Sample records for aerated fed-batch reactor

  1. Effect of auxotrophies on yeast performance in aerated fed-batch reactor

    Energy Technology Data Exchange (ETDEWEB)

    Landi, Carmine; Paciello, Lucia [Dept. Ingegneria Industriale, Universita di Salerno, Via Ponte Don Melillo, 84084 Fisciano, Salerno (Italy); Alteriis, Elisabetta de [Dept. Biologia Strutturale e Funzionale, Universita degli Studi di Napoli ' Federico II' , Via Cinthia, 80100 Napoli (Italy); Brambilla, Luca [Dept. Biotecnologie e Bioscienze, Universita Milano-Bicocca, Piazza della Scienza, 20126 Milano (Italy); Parascandola, Palma, E-mail: [Dept. Ingegneria Industriale, Universita di Salerno, Via Ponte Don Melillo, 84084 Fisciano, Salerno (Italy)


    Highlights: Black-Right-Pointing-Pointer The paper contributes to fill the gap existing between the basic and applied research. Black-Right-Pointing-Pointer Mathematical model sheds light on the physiology of auxotrophic yeast strains. Black-Right-Pointing-Pointer Yeast behavior in fed-batch is influenced by biological and environmental determinants. Black-Right-Pointing-Pointer Process optimization would make possible the production of heterologous proteins which are not yet on the market. -- Abstract: A systematic investigation on the effects of auxotrophies on the performance of yeast in aerated fed-batch reactor was carried out. Six isogenic strains from the CEN.PK family of Saccharomyces cerevisiae, one prototroph and five auxotrophs, were grown in aerated fed-batch reactor using the same operative conditions and a proper nutritional supplementation. The performance of the strains, in terms of final biomass decreased with increasing the number of auxotrophies. Auxotrophy for leucine exerted a profound negative effect on the performance of the strains. Accumulation of reactive oxygen species (ROS) in the cells of the strain carrying four auxotrophies and its significant viability loss, were indicative of an oxidative stress response induced by exposure of cells to the environmental conditions. The mathematical model was fundamental to highlight how the carbon flux, depending on the number and type of auxotrophies, was diverted towards the production of increasingly large quantities of energy for maintenance.

  2. Performance of the auxotrophic Saccharomyces cerevisiae BY4741 as host for the production of IL-1β in aerated fed-batch reactor: role of ACA supplementation, strain viability, and maintenance energy

    Directory of Open Access Journals (Sweden)

    Zueco Jesus


    Full Text Available Abstract Background Saccharomyces cerevisiae BY4741 is an auxotrophic commonly used strain. In this work it has been used as host for the expression and secretion of human interleukin-1β (IL1β, using the cell wall protein Pir4 as fusion partner. To achieve high cell density and, consequently, high product yield, BY4741 [PIR4-IL1β] was cultured in an aerated fed-batch reactor, using a defined mineral medium supplemented with casamino acids as ACA (auxotrophy-complementing amino acid source. Also the S. cerevisiae mutant BY4741 Δyca1 [PIR4-IL1β], carrying the deletion of the YCA1 gene coding for a caspase-like protein involved in the apoptotic response, was cultured in aerated fed-batch reactor and compared to the parental strain, to test the effect of this mutation on strain robustness. Viability of the producer strains was examined during the runs and a mathematical model, which took into consideration the viable biomass present in the reactor and the glucose consumption for both growth and maintenance, was developed to describe and explain the time-course evolution of the process for both, the BY4741 parental and the BY4741 Δyca1 mutant strain. Results Our results show that the concentrations of ACA in the feeding solution, corresponding to those routinely used in the literature, are limiting for the growth of S. cerevisiae BY4741 [PIR4-IL1β] in fed-batch reactor. Even in the presence of a proper ACA supplementation, S. cerevisiae BY4741 [PIR4-IL1β] did not achieve a high cell density. The Δyca1 deletion did not have a beneficial effect on the overall performance of the strain, but it had a clear effect on its viability, which was not impaired during fed-batch operations, as shown by the kd value (0.0045 h-1, negligible if compared to that of the parental strain (0.028 h-1. However, independently of their robustness, both the parental and the Δyca1 mutant ceased to grow early during fed-batch runs, both strains using most of the

  3. Optimal parametric sensitivity control for a fed-batch reactor

    NARCIS (Netherlands)

    Stigter, J.D.; Keesman, K.J.


    The paper presents a method to derive an optimal parametric sensitivity controller for optimal estimation of a set of parameters in an experiment. The method is demonstrated for a fed batch bio-reactor case study for optimal estimation of the saturation constant Ks and, albeit intuitively, the param

  4. Optimal parametric sensitivity control of a fed-batch reactor

    NARCIS (Netherlands)

    Stigter, J.D.; Keesman, K.J.


    The paper presents an optimal parametric sensitivity controller for estimation of a set of parameters in an experiment. The method is demonstrated for a fed-batch bioreactor case study for optimal estimation of the half-saturation constant KS and the parameter combination µmaxX/Y in which µmax is th

  5. Simulation of kefiran production of Lactobacillus kefiranofaciens JCM6985 in fed-batch reactor

    Directory of Open Access Journals (Sweden)

    Benjamas Cheirsilp


    Full Text Available Kinetics of kefiran production by Lactobacillus kefiranofaciens JCM6985 has been investigated. A mathematical model taking into account the mechanism of exopolysaccharides production has been developed. Experiments were carried out in batch mode in order to obtain kinetic model parameters that were further applied to simulate fed-batch processes. A simplification of parameter fitting was also introduced for complicated model. The fed-batch mode allows more flexibility in the control of the substrate concentration as well as product concentration in the culture medium. Based on the batch mathematical model, a fed-batch model was developed and simulations were done. Simulation study in fed-batch reactor resulted that substrate concentration should be controlled at 20 g L-1 to soften the product inhibition and also to stimulate utilization of substrate and its hydrolysate. From simulation results of different feeding techniques, it was found that constant feeding at 0.01 L h-1 was most practically effective feeding profile for exopolysaccharides production in fed-batch mode.

  6. On the optimal control of fed-batch reactors with substrate-inhibited kinetics. (United States)

    Cazzador, L


    The optimal feed rate profiles, for fed-batch fermentation that maximizes the biomass production and accounts for time, are analyzed. The solution can be found only if the final arc of the optimal control is a batch arc, since in this case the final concentrations of substrate and biomass can be determined by ulterior conditions on the mass balance and on the final growth rate of biomass and thus it is possible to solve the resulting time optimal problem by using Green's theorem. This evidences the "turnpike property" of the solution, which tries to spend the maximum time on or at least near the singular arc along which the substrate concentration is maintained constant. The optimality of the final batch arc is related to the time operational cost in the performance index. The sequence of the control depends on the initial conditions for which six different regions, with the respective patterns, have been identified, in case the performance index allows the control sequence to have a final batch.

  7. Biosorption of copper(II) ions onto powdered waste sludge in a completely mixed fed-batch reactor: estimation of design parameters. (United States)

    Pamukoglu, Yunus; Kargi, Fikret


    Biosorption of Cu(II) ions onto pre-treated powdered waste sludge (PWS) was investigated using a fed-batch operated completely mixed reactor. Fed-batch adsorption experiments were performed by varying the feed flow rate ( 0.075-0.325 l h(-1)), feed copper (II) ion concentrations (50-300 mg l(-1)) and the amount of adsorbent (1-6 g PWS) using fed-batch operation. Breakthrough curves describing the variations of effluent copper ion concentrations with time were determined for different operating conditions. Percent copper ion removals from the aqueous phase decreased, but the biosorbed (solid phase) copper ion concentrations increased with increasing the feed flow rate and Cu(II) concentration. A modified Bohart-Adams equation was used to determine the biosorption capacity of PWS and the rate constant for Cu(II) ion biosorption. Adsorption rate constant in fed-batch operation was an order of magnitude larger than those obtained in adsorption columns because of elimination of mass transfer limitations encountered in the column operations while the biosorption capacity of PWS was comparable with powdered activated (PAC) in column operations. Therefore, a completely mixed reactor operated in fed-batch mode was proven to be more advantageous as compared to adsorption columns due to better contact between the phases yielding faster adsorption rates.

  8. Physiological changes of Candida tropicalis population degrading phenol in fed batch reactor

    Directory of Open Access Journals (Sweden)

    Eliska Komarkova


    Full Text Available Candida tropicalis can use phenol as the sole carbon and energy source. Experiments regarding phenol degradations from the water phase were carried out. The fermentor was operated as a fed-batch system with oxistat control. Under conditions of nutrient limitation and an excess of oxygen the respiration activity of cells was suppressed and some color metabolites (black-brown started to be formed. An accumulation of these products inhibited the cell growth under aerobic conditions. Another impact was a decrease of the phenol hydroxylase activity as the key enzyme of the phenol degradation pathway at the end of the cell respiration activity. This decrease is linked with the above mentioned product inhibition. The cell death studied by fluorescent probe proceeded very slowly after the loss of the respiration activity. The starvation stress induced an increase of the endogenous respiration rate at the expense of phenol oxidation.Candida tropicalis pode utilizar fenol como única fonte de carbono e de energia. O fermentador foi operado em um sistema ''batelada-alimentada'' e controle oxidativo. Em condições limitantes de nutrientes e excesso de oxigênio a atividade respiratória das células foi suprimida e o calor do metabolismo pode ser formado. Uma acumulação desses produtos inibiu o crescimento das células em condições aeróbicas. Outro impacto foi um decréscimo da atividade fenol hidroxilase como enzima chave da degradação do fenol no final da atividade respirométrica. Essa redução está relacionada com os fatos acima mencionados. A morte da célula estudada por sonda de fluorescência ocorreu lentamente após a perda da atividade respiratória. O ''stress'' celular induziu um aumento na taxa de respiração endógena devido à oxidação fenólica.

  9. Improvement in the bioreactor specific productivity by coupling continuous reactor with repeated fed-batch reactor for acetone-butanol-ethanol production. (United States)

    Setlhaku, Mpho; Brunberg, Sina; Villa, Eva Del Amor; Wichmann, Rolf


    In comparison to the different fermentation modes for the production of acetone, butanol and ethanol (ABE) researched to date, the continuous fermentation is the most economically favored. Continuous fermentation with two or more reactor cascade is reported to be the most efficient as it results in a more stable solvent production process. In this work, it is shown that a continuous (first-stage) reactor coupled to a repeated fed-batch (second stage) is superior to batch and fed-batch fermentations, including two-stage continuous fermentation. This is due to the efficient catalyst use, reported through the specific product rate and rapid glucose consumption rate. High solvents are produced at 19.4 g(ABE) l⁻¹, with volumetric productivities of 0.92 g(butanol) l⁻¹ h⁻¹ and 1.47 g(ABE) l ⁻¹ h⁻¹. The bioreactor specific productivities of 0.62 and 0.39 g g⁻¹(cdw) h⁻¹ obtained show a high catalyst activity. This new process mode has not been reported before in the development of ABE fermentation and it shows great potential and superiority to the existing fermentation methods.

  10. Mainstream partial nitritation and anammox in a 200,000 m3/day activated sludge process in Singapore: scale-down by using laboratory fed-batch reactor. (United States)

    Yeshi, Cao; Hong, Kwok Bee; van Loosdrecht, Mark C M; Daigger, Glen T; Yi, Png Hui; Wah, Yuen Long; Chye, Chua Seng; Ghani, Yahya Abd


    A laboratory fed-batch reactor has been used to study under controlled conditions the performance of partial nitritation/anammox for the 200,000 m(3)/day step-feed activated sludge process at the Changi Water Reclamation Plant, Singapore. The similarity of the concentrations of NH(4), NO(2), NO(3), PO(4), suspended chemical oxygen demand (sCOD), pH, and alkalinity (ALK) between the on-site process and laboratory reactor illustrates that the laboratory fed-batch reactor can be used to simulate the site performance. The performance of the reactor fed by primary effluent illustrated the existence of anammox and heterotrophic denitrification and apparent excessive biological phosphorus removal as observed from the site. The performance of the reactor fed by final effluent proved the presence of anammox process on site. Both the laboratory reactor and on-site process showed that higher influent 5-day biochemical oxygen demand/total nitrogen (BOD(5)/TN) (COD/TN) ratio increases the nitrogen removal efficiency of the process.

  11. Acrylamide synthesis using agar entrapped cells of Rhodococcus rhodochrous PA-34 in a partitioned fed batch reactor. (United States)

    Raj, Jog; Sharma, Nitya Nand; Prasad, Shreenath; Bhalla, Tek Chand


    The nitrile hydratase (Nhase) induced cells of Rhodococcus rhodochrous PA-34 catalyzed the conversion of acrylonitrile to acrylamide. The cells of R. rhodochrous PA-34 immobilized in 2% (w/v) agar (1.76 mg dcw/ml agar matrix) exhibited maximum Nhase activity (8.25 U/mg dcw) for conversion of acrylonitrile to acrylamide at 10 degrees C in the reaction mixture containing 0.1 M potassium phosphate buffer (pH 7.5), 8% (w/v) acrylonitrile and immobilized cells equivalent to 1.12 mg dcw (dry cell weight) per ml. In a partitioned fed batch reaction at 10 degrees C, using 1.12 g dcw immobilized cells in a final volume of 1 l, a total of 372 g of acrylonitrile was completely hydrated to acrylamide (498 g) in 24 h. From the above reaction mixture 87% acrylamide (432 g) was recovered through crystallization at 4 degrees C. By recycling the immobilized biocatalyst (six times), a total of 2,115 g acrylamide was produced.

  12. A special reactor design for investigations of mixing time effects in a scaled-down industrial L-lysine fed-batch fermentation process (United States)

    Schilling; Pfefferle; Bachmann; Leuchtenberger; Deckwer


    A specially designed model reactor based on a 42-L laboratory fermentor was equipped with six stirrers (Rushton turbines) and five cylindrical disks. In this model reactor, the mixing time, Theta(90), turned out to be 13 times longer compared with the 42-L standard laboratory fermentor fitted with two Rushton turbines and four wall-fixed longitudinal baffles. To prove the suitability of the model reactor for scaledown studies of mixing-time-dependent processes, parallel exponential fed-batch cultivations were carried out with the leucine-auxotrophic strain, Corynebacterium glutamicum DSM 5715, serving as a microbial test system. L‐Leucine, the process-limiting substrate, was fed onto the liquid surface of both reactors. Cultivations were conducted using the same inoculum material and equal oxygen supply. The model reactor showed reduced sugar consumption (-14%), reduced ammonium consumption (-19%), and reduced biomass formation (-7%), which resulted in a decrease in L-lysine formation (-12%). These findings were reflected in less specific enzyme activity, which was determined for citrate synthase (CS), phosphoenolpyruvate carboxylase (PEP-C), and aspartate kinase (AK). The reduced specific activity of CS correlated with lower CO(2) evolution (-36%) during cultivation. The model reactor represents a valuable tool to simulate the conditions of poor mixing and inhomogeneous substrate distribution in bioreactors of industrial scale. Copyright 1999 John Wiley & Sons, Inc.

  13. pH-oscillations in the bromate–sulfite reaction in semibatch and in gel-fed batch reactors

    Energy Technology Data Exchange (ETDEWEB)

    Poros, Eszter; Kurin-Csörgei, Krisztina; Szalai, István; Orbán, Miklós, E-mail: [Department of Analytical Chemistry, Institute of Chemistry, L. Eötvös University, P.O. Box 32, H-1518 Budapest 112 (Hungary); Rábai, Gyula [Institute of Physical Chemistry, University of Debrecen, P.O. Box 7, H-4010 Debrecen (Hungary)


    The simplest bromate oxidation based pH-oscillator, the two component BrO{sub 3}{sup −}–SO{sub 3}{sup 2–} flow system was transformed to operate under semibatch and closed arrangements. The experimental preconditions of the pH-oscillations in semibatch configuration were predicted by model calculations. Using this information as guideline large amplitude (ΔpH∼3), long lasting (11–24 h) pH-oscillations accompanied with only a 20% increase of the volume in the reactor were measured when a mixture of Na{sub 2}SO{sub 3} and H{sub 2}SO{sub 4} was pumped into the solution of BrO{sub 3}{sup −} with a very low rate. Batch-like pH-oscillations, similar in amplitude and period time appeared when the sulfite supply was substituted by its dissolution from a gel layer prepared previously in the reactor in presence of high concentration of Na{sub 2}SO{sub 3}. The dissolution vs time curve and the pH-oscillations in the semibatch and closed systems were successfully simulated. Due to the simplicity in composition and in experimental technique, the semibatch and batch-like BrO{sub 3}{sup −}–SO{sub 3}{sup 2–} pH-oscillators may become superior to their CSTR (continuous flow stirred tank reactor) version in some present and future applications.

  14. pH-oscillations in the bromate-sulfite reaction in semibatch and in gel-fed batch reactors (United States)

    Poros, Eszter; Kurin-Csörgei, Krisztina; Szalai, István; Rábai, Gyula; Orbán, Miklós


    The simplest bromate oxidation based pH-oscillator, the two component BrO3--SO32- flow system was transformed to operate under semibatch and closed arrangements. The experimental preconditions of the pH-oscillations in semibatch configuration were predicted by model calculations. Using this information as guideline large amplitude (ΔpH˜3), long lasting (11-24 h) pH-oscillations accompanied with only a 20% increase of the volume in the reactor were measured when a mixture of Na2SO3 and H2SO4 was pumped into the solution of BrO3- with a very low rate. Batch-like pH-oscillations, similar in amplitude and period time appeared when the sulfite supply was substituted by its dissolution from a gel layer prepared previously in the reactor in presence of high concentration of Na2SO3. The dissolution vs time curve and the pH-oscillations in the semibatch and closed systems were successfully simulated. Due to the simplicity in composition and in experimental technique, the semibatch and batch-like BrO3--SO32- pH-oscillators may become superior to their CSTR (continuous flow stirred tank reactor) version in some present and future applications.

  15. Bioconversion of sawdust into ethanol using dilute sulfuric acid-assisted continuous twin screw-driven reactor pretreatment and fed-batch simultaneous saccharification and fermentation. (United States)

    Kim, Tae Hyun; Choi, Chang Ho; Oh, Kyeong Keun


    Ethanol production from poplar sawdust using sulfuric acid-assisted continuous twin screw-driven reactor (CTSR) pretreatment followed by simultaneous saccharification and fermentation (SSF) was investigated. Pretreatment with high acid concentration increased the cellulose content in the pretreated solid (74.9-76.9% in the range of 4.0-5.5wt.% H(2)SO(4)). The sugar content (XMG; xylan+mannan+galactan) in the treated-solid was 11.1-15.2% and 0.9-5.7% with 0.5wt.% and 7.0wt.%, respectively. The XMG recovery yield of the sample treated with 4.0wt.% H(2)SO(4) at 185°C was maximized at 88.6%. Enzymatic hydrolysis test showed a cellulose digestibility of 67.1%, 70.1%, and 73.6% with 15, 30, and 45FPU/g-cellulose, respectively. In the fed-batch SSF tests with initial enzyme addition, the ethanol yield of each stage almost reached a maximum at 28h, 48h, and 56h, respectively, with yields of 63.9% (16.5g/L), 78.4% (30.1g/L), and 81.7% (39.9g/L), respectively.

  16. Changes of the microbial population structure in an overloaded fed-batch biogas reactor digesting maize silage. (United States)

    Kampmann, Kristina; Ratering, Stefan; Geißler-Plaum, Rita; Schmidt, Michael; Zerr, Walter; Schnell, Sylvia


    Two parallel, stable operating biogas reactors were fed with increasing amounts of maize silage to monitor microbial community changes caused by overloading. Changes of microorganisms diversity revealed by SSCP (single strand conformation polymorphism) indicating an acidification before and during the pH-value decrease. The earliest indicator was the appearance of a Methanosarcina thermophila-related species. Diversity of dominant fermenting bacteria within Bacteroidetes, Firmicutes and other Bacteria decreased upon overloading. Some species became dominant directly before and during acidification and thus could be suitable as possible indicator organisms for detection of futurity acidification. Those bacteria were related to Prolixibacter bellariivorans and Streptococcus infantarius subsp. infantarius. An early detection of community shifts will allow better feeding management for optimal biogas production.


    Directory of Open Access Journals (Sweden)

    A.S. Silva


    Full Text Available Cephalosporin C, a b -lactam antibiotic, is the starting molecule for industrial production of semi-synthetic cephalosporins. The bioprocess for its production is carried out in batch stirred and aerated tank reactors utilizing strains of the filamentous fungus Cephalosporium acremonium. In this work a comparison was made between the processes of production of cephalosporin C in a conventional batch bioreactor, with synthetic medium containing glucose and sucrose, and in a fed-batch reactor at several flowrates of supplementary medium containing invert sucrose. In general, the fed-batch process was shown to be more efficient than the conventional batch one, and the process in which the lowest supplementation flowrate was used presented an antibiotic production significantly higher than those obtained under the other conditions.

  18. From Fed-batch to Continuous Enzymatic Biodiesel Production

    DEFF Research Database (Denmark)


    In this this paper, we use mechanistic modelling to guide the development of acontinuous enzymatic process that is performed as a fed-batch operation. In this workwe use the enzymatic biodiesel process as a case study. A mechanistic model developedin our previous work was used to determine...... measured components (triglycerides, diglycerides, monoglycerides, free fatty acid and fatty acid methyl esters(biodiesel)) much better than using fed-batch data alone given the smaller residuals. We also observe a reduction in the correlation between the parameters.The model was then used to predict that 5...... reactors are required (with a combined residence time of 30 hours) to reach a final biodiesel concentration within 2 % of the95.6 mass % achieved in a fed-batch operation, for 24 hours....

  19. Autotrophic Nitrogen Removal in a Membrane-Aerated Biofilm Reactor Under Continuous Aeration: A Demonstration

    DEFF Research Database (Denmark)

    Gilmore, Kevin R.; Terada, Akihiko; Smets, Barth F.


    This work describes the successful coupling of partial nitrification (nitritation) and anaerobic ammonium oxidation in a membrane-aerated biofilm reactor (MABR) with continuous aeration. Controlling the relative surface loadings of oxygen versus ammonium prevented complete nitrite oxidation and a...

  20. Hydrogen production from starch by co-culture of Clostridium acetobutylicum and Rhodobacter sphaeroides in one step hybrid dark- and photofermentation in repeated fed-batch reactor. (United States)

    Zagrodnik, R; Łaniecki, M


    Hydrogen production from starch by a co-culture hybrid dark and photofermentation under repeated fed-batch conditions at different organic loading rates (OLR) was studied. Effective cooperation between bacteria in co-culture during initial days was observed at controlled pH 7.0. However, at pH above 6.5 dark fermentation phase was redirected from H2 formation towards production of formic acid, lactic acid and ethanol (which are not coupled with hydrogen production) with simultaneous lower starch removal efficiency. This resulted in decrease in the hydrogen production rate. The highest H2 production in co-culture process (3.23LH2/Lmedium - after 11days) was achieved at OLR of 1.5gstarch/L/day, and it was twofold higher than for dark fermentation process (1.59LH2/Lmedium). The highest H2 yield in the co-culture (2.62molH2/molhexose) was obtained at the OLR of 0.375gstarch/L/day. Different pH requirements of bacteria were proven to be a key limitation in co-culture system.

  1. Enhanced submerged Aspergillus ficuum phytase production by implementation of fed-batch fermentation. (United States)

    Coban, Hasan B; Demirci, Ali


    Phytase is an important feed and food additive, which is both used in animal and human diets. Phytase has been used to increase the absorption of several divalent ions, amino acids, and proteins in the bodies and to decrease the excessive phosphorus release in the manure to prevent negative effects on the environment. To date, microbial phytase has been mostly produced in solid-state fermentations with insignificant production volumes. There are only a few studies in the literature that phytase productions were performed in submerged bench-top reactor scale. In our previous studies, growth parameters (temperature, pH, and aeration) and important fermentation medium ingredients (glucose, Na-phytate, and CaSO4) were optimized. This study was undertaken for further enhancement of phytase production with Aspergillus ficuum in bench-top bioreactors by conducting fed-batch fermentations. The results showed that addition of 60 g of glucose and 10 g of Na-phytate at 96 h of fermentation increased phytase activity to 3.84 and 4.82 U/ml, respectively. Therefore, the maximum phytase activity was further enhanced with addition of glucose and Na-phytate by 11 and 40 %, respectively, as compared to batch phytase fermentations. It was also reported that phytase activity increased higher in early log stage additions than late log stage additions because of higher microbial activity. In addition, the phytase activity in fed-batch fermentation did not drop significantly as compared to the batch fermentation. Overall, this study shows that fungal phytase can be successfully produced in submerged fed-batch fermentations.

  2. Bench-scale production of acrylamide using the resting cells of Brevibacterium sp. CH2 in a fed-batch reactor. (United States)

    Lee, C Y; Choi, S K; Chang, H N


    Effects of various organic acids and salts on the stabilization of nitrile hydratase were investigated. The stability of the nitrile hydratase of Brevibacterium CH2 during storage was greatly enhanced by the addition of n-butyric acid. Effects of temperature, pH, and concentrations of acrylonitrile and n-butyric acid on acrylamide production by the resting cells were also investigated. Acrylamide production per unit dry weight of the cells increased 1.33 times by the addition of 0.05% n-butyric acid. A 20% acrylamide solution was successfully produced in a bench-scale reactor (12 l) with only a trace amount of salts after 10 h of hydration reaction under optimum reaction conditions without using an isotonic substrate. The conversion yield was nearly 100%, and acrylic acid as a by-product was not produced. Final acrylamide production of 400 g g-1 cells and productivity of 20 g/(g cells l-1 x h-1) were obtained.

  3. Supervision of Fed-Batch Fermentations

    DEFF Research Database (Denmark)

    Gregersen, Lars; Jørgensen, Sten Bay


    Process faults may be detected on-line using existing measurements based upon modelling that is entirely data driven. A multivariate statistical model is developed and used for fault diagnosis of an industrial fed-batch fermentation process. Data from several (25) batches are used to develop a mo...

  4. Phosphorus removal in aerated stirred tank reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ghigliazza, R.; Lodi, A.; Rovatti, M. [Inst. of Chemical and Process Engineering ``G.B. Bonino``, Univ. of Genoa (Italy)


    The possibility to obtain biological phosphorus removal in strictly aerobic conditions has been investigated. Experiments, carried out in a continuous stirred tank reactor (CSTR), show the feasibility to obtain phosphorus removal without the anaerobic phase. Reactor performance in terms of phosphorus abatement kept always higher then 65% depending on adopted sludge retention time (SRT). In fact increasing SRT from 5 days to 8 days phosphorus removal and reactor performance increase but overcoming this SRT value a decreasing in reactor efficiency was recorded. (orig.) With 6 figs., 3 tabs., 18 refs.

  5. Scale-up of dextransucrase production by Leuconostoc mesenteroides in fed batch fermentation

    Directory of Open Access Journals (Sweden)

    Michelena Georgina L.


    Full Text Available Fed batch fermentation was carried out for the dextransucrase enzyme production from Leuconostoc mesenteroides and the production was scale-up using oxygen transfer criteriuom. It was found that in 5 L vessel fermentation capacity, the best agitation speed was 225 min-1 and aeration rate was 0.15 vvm, obtaining dextransucrase activity of 127 DSU/mL.. The maximum enzyme production velocity coincide with the maximum growth velocity between 6 and 7 h of fermentation, which confirmed that dextransucrase production was associated with microbial growth. High enzyme yields were achieved during scale up based on oxygen transfer rate.

  6. Optimal control of a fed-batch fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Dekkers, R.M.


    The common cultivation of bakers' yeast is an aerobic fed-batch fermentation under sugar-limited growth. The ultimate objective of on-line computer control is to optimize the process through maximizing the productivity of biomass formation while minimizing the consumption of raw materials for the product. Results obtained on the optimal control of a fed-batch fermentation are given. The aspects to be considered are instrumentation, state estimation, optimization and process control.

  7. Kinetic study of batch and fed-batch enzymatic saccharification of pretreated substrate and subsequent fermentation to ethanol

    Directory of Open Access Journals (Sweden)

    Gupta Rishi


    Full Text Available Abstract Background Enzymatic hydrolysis, the rate limiting step in the process development for biofuel, is always hampered by its low sugar concentration. High solid enzymatic saccharification could solve this problem but has several other drawbacks such as low rate of reaction. In the present study we have attempted to enhance the concentration of sugars in enzymatic hydrolysate of delignified Prosopis juliflora, using a fed-batch enzymatic hydrolysis approach. Results The enzymatic hydrolysis was carried out at elevated solid loading up to 20% (w/v and a comparison kinetics of batch and fed-batch enzymatic hydrolysis was carried out using kinetic regimes. Under batch mode, the actual sugar concentration values at 20% initial substrate consistency were found deviated from the predicted values and the maximum sugar concentration obtained was 80.78 g/L. Fed-batch strategy was implemented to enhance the final sugar concentration to 127 g/L. The batch and fed-batch enzymatic hydrolysates were fermented with Saccharomyces cerevisiae and ethanol production of 34.78 g/L and 52.83 g/L, respectively, were achieved. Furthermore, model simulations showed that higher insoluble solids in the feed resulted in both smaller reactor volume and shorter residence time. Conclusion Fed-batch enzymatic hydrolysis is an efficient procedure for enhancing the sugar concentration in the hydrolysate. Restricting the process to suitable kinetic regimes could result in higher conversion rates.

  8. Sequential Aeration of Membrane-Aerated Biofilm Reactors for High-Rate Autotrophic Nitrogen Removal: Experimental Demonstration

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Sun, Sheng-Peng; Lackner, Susanne;


    One-stage autotrophic nitrogen (N) removal, requiring the simultaneous activity of aerobic and anaerobic ammonium oxidizing bacteria (AOB and AnAOB), can be obtained in spatially redox-stratified biofilms. However, previous experience with Membrane-Aerated Biofilm Reactors (MABRs) has revealed...

  9. A novel model-based control strategy for aerobic filamentous fungal fed-batch fermentation processes

    DEFF Research Database (Denmark)

    Mears, Lisa; Stocks, Stuart M.; Albaek, Mads O.


    in a batch in a defined process time. In order to achieve this goal, it is important to maximize both the product concentration, and also the total final mass in the fed-batch system. To this end, we describe the development of a control strategy which aims to achieve maximum tank fill, while avoiding oxygen...... limited conditions. This requires a two stage approach: (i) calculation of the tank start fill; and (ii) on-line control in order to maximize fill subject to oxygen transfer limitations. First, a mechanistic model was applied off-line in order to determine the appropriate start fill for processes...... with four different sets of process operating conditions for the stirrer speed, headspace pressure, and aeration rate. The start fills were tested with eight pilot scale experiments using a reference process operation. An on-line control strategy was then developed, utilizing the mechanistic model which...

  10. Sequentially aerated membrane biofilm reactors for autotrophic nitrogen removal: microbial community composition and dynamics

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Franck, Stephanie; Gülay, Arda;


    Membrane-aerated biofilm reactors performing autotrophic nitrogen removal can be successfully applied to treat concentrated nitrogen streams. However, their process performance is seriously hampered by the growth of nitrite oxidizing bacteria (NOB). In this work we document how sequential aeration...

  11. Microbial fed-batch production of 1,3-propanediol using raw glycerol with suspended and immobilized Klebsiella pneumoniae. (United States)

    Jun, Sun-Ae; Moon, Chuloo; Kang, Cheol-Hee; Kong, Sean W; Sang, Byoung-In; Um, Youngsoon


    The production of 1,3-propanediol (1,3-PD) was investigated with Klebsiella pneumoniae DSM 4799 using raw glycerol without purification obtained from a biodiesel production process. Fed-batch cultures with suspended cells revealed that 1,3-PD production was more effective when utilizing raw glycerol than pure glycerol (productivity after 47 h of fermentation, 0.84 g L(-1) 1 h(-1) versus 1.51 g L(-1) h(-1) with pure and raw glycerol,respectively). In addition, more than 80 g/L of 1,3-PD was produced using raw glycerol;this is the highest 1,3-PD concentration reported thus far for K. pneumoniae using raw glycerol. Repeated fed-batch fermentation with cell immobilization in a fixed-bed reactor was performed to enhance 1,3-PD production. Production of 1,3-PD increased with the cycle number (1.06 g L(-1) h(-1) versus 1.61 g L(-1) h(-1) at the first and fourth cycle, respectively)due to successful cell immobilization. During 46 cycles of fed-batch fermentation taking place over 1,460 h, a stable and reproducible 1,3-PD production performance was observed with both pure and raw glycerol. Based on our results, repeated fed batch with immobilized cells is an efficient fermentor configuration, and raw glycerol can be utilized to produce 1,3-PD without inhibitory effects caused by accumulated impurities.

  12. A study on clavulanic acid production by Streptomyces clavuligerus in batch, fed-batch and continuous processes

    Directory of Open Access Journals (Sweden)

    A. B. Neto


    Full Text Available Clavulanic acid (CA is a potent inhibitor of beta-lactamases, enzymes that are responsible for the hydrolysis of beta-lactam antibiotics. It is a secondary metabolite produced by the filamentous aerobic bacterium Streptomyces clavuligerus in submerged cultivations. In the present work clavulanic acid production in batch, fed-batch and continuous bioreactors was studied with the objective of increasing productivity. The operating conditions: temperature, aeration and agitation, were the same in all cases, 28º C, 0.5 vvm and 800 rpm, respectively. The CA concentration obtained in the fed-batch culture, 404 mg L-1, was ca twice the value obtained in the batch culture, 194 mg L-1, while 293 mg L-1 was obtained in the continuous culture. The highest productivity was obtained in the continuous cultivation, 10.6 mg L-1 h-1, as compared with 8.8 mg L-1 h-1 in the fed-batch process and 3.5 mg L-1 h-1 in the batch process, suggesting that continuous culture of Streptomyces clavuligerus is a promising strategy for clavulanic acid production.

  13. Monitoring transitory profiles of leachate humic substances in landfill aeration reactors in mesophilic and thermophilic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Huanhuan [Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141 (Singapore); School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Yin, Ke; Ge, Liya; Giannis, Apostolos [Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141 (Singapore); Chuan, Valerie W.L. [School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Wang, Jing-Yuan, E-mail: [Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141 (Singapore); School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore)


    Highlights: • Polymerization and condensation of humic substances (HS) were enhanced by aeration. • Carboxylic group was enriched in HS by aeration presenting improved hydrophilicity. • Mobility of humic acid, as a result was enhanced by aeration especially in young landfill. • Waste age plays an important role in leachate management during aeration. - Abstract: The presence of humic substances (HS) in landfill leachate is of great interest because of their structural stability and potential toxicity. This study examined the effects of temperature and waste age on the transformation of HS during in situ aeration of bioreactor landfills. By establishing aerobic conditions, dissolved organic carbon (DOC) rapidly accumulated in the bioreactor leachate. Fractional analysis showed that the elevated concentration of humic acids (HAs) was primarily responsible for the increment of leachate strength. Further structural characterization indicated that the molecular weight (MW) and aromacity of HS were enhanced by aeration in conjunction with thermophilic temperature. Interestingly, elevation of HAs concentration was not observed in the aeration reactor with a prolonged waste age, as the mobility of HAs was lowered by the high MW derived from extended waste age. Based on these results, aeration may be more favorable in aged landfills, since dissolution of HAs could be minimized by the evolution to larger MW compared to young landfills. Moreover, increased operation temperature during aeration likely offers benefits for the rapid maturation of HS.

  14. Fed-batch production of tetanus toxin by Clostridium tetani. (United States)

    Fratelli, Fernando; Siquini, Tatiana Joly; de Abreu, Marcelo Estima; Higashi, Hisako Gondo; Converti, Attilio; de Carvalho, João Carlos Monteiro


    This study deals with the effects of the initial nitrogen source (NZ Case TT) level and the protocol of glucose addition during the fed-batch production of tetanus toxin by Clostridium tetani. An increase in the initial concentration of NZ Case TT (NZ(0)) accelerated cell growth, increased the consumption of the nitrogen source as well as the final yield of tetanus toxin, which achieved the highest values (50-60 L(f)/mL) for NZ(0) > or = 50 g/L. The addition of glucose at fixed times (16, 56, and 88 h) ensured a toxin yield ( approximately 60 L(f)/mL) about 33% higher than those of fed-batch runs with addition at fixed concentration ( approximately 45 L(f)/mL) and about 300% higher than those obtained in reference batch runs nowadays used at industrial scale. The results of this work promise to substantially improve the present production of tetanus toxin and may be adopted for human vaccine production after detoxification and purification.

  15. Municipal waste stabilization in a reactor with an integrated active and passive aeration system. (United States)

    Kasinski, Slawomir; Slota, Monika; Markowski, Michal; Kaminska, Anna


    To test whether an integrated passive and active aeration system could be an effective solution for aerobic decomposition of municipal waste in technical conditions, a full-scale composting reactor was designed. The waste was actively aerated for 5d, passively aerated for 35 d, and then actively aerated for 5d, and the entire composting process was monitored. During the 45-day observation period, changes in the fractional, morphological and physico-chemical characteristics of the waste at the top of the reactor differed from those in the center of the reactor. The fractional and morphological analysis made during the entire process of stabilization, showed the total reduction of organic matter measured of 82 wt% and 86 wt% at the respective depths. The reduction of organic matter calculated using the results of Lost of Ignition (LOI) and Total Organic Carbon (TOC) showed, respectively, 40.51-46.62% organic matter loss at the top and 45.33-53.39% in the center of the reactor. At the end of the process, moisture content, LOI and TOC at the top were 3.29%, 6.10% and 4.13% higher, respectively, than in the center. The results showed that application of passive aeration in larger scale simultaneously allows the thermophilic levels to be maintained during municipal solid waste composting process while not inhibiting microbial activity in the reactor.

  16. Influence of aeration intensity on mature aerobic granules in sequencing batch reactor. (United States)

    Gao, Da-Wen; Liu, Lin; Liang, Hong


    Aeration intensity is well known as an important factor in the formation of aerobic granules. In this research, two identical lab-scale sequencing batch reactors with aeration intensity of 0.8 (R1) and 0.2 m(3)/h (R2) were operated to investigate the characteristics and kinetics of matured aerobic granules. Results showed that both aeration intensity conditions induced granulation, but they showed different effects on the characteristics of aerobic granules. Compared with the low aeration intensity (R2), the aerobic granules under the higher aeration intensity (R1) had better physical characteristics and settling ability. However, the observed biomass yield (Y obs) in R1 [0.673 kg mixed liquor volatile suspended solids (MLVSS)/kg chemical oxygen demand (COD)] was lower than R2 (0.749 kg MLVSS/kg COD). In addition, the maximum specific COD removal rates (q max) and apparent half rate constant (K) of mature aerobic granular sludge under the two aeration intensities were at a similar level. Therefore, the matured aerobic granule system does not require to be operated in a higher aeration intensity, which will reduce the energy consumption.

  17. Electrochemical study of multi-electrode microbial fuel cells under fed-batch and continuous flow conditions

    KAUST Repository

    Ren, Lijiao


    Power production of four hydraulically connected microbial fuel cells (MFCs) was compared with the reactors operated using individual electrical circuits (individual), and when four anodes were wired together and connected to four cathodes all wired together (combined), in fed-batch or continuous flow conditions. Power production under these different conditions could not be made based on a single resistance, but instead required polarization tests to assess individual performance relative to the combined MFCs. Based on the power curves, power produced by the combined MFCs (2.12 ± 0.03 mW, 200 ω) was the same as the summed power (2.13 mW, 50 ω) produced by the four individual reactors in fed-batch mode. With continuous flow through the four MFCs, the maximum power (0.59 ± 0.01 mW) produced by the combined MFCs was slightly lower than the summed maximum power of the four individual reactors (0.68 ± 0.02 mW). There was a small parasitic current flow from adjacent anodes and cathodes, but overall performance was relatively unaffected. These findings demonstrate that optimal power production by reactors hydraulically and electrically connected can be predicted from performance by individual reactors. © 2013 Elsevier B.V. All rights reserved.

  18. Alcoholic fermentation with flocculant Saccharomyces cerevisiae in fed-batch process. (United States)

    Guidini, Carla Zanella; Marquez, Líbia Diniz Santos; de Almeida Silva, Helisângela; de Resende, Miriam Maria; Cardoso, Vicelma Luiz; Ribeiro, Eloízio Júlio


    Studies have been conducted on selecting yeast strains for use in fermentation for ethanol production to improve the performance of industrial plants and decrease production costs. In this paper, we study alcoholic fermentation in a fed-batch process using a Saccharomyces cerevisiae yeast strain with flocculant characteristics. Central composite design (CCD) was used to determine the optimal combination of the variables involved, with the sucrose concentration of 170 g/L, a cellular concentration in the inoculum of 40% (v/v), and a filling time of 6 h, which resulted in a 92.20% yield relative to the theoretical maximum yield, a productivity of 6.01 g/L h and a residual sucrose concentration of 44.33 g/L. With some changes in the process such as recirculation of medium during the fermentation process and increase in cellular concentration in the inoculum after use of the CCD was possible to reduce the residual sucrose concentration to 2.8 g/L in 9 h of fermentation and increase yield and productivity for 92.75% and 9.26 g/L h, respectively. A model was developed to describe the inhibition of alcoholic fermentation kinetics by the substrate and the product. The maximum specific growth rate was 0.103 h(-1), with K(I) and K(s) values of 109.86 and 30.24 g/L, respectively. The experimental results from the fed-batch reactor show a good fit with the proposed model, resulting in a maximum growth rate of 0.080 h(-1).


    Directory of Open Access Journals (Sweden)

    Leonard D. Holmes


    Full Text Available The present study deals with the batch and fed-batch mass production of Steinernema carpocapsae. S. carpocapsae is an entomoparasitic nematode that is used as a biological control agent of soil-borne crop insect pests. The ability and efficiency of fed-batch culture process was successful through the utilization of the nematode’s bacterial symbiont Xenorhabdus nematophila. Results from the fed-batch process were compared to those obtain from the standard batch process. The fed-batch process successively improved the mass production process of S. carpocapsae employing liquid medium technology. Within the first week of the fed-batch process (day six, the nematode density obtained was 202,000 nematodes mL−1; whereas on day six, batch culture mode resulted in a nematode density of 23,000 nematodes mL−1. The fed-batch process was superior to that of batch production with a yield approximately 8.8-fold higher. In fed-batch process, the nematode yield was improved 88.6 % higher within a short amount of time compared to the batch process. Fed-batch seems to make the process more efficient and possibly economically viable.

  20. Performance of a fixed-bed biofilm reactor with microbubble aeration in aerobic wastewater treatment. (United States)

    Zhang, Lei; Liu, Junliang; Liu, Chun; Zhang, Jing; Yang, Jingliang


    Microbubble aeration is supposed to be highly efficient for oxygen supply in aerobic wastewater treatment. In the present study, the performance of a fixed-bed biofilm reactor microbubble-aerated using a Shirasu porous glass (SPG) membrane system was investigated when treating synthetic municipal wastewater. The biofilm formation on the carriers was enhanced with microbubble aeration due to the strong adhesion of microbubbles to the solid surface. The dissolved oxygen concentration, the removals of chemical oxygen demand (COD) and nitrogen, and the oxygen utilization efficiency were influenced by the organic loading rate at a certain oxygen supply capacity. The relatively optimal organic loading rate was determined as 0.82 kgCOD/(m(3)d) when the oxygen supply capacity was 0.93 kgO(2)/(m(3)d), where COD and ammonia removal efficiencies were 91.7% and 53.9%, respectively. The corresponding SPG membrane area-based COD removal capacity was 6.88 kgCOD/(m(2)d). The oxygen utilization efficiency of microbubble aeration was obviously higher compared to conventional bubble aeration. The simultaneous nitrification and denitrification occurred in the biofilm reactor and the total nitrogen removal efficiency of 50.4% was achieved under these conditions. In addition, the increase in air supply capacity of the SPG membrane system was suggested to improve its energy utilization efficiency.

  1. Enhanced phenylpyruvic acid production with Proteus vulgaris in fed-batch and continuous fermentation. (United States)

    Coban, Hasan B; Demirci, Ali; Patterson, Paul H; Elias, Ryan J


    Phenylpyruvic acid is a deaminated form of phenylalanine and is used in various areas such as development of cheese and wine flavors, diagnosis of phenylketonuria, and to decrease excessive nitrogen accumulation in the manure of farm animals. However, reported phenylpyruvic acid fermentation studies in the literature have been usually performed at shake-flask scale with low production. In this study, phenylpyruvic acid production was evaluated in bench-top bioreactors by conducting fed-batch and continuous fermentation for the first time. As a result, maximum phenylpyruvic acid concentrations increased from 1350 mg/L (batch fermentation) to 2958 mg/L utilizing fed-batch fermentation. Furthermore, phenylpyruvic acid productivity was increased from 48 mg/L/hr (batch fermentation) to 104 and 259 mg/L/hr by conducting fed-batch and continuous fermentation, respectively. Overall, this study demonstrated that fed-batch and continuous fermentation significantly improved phenylpyruvic acid production in bench-scale bioreactor production.

  2. Optimization of ectoine synthesis through fed-batch fermentation of Brevibacterium epidermis. (United States)

    Onraedt, Annelies E; Walcarius, Bart A; Soetaert, Wim K; Vandamme, Erick J


    A production process for ectoine has been developed, using Brevibacterium epidermis DSM20659 as the producer strain. First, the optimal conditions for intracellular synthesis of ectoine were determined. The size of the intracellular ectoine pool is shown to be dependent on the external salt concentration, type of carbon source, and yeast extract concentration. Under the optimized conditions of 1 M NaCl, 50 g/L monosodium glutamate, and 2.5 g/L yeast extract, a maximum concentration of intracellular ectoine of 0.9 g/L was obtained in shake flask cultures. After optimizing the batch fermentation parameters of temperature, pH, agitation, and aeration, the yield could be further increased by applying the fed-batch fermentation principle in 1.5- to 2-L fermentors. Glutamate and yeast extract were fed to the bacterial cells such that the total glutamate concentration in the broth remained constant. A total yield of 8 g ectoine/L fermentation broth was obtained with a productivity of 2 g ectoine/L/day. After the bacterial cells were harvested from the culture broth, the ectoine was recovered from them by a two-step extraction with water and ethanol. Crystallization of the product was obtained after concentration of the extract via evaporation under reduced pressure. After this downstream process, 55% of the ectoine produced in the fermentor could be crystallized in four fractions. The first fractions were of very high purity (98%). This production process can compete with other described production processes for ectoine in productivity and simplicity. Further advantages are the relatively low amounts of NaCl needed and the absence of hydroxyectoine, often a byproduct, in the final product.

  3. Removal of polychlorinated dioxins by semi-aerobic fed-batch composting with biostimulation of "Dehalococcoides". (United States)

    Narihiro, Takashi; Kaiya, Shinichi; Futamata, Hiroyuki; Hiraishi, Akira


    A semi-aerobic, mesophilic, fed-batch composting (FBC) reactor loaded with household garbage was used to remove polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs). The reactor was packed with woodchips as the solid matrix and PCDD/F-contaminated soil or flyash and then operated at a waste-loading rate of 0.5 kg (wet wt) day(-1). All congeners of PCDD/Fs (initial concentration, 200-830 pmol g(-1) [dry wt]) were totally reduced during the over period of operation, with a half reduction time of 4 months. Direct cell counting and respiratory quinone profiling showed that the reactors at the fully acclimated stage harbored a high population density of bacteria (10(11) g(-1) [dry wt]) with members of the Actinobacteria predominating. Real-time quantitative PCR showed that the population of "Dehalococcoides" and its phylogenetic relatives of Chloroflexi as the possible dechlorinators varied between at the order of 10(7) to 10(8) g(-1) (dry wt). A "Dehalococcoides"-containing dechlorinating culture from the soil-treating reactor was successfully enriched with a model PCDD/F compound, fthalide. 16S rRNA gene-targeted PCR-denaturated gradient gel electrophoresis and clone library analyses showed that this culture comprised at least three major phylogenetic groups of bacteria, Acidaminobacter, "Dehalococcoides," and Rhizobium. These results suggest that the semi-aerobic FBC process is applicable for the bioremediation of PCDD/Fs and possibly other haloorganic compounds with the biostimulation of "Dehalococcoides" and its relatives as the potent dechlorinators.

  4. Fed-batch CHO cell culture for lab-scale antibody production

    DEFF Research Database (Denmark)

    Fan, Yuzhou; Ley, Daniel; Andersen, Mikael Rørdam


    Fed-batch culture is the most commonly used upstream process in industry today for recombinant monoclonal antibody production using Chinese hamster ovary cells. Developing and optimizing this process in the lab is crucial for establishing process knowledge, which enable rapid and predictable tech......-transfer to manufacturing scale. In this chapter, we will describe stepwise how to carry out fed-batch CHO cell culture for lab-scale antibody production....

  5. On-line Scheduling Algorithm for Penicillin Fed-batch Fermentation

    Institute of Scientific and Technical Information of China (English)

    XUE Yao-feng; YUAN Jing-qi


    An on-line scheduling algorithm to maximize gross profit of penicillin fed-batch fermentation is proposed. According to the on-line classification method, fed-batch fermentation batches are classified into three categories. Using the scheduling strategy, the optimal termination sequence of batches is obtained. Pseudo on-line simulations for testing the proposed algorithm with the data from industrial scale penicillin fermentation are carried out.


    Institute of Scientific and Technical Information of China (English)


    1 IntroductionGlycerol fed-batch fermentation is attractive tocommercial application since it can control theglucose concentration by changing the feed rate andget a high glycerol yield, therefore it is essential todevelop an optimal glucose feed strategy. For mostof fed-batch fermentation, optimization of feed ratewas based on Pontryagin's maximum principle [if.Since the term of feed rate appears linearly in theHamiltonian, the optimal feed rate profile usuallyconsists of ba,lg-bang intervals and singular ...

  7. Batch and Fed-Batch Fermentation System on Ethanol Production from Whey using Kluyveromyces marxianus

    Directory of Open Access Journals (Sweden)

    H Hadiyanto


    Full Text Available Nowadays reserve of fossil fuel has gradually depleted. This condition forces many researchers to  find energy alternatives which is renewable and sustainable in the future. Ethanol derived from cheese industrial waste (whey using fermentation process can be a new perspective in order to secure both energy and environment. The aim of this study was  to compare the operation modes (batch and fed-batch of fermentation system on ethanol production from whey using Kluyveromyces marxianus. The result showed that the fermentation process for ethanol production by fed-batch system was higher at some point of parameters compared with batch system. Growth rate and ethanol yield (YP/S of fed-batch fermentation were 0.122/h and 0.21 gP/gS respectively; growth rate and ethanol yield (YP/S of batch fermentation were 0.107/h, and 0.12 g ethanol/g substrate, respectively. Based on the data of biomass and ethanol concentrations, the fermentation process for ethanol production by fed-batch system were higher at some point of parameters compared to batch system. Periodic substrate addition performed on fed-batch system leads the yeast growth in low substrate concentrations and consequently  increasing their activity and ethanol productivity. Keywords: batch; ethanol; fed-batch; fermentation;Kluyveromyces marxianus, whey

  8. Treatment of sewage sludge in a thermophilic membrane reactor (TMR) with alternate aeration cycles. (United States)

    Collivignarelli, Maria Cristina; Castagnola, Federico; Sordi, Marco; Bertanza, Giorgio


    The management of sewage sludge is becoming a more and more important issue, both at national and international level, in particular due to the uncertain recovery/disposal future options. Therefore, it is clear that the development of new technologies that can mitigate the problem at the source by reducing sludge production is necessary, such as the European Directive 2008/98/EC prescribes. This work shows the results obtained with a thermophilic membrane reactor, for processing a biological sludge derived from a wastewater treatment plant (WWTP) that treats urban and industrial wastewater. Sewage sludge was treated in a thermophilic membrane reactor (TMR), at pilot-scale (1 m(3) volume), with alternate aeration cycles. The experimentation was divided into two phases: a "startup phase" during which, starting with a psychrophilic/mesophilic biomass, thermophilic conditions were progressively reached, while feeding a highly biodegradable substrate; the obtained thermophilic biomass was then used, in the "regime phase", to digest biological sludge which was fed to the plant. Good removal yields were observed: 64% and 57% for volatile solids (VS) and total COD (CODtot), respectively, with an average hydraulic retention time (HRT) equal to 20 d, an organic loading rate (OLR) of about 1.4-1.8 kg COD m(-3) d(-1) and aeration/non aeration cycles alternated every 4 h.

  9. Fed-Batch Enzymatic Saccharification of High Solids Pretreated Lignocellulose for Obtaining High Titers and High Yields of Glucose. (United States)

    Jung, Young Hoon; Park, Hyun Min; Kim, Dong Hyun; Yang, Jungwoo; Kim, Kyoung Heon


    To reduce the distillation costs of cellulosic ethanol, it is necessary to produce high sugar titers in the enzymatic saccharification step. To obtain high sugar titers, high biomass loadings of lignocellulose are necessary. In this study, to overcome the low saccharification yields and the low operability of high biomass loadings, a fed-batch saccharification process was developed using an enzyme reactor that was designed and built in-house. After optimizing the cellulase and biomass feeding profiles and the agitation speed, 132.6 g/L glucose and 76.0% theoretical maximum glucose were obtained from the 60 h saccharification of maleic acid-pretreated rice straw at a 30% (w/v) solids loading with 15 filter paper units (FPU) of Cellic CTec2/g glucan. This study demonstrated that through the proper optimization of fed-batch saccharification, both high sugar titers and high saccharification yields are possible, even with using the high solids loading (i.e., ≥30%) with the moderate enzyme loading (i.e., high solids saccharification process in cellulosic fuel and chemical production.

  10. Simultaneous removal of COD and nitrogen using a novel carbon-membrane aerated biofilm reactor

    Institute of Scientific and Technical Information of China (English)


    A membrane aerated biofilm reactor is a promising technology for wastewater treatment. In this study, a carbon-membrane aerated biofilm reactor (CMABR) has been developed, to remove carbon organics and nitrogen simultaneously from one reactor. The results showed that CMABR has a high chemical oxygen demand (COD) and nitrogen removal efficiency, as it is operated with a hydraulic retention time (HRT) of 20 h, and it also showed a perfect performance, even if the HRT was shortened to 12 h. In this period, the removal efficiencies of COD, ammonia nitrogen (NH4+-N), and total nitrogen (TN) reached 86%, 94%, and 84%, respectively. However,the removal efficiencies of NH4+-N and TN declined rapidly as the HRT was shortened to 8 h. This is because of the excessive growth of biomass on the nonwoven fiber and very high organic loading rate. The fluorescence in situ hybridization (FISH) analysis indicated that the ammonia oxidizing bacteria (AOB) were mainly distributed in the inner layer of the biofilm. The coexistence of AOB and eubacteria in one biofilm can enhance the simultaneous removal of COD and nitrogen.

  11. Fed-Batch Feeding Strategies for Enzymatic Biodiesel Production

    DEFF Research Database (Denmark)

    Price, Jason Anthony; Nordblad, Mathias; Woodley, John


    while improving the biodiesel yield. The best experimental results gave a yield of 703 .76 g FAME L-1 and a reactor productivity of 28.12 g FAME L-1 h-1. In comparison, to reach the same yield, the optimised two step feeding strategy took 6.25 hours less, which equates to an increase the reactor...... of the differences in the interfacial and bulk concentrations of the enzyme. The model is then used to evaluate various feeding strategies to improve the enzymatic biodiesel production. The feeding strategies investigated, gave insight into how the methanol should be fed to potentially mitigate enzyme deactivation...

  12. A high-yielding, generic fed-batch process for recombinant antibody production of GS-engineered cell lines

    DEFF Research Database (Denmark)

    Fan, Li; Zhao, Liang; Sun, Yating;


    An animal component-free and chemically defined fed-batch process for GS-engineered cell lines producing recombinant antibodies has been developed. The fed-batch process relied on supplying sufficient nutrients to match their consumption, simultaneously minimizing the accumulation of byproducts....... This generic and high-yielding fed-batch process would shorten development time, and ensure process stability, thereby facilitating the manufacture of therapeutic antibodies by GS-engineered cell lines....

  13. Optimization of micro-aeration intensity in acidogenic reactor of a two-phase anaerobic digester treating food waste

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Suyun [Department of Environmental and Low-Carbon Science, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai (China); Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region (Hong Kong); Selvam, Ammaiyappan [Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region (Hong Kong); Wong, Jonathan W.C., E-mail: [Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region (Hong Kong)


    Highlights: • Effect of micro-aeration on acidogenesis and hydrolysis of food waste was investigated. • Micro-aeration at 258 L-air/kg TS/d increased the VFAs production 3-fold. • High aeration leads to loss of substrate through microbial biomass and respiration. • Optimum aeration increased methane recovery while high aeration intensity reduced methane yield. - Abstract: Micro-aeration is known to promote the activities of hydrolytic exo-enzymes and used as a strategy to improve the hydrolysis of particulate substrate. The effect of different micro-aeration rates, 0, 129, 258, and 387 L-air/kg TS/d (denoted as LBR-AN, LBR-6h, LBR-3h and LBR-2h, respectively) on the solubilization of food waste was evaluated at 35 °C in four leach bed reactors (LBR) coupled with methanogenic upflow anaerobic sludge blanket (UASB) reactor. Results indicate that the intensity of micro-aeration influenced the hydrolysis and methane yield. Adequate micro-aeration intensity in LBR-3h and LBR-2h significantly enhanced the carbohydrate and protein hydrolysis by 21–27% and 38–64% respectively. Due to the accelerated acidogenesis, more than 3-fold of acetic acid and butyric acid were produced in LBR-3h as compared to the anaerobic treatment LBR-AN resulting in the maximum methane yield of 0.27 L CH{sub 4}/g VS{sub added} in the UASB. The performance of LBR-6h with inadequate aeration was similar to that of LBR-AN with a comparable hydrolysis degree. Nevertheless, higher aeration intensity in LBR-2h was also unfavorable for methane yield due to significant biomass generation and CO{sub 2} respiration of up to 18.5% and 32.8% of the total soluble hydrolysate, respectively. To conclude, appropriate micro-aeration rate can promote the hydrolysis of solid organic waste and methane yield without undesirable carbon loss and an aeration intensity of 258 L-air/kg TS/d is recommended for acidogenic LBR treating food waste.

  14. Vinyl acetate degradation by Brevibacillus agri isolated from a slightly aerated methanogenic reactor. (United States)

    Lara-Mayorga, I; Durán-Hinojosa, U; Arana-Cuenca, A; Monroy-Hermosillo, O; Ramírez-Vives, F


    In a previous paper, the authors showed that a slight aeration of a methanogenic reactor treating wastewater from the manufacture of polymeric resins could improve its performance, by increasing or allowing the removal of some of its contaminants, including vinyl acetate (VA). This paper reports the isolation under aerobic conditions of a VA-biodegrading axenic culture (strain C1) retrieved from the sludge of a slightly aerated methanogenic reactor at 1 mg L(-1) d(-1) of dissolved oxygen (DO). The axenic culture obtained was phenotypically (morphology, biochemical properties, VA consumption kinetics) and phylogenetically characterized. It formed white colonies with a branched and flat morphology on solid medium. The cell morphology of the isolate was bacillus with round endings and flagellate. The cells could form chains and were stained Gram-negative. The isolate required simple nutritional elements and had a growth rate of 0.024 h(-1). The phylogenetical analysis showed that the aerobic bacterium was identified as Brevibacillus agri, with 99.3% similarity. The VA consumption kinetics in the methanogenic sludge were: volumetric consumption rate (rVA) of 1.74 +/- 0.2 mg L(-1) h(-1), maximum specific consumption rate (qVAmax) of 3.98 mg g(-1) volatile suspended solids (VSS) h(-1) and affinity constant (Ks) of 457.1 mg L(-1). The same parameters in the axenic culture were 1.69 +/- 0.04 mg L(-1) (h-1), 4.09 mg g(-1) dry weight h(-1) and 421.9 mg L(-1), respectively. These results show evidence that the aerobic isolated bacterium, identified as Brevibacillus agri, carried out the VA hydrolysis in the slightly aerated methanogenic sludge, which is the limiting step in the degradation of this compound.

  15. Oxygen air enrichment through composite membrane: application to an aerated biofilm reactor

    Directory of Open Access Journals (Sweden)

    A. C. Cerqueira


    Full Text Available A highly permeable composite hollow-fibre membrane developed for air separation was used in a membrane aerated biofilm reactor (MABR. The composite membrane consisted of a porous support layer covered with a thin dense film, which was responsible for oxygen enrichment of the permeate stream. Besides oxygen enrichment capability, dense membranes overcome major operational problems that occur when using porous membranes for oxygen transfer to biofilms. Air flow rate and oxygen partial pressure inside the fibres were the variables used to adjust the oxygen transfer rate. The membrane aerated biofilm reactor was operated with hydraulic retention times (HRT ranging from 1 to 4 hours. High organic load removal rates, like 6.5 kg.m-3.d-1, were achieved due to oxygen transfer rates as high as 107 kg.m-3.d-1. High COD removals, with improved oxygen transfer efficiency, indicate that a MABR is a compact alternative to the conventional activated sludge process and that the selected membrane is suitable for further applications.

  16. Effect of intermittent aeration strategies on treatment performance and microbial community of an IFAS reactor treating municipal waste water. (United States)

    Singh, Nitin Kumar; Bhatia, Akansha; Kazmi, Absar Ahmad


    This study investigated the effect of various intermittent aeration (IA) cycles on organics and nutrient removal, and microbial communities in an integrated fixed-film activated sludge (IFAS) reactor treating municipal waste water. Average effluent biological oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids, total nitrogen (TN) and total phosphorus (TP) values were noted as 20, 50, 30, 12 and 1.5 mgL(-1), respectively, in continuous aeration mode. A total of four operational conditions (run 1, continuous aeration; run 2, 150/30 min aeration on/off time; run 3, 120/60 min aeration on/off time and run 4, 90/60 min aeration on/off time) were investigated in IFAS reactor assessment. Among the all examined IA cycles, IA phase 2 gave the maximum COD and BOD removals with values recorded as 97% and 93.8%, respectively. With respect to nutrient removal (TN and TP), IA phase 1 was found to be optimum. Pathogen removal efficiency of present system was recorded as 90-95% during the three phases. With regard to settling characteristics, pilot showed poor settling during IA schedules, which was also evidenced by high sludge volume index values. Overall, IA could be used as a feasible way to improve the overall performance of IFAS system.

  17. Effects of loading rate and aeration on nitrogen removal and N2O emissions in intermittently aerated sequencing batch reactors treating slaughterhouse wastewater at 11 °C. (United States)

    Pan, Min; Hu, Zhenhu; Liu, Rui; Zhan, Xinmin


    This study aimed to find optimal operation conditions for nitrogen removal from high strength slaughterhouse wastewater at 11 °C using the intermittently aerated sequencing batch reactors (IASBRs) so as to provide an engineering control strategy for the IASBR technology. Two operational parameters were examined: (1) loading rates and (2) aeration rates. Both the two parameters affected variation of DO concentrations in the IASBR operation cycles. It was found that to achieve efficient nitrogen removal via partial nitrification-denitrification (PND), "DO elbow" point must appear at the end of the last aeration period. There was a correlation between the ammonium oxidizing bacteria (AOB)/nitrite oxidizing bacteria (NOB) ratio and the average DO concentrations in the last aeration periods; when the average DO concentrations in the last aeration periods were lower than 4.86 mg/L, AOB became the dominant nitrifier population, which benefited nitrogen removal via PND. Both the nitrogen loading rate and the aeration rate influenced the population sizes of AOB and NOB. To accomplish efficient nitrogen removal via PND, the optimum aeration rate (A, L air/min) applied can be predicted according to the average organic loading rates based on mathematical equations developed in this study. The research shows that the amount of N2O generation in the aeration period was reduced with increasing the aeration rate; however, the highest N2O generation in the non-aeration period was observed at the optimum aeration rates.

  18. Optimization of micro-aeration intensity in acidogenic reactor of a two-phase anaerobic digester treating food waste. (United States)

    Xu, Suyun; Selvam, Ammaiyappan; Wong, Jonathan W C


    Micro-aeration is known to promote the activities of hydrolytic exo-enzymes and used as a strategy to improve the hydrolysis of particulate substrate. The effect of different micro-aeration rates, 0, 129, 258, and 387 L-air/kg TS/d (denoted as LBR-AN, LBR-6h, LBR-3h and LBR-2h, respectively) on the solubilization of food waste was evaluated at 35°C in four leach bed reactors (LBR) coupled with methanogenic upflow anaerobic sludge blanket (UASB) reactor. Results indicate that the intensity of micro-aeration influenced the hydrolysis and methane yield. Adequate micro-aeration intensity in LBR-3h and LBR-2h significantly enhanced the carbohydrate and protein hydrolysis by 21-27% and 38-64% respectively. Due to the accelerated acidogenesis, more than 3-fold of acetic acid and butyric acid were produced in LBR-3h as compared to the anaerobic treatment LBR-AN resulting in the maximum methane yield of 0.27 L CH4/g VS(added) in the UASB. The performance of LBR-6h with inadequate aeration was similar to that of LBR-AN with a comparable hydrolysis degree. Nevertheless, higher aeration intensity in LBR-2h was also unfavorable for methane yield due to significant biomass generation and CO2 respiration of up to 18.5% and 32.8% of the total soluble hydrolysate, respectively. To conclude, appropriate micro-aeration rate can promote the hydrolysis of solid organic waste and methane yield without undesirable carbon loss and an aeration intensity of 258 L-air/kg TS/d is recommended for acidogenic LBR treating food waste.

  19. Sensor combination and chemometric variable selection for online monitoring of Streptomyces coelicolor fed-batch cultivations

    DEFF Research Database (Denmark)

    Ödman, Peter; Johansen, C.L.; Olsson, L.


    Fed-batch cultivations of Streptomyces coelicolor, producing the antibiotic actinorhodin, were monitored online by multiwavelength fluorescence spectroscopy and off-gas analysis. Partial least squares (PLS), locally weighted regression, and multilinear PLS (N-PLS) models were built for prediction...

  20. Batch and fed-batch fermentation of Bacillus thuringiensis using starch industry wastewater as fermentation substrate. (United States)

    Vu, Khanh Dang; Tyagi, Rajeshwar Dayal; Valéro, José R; Surampalli, Rao Y


    Bacillus thuringiensis var. kurstaki biopesticide was produced in batch and fed-batch fermentation modes using starch industry wastewater as sole substrate. Fed-batch fermentation with two intermittent feeds (at 10 and 20 h) during the fermentation of 72 h gave the maximum delta-endotoxin concentration (1,672.6 mg/L) and entomotoxicity (Tx) (18.5 x 10(6) SBU/mL) in fermented broth which were significantly higher than maximum delta-endotoxin concentration (511.0 mg/L) and Tx (15.8 x 10(6) SBU/mL) obtained in batch process. However, fed-batch fermentation with three intermittent feeds (at 10, 20 and 34 h) of the fermentation resulted in the formation of asporogenous variant (Spo-) from 36 h to the end of fermentation (72 h) which resulted in a significant decrease in spore and delta-endotoxin concentration and finally the Tx value. Tx of suspended pellets (27.4 x 10(6) SBU/mL) obtained in fed-batch fermentation with two feeds was the highest value as compared to other cases.

  1. Fed-batch fermentation dealing with nitrogen limitation in microbial transglutaminase production by Streptoverticillium mobaraense

    NARCIS (Netherlands)

    Zhu, Y.; Rinzema, A.; Tramper, J.; Bruin, E. de; Bol, J.


    In the later stages of a batch fermentation for microbial transglutaminase production by Streptoverticillium mobaraense the availability of a nitrogen source accessible to the microorganism becomes critical. Fed-batch fermentation is investigated with the aim of avoiding this substrate limitation. W

  2. Combined age and segregated kinetic model for industrial-scale penicillin fed-batch cultivation

    NARCIS (Netherlands)

    Wang, Z.F.; Lauwerijssen, M.J.C.; Yuan, J.Q.


    This paper proposes a cell age model forPenicillium chrysogenum fed-batch cultivation to supply a qualitative insight into morphology-associated dynamics. The average ages of the segregated cell populations, such as growing cells, non-growing cells and intact productive cells, were estimated by this

  3. Change in hyphal morphology of Aspergillus Oryzae during fed-batch cultivation

    DEFF Research Database (Denmark)

    Haack, Martin Brian; Olsson, Lisbeth; Hansen, K


    Industrial enzymes are often produced by filamentous fungi in fed-batch cultivations. During cultivation, the different morphological forms displayed by the fungi have an impact on the overall production. The morphology of a recombinant lipase producing Aspergillus oryzae strain was investigated...

  4. Production of Ammonium Lactate by Fed-batch Fermentation of Rhizopus oryzae from Corncob Hydrolysate

    Institute of Scientific and Technical Information of China (English)

    BAI Dong-mei; LI Shi-zhong; LIN Fang-qian


    L- (+)-Lactic acid production from corncob hydrolysate as a cheap carbohydrate source by fed-batch fermentation of Rhizopus oryzae HZS6 was studied. After 96 h of fermentation in a 5 L fermentor, the final concentration of ammonium L-(+)-lactate, average productivity(based on initial xylose concentration) and max(+)-lactate was 98.8%.

  5. Process of inorganic nitrogen transformation and design of kinetics model in the biological aerated filter reactor. (United States)

    Yan, Gang; Xu, Xia; Yao, Lirong; Lu, Liqiao; Zhao, Tingting; Zhang, Wenyi


    As one of the plug-flow reactors, biological aerated filter (BAF) reactor was divided into four sampling sectors to understand the characteristics of elemental nitrogen transformation during the reaction process, and then the different characteristics of elemental nitrogen transformation caused by different NH(3)-N loadings, biological quantities and activities in each section were obtained. The results showed that the total transformation ratio in the nitrifying reactor was more than 90% in the absence of any organic carbon resource, at the same time, more than 65% NH(3)-N in the influent were nitrified at the filter height of 70 cm below under the conditions of the influent runoff 9-19 L/h, the gas-water ratio 4-5:1, the dissolved oxygen 3.0-5.8 mg/L and the NH(3)-N load 0.28-0.48 kg NH(3)-N/m(3) d. On the base of the Eckenfelder mode, the kinetics equation of the NH(3)-N transformation along the reactor was S(e)=S(0) exp(-0.0134D/L(1.2612)).

