tomoki, E-mail: tkkimura@hiroshima-u.ac.jp [Department of Radiation Oncology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima (Japan); Nakashima, Takeo; Ochi, Yusuke [Division of Radiation Therapy, Hiroshima University Hospital, Hiroshima (Japan); Takahashi, Ippei; Doi, Yoshiko; Kenjo, Masahiro; Kaneyasu, Yuko; Ozawa, Syuichi; Murakami, Yuji [Department of Radiation Oncology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima (Japan); Wadasaki, Koichi [Department of Radiation Oncology, Hiroshima Prefectural Hospital, Hiroshima (Japan); Nagata, Yasushi [Department of Radiation Oncology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima (Japan)

    2014-08-01

    Purpose: To consider nonuniform tumor motion within the internal target volume (ITV) by defining time-adjusted ITV (TTV), a volume designed to include heterogeneity of tumor existence on the basis of 4-dimensional computed tomography (4D-CT). Methods and Materials: We evaluated 30 lung cancer patients. Breath-hold CT (BH-CT) and free-breathing 4D-CT scans were acquired for each patient. The tumors were manually delineated using a lung CT window setting (window, 1600 HU; level, −300 HU). Tumor in BH-CT images was defined as gross tumor volume (GTV), and the sum of tumors in 4D-CT images was defined as ITV-4D. The TTV images were generated from the 4D-CT datasets, and the tumor existence probability within ITV-4D was calculated. We calculated the TTV{sub 80} value, which is the percentage of the volume with a tumor existence probability that exceeded 80% on ITV-4D. Several factors that affected the TTV{sub 80} value, such as the ITV-4D/GTV ratio or tumor centroid deviation, were evaluated. Results: Time-adjusted ITV images were acquired for all patients, and tumor respiratory motion heterogeneity was visualized. The median (range) ITV-4D/GTV ratio and median tumor centroid deviation were 1.6 (1.0-4.1) and 6.3 mm (0.1-30.3 mm), respectively. The median TTV{sub 80} value was 43.3% (2.9-98.7%). Strong correlations were observed between the TTV{sub 80} value and the ITV-4D/GTV ratio (R=−0.71) and tumor centroid deviation (R=−0.72). The TTV images revealed the tumor motion pattern features within ITV. Conclusions: The TTV images reflected nonuniform tumor motion, and they revealed the tumor motion pattern features, suggesting that the TTV concept may facilitate various aspects of radiation therapy planning of lung cancer while incorporating respiratory motion in the future.

  9. Lung Injury After One-Lung Ventilation: A Review of the Pathophysiologic Mechanisms Affecting the Ventilated and the Collapsed Lung.

    Science.gov (United States)

    Lohser, Jens; Slinger, Peter

    2015-08-01

    Lung injury is the leading cause of death after thoracic surgery. Initially recognized after pneumonectomy, it has since been described after any period of 1-lung ventilation (OLV), even in the absence of lung resection. Overhydration and high tidal volumes were thought to be responsible at various points; however, it is now recognized that the pathophysiology is more complex and multifactorial. All causative mechanisms known to trigger ventilator-induced lung injury have been described in the OLV setting. The ventilated lung is exposed to high strain secondary to large, nonphysiologic tidal volumes and loss of the normal functional residual capacity. In addition, the ventilated lung experiences oxidative stress, as well as capillary shear stress because of hyperperfusion. Surgical manipulation and/or resection of the collapsed lung may induce lung injury. Re-expansion of the collapsed lung at the conclusion of OLV invariably induces duration-dependent, ischemia-reperfusion injury. Inflammatory cytokines are released in response to localized injury and may promote local and contralateral lung injury. Protective ventilation and volatile anesthesia lessen the degree of injury; however, increases in biochemical and histologic markers of lung injury appear unavoidable. The endothelial glycocalyx may represent a common pathway for lung injury creation during OLV, because it is damaged by most of the recognized lung injurious mechanisms. Experimental therapies to stabilize the endothelial glycocalyx may afford the ability to reduce lung injury in the future. In the interim, protective ventilation with tidal volumes of 4 to 5 mL/kg predicted body weight, positive end-expiratory pressure of 5 to 10 cm H2O, and routine lung recruitment should be used during OLV in an attempt to minimize harmful lung stress and strain. Additional strategies to reduce lung injury include routine volatile anesthesia and efforts to minimize OLV duration and hyperoxia.

  10. DOMESTIC WASTEWATER PURIFICATION IN UPFLOW BIOFILM SYSTEM WITH DIFFUSED AERATION

    Directory of Open Access Journals (Sweden)

    A.Mesdaghinia

    1984-08-01

    Full Text Available The objective of this research was to conduct a bench scale study of fixed activated sludge treating domestic sewage. Two different units employing diffused aeration with plastic and aluminum media were studied in four separate phases. Data indicated that the system could produce a high quality effluent without any requirements for sludge recycling through the system. Suspended solids concentrations of 3-6 mg/1, BOD5 concentrations of 4-12 mg/1 and COD concentrations of 35-45 mg/1 were found in the effluent with wastewater retentions ranging from 3-15 hours, whereas an indication of nitrification was observed in higher detention periods. As far as the type of media was concerned, the plastic and aluminum media did not differ significantly once the microbes had grown on the media.

  11. Thermal conductivity of newspaper sandwiched aerated lightweight concrete panel

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Soon-Ching; Low, Kaw-Sai [Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Genting Kelang, Setapak, 53300 Kuala Lumpur, Wilayah Persekutuan (Malaysia)

    2010-12-15

    Investigation on the thermal conductivity of newspaper sandwiched aerated lightweight concrete (ALC) panels is the main purpose of this study. Various densities of ALC panels ranging from 1700, 1400 and 1100 kg/m{sup 3} with three different aerial intensities of newspaper sandwiched were produced. Investigation was limited to the effect of aerial intensity of newspaper sandwiched and the effect of density of ALC on thermal conductivity. It is found that the thermal conductivity of newspaper sandwiched ALC panels reduced remarkably compared to control ALC panels. The reduction was recorded at 18.0%, 21.8% and 20.7% correspond to densities of 1700, 1400 and 1100 kg/m{sup 3} with just a mere 0.05 g/cm{sup 2} aerial intensity of newspaper sandwiched. Newspaper sandwiched has a significant impact on the performance of thermal conductivity of ALC panels based on regression analysis. (author)

  12. Nitrogen and phosphorus removal under intermittent aeration conditions

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A practice wastewater treatment plant was operated usingintermittent aeration activated sludge process to enhancebiological nitrogen and phosphorus removal. When the influentconcentrations of CODCr, BOD5, TN, TP, NH3-N, TKN, and SS varied ina range of 207.5-1640 mg/L, 61.8-637 mg/L, 28.5-75.6 mg/L, 4.38-20.2 mg/L, 13.6-31.9 mg/L, 28.5-75.6 mg/L, and 111-1208 mg/L, theeffluent means were less than 50 mg/L, 20 mg/L, 5 mg/L, 1.0 mg/L,5 mg/L, 10 mg/L, and 20 mg/L, respectively. Based on a long time ofoperating results, this process is very suitable for nutrientbiological removal for treating the municipal wastewater thosewater characteristics are similar as that of the Songjiang Municipal Waste water Treatment plant(SJMWTP).

  13. Structure, composition, and strength of nitrifying membrane-aerated biofilms

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Smets, Barth F.

    2014-01-01

    Membrane-aerated biofilm reactors (MABRs) are a novel technology based on the growth of biofilms on oxygen-permeable membranes. Hereby, MABRs combine all the advantages of biofilm growth with a more flexible and efficient control of the oxygen load. In the present work, flow cell operation...... to achieve full nitrification revealed a significantly different structure of nitrifying MABR biofilms with respect to its co-diffusion counterparts reported in the literature (up to now assumed to have similar properties). Different levels of shear stress and oxygen loadings during MABR operation also...... affected these biofilm parameters. Furthermore, reactor operation at higher oxygen loads resulted in an increase of the biofilm cohesiveness, which depended on the EPS mass in the biofilms and the type of stress applied (more cohesive against normal than shear stresses). The EPS in the strongest biofilms...

  14. Aeration-Controlled Formation of Acid in Heterolactic Fermentations

    DEFF Research Database (Denmark)

    Adler-Nissen, Jens

    1994-01-01

    Controlled aeration of Leuconostoc mesenteroides was studied as a possible mechanism for control of the formation of acetic acid, a metabolite of major influence on the taste of lactic fermented foods. Fermentations were carried out in small scale in a medium in which growth was limited...... by the buffer capacity only. Ethanol and acetic acid formed during the fermentation were analyzed by rapid head space gas chromatography, and the ratio of the molar concentrations of these two volatiles quantitatively predicted the balance between the formation of acetic acid and lactic acid. The oxygen...... fermentation processes should be analyzed as fed-batch fermentations with oxygen as the limiting substrate. Addition of fructose in limited amounts leads to the formation of one half mole of acetic acid for each mole fructose, thus offering an alternative mechanism for controlling acetic acid formation....

  15. Cracking in autoclaved aerated concrete: Experimental investigation and XFEM modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ferretti, D., E-mail: daniele.ferretti@unipr.it [Department of Civil, Environmental, Land Management Engineering and Architecture, University of Parma, P.co Area delle Scienze 181/A, 43124 Parma (Italy); Michelini, E. [Department of Civil, Environmental, Land Management Engineering and Architecture, University of Parma, P.co Area delle Scienze 181/A, 43124 Parma (Italy); Rosati, G. [Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza L. Da Vinci 32, 20133 Milano (Italy)

    2015-01-15

    The paper aims to investigate and model cracking development in beams and deep-beams made of autoclaved aerated concrete (AAC). Fracture mechanics of AAC has been first studied by performing three-point bending tests on beams, similar to those commonly used for ordinary concrete elements. In some of these tests, crack growth has been also monitored by using ESPI laser technique. In this way, it has been possible to calibrate the main parameters of a proper cohesive law by means of extended finite element inverse analysis. Subsequently, cracking tests have been also performed on deep-beams, whose behavior is more representative of full scale walls. To validate the proposed cohesive law, deep-beam experimental behavior has been finally simulated through XFEM.

  16. [Effects of substrate-aeration cultivation pattern on tomato growth].

    Science.gov (United States)

    Zhao, Xu; Li, Tian-Lai; Sun, Zhou-Ping

    2010-01-01

    Aeroponics can increase the fruit yield of tomato plant, but its cost is very high. In this paper, tomato seedlings were planted with three cultures, i. e., whole perlite culture (CK), perlite-aeration culture (T1), and aeroponics (T2), and a comparative study was made on the seedlings growth. Compared with CK, T1 improved the gas environment in root zone significantly, with the CO2 and O2 concentrations in root zone being 0.2 and 1.17 times higher, and increased the plant height and stem diameter after 60 days of transplanting by 5.1% and 8.4%, respectively. The plant net photosynthetic rate of T1 was significantly higher than that of CK, with the maximum value after transplanting 45 days increased by 13%. T1 also increased the root activity and ion absorbing ability significantly, with the root activity after transplanting 45 days being 1.23 times of CK, and the root K, Ca, and Mg contents after transplanting 60 days increased by 31%, 37%, and 27%, respectively. The fruit yield of T1 was 1.16 times of CK. No significant differences in these indices were observed between T1 and T2, and less difference in the fruit soluble sugar and organic acid contents as well as the sugar-acid ratio was found among CK, T1, and T2. It was suggested that perlite-aeration cultivation pattern was an easy and feasible way to markedly improve the fruit yield of tomato plant.

  17. Effects of loading rate and aeration on nitrogen removal and N2O emissions in intermittently aerated sequencing batch reactors treating slaughterhouse wastewater at 11 °C.

    Science.gov (United States)

    Pan, Min; Hu, Zhenhu; Liu, Rui; Zhan, Xinmin

    2015-04-01

    This study aimed to find optimal operation conditions for nitrogen removal from high strength slaughterhouse wastewater at 11 °C using the intermittently aerated sequencing batch reactors (IASBRs) so as to provide an engineering control strategy for the IASBR technology. Two operational parameters were examined: (1) loading rates and (2) aeration rates. Both the two parameters affected variation of DO concentrations in the IASBR operation cycles. It was found that to achieve efficient nitrogen removal via partial nitrification-denitrification (PND), "DO elbow" point must appear at the end of the last aeration period. There was a correlation between the ammonium oxidizing bacteria (AOB)/nitrite oxidizing bacteria (NOB) ratio and the average DO concentrations in the last aeration periods; when the average DO concentrations in the last aeration periods were lower than 4.86 mg/L, AOB became the dominant nitrifier population, which benefited nitrogen removal via PND. Both the nitrogen loading rate and the aeration rate influenced the population sizes of AOB and NOB. To accomplish efficient nitrogen removal via PND, the optimum aeration rate (A, L air/min) applied can be predicted according to the average organic loading rates based on mathematical equations developed in this study. The research shows that the amount of N2O generation in the aeration period was reduced with increasing the aeration rate; however, the highest N2O generation in the non-aeration period was observed at the optimum aeration rates.

  18. 21 CFR 868.2450 - Lung water monitor.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lung water monitor. 868.2450 Section 868.2450 Food... DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2450 Lung water monitor. (a) Identification. A lung water monitor is a device used to monitor the trend of fluid volume changes in a patient's lung...

  19. Influence of aeration intensity on mature aerobic granules in sequencing batch reactor.

    Science.gov (United States)

    Gao, Da-Wen; Liu, Lin; Liang, Hong

    2013-05-01

    Aeration intensity is well known as an important factor in the formation of aerobic granules. In this research, two identical lab-scale sequencing batch reactors with aeration intensity of 0.8 (R1) and 0.2 m(3)/h (R2) were operated to investigate the characteristics and kinetics of matured aerobic granules. Results showed that both aeration intensity conditions induced granulation, but they showed different effects on the characteristics of aerobic granules. Compared with the low aeration intensity (R2), the aerobic granules under the higher aeration intensity (R1) had better physical characteristics and settling ability. However, the observed biomass yield (Y obs) in R1 [0.673 kg mixed liquor volatile suspended solids (MLVSS)/kg chemical oxygen demand (COD)] was lower than R2 (0.749 kg MLVSS/kg COD). In addition, the maximum specific COD removal rates (q max) and apparent half rate constant (K) of mature aerobic granular sludge under the two aeration intensities were at a similar level. Therefore, the matured aerobic granule system does not require to be operated in a higher aeration intensity, which will reduce the energy consumption.

  20. Ammonia-based feedforward and feedback aeration control in activated sludge processes.

    Science.gov (United States)

    Rieger, Leiv; Jones, Richard M; Dold, Peter L; Bott, Charles B

    2014-01-01

    Aeration control at wastewater treatment plants based on ammonia as the controlled variable is applied for one of two reasons: (1) to reduce aeration costs, or (2) to reduce peaks in effluent ammonia. Aeration limitation has proven to result in significant energy savings, may reduce external carbon addition, and can improve denitrification and biological phosphorus (bio-P) performance. Ammonia control for limiting aeration has been based mainly on feedback control to constrain complete nitrification by maintaining approximately one to two milligrams of nitrogen per liter of ammonia in the effluent. Increased attention has been given to feedforward ammonia control, where aeration control is based on monitoring influent ammonia load. Typically, the intent is to anticipate the impact of sudden load changes, and thereby reduce effluent ammonia peaks. This paper evaluates the fundamentals of ammonia control with a primary focus on feedforward control concepts. A case study discussion is presented that reviews different ammonia-based control approaches. In most instances, feedback control meets the objectives for both aeration limitation and containment of effluent ammonia peaks. Feedforward control, applied specifically for switching aeration on or off in swing zones, can be beneficial when the plant encounters particularly unusual influent disturbances.

  1. Development of a model for activated sludge aeration systems: linking air supply, distribution, and demand.

    Science.gov (United States)

    Schraa, Oliver; Rieger, Leiv; Alex, Jens

    2017-02-01

    During the design of a water resource recovery facility, it is becoming industry practice to use simulation software to assist with process design. Aeration is one of the key components of the activated sludge process, and is one of the most important aspects of modelling wastewater treatment systems. However, aeration systems are typically not modelled in detail in most wastewater treatment process modelling studies. A comprehensive dynamic aeration system model has been developed that captures both air supply and demand. The model includes sub-models for blowers, pipes, fittings, and valves. An extended diffuser model predicts both oxygen transfer efficiency within an aeration basin and pressure drop across the diffusers. The aeration system model allows engineers to analyse aeration systems as a whole to determine biological air requirements, blower performance, air distribution, control valve impacts, controller design and tuning, and energy costs. This enables engineers to trouble-shoot the entire aeration system including process, equipment and controls. It also allows much more realistic design of these highly complex systems.

  2. Rapid Startup and Loading of an Attached Growth, Simultaneous Nitrification/Denitrification Membrane Aerated Bioreactor

    Science.gov (United States)

    Meyer, Caitlin; Vega, Leticia

    2014-01-01

    The Membrane Aerated Bioreactor (MABR) is an attached-growth biological system for simultaneous nitrification and denitrification. This design is an innovative approach to common terrestrial wastewater treatments for nitrogen and carbon removal. Implementing a biologically-based water treatment system for long-duration human exploration is an attractive, low energy alternative to physiochemical processes. Two obstacles to implementing such a system are (1) the "start-up" duration from inoculation to steady-state operations and (2) the amount of surface area needed for the biological activity to occur. The Advanced Water Recovery Systems (AWRS) team at JSC explored these two issues through two tests; a rapid inoculation study and a wastewater loading study. Results from these tests demonstrate that the duration from inoculation to steady state can be reduced to two weeks and that the surface area to volume ratio baseline used in the Alternative Water Processor (AWP) test was higher than what was needed to remove the organic carbon and ammonium from the system.

  3. EFFECT OF HYDRAULIC AND GEOMETRICAL PROPERTIES ON STEPPED CASCADE AERATION SYSTEM

    Directory of Open Access Journals (Sweden)

    VEDHACHALAM RATHINAKUMAR

    2017-03-01

    Full Text Available Stepped cascade aeration system is commonly used to aerate the water and wastewater to increase the dissolved oxygen during pre and post treatment process. In the present research, experiments were conducted to evaluate the performance of a rectangular Cascade Aeration System with varying flow rates, risers and tread by maintaining constant width of the channel using water collected from reverse osmosis plant. The experiments were carried out with four different risers such as 0.15 m, 0.18 m, 0.225 m and 0.30 m. Each rise was investigated with five different tread of 0.60 m, 0.55 m, 0.50 m, 0.45 m and 0.40 m. Comprehensive experimental investigations were carried out for different hydraulic loading rates of 0.005 to 0.035 m3/s/m2. Results obtained from the experiments reveals that increasing dimensionless discharges promotes more aeration, attains a maximum up to dimensionless discharge= 2.22 and beyond this there was a significant decrease in aeration. In addition, the increased in number of steps significantly enhances air entertainment and surface fall rate in the Stepped Cascade Aeration System. A regression equation was derived by keeping aeration efficiency as response with dimensionless discharge and oxygen saturation concentration as influencing parameters. The dimension less discharge is a function of critical depth of the rectangular channel and step height, whereas oxygen saturation concentration represents the ratio of oxygen deficit and oxygen saturation concentration. Based on the experimental results, the optimum design and/or results such as number of steps (12 numbers and hydraulic loading rate (0.025 m3/s/m2 with fixed tread width of 0.6 m were identified to achieve maximum aeration rate (0.5-0.60 in Aeration system.

  4. Design of high efficiency and energy saving aeration device for aquaculture

    Science.gov (United States)

    Liu, Sibo

    2017-03-01

    Energy efficient aeration device for aquaculture, in line with "by more than a generation, dynamic aeration" train of thought for technical design and improvement. Removable aeration terminal as the core, multi-level water to improve the method, the mobile fading pore aeration, intelligent mobile and open and close as the main function, aimed at solving the existing pond aeration efficiency, low energy consumption is high, the function of a single problem. From energy saving, efficiency, biological bacteria on the three directions, the aquaculture industry of energy conservation and emissions reduction. Device of the main advantages are: 1, original mobile fading aerator on the one hand, to expand the scope of work, playing a micro porous aeration of dissolved oxygen with high efficiency and to achieve "by more than a generation", on the other hand, through the sports equipment, stir the mixture of water, the water surface of photosynthesis of plants rich in dissolved oxygen input parts of the tank, compared to the stillness of the aerator can be more fully dissolved oxygen.2, through the opening of the pressure sensor indirect control device, can make the equipment timely and stop operation, convenient in use at the same time avoid the waste of energy.3, the biofilm suspension in aeration terminal, can be accomplished by nitration of microbial multi-level water improvement, still can make biofilm increase rate of netting in the movement process, the biological and mechanical aerobic promote each other, improve the efficiency of both. In addition, the device has small power consumption, low cost of characteristics. And have a certain degree of technical barriers, have their own intellectual property rights, and high degree of product market demand, easily accepted by customers, has a very high popularization value.

