WorldWideScience

Sample records for aerated fed-batch reactor

  1. Effect of auxotrophies on yeast performance in aerated fed-batch reactor

    Energy Technology Data Exchange (ETDEWEB)

    Landi, Carmine; Paciello, Lucia [Dept. Ingegneria Industriale, Universita di Salerno, Via Ponte Don Melillo, 84084 Fisciano, Salerno (Italy); Alteriis, Elisabetta de [Dept. Biologia Strutturale e Funzionale, Universita degli Studi di Napoli ' Federico II' , Via Cinthia, 80100 Napoli (Italy); Brambilla, Luca [Dept. Biotecnologie e Bioscienze, Universita Milano-Bicocca, Piazza della Scienza, 20126 Milano (Italy); Parascandola, Palma, E-mail: pparascandola@unisa.it [Dept. Ingegneria Industriale, Universita di Salerno, Via Ponte Don Melillo, 84084 Fisciano, Salerno (Italy)

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer The paper contributes to fill the gap existing between the basic and applied research. Black-Right-Pointing-Pointer Mathematical model sheds light on the physiology of auxotrophic yeast strains. Black-Right-Pointing-Pointer Yeast behavior in fed-batch is influenced by biological and environmental determinants. Black-Right-Pointing-Pointer Process optimization would make possible the production of heterologous proteins which are not yet on the market. -- Abstract: A systematic investigation on the effects of auxotrophies on the performance of yeast in aerated fed-batch reactor was carried out. Six isogenic strains from the CEN.PK family of Saccharomyces cerevisiae, one prototroph and five auxotrophs, were grown in aerated fed-batch reactor using the same operative conditions and a proper nutritional supplementation. The performance of the strains, in terms of final biomass decreased with increasing the number of auxotrophies. Auxotrophy for leucine exerted a profound negative effect on the performance of the strains. Accumulation of reactive oxygen species (ROS) in the cells of the strain carrying four auxotrophies and its significant viability loss, were indicative of an oxidative stress response induced by exposure of cells to the environmental conditions. The mathematical model was fundamental to highlight how the carbon flux, depending on the number and type of auxotrophies, was diverted towards the production of increasingly large quantities of energy for maintenance.

  2. Effect of auxotrophies on yeast performance in aerated fed-batch reactor

    International Nuclear Information System (INIS)

    Landi, Carmine; Paciello, Lucia; Alteriis, Elisabetta de; Brambilla, Luca; Parascandola, Palma

    2011-01-01

    Highlights: ► The paper contributes to fill the gap existing between the basic and applied research. ► Mathematical model sheds light on the physiology of auxotrophic yeast strains. ► Yeast behavior in fed-batch is influenced by biological and environmental determinants. ► Process optimization would make possible the production of heterologous proteins which are not yet on the market. -- Abstract: A systematic investigation on the effects of auxotrophies on the performance of yeast in aerated fed-batch reactor was carried out. Six isogenic strains from the CEN.PK family of Saccharomyces cerevisiae, one prototroph and five auxotrophs, were grown in aerated fed-batch reactor using the same operative conditions and a proper nutritional supplementation. The performance of the strains, in terms of final biomass decreased with increasing the number of auxotrophies. Auxotrophy for leucine exerted a profound negative effect on the performance of the strains. Accumulation of reactive oxygen species (ROS) in the cells of the strain carrying four auxotrophies and its significant viability loss, were indicative of an oxidative stress response induced by exposure of cells to the environmental conditions. The mathematical model was fundamental to highlight how the carbon flux, depending on the number and type of auxotrophies, was diverted towards the production of increasingly large quantities of energy for maintenance.

  3. Performance of the auxotrophic Saccharomyces cerevisiae BY4741 as host for the production of IL-1β in aerated fed-batch reactor: role of ACA supplementation, strain viability, and maintenance energy

    Directory of Open Access Journals (Sweden)

    Zueco Jesus

    2009-12-01

    Full Text Available Abstract Background Saccharomyces cerevisiae BY4741 is an auxotrophic commonly used strain. In this work it has been used as host for the expression and secretion of human interleukin-1β (IL1β, using the cell wall protein Pir4 as fusion partner. To achieve high cell density and, consequently, high product yield, BY4741 [PIR4-IL1β] was cultured in an aerated fed-batch reactor, using a defined mineral medium supplemented with casamino acids as ACA (auxotrophy-complementing amino acid source. Also the S. cerevisiae mutant BY4741 Δyca1 [PIR4-IL1β], carrying the deletion of the YCA1 gene coding for a caspase-like protein involved in the apoptotic response, was cultured in aerated fed-batch reactor and compared to the parental strain, to test the effect of this mutation on strain robustness. Viability of the producer strains was examined during the runs and a mathematical model, which took into consideration the viable biomass present in the reactor and the glucose consumption for both growth and maintenance, was developed to describe and explain the time-course evolution of the process for both, the BY4741 parental and the BY4741 Δyca1 mutant strain. Results Our results show that the concentrations of ACA in the feeding solution, corresponding to those routinely used in the literature, are limiting for the growth of S. cerevisiae BY4741 [PIR4-IL1β] in fed-batch reactor. Even in the presence of a proper ACA supplementation, S. cerevisiae BY4741 [PIR4-IL1β] did not achieve a high cell density. The Δyca1 deletion did not have a beneficial effect on the overall performance of the strain, but it had a clear effect on its viability, which was not impaired during fed-batch operations, as shown by the kd value (0.0045 h-1, negligible if compared to that of the parental strain (0.028 h-1. However, independently of their robustness, both the parental and the Δyca1 mutant ceased to grow early during fed-batch runs, both strains using most of the

  4. Effect of moisture content on fed batch composting reactor of vegetable and fruit wastes.

    Science.gov (United States)

    Jolanun, B; Tripetchkul, S; Chiemchaisri, C; Chaiprasert, P; Towprayoon, S

    2005-03-01

    Vegetable and fruit wastes mixed with sawdust were composted in a laboratory scale reactor by controlling the waste feeding rate at 21 kg m(-3) day(-1) and aeration rate at 10.6 l m(-3) min(-1). The effects of initial moisture content on organic matter degradation and process performance of fed batch composting were investigated. The absolute amount of removal, removal percentage, and removal rate of dry mass obtained were substantially different among the initial moisture contents. The rapid rise of moisture content and the lowest absolute amount of removal observed were achieved in the 50% condition. The initial moisture content yielding the largest absolute amount of removal in both feeding and curing stage was 30% whereas the removal percentage and rate constant of waste decomposition were highest in the 50% condition. Examined by traditional soil physics method, the moisture content at 50-55% was suitable for satisfying the degree of free air space (65-70%) of compost during the fed batch composting. Most degradable organic matter was mainly consumed in the feeding stage as indicated by a higher removal rate of dry mass in all cases. It is recommended that the initial moisture content of 30% and mode of aeration and agitation should be adopted for achieving practical fed batch composting of vegetable and fruit wastes. The study also demonstrated that the composting kinetics of vegetable and fruit wastes mixed with sawdust can be described by a first order model.

  5. Simulation of kefiran production of Lactobacillus kefiranofaciens JCM6985 in fed-batch reactor

    Directory of Open Access Journals (Sweden)

    Benjamas Cheirsilp

    2006-09-01

    Full Text Available Kinetics of kefiran production by Lactobacillus kefiranofaciens JCM6985 has been investigated. A mathematical model taking into account the mechanism of exopolysaccharides production has been developed. Experiments were carried out in batch mode in order to obtain kinetic model parameters that were further applied to simulate fed-batch processes. A simplification of parameter fitting was also introduced for complicated model. The fed-batch mode allows more flexibility in the control of the substrate concentration as well as product concentration in the culture medium. Based on the batch mathematical model, a fed-batch model was developed and simulations were done. Simulation study in fed-batch reactor resulted that substrate concentration should be controlled at 20 g L-1 to soften the product inhibition and also to stimulate utilization of substrate and its hydrolysate. From simulation results of different feeding techniques, it was found that constant feeding at 0.01 L h-1 was most practically effective feeding profile for exopolysaccharides production in fed-batch mode.

  6. Physiological changes of Candida tropicalis population degrading phenol in fed batch reactor

    Directory of Open Access Journals (Sweden)

    Eliska Komarkova

    2003-12-01

    Full Text Available Candida tropicalis can use phenol as the sole carbon and energy source. Experiments regarding phenol degradations from the water phase were carried out. The fermentor was operated as a fed-batch system with oxistat control. Under conditions of nutrient limitation and an excess of oxygen the respiration activity of cells was suppressed and some color metabolites (black-brown started to be formed. An accumulation of these products inhibited the cell growth under aerobic conditions. Another impact was a decrease of the phenol hydroxylase activity as the key enzyme of the phenol degradation pathway at the end of the cell respiration activity. This decrease is linked with the above mentioned product inhibition. The cell death studied by fluorescent probe proceeded very slowly after the loss of the respiration activity. The starvation stress induced an increase of the endogenous respiration rate at the expense of phenol oxidation.Candida tropicalis pode utilizar fenol como única fonte de carbono e de energia. O fermentador foi operado em um sistema ''batelada-alimentada'' e controle oxidativo. Em condições limitantes de nutrientes e excesso de oxigênio a atividade respiratória das células foi suprimida e o calor do metabolismo pode ser formado. Uma acumulação desses produtos inibiu o crescimento das células em condições aeróbicas. Outro impacto foi um decréscimo da atividade fenol hidroxilase como enzima chave da degradação do fenol no final da atividade respirométrica. Essa redução está relacionada com os fatos acima mencionados. A morte da célula estudada por sonda de fluorescência ocorreu lentamente após a perda da atividade respiratória. O ''stress'' celular induziu um aumento na taxa de respiração endógena devido à oxidação fenólica.

  7. Evaluation of biomass production in unleaded gasoline and BTEX-fed batch reactors.

    Science.gov (United States)

    Acuna-Askar, K; Englande, A J; Ramirez-Medrano, A; Coronado-Guardiola, J E; Chavez-Gomez, B

    2003-01-01

    BTEX removal under aerobic conditions by unleaded gasoline acclimated biomass and BTEX acclimated biomass, and the effect of surfactant on BTEX biodegradation were evaluated. The effect of BTEX concentration as the sole source of carbon for biomass acclimation and the effect of yeast extract on cell growth in unleaded gasoline-fed reactors were also evaluated. For the unleaded gasoline acclimated biomass, benzene was shown the most recalcitrant among all BTEX, followed by o-xylene and toluene with 16-23%, 35-41% and 57-69% biodegradation, respectively. Ethylbenzene was consistently the fastest BTEX chemical removed with 99% biodegradation for the four bioreactor acclimated biomasses tested. For the 1,200 ppm BTEX acclimated biomass, benzene showed the highest removal efficiency (99%) among the four biomass environmental conditions tested, along with 99% toluene and 99% ethylbenzene biodegradation. O-xylene showed 92-94% removal. In all bioassays tested Tergitol NP-10 was fully removed, and did not have a substantial effect on BTEX biodegradation at the end of a 10-day evaluation.

  8. pH-oscillations in the bromate–sulfite reaction in semibatch and in gel-fed batch reactors

    Energy Technology Data Exchange (ETDEWEB)

    Poros, Eszter; Kurin-Csörgei, Krisztina; Szalai, István; Orbán, Miklós, E-mail: orbanm@chem.elte.hu [Department of Analytical Chemistry, Institute of Chemistry, L. Eötvös University, P.O. Box 32, H-1518 Budapest 112 (Hungary); Rábai, Gyula [Institute of Physical Chemistry, University of Debrecen, P.O. Box 7, H-4010 Debrecen (Hungary)

    2015-06-15

    The simplest bromate oxidation based pH-oscillator, the two component BrO{sub 3}{sup −}–SO{sub 3}{sup 2–} flow system was transformed to operate under semibatch and closed arrangements. The experimental preconditions of the pH-oscillations in semibatch configuration were predicted by model calculations. Using this information as guideline large amplitude (ΔpH∼3), long lasting (11–24 h) pH-oscillations accompanied with only a 20% increase of the volume in the reactor were measured when a mixture of Na{sub 2}SO{sub 3} and H{sub 2}SO{sub 4} was pumped into the solution of BrO{sub 3}{sup −} with a very low rate. Batch-like pH-oscillations, similar in amplitude and period time appeared when the sulfite supply was substituted by its dissolution from a gel layer prepared previously in the reactor in presence of high concentration of Na{sub 2}SO{sub 3}. The dissolution vs time curve and the pH-oscillations in the semibatch and closed systems were successfully simulated. Due to the simplicity in composition and in experimental technique, the semibatch and batch-like BrO{sub 3}{sup −}–SO{sub 3}{sup 2–} pH-oscillators may become superior to their CSTR (continuous flow stirred tank reactor) version in some present and future applications.

  9. pH-oscillations in the bromate-sulfite reaction in semibatch and in gel-fed batch reactors

    Science.gov (United States)

    Poros, Eszter; Kurin-Csörgei, Krisztina; Szalai, István; Rábai, Gyula; Orbán, Miklós

    2015-06-01

    The simplest bromate oxidation based pH-oscillator, the two component BrO3--SO32- flow system was transformed to operate under semibatch and closed arrangements. The experimental preconditions of the pH-oscillations in semibatch configuration were predicted by model calculations. Using this information as guideline large amplitude (ΔpH˜3), long lasting (11-24 h) pH-oscillations accompanied with only a 20% increase of the volume in the reactor were measured when a mixture of Na2SO3 and H2SO4 was pumped into the solution of BrO3- with a very low rate. Batch-like pH-oscillations, similar in amplitude and period time appeared when the sulfite supply was substituted by its dissolution from a gel layer prepared previously in the reactor in presence of high concentration of Na2SO3. The dissolution vs time curve and the pH-oscillations in the semibatch and closed systems were successfully simulated. Due to the simplicity in composition and in experimental technique, the semibatch and batch-like BrO3--SO32- pH-oscillators may become superior to their CSTR (continuous flow stirred tank reactor) version in some present and future applications.

  10. THE EFFECT OF THE ADDITION OF INVERT SUGAR ON THE PRODUCTION OF CEPHALOSPORIN C IN A FED-BATCH BIOREACTOR

    Directory of Open Access Journals (Sweden)

    A.S. Silva

    1998-12-01

    Full Text Available Cephalosporin C, a b -lactam antibiotic, is the starting molecule for industrial production of semi-synthetic cephalosporins. The bioprocess for its production is carried out in batch stirred and aerated tank reactors utilizing strains of the filamentous fungus Cephalosporium acremonium. In this work a comparison was made between the processes of production of cephalosporin C in a conventional batch bioreactor, with synthetic medium containing glucose and sucrose, and in a fed-batch reactor at several flowrates of supplementary medium containing invert sucrose. In general, the fed-batch process was shown to be more efficient than the conventional batch one, and the process in which the lowest supplementation flowrate was used presented an antibiotic production significantly higher than those obtained under the other conditions.

  11. From Fed-batch to Continuous Enzymatic Biodiesel Production

    DEFF Research Database (Denmark)

    Price, Jason Anthony; Nordblad, Mathias; Woodley, John M.

    2015-01-01

    In this this paper, we use mechanistic modelling to guide the development of acontinuous enzymatic process that is performed as a fed-batch operation. In this workwe use the enzymatic biodiesel process as a case study. A mechanistic model developedin our previous work was used to determine...... measured components (triglycerides, diglycerides, monoglycerides, free fatty acid and fatty acid methyl esters(biodiesel)) much better than using fed-batch data alone given the smaller residuals. We also observe a reduction in the correlation between the parameters.The model was then used to predict that 5...... reactors are required (with a combined residence time of 30 hours) to reach a final biodiesel concentration within 2 % of the95.6 mass % achieved in a fed-batch operation, for 24 hours....

  12. Autotrophic Nitrogen Removal in a Membrane-Aerated Biofilm Reactor Under Continuous Aeration: A Demonstration

    DEFF Research Database (Denmark)

    Gilmore, Kevin R.; Terada, Akihiko; Smets, Barth F.

    2013-01-01

    This work describes the successful coupling of partial nitrification (nitritation) and anaerobic ammonium oxidation in a membrane-aerated biofilm reactor (MABR) with continuous aeration. Controlling the relative surface loadings of oxygen versus ammonium prevented complete nitrite oxidation and a...

  13. Design of neural network model-based controller in a fed-batch microbial electrolysis cell reactor for bio-hydrogen gas production

    Science.gov (United States)

    Azwar; Hussain, M. A.; Abdul-Wahab, A. K.; Zanil, M. F.; Mukhlishien

    2018-03-01

    One of major challenge in bio-hydrogen production process by using MEC process is nonlinear and highly complex system. This is mainly due to the presence of microbial interactions and highly complex phenomena in the system. Its complexity makes MEC system difficult to operate and control under optimal conditions. Thus, precise control is required for the MEC reactor, so that the amount of current required to produce hydrogen gas can be controlled according to the composition of the substrate in the reactor. In this work, two schemes for controlling the current and voltage of MEC were evaluated. The controllers evaluated are PID and Inverse neural network (NN) controller. The comparative study has been carried out under optimal condition for the production of bio-hydrogen gas wherein the controller output is based on the correlation of optimal current and voltage to the MEC. Various simulation tests involving multiple set-point changes and disturbances rejection have been evaluated and the performances of both controllers are discussed. The neural network-based controller results in fast response time and less overshoots while the offset effects are minimal. In conclusion, the Inverse neural network (NN)-based controllers provide better control performance for the MEC system compared to the PID controller.

  14. Recovery of resources for advanced life support space applications: effect of retention time on biodegradation of two crop residues in a fed-batch, continuous stirred tank reactor

    Science.gov (United States)

    Strayer, R. F.; Finger, B. W.; Alazraki, M. P.; Cook, K.; Garland, J. L.

    2002-01-01

    Bioreactor retention time is a key process variable that will influence costs that are relevant to long distance space travel or long duration space habitation. However. little is known about the effects of this parameter on the microbiological treatment options that are being proposed for Advanced Life Support (ALS) systems. Two bioreactor studies were designed to examine this variable. In the first one, six retention times ranging from 1.3 to 21.3 days--were run in duplicate, 81 working-volume continuous stirred tank reactors (CSTR) that were fed ALS wheat residues. Ash-free dry weight loss, carbon mineralization, soluble TOC reduction, changes in fiber content (cellulose, hemicellulose, and lignin), bacterial numbers, and mineral recoveries were monitored. At short retention times--1.33 days--biodegradation was poor (total: 16-20%, cellulose - 12%, hemicellulose - 28%) but soluble TOC was decreased by 75-80% and recovery of major crop inorganic nutrients was adequate, except for phosphorus. A high proportion of the total bacteria (ca. 83%) was actively respiring. At the longest retention time tested, 21.3 days, biodegradation was good (total: 55-60%, cellulose ca. 70%, hemicellulose - ca. 55%) and soluble TOC was decreased by 80%. Recovery of major nutrients, except phosphorus, remained adequate. A very low proportion of total bacteria was actively respiring (ca. 16%). The second bioreactor study used potato residue to determine if even shorter retention times could be used (range 0.25-2.0 days). Although overall biodegradation deteriorated, the degradation of soluble TOC continued to be ca. 75%. We conclude that if the goal of ALS bioprocessing is maximal degradation of crop residues, including cellulose, then retention times of 10 days or longer will be needed. If the goal is to provide inorganic nutrients with the smallest volume/weight bioreactor possible, then a retention time of 1 day (or less) is sufficient.