  6. Fed-batch pediocin production by Pediococcus acidilactici NRRL B-5627 on whey. (United States)

    Pérez Guerra, Nelson; Bernárdez, Paula Fajardo; Agrasar, Ana Torrado; López Macías, Cristina; Castro, Lorenzo Pastrana


    Cell growth and pediocin production by Pediococcus acidilactici NRRL B-5627 on whey were compared by using batch fermentation and re-alkalized fed-batch fermentation. The batch fermentations were performed on DWG [DW (diluted whey) supplemented with 1% (w/v) glucose], DWYE [DW supplemented with 2% (w/v) yeast extract] and DWGYE (DW supplemented with 1% glucose plus 2% yeast extract) media. The fed-batch culture on DWYE medium was fed with a mixture of concentrated whey (48 g of total sugars/l) supplemented with 2% yeast extract and 400 g/l concentrated glucose. The re-alkalized fed-batch culture was characterized by higher biomass (6.57 g/l) and pediocin [517.6 BU (bacteriocin activity units)/ml] concentrations compared with the batch processes on MRS (de Man, Rogosa and Sharpe) broth (1.76 g/l and 493.2 BU/ml), DW (0.17 g/l and 57.7 BU/ml), DWG (0.14 g/l and 53.6 BU/ml), DWYE (1.43 g/l and 187.6 BU/ml) and DWGYE (1.28 g/l and 167.3 BU/ml) media. A mixed acid fermentation was observed during the growth of P. acidilactici NRRL B-5627 in the fed-batch culture on DWYE medium, and other products (acetic acid and ethanol) in addition to lactic acid accumulated in the medium. Mathematical models were set up to describe fed-batch production of biomass and pediocin by P. acidilactici. The models developed offer a better fit and a more realistic description of the experimental biomass and pediocin production data when compared with the logistic and Luedeking and Piret model.

  7. Fed-batch process for the psychrotolerant marine bacterium Pseudoalteromonas haloplanktis

    Directory of Open Access Journals (Sweden)

    Lalk Michael


    Full Text Available Abstract Background Pseudoalteromonas haloplanktis is a cold-adapted γ-proteobacterium isolated from Antarctic sea ice. It is characterized by remarkably high growth rates at low temperatures. P. haloplanktis is one of the model organisms of cold-adapted bacteria and has been suggested as an alternative host for the soluble overproduction of heterologous proteins which tend to form inclusion bodies in established expression hosts. Despite the progress in establishing P. haloplanktis as an alternative expression host the cell densities obtained with this organism, which is unable to use glucose as a carbon source, are still low. Here we present the first fed-batch cultivation strategy for this auspicious alternative expression host. Results The key for the fed-batch cultivation of P. haloplanktis was the replacement of peptone by casamino acids, which have a much higher solubility and allow a better growth control. In contrast to the peptone medium, on which P. haloplanktis showed different growth phases, on a casamino acids-containing, phosphate-buffered medium P. haloplanktis grew exponentially with a constant growth rate until the stationary phase. A fed-batch process was established by feeding of casamino acids with a constant rate resulting in a cell dry weight of about 11 g l-1 (OD540 = 28 which is a twofold increase of the highest densities which have been obtained with P. haloplanktis so far and an eightfold increase of the density obtained in standard shake flask cultures. The cell density was limited in the fed-batch cultivation by the relatively low solubility of casamino acids (about 100 g l-1, which was proven by pulse addition of casamino acid powder which increased the cell density to about 20 g l-1 (OD540 = 55. Conclusion The growth of P. haloplanktis to higher cell densities on complex medium is possible. A first fed-batch fermentation strategy could be established which is feasible to be used in lab-scale or for industrial

  8. Monitoring and robust adaptive control of fed-batch cultures of microorganisms exhibiting overflow metabolism [abstract

    Directory of Open Access Journals (Sweden)

    Vande Wouwer, A.


    Full Text Available Overflow metabolism characterizes cells strains that are likely to produce inhibiting by-products resulting from an excess of substrate feeding and a saturated respiratory capacity. The critical substrate level separating the two different metabolic pathways is generally not well defined. Monitoring of this kind of cultures, going from model identification to state estimation, is first discussed. Then, a review of control techniques which all aim at maximizing the cell productivity of fed-batch fermentations is presented. Two main adaptive control strategies, one using an estimation of the critical substrate level as set-point and another regulating the by-product concentration, are proposed. Finally, experimental investigations of an adaptive RST control scheme using the observer polynomial for the regulation of the ethanol concentration in Saccharomyces cerevisiae fed-batch cultures ranging from laboratory to industrial scales, are also presented.

  9. Actinoplanes utahensis ZJB-08196 fed-batch fermentation at elevated osmolality for enhancing acarbose production. (United States)

    Wang, Ya-Jun; Liu, Li-Ling; Wang, Yuan-Shan; Xue, Ya-Ping; Zheng, Yu-Guo; Shen, Yin-Chu


    Acarbose, a potent α-glucosidase inhibitor, is as an oral anti-diabetic drug for treatment of the type two, noninsulin-dependent diabetes. Actinoplanes utahensis ZJB-08196, an osmosis-resistant actinomycete, had a broad osmolality optimum between 309 mOsm kg(-1) and 719 mOsm kg(-1). Utilizing this unique feature, an fed-batch culture process under preferential osmolality was constructed through intermittently feeding broths with feed medium consisting of 14.0 g l(-1) maltose, 6.0 g l(-1) glucose and 9.0 g l(-1) soybean meal, at 48 h, 72 h, 96 h and 120 h. This intermittent fed-batch culture produced a peak acarbose titer of 4878 mg l(-1), increased by 15.9% over the batch culture.

  10. Experimental optimization of a real time fed-batch fermentation process using Markov decision process. (United States)

    Saucedo, V M; Karim, M N


    This article describes a methodology that implements a Markov decision process (MDP) optimization technique in a real time fed-batch experiment. Biological systems can be better modeled under the stochastic framework and MDP is shown to be a suitable technique for their optimization. A nonlinear input/output model is used to calculate the probability transitions. All elements of the MDP are identified according to physical parameters. Finally, this study compares the results obtained when optimizing ethanol production using the infinite horizon problem, with total expected discount policy, to previous experimental results aimed at optimizing ethanol production using a recombinant Escherichia coli fed-batch cultivation. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 317-327, 1997.

  11. A cellular automata model for simulating fed-batch penicillin fermentation process

    Institute of Scientific and Technical Information of China (English)

    Yu Naigong; Ruan Xiaogang


    A cellular automata model to simulate penicillin fed-batch fermentation process(CAPFM)was established in this study,based on a morphologically structured dynamic penicillin production model,that is in turn based on the growth mechanism of penicillin producing microorganisms and the characteristics of penicillin fed-batch fermentation.CAPFM uses the three-dimensional cellular automata as a growth space,and a Moore-type neighborhood as the cellular neighborhood.The transition roles of CAPFM are designed based on mechanical and structural kinetic models of penicillin batch-fed fermentation processes.Every cell of CAPFM represents a single or specific number of penicillin producing microorganisms,and has various state.The simulation experimental results show that CAPFM replicates the evolutionary behavior of penicillin batch-fed fermentation processes described by the structured penicillin production kinetic model accordingly.

  12. Fed-Batch Biomolecule Production by Bacillus subtilis: A State of the Art Review. (United States)

    Öztürk, Sibel; Çalık, Pınar; Özdamar, Tunçer H


    Bacillus subtilis is a highly promising production system for various biomolecules. This review begins with the algorithm of fed-batch operations (FBOs) and then illustrates the approaches to design the initial production medium and/or feed stream. Additionally, the feeding strategies developed with or without feedback control for fed-batch B. subtilis fermentations were compiled with a special emphasis on recombinant protein (r-protein) production. For biomolecule production by wild-type B. subtilis, due to the different intracellular production patterns, no consensus exists on the FBO strategy that gives the maximum productivity, whereas for r-protein production appropriate feeding strategies vary depending on the promoter used. Thus, we conclude that the B. subtilis community is still seeking an approved strong promoter and generalized FBO strategies.

  13. Fuzzy logic feedback control for fed-batch enzymatic hydrolysis of lignocellulosic biomass. (United States)

    Tai, Chao; Voltan, Diego S; Keshwani, Deepak R; Meyer, George E; Kuhar, Pankaj S


    A fuzzy logic feedback control system was developed for process monitoring and feeding control in fed-batch enzymatic hydrolysis of a lignocellulosic biomass, dilute acid-pretreated corn stover. Digested glucose from hydrolysis reaction was assigned as input while doser feeding time and speed of pretreated biomass were responses from fuzzy logic control system. Membership functions for these three variables and rule-base were created based on batch hydrolysis data. The system response was first tested in LabVIEW environment then the performance was evaluated through real-time hydrolysis reaction. The feeding operations were determined timely by fuzzy logic control system and efficient responses were shown to plateau phases during hydrolysis. Feeding of proper amount of cellulose and maintaining solids content was well balanced. Fuzzy logic proved to be a robust and effective online feeding control tool for fed-batch enzymatic hydrolysis.

  14. Fed-batch bioreactor process with recombinant Saccharomyces cerevisiae growing on cheese whey

    Directory of Open Access Journals (Sweden)

    R. Rech


    Full Text Available Saccharomyces cerevisiae strain W303 was transformed with two yeast integrative plasmids containing Kluyveromyces lactis LAC4 and LAC12 genes that codify beta-galactosidase and lactose permease respectively. The BLR030 recombinant strain was selected due to its growth and beta-galactosidase production capacity. Different culture media based on deproteinized cheese whey (DCW were tested and the best composition (containing DCW, supplemented with yeast extract 1 %, and peptone 3 % (w/v was chosen for bioreactor experiments. Batch, and fed-batch cultures with linear ascending feeding for 25 (FB25, 35 (FB35, and 50 (FB50 hours, were performed. FB35 and FB50 produced the highest beta-galactosidase specific activities (around 1,800 U/g cells, and also the best productivities (180 U/L.h. Results show the potential use of fed-batch cultures of recombinant S. cerevisiae on industrial applications using supplemented whey as substrate.

  15. Optimization of cyclosporin A production by Beauveria nivea in continuous fed-batch fermentation

    Directory of Open Access Journals (Sweden)

    Dong Huijun


    Full Text Available To develop the effective control method for fed-batch culture of cyclosporin A production, we chose fructose, L-valine and (NH42HPO4 as feeding nutrients and compared their productivities in relation to different concentrations. The feeding rate of three kinds of feeding materials was controlled to maintain the suitable residual concentration. The fed-batch fermentation results indicated that the optimal concentrations of fructose, L-valine and (NH42HPO4 were about 20 g/L, 0.5 g/L and 0.6 g/L for cyclosporin A production, respectively. The cultivation of Beauveria nivea could produce cyclosporin A up to 6.2 g/L for 240 hrs through a continuous feeding-rate-controlled-batch process under the optimal feeding conditions.

  16. Preferences based Control Design of Complex Fed-batch Cultivation Process

    Directory of Open Access Journals (Sweden)

    Yuri Pavlov


    Full Text Available In the paper is presented preferences based control design and stabilization of the growth rate of fed-batch cultivation processes. The control is based on an enlarged Wang-Monod-Yerusalimsky kinetic model. Expected utility theory is one of the approaches for utilization of conceptual information (expert preferences. In the article is discussed utilization of stochastic machine learning procedures for evaluation of expert utilities as criteria for optimization.

  17. Modified Multi-Population Genetic Algorithm for Yeast Fed-batch Cultivation Parameter Identification

    Directory of Open Access Journals (Sweden)

    Angelova M.


    Full Text Available In this work, a modified multi-population genetic algorithm is developed for the purpose of parameter identification of fermentation process model. Modified multi-population genetic algorithm is similar to the multi-population one and its development is instigated by modified genetic algorithm, similar to simple one. A comparison of four types of genetic algorithms, namely simple, modified, multipopulation and modified multi-population is presented for parameter identification of a fed-batch cultivation of Saccharomyces cerevisiae

  18. Oxygen Control for an Industrial Pilot-Scale Fed-Batch Filamentous Fungal Fermentation


    Bodizs, Levente; Titica, Mariana; Faria, Nuno; Srinivasan, Bala; Dochain, Denis; Bonvin, Dominique


    Industrial filamentous fungal fermentations are typically operated in fed- batch mode. Oxygen control represents an important operational challenge due to the varying biomass concentration. In this study, oxygen control is implemented by manipulating the substrate feed rate, i.e. the rate of oxygen consumption. It turns out that the setpoint for dissolved oxygen represents a trade-off since a low dissolved oxygen value favors productivity but can also induce oxygen limitation. This pape...

  19. Effect of feeding methods on the astaxanthin production by Phaffia rhodozyma in fed-batch process

    Directory of Open Access Journals (Sweden)

    Danilo Gomes Moriel


    Full Text Available The effect of feeding methods on the production of astaxanthin by the yeast Phaffia rhodozyma ATCC 24202 was studied, using continuous and pulsed fed-batch processes and low cost materials as substrates (sugar cane juice and urea. In continuous fed-batch processes, a cellular astaxanthin concentration of 383.73 µg/g biomass was obtained. But in pulsed fed-batch processes a reduction in the cellular astaxanthin concentration (303.34 µg/g biomass was observed. Thus the continuous fed-batch processes could be an alternative to industrial production of astaxanthin, allowing an increase in the biomass productivity without losses on astaxanthin production by the yeast.O efeito da alimentação na produção de astaxantina pela levedura Phaffia rhodozyma ATCC 24202 foi estudado, utilizando processos descontínuo alimentado com alimentação contínua e intermitente, e matérias-primas de baixo custo como substratos (caldo de cana de açúcar e uréia. Em processos descontínuo alimentado com alimentação contínua, uma concentração celular de astaxantina de 383,73 µg/g biomassa foi obtida. Entretanto, em processos descontínuo alimentado com alimentação intermitente, uma redução na concentração celular de astaxantina (303,34 µg/g biomassa foi observada. Desta forma, processos descontínuo alimentado com alimentação contínua poderiam ser uma alternativa na produção industrial de astaxantina, permitindo um aumento na produtividade de biomassa sem perdas na produção de astaxantina pela levedura.

  20. Modelling of Fed-batch Fermentation Process with Droppings for L-lysine Production

    Directory of Open Access Journals (Sweden)

    Velitchka Ivanova


    Full Text Available The aim of the article is the development of dynamic unstructured model of L-lysine fed-batch fermentation process with droppings. This approach includes the following procedures: description of the process by generalized stoichiometric equations; preliminary data processing; identification of the specific rates (growth rate (mu , substrate utilization rate (nu, production rate (rho; establishment and optimization of the dynamic model of the process; simulation researches.

  1. Self-tuning GMV control of glucose concentration in fed-batch baker's yeast production. (United States)

    Hitit, Zeynep Yilmazer; Boyacioglu, Havva; Ozyurt, Baran; Ertunc, Suna; Hapoglu, Hale; Akay, Bulent


    A detailed system identification procedure and self-tuning generalized minimum variance (STGMV) control of glucose concentration during the aerobic fed-batch yeast growth were realized. In order to determine the best values of the forgetting factor (λ), initial value of the covariance matrix (α), and order of the Auto-Regressive Moving Average with eXogenous (ARMAX) model (n a, n b), transient response data obtained from the real process wereutilized. Glucose flow rate was adjusted according to the STGMV control algorithm coded in Visual Basic in an online computer connected to the system. Conventional PID algorithm was also implemented for the control of the glucose concentration in aerobic fed-batch yeast cultivation. Controller performances were examined by evaluating the integrals of squared errors (ISEs) at constant and random set point profiles. Also, batch cultivation was performed, and microorganism concentration at the end of the batch run was compared with the fed-batch cultivation case. From the system identification step, the best parameter estimation was accomplished with the values λ = 0.9, α = 1,000 and n a = 3, n b = 2. Theoretical control studies show that the STGMV control system was successful at both constant and random glucose concentration set profiles. In addition, random effects given to the set point, STGMV control algorithm were performed successfully in experimental study.

  2. Development of fed-batch profiles for efficient biosynthesis of catechol-O-methyltransferase

    Directory of Open Access Journals (Sweden)

    G.M. Espírito Santo


    Full Text Available Catechol-O-methyltransferase (COMT, EC plays a crucial role in dopamine metabolism which has intimately linked this enzyme to some neurodegenerative diseases, such as Parkinson's disease. In recent years, in the attempt of developing new therapeutic strategies for Parkinson's disease, there has been a growing interest in the search for effective COMT inhibitors. In order to do so, large amounts of COMT in an active form are needed, and the best way to achieve this is by up-scaling its production through biotechnological processes. In this work, a fed-batch process for the biosynthesis of the soluble isoform of COMT in Escherichia coli is proposed. This final process was selected through the evaluation of the effect of different dissolved oxygen concentrations, carbon and nitrogen source concentrations and feeding profiles on enzymatic production and cell viability, while controlling various parameters (pH, temperature, starting time of the feeding and induction phases and carbon source concentration during the process. After several batch and fed-batch experiments, a final specific COMT activity of 442.34 nmol/h/mg with approximately 80% of viable cells at the end of the fermentation were achieved. Overall, the results described herein provide a great improvement on hSCOMT production in recombinant bacteria and provide a new and viable option for the use of a fed-batch fermentation with a constant feeding profile to the large scale production of this enzyme.

  3. Modeling of the pyruvate production with Escherichia coli in a fed-batch bioreactor. (United States)

    Zelić, B; Vasić-Racki, D; Wandrey, C; Takors, R


    A family of 10 competing, unstructured models has been developed to model cell growth, substrate consumption, and product formation of the pyruvate producing strain Escherichia coli YYC202 ldhA::Kan strain used in fed-batch processes. The strain is completely blocked in its ability to convert pyruvate into acetyl-CoA or acetate (using glucose as the carbon source) resulting in an acetate auxotrophy during growth in glucose minimal medium. Parameter estimation was carried out using data from fed-batch fermentation performed at constant glucose feed rates of q(VG)=10 mL h(-1). Acetate was fed according to the previously developed feeding strategy. While the model identification was realized by least-square fit, the model discrimination was based on the model selection criterion (MSC). The validation of model parameters was performed applying data from two different fed-batch experiments with glucose feed rate q(VG)=20 and 30 mL h(-1), respectively. Consequently, the most suitable model was identified that reflected the pyruvate and biomass curves adequately by considering a pyruvate inhibited growth (Jerusalimsky approach) and pyruvate inhibited product formation (described by modified Luedeking-Piret/Levenspiel term).

  4. Production of clavulanic acid and cephamycin C by Streptomyces clavuligerus under different fed-batch conditions

    Directory of Open Access Journals (Sweden)

    C. Bellão


    Full Text Available The effect of carbon source and feeding conditions on the production of clavulanic acid (CA and cephamycin C (CephC by Streptomyces clavuligerus was investigated. In fed-batch experiments performed with glycerol feeding, production of CA exceeded that of CephC, and reached 1022 mg.L-1. Highest CephC production (566.5 mg.L-1 was obtained in fed-batch cultivation with glycerol feeding. In fed-batch experiments performed with starch feeding, the production of CephC was in general higher than that of CA. A dissociation index (DI was used to identify feeding conditions that favored production of CephC relative to CA. In all cultures with glycerol, DI values were less than unity, indicating higher production of CA compared to CephC. Conversely, in cultures fed with starch, the DI values obtained were greater than unity. However, no carbon source or feeding condition was able to completely dissociate the production of CA from that of CephC.

  5. Batch and fed-batch production of butyric acid by Clostridium butyricum ZJUCB

    Institute of Scientific and Technical Information of China (English)

    HE Guo-qing; KONG Qing; CHEN Qi-he; RUAN Hui


    The production of butyric acid by Clostridium butyricum ZJUCB at various pH values was investigated. In order to study the effect of pH on cell growth, butyric acid biosynthesis and reducing sugar consumption, different cultivation pH values ranging from 6.0 to 7.5 were evaluated in 5-L bioreactor. In controlled pH batch fermentation, the optimum pH for cell growth and butyric acid production was 6.5 with a cell yield of 3.65 g/L and butyric acid yield of 12.25 g/L. Based on these results, this study then compared batch and fed-batch fermentation of butyric acid production at pH 6.5. Maximum value (16.74 g/L) of butyric acid concentration was obtained in fed-batch fermentation compared to 12.25 g/L in batch fermentation. It was concluded that cultivation under fed-batch fermentation mode could enhance butyric acid production significantly (P<0.01) by C. butyricum ZJUCB.

  6. Improving cellulase productivity of Penicillium oxalicum RE-10 by repeated fed-batch fermentation strategy. (United States)

    Han, Xiaolong; Song, Wenxia; Liu, Guodong; Li, Zhonghai; Yang, Piao; Qu, Yinbo


    Medium optimization and repeated fed-batch fermentation were performed to improve the cellulase productivity by P. oxalicum RE-10 in submerged fermentation. First, Plackett-Burman design (PBD) and central composite design (CCD) were used to optimize the medium for cellulase production. PBD demonstrated wheat bran and NaNO3 had significant influences on cellulase production. The CCD results showed the maximum filter paper activity (FPA) production of 8.61U/mL could be achieved in Erlenmeyer flasks. The maximal FPA reached 12.69U/mL by submerged batch fermentation in a 7.5-L stirred tank, 1.76-fold higher than that on the original medium. Then, the repeated fed-batch fermentation strategy was performed successfully for increasing the cellulase productivity from 105.75U/L/h in batch fermentation to 158.38U/L/h. The cellulase activity and the glucan conversion of delignined corn cob residue hydrolysis had no significant difference between the enzymes sampled from different cycles of the repeated fed-batch fermentation and that from batch culture.


    Improved fermentation processes were developed for the production of mannitol by a heterofermentative lactic acid bacterium (Lactobacillus intermedius NRRL B-3693). A fed-batch fermentation protocol overcame limitations caused by high substrate concentrations. The process was developed using prima...

  8. Sludge reduction by direct addition of chlorine dioxide into a sequencing batch reactor under operational mode of repeatedly alternating aeration/non-aeration. (United States)

    Peng, Hong; Liu, Weiyi; Li, Yuanmei; Xiao, Hong


    The effect of direct addition of chlorine dioxide (ClO2) into a repeatedly alternating aeration/non-aeration sequencing batch reactor (SBR) on its sludge reduction and process performance was investigated. The experimental results showed that the sludge reduction efficiency was 32.9% and the observed growth yield (Yobs) of SBR was 0.11 kg VSS (volatile suspended solids) /kg COD (chemical oxygen demand) for 80 days' operation at the optimum ClO2 dosage of 2.0 mg/g TSS (total suspended solids). It was speculated that cell lysis and cryptic growth, uncoupled metabolism and endogenous metabolism were jointly responsible for the sludge reduction in this study. COD, NH3-N, total nitrogen (TN) and total phosphorus (TP) in the effluent increased on average 29.47, 4.44, 1.97 and 0.05 mg/L, respectively. However, the effluent quality still satisfied the first-class B discharge standards for municipal wastewater treatment plants in China. In that case, the sludge maintained fine viability with the specific oxygen uptake rate (SOUR) being 14.47 mg O2/(g VSS·h) and demonstrated good settleability with the sludge volume index (SVI) being 116 mL/g. The extra cost of sludge reduction at the optimum ClO2 dosage was estimated to be 2.24 CNY (or 0.36 dollar)/kg dry sludge.

  9. Transformation of ferulic acid to vanillin using a fed-batch solid-liquid two-phase partitioning bioreactor. (United States)

    Ma, Xiao-kui; Daugulis, Andrew J


    Amycolatopsis sp. ATCC 39116 (formerly Streptomyces setonii) has shown promising results in converting ferulic acid (trans-4-hydroxy-3-methoxycinnamic acid; substrate), which can be derived from natural plant wastes, to vanillin (4-hydroxy-3-methoxybenzaldehyde). After exploring the influence of adding vanillin at different times during the growth cycle on cell growth and transformation performance of this strain and demonstrating the inhibitory effect of vanillin, a solid-liquid two-phase partitioning bioreactor (TPPB) system was used as an in situ product removal technique to enhance transformation productivity by this strain. The thermoplastic polymer Hytrel(®) G4078W was found to have superior partitioning capacity for vanillin with a partition coefficient of 12 and a low affinity for the substrate. A 3-L working volume solid-liquid fed-batch TPPB mode, using 300 g Hytrel G4078W as the sequestering phase, produced a final vanillin concentration of 19.5 g/L. The overall productivity of this reactor system was 450 mg/L. h, among the highest reported in literature. Vanillin was easily and quantitatively recovered from the polymers mostly by single stage extraction into methanol or other organic solvents used in food industry, simultaneously regenerating polymer beads for reuse. A polymer-liquid two phase bioreactor was again confirmed to easily outperform single phase systems that feature inhibitory or easily further degraded substrates/products. This enhancement strategy might reasonably be expected in the production of other flavor and fragrance compounds obtained by biotransformations.

  10. Genetic Algorithmic Optimization of PHB Production by a Mixed Culture in an Optimally Dispersed Fed-batch Bioreactor

    Directory of Open Access Journals (Sweden)

    Pratap R. Patnaik


    Full Text Available Poly-β-hydroxybutyrate (PHB is an energy-storage polymer whose properties are similar to those of chemical polymers such as polyethylene and polypropylene. Moreover, PHB is biodegradable, absorbed by human tissues and less energy-consuming than synthetic polymers. Although Ralstonia eutropha is widely used to synthesize PHB, it is inefficient in utilizing glucose and similar sugars. Therefore a co-culture of R. eutropha and Lactobacillus delbrueckii is preferred since the latter can convert glucose to lactate, which R. eutropha can metabolize easily. Tohyama et al. [24] maximized PHB production in a well-mixed fed-batch bioreactor with glucose and (NH42SO4 as the primary substrates. Since production-scale bioreactors often deviate from ideal laboratory-scale reactors, a large bioreactor was simulated by means of a dispersion model with the kinetics determined by Tohyama et al. [24] and dispersion set at an optimum Peclet number of 20 [32]. The time-dependent feed rates of the two substrates were determined through a genetic algorithm (GA to maximize PHB production. This bioreactor produced 22.2% more PHB per liter and 12.8% more cell mass than achieved by Tohyama et al. [24]. These results, and similar observations with other fermentations, indicate the feasibility of enhancing the efficiency of large nonideal bioreactors through GA optimizations.

  11. One Approach for Dynamic L-lysine Modelling of Repeated Fed-batch Fermentation

    Directory of Open Access Journals (Sweden)

    Kalin Todorov


    Full Text Available This article deals with establishment of dynamic unstructured model of variable volume fed-batch fermentation process with intensive droppings for L-lysine production. The presented approach of the investigation includes the following main procedures: description of the process by generalized stoichiometric equations; preliminary data processing and calculation of specific rates for main kinetic variables; identification of the specific rates as a second-order non-linear dynamic models; establishment and optimisation of dynamic model of the process; simulation researches. MATLAB is used as a research environment.

  12. Ethanol production by anaerobic thermophilic bacteria: kinetics in fed-batch cultures of Clostridium thermohydrosulfuricum

    Energy Technology Data Exchange (ETDEWEB)

    Toukourou, F.; Donaduzzi, L.; Miclo, A.; Germain, P. (Lab. of Industrial Microbiology, ENSAIA-INPL, Vandoeuvre les Nancy (FR))


    Fed-batch fermentations of Clostridium thermohydrosulfuricum are carried out using a medium rich in nitrogen source and with glucose as growth limiting factor. The ethanol/lactate yield increases as the specific growth rate and specific rate of consumption of glucose diminish. Under the experimental conditions chosen here this yield attained 3.66 moles. mole/sup -1/ with a maximal ethanol concentration of 12 g.1/sup -1/. In batch fermentation, the maximum concentration of ethanol did not exceed 8 g.1/sup -1/ independent of the concentration in glucose or nitrogen source applied. (author).

  13. Enhancing Production of Alkaline Polygalacturonate Lyase from Bacillus subtilis by Fed-Batch Fermentation


    Mouyong Zou; Fenfen Guo; Xuezhi Li; Jian Zhao; Yinbo Qu


    Alkaline polygalacturonate lyase (PGL, EC is an enzyme used in many industries. We developed a fed-batch fermentation process that combines the enzymatic pretreatment of the carbon source with controlling the pH of the fermentative broth to enhance the PGL production from Bacillus subtilis 7-3-3 to decrease the production cost. Maintaining the fermentation broth at pH 6.5 prior to feeding with ammonia and at pH 6.0 after feeding significantly improved PGL activity (743.5 U mL-1) comp...

  14. Proteome profiling illustrated by a large-scale fed-batch fermentation of Penicillium chrysogenum

    Directory of Open Access Journals (Sweden)

    Michaela Helmel


    Full Text Available Filamentous fungi are employed for the large-scale production of value-added products, including organic acids, enzymes, and antibiotics and bioprocess characterization is essential for production optimization but relies on empiricism-based strategies. Protein expression profiles in an industrial scale, 180 h fed-batch fermentation of Penicillium chrysogenum are presented. The biomass of P. chrysogenum, as well as the specific penicillin V production rate and fungal morphology were monitored during fermentation to be compared with obtained protein profiles. Our results demonstrate a correlation between proteomics data and biomass concentration, morphological changes, and penicillin production.


    Directory of Open Access Journals (Sweden)

    N. Mehrdadi , A. A. Azimi , G. R. Nabi Bidhendi, B. Hooshyari


    Full Text Available Advanced compact wastewater treatment processes are being looked for by cities all over the world as effluent standards are becoming more stringent and land available for treatment plants more scarce. In this investigation, a new biofilm process for this purpose was studied. The design and operational criteria of a full scale extended aeration activated sludge system was compared with an H-IFAS reactor which has been operated at a pilot scale. The objective was to define the feasibility of using the H-IFAS (Hybrid Integrated Fixed Film Activated Sludge reactor for upgrading the existing wastewater treatment plants with conventional processes. The results showed that besides the considerable difference between the organic loading of the two processes, H-IFAS reactor has a very good capability to reduce simultaneously the concentration of nitrogen and phosphorus. Organic degradation rate in extended aeration and H-IFAS systems were 0.3 and 6.22 kgCOD/ at 23.48°C, respectively. Nitrification, denitrification and phosphorus removal rate for the H-IFAS reactor were 343.28 g N/, 338.17 gN/, and 204.78gPO4-P/, respectively. At the same conditions, these criteria for extended aeration activated sludge processes were obtained as 75gN/, 28.5 gN/ and 7 gPO4-P/, respectively.

  16. Enhanced incorporation yield of cysteine for glutathione overproduction by fed-batch fermentation of Saccharomyces cerevisiae. (United States)

    Lorenz, Eric; Schmacht, Maximilian; Stahl, Ulf; Senz, Martin


    In the following work a high cell density fed-batch process with Saccharomyces cerevisiae coupled with a high efficient incorporation of cysteine for glutathione (GSH) overproduction was developed. Therefore, a feeding strategy based on the respiratory quotient (RQ) was applied to ensure high biomass (96.1g/l). Furthermore, the optimal cysteine concentration and time of cysteine addition were investigated. Low concentrations of cysteine at late fermentation phases resulted in relatively high incorporation yields of about 0.40mol/mol and maintained the physiology of cultivated yeast. By changing the cysteine feeding from standard single shot to continuous addition, an often observed cell specific toxicity, triggered by high cysteine concentrations, could be prevented and the cysteine incorporation yield (0.54±0.01mol/mol) and GSH content (1650.7±42.8mg/l; 1.76±0.08%) were maximized, respectively. The developed process was transferred from laboratory into pilot plant scale. Further, the reduced cell specific toxicity enabled the development of a repeated fed-batch procedure with a suitable performance concerning cysteine incorporation yield (0.40±0.1mol/mol), biomass (84.2±1.2g/l) and GSH content (1304.7±61.4mg/l).

  17. Concentrated fed-batch cell culture increases manufacturing capacity without additional volumetric capacity. (United States)

    Yang, William C; Minkler, Daniel F; Kshirsagar, Rashmi; Ryll, Thomas; Huang, Yao-Ming


    Biomanufacturing factories of the future are transitioning from large, single-product facilities toward smaller, multi-product, flexible facilities. Flexible capacity allows companies to adapt to ever-changing pipeline and market demands. Concentrated fed-batch (CFB) cell culture enables flexible manufacturing capacity with limited volumetric capacity; it intensifies cell culture titers such that the output of a smaller facility can rival that of a larger facility. We tested this hypothesis at bench scale by developing a feeding strategy for CFB and applying it to two cell lines. CFB improved cell line A output by 105% and cell line B output by 70% compared to traditional fed-batch (TFB) processes. CFB did not greatly change cell line A product quality, but it improved cell line B charge heterogeneity, suggesting that CFB has both process and product quality benefits. We projected CFB output gains in the context of a 2000-L small-scale facility, but the output was lower than that of a 15,000-L large-scale TFB facility. CFB's high cell mass also complicated operations, eroded volumetric productivity, and showed our current processes require significant improvements in specific productivity in order to realize their full potential and savings in manufacturing. Thus, improving specific productivity can resolve CFB's cost, scale-up, and operability challenges.

  18. A fully defined, fed-batch, recombinant NS0 culture process for monoclonal antibody production. (United States)

    Hermes, Paul A; Castro, Chris D


    To manufacture a glycoprotein, mammalian cells expressing the desired protein are often grown in fed-batch mode. Feeding an undefined, nonanimal hydrolysate helps the cells receive sufficient nutrition, but makes systems difficult to optimize. Even different lots of the same hydrolysate may have significant variability; furthermore, individual components may actually be detrimental to the cells. Switching to fully defined feeds could eliminate these issues. For monoclonal antibody (mAb) production by fed-batch NS0 cells, this article describes the replacement of a hydrolysate-based feed with a fully defined, animal-component-free feed system. The defined feed initially had 67 components, but additional experiments allowed a reduction to 25 components. The mAb titer is approximately 20% higher than in the undefined system, and the feed volume is circa 20% lower. The two systems generated antibodies with similar glycosylation profiles. Other benefits of the defined feed system include lower raw material costs, the ability to optimize key nutrient concentrations, greater confidence in raw material quality, and the elimination of potential, hydrolysate-associated endotoxin issues.

  19. Fed-batch cultivation of Desmodesmus sp. in anaerobic digestion wastewater for improved nutrient removal and biodiesel production. (United States)

    Ji, Fang; Zhou, Yuguang; Pang, Aiping; Ning, Li; Rodgers, Kibet; Liu, Ying; Dong, Renjie


    Desmodesmus sp. was used in anaerobically digested wastewater (ADW) for nutrients removal and the biodiesel production was measured and compared using fed-batch cultivation was investigated and compared with batch cultivation. The Desmodesmus sp. was able to remove 236.143, 268.238 and 6.427 mg/L of TN, NH4-N and PO4-P respectively after 40 d of fed-batch cultivation, while in batch cultivation the quantities of TN, NH4-N and PO4-P removed were 33.331, 37.227 and 1.323 mg/L. Biomass production of Desmodesmus sp. was also enhanced in fed-batch cultivation, when ADW loading was carried out every 2 days; the biomass concentration peaked at 1.039 g/L, which was three times higher than that obtained in batch cultivation (0.385 g/L). The highest lipid production (261.8 mg/L) was also recorded in fed-batch cultivation as compared to batch cultivation (83.3 mg/L). Fed-batch cultivation of Desmodesmus sp. could provide effective control of nutrients limitation and/or ammonia inhibition on microalgae cultivation.

  20. Nisin production of Lactococcus lactis N8 with hemin-stimulated cell respiration in fed-batch fermentation system. (United States)

    Kördikanlıoğlu, Burcu; Şimşek, Ömer; Saris, Per E J


    In this study, nisin production of Lactococcus lactis N8 was optimized by independent variables of glucose, hemin and oxygen concentrations in fed-batch fermentation in which respiration of cells was stimulated with hemin. Response surface model was able to explain the changes of the nisin production of L. lactis N8 in fed-batch fermentation system with high fidelity (R(2) 98%) and insignificant lack of fit. Accordingly, the equation developed indicated the optimum parameters for glucose, hemin, and dissolved oxygen were 8 g L(-1) h(-1) , 3 μg mL(-1) and 40%, respectively. While 1711 IU mL(-1) nisin was produced by L. lactis N8 in control fed-batch fermentation, 5410 IU mL(-1) nisin production was achieved within the relevant optimum parameters where the respiration of cell was stimulated with hemin. Accordingly, nisin production was enhanced 3.1 fold in fed-batch fermentation using hemin. In conclusion the nisin production of L. lactis N8 was enhanced extensively as a result of increasing the biomass by stimulating the cell respiration with adding the hemin in the fed-batch fermentation.

  1. Production of gamma-aminobutyric acid by Lactobacillus brevis NCL912 using fed-batch fermentation

    Directory of Open Access Journals (Sweden)

    Huang Guidong


    Full Text Available Abstract Background Gamma-aminobutyric acid is a major inhibitory neurotransmitter in mammalian brains, and has several well-known physiological functions. Lactic acid bacteria possess special physiological activities and are generally regarded as safe. Therefore, using lactic acid bacteria as cell factories for gamma-aminobutyric acid production is a fascinating project and opens up a vast range of prospects for making use of GABA and LAB. We previously screened a high GABA-producer Lactobacillus brevis NCL912 and optimized its fermentation medium composition. The results indicated that the strain showed potential in large-scale fermentation for the production of gamma-aminobutyric acid. To increase the yielding of GABA, further study on the fermentation process is needed before the industrial application in the future. In this article we investigated the impacts of pyridoxal-5'-phosphate, pH, temperature and initial glutamate concentration on gamma-aminobutyric acid production by Lactobacillus brevis NCL912 in flask cultures. According to the data obtained in the above, a simple and effective fed-batch fermentation method was developed to highly efficiently convert glutamate to gamma-aminobutyric acid. Results Pyridoxal-5'-phosphate did not affect the cell growth and gamma-aminobutyric acid production of Lb. brevis NCL912. Temperature, pH and initial glutamate concentration had significant effects on the cell growth and gamma-aminobutyric acid production of Lb. brevis NCL912. The optimal temperature, pH and initial glutamate concentration were 30-35°C, 5.0 and 250-500 mM. In the following fed-batch fermentations, temperature, pH and initial glutamate concentration were fixed as 32°C, 5.0 and 400 mM. 280.70 g (1.5 mol and 224.56 g (1.2 mol glutamate were supplemented into the bioreactor at 12 h and 24 h, respectively. Under the selected fermentation conditions, gamma-aminobutyric acid was rapidly produced at the first 36 h and almost not

  2. Hydrolytic anaerobic reactor and aerated constructed wetland systems for municipal wastewater treatment - HIGHWET project. (United States)

    Pascual, A; de la Varga, D; Arias, C A; Van Oirschot, D; Kilian, R; Álvarez, J A; Soto, M


    The HIGHWET project combines the hydrolytic up-flow sludge bed (HUSB) anaerobic digester and constructed wetlands (CWs) with forced aeration for decreasing the footprint and improving effluent quality. The HIGHWET plant in A Coruña (NW of Spain) treating municipal wastewater consists of a HUSB and four parallel subsurface horizontal flow (HF) CWs. HF1, HF2 and HF3 units are fitted with forced aeration, while the control HF4 is not aerated. All the HF units are provided with effluent recirculation, but different heights of gravel bed (0.8 m in HF1 and HF2, and 0.5 m in HF3 and HF4) are implemented. Besides, a tobermorite-enriched material was added in the HF2 unit in order to improve phosphorus removal. The HUSB 76-89% of total suspended solids (TSS) and about 40% of chemical oxygen demand (COD) and biological oxygen demand (BOD). Aerated HF units reached above 96% of TSS, COD and BOD at a surface loading rate of 29-47 g BOD5/m(2)·d. An aeration regime ranging from 5 h on/3 h off to 3 h on/5 h off was found to be adequate to optimize nitrogen removal, which ranged from 53% to 81%. Average removal rates of 3.4 ± 0.4 g total nitrogen (TN)/m(2)·d and 12.8 ± 3.7 g TN/m(3)·d were found in the aerated units, being 5.5 and 4.1 times higher than those of the non-aerated system. The tobermorite-enriched HF2 unit showed a distinct higher phosphate (60-67%) and total phosphorus (54%) removal.

  3. A Genetic Algorithm for Feeding Trajectory Optimisation of Fed-batch Fermentation Processes

    Directory of Open Access Journals (Sweden)

    Stoyan Tzonkov


    Full Text Available In this work a genetic algorithm is proposed with the purpose of the feeding trajectory optimization during a fed-batch fermentation of E. coli. The feed rate profiles are evaluated based on a number of objective functions. Optimization results obtained for different feeding trajectories demonstrate that the genetic algorithm works well and shows good computational performance. Developed optimal feed profiles meet the defined criteria. The ration of the substrate concentration and the difference between actual cell concentration and theoretical maximum cell concentration is defined as the most appropriate objective function. In this case the final cell concentration of 43 g·l-1 and final product concentration of 125 g·l-1 are achieved and there is not significant excess of substrate.

  4. Comparison of biomass estimation techniques for a Bacillus thuringiensis fed-batch culture

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, C.C.F. [University of Newcastle upon Tyne (United Kingdom). Dept. of Chemical and Process Engineering]. E-mail:; Souza Junior, M.B. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Escola de Quimica]. E-mail:


    In this work, the ability of artificial neural nets was investigated for the on-line biomass prediction of the simulated growth of a strain of Bacillus thuringiensis in fed-batch mode. For this purpose, multilayered backpropagation nets with sigmoid nodes were trained. The patterns were composed of input data on current values of biomass concentration, limiting substrate concentration and dilution rate, and output data on prediction of biomass concentration for the following step. The dilution rate was disturbed by a PRBS input, and simulations were conducted using a phenomenological experimentally validated model. The nets were able to predict the biomass concentration for different feeding techniques, and they were also compared with the variable estimation technique using the extended Kalman filter. (author)

  5. Multi-objective optimization of glycopeptide antibiotic production in batch and fed batch processes

    DEFF Research Database (Denmark)

    Maiti, Soumen K.; Eliasson Lantz, Anna; Bhushan, Mani


    Fermentation optimization involves potentially conflicting multiple objectives such as product concentration and production media cost. Simultaneous optimization of these objectives would result in a multiobjective optimization problem, which is characterized by a set of multiple solutions, knows...... as pareto optimal solutions. These solutions gives flexibility in evaluating the trade-offs and selecting the most suitable operating policy. Here, ε-constraint approach was used to generate the pareto solutions for two objectives: product concentration and product per unit cost of media, for batch and fed...... batch operations using process model for Amycolatopsis balhimycina, a glycopeptide antibiotic producer. This resulted in a set of several pareto optimal solutions with the two objectives ranging from (0.75gl−1, 3.97g$-1) to (0.44gl−1, 5.19g$-1) for batch and from (1.5gl−1, 5.46g$-1) to (1.1gl−1, 6.34g...

  6. A dynamic metabolic flux balance based model of fed-batch fermentation of Bordetella pertussis. (United States)

    Budman, Hector; Patel, Nilesh; Tamer, Melih; Al-Gherwi, Walid


    A mathematical model based on a dynamic metabolic flux balance (DMFB) is developed for a process of fed-batch fermentation of Bordetella pertussis. The model is based on the maximization of growth rate at each time interval subject to stoichiometric constraints. The model is calibrated and verified with experimental data obtained in two different bioreactor experimental systems. It was found that the model calibration was mostly sensitive to the consumption or production rates of tyrosine and, for high supplementation rates, to the consumption rate of glutamate. Following this calibration the model correctly predicts biomass and by-products concentrations for different supplementation rates. Comparisons of model predictions to oxygen uptake and carbon emission rates measurements indicate that the TCA cycle is fully functional.

  7. Improved methane production from brown algae under high salinity by fed-batch acclimation. (United States)

    Miura, Toyokazu; Kita, Akihisa; Okamura, Yoshiko; Aki, Tsunehiro; Matsumura, Yukihiko; Tajima, Takahisa; Kato, Junichi; Nakashimada, Yutaka


    Here, a methanogenic microbial community was developed from marine sediments to have improved methane productivity from brown algae under high salinity. Fed-batch cultivation was conducted by adding dry seaweed at 1wt% total solid (TS) based on the liquid weight of the NaCl-containing sediment per round of cultivation. The methane production rate and level of salinity increased 8-fold and 1.6-fold, respectively, at the 10th round of cultivation. Moreover, the rate of methane production remained high, even at the 10th round of cultivation, with accumulation of salts derived from 10wt% TS of seaweed. The salinity of the 10th-round culture was equivalent to 5% NaCl. The improved methane production was attributed to enhanced acetoclastic methanogenesis because acetate became rapidly converted to methane during cultivation. The family Fusobacteriaceae and the genus Methanosaeta, the acetoclastic methanogen, predominated in bacteria and archaea, respectively, after the cultivation.

  8. Batch and High Cell Density Fed-Batch Culture Productions of an Organophosphorus Hydrolase (United States)


    0.02 g H3BO3, 0.01 g NaMoO4@ 2H2O , and 0.01 g CuSO4 . Fed-Batch Fermentations were carried out in the same Bio-Flow 3000 unit fitted with 10 L...per L): 3.0 g nitrilotriacetic acid, 6.0 MgSO4@7H2O, 1.0 g NaCl, 1.0 g MnSO4@H2O, 0.5 g FeSO4@7H20, 0.1 CaCl2@ 2H2O , 0.1 CoCl2@6H2O, 0.1 g ZnSO4@7H2O

  9. Modelling of Escherichia coli Cultivations: Acetate Inhibition in a Fed-batch Culture

    Directory of Open Access Journals (Sweden)

    Stoyan Tzonkov


    Full Text Available A set of three competing, unstructured models has been proposed to model biomass growth, glucose utilization, acetate formation, dissolved oxygen consumption and carbon dioxide accumulation of a fed-batch cultivation process of Escherichia coli. The inhibiting effect of acetate on growth of E. coli cultures is included in the considered models. The model identification is carried out using experimental data from the cultivation process. Genetic algorithms are used for parameter estimation. The model discrimination is based on the four criteria, namely sum of square errors, Fisher criterion, Akaike information criterion and minimum description length criterion. The most suitable model is identified that reflects the state variables curves adequately by considering acetate inhibited growth according to the Jerusalimsky approach.

  10. Mucor miehei's microbial rennin production characteristics in a fed-batch proccess

    Directory of Open Access Journals (Sweden)

    C. P. Sánchez Henao


    Full Text Available The Mucor miehei zygomycete produces an acid protease (EC: resembling calf rennet chymosin characteristics. It has been suggested that low glucose concentration levels could be why enzyme synthesis, co-mes to an end even though enzyme production is still great (Escobar and Barnett, 1993, 1995. To overcome this possible limitation, a two stage research process was designed; the relationship between protease production and sugar consumption was studied initially to determine the periods of time when enzyme production is still high and glucose concentration close to zero. The following stage concentrated on developing a glucose fed-batch process during the afore mentioned time periods to observe any increase or decrease in enzyme production. During the batch studies, it was found that maximum enzyme activity (EA was 165 UC/ml for an average glucose consumption rate of 0.1813 g/1 h. Based on the previous.

  11. Simulation and prediction of protein production in fed-batch E. coli cultures: An engineering approach. (United States)

    Calleja, Daniel; Kavanagh, John; de Mas, Carles; López-Santín, Josep


    An overall model describing the dynamic behavior of fed-batch E. coli processes for protein production has been built, calibrated and validated. Using a macroscopic approach, the model consists of three interconnected blocks allowing simulation of biomass, inducer and protein concentration profiles with time. The model incorporates calculation of the extra and intracellular inducer concentration, as well as repressor-inducer dynamics leading to a successful prediction of the product concentration. The parameters of the model were estimated using experimental data of a rhamnulose-1-phosphate aldolase-producer strain, grown under a wide range of experimental conditions. After validation, the model has successfully predicted the behavior of different strains producing two different proteins: fructose-6-phosphate aldolase and ω-transaminase. In summary, the presented approach represents a powerful tool for E. coli production process simulation and control.

  12. Brunovsky Normal Form of Monod Kinetics Models and Growth Rate Control of a Fed-batch Cultivation Process

    Directory of Open Access Journals (Sweden)

    Pavlov Y.


    Full Text Available A mathematical methodology that gives assistance to design of fed-batch stabilization and control is presented. The methodology is based both on Utility theory and optimal Control theory. The Utility theory deals with the expressed subjective preferences and allows for the expert preferences to be taken in consideration in complex biotechnological systems as criteria for control and optimization. The Control theory is used for parameters stabilization of a fed-batch cultivation process. The control is written based on information of the growth rate. The simulations show good efficiency of the control laws.

  13. On-line optimal control for fed-batch culture of baker's yeast production

    Energy Technology Data Exchange (ETDEWEB)

    Wu, W.T.; Chen, K.C.; Chiou, H.W.


    A method of on-line optimal control for fed-batch culture of bakers yeast production is proposed. The feed rate is taken as the control variable. The specific growth rate of the yeast is the output variable and is determined from the balance equation of oxygen. A moving model is obtained by using the data from the feed rate and the specific growth rate. Based on the moving model, an optimal feed rate for fed-batch culture is then achieved. 11 references.

  14. Dark fermentation of ground wheat starch for bio-hydrogen production by fed-batch operation

    Energy Technology Data Exchange (ETDEWEB)

    Kargi, Fikret; Pamukoglu, M. Yunus [Department of Environmental Engineering, Dokuz Eylul University, 35160 Buca, Izmir (Turkey)


    Ground wheat solution was used for bio-hydrogen production by dark fermentation using heat-treated anaerobic sludge in a completely mixed fermenter operating in fed-batch mode. The feed wheat powder (WP) solution was fed to the anaerobic fermenter with a constant flow rate of 8.33 mL h{sup -1} (200 mL d{sup -1}). Cumulative hydrogen production, starch utilization and hydrogen yields were determined at three different WP loading rates corresponding to the feed WP concentrations of 10, 20 and 30 g L{sup -1}. The residual starch (substrate) concentration in the fermenter decreased with operation time while starch consumption was increasing. The highest cumulative hydrogen production (3600 mL), hydrogen yield (465 mL H{sub 2} g{sup -1} starch or 3.1 mol H{sub 2} mol{sup -1} glucose) and hydrogen production rate (864 mL H{sub 2} d{sup -1}) were obtained after 4 days of fed-batch operation with the 20 g L{sup -1} feed WP concentration corresponding to a WP loading rate of 4 g WP d{sup -1}. Low feed WP concentrations (10 g L{sup -1}) resulted in low hydrogen yields and rates due to substrate limitations. High feed WP concentrations (30 g L{sup -1}) resulted in the formation of volatile fatty acids (VFAs) in high concentrations causing inhibition on the rate and yield of hydrogen production. (author)

  15. Fed-batch simultaneous saccharification and ethanol fermentation of native corn starch

    Directory of Open Access Journals (Sweden)

    Włodzimierz Grajek


    Full Text Available Background. The most important innovations in boethanol production in the last decade were: simultaneous saccharification and fermentation processes (SSF, high gravity fermentation, the use of new enzyme preparation able to hydrolyse native granular starch and construction of genetically modified strains of microorganisms able to carry out simultaneous production of hydrolytic enzymes and fermentation of C6 and C5 sugars. The aim of this study was to assess the efficiency of ethanol fermentation using new type of amylolytic enzymes able to hydrolyse native corn starch in a SSF process. Material and methods. The simultaneous saccharification and fermentation of raw corn flour by fed-batch processes using Saccharomyces cerevisiae strain Red Star Ethanol Red and Stargen 001 enzyme preparation was performed. As experimental variable were investigated: fermentation temperature (35-37-40°C, rate of mash stirring (100 and 200 rpm, fermentation time (0-92 h and dosage of corn flour (different portion and different time. Results. It was found that optimal temperature for fed-batch SSF process was 37°C at initial pH of 5.0. However, the yeast intensively fermented the saccharides also at 40°C. The fermentation stirring rate has significant effect on starch utilization and fermentation production. The prolongation of fermentation time over 72 h has no substantiation in additional ethanol production. In all experimental fermentations the level of produced organic acids was very low, significantly below toxic concentration for the yeast. Conclusions. It was stated that the use of new method of starch raw material preparation resulted in satisfied fermentation yield and allowed to reduce energy requirements for starch liquefaction.  

  16. Computational Fluid Dynamics Modelling of Hydraulics and Sedimentation in Process Reactors during Aeration Tank Settling

    DEFF Research Database (Denmark)

    Jensen, M.D.; Ingildsen, P.; Rasmussen, Michael R.;


    Aeration tank settling is a control method allowing settling in the process tank during highhydraulic load. The control method is patented. Aeration tank settling has been applied in several wastewater treatment plants using the present design of the process tanks. Some process tank designs...... haveshown to be more effective than others. To improve the design of less effective plants, computational fluiddynamics (CFD) modelling of hydraulics and sedimentation has been applied. This paper discusses theresults at one particular plant experiencing problems with partly short-circuiting of the inlet...... and outletcausing a disruption of the sludge blanket at the outlet and thereby reducing the retention of sludge in theprocess tank. The model has allowed us to establish a clear picture of the problems arising at the plantduring aeration tank settling. Secondly, several process tank design changes have been...

  17. Effect of aeration regime on N₂O emission from partial nitritation-anammox in a full-scale granular sludge reactor. (United States)

    Castro-Barros, C M; Daelman, M R J; Mampaey, K E; van Loosdrecht, M C M; Volcke, E I P


    N₂O emission from wastewater treatment plants is high of concern due to the strong environmental impact of this greenhouse gas. Good understanding of the factors affecting the emission and formation of this gas is crucial to minimize its impact. This study addressed the investigation of the N₂O emission dynamics in a full-scale one-stage granular sludge reactor performing partial nitritation-anammox (PNA) operated at a N-loading of 1.75 kg NH₄⁺-N m⁻³ d⁻¹. A monitoring campaign was conducted, gathering on-line data of the N₂O concentration in the off-gas of the reactor as well as of the ammonium and nitrite concentrations in the liquid phase. The N₂O formation rate and the liquid N₂O concentration profile were calculated from the gas phase measurements. The mean (gaseous) N₂O-N emission obtained was 2.0% of the total incoming nitrogen during normal reactor operation. During normal operation of the reactor under variable aeration rate, intense aeration resulted in higher N₂O emission and formation than during low aeration periods (mean N₂O formation rate of 0.050 kg N m⁻³ d⁻¹ for high aeration and 0.029 kg N m⁻³ d⁻¹ for low aeration). Accumulation of N₂O in the liquid phase was detected during low aeration periods and was accompanied by a relatively lower ammonium conversion rate, while N₂O stripping was observed once the aeration was increased. During a dedicated experiment, gas recirculation without fresh air addition into the reactor led to the consumption of N₂O, while accumulation of N₂O was not detected. The transition from a prolonged period without fresh air addition and with little recirculation to enhanced aeration with fresh air addition resulted in the highest N₂O formation (0.064 kg N m⁻³ d⁻¹). The results indicate that adequate aeration control may be used to minimize N₂O emissions from PNA reactors.

  18. High-cell-density fed-batch cultivation of the docosahexaenoic acid producing marine alga Crypthecodinium cohnii

    NARCIS (Netherlands)

    Swaaf, de M.E.; Sijtsma, L.; Pronk, J.T.


    The heterotrophic marine alga Crypthecodinium cohnii is known to produce docosahexaenoic acid (DHA), a polyunsaturated fatty acid with food and pharmaceutical applications, during batch cultivation on complex media containing sea salt, yeast extract, and glucose. In the present study, fed-batch cult

  19. Glucoamylase production in batch, chemostat and fed-batch cultivations by an industrial strain of Aspergillus niger

    DEFF Research Database (Denmark)

    Pedersen, Henrik; Beyer, Michael; Nielsen, Jens


    The Aspergillus niger strain BO-1 was grown in batch, continuous (chemostat) and fed-batch cultivations in order to study the production of the extracellular enzyme glucoamylase under different growth conditions. In the pH range 2.5-6.0, the specific glucoamylase productivity and the specific...

  20. Determination of model parameters for zinc (II) ion biosorption onto powdered waste sludge (PWS) in a fed-batch system. (United States)

    Kargi, Fikret; Cikla, Sinem


    Biosorption of zinc (II) ions onto pre-treated powdered waste sludge (PWS) was investigated using a completely mixed tank operating in fed-batch mode instead of an adsorption column. Experiments with variable feed flow rate (0.05-0.5 L h(-1)), feed Zn(II) ion concentrations (37.5-275 mg L(-1)) and amount of adsorbent (1-6 g PWS) were performed using fed-batch operation at pH 5 and room temperature (20-25 degrees C). Break-through curves describing variations of aqueous (effluent) zinc ion concentrations with time were determined for different operating conditions. Percent zinc removal from the aqueous phase decreased, but the biosorbed (solid phase) zinc ion concentration increased with increasing feed flow rate and zinc concentration. A modified Bohart-Adams equation was used to determine the biosorption capacity of PWS (q'(s)) and the rate constant (K) for zinc ion biosorption. Biosorption capacity (q'(s)=57.7 g Zn kg(-1) PWS) of PWS in fed-batch operation was found to be comparable with powdered activated carbon (PAC) in column operations. However, the adsorption rate constant (K=9.17 m(3) kg(-1) h(-1)) in fed-batch operation was an order of magnitude larger than those obtained in adsorption columns because of elimination of mass transfer limitations encountered in the column operations. Therefore, a completely mixed tank operated in fed-batch mode was proven to be more advantageous as compared to adsorption columns due to better contact between the phases yielding faster adsorption rates.

  1. In vitro growth of Curcuma longa L. in response to five mineral elements and plant density in fed-batch culture systems. (United States)

    El-Hawaz, Rabia F; Bridges, William C; Adelberg, Jeffrey W


    Plant density was varied with P, Ca, Mg, and KNO3 in a multifactor experiment to improve Curcuma longa L. micropropagation, biomass and microrhizome development in fed-batch liquid culture. The experiment had two paired D-optimal designs, testing sucrose fed-batch and nutrient sucrose fed-batch techniques. When sucrose became depleted, volume was restored to 5% m/v sucrose in 200 ml of modified liquid MS medium by adding sucrose solutions. Similarly, nutrient sucrose fed-batch was restored to set points with double concentration of treatments' macronutrient and MS micronutrient solutions, along with sucrose solutions. Changes in the amounts of water and sucrose supplementations were driven by the interaction of P and KNO3 concentrations. Increasing P from 1.25 to 6.25 mM increased both multiplication and biomass. The multiplication ratio was greatest in the nutrient sucrose fed-batch technique with the highest level of P, 6 buds/vessel, and the lowest level of Ca and KNO3. The highest density (18 buds/vessel) produced the highest fresh biomass at the highest concentrations of KNO3 and P with nutrient sucrose fed-batch, and moderate Ca and Mg concentrations. However, maximal rhizome dry biomass required highest P, sucrose fed-batch, and a moderate plant density. Different media formulations and fed-batch techniques were identified to maximize the propagation and storage organ responses. A single experimental design was used to optimize these dual purposes.

  2. Aeration Strategies To Mitigate Nitrous Oxide Emissions from Single-Stage Nitritation/Anammox Reactors

    DEFF Research Database (Denmark)

    Domingo Felez, Carlos; Mutlu, A. Gizem; Jensen, Marlene Mark;


    -stage nitritation/anammox were operated under different aeration strategies, gradually adjusted over six months. At constant but limiting oxygen loading, synthetic reject water was fed (0.75g-N/L.d) and high nitrogen removal efficiencies (83 +/- 5 and 88 +/- 2%) obtained. Dynamics of liquid phase nitrous (N2O......) and nitric oxide (NO) concentrations were monitored and N2O emissions calculated. Significant decreases in N2O emissions were obtained when the frequency of aeration was increased while maintaining a constant air flow rate (from >6 to 1.7% Delta N2O/Delta TN). However, no significant effect on the emissions...... was noted when the duration of aeration was increased while decreasing air flow rate (10.9 +/- 3.2% Delta N2O/Delta TN). The extant ammonium oxidation activity (mgNH(4)(+)-N/gVSS.min) positively correlated with the specific N2O production rate (mgN(2)O-N/gVSS.min) of the systems. Operating under conditions...

  3. Model-based evaluation of the role of Anammox on nitric oxide and nitrous oxide productions in membrane aerated biofilm reactor

    DEFF Research Database (Denmark)

    Ni, Bing-Jie; Smets, Barth F.; Yuan, Zhiguo;


    A multispecies one-dimensional biofilm model considering nitric oxide (NO) and nitrous oxide (N2O) productions for membrane aerated biofilm reactor (MABR) that remove nitrogen autotrophically through aerobic ammonia oxidation followed by Anammox is used to study the role of Anammox activity on th...

  4. Fed-Batch Production of Bacterial Ghosts Using Dielectric Spectroscopy for Dynamic Process Control

    Directory of Open Access Journals (Sweden)

    Andrea Meitz


    Full Text Available The Bacterial Ghost (BG platform technology evolved from a microbiological expression system incorporating the ϕX174 lysis gene E. E-lysis generates empty but structurally intact cell envelopes (BGs from Gram-negative bacteria which have been suggested as candidate vaccines, immunotherapeutic agents or drug delivery vehicles. E-lysis is a highly dynamic and complex biological process that puts exceptional demands towards process understanding and control. The development of a both economic and robust fed-batch production process for BGs required a toolset capable of dealing with rapidly changing concentrations of viable biomass during the E-lysis phase. This challenge was addressed using a transfer function combining dielectric spectroscopy and soft-sensor based biomass estimation for monitoring the rapid decline of viable biomass during the E-lysis phase. The transfer function was implemented to a feed-controller, which followed the permittivity signal closely and was capable of maintaining a constant specific substrate uptake rate during lysis phase. With the described toolset, we were able to increase the yield of BG production processes by a factor of 8–10 when compared to currently used batch procedures reaching lysis efficiencies >98%. This provides elevated potentials for commercial application of the Bacterial Ghost platform technology.

  5. Enhanced fed-batch fermentation of 2,3-butanediol by Paenibacillus polymyxa DSM 365. (United States)

    Häßler, Thomas; Schieder, Doris; Pfaller, Rupert; Faulstich, Martin; Sieber, Volker


    Fed-batch fermentations for the production of 2,3-butanediol (BDL) with Paenibacillus polymyxa DSM 365 were investigated in 2-L-fermenters. A suitable micro-aerobic set-up enabled high product selectivity of up to 98% R,R-BDL towards meso-BDL and acetoin. Up to 111 g L(-1)R,R-BDL within 54 h could be achieved with sufficient supply of complex medium (yeast extract). To the best of the knowledge of the authors, this is the highest titer so far reported for P. polymyxa indicating its high potential as a non pathogenic BDL-producer. Fermentation in low nutritional medium (5 g L(-1) yeast extract) yielded up to 72 g L(-1) BDL+acetoin (79% R,R-BDL), yet was affected by formation of exopolysaccharides (EPS). In the range of 30-40°C EPS formation decreased with raising temperature although growth rate and BDL-production remained similar. Additionally, Tween80® was found to be a good additive to reduce viscosity caused by EPS.

  6. Fed-Batch Production of Bacterial Ghosts Using Dielectric Spectroscopy for Dynamic Process Control. (United States)

    Meitz, Andrea; Sagmeister, Patrick; Lubitz, Werner; Herwig, Christoph; Langemann, Timo


    The Bacterial Ghost (BG) platform technology evolved from a microbiological expression system incorporating the ϕX174 lysis gene E. E-lysis generates empty but structurally intact cell envelopes (BGs) from Gram-negative bacteria which have been suggested as candidate vaccines, immunotherapeutic agents or drug delivery vehicles. E-lysis is a highly dynamic and complex biological process that puts exceptional demands towards process understanding and control. The development of a both economic and robust fed-batch production process for BGs required a toolset capable of dealing with rapidly changing concentrations of viable biomass during the E-lysis phase. This challenge was addressed using a transfer function combining dielectric spectroscopy and soft-sensor based biomass estimation for monitoring the rapid decline of viable biomass during the E-lysis phase. The transfer function was implemented to a feed-controller, which followed the permittivity signal closely and was capable of maintaining a constant specific substrate uptake rate during lysis phase. With the described toolset, we were able to increase the yield of BG production processes by a factor of 8-10 when compared to currently used batch procedures reaching lysis efficiencies >98%. This provides elevated potentials for commercial application of the Bacterial Ghost platform technology.

  7. De novo biosynthesis of biodiesel by Escherichia coli in optimized fed-batch cultivation.

    Directory of Open Access Journals (Sweden)

    Yangkai Duan

    Full Text Available Biodiesel is a renewable alternative to petroleum diesel fuel that can contribute to carbon dioxide emission reduction and energy supply. Biodiesel is composed of fatty acid alkyl esters, including fatty acid methyl esters (FAMEs and fatty acid ethyl esters (FAEEs, and is currently produced through the transesterification reaction of methanol (or ethanol and triacylglycerols (TAGs. TAGs are mainly obtained from oilseed plants and microalgae. A sustainable supply of TAGs is a major bottleneck for current biodiesel production. Here we report the de novo biosynthesis of FAEEs from glucose, which can be derived from lignocellulosic biomass, in genetically engineered Escherichia coli by introduction of the ethanol-producing pathway from Zymomonas mobilis, genetic manipulation to increase the pool of fatty acyl-CoA, and heterologous expression of acyl-coenzyme A: diacylglycerol acyltransferase from Acinetobacter baylyi. An optimized fed-batch microbial fermentation of the modified E. coli strain yielded a titer of 922 mg L(-1 FAEEs that consisted primarily of ethyl palmitate, -oleate, -myristate and -palmitoleate.

  8. Effects of the feeding ratio of food waste on fed-batch aerobic composting and its microbial community. (United States)

    Wang, Xiaojun; Pan, Songqing; Zhang, Zhaoji; Lin, Xiangyu; Zhang, Yuzhen; Chen, Shaohua


    To determine the suitable feeding ratio for fed-batch aerobic composting, four fermenters were operated by adding 0%, 5%, 10% or 15% of food waste every day. The results showed that the 5% and 10% treatments were able to maintain continuous thermophilic conditions, while the 15% treatment performed badly in regard to composting temperature, which was probably due to the negative effects of excessive moisture on microbial activity. As composting proceeded, both the 5% and the 10% treatments reached maturity and achieved weight losses of approximately 65%. High-throughput sequencing results indicated that Firmicutes, Proteobacteria, Bacteroidetes and Actinobacteria were the dominant phyla of the community structure. The communities sampled at the thermophilic phases had high similarity and relatively low diversity, while species diversity increased in the maturity phase. This study was devoted to optimizing the fed-batch composting process and assessing bacterial communities, both of which were supplied as a reference for practical application.

  9. Production of savinase and population viability of Bacillus clausii during high-cell-density fed-batch cultivations

    DEFF Research Database (Denmark)

    Christiansen, Torben; Michaelsen, S.; Wumpelmann, M.


    The growth and product formation of a Savinase-producing Bacillus clausii were investigated in high-cell-density fed-batch cultivations with both linear and exponential feed profiles. The highest specific productivity of Savinase was observed shortly after the end of the initial batch phase for all....... The physiological state of the cells was monitored during the cultivations using a flow cytometry assay based on the permeability of the cell membrane to propidium iodide. In the latter parts of the fed-batch cultures with a linear feed profile, a large portion of the cell population was found to have a permeable...... membrane, indicating a large percentage of dead cells. By assuming that only cells with a nonpermeable membrane contributed to growth and product formation, the physiological properties of this subpopulation were calculated....

  10. Fed-batch versus batch cultures of Yarrowia lipolytica for γ-decalactone production from methyl ricinoleate. (United States)

    Gomes, Nelma; Teixeira, José A; Belo, Isabel


    Constant medium feeding rate and intermittent fed-batch fermentation strategies were investigated aiming to increase the yields of γ-decalactone production by Yarrowia lipolytica, using methyl ricinoleate as substrate and ricinoleic acid source. The accumulation of another compound, 3-hydroxy-γ-decalactone, was also analyzed since it derives from the direct precursor of γ-decalactone thereby providing information about the enzymatic activities of the pathway. Both strategies were compared with the traditional batch mode in terms of overall productivity and yield in respect to the substrate. Although the productivity of γ-decalactone was considerably higher in the batch mode (168 mg l(-1) h(-1)), substrate conversion to lactone (73 mg γ-decalactone g(-1)) was greater in the intermittent fed-batch giving 6.8 g γ-decalactone l(-1). This last strategy therefore has potential for γ-decalactone production at an industrial level.

  11. Fed-batch production of gluconic acid by terpene-treated Aspergillus niger spores. (United States)

    Ramachandran, Sumitra; Fontanille, Pierre; Pandey, Ashok; Larroche, Christian


    Aspergillus niger spores were used as catalyst in the bioconversion of glucose to gluconic acid. Spores produced by solid-state fermentation were treated with 15 different terpenes including monoterpenes and monoterpenoids to permeabilize and inhibit spore germination. It was found that spore membrane permeability is significantly increased by treatment with terpenoids when compared to monoterpenes. Best results were obtained with citral and isonovalal. Studies were carried out to optimize spores concentration (10(7)-10(10) spores/mL), terpene concentrations in the bioconversion medium and time of exposure (1-18 h) needed for permeabilization of spores. Fed-batch production of gluconate was done in a bioreactor with the best conditions [10(9) spores/mL of freeze-thawed spores treated with citral (3% v/v) for 5 h] followed by sequential additions of glucose powder and pH-regulated with a solution containing 2 mol/L of either NaOH or KOH. Bioconversion performance of the spore enzyme was compared with the commercial glucose oxidase at 50, 60, and 70 degrees C. Results showed that the spore enzyme was comparatively stable at 60 degrees C. It was also found that the spores could be reutilized for more than 14 cycles with almost similar reaction rate. Similar biocatalytic activity was rendered by spores even after its storage of 1 year at -20 degrees C. This study provided an experimental evidence of the significant catalytic role played by A. niger spore in bioconversion of glucose to gluconic acid with high yield and stability, giving protection to glucose oxidase.

  12. Nisin production in realkalized fed-batch cultures in whey with feeding with lactose- or glucose-containing substrates. (United States)

    Costas Malvido, Mónica; Alonso González, Elisa; Pérez Guerra, Nelson


    Nisin production by Lactococcus lactis CECT 539 was followed in batch cultures in whey supplemented with different concentrations of glucose and in two realkalized fed-batch fermentations in unsupplemented whey, which were fed, respectively, with concentrated solutions of lactose and glucose. In the batch fermentations, supplementation of whey with glucose inhibited both the growth and bacteriocin production. However, fed-batch cultures were characterized with high productions of biomass (1.34 and 1.51 g l(-1)) and nisin (50.6 and 60.3 BU ml(-1)) in comparison to the batch fermentations in unsupplemented whey (0.48 g l(-1) and 22.5 BU ml(-1)) and MRS broth (1.59 g l(-1) and 50.0 BU ml(-1)). In the two realkalized fed-batch fermentations, the increase in bacteriocin production parallels both the biomass production and pH drop generated in each realkalization and feeding cycle, suggesting that nisin was synthesized as a pH-dependent primary metabolite. A shift from homolactic to heterolactic fermentation was observed at the 108 h of incubation, and other metabolites (acetic acid and butane-2,3-diol) in addition to lactic acid accumulated in the medium. On the other hand, the feeding with glucose improved the efficiencies in glucose, nitrogen, and phosphorus consumption as compared to the batch cultures. The realkalized fed-batch fermentations showed to be an effective strategy to enhance nisin production in whey by using an appropriate feeding strategy to avoid the substrate inhibition.