  5. Increased mean lung density: Another independent predictor of lung cancer?

    Energy Technology Data Exchange (ETDEWEB)

    Sverzellati, Nicola, E-mail: nicola.sverzellati@unipr.it [Department of Department of Surgical Sciences, Section of Diagnostic Imaging, University of Parma, Padiglione Barbieri, University Hospital of Parma, V. Gramsci 14, 43100 Parma (Italy); Randi, Giorgia, E-mail: giorgia.randi@marionegri.it [Department of Epidemiology, Mario Negri Institute, Via La Masa 19, 20156 Milan (Italy); Spagnolo, Paolo, E-mail: paolo.spagnolo@unimore.it [Respiratory Disease Unit, Center for Rare Lung Disease, Department of Oncology, Hematology and Respiratory Disease, University of Modena and Reggio Emilia, Via del Pozzo 71, 44124 Modena (Italy); Marchianò, Alfonso, E-mail: alfonso.marchiano@istitutotumori.mi.it [Department of Radiology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan (Italy); Silva, Mario, E-mail: mac.mario@hotmail.it [Department of Department of Surgical Sciences, Section of Diagnostic Imaging, University of Parma, Padiglione Barbieri, University Hospital of Parma, V. Gramsci 14, 43100 Parma (Italy); Kuhnigk, Jan-Martin, E-mail: Jan-Martin.Kuhnigk@mevis.fraunhofer.de [Fraunhofer MEVIS, Universitaetsallee 29, 28359 Bremen (Germany); La Vecchia, Carlo, E-mail: carlo.lavecchia@marionegri.it [Department of Occupational Health, University of Milan, Via Venezian 1, 20133 Milan (Italy); Zompatori, Maurizio, E-mail: maurizio.zompatori@unibo.it [Department of Radiology, Cardio-Thoracic Section, S. Orsola-Malpighi Hospital, Via Albertoni 15, 40138 Bologna (Italy); Pastorino, Ugo, E-mail: ugo.pastorino@istitutotumori.mi.it [Department of Surgery, Section of Thoracic Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan (Italy)

    2013-08-15

    Objectives: To investigate the relationship between emphysema phenotype, mean lung density (MLD), lung function and lung cancer by using an automated multiple feature analysis tool on thin-section computed tomography (CT) data. Methods: Both emphysema phenotype and MLD evaluated by automated quantitative CT analysis were compared between outpatients and screening participants with lung cancer (n = 119) and controls (n = 989). Emphysema phenotype was defined by assessing features such as extent, distribution on core/peel of the lung and hole size. Adjusted multiple logistic regression models were used to evaluate independent associations of CT densitometric measurements and pulmonary function test (PFT) with lung cancer risk. Results: No emphysema feature was associated with lung cancer. Lung cancer risk increased with decreasing values of forced expiratory volume in 1 s (FEV{sub 1}) independently of MLD (OR 5.37, 95% CI: 2.63–10.97 for FEV{sub 1} < 60% vs. FEV{sub 1} ≥ 90%), and with increasing MLD independently of FEV{sub 1} (OR 3.00, 95% CI: 1.60–5.63 for MLD > −823 vs. MLD < −857 Hounsfield units). Conclusion: Emphysema per se was not associated with lung cancer whereas decreased FEV{sub 1} was confirmed as being a strong and independent risk factor. The cross-sectional association between increased MLD and lung cancer requires future validations.

  6. Treatment Wetland Aeration without Electricity? Lessons Learned from the First Experiment Using a Wind-Driven Air Pump

    Directory of Open Access Journals (Sweden)

    Johannes Boog

    2016-11-01

    Full Text Available Aerated treatment wetlands have become an increasingly recognized technology for treating wastewaters from domestic and various industrial origins. To date, treatment wetland aeration is provided by air pumps which require access to the energy grid. The requirement for electricity increases the ecological footprint of an aerated wetland and limits the application of this technology to areas with centralized electrical infrastructure. Wind power offers another possibility as a driver for wetland aeration, but its use for this purpose has not yet been investigated. This paper reports the first experimental trial using a simple wind-driven air pump to replace the conventional electric air blowers of an aerated horizontal subsurface flow wetland. The wind-driven air pump was connected to a two-year old horizontal flow aerated wetland which had been in continuous (24 h aeration since startup. The wind-driven aeration system functioned, however it was not specifically adapted to wetland aeration. As a result, treatment performance decreased compared to prior continuous aeration. Inconsistent wind speed at the site may have resulted in insufficient pressure within the aeration manifold, resulting in insufficient air supply to the wetland. This paper discusses the lessons learned during the experiment.

  7. Long-term Exposure to PM10 and NO2 in Association with Lung Volume and Airway Resistance in the MAAS Birth Cohort

    OpenAIRE

    2013-01-01

    Background: Findings from previous studies on the effects of air pollution exposure on lung function during childhood have been inconsistent. A common limitation has been the quality of exposure data used, and few studies have modeled exposure longitudinally throughout early life. Objectives: We sought to study the long-term effects of exposure to particulate matter with an aerodynamic diameter ≤ 10 μm (PM10) and to nitrogen dioxide (NO2) on specific airway resistance (sRaw) and forced expira...

  8. Aeration remediation of a polluted waterway increases near-surface coarse and culturable microbial aerosols.

    Science.gov (United States)

    Dueker, M Elias; O'Mullan, Gregory D

    2014-04-15

    Aeration remediation is currently used in polluted urban waterways to increase oxygen levels in the water column. Recent studies have provided increasing evidence that the bursting of bubbles at water surfaces introduced by aeration, or other surface disturbances, can transfer viable bacteria to the air. In heavily sewage-polluted waterways these water-originated bacterial aerosols may pose as a health risk to recreators in small boats or residents inhabiting the shoreline. Nonetheless, few studies have explored aerosols above active aeration remediation projects in waterways or investigated how bacterial aerosols change with vertical distance from aeration activities. This study, conducted at the Newtown Creek superfund site in Brooklyn, NY, USA, measured coarse aerosol particles and culturable bacteria in near-surface air above waters undergoing aeration remediation. Regardless of aeration operation culturable bacterial fallout was greater near-surface (0.6m above water) than previously-reported measurements made at 2.5m. Molecular analysis of the 16S rRNA gene sequences from isolated bacteria demonstrates that water and air shared a large number of bacterial genera and that the genera present in the near-surface aerosols (0.6m) contained water-associated Vibrio and Caulobacter, which were not present at 2.5m, despite the smaller sequence library size from the near-surface. Also, the near-surface microbial assemblage had significantly greater association with sequences detected previously in aquatic environments compared to the 2.5m library. We found compelling evidence that aeration activity contributed to this vertical gradient in bacterial aerosol concentrations and identity. Similar to results from 2.5m, concentrations of near-surface respirable coarse aerosols (aeration was occurring. Culturable bacterial aerosol fallout was also greater near-surface when the aerator was on compared to simultaneous measurements made at 2.5m. Furthermore, when the aerator was

  9. NUMERICAL SIMULATION OF 3-D AERATED JET BEHIND FLIP BUCKET OF OVERFLOW DAM

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Aerated jet,such as the jet flow behind the flip bucket of an overflow dam, widely exists in hydraulic engineering. Up to now the model test and prototype observation have been two main methods of studying the aerated jet for a special hydraulic project. In this paper, a three-dimensional mathematical model for the aerated jet was established. It seems that the suggested model has high predictive power by comparison with the results of model tests and prototype observations, which is very useful in the study of energy dissipation and jet flow atomization.

  10. AN INVESTIGATION OF FLOW CHARACTERISTIC OF AERATED DRAG REDUCTION IN TUBE

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Under the aerated conditions of wall and top intube, the turbulent flow in the tube was measured by usingLDA. The turbulent structure of the flow field and the mech-anism of aerating drag reduction in the tube were discussed. It is shown that the energy dissipations of turbulence flow andmean flow will reduce and the flow velocity (or flow rate) willincrease by injecting mini-bubbles to the wall or top of tube,namely the effect of aerating drag reduction is attained.

  11. Aeration effect on Spirulina platensis growth and γ-linolenic acid production

    OpenAIRE

    Srinivasa Reddy Ronda; Chandra Sekhar Bokka; Chandrika Ketineni; Binod Rijal; Prasada Rao Allu

    2012-01-01

    The influence of aeration on algal growth and gamma-linolenic acid (GLA) production in a bubble column photobioreactor was investigated. Studies were performed in a 20-L reactor at different aeration rates (0.2– 2.5 vvm). Static, continuous, and periodic operation of air resulted in 41.9%, 88.4%, and 108% air saturation of dissolved oxygen, for which the corresponding values of GLA were 2.3, 6.5, and 7.5 mg·g-1 dry cell weight, respectively. An increase in the aeration rate from 0.2 to 2.5 vv...

  12. Improving microalgal growth with reduced diameters of aeration bubbles and enhanced mass transfer of solution in an oscillating flow field.

    Science.gov (United States)

    Yang, Zongbo; Cheng, Jun; Lin, Richen; Zhou, Junhu; Cen, Kefa

    2016-07-01

    A novel oscillating gas aerator combined with an oscillating baffle was proposed to generate smaller aeration bubbles and enhance solution mass transfer, which can improve microalgal growth in a raceway pond. A high-speed photography system (HSP) was used to measure bubble diameter and generation time, and online precise dissolved oxygen probes and pH probes were used to measure mass-transfer coefficient and mixing time. Bubble diameter and generation time decreased with decreased aeration gas rate, decreased orifice diameter, and increased water velocity in the oscillating gas aerator. The optimized oscillating gas aerator decreased bubble diameter and generation time by 25% and 58%, respectively, compared with a horizontal tubular gas aerator. Using an oscillating gas aerator and an oscillating baffle in a raceway pond increased the solution mass-transfer coefficient by 15% and decreased mixing time by 32%; consequently, microalgal biomass yield increased by 19%.

  13. Enhanced long-term organics and nitrogen removal and associated microbial community in intermittently aerated subsurface flow constructed wetlands.

    Science.gov (United States)

    Fan, Jinlin; Zhang, Jian; Guo, Wenshan; Liang, Shuang; Wu, Haiming

    2016-08-01

    The long-term enhanced removal efficiency of organics and nitrogen in subsurface flow constructed wetlands (SSF CWs) with and without intermittent aeration for decentralized domestic wastewater was evaluated, and the function of intermittent aeration on microbial community was also investigated in this study. The high and long-term 95.6% COD, 96.1% NH4(+)-N and 85.8% TN removal efficiencies were achieved in experimental intermittently aerated SSF CW compared with non-aerated SSF CW. Aerated SSF CWs also exhibited the excellent removal performance when comparatively comparing with other strategies and techniques applied in CWs. In addition, fluorescence in situ hybridization (FISH) analysis revealed that associated microbial abundance significantly increased owing to intermittent aeration. These results indicated intermittent aeration CWs might be an effective and sustainable strategy for wastewater treatment in rural areas, but require further full-scale investigation in future.

  14. Simultaneous in vivo synchrotron radiation computed tomography of regional ventilation and blood volume in rabbit lung using combined K-edge and temporal subtraction

    Energy Technology Data Exchange (ETDEWEB)

    Suhonen, H [Department of Physical Sciences, University of Helsinki (Finland); Porra, L [Department of Physical Sciences, University of Helsinki (Finland); Bayat, S [Universite de Picardie Jules Verne, Faculte de Medecine, PERITOX (EA-INI RIS) and Cardiologie et Pneumo-Allerglogie Pediatriques, CHU Amiens (France); Sovijaervi, A R A [Department of Clinical Physiology and Nuclear Medicine, Helsinki University Central Hospital, Helsinki (Finland); Suortti, P [Department of Physical Sciences, University of Helsinki (Finland)

    2008-02-07

    In K-edge subtraction (KES) imaging with synchrotron radiation computed tomography (SRCT), two images are taken simultaneously using energies above and below the K-absorption edge of a contrast agent. A logarithmic difference image reveals the contrast agent concentration with good accuracy. Similarly, in temporal subtraction imaging (TSI) the reference image is taken before the introduction of the contrast agent. Quantitative comparisons of in vivo images of rabbit lung indicated that similar results for concentrations of iodine in blood vessels and xenon in airways are obtained by KES and TSI, but the level of noise and artifacts was higher in the latter. A linear fit showed that in the lung parenchyma {rho}{sub TSI} = (0.97 {+-} 0.03){rho}{sub KES} + (0.00 {+-} 0.05) for xenon and {rho}{sub TSI} = (1.21 {+-} 0.15){rho}{sub KES} + (0.0 {+-} 0.1) for iodine. For xenon the calculation of time constant of ventilation gave compatible values for both of the methods. The two methods are combined for the simultaneous determination of the xenon concentration (by KES) and the iodine concentration (by TSI) in lung imaging, which will allow simultaneous in vivo determination of ventilation and perfusion.

  15. 三维超声测量胎儿肺容积的准确性研究%Accuracy of Fetal Lung Volume Assessed by Three-dimensional Sonography

    Institute of Scientific and Technical Information of China (English)

    张波; 杨太珠

    2011-01-01

    Objective To assess the value of 3D ultrasound in fetal lung volume measurement using VOCAL technique,and to determine its accuracy and reproducibility.Methods Fetal lung volumes were measured using VOCAL technique in 14 cases with pulmonary hypoplasia and in 17 controls 1-3 days before termination.Postmortem autopsy was conducted within 6 hours after labor and the lung volume was achieved by water displacement.Results The correlation between measured volume and postmortem examination was significant,with correlation coefficient 0.80 in pathological cases and 0.96 in controls.The mean relative error, bias, 95% limits of agreement were, respectively,-2.31%, -0.19 cm3 and ( - 3.59-3.20) cm3 in cases with pulmonary hypoplasia and - 1.06%, - 0.37 cm3 and (-6.12-5.38) cm3 in controls.Good intraobserver and interobserver reproducibility were achieved, both in pathological cases and in controls.Conclusions Prenatal 3D ultrasound can estimate accurately fetal lung volume using VOCAL technique, both in normal and pathological situation ,which conduces to evaluation of its physiological development.%目的 探讨三维超声VOCAL技术在胎儿肺容积测量中的应用价值,并评价其准确性及重复性.方法 收集拟引产胎儿31例,其中病理组(有肺发育不良高危因素)14例,对照组(无肺发育不良高危因素)17例.引产前1~3 d应用VOCAL法分别测得胎儿左、右肺容积值,相加得到总肺容积,引产后6 h内对胎儿进行病理检查,应用水置换法得到其实际总肺容积.结果 (1)三维超声测值与病理检查结果间有良好的相关性,病理组与对照组的相关系数(r)分别为0.80及0.96(P均<0.01);(2)三维超声测量病理组胎肺容积的平均相对误差,偏倚及95%一致性界限分别为-2.31%、-0.19 cm3及(-3.59~3.20)cm3,而对照组分别为-1.06%、-0.37 cm3及(-6.12~5.38)cm3;(3)三维超声对病理组及对照组胎肺容积进行测量时的操作者内及操作者间变异较小,

  16. The aging lung

    Directory of Open Access Journals (Sweden)

    Lowery EM

    2013-11-01

    Full Text Available Erin M Lowery,1 Aleah L Brubaker,2 Erica Kuhlmann,1 Elizabeth J Kovacs31Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine at Loyola University Medical Center, 2Loyola University Stritch School of Medicine, 3Department of Surgery, Loyola University Medical Center, Maywood, IL, USAAbstract: There are many age-associated changes in the respiratory and pulmonary immune system. These changes include decreases in the volume of the thoracic cavity, reduced lung volumes, and alterations in the muscles that aid respiration. Muscle function on a cellular level in the aging population is less efficient. The elderly population has less pulmonary reserve, and cough strength is decreased in the elderly population due to anatomic changes and muscle atrophy. Clearance of particles from the lung through the mucociliary elevator is decreased and associated with ciliary dysfunction. Many complex changes in immunity with aging contribute to increased susceptibility to infections including a less robust immune response from both the innate and adaptive immune systems. Considering all of these age-related changes to the lungs, pulmonary disease has significant consequences for the aging population. Chronic lower respiratory tract disease is the third leading cause of death in people aged 65 years and older. With a large and growing aging population, it is critical to understand how the body changes with age and how this impacts the entire respiratory system. Understanding the aging process in the lung is necessary in order to provide optimal care to our aging population. This review focuses on the nonpathologic aging process in the lung, including structural changes, changes in muscle function, and pulmonary immunologic function, with special consideration of obstructive lung disease in the elderly.Keywords: aging, lung, pulmonary immunology, COPD

  17. THE INFLUENCE OF RECIPE COMPONENTS ON QUALITY PARAMETERS OF AERATED DOUGH AND WHOLEGRAIN BREAD FROM CHICKPEA SEEDS

    Directory of Open Access Journals (Sweden)

    G. O. Magomedov

    2015-01-01

    Full Text Available The article presents the results of studying the effect of using table salt, apple juice and citric acid on quality parameters of aerated dough and bread prepared by mechanical leavening. The wholegrain flour from chickpea seeds has been used to prepare dough. The amount of salt is in the range from 1 to 3 %, apple juice from 5 to 25%, citric acid 0.05 to 0.2 % over the weight of the flour. The working mechanism of recipe components on the process of foaming while kneading of the semi-finished products of chickpea flour has been identified. The increase of their amount leads to increase of active acidity of the test and brings the protein pH to isoelectric point. Thus increasing the foaming capacity of the albuminous substances while kneading the semis. It has been founded that the maximum foaming capacity of the semis is achieved at pH 5.5. At the same time a decrease in the bulk density of the dough and the increase in specific volume of the baked product. In this case, the samples are characterized by lower bulk density (0.32 g / cm3 , and maximum specific volume of finished product (365 cm3 / 100 g. The reasonable amount of components in the bread recipe: table salt 1.5 %, apple juice 5.0 %, citric acid 0.1 % over weight of flour has been recommended. The data obtained form the basis for the development of technology of aerated bread "Atreus" with higher nutritional and biological value. The degree of satisfaction of adult daily need of 100 g of the product is, %: protein 17, dietary fiber 39, magnesium 21, phosphorus 28, iron 30, potassium, thiamine and riboflavin 18. The product is recommended for mass consumption in order to enrich dietary intake with protein, dietary fiber. minerals and vitamins.

  18. Lung function

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    2005200 The effect of body position changes on lung function, lung CT imaging and pathology in an oleic acid induced acute lung injury model. JI Xin-ping (戢新平), et al. Dept Emergency, 1st Affili Hosp, China Med Univ, Shenyang 110001. Chin J Tuberc Respir Dis, 2005;28(1) :33-36. Objective: To study the effect of body position changes on lung mechanics, oxygenation, CT images and pathology in an oleic acid-induced acute lung injury (ALl) model. Methods: The study groups con-

  19. Micro-aeration for hydrogen sulfide removal from biogas

    Science.gov (United States)

    Duangmanee, Thanapong

    The presence of sulfur compounds (e.g. protein, sulfate, thiosulfate, sulfite, etc.) in the feed stream generates highly corrosive and odorous hydrogen sulfide during anaerobic digestion. The high sulfide level in the biogas stream is not only poisonous to many novel metal catalysts employed in thermo-catalytic processes but also reduces the quality of methane to produce renewable energy. This study used an innovative, low-maintenance, low-cost biological sulfide removal technology to remove sulfides simultaneously from both gas and liquid phase. ORP (Oxidation-Reduction-Potential) was used as the controlling parameter to precisely regulate air injection to the sulfide oxidizing unit (SOU). The microaeration technique provided just enough oxygen to partially oxidize sulfides to elemental sulfur without inhibiting methanogenesis. The SOU was equipped with a diffuser at the bottom for the dispersion of sulfide-laden biogas and injected air throughout the column. The SOU can be operated as a standalone unit or coupled with an anaerobic digester to simultaneously remove sulfide from the biogas and effluent. The integrated system was capable of reducing hydrogen sulfide in biogas from 2,450 to less than 2 ppmV with minimal sulfate production at the highest available sulfide loading rate of 0.24 kg/m3-day. More than 98% of sulfide removed was recovered as elemental sulfur. However, the standalone SOU was able to operate at high hydrogen sulfide loading of 1.46 kg/m 3-day at inlet sulfide concentration of 3000 ppmV and reduce the off-gas hydrogen sulfide concentrations to less than 10 ppmV. The experiment also revealed that the ORP controlled aeration was sensitive enough to prevent oxygen overdosing (dampening effect) during unexpected surges of aeration. Using generalized linear regression, a model predicting output H2S concentration based on input H2S concentrations, SOU medium heights, and biogas flow rates, was derived. With 95% confidence, output H2S concentration

  20. Lung-protective ventilation in neonatology.

    Science.gov (United States)

    van Kaam, Anton

    2011-01-01

    Ventilator-induced lung injury (VILI) is considered an important risk factor in the development of bronchopulmonary dysplasia (BPD) and is primarily caused by overdistension (volutrauma) and repetitive opening and collapse (atelectrauma) of terminal lung units. Lung-protective ventilation should therefore aim to reduce tidal volumes, and recruit and stabilize atelectatic lung units (open lung ventilation strategy). This review will summarize the available evidence on lung-protective ventilation in neonatology, discussing both high-frequency ventilation (HFV) and positive pressure ventilation (PPV). It shows that HFV does not appear to have a clear benefit over PPV, although most studies failed to apply a true open lung ventilation strategy during HFV. The evidence on the optimal tidal volume, positive end-expiratory pressure and the role for lung recruitment during lung-protective PPV is extremely limited. Volume-targeted ventilation seems to be a promising mode in terms of lung protection, but more studies are needed. Due to the lack of convincing evidence, lung-protective ventilation and modes seem to be implemented in daily clinical practice at a slow pace.

  1. Effects of impeller speed and aeration rate on flotation performance of sulphide ore

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The effects of aeration rate and impeller speed on the concentrate sulfur grade and recovery for batch flotation of a complex sulphide ore were investigated. The relationships between the water recovery and solid entrainment were discussed. It is found that the solid entrainment is linearly related to the water recovery regardless of aeration rate and impeller speed, and the higher sulfur recovery at the aeration rate of 2 and 4 L/min for the impeller speed of 1 500 r/min is considered to be the contribution of true flotation. Finally, the sulfur recovery flux is correlated with the bubble surface area flux based on the froth image at the different aeration rates and impeller speeds.