  15. Supervision of Fed-Batch Fermentations

    DEFF Research Database (Denmark)

    Gregersen, Lars; Jørgensen, Sten Bay

    1999-01-01

    Process faults may be detected on-line using existing measurements based upon modelling that is entirely data driven. A multivariate statistical model is developed and used for fault diagnosis of an industrial fed-batch fermentation process. Data from several (25) batches are used to develop...... a model for cultivation behaviour. This model is validated against 13 data sets and demonstrated to explain a significant amount of variation in the data. The multivariate model may directly be used for process monitoring. With this method faults are detected in real time and the responsible measurements...

  16. High solid fed-batch butanol fermentation with simultaneous product recovery: part II - process integration.

    Science.gov (United States)

    In these studies liquid hot water (LHW) pretreated and enzymatically hydrolyzed Sweet Sorghum Bagasse (SSB) hydrolyzates were fermented in a fed-batch reactor. As reported in the preceding paper, the culture was not able to ferment the hydrolyzate I in a batch process due to presence of high level o...

  17. Comparing a Dynamic Fed-Batch and a Continuous Steady-State Simulation of Ethanol Fermentation in a Distillery to a Stoichiometric Conversion Simulation

    OpenAIRE

    Fonseca, G.C.; Costa, C.B.B.; Cruz, A.J.G.

    2017-01-01

    Abstract An autonomous sugarcane bioethanol plant was simulated in EMSO software, an equation oriented process simulator. Three types of fermentation units were simulated: a six parallel fed-batch reactor system, a set of four CSTR in steady state and one consisting of a single stoichiometric reactor. Stoichiometric models are less accurate than kinetic-based fermentation models used for fed-batch and continuous fermenter simulations, since they do not account for inhibition effects and depen...

  18. Dimensioning of aerated submerged fixed bed biofilm reactors ...

    African Journals Online (AJOL)

    The description of a biofilm mathematical model application for dimensioning an aerated fixed bed biofilm reactor (ASFBBR) for petrochemical wastewater polishing is presented. A simple one-dimensional model of biofilm, developed by P Harremöes, was chosen for this purpose. The model was calibrated and verified ...

  19. Kinetic study of batch and fed-batch enzymatic saccharification of pretreated substrate and subsequent fermentation to ethanol

    Directory of Open Access Journals (Sweden)

    Gupta Rishi

    2012-03-01

    Full Text Available Abstract Background Enzymatic hydrolysis, the rate limiting step in the process development for biofuel, is always hampered by its low sugar concentration. High solid enzymatic saccharification could solve this problem but has several other drawbacks such as low rate of reaction. In the present study we have attempted to enhance the concentration of sugars in enzymatic hydrolysate of delignified Prosopis juliflora, using a fed-batch enzymatic hydrolysis approach. Results The enzymatic hydrolysis was carried out at elevated solid loading up to 20% (w/v and a comparison kinetics of batch and fed-batch enzymatic hydrolysis was carried out using kinetic regimes. Under batch mode, the actual sugar concentration values at 20% initial substrate consistency were found deviated from the predicted values and the maximum sugar concentration obtained was 80.78 g/L. Fed-batch strategy was implemented to enhance the final sugar concentration to 127 g/L. The batch and fed-batch enzymatic hydrolysates were fermented with Saccharomyces cerevisiae and ethanol production of 34.78 g/L and 52.83 g/L, respectively, were achieved. Furthermore, model simulations showed that higher insoluble solids in the feed resulted in both smaller reactor volume and shorter residence time. Conclusion Fed-batch enzymatic hydrolysis is an efficient procedure for enhancing the sugar concentration in the hydrolysate. Restricting the process to suitable kinetic regimes could result in higher conversion rates.

  20. Kinetic study of batch and fed-batch enzymatic saccharification of pretreated substrate and subsequent fermentation to ethanol

    Science.gov (United States)

    2012-01-01

    Background Enzymatic hydrolysis, the rate limiting step in the process development for biofuel, is always hampered by its low sugar concentration. High solid enzymatic saccharification could solve this problem but has several other drawbacks such as low rate of reaction. In the present study we have attempted to enhance the concentration of sugars in enzymatic hydrolysate of delignified Prosopis juliflora, using a fed-batch enzymatic hydrolysis approach. Results The enzymatic hydrolysis was carried out at elevated solid loading up to 20% (w/v) and a comparison kinetics of batch and fed-batch enzymatic hydrolysis was carried out using kinetic regimes. Under batch mode, the actual sugar concentration values at 20% initial substrate consistency were found deviated from the predicted values and the maximum sugar concentration obtained was 80.78 g/L. Fed-batch strategy was implemented to enhance the final sugar concentration to 127 g/L. The batch and fed-batch enzymatic hydrolysates were fermented with Saccharomyces cerevisiae and ethanol production of 34.78 g/L and 52.83 g/L, respectively, were achieved. Furthermore, model simulations showed that higher insoluble solids in the feed resulted in both smaller reactor volume and shorter residence time. Conclusion Fed-batch enzymatic hydrolysis is an efficient procedure for enhancing the sugar concentration in the hydrolysate. Restricting the process to suitable kinetic regimes could result in higher conversion rates. PMID:22433563

  1. Fed-batch production of concentrated fructose syrup and ethanol using Saccharomyces cerevisiae ATCC 36859

    Energy Technology Data Exchange (ETDEWEB)

    Koren, D W [CANMET, Ottawa, ON (Canada); Duvnjak, Z [Univ. of Ottawa, ON (Canada). Dept. of Chemical Engineering

    1992-01-01

    A fed-batch process is used for the production of concentrated pure fructose syrup and ethanol from various glucose/fructose mixtures by S.cerevisiae ATCC 36859. Applying this technique, glucose-free fructose syrups with over 250 g/l of this sugar were obtained using High Fructose Corn Syrup and hydrolyzed Jerusalem artichoke juice. Bey encouraging ethanol evaporation from the reactor and condensing it, a separate ethanol product with a concentration of up to 350 g/l was also produced. The rates of glucose consumption and ethanol production were higher than in classical batch ethanol fermentation processes. (orig.).

  2. Sequential Aeration of Membrane-Aerated Biofilm Reactors for High-Rate Autotrophic Nitrogen Removal: Experimental Demonstration

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Sun, Sheng-Peng; Lackner, Susanne

    2010-01-01

    One-stage autotrophic nitrogen (N) removal, requiring the simultaneous activity of aerobic and anaerobic ammonium oxidizing bacteria (AOB and AnAOB), can be obtained in spatially redox-stratified biofilms. However, previous experience with Membrane-Aerated Biofilm Reactors (MABRs) has revealed...... a difficulty in reducing the abundance and activity of nitrite oxidizing bacteria (NOB), which drastically lowers process efficiency. Here we show how sequential aeration is an effective strategy to attain autotrophic N removal in MABRs: Two separate MABRs, which displayed limited or no N removal under...... continuous aeration, could remove more than 5.5 g N/m2/day (at loads up to 8 g N/m2/day) by controlled variation of sequential aeration regimes. Daily averaged ratios of the surficial loads of O2 (oxygen) to NH4+ (ammonium) (LO2/LNH4) were close to 1.73 at this optimum. Real-time quantitative PCR based on 16...

  3. CFD simulation of fluid dynamic and biokinetic processes within activated sludge reactors under intermittent aeration regime.

    Science.gov (United States)

    Sánchez, F; Rey, H; Viedma, A; Nicolás-Pérez, F; Kaiser, A S; Martínez, M

    2018-08-01

    Due to the aeration system, biological reactors are the most energy-consuming facilities of convectional WWTPs. Many biological reactors work under intermittent aeration regime; the optimization of the aeration process (air diffuser layout, air flow rate per diffuser, aeration length …) is necessary to ensure an efficient performance; satisfying the effluent requirements with the minimum energy consumption. This work develops a CFD modelling of an activated sludge reactor (ASR) which works under intermittent aeration regime. The model considers the fluid dynamic and biological processes within the ASR. The biological simulation, which is transient, takes into account the intermittent aeration regime. The CFD modelling is employed for the selection of the aeration system of an ASR. Two different aeration configurations are simulated. The model evaluates the aeration power consumption necessary to satisfy the effluent requirements. An improvement of 2.8% in terms of energy consumption is achieved by modifying the air diffuser layout. An analysis of the influence of the air flow rate per diffuser on the ASR performance is carried out. The results show a reduction of 14.5% in the energy consumption of the aeration system when the air flow rate per diffuser is reduced. The model provides an insight into the aeration inefficiencies produced within ASRs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Comparing a Dynamic Fed-Batch and a Continuous Steady-State Simulation of Ethanol Fermentation in a Distillery to a Stoichiometric Conversion Simulation

    Directory of Open Access Journals (Sweden)

    G.C. Fonseca

    Full Text Available Abstract An autonomous sugarcane bioethanol plant was simulated in EMSO software, an equation oriented process simulator. Three types of fermentation units were simulated: a six parallel fed-batch reactor system, a set of four CSTR in steady state and one consisting of a single stoichiometric reactor. Stoichiometric models are less accurate than kinetic-based fermentation models used for fed-batch and continuous fermenter simulations, since they do not account for inhibition effects and depend on a known conversion rate of reactant to be specified instead. On the other hand, stoichiometric models are faster and simpler to converge. In this study it was found that the conversion rates of sugar for the fermentation systems analyzedwere predictable from information on the composition of the juice stream. Those rates were used in the stoichiometric model, which accurately reproduced the results from both the fed-batch and the continuous fermenter system.

  5. Sequentially aerated membrane biofilm reactors for autotrophic nitrogen removal: microbial community composition and dynamics

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Franck, Stephanie; Gülay, Arda

    2014-01-01

    Membrane-aerated biofilm reactors performing autotrophic nitrogen removal can be successfully applied to treat concentrated nitrogen streams. However, their process performance is seriously hampered by the growth of nitrite oxidizing bacteria (NOB). In this work we document how sequential aeration...

  6. Biofilm formation on membranes used for membrane aerated biological reactors, under different stress conditions

    International Nuclear Information System (INIS)

    Andrade-Molinar, C.; Ballinas-Casarrubias, M. L.; Solis-Martinez, F. J.; Rivera-Chavira, B. E.; Cuevas-Rodirguez, G.; Nevarez-Moorillon, G. V.

    2009-01-01

    Bacterial biofilm play an important role in wastewater treatment processes, and have been optimized in the membrane aerated biofilm reactors (MABR). In MABR, a hydrophobic membrane is used as support for the formation of biofilm, and supplements enough aeration to assure an aerobic process. (Author)

  7. Cloning, multicopy expression and fed-batch production of Rhodotorula araucariae epoxide hydrolase in yarrowia lipolytica

    CSIR Research Space (South Africa)

    Ramduth, D

    2008-05-01

    Full Text Available demonstrated a 4 fold enhanced EH activity over the transformant. The transformant was then evaluated in batch and fed batch fermentations, where the batch fermentations resulted in - 50% improved EH activity from flask evaluations. In fed batch fermentations...

  8. Alcoholic fermentation with flocculant Saccharomyces cerevisiae in fed-batch process.

    Science.gov (United States)

    Guidini, Carla Zanella; Marquez, Líbia Diniz Santos; de Almeida Silva, Helisângela; de Resende, Miriam Maria; Cardoso, Vicelma Luiz; Ribeiro, Eloízio Júlio

    2014-02-01

    Studies have been conducted on selecting yeast strains for use in fermentation for ethanol production to improve the performance of industrial plants and decrease production costs. In this paper, we study alcoholic fermentation in a fed-batch process using a Saccharomyces cerevisiae yeast strain with flocculant characteristics. Central composite design (CCD) was used to determine the optimal combination of the variables involved, with the sucrose concentration of 170 g/L, a cellular concentration in the inoculum of 40% (v/v), and a filling time of 6 h, which resulted in a 92.20% yield relative to the theoretical maximum yield, a productivity of 6.01 g/L h and a residual sucrose concentration of 44.33 g/L. With some changes in the process such as recirculation of medium during the fermentation process and increase in cellular concentration in the inoculum after use of the CCD was possible to reduce the residual sucrose concentration to 2.8 g/L in 9 h of fermentation and increase yield and productivity for 92.75% and 9.26 g/L h, respectively. A model was developed to describe the inhibition of alcoholic fermentation kinetics by the substrate and the product. The maximum specific growth rate was 0.103 h(-1), with K(I) and K(s) values of 109.86 and 30.24 g/L, respectively. The experimental results from the fed-batch reactor show a good fit with the proposed model, resulting in a maximum growth rate of 0.080 h(-1).

  9. Xylitol production by Candida parapsilosis under fed-batch culture

    Directory of Open Access Journals (Sweden)

    Sandra A. Furlan

    2001-06-01

    Full Text Available Xylitol production by Candida parapsilosis was investigated under fed-batch cultivation, using single (xylose or mixed (xylose and glucose sugars as substrates. The presence of glucose in the medium induced the production of ethanol as secondary metabolite and improved specific rates of growth, xylitol formation and substrate consumption. Fractionated supply of the feed medium at constant sugar concentration did not promote any increase on the productivity compared to the single batch cultivation.A produção de xylitol por Candida parapsilosis foi investigada em regime de batelada alimentada, usando substratos açucarados de composição simples (xilose ou composta (xilose e glicose. A presença de glicose no meio induziu a formação de etanol como metabólito secundário. A suplementação fracionada do meio de alimentação numa concentração fixa de açúcar não resultou em aumento da produtividade em relação àquela alcançada em batelada simples.

  10. A novel model-based control strategy for aerobic filamentous fungal fed-batch fermentation processes.

    Science.gov (United States)

    Mears, Lisa; Stocks, Stuart M; Albaek, Mads O; Cassells, Benny; Sin, Gürkan; Gernaey, Krist V

    2017-07-01

    A novel model-based control strategy has been developed for filamentous fungal fed-batch fermentation processes. The system of interest is a pilot scale (550 L) filamentous fungus process operating at Novozymes A/S. In such processes, it is desirable to maximize the total product achieved in a batch in a defined process time. In order to achieve this goal, it is important to maximize both the product concentration, and also the total final mass in the fed-batch system. To this end, we describe the development of a control strategy which aims to achieve maximum tank fill, while avoiding oxygen limited conditions. This requires a two stage approach: (i) calculation of the tank start fill; and (ii) on-line control in order to maximize fill subject to oxygen transfer limitations. First, a mechanistic model was applied off-line in order to determine the appropriate start fill for processes with four different sets of process operating conditions for the stirrer speed, headspace pressure, and aeration rate. The start fills were tested with eight pilot scale experiments using a reference process operation. An on-line control strategy was then developed, utilizing the mechanistic model which is recursively updated using on-line measurements. The model was applied in order to predict the current system states, including the biomass concentration, and to simulate the expected future trajectory of the system until a specified end time. In this way, the desired feed rate is updated along the progress of the batch taking into account the oxygen mass transfer conditions and the expected future trajectory of the mass. The final results show that the target fill was achieved to within 5% under the maximum fill when tested using eight pilot scale batches, and over filling was avoided. The results were reproducible, unlike the reference experiments which show over 10% variation in the final tank fill, and this also includes over filling. The variance of the final tank fill is

  11. Monitoring transitory profiles of leachate humic substances in landfill aeration reactors in mesophilic and thermophilic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Huanhuan [Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141 (Singapore); School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Yin, Ke; Ge, Liya; Giannis, Apostolos [Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141 (Singapore); Chuan, Valerie W.L. [School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Wang, Jing-Yuan, E-mail: JYWANG@ntu.edu.sg [Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141 (Singapore); School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore)

    2015-04-28

    Highlights: • Polymerization and condensation of humic substances (HS) were enhanced by aeration. • Carboxylic group was enriched in HS by aeration presenting improved hydrophilicity. • Mobility of humic acid, as a result was enhanced by aeration especially in young landfill. • Waste age plays an important role in leachate management during aeration. - Abstract: The presence of humic substances (HS) in landfill leachate is of great interest because of their structural stability and potential toxicity. This study examined the effects of temperature and waste age on the transformation of HS during in situ aeration of bioreactor landfills. By establishing aerobic conditions, dissolved organic carbon (DOC) rapidly accumulated in the bioreactor leachate. Fractional analysis showed that the elevated concentration of humic acids (HAs) was primarily responsible for the increment of leachate strength. Further structural characterization indicated that the molecular weight (MW) and aromacity of HS were enhanced by aeration in conjunction with thermophilic temperature. Interestingly, elevation of HAs concentration was not observed in the aeration reactor with a prolonged waste age, as the mobility of HAs was lowered by the high MW derived from extended waste age. Based on these results, aeration may be more favorable in aged landfills, since dissolution of HAs could be minimized by the evolution to larger MW compared to young landfills. Moreover, increased operation temperature during aeration likely offers benefits for the rapid maturation of HS.

  12. Electrochemical study of multi-electrode microbial fuel cells under fed-batch and continuous flow conditions

    KAUST Repository

    Ren, Lijiao

    2014-07-01

    Power production of four hydraulically connected microbial fuel cells (MFCs) was compared with the reactors operated using individual electrical circuits (individual), and when four anodes were wired together and connected to four cathodes all wired together (combined), in fed-batch or continuous flow conditions. Power production under these different conditions could not be made based on a single resistance, but instead required polarization tests to assess individual performance relative to the combined MFCs. Based on the power curves, power produced by the combined MFCs (2.12 ± 0.03 mW, 200 ω) was the same as the summed power (2.13 mW, 50 ω) produced by the four individual reactors in fed-batch mode. With continuous flow through the four MFCs, the maximum power (0.59 ± 0.01 mW) produced by the combined MFCs was slightly lower than the summed maximum power of the four individual reactors (0.68 ± 0.02 mW). There was a small parasitic current flow from adjacent anodes and cathodes, but overall performance was relatively unaffected. These findings demonstrate that optimal power production by reactors hydraulically and electrically connected can be predicted from performance by individual reactors. © 2013 Elsevier B.V. All rights reserved.

  13. Butanol production from wheat straw by simultaneous saccharification and fermentation using Clostridium beijerinckii: Part II-Fed-batch fermentation

    International Nuclear Information System (INIS)

    Qureshi, Nasib; Saha, Badal C.; Cotta, Michael A.