  13. Heterotrophic high cell-density fed-batch cultures of the phycocyanin-producing red alga Galdieria sulphuraria. (United States)

    Schmidt, Rikke Ankerstjerne; Wiebe, Marilyn G; Eriksen, Niels Thomas


    Growth and phycocyanin production in batch and fed-batch cultures of the microalga Galdieria sulphuraria 074G, which was grown heterotrophically in darkness on glucose, fructose, sucrose, and sugar beet molasses, was investigated. In batch cultures, specific growth rates and yields of biomass dry weight on the pure sugars were 1.08-1.15 day-1 and 0.48-0.50 g g-1, respectively. They were slightly higher when molasses was the carbon source. Cellular phycocyanin contents during the exponential growth phase were 3-4 mg g-1 in dry weight. G. sulphuraria was able to tolerate concentrations of glucose and fructose of up to 166 g L-1 (0.9 M) and an ammonium sulfate concentration of 22 g L-1 (0.17 M) without negative effects on the specific growth rate. When the total concentration of dissolved substances in the growth medium exceeded 1-2 M, growth was completely inhibited. In carbon-limited fed-batch cultures, biomass dry weight concentrations of 80-120 g L-1 were obtained while phycocyanin accumulated to concentrations between 250 and 400 mg L-1. These results demonstrate that G. sulphuraria is well suited for growth in heterotrophic cultures at very high cell densities, and that such cultures produce significant amounts of phycocyanin. Furthermore, the productivity of phycocyanin in the heterotrophic fed-batch cultures of G. sulphuraria was higher than is attained in outdoor cultures of Spirulina platensis, where phycocyanin is presently obtained.

  14. Fed-batch culture of Escherichia coli for L-valine production based on in silico flux response analysis. (United States)

    Park, Jin Hwan; Kim, Tae Yong; Lee, Kwang Ho; Lee, Sang Yup


    We have previously reported the development of a 100% genetically defined engineered Escherichia coli strain capable of producing L-valine from glucose with a high yield of 0.38 g L-valine per gram glucose (0.58 mol L-valine per mol glucose) by batch culture. Here we report a systems biological strategy of employing flux response analysis in bioprocess development using L-valine production by fed-batch culture as an example. Through the systems-level analysis, the source of ATP was found to be important for efficient L-valine production. There existed a trade-off between L-valine production and biomass formation, which was optimized for the most efficient L-valine production. Furthermore, acetic acid feeding strategy was optimized based on flux response analysis. The final fed-batch cultivation strategy allowed production of 32.3 g/L L-valine, the highest concentration reported for E. coli. This approach of employing systems-level analysis of metabolic fluxes in developing fed-batch cultivation strategy would also be applicable in developing strategies for the efficient production of other bioproducts.

  15. Mixotrophic growth of Phaeodactylum tricornutum on fructose and glycerol in fed-batch and semi-continuous modes. (United States)

    Cerón-García, M C; Fernández-Sevilla, J M; Sánchez-Mirón, A; García-Camacho, F; Contreras-Gómez, A; Molina-Grima, E


    Mixotrophic cultures of Phaeodactylum tricornutum were carried out in bubble columns using fructose and glycerol in indoor fed-batch and semi-continuous modes. In the fed-batch cultures, different nutrient-addition strategies, combined with stepwise increments in the light intensity, were assayed. It was found that glycerol promoted significantly higher biomass productivity than fructose. A glycerol-induced photoinhibition that arrested the growth of P. tricornutun was also observed. As this was considered a limitation as regards transferring the fed-batch mode to outdoor conditions, this information was used to culture P. tricornutum in semi-continuous mode. Similar glycerol-induced photoinhibition was not observed in these cultures, even at highest dilution rates. Although the highest biomass (1.5 g L(-1) d(-1)) and EPA (40 mg L(-1) d(-1)) productivities found in the semi-continuous cultures were lower than those obtained photoautotrophically in outdoor photobioreactors, the findings showed that semi-continuous mode was an excellent candidate for transferring mixotrophic culture to an outdoor setting.

  16. Population dynamics of ammonia-oxidizing bacteria in an aerated submerged biofilm reactor for micropolluted raw water pretreatment. (United States)

    Qin, Ying-Ying; Zhang, Xiao-Wen; Ren, Hong-Qiang; Li, Dao-Tang; Yang, Hong


    Population dynamics of ammonia-oxidizing bacteria (AOB) in a full-scale aerated submerged biofilm reactor for micropolluted raw water pretreatment was investigated using molecular techniques for a period of 1 year. The ammonia monooxygenase (amoA) gene fragments were amplified from DNA and RNA extracts of biofilm samples. Denaturing gradient gel electrophoresis (DGGE) profile based on the amoA messenger RNA approach exhibited a more variable pattern of temporal dynamics of AOB communities than the DNA-derived approach during the study. Phylogenetic analysis of excised DGGE bands revealed three AOB groups affiliated with the Nitrosomonas oligotropha lineage, Nitrosomonas communis lineage, and an unknown Nitrosomonas group. The population size of betaproteobacterial AOB, quantified with 16S ribosomal RNA gene real-time polymerase chain reaction assay, ranged from 6.63 x 10(5) to 2.67 x 10(9) cells per gram of dry biofilm and corresponded to 0.23-1.8% of the total bacterial fraction. Quantitative results of amoA gene of the three specific AOB groups revealed changes in competitive dominance between AOB of the N. oligotropha lineage and N. communis lineage. Water temperature is shown to have major influence on AOB population size in the reactor by the statistic analysis, and a positive correlation between AOB cell numbers and ammonia removal efficiency is suggested (r = 0.628, P < 0.05).

  17. Mathematical model analysis on the enhancement of aeration efficiency using ladder-type flat membrane module forms in the Submerged Membrane Bio-reactor(SMBR)

    Institute of Scientific and Technical Information of China (English)


    The cross-flow shearing action produced from the inferior aeration in the Submerged Membrane Bio-reactor(SMBR) is an effective way to further improve anti-fouling effects of membrane modules.Based on the widely-applied vertical structure of flat membrane modules,improvements are made that ladder-type flat membrane structure is designed with a certain inclined angle θ so that the cross-flow velocity of bubble near the membrane surface can be held,and the intensity and times of elastic colli-sion between bubbles and membrane surface can be increased.This can improve scouring action of membrane surface on aeration and reduce energy consumption of strong aeration in SMBR.By de-ducing and improving the mathematics model of collision between bubble and vertical flat put forward by Vries,the relatively suitable incline angle θ under certain aeration place and in certain size rang of bubble can be obtained with the computer iterative calculation technology.Finally,for many groups of ladder-type flat membrane in parallel placement in the practical application of SMBR,some sugges-tions are offered:the interval distance of membrane modules is 8―15 mm,and aeration should be op-erated at 5―7 mm among membrane modules,and the optimal design angle of trapeziform membrane is 1.7°―2.5°.

  18. Mathematical model analysis on the enhancement of aeration efficiency using ladder-type flat membrane module forms in the Submerged Membrane Bio-reactor (SMBR)

    Institute of Scientific and Technical Information of China (English)

    LI Bo; YE MaoSheng; YANG FengLin; MA Hui


    The cross-flow shearing action produced from the inferior aeration in the Submerged Membrane Bio-reactor (SMBR) Is an effective way to further improve anti-fouling effects of membrane modules.Based on the widely-applied vertical structure of flat membrane modules, improvements are made that ladder-type flat membrane structure is designed with a certain inclined angle θ so that the cross-flow velocity of bubble near the membrane surface can be held, and the intensity and times of elastic colli-sion between bubbles and membrane surface can be increased. This can improve scouring action ofmembrane surface on aeration and reduce energy consumption of strong aeration in SMBR. By de-ducing and improving the mathematics model of collision between bubble and vertical flat put forward by Vries, the relatively suitable Incline angle θ under certain aeration place and in certain size rang ofbubble can be obtained with the computer iterative calculation technology. Finally, for many groups of ladder-type flat membrane in parallel placement in the practical application of SMBR, some sugges-tions are offered: the interval distance of membrane modules is 8--15 mm, and aeration should be op-erated at 5--7 mm among membrane modules, and the optimal design angle of trapeziform membrane is 1.7°--2.5°.

  19. Microbial community stratification in Membrane-Aerated Biofilm Reactors for Completely Autotrophic Nitrogen Removal

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Ruscalleda, Maël; Terada, Akihiko;

    of bacterial granules or biofilms. In this sense, completely autotrophic nitrogen removal from high ammonium strength wastewater was achieved in a Membrane-Aereated Biofilm Reactor (MABR) in a single step. Here, a biofilm containing nitrifiers (Aerobic Ammonium and Nitrite Oxidizing Bacteria, AOB and NOB...... to the membrane, while AnAOB were localized next to them in areas where no oxygen was available. NOB were detected in very low amounts. Results proved the feasibility of developing biofilm structures for high-rate completely autotrophic nitrogen removal....... the biofilm, allowing nitrogen removal in a single reactor by simultaneous activity of the mentioned biocatalysts. This work consists on the analysis of the microbial community existing in two laboratory-scale reactors operated for more than 300 days, which removed up to 5.5 g-N/m2/day. The system contained...

  20. Microbial activity catalyzes oxygen transfer in membrane-aerated nitritating biofilm reactors

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Domingo Felez, Carlos; Lackner, Susanne


    of the liquid boundary layer developed at the membrane-liquid interface during clean water tests accounted for two thirds of the total mass transfer resistance, suggesting a strong underestimation of the oxygen transfer rates when it is absent (e.g. after biofilm growth). Reactor operation to attain partial...

  1. Simultaneous ammonium and nitrate removal by a modified intermittently aerated sequencing batch reactor (SBR with multiple filling events

    Directory of Open Access Journals (Sweden)

    Hajsardar Mehdi


    Full Text Available Optimized methods for simultaneous removal of nitrate, nitrite and ammonium are important features of nutrient removal. Nitrogen removal efficiency in an intermittently aerated sequencing batch reactor (IA-SBR with multiple filling events was studied. No external carbon source was added and three filling events were considered. Oxidationreduction potential (ORP and pH curve at solids retention time (SRT of 20 d were analyzed. Effects of three organic loading rates (OLR, 0.67, 1.0 and 1.5 kgCOD/m3d, and three nitrogen loading rates (NLR, 0.054, 0.1 and 0.15 kgN/m3d, on nitrogen removal were studied. Nitrate Apex in pH curve and Nitrate Knee in ORP profile indicated that the end of denitrification would be achieved sooner. The kinetic coefficients of endogenous decay (kd and yield (Y were identified to evaluate heterotrophic specific denitrification rate (SDNRb. In period 2 at NLR of 0.054 kgN/m3d and considering 2 anoxic and 3 aerobic phases, nitrogen removal efficiency was 91.43%.

  2. Carbonaceous materials in petrochemical wastewater before and after treatment in an aerated submerged fixed-bed biofilm reactor

    Directory of Open Access Journals (Sweden)

    Trojanowicz Karol


    Full Text Available Results of the studies for determining fractions of organic contaminants in a pretreated petrochemical wastewater flowing into a pilot Aerated Submerged Fixed-Bed Biofilm Reactor (ASFBBR are presented and discussed. The method of chemical oxygen demand (COD fractionation consisted of physical tests and biological assays. It was found that the main part of the total COD in the petrochemical, pretreated wastewater was soluble organic substance with average value of 57.6%. The fractions of particulate and colloidal organic matter were found to be 31.8% and 10.6%, respectively. About 40% of COD in the influent was determined as readily biodegradable COD. The inert fraction of the soluble organic matter in the petrochemical wastewater constituted about 60% of the influent colloidal and soluble COD. Determination of degree of hydrolysis (DH of the colloidal fraction of COD was also included in the paper. The estimated value of DH was about 62%. Values of the assayed COD fractions were compared with the same parameters obtained for municipal wastewater by other authors.

  3. Production of sorption functional media (SFM) from clinoptilolite tailings and its performance investigation in a biological aerated filter (BAF) reactor. (United States)

    Feng, Yan; Qi, Jingyao; Chi, Liying; Wang, Dong; Wang, Zhaoyang; Li, Ke; Li, Xin


    The few reuse and large stockpile of zeolite tailings led to a series of social and environmental problems. This study investigated the possibility of using the zeolite tailings as one of principal raw materials to prepare sorption functional media (SFM) by a high temperature sintering process. The SFM was used to serve as a biomedium in a biological aerated filter (BAF) reactor for domestic wastewater treatment, and its purification performance was examined. The physical, chemical and sorption properties of SFM were also determined. The microstructure of the SFM was analyzed by scanning electron microscopy (SEM). Results revealed that: (1) zeolite tailings could be used to produce the SFM under the optimal sintering parameters; (2) the sorption and desorption isotherm of ammonia nitrogen on SFM could be well described by the Langmuir formula; (3) in terms of removing organic matter, ammonia nitrogen, turbidity and colourity, the performance of the biofilter with SFM was superior to that with haydite; and (4) SFM BAF has a stronger adaptability to low temperature (6-11°C) for NH(3)-N removal compared to haydite BAF. Therefore, the SFM produced from the zeolite tailings was suitable to serve as the biomedium in the domestic wastewater treatment.

  4. Production of sorption functional media (SFM) from clinoptilolite tailings and its performance investigation in a biological aerated filter (BAF) reactor

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Yan [School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090 (China); School of Civil Engineering and Architecture, University of Jinan, Jinan 250022 (China); Qi, Jingyao, E-mail: [School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090 (China); Chi, Liying [School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090 (China); Wang, Dong [School of Civil Engineering and Architecture, University of Jinan, Jinan 250022 (China); Wang, Zhaoyang; Li, Ke; Li, Xin [School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090 (China)


    Highlights: ► Sorption functional media (SFM) were prepared using zeolite tailings. ► Two upflow BAFs were applied to treat municipal wastewater. ► SFM BAF brought a relative superiority to haydite reactor. ► SFM BAF has a stronger adaptability to low temperature (6–11°C) for NH{sub 3}-N removal. ► The application provided a promising way in zeolite tailings utilization. -- Abstract: The few reuse and large stockpile of zeolite tailings led to a series of social and environmental problems. This study investigated the possibility of using the zeolite tailings as one of principal raw materials to prepare sorption functional media (SFM) by a high temperature sintering process. The SFM was used to serve as a biomedium in a biological aerated filter (BAF) reactor for domestic wastewater treatment, and its purification performance was examined. The physical, chemical and sorption properties of SFM were also determined. The microstructure of the SFM was analyzed by scanning electron microscopy (SEM). Results revealed that: (1) zeolite tailings could be used to produce the SFM under the optimal sintering parameters; (2) the sorption and desorption isotherm of ammonia nitrogen on SFM could be well described by the Langmuir formula; (3) in terms of removing organic matter, ammonia nitrogen, turbidity and colourity, the performance of the biofilter with SFM was superior to that with haydite; and (4) SFM BAF has a stronger adaptability to low temperature (6–11 °C) for NH{sub 3}-N removal compared to haydite BAF. Therefore, the SFM produced from the zeolite tailings was suitable to serve as the biomedium in the domestic wastewater treatment.

  5. Versatile modeling and optimization of fed batch processes for the production of secreted heterologous proteins with Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Gasser Brigitte


    Full Text Available Abstract Background Secretion of heterologous proteins depends both on biomass concentration and on the specific product secretion rate, which in turn is not constant at varying specific growth rates. As fed batch processes usually do not maintain a steady state throughout the feed phase, it is not trivial to model and optimize such a process by mathematical means. Results We have developed a model for product accumulation in fed batch based on iterative calculation in Microsoft Excel spreadsheets, and used the Solver software to optimize the time course of the media feed in order to maximize the volumetric productivity. The optimum feed phase consisted of an exponential feed at maximum specific growth rate, followed by a phase with linearly increasing feed rate and consequently steadily decreasing specific growth rate. The latter phase could be modeled also by exact mathematical treatment by the calculus of variations, yielding the explicit shape of the growth function, however, with certain indeterminate parameters. To evaluate the latter, one needs a numerical optimum search algorithm. The explicit shape of the growth function provides additional evidence that the Excel model results in correct data. Experimental evaluation in two independent fed batch cultures resulted in a good correlation to the optimized model data, and a 2.2 fold improvement of the volumetric productivity. Conclusion The advantages of the procedure we describe here are the ease of use and the flexibility, applying software familiar to every scientist and engineer, and rapid calculation which makes predictions extremely easy, so that many options can be tested in silico quickly. Additional options like further biological and technological constraints or different functions for specific productivity and biomass yield can easily be integrated.

  6. Effect of Fed-Batch vs. Continuous Mode of Operation on Microbial Fuel Cell Performance Treating Biorefinery Wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Pannell, Tyler C.; Goud, R. Kannaiah; Schell, Daniel J.; Borole, Abhijeet P.


    Bioelectrochemical systems have been shown to treat low-value biorefinery streams while recovering energy, however, low current densities and anode conversion efficiencies (ACE) limit their application. A bioanode was developed via enrichment of electroactive biofilm under fed-batch and continuous feeding conditions using corn stover-derived waste stream. The continuously-fed MFC exhibited a current density of 5.8 +/- 0.06 A/m2 and an ACE of 39% +/- 4. The fed-batch MFC achieved a similar current density and an ACE of 19.2%, however, its performance dropped after 36 days of operation to 1.1 A/m2 and 0.5%, respectively. In comparison, the ACE of the continuously-fed MFC remained stable achieving an ACE of 30% +/- 3 after 48 days of operation. An MFC treating a biorefinery stream post fuel separation achieved a current density of 10.7 +/- 0.1 A/m2 and an ACE of 57% +/- 9 at an organic loading of 12.5 g COD/L-day. Characterization of the microbial communities indicate higher abundance of Firmicutes and Proteobacteria and lower abundance of Bacteriodetes and a higher level of Geobacter spp. (1.4% vs. 0.2%) in continuously-fed MFC vs. fed-batch MFC. The results demonstrate that limiting substrate to the equivalent maximum current that the anode can generate, maintains MFC performance over a long term for high strength wastewaters, such as those generated in the biorefinery.

  7. Amino acid and glucose metabolism in fed-batch CHO cell culture affects antibody production and glycosylation

    DEFF Research Database (Denmark)

    Fan, Yuzhou; Jimenez Del Val, Ioscani; Müller, Christian


    and feeds were studied using two IgG-producing cell lines. Our results indicate that the balance of glucose and amino acid concentration in the culture is important for cell growth, IgG titer and N-glycosylation. Accordingly, the ideal fate of glucose and amino acids in the culture could be mainly towards...... optimization, especially media optimization. Gaining knowledge on their interrelations could provide insight for obtaining higher immunoglobulin G (IgG) titer and better controlling glycosylationrelated product quality. In this work, different fed-batch processes with two chemically defined proprietary media...

  8. Modelling of L-valine Repeated Fed-batch Fermentation Process Taking into Account the Dissolved Oxygen Tension

    Directory of Open Access Journals (Sweden)

    Tzanko Georgiev


    Full Text Available This article deals with synthesis of dynamic unstructured model of variable volume fed-batch fermentation process with intensive droppings for L-valine production. The presented approach of the investigation includes the following main procedures: description of the process by generalized stoichiometric equations; preliminary data processing and calculation of specific rates for main kinetic variables; identification of the specific rates takes into account the dissolved oxygen tension; establishment and optimisation of dynamic model of the process; simulation researches. MATLAB is used as a research environment.

  9. Lipid production in batch and fed-batch cultures of Rhodosporidium toruloides from 5 and 6 carbon carbohydrates

    Directory of Open Access Journals (Sweden)

    Wiebe Marilyn G


    Full Text Available Abstract Background Microbial lipids are a potential source of bio- or renewable diesel and the red yeast Rhodosporidium toruloides is interesting not only because it can accumulate over 50% of its dry biomass as lipid, but also because it utilises both five and six carbon carbohydrates, which are present in plant biomass hydrolysates. Methods R. toruloides was grown in batch and fed-batch cultures in 0.5 L bioreactors at pH 4 in chemically defined, nitrogen restricted (C/N 40 to 100 media containing glucose, xylose, arabinose, or all three carbohydrates as carbon source. Lipid was extracted from the biomass using chloroform-methanol, measured gravimetrically and analysed by GC. Results Lipid production was most efficient with glucose (up to 25 g lipid L−1, 48 to 75% lipid in the biomass, at up to 0.21 g lipid L−1 h−1 as the sole carbon source, but high lipid concentrations were also produced from xylose (36 to 45% lipid in biomass. Lipid production was low (15–19% lipid in biomass with arabinose as sole carbon source and was lower than expected (30% lipid in biomass when glucose, xylose and arabinose were provided simultaneously. The presence of arabinose and/or xylose in the medium increased the proportion of palmitic and linoleic acid and reduced the proportion of oleic acid in the fatty acids, compared to glucose-grown cells. High cell densities were obtained in both batch (37 g L−1, with 49% lipid in the biomass and fed-batch (35 to 47 g L−1, with 50 to 75% lipid in the biomass cultures. The highest proportion of lipid in the biomass was observed in cultures given nitrogen during the batch phase but none with the feed. However, carbohydrate consumption was incomplete when the feed did not contain nitrogen and the highest total lipid and best substrate consumption were observed in cultures which received a constant low nitrogen supply. Conclusions Lipid production in R. toruloides was lower from arabinose and mixed

  10. Start-up strategies of membrane-aerated biofilm reactor (MABR) for completely autotrophic nitrogen removal

    DEFF Research Database (Denmark)

    Sun, Sheng-Peng; Pellicer i Nàcher, Carles; Terada, Akihiko;


    Completely autotrophic nitrogen removal, coupling aerobic and anaerobic ammonium oxidation, can be achieved via redox stratified biofilms growing on gas-permeable membranes. These sequential reactions are mediated by aerobic and anaerobic ammonium oxidizing bacteria (AOB and AnAOB). The major......). Results indicate that the continuous inoculation strategy was more rapid and effective to achieve nitrogen removal than the sequential inoculation approach. Nitrogen loss in the reactor continuously inoculated with AnAOB was observed after 120 day operation, with an average NH4+-N and TN removal rate of 3...

  11. Batch and fed-batch simultaneous saccharification and fermentation of primary sludge from pulp and paper mills. (United States)

    Mendes, Cátia Vanessa Teixeira; Rocha, Jorge Manuel Dos Santos; de Menezes, Fabrícia Farias; Carvalho, Maria da Graça Videira Sousa


    Primary sludge from a Portuguese pulp and paper mill, containing 60% of carbohydrates, and unbleached pulp (as reference material), with 93% of carbohydrates, were used to produce ethanol by simultaneous saccharification and fermentation (SSF). SSF was performed in batch or fed-batch conditions without the need of a pretreatment. Cellic(®) CTec2 was the cellulolytic enzymatic complex used and Saccharomyces cerevisiae (baker's yeast or ATCC 26602 strain) or the thermotolerant yeast Kluyveromyces marxianus NCYC 1426 were employed. Primary sludge was successfully converted to ethanol and the best results in SSF efficiency were obtained with S. cerevisiae. An ethanol concentration of 22.7 g L(-1) was produced using a content of 50 g L(-1) of carbohydrates from primary sludge, in batch conditions, with a global conversion yield of 81% and a production rate of 0.94 g L(-1) h(-1). Fed-batch operation enabled higher solids content (total carbohydrate concentration of 200 g L(-1), equivalent to a consistency of 33%) and a reduction of three-quarters of cellulolytic enzyme load, leading to an ethanol concentration of 40.7 g L(-1), although with lower yield and productivity. Xylitol with a concentration up to 7 g L(-1) was also identified as by-product in the primary sludge bioconversion process.

  12. Soft sensor control of metabolic fluxes in a recombinant Escherichia coli fed-batch cultivation producing green fluorescence protein. (United States)

    Gustavsson, Robert; Mandenius, Carl-Fredrik


    A soft sensor approach is described for controlling metabolic overflow from mixed-acid fermentation and glucose overflow metabolism in a fed-batch cultivation for production of recombinant green fluorescence protein (GFP) in Escherichia coli. The hardware part of the sensor consisted of a near-infrared in situ probe that monitored the E. coli biomass and an HPLC analyzer equipped with a filtration unit that measured the overflow metabolites. The computational part of the soft sensor used basic kinetic equations and summations for estimation of specific rates and total metabolite concentrations. Two control strategies for media feeding of the fed-batch cultivation were evaluated: (1) controlling the specific rates of overflow metabolism and mixed-acid fermentation metabolites at a fixed pre-set target values, and (2) controlling the concentration of the sum of these metabolites at a set level. The results indicate that the latter strategy was more efficient for maintaining a high titer and low variability of the produced recombinant GFP protein.

  13. Sucrose fed-batch strategy enhanced biomass, polysaccharide, and ganoderic acids production in fermentation of Ganoderma lucidum 5.26. (United States)

    Wei, Zhen-hua; Liu, Lianliang; Guo, Xiao-feng; Li, Yan-jun; Hou, Bao-chao; Fan, Qiu-ling; Wang, Kai-xiang; Luo, Yingdi; Zhong, Jian-jiang


    Ganoderma, as a Chinese traditional medicine, has multiple bioactivities. However, industrial production was limited due to low yield during Ganoderma fermentation. In this work, sucrose was found to greatly enhance intracellular polysaccharide (IPS) content and specific extracellular polysaccharide (EPS) production rate. The mechanism was studied by analyzing the activities of enzymes related to polysaccharide biosynthesis. The results revealed that sucrose regulated the activities of phosphoglucomutase and phosphoglucose isomerase. When glucose and sucrose mixture was used as carbon source, biomass, polysaccharide and ganoderic acids (GAs) production was greatly enhanced. A sucrose fed-batch strategy was developed in 10-L bioreactor, and was scaled up to 300-L bioreactor. The biomass, EPS and IPS production was 25.5, 2.9 and 4.8 g/L, respectively, which was the highest biomass and IPS production in pilot scale. This study provides information for further understanding the regulation mechanism of Ganoderma polysaccharide biosynthesis. It demonstrates that sucrose fed-batch is a useful strategy for enhancing Ganoderma biomass, polysaccharide and GAs production.

  14. Butanol production by immobilised Clostridium acetobutylicum in repeated batch, fed-batch, and continuous modes of fermentation. (United States)

    Dolejš, Igor; Krasňan, Vladimír; Stloukal, Radek; Rosenberg, Michal; Rebroš, Martin


    Clostridium acetobutylicum immobilised in polyvinylalcohol, lens-shaped hydrogel capsules (LentiKats(®)) was studied for production of butanol and other products of acetone-butanol-ethanol fermentation. After optimising the immobilisation protocol for anaerobic bacteria, continuous, repeated batch, and fed-batch fermentations in repeated batch mode were performed. Using glucose as a substrate, butanol productivity of 0.41 g/L/h and solvent productivity of 0.63 g/L/h were observed at a dilution rate of 0.05 h(-1) during continuous fermentation with a concentrated substrate (60 g/L). Through the process of repeated batch fermentation, the duration of fermentation was reduced from 27.8h (free-cell fermentation) to 3.3h (immobilised cells) with a solvent productivity of 0.77 g/L/h (butanol 0.57 g/L/h). The highest butanol and solvent productivities of 1.21 and 1.91 g/L/h were observed during fed-batch fermentation operated in repeated batch mode with yields of butanol (0.15 g/g) and solvents (0.24 g/g), respectively, produced per gram of glucose.

  15. Screening and assessment of performance and molecule quality attributes of industrial cell lines across different fed-batch systems. (United States)

    Rouiller, Yolande; Bielser, Jean-Marc; Brühlmann, David; Jordan, Martin; Broly, Hervé; Stettler, Matthieu


    The major challenge in the selection process of recombinant cell lines for the production of biologics is the choice, early in development, of a clonal cell line presenting a high productivity and optimal cell growth. Most importantly, the selected candidate needs to generate a product quality profile which is adequate with respect to safety and efficacy and which is preserved across cell culture scales. We developed a high-throughput screening and selection strategy of recombinant cell lines, based on their productivity in shaking 96-deepwell plates operated in fed-batch mode, which enables the identification of cell lines maintaining their high productivity at larger scales. Twelve recombinant cell lines expressing the same antibody with different productivities were selected out of 470 clonal cell lines in 96-deepwell plate fed-batch culture. They were tested under the same conditions in 50 mL vented shake tubes, microscale and lab-scale bioreactors in order to confirm the maintenance of their performance at larger scales. The use of a feeding protocol and culture conditions which are essentially the same across the different scales was essential to maintain productivity and product quality profiles across scales. Compared to currently used approaches, this strategy has the advantage of speeding up the selection process and increases the number of screened clones for getting high-producing recombinant cell lines at manufacturing scale with the desired performance and quality.

  16. Kinetic and stoichiometric characterization of organoautotrophic growth of Ralstonia eutropha on formic acid in fed-batch and continuous cultures. (United States)

    Grunwald, Stephan; Mottet, Alexis; Grousseau, Estelle; Plassmeier, Jens K; Popović, Milan K; Uribelarrea, Jean-Louis; Gorret, Nathalie; Guillouet, Stéphane E; Sinskey, Anthony


    Formic acid, acting as both carbon and energy source, is a safe alternative to a carbon dioxide, hydrogen and dioxygen mix for studying the conversion of carbon through the Calvin-Benson-Bassham (CBB) cycle into value-added chemical compounds by non-photosynthetic microorganisms. In this work, organoautotrophic growth of Ralstonia eutropha on formic acid was studied using an approach combining stoichiometric modeling and controlled cultures in bioreactors. A strain deleted of its polyhydroxyalkanoate production pathway was used in order to carry out a physiological characterization. The maximal growth yield was determined at 0.16 Cmole Cmole(-1) in a formate-limited continuous culture. The measured yield corresponded to 76% to 85% of the theoretical yield (later confirmed in pH-controlled fed-batch cultures). The stoichiometric study highlighted the imbalance between carbon and energy provided by formic acid and explained the low growth yields measured. Fed-batch cultures were also used to determine the maximum specific growth rate (μmax  = 0.18 h(-1) ) and to study the impact of increasing formic acid concentrations on growth yields. High formic acid sensitivity was found in R eutropha since a linear decrease in the biomass yield with increasing residual formic acid concentrations was observed between 0 and 1.5 g l(-1) .

  17. Influence of feeding conditions on clavulanic acid production in fed-batch cultivation with medium containing glycerol. (United States)

    Teodoro, Juliana C; Baptista-Neto, Alvaro; Cruz-Hernández, Isara L; Hokka, Carlos O; Badino, Alberto C


    First, the effect of different levels of nitrogen source on clavulanic acid (CA) production was evaluated in batch cultivations utilizing complex culture medium containing glycerol and three different levels of soy protein isolate (SPI). Cellular growth, evaluated in terms of the rheological parameter K, was highest with a SPI concentration of 30 g.L(-1) (4.42 g.L(-1) N total). However, the highest production of CA (380 mg.L(-1)) was obtained when an intermediate concentration of 20 g.L(-1) of SPI (2.95 g.L(-1) total N) was used. To address this, the influences of volumetric flow rate (F) and glycerol concentration in the complex feed medium (Cs(F)) in fed-batch cultivations were investigated. The best experimental condition for CA production was F=0.01 L.h(-1) and Cs(F)=120 g.L(-1), and under these conditions maximum CA production was practically twice that obtained in the batch cultivation. A single empirical equation was proposed to relate maximum CA production with F and Cs(F) in fed-batch experiments.

  18. [Stability of Short-cut Nitrification Nitrogen Removal in Digested Piggery Wastewater with an Intermittently Aerated Sequencing Batch Reactor]. (United States)

    Song, Xiao-yan; Liu, Rui; Shui, Yong; Kawagishi, Tomoki; Zhan, Xin-min; Chen, Lu-jun


    Stability of short-cut nitrification nitrogen removal performance was studied in a step-feeding, intermittently aerated sequencing batch reactor (IASBR) at 30°C to treat digested piggery wastewater. Results showed that the nitrogen removal was greatly influenced by the ratio of chemical oxygen demand (COD) to total nitrogen (TN) in the influent. Nitrite nitrogen kept accumulating up to 800 mg · L⁻1 when the influent COD/TN ratio was 0.8 ± 0.2, and the removal rates of TN, ammonium nitrogen and total organic carbon (TOC) were only 18.3% ± 12.2%, 84.2% ± 10.3% and 60.7% ± 10.7%, respectively. By contrast, as the influent COD/ TN ratio was increased to 2.4 ± 0.5, the accumulated concentration of nitrite nitrogen sharply decreased from 800 mg · L⁻¹ to below 10 mg-L⁻¹, and the removal rates of TN, ammonium nitrogen and TOC were increased to over 90%, 95% and 85%, respectively. Gradually shortened hydraulic retention time ( HRT) reveales that the ammonia load is a restricting factor for nitrogen removal. The ammonia load should be controlled at no more than 0.30 kg · (m³ · d) ⁻¹, or else, the removal rates of TN, ammonium and TOC would be greatly decreased. The nitrite accumulation rate over the whole run was 74.6%-97.8% and the TN removal rate in the stable phase was over 90%. With efficient and stable short-cut nitrification-denitrification in a low COD/TN, moreover, and unnecessary for addition of alkaline, IASBR shows great advantage for treating wastewater with high concentration of ammonia while low COD/TN ratio.

  19. Feeding strategies for the enhanced production of α-arbutin in the fed-batch fermentation of Xanthomonas maltophilia BT-112. (United States)

    Liu, Chunqiao; Zhang, Peng; Zhang, Shurong; Xu, Tao; Wang, Fang; Deng, Li


    To develop a cost-effective method for the enhanced production of α-arbutin using Xanthomonas maltophilia BT-112 as a biocatalyst, different fed-batch strategies such as constant feed rate fed-batch, constant hydroquinone (HQ) concentration fed-batch, exponential fed-batch and DO-control pulse fed-batch (DPFB) on α-arbutin production were investigated. The research results indicated that DPFB was an effective method for α-arbutin production. When fermentation with DO-control pulse feeding strategy to feed HQ and yeast extract was applied, the maximum concentrations of α-arbutin and cell dry weight were 61.7 and 4.21 g/L, respectively. The α-arbutin production was 394% higher than that of the control (batch culture) and the molar conversion yield of α-arbutin reached 94.5% based on the amount of HQ supplied (240 mM). Therefore, the results in this work provide an efficient and easily controlled method for industrial-scale production of α-arbutin.

  20. Transcriptional response of P. pastoris in fed-batch cultivations to Rhizopus oryzae lipase production reveals UPR induction

    Directory of Open Access Journals (Sweden)

    Valero Francisco


    Full Text Available Abstract Background The analysis of transcriptional levels of the genes involved in protein synthesis and secretion is a key factor to understand the host organism's responses to recombinant protein production, as well as their interaction with the cultivation conditions. Novel techniques such as the sandwich hybridization allow monitoring quantitatively the dynamic changes of specific RNAs. In this study, the transcriptional levels of some genes related to the unfolded protein response (UPR and central metabolism of Pichia pastoris were analysed during batch and fed-batch cultivations using an X-33-derived strain expressing a Rhizopus oryzae lipase under control of the formaldehyde dehydrogenase promoter (FLD1, namely the alcohol oxidase gene AOX1, the formaldehyde dehydrogenase FLD1, the protein disulfide isomerase PDI, the KAR2 gene coding for the BiP chaperone, the 26S rRNA and the R. oryzae lipase gene ROL. Results The transcriptional levels of the selected set of genes were first analysed in P. pastoris cells growing in shake flask cultures containing different carbon and nitrogen sources combinations, glycerol + ammonium, methanol + methylamine and sorbitol + methylamine. The transcriptional levels of the AOX1 and FLD1 genes were coherent with the known regulatory mechanism of C1 substrates in P. pastoris, whereas ROL induction lead to the up-regulation of KAR2 and PDI transcriptional levels, thus suggesting that ROL overexpression triggers the UPR. This was further confirmed in fed-batch cultivations performed at different growth rates. Transcriptional levels of the analysed set of genes were generally higher at higher growth rates. Nevertheless, when ROL was overexpressed in a strain having the UPR constitutively activated, significantly lower relative induction levels of these marker genes were detected. Conclusion The bead-based sandwich hybridization assay has shown its potential as a reliable instrument for quantification of

  1. Fed-batch alcoholic fermentation of sugar cane blackstrap molasses: Influence of the feeding rate on yeast yield and productivity

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, J.C.M. de; Aquarone, E.; Sato, S.; Brazzach, M.L.; Moraes, D.A. (Faculdade de Ciencias Farmaceuticas, Sao Paulo Univ., SP (Brazil)); Borzani, W. (Centro de Desenvolvimento Biotecnologico, Joinville, SC (Brazil))


    Fed-batch ethanol fermentation tests of sugar cane blackstrap molasses were carried out at 32deg C and pH 4.5-5.0, using pressed yeast as inoculum, and with no air supply. Two values of the fermentor filling-up time were adopted: 5 h and 7 h. The feeding rates obeyed equation F=F[sub 0].e[sup K.t], with K equal to 0.0, 0.2, 0.4, 0.6 and 0.8 h[sup -1]. The average yeast yields and the average yeast productivities increased up to 33% and 45%, respectively, while the ethanol yield (average=76%; standard deviation=4%) was practically unaffected when K increased from 0 to 0.8 h[sup -1]. (orig.).

  2. Thermodynamics of metabolic pathways for penicillin production: Analysis of thermodynamic feasibility and free energy changes during fed-batch cultivation

    DEFF Research Database (Denmark)

    Pissarra, P.D.; Nielsen, Jens Bredal


    -aminoadipate reductase by lysine is important to maintain a high concentration of alpha-aminoadipate in order to direct the carbon flux to penicillin production. Secondly the changes in Gibbs free energy in the penicillin biosynthetic pathway during fed-batch cultivation were studied. The analysis showed that all......This paper describes the thermodynamic analysis of pathways related to penicillin production in Penicillium chrysogenum. First a thermodynamic feasibility analysis is performed of the L-lysine pathway of which one of the precursors for penicillin biosynthesis (alpha-aminoadipic acid......) is an intermediate. It is found that the L-lysine pathway in P. chrysogenum is thermodynamically feasible and that the calculated standard Gibbs free energy values of the two enzymes controlling the pathway flux indicate that they operate far from equilibrium. It is therefore proposed that the regulation of alpha...

  3. A process for energy-efficient high-solids fed-batch enzymatic liquefaction of cellulosic biomass. (United States)

    Cardona, M J; Tozzi, E J; Karuna, N; Jeoh, T; Powell, R L; McCarthy, M J


    The enzymatic hydrolysis of cellulosic biomass is a key step in the biochemical production of fuels and chemicals. Economically feasible large-scale implementation of the process requires operation at high solids loadings, i.e., biomass concentrations >15% (w/w). At increasing solids loadings, however, biomass forms a high viscosity slurry that becomes increasingly challenging to mix and severely mass transfer limited, which limits further addition of solids. To overcome these limitations, we developed a fed-batch process controlled by the yield stress and its changes during liquefaction of the reaction mixture. The process control relies on an in-line, non-invasive magnetic resonance imaging (MRI) rheometer to monitor real-time evolution of yield stress during liquefaction. Additionally, we demonstrate that timing of enzyme addition relative to biomass addition influences process efficiency, and the upper limit of solids loading is ultimately limited by end-product inhibition as soluble glucose and cellobiose accumulate in the liquid phase.

  4. Application of the Lyapunov Exponent to Evaluate Noise Filtering Methods for a Fed-batch Bioreactor for PHB Production

    Directory of Open Access Journals (Sweden)

    Pratap R. Patnaik


    Full Text Available Large-scale fed-batch fermentations are often subject to noise carried by the feed streams. This noise corrupts the process data and may destabilize the fermentation. So it is important to retrieve clear signals from noisy data. This is done by noise filters. The performances of some commonly used filters have been studied for poly-β-hydroxybutyrate production by Ralstonia eutropha. In simulated experiments, Gaussian noise was added to the flow rates of the carbon and nitrogen substrates. The filters were compared by means of the Lyapunov exponents of the outputs and their closeness to the noise-free performance. Negative exponents indicate a stable fermentation. An auto-associative neural filter performed the best, followed by a combination of a cusum filter and an extended Kalman filter. Butterworth filters were inferior and inadequate.

  5. The use of dissolved oxygen-controlled, fed-batch aerobic cultivation for recombinant protein subunit vaccine manufacturing. (United States)

    Farrell, Patrick; Sun, Jacob; Champagne, Paul-Philippe; Lau, Heron; Gao, Meg; Sun, Hong; Zeiser, Arno; D'Amore, Tony


    A simple "off-the-shelf" fed-batch approach to aerobic bacterial cultivation for recombinant protein subunit vaccine manufacturing is presented. In this approach, changes in the dissolved oxygen levels are used to adjust the nutrient feed rate (DO-stat), so that the desired dissolved oxygen level is maintained throughout cultivation. This enables high Escherichia coli cell densities and recombinant protein titers. When coupled to a kLa-matched scale-down model, process performance is shown to be consistent at the 2L, 20L, and 200L scales for two recombinant E. coli strains expressing different protein subunit vaccine candidates. Additionally, by mining historical DO-stat nutrient feeding data, a method to transition from DO-stat to a pre-determined feeding profile suitable for larger manufacturing scales without using feedback control is demonstrated at the 2L, 20L, and 200L scales.

  6. Expression and purification of recombinant human granulocyte colony-stimulating factor in fed-batch culture of Escherichia coli. (United States)

    Kim, Chang-Kyu; Choi, Jun-Ha; Lee, Seung-Bae; Lee, Sang-Mahn; Oh, Jae-Wook


    Granulocyte colony-stimulating factor (G-CSF) is a cytokine that has multiple roles in hematopoietic cells such as the regulation of proliferation and differentiation. Here, we describe fed-batch culture, refolding, and purification of rhG-CSF. The suitability of urea or sarcosine for solubilizing inclusion bodies (IBs) was tested. It was observed that urea is more efficient for solubilizing and refolding IBs than sarcosine is. The purity of rhG-CSF and the removal percentage of the rhG-CSF isoforms during purification were increased by pH 5.5 precipitation. The purity and the yield of purified rhG-CSF were 99% and 0.5 g of protein per liter culture broth, respectively. Our protocols of recombinant protein purification using ion exchange chromatography and semipreparative high performance liquid chromatography of pH-precipitated refolded solution may be informative to the industrial scale production of biopharmaceuticals.

  7. Glycoprofiling effects of media additives on IgG produced by CHO cells in fed-batch bioreactors

    DEFF Research Database (Denmark)

    Kildegaard, Helene Faustrup; Fan, Yuzhou; Wagtberg Sen, Jette


    . In this study, the effect on IgG N-glycosylation from feeding CHO cells with eight glycosylation precursors during cultivation was investigated. The study was conducted in fed-batch mode in bioreactors with biological replicates to obtain highly controlled and comparable conditions. We assessed charge......Therapeutic monoclonal antibodies (mAbs) are mainly produced by heterogonous expression in Chinese hamster ovary (CHO) cells. The glycosylation profile of the mAbs has major impact on the efficacy and safety of the drug and is therefore an important parameter to control during production...... heterogeneity and glycosylation patterns of IgG. None of the eight feed additives caused statistically significant changes to cell growth or IgG productivity, compared to controls. However, the addition of 20 mM galactose did result in a reproducible increase of galactosylated IgG from 14% to 25%. On the other...

  8. Modeling of growth and sporulation of Bacillus thuringiensis in an intermittent fed batch culture with total cell retention. (United States)

    Atehortúa, Paula; Alvarez, Hernán; Orduz, Sergio


    An extended dynamical model for growth and sporulation of Bacillus thuringiensis subsp. kurstaki in an intermittent fed-batch culture with total cell retention is proposed. This model differs from reported models, by including dynamics for natural death of cells and substrate consumption for cell maintenance. The proposed model uses sigmoid functions to describe these kinetic parameters. Equations for time evolution of substrate, vegetative, sporulated and total cell concentration were taken from previous works. Model parameters were determined from batch experimental data obtained in pilot plant. Parameter identification was developed in two stages: (1) coarse identification using a multivariable optimization with constraints algorithm, (2) fine identification by heuristic fit of model parameters looking for a minimal model error. The proposed model estimates adequate time evolution of the process variables with a mean error of 2.6% on substrate concentration and 6.7% on biomass concentration.

  9. Fed-batch cultivation of Arthrospira and Chlorella in ammonia-rich wastewater: Optimization of nutrient removal and biomass production. (United States)

    Markou, Giorgos


    In the present work the cyanobacterium Arthrospira platensis and the microalga Chlorella vulgaris were fed-batch cultivated in ammonia-rich wastewater derived from the anaerobic digestion of poultry litter. Aim of the study was to maximize the biomass production along with the nutrient removal aiming to wastewater treatment. Ammonia and phosphorus removals were very high (>95%) for all cultures investigated. Both microorganisms were able to remove volatile fatty acids to an extent of >90%, indicating that they were capable of mixotrophic growth. Chemical oxygen demand and proteins were also removed in various degrees. In contrast, in all cultures carbohydrate concentration was increased. The biochemical composition of the microorganisms varied greatly and was influenced by the indicate that the nutrient availability. A. platensis accumulated carbohydrates (≈ 40%), while C. vulgaris accumulated lipids (≈ 50%), rendering them interesting for biofuel production.

  10. Polyhydroxybutyrate production by direct use of waste activated sludge in phosphorus-limited fed-batch culture. (United States)

    Cavaillé, Laëtitia; Grousseau, Estelle; Pocquet, Mathieu; Lepeuple, Anne-Sophie; Uribelarrea, Jean-Louis; Hernandez-Raquet, Guillermina; Paul, Etienne


    Polyhydroxybutyrate (PHB) production directly by waste activated sludge (WAS) was investigated in aerobic fed-batch conditions using acetic acid as substrate. PHB production was induced by phosphorus limitation. WAS of different origin were tested with various degrees of phosphorus limitation and PHB contents of up to 70% (gCOD PHB/gCOD particulate) were obtained. This strategy showed the importance of maintaining cell growth for PHB production in order to increase PHB concentration and that the degree of phosphorus limitation has a direct impact on the quantity of PHB produced. Pyrosequencing of 16S rRNA transcripts showed changes in the active bacteria of the WAS microbial community as well as the acclimation of populations depending on sludge origin. The monitoring of the process appeared as the key factor for optimal PHB production by WAS. Different strategies are discussed and compared in terms of carbon yield and PHB content with the feast and famine selection process.

  11. High bioethanol titre from Manihot glaziovii through fed-batch simultaneous saccharification and fermentation in Automatic Gas Potential Test System. (United States)

    Moshi, Anselm P; Crespo, Carla F; Badshah, Malik; Hosea, Kenneth M M; Mshandete, Anthony Manoni; Mattiasson, Bo


    A process for the production of high bioethanol titre was established through fed-batch and simultaneous saccharification and fermentation (FB-SSF) of wild, non-edible cassava Manihot glaziovii. FB-SSF allowed fermentation of up to 390g/L of starch-derived glucose achieving high bioethanol concentration of up to 190g/L (24% v/v) with yields of around 94% of the theoretical value. The wild cassava M. glaziovii starch is hydrolysable with a low dosage of amylolytic enzymes (0.1-0.15% v/w, Termamyl® and AMG®). The Automatic Gas Potential Test System (AMPTS) was adapted to yeast ethanol fermentation and demonstrated to be an accurate, reliable and flexible device for studying the kinetics of yeast in SSF and FB-SSF. The bioethanol derived stoichiometrically from the CO2 registered in the AMPTS software correlated positively with samples analysed by HPLC (R(2)=0.99).

  12. Fingerprint detection and process prediction by multivariate analysis of fed-batch monoclonal antibody cell culture data. (United States)

    Sokolov, Michael; Soos, Miroslav; Neunstoecklin, Benjamin; Morbidelli, Massimo; Butté, Alessandro; Leardi, Riccardo; Solacroup, Thomas; Stettler, Matthieu; Broly, Hervé


    This work presents a sequential data analysis path, which was successfully applied to identify important patterns (fingerprints) in mammalian cell culture process data regarding process variables, time evolution and process response. The data set incorporates 116 fed-batch cultivation experiments for the production of a Fc-Fusion protein. Having precharacterized the evolutions of the investigated variables and manipulated parameters with univariate analysis, principal component analysis (PCA) and partial least squares regression (PLSR) are used for further investigation. The first major objective is to capture and understand the interaction structure and dynamic behavior of the process variables and the titer (process response) using different models. The second major objective is to evaluate those models regarding their capability to characterize and predict the titer production. Moreover, the effects of data unfolding, imputation of missing data, phase separation, and variable transformation on the performance of the models are evaluated.

  13. Optimal fed batch experiment design for estimation of monod kinetics of Azospirillum brasilense: from theory to practice. (United States)

    Cappuyns, Astrid M; Bernaerts, Kristel; Smets, Ilse Y; Ona, Ositadinma; Prinsen, Els; Vanderleyden, Jos; Van Impe, Jan F


    In this paper the problem of reliable and accurate parameter estimation for unstructured models is considered. It is illustrated how a theoretically optimal design can be successfully translated into a practically feasible, robust, and informative experiment. The well-known parameter estimation problem of Monod kinetic parameters is used as a vehicle to illustrate our approach. As known for a long time, noisy batch measurements do not allow for unique and accurate estimation of the kinetic parameters of the Monod model. Techniques of optimal experiment design are, therefore, exploited to design informative experiments and to improve the parameter estimation accuracy. During the design process, practical feasibility has to be kept in mind. The designed experiments are easy to implement in practice and do not require additional monitoring equipment. Both design and experimental validation of informative fed batch experiments are illustrated with a case study, namely, the growth of the nitrogen-fixing bacteria Azospirillum brasilense.

  14. Enzyme feeding strategies for better fed-batch enzymatic hydrolysis of empty fruit bunch. (United States)

    Sugiharto, Yohanes Eko Chandra; Harimawan, Ardiyan; Kresnowati, Made Tri Ari Penia; Purwadi, Ronny; Mariyana, Rina; Andry; Fitriana, Hana Nur; Hosen, Hauna Fathmadinda


    Lignin inhibitory becomes a major obstacle for enzymatic hydrolysis of empty fruit bunch conducted in high solid loading. Since current technology required high enzyme loading, surfactant application could not effectively used since it is only efficient in low enzyme loading. In addition, it will increase final operation cost. Hence, another method namely "proportional enzyme feeding" was investigated in this paper. In this method, enzyme was added to reactor proportionally to substrate addition, different from conventional method ("whole enzyme feeding") where whole enzyme was added prior to hydrolysis process started. Proportional enzyme feeding could increase enzymatic digestibility and glucose concentration up to 26% and 12% respectively, compared to whole enzyme feeding for hydrolysis duration more than 40h. If enzymatic hydrolysis was run less than 40h (25% solid loading), whole enzyme feeding is preferable.

  15. A Single Dynamic Metabolic Model Can Describe mAb Producing CHO Cell Batch and Fed-Batch Cultures on Different Culture Media. (United States)

    Robitaille, Julien; Chen, Jingkui; Jolicoeur, Mario


    CHO cell culture high productivity relies on optimized culture medium management under fed-batch or perfused chemostat strategies enabling high cell densities. In this work, a dynamic metabolic model for CHO cells was further developed, calibrated and challenged using datasets obtained under four different culture conditions, including two batch and two fed-batch cultures comparing two different culture media. The recombinant CHO-DXB11 cell line producing the EG2-hFc monoclonal antibody was studied. Quantification of extracellular substrates and metabolites concentration, viable cell density, monoclonal antibody concentration and intracellular concentration of metabolite intermediates of glycolysis, pentose-phosphate and TCA cycle, as well as of energetic nucleotides, were obtained for model calibration. Results suggest that a single model structure with a single set of kinetic parameter values is efficient at simulating viable cell behavior in all cases under study, estimating the time course of measured and non-measured intracellular and extracellular metabolites. Model simulations also allowed performing dynamic metabolic flux analysis, showing that the culture media and the fed-batch strategies tested had little impact on flux distribution. This work thus paves the way to an in silico platform allowing to assess the performance of different culture media and fed-batch strategies.

  16. Citric acid production from hydrolysate of pretreated straw cellulose by Yarrowia lipolytica SWJ-1b using batch and fed-batch cultivation. (United States)

    Liu, Xiaoyan; Lv, Jinshun; Zhang, Tong; Deng, Yuanfang


    In this study, crude cellulase produced by Trichoderma reesei Rut-30 was used to hydrolyze pretreated straw. After the compositions of the hydrolysate of pretreated straw were optimized, the study showed that natural components of pretreated straw without addition of any other components such as (NH4)2SO4, KH2PO4, or Mg(2+) were suitable for citric acid production by Yarrowia lipolytica SWJ-1b, and the optimal ventilatory capacity was 10.0 L/min/L medium. Batch and fed-batch production of citric acid from the hydrolysate of pretreated straw by Yarrowia lipolytica SWJ-1b has been investigated. In the batch cultivation, 25.4 g/L and 26.7 g/L citric acid were yields from glucose and hydrolysate of straw cellulose, respectively, while the cultivation time was 120 hr. In the three-cycle fed-batch cultivation, citric acid (CA) production was increased to 42.4 g/L and the cultivation time was extended to 240 hr. However, iso-citric acid (ICA) yield in fed-batch cultivation (4.0 g/L) was similar to that during the batch cultivation (3.9 g/L), and only 1.6 g/L of reducing sugar was left in the medium at the end of fed-batch cultivation, suggesting that most of the added carbon was used in the cultivation.

  17. Improved production of medium-chain-length Polyhydroxyalkanotes in glucose-based fed-batch cultivations of metabolically engineered Pseudomonas putida strains

    NARCIS (Netherlands)

    Poblete-Castro, I.; Rodriguez, A.L.; Lam, M.C.; Kessler, W.


    One of the major challenges in metabolic engineering for enhanced synthesis of value-added chemicals is to design and develop new strains which can be translated into well-controlled fermentation processes using bioreactors. The aim of this study was to assess the influence of various fed-batch stra

  18. Expression of recombinant Pseudomonas stutzeri di-heme cytochrome c(4) by high-cell-density fed-batch cultivation of Pseudomonas putida

    DEFF Research Database (Denmark)

    Thuesen, Marianne Hallberg; Nørgaard, Allan; Hansen, Anne Merete


    The gene of the di-heme protein cytochrome c(4) from Pseudomonas stutzeri was expressed in Pseudomonas putida. High-yield expression of the protein was achieved by high-cell-density fed-batch cultivation using an exponential glucose feeding strategy. The recombinant cytochrome c(4) protein...

  19. miRNA profiling of high, low and non-producing CHO cells during biphasic fed-batch cultivation reveals process relevant targets for host cell engineering. (United States)

    Stiefel, Fabian; Fischer, Simon; Sczyrba, Alexander; Otte, Kerstin; Hesse, Friedemann


    Fed-batch cultivation of recombinant Chinese hamster ovary (CHO) cell lines is one of the most widely used production modes for commercial manufacturing of recombinant protein therapeutics. Furthermore, fed-batch cultivations are often conducted as biphasic processes where the culture temperature is decreased to maximize volumetric product yields. However, it remains to be elucidated which intracellular regulatory elements actually control the observed pro-productive phenotypes. Recently, several studies have revealed microRNAs (miRNAs) to be important molecular switches of cell phenotypes. In this study, we analyzed miRNA profiles of two different recombinant CHO cell lines (high and low producer), and compared them to a non-producing CHO DG44 host cell line during fed-batch cultivation at 37°C versus a temperature shift to 30°C. Taking advantage of next-generation sequencing combined with cluster, correlation and differential expression analyses, we could identify 89 different miRNAs, which were differentially expressed in the different cell lines and cultivation phases. Functional validation experiments using 19 validated target miRNAs confirmed that these miRNAs indeed induced changes in process relevant phenotypes. Furthermore, computational miRNA target prediction combined with functional clustering identified putative target genes and cellular pathways, which might be regulated by these miRNAs. This study systematically identified novel target miRNAs during different phases and conditions of a biphasic fed-batch production process and functionally evaluated their potential for host cell engineering.

  20. Metabolic Control in Mammalian Fed-Batch Cell Cultures for Reduced Lactic Acid Accumulation and Improved Process Robustness

    Directory of Open Access Journals (Sweden)

    Viktor Konakovsky


    Full Text Available Biomass and cell-specific metabolic rates usually change dynamically over time, making the “feed according to need” strategy difficult to realize in a commercial fed-batch process. We here demonstrate a novel feeding strategy which is designed to hold a particular metabolic state in a fed-batch process by adaptive feeding in real time. The feed rate is calculated with a transferable biomass model based on capacitance, which changes the nutrient flow stoichiometrically in real time. A limited glucose environment was used to confine the cell in a particular metabolic state. In order to cope with uncertainty, two strategies were tested to change the adaptive feed rate and prevent starvation while in limitation: (i inline pH and online glucose concentration measurement or (ii inline pH alone, which was shown to be sufficient for the problem statement. In this contribution, we achieved metabolic control within a defined target range. The direct benefit was two-fold: the lactic acid profile was improved and pH could be kept stable. Multivariate Data Analysis (MVDA has shown that pH influenced lactic acid production or consumption in historical data sets. We demonstrate that a low pH (around 6.8 is not required for our strategy, as glucose availability is already limiting the flux. On the contrary, we boosted glycolytic flux in glucose limitation by setting the pH to 7.4. This new approach led to a yield of lactic acid/glucose (Y L/G around zero for the whole process time and high titers in our labs. We hypothesize that a higher carbon flux, resulting from a higher pH, may lead to more cells which produce more product. The relevance of this work aims at feeding mammalian cell cultures safely in limitation with a desired metabolic flux range. This resulted in extremely stable, low glucose levels, very robust pH profiles without acid/base interventions and a metabolic state in which lactic acid was consumed instead of being produced from day 1. With

  1. Glutathione accumulation in ethanol-stat fed-batch culture of Saccharomyces cerevisiae with a switch to cysteine feeding. (United States)

    Nisamedtinov, Ildar; Kevvai, Kaspar; Orumets, Kerti; Rautio, Jari J; Paalme, Toomas


    Shot-wise supplementation of cysteine to a yeast culture is a common means of promoting glutathione (GSH) production. In the present work, we study the accumulation kinetics of cysteine, gamma-glutamylcysteine, and GSH and the expression of genes involved in GSH and sulfur metabolism in ethanol-stat fed-batch cultures as a result of switching to a medium enriched with cysteine and glycine. Supplementation in this fashion resulted in a rapid but short-term increase in the rate of GSH synthesis, while the expression of GSH1 decreased. Expression of GSH1 and GSH synthesis rate were observed to revert close to the base level after a few hours. These results indicate that, under such conditions, the control of GSH synthesis at higher concentrations occurred at the enzymatic, rather than the transcriptional level. The incorporation of cysteine into GSH was limited to approximately 40% of the theoretical yield, due to its requirement as a source of sulfur for protein synthesis under conditions whereby the sulfate assimilation pathway is down-regulated. This was supported by the expression profiles of genes involved in cysteine and homocysteine interconversion.

  2. Nonlinear GPC with In-place Trained RLS-SVM Model for DOC Control in a Fed-batch Bloreactor

    Institute of Scientific and Technical Information of China (English)

    冯絮影; 于涛; 王建林


    In this study, Saccharomyces cerevisiae (baker's yeast) was produced in a fed-batch bioreactor at the optimal dissolved oxygen concentration (DOC) and growth medium temperature. However, it is very difficult to control the DOC using conventional controllers because of the poorly understood and constantly changing dynamics of the bioprocess. A generalized predictive controller (GPC) based on a nonlinear autoregressive integrated moving average exogenous (NARIMAX) model is presented to stabilize the DOC by manipulation of air flow rate. The NARIMAX model is built by an improved recursive least-squares support vector machine, which is trained by an in-place computation scheme and avoids the computation of the inverse of a large matrix and memory reallocation. The proposed nonlinear GPC algorithm requires little preliminary knowledge of the fermentation process, and directly obtains the nonlinear model in matrix form by using iterative multiple modeling instead of linearization at each sampling period. By application of an on-line bioreactor control, experimental results demonstrate the robustness, effectiveness and advantages of the new controller.

  3. Fed-batch anaerobic valorization of slaughterhouse by-products with mesophilic microbial consortia without methane production. (United States)

    Pessiot, J; Nouaille, R; Jobard, M; Singhania, R R; Bournilhas, A; Christophe, G; Fontanille, P; Peyret, P; Fonty, G; Larroche, C


    This work aimed at setting up a fully instrumented, laboratory-scale bioreactor enabling anaerobic valorization of solid substrates through hydrogen and/or volatile fatty acid (VFA) production using mixed microbial populations (consortia). The substrate used was made of meat-based wastes, especially from slaughterhouses, which are becoming available in large amounts as a consequence of the growing constraints for waste disposal from meat industry. A reconstituted microbial mesophilic consortium without Archaebacteria (methanogens), named PBr, was cultivated in a 5-L anaerobic bioreactor on slaughterhouse wastes. The experiments were carried out with sequential fed-batch operations, including liquid medium removal from the bioreactor and addition of fresh substrate. VFAs and nitrogen were the main metabolites observed, while hydrogen accumulation was very low and no methane production was evidenced. After 1,300 h of culture, yields obtained for VFAs reached 0.38 g/g dry matter. Strain composition of the microbial consortium was also characterized using molecular tools (temporal temperature gradient gel electrophoresis and gene sequencing).

  4. A new approach to ammonium sulphate feeding for fed-batch Arthrospira (Spirulina) platensis cultivation in tubular photobioreactor. (United States)

    Ferreira, Lívia S; Rodrigues, Mayla S; Converti, Attilio; Sato, Sunao; Carvalho, João Carlos M


    Arthrospira platensis was cultivated in tubular photobioreactor using different photosynthetic photon flux densities (PPFD) and protocols of (NH₄)₂SO₄ fed-batch supply. Results were evaluated by variance analysis selecting maximum cell concentration (X(m)), cell productivity (P(x)), nitrogen-to-cell conversion factor (Y(X/N)) and biomass, protein and lipid contents as responses. At PPFD of 120 and 240 μmol-photons/m² s, a parabolic profile of (NH₄)₂SO₄ addition aiming at producing biomass with 7% nitrogen content ensured X(m) values (14.1 and 12.2 g/L, respectively) comparable to those obtained with NaNO₃. At PPFD of 240 μmol-photons/m² s, P(x) (1.69 g/Ld) was 36% higher, although the photosynthetic efficiency (3.0%) was less than one-half that at PPFD of 120 μmol-photons/m² s. Biomass was shown to be constituted by about 35% proteins and 10% lipids, without any dependence on PPFD or kind of nitrogen source. These results highlight the possible use of (NH₄)₂SO₄ as alternative, cheap nitrogen source for A. platensis cultivation in tubular photobioreactors.

  5. Fed-batch cultivation of Arthrospira (Spirulina) platensis: potassium nitrate and ammonium chloride as simultaneous nitrogen sources. (United States)

    Rodrigues, M S; Ferreira, L S; Converti, A; Sato, S; Carvalho, J C M


    Arthrospiraplatensis was cultivated in minitanks at 13 klux, using a mixture of KNO(3) and NH(4)Cl as nitrogen source. Fed-batch daily supply of NH(4)Cl at exponentially-increasing feeding rate allowed preventing ammonia toxicity and nitrogen deficiency, providing high maximum cell concentration (X(m)) and high-quality biomass (21.85 mg chlorophyll g cells(-1); 20.5% lipids; 49.8% proteins). A central composite design combined to response surface methodology was utilized to determine the relationships between responses (X(m), cell productivity and nitrogen-to-cell conversion factor) and independent variables (KNO(3) and NH(4)Cl concentrations). Under optimum conditions (15.5mM KNO(3); 14.1mM NH(4)Cl), X(m) was 4327 mg L(-1), a value almost coincident with that obtained with only 25.4mM KNO(3), but more than twice that obtained with 21.5mM NH(4)Cl. A 30%-reduction of culture medium cost can be estimated when compared to KNO(3)-batch runs, thus behaving as a cheap alternative for the commercial production of this cyanobacterium.

  6. Intact cell mass spectrometry as a progress tracking tool for batch and fed-batch fermentation processes. (United States)

    Helmel, Michaela; Marchetti-Deschmann, Martina; Raus, Martin; Posch, Andreas E; Herwig, Christoph; Šebela, Marek; Allmaier, Günter


    Penicillin production during a fermentation process using industrial strains of Penicillium chrysogenum is a research topic permanently discussed since the accidental discovery of the antibiotic. Intact cell mass spectrometry (ICMS) can be a fast and novel monitoring tool for the fermentation progress during penicillin V production in a nearly real-time fashion. This method is already used for the characterization of microorganisms and the differentiation of fungal strains; therefore, the application of ICMS to samples directly harvested from a fermenter is a promising possibility to get fast information about the progress of fungal growth. After the optimization of the ICMS method to penicillin V fermentation broth samples, the obtained ICMS data were evaluated by hierarchical cluster analysis or an in-house software solution written especially for ICMS data comparison. Growth stages of a batch and fed-batch fermentation of Penicillium chrysogenum are differentiated by one of those statistical approaches. The application of two matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) instruments in the linear positive ion mode from different vendors demonstrated the universal applicability of the developed ICMS method. The base for a fast and easy-to-use method for monitoring the fermentation progress of P. chrysogenum is created with this ICMS method developed especially for fermentation broth samples.

  7. Multivariate Curve Resolution and Carbon Balance Constraint to Unravel FTIR Spectra from Fed-Batch Fermentation Samples

    Directory of Open Access Journals (Sweden)

    Dennis Vier


    Full Text Available The current work investigates the capability of a tailored multivariate curve resolution–alternating least squares (MCR-ALS algorithm to analyse glucose, phosphate, ammonium and acetate dynamics simultaneously in an E. coli BL21 fed-batch fermentation. The high-cell-density (HCDC process is monitored by ex situ online attenuated total reflection (ATR Fourier transform infrared (FTIR spectroscopy and several in situ online process sensors. This approach efficiently utilises automatically generated process data to reduce the time and cost consuming reference measurement effort for multivariate calibration. To determine metabolite concentrations with accuracies between ±0.19 and ±0.96·gL−l, the presented utilisation needs primarily—besides online sensor measurements—single FTIR measurements for each of the components of interest. The ambiguities in alternating least squares solutions for concentration estimation are reduced by the insertion of analytical process knowledge primarily in the form of elementary carbon mass balances. Thus, in this way, the established idea of mass balance constraints in MCR combines with the consistency check of measured data by carbon balances, as commonly applied in bioprocess engineering. The constraints are calculated based on online process data and theoretical assumptions. This increased calculation effort is able to replace, to a large extent, the need for manually conducted quantitative chemical analysis, leads to good estimations of concentration profiles and a better process understanding.

  8. Modeling of Xanthophyllomyces dendrorhous growth on glucose and overflow metabolism in batch and fed-batch cultures for astaxanthin production. (United States)

    Liu, Yuan-Shuai; Wu, Jian-Yong


    An astaxanthin-producing yeast Xanthophyllomyces dendrorhous ENM5 was cultivated in a liquid medium containing 50 g/L glucose as the major carbon source in stirred fermentors (1.5-L working volume) in fully aerobic conditions. Ethanol was produced during the exponential growth phase as a result of overflow metabolism or fermentative catabolism of glucose by yeast cells. After accumulating to a peak of 3.5 g/L, the ethanol was consumed by yeast cells as a carbon source when glucose in the culture was nearly exhausted. High initial glucose concentrations and ethanol accumulation in the culture had inhibitory effects on cell growth. Astaxanthin production was partially associated with cell growth. Based on these culture characteristics, we constructed a modified Monod kinetic model incorporating substrate (glucose) and product (ethanol) inhibition to describe the relationship of cell growth rate with glucose and ethanol concentrations. This kinetic model, coupled with the Luedeking-Piret equation for the astaxanthin production, gave satisfactory prediction of the biomass production, glucose consumption, ethanol formation and consumption, and astaxanthin production in batch cultures over 25-75 g/L glucose concentration ranges. The model was also applied to fed-batch cultures to predict the optimum feeding scheme (feeding glucose and corn steep liquor) for astaxanthin production, leading to a high volumetric yield (28.6 mg/L) and a high productivity (5.36 mg/L/day).

  9. Biosynthesis of Citric Acid from Glycerol by Acetate Mutants of Yarrowia lipolytica in Fed-Batch Fermentation

    Directory of Open Access Journals (Sweden)

    Anita Rywińska


    Full Text Available Pure and crude glycerol from biodiesel production have been used as substrates for citric acid production by acetate-negative mutants of Yarrowia lipolytica in fed-batch fermentation. Both the final concentration and the yield of the product were the highest when Y. lipolytica Wratislavia AWG7 strain was used in the culture with pure or crude glycerol. With a medium containing 200 g/L of glycerol, production reached a maximum of citric acid of 139 g/L after 120 h. This high yield of the product (up to 0.69 g of citric acid per gram of glycerol consumed was achieved with both pure and crude glycerol. Lower yield of citric acid in the culture with Y. lipolytica Wratislavia K1 strain (about 0.45 g/g resulted from increased erythritol concentrations (up to 40 g/L, accumulated simultaneously with the citric acid. The concentration of isocitric acid, a by-product in this fermentation, was very low, in the range from 2.6 to 4.6 g/L.

  10. The influence of TiO2 and aeration on the kinetics of electrochemical oxidation of phenol in packed bed reactor. (United States)

    Wang, Lizhang; Zhao, Yuemin; Fu, Jianfeng


    The electrochemical oxidation of phenolic wastewater in a lab-scale reactor, packed into granular activated carbon (GAC) with Ti/SnO2 anodes and stainless steel cathodes, was interpreted in this study. GAC saturated rapidly if it was only used as sorbent, but application of suitable electric energy for the system simultaneously could recover the adsorption ability of GAC and maintain the continuous running effectively. The titanium dioxide (TiO2) as catalyst and airflow were also applied to the electrochemical reactor to examine the enhancement for phenol oxidation process. Results revealed that the electrochemical degradation of phenol could be reasonably described by first-order kinetics. In addition, it was illustrated that acid region, increased voltage, more dosage of TiO2 and higher aeration intensity were all beneficial parameters for phenol oxidation rates. By inspecting the relationship between the rate constants (k) and influencing factors, respectively, an overall kinetic model for phenol oxidation was proposed. The kinetics obtained from the experiments under corresponding electrochemical conditions could provide an accurate estimation of phenol concentration effluent and better design of the packed bed reactor.