  2. The effect of aeration on the biotransformation of lignocellulosic wastes by white-rot fungi.

    Science.gov (United States)

    López, M J; Elorrieta, M A; Vargas-García, M C; Suárez-Estrella, F; Moreno, J

    2002-01-01

    The mineralisation and the humification of organic matter (OM) in sterile horticultural plant wastes inoculated with Coriolus versicolor or Phanerochaete flavido-alba was investigated under different aeration rates in order to determine their efficacy as potential inoculants for composting. The change in elemental composition, lignin content and OM fractions was analysed during a 90-day incubation. Both fungi degraded 30% of lignin at low aeration rates. Different aeration rates led to significant changes in OM mineralisation induced by C. versicolor, but did not have noticeable effect on P. flavido-alba activity. The mineralisation was more effectively carried out by P. flavido-alba than by C. versicolor. Lignin degradation and the linked humification process were equally achieved by the two fungi and were enhanced in aerated conditions. The fungi analysed may facilitate the composting of lignocellulosic wastes by means of an increase in substrate bioavailability and OM humification.

  3. Effects of Aerated Irrigation on Leaf Senescence at Late Growth Stage and Grain Yield of Rice

    Institute of Scientific and Technical Information of China (English)

    ZHU Lian-feng; Yu Sheng-miao; JIN Qian-yu

    2012-01-01

    With the japonica inbred cultivar Xiushui 09,indica hybrid combinations Guodao 6 and Liangyoupeijiu as materials,field experiments were conducted in 2007 and 2008 to study the effects of aerated irrigation on leaf senescence at late growth stage and grain yield of rice.The dissolved oxygen concentration of aerated water evidently increased and decreased at a slow rate.The soil oxidation-reduction potential under aerated irrigation treatment was significantly higher than that of the CK,contributing to significant increases in effective panicles,seed setting rate and grain yield.In addition,the aerated irrigation improved root function,increased superoxide dismutase activity and decreased malondialdehyde content in flag leaves at post-flowering,which delayed leaf senescence process,prolonged leaf functional activity and led to enhanced grain filling.

  4. Integral Parameters for Characterizing Water, Energy, and Aeration Properties of Soilless Plant Growth Media

    DEFF Research Database (Denmark)

    Deepagoda Thuduwe Kankanamge Kelum, Chamindu; Lopez, Jose Choc Chen; Møldrup, Per

    2013-01-01

    systems are regaining increased worldwide attention. The optimal control of water availability and aeration is an essential prerequisite to successfully operate plant growth systems with soilless substrates such as aggregated foamed glass, perlite, rockwool, coconut coir, or mixtures thereof. While...

  5. SONIC SPEED AND SHOCK WAVE IN HIGH VELOCITY AERATED FLOWS FROM HIGH HEAD DISCHARGE STRUCTURES

    Institute of Scientific and Technical Information of China (English)

    Dong Zhi-yong

    2003-01-01

    The compressible characteristics in aerated flows at the high velocity of about 50m/s were analyzed. Based on the theory of compressible the relations between the sonic speed and shock wave in high-velocity aerated flow were theoretically deduced. And comparisons with measured data were made. The theoretical and experimental results show the sonic speed in aerated flow is merely of the order of several-dozen meters per second, and its minimum value is only 20m/s, which is far much less than that in water or air alone. So high subsonic flow, supersonic flow and transonic flow as well as compression wave, shock wave and expansion wave similarly to aerodnamics may be produced in high velocity aerated flow at the speed of the order of 50m/s. Hence the influences of these compressible characteristics on high head discharge structures can not be neglected, especially on super high dams over 200m high.

  6. Fluctuant characteristics of two-phase flow behind a bottom aerator

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Experimental observations show that the random process of two-phase flow behind an aerator is an ergodic process and its amplitude distribution is similar to a normal distribution. The maximum pressure fluctuation is at the re-attachment point where the jet-trajectory flow over the aerator re-attaches to the bottom of the channel, and its amplitude is 2—3 times larger than when there is no aerator. There is a dominant frequency of 1.24 Hz in the model, but the coherence in the frequency domain is not obvious for other frequencies beside the dominant frequency. There is a large vortex at the re-attachment point behind the aerator but correlation among the measurement points is not obvious in the time domain.

  7. Nitrate-removal activity of a biofilm attached to a perlite carrier under continuous aeration conditions.

    Science.gov (United States)

    Yamashita, Takahiro; Yokoyama, Hiroshi; Kanafusa, Sumiyo; Ogino, Akifumi; Ishida, Mitsuyoshi; Osada, Takashi; Tanaka, Yasuo

    2011-01-01

    The nitrate-removal activity of a biofilm attached to a perlite carrier from an aerobic bioreactor used for treating dairy farm wastewater was examined by batch experiments under continuous aeration conditions. Despite aeration, the biofilm removed nitrate at a rate of 114.4 mg-N/kg-perlite/h from wastewater containing cow milk and manure. In a clone library analysis of the biofilm, bacteria showing high similarity to the denitrifying bacteria Thauera spp. were detected.

  8. Aerated lagooning of agro-industrial wastewater: depuration performance and energy requirements

    Directory of Open Access Journals (Sweden)

    Serafina Andiloro

    2013-09-01

    Full Text Available Intensive depuration plants have often shown low reliability and economic sustainability, when utilised for agro-industrial wastewater treatment, due to the particular wastewater properties: high organic load and essential oil concentrations, acidity, nutrient scarcity and qualitative-quantitative variability of effluents. Aerated lagooning systems represent a suitable alternative, because they are able to assure good reliability and low energy requirements, avoiding the drawbacks shown by the intensive depuration plants. In order to optimize performance of the lagooning systems, particularly in terms of energy requirements, depuration processes of aerobic-anaerobic aerated lagoons were investigated, both at full- and laboratory-scale. Citrus processing wastewater were subject to bubble aeration with low flow rates and limited time; the removal rate of organic load was evaluated and energy requirements of different depuration schemes were compared. The experimental investigations in full-scale aerated lagoons showed a low energy supply (0.21-0.59 kWh per kg of COD (Chemical Oxygen Demand removed with an average value of 0.45 kWh kgCOD –1, an adequate equalisation capability and constantly good depurative performance also with high concentrations of essential oil (500-1000 ppm. The experimental investigations in lab-scale aerated tanks under controlled conditions indicated the possibility of decreasing energy requirements (down to 0.16 kWh kgCOD –1 by reducing aeration power (down to 0.6 W m–3 and limiting aeration time to night 12 hours only, when energy price is lower. In spite of the low aeration, the COD removal rates were on the average six-fold higher compared to the anaerobic tank. Other outcomes indicated an ability of the spontaneous microflora to adapt to high concentrations of essential oils, which however did not provide an increase of the removal rate of the organic load in the experimented scheme.

  9. Hyperpolarized 3He apparent diffusion coefficient MRI of the lung: reproducibility and volume dependency in healthy volunteers and patients with emphysema

    DEFF Research Database (Denmark)

    Diaz, S.; Casselbrant, I.; Piitulainen, E.;

    2008-01-01

    PURPOSE: To measure the apparent diffusion coefficient (ADC) of hyperpolarized (HP) (3)He gas using diffusion weighted MRI in healthy volunteers and patients with emphysema and examine the reproducibility and volume dependency. MATERIALS AND METHODS: A total of eight healthy volunteers and 16...... days was good in both healthy volunteers and patients (SD range of 0.003-0.013 cm(2)/second and 0.001-0.009 cm(2)/second at 6% and 15% of TLC for healthy volunteers, and a SD range of 0.001-0.041 cm(2)/second and 0.001-0.011 cm(2)/second, respectively, for patients). A minor but significant increase...... in mean ADC with increased inhaled gas volume was observed in both groups. CONCLUSION: Mean ADC and SD of HP (3)He MRI is reproducible and discriminates well between healthy controls and patients with emphysema at the higher gas volume. This method is robust and may be useful to gain new insights...

  10. Aeration effect on Spirulina platensis growth and γ-Linolenic acid production

    Science.gov (United States)

    Ronda, Srinivasa Reddy; Bokka, Chandra Sekhar; Ketineni, Chandrika; Rijal, Binod; Allu, Prasada Rao

    2012-01-01

    The influence of aeration on algal growth and gamma-linolenic acid (GLA) production in a bubble column photobioreactor was investigated. Studies were performed in a 20-L reactor at different aeration rates (0.2– 2.5 vvm). Static, continuous, and periodic operation of air resulted in 41.9%, 88.4%, and 108% air saturation of dissolved oxygen, for which the corresponding values of GLA were 2.3, 6.5, and 7.5 mg·g-1 dry cell weight, respectively. An increase in the aeration rate from 0.2 to 2.5 vvm enhanced both the specific growth rate and GLA content under periodic sparging in the bicarbonate medium. With a 6-fold increase in the aeration rate, the GLA content of the alga increased by 69.64% (5.6–9.5 mg· g-1 dry cell weight). In addition, the total fatty acid (TFA) content in dry biomass increased from 2.22% to 4.41%, whereas the algae maintained a constant GLA to TFA ratio within the aeration rate tested. The dependence of GLA production on the aeration rate was explained by interrelating the GLA production rate with the specific growth rate using the Luedeking and Piret mixed growth model. PMID:24031799

  11. Aeration effect on Spirulina platensis growth and γ-linolenic acid production

    Directory of Open Access Journals (Sweden)

    Srinivasa Reddy Ronda

    2012-03-01

    Full Text Available The influence of aeration on algal growth and gamma-linolenic acid (GLA production in a bubble column photobioreactor was investigated. Studies were performed in a 20-L reactor at different aeration rates (0.2-2.5 vvm. Static, continuous, and periodic operation of air resulted in 41.9%, 88.4%, and 108% air saturation of dissolved oxygen, for which the corresponding values of GLA were 2.3, 6.5, and 7.5 mg·g-1 dry cell weight, respectively. An increase in the aeration rate from 0.2 to 2.5 vvm enhanced both the specific growth rate and GLA content under periodic sparging in the bicarbonate medium. With a 6-fold increase in the aeration rate, the GLA content of the alga increased by 69.64% (5.6-9.5 mg· g-1 dry cell weight. In addition, the total fatty acid (TFA content in dry biomass increased from 2.22% to 4.41%, whereas the algae maintained a constant GLA to TFA ratio within the aeration rate tested. The dependence of GLA production on the aeration rate was explained by interrelating the GLA production rate with the specific growth rate using the Luedeking and Piret mixed growth model.

  12. Aeration effect on Spirulina platensis growth and γ-Linolenic acid production.

    Science.gov (United States)

    Ronda, Srinivasa Reddy; Bokka, Chandra Sekhar; Ketineni, Chandrika; Rijal, Binod; Allu, Prasada Rao

    2012-01-01

    The influence of aeration on algal growth and gamma-linolenic acid (GLA) production in a bubble column photobioreactor was investigated. Studies were performed in a 20-L reactor at different aeration rates (0.2- 2.5 vvm). Static, continuous, and periodic operation of air resulted in 41.9%, 88.4%, and 108% air saturation of dissolved oxygen, for which the corresponding values of GLA were 2.3, 6.5, and 7.5 mg·g(-1) dry cell weight, respectively. An increase in the aeration rate from 0.2 to 2.5 vvm enhanced both the specific growth rate and GLA content under periodic sparging in the bicarbonate medium. With a 6-fold increase in the aeration rate, the GLA content of the alga increased by 69.64% (5.6-9.5 mg· g(-1) dry cell weight). In addition, the total fatty acid (TFA) content in dry biomass increased from 2.22% to 4.41%, whereas the algae maintained a constant GLA to TFA ratio within the aeration rate tested. The dependence of GLA production on the aeration rate was explained by interrelating the GLA production rate with the specific growth rate using the Luedeking and Piret mixed growth model.

  13. Scale-up criterion of power consumption for a surface aerator used in wastewater treatment tank

    Directory of Open Access Journals (Sweden)

    Hayder M. Issa

    2016-01-01

    Full Text Available The major part of operation costs in surface aeration basins or tanks is because of power requirements. Therefore, it is always necessary to find a dependable criterion for the predictive scale-up of power consumption measurements obtained at laboratory-scale surface aeration tanks to industrial-scale wastewater treatment surface aeration systems. A scale-up approach was proposed in this work for volumetric power consumption between geometrically similar laboratory-scale and industrial full-scale surface aeration tanks at an invariant Froude number Fr. Scale-up order between the laboratory and industrial sizes was 7.4. A mathematical correlation has been developed to estimate the volumetric power consumption and then compared with a model that already was investigated experimentally. Scale-up criterion involved the evaluation of three similarities; the geometrical, kinematic and dynamics. The scale-up basis that developed in this work led us to achieve a suitable scale-up criterion for volumetric power consumption in aeration tanks at matched surface flow condition. At matched Froude number Fr for the laboratory and industrial scales and at low and moderate turbine rotation speeds for surface aeration than 0.8 rps, complete predictions of volumetric power consumption have been achieved. The prediction by the existing previous model showed higher results than the actual values.

  14. Photosynthetic aeration in biological wastewater treatment using immobilized microalgae-bacteria symbiosis.

    Science.gov (United States)

    Praveen, Prashant; Loh, Kai-Chee

    2015-12-01

    Chlorella vulgaris encapsulated in alginate beads were added into a bioreactor treating synthetic wastewater using Pseudomonas putida. A symbiotic CO2/O2 gas exchange was established between the two microorganisms for photosynthetic aeration of wastewater. During batch operation, glucose removal efficiency in the bioreactor improved from 50% in 12 h without aeration to 100% in 6 h, when the bioreactor was aerated photosynthetically. During continuous operation, the bioreactor was operated at a low hydraulic retention time of 3.3 h at feed concentrations of 250 and 500 mg/L glucose. The removal efficiency at 500 mg/L increased from 73% without aeration to 100% in the presence of immobilized microalgae. The initial microalgae concentration was critical to achieve adequate aeration, and the removal rate increased with increasing microalgae concentration. The highest removal rate of 142 mg/L-h glucose was achieved at an initial microalgae concentration of 190 mg/L. Quantification of microalgae growth in the alginate beads indicated an exponential growth during symbiosis, indicating that the bioreactor performance was limited by oxygen production rates. Under symbiotic conditions, the chlorophyll content of the immobilized microalgae increased by more than 30%. These results indicate that immobilized microalgae in symbiosis with heterotrophic bacteria are promising in wastewater aeration.

  15. Laboratory study of nitrification, denitrification and anammox processes in membrane bioreactors considering periodic aeration.

    Science.gov (United States)

    Abbassi, Rouzbeh; Yadav, Asheesh Kumar; Huang, Shan; Jaffé, Peter R

    2014-09-01

    The possibility of using membrane bioreactors (MBRs) in simultaneous nitrification-anammox-denitrification (SNAD) by considering periodic aeration cycles was investigated. Two separate reactors were operated to investigate the effect of different anammox biomass in the presence of nitrifying and denitrifying biomass on the final nitrogen removal efficiency. The results illustrated that the reactor with higher anammox biomass was more robust to oxygen cycling. Around 98% Total Nitrogen (TN) and 83% Total Organic Carbon (TOC) removal efficiencies were observed by applying one hour aeration over a four-hour cycle. Decreasing the aeration time to 30, 15, and 2 min during a four-hour cycle affected the final TN removal efficiencies. However, the effect of decreasing aeration on the TN removal efficiencies in the reactor with higher anammox biomass was much lower compared to the regular reactor. The nitrous oxide (N2O) emission was a function of aeration as well, and was lower in the reactor with higher anammox biomass. The results of q-PCR analysis confirmed the simultaneous co-existence of nitrifiers, anammox, and denitrifiers in both of the reactors. To simulate the TN removal in these reactors as a function of the aeration time, a new model, based on first order reaction kinetics for both denitrification and anammox was developed and yielded a good agreement with the experimental observations.

  16. Improving arachidonic acid fermentation by Mortierella alpina through multistage temperature and aeration rate control in bioreactor.

    Science.gov (United States)

    Gao, Min-Jie; Wang, Cheng; Zheng, Zhi-Yong; Zhu, Li; Zhan, Xiao-Bei; Lin, Chi-Chung

    2016-05-18

    Effective production of arachidonic acid (ARA) using Mortierella alpina was conducted in a 30-L airlift bioreactor. Varying the aeration rate and temperature significantly influenced cell morphology, cell growth, and ARA production, while the optimal aeration rate and temperature for cell growth and product formation were quite different. As a result, a two-stage aeration rate control strategy was constructed based on monitoring of cell morphology and ARA production under various aeration rate control levels (0.6-1.8 vvm). Using this strategy, ARA yield reached 4.7 g/L, an increase of 38.2% compared with the control (constant aeration rate control at 1.0 vvm). Dynamic temperature-control strategy was implemented based on the fermentation performance at various temperatures (13-28°C), with ARA level in total cellular lipid increased by 37.1% comparing to a constant-temperature control (25°C). On that basis, the combinatorial fermentation strategy of two-stage aeration rate control and dynamic temperature control was applied and ARA production achieved the highest level of 5.8 g/L.

  17. Lung function; Lungenfunktion

    Energy Technology Data Exchange (ETDEWEB)

    Sorichter, S. [Universitaetsklinikum Freiburg, Abteilung Pneumologie, Freiburg (Germany)

    2009-08-15

    The term lung function is often restricted to the assessment of volume time curves measured at the mouth. Spirometry includes the assessment of lung volumes which can be mobilised with the corresponding flow-volume curves. In addition, lung volumes that can not be mobilised, such as the residual volume, or only partially as FRC and TLC can be measured by body plethysmography combined with the determination of the airway resistance. Body plethysmography allows the correct positioning of forced breathing manoeuvres on the volume-axis, e.g. before and after pharmacotherapy. Adding the CO single breath transfer factor (T{sub LCO}), which includes the measurement of the ventilated lung volume using He, enables a clear diagnosis of different obstructive, restrictive or mixed ventilatory defects with and without trapped air. Tests of reversibility and provocation, as well as the assessment of inspiratory mouth pressures (PI{sub max}, P{sub 0.1}) help to classify the underlying disorder and to clarify treatment strategies. For further information and to complete the diagnostic of disturbances of the ventilation, diffusion and/or perfusion (capillar-)arterial bloodgases at rest and under physical strain sometimes amended by ergospirometry are recommended. Ideally, lung function measurements are amended by radiological and nuclear medicine techniques. (orig.) [German] Unter dem Begriff Lungenfunktion wird die Bestimmung der Lungenvolumina am Mund verstanden. Dabei werden die mobilisierbaren Lungenvolumina mit den zugehoerigen Fluss-Volumen-Kurven mittels Spirometrie und Ganzkoerperplethysmographie (GKP) und die nicht (RV) und teilweise mobilisierbaren Lungenvolumina (FRC, TLC) einschliesslich der Atemwegswiderstaende bestimmt. Die GKP ermoeglicht zusaetzlich die korrekte (Volumenachsen-)Positionierung der forcierten Atemmanoever. Dieses erlaubt eine uebersichtlichere graphische Darstellung z. B. vor und nach der Applikation pharmakologisch wirksamer Substanzen. Wird die GKP

  18. Open lung biopsy

    Science.gov (United States)

    ... CT scan Disseminated tuberculosis Granulomatosis with polyangiitis Lung cancer - small cell Lung disease Lung needle biopsy Malignant mesothelioma Pulmonary tuberculosis Rheumatoid lung disease Sarcoidosis Simple pulmonary eosinophilia ...

  19. Atrazine Removal from Aqueous Solutions using Submerged Biological Aerated Filter

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Baghapour

    2013-06-01

    Full Text Available Atrazine is widely used in the agriculture as an herbicide. Due to its high mobility, Atrazine leaks into the groundwaters, surface waters, and drinking water wells. Many physical and chemical methods have been suggested for removing Atrazine from aquatic environments. However, these methods are very costly, have many performance problems, produce a lot of toxic intermediates which are very harmful and dangerous, and cannot completely mineralize Atrazine. In this study, biodegradation of Atrazine by microbial consortium was evaluated in the aquatic environment. In order to assess the Atrazine removal from the aquatic environment, submerged biological aerated filter (SBAF was fed with synthetic wastewater based on sucrose and Atrazine at different hydraulic retention times (HRTs. The maximum efficiencies for Atrazine and Soluble Chemical Oxygen Demand (SCOD removal were 97.9% and 98.9%, respectively. The study findings showed that Stover-Kincannon model had very good fitness (R2 > 99% in loading Atrazine in the biofilter and by increasing the initial concentration of Atrazine, the removal efficiency increased. Aerobic mixed biofilm culture was observed to be suitable for the treatment of Atrazine from aquatic environment. There was no significant inhibition effect on mixed aerobic microbial consortia. Atrazine degradation depended on the strength of wastewater and the amount of Atrazine in the influent

  20. Removal of pharmaceuticals in aerated biofilters with manganese feeding.

    Science.gov (United States)

    Zhang, Yongjun; Zhu, Hong; Szewzyk, Ulrich; Geissen, Sven Uwe

    2015-04-01

    A tertiary treatment step is required in current wastewater treatment plants to remove trace pollutants and thus to prevent their extensive occurrence in the aquatic environment. In this study, natural MnOx ore and natural zeolite were separately used to pack two lab-scale aerated biofilters, which were operated in approximately 1.5 years for the removal of frequently occurring pharmaceuticals, including carbamazepine (CBZ), diclofenac (DFC), and sulfamethoxazole (SMX), out of synthetic and real secondary effluents. Mn(2+) was added in the feeds to promote the growth of iron/manganese oxidizing bacteria which were recently found to be capable of degrading recalcitrant pollutants. An effective removal (80-90%) of DFC and SMX was observed in both biofilters after adaptation while a significant removal of CBZ was not found. Both biofilters also achieved an effective removal of spiked Mn(2+), but a limited removal of carbon and nitrogen contents. Additionally, MnOx biofilter removed 50% of UV254 from real secondary effluent, indicating a high potential on the removal of aromatic compounds.