    2008-01-01

    In these studies, Clostridium beijerinckii P260 was used to produce butanol (acetone-butanol-ethanol, or ABE) from wheat straw (WS) hydrolysate in a fed-batch reactor. It has been demonstrated that simultaneous hydrolysis of WS to achieve 100% hydrolysis to simple sugars (to the extent achievable under present conditions) and fermentation to butanol is possible. In addition to WS, the reactor was fed with a sugar solution containing glucose, xylose, arabinose, galactose, and mannose. The culture utilized all of the above sugars. It was noticed that near the end of fermentation (286-533 h), the culture had difficulties utilizing xylose. As a result of supplemental sugar feed to the reactor, ABE productivity was improved by 16% as compared with previous studies. In our previous experiment on simultaneous saccharification of WS and fermentation to butanol, a productivity of 0.31 g L -1 h -1 was observed, while in the present studies a productivity of 0.36 g L -1 h -1 was observed. It should be noted that a productivity of 0.77 g L -1 h -1 was observed when the culture was highly active. The fed-batch fermentation was operated for 533 h. It should be noted that C. beijerinckii P260 can be used to produce butanol from WS in integrated fermentations

  14. Fed-batch CHO cell culture for lab-scale antibody production

    DEFF Research Database (Denmark)

    Fan, Yuzhou; Ley, Daniel; Andersen, Mikael Rørdam

    2017-01-01

    Fed-batch culture is the most commonly used upstream process in industry today for recombinant monoclonal antibody production using Chinese hamster ovary cells. Developing and optimizing this process in the lab is crucial for establishing process knowledge, which enable rapid and predictable tech......-transfer to manufacturing scale. In this chapter, we will describe stepwise how to carry out fed-batch CHO cell culture for lab-scale antibody production....

  15. Parallel steady state studies on a milliliter scale accelerate fed-batch bioprocess design for recombinant protein production with Escherichia coli.

    Science.gov (United States)

    Schmideder, Andreas; Cremer, Johannes H; Weuster-Botz, Dirk

    2016-11-01

    In general, fed-batch processes are applied for recombinant protein production with Escherichia coli (E. coli). However, state of the art methods for identifying suitable reaction conditions suffer from severe drawbacks, i.e. direct transfer of process information from parallel batch studies is often defective and sequential fed-batch studies are time-consuming and cost-intensive. In this study, continuously operated stirred-tank reactors on a milliliter scale were applied to identify suitable reaction conditions for fed-batch processes. Isopropyl β-d-1-thiogalactopyranoside (IPTG) induction strategies were varied in parallel-operated stirred-tank bioreactors to study the effects on the continuous production of the recombinant protein photoactivatable mCherry (PAmCherry) with E. coli. Best-performing induction strategies were transferred from the continuous processes on a milliliter scale to liter scale fed-batch processes. Inducing recombinant protein expression by dynamically increasing the IPTG concentration to 100 µM led to an increase in the product concentration of 21% (8.4 g L -1 ) compared to an implemented high-performance production process with the most frequently applied induction strategy by a single addition of 1000 µM IPGT. Thus, identifying feasible reaction conditions for fed-batch processes in parallel continuous studies on a milliliter scale was shown to be a powerful, novel method to accelerate bioprocess design in a cost-reducing manner. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1426-1435, 2016. © 2016 American Institute of Chemical Engineers.

  16. Monitoring and modeling of nitrogen conversions in membrane-aerated biofilm reactors: Effects of intermittent aeration

    DEFF Research Database (Denmark)

    Ma, Yunjie

    Nitrogen can be removed from sewage by a variety of physicochemical and biological processes. Due to the high removal efficiency and relatively low costs, biological processes have been widely adopted for treating nitrogen-rich wastewaters. Among the biological technologies, biofilm processes show...... the membrane, whilst NH4+ is provid-ed from the bulk liquid phase. The counter substrate supply not only offers flexible aeration control, but also supports the development of a unique mi-crobial community and spatial structure inside the biofilm. In this study, lab-scale MABRs were operated under two types...... relevant biological N2O production pathways. Sensitive kinetic parameters were estimated with long-term bulk performance data. With the calibrated model, roles of HB and AnAOB were discussed and evaluated in mitigating N2O emissions in auto-trophic nitrogen removal MABRs. Moreover, I developed a 1-D...

  17. Exponential fed-batch strategy for enhancing biosurfactant production by Bacillus subtilis.

    Science.gov (United States)

    Amin, G A

    2014-01-01

    Surfactin produced by Bacillus subtilis BDCC-TUSA-3 from Maldex-15 was used as a growth-associated product in a conventional batch process. Maldex-15 is a cheap industrial by-product recovered during manufacturing of high fructose syrup from corn starch. Surfactin production was greatly improved in exponential fed-batch fermentation. Maldex-15 and other nutrients were exponentially fed into the culture based on the specific growth rate of the bacterium. In order to maximize surfactin yield and productivity, conversion of different quantities of Maldex-15 into surfactin was investigated in five different fermentation runs. In all runs, most of the Maldex-15 was consumed and converted into surfactin and cell biomass with appreciable efficiencies. The best results were obtained with the fermentation run supplied with 204 g Maldex-15. Up to 36.1 g l(-1) of surfactin and cell biomass of 31.8 g l(-1) were achieved in 12 h. Also, a marked substrate yield of 0.272 g g(-1) and volumetric reactor productivity of 2.58 g 1(-1) h(-1) were obtained, confirming the establishment of a cost-effective commercial surfactin production.

  18. The use of fed batch approaches to maximise yields in bacterial fermentation and protein expression

    International Nuclear Information System (INIS)

    McLean, A.

    2001-01-01

    A fermentation facility for the scale up of bacterial and yeast fermentations has been set up at the University of Queensland under the auspices of the ARC Special Research Centre for Functional and Applied Genomics. A major application is the production of recombinant proteins for determination of tertiary structures by X-ray crystallography or nuclear magnetic resonance. For this purpose, large amounts of protein arc needed and the yield from a single fermentation run is crucial to success within constrained laboratory budgets. To achieve maximal yields we are optimising fed batch approaches in bacterial fermentation. Fed batch offers many advantages over batch cultures. Coupled with the ability to monitor online the internal conditions of the fermentation including pH and dissolved oxygen and stirrer cascading functions it is possible to ensure that the nutritional environment of the microorganism is optimised for its growth and or for optimal protein expression. The poster will describe some of our experience in setting up fed batch fermentations and successful applications of fed batches to increasing protein yield. It will also outline services that are available to academic groups outside the University of Queensland For structure determination and functional studies, the production of radiolabelled proteins can also be an advantage. We will describe initial experiments aimed at coupling the principles of fed batch fermentation to the introduction of carbon or nitrogen isotopes into the recombinant protein

  19. Fructose production by Zymomonas mobilis in fed-batch culture with minimal sorbitol formation

    Energy Technology Data Exchange (ETDEWEB)

    Edye, L A; Johns, M R; Ewings, K N

    1989-08-01

    Fed-batch cultures of Zymomonas mobilis (UQM 2864), a mutant unable to metabolise fructose, grown on diluted sugar cane syrup (200 g/l sucrose) achieved yields of 90.5 g/l fructose and 48.3 g/l ethanol with minimal sorbitol formation and complete utilization of the substrate. The effect of inoculum size on sorbitol formation in the batch stage of fed-batch fermentation are reported. Fermentation of sucrose (350 g/l) supplemented with nutrients yielded 142 g/l fructose and 76.5 g/l ethanol. Some fructose product loss at high fructose concentrations was observed. The fed-batch fermentation process offers a method for obtaining high concentrations of fructose and ethanol from sucrose materials. (orig.).

  20. A high-yielding, generic fed-batch process for recombinant antibody production of GS-engineered cell lines

    DEFF Research Database (Denmark)

    Fan, Li; Zhao, Liang; Sun, Yating

    2009-01-01

    An animal component-free and chemically defined fed-batch process for GS-engineered cell lines producing recombinant antibodies has been developed. The fed-batch process relied on supplying sufficient nutrients to match their consumption, simultaneously minimizing the accumulation of byproducts....... This generic and high-yielding fed-batch process would shorten development time, and ensure process stability, thereby facilitating the manufacture of therapeutic antibodies by GS-engineered cell lines....

  1. Fed-batch and perfusion culture processes: economic, environmental, and operational feasibility under uncertainty.

    Science.gov (United States)

    Pollock, James; Ho, Sa V; Farid, Suzanne S

    2013-01-01

    This article evaluates the current and future potential of batch and continuous cell culture technologies via a case study based on the commercial manufacture of monoclonal antibodies. The case study compares fed-batch culture to two perfusion technologies: spin-filter perfusion and an emerging perfusion technology utilizing alternating tangential flow (ATF) perfusion. The operational, economic, and environmental feasibility of whole bioprocesses based on these systems was evaluated using a prototype dynamic decision-support tool built at UCL encompassing process economics, discrete-event simulation and uncertainty analysis, and combined with a multi-attribute decision-making technique so as to enable a holistic assessment. The strategies were compared across a range of scales and titres so as to visualize how their ranking changes in different industry scenarios. The deterministic analysis indicated that the ATF perfusion strategy has the potential to offer cost of goods savings of 20% when compared to conventional fed-batch manufacturing processes when a fivefold increase in maximum viable cell densities was assumed. Savings were also seen when the ATF cell density dropped to a threefold increase over the fed-batch strategy for most combinations of titres and production scales. In contrast, the fed-batch strategy performed better in terms of environmental sustainability with a lower water and consumable usage profile. The impact of uncertainty and failure rates on the feasibility of the strategies was explored using Monte Carlo simulation. The risk analysis results demonstrated the enhanced robustness of the fed-batch process but also highlighted that the ATF process was still the most cost-effective option even under uncertainty. The multi-attribute decision-making analysis provided insight into the limited use of spin-filter perfusion strategies in industry. The resulting sensitivity spider plots enabled identification of the critical ratio of weightings of

  2. Fed-Batch Feeding Strategies for Enzymatic Biodiesel Production

    DEFF Research Database (Denmark)

    Price, Jason Anthony; Nordblad, Mathias; Woodley, John

    2014-01-01

    of the differences in the interfacial and bulk concentrations of the enzyme. The model is then used to evaluate various feeding strategies to improve the enzymatic biodiesel production. The feeding strategies investigated, gave insight into how the methanol should be fed to potentially mitigate enzyme deactivation...... while improving the biodiesel yield. The best experimental results gave a yield of 703 .76 g FAME L-1 and a reactor productivity of 28.12 g FAME L-1 h-1. In comparison, to reach the same yield, the optimised two step feeding strategy took 6.25 hours less, which equates to an increase the reactor...

  3. Scale-up bioprocess development for production of the antibiotic valinomycin in Escherichia coli based on consistent fed-batch cultivations.

    Science.gov (United States)

    Li, Jian; Jaitzig, Jennifer; Lu, Ping; Süssmuth, Roderich D; Neubauer, Peter

    2015-06-12

    Heterologous production of natural products in Escherichia coli has emerged as an attractive strategy to obtain molecules of interest. Although technically feasible most of them are still constrained to laboratory scale production. Therefore, it is necessary to develop reasonable scale-up strategies for bioprocesses aiming at the overproduction of targeted natural products under industrial scale conditions. To this end, we used the production of the antibiotic valinomycin in E. coli as a model system for scalable bioprocess development based on consistent fed-batch cultivations. In this work, the glucose limited fed-batch strategy based on pure mineral salt medium was used throughout all scales for valinomycin production. The optimal glucose feed rate was initially detected by the use of a biocatalytically controlled glucose release (EnBase® technology) in parallel cultivations in 24-well plates with continuous monitoring of pH and dissolved oxygen. These results were confirmed in shake flasks, where the accumulation of valinomycin was highest when the specific growth rate decreased below 0.1 h(-1). This correlation was also observed for high cell density fed-batch cultivations in a lab-scale bioreactor. The bioreactor fermentation produced valinomycin with titers of more than 2 mg L(-1) based on the feeding of a concentrated glucose solution. Valinomycin production was not affected by oscillating conditions (i.e. glucose and oxygen) in a scale-down two-compartment reactor, which could mimic similar situations in industrial bioreactors, suggesting that the process is very robust and a scaling of the process to a larger industrial scale appears a realistic scenario. Valinomycin production was scaled up from mL volumes to 10 L with consistent use of the fed-batch technology. This work presents a robust and reliable approach for scalable bioprocess development and represents an example for the consistent development of a process for a heterologously expressed natural

  4. Determination of pressure distribution in an aerated bed in a controlled pilot-scale compost reactor

    Energy Technology Data Exchange (ETDEWEB)

    Solowiej, P. [Warmia and Mazury Univ., Olsztyn (Poland)

    2010-07-01

    This study investigated the effectiveness of dealing with biological waste by composting. In particular, it examined the feasibility of recovering excess thermal energy produced in the process of composting biological waste in terms of mass and energy transport parameters required in the aerated compost bed. An experiment was performed in which a 100 dm{sup 3} adiabatic, leak-tight reactor equipped with a controlled aeration system was constructed to study the temperature and pressure distribution in the bed. Sensors were used to determine the amount and humidity of emitted gases under variable external physical conditions. The perforated bottom of the reactor allowed for bed aeration. As such, the humidity and heat were transported upwards, forced by the air pumped in and by natural convection. In terms of pressure distribution inside the composted and aerated bed, the study results showed that there were considerable differences in pressure for the selected places of the bed of the composted biological material. An increase in upwards pressure was observed in the heap throughout the experiment. Pressure differences in the same plane of the bed were also noted. The study results should facilitate the development of a model of mass and energy transport in a bed of composted material.

  5. Fed-batch fermentation dealing with nitrogen limitation in microbial transglutaminase production by Streptoverticillium mobaraense

    NARCIS (Netherlands)

    Rinzema, A; Tramper, J; de Bruin, E; Bol, J

    In the later stages of a batch fermentation for microbial transglutaminase production by Streptoverticillium mobaraense the availability of a nitrogen source accessible to the microorganism becomes critical. Fed-batch fermentation is investigated with the aim of avoiding this substrate limitation.

  6. Optimization of fed-batch fermentation for xylitol production by Candida tropicalis.

    Science.gov (United States)

    Kim, J-H; Han, K-C; Koh, Y-H; Ryu, Y-W; Seo, J-H

    2002-07-01

    Xylitol, a functional sweetener, was produced from xylose by biological conversion using Candida tropicalis ATCC 13803. Based on a two-substrate fermentation using glucose for cell growth and xylose for xylitol production, fed-batch fermentations were undertaken to increase the final xylitol concentration. The effects of xylose and xylitol on xylitol production rate were studied to determine the optimum concentrations for fed-batch fermentation. Xylose concentration in the medium (100 g l(-1)) and less than 200 g l(-1) total xylose plus xylitol concentration were determined as optimum for maximum xylitol production rate and xylitol yield. Increasing the concentrations of xylose and xylitol decreased the rate and yield of xylitol production and the specific cell growth rate, probably because of an increase in osmotic stress that would interfere with xylose transport, xylitol flux to secretion to cell metabolism. The feeding rate of xylose solution during the fed-batch mode of operation was determined by using the mass balance equations and kinetic parameters involved in the equations in order to increase final xylitol concentration without affecting xylitol and productivity. The optimized fed-batch fermentation resulted in 187 g l(-1) xylitol concentration, 0.75 g xylitol g xylose(-1) xylitol yield and 3.9 g xylitol l(-1) h(-1) volumetric productivity.

  7. Selection of chemically defined media for CHO cell fed-batch culture processes

    NARCIS (Netherlands)

    Pan, X.; Streefland, M.; Dalm, C.; Wijffels, R.H.; Martens, D.E.

    2017-01-01

    Two CHO cell clones derived from the same parental CHOBC cell line and producing the same monoclonal antibody (BC-G, a low producing clone; BC-P, a high producing clone) were tested in four basal media in all possible combinations with three feeds (=12 conditions) in fed-batch cultures.
    Higher

  8. Facilitating control of fed-batch fermentation processes by monitoring the growth rates of saccharomyces cerevisiae

    NARCIS (Netherlands)

    Keulers, M.L.B.; Ariaans, L.J.J.M.; Soeterboek, R.; Giuseppin, M.

    1994-01-01

    In this paper we present a growth rate controller for a fed-batch bioprocess. An observer estimates the growth rate. The observer is based on knowledge about the stoichiometric relations of the process. Furthermore, the observer needs online measurements of the oxygen uptake rate and the

  9. Combined age and segregated kinetic model for industrial-scale penicillin fed-batch cultivation

    NARCIS (Netherlands)

    Wang, Z.F.; Lauwerijssen, M.J.C.; Yuan, J.Q.

    2005-01-01

    This paper proposes a cell age model forPenicillium chrysogenum fed-batch cultivation to supply a qualitative insight into morphology-associated dynamics. The average ages of the segregated cell populations, such as growing cells, non-growing cells and intact productive cells, were estimated by this

  10. Optimization of fed-batch fermentation for a staphylokinase-hirudin ...

    African Journals Online (AJOL)

    TUOYO

    2010-08-09

    Aug 9, 2010 ... In this study, the fed-batch fermentation technique was applied to improve the yield of STH, a chimeric protein composed ... Under optimal conditions (GMYT and complex medium), a final STH expression of 1.48 g/l fermentation broth was ... STH production contained the following materials (per L): Sucrose.

  11. Optimization of a fed-batch fermentation process for production of ...

    African Journals Online (AJOL)

    user

    2011-02-28

    Feb 28, 2011 ... fermentation. Overall, this study suggested that fed-batch fermentation can be successfully used to ... catalysts that catalyze their own synthesis. Enzymes are .... shows the amount of biomass (g l−1) in the fermentation broth of ...

  12. Monitoring and robust adaptive control of fed-batch cultures of microorganisms exhibiting overflow metabolism [abstract

    Directory of Open Access Journals (Sweden)

    Vande Wouwer, A.

    2010-01-01

    Full Text Available Overflow metabolism characterizes cells strains that are likely to produce inhibiting by-products resulting from an excess of substrate feeding and a saturated respiratory capacity. The critical substrate level separating the two different metabolic pathways is generally not well defined. Monitoring of this kind of cultures, going from model identification to state estimation, is first discussed. Then, a review of control techniques which all aim at maximizing the cell productivity of fed-batch fermentations is presented. Two main adaptive control strategies, one using an estimation of the critical substrate level as set-point and another regulating the by-product concentration, are proposed. Finally, experimental investigations of an adaptive RST control scheme using the observer polynomial for the regulation of the ethanol concentration in Saccharomyces cerevisiae fed-batch cultures ranging from laboratory to industrial scales, are also presented.