    Directory of Open Access Journals (Sweden)

    A. C. L. Horta


    Full Text Available Abstract The performance of an in-situ capacitance sensor for on-line monitoring of biomass concentration was evaluated for some of the most important microorganisms in the biotechnology industry: Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris and Bacillus megaterium. A total of 33 batch and fed-batch cultures were carried out in a bench-scale bioreactor and biomass formation trends were followed by dielectric measurements during the growth phase as well as the induction phase, for 5 recombinant E. coli strains. Permittivity measurements and viable cellular concentrations presented a linear correlation for all the studied conditions. In addition, the permittivity signal was further used for inference of the cellular growth rate. The estimated specific growth rates mirrored the main trends of the metabolic states of the different cells and they can be further used for setting-up control strategies in fed-batch cultures.

  12. Fed-batch production of the hydrophobins RodA and RodB from Aspergillus fumigatus in host Pichia pastoris

    DEFF Research Database (Denmark)

    Pedersen, Mona Højgaard; Borodina, Irina; Frisvad, Jens Christian;

    . The expression of the RodA and RodB genes was first studied in culture flasks in buffered complex methanol medium as protein production was dependent on the methanol-induced AOX1 promoter. Later production was scaled up to a 2 L fed-batch fermentor. Hydrophobins were purified using His-select Nickel Affinity gel....... The emulsifying properties of recombinant hydrophobins were investigated using oil-water emulsions studied by light microscopy. Results: Protein bands of expected size were detected by SDS-PAGE and western blotting in the fermentation broth. Fed-batch production yielded approximately 300 mg/L. rRodB showed good...... emulsifying properties. Conclusion: RodA and RodB from A. fumigatus were successfully produced by yeast host Pichia pastoris with good yields....

  13. Efficient production of ethanol from empty palm fruit bunch fibers by fed-batch simultaneous saccharification and fermentation using Saccharomyces cerevisiae. (United States)

    Park, Jang Min; Oh, Baek-Rock; Seo, Jeong-Woo; Hong, Won-Kyung; Yu, Anna; Sohn, Jung-Hoon; Kim, Chul Ho


    The concentration of ethanol produced from lignocellulosic biomass should be at least 40 g l(-1) [about 5 % (v/v)] to minimize the cost of distillation process. In this study, the conditions for the simultaneous saccharification and fermentation (SSF) at fed-batch mode for the production of ethanol from alkali-pretreated empty palm fruit bunch fibers (EFB) were investigated. Optimal conditions for the production of ethanol were identified as temperature, 30 °C; enzyme loading, 15 filter paper unit g(-1) biomass; and yeast (Saccharomyces cerevisiae) loading, 5 g l(-1) of dry cell weight. Under these conditions, an economical ethanol concentration was achieved within 17 h, which further increased up to 62.5 g l(-1) after 95 h with 70.6 % of the theoretical yield. To our knowledge, this is the first report to evaluate the economic ethanol production from alkali-pretreated EFB in fed-batch SSF using S. cerevisiae.

  14. Quantitative evaluation of yeast's requirement for glycerol formation in very high ethanol performance fed-batch process

    Directory of Open Access Journals (Sweden)

    Nevoigt Elke


    Full Text Available Abstract Background Glycerol is the major by-product accounting for up to 5% of the carbon in Saccharomyces cerevisiae ethanolic fermentation. Decreasing glycerol formation may redirect part of the carbon toward ethanol production. However, abolishment of glycerol formation strongly affects yeast's robustness towards different types of stress occurring in an industrial process. In order to assess whether glycerol production can be reduced to a certain extent without jeopardising growth and stress tolerance, the yeast's capacity to synthesize glycerol was adjusted by fine-tuning the activity of the rate-controlling enzyme glycerol 3-phosphate dehydrogenase (GPDH. Two engineered strains whose specific GPDH activity was significantly reduced by two different degrees were comprehensively characterized in a previously developed Very High Ethanol Performance (VHEP fed-batch process. Results The prototrophic strain CEN.PK113-7D was chosen for decreasing glycerol formation capacity. The fine-tuned reduction of specific GPDH activity was achieved by replacing the native GPD1 promoter in the yeast genome by previously generated well-characterized TEF promoter mutant versions in a gpd2Δ background. Two TEF promoter mutant versions were selected for this study, resulting in a residual GPDH activity of 55 and 6%, respectively. The corresponding strains were referred to here as TEFmut7 and TEFmut2. The genetic modifications were accompanied to a strong reduction in glycerol yield on glucose; the level of reduction compared to the wild-type was 61% in TEFmut7 and 88% in TEFmut2. The overall ethanol production yield on glucose was improved from 0.43 g g-1 in the wild type to 0.44 g g-1 measured in TEFmut7 and 0.45 g g-1 in TEFmut2. Although maximal growth rate in the engineered strains was reduced by 20 and 30%, for TEFmut7 and TEFmut2 respectively, strains' ethanol stress robustness was hardly affected; i.e. values for final ethanol concentration (117 ± 4 g


    Directory of Open Access Journals (Sweden)

    Mahmoud M. Berekaa


    Full Text Available Bacillus megaterium SW1-2 showed enhanced growth and polyhydroxybutyrate (PHB production during cultivation on date palm syrup (DEPS or sugar cane molasses. FT-IR and NMR spectroscopic analyses of the polymer accumulated during growth on DEPS revealed specific absorption peaks characteristic for PHB. 1.65 g/L of PHB (56.9% CDW was produced during growth on medium supplemented with 2 g/L of DEPS. Approximately, 36.1% CDW of PHB were recorded during growth on sugar cane molasses. Six runs of different fed-batch cultivation strategies were tested, the optimal run showed approximately 6.87-fold increase. Modified E2 medium was prefered recording 10.11 and 11.34 g/L of total PHB produced for runs 1 and 2, at the end of 96 h incubation period, respectively. Decrease in PHB was recorded during growth on complex medium (run 3 and run 4. In another independent optimization strategy, ten variables were concurrently examined for their significance on PHB production by Plackett-Burman statistical design for the first time. Among variables, DEPS-II and inoculum concentration followed by KH2PO4 and (NH42SO4 were found to be the most significant variables encourage PHB production. Indeed, DEPS-II or Fresh syrup is more significant than commercial syrup DEPS-I (p-value= 0.05. RPM, incubation period have highly negative effect on PHB production. Role of ago-industrial wastes, especially DEPS, in enhancement of PHB production was closely discussed.

  16. Real-time monitoring and control of the specific growth rate in yeast fed-batch cultures based on process analytical technology tools such as biocalorimetry or spectroscopy


    Schuler, Moira Monika


    Key features of bioprocesses, such as product quantity and quality, but also cell physiology can be related to the growth characteristics of the organism under study. The specific growth rate, a key variable, cannot be measured directly, but might be estimated and inferred from other measurable variables such as biomass, substrate or product concentrations. The present thesis reviews techniques for real-time estimation and control of the specific growth rate in microbial fed-batch cultures by...

  17. A multi-pronged investigation into the effect of glucose starvation and culture duration on fed-batch CHO cell culture

    DEFF Research Database (Denmark)

    Fan, Yuzhou; Jimenez Del Val, Ioscani; Müller, Christian;


    In this study, omics-based analysis tools were used to explore the effect of glucose starvation and culture duration on monoclonal antibody (mAb) production in fed-batch CHO cell culture to gain better insight into how these parameters can be controlled to ensure optimal mAb productivity and qual......In this study, omics-based analysis tools were used to explore the effect of glucose starvation and culture duration on monoclonal antibody (mAb) production in fed-batch CHO cell culture to gain better insight into how these parameters can be controlled to ensure optimal mAb productivity...... and quality. Titer and N-glycosylation of mAbs, as well as proteomic signature and metabolic status of the production cells in the culture were assessed. We found that the impact of glucose starvation on the titer and N-glycosylation of mAbs was dependent on the degree of starvation during early stationary...... phase of the fed-batch culture. Higher degree of glucose starvation reduced intracellular concentrations of UDP-GlcNAc and UDP-GalNAc, but increased the levels of UDP-Glc and UDP-Gal. Increased GlcNAc and Gal occupancy correlated well with increased degree of glucose starvation, which can be attributed...

  18. Growth kinetics of Saccharomyces cerevisiae in batch and fed-batch cultivation using sugarcane molasses and glucose syrup from cassava starch. (United States)

    Win, S S; Impoolsup, A; Noomhorm, A


    Growth kinetics of Saccharomyces cerevisiae in glucose syrup from cassava starch and sugarcane molasses were studied using batch and fed-batch cultivation. The optimum temperature and pH required for growth were 30 degrees C and pH 5.5, respectively. In batch culture the productivity and overall cell yield were 0.31 g L-1 h-1 and 0.23 g cells g-1 sugar, respectively, on glucose syrup and 0.22 g L-1 h-1 and 0.18 g cells g-1 sugar, respectively, on molasses. In fed-batch cultivation, a productivity of 3.12 g L-1 h-1 and an overall cell yield of 0.52 g cells g-1 sugar were achieved in glucose syrup cultivation and a productivity of 2.33 g L-1 h-1 and an overall cell yield of 0.46 g cells g-1 sugar were achieved in molasses cultivation by controlling the reducing sugar concentration at its optimum level obtained from the fermentation model. By using an on-line ethanol sensor combined with a porous Teflon tubing method in automating the feeding of substrate in the fed-batch culture, a productivity of 2.15 g L-1 h-1 with a yield of 0.47 g cells g-1 sugar was achieved using glucose syrup as substrate when ethanol concentration was kept at a constant level by automatic control.

  19. Fed batch fermentation and purification strategy for high yield production of Brucella melitensis recombinant Omp 28 kDa protein and its application in disease diagnosis. (United States)

    Karothia, B S; Athmaram, T N; D, Thavaselvam; Ashu, Kumar; Tiwari, Sapna; Singh, Anil K; Sathyaseelan, K; Gopalan, N


    Brucellosis is a disease caused by bacteria belonging to the genus Brucella. It affects cattle, goat, sheep, dog and humans. The serodiagnosis of brucellosis involves detection of antibodies generated against the LPS or whole cell bacterial extracts, however these tests lack sensitivity and specificity. The present study was performed to optimize the culture condition for the production of recombinant Brucella melitensis outer membrane protein 28 kDa protein in E.coli via fed batch fermentation. Expression was induced with 1.5mM isopropyl β thiogalactoside and the expressed recombinant protein was purified using Ni-NTA affinity chromatography. After fed-batch fermentation the dry cell weight of 17.81 g/L and a purified protein yield of 210.10 mg/L was obtained. The purified Brucella melitensis recombinant Omp 28 kDa protein was analyzed through SDS- poly acrylamide gel electrophoresis and western blotting. The obtained recombinant protein was evaluated for its diagnostic application through Indirect ELISA using brucellosis suspected human sera samples. Our results clearly indicate that recombinant Omp28 produced via fed batch fermentation has immense potential as a diagnostic reagent that could be employed in sero monitoring of brucellosis.

  20. Change in turnover capacity of crude recombinant dye-decolorizing peroxidase (rDyP) in batch and fed-batch decolorization of Remazol Brilliant Blue R. (United States)

    Shakeri, M; Shoda, M


    Decolorization of the representative anthraquinone dye, Remazol Brilliant Blue R (RBBR) was assessed to determine the practical potential of crude recombinant dye-decolorizing peroxidase generated by Aspergillus oryzae (rDyP) in term of turnover capacity of rDyP. The turnover capacity, defined as the milligram of RBBR decolorized per unit of rDyP inactivated over the catalytic life time of rDyP, was quantified under condition by H(2)O(2) -mediated rDyP inactivation. In batch culture, equimolar batch addition of H(2)O(2) and RBBR yielded complete decolorization of RBBR by rDyP, with a turnover capacity of 4.75. In stepwise fed-batch addition of H(2)O(2), the turnover capacity increased to 5.76, and by increasing dye concentration, it reached 14.3. When H(2)O(2) was added in continuous fed-batch to minimize rDyP inactivation and 1.6 mM dye was added in stepwise fed-batch mode, the turnover capacity increased to 20.4. At this turnover capacity, 1 l of crude rDyP solution containing 5,000 U could decolorize up to 102 g RBBR in 650 min.

  1. Improved production of human type II procollagen in the yeast Pichia pastoris in shake flasks by a wireless-controlled fed-batch system

    Directory of Open Access Journals (Sweden)

    Myllyharju Johanna


    Full Text Available Abstract Background Here we describe a new technical solution for optimization of Pichia pastoris shake flask cultures with the example of production of stable human type II collagen. Production of recombinant proteins in P. pastoris is usually performed by controlling gene expression with the strong AOX1 promoter, which is induced by addition of methanol. Optimization of processes using the AOX1 promoter in P. pastoris is generally done in bioreactors by fed-batch fermentation with a controlled continuous addition of methanol for avoiding methanol toxification and carbon/energy starvation. The development of feeding protocols and the study of AOX1-controlled recombinant protein production have been largely made in shake flasks, although shake flasks have very limited possibilities for measurement and control. Results By applying on-line pO2 monitoring we demonstrate that the widely used pulse feeding of methanol results in long phases of methanol exhaustion and consequently low expression of AOX1 controlled genes. Furthermore, we provide a solution to apply the fed-batch strategy in shake flasks. The presented solution applies a wireless feeding unit which can be flexibly positioned and allows the use of computer-controlled feeding profiles. By using the human collagen II as an example we show that a quasi-continuous feeding profile, being the simplest way of a fed-batch fermentation, results in a higher production level of human collagen II. Moreover, the product has a higher proteolytic stability compared to control cultures due to the increased expression of human collagen prolyl 4-hydroxylase as monitored by mRNA and protein levels. Conclusion The recommended standard protocol for methanol addition in shake flasks using pulse feeding is non-optimal and leads to repeated long phases of methanol starvation. The problem can be solved by applying the fed-batch technology. The presented wireless feeding unit, together with an on-line monitoring

  2. Effect of aeration and agitation regimes on lipase production by newly isolated Rhodotorula mucilaginosa-MTCC 8737 in stirred tank reactor using molasses as sole production medium. (United States)

    Potumarthi, Ravichandra; Subhakar, Chennupati; Vanajakshi, J; Jetty, Annapurna


    The influence of media and process parameters (aeration and agitation) on fermentation broth rheology and biomass formation has been studied in 1.5-l stirred tank reactor for lipase production using Rhodotorula mucilaginosa MTCC 8737. Molasses, as sole production medium, is used for lipase production by varying aeration (1, 2, and 3 vvm) and agitation speeds (100, 200, and 300 rpm). Maximum lipase activity of 72 U/ml was obtained during 96 h of fermentation at 2 vvm, 200 rpm, pH 7, and 25 +/- 2 degrees C temperature. Lipase production kinetics with respect to dry cell weight of biomass showed Y (P/S) of 25.71 U/mg, specific product formation of 10.9 U/mg DC, and Y (X/S) 2.35 mg/mg. Maximum lipase activity (MC 2) of 56 U/ml was observed at 1% molasses, and a further increase in the molasses concentration of (%) 1.5 and 2 inhibited the product formation of lipase with 15 and 8.5 U/ml, respectively. The production kinetics of molasses media showed Y (P/X) was 14 U/mg DC, Y (P/S) 16 U/mg, and Y (X/S) 1.14 mg/mg during 96 h of bioreactor operation. The k(L)a values for all batches (MC 1-MC 4) at 96 h of fermentation were 32, 28, 21, and 19/h, and the |oxygen transfer rate were 54.4, 56, 35.7, and 17.29 mg/l h, respectively. Increase in molasses concentration resulted in decreased lipase activity by increase in viscosity of the fermentation broth.

  3. Improving the production yield and productivity of 1,3-dihydroxyacetone from glycerol fermentation using Gluconobacter oxydans NL71 in a compressed oxygen supply-sealed and stirred tank reactor (COS-SSTR). (United States)

    Zhou, Xin; Zhou, Xuelian; Xu, Yong; Yu, Shiyuan


    In this study, a compressed oxygen gas supply was connected to a sealed aerated stirred tank reactor (COS-SSTR) bio-system, leading to a high-oxygen pressure bioreactor used to improve the bio-transformative performance in the production of 1,3-dihydroxyacetone (DHA) from glycerol using Gluconobacter oxydans NL71. A concentration of 301.2 ± 8.2 g L(-1) DHA was obtained from glycerol after 32 h of fed-batch fermentation in the COS-SSTR system. The volumetric productivity for this process was 9.41 ± 0.23 g L(-1) h(-1), which is presently the highest obtained level of glycerol bioconversion into DHA. These results show that the application of this bioreactor would enable microbial production of DHA from glycerol at the industrial scale.

  4. Developing high cell density fed-batch cultivation strategies for heterologous protein production in Pichia pastoris using the nitrogen source-regulated FLD1 Promoter. (United States)

    Resina, David; Cos, Oriol; Ferrer, Pau; Valero, Francisco


    A Pichia pastoris strain expressing a Rhizopus oryzae lipase gene under the transcriptional control of the promoter from the P. pastoris formaldehyde dehydrogenase 1 gene (PFLD) was utilized to study the feasibility of this expression system for recombinant protein production using methanol-free fed-batch high cell density cultivations. We have developed a simple and reliable fed-batch strategy using the PFLD system based on the use of methylamine and sorbitol as nitrogen and carbon sources, respectively, for the induction phase. Three different fed-batch fermentations were performed at three different constant growth rates, i.e., at a low growth rate (0.005/h), at an intermediate growth rate of (0.01/h), and at a constant residual sorbitol concentration of 8 g/L, i.e., allowing cells to grow at high (near micro(max)) growth rate (0.02/h). Important differences were observed between the lower and higher growth rate cultivation phases in terms of specific production rate (q(p)) profiles. In all three cases, maximum q(p) were reached soon after the start of the induction phase; after that maximum, an exponential decrease reaching final values close to zero were observed, except for the cells growing at near micro(max). The best results in terms of Y(P/X), productivity and specific productivity were obtained when the microorganism was growing at the highest growth rate. Furthermore, such results were significantly better in relation to those obtained with the PAOX-based system expressing the same protein.

  5. Evaluation of the impact of organic material on the anaerobic methane and ammonium removal in a membrane aerated biofilm reactor (MABR) based on the multispecies biofilm modeling. (United States)

    Wu, Jun; Zhang, Yue


    The simultaneous nitrogen and methane removal by the combined nitritation, anaerobic ammonium oxidation (anammox), and nitrite dependent anaerobic methane oxidation (n-damo) processes in the membrane aerated biofilm reactor (MABR) offers clear advantages in term of energy saving and greenhouse gas emission mitigation. The rejected water from sludge digestion usually contained high ammonium, COD, and dissolved methane. The impact of influent COD on the anaerobic methane and ammonium removal in an MABR was evaluated in the model based study. The results indicated that the influent COD did not reduce the methane and ammonium removal efficiency at C/N ratio (influent COD/NH4(+)-N) less than 0.1. At high C/N ratio, the oxygen transfer coefficient needed to be increased to achieve high methane and nitrogen removal. Substrate flux analysis indicated that heterotrophic denitrification in the outside layer of biofilm reduced the impact of influent COD. Heterotrophic growth needed to be limited at the outside layer by using NO3(-) as electron acceptor; otherwise, the heterotrophic bacteria would compete NO2(-) and space with anammox and n-damo bacteria in the inner layers and reduce the nitrogen and methane removal efficiency.

  6. Advanced treatment of biologically pretreated coal gasification wastewater using a novel anoxic moving bed biofilm reactor (ANMBBR)-biological aerated filter (BAF) system. (United States)

    Zhuang, Haifeng; Han, Hongjun; Jia, Shengyong; Zhao, Qian; Hou, Baolin


    A novel system integrating anoxic moving bed biofilm reactor (ANMBBR) and biological aerated filter (BAF) with short-cut biological nitrogen removal (SBNR) process was investigated as advanced treatment of real biologically pretreated coal gasification wastewater (CGW). The results showed the system had efficient capacity of degradation of pollutants especially nitrogen removal. The best performance was obtained at hydraulic residence times of 12h and nitrite recycling ratios of 200%. The removal efficiencies of COD, total organic carbon, NH4(+)-N, total phenols and total nitrogen (TN) were 74.6%, 70.0%, 85.0%, 92.7% and 72.3%, the corresponding effluent concentrations were 35.1, 18.0, 4.8, 2.2 and 13.6mg/L, respectively. Compared with traditional A(2)/O process, the system had high performance of NH4(+)-N and TN removal, especially under the high toxic loading. Moreover, ANMBBR played a key role in eliminating toxicity and degrading refractory compounds, which was beneficial to improve biodegradability of raw wastewater for SBNR process.

  7. Fed-batch cultivation of baker's yeast followed by nitrogen or carbon starvation: effects on fermentative capacity and content of trehalose and glycogen

    DEFF Research Database (Denmark)

    Jørgensen, Henning; Olsson, Lisbeth; Rønnow, B.


    An industrial strain of Saccharomyces cerevisiae (DGI 342) was cultivated in fed-batch cultivations at a specific growth rate of 0.2 h(-1). The yeast was then exposed to carbon or nitrogen starvation for up to 8 h, to study the effect of starvation on fermentative capacity and content of protein...... of the yeast cells, and the fermentative capacity per gram dry-weight decreased by 40%. The protein content in the carbon-starved yeast increased as a result of starvation due to the fact that the content of glycogen was reduced. The fermentative capacity per gram dry-weight was, however, unaltered....

  8. 红曲霉色素流加培养的初步研究%Preliminary Study on Fed-batch Culture of Monascus Pigments

    Institute of Scientific and Technical Information of China (English)

    杨旭; 曹岚; 李旭


    Objective:The optimization methods of monascus pigments with submerged fermentation are studied.The level of fermentation is improved and the products contain a high concentration of monascus pigments.Methods:L8 (27) orthogonal experiment and fed-batch fermentation method of monaseus purpureus liquid are designed to select the most efficient fermentation medium for monaseus purpureus,reduce inhibition caused by over-rich nutrients and improve the fermentation concentration and level through different batch fermentation modes.Conclusion:Optimized shake flask fermentation medium with maltose of 8°Bx,soluble starch of 3%,soya bean protein powder of 4%,NaCl of 0.5%,magnesium sulfate of 0.05% and dipotassium hydrogen phosphate of 0.1%.The optimum fed-batch mode is obtained by fed-batch fermentation for 2 L batch tank,the best feeding submerged fermentation starts feeding after 60 h,filling every 20 min,completes after 12 h.Compared with batch fermentation,the valence of fed-batch fermented monascus pigment increases by 57%.%目的:研究红曲霉液体深层发酵的优化方法,提高其发酵水平,生产出含有较高红曲霉色素的产品.方法:采用L8(27)正交实验法和红曲霉液体流加发酵方法,通过不同的补料发酵方式,降低营养物质过浓而产生的阻碍作用,提高发酵浓度和水平.结果:优化后的培养基为饴糖8°Bx,可溶淀粉3%,大豆蛋白粉4%,氯化钠0.5%,硫酸镁0.05%,磷酸氢二钾0.1%.通过对2L发酵罐的补料发酵得出最佳的补料方式:液体深层发酵60 h以后开始补料,每20 min补1次,12 h补完,同分批发酵相比,流加发酵红曲色素的效价提高57%.

  9. The fed-batch principle for the molecular biology lab: controlled nutrient diets in ready-made media improve production of recombinant proteins in Escherichia coli. (United States)

    Krause, Mirja; Neubauer, Antje; Neubauer, Peter


    While the nutrient limited fed-batch technology is the standard of the cultivation of microorganisms and production of heterologous proteins in industry, despite its advantages in view of metabolic control and high cell density growth, shaken batch cultures are still the standard for protein production and expression screening in molecular biology and biochemistry laboratories. This is due to the difficulty and expenses to apply a controlled continuous glucose feed to shaken cultures. New ready-made growth media, e.g. by biocatalytic release of glucose from a polymer, offer a simple solution for the application of the fed-batch principle in shaken plate and flask cultures. Their wider use has shown that the controlled diet not only provides a solution to obtain significantly higher cell yields, but also in many cases folding of the target protein is improved by the applied lower growth rates; i.e. final volumetric yields for the active protein can be a multiple of what is obtained in complex medium cultures. The combination of the conventional optimization approaches with new and easy applicable growth systems has revolutionized recombinant protein production in Escherichia coli in view of product yield, culture robustness as well as significantly increased cell densities. This technical development establishes the basis for successful miniaturization and parallelization which is now an important tool for synthetic biology and protein engineering approaches. This review provides an overview of the recent developments, results and applications of advanced growth systems which use a controlled glucose release as substrate supply.

  10. Enhancement of canthaxanthin production from Dietzia natronolimnaea HS-1 in a fed-batch process using trace elements and statistical methods

    Directory of Open Access Journals (Sweden)

    M. R. Nasri Nasrabadi


    Full Text Available Under fed-batch process conditions, the statistical analysis of trace elements was performed by application of Plackett-Burman design (for screening tests and response surface methodology (for predicting the optimal points to achieve the highest level of canthaxanthin production from Dietzia natronolimnaea HS-1. Plackett-Burman design was conducted on eleven trace elements (i. e., aluminum, boron, cobalt, copper, iron, magnesium, manganese, molybdenum, selenium, vanadium and zinc to select out elements that significantly enhance the canthaxanthin production of D. natronolimnaea HS-1. Plackett-Burman design revealed that Fe3+, Cu2+ and Zn2+ ions had the highest effect on canthaxanthin production of D. natronolimnaea HS-1 (P<0.05. These three elements were used for further optimization. By means of response surface methodology for the fed-batch process, the optimum conditions to achieve the highest level of canthaxanthin (8923±18 µg/L were determined as follow: Fe3+ 30 ppm, Cu2+ 28.75 ppm and Zn2+ 27 ppm.

  11. Characteristics of corn stover pretreated with liquid hot water and fed-batch semi-simultaneous saccharification and fermentation for bioethanol production. (United States)

    Li, Xuezhi; Lu, Jie; Zhao, Jian; Qu, Yinbo


    Corn stover is a promising feedstock for bioethanol production because of its abundant availability in China. To obtain higher ethanol concentration and higher ethanol yield, liquid hot water (LHW) pretreatment and fed-batch semi-simultaneous saccharification and fermentation (S-SSF) were used to enhance the enzymatic digestibility of corn stover and improve bioconversion of cellulose to ethanol. The results show that solid residues from LHW pretreatment of corn stover can be effectively converted into ethanol at severity factors ranging from 3.95 to 4.54, and the highest amount of xylan removed was approximately 89%. The ethanol concentrations of 38.4 g/L and 39.4 g/L as well as ethanol yields of 78.6% and 79.7% at severity factors of 3.95 and 4.54, respectively, were obtained by fed-batch S-SSF in an optimum conditions (initial substrate consistency of 10%, and 6.1% solid residues added into system at the prehydrolysis time of 6 h). The changes in surface morphological structure, specific surface area, pore volume and diameter of corn stover subjected to LHW process were also analyzed for interpreting the possible improvement mechanism.

  12. Improvement of cloned [alpha]-amylase gene expression in fed-batch culture of recombinant Saccharomyces cerevisiae by regulating both glucose and ethanol concentrations using a fuzzy controller

    Energy Technology Data Exchange (ETDEWEB)

    Shiba, Sumihisa; Nishida, Yoshio; Park, Y.S.; Iijima, Shinji; Kobayashi, Takeshi (Nagoya Univ. (Japan). Dept. of Biotechnology)


    The effect of ethanol concentration on cloned gene expression in recombinant Saccharomyces cerevisiae strain 20B-12 containing one of two plasmids, pNA3 and pNA7, was investigated in batch cultures. Plasmids pNA3 and pNA7 contain the [alpha]-amylase gene under the control of the SUC2 or PGK promoter, respectively. When the ethanol concentration was controlled at 2 to 5 g/L, the gene expressions were two times higher than those at 20 g/L ethanol. To increase the gene expression by maintaining both the ethanol and glucose concentrations at low levels, a fuzzy controller was developed. The concentrations of glucose and ethanol were controlled simultaneously at 0.15 and 2 g/L, respectively, in the production phase using the fuzzy controller in fed-batch culture. The synthesis of [alpha]-amylase was induced by the low glucose concentration and maintained at a high level of activity by regulating the ethanol concentration at 2 g/L. The secretory [alpha]-amylase activities of cells harboring plasmids pNA3 and pNA7 in fed-batch culture were 175 and 392 U/mL, and their maximal specific activities 7.7 and 12.4 U/mg dry cells, respectively. These values are two to three times higher in activity and three to four times higher in specific activity than those obtained when glucose only was controlled.

  13. A multi-pronged investigation into the effect of glucose starvation and culture duration on fed-batch CHO cell culture

    DEFF Research Database (Denmark)

    Fan, Yuzhou; Jimenez Del Val, Ioscani; Müller, Christian;


    In this study, omics-based analysis tools were used to explore the effect of glucose starvation and culture duration on monoclonal antibody (mAb) production in fed-batch CHO cell culture to gain better insight into how these parameters can be controlled to ensure optimal mAb productivity...... and quality. Titer and N-glycosylation of mAbs, as well as proteomic signature and metabolic status of the production cells in the culture were assessed. We found that the impact of glucose starvation on the titer and N-glycosylation of mAbs was dependent on the degree of starvation during early stationary...... phase of the fed-batch culture. Higher degree of glucose starvation reduced intracellular concentrations of UDP-GlcNAc and UDP-GalNAc, but increased the levels of UDP-Glc and UDP-Gal. Increased GlcNAc and Gal occupancy correlated well with increased degree of glucose starvation, which can be attributed...

  14. Effects of starch loading rate on performance of combined fed-batch fermentation of ground wheat for bio-hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Ozmihci, Serpil; Kargi, Fikret [Department of Environmental Engineering, Dokuz Eylul University, 35160 Buca, Izmir (Turkey)


    Ground wheat powder solution (10 g L{sup -1}) was subjected to combined dark and light fermentations for bio-hydrogen production by fed-batch operation. A mixture of heat treated anaerobic sludge (AN) and Rhodobacter sphaeroides-NRRL (RS-NRRL) were used as the mixed culture of dark and light fermentation bacteria with an initial dark/light biomass ratio of 1/2. Effects of wheat starch loading rate on the rate and yield of bio-hydrogen formation were investigated. The highest cumulative hydrogen formation (CHF = 3460 ml), hydrogen yield (201 ml H{sub 2} g{sup -1} starch) and formation rate (18.1 ml h{sup -1}) were obtained with a starch loading rate of 80.4 mg S h{sup -1}. Complete starch hydrolysis and glucose fermentation were achieved within 96 h of fed-batch operation producing volatile fatty acids (VFA) and H{sub 2}. Fermentation of VFAs by photo-fermentation for bio-hydrogen production was most effective at starch loading rate of 80.4 mg S h{sup -1}. Hydrogen formation by combined fermentation took place by a fast dark fermentation followed by a rather slow light fermentation after a lag period. (author)

  15. Characteristics of corn stover pretreated with liquid hot water and fed-batch semi-simultaneous saccharification and fermentation for bioethanol production.

    Directory of Open Access Journals (Sweden)

    Xuezhi Li

    Full Text Available Corn stover is a promising feedstock for bioethanol production because of its abundant availability in China. To obtain higher ethanol concentration and higher ethanol yield, liquid hot water (LHW pretreatment and fed-batch semi-simultaneous saccharification and fermentation (S-SSF were used to enhance the enzymatic digestibility of corn stover and improve bioconversion of cellulose to ethanol. The results show that solid residues from LHW pretreatment of corn stover can be effectively converted into ethanol at severity factors ranging from 3.95 to 4.54, and the highest amount of xylan removed was approximately 89%. The ethanol concentrations of 38.4 g/L and 39.4 g/L as well as ethanol yields of 78.6% and 79.7% at severity factors of 3.95 and 4.54, respectively, were obtained by fed-batch S-SSF in an optimum conditions (initial substrate consistency of 10%, and 6.1% solid residues added into system at the prehydrolysis time of 6 h. The changes in surface morphological structure, specific surface area, pore volume and diameter of corn stover subjected to LHW process were also analyzed for interpreting the possible improvement mechanism.

  16. Kinetics of sugars consumption and ethanol inhibition in carob pulp fermentation by Saccharomyces cerevisiae in batch and fed-batch cultures. (United States)

    Lima-Costa, Maria Emília; Tavares, Catarina; Raposo, Sara; Rodrigues, Brígida; Peinado, José M


    The waste materials from the carob processing industry are a potential resource for second-generation bioethanol production. These by-products are small carob kibbles with a high content of soluble sugars (45-50%). Batch and fed-batch Saccharomyces cerevisiae fermentations of high density sugar from carob pods were analyzed in terms of the kinetics of sugars consumption and ethanol inhibition. In all the batch runs, 90-95% of the total sugar was consumed and transformed into ethanol with a yield close to the theoretical maximum (0.47-0.50 g/g), and a final ethanol concentration of 100-110 g/l. In fed-batch runs, fresh carob extract was added when glucose had been consumed. This addition and the subsequent decrease of ethanol concentrations by dilution increased the final ethanol production up to 130 g/l. It seems that invertase activity and yeast tolerance to ethanol are the main factors to be controlled in carob fermentations. The efficiency of highly concentrated carob fermentation makes it a very promising process for use in a second-generation ethanol biorefinery.

  17. Advances in fed-batch ethanol fermentation technologies%乙醇补料发酵技术研究进展

    Institute of Scientific and Technical Information of China (English)

    郭加明; 杨功勋; 胡纯铿; 詹美蓉; 张新华


    As a renewable and clean energy,development and utilization of fuel ethanol has attracted much attention,and consequently there is increasingly in-depth research of the fermentation processes. In recent years,various approaches of fed-batch fermentation have been attempted to investigate their suitability for ethanol production and eventually demonstrated their good potential with the advantages,such as decreased substrate inhibition,and alleviated effects of the toxic compounds released in the dilute-acid pretreatment of lignocellulose. However,due to the existing problems,such as complexity of ethanol fermentation process and lack of in-depth investigations into feeding control strategies,the application of this technology to large-scale production of fuel ethanol has been restricted. This paper reviews major progress of ethanol fed-batch fermentation technologies , particularly focusing on the application of fed-batch approaches to ethanol production using lignocellulose as feedstock and high concentration ethanol fermentation,as well as specific fed-batch control strategies. Finally,more efforts should be made to understand fed-batch ethanol fermentation kinetics and feeding control theory,and to develop new types of sensors and online monitoring technologies.%作为一种可再生的清洁能源,燃料乙醇的开发利用备受关注,对其发酵工艺的研究也日益深入。近年来,补料发酵工艺逐渐应用于燃料乙醇的生产研究中,并以其降低基质抑制和减轻纤维素稀酸水解液中有毒成分的影响等优点而显示了良好的发展潜力,但由于发酵过程的复杂性和对补料控制策略的研究尚不深入等存在的问题,使该技术在燃料乙醇规模化生产中的应用受到制约。本文介绍了国内外乙醇补料发酵研究的主要进展,着重概述补料发酵技术在乙醇两大重要发酵工艺--纤维素乙醇工艺和超高浓度乙醇发酵工艺中的应用以及补料调

  18. Aeration-Controlled Formation of Acid in Heterolactic Fermentations

    DEFF Research Database (Denmark)

    Adler-Nissen, Jens


    Controlled aeration of Leuconostoc mesenteroides was studied as a possible mechanism for control of the formation of acetic acid, a metabolite of major influence on the taste of lactic fermented foods. Fermentations were carried out in small scale in a medium in which growth was limited...... by the buffer capacity only. Ethanol and acetic acid formed during the fermentation were analyzed by rapid head space gas chromatography, and the ratio of the molar concentrations of these two volatiles quantitatively predicted the balance between the formation of acetic acid and lactic acid. The oxygen...... fermentation processes should be analyzed as fed-batch fermentations with oxygen as the limiting substrate. Addition of fructose in limited amounts leads to the formation of one half mole of acetic acid for each mole fructose, thus offering an alternative mechanism for controlling acetic acid formation....

  19. In situ phenol removal from fed-batch fermentations of solvent tolerant Pseudomonas putida S12 by pertraction

    NARCIS (Netherlands)

    Heerema, L.; Wierckx, N.; Roelands, C.P.M.; Hanemaaijer, J.H.; Goetheer, E.L.V.; Verdoes, D.; Keurentjes, J.


    In situ phenol pertraction with 1-octanol has been experimentally studied to improve the production of the model component phenol by a recombinant strain of Pseudomonas putida S12. When the phenol concentration in the reactor reaches 2mM, the cells in fermentations without phenol removal are inhibit

  20. An integral term adaptive neural control of fed-batch fermentation biotechnological process; Control neuronal adaptable con termino integral para un proceso biotecnologico de fermentacion por lote alimentado

    Energy Technology Data Exchange (ETDEWEB)

    Baruch, Ieroham; Hernandez, Luis Alberto; Barrera Cortes, Josefina [Centro de Investigacion y de Estudios Avanzados, Instituto Politecnico Nacional, Mexico D.F. (Mexico)


    A nonlinear mathematical model of aerobic biotechnological process of a fed-batch fermentation system is derived using ordinary differential equations. A neurocontrol is applied using Recurrent Trainable Neural Network (RTNN) plus integral term; the first network performs an approximation of the plant's output; the second network generates the control signal so that the biomass concentration could be regulated by the nutrient influent flow rate into the bioreactor. [Spanish] Un modelo matematico no lineal de un proceso biotecnologico aerobio de un sistema de fermentacion por lote alimentado es presentado mediante ecuaciones diferenciales ordinarias. Es propuesto un control utilizando dos redes neuronales recurrentes entrenables (RNRE) con la adicion de un termino integral; la primera red representa un aproximador de la salida de la planta y la segunda genera la senal de control tal que la concentracion de la biomasa pueda ser regulada mediante la alimentacion de un flujo con nutrientes al biorreactor.

  1. Scale effect of anaerobic digestion tests in fed-batch and semi-continuous mode for the technical and economic feasibility of a full scale digester. (United States)

    Ruffino, Barbara; Fiore, Silvia; Roati, Chiara; Campo, Giuseppe; Novarino, Daniel; Zanetti, Mariachiara


    Methane production capacity in mesophilic conditions of waste from two food industry plants was assessed in a semi-pilot (6L, fed-batch) and pilot (300 L, semi-continuous) scale. This was carried out in order to evaluate the convenience of producing heat and electricity in a full scale anaerobic digester. The pilot test was performed in order to obtain more reliable results for the design of the digester. Methane yield, returned from the pilot scale test, was approximately 80% of that from the smaller scale test. This outcome was in line with those from other studies performed in different scales and modes and indicates the success of the pilot scale test. The net electricity produced from the digester accounted for 30-50% of the food industry plants' consumption. The available thermal energy could cover from 10% to 100% of the plant requirements, depending on the energy demand of the processes performed.

  2. Using a medium of free amino acids to produce penicillin g acylase in fed-batch cultivations of Bacillus megaterium ATCC 14945

    Directory of Open Access Journals (Sweden)

    R. G. Silva


    Full Text Available The production of penicillin G acylase (PGA, an important industrial enzyme from a wild strain of Bacillus megaterium using a pool of free amino acids as substrate was studied in a bench-scale bioreactor. Experiments carried out in shakers showed that the substitution of casein for free amino acids in the presence of cheese whey was the culture medium that provided the highest productivity. Several cultivations were carried out in a bioreactor operated in either batch or fed-batch mode. Batch runs showed that enzyme production is associated with microorganism growth. The following set of amino acids was preferentially consumed: Ala, Arg, Asp, Gly, Lys, Ser, Thr and Trp. On the other hand, the rates of consumption of His, Ile, Leu, Met, Phe, Pro, Tyr and Val were lower.

  3. Characteristics of human cell line, F2N78, for the production of recombinant antibody in fed-batch and perfusion cultures. (United States)

    Seo, Joon Serk; Min, Byung Sub; Kwon, Young-Bum; Lee, Soo-Young; Cho, Jong-Moon; Park, Keun-Hee; Yang, Yae Ji; Maeng, Ki Eun; Chang, Shin-Jae; Kim, Dong-Il


    A human hybrid cell line, F2N78, was developed by somatic fusion of HEK293 and Namalwa cells for the production recombinant biopharmaceutical proteins. In this study, we performed perfusion culture to verify its potential in culture process used for human cell expression platform. Cell viability could be maintained over 90% and high viable cell density was obtained at higher than 1.0 × 10(7) cells/mL by bleeding process in perfusion culture. The cells were adapted well in both culture modes, but there were apparent differences in protein quality. Compared to fed-batch culture, degalactosylated forms such as G0F and G0 as well as Man5 showed no significant increases in perfusion culture. In terms of charge variants, acidic peaks increased, whereas main peaks constantly decreased according to the length of culture period in both methods.

  4. An investigation into the preservation of microbial cell banks for α-amylase production during 5 l fed-batch Bacillus licheniformis fermentations. (United States)

    Hancocks, Nichola H; Thomas, Colin R; Stocks, Stuart M; Hewitt, Christopher J


    Fluorescent staining techniques were used for a systematic examination of methods used to cryopreserve microbial cell banks. The aim of cryopreservation here is to ensure subsequent reproducible fermentation performance rather than just post thaw viability. Bacillus licheniformis cell physiology post-thaw is dependent on the cryopreservant (either Tween 80, glycerol or dimethyl sulphoxide) and whilst this had a profound effect on the length of the lag phase, during subsequent 5 l fed-batch fermentations, it had little effect on maximum specific growth rate, final biomass concentration or α-amylase activity. Tween 80 not only protected the cells during freezing but also helped them recover post-thaw resulting in shorter process times.

  5. Enhanced production of glycyrrhetic acid 3-O-mono-β-D-glucuronide by fed-batch fermentation using pH and dissolved oxygen as feedback parameters☆

    Institute of Scientific and Technical Information of China (English)

    Bo Lü; Xiaogang Yang; Xudong Feng; Chun Li


    Glycyrrhetic acid 3-O-mono-β-D-glucuronide (GAMG), the major functional ingredient in licorice, has widespread applications in food, pharmacy and cosmetics industry. The production of GAMG through Penicil ium purpurogenum Li-3 cultivation was for the first time performed through both batch and fed-batch processes in bioreactors. In batch process, under optimal conditions (pH 5.0, temperature 32 °C, agitation speed 100 r·min−1), 3.55 g·L−1 GAMG was obtained in a 2.5 L fermentor. To further enhance GAMG production, a fine fed-batch process was developed by using pH and DO as feedback parameters. Starting from 48 h, 100 ml 90 g·L−1 substrate Glycyrrhizin (GL) was fed each time when pH increased to above 5.0 and DO was increased to above 80%. This strategy can significantly enhance GAMG production:the achieved GL conversion was 95.34%with GAMG yield of 95.15%, and GAMG concentration was 16.62 g·L−1 which was 5 times higher than that of batch. Then, a two-step separation strat-egy was established to separate GAMG from fermentation broth by crude extraction of 15 ml column packed with D101 resin followed by fine purification with preparative C18 chromatography. The obtained GAMG purity was 95.79%. This study provides a new insight into the industrial bioprocess of high-level GAMG production.

  6. A multi-pronged investigation into the effect of glucose starvation and culture duration on fed-batch CHO cell culture. (United States)

    Fan, Yuzhou; Jimenez Del Val, Ioscani; Müller, Christian; Lund, Anne Mathilde; Sen, Jette Wagtberg; Rasmussen, Søren Kofoed; Kontoravdi, Cleo; Baycin-Hizal, Deniz; Betenbaugh, Michael J; Weilguny, Dietmar; Andersen, Mikael Rørdam


    In this study, omics-based analysis tools were used to explore the effect of glucose starvation and culture duration on monoclonal antibody (mAb) production in fed-batch CHO cell culture to gain better insight into how these parameters can be controlled to ensure optimal mAb productivity and quality. Titer and N-glycosylation of mAbs, as well as proteomic signature and metabolic status of the production cells in the culture were assessed. We found that the impact of glucose starvation on the titer and N-glycosylation of mAbs was dependent on the degree of starvation during early stationary phase of the fed-batch culture. Higher degree of glucose starvation reduced intracellular concentrations of UDP-GlcNAc and UDP-GalNAc, but increased the levels of UDP-Glc and UDP-Gal. Increased GlcNAc and Gal occupancy correlated well with increased degree of glucose starvation, which can be attributed to the interplay between the dilution effect associated with change in specific productivity of mAbs and the changed nucleotide sugar metabolism. Herein, we also show and discuss that increased cell culture duration negatively affect the maturation of glycans. In addition, comparative proteomics analysis of cells was conducted to observe differences in protein abundance between early growth and early stationary phases. Generally higher expression of proteins involved in regulating cellular metabolism, extracellular matrix, apoptosis, protein secretion and glycosylation was found in early stationary phase. These analyses offered a systematic view of the intrinsic properties of these cells and allowed us to explore the root causes correlating culture duration with variations in the productivity and glycosylation quality of monoclonal antibodies produced with CHO cells.


    Directory of Open Access Journals (Sweden)

    C. Cruz-Martínez


    Full Text Available AbstractNH4NO3 simultaneously provides a readily assimilable nitrogen source (ammonia and a reserve of nitrogen (nitrate, allowing for an increase in Arthrospira platensis biomass production while reducing the cost of the cultivation medium. In this study, a 22plus star central composite experimental design combined with response surface methodology was employed to analyze the influence of light intensity (I and the total amount of added NH4NO3 (Mt on a bench-scale tubular photobioreactor for fed-batch cultures. The maximum cell concentration (Xm, cell productivity (PX and biomass yield on nitrogen (YX/N were evaluated, as were the protein and lipid contents. Under optimized conditions (I = 148 μmol·photons·m-2·s-1 and Mt = 9.7 mM NH4NO3, Xm = 4710 ±34.4 mg·L-1, PX = 478.9 ±3.8 mg·L-1·d-1 and YX/N = 15.87 ±0.13 mg·mg-1 were obtained. The best conditions for protein content in the biomass (63.2% were not the same as those that maximized cell growth (I = 180 μmol·photons·m-2·s-1 and Mt = 22.5 mM NH4NO3. Based on these results, it is possible to conclude that ammonium nitrate is an interesting alternate nitrogen source for the cultivation of A. platensisin a fed-batch process and could be used for other photosynthetic microorganisms.

  8. Experimental research on sewage treatment with a concrete eco-membrane biological reactor with micro aeration%微曝气混凝土生态膜法污水处理试验研究

    Institute of Scientific and Technical Information of China (English)

    蒋娜莎; 金腊华


    为提高污染物去除效率,在渠式混凝土膜生物反应器内部的部分反应槽中增加间歇性的微曝气,增强反应器的好氧氧化作用;采用连续流运行方式,对实际生活污水进行了污水处理实验.实验结果表明,微曝气混凝土生态膜法的污水处理效率高:CODcx去除率>70%、BOD5去除率>80%、氨氮去除率>75%、总氮和总磷的去除率均>50%,出水水质基本达到《城镇污水处理厂污染物排放标准》(GB 18918-2002)的一级B标准要求.%In order to improve pollutant removal effects,sewage treatment experiments have been made with a homemade channel concrete eco-membrane biological reactor,in which micro aeration is adopted at some bed of the channel to increase intermittent micro aeration and enhance aerobic oxidation of the reactor. Experiments on treating actual sewage are carried out by continuous flowing operations. The results show that the technology of concrete eco-membrane with micro aeration has optimal sewage purification effects,I.e. GODcr removal rate>70% , BOD5 removal rate>80% , ammonia nitrogen removal rate>75% ,and both of total nitrogen and total phosphorus removal rate >50%. The effluent water quality can basically reach the requirements of B standard of the first class of the Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant (GB 18918-2002).


    Directory of Open Access Journals (Sweden)

    Anahita Dehkhoda


    Full Text Available With the aim of increasing the sugars concentration in dilute-acid ligno-cellulosic hydrolyzate to more than 100 g/l for industrial applications, the hydrolyzate from spruce was concentrated about threefold by high-pressure or vacuum evaporations. It was then fermented by repeated fed-batch cultivation using flocculating Saccharomyces cerevisiae with no prior detoxification. The sugars and inhibitors concentrations in the hydrolyzates were compared after the evaporations and also fermenta-tion. The evaporations were carried out either under vacuum (VEH at 0.5 bar and 80°C or with 1.3 bar pressure (HPEH at 107.5°C, which resulted in 153.3 and 164.6 g/l total sugars, respectively. No sugar decomposition occurred during either of the evaporations, while more than 96% of furfural and to a lesser extent formic and acetic acids disappeared from the hydrolyzates. However, HMF and levulinic acid remained in the hydrolyzates and were concentrated proportionally. The concentrated hydrolyzates were then fermented in a 4 l bioreactor with 12-22 g/l yeast and 0.14-0.22 h-1 initial dilute rates (ID. More than 84% of the fermentable sugars present in the VEH were fermented by fed-batch cultivation using 12 g/l yeast and initial dilution rate (ID of 0.22 h-1, and resulted in 0.40±0.01 g/g ethanol from the fermentable sugars in one cycle of fermentation. Fermentation of HPEH was as successful as VEH and resulted in more than 86% of the sugar consumption under the corresponding conditions. By lowering the initial dilution rate to 0.14 h-1, more than 97% of the total fermentable sugars were consumed, and ethanol yield was 0.44±0.01 g/g in one cycle of fermentation. The yeast was able to convert or assimilate HMF, levulinic, acetic, and formic acids by 96, 30, 43, and 74%, respectively.

  10. Codon optimization of xylA gene for recombinant glucose isomerase production in Pichia pastoris and fed-batch feeding strategies to fine-tune bioreactor performance. (United States)

    Ata, Özge; Boy, Erdem; Güneş, Hande; Çalık, Pınar


    The objectives of this work are the optimization of the codons of xylA gene from Thermus thermophilus to enhance the production of recombinant glucose isomerase (rGI) in P. pastoris and to investigate the effects of feeding strategies on rGI production. Codons of xylA gene from T. thermophilus were optimized, ca. 30 % of the codons were replaced with those with higher frequencies according to the codon usage bias of P. pastoris, codon optimization resulted in a 2.4-fold higher rGI activity. To fine-tune bioreactor performance, fed-batch bioreactor feeding strategies were designed as continuous exponential methanol feeding with pre-calculated feeding rate based on the pre-determined specific growth rate, and fed-batch methanol-stat feeding. Six feeding strategies were designed, as follows: (S1) continuous exponential methanol- and pulse- sorbitol feeding; (S2) continuous exponential methanol- and peptone- feeding; (S3) continuous exponential methanol- and pulse- mannitol feeding; (S4) continuous exponential methanol- and peptone- feeding and pulse-mannitol feeding; (S5) methanol-stat feeding by keeping methanol concentration at 5 g L(-1); and, (S6) methanol-stat feeding by keeping methanol concentration at 5 g L(-1) and pulse-mannitol feeding. The highest cell and rGI activity was attained as 117 g L(-1) at t = 66 h and 32530 U L(-1) at t = 53 h, in strategy-S5. The use of the co-substrate mannitol does not increase the rGI activity in methanol-stat feeding, where 4.1-fold lower rGI activity was obtained in strategy-S6. The overall cell yield on total substrate was determined at t = 53 h as 0.21 g g(-1) in S5 strategy.

  11. A novel fed-batch based cultivation method provides high cell-density and improves yield of soluble recombinant proteins in shaken cultures

    Directory of Open Access Journals (Sweden)

    Glumoff Tuomo


    Full Text Available Abstract Background Cultivations for recombinant protein production in shake flasks should provide high cell densities, high protein productivity per cell and good protein quality. The methods described in laboratory handbooks often fail to reach these goals due to oxygen depletion, lack of pH control and the necessity to use low induction cell densities. In this article we describe the impact of a novel enzymatically controlled fed-batch cultivation technology on recombinant protein production in Escherichia coli in simple shaken cultures. Results The enzymatic glucose release system together with a well-balanced combination of mineral salts and complex medium additives provided high cell densities, high protein yields and a considerably improved proportion of soluble proteins in harvested cells. The cultivation method consists of three steps: 1 controlled growth by glucose-limited fed-batch to OD600 ~10, 2 addition of growth boosters together with an inducer providing efficient protein synthesis within a 3 to 6 hours period, and 3 a slow growth period (16 to 21 hours during which the recombinant protein is slowly synthesized and folded. Cell densities corresponding to 10 to 15 g l-1 cell dry weight could be achieved with the developed technique. In comparison to standard cultures in LB, Terrific Broth and mineral salt medium, we typically achieved over 10-fold higher volumetric yields of soluble recombinant proteins. Conclusions We have demonstrated that by applying the novel EnBase® Flo cultivation system in shaken cultures high cell densities can be obtained without impairing the productivity per cell. Especially the yield of soluble (correctly folded proteins was significantly improved in comparison to commonly used LB, Terrific Broth or mineral salt media. This improvement is thought to result from a well controlled physiological state during the whole process. The higher volumetric yields enable the use of lower culture volumes and can

  12. Novel micro-bioreactor high throughput technology for cell culture process development: Reproducibility and scalability assessment of fed-batch CHO cultures. (United States)

    Amanullah, Ashraf; Otero, Jose Manuel; Mikola, Mark; Hsu, Amy; Zhang, Jinyou; Aunins, John; Schreyer, H Brett; Hope, James A; Russo, A Peter


    With increasing timeline pressures to get therapeutic and vaccine candidates into the clinic, resource intensive approaches such as the use of shake flasks and bench-top bioreactors may limit the design space for experimentation to yield highly productive processes. The need to conduct large numbers of experiments has resulted in the use of miniaturized high-throughput (HT) technology for process development. One such high-throughput system is the SimCell platform, a robotically driven, cell culture bioreactor system developed by BioProcessors Corp. This study describes the use of the SimCell micro-bioreactor technology for fed-batch cultivation of a GS-CHO transfectant expressing a model IgG4 monoclonal antibody. Cultivations were conducted in gas-permeable chambers based on a micro-fluidic design, with six micro-bioreactors (MBs) per micro-bioreactor array (MBA). Online, non-invasive measurement of total cell density, pH and dissolved oxygen (DO) was performed. One hundred fourteen parallel MBs (19 MBAs) were employed to examine process reproducibility and scalability at shake flask, 3- and 100-L bioreactor scales. The results of the study demonstrate that the SimCell platform operated under fed-batch conditions could support viable cell concentrations up to least 12 x 10(6) cells/mL. In addition, both intra-MB (MB to MB) as well as intra-MBA (MBA to MBA) culture performance was found to be highly reproducible. The intra-MB and -MBA variability was calculated for each measurement as the coefficient of variation defined as CV (%) = (standard deviation/mean) x 100. The % CV values for most intra-MB and intra-MBA measurements were generally under 10% and the intra-MBA values were slightly lower than those for intra-MB. Cell growth, process parameters, metabolic and protein titer profiles were also compared to those from shake flask, bench-top, and pilot scale bioreactor cultivations and found to be within +/-20% of the historical averages.

  13. Phototrophic cultivation of a thermo-tolerant Desmodesmus sp. for lutein production: effects of nitrate concentration, light intensity and fed-batch operation. (United States)

    Xie, Youping; Ho, Shih-Hsin; Chen, Ching-Nen Nathan; Chen, Chun-Yen; Ng, I-Son; Jing, Ke-Ju; Chang, Jo-Shu; Lu, Yinghua


    Four indigenous thermo-tolerant Desmodesmus sp. strains were examined for their ability to produce lutein. Among them, Desmodesmus sp. F51 was the best strain for this purpose. The medium composition, nitrate concentration and light intensity were manipulated to improve the phototrophic growth and lutein production of Desmodesmus sp. F51. It was found that a nitrogen-sufficient condition was required for lutein accumulation, while a high light intensity enhanced cell growth but caused a decrease in the lutein content. The best cell growth and lutein production occurred when the light intensity and initial nitrate concentration were 600 μmol/m(2)/s and 8.8 mM, respectively. The fed-batch cultivation strategy was shown to further improve lutein production. The highest lutein productivity (3.56±0.10 mg/L/d) and content (5.05±0.20 mg/g) were obtained when pulse-feeding of 2.2 mM nitrate was employed. This study demonstrated the potential of using Desmodesmus sp. F51 as a lutein producer in practical applications.

  14. Comparative study of four fed-batch propagation systems of beer yeast Estudio comparativo de cuatro sistemas de propagación de levadura cervecera por lote alimentado

    Directory of Open Access Journals (Sweden)

    Caicedo L.


    Full Text Available Beer yeast was propagated using batch culture, and a mathematical model was fitted to the resulting data. Intermittent, continuousintermittent, and high-density fed-batch techniques were used. The highest cell yield was found using the high density technique. Simulation also unveiled an effect of the feeding technique on cellular growth rate and yield. The high density technique increased the stoichiometric factor Yx/s.Se realizó la propagación por lotes de levadura cervecera y con base en estos resultados se ajustó un modelo matemático. Se llevaron a cabo cuatro fermentaciones con diferentes técnicas de alimentación y se confrontaron los resultados mediante simulación. Las técnicas estudiadas fueron alimentación puntual, alimentación continua-puntual y de alta densidad. La mayor concentración celular y factor de propagación se presentó con el cultivo de alta densidad. La simulación demostró que la alimentación continua o puntual afecta el comportamiento celular, ya sea sobre la velocidad específica y/o el factor estequiométrico Yx/s . Se encontró que la técnica de alta densidad aumenta el factor estequiométrico Yx/s.

  15. Fed-batch methanol feeding strategy for recombinant protein production by Pichia pastoris in the presence of co-substrate sorbitol. (United States)

    Celik, Eda; Calik, Pinar; Oliver, Stephen G


    Batch-wise sorbitol addition as a co-substrate at the induction phase of methanol fed-batch fermentation by Pichia pastoris (Mut(+)) was proposed as a beneficial recombinant protein production strategy and the metabolic responses to methanol feeding rate in the presence of sorbitol was systematically investigated. Adding sorbitol batch-wise to the medium provided the following advantages over growth on methanol alone: (a) eliminating the long lag-phase for the cells and reaching 'high cell density production' at t = 24 h of the process (C(X) = 70 g CDW/l); (b) achieving 1.8-fold higher recombinant human erythropoietin (rHuEPO) (at t = 18 h); (c) reducing specific protease production 1.2-fold; (d) eliminating the lactic acid build-up period; (e) lowering the oxygen uptake rate two-fold; and (f) obtaining 1.4-fold higher overall yield coefficients. The maximum specific alcohol oxidase activity was not affected in the presence of sorbitol, and it was observed that sorbitol and methanol were utilized simultaneously. Thus, in the presence of sorbitol, 130 mg/l rHuEPO was produced at t = 24 h, compared to 80 mg/l rHuEPO (t = 24 h) on methanol alone. This work demonstrates not only the ease and efficiency of incorporating sorbitol to fermentations by Mut(+) strains of P. pastoris for the production of any bio-product, but also provides new insights into the metabolism of the methylotrophic yeast P. pastoris.

  16. Identification of genes whose expressions are enhanced or reduced in baker's yeast during fed-batch culture process using molasses medium by DNA microarray analysis. (United States)

    Shima, Jun; Kuwazaki, Seigo; Tanaka, Fumiko; Watanabe, Hajime; Yamamoto, Hideki; Nakajima, Ryoichi; Tokashiki, Tadaaki; Tamura, Hiromi


    Genes whose expression levels are enhanced or reduced during the cultivation process that uses cane molasses in baker's yeast production were identified in this study. The results showed that baker's yeast grown in molasses medium had higher fermentation ability and stress tolerance compared with baker's yeast grown in synthetic medium. Molasses apparently provided not only sugar as a carbon source but also provided functional components that enhanced or reduced expression of genes involved in fermentation ability and stress tolerance. To identify the genes whose expression is enhanced or reduced during cultivation in molasses medium, DNA microarray analysis was then used to compare the gene expression profile of cells grown in molasses with that of cells grown in synthetic medium. To simulate the commercial baker's yeast production process, cells were cultivated using a fed-batch culture system. In molasses medium, genes involved in the synthesis or uptake of vitamins (e.g., biotin, pyridoxine and thiamine) showed enhanced expression, suggesting that vitamin concentrations in molasses medium were lower than those in synthetic medium. Genes involved in formate dehydrogenase and maltose assimilation showed enhanced expression in molasses medium. In contrast, genes involved in iron utilization (e.g., siderophore, iron transporter and ferroxidase) showed enhanced expression in synthetic medium, suggesting that iron starvation occurred. The genes involved in the metabolism of amino acids also showed enhanced expression in synthetic medium. This identification of genes provides information that will help improve the baker's yeast production process.

  17. Combined effect of the methanol utilization (Mut) phenotype and gene dosage on recombinant protein production in Pichia pastoris fed-batch cultures. (United States)

    Cos, Oriol; Serrano, Alicia; Montesinos, José Luis; Ferrer, Pau; Cregg, James M; Valero, Francisco


    An important number of heterologous proteins have been produced in the methylotrophic yeast Pichia pastoris using the alcohol oxidase promoter. Two factors that drastically influence protein production and cultivation process development in this system are gene dosage and methanol assimilation capacity of the host strain (Mut phenotype). Using a battery of four strains which secrete a Rhizopus oryzae lipase (ROL), the combined effects of gene dosage and Mut phenotype on recombinant protein production in Pichia pastoris was studied in fed-batch cultures. Regarding the effect of phenotype, the specific productivity and the Y(P/X) were 1.29- and 2.34-fold higher for Mut(s)ROL single copy strain than for Mut+ROL single copy strain. On the contrary, the productivity of Mut+ROL single copy strain was 1.34-fold higher than Mut(s)ROL single copy strain. An increase in ROL gene dosage seems to negatively affect cell's performance in bioreactor cultures, particularly in Mut(s) strains. Overall, the Mut(s) strain may be still advantageous to use because it allows for easier process control strategies.

  18. Improved 5-Aminolevulinic Acid Production with Recombinant Escherichia coli by a Short-term Dissolved Oxygen Shock in Fed-batch Fermentation

    Institute of Scientific and Technical Information of China (English)

    杨俊; 朱力; 傅维琦; 林逸君; 林建平; 岑沛霖


    5-Aminolevulinic acid (ALA) is a common precursor for tetrapyrrole compounds in all kinds of organ-isms and has wide applications in agriculture and medicines. In this study, a new strategy, i.e. short-term dissolved oxygen (DO) shock during aerobic fermentation, was introduced to produce 5-aminolevulinic acid with a recombi-nant E. coli. Effects of duration time of DO shock operation on plasmid concentration, intracellular ALA synthase (ALAS) activity and ALA production were investigated in Erlenmeyer shake flasks. The results indicated that both ALAS activity and ALA yield were enhanced in an anaerobic operation of 45 min in the early exponential phase during fermentation, while they decreased when the anaerobic operation time was further increased to 60 min. The DO shock protocol was confirmed with the fed-batch fermentation in a 15 L fermenter and the ALA production achieved 9.4 g·L-1 (72 mmol·L-1), which is the highest yield in the fermentation broth reported up to now.

  19. Quantitative modeling of viable cell density, cell size, intracellular conductivity, and membrane capacitance in batch and fed-batch CHO processes using dielectric spectroscopy. (United States)

    Opel, Cary F; Li, Jincai; Amanullah, Ashraf


    Dielectric spectroscopy was used to analyze typical batch and fed-batch CHO cell culture processes. Three methods of analysis (linear modeling, Cole-Cole modeling, and partial least squares regression), were used to correlate the spectroscopic data with routine biomass measurements [viable packed cell volume, viable cell concentration (VCC), cell size, and oxygen uptake rate (OUR)]. All three models predicted offline biomass measurements accurately during the growth phase of the cultures. However, during the stationary and decline phases of the cultures, the models decreased in accuracy to varying degrees. Offline cell radius measurements were unsuccessfully used to correct for the deviations from the linear model, indicating that physiological changes affecting permittivity were occurring. The beta-dispersion was analyzed using the Cole-Cole distribution parameters Deltaepsilon (magnitude of the permittivity drop), f(c) (critical frequency), and alpha (Cole-Cole parameter). Furthermore, the dielectric parameters static internal conductivity (sigma(i)) and membrane capacitance per area (C(m)) were calculated for the cultures. Finally, the relationship between permittivity, OUR, and VCC was examined, demonstrating how the definition of viability is critical when analyzing biomass online. The results indicate that the common assumptions of constant size and dielectric properties used in dielectric analysis are not always valid during later phases of cell culture processes. The findings also demonstrate that dielectric spectroscopy, while not a substitute for VCC, is a complementary measurement of viable biomass, providing useful auxiliary information about the physiological state of a culture.

  20. The potential of random forest and neural networks for biomass and recombinant protein modeling in Escherichia coli fed-batch fermentations. (United States)

    Melcher, Michael; Scharl, Theresa; Spangl, Bernhard; Luchner, Markus; Cserjan, Monika; Bayer, Karl; Leisch, Friedrich; Striedner, Gerald


    Product quality assurance strategies in production of biopharmaceuticals currently undergo a transformation from empirical "quality by testing" to rational, knowledge-based "quality by design" approaches. The major challenges in this context are the fragmentary understanding of bioprocesses and the severely limited real-time access to process variables related to product quality and quantity. Data driven modeling of process variables in combination with model predictive process control concepts represent a potential solution to these problems. The selection of statistical techniques best qualified for bioprocess data analysis and modeling is a key criterion. In this work a series of recombinant Escherichia coli fed-batch production processes with varying cultivation conditions employing a comprehensive on- and offline process monitoring platform was conducted. The applicability of two machine learning methods, random forest and neural networks, for the prediction of cell dry mass and recombinant protein based on online available process parameters and two-dimensional multi-wavelength fluorescence spectroscopy is investigated. Models solely based on routinely measured process variables give a satisfying prediction accuracy of about ± 4% for the cell dry mass, while additional spectroscopic information allows for an estimation of the protein concentration within ± 12%. The results clearly argue for a combined approach: neural networks as modeling technique and random forest as variable selection tool.

  1. Optimization of the heterologous production of a Rhizopus oryzae lipase in Pichia pastoris system using mixed substrates on controlled fed-batch bioprocess. (United States)

    Arnau, Carolina; Ramon, Ramon; Casas, Carles; Valero, Francisco


    In this work a systematic study of the influence of methanol set-point and sorbitol feeding rate in fed-batch operation with a Pichia pastoris Mut(s) strain producing Rhizopus oryzae lipase is presented. Different experiments were made at a constant methanol set-point of 0.5, 2 and 4gl(-1), controlled by a predictive algorithm at two different sorbitol feeding rates to assure a constant specific growth rate of 0.01 and 0.02h(-1), by means of a pre-programmed exponential feeding rate strategy. Lipolytic activity, yields, productivity and specific productivity, but also specific growth, consumption and production rates were analyzed showing that the best values were reached when the methanol set-point was 2gl(-1) with a low influence of the constant specific growth rate tested. The sorbitol addition as a co-substrate during the induction phase avoids the severe decrease of the specific production rate obtained when methanol was used as a sole carbon source and it permits to achieve higher ROL production.

  2. Influence of ammonium sulphate feeding time on fed-batch Arthrospira (Spirulina) platensis cultivation and biomass composition with and without pH control. (United States)

    Rodrigues, Mayla Santos; Ferreira, Lívia Seno; Converti, Attilio; Sato, Sunao; de Carvalho, João Carlos Monteiro


    Previous work demonstrated that a mixture of NH(4)Cl and KNO(3) as nitrogen source was beneficial to fed-batch Arthrospira (Spirulina) platensis cultivation, in terms of either lower costs or higher cell concentration. On the basis of those results, this study focused on the use of a cheaper nitrogen source mixture, namely (NH(4))(2)SO(4) plus NaNO(3), varying the ammonium feeding time (T=7-15 days), either controlling the pH by CO(2) addition or not. A. platensis was cultivated in mini-tanks at 30°C, 156 μmol photons m(-2) s(-1), and starting cell concentration of 400 mg L(-1), on a modified Schlösser medium. T=13 days under pH control were selected as optimum conditions, ensuring the best results in terms of biomass production (maximum cell concentration of 2911 mg L(-1), cell productivity of 179 mg L(-1)d(-1) and specific growth rate of 0.77 d(-1)) and satisfactory protein and lipid contents (around 30% each).

  3. Production of oleic acid ethyl ester catalyzed by crude rice bran (Oryza sativa lipase in a modified fed-batch system: problem and its solution

    Directory of Open Access Journals (Sweden)

    Indro Prastowo


    Full Text Available A fed-batch system was modified for the enzymatic production of Oleic Acid Ethyl Ester (OAEE using rice bran (Oryza sativa lipase by retaining the substrate molar ratio (ethanol/oleic acid at 2.05: 1 during the reaction. It resulted in an increase in the ester conversion up to 76.8% in the first 6 h of the reaction, and then followed by a decrease from 76.8% to 22.9% in 6 h later. Meanwhile, the production of water in the reaction system also showed a similar trend to the trend of ester production. The water was hypothesized to lead lipase to reverse the reaction which resulted in a decrease in both (water and esters in the last 6 h of the reaction. In order to overcome the problem, zeolite powders (25 and 50 mg/ml were added into the reaction system at 5 h of the reaction. As the result, final ester conversions increased drastically up to 90 - 95.7% (1.17 – 1.24 times. The addition also proved a hypothesis that the water was involved in reducing the ester conversion in the last 6 h of the reaction. Thus, the combination was effective to produce the high final ester conversion.