  1. Evaluation of sequential aerated treatment of wastewater from hardboard mill

    Directory of Open Access Journals (Sweden)

    S. Videla

    1998-01-01

    Full Text Available Wastewater from a hardboard mill characterized by a high organic content (15-30 g/L COD was studied in a bench scale sequential aerated system in order to define a start up strategy. Inlet COD concentration varied from 0.5 to 25 g/L and the hydraulic retention time was maintained at 5 days. The sequential system proposed could reduce BOD, COD, TSS and phenol over 90% except when the inlet COD concentration was lower than 25 g/L.Água residual proveniente de uma indústria de tabuleiro de fibra dura caracterizada por ter um elevado conteúdo orgânico (15-30 g/L DQO foi estudada utilizando um sistema arejado seqüêncial de forma a definir uma estratégia de start up. A concentração de DQO na entrada do sistema variou na faixa de 0,5-25 g/L e o tempo de residência hidráulico foi mantido em 5 dias. O sistema seqüêncial proposto reduziu DBO, DQO, SST e fenol sobre 90% quando a concentração de DQO na entrada foi menor a 25 g/L.

  2. Fate of Pathogen Indicators During Extended Aeration Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Norshuhaila Mohamed Sunar

    2015-05-01

    Full Text Available Pathogen indicators normally used in water quality indicator because large numbers of the bacteria are always present in the faeces of humans, but are not naturally found in water. Since these bacteria don’t live long in water once outside the intestine, their presence in water means there has been recent contamination through effluent discharges or other sources. Like other enteric pathogens, a common mode of transmission for E.coli is via contaminated water, food and by direct person to person contact. Infection often causes severe bloody diarrhea, abdominal cramps, and possibly fever.  In some cases, infection can lead to kidney failure and possibly death. In order to evaluate the effieciency of extended aeration wastewater treatment plant (EAWWTP, the microbial analyses such as enumeration of E.coli and total coliform were measured. Besides, this study also involved the measurements of pH, turbidity, DO (Dissolve Oxygen, BOD (Biochemical Oxygen Demand, COD (Chemical Oxygen Demand and TSS (Total Suspended Solid. This study summarized that each treatment process provides important roles to overall effieciency of EAWWTP. The secondary treatment was proved sufficient not only on reducing pathogen indicators but for all examined parameters. Significantly, this study conclude that numbers of pathogen indicators discharges in effluent meet the regulated standard guideline after treated through the EAWWTP.

  3. Influence of forced air volume on water evaporation during sewage sludge bio-drying.

    Science.gov (United States)

    Cai, Lu; Chen, Tong-Bin; Gao, Ding; Zheng, Guo-Di; Liu, Hong-Tao; Pan, Tian-Hao

    2013-09-01

    Mechanical aeration is critical to sewage sludge bio-drying, and the actual water loss caused by aeration can be better understood from investigations of the relationship between aeration and water evaporation from the sewage sludge bio-drying pile based on in situ measurements. This study was conducted to investigate the effects of forced air volume on the evaporation of water from a sewage sludge bio-drying pile. Dewatered sewage sludge was bio-dried using control technology for bio-drying, during which time the temperature, superficial air velocity and water evaporation were measured and calculated. The results indicated that the peak air velocity and water evaporation occurred in the thermophilic phase and second temperature-increasing phase, with the highest values of 0.063 ± 0.027 m s(-1) and 28.9 kg ton(-1) matrix d(-1), respectively, being observed on day 4. Air velocity above the pile during aeration was 43-100% higher than when there was no aeration, and there was a significantly positive correlation between air volume and water evaporation from day 1 to 15. The order of daily means of water evaporation was thermophilic phase > second temperature-increasing phase > temperature-increasing phase > cooling phase. Forced aeration controlled the pile temperature and improved evaporation, making it the key factor influencing water loss during the process of sewage sludge bio-drying.

  4. IL-6、IL-8在不同潮气量单肺通气肺癌根治术中的表达%Effect of One-lung Ventilation of Different Tidal Volume on the Expressions of Interleukin-6 and Interleukin-8 in Lung Cancer Patients during Radical Operation

    Institute of Scientific and Technical Information of China (English)

    林飞; 潘灵辉; 钱卫; 黄宇; 杜学柯; 裴圣林

    2012-01-01

    目的 观察在肺癌根治术中不同潮气量(VT)的单肺通气(OLV)对血IL-6、IL-8表达的影响.方法 30例行肺癌根治术患者,用随机数字表法分为3组.行双腔支气管插管麻醉,术中单肺通气期间在保持分钟通气量不变的情况下,A组VT=10 ml/kg,呼吸频率(f)=12次/min,B组VT=8 ml/kg,f=15次/min,C组VT=6 ml/kg,f=20次/min.在OLV前(T1)、OLV后30 min(T2)、60 min(T3)、OLV结束前(T4)检测血IL-6、IL-8的表达.结果 3组在T2、T3、T4时点的IL-6、IL-8表达均明显高于T1(P<0.05),且随OLV时间延长而逐渐升高;OLV后随设定的潮气量减低,IL-6及IL-8表达逐渐降低; A组的IL-6、IL-8表达显著高于B、C组(P<0.05).结论 在单肺通气的肺癌根治术中,采用小潮气量的通气模式可减少肺内炎症反应.%Objective To study effect of one-lung ventilation( OLV ) of different tidal volume( VT ) on the expressions of serum interleukin-6( IL-6 ) and interleukin-8( IL-8 ) in lung cancer patients during radical operation. Methods Thirty lung cancer patients undergoing radical operation were enrolled in the study. All the patients received double-lumen endobronchial intubation anesthesia, and were randomly divided into three groups after one-lung ventilation during radical operation: Group A( VT = 10 ml/kg, respiratory frequency( f ) = 12/min ), Group B( VT = 8 ml/kg, f = 12/min ), Group C( VT =6 ml/kg,f = 12/min ). The expressions of serum IL-6,IL-8 were detected before OLV( T1 ),30 min after OLV ( T2 ),60 min after OLV ( T3 ),1 min before OLV ending( T4 ). Results Compared with T1 ,the expressions of IL-6,IL-8 on T2 ,T3 ,T4 significantly increased in three groups( P <0. 05 ),and the increase was in a time-dependent manner. The expressions of IL-6, IL-8 gradually decreased with VT reduction during OLV. The expressions of IL-6, IL-8 in Group A were significantly higher than those in Group B, C( P < 0. 05 ). Conclusion The ventilation mode of low tidal volume can reduce the pulmonary

  5. Interstitial lung disease

    Institute of Scientific and Technical Information of China (English)

    1993-01-01

    930124 The effect of glycosaminoglycans inthe genesis of pulmonary interstitial fibrosis.LIBaoyu(李保玉),et al.Dept Pathol,Jilin MedColl,132001.Chin J Tuberc & Respir Dis 1992;15(4):204-205.The pulmonary interstitial fibrosis was causedby injecting Bleomycin into mouse trachea.Afterthe injection,the volume of glycosaminoglycans(GAG)in bronchoalveolar lavage fluid and lungtissues was increased.The observation underhistochemical stain and electron microscopeshowed that the distribution of GAG in lung tis-sues was varied at different time after the injec-tion,and related to the volume of collagen pro-teins and the formation of pulmonary interstitialfibrosis.

  6. Late course shrinking gross tumor volume (GTV) and boost radiotherapy for a special left lung cancer patient whose right lung was resected: a case report%右肺全切患者左肺中心型肺癌后程缩野加量放疗后长期存活1例报道

    Institute of Scientific and Technical Information of China (English)

    Shaohui Cheng; Zhanzhao Fu; Tao Gu

    2012-01-01

    We reported a special case of a locally advanced squamous cell carcinoma of the left lung. Due to pulmonary tuberculosis, the patient had underwent a complete right-side pulmonary lobectomy 20 years ago. Left lung supports his life, he is unable to carry on an operation treatment, so he accepted radiotherapy. Firstly, we defined gross tumor volume (GTV1) by CT simulation location, three-dimensional conformal radiotherapy (3D-CRT) was used until tumor dose reached 50 Gy/25 f. Secondly, by repeating the planning CT scan, defined GTV2, continued to radiotherapy by 2.5 Gy/f until the dose was 65 Gy/31 f. Using the same method for third CT scan, defined GTV3, continued to radiotherapy by 3 Gy/f until the total dose was 74 Gy/34 f. After radiotherapy, the patient acquired complete response and he had no obvious side-effect of radiotherapy. There has been no recurrence for 5 years now.

  7. Experimental Study of High-speed Discharge Aeration Cavitation Alleviating for Chute of Overflow Dam in Hydropower Station%某水电站溢流坝陡槽高速泄流掺气减蚀试验研究

    Institute of Scientific and Technical Information of China (English)

    赵业彬; 徐艺绯; 骆少泽; 张陆陈

    2012-01-01

    为有效解决陡槽高速泄流情况下的空化空蚀问题,借鉴二滩水电站# 1泄洪洞掺气坎的修复经验,通过国内某溢流坝陡槽段大比尺模型试验,研究了底掺气设施有无加设侧掺气坎的掺气空腔长度、掺气浓度、通气量等参数与流速的关系.结果表明,泄水陡槽加设适宜的侧掺气坎后,未影响底空腔的长度,有助于形成稳定完整的底空腔和侧空腔,且使水体掺气浓度及通气量显著增加,不仅避免了陡槽侧墙空蚀的发生,还可加强过流底板的保护作用.%To effectively solve the problem of cavitation in the case of high-speed discharge chute and use the aerator repair experience of # 1 spillway tunnel of Ertan hydropower station for reference, the relationship between bottom aerator parameters of lateral aeration cavity length, air concentration, ventilation and velocity is studied with large-scale model test of overflow dam chute. The results show that the discharge chute added appropriate lateral aerator does not affect the bottom cavity length, contributes to the formation of stable complete bottom and lateral cavities, and significantly increa ses water body aeration concentration and ventilation volume. Thus, it avoids the occurrence of cavitation in chute side wall and strengthens the protection of the bottom of the chute.

  8. CAVITATION CHARACTERISTICS OF HIGH VELOCITY FLOW WITH AND WITHOUT AERATION ON THE ORDER OF 50 m/s

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Experimental study of cavitation characteristics with and without aeration was conducted at the flow velocity 50m/s in the non-circulating type water tunnel in the Hydraulics Laboratory at Zhejiang University of Technology. Variations of pressure and cavitation number with air concentration, pressure waveforms as well as cavitation erosion level of concrete specimen with and without aeration were obtained. The effects of cavitation control by aeration were analyzed.

  9. Reducing aeration energy consumption in a large-scale membrane bioreactor: Process simulation and engineering application.

    Science.gov (United States)

    Sun, Jianyu; Liang, Peng; Yan, Xiaoxu; Zuo, Kuichang; Xiao, Kang; Xia, Junlin; Qiu, Yong; Wu, Qing; Wu, Shijia; Huang, Xia; Qi, Meng; Wen, Xianghua

    2016-04-15

    Reducing the energy consumption of membrane bioreactors (MBRs) is highly important for their wider application in wastewater treatment engineering. Of particular significance is reducing aeration in aerobic tanks to reduce the overall energy consumption. This study proposed an in situ ammonia-N-based feedback control strategy for aeration in aerobic tanks; this was tested via model simulation and through a large-scale (50,000 m(3)/d) engineering application. A full-scale MBR model was developed based on the activated sludge model (ASM) and was calibrated to the actual MBR. The aeration control strategy took the form of a two-step cascaded proportion-integration (PI) feedback algorithm. Algorithmic parameters were optimized via model simulation. The strategy achieved real-time adjustment of aeration amounts based on feedback from effluent quality (i.e., ammonia-N). The effectiveness of the strategy was evaluated through both the model platform and the full-scale engineering application. In the former, the aeration flow rate was reduced by 15-20%. In the engineering application, the aeration flow rate was reduced by 20%, and overall specific energy consumption correspondingly reduced by 4% to 0.45 kWh/m(3)-effluent, using the present practice of regulating the angle of guide vanes of fixed-frequency blowers. Potential energy savings are expected to be higher for MBRs with variable-frequency blowers. This study indicated that the ammonia-N-based aeration control strategy holds promise for application in full-scale MBRs.

  10. Hydrolytic anaerobic reactor and aerated constructed wetland systems for municipal wastewater treatment - HIGHWET project.

    Science.gov (United States)

    Pascual, A; de la Varga, D; Arias, C A; Van Oirschot, D; Kilian, R; Álvarez, J A; Soto, M

    2017-01-01

    The HIGHWET project combines the hydrolytic up-flow sludge bed (HUSB) anaerobic digester and constructed wetlands (CWs) with forced aeration for decreasing the footprint and improving effluent quality. The HIGHWET plant in A Coruña (NW of Spain) treating municipal wastewater consists of a HUSB and four parallel subsurface horizontal flow (HF) CWs. HF1, HF2 and HF3 units are fitted with forced aeration, while the control HF4 is not aerated. All the HF units are provided with effluent recirculation, but different heights of gravel bed (0.8 m in HF1 and HF2, and 0.5 m in HF3 and HF4) are implemented. Besides, a tobermorite-enriched material was added in the HF2 unit in order to improve phosphorus removal. The HUSB 76-89% of total suspended solids (TSS) and about 40% of chemical oxygen demand (COD) and biological oxygen demand (BOD). Aerated HF units reached above 96% of TSS, COD and BOD at a surface loading rate of 29-47 g BOD5/m(2)·d. An aeration regime ranging from 5 h on/3 h off to 3 h on/5 h off was found to be adequate to optimize nitrogen removal, which ranged from 53% to 81%. Average removal rates of 3.4 ± 0.4 g total nitrogen (TN)/m(2)·d and 12.8 ± 3.7 g TN/m(3)·d were found in the aerated units, being 5.5 and 4.1 times higher than those of the non-aerated system. The tobermorite-enriched HF2 unit showed a distinct higher phosphate (60-67%) and total phosphorus (54%) removal.

  11. Numerical Simulations of Two-Phase Flow in a Self-Aerated Flotation Machine and Kinetics Modeling

    KAUST Repository

    Fayed, Hassan E.

    2015-03-30

    A new boundary condition treatment has been devised for two-phase flow numerical simulations in a self-aerated minerals flotation machine and applied to a Wemco 0.8 m3 pilot cell. Airflow rate is not specified a priori but is predicted by the simulations as well as power consumption. Time-dependent simulations of two-phase flow in flotation machines are essential to understanding flow behavior and physics in self-aerated machines such as the Wemco machines. In this paper, simulations have been conducted for three different uniform bubble sizes (db = 0.5, 0.7 and 1.0 mm) to study the effects of bubble size on air holdup and hydrodynamics in Wemco pilot cells. Moreover, a computational fluid dynamics (CFD)-based flotation model has been developed to predict the pulp recovery rate of minerals from a flotation cell for different bubble sizes, different particle sizes and particle size distribution. The model uses a first-order rate equation, where models for probabilities of collision, adhesion and stabilization and collisions frequency estimated by Zaitchik-2010 model are used for the calculation of rate constant. Spatial distributions of dissipation rate and air volume fraction (also called void fraction) determined by the two-phase simulations are the input for the flotation kinetics model. The average pulp recovery rate has been calculated locally for different uniform bubble and particle diameters. The CFD-based flotation kinetics model is also used to predict pulp recovery rate in the presence of particle size distribution. Particle number density pdf and the data generated for single particle size are used to compute the recovery rate for a specific mean particle diameter. Our computational model gives a figure of merit for the recovery rate of a flotation machine, and as such can be used to assess incremental design improvements as well as design of new machines.

  12. The Presence of Anti-p53 Antibodies in Sera Prior to Thoracic Surgery in Non Small Cell Lung Cancer Patients: Its Implications on Tumor Volume, Nodal Involvement, and Survival

    Directory of Open Access Journals (Sweden)

    Michael Bergqvist

    2003-07-01

    Full Text Available BACKGROUND: During recent years, a correlation between the presence of antibodies in sera against p53 and survival has been reported. The aim of the present study was to analyze anti-p53 antibodies in sera from patients with non small cell lung cancer (NSCLC prior to thoracic surgery and their correlation to survival, nodal involvement, and tumor volume. PATIENTS AND METHODS: Serum samples from 58 patients with NSCLC admitted to the Department of Pulmonary Medicine in Uppsala were collected between 1993 and 1995 and analyzed for the expression of anti-p53 antibodies. RESULTS: Antibodies against p53 were detected in 12 patients (21%. No association was found between increased levels of anti-p53 antibodies and tumor volume (P = .84. There was a numerical trend towards higher levels of anti-p53 antibodies in patients without nodal disease, when compared with patients with nodal involvement, although not statistically significant (P = .136. However, when patients with metastatic disease were included, statistically significantly lower levels of anti-p53 antibodies were demonstrated, in comparison to patients without any sign of nodal engagement or metastatic disease (P = .038. Anti-p53 antibodies and survival showed no correlation between increasing index levels of anti-p53 antibodies and survival (P = .18. Neither was a correlation found between using the cutoff (>1.1 described by the manufacturer and survival. CONCLUSION: The presence of anti-p53 antibodies was correlated neither to survival nor to tumor volume in the present study. However, patients with either nodal or metastatic disease had lower levels of anti-p53 antibodies in comparison to patients without signs of either nodal or metastatic disease. These issues are discussed.

  13. Analysis of Process Gases and Trace Contaminants in Membrane-Aerated Gaseous Effluent Streams.

    Science.gov (United States)

    Coutts, Janelle L.; Lunn, Griffin Michael; Meyer, Caitlin E.

    2015-01-01

    In membrane-aerated biofilm reactors (MABRs), hollow fibers are used to supply oxygen to the biofilms and bulk fluid. A pressure and concentration gradient between the inner volume of the fibers and the reactor reservoir drives oxygen mass transport across the fibers toward the bulk solution, providing the fiber-adhered biofilm with oxygen. Conversely, bacterial metabolic gases from the bulk liquid, as well as from the biofilm, move opposite to the flow of oxygen, entering the hollow fiber and out of the reactor. Metabolic gases are excellent indicators of biofilm vitality, and can aid in microbial identification. Certain gases can be indicative of system perturbations and control anomalies, or potentially unwanted biological processes occurring within the reactor. In confined environments, such as those found during spaceflight, it is important to understand what compounds are being stripped from the reactor and potentially released into the crew cabin to determine the appropriateness or the requirement for additional mitigation factors. Reactor effluent gas analysis focused on samples provided from Kennedy Space Center's sub-scale MABRs, as well as Johnson Space Center's full-scale MABRs, using infrared spectroscopy and gas chromatography techniques. Process gases, such as carbon dioxide, oxygen, nitrogen, nitrogen dioxide, and nitrous oxide, were quantified to monitor reactor operations. Solid Phase Microextraction (SPME) GC-MS analysis was used to identify trace volatile compounds. Compounds of interest were subsequently quantified. Reactor supply air was examined to establish target compound baseline concentrations. Concentration levels were compared to average ISS concentration values and/or Spacecraft Maximum Allowable Concentration (SMAC) levels where appropriate. Based on a review of to-date results, current trace contaminant control systems (TCCS) currently on board the ISS should be able to handle the added load from bioreactor systems without the need

  14. Effect of lung protection strategy on stroke volume variation in patients undergoing open-chest operation%肺保护策略对胸外科手术患者每搏量变异度的影响

    Institute of Scientific and Technical Information of China (English)

    陆珠凤; 葛圣金; 薛张纲; 邓小明

    2012-01-01

    目的 探讨肺保护策略对择期行胸外科手术患者每搏量变异度(SVV)的影响.方法 选择20例择期行开胸手术的患者,ASA分级Ⅰ~Ⅱ级,均无术前用药.研究患者清醒平卧位自主呼吸(T1)、清醒侧卧位自主呼吸(T2)、单纯全麻平卧位双肺通气(T3)、单纯全麻平卧位肺保护策略下单肺通气(T4)、单纯全麻侧卧位双肺通气(T5)、单纯全麻侧卧位肺保护策略下单肺通气(T6)、联合麻醉肺保护策略下单肺通气切皮时(T7)以及联合麻醉肺保护策略下单肺通气切开胸膜时(T8)的心率(HR)、平均动脉压(MAP)、SVV、心脏指数(CI)4个血流动力学指标的变化,以及SVV变化与HR、MAP、CI的相关性.4个指标数据组内采用单因素方差分析,根据方差齐性检验结果决定进一步统计学检验方案,4个数据组间采用Pearson相关分析.结果 单因素方差分析结果显示,T1~T8时间点SVV、HR变化差异无统计学意义(P>0.05),MAP、CI的变化差异有统计学意义(P<0.05);方差齐性LSD多重比较结果显示,SVV在T2时间点与T5时间点之间,CI在T1时间点与T3~T8时间点之间,CI在T2时间点与T4时间点、T6~T8时间点之间,MAP在T1时间点与T3~T4时间点、T6~T8时间点之间,MAP在T2时间点与T3~T4时间点、T6~T8时间点之间,MAP在T4时间点与T5时间点之间差异有统计学意义(P<0.05).相关分析结果显示SVV与CI呈负相关(r=-0.267,P=0.018).结论 术前无容量不足的患者体位改变(从仰卧位到侧卧位)对SVV和HR无显著影响;肺保护策略下单肺通气对SVV、HR、MAP和CI均无显著影响;麻醉因素可引起MAP和CI明显下降,且麻醉状态下被动翻身动作可引起MAP和CI升高,SVV变化与CI呈负相关,但相关性较弱.%Objective To investigate the effect of lung-protective ventilation mode on stroke volume variation (SVV) in patients receiving selected thoracotomy. Methods Twenty patients of the American

  15. Impact of post-infiltration soil aeration at different growth stages of sub-surface trickle-irrigated tomato plants

    Science.gov (United States)

    Li, Yuan; Jia, Zong-xia; Niu, Wen-Quan; Wang, Jing-wei

    2016-07-01

    Sensitivity to low rhizosphere soil aeration may change over time and therefore plant response may also depend on different growth stages of a crop. This study quantified effects of soil aeration during 5 different periods, on growth and yield of trickle-irrigated potted single tomato plants. Irrigation levels were 0.6 to 0.7 (low level) or 0.7 to 0.8 (high level) of total water holding capacity of the pots. Soil was aerated by injecting 2.5 l of air into each pot through the drip tubing immediately after irrigation. Fresh fruit yield, above ground plant dry weight, plant height, and leaf area index response to these treatments were measured. For all these 4 response variables, means of post-infiltration aeration between 58 to 85 days after sowing were 13.4, 43.5, 13.7, and 37.7% higher than those for the non-aerated pots, respectively. The results indicated that: post-infiltration soil aeration can positively impact the yield and growth of sub-surface trickle-irrigated potted tomato plants; positive effects on plant growth can be obtained with aeration during the whole growth period or with aeration for partial periods; positive growth effects of partial periods of aeration appears to persist and result in yield benefit.