  13. Nonlinear impulsive system of fed-batch culture in fermentative production and its properties

    International Nuclear Information System (INIS)

    Gao Caixia; Li Kezan; Feng Enmin; Xiu Zhilong

    2006-01-01

    In this study, the nonlinear dynamical system of fed-batch fermentation is investigated in the process of bio-dissimilation of glycerol to 1,3-propanediol by Klebsiella pneumoniae. Considering the abrupt increase of glycerol in fed-batch culture, this paper proposes a nonlinear impulsive system of the culture process, which is fit for formulating the factual fermentation better than the continuous models in being. We study the questions of existence and properties of mild solutions for the system and the continuous dependence of solutions on initial values and the controllable variable. Finally, the numerical simulations show that the errors between experimental and computational values using the impulsive system are less than those using the previous continuous system

  14. Modeling and parameters identification of 2-keto-L-gulonic acid fed-batch fermentation.

    Science.gov (United States)

    Wang, Tao; Sun, Jibin; Yuan, Jingqi

    2015-04-01

    This article presents a modeling approach for industrial 2-keto-L-gulonic acid (2-KGA) fed-batch fermentation by the mixed culture of Ketogulonicigenium vulgare (K. vulgare) and Bacillus megaterium (B. megaterium). A macrokinetic model of K. vulgare is constructed based on the simplified metabolic pathways. The reaction rates obtained from the macrokinetic model are then coupled into a bioreactor model such that the relationship between substrate feeding rates and the main state variables, e.g., the concentrations of the biomass, substrate and product, is constructed. A differential evolution algorithm using the Lozi map as the random number generator is utilized to perform the model parameters identification, with the industrial data of 2-KGA fed-batch fermentation. Validation results demonstrate that the model simulations of substrate and product concentrations are well in coincidence with the measurements. Furthermore, the model simulations of biomass concentrations reflect principally the growth kinetics of the two microbes in the mixed culture.

  15. Simulation of Feedforward-Feedback Control of Dissolved Oxygen of Microbial Repeated Fed-batch Culture

    Directory of Open Access Journals (Sweden)

    Ling Gao

    2016-09-01

    Full Text Available Fed-batch culture is often used in industry, and dissolved oxygen (DO concentration control is important in fermentation process control. DO control is often applied by using feedback (FB control strategy. But, feedforward-feedback (FF-FB control has the advantage in dealing with the time-varying characteristics resulted from the cell growth during the fermentation process. Mathematical modeling and computer simulation is a useful tool in analysis of the control system.  In this research, the FF-FB DO control and FB substrate control of repeated fed-batch culture process is modeled and simulated. The results showed the feasibility of the control strategy. These results are useful for control system development and process analyses and optimization.

  16. Optimization of cyclosporin A production by Beauveria nivea in continuous fed-batch fermentation

    Directory of Open Access Journals (Sweden)

    Dong Huijun

    2011-01-01

    Full Text Available To develop the effective control method for fed-batch culture of cyclosporin A production, we chose fructose, L-valine and (NH42HPO4 as feeding nutrients and compared their productivities in relation to different concentrations. The feeding rate of three kinds of feeding materials was controlled to maintain the suitable residual concentration. The fed-batch fermentation results indicated that the optimal concentrations of fructose, L-valine and (NH42HPO4 were about 20 g/L, 0.5 g/L and 0.6 g/L for cyclosporin A production, respectively. The cultivation of Beauveria nivea could produce cyclosporin A up to 6.2 g/L for 240 hrs through a continuous feeding-rate-controlled-batch process under the optimal feeding conditions.

  17. Fed-Batch Biomolecule Production by Bacillus subtilis: A State of the Art Review.

    Science.gov (United States)

    Ÿztürk, Sibel; Ÿalık, Pınar; Ÿzdamar, Tunçer H

    2016-04-01

    Bacillus subtilis is a highly promising production system for various biomolecules. This review begins with the algorithm of fed-batch operations (FBOs) and then illustrates the approaches to design the initial production medium and/or feed stream. Additionally, the feeding strategies developed with or without feedback control for fed-batch B. subtilis fermentations were compiled with a special emphasis on recombinant protein (r-protein) production. For biomolecule production by wild-type B. subtilis, due to the different intracellular production patterns, no consensus exists on the FBO strategy that gives the maximum productivity, whereas for r-protein production appropriate feeding strategies vary depending on the promoter used. Thus, we conclude that the B. subtilis community is still seeking an approved strong promoter and generalized FBO strategies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Aeration Strategies To Mitigate Nitrous Oxide Emissions from Single-Stage Nitritation/Anammox Reactors

    DEFF Research Database (Denmark)

    Domingo Felez, Carlos; Mutlu, A. Gizem; Jensen, Marlene Mark

    2014-01-01

    Autotrophic nitrogen removal is regarded as a resource efficient process to manage nitrogen-rich residual streams. However, nitrous oxide emissions of these processes are poorly documented and strategies to mitigate emissions unknown. In this study, two sequencing batch reactors performing single...... was noted when the duration of aeration was increased while decreasing air flow rate (10.9 +/- 3.2% Delta N2O/Delta TN). The extant ammonium oxidation activity (mgNH(4)(+)-N/gVSS.min) positively correlated with the specific N2O production rate (mgN(2)O-N/gVSS.min) of the systems. Operating under conditions......-stage nitritation/anammox were operated under different aeration strategies, gradually adjusted over six months. At constant but limiting oxygen loading, synthetic reject water was fed (0.75g-N/L.d) and high nitrogen removal efficiencies (83 +/- 5 and 88 +/- 2%) obtained. Dynamics of liquid phase nitrous (N2O...

  19. Sequentially aerated membrane biofilm reactors for autotrophic nitrogen removal: microbial community composition and dynamics

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Franck, Stephanie; Gülay, Arda

    2014-01-01

    Membrane-aerated biofilm reactors performing autotrophic nitrogen removal can be successfully applied to treat concentrated nitrogen streams. However, their process performance is seriously hampered by the growth of nitrite oxidizing bacteria (NOB). In this work we document how sequential aeration...... (rich in oxygen) and AnAOB in regions neighbouring the liquid phase. Both communities were separated by a transition region potentially populated by denitrifying heterotrophic bacteria. AOB and AnAOB bacterial groups were more abundant and diverse than NOB, and dominated by the r......-strategists Nitrosomonas europaea and Ca. Brocadia anammoxidans, respectively. Taken together, the present work presents tools to better engineer, monitor and control the microbial communities that support robust, sustainable and efficient nitrogen removal....

  20. Microbial activity catalyzes oxygen transfer in membrane-aerated nitritating biofilm reactors

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Domingo Felez, Carlos; Lackner, Susanne

    2013-01-01

    The remarkable oxygen transfer efficiencies attainable in membrane-aerated biofilm reactors (MABRs) are expected to favor their prompt industrial implementation. However, tests in clean water, currently used for the estimation of their oxygen transfer potential, lead to wrong estimates once biofilm...... is present, significantly complicating reactor modelling and control. This study shows for the first time the factors affecting oxygen mass transfer across membranes during clean water tests and reactor operation via undisturbed microelectrode inspection and bulk measurements. The mass transfer resistance...... of the liquid boundary layer developed at the membrane-liquid interface during clean water tests accounted for two thirds of the total mass transfer resistance, suggesting a strong underestimation of the oxygen transfer rates when it is absent (e.g. after biofilm growth). Reactor operation to attain partial...

  1. Perfusion seed cultures improve biopharmaceutical fed-batch production capacity and product quality.

    Science.gov (United States)

    Yang, William C; Lu, Jiuyi; Kwiatkowski, Chris; Yuan, Hang; Kshirsagar, Rashmi; Ryll, Thomas; Huang, Yao-Ming

    2014-01-01

    Volumetric productivity and product quality are two key performance indicators for any biopharmaceutical cell culture process. In this work, we showed proof-of-concept for improving both through the use of alternating tangential flow perfusion seed cultures coupled with high-seed fed-batch production cultures. First, we optimized the perfusion N-1 stage, the seed train bioreactor stage immediately prior to the production bioreactor stage, to minimize the consumption of perfusion media for one CHO cell line and then successfully applied the optimized perfusion process to a different CHO cell line. Exponential growth was observed throughout the N-1 duration, reaching >40 × 10(6) vc/mL at the end of the perfusion N-1 stage. The cultures were subsequently split into high-seed (10 × 10(6) vc/mL) fed-batch production cultures. This strategy significantly shortened the culture duration. The high-seed fed-batch production processes for cell lines A and B reached 5 g/L titer in 12 days, while their respective low-seed processes reached the same titer in 17 days. The shortened production culture duration potentially generates a 30% increase in manufacturing capacity while yielding comparable product quality. When perfusion N-1 and high-seed fed-batch production were applied to cell line C, higher levels of the active protein were obtained, compared to the low-seed process. This, combined with correspondingly lower levels of the inactive species, can enhance the overall process yield for the active species. Using three different CHO cell lines, we showed that perfusion seed cultures can optimize capacity utilization and improve process efficiency by increasing volumetric productivity while maintaining or improving product quality. © 2014 American Institute of Chemical Engineers.

  2. Continuous fed-batch vacuum fermentation system for glycerol from molasses by the sulfite process

    Energy Technology Data Exchange (ETDEWEB)

    Kalle, G.P.; Naik, S.C.

    1985-01-01

    A continuous fed-batch vacuum fermentation system has been described for the production of glycerol from cane molasses (and juice) by a conventional sulfite process. A glycerol concentration of 80 g/l was achieved with a productivity of 30 g/l/day at a dilution rate of 0.4/day which is twice that from a vacuum batch process (15 g/l/day) or four times that obtained without vacuum (8 g/l/day). 8 references.

  3. Modelling and properties of a nonlinear autonomous switching system in fed-batch culture of glycerol

    Science.gov (United States)

    Wang, Juan; Sun, Qingying; Feng, Enmin

    2012-11-01

    A nonlinear autonomous switching system is proposed to describe the coupled fed-batch fermentation with the pH as the feedback parameter. We prove the non-Zeno behaviors of the switching system and some basic properties of its solution, including the existence, uniqueness, boundedness and regularity. Numerical simulation is also carried out, which reveals that the proposed system can describe the factual fermentation process properly.

  4. Modelling of Fed-batch Fermentation Process with Droppings for L-lysine Production

    Directory of Open Access Journals (Sweden)

    Velitchka Ivanova

    2006-04-01

    Full Text Available The aim of the article is the development of dynamic unstructured model of L-lysine fed-batch fermentation process with droppings. This approach includes the following procedures: description of the process by generalized stoichiometric equations; preliminary data processing; identification of the specific rates (growth rate (mu , substrate utilization rate (nu, production rate (rho; establishment and optimization of the dynamic model of the process; simulation researches.

  5. Preferences based Control Design of Complex Fed-batch Cultivation Process

    Directory of Open Access Journals (Sweden)

    Yuri Pavlov

    2009-08-01

    Full Text Available In the paper is presented preferences based control design and stabilization of the growth rate of fed-batch cultivation processes. The control is based on an enlarged Wang-Monod-Yerusalimsky kinetic model. Expected utility theory is one of the approaches for utilization of conceptual information (expert preferences. In the article is discussed utilization of stochastic machine learning procedures for evaluation of expert utilities as criteria for optimization.

  6. Degradation of chlorophenol mixtures in a fed-batch system by two ...

    African Journals Online (AJOL)

    This work was undertaken to investigate the effect of variations of the feed rate on a fed-batch set-up used to degrade xenobiotics. The mixture of substrates was composed of PCP, 2,4,6 TCP and 2,3,5,6 TeCP (pentachlorophenol, 2,4,6 trichlorophenol and 2,3,5,6 tetrachlorophenol respectively). Two acclimated bacteria ...

  7. Increasing the production of desulfurizing biocatalysts by means of fed - batch culture

    International Nuclear Information System (INIS)

    Berdugo, C I; Mena, J A; Acero, J R; Mogollon, L

    2001-01-01

    Over the past years, environmental regulations have driven a lot of effort for the development of new technologies for the upgrading of fossil fuels. Biotechnology offers an alternative way to process fossil fuels by means of a biodesulfurization technology where the production of the biocatalyst is one of the key topics. Traditionally, the production is carried out in batch culture where the maximum cellular concentration is restricted by inherent limitations of the culture type and the microorganism growth rate. This work addresses the production of two desulfurizing microorganisms: Rhodococcus erythropolis IGTS8 and gordona rubropertinctus ICP172 using fed-batch culture. Fed-batch cultures were conducted in a 12 L fermentor using ICP 4 medium containing glucose and DMSO as carbon and sulfur sources. As a result, cell concentration was increased 1.5 and 3 times with fed-batch cultures using constant and exponential flow respectively, achieving a maximum cell concentration of 7.3 g DCW/L of biocatalyst igts8 and 12.85 gGDCW/L of the new biocatalyst ICP172. Both biocatalysts presented biodesulfurization activity in a spiked matrix DBT/HXD and in diesel matrix with the detection of 2-HBP which is the end-product of DBT degradation pathway

  8. Fed-batch coculture of Lactobacillus kefiranofaciens with Saccharomyces cerevisiae for effective production of kefiran.

    Science.gov (United States)

    Tada, Shiori; Katakura, Yoshio; Ninomiya, Kazuaki; Shioya, Suteaki

    2007-06-01

    In a batch coculture of kefiran-producing lactic acid bacteria Lactobacillus kefiranofaciens and lactate-assimilating yeast Saccharomyces cerevisiae, lactate accumulation in the medium was observed, which inhibited kefiran production. To enhance kefiran productivity by preventing lactate accumulation, we conducted lactose-feeding batch operation with feedforward/feedback control during the coculture, so that the lactate production rate of L. kefiranofaciens was balanced with the lactate consumption rate of S. cerevisiae. The lactate concentration was maintained at less than 6 g l(-1) throughout the fed-batch coculture using a 5 l jar fermentor, although the concentration reached 33 g l(-1) in the batch coculture. Kefiran production was increased to 6.3 g in 102 h in the fed-batch coculture, whereas 4.5 g kefiran was produced in 97 h in the batch coculture. The kefiran yield on lactose basis was increased up to 0.033 g g(-1) in the fed-batch coculture, whereas that in the batch coculture was 0.027 g g(-1).

  9. Optimization of high solids fed-batch saccharification of sugarcane bagasse based on system viscosity changes.

    Science.gov (United States)

    Liu, Yunyun; Xu, Jingliang; Zhang, Yu; Yuan, Zhenhong; Xie, Jun

    2015-10-10

    Viscosity trends in alkali-pretreated sugarcane bagasse (SCB) slurries undergoing high solids fed-batch enzymatic hydrolysis were measured for a range of solids loading from 15% to 36%. Solids liquefaction times were related to system viscosity changes. The viscosity decreased quickly for low solids loading, and increased with increasing solids content. Fed-batch hydrolysis was initiated with 15% solids loading, and an additional 8%, 7% and 6% were successively added after the system viscosity decreased to stable values to achieve a final solids content of 36%. Two enzyme-adding modes with 8.5FPU/g solid were investigated. The batch mode with all enzyme being added at the beginning of the reaction produced the highest yields, with approximately 231.7g/L total sugars and 134.9g/L glucose being obtained after 96h with nearly 60% of the final glucan conversion rate. This finding indicates that under the right conditions, the fed-batch strategy might be a plausible way to produce high sugars under high solids. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Improving cellulase productivity of Penicillium oxalicum RE-10 by repeated fed-batch fermentation strategy.

    Science.gov (United States)

    Han, Xiaolong; Song, Wenxia; Liu, Guodong; Li, Zhonghai; Yang, Piao; Qu, Yinbo

    2017-03-01

    Medium optimization and repeated fed-batch fermentation were performed to improve the cellulase productivity by P. oxalicum RE-10 in submerged fermentation. First, Plackett-Burman design (PBD) and central composite design (CCD) were used to optimize the medium for cellulase production. PBD demonstrated wheat bran and NaNO 3 had significant influences on cellulase production. The CCD results showed the maximum filter paper activity (FPA) production of 8.61U/mL could be achieved in Erlenmeyer flasks. The maximal FPA reached 12.69U/mL by submerged batch fermentation in a 7.5-L stirred tank, 1.76-fold higher than that on the original medium. Then, the repeated fed-batch fermentation strategy was performed successfully for increasing the cellulase productivity from 105.75U/L/h in batch fermentation to 158.38U/L/h. The cellulase activity and the glucan conversion of delignined corn cob residue hydrolysis had no significant difference between the enzymes sampled from different cycles of the repeated fed-batch fermentation and that from batch culture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. High cell density fed-batch fermentations for lipase production: feeding strategies and oxygen transfer.

    Science.gov (United States)

    Salehmin, M N I; Annuar, M S M; Chisti, Y

    2013-11-01

    This review is focused on the production of microbial lipases by high cell density fermentation. Lipases are among the most widely used of the enzyme catalysts. Although lipases are produced by animals and plants, industrial lipases are sourced almost exclusively from microorganisms. Many of the commercial lipases are produced using recombinant species. Microbial lipases are mostly produced by batch and fed-batch fermentation. Lipases are generally secreted by the cell into the extracellular environment. Thus, a crude preparation of lipases can be obtained by removing the microbial cells from the fermentation broth. This crude cell-free broth may be further concentrated and used as is, or lipases may be purified from it to various levels. For many large volume applications, lipases must be produced at extremely low cost. High cell density fermentation is a promising method for low-cost production: it allows a high concentration of the biomass and the enzyme to be attained rapidly and this eases the downstream recovery of the enzyme. High density fermentation enhances enzyme productivity compared with the traditional submerged culture batch fermentation. In production of enzymes, a high cell density is generally achieved through fed-batch operation, not through perfusion culture which is cumbersome. The feeding strategies used in fed-batch fermentations for producing lipases and the implications of these strategies are discussed. Most lipase-producing microbial fermentations require oxygen. Oxygen transfer in such fermentations is discussed.

  12. Optimization of Biological Treatment of an Industrial Wastewater in an Intermittent Aeration Sequencing Batch Reactor

    Directory of Open Access Journals (Sweden)

    Azar Asadi

    2015-11-01

    Full Text Available In this paper, the simultaneous removal of carbon and nutrients (nitrogen and phosphorus from Faraman’s industrial wastewater (FIW in a time-based sequencing batch reactor (SBR was investigated. The experiments were conducted based on a central composite design (CCD and analyzed using the response surface methodology (RSM. Reaction and aeration times were selected for the purposes of analyzing, modeling, and optimizing the process. Nine dependent parameters were monitored as process responses. The region of exploration for the process was taken as the area enclosed by the boundaries of reaction time (12-36 h and aeration time (40-60 min/h. Reaction time was found to be the most effective variable and showed a decreasing impact on the total chemical oxygen demand (TCOD, slowly-biodegradable chemical oxygen demand (sbCOD, total nitrogen (TN, and total phosphorus (TP removal efficiencies. The optimum operating conditions were determined in the range of 12 to 16 h for the reaction time and 40 to 60 min/h for the aeration time.