  4. Microfluidic multi-input reactor for biocatalytic synthesis using transketolase☆ (United States)

    Lawrence, James; O'Sullivan, Brian; Lye, Gary J.; Wohlgemuth, Roland; Szita, Nicolas


    Biocatalytic synthesis in continuous-flow microreactors is of increasing interest for the production of specialty chemicals. However, the yield of production achievable in these reactors can be limited by the adverse effects of high substrate concentration on the biocatalyst, including inhibition and denaturation. Fed-batch reactors have been developed in order to overcome this problem, but no continuous-flow solution exists. We present the design of a novel multi-input microfluidic reactor, capable of substrate feeding at multiple points, as a first step towards overcoming these problems in a continuous-flow setting. Using the transketolase-(TK) catalysed reaction of lithium hydroxypyruvate (HPA) and glycolaldehyde (GA) to l-erythrulose (ERY), we demonstrate the transposition of a fed-batch substrate feeding strategy to our microfluidic reactor. We obtained a 4.5-fold increase in output concentration and a 5-fold increase in throughput compared with a single input reactor. PMID:24187515

  5. Novel approach of high cell density recombinant bioprocess development: Optimisation and scale-up from microlitre to pilot scales while maintaining the fed-batch cultivation mode of E. coli cultures

    Directory of Open Access Journals (Sweden)

    Rimšeliene Renata


    Full Text Available Abstract Background Bioprocess development of recombinant proteins is time consuming and laborious as many factors influence the accumulation of the product in the soluble and active form. Currently, in most cases the developmental line is characterised by a screening stage which is performed under batch conditions followed by the development of the fed-batch process. Performing the screening already under fed-batch conditions would limit the amount of work and guarantee that the selected favoured conditions also work in the production scale. Results Here, for the first time, high throughput multifactorial screening of a cloning library is combined with the fed-batch technique in 96-well plates, and a strategy is directly derived for scaling to bioreactor scale. At the example of a difficult to express protein, an RNase inhibitor, it is demonstrated that screening of various vector constructs and growth conditions can be performed in a coherent line by (i applying a vector library with promoters and ribosome binding sites of different strength and various fusion partners together with (ii an early stage use of the fed-batch technology. It is shown that the EnBase® technology provides an easy solution for controlled cultivation conditions in the microwell scale. Additionally the high cell densities obtained provide material for various analyses from the small culture volumes. Crucial factors for a high yield of the target protein in the actual case were (i the fusion partner, (ii the use of of a mineral salt medium together with the fed-batch technique, and (iii the preinduction growth rate. Finally, it is shown that the favorable conditions selected in the microwell plate and shake flask scales also work in the bioreactor. Conclusions Cultivation media and culture conditions have a major impact on the success of a screening procedure. Therefore the application of controlled cultivation conditions is pivotal. The consequent use of fed-batch

  6. Nutrients removal using moving beds with aeration cycles

    Energy Technology Data Exchange (ETDEWEB)

    Martin Martin, A.; Foresti, E.; Garcia-Encina, P. A.


    Moving Bed Biofilm Reactors (MBBR) are based on the biomass growth over a media that moves into the reactor due to aeration, mechanical agitation or recirculation. These reactors have been gaining popularity and they are employed in hundreds of plants everywhere with different treatment purposes (organic matter removal, nitrification/denitrification), both for urban and industrial wastewater. (Author)

  7. Factors Affecting Biofilm of Membrane-Aerated Biofilm Reactor (MABR)%膜曝气生物膜反应器生物膜影响因素分析

    Institute of Scientific and Technical Information of China (English)



    The membrane-aerated biofilm reactor (MABR) is a novel wastewater treatment process which uses penneatable membrane for aeration to realize nitrification and denitrification simultaneously. In the paper, the principle and characteristics of MABR are introduced; the rearch achievements in this field are summerized; especially the factors affecting the biofilm performance such as C/N, oxygen pressure, air flow velocity, biofilm thickness, temperature and pH are analyzed.%膜曝气生物膜反应器(MABR)是一种利用透气膜进行曝气,可以实现同步硝化反硝化的污水生物处理新工艺。本文阐述了膜曝气生物反应器生物膜的原理和特点,总结了国内外在该领域的研究成果,重点介绍了C/N、氧气压力、流速、生物膜厚度、温度和pH对生物膜性能的影响。

  8. Performance of completely autotrophic nitrogen removal over nitrite process under different aeration modes and dissolved oxygen

    Institute of Scientific and Technical Information of China (English)

    Jinsong GUO; Guohong YANG; Fang FANG; Yu QIN


    In this study, three sequential batch biofilm reactors (SBBRs) were operated for 155 days to evaluate the performance of completely autotrophic nitrogen removal over nitrite (CANON) process under different aeration modes and dissolved oxygen (DO). Synthetic wastewater with 160-mg NH4+-N/L was fed into the reac-tors. In the continuously-aerated reactor, the efficiency of the ammonium nitrogen conversion and total nitrogen (TN) removal reached 80% and 70%, respectively, with DO between 0.8-1.0 mg/L. Whereas in the intermit-tently-aerated reactor, at the aeration/non-aeration ratio of 1.0, ammonium was always under the detection limit and 86% of TN was removed with DO between 2.0 2.5 mg/L during the aeration time. Results show that CANON could be achieved in both continuous and inter-mittent aeration pattern. However, to achieve the same nitrogen removal efficiency, the DO needed in the inter-mittently-aerated sequential batch biofilm reactor (SBBR) during the aeration period was higher than that in the continuously-aerated SBBR. In addition, the DO in the CANON system should be adjusted to the aeration mode, and low DO was not a prerequisite to CANON process.

  9. Reactors

    CERN Document Server

    International Electrotechnical Commission. Geneva


    This standard applies to the following types of reactors: shunt reactors, current-limiting reactors including neutral-earthing reactors, damping reactors, tuning (filter) reactors, earthing transformers (neutral couplers), arc-suppression reactors, smoothing reactors, with the exception of the following reactors: small reactors with a rating generally less than 2 kvar single-phase and 10 kvar three-phase, reactors for special purposes such as high-frequency line traps or reactors mounted on rolling stock.

  10. Study on the Effects of Fed-batch Culture Method of Escherichia coli XD-12 Fermentation%流加培养方式对大肠杆菌XD-12发酵的影响研究

    Institute of Scientific and Technical Information of China (English)

    潘自皓; 顾薇; 潘扬


    [Objective] The research aimed to study the fed-batch culture method of Escherichia coli and enhance the fermentation concentration of transaminase donor.E. coli XD-12. [Method] The effects of carbon source feeding, nitrogen source feeding,feeding with pH control on E. coli fermentation were studied to obtain the optimal culture conditions. [ Result] The optimal cultural conditions lot transaminase-produeing E.coli were as Mows; temperature of 37 ℃ .agitation speed of 400 r/min,aeration quantity of 1.5 L/min,initial pH of medium of 7.0,for controlling fermentation process pH of 7.5,initial glucose concentration of 5 g/L,initial nitrogen source of 5 g/L peptone + 1.5 g/L beef extract, 120 g/L glucose solution was intermittently fed at an interval of 2 h after glucose concentration declined to 2 g/L And 15 g/L peptone and 4. 5 g/L beef extract were intermittently fed at an interval of 2 h after 8 hours. After culture 24 h under these conditions, the cell dry weight concentration of E.coli reached 9.66 g/L,104.7% higher than that in batch culture. [ Conclusion] This research was of an important realistic significance for reducing the production cost of preparing L-phenylalanine by enzyme method,enhancing the production efficiency of L-phenylala-nine,sufficing the increasing market requirements of L-phenylalanine.%[目的]研究大肠杆菌流加培养方式,提高转氨醇供体——大肠杆菌XD-12的发酵浓度.[方法]通过研究碳源流加、氮源流加、pH控制流加对发酵的影响,获得了优化的培养条件.[结果]产转氨酶大肠杆菌的最佳培养条件为:温度37℃,搅拌转速500 r/min,通气量1.5 L/min,培养基初始pH为7.0,控制发酵过程pH为7.5,初始葡萄糖浓度5 g/L,初始氮源为5g/L蛋白胨+1.5 g/L牛肉膏,从葡萄糖浓度下降为2 g/L开始每隔2h问歇流加120 g/L的糖,从8h起每隔2h间歇流加15 9/L蛋白胨+4.5 g/L牛肉膏.在此条件下培养24h,大肠杆菌的茵体干重浓度达9.66 g

  11. Utilizing a one-dimensional multispecies model to simulate the nutrient reduction and biomass structure in two types of H2-based membrane-aeration biofilm reactors (H2-MBfR): model development and parametric analysis. (United States)

    Wang, Zuowei; Xia, Siqing; Xu, Xiaoyin; Wang, Chenhui


    In this study, a one-dimensional multispecies model (ODMSM) was utilized to simulate NO3(-)-N and ClO4(-) reduction performances in two kinds of H2-based membrane-aeration biofilm reactors (H2-MBfR) within different operating conditions (e.g., NO3(-)-N/ClO4(-) loading rates, H2 partial pressure, etc.). Before the simulation process, we conducted the sensitivity analysis of some key parameters which would fluctuate in different environmental conditions, then we used the experimental data to calibrate the more sensitive parameters μ1 and μ2 (maximum specific growth rates of denitrification bacteria and perchlorate reduction bacteria) in two H2-MBfRs, and the diversity of the two key parameters' values in two types of reactors may be resulted from the different carbon source fed in the reactors. From the simulation results of six different operating conditions (four in H2-MBfR 1 and two in H2-MBfR 2), the applicability of the model was approved, and the variation of the removal tendency in different operating conditions could be well simulated. Besides, the rationality of operating parameters (H2 partial pressure, etc.) could be judged especially in condition of high nutrients' loading rates. To a certain degree, the model could provide theoretical guidance to determine the operating parameters on some specific conditions in practical application.

  12. Influence of pH, temperature, and urea molar flowrate on Arthrospira platensis fed-batch cultivation: a kinetic and thermodynamic approach. (United States)

    Sánchez-Luna, Luis Dante; Bezerra, Raquel Pedrosa; Matsudo, Marcelo Chuei; Sato, Sunao; Converti, Attilio; de Carvalho, João Carlos Monteiro


    Arthrospira platensis was cultivated photoautotrophically at 6.0 klux light intensity in 5.0-L open tanks, using a mineral medium containing urea as nitrogen source. Fed-batch experiments were performed at constant flowrate. A central composite factorial design combined to response surface methodology (RSM) was utilized to determine the relationship between the selected response variables (cell concentration after 10 days, X(m), cell productivity, P(X), and nitrogen-to-cell conversion factor, Y(X/N)) and codified values of the independent variables (pH, temperature, T, and urea flowrate, K). By applying the quadratic regression analysis, the equations describing the behaviors of these responses as simultaneous functions of the selected independent variables were determined, and the conditions for X(m) and P(X) optimization were estimated (pH 9.5, T = 29 degrees C, and K = 0.551 mM/day). The experimental data obtained under these conditions (X(m) = 749 mg/L; P(X) = 69.9 mg/ were very close to the estimated ones (X(m) = 721 mg/L; P(X) = 67.1 mg/ Additional cultivations were carried out under the above best conditions of pH control and urea flowrate at variable temperature. Consistently with the results of RSM, the best growth temperature was 29 degrees C. The maximum specific growth rates at different temperatures were used to estimate the thermodynamic parameters of growth (DeltaH* = 59.3 kJ/mol; DeltaS* = -0.147 kJ/mol.K; DeltaG* = 103 kJ/mol) and its thermal inactivation (DeltaH(D) (o) = 72.0 kJ/mol; DeltaS(D) (o) = 0.144 kJ/mol.K; DeltaG(D) (o) = 29.1 kJ/mol).

  13. Enhancing toxic protein expression in Escherichia coli fed-batch culture using kinetic parameters: Human granulocyte-macrophage colony-stimulating factor as a model system. (United States)

    Khasa, Yogender Pal; Khushoo, Amardeep; Mukherjee, Krishna Jyoti


    The kinetics of recombinant human granulocyte-macrophage colony-stimulating factor (hGM-CSF) expression was studied under the strong T7 promoter in continuous culture of Escherichia coli using complex medium to design an optimum feeding strategy for high cell density cultivation. Continuous culture studies were done at different dilution rates and the growth and product formation profiles were monitored post-induction. Recombinant protein expression was in the form of inclusion bodies with a maximum specific product formation rate (q(p)) of 63.5 mg g(-1) DCW h(-1) at a dilution rate (D) of 0.3 h(-1). The maximum volumetric product concentration achieved at this dilution rate was 474 mg l(-1), which translated a ~1.4 and ~1.75 folds increase than the values obtained at dilution rates of 0.2 h(-1) and 0.4 h(-1) respectively. The specific product yield (Y(P/x)) peaked at 138 mg g(-1) DCW, demonstrating a ~1.6 folds increase in the values obtained at other dilution rates. A drop in q(p) was observed within 5-6 h of induction at all the dilution rates, possibly due to protein toxicity and metabolic stress associated with protein expression. The data from the continuous culture studies allowed us to design an optimal feeding strategy and induction time in fed-batch cultures which resulted in a maximum product concentration of 3.95 g l(-1) with a specific hGM-CSF yield (Y(P/x)) of 107 mg g(-1) DCW.

  14. Application of simple fed-batch technique to high-level secretory production of insulin precursor using Pichia pastoris with subsequent purification and conversion to human insulin

    Directory of Open Access Journals (Sweden)

    Chugh Dipti


    Full Text Available Abstract Background The prevalence of diabetes is predicted to rise significantly in the coming decades. A recent analysis projects that by the year 2030 there will be ~366 million diabetics around the world, leading to an increased demand for inexpensive insulin to make this life-saving drug also affordable for resource poor countries. Results A synthetic insulin precursor (IP-encoding gene, codon-optimized for expression in P. pastoris, was cloned in frame with the Saccharomyces cerevisiae α-factor secretory signal and integrated into the genome of P. pastoris strain X-33. The strain was grown to high-cell density in a batch procedure using a defined medium with low salt and high glycerol concentrations. Following batch growth, production of IP was carried out at methanol concentrations of 2 g L-1, which were kept constant throughout the remaining production phase. This robust feeding strategy led to the secretion of ~3 gram IP per liter of culture broth (corresponding to almost 4 gram IP per liter of cell-free culture supernatant. Using immobilized metal ion affinity chromatography (IMAC as a novel approach for IP purification, 95% of the secreted product was recovered with a purity of 96% from the clarified culture supernatant. Finally, the purified IP was trypsin digested, transpeptidated, deprotected and further purified leading to ~1.5 g of 99% pure recombinant human insulin per liter of culture broth. Conclusions A simple two-phase cultivation process composed of a glycerol batch and a constant methanol fed-batch phase recently developed for the intracellular production of the Hepatitis B surface antigen was adapted to secretory IP production. Compared to the highest previously reported value, this approach resulted in an ~2 fold enhancement of IP production using Pichia based expression systems, thus significantly increasing the efficiency of insulin manufacture.

  15. Biogas production from protein-rich biomass: fed-batch anaerobic fermentation of casein and of pig blood and associated changes in microbial community composition.

    Directory of Open Access Journals (Sweden)

    Etelka Kovács

    Full Text Available It is generally accepted as a fact in the biogas technology that protein-rich biomass substrates should be avoided due to inevitable process inhibition. Substrate compositions with a low C/N ratio are considered difficult to handle and may lead to process failure, though protein-rich industrial waste products have outstanding biogas generation potential. This common belief has been challenged by using protein-rich substrates, i.e. casein and precipitated pig blood protein in laboratory scale continuously stirred mesophilic fed-batch biogas fermenters. Both substrates proved suitable for sustained biogas production (0.447 L CH4/g protein oDM, i.e. organic total solids in high yield without any additives, following a period of adaptation of the microbial community. The apparent key limiting factors in the anaerobic degradation of these proteinaceous materials were the accumulation of ammonia and hydrogen sulfide. Changes in time in the composition of the microbiological community were determined by next-generation sequencing-based metagenomic analyses. Characteristic rearrangements of the biogas-producing community upon protein feeding and specific differences due to the individual protein substrates were recognized. The results clearly demonstrate that sustained biogas production is readily achievable, provided the system is well-characterized, understood and controlled. Biogas yields (0.45 L CH4/g oDM significantly exceeding those of the commonly used agricultural substrates (0.25-0.28 L CH4/g oDM were routinely obtained. The results amply reveal that these high-energy-content waste products can be converted to biogas, a renewable energy carrier with flexible uses that can replace fossil natural gas in its applications. Process control, with appropriate acclimation of the microbial community to the unusual substrate, is necessary. Metagenomic analysis of the microbial community by next-generation sequencing allows a precise determination of the

  16. Biogas production from protein-rich biomass: fed-batch anaerobic fermentation of casein and of pig blood and associated changes in microbial community composition. (United States)

    Kovács, Etelka; Wirth, Roland; Maróti, Gergely; Bagi, Zoltán; Rákhely, Gábor; Kovács, Kornél L


    It is generally accepted as a fact in the biogas technology that protein-rich biomass substrates should be avoided due to inevitable process inhibition. Substrate compositions with a low C/N ratio are considered difficult to handle and may lead to process failure, though protein-rich industrial waste products have outstanding biogas generation potential. This common belief has been challenged by using protein-rich substrates, i.e. casein and precipitated pig blood protein in laboratory scale continuously stirred mesophilic fed-batch biogas fermenters. Both substrates proved suitable for sustained biogas production (0.447 L CH4/g protein oDM, i.e. organic total solids) in high yield without any additives, following a period of adaptation of the microbial community. The apparent key limiting factors in the anaerobic degradation of these proteinaceous materials were the accumulation of ammonia and hydrogen sulfide. Changes in time in the composition of the microbiological community were determined by next-generation sequencing-based metagenomic analyses. Characteristic rearrangements of the biogas-producing community upon protein feeding and specific differences due to the individual protein substrates were recognized. The results clearly demonstrate that sustained biogas production is readily achievable, provided the system is well-characterized, understood and controlled. Biogas yields (0.45 L CH4/g oDM) significantly exceeding those of the commonly used agricultural substrates (0.25-0.28 L CH4/g oDM) were routinely obtained. The results amply reveal that these high-energy-content waste products can be converted to biogas, a renewable energy carrier with flexible uses that can replace fossil natural gas in its applications. Process control, with appropriate acclimation of the microbial community to the unusual substrate, is necessary. Metagenomic analysis of the microbial community by next-generation sequencing allows a precise determination of the alterations in

  17. Fed-batch Fermentation Kinetics of Cyclosporine A by Beauveria nivea%雪白白僵菌产环孢菌素A分批补料发酵动力学

    Institute of Scientific and Technical Information of China (English)

    姜俊云; 董惠钧; 闫同顺


    对在30 L发酵罐中雪白白僵菌发酵环孢菌素A的分批补料发酵过程进行了动力学研究。通过对环孢菌素A分批发酵数据进行分析,基于Logistic模型和Luedeking-Piret方程,建立了环孢菌素A发酵动力学模型,包括细胞生长、底物消耗和产物合成回归方程。应用Origin7.5软件对模型进行非线性拟合计算,建立的动力学模型与实验值拟合良好,能较准确反映环孢菌素A分批补料发酵动力学过程。%The kinetic models of the fed-batch fermentation of cyclosporin A in 301 bioreactor were studied. Based on the fed-batch fermentation data and Logistic model, the kinetics models of cyclosporin A fermentation for cell growth, cyclosporin production and substrate consumpsion were built up. The program of origin 7.5 version was used to fit the model. The analysis results showed that the good agreement of predicted values with the experimental values, and that the kinetic models could provide reasonable descriptions for the process of cyclosporin A fed-batch fermenta- tion. The development of fed-batch fermentation kinetics of cyclosporine A would help to regular the fermentation of cyclosporine A and increase the fermentation titer.

  18. L-缬氨酸高产菌XQ-8补料分批发酵的研究%Study on the fed-batch fermentation of L-valine hyper-producer XQ-8

    Institute of Scientific and Technical Information of China (English)

    张伟国’; 钱和; 乎守涛; 刘康乐; 程国平; 张苏龙; 聂晓东


    在分批发酵优化条件基础上,通过对补料分批发酵方式发酵过程的各种参数,包括产酸率、转化率和发酵周期等进行了研究,确定了L-缬氨酸高产菌XQ-8补料分批发酵的最优条件。在最优补料分批发酵奈件下发酵72h左右,L-缬氨酸产量达72g/L,糖酸转化率达38%以上,其结果明显优于分批培养。%On the basis of optimization of batch fermentation conditions, by way of the various parameters of the fed -batch fermentation process,including valine production,glucose/valine conversion rate and fermentation period were studied to determine optimal fed-batch fermentation conditions of the L-valine producer XQ-8.1n the optimal fed-batch fermentation conditions for about 72h,L-valine production was up to 72g/L,glucose/valine conversion rate was more than 38% ,the results were Petter than batch fermentation.

  19. Aeration control by monitoring the microbiological activity using fuzzy logic diagnosis and control. Application to a complete autotrophic nitrogen removal reactor

    DEFF Research Database (Denmark)

    Boiocchi, Riccardo; Mauricio Iglesias, Miguel; Vangsgaard, Anna Katrine


    . This contribution describes the development of a fuzzy-logic based system for both diagnosis and control of a CANR reactor. Based on a combination of measurements of the nitrogen species concentration in the influent and in the effluent on the one hand, and insights into the activities of three distinctive...... to the reactor.The diagnosis tool was first evaluated using 100 days of real process operation data obtained from a lab-scale single-stage autotrophic nitrogen removing reactor. This evaluation revealed that the fuzzy logic diagnosis is able to provide a realistic description of the microbiological state...... of the reactor with process engineering insight analysis. An evaluation of both the diagnosis tool and the controller was done by simulating a disturbance in the influent concentration. High and steady nitrogen removal efficiency was achieved thanks to the diagnosis and control system. Finally, development...

  20. Cultivo mixotrófico da microalga Spirulina platensis em batelada alimentada Mixotrophic growth of Spirulina platensis in fed-batch mode

    Directory of Open Access Journals (Sweden)

    Adriana Muliterno


    Full Text Available A Spirulina platensis tem sido estudada devido a seu alto valor protéico, digestibilidade e por apresentar quantidades significativas de ácidos graxos poliinsaturados, vitaminas, fenólicos e ficocianina, podendo ser utilizada na alimentação humana. A utilização de nutrientes de baixo custo é um fator importante na produção da cianobactéria por possibilitar a redução de custos de processo. Objetivou-se com este trabalho estudar o cultivo mixotrófico da S. platensis por meio da adição de uma fonte orgânica de carbono (glicose em modo bateladaalimentada. Foi utilizado um Planejamento Fatorial Completo 2³ para o cultivo e as variáveis de estudo foram a concentração de glicose (0,5 gL-1 e 1,0 gL-1, a diluição do meio Zarrouk (50% e 75% e a iluminância (1800 lux e 3000 lux. A concentração celular máxima obtida foi de 5,38 gL-1 com uma velocidade específica máxima de crescimento de 0,0063 h-1, nas condições de 0,5 gL-1 de glicose, diluição do meio de 75% e iluminância de 3000 lux.The cyanobacterium Spirulina platensis has been studied due to its high content (~65% of highly digestible protein as well as significant amounts of polyunsaturated fatty acids, phenolics, vitamins, minerals and phycocyanin which could be useful in the human nutrition. The use of nutrients of low costs in the cyanobacterium growth could reduce the costs of production. We studied the fed-batch mixotrophic growth of the S. platensis in Zarrouk's medium with glucose (0.5 gL-1 and 1.0 gL-1 as carbon source and also investigated the effects of dilution (50% and 75%, with water and illumination (1,800 lux and 3,000 lux using a 2³ factorial design. The maximum celular concentration of 5.38 gL-1 and maximum specific growth rate of 0.0063 h-1 were obtained with a glucose concentration of 0.5 gL-1, 50% dilution and 1800 lux of illuminance.

  1. Hydrodynamic behaviour of the lateral flow biological aerated filter

    Institute of Scientific and Technical Information of China (English)

    HE Qiang; WANG Yin; FANG Jun-hua; ZHANG Hong-jing; XU Jing


    Pulsed signal experiment was carried out to determine the hydrodynamic behaviours of lateral flow biological aerated filter(LBAF). With the analysis of experimental results, LBAF is viewed as an approximate plug flow reactor, and hydraulic retention time distribution function was derived based on LBAF. The results show that flow rate and aeration strength are two critical factors which influence flow patterns in LBAF reactor. The hydrodynamic behaviour analysis of LBAF is the theoretical basis of future research on improving capacity factor and developing kinetic model for the reactor.

  2. Biodegradation of 2,4,6-trichlorophenol in a packed-bed biofilm reactor equipped with an internal net draft tube riser for aeration and liquid circulation

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-De Jesus, A.; Romano-Baez, F.J.; Leyva-Amezcua, L.; Juarez-Ramirez, C.; Ruiz-Ordaz, N. [Departamento de Ingenieria Bioquimica, Escuela Nacional de Ciencias Biologicas, IPN. Prol. Carpio y Plan de Ayala, Colonia Santo Tomas, s/n. CP 11340, Mexico, D.F. (Mexico); Galindez-Mayer, J. [Departamento de Ingenieria Bioquimica, Escuela Nacional de Ciencias Biologicas, IPN. Prol. Carpio y Plan de Ayala, Colonia Santo Tomas, s/n. CP 11340, Mexico, D.F. (Mexico)], E-mail:


    For the aerobic biodegradation of the fungicide and defoliant 2,4,6-trichlorophenol (2,4,6-TCP), a bench-scale packed-bed bioreactor equipped with a net draft tube riser for liquid circulation and oxygenation (PB-ALR) was constructed. To obtain a high packed-bed volume relative to the whole bioreactor volume, a high A{sub D}/A{sub R} ratio was used. Reactor's downcomer was packed with a porous support of volcanic stone fragments. PB-ALR hydrodynamics and oxygen mass transfer behavior was evaluated and compared to the observed behavior of the unpacked reactor operating as an internal airlift reactor (ALR). Overall gas holdup values {epsilon}{sub G}, and zonal oxygen mass transfer coefficients determined at various airflow rates in the PB-ALR, were higher than those obtained with the ALR. When comparing mixing time values obtained in both cases, a slight increment in mixing time was observed when reactor was operated as a PB-ALR. By using a mixed microbial community, the biofilm reactor was used to evaluate the aerobic biodegradation of 2,4,6-TCP. Three bacterial strains identified as Burkholderia sp., Burkholderia kururiensis and Stenotrophomonas sp. constituted the microbial consortium able to cometabolically degrade the 2,4,6-TCP, using phenol as primary substrate. This consortium removed 100% of phenol and near 99% of 2,4,6-TCP. Mineralization and dehalogenation of 2,4,6-TCP was evidenced by high COD removal efficiencies ({approx}95%), and by the stoichiometric release of chloride ions from the halogenated compound ({approx}80%). Finally, it was observed that the microbial consortium was also capable to metabolize 2,4,6-TCP without phenol as primary substrate, with high removal efficiencies (near 100% for 2,4,6-TCP, 92% for COD and 88% for chloride ions)

  3. Effect of fed-batch on calcium biotransformation of mussel shell by Acetobacter sp.%分批补料对醋酸菌发酵转化贻贝壳钙源的影响研究

    Institute of Scientific and Technical Information of China (English)

    李晓娇; 刘书来; 丁玉庭


    研究了不同初始酒精浓度对醋酸发酵的影响及分批补料对贝壳钙源发酵的影响.醋酸茵在初始酒精浓度为6%vol时的产酸速率、菌体生长速率都较快,且其发酵周期适中.在此基础上,研究了分批补料发酵过程中菌体生长、产物及副产物的合成规律.结果表明:分批补料发酵通过改善发酵的环境条件,进而提高钙离子的转化率.与分批发酵相比,发酵中钙离子的转化率由18.08%提高到了37.33%,钙离子的总浓度由16.96mg/mL提高到了33.99mg/mL.因此,分批补料发酵可显著提高代谢产物的产量,促进贝壳钙源的生物转化率.%The effects of initial alcohol concentrations on acetic acid fermentation and the influence of fed-batch on calcium biotransformation of mussel shell were investigated. When the initial alcohol concentration was 6%vol, the acetic acid production and growth rate of f Acetobacter sp. were faster, and the fermentation time was proper. Base on this study, the cell growth rate and synthetic rates of metabolites in fed-batch fermentation were investigated. The results showed that fed-batch fermentation can improve the calcium conversion rate through changing the fermentation environment. Comparing with batch fermentation, the calcium conversion rate increased from 18.08% to 37.33%, and the total concentration of calcium increased from 16.96mg/ml to 33.99mg/ml in fed-bath fermentation. The fed-batch fermentation could significantly enhance the yield of acetic acid and promote the efficiency of calcium conversion.

  4. 木醋杆菌分批补料发酵法生产广式米醋%Fed-batch fermentation by Gluconacetobacter xylinus to produce Guangdong rice vinegar

    Institute of Scientific and Technical Information of China (English)

    傅亮; 易九龙; 陈思谦; 吴炳鸿


    The feasibility of fed-batch fermentation to improve the total acidity of Guangdong rice vinegar was investigated. The main contents include the distribution of Gluconacetobacter xylinus in fermented liquid and bacterial cellulose membrane, the variation of total acidity by single-batch fermentation and fed-batch fermentation, the optimal alcohol content of raw and the effect on total acidity by fed-batch fermentation. The result shows that the cell number of Bacterial cellulose membrane is 300 times than in the fermented liquid and the optimal alcohol content of raw is 5% (V/V). And fed-batch fermentation is advantageous in improving total acidity. The result of orthogonal test shows that the optimal conditions were: the sixth day began to add, add every 2 days one time, every time add 2%(volume of alcohol / volume of fermented liquid) and 3 times. Under this con-dition, the total acidity was at 7. 29 g/100 mL, 73. 6% higher than 4. 2 g/100 mL by single-batch fermentation.%研究分批补料发酵法提高广式米醋总酸度的可行性.主要内容包括发酵过程中木醋杆菌RF4在发酵液及细菌纤维素膜内的菌体数分布比较、单批和分批补料发酵法总酸的变化规律、原料最适酒精度及分批补料发酵法对总酸的影响.结果表明:细菌纤维素膜内的菌体数是发酵液中的300倍左右,最适原料初始酒精度为5% (V/V),分批补料发酵法有利于显著提高总酸度.通过正交优化,分批补料发酵最优工艺为发酵第6天每隔2d补加2%(酒精体积/发酵液体积)的酒精,补加3次,最终酸度可达7.29 g/l00 mL,较单批发酵的4.2 g/l00mL提高73.6%.

  5. Optimization of the moving-bed biofilm sequencing batch reactor (MBSBR) to control aeration time by kinetic computational modeling: Simulated sugar-industry wastewater treatment. (United States)

    Faridnasr, Maryam; Ghanbari, Bastam; Sassani, Ardavan


    A novel approach was applied for optimization of a moving-bed biofilm sequencing batch reactor (MBSBR) to treat sugar-industry wastewater (BOD5=500-2500 and COD=750-3750 mg/L) at 2-4 h of cycle time (CT). Although the experimental data showed that MBSBR reached high BOD5 and COD removal performances, it failed to achieve the standard limits at the mentioned CTs. Thus, optimization of the reactor was rendered by kinetic computational modeling and using statistical error indicator normalized root mean square error (NRMSE). The results of NRMSE revealed that Stover-Kincannon (error=6.40%) and Grau (error=6.15%) models provide better fits to the experimental data and may be used for CT optimization in the reactor. The models predicted required CTs of 4.5, 6.5, 7 and 7.5 h for effluent standardization of 500, 1000, 1500 and 2500 mg/L influent BOD5 concentrations, respectively. Similar pattern of the experimental data also confirmed these findings.

  6. Investigation of biological reactor designs for treatment of methanol and thiodiglycol waste streams

    Energy Technology Data Exchange (ETDEWEB)

    Sines, B.J.; Teather, E.W.; Weigand, W.A. (Univ. of Maryland, College Park, MD (United States)); Harvey, S.P. (Army Edgewood, Aberdeen Proving Ground, MD (United States))

    Biological reactor designs for the degradation of the toxic compounds methanol and thiodiglycol are compared to determine the smallest volume. Both compounds exhibit substrate-inhibited cell growth behavior. Design equations were used to simulate a continuous stirred tanks in series, and an optimized repeated fed-batch reactor. Thiodiglycol is the primary hydrolysis product of sulfur mustard (2,2[prime]-dichlorodiethyl sulfide), commonly referred to as [open quotes]mustard gas[close quotes]. Experimental data for the growth of Alcaligenes xylosoxidans xylosoxidans (SH42) on thiodiglycol was fit by an Andrews type inhibition equation, while the data and model for the growth of methanol was taken from the literature. The simulation results indicate that the repeated fed-batch reactor leads to significant volume reduction compared to the other two reactor configurations. 11 refs., 7 figs., 7 tabs.

  7. 玉米秸秆分批补料获得高还原糖浓度酶解液的条件优化%Optimization of corn stover hydrolysis by fed-batch process

    Institute of Scientific and Technical Information of China (English)

    宋安东; 任天宝; 张玲玲; 王风芹; 谢慧


    High-concentration sugars production from stover is an important perspective technology for the cellulosic ethanol industrialization.Fed-batch process is an effective way to achieve this goal in the fermentation industry.In this study, based on fed-batch process, high-concentration sugars were produced from pretreated corn stover by enzymatic hydrolysis.After being pretreated by the dilute sulphuric acid, the impacts of the ratio of solid raw material to liquid culture, the content of supplementary materials and the refilling time on the saccharification rate were investigated.Results showed that the initial ratio of solid raw material to liquid culture was 20% (W/V) and the initial concentrations of enzymes for xylanase, cellulose and pectinase were 220 U,6 FPU, and 50 U per gram of substrates, respectively.After 24 hours and 48 hours, 8% pretreated corn stovers were added respectively together with the additions of xylanase (20 U) and cellulose (2 FPU) per gram of substrates.After 72 hours, the final concentration of reducing sugar was increased to 138.5 g/L from 48.5 g/L of the non fed-batch process.The rate of enzyme hydrolysis of the raw material was 62.5% of the thoretieal value in the fed-batch process.This study demonstrated that the fed-batch process could significantly improve the concentration of reducing sugar.%木质纤维素高浓度还原糖水解液的获得是纤维乙醇产业化发展的方向.在发酵工业领域,分批补料法是实现这一目标的重要研究途径.本研究采用分批补料法对获得高浓度玉米秸秆酶解还原糖的条件进行了优化.以稀硫酸预处理的玉米秸秆为原料,考察了液固比、补加量与补加时间对分批补料糖化的影响.结果表明,秸秆高浓度酶解液条件的初始物料为20%(重量/体积),木聚糖酶220 U/g(底物),纤维素酶6 FPU/g(底物),果胶酶50 U/g(底物),在24 h、48 h后分批补加8%预处理后的物料,同时添加与

  8. Coenzyme Q10 production in a 150-l reactor by a mutant strain of Rhodobacter sphaeroides. (United States)

    Kien, Nguyen Ba; Kong, In-Soo; Lee, Min-Gyu; Kim, Joong Kyun


    For the commercial production of CoQ(10), batch-type fermentations were attempted in a 150-l fermenter using a mutant strain of R. sphaeroides. Optimum temperature and initial aeration rate were found to be 30 degrees C and 2 vvm, respectively. Under optimum fermentation conditions, the maximum value of specific CoQ(10) content was achieved reproducibly as 6.34 mg/g DCW after 24 h, with 3.02 g/l of DCW. During the fermentation, aeration shift (from the adequate aeration at the early growth phase to the limited aeration in active cellular metabolism) was a key factor in CoQ(10) production for scale-up. A higher value of the specific CoQ(10) content (8.12 mg/g DCW) was achieved in fed-batch fermentation and comparable to those produced by the pilot-scale fed-batch fermentations of A. tumefaciens, which indicated that the mutant strain of R. sphaeroides used in this study was a potential high CoQ(10) producer. This is the first detailed study to demonstrate a pilot-scale production of CoQ(10) using a mutant strain of R. sphaeroides.

  9. Catfish production using intensive aeration (United States)

    For the last 3 years, researchers at UAPB and NWAC have been monitoring and verifying production yields in intensively aerated catfish ponds with aeration rates greater than 6 hp/acre. We now have three years of data on commercial catfish production in intensively aerated ponds. With stocking densi...

  10. 铅阳极泥剪切射流曝气强化碱浸脱砷工艺研究%Enhanced alkaline leaching of arsenic in lead anode slime using shearing jet aeration reactor

    Institute of Scientific and Technical Information of China (English)

    闵小波; 周波生; 柴立元; 梁彦杰; 柯勇; 赵宗文; 沈忱


    In this study, alkaline leaching enhanced by shearing jet aeration reactor was employed to remove arsenic from lead anode sline. The effects of various parameters, such as liquid/solid ratio, concentrations of sodium hydroxide solution, leaching time and temperature, on leaching ratios of different metals were investi-gated. On this basis, the optimal conditions was obtained through orthogonal experiment, namely, 1.0 mol/L NaOH, a liquid/solid ratio of 6∶1, leaching at 70 ℃ for 1 h. Under this optimal condition, the leaching rate of As reached up to 95.0 %, and that of Pb and Sb was less than 2.0 % and 1.0 %, respectively, while Bi was hardly dissolved in alkaline solution. In addition, arsenic-containing leachate could be treated with lime and removal rate of As in leachate exceeding 85 %. Then, the filtrate from lime precipitation was recycled and reused in leaching process. Also, a satisfying result could be obtained with more than 95%of As leaching rate after the filtrate was recycled. Compared with the conventional alkaline leaching for As removal, this process could decrease the dosage of sodium hydroxide, shorten the leaching time, and efficiently improve the separa-tion rate of arsenic and other valuable metals. It can be concluded that the shearing jet aeration reactor can be applied to the pretreatment of arsenic-containing materials and obtain a high leaching rate of arsenic.%采用剪切射流曝气反应器对铅阳极泥碱浸脱砷过程进行强化,考察了液固比、氢氧化钠浓度、时间及温度等因素对阳极泥中砷、铅、锑、铋浸出率的影响,通过正交实验优选出最佳浸出工艺条件,即:氢氧化钠浓度1 mol/L、浸出液体积/固体质量(液固比)为6 mL/g、温度70℃、时间1 h.在此最佳工艺条件下,砷浸出率高达95%以上,而铅、锑浸出率分别维持在2%、1%以下,铋基本不被浸出.针对高砷浸出液采用石灰沉砷,沉砷率可达85%以上.沉砷后上

  11. Nitrogen-removal performance and community structure of nitrifying bacteria under different aeration modes in an oxidation ditch. (United States)

    Guo, Chang-Zi; Fu, Wei; Chen, Xue-Mei; Peng, Dang-Cong; Jin, Peng-Kang


    Oxidation-ditch operation modes were simulated using sequencing batch reactors (SBRs) with alternate stirring and aerating. The nitrogen-removal efficiencies and nitrifying characteristics of two aeration modes, point aeration and step aeration, were investigated. Under the same air-supply capacity, oxygen dissolved more efficiently in the system with point aeration, forming a larger aerobic zone. The nitrifying effects were similar in point aeration and step aeration, where the average removal efficiencies of NH4(+) N were 98% and 96%, respectively. When the proportion of anoxic and oxic zones was 1, the average removal efficiencies of total nitrogen (TN) were 45% and 66% under point aeration and step aeration, respectively. Step aeration was more beneficial to both anoxic denitrification and simultaneous nitrification and denitrification (SND). The maximum specific ammonia-uptake rates (AUR) of point aeration and step aeration were 4.7 and 4.9 mg NH4(+)/(gMLVSS h), respectively, while the maximum specific nitrite-uptake rates (NUR) of the two systems were 7.4 and 5.3 mg NO2(-)-N/(gMLVSS h), respectively. The proportions of ammonia-oxidizing bacteria (AOB) to all bacteria were 5.1% under point aeration and 7.0% under step aeration, and the proportions of nitrite-oxidizing bacteria (NOB) reached 6.5% and 9.0% under point and step aeration, respectively. The dominant genera of AOB and NOB were Nitrosococcus and Nitrospira, which accounted for 90% and 91%, respectively, under point aeration, and the diversity of nitrifying bacteria was lower than under step aeration. Point aeration was selective of nitrifying bacteria. The abundance of NOB was greater than that of AOB in both of the operation modes, and complete transformation of NH4(+) N to NO3(-)-N was observed without NO2(-)-N accumulation.

  12. Laboratory study of nitrification, denitrification and anammox processes in membrane bioreactors considering periodic aeration. (United States)

    Abbassi, Rouzbeh; Yadav, Asheesh Kumar; Huang, Shan; Jaffé, Peter R


    The possibility of using membrane bioreactors (MBRs) in simultaneous nitrification-anammox-denitrification (SNAD) by considering periodic aeration cycles was investigated. Two separate reactors were operated to investigate the effect of different anammox biomass in the presence of nitrifying and denitrifying biomass on the final nitrogen removal efficiency. The results illustrated that the reactor with higher anammox biomass was more robust to oxygen cycling. Around 98% Total Nitrogen (TN) and 83% Total Organic Carbon (TOC) removal efficiencies were observed by applying one hour aeration over a four-hour cycle. Decreasing the aeration time to 30, 15, and 2 min during a four-hour cycle affected the final TN removal efficiencies. However, the effect of decreasing aeration on the TN removal efficiencies in the reactor with higher anammox biomass was much lower compared to the regular reactor. The nitrous oxide (N2O) emission was a function of aeration as well, and was lower in the reactor with higher anammox biomass. The results of q-PCR analysis confirmed the simultaneous co-existence of nitrifiers, anammox, and denitrifiers in both of the reactors. To simulate the TN removal in these reactors as a function of the aeration time, a new model, based on first order reaction kinetics for both denitrification and anammox was developed and yielded a good agreement with the experimental observations.

  13. Optimization of the fed-batch fermentation process for raspberry wine by response surface methodology%响应面法优化树莓酒流加发酵工艺

    Institute of Scientific and Technical Information of China (English)

    马荣山; 王艳平; 穆晶


    以红树莓为原料,利用响应面法对树莓酒的流加发酵工艺条件进行优化,在单因素基础上,选取酵母接种量、流加糖时间、流加糖量为影响因子,以树莓酒酒精体积分数为响应值进行响应面分析.结果表明,经优化后树莓酒的最佳流加发酵工艺条件为酵母接种量1.0‰,分别在发酵5d、6d共流加糖30mL,发酵10d得到酒精度为10.5%vol的树莓酒.树莓酒酒色玫红,果香柔和,酒质柔顺,所得产品是一种符合现代人健康理念的低度发酵营养酒.%In this study, the process conditions of raspberry wine fed-batch fermentation were optimized using response surface methodology. Based on single factor experiment, the inoculum of yeast, feeding time and quantity of caramel were chosen as influencing factors, and the alcoholicity was selected as response value. It was found that the optimum fed-batch fermentation conditions were as followed: inoculum of active dry yeast 1.0%>, feeding 30ml caramel at 5d and 6d of the fermentation and fermentation time 10d. Under these conditions, alcohol concentration in obtained raspberry wine was 10.5%vol, and displayed a rose pink color, and had a fruity, soft and supple taste. This product is a low-alcohol nutritional wine that caters to modern people' s health concept

  14. Impact of intermittent aerations on leachate quality and greenhouse gas reduction in the aerobic-anaerobic landfill method. (United States)

    Nag, Mitali; Shimaoka, Takayuki; Komiya, Teppei


    The aerobic-anaerobic landfill method (AALM) is a novel approach in solid waste management that could shorten the landfill post-closure period and minimize the environmental loads. In this study, the aerobic-anaerobic landfill method was evaluated by using intermittent aeration. In addition, the nitrification-denitrification process was assessed as a means of reducing the emission of greenhouse gases (GHGs) and improving the leachate quality during the degradation of the organic solid waste. The leachate quality and the gas composition in each of the reactors were measured during the experimental period (408days). The aeration process entailed the injection of air into plexiglass cylinders (200cm height×10 cm diameter), filled with fresh organic solid waste collected from a composting plant. Different aeration routines were applied, namely, continuous aeration (aerobic reactor A), aeration for three days/week (aerobic-anaerobic reactor B), aeration for 6h/day (aerobic-anaerobic reactor C), and no aeration (non-aerated reactor D). It was found that aerobic reactor A produced the best results in terms of reduction of GHGs and improvement of the leachate quality. The aerobic-anaerobic reactor C was found to be more effective than reactor B in respect of both the emission of GHGs and the leachate quality; moreover, compared with aerobic reactor A, energy costs were reduced by operating this reactor. The transition period phenomenon was investigated during an intensive seven-day experiment conducted on the discharged leachate obtained from aerobic-anaerobic reactors B and C. The experiment concerned the differences in the composition of the gas during the aeration and the non-aeration periods. It was found that the transition period between the aeration and non-aeration cycles, which followed the simultaneous nitrification-denitrification had a considerable effect on the leachate quality of both the reactors. The results indicated that AALM has the potential to reduce

  15. Bioaugmentation of an acetate-oxidising anaerobic consortium in up-flow sludge blanket reactor subjected to high ammonia loads

    DEFF Research Database (Denmark)

    Fotidis, Ioannis; Karakashev, Dimitar Borisov; Angelidaki, Irini

    was tested. The co-cultivation in fed-batch of a fast-growing hydrogenotrophic methanogen (i.e. Methanoculleus bourgensis) with the SAO culture was also investigated. Results obtained clearly demonstrated that bioaugmentation of SAO culture in a UASB reactor was not possible most probably due to the slow....... in association with Methanoculleus spp. strain MAB1), is an acetate oxidising methanogenic consortium that can produce methane (CH4) at high ammonia levels. In the current study the bioaugmentation of the SAO culture in a mesophilic up-flow anaerobic sludge blanket (UASB) reactor subjected to high ammonia loads...... growth of the culture. The incubation period (duration of lag+exponential phase) of SAO culture was reduced more than 30% when it was cocultivated with Methanoculleus bourgensis, in fed-batch reactors. Therefore, the bioaugmentation of the SAO culture along with Methanoculleus bourgensis in a UASB...

  16. Stability of Short­cut Nitrification Nitrogen Removal in Digested Piggery Wastewater with an Intermittently Aerated Sequencing Batch Reactor%间歇曝气 SBR 处理养猪沼液的短程脱氮性能

    Institute of Scientific and Technical Information of China (English)

    宋小燕; 刘锐; 税勇; 川岸朋树; 占新民; 陈吕军


    采用间歇曝气序批式活性污泥法(intermittently aerated sequencing batch reactors,IASBR)处理养猪沼液,研究在控温30℃、分步进水条件下的短程脱氮性能.结果表明,进水化学需氧量(COD)与总氮(TN)的比值对脱氮性能影响很大,当进水COD/ TN 为0.8±0.2时,反应器内亚硝态氮浓度持续积累到高达800 mg.L -1,对 TN、氨氮(NH +4-N)和总有机碳(TOC)的去除率仅分别为18.3%±12.2%、84.2%±10.3%、60.7%±10.7%;进水 COD/ TN 提高到2.4±0.5后,亚硝态氮积累浓度迅速从800 mg.L -1降低至10 mg.L -1以下,TN、氨氮和 TOC 的去除率分别上升至90%、95%和85%以上.逐步缩短 HRT 以提高运行负荷,发现氨氮负荷是 IASBR 稳定脱氮的制约因素,体系耐受的氨氮负荷最大为0.30 kg.(m3.d)-1,当超过耐受负荷后,TN、氨氮和 TOC 的去除率将显著下降.整个运行阶段反应器内亚硝态氮积累率达74.6%~97.8%,运行稳定期实现 TN去除率达90%以上,IASBR 系统在低碳氮比下实现了高效稳定的短程硝化反硝化,且不需要额外添加碱度药剂,在处理高氨氮低碳氮比废水上具有优越性.%Stability of short-cut nitrification nitrogen removal performance was studied in a step-feeding, intermittently aerated sequencing batch reactor (IASBR) at 30℃ to treat digested piggery wastewater. Results showed that the nitrogen removal was greatly influenced by the ratio of chemical oxygen demand (COD) to total nitrogen (TN) in the influent. Nitrite nitrogen kept accumulating up to 800 mg.L - 1 when the influent COD/ TN ratio was 0. 8 ± 0. 2, and the removal rates of TN, ammonium nitrogen and total organic carbon (TOC) were only 18. 3% ± 12. 2% , 84. 2% ± 10. 3% and 60. 7% ± 10. 7% , respectively. By contrast, as the influent COD/TN ratio was increased to 2. 4 ± 0. 5, the accumulated concentration of nitrite nitrogen sharply decreased from 800 mg.L - 1 to below 10 mg.L - 1 , and the removal rates

  17. 分批补料及缺氮培养对小球藻油脂产量的影响%Effects of Fed-batch and Nitrogen-deficient Culture on Lipid Yield of Chlorella sp.

    Institute of Scientific and Technical Information of China (English)

    葛珍珍; 王杰; 余晓斌


    目的 为了实现小球藻的高密度及高产油培养。方法 通过分析分批培养过程中藻细胞的生长曲线,葡萄糖消耗曲线,pH及溶氧变化曲线,以小球藻进行分批补料,待藻细胞达到一定的高密度后再进行缺氮培养以富集细胞内的油脂。结果 经过4次分批补料,小球藻的生物量达到了65.25g/L,然后进行缺氮培养12h,然后进行缺氮培养12h,小球藻的油脂含量由42.75%提高到63.82%,油脂含量达43.47g/L.结论 合理的分批补料明显地提高了小球藻的生物量。缺氮培养进一步提高了小球藻的油脂含量。%[Objective] This study was to realize high-density culture of Chlorella sp. as well as the culture with high lipid yield. [Method] Through analyzing the growth curve of Chlorella sp. cells, dextrose consumption curve, change curves of pH and dissolved oxygen, a fed-batch culture was conducted, followed by a nitrogen-deficient culture aiming at accumulating the lipids in Chlorella sp. cells when a high density of Chlorella sp. cells was obtained. [Result] After four batches of feeding were pro- vided, the biomass of Chlorella sp. reached up to 65.25 g/L, and the lipid content increased from 42.75% to 63.82% in Chlorella sp. cells, with the yield of 43.37 g/L in the following 12 hours of nitrogen-deficient culture. [Conclusion] Reasonable fed- batch can significantly improve the biomass of Chlorella sp., and the nitrogen-defi- cient culture further raises the lipid yield of Chlorella sp.

  18. 法夫酵母产虾青素的反复分批及反复分批补料发酵%Repeated batch and fed-batch process for astaxanthin production by Phaffia rhodozyma

    Institute of Scientific and Technical Information of China (English)

    肖安风; 倪辉; 李利君; 蔡慧农


    A comparative study of batch and repeated batch process was carried out for astaxanthin fermentation of Phaffia rhodozyma to develop a more economical method for astaxanthin industrial production. In shaking flask fermentation, the change of biomass and astaxanthin production was studied to compare the five-day cycle with four-day cycle of repeated batch culture of P. thodozyma. Astaxanthin production increased at first and then decreased subsequently in seven cycles, yet the yield of astaxanthin in the next six cycles remains higher than that of the first cycle. Comparing the average production of astaxanthin in the seven cycles, four-day cycle performed even better than five-day cycle. Subsequently, a repeated fed-batch process was used in a 5-1 bioreactor. The experimental data showed that biomass and astaxanthin production of the second batch could reach the level of the first batch, no matter that the carbon source was glucose or hydrolysis sugar of starch. This result showed that this strain had good stability, and thus repeated batch and fed-batch process could be applied in astaxanthin fermentation for economical purpose.%以生物量和虾青素产量为指标,考察法夫酵母多批次半连续培养产虾青素的稳定性.实验结果显示,在摇瓶上分别以4 d和5 d为周期反复分批培养法夫酵母,虾青素产量呈现先增加再下降的趋势,但第2代至第7代虾青素产量仍高于第 1代,并且4 d为周期的虾青素平均产量略高于5 d的.在5 L罐法夫酵母进行反复分批补料发酵中,不管是补加30%的葡萄糖还是补加30%的淀粉水解糖,第2个批次发酵的生物量和虾青素产量均达到第1个批次的水平,表明菌种稳定性较好.

  19. High-titer lactic acid production from NaOH-pretreated corn stover by Bacillus coagulans LA204 using fed-batch simultaneous saccharification and fermentation under non-sterile condition. (United States)

    Hu, Jinlong; Zhang, Zhenting; Lin, Yanxu; Zhao, Shumiao; Mei, Yuxia; Liang, Yunxiang; Peng, Nan


    Lactic acid (LA) is an important chemical with various industrial applications. Non-food feedstock is commercially attractive for use in LA production; however, efficient LA fermentation from lignocellulosic biomass resulting in both high yield and titer faces technical obstacles. In this study, the thermophilic bacterium Bacillus coagulans LA204 demonstrated considerable ability to ferment glucose, xylose, and cellobiose to LA. Importantly, LA204 produces LA from several NaOH-pretreated agro stovers, with remarkably high yields through simultaneous saccharification and fermentation (SSF). A fed-batch SSF process conducted at 50°C and pH 6.0, using a cellulase concentration of 30 FPU (filter paper unit)/g stover and 10 g/L yeast extract in a 5-L bioreactor, was developed to produce LA from 14.4% (w/w) NaOH-pretreated non-sterile corn stover. LA titer, yield, and average productivity reached 97.59 g/L, 0.68 g/g stover, and 1.63 g/L/h, respectively. This study presents a feasible process for lignocellulosic LA production from abundant agro stovers.

  20. 微量营养素对玉米酵母流加培养的影响%Effect ofmicronutrients on fed-batch culture of yeast on maize medium

    Institute of Scientific and Technical Information of China (English)

    李竹生; 张新伟; 宋娜; 牛芳方


    The effects of different amounts of micronutrients on the feeding rate of sugar solution, dissolved oxygen, yeast cell concentration and yeast cell growth during the fed-batch culture of yeast on maize medium were studied. It was showed that the optimal amount of the micronutrients were as follows: CaCl2 28.8mg/L, FeSO4 14.4mg/L, thiamine hydrochloride 4.8mg/L, biotin 0.12mg/L, D-calcium pantothenate 6.4mg/L and myoinositol 120mg/L. The yield of yeast had increase by 80.9% with the addition of micronutrients.%文中研究了微量营养素的不同添加量对玉米酵母流加培养过程中糖液流加速率、溶氧量、酵母细胞浓度、酵母细胞生长率的变化,得出微量营养素的添加量为CaCl2 28.8mg/L,FeSO4 14.4mg/L,盐酸硫氨4.Smg/L,生物素0.12mg/L,D-泛酸钙6.4mg/L,肌醇120mg/L,玉米酵母细胞的产率提高了80.9%.

  1. Towards advanced aeration modelling: from blower to bubbles to bulk. (United States)

    Amaral, Andreia; Schraa, Oliver; Rieger, Leiv; Gillot, Sylvie; Fayolle, Yannick; Bellandi, Giacomo; Amerlinck, Youri; Mortier, Séverine T F C; Gori, Riccardo; Neves, Ramiro; Nopens, Ingmar


    Aeration is an essential component of aerobic biological wastewater treatment and is the largest energy consumer at most water resource recovery facilities. Most modelling studies neglect the inherent complexity of the aeration systems used. Typically, the blowers, air piping, and diffusers are not modelled in detail, completely mixed reactors in a series are used to represent plug-flow reactors, and empirical correlations are used to describe the impact of operating conditions on bubble formation and transport, and oxygen transfer from the bubbles to the bulk liquid. However, the mechanisms involved are very complex in nature and require significant research efforts. This contribution highlights why and where there is a need for more detail in the different aspects of the aeration system and compiles recent efforts to develop physical models of the entire aeration system (blower, valves, air piping and diffusers), as well as adding rigour to the oxygen transfer efficiency modelling (impact of viscosity, bubble size distribution, shear and hydrodynamics). As a result of these model extensions, more realistic predictions of dissolved oxygen profiles and energy consumption have been achieved. Finally, the current needs for further model development are highlighted.

  2. Aeration equipment for small depths (United States)

    Sluše, Jan; Pochylý, František


    Deficit of air in water causes complications with cyanobacteria mainly in the summer months. Cyanobacteria is a bacteria that produces poison called cyanotoxin. When the concentration of cyanobacteria increases, the phenomena "algal bloom" appears, which is very toxic and may kill all the organisms. This article describes new equipment for aeration of water in dams, ponds and reservoirs with small depth. This equipment is mobile and it is able to work without any human factor because its control is provided by a GPS module. The main part of this equipment consists of a floating pump which pumps water from the surface. Another important part of this equipment is an aerator where water and air are blended. Final aeration process runs in the nozzles which provide movement of all this equipment and aeration of the water. Simulations of the flow are solved by multiphase flow with diffusion in open source program called OpenFOAM. Results will be verified by an experiment.

  3. Process Optimization on Micro-Aeration Supply for High Production Yield of 2,3-Butanediol from Maltodextrin by Metabolically-Engineered Klebsiella oxytoca. (United States)

    Chan, Sitha; Jantama, Sirima Suvarnakuta; Kanchanatawee, Sunthorn; Jantama, Kaemwich


    An optimization process with a cheap and abundant substrate is considered one of the factors affecting the price of the production of economical 2,3-Butanediol (2,3-BD). A combination of the conventional method and response surface methodology (RSM) was applied in this study. The optimized levels of pH, aeration rate, agitation speed, and substrate concentration (maltodextrin) were investigated to determine the cost-effectiveness of fermentative 2,3-BD production by metabolically-engineered Klebsiella oxytoca KMS005. Results revealed that pH, aeration rate, agitation speed, and maltodextrin concentration at levels of 6.0, 0.8 vvm, 400 rpm, and 150 g/L respectively were the optimal conditions. RSM also indicated that the agitation speed was the most influential parameter when either agitation and aeration interaction or agitation and substrate concentration interaction played important roles for 2,3-BD production by the strain from maltodextrin. Under interim fed-batch fermentation, 2,3-BD concentration, yield, and productivity were obtained at 88.1±0.2 g/L, 0.412±0.001 g/g, and 1.13±0.01 g/L/h respectively within 78 h.

  4. Wind-powered dugout aeration

    Energy Technology Data Exchange (ETDEWEB)

    Buchanan, B. [Alberta Agriculture, Barrhead, AB (Canada); Chang, J. [Engineering Services, Edmonton, AB (Canada)


    A review is presented of past and present use of wind power on Alberta farms, concentrating on the merits of wind-powered aeration systems for improving water quality in farm dugouts. Dugout water quality is seriously affected by nutrient-rich sediments causing excessive algae and plant growth. If dissolved oxygen is not maintained anaerobic decomposition begins, resulting in black, smelly water. Aeration assures an adequate level of dissolved oxygen to control taste and odor and maintains good water quality. There are two common means of aerating dugouts from windmills: use of a floating mechanical type aerator, and a bank-mounted windmill and diaphragm-type pump. Bank-mounted windmill aerators were studied as they were considered to have the most potential for aerating dugouts. Windmill monitoring was carried out on a farm near Manning, Alberta using a Koenders windmill (12 blade rotor). Tests showed that the windmill maintained the dissolved oxygen levels near saturation, and averaged ca 1.0 cubic feet of air pumped per minute. Operating pressure was 5 psi, windmill starting speed was 12 km/h wind, and stopping speed was 8 km/h winds. Tests were also carried out on a Breeze-1 windmill, a 3 blade airplane propeller type windmill. The system average 3.3 cubic feet of air per minute, and started at very low wind speeds of 5-8 km/h. 2 figs.

  5. Aeration effect on Spirulina platensis growth and γ-linolenic acid production


    Srinivasa Reddy Ronda; Chandra Sekhar Bokka; Chandrika Ketineni; Binod Rijal; Prasada Rao Allu


    The influence of aeration on algal growth and gamma-linolenic acid (GLA) production in a bubble column photobioreactor was investigated. Studies were performed in a 20-L reactor at different aeration rates (0.2– 2.5 vvm). Static, continuous, and periodic operation of air resulted in 41.9%, 88.4%, and 108% air saturation of dissolved oxygen, for which the corresponding values of GLA were 2.3, 6.5, and 7.5 mg·g-1 dry cell weight, respectively. An increase in the aeration rate from 0.2 to 2.5 vv...

  6. Winery Wastewater Treatment Applying Aerated Submerged

    Directory of Open Access Journals (Sweden)

    Alessandra Pellizzaro Bento


    Full Text Available The winery wastewater usually shows conditions of low pH, high organic loads and concentrations of carbon, nitrogen and phosphorus that are inappropriate for biologic treatment. The purpose of this research was to apply the technology of aerated submerged biofilter (ASB for the winery effluent treatment during the harvest (ASB 1 and non harvest (ASB 2 at lab scale. Therefore, two up flow biofilter built on glass (5 liters volume were installed. The nutrient balance of the winery wastewater was adjusted and the correction of the pH was done by oyster shell used as filter material. The efficiency removal (COD for the harvest reactor was 90% while for the non harvest was 82%. The oyster shells contributed to an increase on average of 180 mg/L of alkalinity to the BAS 1 and 318 mg/L for the BAS 2. As regards the metals, the average values in the treated effluent to meet iron and zinc is permitted by the environmental standards of Santa Catarina. Under the experimental conditions applied in this research, this kind of reactor has presented potential for the treatment of winery wastewater. However, operational improvements would be required in the reactors to adequate them to the specific management into the wineries.

  7. Cavity length below chute aerators

    Institute of Scientific and Technical Information of China (English)


    It is proved that air entrainment is one of the efficient measures dealing with cavi-tation control for the release works of hydropower projects. There are many factors to be considered in designing a chute aerator. One of the most important factors concerns the cavity length below the aerator,which has outstanding effects on air entrainment against cavitation damage. It is crucial to determine reasonable emergence angle for the calculation of the cavity length. In the present paper the overall effects of structural and hydraulic parameters on the emergence angle of the flow from the aerator were analyzed. Four improved expressions of the emer-gence angle with weight coefficient were investigated through experimental data of 68 points observed from 12 aerators of 6 hydropower projects,of both model and prototype,on the basis of error theory. A method to calculate the cavity length be-low aerators was suggested,which considers overall effects of the above men-tioned parameters. Comparison between the method in this paper and the other five methods of calculating the cavity length showed that the present method is much more reliable than the existing methods while the mean error of the method is less than others.

  8. Cavity length below chute aerators

    Institute of Scientific and Technical Information of China (English)

    WU JianHua; RUAN ShiPing


    It is proved that air entrainment is one of the efficient measures dealing with cavitation control for the release works of hydropower projects. There are many factors to be considered in designing a chute aerator. One of the most important factors concerns the cavity length below the aerator, which has outstanding effects on air entrainment against cavitation damage. It is crucial to determine reasonable emergence angle for the calculation of the cavity length. In the present paper the overall effects of structural and hydraulic parameters on the emergence angle of the flow from the aerator were analyzed. Four improved expressions of the emergence angle with weight coefficient were investigated through experimental data of 68 points observed from 12 aerators of 6 hydropower projects, of both model and prototype, on the basis of error theory. A method to calculate the cavity length below aerators was suggested, which considers overall effects of the above mentioned parameters. Comparison between the method in this paper and the other five methods of calculating the cavity length showed that the present method is much more reliable than the existing methods while the mean error of the method is less than others.

  9. Reactor (United States)

    Evans, Robert M.


    1. A neutronic reactor having a moderator, coolant tubes traversing the moderator from an inlet end to an outlet end, bodies of material fissionable by neutrons of thermal energy disposed within the coolant tubes, and means for circulating water through said coolant tubes characterized by the improved construction wherein the coolant tubes are constructed of aluminum having an outer diameter of 1.729 inches and a wall thickness of 0.059 inch, and the means for circulating a liquid coolant through the tubes includes a source of water at a pressure of approximately 350 pounds per square inch connected to the inlet end of the tubes, and said construction including a pressure reducing orifice disposed at the inlet ends of the tubes reducing the pressure of the water by approximately 150 pounds per square inch.

  10. [Optimization and comparison of nitrogen and phosphorus removal by different aeration modes in oxidation ditch]. (United States)

    Guo, Chang-Zi; Peng, Dang-Cong; Cheng, Xue-Mei; Wang, Dan


    The oxidation ditch operation mode was simulated by sequencing batch reactor (SBR) system with alternate stirring and aeration. The nitrogen and phosphorus removal efficiencies were investigated in two different aeration modes: point aeration and step aeration. Experimental results show that oxygen is dissolved more efficiently in point aeration mode with a longer aerobic region in the same air supply capacity, but dissolved oxygen (DO) utilization efficiency for nitrogen and phosphorus removal is high in step aeration mode. Nitrification abilities of the two modes are equal with ammonia-nitrogen (NH4(+) -N) removal efficiency of 96.68% and 97.03%, respectively. Nitrifier activities are 4.65 and 4.66 mg x (g x h)(-1) respectively. When the ratio of anoxic zones and the aerobic zones were 1, the total nitrogen (TN) removal efficiency of point aeration mode in 2, 4 or 7 partitions was respectively 60.14%, 47.93% and 33.7%. The total phosphorus (TP) removal efficiency was respectively 28.96%, 23.75% and 24.31%. The less the partitions, the higher the nitrogen and phosphorus removal efficiencies, but it is in more favor of TN removal. As for step aeration mode with only one partitioning zone, the TN and TP removal efficiencies are respectively 64.21% and 49.09%, which is better than in point aeration mode, but more conducive to the improvement of TP removal efficiency. Under the condition of sufficient nitrification in step aeration mode, the nitrogen and phosphorus removal is better with the increase of anoxic zone. The removal efficiencies of TN and TP respectively rose to 73.94% and 54.18% when the ratio of anoxic zones and the aerobic zones was increased from 1 : 1 to 1. 8 : 1. As the proportion of anoxic zones was enlarged further, nitrification and operation stability were weakened so as to affect the nitrogen and phosphorus removal efficiencies.

  11. Optimizing aeration rates for minimizing membrane fouling and its effect on sludge characteristics in a moving bed membrane bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, Yousef, E-mail: [Department of Civil and Environmental Engineering, Graduate Faculty of Environment, University of Tehran, No. 25 Qods St., Enghelab Ave., Tehran (Iran, Islamic Republic of); Torabian, Ali, E-mail: [Department of Civil and Environmental Engineering, Graduate Faculty of Environment, University of Tehran, No. 25 Qods St., Enghelab Ave., Tehran (Iran, Islamic Republic of); Mehrdadi, Naser, E-mail: [Department of Civil and Environmental Engineering, Graduate Faculty of Environment, University of Tehran, No. 25 Qods St., Enghelab Ave., Tehran (Iran, Islamic Republic of); Habibi-Rezaie, Mehran, E-mail: [Department of Biotechnology, Faculty of Biology, College of Science, University of Tehran, No. 25 Qods St., Enghelab Ave., Tehran (Iran, Islamic Republic of); Pezeshk, Hamid, E-mail: [Department of Statistics, Faculty of Mathematics and Computer, College of Science, University of Tehran, No. 25 Qods St., Enghelab Ave., Tehran (Iran, Islamic Republic of); Nabi-Bidhendi, Gholam-Reza, E-mail: [Department of Civil and Environmental Engineering, Graduate Faculty of Environment, University of Tehran, No. 25 Qods St., Enghelab Ave., Tehran (Iran, Islamic Republic of)


    Research highlights: {yields} There is an optimum aeration rate in the MBMBR process compartments. {yields} Optimum aeration rate maximizes nutrients removal. {yields} Optimum aeration rate minimizes membrane fouling. {yields} Both aeration rates in MBBR and membrane compartment can affect on membrane permeability. - Abstract: In MBR processes, sufficient aeration is necessary to maintain sustainable flux and to retard membrane fouling. Membrane permeability, sludge characteristics, nutrient removal and biomass growth at various air flow rates in the membrane and moving bed biofilm reactor (MBBR) compartments were studied in a pilot plant. The highest nitrogen and phosphorous removal rates were found at MBBR aeration rates of 151 and 85 L h{sup -1} and a specific aeration demand per membrane area (SAD{sub m}) of 1.2 and 0.4m{sub air}{sup 3} m{sup -2} h{sup -1}, respectively. A linear correlation was found between the amount of attached biofilm and the nutrient removal rate. The aeration rate in the MBBR compartment and SAD{sub m} significantly influenced the sludge characteristics and membrane permeability. The optimum combination of the aeration rate in the MBBR compartment and SAD{sub m} were 151 L h{sup -1} and 0.8-1.2m{sub air}{sup 3}m{sub membrane}{sup -2} h{sup -1}, respectively.

  12. Effect of artificial aeration on the performance of vertical-flow constructed wetland treating heavily polluted river water

    Institute of Scientific and Technical Information of China (English)

    Huiyu Dong; Zhimin Qiang; Tinggang Li; Hui Jin; Weidong Chen


    Three lab-scale vertical-flow constructed wetlands (VFCWs),including the non-aerated (NA),intermittently aerated (IA) and continuously aerated (CA) ones,were operated at different hydraulic loading rates (HLRs) to evaluate the effect of artificial aeration on the treatment efficiency of heavily polluted river water.Results indicated that artificial aeration increased the dissolved oxygen (DO) concentrations in IA and CA,which significantly favored the removal of organic matter and NH4+-N.The DO grads caused by intermittent aeration formed aerobic and anoxic regions in IA and thus promoted the removal of total nitrogen (TN).Although the removal efficiencies of CODcr,NH4+-N and TN in the three VFCWs all decreased with an increase in HLR,artificial aeration enhanced the reactor resistance to the fluctuation of pollutant loadings.The maximal removal efficiencies of CODcr,NH4+-N and total phosphorus (TP) (i.e.,81%,87% and 37%,respectively) were observed in CA at 19 cm/day HLR,while the maximal TN removal (i.e.,57%) was achieved in IA.Although the improvement of artificial aeration on TP removal was limited,this study has demonstrated the feasibility of applying artificial aeration to VFCWs treating polluted eiver water,particularly at a high HLR.

  13. Oxygen demand for the stabilization of the organic fraction of municipal solid waste in passively aerated bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Kasinski, Slawomir, E-mail:; Wojnowska-Baryla, Irena


    Highlights: • The use of an passively aerated reactor enables effective stabilization of OFMSW. • Convective air flow does not inhibit the aerobic stabilization of waste. • The use of an passively aerated reactor reduces the heat loss due to convection. • The volume of supplied air exceeds 1.7–2.88 times the microorganisms demand. - Abstract: Conventional aerobic waste treatment technologies require the use of aeration devices that actively transport air through the stabilized waste mass, which greatly increases operating costs. In addition, improperly operated active aeration systems, may have the adverse effect of cooling the stabilized biomass. Because active aeration can be a limiting factor for the stabilization process, passive aeration can be equally effective and less expensive. Unfortunately, there are few reports documenting the use of passive aeration systems in municipal waste stabilization. There have been doubts raised as to whether a passive aeration system provides enough oxygen to the organic matter mineralization processes. In this paper, the effectiveness of aeration during aerobic stabilization of four different organic fractions of municipal waste in a reactor with an integrated passive ventilation system and leachate recirculation was analyzed. For the study, four fractions separated by a rotary screen were chosen. Despite the high temperatures in the reactor, the air flow rate was below 0.016 m{sup 3}/h. Using Darcy’s equation, theoretical values of the air flow rate were estimated, depending on the intensity of microbial metabolism and the amount of oxygen required for the oxidation of organic compounds. Calculations showed that the volume of supplied air exceeded the microorganisms demand for oxidation and endogenous activity by 1.7–2.88-fold.