  16. Optimizing aeration rates for minimizing membrane fouling and its effect on sludge characteristics in a moving bed membrane bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, Yousef, E-mail: yrahimi@ut.ac.ir [Department of Civil and Environmental Engineering, Graduate Faculty of Environment, University of Tehran, No. 25 Qods St., Enghelab Ave., Tehran (Iran, Islamic Republic of); Torabian, Ali, E-mail: atorabi@ut.ac.ir [Department of Civil and Environmental Engineering, Graduate Faculty of Environment, University of Tehran, No. 25 Qods St., Enghelab Ave., Tehran (Iran, Islamic Republic of); Mehrdadi, Naser, E-mail: mehrdadi@ut.ac.ir [Department of Civil and Environmental Engineering, Graduate Faculty of Environment, University of Tehran, No. 25 Qods St., Enghelab Ave., Tehran (Iran, Islamic Republic of); Habibi-Rezaie, Mehran, E-mail: mhabibi@khayam.ut.ac.ir [Department of Biotechnology, Faculty of Biology, College of Science, University of Tehran, No. 25 Qods St., Enghelab Ave., Tehran (Iran, Islamic Republic of); Pezeshk, Hamid, E-mail: pezeshk@khayam.ut.ac.ir [Department of Statistics, Faculty of Mathematics and Computer, College of Science, University of Tehran, No. 25 Qods St., Enghelab Ave., Tehran (Iran, Islamic Republic of); Nabi-Bidhendi, Gholam-Reza, E-mail: ghhendi@ut.ac.ir [Department of Civil and Environmental Engineering, Graduate Faculty of Environment, University of Tehran, No. 25 Qods St., Enghelab Ave., Tehran (Iran, Islamic Republic of)

    2011-02-28

    Research highlights: {yields} There is an optimum aeration rate in the MBMBR process compartments. {yields} Optimum aeration rate maximizes nutrients removal. {yields} Optimum aeration rate minimizes membrane fouling. {yields} Both aeration rates in MBBR and membrane compartment can affect on membrane permeability. - Abstract: In MBR processes, sufficient aeration is necessary to maintain sustainable flux and to retard membrane fouling. Membrane permeability, sludge characteristics, nutrient removal and biomass growth at various air flow rates in the membrane and moving bed biofilm reactor (MBBR) compartments were studied in a pilot plant. The highest nitrogen and phosphorous removal rates were found at MBBR aeration rates of 151 and 85 L h{sup -1} and a specific aeration demand per membrane area (SAD{sub m}) of 1.2 and 0.4m{sub air}{sup 3} m{sup -2} h{sup -1}, respectively. A linear correlation was found between the amount of attached biofilm and the nutrient removal rate. The aeration rate in the MBBR compartment and SAD{sub m} significantly influenced the sludge characteristics and membrane permeability. The optimum combination of the aeration rate in the MBBR compartment and SAD{sub m} were 151 L h{sup -1} and 0.8-1.2m{sub air}{sup 3}m{sub membrane}{sup -2} h{sup -1}, respectively.

  17. Effect of artificial aeration on the performance of vertical-flow constructed wetland treating heavily polluted river water

    Institute of Scientific and Technical Information of China (English)

    Huiyu Dong; Zhimin Qiang; Tinggang Li; Hui Jin; Weidong Chen

    2012-01-01

    Three lab-scale vertical-flow constructed wetlands (VFCWs),including the non-aerated (NA),intermittently aerated (IA) and continuously aerated (CA) ones,were operated at different hydraulic loading rates (HLRs) to evaluate the effect of artificial aeration on the treatment efficiency of heavily polluted river water.Results indicated that artificial aeration increased the dissolved oxygen (DO) concentrations in IA and CA,which significantly favored the removal of organic matter and NH4+-N.The DO grads caused by intermittent aeration formed aerobic and anoxic regions in IA and thus promoted the removal of total nitrogen (TN).Although the removal efficiencies of CODcr,NH4+-N and TN in the three VFCWs all decreased with an increase in HLR,artificial aeration enhanced the reactor resistance to the fluctuation of pollutant loadings.The maximal removal efficiencies of CODcr,NH4+-N and total phosphorus (TP) (i.e.,81%,87% and 37%,respectively) were observed in CA at 19 cm/day HLR,while the maximal TN removal (i.e.,57%) was achieved in IA.Although the improvement of artificial aeration on TP removal was limited,this study has demonstrated the feasibility of applying artificial aeration to VFCWs treating polluted eiver water,particularly at a high HLR.

  18. Glucose metabolism in Lactococcus lactis MG1363 under different aeration conditions: Requirement of acetate to sustain growth under microaerobic conditions

    DEFF Research Database (Denmark)

    Nordkvist, Mikkel; Jensen, N.B.S.; Villadsen, John

    2003-01-01

    Lactococcus lactis subsp. lactis MG1363 was grown in batch cultures on a defined medium with glucose as the energy source under different aeration conditions, namely, anaerobic conditions, aerobic conditions, and microaerobic conditions with a dissolved oxygen tension of 5% (when saturation...... with air was used as the reference). The maximum specific growth rate was high (0.78 to 0.91 h(-1)) under all aeration conditions but decreased with increasing aeration, and more than 90% of the glucose was converted to lactate. However, a shift in by-product formation was observed. Increasing aeration...

  19. Lung density

    DEFF Research Database (Denmark)

    Garnett, E S; Webber, C E; Coates, G

    1977-01-01

    breathing in the sitting position ranged from 0.25 to 0.37 g.cm-3. Subnormal values were found in patients with emphsema. In patients with pulmonary congestion and edema, lung density values ranged from 0.33 to 0.93 g.cm-3. The lung density measurement correlated well with the findings in chest radiographs...

  20. Lung Cancer

    Science.gov (United States)

    Lung cancer is one of the most common cancers in the world. It is a leading cause of cancer death in men and women in the United States. Cigarette smoking causes most lung cancers. The more cigarettes you smoke per day and ...

  1. Lung transplantation

    Science.gov (United States)

    Afonso, José Eduardo; Werebe, Eduardo de Campos; Carraro, Rafael Medeiros; Teixeira, Ricardo Henrique de Oliveira Braga; Fernandes, Lucas Matos; Abdalla, Luis Gustavo; Samano, Marcos Naoyuki; Pêgo-Fernandes, Paulo Manuel

    2015-01-01

    ABSTRACT Lung transplantation is a globally accepted treatment for some advanced lung diseases, giving the recipients longer survival and better quality of life. Since the first transplant successfully performed in 1983, more than 40 thousand transplants have been performed worldwide. Of these, about seven hundred were in Brazil. However, survival of the transplant is less than desired, with a high mortality rate related to primary graft dysfunction, infection, and chronic graft dysfunction, particularly in the form of bronchiolitis obliterans syndrome. New technologies have been developed to improve the various stages of lung transplant. To increase the supply of lungs, ex vivo lung reconditioning has been used in some countries, including Brazil. For advanced life support in the perioperative period, extracorporeal membrane oxygenation and hemodynamic support equipment have been used as a bridge to transplant in critically ill patients on the waiting list, and to keep patients alive until resolution of the primary dysfunction after graft transplant. There are patients requiring lung transplant in Brazil who do not even come to the point of being referred to a transplant center because there are only seven such centers active in the country. It is urgent to create new centers capable of performing lung transplantation to provide patients with some advanced forms of lung disease a chance to live longer and with better quality of life. PMID:26154550

  2. Emphysema quantification on low-dose CT using percentage of low-attenuation volume and size distribution of low-attenuation lung regions: Effects of adaptive iterative dose reduction using 3D processing

    Energy Technology Data Exchange (ETDEWEB)

    Nishio, Mizuho, E-mail: nmizuho@med.kobe-u.ac.jp [Advanced Biomedical Imaging Research Center, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 (Japan); Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 (Japan); Matsumoto, Sumiaki, E-mail: sumatsu@med.kobe-u.ac.jp [Advanced Biomedical Imaging Research Center, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 (Japan); Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 (Japan); Seki, Shinichiro, E-mail: sshin@med.kobe-u.ac.jp [Division of Radiology, Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 (Japan); Koyama, Hisanobu, E-mail: hkoyama@med.kobe-u.ac.jp [Division of Radiology, Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 (Japan); Ohno, Yoshiharu, E-mail: yosirad@kobe-u.ac.jp [Advanced Biomedical Imaging Research Center, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 (Japan); Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 (Japan); Fujisawa, Yasuko, E-mail: yasuko1.fujisawa@toshiba.co.jp [Toshiba Medical Systems Corporation, 1385 Shimoishigami, Otawara, Tochigi 324-8550 (Japan); Sugihara, Naoki, E-mail: naoki.sugihara@toshiba.co.jp [Toshiba Medical Systems Corporation, 1385 Shimoishigami, Otawara, Tochigi 324-8550 (Japan); and others

    2014-12-15

    Highlights: • Emphysema quantification (LAV% and D) was affected by image noise on low-dose CT. • For LAV% and D, AIDR 3D improved agreement of quantification on low-dose CT. • AIDR 3D has the potential to quantify emphysema accurately on low-dose CT. - Abstract: Purpose: To evaluate the effects of adaptive iterative dose reduction using 3D processing (AIDR 3D) for quantification of two measures of emphysema: percentage of low-attenuation volume (LAV%) and size distribution of low-attenuation lung regions. Method and materials: : Fifty-two patients who underwent standard-dose (SDCT) and low-dose CT (LDCT) were included. SDCT without AIDR 3D, LDCT without AIDR 3D, and LDCT with AIDR 3D were used for emphysema quantification. First, LAV% was computed at 10 thresholds from −990 to −900 HU. Next, at the same thresholds, linear regression on a log–log plot was used to compute the power law exponent (D) for the cumulative frequency-size distribution of low-attenuation lung regions. Bland–Altman analysis was used to assess whether AIDR 3D improved agreement between LDCT and SDCT for emphysema quantification of LAV% and D. Results: The mean relative differences in LAV% between LDCT without AIDR 3D and SDCT were 3.73%–88.18% and between LDCT with AIDR 3D and SDCT were −6.61% to 0.406%. The mean relative differences in D between LDCT without AIDR 3D and SDCT were 8.22%–19.11% and between LDCT with AIDR 3D and SDCT were 1.82%–4.79%. AIDR 3D improved agreement between LDCT and SDCT at thresholds from −930 to −990 HU for LAV% and at all thresholds for D. Conclusion: AIDR 3D improved the consistency between LDCT and SDCT for emphysema quantification of LAV% and D.

  3. Lung Cancer Screening

    Science.gov (United States)

    ... Treatment Lung Cancer Prevention Lung Cancer Screening Research Lung Cancer Screening (PDQ®)–Patient Version What is screening? Go ... These are called diagnostic tests . General Information About Lung Cancer Key Points Lung cancer is a disease in ...

  4. Lung Cancer Prevention

    Science.gov (United States)

    ... Treatment Lung Cancer Prevention Lung Cancer Screening Research Lung Cancer Prevention (PDQ®)–Patient Version What is prevention? Go ... to keep cancer from starting. General Information About Lung Cancer Key Points Lung cancer is a disease in ...

  5. What Is Lung Cancer?

    Science.gov (United States)

    ... Graphics Infographic Stay Informed Cancer Home What Is Lung Cancer? Language: English Español (Spanish) Recommend on Facebook Tweet ... cancer starts in the lungs, it is called lung cancer. Lung cancer begins in the lungs and may ...

  6. Development of Mouse Lung Deposition Models

    Science.gov (United States)

    2015-07-01

    geometry that was previously developed for humans, rats, and rhesus monkeys [6], [7]. Inputs to the model included lung geometry and volumes, and...AND PHYSIOLOGY PARAMETERS Lung ventilation is driven by the difference in pressure between the pleural space and the outside environment. The...Harkema, S. A. Carey, E. Schelegle, D. Hyde, J. S. Kimbell, and F. J. Miller, “Development of a rhesus monkey lung geometry model and application to

  7. Achieving ethanol-type fermentation for hydrogen production in a granular sludge system by aeration.

    Science.gov (United States)

    Zhang, Song; Liu, Min; Chen, Ying; Pan, Yu-Ting

    2017-01-01

    To investigate the effects of aeration on hydrogen-producing granular system, experiments were performed in two laboratory-scale anaerobic internal circulation hydrogen production (AICHP) reactors. The preliminary experiment of Reactor 1 showed that direct aeration was beneficial to enhancing hydrogen production. After the direct aeration was implied in Reactor 2, hydrogen production rate (HPR) and hydrogen content were increased by 100% and 60%, respectively. In addition, mixed-acid fermentation was transformed into typical ethanol-type fermentation (ETF). Illumina MiSeq sequencing shows that the direct aeration did not change the species of hydrogen-producing bacteria but altered their abundance. Hydrogen-producing bacteria and ethanol-type fermentative bacteria were increased by 24.5% and 146.3%, respectively. Ethanoligenens sp. sharply increased by 162.2% and turned into predominant bacteria in the system. These findings indicated that appropriate direct aeration might be a novel and promising way to obtain ETF and enhance hydrogen production in practical use.

  8. [Effect of Intermittent Aeration on Nitrogen Removal Efficiency in Vertical Subsurface Flow Constructed Wetland].

    Science.gov (United States)

    Wang, Jian; Li, Huai-zheng; Zhen, Bao-chong; Liu, Zhen-dong

    2016-03-15

    One-stage vertical subsurface flow constructed wetlands (CWs) were used to treat effluent from grit chamber in municipal wastewater treatment plant. The CW was divided into aerobic zone and anoxic zone by means of raising the effluent level and installing a perforated pipe. Two parameters (the ratio of aeration time and nonaeration time, aeration cycle) were optimized in the experiment to enhance nitrogen removal efficiency. The results suggested that the removal rates of COD and NH₄⁺-N increased while TN showed a trend of first increasing and then decreasing with the increasing ratio. When the ratio was 3:1, the C/N value in the anoxic zone was 4. 8. And the TN effluent concentration was 15.8 mg · L⁻¹ with the highest removal rate (62.1%), which was increased by 12.7% compared with continuous aeration. As the extension of the aeration cycle, the DO effluent concentration as well as the removal rates of COD and NH: -N declined gradually. The TN removal rate reached the maximum (65.5%) when the aeration cycle was 6h. However, the TN removal rate dropped rapidly when the cycle exceeded the hydraulic retention time in the anoxic zone.

  9. Landfill aeration within the scope of post-closure care and its completion.

    Science.gov (United States)

    Ritzkowski, Marco; Stegmann, Rainer

    2013-10-01

    The time frame required for post-closure care of Municipal Solid Waste (MSW) landfills is often assessed over several decades or centuries. One possibility to significantly shorten this period and, at the same time, improve the emission behavior exists with in situ aeration. Positive effects in connection with this method for biological stabilization have been investigated and published elsewhere. However, until today neither generally accepted monitoring guidelines nor completion criteria have been defined. With the paper on hand the authors propose a methodology for the assessment of both, total and remaining stabilization periods for aerated landfills. The central component of this methodology is a carbon balance. The latter is based on a detailed waste characterization in combination with online monitoring of the emissions (gas and leachate). The methodology is exemplarily demonstrated by means of data derived from a full scale project in Northern Germany. Here it could be shown that the predicted aeration period of approximately 6.4years was sufficient to bio-stabilize the landfill. Furthermore, proposals for the completion of landfill aeration are presented. In this connection, carbon balance is of particular importance since the amount of biodegradable organic carbon mainly determines the emission potential. Additional parameters, aiming at a validation of the state of biological stabilization achieved during aeration are proposed and described.

  10. Influence of aeration and initial water thickness on axial velocity attenuation of jet flows

    Institute of Scientific and Technical Information of China (English)

    Wang-ru WEI; Jun DENG; Bin LIU

    2013-01-01

    With the development of ski-jump energy dissipation for high and large discharge among the hydraulic projects,the effects of characteristics of water flow on energy dissipation are increasingly important.In the present study,the effects of aeration and the initial water thickness on axial velocity attenuation of jet flow were analyzed,using variance analysis and numerical calculated methods.From the analysis of test data,both of the air concentration and initial water thickness are sensitive factors for the axial velocity attenuation of jet flow along the axial way,and there is no significant interaction effect between the aeration and initial water thickness.Aeration has a more significant effect on the axial velocity attenuation of jet flow.Decreasing the initial water thickness of jet flow can reduce the length of jet core,and make the initial position of axial velocity attenuation closer to the nozzle exit.The numerical calculation results show that aeration can contribute to the enhancement of entrainment ability of jet flow,which may improve the interaction between jet flow and surroundings.For ski-jump energy dissipation among the hydraulic projects,combining aeration with decreasing initial water thickness of jet flow is an effective way to enhance the rate of axial velocity attenuation.

  11. Municipal waste stabilization in a reactor with an integrated active and passive aeration system.

    Science.gov (United States)

    Kasinski, Slawomir; Slota, Monika; Markowski, Michal; Kaminska, Anna

    2016-04-01

    To test whether an integrated passive and active aeration system could be an effective solution for aerobic decomposition of municipal waste in technical conditions, a full-scale composting reactor was designed. The waste was actively aerated for 5d, passively aerated for 35 d, and then actively aerated for 5d, and the entire composting process was monitored. During the 45-day observation period, changes in the fractional, morphological and physico-chemical characteristics of the waste at the top of the reactor differed from those in the center of the reactor. The fractional and morphological analysis made during the entire process of stabilization, showed the total reduction of organic matter measured of 82 wt% and 86 wt% at the respective depths. The reduction of organic matter calculated using the results of Lost of Ignition (LOI) and Total Organic Carbon (TOC) showed, respectively, 40.51-46.62% organic matter loss at the top and 45.33-53.39% in the center of the reactor. At the end of the process, moisture content, LOI and TOC at the top were 3.29%, 6.10% and 4.13% higher, respectively, than in the center. The results showed that application of passive aeration in larger scale simultaneously allows the thermophilic levels to be maintained during municipal solid waste composting process while not inhibiting microbial activity in the reactor.

  12. Nitrogen transformations and retention in planted and artificially aerated constructed wetlands.

    Science.gov (United States)

    Maltais-Landry, Gabriel; Maranger, Roxane; Brisson, Jacques; Chazarenc, Florent

    2009-02-01

    Nitrogen (N) processing in constructed wetlands (CWs) is often variable, and the contribution to N loss and retention by various pathways (nitrification/denitrification, plant uptake and sediment storage) remains unclear. We studied the seasonal variation of the effects of artificial aeration and three different macrophyte species (Phragmites australis, Typha angustifolia and Phalaris arundinacea) on N processing (removal rates, transformations and export) using experimental CW mesocosms. Removal of total nitrogen (TN) was higher in summer and in planted and aerated units, with the highest mean removal in units planted with T. angustifolia. Export of ammonium (NH(4)(+)), a proxy for nitrification limitation, was higher in winter, and in unplanted and non-aerated units. Planted and aerated units had the highest export of oxidized nitrogen (NO(y)), a proxy for reduced denitrification. Redox potential, evapotranspiration (ETP) rates and hydraulic retention times (HRT) were all predictors of TN, NH(4)(+) and NO(y) export, and significantly affected by plants. Denitrification was the main N sink in most treatments accounting for 47-62% of TN removal, while sediment storage was dominant in unplanted non-aerated units and units planted with P. arundinacea. Plant uptake accounted for less than 20% of the removal. Uncertainties about the long-term fate of the N stored in sediments suggest that the fraction attributed to denitrification losses could be underestimated in this study.