  13. Microbial community stratification in Membrane-Aerated Biofilm Reactors for Completely Autotrophic Nitrogen Removal

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Ruscalleda, Maël; Terada, Akihiko

    of bacterial granules or biofilms. In this sense, completely autotrophic nitrogen removal from high ammonium strength wastewater was achieved in a Membrane-Aereated Biofilm Reactor (MABR) in a single step. Here, a biofilm containing nitrifiers (Aerobic Ammonium and Nitrite Oxidizing Bacteria, AOB and NOB......, respectively) and Anaerobic Ammonium Oxidizing Bacteria (AnAOB) is grown on bubbleless aeration membranes to remove ammonium. Since oxygen permeates through the membrane-biofilm interface while ammonium diffuses into the biofilm from the biofilm-liquid interface, oxygen gradients can be established across...... the biofilm, allowing nitrogen removal in a single reactor by simultaneous activity of the mentioned biocatalysts. This work consists on the analysis of the microbial community existing in two laboratory-scale reactors operated for more than 300 days, which removed up to 5.5 g-N/m2/day. The system contained...

  14. Optimization of micro-aeration intensity in acidogenic reactor of a two-phase anaerobic digester treating food waste

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Suyun [Department of Environmental and Low-Carbon Science, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai (China); Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region (Hong Kong); Selvam, Ammaiyappan [Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region (Hong Kong); Wong, Jonathan W.C., E-mail: jwcwong@hkbu.edu.hk [Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region (Hong Kong)

    2014-02-15

    Highlights: • Effect of micro-aeration on acidogenesis and hydrolysis of food waste was investigated. • Micro-aeration at 258 L-air/kg TS/d increased the VFAs production 3-fold. • High aeration leads to loss of substrate through microbial biomass and respiration. • Optimum aeration increased methane recovery while high aeration intensity reduced methane yield. - Abstract: Micro-aeration is known to promote the activities of hydrolytic exo-enzymes and used as a strategy to improve the hydrolysis of particulate substrate. The effect of different micro-aeration rates, 0, 129, 258, and 387 L-air/kg TS/d (denoted as LBR-AN, LBR-6h, LBR-3h and LBR-2h, respectively) on the solubilization of food waste was evaluated at 35 °C in four leach bed reactors (LBR) coupled with methanogenic upflow anaerobic sludge blanket (UASB) reactor. Results indicate that the intensity of micro-aeration influenced the hydrolysis and methane yield. Adequate micro-aeration intensity in LBR-3h and LBR-2h significantly enhanced the carbohydrate and protein hydrolysis by 21–27% and 38–64% respectively. Due to the accelerated acidogenesis, more than 3-fold of acetic acid and butyric acid were produced in LBR-3h as compared to the anaerobic treatment LBR-AN resulting in the maximum methane yield of 0.27 L CH{sub 4}/g VS{sub added} in the UASB. The performance of LBR-6h with inadequate aeration was similar to that of LBR-AN with a comparable hydrolysis degree. Nevertheless, higher aeration intensity in LBR-2h was also unfavorable for methane yield due to significant biomass generation and CO{sub 2} respiration of up to 18.5% and 32.8% of the total soluble hydrolysate, respectively. To conclude, appropriate micro-aeration rate can promote the hydrolysis of solid organic waste and methane yield without undesirable carbon loss and an aeration intensity of 258 L-air/kg TS/d is recommended for acidogenic LBR treating food waste.

  15. Optimization of micro-aeration intensity in acidogenic reactor of a two-phase anaerobic digester treating food waste

    International Nuclear Information System (INIS)

    Xu, Suyun; Selvam, Ammaiyappan; Wong, Jonathan W.C.

    2014-01-01

    Highlights: • Effect of micro-aeration on acidogenesis and hydrolysis of food waste was investigated. • Micro-aeration at 258 L-air/kg TS/d increased the VFAs production 3-fold. • High aeration leads to loss of substrate through microbial biomass and respiration. • Optimum aeration increased methane recovery while high aeration intensity reduced methane yield. - Abstract: Micro-aeration is known to promote the activities of hydrolytic exo-enzymes and used as a strategy to improve the hydrolysis of particulate substrate. The effect of different micro-aeration rates, 0, 129, 258, and 387 L-air/kg TS/d (denoted as LBR-AN, LBR-6h, LBR-3h and LBR-2h, respectively) on the solubilization of food waste was evaluated at 35 °C in four leach bed reactors (LBR) coupled with methanogenic upflow anaerobic sludge blanket (UASB) reactor. Results indicate that the intensity of micro-aeration influenced the hydrolysis and methane yield. Adequate micro-aeration intensity in LBR-3h and LBR-2h significantly enhanced the carbohydrate and protein hydrolysis by 21–27% and 38–64% respectively. Due to the accelerated acidogenesis, more than 3-fold of acetic acid and butyric acid were produced in LBR-3h as compared to the anaerobic treatment LBR-AN resulting in the maximum methane yield of 0.27 L CH 4 /g VS added in the UASB. The performance of LBR-6h with inadequate aeration was similar to that of LBR-AN with a comparable hydrolysis degree. Nevertheless, higher aeration intensity in LBR-2h was also unfavorable for methane yield due to significant biomass generation and CO 2 respiration of up to 18.5% and 32.8% of the total soluble hydrolysate, respectively. To conclude, appropriate micro-aeration rate can promote the hydrolysis of solid organic waste and methane yield without undesirable carbon loss and an aeration intensity of 258 L-air/kg TS/d is recommended for acidogenic LBR treating food waste

  16. Electrochemical study of multi-electrode microbial fuel cells under fed-batch and continuous flow conditions

    KAUST Repository

    Ren, Lijiao; Ahn, Yongtae; Hou, Huijie; Zhang, Fang; Logan, Bruce E.

    2014-01-01

    together (combined), in fed-batch or continuous flow conditions. Power production under these different conditions could not be made based on a single resistance, but instead required polarization tests to assess individual performance relative

  17. Perfusion cell culture decreases process and product heterogeneity in a head-to-head comparison with fed-batch.

    Science.gov (United States)

    Walther, Jason; Lu, Jiuyi; Hollenbach, Myles; Yu, Marcella; Hwang, Chris; McLarty, Jean; Brower, Kevin

    2018-05-30

    In this study, we compared the impacts of fed-batch and perfusion platforms on process and product attributes for IgG1- and IgG4-producing cell lines. A "plug-and-play" approach was applied to both platforms at bench scale, using commercially available basal and feed media, a standard feed strategy for fed-batch, and ATF filtration for perfusion. Product concentration in fed-batch was 2.5 times greater than perfusion, while average productivity in perfusion was 7.5 times greater than fed-batch. PCA revealed more variability in the cell environment and metabolism during the fed-batch run. LDH measurements showed that exposure of product to cell lysate was 7-10 times greater in fed-batch. Product analysis shows larger abundances of neutral species in perfusion, likely due to decreased bioreactor residence times and extracellular exposure. The IgG1 perfusion product also had higher purity and lower half-antibody. Glycosylation was similar across both culture modes. The first perfusion harvest slice for both product types showed different glycosylation than subsequent harvests, suggesting that product quality lags behind metabolism. In conclusion, process and product data indicate that intra-lot heterogeneity is decreased in perfusion cultures. Additional data and discussion is required to understand the developmental, clinical and commercial implications, and in what situations increased uniformity would be beneficial. This article is protected by copyright. All rights reserved.

  18. Change in hyphal morphology of Aspergillus Oryzae during fed-batch cultivation

    DEFF Research Database (Denmark)

    Haack, Martin Brian; Olsson, Lisbeth; Hansen, K

    2006-01-01

    the batch phase from 2.8-2.9 up to 4.0-4.4 mu m. The diameter of the hyphal elements remained constant, around 4 mu m, after the feed was started. However, the diameter of the immediate hyphal tip, where the enzyme secretion is thought to take place, increased dramatically with up to a factor 2.5 during......Industrial enzymes are often produced by filamentous fungi in fed-batch cultivations. During cultivation, the different morphological forms displayed by the fungi have an impact on the overall production. The morphology of a recombinant lipase producing Aspergillus oryzae strain was investigated...

  19. One Approach for Dynamic L-lysine Modelling of Repeated Fed-batch Fermentation

    Directory of Open Access Journals (Sweden)

    Kalin Todorov

    2007-03-01

    Full Text Available This article deals with establishment of dynamic unstructured model of variable volume fed-batch fermentation process with intensive droppings for L-lysine production. The presented approach of the investigation includes the following main procedures: description of the process by generalized stoichiometric equations; preliminary data processing and calculation of specific rates for main kinetic variables; identification of the specific rates as a second-order non-linear dynamic models; establishment and optimisation of dynamic model of the process; simulation researches. MATLAB is used as a research environment.

  20. A novel model-based control strategy for aerobic filamentous fungal fed-batch fermentation processes

    DEFF Research Database (Denmark)

    Mears, Lisa; Stocks, Stuart M.; Albaek, Mads O.

    2017-01-01

    A novel model-based control strategy has been developed for filamentous fungal fed-batch fermentation processes. The system of interest is a pilot scale (550 L) filamentous fungus process operating at Novozymes A/S. In such processes, it is desirable to maximize the total product achieved...... is recursively updated using on-line measurements. The model was applied in order to predict the current system states, including the biomass concentration, and to simulate the expected future trajectory of the system until a specified end time. In this way, the desired feed rate is updated along the progress...

  1. Omega-3 production by fermentation of Yarrowia lipolytica: From fed-batch to continuous.

    Science.gov (United States)

    Xie, Dongming; Miller, Edward; Sharpe, Pamela; Jackson, Ethel; Zhu, Quinn

    2017-04-01

    The omega-3 fatty acid, cis-5,8,11,14,17-eicosapentaenoic acid (C20:5; EPA) has wide-ranging benefits in improving heart health, immune function, and mental health. A sustainable source of EPA production through fermentation of metabolically engineered Yarrowia lipolytica has been developed. In this paper, key fed-batch fermentation conditions were identified to achieve 25% EPA in the yeast biomass, which is so far the highest EPA titer reported in the literature. Dynamic models of the EPA fermentation process were established for analyzing, optimizing, and scaling up the fermentation process. In addition, model simulations were used to develop a two-stage continuous process and compare to single-stage continuous and fed- batch processes. The two stage continuous process, which is equipped with a smaller growth fermentor (Stage 1) and a larger production fermentor (Stage 2), was found to be a superior process to achieve high titer, rate, and yield of EPA. A two-stage continuous fermentation experiment with Y. lipolytica strain Z7334 was designed using the model simulation and then tested in a 2 L and 5 L fermentation system for 1,008 h. Compared with the standard 2 L fed-batch process, the two-stage continuous fermentation process improved the overall EPA productivity by 80% and EPA concentration in the fermenter by 40% while achieving comparable EPA titer in biomass and similar conversion yield from glucose. During the long-term experiment it was also found that the Y. lipolytica strain evolved to reduce byproduct and increase lipid production. This is one of the few continuous fermentation examples that demonstrated improved productivity and concentration of a final product with similar conversion yield compared with a fed-batch process. This paper suggests the two-stage continuous fermentation could be an effective process to achieve improved production of omega-3 and other fermentation products where non-growth or partially growth associated kinetics

  2. Optimal Control of a Fed-Batch Fermentation Involving Multiple Feeds

    Directory of Open Access Journals (Sweden)

    Chongyang Liu

    2012-01-01

    Full Text Available A nonlinear dynamical system, in which the feed rates of glycerol and alkali are taken as the control functions, is first proposed to formulate the fed-batch culture of 1,3-propanediol (1,3-PD production. To maximize the 1,3-PD concentration at the terminal time, a constrained optimal control model is then presented. A solution approach is developed to seek the optimal feed rates based on control vector parametrization method and improved differential evolution algorithm. The proposed methodology yielded an increase by 32.17% of 1,3-PD concentration at the terminal time.

  3. Estimation of the Maximum Theoretical Productivity of Fed-Batch Bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Bomble, Yannick J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); St. John, Peter C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Crowley, Michael F [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-18

    A key step towards the development of an integrated biorefinery is the screening of economically viable processes, which depends sharply on the yields and productivities that can be achieved by an engineered microorganism. In this study, we extend an earlier method which used dynamic optimization to find the maximum theoretical productivity of batch cultures to explicitly include fed-batch bioreactors. In addition to optimizing the intracellular distribution of metabolites between cell growth and product formation, we calculate the optimal control trajectory of feed rate versus time. We further analyze how sensitive the productivity is to substrate uptake and growth parameters.

  4. Sensor combination and chemometric variable selection for online monitoring of Streptomyces coelicolor fed-batch cultivations

    DEFF Research Database (Denmark)

    Ödman, Peter; Johansen, C.L.; Olsson, L.

    2010-01-01

    of biomass and substrate (casamino acids) concentrations, respectively. The effect of combination of fluorescence and gas analyzer data as well as of different variable selection methods was investigated. Improved prediction models were obtained by combination of data from the two sensors and by variable......Fed-batch cultivations of Streptomyces coelicolor, producing the antibiotic actinorhodin, were monitored online by multiwavelength fluorescence spectroscopy and off-gas analysis. Partial least squares (PLS), locally weighted regression, and multilinear PLS (N-PLS) models were built for prediction...

  5. Stochastic models to study the impact of mixing on a fed-batch culture of Saccharomyces cerevisiae.

    Science.gov (United States)

    Delvigne, F; Lejeune, A; Destain, J; Thonart, P

    2006-01-01

    The mechanisms of interaction between microorganisms and their environment in a stirred bioreactor can be modeled by a stochastic approach. The procedure comprises two submodels: a classical stochastic model for the microbial cell circulation and a Markov chain model for the concentration gradient calculus. The advantage lies in the fact that the core of each submodel, i.e., the transition matrix (which contains the probabilities to shift from a perfectly mixed compartment to another in the bioreactor representation), is identical for the two cases. That means that both the particle circulation and fluid mixing process can be analyzed by use of the same modeling basis. This assumption has been validated by performing inert tracer (NaCl) and stained yeast cells dispersion experiments that have shown good agreement with simulation results. The stochastic model has been used to define a characteristic concentration profile experienced by the microorganisms during a fermentation test performed in a scale-down reactor. The concentration profiles obtained in this way can explain the scale-down effect in the case of a Saccharomyces cerevisiae fed-batch process. The simulation results are analyzed in order to give some explanations about the effect of the substrate fluctuation dynamics on S. cerevisiae.

  6. Production of the potential sweetener 5-ketofructose from fructose in fed-batch cultivation with Gluconobacter oxydans.

    Science.gov (United States)

    Herweg, Elena; Schöpping, Marie; Rohr, Katja; Siemen, Anna; Frank, Oliver; Hofmann, Thomas; Deppenmeier, Uwe; Büchs, Jochen

    2018-07-01

    Sweeteners improve the dietary properties of many foods. A candidate for a new natural sweetener is 5-ketofructose. In this study a fed-batch process for the production of 5-ketofructose was developed. A Gluconobacter oxydans strain overexpressing a fructose dehydrogenase from G. japonicus was used and the sensory properties of 5-ketofructose were analyzed. The compound showed an identical sweet taste quality as fructose and a similar intrinsic sweet threshold concentration of 16.4 mmol/L. The production of 5-ketofructose was characterized online by monitoring of the respiration activity in shake flasks. Pulsed and continuous fructose feeding was realized in 2 L stirred tank reactors and maximum fructose consumption rates were determined. 5-Ketofructose concentrations of up to 489 g/L, product yields up to 0.98 g 5-KF /g fructose and space time yields up to 8.2 g/L/h were reached highlighting the potential of the presented process. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Genetic Algorithmic Optimization of PHB Production by a Mixed Culture in an Optimally Dispersed Fed-batch Bioreactor

    Directory of Open Access Journals (Sweden)

    Pratap R. Patnaik

    2009-10-01

    Full Text Available Poly-β-hydroxybutyrate (PHB is an energy-storage polymer whose properties are similar to those of chemical polymers such as polyethylene and polypropylene. Moreover, PHB is biodegradable, absorbed by human tissues and less energy-consuming than synthetic polymers. Although Ralstonia eutropha is widely used to synthesize PHB, it is inefficient in utilizing glucose and similar sugars. Therefore a co-culture of R. eutropha and Lactobacillus delbrueckii is preferred since the latter can convert glucose to lactate, which R. eutropha can metabolize easily. Tohyama et al. [24] maximized PHB production in a well-mixed fed-batch bioreactor with glucose and (NH42SO4 as the primary substrates. Since production-scale bioreactors often deviate from ideal laboratory-scale reactors, a large bioreactor was simulated by means of a dispersion model with the kinetics determined by Tohyama et al. [24] and dispersion set at an optimum Peclet number of 20 [32]. The time-dependent feed rates of the two substrates were determined through a genetic algorithm (GA to maximize PHB production. This bioreactor produced 22.2% more PHB per liter and 12.8% more cell mass than achieved by Tohyama et al. [24]. These results, and similar observations with other fermentations, indicate the feasibility of enhancing the efficiency of large nonideal bioreactors through GA optimizations.

  8. CFD Investigation of the effects of bubble aerator layouts on hydrodynamics of an activated sludge channel reactor.

    Science.gov (United States)

    Hreiz, Rainier; Potier, Olivier; Wicks, Jim; Commenge, Jean-Marc

    2018-03-08

    In this paper, computational fluid dynamics (CFD) simulations are employed to characterize the effects of bubble aerator layouts (i.e. spatial arrangement) on the hydrodynamics in activated sludge (AS) reactors. The first configuration considered is a channel reactor with aerators placed alongside one lateral wall, for which velocity measurements are available in literature. CFD results were in good agreement with experimental data, which proves that the model is sufficiently accurate and predictive. Accordingly, simulations and numerical residence time distribution tests were conducted for different aerator layouts to determine their effects on the reactor hydrodynamics. The results revealed that the flow characteristics are extremely sensitive to the aerators arrangement given the high gas flow rates used in AS processes. Among the layouts investigated, the one where diffusers are placed all over the reactor floor has led to the least dispersive flow, i.e. which characteristics best tend toward that of an ideal plug flow reactor. Indeed, this flow field presented the lowest average turbulent diffusion and the most uniform axial velocity and turbulence fields. Such a flow behaviour is expected to be highly beneficial for biological treatment since it reduces pollutant dilution by axial diffusion and limits raw wastewater channelling to the outlet.