  14. Effects of feeding time and organic loading in an anaerobic sequencing batch biofilm reactor (ASBBR) treating diluted whey. (United States)

    Damasceno, Leonardo H S; Rodrigues, José A D; Ratusznei, Suzana M; Zaiat, Marcelo; Foresti, Eugênio


    An investigation was carried out on the performance of an anaerobic sequencing batch biofilm reactor (ASBBR) treating diluted cheese whey when submitted to different feed strategies and volumetric organic loads (VOL). Polyurethane foam cubes were used as support for biomass immobilization and stirring was provided by helix impellers. The reactor with a working volume of 3 L treated 2 L of wastewater in 8-h cycles at 500 rpm and 30 degrees C. The organic loads applied were 2, 4, 8 and 12 g COD L(-1) d(-1), obtained by increasing the feed concentration. Alkalinity was supplemented at a ratio of 50% NaHCO(3)/COD. For each organic load applied three feed strategies were tested: (a) batch operation with 8-h cycle; (b) 2-h fed-batch operation followed by 6-h batch; and (c) 4-h fed-batch followed by 4-h batch. The 2-h fed-batch operation followed by 6-h batch presented the best results for the organic loads of 2 and 4 g COD L(-1) d(-1), whereas the 4-h fed-batch operation followed by 4-h batch presented results slightly inferior for the same organic loads and the best results at organic loads of 8 and 12 g COD L(-1) d(-1). The concentration of total volatile acids varied with fill time. For the higher fill times maximum concentrations were obtained at the end of the cycle. Moreover, no significant difference was detected in the maximum concentration of total volatile acids for any of the investigated conditions. However, the maximum values of propionic acid tended to decrease with increasing fill time considering the same organic load. Microbiological analyses revealed the presence of Methanosaeta-like structures and methanogenic hydrogenotrophic-like fluorescent bacilli. No Methanosarcina-like structures were observed in the samples.

  15. Achieving ethanol-type fermentation for hydrogen production in a granular sludge system by aeration. (United States)

    Zhang, Song; Liu, Min; Chen, Ying; Pan, Yu-Ting


    To investigate the effects of aeration on hydrogen-producing granular system, experiments were performed in two laboratory-scale anaerobic internal circulation hydrogen production (AICHP) reactors. The preliminary experiment of Reactor 1 showed that direct aeration was beneficial to enhancing hydrogen production. After the direct aeration was implied in Reactor 2, hydrogen production rate (HPR) and hydrogen content were increased by 100% and 60%, respectively. In addition, mixed-acid fermentation was transformed into typical ethanol-type fermentation (ETF). Illumina MiSeq sequencing shows that the direct aeration did not change the species of hydrogen-producing bacteria but altered their abundance. Hydrogen-producing bacteria and ethanol-type fermentative bacteria were increased by 24.5% and 146.3%, respectively. Ethanoligenens sp. sharply increased by 162.2% and turned into predominant bacteria in the system. These findings indicated that appropriate direct aeration might be a novel and promising way to obtain ETF and enhance hydrogen production in practical use.

  16. Modelisation of the contribution of sediments in the treatment process case of aerated lagoons. (United States)

    Jupsin, H; Vasel, J L


    In aerated lagoons and even more in stabilization ponds the specific power (W/m3) is not high enough to maintain all the suspended solids in suspension. Some part of the suspended solids (including biomass) settles directly into the reactor and not in the final settling pond. The gradual accumulation of those sediments on the pond bottom affects performance by reducing the pond volume and shortening the Hydraulic Residence Time. However, the role played by these deposits is not restricted to such a physical effect. Far from being inert sediments they are also an important oxygen sink that must be taken into account when designing aerator power and oxygen supply, for example. On the other hand, under aerobic conditions, the upper layer of sediments may contribute to the treatment as a biofilm compartment in the reactor. In aerated lagoon systems another process contributes to the interaction of deposits and the liquid phase: the operating (often sequencing) of aerators may induce a drastic resuspension of deposits. In a 3,000 m3 aerated lagoon we evaluated that 3 tons of deposits were resuspended when aerators were started. Due to those processes we consider that a mathematical model of an aerated lagoon or of a stabilization pond has to take into account the contribution (positive and negative aspects) of deposits in the process. In this paper we propose a model for sediments including production but also biological processes. Simulations of the aerated lagoon with or without the "sediment compartment" demonstrate the effect and the importance of this compartment on the process. Of course a similar approach could be used for facultative or even maturation ponds. The next step would be to include anaerobic activities in the bottom layer.

  17. Study on Cysteine Addition in Fed-Batch Fermentation of S-Adenosylmethionine Production by Saccharomyces Cerevisiae%产腺苷甲硫氨酸酿酒酵母半胱氨酸补料工艺的研究

    Institute of Scientific and Technical Information of China (English)

    夏毅; 杨依顺; 周长林; 汪维云


    /L which was equivalent to reducing sugar feeding as 0. 8 g/L-h in fed-batch,after 16 h then adding 2 mmol/L cysteine,the maximum DCW reached 15. 50 g/L at 26 h and the concentration of SAM was improved to 5. 02 g/L at 34 h in 36 h fermentation. After optimization of fermentation process,concentration of SAM in fermented liquid increased by 43. 8% than using glucose as carbon source without addition of cysteine. In this study, both molasses as carbon source and cysteine addition were helpful to improve the SAM accumulation.


    Institute of Scientific and Technical Information of China (English)

    贾钧辉; 郑宇; 杨青娟; 张艳春; 申雁冰; 王敏


    本论文对生防枯草芽孢杆菌B579补料分批发酵工艺进行了优化,提高了菌体浓度和最终芽孢浓度,为生防菌剂的大规模生产奠定了基础.为获得较高的最终芽孢浓度,分别优化了葡萄糖补加时机、浓度控制范围以及发酵过程pH.利用7L发酵罐,当葡萄糖浓度降至3.0g/L时开始连续补加葡萄糖至3.0-6.0 g/L,发酵过程控制pH为7.0,培养24h菌体浓度达到3.9×1010CFU/mL,继续培养至40h芽孢浓度达到2.8×1010 CFU/mL,分别是分批发酵的7.5倍和7倍.发酵过程葡萄糖浓度对菌体生长和芽孢形成有较大影响,过高的葡萄糖浓度会抑制芽孢的生成,发酵过程控制合适的葡萄糖浓度有利于菌体浓度和芽孢浓度的提高.%In this research, the cell concentration and the final spore concentration were improved by optimizing the fed - batch fermentation process of biocontrol Bacillus subtilis B579, and this study provide the basis for biopesticide production in large scale. For obtaining a higher concentration of spores, the glucose - feed time, controlled glucose concentration and pH of medium was optimized, respectively. In a 7 L fermenter, the glucose was supplemented when its concentration was below 3. 0 g/L and was controlled between 3.0 - 6.0 g/L. The fermentation pH was controlled as 7.0. In this condition, the cell concentration was 3.9 1010CFU/mL after 24 h cultivation and the spore concentration of 2. 8 1010CFU/mL was achieved after 40 h cultivation, respectively, which represent a 7.5 -fold and 7 —fold increasement compared with those of batch fermentation. Glucose concentration showed a significant effect on cell growth and sporulation. It is important to control glucose -concentration for improving cell growth and the final spore concentration, because high concentration of glucose will inhibit the sporulation B. subtilis.

  19. Kinetics of High Cell Density Fed-batch Culture of Recombinant Escherichia coli Producing Human-like Collagen%重组大肠杆菌分批-补料高密度发酵生产类人胶原蛋白的动力学

    Institute of Scientific and Technical Information of China (English)

    花秀夫; 范代娣; 骆艳娥; 张兮; 施惠娟; 米钰; 马晓轩; 尚龙安; 赵桂仿


    The kinetics of batch and fed-batch cultures of recombinant Escherichia coli producing human-like collagen was investigated. In the batch culture, a kinetic model of a simple growth-association system was concluded without consideration of cell endogeneous metabolism. The cell lag time, the maximum specific growth rate and growth rates were set at (0.15, 0.2, 0.25h-1) by the method of pseudo-exponential feeding, and the expressions for the specific rate of substrate consumption, the growth kinetics and the product formation kinetics of each phase spectively. The model predictions are in good agreement with the experimental data.

  20. Aeration effect on Spirulina platensis growth and γ-Linolenic acid production (United States)

    Ronda, Srinivasa Reddy; Bokka, Chandra Sekhar; Ketineni, Chandrika; Rijal, Binod; Allu, Prasada Rao


    The influence of aeration on algal growth and gamma-linolenic acid (GLA) production in a bubble column photobioreactor was investigated. Studies were performed in a 20-L reactor at different aeration rates (0.2– 2.5 vvm). Static, continuous, and periodic operation of air resulted in 41.9%, 88.4%, and 108% air saturation of dissolved oxygen, for which the corresponding values of GLA were 2.3, 6.5, and 7.5 mg·g-1 dry cell weight, respectively. An increase in the aeration rate from 0.2 to 2.5 vvm enhanced both the specific growth rate and GLA content under periodic sparging in the bicarbonate medium. With a 6-fold increase in the aeration rate, the GLA content of the alga increased by 69.64% (5.6–9.5 mg· g-1 dry cell weight). In addition, the total fatty acid (TFA) content in dry biomass increased from 2.22% to 4.41%, whereas the algae maintained a constant GLA to TFA ratio within the aeration rate tested. The dependence of GLA production on the aeration rate was explained by interrelating the GLA production rate with the specific growth rate using the Luedeking and Piret mixed growth model. PMID:24031799

  1. Aeration effect on Spirulina platensis growth and γ-linolenic acid production

    Directory of Open Access Journals (Sweden)

    Srinivasa Reddy Ronda


    Full Text Available The influence of aeration on algal growth and gamma-linolenic acid (GLA production in a bubble column photobioreactor was investigated. Studies were performed in a 20-L reactor at different aeration rates (0.2-2.5 vvm. Static, continuous, and periodic operation of air resulted in 41.9%, 88.4%, and 108% air saturation of dissolved oxygen, for which the corresponding values of GLA were 2.3, 6.5, and 7.5 mg·g-1 dry cell weight, respectively. An increase in the aeration rate from 0.2 to 2.5 vvm enhanced both the specific growth rate and GLA content under periodic sparging in the bicarbonate medium. With a 6-fold increase in the aeration rate, the GLA content of the alga increased by 69.64% (5.6-9.5 mg· g-1 dry cell weight. In addition, the total fatty acid (TFA content in dry biomass increased from 2.22% to 4.41%, whereas the algae maintained a constant GLA to TFA ratio within the aeration rate tested. The dependence of GLA production on the aeration rate was explained by interrelating the GLA production rate with the specific growth rate using the Luedeking and Piret mixed growth model.

  2. Aeration effect on Spirulina platensis growth and γ-Linolenic acid production. (United States)

    Ronda, Srinivasa Reddy; Bokka, Chandra Sekhar; Ketineni, Chandrika; Rijal, Binod; Allu, Prasada Rao


    The influence of aeration on algal growth and gamma-linolenic acid (GLA) production in a bubble column photobioreactor was investigated. Studies were performed in a 20-L reactor at different aeration rates (0.2- 2.5 vvm). Static, continuous, and periodic operation of air resulted in 41.9%, 88.4%, and 108% air saturation of dissolved oxygen, for which the corresponding values of GLA were 2.3, 6.5, and 7.5 mg·g(-1) dry cell weight, respectively. An increase in the aeration rate from 0.2 to 2.5 vvm enhanced both the specific growth rate and GLA content under periodic sparging in the bicarbonate medium. With a 6-fold increase in the aeration rate, the GLA content of the alga increased by 69.64% (5.6-9.5 mg· g(-1) dry cell weight). In addition, the total fatty acid (TFA) content in dry biomass increased from 2.22% to 4.41%, whereas the algae maintained a constant GLA to TFA ratio within the aeration rate tested. The dependence of GLA production on the aeration rate was explained by interrelating the GLA production rate with the specific growth rate using the Luedeking and Piret mixed growth model.

  3. Intermittent Aeration in Biological Treatment of Wastewater

    Directory of Open Access Journals (Sweden)

    H. Doan


    Full Text Available Problem statement: E-coating process is widely used to provide a protective coating layer on metal parts in the automotive and metal finishing industry. The wastewater from the coating process contains organic compounds that are used in the cleaning, pretreatment and coating steps. Organic pollutants can be removed biologically. In the aerobic biological treatment, water aeration accounts for a significant portion of the total operating cost of the treatment process. Intermittent aeration is thus of benefit since it would reduce the energy consumption in the wastewater treatment. In the present study, wastewater from an electro-coating process was treated biologically using a packed column as an aerator where the wastewater was aerated by a countercurrent air flow. The objective was to obtain an optimum aeration cycle. Approach: Intermittent aeration time was varied at different preset cycles. An operational optimum of the aeration time (or air-water contacting time in the column was determined from the BOD5 removal after a certain treatment period. For continuous aeration of the wastewater, the air-liquid contacting time in the column was 52 min for 24 h of treatment. A unit energy consumption for pumping liquid and air, which was defined as the energy consumption per percent BOD5 removed, was used as a criterion to determine the optimum contacting time. Results: Optimum air-liquid contacting times were found to be about 38, 26 and 22 min for the treatment times of 24, 48 and 72 h, consecutively. This indicates that 27-58% saving on the unit energy consumption can be achieved using intermittent aeration of the wastewater. On the basis of the overall BOD5 removal, 17% and 23% savings in energy were observed with the intermittent aeration as compared to the continuous aeration of the wastewater for 48 and 72 h. Conclusion: The results obtained indicate that an appropriate intermittent aeration cycle can bring about a substantial energy saving

  4. Purging dissolved oxygen by nitrogen bubble aeration (United States)

    Yamashita, Tatsuya; Ando, Keita


    We apply aeration with nitrogen microbubbles to water in order to see whether oxygen gas originally dissolved in the water at one atmosphere is purged by the aeration. The concentration of dissolved oxygen (DO) is detected by a commercial DO meter. To detect the dissolved nitrogen (DN) level, we observe the growth of millimetre-sized bubbles nucleated at glass surfaces in contact with the aerated water and compare it with the Epstein-Plesset theory that accounts for DO/DN diffusions and the presence of the glass surfaces. Comparisons between the experiment and the theory suggest that the DO in the water are effectively purged by the aeration.

  5. BIOVENTING - Groundwater Aeration by Discontinuous Oxygen Gas Pulse Injections (United States)

    Schirmer, M.


    to cis,cis-2-chloromuconate is demonstrated. In order to examine effects of enhanced natural attenuation, initiated by aeration, on geohydraulics, discontinuous oxygen gas injections were simulated in two flow-through systems. Design, processing, and first results of our ongoing research are presented for the automatized lab column system CAMERA and a pilot field reactor at a MCB polluted site at Bitterfeld, Germany. Bubble mediated oxygen gas transfer is briefly discussed in light of the model presented recently by Holocher (Environ. Sci. Technol., 2003. 37: p. 1337-1343).

  6. A simplified analysis of granule behavior in ASBR and UASB reactors treating low-strength synthetic wastewater

    Directory of Open Access Journals (Sweden)

    R. G. Veronez


    Full Text Available This work presents an analysis of the changes observed in granule characteristics of sludge in the treatment of synthetic wastewater at a concentration of about 500 mgCOD/L in batch, fed-batch (ASBR and continuous (UASB bench-scale reactors under similar experimental conditions. Physical and microbiological properties of the granules were characterized as average particle size and sedimentation time and by optical and epifluorescence microscopy. Several samples were analyzed in order to identify the morphologies. Granules from sequencing batch and fed-batch reactors, either with or without mechanical mixing, did not undergo any physical or microbiological changes. However, during the experiment granules from the UASB reactor agglomerated due to the formation and accumulation of a viscous material, probably of microbial origin, when operated at low superficial velocities (0.072, 0.10 and 0.19 m/h. When the superficial velocity was increased to 8.0-10.0 m/h by means of liquid-phase recirculation, the granules from the UASB reactor underwent flocculation and the microbiological characteristics changed in such a way that the equilibrium of microbial diversity in the inoculum was not maintained. As a result, the only reactor that maintained efficiency and good solids retention during the assays was the ASBR, showing that there is a correlation between maintenance of microbial diversity and operating mode in the case of anaerobic treatment of low-strength wastewaters.

  7. Structure, composition, and strength of nitrifying membrane-aerated biofilms

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Smets, Barth F.


    Membrane-aerated biofilm reactors (MABRs) are a novel technology based on the growth of biofilms on oxygen-permeable membranes. Hereby, MABRs combine all the advantages of biofilm growth with a more flexible and efficient control of the oxygen load. In the present work, flow cell operation...... to achieve full nitrification revealed a significantly different structure of nitrifying MABR biofilms with respect to its co-diffusion counterparts reported in the literature (up to now assumed to have similar properties). Different levels of shear stress and oxygen loadings during MABR operation also...... affected these biofilm parameters. Furthermore, reactor operation at higher oxygen loads resulted in an increase of the biofilm cohesiveness, which depended on the EPS mass in the biofilms and the type of stress applied (more cohesive against normal than shear stresses). The EPS in the strongest biofilms...


    Institute of Scientific and Technical Information of China (English)

    周艾文; 金腊华; 魏臻


    Using bio-ceramic as a filler in MBBR reactor to purify southen town's low-concentration domestic sewage, the effects of the influential factors by different hydraulic load and organic load on a MBBR reactor had been studied, and further explored the boundary conditions of system operation.The results revealed that: the bio-ceramic MBBR could affordable 0.9 m3·m-2·h-1 of the hydraulic loading, the removal rate of COD, NH4+-N, TN reached to 64.71%, 58.12%, 37.54%; HRT was 6 h,the system could withstand less than 1.0 kg·m-3·d-1 of organic loading shock, the effluent of COD,NH4+-N, TN could meet l-class criteria of urban wastewater treatment plant emission standards (GB 18918-2002).%利用生物陶粒作为悬浮填料移动床(MBBR)的填料处理南方城镇低含量污染物生活污水,考察了水力负荷、有机负荷对反应器运行性能的影响,进一步探究系统运行边界条件.结果表明,生物陶粒MBBR最高可承受0.9m3·m-2·h-1的水力负荷,COD、NH4+-N、TN去除率分别为64.71%、58.12%、37.54%;HRT为6 h条件下,系统可承受低于1.0kg·m-3·d-1的有机负荷冲击,出水COD和NN4+-N、TN的质量浓度均可达到GB 18918-2002一级标准.

  9. Enhanced organics and nitrogen removal in batch-operated vertical flow constructed wetlands by combination of intermittent aeration and step feeding strategy. (United States)

    Fan, Jinlin; Liang, Shuang; Zhang, Bo; Zhang, Jian


    Oxygen and carbon source supply are usually insufficient in subsurface flow constructed wetlands. Simultaneous removal of organic pollutants and nitrogen in five batch-operated vertical flow constructed wetlands under different operating conditions was investigated. Alternate aerobic and anaerobic regions were created well with intermittent aeration. Four-month experiments showed that the wetland-applied intermittent aeration combined with step feeding strategy (reactor E) greatly improved the removal of organics, ammonium nitrogen (NH4-N), and total nitrogen (TN) simultaneously, which were 97, 96, and 82%, respectively. It was much better than non-aerated reactors A and B and outperformed intermittently aerated reactor D without step feeding. Continuous aeration (reactor C) significantly enhanced the organics removal and nitrification, but it limited the TN removal (29%) seriously as a result of low denitrification level, and the high operation cost remained a question. The effect of plants was confirmed in this study, and the monitoring data showed that the plants could grow normally. Intermittent aeration as well as step feeding had no obvious influence on the growth of wetland plants in this study.


    Institute of Scientific and Technical Information of China (English)

    RUAN Shi-ping; WU Jian-hua; WU Wei-wei; XI Ru-ze


    The selection of the configuration and size of an aerator was of importance for a tunnel spillway under the conditions of high speed flows. Experimental investigations were conducted on the effects of entrained air on the tunnel spillway in the Goupitan Project, based on the criterion of gravity similarity and the condition of aerated flow velocity of over 6 m/s, with physical models. The configurations of the aerators were presented of a larger bottom air concentration, to protect the tunnel spillway from cavitation as well as to see no water fills in the grooves.


    Field studies were conducted over several years at municipal wastewater treatment plants employing line pore diffused aeration systems. These studies were designed to produce reliable information on the performance and operational requirements of fine pore devices under process ...


    Institute of Scientific and Technical Information of China (English)


    Aerator is an important device for release works of hydraulic structures with high-speed flow in order to protect them from cavitation damage. This kind of protecting effect is related closely to cavity length below the aerator, while the cavity length is dominated by the emergence angle over the aerator. Therefore it is crucial to determine this angle accurately. In the present paper the affecting intensities of flow depth and the fluctuating velocity on this angle were analyzed through two introduced parameters. Furthermore, the improved expressions of emergence angle estimation, for both ramp-type and step-type aerators, were presented by means of 68 sets of experimental data from 6 projects based on error theory. The results showed that the present method has higher accuracy than the previously reported methods.

  13. Oxygen transfer in circular surface aeration tanks. (United States)

    Rao, Achanta Ramakrishna; Patel, Ajey Kumar; Kumar, Bimlesh


    Surface aeration systems employed in activated sludge plants are the most energy-intensive units of the plants and typically account for a higher percentage of the treatment facility's total energy use. The geometry of the aeration tank imparts a major effect on the system efficiency. It is said that at optimal geometric conditions, systems exhibits the maximum efficiency. Thus the quantification of the optimal geometric conditions in surface aeration tanks is needed. Optimal geometric conditions are also needed to scale up the laboratory result to the field installation. In the present work, experimental studies have been carried out on baffled and unbaffled circular surface aeration tanks to ascertain the optimal geometric conditions. It is found that no optimal geometric conditions exist for the liquid/water depth in circular surface aeration tanks; however, for design purposes, a standard value has been assumed. Based on the optimal geometric conditions, a scale-up equation has been developed for the baffled circular surface aeration tanks.

  14. Management of microbial community composition, architecture and performance in autotrophic nitrogen removing bioreactors through aeration regimes

    DEFF Research Database (Denmark)

    Mutlu, A. Gizem

    intensification in single-stage reactors. Single-stage reactors require biofilms or bioaggregates to provide the complementary redox niches for the aerobic and anaerobic bacteria that are required for nitritation and anaerobic ammonium oxidation (anammox), respectively. The nitritation/anammox process might...... evaluated as an approach to manipulate the microbial community structure, to reach efficient nitrogen removal performance, and to reduce nitrous oxide emissions from single-stage nitritation/anammox reactors. First, an iterative protocol was developed to diagnose reactor performance based on process...... stoichiometry and to propose actions to enhance performance based on discretized aeration parameters, restricted by an overall ratio of oxygen to ammonium loading. The protocol was successfully applied on two bioaggregate-based single-stage sequencing batch reactors during start-up; while recovering from major...

  15. Paper and board mill effluent treatment with the combined biological-coagulation-filtration pilot scale reactor. (United States)

    Afzal, Muhammad; Shabir, Ghulam; Hussain, Irshad; Khalid, Zafar M


    Pilot scale reactor based on combined biological-coagulation-filtration treatments was designed and evaluated for the treatment of effluent from a paper and board mill. Biological treatment by fed batch reactor (FBR) followed by coagulation and sand filtration (SF) resulted in a total COD and BOD reduction of 93% and 96.5%, respectively. A significant reduction in both COD (90%) and BOD (92%) was also observed by sequencing batch reactor (SBR) process followed by coagulation and filtration. Untreated effluent was found to be toxic, whereas the treated effluents by either of the above two processes were found to be non-toxic when exposed to the fish for 72h. The resultant effluent from FBR-coagulation-sand filtration system meets National Environmental Quality Standards (NEQS) of Pakistan and can be discharged into the environment without any risks.

  16. Influence of aeration on volatile sulfur compounds (VSCs) and NH3 emissions during aerobic composting of kitchen waste. (United States)

    Zhang, Hongyu; Li, Guoxue; Gu, Jun; Wang, Guiqin; Li, Yangyang; Zhang, Difang


    This study investigates the influence of aeration on volatile sulfur compounds (VSCs) and ammonia (NH3) emissions during kitchen waste composting. Aerobic composting of kitchen waste and cornstalks was conducted at a ratio of 85:15 (wet weight basis) in 60L reactors for 30days. The gas emissions were analyzed with force aeration at rates of 0.1 (A1), 0.2 (A2) and 0.3 (A3) L (kgDMmin)(-1), respectively. Results showed that VSCs emission at the low aeration rate (A1) was more significant than that at other two rates (i.e., A2 and A3 treatment), where no considerable emission difference was observed. On the other hand, NH3 emission reduced as the aeration rate decreased. It is noteworthy that the aeration rate did not significantly affect the compost quality. These results suggest that the aeration rate of 0.2L (kgDMmin)(-1) may be applied to control VSCs and NH3 emissions during kitchen waste composting.


    Directory of Open Access Journals (Sweden)

    Solomin E.E


    Full Text Available This article describes the technical advantages and economic benefits of the ice-covered pool aeration plants consuming power from renewable energy sources. We made a comparative evaluation of the wave flow-aeration method and other methods of pool aeration. We showed the indexes and the characteristics of the wave flow-maker for aeration of ice-covered pools on the territory of Russia. We also made calculations of the economic benefits of aeration plants using the devices converting renewable energy. The project can be scaled and extended to the territory of the CIS, Europe, USA and Canada in the changing climate conditions and the variety of feed reservoirs around the world.

  18. L-lysine Production by Phased pH Feedback Fed-batch Fermentation Based on High Throughput Bioreactor%基于高通量生物反应器和分段式pH反馈补料技术发酵生产L-赖氨酸

    Institute of Scientific and Technical Information of China (English)

    梁恒宇; 林海龙; 孙际宾; 卢宗梅; 陈博; 孙村民


    利用高通量生物反应器,以在线监测的pH为直接反馈补料信号,以葡萄糖、氨水和硫酸铵混合溶液为流加液进行补料发酵生产L-赖氨酸。当流加液中葡萄糖含量均为360 g/L时,对流加液中硫酸铵添加量、氨水添加量和发酵培养基接种量进行了单因素优化,确定一段式流加培养最佳条件为氨水添加量180 mL/L、硫酸铵添加量40 g/L、接种量为5 mL/45 mL培养基。分段式补料培养研究结果表明,在赖氨酸发酵的不同阶段采用不同配比的流加液进行分段式培养可以进一步提高赖氨酸的产酸浓度,同时降低残糖和残铵氮含量。三段式pH反馈补料发酵可以将赖氨酸产酸浓度提高到(56.85±0.98) g/L,与二段式和一段式相比分别提高8.65%和23.64%。%L-lysine fed-batch fermentations were carried out in high throughput bioreactors, and pH was used as a direct feedback signal to feed the solution mixed with glucose, ammonia water and ammonium sulfate. The single factor optimization experiments on addition amount of ammonia water, ammonium sulfate and inoculation quantity, when glucose level in feeding liquid was 360 g/L, were developed. The best composition of one section fermentation feeding liquid was ammonia water 180 mL/L, ammonium sulfate 40 g/L and inoculation quantity 5 mL/45 mL. The results of phased fed-batch showed that the yield of L-lysine was increased meanwhile the level residual sugar and ammonium was decreased, when feeding liquid with different composition was used at different fermentation stages. The production was enhanced by (56.85 ±0.98) g/L at the end of tri-section pH feedback fed-batch fermentation, which was increased by 8.65%and 23.64%respectively compared with bi-section and one section styles.

  19. Stability of anaerobic reactors under micro-aeration conditions

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Polanco, M.; Perez, S.; Diaz, I.; Fernandez-Polanco, F.


    Oxidation of sulphide in anaerobic bioreactors by introducing limited amounts of oxygen provides a relatively simple strategy for reducing the levels of sulphite in anaerobic digesters (biogas and effluent). The introduction of limited amounts of air is a general practice in agricultural anaerobic digesters, it is estimated that worldwide over 3.000 units are operated under such conditions. (Author)

  20. Soil Aeration deficiencies in urban sites (United States)

    Weltecke, Katharina; Gaertig, Thorsten


    Soil aeration deficiencies in urban sites Katharina Weltecke and Thorsten Gaertig On urban tree sites reduction of soil aeration by compaction or sealing is an important but frequently underestimated factor for tree growth. Up to 50% of the CO2 assimilated during the vegetation period is respired in the root space (Qi et al. 1994). An adequate supply of the soil with oxygen and a proper disposal of the exhaled carbon dioxide are essential for an undisturbed root respiration. If the soil surface is smeared, compacted or sealed, soil aeration is interrupted. Several references show that root activity and fine root growth are controlled by the carbon dioxide concentration in soil air (Qi et al.1994, Burton et al. 1997). Gaertig (2001) found that decreasing topsoil gas permeability leads to reduced fine root density and hence to injury in crown structure of oaks. In forest soils a critical CO2 concentration of more than 0.6 % indicates a bad aeration status (Gaertig 2001). The majority of urban tree sites are compacted or sealed. The reduction of soil aeration may lead to dysfunctions in the root space and consequently to stress during periods of drought, which has its visible affects in crown structure. It is reasonable to assume that disturbances in soil aeration lead to reduced tree vigour and roadworthiness, resulting in high maintenance costs. The assessment of soil aeration in urban sites is difficult. In natural ecosystems the measurement of gas diffusivity and the gas-chromatical analysis of CO2 in soil air are accepted procedures in analyzing the state of aeration (Schack-Kirchner et al. 2001, Gaertig 2001). It has been found that these methods can also be applied for analyzing urban sites. In particular CO2 concentration in the soil atmosphere can be considered as a rapidly assessable, relevant and integrating indicator of the aeration situation of urban soils. This study tested the working hypothesis that soil aeration deficiencies lead to a decrease of fine


    Institute of Scientific and Technical Information of China (English)

    MA Fei; WU Jian-hua


    The flow regimes below an aerator influence directly the air entrainment and the cavitation damage control.Based on the theoretical considerations,the experiments of the aerator for a discharge tunnel were conducted,and the relationships between the flow regime and hydraulic and geometric parameters were investigated.The results showed that,there are two kinds of threshold values for the flow regime conversions.One is Fr1-2 standing for the conversion from the fully filled cavity to the partially filled cavity,and the other is Fr2-3 which shows the change from the partially filled cavity to the net air cavity.Two empirical expressions were obtained for the conversions of the flow regimes,which can be used in the designs of the aerators.

  2. Sawdust discharge rate from aerated hoppers

    Institute of Scientific and Technical Information of China (English)

    Pan Chen; Zhulin Yuan; Chien-Song Chyang; Fu-Xiong Zhuan


    This paper presents a numerical and experimental study of the discharge rate of sawdust from an aerated hopper as an important parameter in many industrial processes involving the handling of other granular materials. Numerical experiments are conducted by means of an Eulerian-Eulerian approach coupled with the kinetic theory of granular flow (KTGF). Emphasis is given to the effects of particle size, hopper outlet width, hopper half angle, aeration height and air flow rate. The results show that the discharge rate is significantly affected by hopper outlet width, particle size and air flow rate, but is not sensitive to the hopper half angle and aeration height: increasing hopper outlet width or air flow rate increases discharge rate, while increasing particle size decreases discharge rate. Close agreement between numerical predictions and experimental results is obtained.

  3. Shear reinforced beams in autoclaved aerated concrete

    DEFF Research Database (Denmark)

    Cornelius, Thomas


    Shear behaviour in concrete materials is very well documented, for normal density concrete materials. In this paper results of various tests on low density concrete materials like aerated autoclaved concrete (in the following denoted aircrete) will be presented and analyzed for different combinat......Shear behaviour in concrete materials is very well documented, for normal density concrete materials. In this paper results of various tests on low density concrete materials like aerated autoclaved concrete (in the following denoted aircrete) will be presented and analyzed for different...


    Institute of Scientific and Technical Information of China (English)

    DONG Zhi-yong; LU Yang-quan; JU Wen-jie; CAI Xin-ming; DING Chun-sheng


    This experimental investigation was systematically conducted with the aid of a non-circulating water tunnel in the Hydraulics Laboratory at Zhejiang University of Technology in China.The test velocity is between 20m/s and 40m/s.The least air concentration to prevent cavitation erosion lies between 1.7% and 4.5%.Pressure waveforms with and without aeration in cavitation and cavitation erosion regions were measured.Time-averaged pressure profiles with and without aeration were compared.Pressure characteristics corresponding to least air concentration to prevent cavitation erosion in cavitation and cavitation erosion regions were analyzed.

  5. Optimized aeration strategies for nitrogen and phosphorus removal with aerobic granular sludge. (United States)

    Lochmatter, Samuel; Gonzalez-Gil, Graciela; Holliger, Christof


    Biological wastewater treatment by aerobic granular sludge biofilms offers the possibility to combine carbon (COD), nitrogen (N) and phosphorus (P) removal in a single reactor. Since denitrification can be affected by suboptimal dissolved oxygen concentrations (DO) and limited availability of COD, different aeration strategies and COD loads were tested to improve N- and P-removal in granular sludge systems. Aeration strategies promoting alternating nitrification and denitrification (AND) were studied to improve reactor efficiencies in comparison with more classical simultaneous nitrification-denitrification (SND) strategies. With nutrient loading rates of 1.6 gCOD L(-1) d(-1), 0.2 gN L(-1) d(-1), and 0.08 gP L(-1) d(-1), and SND aeration strategies, N-removal was limited to 62.3 ± 3.4%. Higher COD loads markedly improved N-removal showing that denitrification was limited by COD. AND strategies were more efficient than SND strategies. Alternating high and low DO phases during the aeration phase increased N-removal to 71.2 ± 5.6% with a COD loading rate of 1.6 gCOD L(-1) d(-1). Periods of low DO were presumably favorable to denitrifying P-removal saving COD necessary for heterotrophic N-removal. Intermittent aeration with anoxic periods without mixing between the aeration pulses was even more favorable to N-removal, resulting in 78.3 ± 2.9% N-removal with the lowest COD loading rate tested. P-removal was under all tested conditions between 88 and 98%, and was negatively correlated with the concentration of nitrite and nitrate in the effluent (r = -0.74, p < 0.01). With low COD loading rates, important emissions of undesired N2O gas were observed and a total of 7-9% of N left the reactor as N2O. However, N2O emissions significantly decreased with higher COD loads under AND conditions.

  6. Package plant of extended aeration membrane bioreactors: a study on aeration intensity and biofouling control. (United States)

    Ujang, Z; Ng, S S; Nagaoka, H


    Biofouling control is important for effective process of membrane bioreactor (MBR). In this study, phenomena of biofouling for immersed type extended aeration MBR with two different anti-fouling aeration intensities were studied through a laboratory set up. The objectives of this study were (a) to observe biofouling phenomena of MBR that operates under different anti-fouling bubbling intensity, and simultaneously monitors performance of the MBR in organic carbon and nutrients removal; (b) to compare effectiveness of detergent and detergent-enzyme cleaning solutions in recovering biofouled membranes that operated in the extended aeration MBR. For MBR, which operated under continuous anti-fouling aeration, deposition and accumulation of suspended biomass on membrane surface were prohibited. However, flux loss was inescapable that biofilm layer was the main problem. Membrane cleaning was successfully carried out with detergent-enzyme mixture solutions and its effectiveness was compared with result from cleaning with just detergent solution.

  7. Aerated bunker discharge of fine dilating powders

    NARCIS (Netherlands)

    Ouwerkerk, C.E.D.; Molenaar, H.J.; Frank, M.J.W.


    The discharge rate of coarse powders (mean particle size 500 ¿m) from bunkers without aeration can be described by both empirical relations and theoretical models. In the case of small particles the discharge rate is largely overestimated. As the powder dilates during flow a negative pressure gradie

  8. Soil Aeration Variability as Affected by Reoxidation

    Institute of Scientific and Technical Information of China (English)



    The interplay between soil physical parameters during the recovery from anoxic stresses (reoxidation) is largely unrecognized.This study was conducted to characterise the soil aeration status and derive correlations between variable aeration factors during reoxidation.Surface layers (0-30 cm) of three soil types,Haplic Phaeozem,Mollic Gleysol,and Eutric Cambisol (FAO soil group),were selected for analysis.The moisture content was determined for a range of pF values (0,1.5,2.2,2.7,and 3.2),corresponding to the available water for microorganisms and plant roots.The variability of a number of soil aeration parameters,such as water potential (pF),air-filled porosity (Eg),oxygen diffusion rate (ODR),and redox potential (Eh),were investigated.These parameters were found to be interrelated in most cases.There were significant (P < 0.001) negative correlations of pF,Eg,and ODR with Eh.A decrease in water content as a consequence of soil reoxidation was manifested by an increase in the values of aeration factors in the soil environment.These results contributed to understanding of soil redox processes during recovery from flooding and might be useful for development of agricultural techniques aiming at soil reoxidation and soil fertility optimisation.

  9. Evaluation of oxygen transfer parameters of fine-bubble aeration system in plug flow aeration tank of wastewater treatment plant

    Institute of Scientific and Technical Information of China (English)

    Xiaohong Zhou; Yuanyuan Wu; Hanchang Shi; Yanqing Song


    Knowledge of the oxygen mass transfer of aerators under operational conditions in a full-scale wastewater treatment plant (WWTP) is meaningful for the optimization of WWTP,however,scarce to best of our knowledge.Through analyzing a plug flow aeration tank in the Lucun WWTP,in Wuxi,China,the oxygenation capacity of fine-bubble aerators under process conditions have been measured insitu using the off-gas method and the non-steady-state method.The off-gas method demonstrated that the aerators in different corridors in the aeration tank of WWTP had significantly different oxygen transfer performance; furthermore,the aerators in the same corridor shared almost equal oxygen transfer performance over the course of a day.Results measured by the two methods showed that the oxygen transfer performance of fine-bubble aerators in the aeration tank decreased dramatically compared with that in the clean water.The loss of oxygen transfer coefficient was over 50% under low-aeration conditions (aeration amount < 0.67 Nm3/hr).However,as the aeration amount reached 0.96 Nm3/hr,the discrepancy of oxygen transfer between the process condition and clean water was negligible.The analysis also indicated that the non-steady-state and off-gas methods resulted in comparable estimates of oxygen transfer parameters for the aerators under process conditions.

  10. Evaluation of oxygen transfer parameters of fine-bubble aeration system in plug flow aeration tank of wastewater treatment plant. (United States)

    Zhou, Xiaohong; Wu, Yuanyuan; Shi, Hanchang; Song, Yanqing


    Knowledge of the oxygen mass transfer of aerators under operational conditions in a full-scale wastewater treatment plant (WWTP) is meaningful for the optimization of WWTP, however, scarce to best of our knowledge. Through analyzing a plug flow aeration tank in the Lucun WWTP, in Wuxi, China, the oxygenation capacity of fine-bubble aerators under process conditions have been measured in-situ using the off-gas method and the non-steady-state method. The off-gas method demonstrated that the aerators in different corridors in the aeration tank of WWTP ha d significantly different oxygen transferperformance; furthermore, the aerators in the samecorridor shared almost equal oxygen transfer performance over the course of a day. Results measured by the two methods showed that the oxygen transfer performance of fine-bubble aerators in the aeration tank decreased dramatically compared with that in the clean water. The loss of oxygen transfer coefficient was over 50% under low-aeration conditions (aeration amount aeration amount reached 0.96 Nm3/hr, the discrepancy of oxygen transfer between the process condition and clean water was negligible. The analysis also indicated that the non-steady-state and off-gas methods resulted in comparable estimates of oxygen transfer parameters for the aerators under process conditions.

  11. Optimization of chemical reactor feed by simulations based on a kinetic approach. (United States)

    Guinand, Charles; Dabros, Michal; Roduit, Bertrand; Meyer, Thierry; Stoessel, Francis


    Chemical incidents are typically caused by loss of control, resulting in runaway reactions or process deviations in different stages of the production. In the case of fed-batch reactors, the problem generally encountered is the accumulation of heat. This is directly related to the temperature of the process, the reaction kinetics and adiabatic temperature rise, which is the maximum temperature attainable in the event of cooling failure. The main possibility to control the heat accumulation is the use of a well-controlled adapted feed. The feed rate can be adjusted by using reaction and reactor dynamic models coupled to Model Predictive Control. Thereby, it is possible to predict the best feed profile respecting the safety constraints.

  12. CFD model of an aerating hydrofoil (United States)

    Scott, D.; Sabourin, M.; Beaulieu, S.; Papillon, B.; Ellis, C.


    Improving water quality in the tailrace below hydroelectric dams has become a priority in many river systems. In warm climates, water drawn by the turbine from deep in a reservoir can be deficient in dissolved oxygen (DO), a critical element in maintaining a healthy aquatic ecosystem. Many different solutions have been proposed in order to increase the DO levels in turbine discharge, including: turbine aeration systems (adding air to the water through either the turbine hub, the periphery or through distributed aeration in the runner blades); bubble diffusers in the reservoir or in the tailrace; aerating weirs downstream of the dams; and surface water pumps in the reservoir near the dam. There is a significant potential to increase the effectiveness of these solutions by improving the way that oxygen is introduced into the water; better distributions of bubbles will result in better oxygen transfer. In the present study, a two-phase Computational Fluid Dynamics model has been formulated using a commercial code to study the distribution of air downstream of a simple aerating hydrofoil. The two-phase model uses the Eulerian-Eulerian approach. Appropriate relations are used to model the interphase forces, including the Grace drag force model, the Favre averaged drag force and the Sato enhanced eddy viscosity. The model is validated using experimental results obtained in the water tunnel at the University of Minnesota's Saint Anthony Falls Laboratory. Results are obtained for water velocities between 5 and 10 m/s, air flow rates between 0.5 and 1.5 sL/min and for angles of attack between 0° and -8°. The results of this study show that the CFD model provides a good qualitative comparison to the experimental results by well predicting the wake location at the different flow rates and angles of attack used.

  13. Probing control of fed-batch cultivations: analysis and tuning

    DEFF Research Database (Denmark)

    Åkesson, Mats Fredrik; Hagander, P.; Axelsson, J.P.


    Production of various proteins can today be made using genetically modified Escherichia coli bacteria. In cultivations of E. coli it is important to avoid accumulation of the by- product acetate. Formation of acetate occurs when the specific glucose uptake exceeds a critical value and can...... be avoided by a proper feeding strategy. A difficulty is that the critical glucose uptake often is poorly known and even time varying. We here analyze an approach for control of glucose feeding that enables feeding at the critical glucose uptake without prior information. The key idea is to superimpose...... a probing signal to the feed rate in order to obtain information used to determine if the feed rate should be increased or decreased. The main contribution of this paper is to derive guidelines for tuning of the probing controller. A sufficient condition for stability is presented. By introducing...

  14. Cavity filling water control below aerator devices

    Institute of Scientific and Technical Information of China (English)

    钱尚拓; 吴建华; 马飞; 徐建荣; 彭育; 汪振


    With the rapid development of high dam projects within China, the dragon-drop-tail spillway tunnel is introduced and widely used. In view of the high water head and the large flow velocity on the dragon-drop-tail section, aerator devices are usually placed for the cavitation damage control. For the device placed in its initial position, it is a serious concern to design a suitable flow regime of the cavity and to control the cavity filling water due to the large flow depth and the low Froude number through this aera-tor. In this study, the relationships between the geometries of the aerator device and the jet impact angle of the lower trajectory of the flow are theoretically analyzed with/without a local slope. Nine test cases with different geometries are designed, the effectiveness of the filling water control is experimentally investigated under different operation conditions, and two criteria of the local slope design are proposed. It is concluded that the cavity flow regime and the filling water can be improved if a small impact angle and some sui-table geometries of the local slope are designed.

  15. Supersonic Injection of Aerated Liquid Jet (United States)

    Choudhari, Abhijit; Sallam, Khaled


    A computational study of the exit flow of an aerated two-dimensional jet from an under-expanded supersonic nozzle is presented. The liquid sheet is operating within the annular flow regime and the study is motivated by the application of supersonic nozzles in air-breathing propulsion systems, e.g. scramjet engines, ramjet engines and afterburners. The simulation was conducted using VOF model and SST k- ω turbulence model. The test conditions included: jet exit of 1 mm and mass flow rate of 1.8 kg/s. The results show that air reaches transonic condition at the injector exit due to the Fanno flow effects in the injector passage. The aerated liquid jet is alternately expanded by Prandtl-Meyer expansion fan and compressed by oblique shock waves due to the difference between the back (chamber) pressure and the flow pressure. The process then repeats itself and shock (Mach) diamonds are formed at downstream of injector exit similar to those typical of exhaust plumes of propulsion system. The present results, however, indicate that the flow field of supersonic aerated liquid jet is different from supersonic gas jets due to the effects of water evaporation from the liquid sheet. The contours of the Mach number, static pressure of both cases are compared to the theory of gas dynamics.

  16. Uso de lagoa aerada facultativa como polimento do reator anaeróbio de manta de lodo UASB no tratamento de dejetos de suínos em escala laboratorial The efficiency of an aerated pond used for treating the effluent of an UASB reactor (upflow anaerobic sludge blanket reactor treating swine manure in a lab-scale system

    Directory of Open Access Journals (Sweden)

    Fernanda Ribeiro do Carmo


    Full Text Available As atividades agroindustriais têm se voltado não somente para o aumento da produtividade, mas também para a conservação do meio ambiente. A suinocultura é, sem dúvida, uma das atividades agroindustriais mais poluidoras, principalmente no Estado de Minas Gerais. Sendo assim, objetivou-se desenvolver e operar uma Lagoa Aerada Facultativa (LAF em escala de bancada (laboratorial, e como polimento de um Reator Anaeróbio de Manta de Lodo (UASB, visando a tratar os dejetos de suínos com máxima eficiência e custo mínimo. O experimento foi conduzido no Laboratório de Análise de Água do Departamento de Engenharia (LAADEG da Universidade Federal de Lavras (UFLA, sendo composto por um tanque de acidificação e equalização (TAE, um reator anaeróbio de manta de lodo (UASB e uma lagoa aerada facultativa (LAF para polimento. As análises fisico-químicas realizadas foram: pH, DBO5, DQO T, Sólidos Totais (fixos e voláteis, Temperatura, Nitrogênio, Fósforo, Alcalinidade e Acidez Total. A unidade LAF mostrou uma eficiência média de 83 e 42% de DQO T e Nitrogênio Total, respectivamente. O sistema proporcionou remoção média de 93, 84 e 85% de DQO T, DBO5 e Sólidos Totais Voláteis, respectivamente.Nowadays the agro-industry activities have not only focused its direction to the production increasing, but also, to the environmental preservation. The swine production is amo doubt, an activity, which can be considered, one of the most pollutants, mainly in the Minas Gerais State (BRAZIL. Therefore, this research aimed at developing and operating an Upflow Anaerobic Sludge Blanket Reactor (UASB, followed by an Aerobic Facultative Pound (AFP (Lab-Scale, with the objective of treating the liquid effluent originated from swine with the maximum efficiency and lower costs. The experiment was carried out in the Laboratory of Water Analysis of the Engineering Department of the Federal University of Lavras (UFLA. The system was assembled with an

  17. Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hogerton, John


    This pamphlet describes how reactors work; discusses reactor design; describes research, teaching, and materials testing reactors; production reactors; reactors for electric power generation; reactors for supply heat; reactors for propulsion; reactors for space; reactor safety; and reactors of tomorrow. The appendix discusses characteristics of U.S. civilian power reactor concepts and lists some of the U.S. reactor power projects, with location, type, capacity, owner, and startup date.

  18. Effects of aeration method and aeration rate on greenhouse gas emissions during composting of pig feces in pilot scale. (United States)

    Jiang, Tao; Li, Guoxue; Tang, Qiong; Ma, Xuguang; Wang, Gang; Schuchardt, Frank


    The aim of this study was to uncover ways to mitigate greenhouse gas (GHG) emissions and reduce energy consumption during the composting process. We assessed the effects of different aeration rates (0, 0.18, 0.36, and 0.54 L/(kg dry matter (dm)·min)) and methods (continuous and intermittent) on GHG emissions. Pig feces and corn stalks were mixed at a ratio of 7:1. The composting process lasted for 10 weeks, and the compost was turned approximately every 2 weeks. Results showed that both aeration rate and method significantly affected GHG emissions. Higher aeration rates increased NH3 and N2O losses, but reduced CH4 emissions. The exception is that the CH4 emission of the passive aeration treatment was lower than that of the low aeration rate treatment. Without forced aeration, the CH4 diffusion rates in the center of the piles were very low and part of the CH4 was oxidized in the surface layer. Intermittent aeration reduced NH3 and CH4 losses, but significantly increased N2O production during the maturing periods. Intermittent aeration increased the nitrification/denitrification alternation and thus enhanced the N2O production. Forced aeration treatments had higher GHG emission rates than the passive aeration treatment. Forced aeration accelerated the maturing process, but could not improve the quality of the end product. Compared with continuous aeration, intermittent aeration could increase the O2 supply efficiency and reduced the total GHG emission by 17.8%, and this reduction increased to 47.4% when composting was ended after 36 days.

  19. Inverse problem of bottom slope design for aerator devices

    Institute of Scientific and Technical Information of China (English)

    吴建华; 樊博; 许唯临


    Air entrainment is an effective approach to protect release works from cavitation damage. The traditional method of aera-tor device designs is that, for given flow conditions, the geometries of the aerator device are designed and then the effects are experi-mentally tested for cavitation damage control. The present paper proposes an inverse problem method of determining the bottom slopes in front of and behind an aerator if the requirements of air entrainment, flow conditions and some of aerator geometric para-meters are given. An RBF neural network model is developed and the relevant bottom slopes are calculated in different conditions of flow and geometry on the basis of the data of 19 aerator devices from different discharge tunnels with safe operation. The case study shows that the methodology provides an effective way to design aerator devices under given target conditions.

  20. Enhanced Nutrient Removal with Upflow Biological Aerated Filter for Reclaimed Water

    Institute of Scientific and Technical Information of China (English)

    WANG Hai-dong; PENG Yong-zhen; WANG Shu-ying; ZHANG Yan-ping


    A two-stage upflow biological aerated filter was designed as an advanced treatment process to optimize the operating parameters and study the correlative factors influencing the efficiency of nitrification, denitrification and phosphorus removal. The experimental results showed that the final effluent of the two-stage upflow biofilter process operated in series could meet the stringent limits of the reclaimed water for the total nitrogen of 2mg/L, and total phosphorus of 0.3mg/L. The high treatment efficiency allowed the reactor operating at very high hydraulic loadings and reaching nearly complete nitrification and denitrification.


    Directory of Open Access Journals (Sweden)



    Full Text Available Particle Image Velocimetry (PIV has been developed to measure the typical two-phase flow of various work conditions in Membrane Micropore Aeration Bioreactor (MMAB. The fluid phase is separated out using image processing techniques, which provides accurate measurements for the Bioreactor’s flow field, and makes it possible for quantitative analysis of the momentum exchange, heat exchange and the process of micro-admixture. The experimental method PIV used in this paper can preferably measure the complex flow in the reactor and initiates a new approach for the bioreactor design which mainly depends on experience at present.

  2. Role of macrophyte and effect of supplementary aeration in up-flow constructed wetland-microbial fuel cell for simultaneous wastewater treatment and energy recovery. (United States)

    Oon, Yoong-Ling; Ong, Soon-An; Ho, Li-Ngee; Wong, Yee-Shian; Dahalan, Farrah Aini; Oon, Yoong-Sin; Lehl, Harvinder Kaur; Thung, Wei-Eng; Nordin, Noradiba


    This study investigates the role of plant (Elodea nuttallii) and effect of supplementary aeration on wastewater treatment and bioelectricity generation in an up-flow constructed wetland-microbial fuel cell (UFCW-MFC). Aeration rates were varied from 1900 to 0mL/min and a control reactor was operated without supplementary aeration. 600mL/min was the optimum aeration flow rate to achieve highest energy recovery as the oxygen was sufficient to use as terminal electron acceptor for electrical current generation. The maximum voltage output, power density, normalized energy recovery and Coulombic efficiency were 545.77±25mV, 184.75±7.50mW/m(3), 204.49W/kg COD, 1.29W/m(3) and 10.28%, respectively. The variation of aeration flow rates influenced the NO3(-) and NH4(+) removal differently as nitrification and denitrification involved conflicting requirement. In terms of wastewater treatment performance, at 60mL/min aeration rate, UFCW-MFC achieved 50 and 81% of NO3(-) and NH4(+) removal, respectively. E. nuttallii enhanced nitrification by 17% and significantly contributed to bioelectricity generation.

  3. Relationship between respiratory quotient, nitrification, and nitrous oxide emissions in a forced aerated composting process

    Energy Technology Data Exchange (ETDEWEB)

    Tsutsui, Hirofumi, E-mail: [Research and Education Faculty, Natural Sciences Cluster, Agriculture Unit, Kochi University, B200 Monobe, Nankoku, Kochi (Japan); Japan Science and Technology Agency, CREST (Japan); Fujiwara, Taku [Research and Education Faculty, Natural Sciences Cluster, Agriculture Unit, Kochi University, B200 Monobe, Nankoku, Kochi (Japan); Japan Science and Technology Agency, CREST (Japan); Inoue, Daisuke [Department of Health Science, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara-Minami, Kanagawa (Japan); Japan Science and Technology Agency, CREST (Japan); Ito, Ryusei [Department of Environmental Engineering, Graduate School of Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo, Hokkaido (Japan); Japan Science and Technology Agency, CREST (Japan); Matsukawa, Kazutsugu [Research and Education Faculty, Multidisciplinary Science Cluster, Life and Environmental Medicine Science Unit, Kochi University, B200 Monobe, Nankoku, Kochi (Japan); Japan Science and Technology Agency, CREST (Japan); Funamizu, Naoyuki [Department of Environmental Engineering, Graduate School of Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo, Hokkaido (Japan); Japan Science and Technology Agency, CREST (Japan)


    Highlights: • RQ can be an indicator of N{sub 2}O emission in forced aerated composting process. • Emission of N{sub 2}O with nitrification was observed with RQ decrease. • Mass balances demonstrated the RQ decrease was caused by nitrification. • Conversion ratio of oxidized ammonia and total N to N{sub 2}O were ∼2.7%. - Abstract: We assessed the relationship between respiratory quotient (RQ) and nitrification and nitrous oxide (N{sub 2}O) emission in forced aerated composting using lab-scale reactors. Relatively high RQ values from degradation of readily degradable organics initially occurred. RQ then stabilized at slightly lower values, then decreased. Continuous emission of N{sub 2}O was observed during the RQ decrease. Correlation between nitrification and N{sub 2}O emission shows that the latter was triggered by nitrification. Mass balances demonstrated that the O{sub 2} consumption of nitrification (∼24.8 mmol) was slightly higher than that of CO{sub 2} emission (∼20.0 mmol), indicating that the RQ decrease was caused by the occurrence of nitrification. Results indicate that RQ is a useful index, which not only reflects the bioavailability of organics but also predicts the occurrence of nitrification and N{sub 2}O emission in forced aerated composting.

  4. Thermophilic aeration of cattle slurry with whey and/or jam wastes. (United States)

    Heinonen-Tanski, Helvi; Kiuru, Tapio; Ruuskanen, Juhani; Korhonen, Kari; Koivunen, Jari; Ruokojärvi, Arja


    Thermophilic aeration of cattle slurry and food industrial by-products was studied with the aim to improve hygienic qualities of the slurry so that it could be used as a safe fertiliser for berries to be eaten raw. We also wanted to study if the process would be energetically favourable in an arctic climate. Cattle slurry alone or with whey and/or jam waste was treated. The tests were done in a well heat-insulated reactor with a 10 m(3) volume. Temperature increases up to over 70 degrees C could be recorded in 19 days even though some processes were carried out in winter time when the ambient air temperature was less than 0 degrees C. The heat energy formed was higher than the electrical energy needed to carry out the aeration. The hygienic qualities of the aerated product were good with only minor nitrogen losses. The end product could be useful as a fertiliser and soil improving compound to increase the organic matter content of agricultural soil. Cattle slurry alone was well suited as the raw material if attaining a high temperature was the main goal. A part of slurry could be replaced with food-industrial side products. Whey waste suited better for co-composting than jam waste but the mixture of whey, jam waste, and slurry was optimal for composting.

  5. Membrane-aerated biofilms for high rate biotreatment: performance appraisal, engineering principles, scale-up, and development requirements. (United States)

    Syron, Eoin; Casey, Eoin


    Diffusion of the electron acceptor is the rate controlling step in virtually all biofilm reactors employed for aerobic wastewater treatment. The membrane-aerated biofilm reactor (MABR) is a technology that can deliver oxygen at high rates and transfer efficiencies, thereby enhancing the biofilm activity. This paper provides a comparative performance rate analysis of the MABR in terms of its application for carbonaceous pollutant removal, nitrification/denitrification and xenobiotic biotreatment. We also describe the mechanisms influencing process performance in the MABR and the inter-relationships between these factors. The challenges involved in scaling-up the process are discussed with recommendations for prioritization of research needs.


    A study of the effects of aeration and storage on the oxidation of arsenic(III) was undertaken at three utilities in the US to establish the engineering significance of aeration as a potential pre-treatment method for arsenic removal. The results of this study clearly establish t...

  7. Enhancement of ultrasonic disintegration of sewage sludge by aeration. (United States)

    Zhao, He; Zhang, Panyue; Zhang, Guangming; Cheng, Rong


    Sonication is an effective way for sludge disintegration, which can significantly improve the efficiency of anaerobic digestion to reduce and recycle use of sludge. But high energy consumption limits the wide application of sonication. In order to improve ultrasonic sludge disintegration efficiency and reduce energy consumption, aeration was introduced. Results showed that sludge disintegration efficiency was improved significantly by combining aeration with ultrasound. The aeration flow rate, gas bubble size, ultrasonic density and aeration timing had impacts on sludge disintegration efficiency. Aeration that used in later stage of ultrasonic irradiation with low aeration flow rate, small gas bubbles significantly improved ultrasonic disintegration sludge efficiency. At the optimal conditions of 0.4 W/mL ultrasonic irradiation density, 30 mL/min of aeration flow rate, 5 min of aeration in later stage and small gas bubbles, ultrasonic sludge disintegration efficiency was increased by 45% and one third of ultrasonic energy was saved. This approach will greatly benefit the application of ultrasonic sludge disintegration and strongly promote the treatment and recycle of wastewater sludge.

  8. Two-phase flow simulation of aeration on stepped spillway

    Institute of Scientific and Technical Information of China (English)

    CHENG Xiangju; LUO Lin; ZHAO Wenqian; LI Ran


    Stepped spillways have existed as escape works for a very long time. It is found that water can trap a lot of air when passing through steps and then increasing oxygen content in water body, so stepped spillways can be used as a measure of re-aeration and to improve water quality of water body. However, there is no reliable theoretical method on quantitative calculation of re-aeration ability for the stepped spillways. By introducing an air-water two-phase flow model, this paper used k-ε turbulence model to calculate the characteristic variables of free-surface aeration on stepped spillway. The calculated results fit with the experimental results well. It supports that the numerical modeling method is reasonable and offers firm foundation on calculating re-aeration ability of stepped spillways. The simulation approach can provide a possible optimization tool for designing stepped spillways of more efficient aeration capability.


    Institute of Scientific and Technical Information of China (English)

    NI Han-gen; LI Xin; ZHOU Jing; JIN Qiao


    The formulae used to calculate the friction in the non-uniform flow chute were examined with the experimental data, and the results show that the accuracy of the formula is enough for engineering applications. A comparison between the results of friction respectively from the uniform flow assumption and the non-uniform flow approximation indicates that the former is an order of magnitude larger than the latter in the case of steep chute. The hydraulic drag on a steep chute with aerators was measured on the hydraulic model directly and the coefficient of the aerator effect on the drag was obtained. The variation patterns of the wall shear just downstream of the aerators were investigated and the mechanism of the increase in the drag by aerator were analyzed qualitatively with the measured water-depths just downstream the aerators.

  10. Analysis of Process Gases and Trace Contaminants in Membrane-Aerated Gaseous Effluent Streams. (United States)

    Coutts, Janelle L.; Lunn, Griffin Michael; Meyer, Caitlin E.


    In membrane-aerated biofilm reactors (MABRs), hollow fibers are used to supply oxygen to the biofilms and bulk fluid. A pressure and concentration gradient between the inner volume of the fibers and the reactor reservoir drives oxygen mass transport across the fibers toward the bulk solution, providing the fiber-adhered biofilm with oxygen. Conversely, bacterial metabolic gases from the bulk liquid, as well as from the biofilm, move opposite to the flow of oxygen, entering the hollow fiber and out of the reactor. Metabolic gases are excellent indicators of biofilm vitality, and can aid in microbial identification. Certain gases can be indicative of system perturbations and control anomalies, or potentially unwanted biological processes occurring within the reactor. In confined environments, such as those found during spaceflight, it is important to understand what compounds are being stripped from the reactor and potentially released into the crew cabin to determine the appropriateness or the requirement for additional mitigation factors. Reactor effluent gas analysis focused on samples provided from Kennedy Space Center's sub-scale MABRs, as well as Johnson Space Center's full-scale MABRs, using infrared spectroscopy and gas chromatography techniques. Process gases, such as carbon dioxide, oxygen, nitrogen, nitrogen dioxide, and nitrous oxide, were quantified to monitor reactor operations. Solid Phase Microextraction (SPME) GC-MS analysis was used to identify trace volatile compounds. Compounds of interest were subsequently quantified. Reactor supply air was examined to establish target compound baseline concentrations. Concentration levels were compared to average ISS concentration values and/or Spacecraft Maximum Allowable Concentration (SMAC) levels where appropriate. Based on a review of to-date results, current trace contaminant control systems (TCCS) currently on board the ISS should be able to handle the added load from bioreactor systems without the need

  11. Effect of aeration rate on composting of penicillin mycelial dreg. (United States)

    Chen, Zhiqiang; Zhang, Shihua; Wen, Qinxue; Zheng, Jun


    Pilot scale experiments with forced aeration were conducted to estimate effects of aeration rates on the performance of composting penicillin mycelial dreg using sewage sludge as inoculation. Three aeration rates of 0.15, 0.50 and 0.90L/(min·kg) organic matter (OM) were examined. The principal physicochemical parameters were monitored during the 32day composting period. Results showed that the higher aeration rate of 0.90L/(min·kg) did not corresponded to a longer thermophilic duration and higher rates of OM degradation; but the lower aeration rate of 0.15L/(min·kg) did induce an accumulation of NH4(+)-N contents due to the inhibition of nitrification. On the other hand, aeration rate has little effect on degradation of penicillin. The results show that the longest phase of thermophilic temperatures≥55°C, the maximum NO3(-)-N content and seed germination, and the minimum C/N ratio were obtained with 0.50L/(min·kg) OM. Therefore, aeration rates of 0.50L/(min·kg) OM can be recommended for composting penicillin mycelial dreg.

  12. Interaction between afternoon aeration and tilapia stocking density

    Directory of Open Access Journals (Sweden)

    Francisco Roberto dos Santos Lima


    Full Text Available The present study aimed at determining the effects of the interaction between afternoon aeration and stocking density of Nile tilapia on variables of water and soil quality, growth performance and effluent quality. The experiment was a 3 x 2 factorial randomized block design, with three stocking densities (8, 12 and 16 fish per tank or 43.5, 65.3, and 87.0 g m-3 under two mechanical aeration regimes, absence (control; three replicates and afternoon aeration (four replicates. The afternoon aeration was carried out from 12.00 a.m. up to 18.00 p.m. from the 3rd week until the end of the experiment. Except for the 16-fish tanks, the lowest concentrations of total ammonia nitrogen were found in the tanks with higher density of fish provided with afternoon aeration. Nitrite concentrations were lower in the 8-fish aerated tanks. In intensive system, the afternoon aeration of the fish culture water is an efficient management of water quality to remove gaseous ammonia and nitrite from water, but it is not appropriate to remove hydrogen sulfide from water.

  13. Research on Aeration Systems Efficiency in Small Wastewater Treatment Plants


    Ala Sokolova


    Large amount of small wastewater treatment plants does not work properly. One of the reasons could be wrong design of the aeration system. Therefore, the aim of this research is to analyse the performance of two aeration systems used in Lithuanian small wastewater treatment plants. Both aeration systems are designed for the following parameters: 4 PE and 0,8 m3/d wastewater flow. These data correspond to the oxygen requirement of 40,9 g O2/h. Summarizing the results of the research, it was fo...

  14. 重组大肠杆菌BL21(pUC19 Hyp)产羟脯氨酸的补料分批培养%Production of hydroxyproline by fed-batch culture of novel recombinant Escherichia coli BL21(pUC19-Hyp)

    Institute of Scientific and Technical Information of China (English)

    袁春伟; 何艳春; 张胜利; 张震宇


    利用自主构建的组成型重组大肠杆菌BL21( pUC19 Hyp)为出发菌株,运用间歇流加、指数流加和恒速流加3种流加C源的方式进行补料分批培养。结果表明:在装液量为4 L的7 L发酵罐中,以0�30 g/min恒速流加为最优,在发酵44 h时,羟脯氨酸的质量浓度达到最高,为42�50 g/L,脯氨酸转化率为81%,此时细胞干质量为21�33 g/L,残糖质量浓度为0�17 g/L。 L 羟脯氨酸含量与摇瓶发酵时的1�39 g/L相比,提高了大约30倍,比日本株式会社的发酵产量提高了1�50 g/L,发酵过程中糖酸转化率约为4�0∶1。发酵液中的氨基酸分析结果表明,除脯氨酸、羟脯氨酸外的其他氨基酸质量浓度均低于0�1 g/L,发酵液中主要氨基酸为脯氨酸和羟脯氨酸。%The constitutive recombinant Escherichia coli, constructed in our lab, was used as the object of study. Three different ways of carbon source flow: intermittent flow addition, index flow addition and constant speed flow, were used in the process of supplementary fed-batch cultivation in the fermentor. The results showed that the optimal method was constant speed flow with 0�30 g/min. After 44 hours of fermentation, the concentration of L-hydroxyproline was the highest of 42�50 g/L;Conversion of proline was 81%; residual sugar concentration was 0�17 g/L. Compared with shaking flask fermentation with concentration of 1�39 g/L, L-hydroxyproline content increased about 30 times and at the same time. In the process of fermentation, the ratio of glucose consumption and product of L-hydroxyproline was about 4�0∶1. The analysis of amino acids in the fermentation liquid showed proline and L-hydroxyproline were the main amino acids.

  15. N2O emissions from a one stage partial nitrification/anammox process in moving bed biofilm reactors. (United States)

    Yang, Jingjing; Trela, Jozef; Plaza, Elzbieta; Tjus, Kåre


    Nitrous oxide (N2O) emissions from wastewater treatment are getting increased attention because their global warming potential is around 300 times that of carbon dioxide. The aim of the study was to measure nitrous oxide emissions from one stage partial nitrification/anammox (Anaerobic Ammonium Oxidation) reactors, where nitrogen is removed in a biological way. The first part of the experimental study was focused on the measurements of nitrous oxide emissions from two pilot scale reactors in the long term; one reactor with intermittent aeration at 25 °C and the other reactor with continuous aeration at 22-23 °C. The second part of the experiment was done to evaluate the influence of different nitrogen loads and aeration strategies, described by the ratio between the non-aerated and aerated phase and the dissolved oxygen concentrations, on nitrous oxide emissions from the process. The study showed that 0.4-2% of the nitrogen load was converted into nitrous oxide from two reactors. With higher nitrogen load, the amount of nitrous oxide emission was also higher. A larger fraction of nitrous oxide was emitted to the gas phase while less was emitted with the liquid effluent. It was also found that nitrous oxide emissions were similar under intermittent and continuous aeration.


    Microbiologically-based procedures were used to describe biofouling phenomena on fine pore aeration devices and to determine whether biofilm characteristics could be related to diffuser process performance parameters. Fine pore diffusers were obtained from five municipal wastewa...

  17. Comparison of Energy Dissipation with and without Aerators

    Institute of Scientific and Technical Information of China (English)


    Experimental results showed that aerators increase the energy dissipation of the flow in the channel by reducing the velocity coefficient φ in the deflector bucket and the jet-trajectory length, by increasing energy dissipation of the jet flow in the air and the diffusion length of the jet falling into the pool and by reducing the energy intensity of the jet falling into the pool. The energy dissipation prevents wash out downstream.When air is not entrained in the water flow, the aerators act as artificial irregularities in the channel. The energy dissipation due to the aerators in the channel without entrained air is greater than when air is entrained in the water flow.Correlations of the experimental data can be used to estimate the energy dissipation effect of the aerators on the outlet structure for the three test cases.


    Institute of Scientific and Technical Information of China (English)

    DONG Zhi-yong; SU Pei-lan


    This paper presents an experimental investigation and a theoretical analysis of cavitation control by aeration and its compressible characteristics at the flow velocity V=20m/s-50m/s. Pressure waveforms with and without aeration in cavitation region were measured. The variation of compression ratio with air concentration was described, and the relation between the least air concentration to prevent cavitation erosion and flow velocity proposed based on our experimental study. The experimental results show that aeration remarkably increases the pressure in cavitation region, and the corresponding pressure wave exhibits a compression wave/shock wave. The pressure increase in cavitation region of high-velocity flow with aeration is due to the fact that the compression waves/shock wave after the flow is aerated. The compression ratio increases with air concentration rising. The relation between flow velocity and least air concentration to prevent cavitation erosion follows a semi-cubical parabola. Also, the speed of sound and Mach number of high-velocity aerated flow were analyzed.

  19. Effect of aeration on fast gas pressure tests

    Institute of Scientific and Technical Information of China (English)

    CHEN Yu-jia; JIANG Cheng-lin; LI Xiao-wei; TANG Jun; WANG Chen; YANG Fei-long; WANG Fa-kai; ZHANG Chao-jie; DENG Shu-hua


    Given the problem of the long time required for testing gas pressure, we propose a fast-test method in which we used a technique of fast borehole sealing and air replenishing. Based on the characteristics of gas emission from boreholes to be tested, we built a theoretical model for calculating parameters during the process of increasing natural pressure and aeration. Using this model, we investigated the effect of different aeration conditions on velocity of pressure tests. The result shows that: 1) aerating air into boreholes can speed up gas pressure tests and 2) the more similar the pressure of the aerated air to the original gas pressure, the smaller the gas volume absorbed by coal and the shorter the time needed in pressure test. A case study in the Lu'an mining area shows that the time needed for gas pressure test is only 4 h using our method of aeration and 29 h under conditions of increasing natural pressure, saving time by 86.2%. This case study also indicates that, by using the aeration method, only one hour is needed for gas pressure to reach a stable state, which breaks the record of the shortest time needed for gas pressure tests in China.