  13. Performance of a fixed-bed biofilm reactor with microbubble aeration in aerobic wastewater treatment.

    Science.gov (United States)

    Zhang, Lei; Liu, Junliang; Liu, Chun; Zhang, Jing; Yang, Jingliang

    2016-01-01

    Microbubble aeration is supposed to be highly efficient for oxygen supply in aerobic wastewater treatment. In the present study, the performance of a fixed-bed biofilm reactor microbubble-aerated using a Shirasu porous glass (SPG) membrane system was investigated when treating synthetic municipal wastewater. The biofilm formation on the carriers was enhanced with microbubble aeration due to the strong adhesion of microbubbles to the solid surface. The dissolved oxygen concentration, the removals of chemical oxygen demand (COD) and nitrogen, and the oxygen utilization efficiency were influenced by the organic loading rate at a certain oxygen supply capacity. The relatively optimal organic loading rate was determined as 0.82 kgCOD/(m(3)d) when the oxygen supply capacity was 0.93 kgO(2)/(m(3)d), where COD and ammonia removal efficiencies were 91.7% and 53.9%, respectively. The corresponding SPG membrane area-based COD removal capacity was 6.88 kgCOD/(m(2)d). The oxygen utilization efficiency of microbubble aeration was obviously higher compared to conventional bubble aeration. The simultaneous nitrification and denitrification occurred in the biofilm reactor and the total nitrogen removal efficiency of 50.4% was achieved under these conditions. In addition, the increase in air supply capacity of the SPG membrane system was suggested to improve its energy utilization efficiency.

  14. Impact of 18FDG-PET/CT on biological target volume (BTV) definition for treatment planning for non-small cell lung cancer patients

    Science.gov (United States)

    Devic, Slobodan; Tomic, Nada; Faria, Sergio; Dean, Geoffrey; Lisbona, Robert; Parker, William; Kaufman, Chris; Podgorsak, Ervin B.

    2007-02-01

    This work represents our effort to test feasibility of FDG-based PET/CT on target volume delineation in radiotherapy treatment planning of NSCLC patients. Different methods have been developed to enable more precise target outlining using PET: Qualitative Visual Method, CTV=2.5 SUV units, linear SUV threshold function method, and CTV=40% Iso of Maximum Uptake Value. We are proposing reconstruction of three biological target volumes: necrotic BTV (same as PTV created by radiation oncologist using CT data), proliferating BTV (based on PET signal to background ratio 1:3) and hypoxic BTV (based on PET signal to background ratio of 1:19). Two IMRT plans were created and compared to the conventional treatment plan: "conservative" IMRT plan delivers 52.5 Gy to the necrotic BTV and 65 Gy to the hypoxic BTV; "radical" IMRT plan delivers 30 Gy to necrotic BTV, 52.5 Gy to proliferating BTV and 65 Gy to hypoxic BTV. Use of BTVs in IMRT plans is attractive because it increases dose to targets considered to need higher doses. It reduces considerably dose to heart and spinal cord, organs considered to limit dose escalation approaches in NSCLC treatment. "Conservative" IMRT approach can be understood as a PET/CT-based concomitant boost to the tumor expressing the highest FDG uptake. "Radical" plan implies deviation from the traditional uniform dose target coverage approach, with the intention of achieving better surrounding tissue sparing and ultimately allowing for dose escalation protocols relying on biologically based treatment planning.

  15. Reduced central blood volume in cirrhosis

    DEFF Research Database (Denmark)

    Henriksen, Jens Henrik; Bendtsen, Flemming; Sørensen, T I

    1989-01-01

    for measuring the central blood volume. We have developed a method that enables us to determine directly the central blood volume, i.e., the blood volume in the heart cavities, lungs, and central arterial tree. In 60 patients with cirrhosis and 16 control subjects the central blood volume was assessed according...

  16. Radon removal equipment based on aeration: A literature study of tests performed in Sweden between 1981 and 1996

    Energy Technology Data Exchange (ETDEWEB)

    Mjoenes, L

    2000-02-01

    In Sweden some principles to reduce the radon concentration in drinking water were tested in the beginning of the 1980s. Spray aeration under atmospheric pressure, diffused bubble aeration, aeration in the pressure tank and different combinations of these principles were studied. Aeration in the drill hole and adsorption on granulated activated char-coal were also tested. The best results, about 70 % reduction, were obtained with aeration in the pressure tank with a spray system combined with diffused air bubbling. The Oerebro project in the beginning of the 1990s included on site testing of five different aeration solutions: Aeration in the drill hole, aeration in the storage tank, ejector aeration, shallow tray aeration and packed column aeration. The radon removal efficiency varied between 20 % and 99 %. In 1994 a study intended to test the radon removal capacity of different water treatment equipment was performed. Six units of radon separators were included but most of the tested equipment was installed for other water treatment purposes. The performed measurements showed that the only types of equipment that reduce the radon concentration efficiently are radon separators and reverse osmosis filters. The radon removal capacity of the radon separators varied between 23 % and 97 %. In 1996 the nine most common radon separators on the Swedish market were tested. The results showed that the tested radon removal equipment worked well, although the technical quality and chosen technical solutions were not always the best. The radon removal capacity of the units participating in this test was in most cases between 96 and 99 %. In some cases the capacity exceeded 99 %. In order to reach this radon removal capacity the water must be recirculated in a storage tank under atmospheric pressure.

  17. Changes of pulmonary function and quality of life in mid-term after lung volume reduction surgery%肺减容术后中期肺功能变化和生活质量评估

    Institute of Scientific and Technical Information of China (English)

    赵旭东; 石开虎; 吴君旭; 徐盛松

    2014-01-01

    Objective To observe the mid-term changes of pulmonary function and quality of life in the patients with emphysema who have undergone lung volume reduction surgery.Methods 44 subjects with severe emphysema underwent single or double lung volume reduction surgery through thoracoscope.There were 33 male and 11 female in the population analyzed with an age range of 46 to 70 years old.The mean age of the patients was (65.2-± 6.0) years.The pulmonary function and quality of life evaluation were determined over 3 time periods:prior to surgery,12 months postsurgery,and 24 months postsurgery Pulmonary function measurement project including the forced expiratory volume in 1 second (FEV 1),FEV 1% of predicted value,residual volume (RV),RV % of predicted value,partial pressure of oxygen(PO2),partial pressure of carbon dioxide (PCO2),life quality evaluation performed in the form of questionnaire,including whether under anhelation,satisfactory sleep,living by self-care,participating in household duties,taking part in social work,whether to have a good mental state and have a hobby.Results There was 1 death of 44 patients from respiratory failure.43 patients recovered smoothly.4 cases were lost to follow-up.In 39.patients with follow-up,1 patient succumbed to cerebrovascular at 13 months after surgery.The other 38 cases compared with the preoperative at 12 and 24 months postsurgery,postoperative forced expiratory volume in 1 second (FEV1) increased,P < 0.05,residual gas volume (RV) decreased,P < 0.05,partial pressure of oxygen (PO2) increased,P < 0.05,partial pressure of carbon dioxide (PCO2) decreased,P < 0.05,meanwhile,the quality of life has improved significantly.Conclusion Lung volume reduction surgery in patients with severe obstructive emphysema can improve pulmonary function and quality of life.And its effect would not disappeared in the short term.%目的 对接受肺减容手术的重度阻塞性肺气肿患者,进行术后肺功能中期随访,以

  18. Comparison of volume controlled with pressure comtrolled one-lung ventilation during thoracic surgery%胸科手术单肺通气期间定容模式和定压模式的比较

    Institute of Scientific and Technical Information of China (English)

    阳世光; 袁爱武

    2008-01-01

    Objective To compare the effects of volume controlled with pressure comtrolled one-lung ventilation during thoracic surgery. Methods Twenty-four ASA Ⅰ~Ⅱ patients ( 18 male ,6 female)aged 18~68 years old undergoing one-lung ventilation (OLV) thoracic surgery were randomly divided into 2 groups ( n = 12 cases). After general anesthesia induction was performed, each patient was inserted a double-lumen tube. Twolung ventilated with volume controlled ventilation (TLV-VCV) was carried out in the lateral decubitus position in all patients. In group Ⅰ, one-lung ventilation was started by volume controlled ventilation (OLV-VCV) for 30 minutes and ventilation mode was then swithched to pressure controlled ventilation (OLV-PCV). Ventilation modes were performed in the opposite order in group Ⅱ, one-lung ventilation was started by pressure controlled ventilation (OLV-PCV) for 30 minutes and ventilation mode was then swithched to volume controlled ventilation (OLV-VCV). The following variables were measured and recorded at the end of TLV-VCV and at 30 minutes of OLV-VCV or OLV-PCV. Heart rate (HR),mean arterial pressure (MAP) and pulse oxygen degree (SpO2) were measured by a same HP monitor. Central venous pressure (CVP) was measured by a special ruler. Tidal volume (VT), peak airway pressure (Ppeak) and mean airway pressure (Pmean) were measured by a same Datex-Ohmeda Aestiva/5 anesthesia machine. End-tide carbon dioxide pressure was measured by a monitor of anesthesia machine. Meantime arterial blood oxygen tsensions and saturations (PaO2, Sat2) and arterial blood carbon dioxide tsensions (PaCO2) were analysed by arterial venous blood gases. Results There were no significant differences in HR, MAP, CVP and SpO2 between TLV-VCV, OLV-VCV and OLV-VCV (P>0. 05). Ppeak and Pmean were significant higher during OLV-VCV or OLV-PCV than during TLV-VCV (P 0.05). Conclusion The effects of OLV-PCV was superior to OLV-VCV during thoracic surgery.%目的 比较胸科手术单

  19. Thermal Response Of An Aerated Concrete Wall With Micro-Encapsulated Phase Change Material

    Directory of Open Access Journals (Sweden)

    Halúzová Dušana

    2015-06-01

    Full Text Available For many years Phase Change Materials (PCM have attracted attention due to their ability to store large amounts of thermal energy. This property makes them a candidate for the use of passive heat storage. In many applications, they are used to avoid the overheating of the temperature of an indoor environment. This paper describes the behavior of phase change materials that are inbuilt in aerated concrete blocks. Two building samples of an aerated concrete wall were measured in laboratory equipment called “twin-boxes”. The first box consists of a traditional aerated concrete wall; the second one has additional PCM micro-encapsulated in the wall. The heat flux through the wall was measured and compared to simulation results modeled in the ESP-r program. This experimental measurement provides a foundation for a model that can be used to analyze further building constructions.

  20. Towards integrated operation of membrane bioreactors: effects of aeration on biological and filtration performance.

    Science.gov (United States)

    Dalmau, M; Monclús, H; Gabarrón, S; Rodriguez-Roda, I; Comas, J

    2014-11-01

    Two experimental studies evaluated the effect of aerobic and membrane aeration changes on sludge properties, biological nutrient removal and filtration processes in a pilot plant membrane bioreactor. The optimal operating conditions were found at an aerobic dissolved oxygen set-point (DO) of 0.5 mg O2 L(-1) and a membrane specific aeration demand (SADm) of 1 m h(-1), where membrane aeration can be used for nitrification. Under these conditions, a total flow reduction of 42% was achieved (75% energy reduction) without compromising nutrient removal efficiencies, maintaining sludge characteristics and controlled filtration. Below these optimal operating conditions, the nutrient removal efficiency was reduced, increasing 20% for soluble microbial products, 14% for capillarity suction time and reducing a 15% for filterability. Below this DO set-point, fouling increased with a transmembrane pressure 75% higher. SADm below 1 m h(-1) doubled the values of transmembrane pressure, without recovery after achieving the initial conditions.

  1. Study on Migration and Transformation Rule of Organic Pollutants (COD) in Aerated Zone

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Collecting waste water with a certain concentration of organic pollutants COD (chemical oxygen demand), static adsorption, static biodegradation and dynamic soil column experiments were made in laboratory, we researched migration and transformation of COD in aerated zone, and put forward a mathematical model showing the process. The results show that adsorption of organism in aerated zone is linear, which is represented by Henry's law s=Kdc+sd, adsorption coefficient Kd =0. 069 3;biodegradation diagram accord basically with first-order kinetics equation c=c0e-K1t , biodegradation coefficient K1 = 0. 049 9 d-1; dispersion coefficient D= 0. 002 42 m2/d in experiments. The migration and transformation of organic pollutants (COD) in aerated zone jointly result from many factors such as dispersion, adsorption and biodegradation etc..

  2. A Novel Surface Aeration Configuration for Improving Gas—Liquid Mass Transfer

    Institute of Scientific and Technical Information of China (English)

    YUGengzhi; MAZaisha; 等

    2002-01-01

    A novel surface aeration configuration featured with a self-rotating and floating baffle (SRFB) and a Rushton disk turbine (DT) with a perforated disk has been developed. The SRFB, consisted of 12 fan blades twisted by an angle of 30° to the horizontal plane, is incorporated onto the impeller shaft to improve gas entrainment, bubble breakup, mixing in a φ154mm agitated vessel. This new configuration is compared to the conventional DT surface aeration experimentally. The results suggest that the critical impeller speed for onset of gas entrainments is lower for the new configuration and it demands greater power consumption. Moreover, the SRFB system produces 30%-68% higher volumetric mass transfer coefficient per unit power input than that obtained in the conventional DT surface aerator under the same operation conditions.

  3. ON NECESSITY OF PLACING AN AERATOR IN THE BOTTOM DISCHARGE TUNNEL AT THE LONGTAN HYDROPOWER STATION

    Institute of Scientific and Technical Information of China (English)

    WU Jian-hua; WU Wei-wei; RUAN Shi-ping

    2006-01-01

    The air entrainment for avoiding cavitation damage has been widely used in long free flow tunnels. It is crucial to determine whether an aerator is needed for shorter tunnels. In this article, the bottom discharge tunnel at the Longtan Hydropower Station was involved, for which the free flow tunnel section was only 50.00 m long. The cavitation in the tunnel with and without the aerator was investigated using the physical models of the scale 1/30, through the measurements of cavitation noise. The experimental results show that it is necessary to place the aerator at the inlet of the free flow section for higher reservoir level to protect this tunnel from cavitation damage.

  4. RBF methods for solving laterally averaged Saint Venant equations: application to eutrophication prevention through aeration

    Science.gov (United States)

    Halassi, A.; Ouazar, D.; Taik, A.

    2015-10-01

    A vertical 2Dxz laterally averaged hydrodynamic model is presented in this paper to study the aeration process in lakes. The system exhibits highly nonlinear behaviour due to the phenomena involved such as stratification, air concentration, and convective terms. The suggested model is used to simulate mechanical aeration to overcome and prevent the eutrophication in lakes. The multiquadric radial basis functions are used to solve numerically the governing partial differential equations. Because of the difficulty and the complexity when choosing a suitable shape parameter in radial basis functions, an alternative way is introduced in this work to overcome these difficulties. A validation study is carried out using several test examples, including Poisson, Navier-Stokes and transport equations. Finally, the proposed model is first applied to simulate a squared domain aeration problem and then a real test case has been considered. The obtained results are in good agreement with the results reported in the literature.

  5. Influence of agitation speeds and aeration rates on the Xylanase activity of Aspergillus niger SS7

    Directory of Open Access Journals (Sweden)

    Yasser Bakri

    2011-08-01

    Full Text Available In this study, the effect of agitation and aeration rates on xylanase activity of Aspergillus niger SS7 in 3-litre stirred tank bioreactor was investigated. The agitation rates tested were 100, 200 and 300 rpm at each airflow rates of 0.5, 1.0 and 1.5 vvm. The maximum xylanase activity in mono- agitator system was at the agitation speed of 200 rpm and aeration rate of 1.0 vvm. In bi-agitator system, at low agitation speed (100 rpm, the xylanase activity was enhanced by 13% compared to mono- agitator system for an aeration rate of 1.0 vvm. Xylanase productivity in continuous culture was higher by approximately 3.5 times than in batch culture.

  6. Computational Fluid Dynamics Modelling of Hydraulics and Sedimentation in Process Reactors during Aeration Tank Settling

    DEFF Research Database (Denmark)

    Jensen, M.D.; Ingildsen, P.; Rasmussen, Michael R.;

    2006-01-01

    Aeration tank settling is a control method allowing settling in the process tank during highhydraulic load. The control method is patented. Aeration tank settling has been applied in several wastewater treatment plants using the present design of the process tanks. Some process tank designs...... haveshown to be more effective than others. To improve the design of less effective plants, computational fluiddynamics (CFD) modelling of hydraulics and sedimentation has been applied. This paper discusses theresults at one particular plant experiencing problems with partly short-circuiting of the inlet...... and outletcausing a disruption of the sludge blanket at the outlet and thereby reducing the retention of sludge in theprocess tank. The model has allowed us to establish a clear picture of the problems arising at the plantduring aeration tank settling. Secondly, several process tank design changes have been...

  7. Impact of 18FDG-PET/CT on biological target volume (BTV) definition for treatment planning for non-small cell lung cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Devic, Slobodan [Medical Physics Department, McGill University Health Centre, Montreal, Que. (Canada)]. E-mail: devic@medphys.mcgill.ca; Tomic, Nada [Medical Physics Department, McGill University Health Centre, Montreal, Que. (Canada); Faria, Sergio [Radiation Oncology Department, McGill University Health Centre, Montreal, Que. (Canada); Dean, Geoffrey [Nuclear Medicine Department, McGill University Health Centre, Montreal, Que. (Canada); Lisbona, Robert [Nuclear Medicine Department, McGill University Health Centre, Montreal, Que. (Canada); Parker, William [Medical Physics Department, McGill University Health Centre, Montreal, Que. (Canada); Kaufman, Chris [Medical Physics Department, McGill University Health Centre, Montreal, Que. (Canada); Podgorsak, Ervin B. [Medical Physics Department, McGill University Health Centre, Montreal, Que. (Canada)

    2007-02-01

    This work represents our effort to test feasibility of FDG-based PET/CT on target volume delineation in radiotherapy treatment planning of NSCLC patients. Different methods have been developed to enable more precise target outlining using PET: Qualitative Visual Method, CTV=2.5 SUV units, linear SUV threshold function method, and CTV=40% Iso of Maximum Uptake Value. We are proposing reconstruction of three biological target volumes: necrotic BTV (same as PTV created by radiation oncologist using CT data), proliferating BTV (based on PET signal to background ratio 1:3) and hypoxic BTV (based on PET signal to background ratio of 1:19). Two IMRT plans were created and compared to the conventional treatment plan: 'conservative' IMRT plan delivers 52.5 Gy to the necrotic BTV and 65 Gy to the hypoxic BTV; 'radical' IMRT plan delivers 30 Gy to necrotic BTV, 52.5 Gy to proliferating BTV and 65 Gy to hypoxic BTV. Use of BTVs in IMRT plans is attractive because it increases dose to targets considered to need higher doses. It reduces considerably dose to heart and spinal cord, organs considered to limit dose escalation approaches in NSCLC treatment. 'Conservative' IMRT approach can be understood as a PET/CT-based concomitant boost to the tumor expressing the highest FDG uptake. 'Radical' plan implies deviation from the traditional uniform dose target coverage approach, with the intention of achieving better surrounding tissue sparing and ultimately allowing for dose escalation protocols relying on biologically based treatment planning.