  9. Fed-batch production of vanillin by Bacillus aryabhattai BA03.

    Science.gov (United States)

    Paz, Alicia; Outeiriño, David; Pinheiro de Souza Oliveira, Ricardo; Domínguez, José Manuel

    2018-01-25

    Bacillus aryabhattai BA03, a strain isolated in our laboratory, has interesting properties related to the production of natural aromas and flavors. Specifically, we have found that it was able to produce vanillin from ferulic acid (FA). Furthermore, this strain produces high amounts of 4-vinylguaiacol in only 14h, this being the only intermediate metabolite observed in the process. FA is an inexpensive feedstock for the production of natural value-added compounds when extracted from lignocellulosic wastes. In this study, we optimized the operational conditions (temperature, pH and agitation), medium composition and bioconversion technology (batch or fed-batch) to produce vanillin. In a fed-batch process conducted with just one additional supplementation after 24h, the maximal concentration of vanillin (147.1±0.9mg/L) was observed after 216h (Q V =0.681mg/Lh; Y V/fFA =0.082mg/mg) after degrading 90.3% FA. In view of our data, we postulate that Bacillus aryabhattai BA03 carries out a decarboxylation of ferulic acid as a metabolic pathway. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Bacteriocin Production with Lactobacillus amylovorus DCE 471 Is Improved and Stabilized by Fed-Batch Fermentation

    Science.gov (United States)

    Callewaert, Raf; De Vuyst, Luc

    2000-01-01

    Amylovorin L471 is a small, heat-stable, and hydrophobic bacteriocin produced by Lactobacillus amylovorus DCE 471. The nutritional requirements for amylovorin L471 production were studied with fed-batch fermentations. A twofold increase in bacteriocin titer was obtained when substrate addition was controlled by the acidification rate of the culture, compared with the titers reached with constant substrate addition or pH-controlled batch cultures carried out under the same conditions. An interesting feature of fed-batch cultures observed under certain culture conditions (constant feed rate) is the apparent stabilization of bacteriocin activity after obtaining maximum production. Finally, a mathematical model was set up to simulate cell growth, glucose and complex nitrogen source consumption, and lactic acid and bacteriocin production kinetics. The model showed that bacterial growth was dependent on both the energy and the complex nitrogen source. Bacteriocin production was growth associated, with a simultaneous bacteriocin adsorption on the producer cells dependent on the lactic acid accumulated and hence the viability of the cells. Both bacteriocin production and adsorption were inhibited by high concentrations of the complex nitrogen source. PMID:10653724

  11. Fed-Batch Control and Visualization of Monomer Sequences of Individual ICAR ATRP Gradient Copolymer Chains

    Directory of Open Access Journals (Sweden)

    Dagmar R. D'hooge

    2014-04-01

    Full Text Available Based on kinetic Monte Carlo simulations of the monomer sequences of a representative number of copolymer chains (≈ 150,000, optimal synthesis procedures for linear gradient copolymers are proposed, using bulk Initiators for Continuous Activator Regeneration Atom Transfer Radical Polymerization (ICAR ATRP. Methyl methacrylate and n-butyl acrylate are considered as comonomers with CuBr2/PMDETA (N,N,N′,N′′,N′′-pentamethyldiethylenetriamine as deactivator at 80 °C. The linear gradient quality is determined in silico using the recently introduced gradient deviation ( polymer property. Careful selection or fed-batch addition of the conventional radical initiator I2 allows a reduction of the polymerization time with ca. a factor 2 compared to the corresponding batch case, while preserving control over polymer properties ( ≈ 0.30; dispersity ≈ 1.1. Fed-batch addition of not only I2, but also comonomer and deactivator (50 ppm under starved conditions yields a below 0.25 and, hence, an excellent linear gradient quality for the dormant polymer molecules, albeit at the expense of an increase of the overall polymerization time. The excellent control is confirmed by the visualization of the monomer sequences of ca. 1000 copolymer chains.

  12. Concentrated fed-batch cell culture increases manufacturing capacity without additional volumetric capacity.

    Science.gov (United States)

    Yang, William C; Minkler, Daniel F; Kshirsagar, Rashmi; Ryll, Thomas; Huang, Yao-Ming

    2016-01-10

    Biomanufacturing factories of the future are transitioning from large, single-product facilities toward smaller, multi-product, flexible facilities. Flexible capacity allows companies to adapt to ever-changing pipeline and market demands. Concentrated fed-batch (CFB) cell culture enables flexible manufacturing capacity with limited volumetric capacity; it intensifies cell culture titers such that the output of a smaller facility can rival that of a larger facility. We tested this hypothesis at bench scale by developing a feeding strategy for CFB and applying it to two cell lines. CFB improved cell line A output by 105% and cell line B output by 70% compared to traditional fed-batch (TFB) processes. CFB did not greatly change cell line A product quality, but it improved cell line B charge heterogeneity, suggesting that CFB has both process and product quality benefits. We projected CFB output gains in the context of a 2000-L small-scale facility, but the output was lower than that of a 15,000-L large-scale TFB facility. CFB's high cell mass also complicated operations, eroded volumetric productivity, and showed our current processes require significant improvements in specific productivity in order to realize their full potential and savings in manufacturing. Thus, improving specific productivity can resolve CFB's cost, scale-up, and operability challenges. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Production of nattokinase by batch and fed-batch culture of Bacillus subtilis.

    Science.gov (United States)

    Cho, Young-Han; Song, Jae Yong; Kim, Kyung Mi; Kim, Mi Kyoung; Lee, In Young; Kim, Sang Bum; Kim, Hyeon Shup; Han, Nam Soo; Lee, Bong Hee; Kim, Beom Soo

    2010-09-30

    Nattokinase was produced by batch and fed-batch culture of Bacillus subtilis in flask and fermentor. Effect of supplementing complex media (peptone, yeast extract, or tryptone) was investigated on the production of nattokinase. In flask culture, the highest cell growth and nattokinase activity were obtained with 50 g/L of peptone supplementation. In this condition, nattokinase activity was 630 unit/ml at 12 h. In batch culture of B. subtilis in fermentor, the highest nattokinase activity of 3400 unit/ml was obtained at 10h with 50 g/L of peptone supplementation. From the batch kinetics data, it was shown that nattokinase production was growth-associated and culture should be harvested before stationary phase for maximum nattokinase production. In fed-batch culture of B. subtilis using pH-stat feeding strategy, cell growth (optical density monitored at 600 nm) increased to ca. 100 at 22 h, which was 2.5 times higher than that in batch culture. The highest nattokinase activity was 7100 unit/ml at 19 h, which was also 2.1 times higher than that in batch culture. Copyright 2010 Elsevier B.V. All rights reserved.

  14. Membrane-aerated biofilm reactor for the removal of 1,2-dichloroethane by Pseudomonas sp strain DCA1

    NARCIS (Netherlands)

    Hage, J.C.; Houten, R.T.; Tramper, J.; Hartmans, S.

    2004-01-01

    A membrane-aerated biofilm reactor (MBR) with a biofilm of Pseudomonas sp. strain DCA1 was studied for the removal of 1,2-dichloroethane (DCA) from water. A hydrophobic membrane was used to create a barrier between the liquid and the gas phase. Inoculation of the MBR with cells of strain DCA1 grown

  15. Nisin production of Lactococcus lactis N8 with hemin-stimulated cell respiration in fed-batch fermentation system.

    Science.gov (United States)

    Kördikanlıoğlu, Burcu; Şimşek, Ömer; Saris, Per E J

    2015-01-01

    In this study, nisin production of Lactococcus lactis N8 was optimized by independent variables of glucose, hemin and oxygen concentrations in fed-batch fermentation in which respiration of cells was stimulated with hemin. Response surface model was able to explain the changes of the nisin production of L. lactis N8 in fed-batch fermentation system with high fidelity (R(2) 98%) and insignificant lack of fit. Accordingly, the equation developed indicated the optimum parameters for glucose, hemin, and dissolved oxygen were 8 g L(-1) h(-1) , 3 μg mL(-1) and 40%, respectively. While 1711 IU mL(-1) nisin was produced by L. lactis N8 in control fed-batch fermentation, 5410 IU mL(-1) nisin production was achieved within the relevant optimum parameters where the respiration of cell was stimulated with hemin. Accordingly, nisin production was enhanced 3.1 fold in fed-batch fermentation using hemin. In conclusion the nisin production of L. lactis N8 was enhanced extensively as a result of increasing the biomass by stimulating the cell respiration with adding the hemin in the fed-batch fermentation. © 2015 American Institute of Chemical Engineers.

  16. Amino acid and glucose metabolism in fed-batch CHO cell culture affects antibody production and glycosylation

    DEFF Research Database (Denmark)

    Fan, Yuzhou; Jimenez Del Val, Ioscani; Müller, Christian

    2015-01-01

    optimization, especially media optimization. Gaining knowledge on their interrelations could provide insight for obtaining higher immunoglobulin G (IgG) titer and better controlling glycosylationrelated product quality. In this work, different fed-batch processes with two chemically defined proprietary media......Fed-batch Chinese hamster ovary (CHO) cell culture is the most commonly used process for IgG production in the biopharmaceutical industry. Amino acid and glucose consumption, cell growth, metabolism, antibody titer, and N-glycosylation patterns are always the major concerns during upstream process...... and glutamine concentrations and uptake rates were positively correlated with intracellular UDP-Gal availability. All these findings are important for optimization of fed-batch culture for improving IgG production and directing glycosylation quality....

  17. Modelling of Functional States during Saccharomyces cerevisiae Fed-batch Cultivation

    Directory of Open Access Journals (Sweden)

    Stoyan Tzonkov

    2005-04-01

    Full Text Available An implementation of functional state approach for modelling of yeast fed-batch cultivation is presented in this paper. Using of functional state modelling approach aims to overcome the main disadvantage of using global process model, namely complex model structure and big number of model parameters, which complicate the model simulation and parameter estimation. This approach has computational advantages, such as the possibility to use the estimated values from the previous state as starting values for estimation of parameters of a new state. The functional state modelling approach is applied here for fedbatch cultivation of Saccharomyces cerevisiae. Four functional states are recognised and parameter estimation of local models is presented as well.

  18. A Genetic Algorithms Based Approach for Identification of Escherichia coli Fed-batch Fermentation

    Directory of Open Access Journals (Sweden)

    Olympia Roeva

    2004-10-01

    Full Text Available This paper presents the use of genetic algorithms for identification of Escherichia coli fed-batch fermentation process. Genetic algorithms are a directed random search technique, based on the mechanics of natural selection and natural genetics, which can find the global optimal solution in complex multidimensional search space. The dynamic behavior of considered process has known nonlinear structure, described with a system of deterministic nonlinear differential equations according to the mass balance. The parameters of the model are estimated using genetic algorithms. Simulation examples for demonstration of the effectiveness and robustness of the proposed identification scheme are included. As a result, the model accurately predicts the process of cultivation of E. coli.

  19. Advanced control of dissolved oxygen concentration in fed batch cultures during recombinant protein production.

    Science.gov (United States)

    Kuprijanov, A; Gnoth, S; Simutis, R; Lübbert, A

    2009-02-01

    Design and experimental validation of advanced pO(2) controllers for fermentation processes operated in the fed-batch mode are described. In most situations, the presented controllers are able to keep the pO(2) in fermentations for recombinant protein productions exactly on the desired value. The controllers are based on the gain-scheduling approach to parameter-adaptive proportional-integral controllers. In order to cope with the most often appearing distortions, the basic gain-scheduling feedback controller was complemented with a feedforward control component. This feedforward/feedback controller significantly improved pO(2) control. By means of numerical simulations, the controller behavior was tested and its parameters were determined. Validation runs were performed with three Escherichia coli strains producing different recombinant proteins. It is finally shown that the new controller leads to significant improvements in the signal-to-noise ratio of other key process variables and, thus, to a higher process quality.

  20. Fed-batch production of hydrophobin RodB from Aspergillus fumigatus in host Pichia pastoris

    DEFF Research Database (Denmark)

    Pedersen, Mona Højgaard; Borodina, Irina; Frisvad, Jens Christian

    was dependent on the methanol-induced AOX1 promoter. Later production was scaled up to a 2 L fed-batch fermentor. Protein production was analyzed by SDS-PAGE, coomassie and silver-stained, as well as western blotting using an anti-his detection antibody. RodB was purified using His-select Nickel Affinity gel....... The emulsifying property of rRodB was investigated using olive oil stained with Sudan black suspended in tris-buffer. The stability of oil micelles were studied by light microscopy. Results: Protein bands of expected size were detected by SDS-PAGE and western blotting in both the fermentation broth and excess...

  1. A Genetic Algorithm for Feeding Trajectory Optimisation of Fed-batch Fermentation Processes

    Directory of Open Access Journals (Sweden)

    Stoyan Tzonkov

    2009-03-01

    Full Text Available In this work a genetic algorithm is proposed with the purpose of the feeding trajectory optimization during a fed-batch fermentation of E. coli. The feed rate profiles are evaluated based on a number of objective functions. Optimization results obtained for different feeding trajectories demonstrate that the genetic algorithm works well and shows good computational performance. Developed optimal feed profiles meet the defined criteria. The ration of the substrate concentration and the difference between actual cell concentration and theoretical maximum cell concentration is defined as the most appropriate objective function. In this case the final cell concentration of 43 g·l-1 and final product concentration of 125 g·l-1 are achieved and there is not significant excess of substrate.

  2. Production of nattokinase by high cell density fed-batch culture of Bacillus subtilis.

    Science.gov (United States)

    Kwon, Eun-Yeong; Kim, Kyung Mi; Kim, Mi Kyoung; Lee, In Young; Kim, Beom Soo

    2011-09-01

    Bacillus subtilis was cultivated to high cell density for nattokinase production by pH-stat fed-batch culture. A concentrated mixture solution of glucose and peptone was automatically added by acid-supplying pump when culture pH rose above high limit. Effect of the ratio of glucose to peptone in feeding solution was investigated on cell growth and nattokinase production by changing the ratio from 0.2 to 5 g glucose/g peptone. The highest cell concentration was 77 g/L when the ratio was 0.2 g glucose/g peptone. Cell concentration decreased with increasing the ratio of glucose to peptone in feeding solution, while the optimum condition existed for nattokinase production. The highest nattokinase activity was 14,500 unit/mL at a ratio of 0.33 g glucose/g peptone, which was 4.3 times higher than that in batch culture.

  3. A fast approach to determine a fed batch feeding profile for recombinant Pichia pastoris strains

    Directory of Open Access Journals (Sweden)

    Herwig Christoph

    2011-10-01

    Full Text Available Abstract Background The microorganism Pichia pastoris is a commonly used microbial host for the expression of recombinant proteins in biotechnology and biopharmaceutical industry. To speed up process development, a fast methodology to determine strain characteristic parameters, which are needed to subsequently set up fed batch feeding profiles, is required. Results Here, we show the general applicability of a novel approach to quantify a certain minimal set of bioprocess-relevant parameters, i.e. the adaptation time of the culture to methanol, the specific substrate uptake rate during the adaptation phase and the maximum specific substrate uptake rate, based on fast and easy-to-do batch cultivations with repeated methanol pulses in a batch culture. A detailed analysis of the adaptation of different P. pastoris strains to methanol was conducted and revealed that each strain showed very different characteristics during adaptation, illustrating the need of individual screenings for an optimal parameter definition during this phase. Based on the results obtained in batch cultivations, dynamic feeding profiles based on the specific substrate uptake rate were employed for different P. pastoris strains. In these experiments the maximum specific substrate uptake rate, which had been defined in batch experiments, also represented the upper limit of methanol uptake, underlining the validity of the determined process-relevant parameters and the overall experimental strategy. Conclusion In this study, we show that a fast approach to determine a minimal set of strain characteristic parameters based on easy-to-do batch cultivations with methanol pulses is generally applicable for different P. pastoris strains and that dynamic fed batch strategies can be designed on the specific substrate uptake rate without running the risk of methanol accumulation.

  4. Transformation of ferulic acid to vanillin using a fed-batch solid-liquid two-phase partitioning bioreactor.

    Science.gov (United States)

    Ma, Xiao-kui; Daugulis, Andrew J

    2014-01-01

    Amycolatopsis sp. ATCC 39116 (formerly Streptomyces setonii) has shown promising results in converting ferulic acid (trans-4-hydroxy-3-methoxycinnamic acid; substrate), which can be derived from natural plant wastes, to vanillin (4-hydroxy-3-methoxybenzaldehyde). After exploring the influence of adding vanillin at different times during the growth cycle on cell growth and transformation performance of this strain and demonstrating the inhibitory effect of vanillin, a solid-liquid two-phase partitioning bioreactor (TPPB) system was used as an in situ product removal technique to enhance transformation productivity by this strain. The thermoplastic polymer Hytrel(®) G4078W was found to have superior partitioning capacity for vanillin with a partition coefficient of 12 and a low affinity for the substrate. A 3-L working volume solid-liquid fed-batch TPPB mode, using 300 g Hytrel G4078W as the sequestering phase, produced a final vanillin concentration of 19.5 g/L. The overall productivity of this reactor system was 450 mg/L. h, among the highest reported in literature. Vanillin was easily and quantitatively recovered from the polymers mostly by single stage extraction into methanol or other organic solvents used in food industry, simultaneously regenerating polymer beads for reuse. A polymer-liquid two phase bioreactor was again confirmed to easily outperform single phase systems that feature inhibitory or easily further degraded substrates/products. This enhancement strategy might reasonably be expected in the production of other flavor and fragrance compounds obtained by biotransformations. © 2013 American Institute of Chemical Engineers.

  5. Bioelectricity generation from coconut husk retting wastewater in fed batch operating microbial fuel cell by phenol degrading microorganism

    International Nuclear Information System (INIS)

    Jayashree, C.; Arulazhagan, P.; Adish Kumar, S.; Kaliappan, S.; Yeom, Ick Tae; Rajesh Banu, J.

    2014-01-01

    Dual chamber microbial fuel cell (MFC) operated at fed batch mode for the treatment of retting wastewater has potently achieved both current generation and phenol removal. Hydraulic retention time (HRT) of the reactor was varied from 40 days to 10 days. COD (chemical oxygen demand) removal was 91% at 40 days HRT, with an initial COD concentration of 530 ± 50 g m −3 . Retting wastewater with an initial phenol concentration of 320 ± 60 g m −3 procured a highest phenol removal of 93% at 40 days HRT of the microbial fuel cell. Maximum power density of 362 mW m −2 was achieved using retting wastewater at HRT of 20 days with an internal resistance of 150 Ω in a dual chambered MFC. The bacterial strains in anode region, reported to be responsible for potential phenol removal, were identified as Ochrobactrum sp. RA1 (KJ408266), Ochrobactrum sp. RA2 (KJ408267) and Pesudomonas aeruginosa RA3 (KJ408268) using phylogenetic analysis. The study reveals that, dual chambered MFC effectively removed the phenol from retting wastewater along with power generation. - Highlights: • Maximum power density of 362 mW m −2 (150 Ω) was achieved at HRT of 20 days. • 91% COD removal and 93% phenol removal was observed at HRT of 40 days. • 25% coulombic efficiency was achieved in treatment of retting wastewater with MFC. • Phylogenetic analysis detect phenol degrading Ochrobactrum sp.RA1 in anode biofilm. • In addition, Ochrobactrum sp.RA2 and Pseudomonas aeruginosa RA3 were also isolated

  6. Bacterial structure of aerobic granules is determined by aeration mode and nitrogen load in the reactor cycle.

    Science.gov (United States)

    Cydzik-Kwiatkowska, Agnieszka

    2015-04-01

    This study investigated how the microbial composition of biomass and kinetics of nitrogen conversions in aerobic granular reactors treating high-ammonium supernatant depended on nitrogen load and the number of anoxic phases in the cycle. Excellent ammonium removal and predomination of full nitrification was observed in the reactors operated at 1.1 kg TKN m(-3) d(-1) and with anoxic phases in the cycle. In all reactors, Proteobacteria and Actinobacteria predominated, comprising between 90.14% and 98.59% of OTUs. Extracellular polymeric substances-producing bacteria, such as Rhodocyclales, Xanthomonadaceae, Sphingomonadales and Rhizobiales, were identified in biomass from all reactors, though in different proportions. Under constant aeration, bacteria capable of autotrophic nitrification were found in granules, whereas under variable aeration heterotrophic nitrifiers such as Pseudomonas sp. and Paracoccus sp. were identified. Constant aeration promoted more even bacteria distribution among taxa; with 1 anoxic phase, Paracoccus aminophilus predominated (62.73% of OTUs); with 2 phases, Corynebacterium sp. predominated (65.10% of OTUs). Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Glucoamylase production in batch, chemostat and fed-batch cultivations by an industrial strain of Aspergillus niger

    DEFF Research Database (Denmark)

    Pedersen, Henrik; Beyer, Michael; Nielsen, Jens

    2000-01-01

    The Aspergillus niger strain BO-1 was grown in batch, continuous (chemostat) and fed-batch cultivations in order to study the production of the extracellular enzyme glucoamylase under different growth conditions. In the pH range 2.5-6.0, the specific glucoamylase productivity and the specific...