  20. Fibrous Support Stabilizes Nitrification Performance of a Membrane-Aerated Biofilm: The Effect of Liquid Flow Perturbation

    DEFF Research Database (Denmark)

    Terada, Akihiko; Ito, J; Matsumoto, S


    Nitrification stability and biofilm robustness were examined by comparing a fibrous support membrane-aerated biofilm reactor (FS-MABR), where a woven fibrous support was surrounded on a silicone tube, with an MABR. The overall mass transfer coefficient of oxygen for the FS-MABR, assuming no bound......Nitrification stability and biofilm robustness were examined by comparing a fibrous support membrane-aerated biofilm reactor (FS-MABR), where a woven fibrous support was surrounded on a silicone tube, with an MABR. The overall mass transfer coefficient of oxygen for the FS-MABR, assuming...... liquid flow rate condition was 49% and 75% in the FS-MABR and MABR, exhibiting robust biofilms grown on the fibrous support. The FS-MABR provided more stable nitrification performance than the MABR irrespective of a high liquid flow rate. Both reactors have deteriorated ammonium (NH4+-N) removal without...... a high liquid flow rate condition to eliminate excessive biomass, indicating that regular maintenance is essential to eliminate excessive biofilm from a MABR for nitrification, which potentially acts as a NH4+ diffusion barrier....

  1. Comparison between lab- and full-scale applications of in situ aeration of an old landfill and assessment of long-term emission development after completion. (United States)

    Hrad, Marlies; Gamperling, Oliver; Huber-Humer, Marion


    to high water content of waste and temporarily high water levels within the landfill; limited efficiency of the aeration wells). In addition, material preparation (e.g. sieving, sorting and homogenisation) prior to the emplacement in Landfill Simulation Reactors (LSRs) must be considered when transferring results from lab- to full-scale application.

  2. Biological iron oxidation by Gallionella spp. in drinking water production under fully aerated conditions. (United States)

    de Vet, W W J M; Dinkla, I J T; Rietveld, L C; van Loosdrecht, M C M


    Iron oxidation under neutral conditions (pH 6.5-8) may be a homo- or heterogeneous chemically- or a biologically-mediated process. The chemical oxidation is supposed to outpace the biological process under slightly alkaline conditions (pH 7-8). The iron oxidation kinetics and growth of Gallionella spp. - obligatory chemolithotrophic iron oxidizers - were assessed in natural, organic carbon-containing water, in continuous lab-scale reactors and full-scale groundwater trickling filters in the Netherlands. From Gallionella cell numbers determined by qPCR, balances were made for all systems. The homogeneous chemical iron oxidation occurred in accordance with the literature, but was retarded by a low water temperature (13 °C). The contribution of the heterogeneous chemical oxidation was, despite the presence of freshly formed iron oxyhydroxides, much lower than in previous studies in ultrapure water. This could be caused by the adsorption of natural organic matter (NOM) on the iron oxide surfaces. In the oxygen-saturated natural water with a pH ranging from 6.5 to 7.7, Gallionella spp. grew uninhibited and biological iron oxidation was an important, and probably the dominant, process. Gallionella growth was not even inhibited in a full-scale filter after plate aeration. From this we conclude that Gallionella spp. can grow under neutral pH and fully aerated conditions when the chemical iron oxidation is retarded by low water temperature and inhibition of the autocatalytic iron oxidation.

  3. Microfaunal indicators, Ciliophora phylogeny and protozoan population shifts in an intermittently aerated and fed bioreactor. (United States)

    Ntougias, Spyridon; Tanasidis, Spartakos; Melidis, Paraschos


    Microfauna community structure was examined in the mixed liquor of a bench-scale bioreactor equipped with an intermittent aeration and feeding system. The reactor was operated under an intermittent aeration of 25 min in every 1 h and varying feeding conditions (0.264, 0.403 and 0.773 kg BOD(5)/m(3) d). A total of 14 protozoan and metazoan taxa were identified by microscopic examination. Sessile ciliates, followed by crawling ciliates, were the major protozoan groups under 0.403 kg BOD(5)/m(3) d organic loading conditions, while sessile ciliate population was remarkably increased under an organic loading of 0.773 kg BOD(5)/m(3) d. Principal Component Analysis and Pearson correlation coefficient tests were performed in order to reveal relationships between microfauna community and operational parameters. Ciliophora specific-18S rRNA gene clone library was constructed to identify ciliate diversity under 0.773 kg BOD(5)/m(3) d organic loading conditions. Ciliophora diversity consisted of members of Aspidiscidae, Epistylidae, Opisthonectidae and Vorticellidae, with the majority of the clones being associated with the species Vorticella fusca. At least one novel phylogenetic linkage among Ciliophora was identified. Comparisons made after molecular characterization and microscopic examination of Ciliophora community showed that the estimation of broad ciliate groups is useful for ecological considerations and evaluation of the operational conditions in wastewater treatment plants.

  4. Microfaunal indicators, Ciliophora phylogeny and protozoan population shifts in an intermittently aerated and fed bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Ntougias, Spyridon, E-mail: [Democritus University of Thrace, Department of Environmental Engineering, Laboratory of Wastewater Management and Treatment Technologies, Vas. Sofias 12, 67100 Xanthi (Greece); Tanasidis, Spartakos; Melidis, Paraschos [Democritus University of Thrace, Department of Environmental Engineering, Laboratory of Wastewater Management and Treatment Technologies, Vas. Sofias 12, 67100 Xanthi (Greece)


    Microfauna community structure was examined in the mixed liquor of a bench-scale bioreactor equipped with an intermittent aeration and feeding system. The reactor was operated under an intermittent aeration of 25 min in every 1 h and varying feeding conditions (0.264, 0.403 and 0.773 kg BOD{sub 5}/m{sup 3} d). A total of 14 protozoan and metazoan taxa were identified by microscopic examination. Sessile ciliates, followed by crawling ciliates, were the major protozoan groups under 0.403 kg BOD{sub 5}/m{sup 3} d organic loading conditions, while sessile ciliate population was remarkably increased under an organic loading of 0.773 kg BOD{sub 5}/m{sup 3} d. Principal Component Analysis and Pearson correlation coefficient tests were performed in order to reveal relationships between microfauna community and operational parameters. Ciliophora specific-18S rRNA gene clone library was constructed to identify ciliate diversity under 0.773 kg BOD{sub 5}/m{sup 3} d organic loading conditions. Ciliophora diversity consisted of members of Aspidiscidae, Epistylidae, Opisthonectidae and Vorticellidae, with the majority of the clones being associated with the species Vorticella fusca. At least one novel phylogenetic linkage among Ciliophora was identified. Comparisons made after molecular characterization and microscopic examination of Ciliophora community showed that the estimation of broad ciliate groups is useful for ecological considerations and evaluation of the operational conditions in wastewater treatment plants.

  5. Treated results study on organic substance and ammonia from coke plant wastewater by SBR method in different operating mode and aeration time conditions

    Institute of Scientific and Technical Information of China (English)

    CHENG Jian-guang; CHEN ping


    In this paper, a research was made on the treatment of distillation ammonia wastewater from Tai'an Coke-Plant by SBR(sequencing batch reactors). The feasibility and cost effectiveness was tested. Performance of SBR process treating organic substance and ammonia was presented for different operating pattern and aeration time. The mechanism of the simultaneous nitrification and denitrification from coke plant were analysed on SBR process.

  6. A new step aeration approach towards the improvement of nitrogen removal in a full scale Carrousel oxidation ditch. (United States)

    Jin, Pengkang; Wang, Xianbao; Wang, Xiaochang; Ngo, Huu Hao; Jin, Xin


    Two aeration modes, step aeration and point aeration, were used in a full-scale Carrousel oxidation ditch with microporous aeration. The nitrogen removal performance and mechanism were analyzed. With the same total aeration input, both aeration modes demonstrated good nitrification outcomes with the average efficiency in removing NH4(+)-N of more than 98%. However, the average removal efficiencies for total nitrogen were 89.3% and 77.6% under step aeration and point aeration, respectively. The results indicated that an extended aerobic zone followed the aeration zones could affect the proportion of anoxic and oxic zones. The step aeration with larger anoxic zones indicated better TN removal efficiency. More importantly, step aeration provided the suitable environment for both nitrifiers and denitrifiers. The diversity and relative abundance of denitrifying bacteria under the step aeration (1.55%) was higher than that under the point aeration (1.12%), which resulted in an overall higher TN removal efficiency.

  7. [Research of controlling condition for aeration stabilization pond dealing with sanitary waste of countryside]. (United States)

    Li, Huai-Zheng; Yao, Shu-Jun; Xu, Zu-Xin; Chen, Wei-Bing


    According to research of some problems, such as the hydraulic detention time that aeration stabilization pond deals with sanitary waste of countryside, dissolved oxygen in pond during the process of aeration, the concentration distribution of sludge and different aeration periods affecting on the treatment efficiency, we can acquire good treatment efficiency and energy consumption of economy. The results indicate that under the aeration stabilization pond of this experiment, 4 d is the best hydraulic detention time with this aeration stabilization pond. Time of the discontinuous running aeration should be greater than 15 min. The concentration distribution of sludge can reach equilibrium at each point of aeration stabilization pond between 2 min and 10 min. The best aeration period of dislodging the pollutant is 0.5 h aeration/1.0 h cut-off.

  8. Seasonal variations and aeration effects on water quality improvements and physiological responses of Nymphaea tetragona Georgi. (United States)

    Lu, Xiao-Ming; Lu, Peng-Zhen; Huang, Min-Sheng; Dai, Ling-Peng


    Seasonal variations and aeration effects on water quality improvements and the physiological responses of Nymphaea tetragona Georgi were investigated with mesocosm experiments. Plants were hydroponically cultivated in six purifying tanks (aerated, non-aerated) and the characteristics of the plants were measured. Water quality improvements in purifying tanks were evaluated by comparing to the control tanks. The results showed that continuous aeration affected the plant morphology and physiology. The lengths of the roots, petioles and leaf limbs in aeration conditions were shorter than in non-aeration conditions. Chlorophyll and soluble protein contents of the leaf limbs in aerated tanks decreased, while peroxidase and catalase activities of roots tissues increased. In spring and summer, effects of aeration on the plants were less than in autumn. Total nitrogen (TN) and ammonia nitrogen (NH4(+)-N) in aerated tanks were lower than in non-aerated tanks, while total phosphorus (TP) and dissolved phosphorus (DP) increased in spring and summer. In autumn, effects of aeration on the plants became more significant. TN, NH4(+)-N, TP and DP became higher in aerated tanks than in non-aerated tanks in autumn. This work provided evidences for regulating aeration techniques based on seasonal variations of the plant physiology in restoring polluted stagnant water.

  9. Aerobic N2O emission for activated sludge acclimated under different aeration rates in the multiple anoxic and aerobic process. (United States)

    Wang, Huoqing; Guan, Yuntao; Pan, Min; Wu, Guangxue


    Nitrous oxide (N2O) is a potent greenhouse gas that can be emitted during biological nitrogen removal. N2O emission was examined in a multiple anoxic and aerobic process at the aeration rates of 600mL/min sequencing batch reactor (SBRL) and 1200mL/min (SBRH). The nitrogen removal percentage was 89% in SBRL and 71% in SBRH, respectively. N2O emission mainly occurred during the aerobic phase, and the N2O emission factor was 10.1% in SBRL and 2.3% in SBRH, respectively. In all batch experiments, the N2O emission potential was high in SBRL compared with SBRH. In SBRL, with increasing aeration rates, the N2O emission factor decreased during nitrification, while it increased during denitrification and simultaneous nitrification and denitrification (SND). By contrast, in SBRH the N2O emission factor during nitrification, denitrification and SND was relatively low and changed little with increasing aeration rates. The microbial competition affected the N2O emission during biological nitrogen removal.

  10. Odorous gaseous emissions as influence by process condition for the forced aeration composting of pig slaughterhouse sludge

    Energy Technology Data Exchange (ETDEWEB)

    Blazy, V., E-mail: [Irstea, UR GERE, 17 Avenue de Cucillé, CS 64427, F-35044 Rennes (France); Guardia, A. de, E-mail: [Irstea, UR GERE, 17 Avenue de Cucillé, CS 64427, F-35044 Rennes (France); Benoist, J.C; Daumoin, M. [Irstea, UR GERE, 17 Avenue de Cucillé, CS 64427, F-35044 Rennes (France); Lemasle, M.; Wolbert, D. [Laboratoire Sciences Chimiques de Rennes - équipe Chimie et Ingénierie des Procédés, UMR 6226 CNRS, ENSCR, Avenue du Général Leclerc, 35700 Rennes (France); Barrington, S., E-mail: [Irstea, UR GERE, 17 Avenue de Cucillé, CS 64427, F-35044 Rennes (France); Concordia University, Department of Building, Civil and Environmental Engineering, 1455 de Maisonneuve, Montréal, QC H3G 1M8 (Canada)


    Highlights: • The gaseous emissions produced by various composting process conditions were characterized and quantified. • Nine compounds were potentially odorous: TMA, NH{sub 3}, 2-pentanone, 1-propanol-2-methyl, acetophenone and sulphur forms. • The tested composting process conditions reduced odour emissions by a factor of 5–10. • A reduction of 10{sup 5} to 10{sup 6} is required to reach an odour threshold limit at peak event emissions. • Both aeration rate and bulking agent had the most impact on reducing odour emissions. - Abstract: Compost sustainability requires a better control of its gaseous emissions responsible for several impacts including odours. Indeed, composting odours have stopped the operation of many platforms and prevented the installation of others. Accordingly, present technologies collecting and treating gases emitted from composting are not satisfactory and alternative solutions must be found. Thus, the aim of this paper was to study the influence of composting process conditions on gaseous emissions. Pig slaughterhouse sludge mixed with wood chips was composted under forced aeration in 300 L laboratory reactors. The process conditions studied were: aeration rate of 1.68, 4.03, 6.22, 9.80 and 13.44 L/h/kg of wet sludge; incorporation ratio of 0.55, 0.83 and 1.1 (kg of wet wood chips/kg of wet sludge), and; bulking agent particles size of <10, 10 < 20 and 20 < 30 mm. Out-going gases were sampled every 2 days and their composition was analysed using gas chromatography coupled with mass spectrometry (GC–MS). Fifty-nine compounds were identified and quantified. Dividing the cumulated mass production over 30 days of composting, by odour threshold, 9 compounds were identified as main potential odour contributors: hydrogen sulphide, trimethylamine, ammonia, 2-pentanone, 1-propanol-2-methyl, dimethyl sulphide, dimethyl disulphide, dimethyl trisulphide and acetophenone. Five gaseous compounds were correlated with both aeration rate and

  11. Numerical simulation of landfill aeration using computational fluid dynamics. (United States)

    Fytanidis, Dimitrios K; Voudrias, Evangelos A


    The present study is an application of Computational Fluid Dynamics (CFD) to the numerical simulation of landfill aeration systems. Specifically, the CFD algorithms provided by the commercial solver ANSYS Fluent 14.0, combined with an in-house source code developed to modify the main solver, were used. The unsaturated multiphase flow of air and liquid phases and the biochemical processes for aerobic biodegradation of the organic fraction of municipal solid waste were simulated taking into consideration their temporal and spatial evolution, as well as complex effects, such as oxygen mass transfer across phases, unsaturated flow effects (capillary suction and unsaturated hydraulic conductivity), temperature variations due to biochemical processes and environmental correction factors for the applied kinetics (Monod and 1st order kinetics). The developed model results were compared with literature experimental data. Also, pilot scale simulations and sensitivity analysis were implemented. Moreover, simulation results of a hypothetical single aeration well were shown, while its zone of influence was estimated using both the pressure and oxygen distribution. Finally, a case study was simulated for a hypothetical landfill aeration system. Both a static (steadily positive or negative relative pressure with time) and a hybrid (following a square wave pattern of positive and negative values of relative pressure with time) scenarios for the aeration wells were examined. The results showed that the present model is capable of simulating landfill aeration and the obtained results were in good agreement with corresponding previous experimental and numerical investigations.

  12. Pure and aerated water entry of a flat plate (United States)

    Ma, Z. H.; Causon, D. M.; Qian, L.; Mingham, C. G.; Mai, T.; Greaves, D.; Raby, A.


    This paper presents an experimental and numerical investigation of the entry of a rigid square flat plate into pure and aerated water. Attention is focused on the measurement and calculation of the slamming loads on the plate. The experimental study was carried out in the ocean basin at Plymouth University's COAST laboratory. The present numerical approach extends a two-dimensional hydro-code to compute three-dimensional hydrodynamic impact problems. The impact loads on the structure computed by the numerical model compare well with laboratory measurements. It is revealed that the impact loading consists of distinctive features including (1) shock loading with a high pressure peak, (2) fluid expansion loading associated with very low sub-atmospheric pressure close to the saturated vapour pressure, and (3) less severe secondary reloading with super-atmospheric pressure. It is also disclosed that aeration introduced into water can effectively reduce local pressures and total forces on the flat plate. The peak impact loading on the plate can be reduced by half or even more with 1.6% aeration in water. At the same time, the lifespan of shock loading is prolonged by aeration, and the variation of impulse is less sensitive to the change of aeration than the peak loading.

  13. Methanogenesis acceleration of fresh landfilled waste by micro-aeration

    Institute of Scientific and Technical Information of China (English)

    SHAO Li-ming; HE Pin-jing; ZHANG Hua; YU Xiao-hua; LI Guo-jian


    When municipal solid waste(MSW) with high content of food waste is landfilled, the rapid hydrolysis of food waste results in the imbalance of anaerobic metabolism in the landfill layer, indicated by accumulation of volatile fatty acids(VFA) and decrease of pH value.This occurrence could lead to long lag time before the initiation of methanogenesis and to the production of strong leachate. Simulated landfill columns with forced aeration, with natural ventilation, and with no aeration, were monitored regarding their organics degradation rate with leachate recirculation. Hydrolysis reactions produced strong leachate in the column with no aeration. With forced aeration, the produced VFA could be effectively degraded, leading to the reduction in COD of the leachate effluent since the week 3. The CH4 in the frequency of twice/d, could amount to 40% (v/v) after only 20 weeks. This amount had increased up to 50% afterward even with no aeration. Most of COD in the recirculated leachate was removed. Using natural ventilation, CH4 could also be produced and the COD of the leachate effluent be reduced after 10 weeks of operation. However, the persistent existence of oxygen in the landfill layer yielded instability in methanogenesis process.

  14. H Reactor (United States)

    Federal Laboratory Consortium — The H Reactor was the first reactor to be built at Hanford after World War II.It became operational in October of 1949, and represented the fourth nuclear reactor on...

  15. Odorous gaseous emissions as influence by process condition for the forced aeration composting of pig slaughterhouse sludge. (United States)

    Blazy, V; de Guardia, A; Benoist, J C; Daumoin, M; Lemasle, M; Wolbert, D; Barrington, S


    Compost sustainability requires a better control of its gaseous emissions responsible for several impacts including odours. Indeed, composting odours have stopped the operation of many platforms and prevented the installation of others. Accordingly, present technologies collecting and treating gases emitted from composting are not satisfactory and alternative solutions must be found. Thus, the aim of this paper was to study the influence of composting process conditions on gaseous emissions. Pig slaughterhouse sludge mixed with wood chips was composted under forced aerationin 300 L laboratory reactors. The process conditions studied were: aeration rate of 1.68, 4.03, 6.22, 9.80 and 13.44 L/h/kg of wet sludge; incorporation ratio of 0.55, 0.83 and 1.1 (kg of wet wood chips/kg of wet sludge), and; bulking agent particles size of aeration rate and bulking agent to waste ratio: hydrogen sulphide, trimethylamine, ammonia, 2-pentanone and 1-propanol-2-methyl. However, dropping the aeration rate and increasing the bulking agent to waste ratio reduced gaseous odour emissions by a factor of 5-10, when the required threshold dilution factor ranged from 10(5) to 10(6), to avoid nuisance at peak emission rates. Process influence on emissions of dimethyl sulphide, dimethyl disulphide, dimethyl trisulphide were poorly correlated with both aeration rate and bulking agent to waste ratio as a reaction with hydrogen sulphide was suspected. Acetophenone emissions originated from the wood chips. Olfactory measurements need to be correlated to gaseous emissions for a more accurate odour emission evaluation.

  16. Experimental Analysis of Pressure Fluctuations behind a Bottom Aerator

    Institute of Scientific and Technical Information of China (English)


    Experimental observations show that the random process of two-phase flow beh ind an aerator is an ergodic process and its amplitude distribution is similar t o a normal distribution. The maximum pressure fluctuation is at the re-attachme n t point where the jet-trajectory flow over the aerator re-attaches to bottom o f the channel, and its amplitude is 2-3 times larger than when there is no aerato r. There is a dominant frequency of 1.24 Hz in the model, but the coherence in th e frequency domain is not obvious for other frequencies beside the dominant frequ ency. There is a large vortex at the re-attachment point behind the aerator but correlation among the measurement points is not obvious in the time domain.


    Institute of Scientific and Technical Information of China (English)

    CHENG Xiang-ju; LUO Lin; CHEN Yong-can; ZHAO Wen-qian


    In order to explore the re-aeration law of water flow over spillway, the transfer process of oxygen in water flow over spillway was studied. The interfacial mass transfer coefficients were obtained by experiments. The flow fields and the turbulence characteristics are simulated by numerical methods. The fractional volume of fluid model (VOF) of the air-water two phase flows was introduced to track the interface. Consequently, the quantitative expression of the interfacial mass transfer coefficients related with velocity and kinetic energy at the free surface was derived and the re-aeration model for the water flow over spillway was established. The examination with the experimental data of different conditions shows the validity of the re-aeration model for the water flow over spillways. This study will be important to evaluate the dissolved oxygen concentration and self-purification ability of rivers.

  18. Treatment and re-use of urban sewage by means of aerated submerged biological filters and tertiary treatment; Depuracion y reutilizacion de las aguas residuales urbanas mediante filtros biologicos sumergidos aireados con tratamiento terciario

    Energy Technology Data Exchange (ETDEWEB)

    Mujal, F. J.


    The installations required for treating and re-using urban waste waters are reviewed. The treatment system put forward is called AERATED SURMERGED BIOLOGICAL FILTER AQUA PROCESS (S.B.F.). In this system, once that water has been clarified, it is treated biologically in an aerated reactor containing porous ceramic balls. After this it is filtered with silica+anthracite as a tertiary treatment. This technique minimize energy consumption and achieve optimum treatment performance at low running costs, as it requires little maintenance. Once the waste water has been treated in this way, the effluent is suitable for re-use to irrigate crops or infiltrate into underground aquifers. (Author)


    Institute of Scientific and Technical Information of China (English)


    A water-air two-phase turbulence mathematical model was proposed, The mass-weighted average was adoptedfor velocity, air mass fraction and turbulent parameters. Thealgebraic stress equation was used to calculate the Reynoldsstress. The pulsating flux of air mass fraction was simulatedby employing the concept of the eddy viscosity. The numericalsimulation of aerated flow in plunge pool shows that, for the same depth, aeration may decrease the time-averaged pressureon pool floor and increase slightly the turbulent intensity. Thecomputed concentration and pressure distributions coincidewith the experimental data.

  20. Fault detection and isolation of sensors in aeration control systems. (United States)

    Carlsson, Bengt; Zambrano, Jesús


    In this paper, we consider the problem of fault detection (FD) and isolation in the aeration system of an activated sludge process. For this study, the dissolved oxygen in each aerated zone is assumed to be controlled automatically. As the basis for an FD method we use the ratio of air flow rates into different zones. The method is evaluated in two scenarios: using the Benchmark Simulation Model no. 1 (BSM1) by Monte Carlo simulations and using data from a wastewater treatment plant. The FD method shows good results for a correct and early FD and isolation.

  1. Characteristics of integrated biological aerated filter in municipal wastewater treatment

    Institute of Scientific and Technical Information of China (English)

    HE Qiang; ZHANG Yu-ping; XU Jian-bin


    In this paper, the characteristics of integrated biological aerated filter (IBAF) applied to municipal wastewater treatment were studied in a pilot scale experiment. The experimental results showed that IBAF has high efficiencies in removing organic pollutants, such as CODCr and SS, in municipal wastewater. The removal rates of CODCr and SS can reach over 90% and 80%, respectively, when COD and SS in the influent are 234 mg L-1 and 112 mg L-1, hydraulic retention time (HRT) is 8 h, and the aerated intensity is in the range of (0.5 to 0.6) L m-2 s-1.


    Institute of Scientific and Technical Information of China (English)

    Liu Shi-he; Qu Bo


    Atomized flow forms as an aerated jet from high dams impacts against the downstream water surface at high speed. Of all the regions of atomized flow the splash region is in the center of storm rainfall, which might cause certain damage to the hydropower stations and thence more attention should be paid. In this paper the impact of the water drop at the outer edge of the aerated jet against the downstream water surface was analyzed, and the motion of the splash water drop was investigated. Furthermore, a new formula for the calculation of the splash length was suggested, which is in good agreement with the data of model tests and prototype observation.

  3. Scale translation from shaken to diffused bubble aerated systems for lycopene production by Blakeslea trispora under stimulated conditions. (United States)

    Mantzouridou, Fani Th; Naziri, Eleni


    This study deals with the scale up of Blakeslea trispora culture from the successful surface-aerated shake flasks to dispersed-bubble aerated column reactor for lycopene production in the presence of lycopene cyclase inhibitor 2-methyl imidazole. Controlling the initial volumetric oxygen mass transfer coefficient (kLa) via airflow rate contributes to increasing cell mass and lycopene accumulation. Inhibitor effectiveness seems to decrease in conditions of high cell mass. Optimization of crude soybean oil (CSO), airflow rate, and 2-methyl imidazole was arranged according to central composite statistical design. The optimized levels of factors were 110.5 g/L, 2.3 vvm, and 29.5 mg/L, respectively. At this optimum setting, maximum lycopene yield (256 mg/L) was comparable or even higher to those reported in shake flasks and stirred tank reactor. 2-Methyl imidazole use at levels significantly lower than those reported for other inhibitors in the literature was successful in terms of process selectivity. CSO provides economic benefits to the process through its ability to stimulate lycopene synthesis, as an inexpensive carbon source and oxygen vector at the same time.

  4. 7 CFR 201.55a - Moisture and aeration of substratum. (United States)


    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Moisture and aeration of substratum. 201.55a Section... and aeration of substratum. (a) The substratum must be moist enough to supply the needed moisture to the seeds at all times. Excessive moisture which will restrict aeration of the seeds should be...

  5. Intermittent aeration to improve wastewater treatment efficiency in pilot-scale constructed wetland. (United States)

    Uggetti, Enrica; Hughes-Riley, Theodore; Morris, Robert H; Newton, Michael I; Trabi, Christophe L; Hawes, Patrick; Puigagut, Jaume; García, Joan


    Forced aeration of horizontal subsurface flow constructed wetlands (HSSF CWs) is nowadays a recognized method to improve treatment efficiency, mainly in terms of ammonium removal. While numerous investigations have been reported testing constant aeration, scarce information can be found about the efficiency of intermittent aeration. This study aims at comparing continuous and intermittent aeration, establishing if there is an optimal regime that will increase treatment efficiency of HSSF CWs whilst minimizing the energy requirement. Full and intermittent aeration were tested in a pilot plant of three HSSF CWs (2.64m(2) each) fed with primary treated wastewater. One unit was fully aerated; one intermittently aerated (i.e. by setting a limit of 0.5mg/L dissolved oxygen within the bed) with the remaining unit not aerated as a control. Results indicated that intermittent aeration was the most successful operating method. Indeed, the coexistence of aerobic and anoxic conditions promoted by the intermittent aeration resulted in the highest COD (66%), ammonium (99%) and total nitrogen (79%) removals. On the other hand, continuous aeration promotes ammonium removal (99%), but resulted in nitrate concentrations in the effluent of up to 27mg/L. This study demonstrates the high potential of the intermittent aeration to increase wastewater treatment efficiency of CWs providing an extreme benefit in terms of the energy consumption.

  6. Effect of cyclic aeration on fouling in submerged membrane bioreactor for wastewater treatment. (United States)

    Wu, Jun; He, Chengda


    Due to the inefficiency of aeration measures in preventing fouling by soluble and colloidal particles. The effect of alternating high/low cyclic aeration mode on the membrane fouling in the submerged membrane bioreactor was studied by comparing to fouling in a constant aeration mode. Results indicated a higher overall fouling rate in the cyclic aeration mode than in the constant aeration. However, a higher percentage of reversible fouling was observed for the cyclic aeration mode. The membrane permeability can be more easily recovered from physical cleaning such as backwashing in the cyclic aeration mode. The activated sludge floc size distribution analysis revealed a floc destruction and re-flocculation processes caused by the alternating high/low aeration. The short high aeration period could prevent the destruction of strong strength bonds within activated sludge flocs. Therefore, less soluble and colloidal material was observed in the supernatant due to the preservation of the strong strength bonds. The weak strength bonds damaged in the high aeration period could be recovered in the re-flocculation process in the low aeration period. The floc destruction and re-flocculation processes were suggested to be the main reason for the low irreversible fouling in the cyclic aeration mode.

  7. Aeration of bread dough influenced by different way processing

    NARCIS (Netherlands)

    Peighambardoust, S.H.; Fallah, E.; Hamer, R.J.; Goot, van der A.J.


    The effect of steady shearing versus z-blade mixing on mechanical aeration and gas retaining ability of the dough during processing and subsequent proofing and bread baking stages was investigated. Reduction in moisture content led to reduction in both static and dynamic densities of z-blade mixed d

  8. Fin characteristics of aerator devices with lateral deflectors

    Institute of Scientific and Technical Information of China (English)

    WU Jian-hua; LI Dan; MA Fei; QIAN Shang-tuo


    The fins will be formed if the lateral deflectors in the side-walls with a bottom aerator device are improperly designed,and the flow regime downstream of the aerator device will be worsened.In this paper,the height and the length of the fins induced by the lateral deflectors are theoretically analyzed along with their influencing factors,and the fin characteristics are experimentally investigated on the basis of the theoretical analysis.It is shown that the intensities of the fins are strongly dependent on the ratio of the lateral cavity length to the bottom cavity length,and other factors,like the working head,the height and the angle of the lateral deflector,the flow Froude number around the aerator device,affect the fins indirectly through the changes of the lateral cavity length.When an aerator device with lateral deflectors is designed,it is crucial to match the above mentioned ratio,and to make the ratio of the two cavity lengths less than 1.0 in order to avoid the generation of the fins.

  9. Landfill aeration for emission control before and during landfill mining. (United States)

    Raga, Roberto; Cossu, Raffaello; Heerenklage, Joern; Pivato, Alberto; Ritzkowski, Marco


    The landfill of Modena, in northern Italy, is now crossed by the new high velocity railway line connecting Milan and Bologna. Waste was completely removed from a part of the landfill and a trench for the train line was built. With the aim of facilitating excavation and further disposal of the material extracted, suitable measures were defined. In order to prevent undesired emissions into the excavation area, the aerobic in situ stabilisation by means of the Airflow technology took place before and during the Landfill Mining. Specific project features involved the pneumatic leachate extraction from the aeration wells (to keep the leachate table low inside the landfill and increase the volume of waste available for air migration) and the controlled moisture addition into a limited zone, for a preliminary evaluation of the effects on process enhancement. Waste and leachate were periodically sampled in the landfill during the aeration before the excavation, for quality assessment over time; the evolution of biogas composition in the landfill body and in the extraction system for different plant set-ups during the project was monitored, with specific focus on uncontrolled migration into the excavation area. Waste biological stability significantly increased during the aeration (waste respiration index dropped to 33% of the initial value after six months). Leachate head decreased from 4 to 1.5m; leachate recirculation tests proved the beneficial effects of moisture addition on temperature control, without hampering waste aerobization. Proper management of the aeration plant enabled the minimization of uncontrolled biogas emissions into the excavation area.

  10. Internal aeration development and the zonation of plants in wetlands

    DEFF Research Database (Denmark)

    Sorrell, Brian Keith

    support many species which have root aeration adaptations but are otherwise unspecialised for aquatic life. Permanent standing water is a much greater challenge for plants, and survival here is restricted to species with special adaptations to their oxygen transport physiology such as the development...


    Institute of Scientific and Technical Information of China (English)

    RUAN Shi-ping


    On the basis of model tests and theoretical analysis, hydraulic characteristics, air demand, air concentration distribution and their relationships between prototype and model of an aerator were studied. Some computational examples show that the present methods have higher accuracy, and can meet the need of engineering design.

  12. Investigations of the efficiency of enzyme production technologies using modelling tools

    DEFF Research Database (Denmark)

    Albæk, Mads Orla; Gernaey, Krist; Hansen, Morten Skov

    Growing markets and new innovative applications of industrial enzymes leads to increased interest in efficient production of these products. Most industrial enzymes are currently produced in traditional stirred tank reactors in submerged fed batch culture. The limiting parameter in such processes...... fermentations of the filamentous fungus Trichoderma reesei in 550litre pilot scale stirred tank reactors for a range of process conditions. Based on the experimental data a process model has been created, which satisfactory simulates the effect of the changing process conditions: Aeration rate, agitation speed...... and head space pressure. Examples of simulation results and outlines of the future uses of the model will be given....

  13. UASB/flash aeration enable complete treatment of municipal wastewater for reuse. (United States)

    Khan, Abid Ali; Gaur, Rubia Zahid; Lew, Beni; Diamantis, Vasileios; Mehrotra, Indu; Kazmi, A A


    A simple, efficient and cost-effective method for municipal wastewater treatment is examined in this paper. The municipal wastewater is treated using an upflow anaerobic sludge bed (UASB) reactor followed by flash aeration (FA) as the post-treatment, without implementing aerobic biological processes. The UASB reactor was operated without recycle, at hydraulic retention time (HRT) of 8 h and achieved consistent removal of BOD, COD and TSS of 60-70% for more than 12 months. The effect of FA on UASB effluent post-treatment was studied at different HRT (15, 30 and 60 min) and dissolved oxygen (DO) concentrations (low DO = 1-2 mg/L and high DO = 5-6 mg/L). The optimum conditions for BOD, COD and sulfide removal were 30-60 min HRT and high DO concentration inside the FA tank. The final effluent after clarification was characterized by BOD and COD values of 28-35 and 50-58 mg/L, respectively. Sulfides were removed by more than 80%, but the fecal coliform only by ~2 log. The UASB followed by FA is a simple and efficient process for municipal wastewater treatment, except for fecal coliform, enabling water and nutrients recycling to agriculture.

  14. Production of Polygalacturonases by Aspergillus section Nigri Strains in a Fixed Bed Reactor

    Directory of Open Access Journals (Sweden)

    Marília Maciel


    Full Text Available Polygalacturonases (PG are pectinolytic enzymes that have technological, functional and biological applications in food processing, fruit ripening and plant-fungus interactions, respectively. In the present, a microtitre plate methodology was used for rapid screening of 61 isolates of fungi from Aspergillus section Nigri to assess production of endo- and exo-PG. Studies of scale-up were carried out in a fixed bed reactor operated under different parameters using the best producer strain immobilised in orange peels. Four experiments were conducted under the following conditions: the immobilised cells without aeration; immobilised cells with aeration; immobilised cells with aeration and added pectin; and free cells with aeration. The fermentation was performed for 168 h with removal of sample every 24 h. Aspergillus niger strain URM 5162 showed the highest PG production. The results obtained indicated that the maximum endo- and exo-PG activities (1.18 U·mL−1 and 4.11 U·mL−1, respectively were obtained when the reactor was operating without aeration. The microtitre plate method is a simple way to screen fungal isolates for PG activity detection. The fixed bed reactor with orange peel support and using A. niger URM 5162 is a promising process for PG production at the industrial level.

  15. Production of polygalacturonases by Aspergillus section Nigri strains in a fixed bed reactor. (United States)

    Maciel, Marília; Ottoni, Cristiane; Santos, Cledir; Lima, Nelson; Moreira, Keila; Souza-Motta, Cristina


    Polygalacturonases (PG) are pectinolytic enzymes that have technological, functional and biological applications in food processing, fruit ripening and plant-fungus interactions, respectively. In the present, a microtitre plate methodology was used for rapid screening of 61 isolates of fungi from Aspergillus section Nigri to assess production of endo- and exo-PG. Studies of scale-up were carried out in a fixed bed reactor operated under different parameters using the best producer strain immobilised in orange peels. Four experiments were conducted under the following conditions: the immobilised cells without aeration; immobilised cells with aeration; immobilised cells with aeration and added pectin; and free cells with aeration. The fermentation was performed for 168 h with removal of sample every 24 h. Aspergillus niger strain URM 5162 showed the highest PG production. The results obtained indicated that the maximum endo- and exo-PG activities (1.18 U · mL-1 and 4.11 U · mL-1, respectively) were obtained when the reactor was operating without aeration. The microtitre plate method is a simple way to screen fungal isolates for PG activity detection. The fixed bed reactor with orange peel support and using A. niger URM 5162 is a promising process for PG production at the industrial level.

  16. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A


    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised.

  17. Effect of spray aeration on organics and nitrogen removal in vertical subsurface flow constructed wetland. (United States)

    Ding, Yi; Wang, Wei; Song, Xin-Shan; Wang, Gang; Wang, Yu-Hui


    The objective of present study was to assess the simultaneous removal of organics and nitrogen by four lab-scale vertical subsurface flow constructed wetlands (V-SFCWs). The emergent plants employed were Canna indica. Five-month experiments showed that the planted and aerated system largely reduced the COD by 95%, NH4 by 88% and total inorganic nitrogen (TIN) by 83%. It outperformed the unplanted or simple aerated system and was much better than non-aerated system. The study provided a strong evidence to support widespread research and application of spray aeration as a low-cost and energy-efficient aeration technology in V-SFCWs.

  18. Reuse of a dyehouse effluent after being treated with the combined catalytic wet peroxide oxidation process and the aerated constructed wetland. (United States)

    Lee, D K; Kim, S C; Yoon, J H


    A catalytic wet peroxide oxidation process was combined with the aerated constructed wetland in order to treat the raw dyehouse wastewater to in acceptable level for reuse as washing process water. More than 90% of BOD and CODs could be removed with the wet peroxide oxidation reactor and the remaining pollutants in the treated water were transformed into biodegradable ones which could have been successfully treated at the following aerated constructed wetland. The highest values of BOD5, CODMn, CODCr, SS and T-N in the treated water were 1.6, 1.8, 2.1, 0.5 and 12.8 mg/L, respectively. These values were low enough for the treated water to be reused at the washing process.

  19. Reactor safeguards

    CERN Document Server

    Russell, Charles R


    Reactor Safeguards provides information for all who are interested in the subject of reactor safeguards. Much of the material is descriptive although some sections are written for the engineer or physicist directly concerned with hazards analysis or site selection problems. The book opens with an introductory chapter on radiation hazards, the construction of nuclear reactors, safety issues, and the operation of nuclear reactors. This is followed by separate chapters that discuss radioactive materials, reactor kinetics, control and safety systems, containment, safety features for water reactor

  20. Reactor operation

    CERN Document Server

    Shaw, J


    Reactor Operation covers the theoretical aspects and design information of nuclear reactors. This book is composed of nine chapters that also consider their control, calibration, and experimentation.The opening chapters present the general problems of reactor operation and the principles of reactor control and operation. The succeeding chapters deal with the instrumentation, start-up, pre-commissioning, and physical experiments of nuclear reactors. The remaining chapters are devoted to the control rod calibrations and temperature coefficient measurements in the reactor. These chapters also exp

  1. Redox potential driven aeration during very-high-gravity ethanol fermentation by using flocculating yeast. (United States)

    Liu, Chen-Guang; Hao, Xue-Mi; Lin, Yen-Han; Bai, Feng-Wu


    Ethanol fermentation requires oxygen to maintain high biomass and cell viability, especially under very-high-gravity (VHG) condition. In this work, fermentation redox potential (ORP) was applied to drive the aeration process at low dissolved oxygen (DO) levels, which is infeasible to be regulated by a DO sensor. The performance and characteristics of flocculating yeast grown under 300 and 260 g glucose/L conditions were subjected to various aeration strategies including: no aeration; controlled aeration at -150, -100 and -50 mV levels; and constant aeration at 0.05 and 0.2 vvm. The results showed that anaerobic fermentation produced the least ethanol and had the highest residual glucose after 72 h of fermentation. Controlled aerations, depending on the real-time oxygen demand, led to higher cell viability than the no-aeration counterpart. Constant aeration triggered a quick biomass formation, and fast glucose utilization. However, over aeration at 0.2 vvm caused a reduction of final ethanol concentration. The controlled aeration driven by ORP under VHG conditions resulted in the best fermentation performance. Moreover, the controlled aeration could enhance yeast flocculating activity, promote an increase of flocs size, and accelerate yeast separation near the end of fermentation.

  2. [Synergetic Inhibitory Effect of Free Ammonia and Aeration Phase Length Control on the Activity of Nitrifying Bacteria]. (United States)

    Sun, Hong-wei; Lü, Xin-tao; Wei, Xue-fen; Zhao, Hua-nan; Ma, Juan; Fang, Xiao-hang


    Three sequencing batch reactors (SBRs) labeled with R(Ahead), R(Exact) and R(Exceed) were employed to investigate the synergetic inhibition effect of free ammonia (FA) and length of aeration phase on the activity of ammonia-oxidizing bacteria ( AOB) and nitrite- oxidizing bacteria (NOB) after shortcut nitritation was achieved in the systems. The experiments were conducted under the conditions of three FA concentrations (0.5, 5. 1, 10.1 mg · L⁻¹) combined with three kinds of aeration time (t(Exact): the time when ammonia oxidation was completed; t(Ahead): 30 min ahead of the time when ammonia oxidation was completed; t(Exceed): 30 min exceeded when the time ammonia oxidation was completed). It was found that short-cut nitrification could be successfully established in three reactors with a FA level of 10.1 mg · L⁻¹. Meanwhile, the speed of achieving nitritation was in the sequence of R(Ahead) > R(Exact) > R(Exceed) with operational cycles of 56, 62 and 72, respectively. Compared to AOB, NOB in the three reactors was observed to be more sensitive to FA, resulting in AOB activity higher than NOB activity throughout the whole experimental period. Moreover, there was great difference in the activity coefficient ( η) between AOB and NOB. The activity coefficients of AOB were in the order of η(RExact) > η(RExceed) > η(RAhead) with the values of 104.4%, 100% and 85.8%, respectively. Nevertheless, the activity coefficients of NOB were in the order of η(RExceed) > η(RExact) > η(RAhead) with the values of 71.2%, 64.9% and 50.2%, respectively.

  3. Reactor Neutrinos


    Soo-Bong Kim; Thierry Lasserre; Yifang Wang


    We review the status and the results of reactor neutrino experiments. Short-baseline experiments have provided the measurement of the reactor neutrino spectrum, and their interest has been recently revived by the discovery of the reactor antineutrino anomaly, a discrepancy between the reactor neutrino flux state of the art prediction and the measurements at baselines shorter than one kilometer. Middle and long-baseline oscillation experiments at Daya Bay, Double Chooz, and RENO provided very ...

  4. Anaerobic digestion of solid waste in RAS: Effect of reactor type on the biochemical acidogenic potential (BAP) and assessment of the biochemical methane potential (BMP) by a batch assay

    DEFF Research Database (Denmark)

    Suhr, Karin Isabel; Letelier-Gordo, Carlos Octavio; Lund, Ivar


    additional 14 and 20 days) in continuously stirred tank reactors. Generally, the VFA yield increased with time and no effect of the reactor type used was found within the time frame of the experiment. At 10 days HT or 10 days HRT the VFA yield reached 222.3 ± 30.5 and 203.4 ± 11.2 mg VFA g-1 TVS0 (total...... volatile solids at day 0) in batch and fed-batch reactor, respectively. For the fedbatch reactor, increasing HRT from 5 to 10 days gained no significant additional VFA yield. Prolonging the batch reactor experiment to 20 days increased VFA production further (273.9 ± 1.6 mg VFA g-1 TVS0, n=2). After 10...... for the design of an acidogenic continuously stirred reactor tank in a RAS single-sludge denitrification set-up. The biochemical methane potential of the sludge was estimated to 318 ± 29 g CH4 g-1 TVS0 by a batch assay and represented a higher utility of the solid waste when comparing the methane yield...

  5. Effect of airflow on biodrying of gardening wastes in reactors

    Institute of Scientific and Technical Information of China (English)

    F.J.Colomer-Mendoza; L.Herrera-Prats; F.Robles-Martínez; A.Gallardo-Izquierdo; A.B.Pi(n)a-Guzmán


    Biodrying consists of reducing moisture by using the heat from aerobic bio-degradation.The parameters that control the process are:aeration,temperature during the process,initial moisture of biowaste,and temperature and relative humidity of the input air.Lawn mowing and garden waste from the gardens of the University Jaume I,Castellón (Spain) were used as a substrate.Biodrying was performed in 10 reactors with known air volumes from 0.88 to 6.42 L/(min·kg dry weight).To promote aeration,5 of the reactors had 15% of a bulking agent added.The experiment lasted 20 days.After the experiments it was found that the bulking agent led to greater weight loss.However,the increased airflow rate was not linearly proportional to the weight loss.

  6. Effect of airflow on biodrying of gardening wastes in reactors. (United States)

    Colomer-Mendoza, F J; Herrera-Prats, L; Robles-Martínez, F; Gallardo-Izquierdo, A; Piña-Guzmán, A B


    Biodrying consists of reducing moisture by using the heat from aerobic bio-degradation. The parameters that control the process are: aeration, temperature during the process, initial moisture of biowaste, and temperature and relative humidity of the input air. Lawn mowing and garden waste from the gardens of the University Jaume I, Castellón (Spain) were used as a substrate. Biodrying was performed in 10 reactors with known air volumes from 0.88 to 6.42 L/(min x kg dry weight). To promote aeration, 5 of the reactors had 15% of a bulking agent added. The experiment lasted 20 days. After the experiments it was found that the bulking agent led to greater weight loss. However, the increased airflow rate was not linearly proportional to the weight loss.

  7. Using a biological aerated filter to treat mixed water-borne volatile organic compounds and assessing its emissions

    Institute of Scientific and Technical Information of China (English)

    CHENG Wen-Hsi


    A biological aerated filter (BAF) was evaluated as a fixed-biofilm processes to remove water-borne volatile organic compounds (VOCs) from a multiple layer ceramic capacitor (MLCC) manufacturing plant in southern Taiwan.The components of VOC were identified to be toluene,1,2,4-trimethylbenzene,1,3,5-trimethylbenzene,bromodichloromethane and isopropanol (IPA).The full-scale BAF was constructed of two separate reactors in series,respectively using 10-cm and 15-cm diameter polypropylene balls as the packing materials and a successful preliminary bench-scale experiment was performed to feasibility.Performance results show that the BAF removed over 90% chemical oxygen demand (COD) from the influent with (1188 ± 605) mg/L of COD.A total organic loading of 2.76 kg biochemical oxygen demand (BOD)/(m~3 packing·d) was determined for the packed bed,in which the flow pattern approached that of a mixed flow.A limited VOC concentration of (0.97 ± 0.29) ppmv (as methane) was emitted from the BAF system.Moreover,the emission rate of VOC was calculated using the proposed formula,based on an air-water mass equilibrium relationship,and compared to the simulated results obtained using the Water 9 model.Both estimation approaches of calculation and model simulation using Water 9 evaluating VOC emissions reveal that 0.1% IPA (0.0031-0.0037 kg/d) was aerated into a gaseous phase,and 30% to 40% (0.006-0.008 kg/d) of the toluene was aerated.

  8. A new dynamic model for highly efficient mass transfer in aerated bioreactors and consequences for kLa identification. (United States)

    Müller, Stefan; Murray, Douglas B; Machne, Rainer


    Gas-liquid mass transfer is often rate-limiting in laboratory and industrial cultures of aerobic or autotrophic organisms. The volumetric mass transfer coefficient k(L) a is a crucial characteristic for comparing, optimizing, and upscaling mass transfer efficiency of bioreactors. Reliable dynamic models and resulting methods for parameter identification are needed for quantitative modeling of microbial growth dynamics. We describe a laboratory-scale stirred tank reactor (STR) with a highly efficient aeration system (k(L) a ≈ 570 h(-1)). The reactor can sustain yeast culture with high cell density and high oxygen uptake rate, leading to a significant drop in gas concentration from inflow to outflow (by 21%). Standard models fail to predict the observed mass transfer dynamics and to identify k(L) a correctly. In order to capture the concentration gradient in the gas phase, we refine a standard ordinary differential equation (ODE) model and obtain a system of partial integro-differential equations (PIDE), for which we derive an approximate analytical solution. Specific reactor configurations, in particular a relatively short bubble residence time, allow a quasi steady-state approximation of the PIDE system by a simpler ODE model which still accounts for the concentration gradient. Moreover, we perform an appropriate scaling of all variables and parameters. In particular, we introduce the dimensionless overall efficiency κ, which is more informative than k(L) a since it combines the effects of gas inflow, exchange, and solution. Current standard models of mass transfer in laboratory-scale aerated STRs neglect the gradient in the gas concentration, which arises from highly efficient bubbling systems and high cellular exchange rates. The resulting error in the identification of κ (and hence k(L) a) increases dramatically with increasing mass transfer efficiency. Notably, the error differs between cell-free and culture-based methods of parameter identification

  9. Hybrid Moving Bed Biofilm Reactor for the biodegradation of benzotriazoles and hydroxy-benzothiazole in wastewater

    DEFF Research Database (Denmark)

    Mazioti, Aikaterini A.; Stasinakis, Athanasios S.; Psoma, Aikaterini K.;


    A laboratory scale Hybrid Moving Bed Biofilm Reactor (HMBBR) was used to study the removal of five benzotriazoles and one benzothiazole from municipal wastewater. The HMBBR system consisted of two serially connected fully aerated bioreactors that contained activated sludge (AS) and K3-biocarriers...

  10. Optimum air-demand ratio for maximum aeration efficiency in high-head gated circular conduits. (United States)

    Ozkan, Fahri; Tuna, M Cihat; Baylar, Ahmet; Ozturk, Mualla


    Oxygen is an important component of water quality and its ability to sustain life. Water aeration is the process of introducing air into a body of water to increase its oxygen saturation. Water aeration can be accomplished in a variety of ways, for instance, closed-conduit aeration. High-speed flow in a closed conduit involves air-water mixture flow. The air flow results from the subatmospheric pressure downstream of the gate. The air entrained by the high-speed flow is supplied by the air vent. The air entrained into the flow in the form of a large number of bubbles accelerates oxygen transfer and hence also increases aeration efficiency. In the present work, the optimum air-demand ratio for maximum aeration efficiency in high-head gated circular conduits was studied experimentally. Results showed that aeration efficiency increased with the air-demand ratio to a certain point and then aeration efficiency did not change with a further increase of the air-demand ratio. Thus, there was an optimum value for the air-demand ratio, depending on the Froude number, which provides maximum aeration efficiency. Furthermore, a design formula for aeration efficiency was presented relating aeration efficiency to the air-demand ratio and Froude number.

  11. Soil aeration status in a lowland wet grassland (United States)

    Barber, K. R.; Leeds-Harrison, P. B.; Lawson, C. S.; Gowing, D. J. G.


    The maintenance or development of plant community diversity in species-rich wet grasslands has been a focus of water management considerations in the UK for the past 20 years. Much attention has been given to the control of water levels in the ditch systems within these wet grassland systems. In this paper we report measurements of aeration status and water-table fluctuation made on a peat soil site at Tadham Moor in Somerset, UK, where water management has focused on the maintenance of wet conditions that often result in flooding in winter and wet soil conditions in the spring and summer. Measurement and modelling of the water-table fluctuation indicates the possibility of variability in the aeration of the root environment and anoxic conditions for much of the winter period and for part of the spring and summer. We have used water content and redox potential measurements to characterize the aeration status of the peat soil. We find that air-filled porosity is related to water-table depth in these situations. Redox potentials in the spring were generally found to be low, implying a reducing condition for nitrate and iron. A significant relationship (p < 0.01) between redox potential and water-table depth exists for data measured at 0.1 m depth, but no relationship could be found for data from 0.4 m depth.

  12. Development of a novel membrane aerated hollow-fiber microbioreactor. (United States)

    Villain, Louis; Meyer, Lina; Kroll, Stephen; Beutel, Sascha; Scheper, Thomas


    A new challenge in biotechnological processes is the development of flexible bioprocessing platforms, allowing strain selection, facilitating scale-up and integrating separation steps. Miniaturization of such a cultivation system allows parallel use and the saving of resources but makes the supply of oxygen to the cells difficult. In this work we present a membrane aerated hollow-fiber microbioreactor (HFMBR) which consists of an acrylic glass module equipped with two different types of membrane fibers. Fibers of polyethersulfone and polyvinyldifluoride were used for substrate and oxygen supply, respectively. Cultivation of E. coli as model organism and production of His-tagged GFP were carried out in the extracapillary space of the membrane aerated HFMBR and compared with cultivations in shaking flask which are commonly used for screening experiments. The measurement of the oxygen transfer capacity and the online monitoring of the dissolved oxygen during the cultivation were performed using a fiber optic oxygen sensor. Online measurement of the optical density was also integrated to the bioreactor. Due to efficient oxygen transfer, a better cell growth than in the shaking flask experiments was achieved, while no negative influence on the GFP productivity was observed in the membrane aerated bioreactor. Thus the feasibility of a future integrated downstreaming could also be demonstrated.

  13. Effect of pH Heterogeneity in Large-scale Bioreactor on Fed-batch Culture Process of CHO cells%大型反应器内pH不均一性对CHO细胞流加培养过程的影响

    Institute of Scientific and Technical Information of China (English)

    刘金涛; 王星懿; 范里; 邓献存; 刘旭平; 谭文松


    In order to study the effect of pH heterogeneity in large-scale bioreactor on cell culture process of CHO cells, we established a scale down model consistent of stirred tank reactor and plug flow reactor to simulate the pH heterogeneity of large-scale bioreactor based on the mixing characteristic. The results showed that the scale down process with 30 s residence time has no statically difference with the control process. However, significant effect on cell growth, cell metabolism and protein production were found when increased the residence time of PFR. Cell growth rate decreased accompanied by tremendously increase of ammonia and lactate when increased the pH heterogeneity. In addition, the titer, sialic acid content and bioactivity of antibody fusion protein were also decreased when increased the pH heterogeneity.%为了研究大型反应器中pH不均一性对CHO细胞流加培养过程的影响,并将培养过程顺利地放大到生产规模,根据大型反应器的混合特性,构建了搅拌式反应器与平推流反应器串联的规模缩小装置用于模拟大型反应器中的pH不均一性。结果表明停留时间为30 s时,整个培养过程和对照相比并无显著的差异,这表明此时补碱所导致的pH不均一性并未对流加培养工艺造成影响。而随着停留时间的延长,反应器内pH不均一的程度越大,细胞生长和产物表达受到抑制越明显;与此同时,乳酸和氨的累积显著增加,而关键质量属性唾液酸和生物学活性也随之降低。

  14. Effects of aeration position on organics, nitrogen and phosphorus removal in combined oxidation pond-constructed wetland systems. (United States)

    Wang, Xiaoou; Tian, Yimei; Zhao, Xinhua; Peng, Sen; Wu, Qing; Yan, Lijian


    Given that few studies investigated the effects of aeration position (AP) on the performance of aerated constructed wetlands, the aim of this study was to evaluate the effects of AP on organics, nitrogen and phosphorus removal in lab-scale combined oxidation pond-constructed wetland (OP-CW) systems. Results showed that middle aeration allowed the CW to possess more uniform oxygen distribution and to achieve greater removals of COD and NH3-N, while the CW under bottom aeration and surface aeration demonstrated more distinct stratification of oxygen distribution and surface aeration brought about better TN removal capacity for the OP-CW system. However, no significant influence of artificial aeration or AP on TP removal was observed. Overall, AP could significantly affect the spatial distribution of dissolved oxygen by influencing the oxygen diffusion paths in aerated CWs, thereby influencing the removal of pollutants, especially organics and nitrogen, which offers a reference for the design of aerated CWs.

  15. 间歇曝气和连续曝气对生物脱氮除磷效果的比较%Biological Nitrogen and Phosphorus Removal Efficiency by Intermittent Aeration and Continues Aeration Compared

    Institute of Scientific and Technical Information of China (English)

    潘敏; 黄晓鸣


    Biological nitrogen and phosphorus removal was investigated by an intermittently aerated sequencing batch reactor IASBR and a sequencing batch reactor SBR . The removal efficiencies of ammonium⁃nitrogen NH4+⁃N were 99�30% and 98�73% respectively in IASBR and SBR in steady operation while phosphorus PO3-4 ⁃P removal efficiencies were 97�02% and 67�47% in IASBR and SBR respectively. The intermittent aeration pattern has better effect for biological phosphorus removal. Effluent NH4+⁃N PO3-4 ⁃P and COD concentrations in the IASBR meets ChinaⅠEmission Standards.%采用序批式生物反应器SBR系统,考察反应阶段的间歇曝气和连续曝气对模拟生活废水中氮和磷的去除效果。研究表明: IASBR和SBR对NH4+-N的去除率分别为99�30%和98�73%;对PO3-4-P的去除率分别为97�02%和67�47%。间歇曝气SBR对氨氮和磷酸根的去除率比连续曝气SBR高,有利于实现强化生物脱磷过程。间歇曝气SBR出水中氮、磷和COD浓度均达到了我国城镇污水处理厂污染物排放标准(GB 18918—2002)一级标准。

  16. Experience of drilling wells using pump-compressor unit to inject aerated fluid

    Energy Technology Data Exchange (ETDEWEB)

    Oleynik, S.P.; Beley, I.V.; Lopatin, Yu.S.; Pytel, S.P.; Vasilak, I.I.; Yushkevich, V.I.


    Results are described from drilling wells with flushing by highly aerated clay fluid with the help of a UNGA unit which includes pumps and compressors of the drilling unit UBSh-1 which permits injection of an aerated mixture under pressures considerably exceeding the pressure of its formation. Qualitative and technical-economic advantages of drilling with flushing by aerated solutions with the use of a unit for injecting gas-liquid agents are presented.

  17. Aeration-Induced Changes in Temperature and Nitrogen Dynamics in a Dimictic Lake. (United States)

    Holmroos, Heidi; Horppila, Jukka; Laakso, Sanna; Niemistö, Juha; Hietanen, Susanna


    Low levels of oxygen (O) in the hypolimnion layer of lakes are harmful to benthic animals and fish; they may also adversely affect nutrient cycles. Artificial aeration is often used in lake management to counteract these problems, but the effects of aeration on nitrogen (N) cycling are not known. We studied the effects of hypolimnetic aeration on N dynamics and temperature in a eutrophic lake by comparing continuous and pulsed aeration with a nonaerated station. Aeration decreased the accumulation of NH-N deep in the lake (20-33 m) by supplying O for nitrification, which in turn provided substrate for denitrification and promoted N removal. Aeration also increased the temperature in the hypolimnion. Denitrification rate was highest in the nonaerated deep areas (average, 7.62 mg N m d) due to very high rates during spring turnover of the water column, demonstrating that natural turnover provides O for nitrification. During stratification, denitrification was highest at the continuously aerated station (4.06 mg N m d) and lowest at the nonaerated station (3.02 mg N m d). At the periodically aerated station, aeration pauses did not restrict the increase in temperature but resulted in accumulation of NH-N and decreased the contribution of denitrification as a nitrate reduction process. Our findings demonstrate that hypolimnetic aeration can substantially affect N cycling in lakes and that the effect depends on the aeration strategy. Because N is one of the main nutrients controlling eutrophication, the effects of aeration methods on N removal should be considered as part of strategies to manage water quality in lakes.

  18. Modeling enzyme production with Aspergillus oryzae in pilot scale vessels with different agitation, aeration, and agitator types

    DEFF Research Database (Denmark)

    Albæk, Mads Orla; Gernaey, Krist; Hansen, Morten S.;


    The purpose of this article is to demonstrate how a model can be constructed such that the progress of a submerged fed‐batch fermentation of a filamentous fungus can be predicted with acceptable accuracy. The studied process was enzyme production with Aspergillus oryzae in 550 L pilot plant stirred...... tank reactors. Different conditions of agitation and aeration were employed as well as two different impeller geometries. The limiting factor for the productivity was oxygen supply to the fermentation broth, and the carbon substrate feed flow rate was controlled by the dissolved oxygen tension....... In order to predict the available oxygen transfer in the system, the stoichiometry of the reaction equation including maintenance substrate consumption was first determined. Mainly based on the biomass concentration a viscosity prediction model was constructed, because rising viscosity of the fermentation...

  19. Violent breaking wave impacts. Part 3. Effects of scale and aeration

    DEFF Research Database (Denmark)

    Bredmose, Henrik; Bullock, G. N.; Hogg, A. J.


    . The Bagnold-Mitsuyasu scaling law for the compression of an air pocket by a piston of incompressible water is rederived and generalised to 3D air pockets of arbitrary shape. Numerical results for wall pressure, force and impulse are then presented for a flip-through impact, a low-aeration impact and a high......-aeration impact, for nine scales and five levels of initial aeration. Two of these impact types trap a pocket of air at the wall. Among the findings of the paper is that for fixed initial aeration, impact pressures from the flip-through impact broadly follow Froude scaling. This is also the case for the two...

  20. Partial nitritation ANAMMOX in submerged attached growth bioreactors with smart aeration at 20 °C. (United States)

    Shannon, James M; Hauser, Lee W; Liu, Xikun; Parkin, Gene F; Mattes, Timothy E; Just, Craig L


    Submerged attached growth bioreactors (SAGBs) were operated at 20 °C for 30 weeks in smart-aerated, partial nitritation ANAMMOX mode and in a timer-controlled, cyclic aeration mode. The smart-aerated SAGBs removed 48-53% of total nitrogen (TN) compared to 45% for SAGBs with timed aeration. Low dissolved oxygen concentrations and cyclic pH patterns in the smart-aerated SAGBs suggested conditions favorable to partial nitritation ANAMMOX and stoichiometrically-derived and numerically modeled estimations attributed 63-68% and 14-44% of TN removal to partial nitritation ANAMMOX in these bioreactors, respectively. Ammonia removals of 36-67% in the smart-aerated SAGBs, with measured oxygen and organic carbon limitations, further suggest partial nitritation ANAMMOX. The smart-aerated SAGBs required substantially less aeration to achieve TN removals similar to SAGBs with timer-controlled aeration. Genomic DNA testing confirmed that the dominant ANAMMOX seed bacteria, received from a treatment plant utilizing the DEMON® sidestream deammonification process, was a Candidatus Brocadia sp. (of the Planctomycetales order). The DNA from these bacteria was also present in the SAGBs at the conclusion of the study providing evidence for attached growth and limited biomass washout.

  1. Landfill aeration in the framework of a reclamation project in Northern Italy. (United States)

    Raga, Roberto; Cossu, Raffaello


    In situ aeration by means of the Airflow technology was proposed for landfill conditioning before landfill mining in the framework of a reclamation project in Northern Italy. A 1-year aeration project was carried out on part of the landfill with the objective of evaluating the effectiveness of the Airflow technology for landfill aerobization, the evolution of waste biological stability during aeration and the effects on leachate and biogas quality and emissions. The main outcomes of the 1-year aeration project are presented in the paper. The beneficial effect of the aeration on waste biological stability was clear (63% reduction of the respiration index); however, the effectiveness of aeration on the lower part of the landfill is questionable, due to the limited potential for air migration into the leachate saturated layers. During the 1-year in situ aeration project approx. 275 MgC were discharged from the landfill body with the extracted gas, corresponding to 4.6 gC/kgDM. However, due to the presence of anaerobic niches in the aerated landfill, approx. 46% of this amount was extracted as CH4, which is higher than reported in other aeration projects. The O2 conversion quota was lower than reported in other similar projects, mainly due to the higher air flow rates applied. The results obtained enabled valuable recommendations to be made for the subsequent application of the Airflow technology to the whole landfill.

  2. Microstructure and Properties of Silty Siliceous Crushed Stone-lime Aerated Concrete

    Institute of Scientific and Technical Information of China (English)

    WANG Qiankun; CHEN Youzhi; LI Fangxian; SUN Tao; XU Bingbo


    The clayish crushed stone was used for making aerated concrete. Through studying hydro-thermal synthesis reaction, mix ratio, gas-forming and performance analysis, Grade-B05 and Grade-B06 aerated concrete were prepared successfully. The proper mix ratio and key processing parameters were achieved. The microstructure of aerated concrete with crush stone was analyzed by means of XRD and SEM. The experimental results indicate that the hydration products are poorly crystalline C-S-H (B), tobermorite and hydrogarnet. No component of clay was found. Unreacted SiO2 can be in existence, and the structure system of aerated concrete is homogeneous and dense.

  3. [Effect of aeration intensity on the nitrogen and phosphorus removal performance of AOA membrane bioreactors]. (United States)

    Chen, Xiao-Yang; Xue, Zhi-Yong; Xiao, Jing-Ni; Zhang, Han-Min; Yang, Feng-Lin; Wang, Wei-Ping; Hong, Chun-Lai; Zhu, Feng-Xiang


    The ability of simultaneous phosphorus and nitrogen removal of sequencing batch membrane bioreactor run in anaerobic/oxic/ anoxic mode (AOA MBR) was examined under three aeration intensities [2.5, 3.75 and 5.0 m3 x (m2 x h)(-10]. The results showed that the averaged removals of COD were over 90% at different aeration intensities. And the higher aeration intensity was, the more ammonia nitrogen removal rate achieved. The removal rates of NH4(+) under the three aeration intensities were 84.7%, 90.6% and 93.8%, respectively. Total nitrogen removal rate increased with the increasing aeration intensity. But excessive aeration intensity reduced TN removal. The removal rates of TN under the three aeration intensities were 83.4%, 87.4% and 80.6%, respectively. Aeration intensity affected the denitrifying phosphorus ability of the AOA MBR. The ratio of denitrification phosphorus removal under the three aeration intensities were 20%, 30.2% and 26.7%, respectively.

  4. 限制曝气实现常温条件下生活污水短程硝化%Partial Nitrification from Domestic Wastewater by Aeration Control at Ambient Temperature

    Institute of Scientific and Technical Information of China (English)

    彭永臻; 高守有; 王淑莹; 白璐


    The objective of this paper was to examine the feasibility of partial nitrification from raw domestic wastewater at ambient temperature by aeration control only. Airflow rate was selected as the sole operational parameter. A 14L sequencing batch reactor was operated at 23℃ for 8 months, with an input of domestic wastewater.deficiency in the reactor would eventually induce only nitrification to nitrite and not further to nitrate and that this system showed relatively stability at higher airflow rate independent of pH and temperature. About 50% of influent total nitrogen was eliminated coupling with partial nitrification, taking the advantage of low DO during the reaction.

  5. Pseudomonads rule degradation of polyaromatic hydrocarbons in aerated sediment

    Directory of Open Access Journals (Sweden)

    Jiri eWald


    Full Text Available Given that the degradation of aromatic pollutants in anaerobic environments such as sediment is generally very slow, aeration could be an efficient bioremediation option. Using stable isotope probing (SIP coupled with pyrosequencing analysis of 16S rRNA genes, we identified naphthalene-utilizing populations in aerated polyaromatic hydrocarbon (PAH-polluted sediment. The results showed that naphthalene was metabolized at both 10°C and 20°C following oxygen delivery, with increased degradation at 20°C as compared to 10°C – a temperature more similar to that found in situ. Naphthalene-derived 13C was primarily assimilated by pseudomonads. Additionally, Stenotrophomonas, Acidovorax, Comamonas and other minor taxa were determined to incorporate 13C throughout the measured time course. The majority of SIP-detected bacteria were also isolated in pure cultures, which facilitated more reliable identification of naphthalene-utilizing populations as well as proper differentiation between primary consumers and cross-feeders. The pseudomonads acquiring the majority of carbon were identified as Pseudomonas veronii and P. gessardii. Stenotrophomonads and Acidovorax defluvii, however, were identified as cross-feeders unable to directly utilize naphthalene as a growth substrate. PAH degradation assays with the isolated bacteria revealed that all pseudomonads as well as Comamonas testosteroni degraded acenaphthene, fluorene and phenanthrene in addition to naphthalene. Furthermore, P. veronii and C. testosteroni were capable of transforming anthracene, fluoranthene and pyrene. Screening of isolates for naphthalene dioxygenase genes using a set of in-house designed primers for Gram-negative bacteria revealed the presence of such genes in pseudomonads and Comamonas testosteroni. Overall, our results indicated an apparent dominance of pseudomonads in the sequestration of carbon from naphthalene and potential degradation of other PAHs upon aeration of the


    Institute of Scientific and Technical Information of China (English)


    Digital image measurement method, as an ex-tension of Particle Image Velocimetry of single-phase flowmeasurement, was investigated for application to air-watertwo-phase flows. The method has strong potential ability inmeasuring bubble geometrical features and moving velocitiesfor complex bubble motion in aerated water flow. Both dilutedand dense bubble rising flows are measured using the digitalimage method. Measured bubble shapes and sizes, and bubblevelocities are affected by threshold selection for binary image.Several algorithms for selecting threshold are compared andmethods for calculating the time-averaged void fraction arediscussed.

  7. Pulverizing aeration as a method of lakes restoration (United States)

    Kaczorowska, E.; Podsiadłowski, S.