  8. Advances in lung ultrasound; Avancos na ultrassonografia pulmonar

    Energy Technology Data Exchange (ETDEWEB)

    Francisco Neto, Miguel Jose; Rahal Junior, Antonio; Vieira, Fabio Augusto Cardillo; Silva, Paulo Savoia Dias da; Funari, Marcelo Buarque de Gusmao, E-mail: miguelneto@einstein.br [Hospital Israelita Albert Einstein, Sao Paulo, SP (Brazil)

    2016-11-01

    Ultrasound examination of the chest has advanced in recent decades. This imaging modality is currently used to diagnose several pathological conditions and provides qualitative and quantitative information. Acoustic barriers represented by the aerated lungs and the bony framework of the chest generate well-described sonographic artifacts that can be used as diagnostic aids. The normal pleural line and A, B, C, E and Z lines (also known as false B lines) are artifacts with specific characteristics. Lung consolidation and pneumothorax sonographic patterns are also well established. Some scanning protocols have been used in patient management. The Blue, FALLS and C.A.U.S.E. protocols are examples of algorithms using artifact combinations to achieve accurate diagnoses. Combined chest ultrasonography and radiography are often sufficient to diagnose and manage lung and chest wall conditions. Chest ultrasonography is a highly valuable diagnostic tool for radiologists, emergency and intensive care physicians. (author)

  9. Evaluation on aeration performance of movable solar aerator%移动式太阳能增氧机的增氧性能评价

    Institute of Scientific and Technical Information of China (English)

    吴宗凡; 程果锋; 王贤瑞; 刘兴国; 张拥军; 邹海生; 唐荣

    2014-01-01

    为改善池塘养殖环境,设计了一种移动式太阳能增氧机,由光伏供电装置和水面行走装置搭载涌浪机而成,能在水面沿钢丝绳移动并利用涌浪机的波浪增氧和水层交换作用,大范围扰动水体并为池塘增氧。该研究的目的是通过机械增氧效率检测、提水能力测定和池塘增氧能力测定3个试验,评估太阳能增氧机的机械增氧性能、水层交换性能和实际应用效果,以期全面了解移动增氧机增氧能力。结果表明,该移动式太阳能增氧机最大机械增氧能力为1.24 kg/h,动力效率2.59 kg/(kW·h);最大提水能力1254.4 m3/h,提水动力效率2613.3 m3/(kW·h);并在晴好天气白天(09:00—19:00),在对照组底层溶氧为3.1~3.8 mg/L时,大幅度提升池塘底层溶氧水平,最高时达7.8 mg/L,维持池塘上下溶氧均匀度72%~84%,极大改善了底层溶氧环境。数据表明移动式太阳能增氧机具有良好的机械增氧和水层交换性能,因而能有效改善池塘底层溶氧环境,提高上下水体溶氧均匀度。该研究结果可为太阳能增氧机的进一步推广应用提供数据支撑。%In pond aquaculture, it is usually necessary in sunny noon that running aerator stirs pond water, so that the supersaturated dissolved oxygen (DO) from phytoplankton’s photosynthesis in upper water can be transferred into the relatively anoxic bottom, reducing the“oxygen debt”of bottom water and preventing fish hypoxia at the next early morning. However, this approach consumes a lot of electric energy and has low efficiency. To improve the ecological state of aquaculture ponds and save electric energy, a movable solar aerator was designed and developed. This machine is solar-powered and can move upon the water, and mainly consists of a photovoltaic power system, a water walking device, and a wave aerator. The photovoltaic power system provides power for the entire machine

  10. Factors Affecting the Oxygenation Capacity of Disc Aerators in an Oxidation Ditch System

    Directory of Open Access Journals (Sweden)

    Abdel E. Ghaly

    2011-01-01

    Full Text Available Problem statement: The use of aerobic biological methods for the treatment of livestock wastes has resulted in a proliferation of mechanical aeration devices to accomplish the desired treatment. The oxidation ditch system with disc aerators is among the aerobic systems that have been used to treat livestock waste. The main objectives of this study were to investigate the effects of various disc design parameters and system operational parameters on the oxygen transfer coefficient and to study the physical phenomenon of oxygen transfer using high speed movie techniques. Approach: A bench-scale oxidation ditch with a disc aerator was used to conduct a series of experiments to determine the effects of immersion depth (2.5-7.5 cm, disc speed (50-250 rpm, disc thickness (0.32-2.55 cm, hole diameter (0.00-1.92 cm and number of rotating discs (1-2 on the oxygen transfer coefficient. The unsteady state method with sodium sulfite oxidation was used to deoxygenate the water and the dissolved oxygen concentration was measured with time. Results: The disc speed had the most significant effect on KLa with the immersion depth and hole diameter both showing strong effects and the disc thickness showing less effect. The effect of adding a second disc was comparable to using a single disc of double the thickness at lower speeds while at speeds higher than 200 rpm doubling the thickness of a single disc had less effect than a second disc. Conclusion: The highest oxygen transfer (1.526 min-1 was achieved using two coaxial discs with a disc speed of 250 rpm, a disc thickness of 0.64 cm, a hole diameter of 1.92 cm and an immersion depth of 7.5 cm. Bubble aeration and eddy aeration were the most prevalent mechanisms of oxygen transfer in the oxidation ditch while surface aeration played a relatively small role in oxygen transfer.

  11. Modelling the link amongst fine-pore diffuser fouling, oxygen transfer efficiency, and aeration energy intensity.

    Science.gov (United States)

    Garrido-Baserba, Manel; Sobhani, Reza; Asvapathanagul, Pitiporn; McCarthy, Graham W; Olson, Betty H; Odize, Victory; Al-Omari, Ahmed; Murthy, Sudhir; Nifong, Andrea; Godwin, Johnnie; Bott, Charles B; Stenstrom, Michael K; Shaw, Andrew R; Rosso, Diego

    2017-03-15

    This research systematically studied the behavior of aeration diffuser efficiency over time, and its relation to the energy usage per diffuser. Twelve diffusers were selected for a one year fouling study. Comprehensive aeration efficiency projections were carried out in two WRRFs with different influent rates, and the influence of operating conditions on aeration diffusers' performance was demonstrated. This study showed that the initial energy use, during the first year of operation, of those aeration diffusers located in high rate systems (with solids retention time - SRT-less than 2 days) increased more than 20% in comparison to the conventional systems (2 > SRT). Diffusers operating for three years in conventional systems presented the same fouling characteristics as those deployed in high rate processes for less than 15 months. A new procedure was developed to accurately project energy consumption on aeration diffusers; including the impacts of operation conditions, such SRT and organic loading rate, on specific aeration diffusers materials (i.e. silicone, polyurethane, EPDM, ceramic). Furthermore, it considers the microbial colonization dynamics, which successfully correlated with the increase of energy consumption (r(2):0.82 ± 7). The presented energy model projected the energy costs and the potential savings for the diffusers after three years in operation in different operating conditions. Whereas the most efficient diffusers provided potential costs spanning from 4900 USD/Month for a small plant (20 MGD, or 74,500 m(3)/d) up to 24,500 USD/Month for a large plant (100 MGD, or 375,000 m(3)/d), other diffusers presenting less efficiency provided spans from 18,000USD/Month for a small plant to 90,000 USD/Month for large plants. The aim of this methodology is to help utilities gain more insight into process mechanisms and design better energy efficiency strategies at existing facilities to reduce energy consumption.

  12. Relationship between ecosystem respiration and aeration constant in open channel dissolved oxygen analysis

    Science.gov (United States)

    Parker, S. J.; Butler, A. P.; Heppell, C. M.

    2015-12-01

    Using the open channel diel method of Odum (1956) and the night-time regression method (Hornberger and Kelly, 1985), we analysed a time series of dissolved oxygen (DO) in two slow flowing streams for a two month period in summer 2014 and obtained values for ecosystem respiration and the aeration constant for each day in the period. We then used the standard dissolved oxygen lumped model to generate a DO time series behaviour for one of those rivers selecting respiration and aeration parameters by randomly sampling from the values obtained from the data. Two synthetic time series were created, one where respiration and aeration were independent of temperature and a second where respiration and aeration were affected by temperature according to the modified Arrhenius relationship. With these two synthetic time series, we again recovered the respiration and aeration input parameters using the night- time regression method and compared those recovered parameters with the input parameters. Because the simulations were conducted with parameters that were known, the values recovered using the night-time regression method (i.e post-simulation) could be compared with parameters driving the simulation (i.e. pre-simulation input values). For values based on data, we found a strong correlation between the aeration constant and respiration for both rivers. For the synthetic time series, no such correlation was found, either with the temperature independent or temperature dependent time series. The night-time regression method also recovered perfectly the input parameters, so the correlation was not brought about as a result of implementing the method itself. We are currently investigating the cause of the correlation.

  13. Volatile emissions during storing of green food waste under different aeration conditions.

    Science.gov (United States)

    Agapiou, A; Vamvakari, J P; Andrianopoulos, A; Pappa, A

    2016-05-01

    Controlled field experiments were carried out for monitoring the emissions of three plastic commercial household waste bins, which were adapted for studying the effect of aeration process in the evolved volatiles, during house storing of green food waste for 2 weeks, prior to collection. Three experimental scenarios were examined based on no aeration ("NA," closed commercial waste bin), diffusion-based aeration ("DA," closed commercial waste bin with tiny holes), and enforced aeration ("EA," closed commercial waste bin with tiny holes and enforced aeration). The monitoring of volatile organic compounds (VOCs) emitted from organic household kitchen waste was performed using solid-phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) analysis. Portable sensors were also used for monitoring selected gases and parameters of environmental, bioprocess, and health interest (e.g., CO2, O2, H2S, CH4, NH3, % RH, waste temperatures). VOC emissions are strongly dependent on the waste material. The most frequent VOCs identified over the storing waste, showing over 50 % appearance in all examined samples, were terpenes (e.g., di-limonene, beta-myrcene, delta-3-carene, alpha-pinene, alpha-terpinolene, linalool, etc.), sulfides (dimethyl disulfide), aromatics (benzene, 1-methyl-2-(2-propenyl)), alkanes (e.g., decane, dodecane), ketones (2-propanone), esters (e.g., acetic acid ethyl ester, acetic acid methyl ester), and alcohols (e.g., 3-cyclohexen-1-ol, 4-methyl-1-(1-methylethyl)). The prominent role of terpenes in the "pre-compost" odor and especially that of di-limonene was highlighted. In all examined scenarios, the emitted volatiles were increased at raised temperatures and later decreased in time. Aeration of waste bins slightly affected the volatilization process resulting in higher profiles of VOCs; uniformity in the composition of VOCs was also noted. Slight modifications of commercial waste bins may favor the initiation of home composting.

  14. Improved Aeration Process - Catalytic Role Of The Iron Oxides In Arsenic Oxidation And Coprecipitation

    DEFF Research Database (Denmark)

    Kowalski, Krysztof; Søgaard, Erik Gydesen

    2013-01-01

    an improved aeration process that can also help in developing better arsenic removal treatment. The results present advantages of arsenic oxidation in an aeration process in the presence of ferrihydrite surface that have been shown to adsorb arsenic simultaneously to its oxidation. The presence...... of precipitated (ferrihydrite surface) and dissolved iron enhanced arsenic oxidation in comparison to solution with absence of precipitated iron in laboratory scale experiments. However, in the pilot scale studies the adsorption of arsenite on ferrihydrite was found to be the main process occurring during...... implementation of the process in the waterworks that are struggling with arsenic related issues....

  15. Effects of Soil Aeration on Sweet Potato Yield and Its Physiological Mechanism

    Institute of Scientific and Technical Information of China (English)

    SHI Chun-yu; WANG Zhen-lin; YU Song-lie

    2002-01-01

    The effects of soil aeration on physiological characters and root tuber yield of Ipomoea batatas (L.) Lam. CV Lushu7 and Xushu18 were studied. The results showed that soil aeration improvement could increase ATP content and ATPase activity in functional leaves and root tubers and ABA content in root tubers.It also accelerated the transportation of 14C-photosynthate from leaves to root tubers and enhanced dry matter distribution in root tubers and thus root tuber yield was significantly raised. The role of ATP, ATPase and ABA in accelerating the transportation of 14C-photosynthate was discussed based on the changes of soluble carbonhydrate content in sweet potato plant.

  16. Protease obtention using Bacillus subtilis 3411 and amaranth seed meal medium at different aeration rates

    Directory of Open Access Journals (Sweden)

    Pastor Maria Delia

    2001-01-01

    Full Text Available The influence of the addition of Amaranthus cruenthus seed meal to the medium, as nutrient and growth factor, on protease production by Bacillus subtilis 3411 was studied. Tests were carried out in a rotary shaker and in mechanically stirred fermenters. The influence of aeration was also evaluated. The addition of amaranth in a concentration of 20 g/L resulted in 400% increase in protease production. Aeration up to 750 r.p.m. and 1 L/L.min had a favorable effect.

  17. The Application of EIS and PIV Methods to the Measurement of Aerated Flow

    Directory of Open Access Journals (Sweden)

    Fejfarová M.

    2013-04-01

    Full Text Available The paper describes measurements in the aerated water medium using modern methods PIV (Particle Image Velocimetry and EIS (Electrical Impedance Spectrometry, which are applied in the Laboratory of Water Management Research (LVV of the Department of Water Structures (UVST at the Faculty of Civil Engineering (FAST of Brno University of Technology (VUT. Measurements of the water medium were carried out for three different aeration intensities at special experimental workplaces. The experiment was focused on the capability of the methods to monitor the air content in the water.

  18. Influence of aeration of Candida albicans during culturing on their surface aggregation in the presence of adhering Streptococcus gordonii

    NARCIS (Netherlands)

    Millsap, KW; van der Mei, HC; Busscher, HJ; Bos, R.R.M.

    1999-01-01

    Candida albicans surfaces are extremely sensitive to changes in growth conditions. In this study, adhesion to glass of aerated and non-aerated C. albicans ATCC 10261 in the presence and absence of adhering Streptococcus gordonii NCTC 7869 was determined in a parallel plate flow chamber. In addition,

  19. Functional linkage between N acquisition strategies and aeration capacities of hydrophytes for efficient oxygen consumption in roots.

    Science.gov (United States)

    Nakamura, Motoka; Nakamura, Takatoshi; Tsuchiya, Takayoshi; Noguchi, Ko

    2013-02-01

    We evaluated the specific strategies of hydrophytes for root O(2) consumption in relation to N acquisition and investigated whether the strategies varied depending on the aeration capacity. Aeration capacity of roots is an important factor for determining hypoxia tolerance in plants. However, some hydrophytes possessing quite different aeration capacities often co-occur in wetlands, suggesting that root O(2) consumption also strongly affects hypoxia tolerance. We cultivated Phragmites australis with high aeration capacity and Zizania latifolia with low aeration capacity in hypoxic conditions with NH(4)(+) or NO(3)(-) treatment and compared the growth, N uptake, N assimilation and root respiration between the two species. In Z. latifolia grown with NH(4)(+) treatment, high N uptake activity and restrained root growth led to sufficient N acquisition and decrease in whole-root respiration rate. These characteristics consequently compensated for the low aeration capacity. In contrast, in P. australis, low N uptake activity was compensated by active root growth, but the whole-root respiration rate was high. This high root respiration rate was allowed by the high aeration capacity. The O(2) consumption-related traits of hydrophyte roots were closely correlated with N acquisition strategies, which consequently led to a compensational relationship with the root aeration capacity. It is likely that this functional linkage plays an important role as a core mechanism in the adaptation of plants to hypoxic soils.

  20. Pathways of nitrobenzene degradation in horizontal subsurface flow constructed wetlands: Effect of intermittent aeration and glucose addition.

    Science.gov (United States)

    Kirui, Wesley K; Wu, Shubiao; Kizito, Simon; Carvalho, Pedro N; Dong, Renjie

    2016-01-15

    Intermittent aeration and addition of glucose were applied to horizontal subsurface flow constructed wetlands in order to investigate the effect on pathways of nitrobenzene (NB) degradation and interactions with microbial nitrogen and sulphur transformations. The experiment was carried out in three phases A, B and C consisting of different NB loading and glucose dosing. For each phase, the effect of aeration was assessed by intermittently aerating one wetland and leaving one unaerated. Regardless of whether or not the wetland was aerated, at an influent NB concentration of 140 mg/L, both wetlands significantly reduced NB to less than 2 mg/L, a reduction efficiency of 98%. However, once the influent NB concentration was increased to 280 mg/L, the aerated wetland had a higher removal performance 82% compared to that of the unaerated wetland 71%. Addition of glucose further intensified the NB removal to 95% in the aerated wetlands and 92% in the unaerated. Aeration of wetlands enhanced NB degradation, but also resulted in higher NB volatilization of 6 mg m(-2) d(-1). The detected high concentration of sulphide 20-60 mg/L in the unaerated wetland gave a strong indication that NB may act as an electron donor to sulphate-reducing bacteria, but this should be further investigated. Aeration positively improved NB removal in constructed wetlands, but resulted in higher NB volatilization. Glucose addition induced co-metabolism to enhance NB degradation.

  1. Lung Transplant

    Science.gov (United States)

    ... will recover in the hospital’s intensive care unit (ICU) before moving to a hospital room for one to three weeks. Your doctor may recommend pulmonary rehabilitation after your lung transplant surgery to help you ...

  2. The effect of aeration position on the spatial distribution and reduction of pollutants in the landfill stabilization process--a pilot scale study.

    Science.gov (United States)

    Chai, Xiaoli; Hao, Yongxia; Shimaoka, Takayuki; Nakayama, Hirofumi; Komiya, Teppei; Zhao, Youcai

    2013-01-01

    Three pilot-scale simulators with different aeration systems were constructed to explore the effects of aeration position on the reduction of pollutants. The simulator with a bottom aeration system successfully distributed oxygen and efficiently inhibited methane production. A close relationship was found between the oxygen distribution and the removal of pollutants, especially that of nitrogen. The transition between nitrification and denitrification in the longitude direction of the simulator with a bottom aeration system contributed to nitrogen removal in aerobic conditions. This process can be defined as a new path for nitrogen removal in addition to simultaneous nitrification and denitrification. The concentration of NH4+ -N total nitrogen and total organic carbon dropped to 3, 78 and 204 mg L(-1), respectively, after 312 days of bottom aeration and to 514, 659 and 828 mg L(-1), respectively, after 312 days of top aeration. These results indicate that the bottom aeration system was more efficient for reducing pollutants than the top aeration system.

  3. Usefulness of texture features for segmentation of lungs with severe diffuse interstitial lung disease

    Science.gov (United States)

    Wang, Jiahui; Li, Feng; Li, Qiang

    2010-03-01

    We developed an automated method for the segmentation of lungs with severe diffuse interstitial lung disease (DILD) in multi-detector CT. In this study, we would like to compare the performance levels of this method and a thresholdingbased segmentation method for normal lungs, moderately abnormal lungs, severely abnormal lungs, and all lungs in our database. Our database includes 31 normal cases and 45 abnormal cases with severe DILD. The outlines of lungs were manually delineated by a medical physicist and confirmed by an experienced chest radiologist. These outlines were used as reference standards for the evaluation of the segmentation results. We first employed a thresholding technique for CT value to obtain initial lungs, which contain normal and mildly abnormal lung parenchyma. We then used texture-feature images derived from co-occurrence matrix to further segment lung regions with severe DILD. The segmented lung regions with severe DILD were combined with the initial lungs to generate the final segmentation results. We also identified and removed the airways to improve the accuracy of the segmentation results. We used three metrics, i.e., overlap, volume agreement, and mean absolute distance (MAD) between automatically segmented lung and reference lung to evaluate the performance of our segmentation method and the thresholding-based segmentation method. Our segmentation method achieved a mean overlap of 96.1%, a mean volume agreement of 98.1%, and a mean MAD of 0.96 mm for the 45 abnormal cases. On the other hand the thresholding-based segmentation method achieved a mean overlap of 94.2%, a mean volume agreement of 95.8%, and a mean MAD of 1.51 mm for the 45 abnormal cases. Our new method obtained higher performance level than the thresholding-based segmentation method.

  4. Effect of varying alveolar oxygen partial pressure on diffusing capacity for nitric oxide and carbon monoxide, membrane diffusing capacity and lung capillary blood volume.

    Science.gov (United States)

    Borland, C D; Cox, Y

    1991-12-01

    1. To examine the effect of varying oxygen partial pressure (PAO2) on nitric oxide (DLNO) and carbon monoxide (DLCO) diffusing capacity (transfer factor), 10 subjects performed combined DLCO/DLNO measurements with the inspired mixture made up with three different oxygen concentrations (25%, 18% and 15%) to give PAO2 values of 12-20 kPa. 2. A novel method is described for calculating membrane diffusing capacity (DM) and pulmonary capillary volume (Qc) from DLNO and DLCO. 3. The mean DMCO was 52.89 mmol min-1 kPa-1 and Qc was 0.056 litre. Reducing PAO2 from 20 to 12 kPa resulted in an increase in DLCO = -0.124 (O2%) + 11.67 (P less than 0.001) and a fall in DLNO = 0.538 (O2%) + 32.01 (P less than 0.001) and a fall in DLNO/DLCO = 0.107 (O2%) + 2.52 (P less than 0.001). DM (P = 0.59) and Qc (P = 0.64) also tended to fall with falling PAO2. 4. It appears more likely that the minor reduction in DLNO that we have observed with falling PAO2 is due to diffusion rather than reaction limitation.

  5. Evaluation on the feasibility of assessment of volume perfusion for the whole lung by multi-slice spiral CT%应用多层螺旋CT对全肺容积灌注评价的可行性研究

    Institute of Scientific and Technical Information of China (English)

    孙海涛; 朱小飞; 张霞; 谢元忠; 柳澄

    2015-01-01

    Objective The aim of this study was to evaluate the feasibility of dynamic volume perfusion CT (VPCT) of the whole lung using a 128-slice CT for the quantitative assessment and visualization of pulmonary perfusion.Methods Imaging was performed in a control group of 17 subjects who had no signs of disturbance of pulmonary function or diffuse lung disease, and 15 patients (5 patients with acute pulmonary embolism and 10 with emphysema) who constituted the abnormal lung group. Dynamic VPCT was performed in all subjects, with calculation of pulmonary blood flow (PBF), pulmonary blood volume (PBV), and mean transit time (MTT) generated from dynamic contrast images with a coverage of 20.7 cm. Regional and volumetric PBF, PBV, and MTT were statistically evaluated and compared made between the normal and abnormal lung groups, not with standing a few lungs in big size beyond the coverage of 20.7 cm.Results Regional PBF, PBV, and MTT demonstrated significant differences in the gravitational and was ogravitational directions in the normal lung group (P20.7 cm的覆盖范围,但是在肺实质正常组和肺实质异常组间动态容积灌注CT的PBF和PBV均存在统计学差异(P<0.05).结论 应用128层螺旋CT定量及可视化定性评价全肺动态容积灌注具有可行性,对于全肺的形态和功能学特征仅用一种检查就能进行全面评价.

  6. Performance of organics and nitrogen removal in subsurface wastewater infiltration systems by intermittent aeration and shunt distributing wastewater.