  8. Degradation of toluene and trichloroethylene by Burkholderia cepacia G4 in growth-limited fed-batch culture

    NARCIS (Netherlands)

    Mars, Astrid E.; Houwing, Joukje; Dolfing, Jan; Janssen, Dick B.

    Burkholderia (Pseudomonas) cepacia G4 was cultivated in a fed-batch bioreactor on either toluene or toluene plus trichloroethylene (TCE), The culture was allowed to reach a constant cell density under conditions in which the amount of toluene supplied equals the maintenance energy demand of the

  9. HPLC-ESI-MS(n) Analysis, Fed-Batch Cultivation Enhances Bioactive Compound Biosynthesis and Immune-Regulative Effect of Adventitious Roots in Pseudostellaria heterophylla.

    Science.gov (United States)

    Wang, Juan; Li, Jing; Li, Hongfa; Wu, Xiaolei; Gao, Wenyuan

    2015-09-01

    A electrospray ionization tandem mass spectrometry (ESI-MS(n)) analysis was performed in order to identify the active composition in Pseudostellaria heterophylla adventitious roots. Pseudostellarin A, C, D, and G were identified from P. heterophylla adventitious roots on the basis of LC-MS(n) analysis. The culture conditions of adventitious roots were optimized, and datasets were subjected to a partial least squares discriminant analysis (PLS-DA), in which the growth ratio and some compounds showed a positive correlation with an aeration volume of 0.3 vvm and inoculum density of 0.15 %. Fed-batch cultivation enhanced the contents of total saponin, polysaccharides, and specific oxygen uptaker rate (SOUR). The maximum dry root weight (4.728 g l(-1)) was achieved in the 3/4 Murashige and Skoog (MS) medium group. PLS-DA showed that polysaccharides contributed significantly to the clustering of different groups and showed a positive correlation in the MS medium group. The delayed-type hypersensitivity (DTH) reaction on the mice induced by 2,4-dinitrofluorobenzene (DNFB) was applied to compare the immunocompetence effects of adventitious roots (AR) with field native roots (NR) of P. heterophylla. As a result, AR possessed a similar immunoregulation function as NR.

  10. In Vitro Growth of Curcuma longa L. in Response to Five Mineral Elements and Plant Density in Fed-Batch Culture Systems

    Science.gov (United States)

    El-Hawaz, Rabia F.; Bridges, William C.; Adelberg, Jeffrey W.

    2015-01-01

    Plant density was varied with P, Ca, Mg, and KNO3 in a multifactor experiment to improve Curcuma longa L. micropropagation, biomass and microrhizome development in fed-batch liquid culture. The experiment had two paired D-optimal designs, testing sucrose fed-batch and nutrient sucrose fed-batch techniques. When sucrose became depleted, volume was restored to 5% m/v sucrose in 200 ml of modified liquid MS medium by adding sucrose solutions. Similarly, nutrient sucrose fed-batch was restored to set points with double concentration of treatments’ macronutrient and MS micronutrient solutions, along with sucrose solutions. Changes in the amounts of water and sucrose supplementations were driven by the interaction of P and KNO3 concentrations. Increasing P from 1.25 to 6.25 mM increased both multiplication and biomass. The multiplication ratio was greatest in the nutrient sucrose fed-batch technique with the highest level of P, 6 buds/vessel, and the lowest level of Ca and KNO3. The highest density (18 buds/vessel) produced the highest fresh biomass at the highest concentrations of KNO3 and P with nutrient sucrose fed-batch, and moderate Ca and Mg concentrations. However, maximal rhizome dry biomass required highest P, sucrose fed-batch, and a moderate plant density. Different media formulations and fed-batch techniques were identified to maximize the propagation and storage organ responses. A single experimental design was used to optimize these dual purposes. PMID:25830292

  11. In vitro growth of Curcuma longa L. in response to five mineral elements and plant density in fed-batch culture systems.

    Science.gov (United States)

    El-Hawaz, Rabia F; Bridges, William C; Adelberg, Jeffrey W

    2015-01-01

    Plant density was varied with P, Ca, Mg, and KNO3 in a multifactor experiment to improve Curcuma longa L. micropropagation, biomass and microrhizome development in fed-batch liquid culture. The experiment had two paired D-optimal designs, testing sucrose fed-batch and nutrient sucrose fed-batch techniques. When sucrose became depleted, volume was restored to 5% m/v sucrose in 200 ml of modified liquid MS medium by adding sucrose solutions. Similarly, nutrient sucrose fed-batch was restored to set points with double concentration of treatments' macronutrient and MS micronutrient solutions, along with sucrose solutions. Changes in the amounts of water and sucrose supplementations were driven by the interaction of P and KNO3 concentrations. Increasing P from 1.25 to 6.25 mM increased both multiplication and biomass. The multiplication ratio was greatest in the nutrient sucrose fed-batch technique with the highest level of P, 6 buds/vessel, and the lowest level of Ca and KNO3. The highest density (18 buds/vessel) produced the highest fresh biomass at the highest concentrations of KNO3 and P with nutrient sucrose fed-batch, and moderate Ca and Mg concentrations. However, maximal rhizome dry biomass required highest P, sucrose fed-batch, and a moderate plant density. Different media formulations and fed-batch techniques were identified to maximize the propagation and storage organ responses. A single experimental design was used to optimize these dual purposes.

  12. Carbonaceous materials in petrochemical wastewater before and after treatment in an aerated submerged fixed-bed biofilm reactor

    OpenAIRE

    Trojanowicz Karol; Wojcik Wlodzimierz

    2016-01-01

    Results of the studies for determining fractions of organic contaminants in a pretreated petrochemical wastewater flowing into a pilot Aerated Submerged Fixed-Bed Biofilm Reactor (ASFBBR) are presented and discussed. The method of chemical oxygen demand (COD) fractionation consisted of physical tests and biological assays. It was found that the main part of the total COD in the petrochemical, pretreated wastewater was soluble organic substance with average value of 57.6%. The fractions of par...

  13. Removal of veterinary antibiotics from anaerobically digested swine wastewater using an intermittently aerated sequencing batch reactor.

    Science.gov (United States)

    Zheng, Wei; Zhang, Zhenya; Liu, Rui; Lei, Zhongfang

    2018-03-01

    A lab-scale intermittently aerated sequencing batch reactor (IASBR) was applied to treat anaerobically digested swine wastewater (ADSW) to explore the removal characteristics of veterinary antibiotics. The removal rates of 11 veterinary antibiotics in the reactor were investigated under different chemical organic demand (COD) volumetric loadings, solid retention times (SRT) and ratios of COD to total nitrogen (TN) or COD/TN. Both sludge sorption and biodegradation were found to be the major contributors to the removal of veterinary antibiotics. Mass balance analysis revealed that greater than 60% of antibiotics in the influent were biodegraded in the IASBR, whereas averagely 24% were adsorbed by sludge under the condition that sludge sorption gradually reached its equilibrium. Results showed that the removal of antibiotics was greatly influenced by chemical oxygen demand (COD) volumetric loadings, which could achieve up to 85.1%±1.4% at 0.17±0.041kgCOD/m -3 /day, while dropped to 75.9%±1.3% and 49.3%±12.1% when COD volumetric loading increased to 0.65±0.032 and 1.07±0.073kgCOD/m -3 /day, respectively. Tetracyclines, the dominant antibiotics in ADSW, were removed by 87.9% in total at the lowest COD loading, of which 30.4% were contributed by sludge sorption and 57.5% by biodegradation, respectively. In contrast, sulfonamides were removed about 96.2%, almost by biodegradation. Long SRT seemed to have little obvious impact on antibiotics removal, while a shorter SRT of 30-40day could reduce the accumulated amount of antibiotics and the balanced antibiotics sorption capacity of sludge. Influent COD/TN ratio was found not a key impact factor for veterinary antibiotics removal in this work. Copyright © 2017. Published by Elsevier B.V.

  14. Online optimal experimental re-design in robotic parallel fed-batch cultivation facilities.

    Science.gov (United States)

    Cruz Bournazou, M N; Barz, T; Nickel, D B; Lopez Cárdenas, D C; Glauche, F; Knepper, A; Neubauer, P

    2017-03-01

    We present an integrated framework for the online optimal experimental re-design applied to parallel nonlinear dynamic processes that aims to precisely estimate the parameter set of macro kinetic growth models with minimal experimental effort. This provides a systematic solution for rapid validation of a specific model to new strains, mutants, or products. In biosciences, this is especially important as model identification is a long and laborious process which is continuing to limit the use of mathematical modeling in this field. The strength of this approach is demonstrated by fitting a macro-kinetic differential equation model for Escherichia coli fed-batch processes after 6 h of cultivation. The system includes two fully-automated liquid handling robots; one containing eight mini-bioreactors and another used for automated at-line analyses, which allows for the immediate use of the available data in the modeling environment. As a result, the experiment can be continually re-designed while the cultivations are running using the information generated by periodical parameter estimations. The advantages of an online re-computation of the optimal experiment are proven by a 50-fold lower average coefficient of variation on the parameter estimates compared to the sequential method (4.83% instead of 235.86%). The success obtained in such a complex system is a further step towards a more efficient computer aided bioprocess development. Biotechnol. Bioeng. 2017;114: 610-619. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. The development of an industrial-scale fed-batch fermentation simulation.

    Science.gov (United States)

    Goldrick, Stephen; Ştefan, Andrei; Lovett, David; Montague, Gary; Lennox, Barry

    2015-01-10

    This paper describes a simulation of an industrial-scale fed-batch fermentation that can be used as a benchmark in process systems analysis and control studies. The simulation was developed using a mechanistic model and validated using historical data collected from an industrial-scale penicillin fermentation process. Each batch was carried out in a 100,000 L bioreactor that used an industrial strain of Penicillium chrysogenum. The manipulated variables recorded during each batch were used as inputs to the simulator and the predicted outputs were then compared with the on-line and off-line measurements recorded in the real process. The simulator adapted a previously published structured model to describe the penicillin fermentation and extended it to include the main environmental effects of dissolved oxygen, viscosity, temperature, pH and dissolved carbon dioxide. In addition the effects of nitrogen and phenylacetic acid concentrations on the biomass and penicillin production rates were also included. The simulated model predictions of all the on-line and off-line process measurements, including the off-gas analysis, were in good agreement with the batch records. The simulator and industrial process data are available to download at www.industrialpenicillinsimulation.com and can be used to evaluate, study and improve on the current control strategy implemented on this facility. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  16. Fed batch fermentation scale up in the production of recombinant streptokinase

    Directory of Open Access Journals (Sweden)

    Salvador Losada-Nerey

    2017-01-01

    Full Text Available Due to the high international demand of the recombinant streptokinase (Skr produced at the National Center for Bioproducts (BioCen, it was necessary to increase the production capacity of the drug, since the current production volume does not cover the demand. A scale up of the process of fermentation of the recombinant streptokinase was made using a fed batch culture, from the bank scale towards a 300L fermenter. The scaling criteria used were: the intensive variables of the process, the relationships of volumes of the fermentation medium and inoculum, the volumetric coefficient of oxygen transfer and air volume to liquid flow relationship which were kept constant. With this scale up procedure it was possible to reproduce the results obtained at the bank scale of and to double the biomass production volume with the same equipment, fulfilling all the quality requirements of the product and to cover the current demand of the market. Techno-economic indicators demonstrated the feasibility of this option.

  17. Construction and fed-batch cultivation of Candida famata with enhanced riboflavin production.

    Science.gov (United States)

    Dmytruk, Kostyantyn; Lyzak, Oleksy; Yatsyshyn, Valentyna; Kluz, Maciej; Sibirny, Vladimir; Puchalski, Czeslaw; Sibirny, Andriy

    2014-02-20

    Riboflavin (vitamin B2) is an essential nutrition component serving as a precursor of coenzymes FMN and FAD that are involved mostly in reactions of oxidative metabolism. Riboflavin is produced in commercial scale and is used in feed and food industries, and in medicine. The yeast Candida famata (Candida flareri) belongs to the group of so called "flavinogenic yeasts" which overproduce riboflavin under iron limitation. Three genes SEF1, RIB1 and RIB7 coding for a putative transcription factor, GTP cyclohydrolase II and riboflavin synthase, respectively were simultaneously overexpressed in the background of a non-reverting riboflavin producing mutant AF-4, obtained earlier in our laboratory using methods of classical selection (Dmytruk et al. (2011), Metabolic Engineering 13, 82-88). Cultivation conditions of the constructed strain were optimized for shake-flasks and bioreactor cultivations. The constructed strain accumulated up to 16.4g/L of riboflavin in optimized medium in a 7L laboratory bioreactor during fed-batch fermentation. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. De novo biosynthesis of biodiesel by Escherichia coli in optimized fed-batch cultivation.

    Directory of Open Access Journals (Sweden)

    Yangkai Duan

    Full Text Available Biodiesel is a renewable alternative to petroleum diesel fuel that can contribute to carbon dioxide emission reduction and energy supply. Biodiesel is composed of fatty acid alkyl esters, including fatty acid methyl esters (FAMEs and fatty acid ethyl esters (FAEEs, and is currently produced through the transesterification reaction of methanol (or ethanol and triacylglycerols (TAGs. TAGs are mainly obtained from oilseed plants and microalgae. A sustainable supply of TAGs is a major bottleneck for current biodiesel production. Here we report the de novo biosynthesis of FAEEs from glucose, which can be derived from lignocellulosic biomass, in genetically engineered Escherichia coli by introduction of the ethanol-producing pathway from Zymomonas mobilis, genetic manipulation to increase the pool of fatty acyl-CoA, and heterologous expression of acyl-coenzyme A: diacylglycerol acyltransferase from Acinetobacter baylyi. An optimized fed-batch microbial fermentation of the modified E. coli strain yielded a titer of 922 mg L(-1 FAEEs that consisted primarily of ethyl palmitate, -oleate, -myristate and -palmitoleate.

  19. Fed-Batch Production of Bacterial Ghosts Using Dielectric Spectroscopy for Dynamic Process Control

    Directory of Open Access Journals (Sweden)

    Andrea Meitz

    2016-03-01

    Full Text Available The Bacterial Ghost (BG platform technology evolved from a microbiological expression system incorporating the ϕX174 lysis gene E. E-lysis generates empty but structurally intact cell envelopes (BGs from Gram-negative bacteria which have been suggested as candidate vaccines, immunotherapeutic agents or drug delivery vehicles. E-lysis is a highly dynamic and complex biological process that puts exceptional demands towards process understanding and control. The development of a both economic and robust fed-batch production process for BGs required a toolset capable of dealing with rapidly changing concentrations of viable biomass during the E-lysis phase. This challenge was addressed using a transfer function combining dielectric spectroscopy and soft-sensor based biomass estimation for monitoring the rapid decline of viable biomass during the E-lysis phase. The transfer function was implemented to a feed-controller, which followed the permittivity signal closely and was capable of maintaining a constant specific substrate uptake rate during lysis phase. With the described toolset, we were able to increase the yield of BG production processes by a factor of 8–10 when compared to currently used batch procedures reaching lysis efficiencies >98%. This provides elevated potentials for commercial application of the Bacterial Ghost platform technology.

  20. The digester modification for biogas production from palm oil mill effluent by Fed-batch

    Science.gov (United States)

    Aznury, M.; Amin, J. M.; Hasan, A.; Harsyah, A.

    2018-03-01

    The purpose of this research is to biogas production in the digester modification equipment by Fed-batch of the palm oil mill effluent (POME) to determine the quality of POME after a treatment and the concentration of biogas that is formed every 24 hours within 10 days. The raw materials used are POME from PT Mitra Ogan, Tbk. In the initial stage is sedimentation process in the first digester tank at a flow rate 6 liters/minute and then observing the retention time of 24 hours. POME flowed into the second digester tank for fermentation process with the addition of active microbes seed every 24 hours to produce biogas. After the fermentation process is complete, POME flowed to third digester tank for water treatment stage before being released into the environment. COD content test values obtained after processing are 766, 362 and 350 mg/L, approximately. While the BOD value is 212.75; 125 and 110.9 mg/L, approximately. Biogas production for 10 days fermentation are 10.88% methane, 19.2% oxygen and 75.83% nitrogen, approximately.

  1. Computational Fluid Dynamics Modelling of Hydraulics and Sedimentation in Process Reactors during Aeration Tank Settling

    DEFF Research Database (Denmark)

    Jensen, M.D.; Ingildsen, P.; Rasmussen, Michael R.

    2006-01-01

    Aeration tank settling is a control method allowing settling in the process tank during highhydraulic load. The control method is patented. Aeration tank settling has been applied in several wastewater treatment plants using the present design of the process tanks. Some process tank designs...... and outletcausing a disruption of the sludge blanket at the outlet and thereby reducing the retention of sludge in theprocess tank. The model has allowed us to establish a clear picture of the problems arising at the plantduring aeration tank settling. Secondly, several process tank design changes have been...

  2. High-concentration sugars production from corn stover based on combined pretreatments and fed-batch process.

    Science.gov (United States)

    Yang, Maohua; Li, Wangliang; Liu, Binbin; Li, Qiang; Xing, Jianmin

    2010-07-01

    In this paper, high-concentration sugars were produced from pretreated corn stover. The raw corn stover was pretreated in a process combining steam explosion and alkaline hydrogen-peroxide. The hemicellulose and lignin were removed greatly. The cellulose content increased to 73.2%. Fed-batch enzymatic hydrolysis was initiated with 12% (w/v) solids loading and 20 FPU/g solids. Then, 6% solids were fed consecutively at 12, 36 and 60 h. After 144 h, the final concentrations of reducing sugar, glucose, cellobiose and xylose reached 220, 175, 22 and 20 g/L, respectively. The final total biomass conversion was 60% in fed-batch process. Copyright 2009 Elsevier Ltd. All rights reserved.