    The principal threat to lakes of the temperate zone is posed by factors accelerating their eutrophication and causing marked deoxygenation of the deeper layers of water, mainly the hypo- and metalimnion. Among their effects are frequent phytoplankton blooms, including those of blue-green algae, and general deterioration of water quality also affecting the abundance and health status of fish. The chief concern is a disturbed proportion between the amount of complex chemical compounds, especially organic, and the oxygen content of lake waters. Natural processes of water oxygenation are not too intensive, because they are practically limited to the epilimnion layer, connected as they are with the activity of aquatic plants of the littoral and sublittoral zone (which tends to disappear in contaminated lakes) and wind energy (the effect of waving). In summer conditions, with a relatively great chemical activity of bottom deposits, the intensity of those processes is usually inadequate. Hence, in 1995 a research was launched in the Institute of Agricultural Engineering of the Agricultural University in Poznań on an integrated lake restoration technology whose core was a self-powered aerator capable of oxygenating also the bottom layers of water (the hypolimnion) of deep lakes. The aerator uses energy obtained from a Savonius rotor mainly to diffuse gases: to release hydrogen sulphide, which usually saturates the hypolimnion water completely, and then to saturate this water with oxygen. Even early studies showed the constructed device to be highly efficient in improving oxygen conditions in the bottom zone. They also made it clear that it should be equipped with an autonomous system designed to inactivate phosphorus, one of the principal factors determining the rate of lake degradation. In 2003 the first wind-driven pulverising aerator equipped with such a system was installed in Town Lake in Chodzież. The aim of this work is to present the principles of operation of a

  8. Modelling and test of aeration tank settling (ATS)

    DEFF Research Database (Denmark)

    Nielsen, M. K.; Bechmann, H.; Henze, Mogens


    that a qualitatively correct model can be established. The simplicity of the model allows for on-line identification of the necessary parameters, so that no maintenance is needed to use of the on-line model for control. The practical implementation on three plants indicates that implementation of STAR with ATS control......The use of aeration tank settling during high hydraulic loads on large wastewater treatment plants has previously been demonstrated as a reliable technique and proven valuable. The paper proposes a simplified deterministic model to predict the efficiency of the method. It is shown...

  9. Multifunctional reactors

    NARCIS (Netherlands)

    Westerterp, K.R.


    Multifunctional reactors are single pieces of equipment in which, besides the reaction, other functions are carried out simultaneously. The other functions can be a heat, mass or momentum transfer operation and even another reaction. Multifunctional reactors are not new, but they have received much

  10. Heterotrophic, nitrifying and denitrifying activity of biomass from fluidized bed reactor operated with aeration cycles

    Energy Technology Data Exchange (ETDEWEB)

    Martin Martin, A.; Damianovic, M.; Garcia-Encina, P. A.


    Biomass activity can be defined as the mass of substrate metabolised per unit of biomass and time. This parameter have a great importance to know the metabolic conditions of the microorganisms in a biological process, and can be use for an adequate operation and control of a wastewater treatment system. There are different methods to determine biomass activity, but the more useful are those based on the determination of the rate of substrate consumption or products generation. (Author)

  11. Computational Fluid Dynamics Modelling of Hydraulics and Sedimentation in Process Reactors During Aeration Tank Settling

    DEFF Research Database (Denmark)

    Dam Jensen, Mette; Ingildsen, Pernille; Rasmussen, Michael R.;


    shown to be more effective than others. To improve the design of less effective plants Computational Fluid Dynamics (CFD) modelling of hydraulics and sedimentation has been applied. The paper discusses the results at one particular plant experiencing problems with partly short-circuiting of the inlet...... been suggested and tested by means of computational fluid dynamics modelling. The most promissing design change have been found and reported....

  12. Enzymatic degradation of low soluble compounds in monophasic water: solvent reactors. Kinetics and modeling of anthracene degradation by MnP. (United States)

    Eibes, G; Moreira, M T; Feijoo, G; Lema, J M


    Polycyclic aromatic hydrocarbons (PAHs) are toxic compounds presenting low water solubility and high hydrophobicity, which greatly hampers their natural biodegradation. The enzymatic degradation of a model compound, anthracene, was evaluated in presence of a miscible solvent for an increased solubility. Manganese peroxidase, a ligninolytic enzyme from white-rot fungi, was used as biocatalyst in a medium containing acetone. The kinetic parameters of the enzymatic degradation of anthracene, obtained from fed-batch experiments, were applied to model the operation of a continuous reactor. Kinetics comprised a Michaelis-Menten equation, modified with an autocatalytic term, assumed to the effect of quinones acting as electron carriers, and a logistic function related to enzyme activity. The continuous reactor has been operated for 108 h, attaining a 90% of anthracene degradation, which demonstrated the feasibility of the system for its application in the removal of poorly soluble compounds. The model of this reactor permitted to predict accurately anthracene degradation in different conditions, such as external addition of anthraquinone and different enzymatic activities.

  13. Galvanic corrosion of nitinol under deaerated and aerated conditions. (United States)

    Pound, Bruce G


    Various studies have examined the corrosion rate of nitinol generally under deaerated conditions. Likewise, galvanic corrosion studies have typically involved deaerated solutions. This work addressed the effect of galvanic coupling on the corrosion current of electropolished nitinol in phosphate buffered saline and 0.9% sodium chloride under dearated and aerated conditions for times up to 24 h. Tests were performed on nitinol alone and coupled with MP35N in both the mechanically polished and passivated conditions. Aeration and galvanic coupling were found to have relatively little effect, indicating that the corrosion current is controlled by the anodic reaction. The current can be attributed entirely to Ni(2+) dissolution, which appears to be governed by solid-state mass transport of Ni(2+) through the passive oxide film. Because corrosion of EP nitinol is controlled by the anodic reaction, contact between EP nitinol and MP35N or other biomedical Co-Cr alloys is unlikely to result in significant galvanic effects in vivo. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1322-1327, 2016.

  14. The Potential of Extended Aeration System for Sago Effluent Treatment

    Directory of Open Access Journals (Sweden)

    Wahi A. Rashid


    Full Text Available Problem statement: Sago effluent contains large amount of organic material which has a potential to cause water pollution. In order to reduce this problem, an experiment was conducted to remove organic material from sago effluent using lab scale of Extended Aeration (EA system. Approach: The EA system consisted of the combination of physical and biological treatment unit. For Physical Treatment Unit (PTU, the sago effluent was filtered using 710 µm mesh size filter. For Biological Treatment Unit (BTU, the effluent were mixed and aerated with activated sago sludge for 48 h. The treatment efficiency with respect to Biological Oxygen Demand (BOD, Chemical Oxygen Demand (COD and Total Suspended Solid (TSS removal were evaluated and compared with regulatory requirement by Department of Environment, Malaysia. Results: The result showed, the EA system could reduce BOD, COD and TSS up to 84, 87.8 and 73% respectively, however it did not comply with the regulatory requirement. Conclusion: This study suggested the EA system have potential to be apply on sago effluent, however it should be integrated with additional treatment unit to achieve the effluent quality standard.

  15. The use of bottle caps as submerged aerated filter medium. (United States)

    Damasceno de Oliveira, Laurence; Motlagh, Amir Mohaghegh; Goel, Ramesh; de Souza Missagia, Beatriz; Alves de Abreu Filho, Benício; Lautenschlager, Sandro Rogério


    In this study, a submerged aerated filter (SAF) using bottle caps as a support medium was evaluated. The system was fed with effluent from an upflow anaerobic sludge blanket system at ETE 2-South wastewater treatment plant, under different volumetric organic load rates (VOLRs). The population of a particular nitrifying microbial community was assessed by fluorescent in situ hybridization with specific oligonucleotide probes. The system showed an average removal of chemical oxygen demand (COD) equal to 76% for VOLRs between 2.6 and 13.6 kg COD m(-3) The process of nitrification in conjunction with the removal of organic matter was observed from applying VOLRs lower than 5.5 kg COD m(-3) resulting in 78% conversion of NH4(+)-N. As the applied organic load was reduced, an increase in the nitrifying bacteria population was observed compared with total 4'-6-diamidino-2-phenylindole (DAPI) stained cells. Generally, SAF using bottle caps as a biological aerated filter medium treating wastewater from an anaerobic system showed promising removal of chemical oxygen demand (COD) and conversion of NH4(+)-N.

  16. Water quality and bacteriology in an aquaculture facility equipped with a new aeration system

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, S.O.; Kulkarni, S.S.; Shirodkar, R.R.; Karekar, S.V.; PraveenKumar, R.; Sreepada, R.A.; Vogelsang, C.; LokaBharathi, P.A.

    l sup(-1). Non-aerated conditions promoted denitrification maintaining nitrate concentration between 0.32 and 0.98 Mu M NO sub(3) sup(-) - N l sup(-1). However, a marked increase in ammonium content was observed in the non-aerated pond at the end...

  17. Surfactant effects on alpha factors in full-scale wastewater aeration systems. (United States)

    Rosso, D; Larson, L E; Stenstrom, M K


    Aeration is an essential process in the majority of wastewater treatment processes, and accounts for the largest fraction of plant energy costs. Aeration systems can achieve wastewater oxygenation by shearing the surface (surface aerators) or releasing bubbles at the bottom of the tank (coarse- or fine-bubble aerators). Surfactants accumulate on gas-liquid interfaces and reduce mass transfer rates. This reduction in general is larger for fine-bubble aerators. This study was conducted to evaluate mass transfer effects on the characterization and specification of aeration systems in clean and process water conditions. Tests at different interfacial turbulence regimes were analysed, showing higher gas transfer depression for lower turbulence regimes. Higher turbulence regimes can offset contamination effects, at the expense of operating efficiency. This phenomenon is characteristic of surface aerators and coarse bubble diffusers and is here discussed. The results explain the variability of alpha factors measured at small scale, due to uncontrolled energy density. Results are also reported in dimensionless empirical correlations that describe mass transfer as a function of physiochemical and geometrical characteristics of the aeration process.

  18. Effect of new aeration technology on the bacteriology of shrimp ponds growing Penaeus monodon

    Digital Repository Service at National Institute of Oceanography (India)

    Karekar, S.V.; Sreepada, R.A.; Shirodkar, R.R.; Kulkarni, S.; Kumar, P.; LokaBharathi, P.A.; Bergheim, A.; Vogelsang, C.

    , particularly the disease causing bacteria in response to aeration during the cultivation of tiger shrimp, Penaeus monodon. In HOBAS aerated pond (P1) showed more stable DO levels and the pond sediment was healthier with no visual black sulphur deposits. However...

  19. 40 CFR 265.278 - Unsaturated zone (zone of aeration) monitoring. (United States)


    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Unsaturated zone (zone of aeration) monitoring. 265.278 Section 265.278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED..., STORAGE, AND DISPOSAL FACILITIES Land Treatment § 265.278 Unsaturated zone (zone of aeration)...

  20. Evaluation of re-aeration equations for river Ghataprabha, Karnataka, India and development of refined equation. (United States)

    Kalburgi, P B; Jha, R; Ojha, C S P; Deshannavar, U B


    Stream re-aeration is an extremely important component to enhance the self-purification capacity of streams. To estimate the dissolved oxygen (DO) present in the river, estimation of re-aeration coefficient is mandatory. Normally, the re-aeration coefficient is expressed as a function of several stream variables, such as mean stream velocity, shear stress velocity, bed slope, flow depth and Froude number. Many empirical equations have been developed in the last years. In this work, 13 most popular empirical re-aeration equations, used for re-aeration prediction, have been tested for their applicability in Ghataprabha River system, Karnataka, India, at various locations. Extensive field data were collected during the period March 2008 to February 2009 from seven different sites located in the river to observe re-aeration coefficient using mass balance approach. The performance of re-aeration equations have been evaluated using various error estimations, namely, the standard error (SE), mean multiplicative error (MME), normalized mean error (NME) and correlation statistics. The results show that the predictive equation developed by Jha et al. (Refinement of predictive re-aeration equations for a typical Indian river. Hydrological Process. 2001;15(6):1047-1060), for a typical Indian river, yielded the best agreement with the values of SE, MME, NME and correlation coefficient r. Furthermore, a refined predictive equation has been developed for river Ghataprabha using least-squares algorithm that minimizes the error estimates.

  1. Experimental investigations of aeration efficiency in high-head gated circular conduits. (United States)

    Cihat Tuna, M; Ozkan, Fahri; Baylar, Ahmet


    The primary purpose of water aeration is to increase the oxygen saturation of the water. This can be achieved by using hydraulic structures because of substantial air bubble entrainment at these structures. Closed conduit aeration is a particular instance of this. While there has been a great deal of research on air-demand ratio within closed conduit, very little research has specifically addressed aeration efficiency of closed conduit. In the present work an experimental study was conducted to investigate the aeration efficiency of high-head gated circular conduits. Results showed that high-head gated circular conduits were effective for oxygen transfer. The effects of Froude number and ratio of the water cross-sectional flow area to the conduit cross-sectional area on aeration efficiency were particularly significant, whereas the effect of conduit length was only moderate. Further, a design formula for the aeration efficiency was presented relating the aeration efficiency to ratio of water cross-sectional flow area to conduit cross-sectional area and Froude number. The obtained results will be useful in future modeling processes and aid the practicing engineer in predicting aeration efficiency for design purposes.


    Institute of Scientific and Technical Information of China (English)

    SU Pei-lan; LIAO Hua-sheng; QIU Yue; LI Chen-juan


    Experimental study on aeration characteristics of various aeration devices was conducted in the spillway tunnel of the Pubugou hydropower project, Sichuan Province, China. It is shown by comparison that the new type of aeration device, namely, the aerator with a trapezoidal-shaped slot and a steep-slope section(ATSS), can avoid water accumulation in the cavity of the aeration device in the project, thus can effectively solve the backwater problems arising from this project and be used for a wide range of different water levels, without any drain facilities. Above the water level of 840 m, the water contained in the cavity can be eliminated completely, which means that the recommended new type of aerator can meet the aeration demands in the spillway of the project with low Froude number and may be of practical significance and of interest to other projects with similar types of aeration devices.

  3. Reactor vessel


    Makkee, M.; Kapteijn, F.; Moulijn, J.A


    A reactor vessel (1) comprises a reactor body (2) through which channels (3) are provided whose surface comprises longitudinal inwardly directed parts (4) and is provided with a catalyst (6), as well as buffer bodies (8, 12) connected to the channels (3) on both sides of the reactor body (2) and comprising connections for supplying (9, 10, 11) and discharging (13, 14, 15) via the channels (3) gases and/or liquids entering into a reaction with each other and substances formed upon this reactio...


    Institute of Scientific and Technical Information of China (English)


    An experiment concerning the sound propaga-tion in aerated open channel flow was designed and conductedin a variable slope chute. The acquisition of sound data wasdone by the hydro-phones installed into the bottom wall of thechute. The data were analyzed and processed by the tape re-corder and a 3562A analyzer. The primary experimetal resultsindicated that the sound speed in aerated flow is varied with the air concentration and highly lower than each of the soundspeed in pure water or air. As released by the derived theoryformula, the minimum sound of 24m/s in aerated flow hap-pened when the air concentration achieved to 50%. This resultshows that the compressibility of high speed aerated flowshould be considered when the air concentration is near to50%. A criterion of compressibility of high speed aerated flowwas also giv. En in this paper.

  5. Effects of intermittent aeration on pollutants removal in subsurface wastewater infiltration system. (United States)

    Pan, Jing; Fei, Hexin; Song, Siyu; Yuan, Fang; Yu, Long


    In this study, the pollutant removal performances in two pilot-scale subsurface wastewater infiltration systems (SWISs) with and without intermittent aeration were investigated. Matrix oxidation reduction potential (ORP) results showed that intermittent aeration well developed aerobic conditions in upper matrix and anoxic or anaerobic conditions in the subsequent sections, which resulted in high NH4(+)-N and TN removal. Moreover, intermittent aeration increased removal rates of COD and TP. Microbial populations and enzyme activities analysis proved that intermittent aeration not only obviously boosted the growth and reproduction of bacteria, fungus, actinomyces, nitrifying bacteria and denitrifying bacteria, but also successfully increased nitrate reductase (NR) and nitrite reductase (NIR) in the depth of 80 and 110 cm. The results suggest that the intermittent aeration could be a widespread research and application strategy for achieving the high removal performance in SWISs.

  6. Nitrous oxide emissions from an intermittent aeration activated sludge system of an urban wastewater treatment plant

    Directory of Open Access Journals (Sweden)

    William Z. de Mello


    Full Text Available This study investigated the emission of N2O during the sequential aerated (60-min and non-aerated (30-min stages of an intermittent aeration cycle in an activated sludge wastewater treatment plant (WWTP. N2O emission occurred during both stages; however, emission was much higher during aeration. Air stripping is the major factor controlling transfer of N2O from the sewage to the atmosphere. The N2O emissions exclusively from the aeration tank represented 0.10% of the influent total nitrogen load and the per capita emission factor was almost 3 times higher than that suggested by the IPCC for inventories of N2O emission from WWTPs.

  7. NUCLEAR REACTOR (United States)

    Miller, H.I.; Smith, R.C.


    This patent relates to nuclear reactors of the type which use a liquid fuel, such as a solution of uranyl sulfate in ordinary water which acts as the moderator. The reactor is comprised of a spherical vessel having a diameter of about 12 inches substantially surrounded by a reflector of beryllium oxide. Conventionnl control rods and safety rods are operated in slots in the reflector outside the vessel to control the operation of the reactor. An additional means for increasing the safety factor of the reactor by raising the ratio of delayed neutrons to prompt neutrons, is provided and consists of a soluble sulfate salt of beryllium dissolved in the liquid fuel in the proper proportion to obtain the result desired.

  8. Reactor Neutrinos

    Directory of Open Access Journals (Sweden)

    Soo-Bong Kim


    Full Text Available We review the status and the results of reactor neutrino experiments. Short-baseline experiments have provided the measurement of the reactor neutrino spectrum, and their interest has been recently revived by the discovery of the reactor antineutrino anomaly, a discrepancy between the reactor neutrino flux state of the art prediction and the measurements at baselines shorter than one kilometer. Middle and long-baseline oscillation experiments at Daya Bay, Double Chooz, and RENO provided very recently the most precise determination of the neutrino mixing angle θ13. This paper provides an overview of the upcoming experiments and of the projects under development, including the determination of the neutrino mass hierarchy and the possible use of neutrinos for society, for nonproliferation of nuclear materials, and geophysics.

  9. Chemical Reactors. (United States)

    Kenney, C. N.


    Describes a course, including content, reading list, and presentation on chemical reactors at Cambridge University, England. A brief comparison of chemical engineering education between the United States and England is also given. (JN)

  10. Reactor Neutrinos


    Lasserre, T.; Sobel, H.W.


    We review the status and the results of reactor neutrino experiments, that toe the cutting edge of neutrino research. Short baseline experiments have provided the measurement of the reactor neutrino spectrum, and are still searching for important phenomena such as the neutrino magnetic moment. They could open the door to the measurement of coherent neutrino scattering in a near future. Middle and long baseline oscillation experiments at Chooz and KamLAND have played a relevant role in neutrin...

  11. Study of a sequencing batch reactor performance in soft drink wastewater treatment

    Directory of Open Access Journals (Sweden)

    Francisco Javier Cuba Terán


    Full Text Available A sequencing batch aerobic reactor in pilot scale was constructed and operated with intermittent aeration in Wastewater Treatment Lab of Faculdade de Ciências e Tecnologia de Unesp at Presidente Prudente city. Research was conducted in order to improve reactor’s performance in organic matter and nitrogen removal by means of the application of different aeration times. In 12 and 14 hours long batch tests, with 6 and 8 hours of aeration, more than 96% of organic matter was removed by the third hour in both cases, in the other hand, nitrification showed 50 and 55% of removal at the end of every cycle. Tough showing nitrate removal, denitrification requires more research to be done in order to obtain more accurate data related with best cycle time for both pollutants removal.Key-words: sequencing batchs, aerobic treatment, industrial wastewater.A sequencing batch aerobic reactor in pilot scale was constructed and operated with intermittent aeration in Wastewater Treatment Lab of Faculdade de Ciências e Tecnologia de Unesp at Presidente Prudente city. Research was conducted in order to improve reactor’s performance in organic matter and nitrogen removal by means of the application of different aeration times. In 12 and 14 hours long batch tests, with 6 and 8 hours of aeration, more than 96% of organic matter was removed by the third hour in both cases, in the other hand, nitrification showed 50 and 55% of removal at the end of every cycle. Tough showing nitrate removal, denitrification requires more research to be done in order to obtain more accurate data related with best cycle time for both pollutants removal.Key-words: sequencing batchs, aerobic treatment, industrial wastewater.

  12. Comparison of combined and separated biological aerated filter (BAF) performance for pre-denitrification/nitrification of municipal wastewater. (United States)

    Rother, E; Cornel, P; Ante, A; Kleinert, P; Brambach, R


    The performance of two systems of semi-industrial up-flow biological aerated filters (BAF) with pre-denitrification followed by nitrification was studied and compared under various operating and loading conditions. The first system consisted of two separate reactors for the denitrification and the nitrification step, whereas in the second system the aerobic nitrification zone was packed on top of the anoxic denitrification zone in one reactor. The second system potentially offers substantial savings in investment costs and space requirements for a large scale treatment plant. Regarding the elimination of carbonaceous pollution and denitrification the systems did not show significant differences. However, nitrification in the combined system suffered from the mixing of different biocenosis by daily backwashing and was reduced to 50-70% of the separated system's performance. Factors such as oxygen concentration, raw water composition and loading rates affected both systems' nitrification rates in similar ways. Since it is impossible to optimise the nitrification and denitrification processes separately, the combined system should only be considered for large scale applications if space is very scarce and if a stable raw water composition can be expected. If strict limit values for nitrate have to be met in the effluent, a combination of pre- and post-denitrification is advantageous and advisable.


    Directory of Open Access Journals (Sweden)



    Full Text Available The objective of this research was to conduct a bench scale study of fixed activated sludge treating domestic sewage. Two different units employing diffused aeration with plastic and aluminum media were studied in four separate phases. Data indicated that the system could produce a high quality effluent without any requirements for sludge recycling through the system. Suspended solids concentrations of 3-6 mg/1, BOD5 concentrations of 4-12 mg/1 and COD concentrations of 35-45 mg/1 were found in the effluent with wastewater retentions ranging from 3-15 hours, whereas an indication of nitrification was observed in higher detention periods. As far as the type of media was concerned, the plastic and aluminum media did not differ significantly once the microbes had grown on the media.

  14. Thermal conductivity of newspaper sandwiched aerated lightweight concrete panel

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Soon-Ching; Low, Kaw-Sai [Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Genting Kelang, Setapak, 53300 Kuala Lumpur, Wilayah Persekutuan (Malaysia)


    Investigation on the thermal conductivity of newspaper sandwiched aerated lightweight concrete (ALC) panels is the main purpose of this study. Various densities of ALC panels ranging from 1700, 1400 and 1100 kg/m{sup 3} with three different aerial intensities of newspaper sandwiched were produced. Investigation was limited to the effect of aerial intensity of newspaper sandwiched and the effect of density of ALC on thermal conductivity. It is found that the thermal conductivity of newspaper sandwiched ALC panels reduced remarkably compared to control ALC panels. The reduction was recorded at 18.0%, 21.8% and 20.7% correspond to densities of 1700, 1400 and 1100 kg/m{sup 3} with just a mere 0.05 g/cm{sup 2} aerial intensity of newspaper sandwiched. Newspaper sandwiched has a significant impact on the performance of thermal conductivity of ALC panels based on regression analysis. (author)

  15. Nitrogen and phosphorus removal under intermittent aeration conditions

    Institute of Scientific and Technical Information of China (English)


    A practice wastewater treatment plant was operated usingintermittent aeration activated sludge process to enhancebiological nitrogen and phosphorus removal. When the influentconcentrations of CODCr, BOD5, TN, TP, NH3-N, TKN, and SS varied ina range of 207.5-1640 mg/L, 61.8-637 mg/L, 28.5-75.6 mg/L, 4.38-20.2 mg/L, 13.6-31.9 mg/L, 28.5-75.6 mg/L, and 111-1208 mg/L, theeffluent means were less than 50 mg/L, 20 mg/L, 5 mg/L, 1.0 mg/L,5 mg/L, 10 mg/L, and 20 mg/L, respectively. Based on a long time ofoperating results, this process is very suitable for nutrientbiological removal for treating the municipal wastewater thosewater characteristics are similar as that of the Songjiang Municipal Waste water Treatment plant(SJMWTP).

  16. Cracking in autoclaved aerated concrete: Experimental investigation and XFEM modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ferretti, D., E-mail: [Department of Civil, Environmental, Land Management Engineering and Architecture, University of Parma, Area delle Scienze 181/A, 43124 Parma (Italy); Michelini, E. [Department of Civil, Environmental, Land Management Engineering and Architecture, University of Parma, Area delle Scienze 181/A, 43124 Parma (Italy); Rosati, G. [Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza L. Da Vinci 32, 20133 Milano (Italy)


    The paper aims to investigate and model cracking development in beams and deep-beams made of autoclaved aerated concrete (AAC). Fracture mechanics of AAC has been first studied by performing three-point bending tests on beams, similar to those commonly used for ordinary concrete elements. In some of these tests, crack growth has been also monitored by using ESPI laser technique. In this way, it has been possible to calibrate the main parameters of a proper cohesive law by means of extended finite element inverse analysis. Subsequently, cracking tests have been also performed on deep-beams, whose behavior is more representative of full scale walls. To validate the proposed cohesive law, deep-beam experimental behavior has been finally simulated through XFEM.

  17. [Effects of substrate-aeration cultivation pattern on tomato growth]. (United States)

    Zhao, Xu; Li, Tian-Lai; Sun, Zhou-Ping


    Aeroponics can increase the fruit yield of tomato plant, but its cost is very high. In this paper, tomato seedlings were planted with three cultures, i. e., whole perlite culture (CK), perlite-aeration culture (T1), and aeroponics (T2), and a comparative study was made on the seedlings growth. Compared with CK, T1 improved the gas environment in root zone significantly, with the CO2 and O2 concentrations in root zone being 0.2 and 1.17 times higher, and increased the plant height and stem diameter after 60 days of transplanting by 5.1% and 8.4%, respectively. The plant net photosynthetic rate of T1 was significantly higher than that of CK, with the maximum value after transplanting 45 days increased by 13%. T1 also increased the root activity and ion absorbing ability significantly, with the root activity after transplanting 45 days being 1.23 times of CK, and the root K, Ca, and Mg contents after transplanting 60 days increased by 31%, 37%, and 27%, respectively. The fruit yield of T1 was 1.16 times of CK. No significant differences in these indices were observed between T1 and T2, and less difference in the fruit soluble sugar and organic acid contents as well as the sugar-acid ratio was found among CK, T1, and T2. It was suggested that perlite-aeration cultivation pattern was an easy and feasible way to markedly improve the fruit yield of tomato plant.

  18. Ammonia-based feedforward and feedback aeration control in activated sludge processes. (United States)

    Rieger, Leiv; Jones, Richard M; Dold, Peter L; Bott, Charles B


    Aeration control at wastewater treatment plants based on ammonia as the controlled variable is applied for one of two reasons: (1) to reduce aeration costs, or (2) to reduce peaks in effluent ammonia. Aeration limitation has proven to result in significant energy savings, may reduce external carbon addition, and can improve denitrification and biological phosphorus (bio-P) performance. Ammonia control for limiting aeration has been based mainly on feedback control to constrain complete nitrification by maintaining approximately one to two milligrams of nitrogen per liter of ammonia in the effluent. Increased attention has been given to feedforward ammonia control, where aeration control is based on monitoring influent ammonia load. Typically, the intent is to anticipate the impact of sudden load changes, and thereby reduce effluent ammonia peaks. This paper evaluates the fundamentals of ammonia control with a primary focus on feedforward control concepts. A case study discussion is presented that reviews different ammonia-based control approaches. In most instances, feedback control meets the objectives for both aeration limitation and containment of effluent ammonia peaks. Feedforward control, applied specifically for switching aeration on or off in swing zones, can be beneficial when the plant encounters particularly unusual influent disturbances.

  19. Development of a model for activated sludge aeration systems: linking air supply, distribution, and demand. (United States)

    Schraa, Oliver; Rieger, Leiv; Alex, Jens


    During the design of a water resource recovery facility, it is becoming industry practice to use simulation software to assist with process design. Aeration is one of the key components of the activated sludge process, and is one of the most important aspects of modelling wastewater treatment systems. However, aeration systems are typically not modelled in detail in most wastewater treatment process modelling studies. A comprehensive dynamic aeration system model has been developed that captures both air supply and demand. The model includes sub-models for blowers, pipes, fittings, and valves. An extended diffuser model predicts both oxygen transfer efficiency within an aeration basin and pressure drop across the diffusers. The aeration system model allows engineers to analyse aeration systems as a whole to determine biological air requirements, blower performance, air distribution, control valve impacts, controller design and tuning, and energy costs. This enables engineers to trouble-shoot the entire aeration system including process, equipment and controls. It also allows much more realistic design of these highly complex systems.


    Directory of Open Access Journals (Sweden)



    Full Text Available Stepped cascade aeration system is commonly used to aerate the water and wastewater to increase the dissolved oxygen during pre and post treatment process. In the present research, experiments were conducted to evaluate the performance of a rectangular Cascade Aeration System with varying flow rates, risers and tread by maintaining constant width of the channel using water collected from reverse osmosis plant. The experiments were carried out with four different risers such as 0.15 m, 0.18 m, 0.225 m and 0.30 m. Each rise was investigated with five different tread of 0.60 m, 0.55 m, 0.50 m, 0.45 m and 0.40 m. Comprehensive experimental investigations were carried out for different hydraulic loading rates of 0.005 to 0.035 m3/s/m2. Results obtained from the experiments reveals that increasing dimensionless discharges promotes more aeration, attains a maximum up to dimensionless discharge= 2.22 and beyond this there was a significant decrease in aeration. In addition, the increased in number of steps significantly enhances air entertainment and surface fall rate in the Stepped Cascade Aeration System. A regression equation was derived by keeping aeration efficiency as response with dimensionless discharge and oxygen saturation concentration as influencing parameters. The dimension less discharge is a function of critical depth of the rectangular channel and step height, whereas oxygen saturation concentration represents the ratio of oxygen deficit and oxygen saturation concentration. Based on the experimental results, the optimum design and/or results such as number of steps (12 numbers and hydraulic loading rate (0.025 m3/s/m2 with fixed tread width of 0.6 m were identified to achieve maximum aeration rate (0.5-0.60 in Aeration system.

  1. Aeration of the teuftal landfill: Field scale concept and lab scale simulation. (United States)

    Ritzkowski, Marco; Walker, Beat; Kuchta, Kerstin; Raga, Roberto; Stegmann, Rainer


    Long lasting post-closure care (PCC) is often the major financial burden for operators of municipal solid waste (MSW) landfills. Beside costs for the installation and maintenance of technical equipment and barriers, in particular long term treatment of leachate and landfill gas has to be paid from capital surplus. Estimations based on laboratory experiments project time periods of many decades until leachate quality allows for direct discharge (i.e. no need for further purification). Projections based on leachate samples derived from the last 37years for 35 German landfills confirm these assumption. Moreover, the data illustrate that in particular ammonium nitrogen concentrations are likely to fall below limit values only after a period of 300years. In order to avoid long lasting PCC the operator of Teuftal landfill, located in the Swiss canton Bern, decided to biologically stabilize the landfill by means of a combined in situ aeration and moisturization approach. In December 2014 the aeration started at a landfill section containing approximately 30% of the total landfill volume. From summer 2016 onwards the remaining part of the landfill will be aerated. Landfill aeration through horizontal gas and leachate drains is carried out for the first time in field scale in Europe. The technical concept is described in the paper. Parallel to field scale aeration, investigations for the carbon and nitrogen turnover are carried out by means of both simulated aerated landfills and simulated anaerobic landfills. The results presented in this paper demonstrate that aeration is capable to enhance, both carbon mobilization and discharge via the gas phase. This effect comes along with a significant increase in bio-stabilization of the waste organic fraction, which positively affects the landfill emission behavior in the long run. In terms of leachate pollution reduction it could be demonstrated that the organic load decrease fast and widely independent of the adjusted aeration

  2. Design of high efficiency and energy saving aeration device for aquaculture (United States)

    Liu, Sibo


    Energy efficient aeration device for aquaculture, in line with "by more than a generation, dynamic aeration" train of thought for technical design and improvement. Removable aeration terminal as the core, multi-level water to improve the method, the mobile fading pore aeration, intelligent mobile and open and close as the main function, aimed at solving the existing pond aeration efficiency, low energy consumption is high, the function of a single problem. From energy saving, efficiency, biological bacteria on the three directions, the aquaculture industry of energy conservation and emissions reduction. Device of the main advantages are: 1, original mobile fading aerator on the one hand, to expand the scope of work, playing a micro porous aeration of dissolved oxygen with high efficiency and to achieve "by more than a generation", on the other hand, through the sports equipment, stir the mixture of water, the water surface of photosynthesis of plants rich in dissolved oxygen input parts of the tank, compared to the stillness of the aerator can be more fully dissolved oxygen.2, through the opening of the pressure sensor indirect control device, can make the equipment timely and stop operation, convenient in use at the same time avoid the waste of energy.3, the biofilm suspension in aeration terminal, can be accomplished by nitration of microbial multi-level water improvement, still can make biofilm increase rate of netting in the movement process, the biological and mechanical aerobic promote each other, improve the efficiency of both. In addition, the device has small power consumption, low cost of characteristics. And have a certain degree of technical barriers, have their own intellectual property rights, and high degree of product market demand, easily accepted by customers, has a very high popularization value.

  3. Equalization characteristics of an upflow sludge blanket-aerated biofilter (USB-AF) system. (United States)

    Jun, H B; Park, S M; Park, J K; Lee, S H


    Equalization characteristics of the upflow sludge blanket-aerated bio-filter (USB-AF) were investigated with the fluctuated raw domestic sewage. Recycle of nitrified effluent from AF to USB triggered the equalization characteristics of the sludge blanket on both soluble and particulate organic matter. Increment of EPS in sludge blanket by nitrate recycle was detected and removal of turbidity and particulates increased at higher recycle ratios by bio-flocculation. Increased TCOD removal in the USB was due to both denitrification of recycled nitrate and entrapment of the particulate organic matter in sludge blanket. Capture of both soluble and particulate organic matter increased sludge blanket layer in the USB, which improved the reactor performances and reduced the organic load on the subsequent AF. Overall TCOD and SS removal efficiencies were about 98% and 96%, respectively in the USB-AF system. Turbidity in the USB effluent was about 44, 20 and 5.5 NTU, at recycle ratios of 0, 100 and 200%, respectively. Particle counts in the range 2-4 microm in the USB effluent were higher than those in influent without nitrate recycle, while particle counts in the range of 0.5-15 microm in the USB effluent decreased 70% at recycle ratio of 200%. The major constituent of EPS extracted from anaerobic sludge was protein and total EPS increased from 109.1 to 165.7 mg/g-VSS with nitrate recycle of 100%. Removal efficiency and concentration of T-N in the UBS-AF effluent was over 70% and below 16 mg/L, respectively.

  4. Biofilm membrane reactor for the aerobic treatment of waste water; Reactores biomembrana para la depuracion biologica aerobia de las aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Tejero, I.; Eguia, E.; Vidart, T.; Osa, J.; Lorda, I. [Universidad de Cantabria (Spain); Jacome, A. [Universidad de La Coruna (Spain)


    Various biofilm membranes reactors using flat membrane (Eguia, 1991 and Vidart, 1992), hollow fiber membrane (jacome, 1995), and tubular membrane (Osa, 1995), for wastewater treatment, developed by the Biofilm Group of the University of Cantabria, Spain, are herein described. All reactors worked with synthetic wastewater based on glucose, and aeration based on pure oxygen, pressurized air and air at atmospheric pressure. In this reactors, a membrane is used as substratum and aeration device at the same time. Several authors have studied this process, and have developed different configurations: Timberlake et al. (1988), Omishi et al. (1982), Abdel-Warith et al. (1990) and Wilderer (1995). The performance of the flat membrane reactor is very high, reaching organic load removal up to 180 g COD/m``2, d, showing removal kinetics according to Monod and Blackman type. The reactor has been operated under organic loadings up to 600 g COD/m``2, d, but at organic loads over 200 g COD/m``2, d, better performance is not reached. When using pressurized air and pure o{sub 2}, COD removal up to 75 and 90% can be reached respectively. This reactor has also achieved nitrification rates of 47 g NH4+m``2, d, While operating with pure oxygen, nitrification rates were observed at 11 g NH4+m``2, d. (Author) 21 refs.

  5. Treatment Wetland Aeration without Electricity? Lessons Learned from the First Experiment Using a Wind-Driven Air Pump

    Directory of Open Access Journals (Sweden)

    Johannes Boog


    Full Text Available Aerated treatment wetlands have become an increasingly recognized technology for treating wastewaters from domestic and various industrial origins. To date, treatment wetland aeration is provided by air pumps which require access to the energy grid. The requirement for electricity increases the ecological footprint of an aerated wetland and limits the application of this technology to areas with centralized electrical infrastructure. Wind power offers another possibility as a driver for wetland aeration, but its use for this purpose has not yet been investigated. This paper reports the first experimental trial using a simple wind-driven air pump to replace the conventional electric air blowers of an aerated horizontal subsurface flow wetland. The wind-driven air pump was connected to a two-year old horizontal flow aerated wetland which had been in continuous (24 h aeration since startup. The wind-driven aeration system functioned, however it was not specifically adapted to wetland aeration. As a result, treatment performance decreased compared to prior continuous aeration. Inconsistent wind speed at the site may have resulted in insufficient pressure within the aeration manifold, resulting in insufficient air supply to the wetland. This paper discusses the lessons learned during the experiment.


    Institute of Scientific and Technical Information of China (English)

    ZHANG Jian-min; CHEN Jian-gang; XU Wei-lin; WANG Yu-rong; LI Gui-ji


    Air entrainment is known to be one of efficient and inexpensive methods to prevent cavitation damages in hydropower projects.The shape of sudden expansion-fall is used as a common device for mitigating cavitation erosions.The complex flow patterns with cavitation are numerically simulated by using the realizable k-ε turbulence model and the air-water mixture model.The calculated results are compared well with the experimental results as well as those obtained with the k -ε turbulence model with the Volume Of Fluid (VOF) Model.The calculated results agree well with the experimental data for the aeration cavity and wall pressure.Moreover, the air concentration near sidewall is simulated by a mixture model.It is found that the mixture turbulence model is superior to the VOF turbulence model.

  7. Aeration remediation of a polluted waterway increases near-surface coarse and culturable microbial aerosols. (United States)

    Dueker, M Elias; O'Mullan, Gregory D


    Aeration remediation is currently used in polluted urban waterways to increase oxygen levels in the water column. Recent studies have provided increasing evidence that the bursting of bubbles at water surfaces introduced by aeration, or other surface disturbances, can transfer viable bacteria to the air. In heavily sewage-polluted waterways these water-originated bacterial aerosols may pose as a health risk to recreators in small boats or residents inhabiting the shoreline. Nonetheless, few studies have explored aerosols above active aeration remediation projects in waterways or investigated how bacterial aerosols change with vertical distance from aeration activities. This study, conducted at the Newtown Creek superfund site in Brooklyn, NY, USA, measured coarse aerosol particles and culturable bacteria in near-surface air above waters undergoing aeration remediation. Regardless of aeration operation culturable bacterial fallout was greater near-surface (0.6m above water) than previously-reported measurements made at 2.5m. Molecular analysis of the 16S rRNA gene sequences from isolated bacteria demonstrates that water and air shared a large number of bacterial genera and that the genera present in the near-surface aerosols (0.6m) contained water-associated Vibrio and Caulobacter, which were not present at 2.5m, despite the smaller sequence library size from the near-surface. Also, the near-surface microbial assemblage had significantly greater association with sequences detected previously in aquatic environments compared to the 2.5m library. We found compelling evidence that aeration activity contributed to this vertical gradient in bacterial aerosol concentrations and identity. Similar to results from 2.5m, concentrations of near-surface respirable coarse aerosols (aeration was occurring. Culturable bacterial aerosol fallout was also greater near-surface when the aerator was on compared to simultaneous measurements made at 2.5m. Furthermore, when the aerator was


    Institute of Scientific and Technical Information of China (English)


    Aerated jet,such as the jet flow behind the flip bucket of an overflow dam, widely exists in hydraulic engineering. Up to now the model test and prototype observation have been two main methods of studying the aerated jet for a special hydraulic project. In this paper, a three-dimensional mathematical model for the aerated jet was established. It seems that the suggested model has high predictive power by comparison with the results of model tests and prototype observations, which is very useful in the study of energy dissipation and jet flow atomization.


    Institute of Scientific and Technical Information of China (English)


    Under the aerated conditions of wall and top intube, the turbulent flow in the tube was measured by usingLDA. The turbulent structure of the flow field and the mech-anism of aerating drag reduction in the tube were discussed. It is shown that the energy dissipations of turbulence flow andmean flow will reduce and the flow velocity (or flow rate) willincrease by injecting mini-bubbles to the wall or top of tube,namely the effect of aerating drag reduction is attained.

  10. Improving microalgal growth with reduced diameters of aeration bubbles and enhanced mass transfer of solution in an oscillating flow field. (United States)

    Yang, Zongbo; Cheng, Jun; Lin, Richen; Zhou, Junhu; Cen, Kefa


    A novel oscillating gas aerator combined with an oscillating baffle was proposed to generate smaller aeration bubbles and enhance solution mass transfer, which can improve microalgal growth in a raceway pond. A high-speed photography system (HSP) was used to measure bubble diameter and generation time, and online precise dissolved oxygen probes and pH probes were used to measure mass-transfer coefficient and mixing time. Bubble diameter and generation time decreased with decreased aeration gas rate, decreased orifice diameter, and increased water velocity in the oscillating gas aerator. The optimized oscillating gas aerator decreased bubble diameter and generation time by 25% and 58%, respectively, compared with a horizontal tubular gas aerator. Using an oscillating gas aerator and an oscillating baffle in a raceway pond increased the solution mass-transfer coefficient by 15% and decreased mixing time by 32%; consequently, microalgal biomass yield increased by 19%.

  11. Enhanced long-term organics and nitrogen removal and associated microbial community in intermittently aerated subsurface flow constructed wetlands. (United States)

    Fan, Jinlin; Zhang, Jian; Guo, Wenshan; Liang, Shuang; Wu, Haiming


    The long-term enhanced removal efficiency of organics and nitrogen in subsurface flow constructed wetlands (SSF CWs) with and without intermittent aeration for decentralized domestic wastewater was evaluated, and the function of intermittent aeration on microbial community was also investigated in this study. The high and long-term 95.6% COD, 96.1% NH4(+)-N and 85.8% TN removal efficiencies were achieved in experimental intermittently aerated SSF CW compared with non-aerated SSF CW. Aerated SSF CWs also exhibited the excellent removal performance when comparatively comparing with other strategies and techniques applied in CWs. In addition, fluorescence in situ hybridization (FISH) analysis revealed that associated microbial abundance significantly increased owing to intermittent aeration. These results indicated intermittent aeration CWs might be an effective and sustainable strategy for wastewater treatment in rural areas, but require further full-scale investigation in future.

  12. [Quick Start-up and Sustaining of Shortcut Nitrification in Continuous Flow Reactor]. (United States)

    Wu, Peng; Zhang Shi-ying; Song, Yin-ling; Xu, Yue-zhong; Shen, Yao-liang


    How to achieve fast and stable startup of shortcut nitrification has a very important practical value for treatment of low C/N ratio wastewater. Thus, the quick start-up and sustaining of shortcut nitrification were investigated in continuous flow reactor targeting at the current situation of urban wastewater treatment plant using a continuous flow process. The results showed that quick start-up of shortcut nitrification could be successfully achieved in a continuous flow reactor after 60 days' operation with intermittent aeration and controlling of three stages of stop/aeration time (15 min/45 min, 45 min/45 min and 30 min/30 min). The nitrification rates could reach 90% or 95% respectively, while influent ammonia concentrations were 50 or 100 mg · L⁻¹ with stop/aeration time of 30 min/30 min. In addition, intermittent aeration could inhibit the activity of nitrite oxidizing bacteria (NOB), while short hydraulic retention time (HRT) may wash out NOB. And a combined use of both measures was beneficial to sustain shortcut nitrification.

  13. Removal of micropollutants in Moving Bed Biofilm reactors (MBBRs)

    DEFF Research Database (Denmark)

    Torresi, Elena

    focuses on the enhancement of conventional WWTPs via physical-chemical and biological treatment processes. Biofilm-based treatment processes, such as the Moving Bed Biofilm Reactor (MBBR), were shown to harbour bio-catalytic potential that can enhance the biotransformation of a number of micropollutants...... compared to conventional activated sludge. In MBBRs, biofilm grow on plastic carriers kept in suspension in the reactor basin via mechanical mixing or aeration, offering a suit of benefits, amongst all comparably small footprint. Despite few existing evidences in aerobic MBBR, an in-depth understanding...... of denitrification and biotransformation kinetics in the three MBBR sub-reactors. The highest and lowest biotransformation kinetics were found in the first and the last stage, respectively (up to 4-fold decrease for selected compounds), suggesting a possible a correlation of micropollutant biotransformation...

  14. An evolutionary strategy for fed-batch bioreactor optimization : concepts and performance

    NARCIS (Netherlands)

    Roubos, J.A.; Straten, van G.; Boxtel, van A.J.B.


    An evolutionary program, based on a real-code genetic algorithm (GA), is applied to calculate optimal control policies for bioreactors. The GA is used as a nonlinear optimizer in combination with simulation software and constraint handling procedures. A new class of GA-operators is introduced to obt

  15. Tracking control of concentration profiles in a fed-batch bioreactor using a linear algebra methodology. (United States)

    Rómoli, Santiago; Serrano, Mario Emanuel; Ortiz, Oscar Alberto; Vega, Jorge Rubén; Eduardo Scaglia, Gustavo Juan


    Based on a linear algebra approach, this paper aims at developing a novel control law able to track reference profiles that were previously-determined in the literature. A main advantage of the proposed strategy is that the control actions are obtained by solving a system of linear equations. The optimal controller parameters are selected through Monte Carlo Randomized Algorithm in order to minimize a proposed cost index. The controller performance is evaluated through several tests, and compared with other controller reported in the literature. Finally, a Monte Carlo Randomized Algorithm is conducted to assess the performance of the proposed controller.

  16. Analysis and control of proteolysis of a fusion protein in Pichia pastoris fed-batch processes. (United States)

    Jahic, Mehmedalija; Gustavsson, Malin; Jansen, Ann-Katrin; Martinelle, Mats; Enfors, Sven-Olof


    A fusion protein composed of a cellulose-binding module (CBM) from Neocallimastix patriciarum cellulase 6A and lipase B from Candida antarctica (CALB), was produced by Pichia pastoris Mut(+) in high-cell density bioreactor cultures. The production was induced by switching from growth on glycerol to growth on methanol. The lipase activity in the culture supernatant increased at an almost constant rate up to a value corresponding to 1.3 g x l(-1) of CBM-CALB. However, only about 40% of the product was of full-length according to Western blot analysis. This loss was due to a cleavage of the protein in the linker between the CBM and the CALB moieties. The cleavage was catalyzed by serine proteases in the culture supernatant. The CALB-moiety was subjected to further slow degradation by cell-associated proteolysis. Different strategies were used to reduce the proteolysis. Previous efforts to shorten the linker region resulted in a stable protein but with ten times reduced product concentration in bioreactor cultures (Gustavsson et al. 2001, Protein Eng. 14, 711-715). Addition of rich medium for protease substrate competition had no effect on the proteolysis of CBM-CALB. The kinetics for the proteolytic reactions, with and without presence of cells were shown to be influenced by pH. The fastest reaction, cleavage in the linker, was substantially reduced at pH values below 5.0. Decreasing the pH from 5.0 to 4.0 in bioreactor cultures resulted in an increase of the fraction of full-length product from 40 to 90%. Further improvement was achieved by decreasing the temperature from 30 to 22 degrees C during the methanol feed phase. By combining the optimal pH and the low temperature almost all product (1.5 g x l(-1)) was obtained as full-length protein with a considerably higher purity in the culture supernatant compared with the original cultivation.

  17. Fed-batch production of hydrophobin RodB from Aspergillus fumigatus in host Pichia pastoris

    DEFF Research Database (Denmark)

    Pedersen, Mona Højgaard; Borodina, Irina; Frisvad, Jens Christian

    . The emulsifying property of rRodB was investigated using olive oil stained with Sudan black suspended in tris-buffer. The stability of oil micelles were studied by light microscopy. Results: Protein bands of expected size were detected by SDS-PAGE and western blotting in both the fermentation broth and excess...

  18. Optimal Control of a Fed-batch Fermentation Process by Neuro-Dynamic Programming

    Directory of Open Access Journals (Sweden)

    Tatiana Ilkova


    Full Text Available In this paper the method for optimal control of a fermentation process is presented, that is based on an approach for optimal control - Neuro-Dynamic programming. For this aim the approximation neural network is developed and the decision of the optimization problem is improved by an iteration mode founded on the Bellman equation. With this approach computing time and procedure are decreased and quality of the biomass at the end of the process is increased.

  19. Anaerobic co-digestion of agro-food waste mixtures in a fed-batch basis. (United States)

    Hidalgo, Dolores; Martín-Marroquín, Jesús M; Nieto, Pedro


    The agro-food industry (including livestock) generates millions of tonnes of waste products. A solution to this sector's waste disposal challenges was explored by a joint treatment model of organic waste products from several industries. An inventory of agro-food industry organic waste streams with high potential for biogas production was carried out in a logistically viable area (Cider Region, Asturias, Spain). Three industries were selected as those with the higher potential for this study: livestock, dairy and beverage. The kinetics of anaerobic degradation and methane production of four mixtures of selected waste streams were investigated. The specific methane production at five different substrate-to-inoculum ratios (0.50, 0.75, 1.00, 1.50 and 2.00) showed a slightly decreasing trend at the higher ratios. Some hints of a synergistic effect have been observed in mixtures with higher content in milled apple waste, while antagonistic symptoms were noted in mixtures mainly composed of dairy wastes. The estimation of fluxes of waste and methane potentials in the Cider Region suggests centralised anaerobic digestion as a sustainable solution for the valorisation of livestock and agro-food wastes generated in this area. Sector-specific waste streams (livestock and agro-food industry) could cover up to 12% of regional total energy demand.

  20. Data Driven Modeling for Monitoring and Control of Industrial Fed-Batch Cultivations

    DEFF Research Database (Denmark)

    Bonné, Dennis; Alvarez, María Antonieta; Jørgensen, Sten Bay


    time within the batch and the batch number. The model set is parsimoniously parametrized as a set of local, interdependent models which are estimated from data for as few as half a dozen batches. On the basis of state space models transformed from the acquired input–output model set, the asymptotic...

  1. Differential expression of small RNAs under chemical stress and fed-batch fermentation in E. coli

    DEFF Research Database (Denmark)

    Rau, Martin Holm; Nielsen, Alex Toftgaard; Long, Katherine


    applications, the involvement of sRNAs in this process is not well understood. We have used RNA sequencing to map sRNA expression in E. coli under chemical stress and high cell density fermentation conditions with the aim of identifying sRNAs involved in the transcriptional response and those with potential...

  2. Improvement of poly-γ-glutamic acid biosynthesis in a moving bed biofilm reactor by Bacillus subtilis NX-2. (United States)

    Jiang, Yongxiang; Tang, Bao; Xu, Zongqi; Liu, Kun; Xu, Zheng; Feng, Xiaohai; Xu, Hong


    The production of poly-γ-glutamic acid (γ-PGA) by Bacillus subtilis NX-2 using a moving bed biofilm reactor (MBBR) system was tested for the first time in this study. Polypropylene TL-2 was chosen as a suitable carrier, and γ-PGA concentration of 42.7±0.86g/L and productivity of 0.59±0.06g/(Lh) were obtained in batch fermentation. After application of the strategy of dissolved oxygen (DO)-stat feeding, higher γ-PGA concentration and productivity were achieved than with glucose feedback feeding. Finally, the repeated fed-batch cultures implemented in the MBBR system showed high stability, and the maximal γ-PGA concentration and productivity of 74.2g/L and 1.24g/(Lh) were achieved, respectively. In addition, the promotion of oxygen transfer by an MBBR carrier was well explained by a computational fluid dynamics (CFD) simulation. These results suggest that an MBBR system could be applied to large-scale γ-PGA production.

  3. Micro-aeration for hydrogen sulfide removal from biogas (United States)

    Duangmanee, Thanapong

    The presence of sulfur compounds (e.g. protein, sulfate, thiosulfate, sulfite, etc.) in the feed stream generates highly corrosive and odorous hydrogen sulfide during anaerobic digestion. The high sulfide level in the biogas stream is not only poisonous to many novel metal catalysts employed in thermo-catalytic processes but also reduces the quality of methane to produce renewable energy. This study used an innovative, low-maintenance, low-cost biological sulfide removal technology to remove sulfides simultaneously from both gas and liquid phase. ORP (Oxidation-Reduction-Potential) was used as the controlling parameter to precisely regulate air injection to the sulfide oxidizing unit (SOU). The microaeration technique provided just enough oxygen to partially oxidize sulfides to elemental sulfur without inhibiting methanogenesis. The SOU was equipped with a diffuser at the bottom for the dispersion of sulfide-laden biogas and injected air throughout the column. The SOU can be operated as a standalone unit or coupled with an anaerobic digester to simultaneously remove sulfide from the biogas and effluent. The integrated system was capable of reducing hydrogen sulfide in biogas from 2,450 to less than 2 ppmV with minimal sulfate production at the highest available sulfide loading rate of 0.24 kg/m3-day. More than 98% of sulfide removed was recovered as elemental sulfur. However, the standalone SOU was able to operate at high hydrogen sulfide loading of 1.46 kg/m 3-day at inlet sulfide concentration of 3000 ppmV and reduce the off-gas hydrogen sulfide concentrations to less than 10 ppmV. The experiment also revealed that the ORP controlled aeration was sensitive enough to prevent oxygen overdosing (dampening effect) during unexpected surges of aeration. Using generalized linear regression, a model predicting output H2S concentration based on input H2S concentrations, SOU medium heights, and biogas flow rates, was derived. With 95% confidence, output H2S concentration

  4. Sonochemical Reactors. (United States)

    Gogate, Parag R; Patil, Pankaj N


    Sonochemical reactors are based on the generation of cavitational events using ultrasound and offer immense potential for the intensification of physical and chemical processing applications. The present work presents a critical analysis of the underlying mechanisms for intensification, available reactor configurations and overview of the different applications exploited successfully, though mostly at laboratory scales. Guidelines have also been presented for optimum selection of the important operating parameters (frequency and intensity of irradiation, temperature and liquid physicochemical properties) as well as the geometric parameters (type of reactor configuration and the number/position of the transducers) so as to maximize the process intensification benefits. The key areas for future work so as to transform the successful technique at laboratory/pilot scale into commercial technology have also been discussed. Overall, it has been established that there is immense potential for sonochemical reactors for process intensification leading to greener processing and economic benefits. Combined efforts from a wide range of disciplines such as material science, physics, chemistry and chemical engineers are required to harness the benefits at commercial scale operation.

  5. Effects of impeller speed and aeration rate on flotation performance of sulphide ore

    Institute of Scientific and Technical Information of China (English)


    The effects of aeration rate and impeller speed on the concentrate sulfur grade and recovery for batch flotation of a complex sulphide ore were investigated. The relationships between the water recovery and solid entrainment were discussed. It is found that the solid entrainment is linearly related to the water recovery regardless of aeration rate and impeller speed, and the higher sulfur recovery at the aeration rate of 2 and 4 L/min for the impeller speed of 1 500 r/min is considered to be the contribution of true flotation. Finally, the sulfur recovery flux is correlated with the bubble surface area flux based on the froth image at the different aeration rates and impeller speeds.

  6. The effect of aeration on the biotransformation of lignocellulosic wastes by white-rot fungi. (United States)

    López, M J; Elorrieta, M A; Vargas-García, M C; Suárez-Estrella, F; Moreno, J


    The mineralisation and the humification of organic matter (OM) in sterile horticultural plant wastes inoculated with Coriolus versicolor or Phanerochaete flavido-alba was investigated under different aeration rates in order to determine their efficacy as potential inoculants for composting. The change in elemental composition, lignin content and OM fractions was analysed during a 90-day incubation. Both fungi degraded 30% of lignin at low aeration rates. Different aeration rates led to significant changes in OM mineralisation induced by C. versicolor, but did not have noticeable effect on P. flavido-alba activity. The mineralisation was more effectively carried out by P. flavido-alba than by C. versicolor. Lignin degradation and the linked humification process were equally achieved by the two fungi and were enhanced in aerated conditions. The fungi analysed may facilitate the composting of lignocellulosic wastes by means of an increase in substrate bioavailability and OM humification.

  7. Effects of Aerated Irrigation on Leaf Senescence at Late Growth Stage and Grain Yield of Rice

    Institute of Scientific and Technical Information of China (English)

    ZHU Lian-feng; Yu Sheng-miao; JIN Qian-yu


    With the japonica inbred cultivar Xiushui 09,indica hybrid combinations Guodao 6 and Liangyoupeijiu as materials,field experiments were conducted in 2007 and 2008 to study the effects of aerated irrigation on leaf senescence at late growth stage and grain yield of rice.The dissolved oxygen concentration of aerated water evidently increased and decreased at a slow rate.The soil oxidation-reduction potential under aerated irrigation treatment was significantly higher than that of the CK,contributing to significant increases in effective panicles,seed setting rate and grain yield.In addition,the aerated irrigation improved root function,increased superoxide dismutase activity and decreased malondialdehyde content in flag leaves at post-flowering,which delayed leaf senescence process,prolonged leaf functional activity and led to enhanced grain filling.

  8. Integral Parameters for Characterizing Water, Energy, and Aeration Properties of Soilless Plant Growth Media

    DEFF Research Database (Denmark)

    Deepagoda Thuduwe Kankanamge Kelum, Chamindu; Lopez, Jose Choc Chen; Møldrup, Per


    systems are regaining increased worldwide attention. The optimal control of water availability and aeration is an essential prerequisite to successfully operate plant growth systems with soilless substrates such as aggregated foamed glass, perlite, rockwool, coconut coir, or mixtures thereof. While...


    Institute of Scientific and Technical Information of China (English)

    Dong Zhi-yong


    The compressible characteristics in aerated flows at the high velocity of about 50m/s were analyzed. Based on the theory of compressible the relations between the sonic speed and shock wave in high-velocity aerated flow were theoretically deduced. And comparisons with measured data were made. The theoretical and experimental results show the sonic speed in aerated flow is merely of the order of several-dozen meters per second, and its minimum value is only 20m/s, which is far much less than that in water or air alone. So high subsonic flow, supersonic flow and transonic flow as well as compression wave, shock wave and expansion wave similarly to aerodnamics may be produced in high velocity aerated flow at the speed of the order of 50m/s. Hence the influences of these compressible characteristics on high head discharge structures can not be neglected, especially on super high dams over 200m high.

  10. Fluctuant characteristics of two-phase flow behind a bottom aerator

    Institute of Scientific and Technical Information of China (English)


    Experimental observations show that the random process of two-phase flow behind an aerator is an ergodic process and its amplitude distribution is similar to a normal distribution. The maximum pressure fluctuation is at the re-attachment point where the jet-trajectory flow over the aerator re-attaches to the bottom of the channel, and its amplitude is 2—3 times larger than when there is no aerator. There is a dominant frequency of 1.24 Hz in the model, but the coherence in the frequency domain is not obvious for other frequencies beside the dominant frequency. There is a large vortex at the re-attachment point behind the aerator but correlation among the measurement points is not obvious in the time domain.

  11. Nitrate-removal activity of a biofilm attached to a perlite carrier under continuous aeration conditions. (United States)

    Yamashita, Takahiro; Yokoyama, Hiroshi; Kanafusa, Sumiyo; Ogino, Akifumi; Ishida, Mitsuyoshi; Osada, Takashi; Tanaka, Yasuo


    The nitrate-removal activity of a biofilm attached to a perlite carrier from an aerobic bioreactor used for treating dairy farm wastewater was examined by batch experiments under continuous aeration conditions. Despite aeration, the biofilm removed nitrate at a rate of 114.4 mg-N/kg-perlite/h from wastewater containing cow milk and manure. In a clone library analysis of the biofilm, bacteria showing high similarity to the denitrifying bacteria Thauera spp. were detected.

  12. Aerated lagooning of agro-industrial wastewater: depuration performance and energy requirements

    Directory of Open Access Journals (Sweden)

    Serafina Andiloro


    Full Text Available Intensive depuration plants have often shown low reliability and economic sustainability, when utilised for agro-industrial wastewater treatment, due to the particular wastewater properties: high organic load and essential oil concentrations, acidity, nutrient scarcity and qualitative-quantitative variability of effluents. Aerated lagooning systems represent a suitable alternative, because they are able to assure good reliability and low energy requirements, avoiding the drawbacks shown by the intensive depuration plants. In order to optimize performance of the lagooning systems, particularly in terms of energy requirements, depuration processes of aerobic-anaerobic aerated lagoons were investigated, both at full- and laboratory-scale. Citrus processing wastewater were subject to bubble aeration with low flow rates and limited time; the removal rate of organic load was evaluated and energy requirements of different depuration schemes were compared. The experimental investigations in full-scale aerated lagoons showed a low energy supply (0.21-0.59 kWh per kg of COD (Chemical Oxygen Demand removed with an average value of 0.45 kWh kgCOD –1, an adequate equalisation capability and constantly good depurative performance also with high concentrations of essential oil (500-1000 ppm. The experimental investigations in lab-scale aerated tanks under controlled conditions indicated the possibility of decreasing energy requirements (down to 0.16 kWh kgCOD –1 by reducing aeration power (down to 0.6 W m–3 and limiting aeration time to night 12 hours only, when energy price is lower. In spite of the low aeration, the COD removal rates were on the average six-fold higher compared to the anaerobic tank. Other outcomes indicated an ability of the spontaneous microflora to adapt to high concentrations of essential oils, which however did not provide an increase of the removal rate of the organic load in the experimented scheme.

  13. The effect of bubble plume on oxygen transfer for moving bed biofilm reactor

    Institute of Scientific and Technical Information of China (English)

    CHENG Wen; LIU Hu; WANG Meng; WANG Min


    The movement of the bubble plume plays an important role in the operation of a moving bed biofilm reactor (MBBR), and it directly affects the contact and the mixture of the gas-liquid-solid phases in the aeration tank and also the oxygen transfer from the gas phase to the liquid phase. In this study, the velocity field is determined by a 4-frame PTV as well as the time-averaged and time- dependent velocity distributions. The velocity distribution of the bubble plume is analyzed to evaluate the operating efficiency of the MBBR. The results show that the aeration rate is one of the main factors that sway the velocity distribution of the bubble plumes and affect the operating efficiency of the reactor.

  14. Scale-up criterion of power consumption for a surface aerator used in wastewater treatment tank

    Directory of Open Access Journals (Sweden)

    Hayder M. Issa


    Full Text Available The major part of operation costs in surface aeration basins or tanks is because of power requirements. Therefore, it is always necessary to find a dependable criterion for the predictive scale-up of power consumption measurements obtained at laboratory-scale surface aeration tanks to industrial-scale wastewater treatment surface aeration systems. A scale-up approach was proposed in this work for volumetric power consumption between geometrically similar laboratory-scale and industrial full-scale surface aeration tanks at an invariant Froude number Fr. Scale-up order between the laboratory and industrial sizes was 7.4. A mathematical correlation has been developed to estimate the volumetric power consumption and then compared with a model that already was investigated experimentally. Scale-up criterion involved the evaluation of three similarities; the geometrical, kinematic and dynamics. The scale-up basis that developed in this work led us to achieve a suitable scale-up criterion for volumetric power consumption in aeration tanks at matched surface flow condition. At matched Froude number Fr for the laboratory and industrial scales and at low and moderate turbine rotation speeds for surface aeration than 0.8 rps, complete predictions of volumetric power consumption have been achieved. The prediction by the existing previous model showed higher results than the actual values.

  15. Photosynthetic aeration in biological wastewater treatment using immobilized microalgae-bacteria symbiosis. (United States)

    Praveen, Prashant; Loh, Kai-Chee


    Chlorella vulgaris encapsulated in alginate beads were added into a bioreactor treating synthetic wastewater using Pseudomonas putida. A symbiotic CO2/O2 gas exchange was established between the two microorganisms for photosynthetic aeration of wastewater. During batch operation, glucose removal efficiency in the bioreactor improved from 50% in 12 h without aeration to 100% in 6 h, when the bioreactor was aerated photosynthetically. During continuous operation, the bioreactor was operated at a low hydraulic retention time of 3.3 h at feed concentrations of 250 and 500 mg/L glucose. The removal efficiency at 500 mg/L increased from 73% without aeration to 100% in the presence of immobilized microalgae. The initial microalgae concentration was critical to achieve adequate aeration, and the removal rate increased with increasing microalgae concentration. The highest removal rate of 142 mg/L-h glucose was achieved at an initial microalgae concentration of 190 mg/L. Quantification of microalgae growth in the alginate beads indicated an exponential growth during symbiosis, indicating that the bioreactor performance was limited by oxygen production rates. Under symbiotic conditions, the chlorophyll content of the immobilized microalgae increased by more than 30%. These results indicate that immobilized microalgae in symbiosis with heterotrophic bacteria are promising in wastewater aeration.

  16. Evaluation of aeration energy saving in two modified activated sludge processes. (United States)

    Lee, Ingyu; Lim, Honglae; Jung, Byunghun; Colosimo, Mark F; Kim, Hyunook


    A variety of modified activated sludge processes are widely used in wastewater treatment plants (WWTPs) for removing organics and nutrients (N and P). Since energy consumption in aeration basin accounts for the major part of the overall energy usage in WWTPs, efforts have been made to find ways to reduce aeration energy. In this study, two modified activated sludge processes in a pilot scale designed for nutrient removal were evaluated for the extent of energy saving: (1) ABA(2) process - adjusting air on/off period (i.e., with a temporal change); and (2) MB-A(2)O process - changing volume ratio of aerobic tank to anoxic tank (i.e., with a spatial change). For the 1st process, the air on/off period was fixed at 60min/45min with aerobic fraction being 0.57, while for the 2nd process, the aerobic/anoxic volume ratio was reduced from 0.58 to 0.42. The results demonstrate that the effluent COD, TN, NH4(+) and TP concentrations are acceptable while reduced aeration time/volume certainly saves significant energy consumption. To the best of our knowledge, this is 1st attempt to reduce the aeration period or aeration volume to save the aeration energy in these two modified activated sludge processes. The implication of these observations is further discussed.

  17. Improving arachidonic acid fermentation by Mortierella alpina through multistage temperature and aeration rate control in bioreactor. (United States)

    Gao, Min-Jie; Wang, Cheng; Zheng, Zhi-Yong; Zhu, Li; Zhan, Xiao-Bei; Lin, Chi-Chung


    Effective production of arachidonic acid (ARA) using Mortierella alpina was conducted in a 30-L airlift bioreactor. Varying the aeration rate and temperature significantly influenced cell morphology, cell growth, and ARA production, while the optimal aeration rate and temperature for cell growth and product formation were quite different. As a result, a two-stage aeration rate control strategy was constructed based on monitoring of cell morphology and ARA production under various aeration rate control levels (0.6-1.8 vvm). Using this strategy, ARA yield reached 4.7 g/L, an increase of 38.2% compared with the control (constant aeration rate control at 1.0 vvm). Dynamic temperature-control strategy was implemented based on the fermentation performance at various temperatures (13-28°C), with ARA level in total cellular lipid increased by 37.1% comparing to a constant-temperature control (25°C). On that basis, the combinatorial fermentation strategy of two-stage aeration rate control and dynamic temperature control was applied and ARA production achieved the highest level of 5.8 g/L.

  18. Atrazine Removal from Aqueous Solutions using Submerged Biological Aerated Filter

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Baghapour


    Full Text Available Atrazine is widely used in the agriculture as an herbicide. Due to its high mobility, Atrazine leaks into the groundwaters, surface waters, and drinking water wells. Many physical and chemical methods have been suggested for removing Atrazine from aquatic environments. However, these methods are very costly, have many performance problems, produce a lot of toxic intermediates which are very harmful and dangerous, and cannot completely mineralize Atrazine. In this study, biodegradation of Atrazine by microbial consortium was evaluated in the aquatic environment. In order to assess the Atrazine removal from the aquatic environment, submerged biological aerated filter (SBAF was fed with synthetic wastewater based on sucrose and Atrazine at different hydraulic retention times (HRTs. The maximum efficiencies for Atrazine and Soluble Chemical Oxygen Demand (SCOD removal were 97.9% and 98.9%, respectively. The study findings showed that Stover-Kincannon model had very good fitness (R2 > 99% in loading Atrazine in the biofilter and by increasing the initial concentration of Atrazine, the removal efficiency increased. Aerobic mixed biofilm culture was observed to be suitable for the treatment of Atrazine from aquatic environment. There was no significant inhibition effect on mixed aerobic microbial consortia. Atrazine degradation depended on the strength of wastewater and the amount of Atrazine in the influent

  19. Removal of pharmaceuticals in aerated biofilters with manganese feeding. (United States)

    Zhang, Yongjun; Zhu, Hong; Szewzyk, Ulrich; Geissen, Sven Uwe


    A tertiary treatment step is required in current wastewater treatment plants to remove trace pollutants and thus to prevent their extensive occurrence in the aquatic environment. In this study, natural MnOx ore and natural zeolite were separately used to pack two lab-scale aerated biofilters, which were operated in approximately 1.5 years for the removal of frequently occurring pharmaceuticals, including carbamazepine (CBZ), diclofenac (DFC), and sulfamethoxazole (SMX), out of synthetic and real secondary effluents. Mn(2+) was added in the feeds to promote the growth of iron/manganese oxidizing bacteria which were recently found to be capable of degrading recalcitrant pollutants. An effective removal (80-90%) of DFC and SMX was observed in both biofilters after adaptation while a significant removal of CBZ was not found. Both biofilters also achieved an effective removal of spiked Mn(2+), but a limited removal of carbon and nitrogen contents. Additionally, MnOx biofilter removed 50% of UV254 from real secondary effluent, indicating a high potential on the removal of aromatic compounds.

  20. Evaluation of sequential aerated treatment of wastewater from hardboard mill

    Directory of Open Access Journals (Sweden)

    S. Videla


    Full Text Available Wastewater from a hardboard mill characterized by a high organic content (15-30 g/L COD was studied in a bench scale sequential aerated system in order to define a start up strategy. Inlet COD concentration varied from 0.5 to 25 g/L and the hydraulic retention time was maintained at 5 days. The sequential system proposed could reduce BOD, COD, TSS and phenol over 90% except when the inlet COD concentration was lower than 25 g/L.Água residual proveniente de uma indústria de tabuleiro de fibra dura caracterizada por ter um elevado conteúdo orgânico (15-30 g/L DQO foi estudada utilizando um sistema arejado seqüêncial de forma a definir uma estratégia de start up. A concentração de DQO na entrada do sistema variou na faixa de 0,5-25 g/L e o tempo de residência hidráulico foi mantido em 5 dias. O sistema seqüêncial proposto reduziu DBO, DQO, SST e fenol sobre 90% quando a concentração de DQO na entrada foi menor a 25 g/L.