    Science.gov (United States)

    Pan, Jing; Yuan, Fang; Yu, Long; Huang, Linli; Fei, Hexin; Cheng, Fan; Zhang, Qi

    2016-07-01

    Organics and nitrogen removal in four subsurface wastewater infiltration systems (SWISs), named SWIS A (without intermittent aeration and shunt distributing wastewater), SWIS B (with intermittent aeration), SWIS C (with shunt distributing wastewater) and SWIS D (with intermittent aeration and shunt distributing wastewater) was investigated. High average removal rates of 92.3% for COD, 90.2% for NH4-N and 88.1% for TN were achieved simultaneously in SWIS D compared with SWIS A, B and C. The excellent TN removal of SWIS D was due to intermittent aeration provided sufficient oxygen for nitrification in upper matrix and the favorable anoxic or anaerobic environment for denitrification in subsequent matrix, and moreover, shunt distributing wastewater provided sufficient carbon source for denitrification process. The results indicated that intermittent artificial aeration combined with shunt distributing wastewater could achieve high organics and nitrogen removal in SWISs.

  7. 加气灌溉改善大棚番茄光合特性及干物质积累%Aerated irrigation improving photosynthesis characteristics and dry matter accumulation of greenhouse tomato

    Institute of Scientific and Technical Information of China (English)

    李元; 牛文全; 吕望; 古君; 邹小阳; 王京伟; 刘璐; 张明智; 许健

    2016-01-01

    limits crop yield and quality improvement. Tomato plants (Solanum lycopersicum) are one of the most vulnerable mesophytes to hypoxia in the root environment. Soil aeration has been found to be very useful in overcoming problems associated with hypoxia in the root-zone of irrigated crops including tomato, cotton, cucumber and zucchini. Over a range of soil water contents and soil types, the performance of crops can be improved under oxygen-deficient conditions. It is hypothesized that varying the aeration volume and burial depths of drip irrigation tubes (aeration position) would result in the different soil air environment in the root-zone. To date, there are no reports in the literature which specifically examined the sensitivity of tomato plants to soil aeration volume and burial depths of drip irrigation tubes in Lou soil, and the effect on the photosynthetic characteristics and dry matter accumulation. The experiments were conducted in a greenhouse at Yangling (E108°02′, N34°17′), Shaanxi, between October, 2014 and May, 2015. The tested variety of tomato was Fenyuyanggang (New Horizon Facilities Agricultural Development Co. Ltd., Northwest A&F University, China). Air was used for soil aeration, and the soil for the test was a silty clay loam (soil order was Inceptisol based on the USDA (United States Department of Agriculture) soil taxonomy). The volume of air in each plot was injected into the drip tubing via a manifold connected to the air compressor. The experiment was designed to study the responses of photosynthetic characteristics, chlorophyll content and dry matter accumulation of greenhouse-produced tomato to 4 aeration volumes in combination with 2 depths of drip-tubing placed in the soil. The drip irrigation placement depths were respectively 15 and 40 cm below the surface of the ridge. Artificial aeration treatments were 0, 24.6, 49.4 and 74.2 L/m2, respectively. Results showed that drip tubing placement and artificial aeration treatments

  8. 小潮气量机械通气对全麻患儿术中肺功能的影响%Influence of small tidal volume mechanical ventilation to lung function of children in general anesthesia

    Institute of Scientific and Technical Information of China (English)

    李体忠; 刘亚玲; 罗炜; 马源

    2012-01-01

    Objective To study the effect of low tidal volume mechanical ventilation on the lung protection of children in intraoperative anesthesia. Methods 48 cases of children with intestinal obstruction laparotomy were selected and randomly divided into A and B groups. The two groups were treated with low tidal volume and high tidal volume mechanical ventilation separately. Their peripheral blood were collected before intubation, after intubation 1 h and at the end of surgery, using enzyme-linked immunosorbent assay (ELISA) to test patients' plasma interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) concentration and to analyze arterial blood gas at the same time. Results The two groups in plasma IL-6 levels in tracheal intubation had no significant difference before. In group A there was no significant difference in IL-6 levels. Group B's plasma levels of IL-6 1 h after intubation and at the end of surgery was significantly higher (P <0.05) compared with before intubation. Two groups' plasma levels of TNF-α before intubation had no significant difference and group B's levels were significantly higher (P <0.05) than those 1 h after intubation and at the end of surgery compared with before intubation. Conclusion Tidal volume ventilation can cause increase of plasma IL-6 and TNF-α level in children, which may be one of the reasons to result in mechanical ventilation-induced lung injury. The low tidal volume ventilation used for children in the maintenance of anesthesia in ventilation can contribute to the protection of lung function.%目的 探讨小潮气量机械通气对全麻患儿术中肺功能的影响.方法 选取48例行肠梗阻剖腹探查术的患儿,随机分为A、B两组,术中分别采用小潮气量和大潮气量机械通气,于插管前、插管后1h和手术结束时分别采集外周血,用酶联免疫法检测患儿血浆中白介素-6(IL-6)和肿瘤坏死因子-α (TNF-α)的浓度,同时抽取动脉血行血气分析.结果 A组其他时点

  9. Mass preserving image registration for lung CT

    DEFF Research Database (Denmark)

    Gorbunova, Vladlena; Sporring, Jon; Lo, Pechin;

    2012-01-01

    on four groups of data: 44 pairs of longitudinal inspiratory chest CT scans with small difference in lung volume; 44 pairs of longitudinal inspiratory chest CT scans with large difference in lung volume; 16 pairs of expiratory and inspiratory CT scans; and 5 pairs of images extracted at end exhale and end...... inhale phases of 4D-CT images. Registration errors, measured as the average distance between vessel tree centerlines in the matched images, are significantly lower for the proposed mass preserving image registration method in the second, third and fourth group, while there is no statistically significant......This paper presents a mass preserving image registration algorithm for lung CT images. To account for the local change in lung tissue intensity during the breathing cycle, a tissue appearance model based on the principle of preservation of total lung mass is proposed. This model is incorporated...

  10. Impact of tumor volume doubling time on post-metastatic survival in bone or soft-tissue sarcoma patients treated with metastasectomy and/or radiofrequency ablation of the lung

    Science.gov (United States)

    Nakamura, Tomoki; Matsumine, Akihiko; Takao, Motoshi; Nakatsuka, Atsuhiro; Matsubara, Takao; Asanuma, Kunihiro; Sudo, Akihiro

    2017-01-01

    Metastasectomy represents the standard treatment for improving survival in patients with lung metastases (LMs) from bone (BS) or soft-tissue sarcoma (STS). Recently, radiofrequency ablation (RFA) of the LMs has been proved to be a useful option which can promise the similar effect to metastasectomy. The aim of this study was to determine prognostic factors, including tumor volume doubling time (TVDT), for post-metastatic survival in BS and STS patients treated with metastasectomy and/or RFA of the lung. Forty-eight patients with LMs were retrospectively reviewed. The mean age of the patients at the time of LMs was 56 years. The cohort comprised 27 male and 21 female patients. Eight of the 48 patients had LMs at the point of initial presentation. The mean follow-up period after commencing the treatment for LMs was 37 months. The mean maximum diameter of the initial LMs was 11 mm. The mean number of LMs was 4. The TVDT was calculated using a method originally described by Schwartz. At last follow-up, 5 patients had no evidence of disease, 3 patients were still alive with disease, and 32 patients had died of disease. The 3-year and 5-year post-metastatic survival rates were 32% and 16.8%, respectively. In a Cox univariate analysis, the size (P=0.04) and number of LMs (P<0.001), disease-free interval (P=0.04), curability of the initial LMs (P<0.001), and TVDT (P<0.001) were significantly identified as factors which affect prognosis. In the multivariate analysis, TVDT (P<0.001) and curability of the initial LMs (P<0.001) were confirmed as independent predictors of survival. There was a significant association between the number and curability of the initial LMs (P<0.001). In conclusion, metastasectomy and/or RFA of LMs is recommended for improving survival. However, TVDT and the curability of the LMs should be taken into consideration. PMID:28203089

  11. Biofiltration of Methane from Ruminants Gas Effluent Using Autoclaved Aerated Concrete as the Carrier Material

    NARCIS (Netherlands)

    Ganendra, Giovanni; Mercado-Garcia, Daniel; Hernandez-Sanabria, Emma; Peiren, Nico; De Campeneere, Sam; Ho, Adrian; Boon, Nico

    2015-01-01

    Abstract The performance of Methane-Oxidizing Bacteria (MOB) immobilized on Autoclaved Aerated Concrete (AAC) in a biofilter setup to remove methane from ruminants gas effluent was investigated. Two dairy cows were housed in respiration chambers for two days where the exhaust gas from the chambers w

  12. Gas transfer rates from airlifts used for concurrent aeration, carbon dioxide stripping, and recirculation

    Science.gov (United States)

    Airlifts simplify recirculating aquaculture systems and can potentially reduce capital costs and minimize maintenance issues. Airlifts have the ability to move and aerate water as well as degass the water of any carbon dioxide. This study evaluated the oxygen transfer and carbon dioxide removal abil...

  13. The initial behaviour of freshly etched copper in modertely acid, aerated chloride solutions

    DEFF Research Database (Denmark)

    Bech-Nielsen, Gregers; Jaskula, M.; Chorkendorff, Ib;

    2002-01-01

    When freshly etched samples of various types of copper were exposed in moderately acid, aerated chloride solutions, two phenomena were observed. First the corrosion potential and the pH of the solution decreased over a shorter time, then the potential increased over a long period (600-1500 min), ...

  14. [Technological characteristics of bioreactor landfill with aeration in the upper layer].

    Science.gov (United States)

    Tian, Ying; Wang, Shen; Xu, Qi-Yong

    2014-11-01

    In order to study the effects of upper-layer aerobic pretreatment in bioreactors on refuse degradation, leachate condition and methane production, two simulated columns were constructed, including traditional anaerobic bioreactor A1 and hybrid bioreactor C1 with aeration pretreatment in the upper layer. Results indicated that A1 was seriously inhibited by the accumulation of volatile fatty acids (VFA) with nearly no methane production and slower settlements. At the end of operations, refuse in A1 only deposited 5.4 cm which was less than half of that in C1. And up to 70 000 mg x L(-1) COD and 30 000 mg x L(-1) VFA could be monitored in the leachate. On the contrary, aerobic pretreatment effectively improved the removal of high VFA concentrations and remarkably accelerated the degradation rate. In bioreactor C1, COD and VFA concentrations were reduced to less than 14000 mg x L(-1) and 8900 mg x L(-1) at the end of the experiment, respectively. And about 61 976 mL methane gases were produced since aeration ceased on day 60 with its methane recovery efficiency rising to over 95%. However, the performance of hybrid bioreactors was still closely related to its operation conditions, such as aeration supply and leachate recirculation. Therefore, in order to guarantee better performance, appropriate aeration and leachate operations need to be provided.

  15. Comparative Study of Nirmalya Solid Waste Treatment by Vermicomposting and Artificial Aeration Composting

    Directory of Open Access Journals (Sweden)

    Pallavi S.Chakole

    2014-08-01

    Full Text Available Temple waste normally contains floral offering, leaves and milk product i.e. “Abishek waste water”, and this solid waste management is one of the important issues in the world, because of shortage ofdumping sites and strict environmental legislation. Now days ‘Nirmalyasolid waste’ is generated in large quantity due toincreased in population are commonly treated using different types of bins by the method of composting or vermicomposting. Vermicomposting of solid waste can be done by using different types of earthworms providing natural and artificial aeration along with mixture of cow dung and soil, artificial aeration is carried out by providing diffused aerators or perforated pipes. The parameters like C/N ratio, temperature, moisture contain are carried out. The main objective of this study is to minimize the problem of solid waste management by treating nirmalya solid waste by vermicomposting and suggesting that which method gives good quality of compost at short interval of time comparing artificial and natural aeration composting.

  16. Evaluation of cost-effective aeration technology solutions to address total trihalomethane (TTHM) compliance

    Science.gov (United States)

    The primary objective of this project was to evaluate cost-effective aeration technology solutions to address TTHM compliance at a water treatment plant clearwell. The project team worked closely with EPA Region 6 and the EPA Office of Research and Development (ORD) to identify a...

  17. Embedded system in Arduino platform with Fuzzy control to support the grain aeration decision

    Directory of Open Access Journals (Sweden)

    Albino Szesz Junior

    Full Text Available ABSTRACT: Aeration is currently the most commonly used technique to improve the drying and storage of grain, depending on temperature and water content of the grain, as of the temperature and relative humidity of the outside air. In order to monitor temperature and humidity of the grain mass, it is possible to have a network of sensors in the cells of both internal and external storage. Use of artificial intelligence through Fuzzy theory, has been used since the 60s and enables their application on various forms. Thus, it is observed that the aeration of grain in function of representing a system of controlled environment can be studied in relation to the application of this theory. Therefore, the aim of this paper is to present an embedded Fuzzy control system based on the mathematical model of CRUZ et al. (2002 and applied to the Arduino platform, for decision support in aeration of grain. For this, an embedded Arduino system was developed, which received the environmental values of temperature and humidity to then be processed in a Fuzzy controller and return the output as a recommendation to control the aeration process rationally. Comparing the results obtained from the graph presented by LASSERAN (1981 it was observed that the system is effective.

  18. Effect of agitation and aeration on the citric acid production by Yarrowia lipolytica grown on glycerol.

    Science.gov (United States)

    Rywińska, Anita; Musiał, Izabela; Rymowicz, Waldemar; Zarowska, Barbara; Boruczkowski, Tomasz

    2012-01-01

    The effects of agitation rates from 400 to 900 rpm and aeration rates ranging from 0.18 to 0.6 vvm on biomass and citric acid production on glycerol media by acetate-negative mutants of Yarrowia lipolytica, Wratislavia 1.31 and Wratislavia AWG7, in batch culture were studied. The agitation rates of 800 and 900 rpm (at a constant aeration rate of 0.36 vvm) and aeration rates within the range of 0.24-0.48 vvm (at a constant agitation rate of 800 rpm), which generated dissolved oxygen concentration (DO) higher than 40%, were found the best for citric acid biosynthesis from glycerol. An increase in agitation rate (higher than 800 rpm) and aeration rate (higher than 0.36 vvm) had no impact on DO and citric acid production. The highest citric acid concentration (92.8 g/L) and yield (0.63 g/g) were obtained with Wratislavia 1.31 strain at 0.24 vvm. The highest volumetric citric acid production rate (1.15 g/Lh) and specific citric acid production rate (0.071 g/gh) were reached at 0.48 vvm.

  19. Epstein-Plesset theory based measurements of concentration of nitrogen gases dissolved in aerated water

    Science.gov (United States)

    Sasaki, Masashi; Yamashita, Tatsuya; Ando, Keita

    2016-11-01

    Microbubble aeration is used to dissolved gases into water and is an important technique in agriculture and industry. We can measure concentration of dissolved oxygen (DO) in aerated water by commercial DO meters. However, there do not exist commercially available techniques to measure concentration to dissolved nitrogen (DN). In the present study, we propose the method to measure DN in aerated water with the aid of Epstein-Plesset-type analysis. Gas-supersaturated tap water is produced by applying aeration with micro-sized air bubbles and is then stored in a glass container open to the atmosphere. Diffusion-driven growth of bubbles nucleated at the container surface is recorded with a video camera. The bubble growth rate is compare to the extended Epstein-Plesset theory that models mass transfer of both DO and DN into the surface-attached bubbles base on the diffusion equation. Given the DO measurements, we can obtain the DN level by fitting in the comparison.

  20. Processes to improve energy efficiency during pumping and aeration of recirculating water in circular tank systems

    Science.gov (United States)

    Conventional gas transfer technologies for aquaculture systems occupy a large amount of space, require considerable capital investment, and can contribute to high electricity demand. In addition, diffused aeration in a circular tank can interfere with the hydrodynamics of water rotation and the spee...

  1. A STUDY OF THE DISCHARGE OF COHESIVE POWDERS UNDER SIMULTANEOUS AERATION AND VIBRATION

    NARCIS (Netherlands)

    Marring, E.; Hoffmann, A.C; Janssen, L.P.B.M.

    1995-01-01

    The influence of applying simultaneous aeration and vibration on the discharge of cohesive powders from a laboratory scale cylindrical silo has been studied experimentally. The powders investigated were batches of potato starch powder of different moisture contents and therefore different degrees of

  2. Effects of overlying water aeration on phosphorus fractions and alkaline phosphatase activity in surface sediment

    Institute of Scientific and Technical Information of China (English)

    Jianjun Chen; Shaoyong Lu; Yikun Zhao; Wei Wang; Minsheng Huang

    2011-01-01

    Microbial activity may influence phosphorus (P) deposit and release at the water sediment interface.The properties of DO (dissolved oxygen), pH, P fractions (TP, Ca-P, Fe-P, OP, IP), and APA (alkaline phosphatase activity) at the water sediment interface were measured to investigate microbial activity variations in surface sediment under conditions of two-month intermittent aeration in overlying water.Results showed that DO and TP of overlying water increased rapidly in the first week and then decreased gradually after 15 day of intermittent aeration.Microorganism metabolism in surface sediment increased pH and decreased DO and TP in the overlying water.After two-month intermittent aeration, APA and OP from surface sediment (0-2 crm) were both significantly higher than those from bottom sediment (6-8 cm) (p < 0.05), and surface sediment Fe-P was transferred to OP during the course of microorganism reproduction on the surface sediment.These results suggest that microbial activity and microorganism biomass from the surface sediment were higher than those from bottom sediment afar two-month intermittent aeration in the overlying water.

  3. Effects of Aeration on Root Physiology and Nitrogen Metabolism in Rice

    Institute of Scientific and Technical Information of China (English)

    XU Chun-mei; WANG Dan-ying; CHEN Song; CHEN Li-ping; ZHANG Xiu-fu

    2013-01-01

    In order to clarify the effects of aeration on root nitrogen metabolism in rice seedlings,rice cultivars Guodao 6 (indica) and Xiushui 09 (japonica) were investigated for root growth,the activities of glutamine synthetase (GS),glutamic acid-pyruvic acid transaminase (GPT) and glutamic acid oxaloacetate transaminase (GOT),the nitrate (NO3-N) concertration,the contents of free amino acids and soluble sugar in root under hydroponics with continuous aeration treatment.The results showed that rice seedlings grown in oxygenation solutions had higher root dry matter,longer root length,stronger root activity and larger root absorption area compared with the control.In addition,the contents of soluble sugar,root vigor and the activities of GS,GOT and GPT in the aeration solutions were higher than those in the control.The results also indicated that the activities of enzymes involved in root nitrogen metabolism of Xiushui 09 were enhanced by aeration,however,there was no significant influence on root nitrogen metabolism of Guodao 6,which suggested that effect of oxygenation on rice root nitrogen metabolism might be genotype-specific.

  4. Effect of the aerated structure on selected properties of freeze-dried hydrocolloid gels

    Science.gov (United States)

    Ciurzyńska, Agnieszka; Lenart, Andrzej

    2016-01-01

    The ability to create diverse structures and studies on the effect of the aerated structure on selected properties with the use of freeze-dried gels may provide knowledge about the properties of dried foods. Such gels can be a basis for obtaining innovative food products. For the gel preparation, 3 types of hydrocolloids were used: low-methoxyl pectin, a mixture of xanthan gum and locust-bean gum, and a mixture of xanthan gum and guar gum. Gels were aerated for 3 and 7 min, frozen at a temperature of -45°C 2 h-1, and freeze-dried at a temperature of 30°C. For the samples obtained, structure, porosity, shrinkage, rehydration, and colour were investigated. It was shown that the type of the hydrocolloid and aeration time influence the structure of freeze-dried gels, which determines such properties of samples as porosity, shrinkage, density, rehydration, and colour. The bigger pores of low-methoxyl pectin gels undergo rehydration in the highest degree. The delicate and aerated structure of gels with the mixture of xanthan gum and locust-bean gum was damaged during freeze-drying and shrinkage exhibited the highest value. Small pores of samples with the mixture of xanthan gum and guar gum were responsible for the lower rehydration properties, but the highest porosity value contributed to the highest lightness value.

  5. Production of Candida utilis Biomass and Intracellular Protein Content: Effect of Agitation Speed and Aeration Rate

    Directory of Open Access Journals (Sweden)

    Rosma, A.

    2006-01-01

    Full Text Available The effects of agitation speed and aeration rate on the Candida utilis biomass and the intracellular protein content were investigated in this study. C. utilis inoculum of 10^6 cells/mL (7.8 % v/v was cultured in 1.5 L pineapple waste medium (3 % Brix in a 2-L fermentor for 30 h at 30 °C. Agitation speed and aeration rate have significant effects on the dissolved oxygen concentration, which in turn affect the cell growth and the intracellular protein content. The agitation speed of 100, 300, 500, 700 and 900 rpm was employed. The highest yield of protein content (1.2 g/L media and total biomass (7.8 g/L media were resulted from yeast cultivation with agitation speed of 900 rpm. Thus, the effects of aeration rate (0.5, 1.0, 2.0 and 3.0 L/min were studied at agitation speed of 900 rpm. A maximum yield of protein content (1.6 g/L media and biomass (9.5 g/L media were attained at aeration rate of 2.0 L/min.

  6. Longitudinal changes in lung hyperinflation in COPD

    Science.gov (United States)

    Park, Jimyung; Lee, Chang-Hoon; Lee, Yeon Joo; Park, Jong Sun; Cho, Young-Jae; Lee, Jae Ho; Lee, Choon-Taek; Yoon, Ho Il

    2017-01-01

    Purpose COPD is characterized by an accelerated and progressive decline in forced expiratory volume in 1 second (FEV1) and lung hyperinflation. Although lung hyperinflation is the hallmark of COPD, data on the longitudinal changes in lung hyperinflation and any association with the decline in FEV1 are lacking. The aim of this study was to evaluate the longitudinal changes in lung