  3. Optimization of fed-batch enzymatic hydrolysis from alkali-pretreated sugarcane bagasse for high-concentration sugar production.

    Science.gov (United States)

    Gao, Yueshu; Xu, Jingliang; Yuan, Zhenhong; Zhang, Yu; Liu, Yunyun; Liang, Cuiyi

    2014-09-01

    Fed-batch enzymatic hydrolysis process from alkali-pretreated sugarcane bagasse was investigated to increase solids loading, produce high-concentration fermentable sugar and finally to reduce the cost of the production process. The optimal initial solids loading, feeding time and quantities were examined. The hydrolysis system was initiated with 12% (w/v) solids loading in flasks, where 7% fresh solids were fed consecutively at 6h, 12h, 24h to get a final solids loading of 33%. All the requested cellulase loading (10 FPU/g substrate) was added completely at the beginning of hydrolysis reaction. After 120 h of hydrolysis, the maximal concentrations of cellobiose, glucose and xylose obtained were 9.376 g/L, 129.50 g/L, 56.03 g/L, respectively. The final total glucan conversion rate attained to 60% from this fed-batch process. Copyright © 2014. Published by Elsevier Ltd.

  4. Fed-batch culture for the direct conversion of cellulosic substrates to acetic acid/ethanol by Fusarium oxysporum

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, P.K.R.; Singh, A.; Schuegerl, K. (Hannover Univ. (Germany). Inst. fuer Technische Chemie)

    1991-01-01

    The production of acetic acid/ethanol and hydrolytic enzymes from potato waste (cellulosic waste from potato starch industries) by Fusarium oxysporum 841 was improved considerably by using fed-batch culture. In this, two types of feed policies were adopted consisting of different substrate concentrations and feeding times. In fed-batch culture, the enzymes tested, namely avicelase, CMCase, cellobiase and xylanase, showed significant improvements over batch fermentations with regard to enzyme titres and productivities. The maximum concentration, yield and productivity of acetic acid were 22.5 g litre{sup -1}, 0.38 g (g {sub strate}){sup -1} and 0.09 g litre{sup -1} h{sup -1}, respectively, and these values for ethanol were 5.7 g litre{sup -1}, 0.1 g (g substrate){sup -1} and 0.03 g litre{sup -1}h{sup -1}, respectively. (author).

  5. A parametric study ot protease production in batch and fed-batch cultures of Bacillus firmus.

    Science.gov (United States)

    Moon, S H; Parulekar, S J

    1991-03-05

    Proteolytic enzymes produced by Bacillus species find a wide variety of applications in brewing, detergent, food, and leather industries. Owing to significant differences normally observed in culture conditions promoting cell growth and those promoting production of metabolites such as enzymes, for increased efficacy of bioreactor operations it is essential to identify these sets of conditions (including medium formulation). This study is focused on formulation of a semidefined medium that substantially enhances synthesis and secretion of an alkaline protease in batch cultures of Bacillus firmus NRS 783, a known superior producer of this enzyme. The series of experiments conducted to identify culture conditions that lead to improved protease production also enables investigation of the regulatory effects of important culture parameters including pH, dissolved oxygen, and concentrations of nitrogen and phosphorous sources and yeast extract in the medium on cell growth, synthesis and secretion of protease, and production of two major nonbiomass products, viz., acetic acid and ethanol. Cell growth and formation of the three nonbiomass products are hampered significantly under nitrogen, phosphorous, or oxygen limitation, with the cells being unable to grow in an oxygen-free environment. Improvement in protease production is achieved with respect to each culture parameter, leading in the process to 80% enhancement in protease activity over that attained using media reported in the literature. Results of a few fed-batch experiments with constant feed rate, conducted to examine possible enhancement in protease production and to further investigate repression of protease synthesis by excess of the principal carbon and nitrogen sources, are also discussed. The detailed investigation of stimulatory and repressory effects of simple and complex nutrients on protease production and metabolism of Bacillus firmus conducted in this study will provide useful guidelines for design

  6. Model-based intensification of a fed-batch microbial process for the maximization of polyhydroxybutyrate (PHB) production rate.

    Science.gov (United States)

    Penloglou, Giannis; Vasileiadou, Athina; Chatzidoukas, Christos; Kiparissides, Costas

    2017-08-01

    An integrated metabolic-polymerization-macroscopic model, describing the microbial production of polyhydroxybutyrate (PHB) in Azohydromonas lata bacteria, was developed and validated using a comprehensive series of experimental measurements. The model accounted for biomass growth, biopolymer accumulation, carbon and nitrogen sources utilization, oxygen mass transfer and uptake rates and average molecular weights of the accumulated PHB, produced under batch and fed-batch cultivation conditions. Model predictions were in excellent agreement with experimental measurements. The validated model was subsequently utilized to calculate optimal operating conditions and feeding policies for maximizing PHB productivity for desired PHB molecular properties. More specifically, two optimal fed-batch strategies were calculated and experimentally tested: (1) a nitrogen-limited fed-batch policy and (2) a nitrogen sufficient one. The calculated optimal operating policies resulted in a maximum PHB content (94% g/g) in the cultivated bacteria and a biopolymer productivity of 4.2 g/(l h), respectively. Moreover, it was demonstrated that different PHB grades with weight average molecular weights of up to 1513 kg/mol could be produced via the optimal selection of bioprocess operating conditions.

  7. Continuous citric acid production in repeated-fed batch fermentation by Aspergillus niger immobilized on a new porous foam.

    Science.gov (United States)

    Yu, Bin; Zhang, Xin; Sun, Wenjun; Xi, Xun; Zhao, Nan; Huang, Zichun; Ying, Zhuojun; Liu, Li; Liu, Dong; Niu, Huanqing; Wu, Jinglan; Zhuang, Wei; Zhu, Chenjie; Chen, Yong; Ying, Hanjie

    2018-03-24

    The efficiency of current methods for industrial production of citric acid is limited. To achieve continuous citric acid production with enhanced yield and reduced cost, immobilized fermentation was employed in an Aspergillus niger 831 repeated fed-batch fermentation system. We developed a new type of material (PAF201), which was used as a carrier for the novel adsorption immobilization system. Hydrophobicity, pore size and concentration of carriers were researched in A. niger immobilization. The efficiency of the A. niger immobilization process was analyzed by scanning electron microscopy. Then eight-cycle repeated fed-batch cultures for citric acid production were carried out over 600 h, which showed stable production with maximum citric acid concentrations and productivity levels of 162.7 g/L and 2.26 g L -1  h -1 , respectively. Compared with some other literatures about citric acid yield, PAF201 immobilization system is 11.3% higher than previous results. These results indicated that use of the new adsorption immobilization system could greatly improve citric acid productivity in repeated fed-batch fermentation. Moreover, these results could provide a guideline for A.niger or other filamentous fungi immobilization in industry. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Modeling of Fusarium redolens Dzf2 mycelial growth kinetics and optimal fed-batch fermentation for beauvericin production.

    Science.gov (United States)

    Xu, Li-Jian; Liu, Yuan-Shuai; Zhou, Li-Gang; Wu, Jian-Yong

    2011-09-01

    Beauvericin (BEA) is a cyclic hexadepsipeptide mycotoxin with notable phytotoxic and insecticidal activities. Fusarium redolens Dzf2 is a highly BEA-producing fungus isolated from a medicinal plant. The aim of the current study was to develop a simple and valid kinetic model for F. redolens Dzf2 mycelial growth and the optimal fed-batch operation for efficient BEA production. A modified Monod model with substrate (glucose) and product (BEA) inhibition was constructed based on the culture characteristics of F. redolens Dzf2 mycelia in a liquid medium. Model parameters were derived by simulation of the experimental data from batch culture. The model fitted closely with the experimental data over 20-50 g l(-1) glucose concentration range in batch fermentation. The kinetic model together with the stoichiometric relationships for biomass, substrate and product was applied to predict the optimal feeding scheme for fed-batch fermentation, leading to 54% higher BEA yield (299 mg l(-1)) than in the batch culture (194 mg l(-1)). The modified Monod model incorporating substrate and product inhibition was proven adequate for describing the growth kinetics of F. redolens Dzf2 mycelial culture at suitable but not excessive initial glucose levels in batch and fed-batch cultures.

  9. The use of date waste for lactic acid production by a fed-batch culture using Lactobacillus casei subsp. rhamnosus.

    Science.gov (United States)

    Nancib, Aicha; Nancib, Nabil; Boubendir, Abdelhafid; Boudrant, Joseph

    2015-01-01

    The production of lactic acid from date juice by Lactobacillus caseisubsp. rhamnosus in batch and fed-batch cultures has been investigated. The fed-batch culture system gave better results for lactic acid production and volumetric productivity. The aim of this work is to determine the effects of the feeding rate and the concentration of the feeding medium containing date juice glucose on the cell growth, the consumption of glucose and the lactic acid production by Lactobacillus casei subsp. rhamnosus in fed-batch cultures. For this study, two concentrations of the feeding medium (62 and 100 g/L of date juice glucose) were tested at different feeding rates (18, 22, 33, 75 and 150 mL/h). The highest volumetric productivity (1.3 g/L.h) and lactic acid yield (1.7 g/g) were obtained at a feeding rate of 33 mL/h and a date juice glucose concentration of 62 g/L in the feeding medium. As a result, most of the date juice glucose was completely utilised (residual glucose 1 g/L), and a maximum lactic acid production level (89.2 g/L) was obtained.

  10. Characterization and modelling of the heat transfers in a pilot-scale reactor during composting under forced aeration

    International Nuclear Information System (INIS)

    Guardia, A. de; Petiot, C.; Benoist, J.C.; Druilhe, C.

    2012-01-01

    The paper focused on the modelling of the heat transfers during composting in a pilot-scale reactor under forced aeration. The model took into account the heat production and the transfers by evaporation, convection between material and gas crossing the material, conduction and surface convection between gas and material in bottom and upper parts of the reactor. The model was adjusted thanks to the measurements practised during fifteen composting experiments in which five organic wastes were, each, composted under three constant aeration rates. Heat production was considered proportional to oxygen consumption rate and the enthalpy per mole oxygen consumed was assumed constant. The convective heat transfer coefficients were determined on basis of the continuous measurements of the temperatures of both the lid and the bottom part of the reactor. The model allowed a satisfying prediction of the temperature of the composting material. In most cases, the mean absolute discard between the experimental and the simulated temperatures was inferior to 2.5 °C and the peaks of temperature occurred with less than 8 h delay. For the half of the experiments the temperature discard between the simulated peak and the experimental one was inferior to 5 °C. On basis of the calculation of a stoichiometric production of water through oxidation of the biodegradable organic matter, the simulation of water going out from material as vapour also allowed a rather satisfying prediction of the mass of water in final mixture. The influence of the aeration rate on every type of heat loss was characterized. Finally, the model was used to evaluate the impacts on material temperature caused by the change of the insulation thickness, the ambient temperature, take the lid away, the increase or the decrease of the mass of waste to compost.

  11. Computational Fluid Dynamics Modelling of Hydraulics and Sedimentation in Process Reactors During Aeration Tank Settling

    DEFF Research Database (Denmark)

    Dam Jensen, Mette; Ingildsen, Pernille; Rasmussen, Michael R.

    2005-01-01

    Aeration Tank Settling is a control method alowing settling in the process tank during high hydraulic load. The control method is patented. Aeration Tank Settling has been applied in several waste water treatment plant's using present design of the process tanks. Some process tank designs have...... shown to be more effective than others. To improve the design of less effective plants Computational Fluid Dynamics (CFD) modelling of hydraulics and sedimentation has been applied. The paper discusses the results at one particular plant experiencing problems with partly short-circuiting of the inlet...

  12. Enhanced recombinant factor VII expression in Chinese hamster ovary cells by optimizing signal peptides and fed-batch medium.

    Science.gov (United States)

    Peng, Lin; Yu, Xiao; Li, Chengyuan; Cai, Yanfei; Chen, Yun; He, Yang; Yang, Jianfeng; Jin, Jian; Li, Huazhong

    2016-04-01

    Signal peptides play an important role in directing and efficiently transporting secretory proteins to their proper locations in the endoplasmic reticulum of mammalian cells. The aim of this study was to enhance the expression of recombinant coagulation factor VII (rFVII) in CHO cells by optimizing the signal peptides and type of fed-batch culture medium used. Five sub-clones (O2, I3, H3, G2 and M3) with different signal peptide were selected by western blot (WB) analysis and used for suspension culture. We compared rFVII expression levels of 5 sub-clones and found that the highest rFVII expression level was obtained with the IgK signal peptide instead of Ori, the native signal peptide of rFVII. The high protein expression of rFVII with signal peptide IgK was mirrored by a high transcription level during suspension culture. After analyzing culture and feed media, the combination of M4 and F4 media yielded the highest rFVII expression of 20 mg/L during a 10-day suspension culture. After analyzing cell density and cell cycle, CHO cells feeding by F4 had a similar percentage of cells in G0/G1 and a higher cell density compared to F2 and F3. This may be the reason for high rFVII expression in M4+F4. In summary, rFVII expression was successfully enhanced by optimizing the signal peptide and fed-batch medium used in CHO suspension culture. Our data may be used to improve the production of other therapeutic proteins in fed-batch culture.

  13. Comparative study of production of Bio-Indigo by Pandoraea sp. in a two phase - fed batch and continuous bioreactor

    Directory of Open Access Journals (Sweden)

    Vaishnavi Unde

    2016-03-01

    Full Text Available Indigo, is blue of blue jeans, a synthetic dye used on large scale all over the world. Chemical production of the dye is taking a new route towards bacterial production to overcome the environmental effects that are posed by the synthetic blue powder (Indigo. In the present work a strain Pandoraea sp. isolated from the oil contaminated soil is found to produce blue pigment which is analyzed qualitatively as indigo using UV-visible scan and Thin Layer Chromatography (TLC. The strain is used for indigo production at lab scale in two different bioreactor configurations first the fed batch mode and second continuous mode using two phases. The two phases consisting of medium carrying biomass and the second phase of silicone oil carrying substrate indole. The use of second phase allows higher concentration of substrate injection reducing the inhibition effects of the substrate as well as act as a partitioning agent for removal of the product. In two phase study, the maximum indigo produced was seen to be 0.068 g/L after 22 hours of substrate injection into the Fermentor in a fed batch mode. The maximum yield obtained in this configuration was 19%. For commercial production of bio-indigo a continuous operation is required, which was studied in a bioreactor with 2.5 liter capacity under the optimized conditions. The maximum indigo produced was found to be 0.052 g/L after about 72 hours of operation. The results showed decrease in the production of indigo in continuous mode as compared to fed batch operation, which may be due to the insufficient time available for the bacteria to bio-transform indole into indigo.

  14. Versatile modeling and optimization of fed batch processes for the production of secreted heterologous proteins with Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Gasser Brigitte

    2006-12-01

    Full Text Available Abstract Background Secretion of heterologous proteins depends both on biomass concentration and on the specific product secretion rate, which in turn is not constant at varying specific growth rates. As fed batch processes usually do not maintain a steady state throughout the feed phase, it is not trivial to model and optimize such a process by mathematical means. Results We have developed a model for product accumulation in fed batch based on iterative calculation in Microsoft Excel spreadsheets, and used the Solver software to optimize the time course of the media feed in order to maximize the volumetric productivity. The optimum feed phase consisted of an exponential feed at maximum specific growth rate, followed by a phase with linearly increasing feed rate and consequently steadily decreasing specific growth rate. The latter phase could be modeled also by exact mathematical treatment by the calculus of variations, yielding the explicit shape of the growth function, however, with certain indeterminate parameters. To evaluate the latter, one needs a numerical optimum search algorithm. The explicit shape of the growth function provides additional evidence that the Excel model results in correct data. Experimental evaluation in two independent fed batch cultures resulted in a good correlation to the optimized model data, and a 2.2 fold improvement of the volumetric productivity. Conclusion The advantages of the procedure we describe here are the ease of use and the flexibility, applying software familiar to every scientist and engineer, and rapid calculation which makes predictions extremely easy, so that many options can be tested in silico quickly. Additional options like further biological and technological constraints or different functions for specific productivity and biomass yield can easily be integrated.

  15. Modelling of L-valine Repeated Fed-batch Fermentation Process Taking into Account the Dissolved Oxygen Tension

    Directory of Open Access Journals (Sweden)

    Tzanko Georgiev

    2009-03-01

    Full Text Available This article deals with synthesis of dynamic unstructured model of variable volume fed-batch fermentation process with intensive droppings for L-valine production. The presented approach of the investigation includes the following main procedures: description of the process by generalized stoichiometric equations; preliminary data processing and calculation of specific rates for main kinetic variables; identification of the specific rates takes into account the dissolved oxygen tension; establishment and optimisation of dynamic model of the process; simulation researches. MATLAB is used as a research environment.

  16. Production of pullulan by a thermotolerant Aureobasidium pullulans strain in non-stirred fed batch fermentation process

    OpenAIRE

    Singh, Ranjan; Gaur, Rajeeva; Tiwari, Soni; Gaur, Manogya Kumar

    2012-01-01

    Total 95 isolates of Aureobasidium pullulans were isolated from different flowers and leaves samples, out of which 11 thermotolerant strains produced pullulan. One thermotolerant non-melanin pullulan producing strain, designated as RG-5, produced highest pullulan (37.1±1.0 g/l) at 42ºC, pH 5.5 in 48h of incubation with 3% sucrose and 0.5% ammonium sulphate in a non-stirred fed batch fermentor of 6 liters capacity. The two liters of initial volume of fermentation medium was further fed with th...

  17. Lipid production in batch and fed-batch cultures of Rhodosporidium toruloides from 5 and 6 carbon carbohydrates

    Directory of Open Access Journals (Sweden)

    Wiebe Marilyn G

    2012-05-01

    Full Text Available Abstract Background Microbial lipids are a potential source of bio- or renewable diesel and the red yeast Rhodosporidium toruloides is interesting not only because it can accumulate over 50% of its dry biomass as lipid, but also because it utilises both five and six carbon carbohydrates, which are present in plant biomass hydrolysates. Methods R. toruloides was grown in batch and fed-batch cultures in 0.5 L bioreactors at pH 4 in chemically defined, nitrogen restricted (C/N 40 to 100 media containing glucose, xylose, arabinose, or all three carbohydrates as carbon source. Lipid was extracted from the biomass using chloroform-methanol, measured gravimetrically and analysed by GC. Results Lipid production was most efficient with glucose (up to 25 g lipid L−1, 48 to 75% lipid in the biomass, at up to 0.21 g lipid L−1 h−1 as the sole carbon source, but high lipid concentrations were also produced from xylose (36 to 45% lipid in biomass. Lipid production was low (15–19% lipid in biomass with arabinose as sole carbon source and was lower than expected (30% lipid in biomass when glucose, xylose and arabinose were provided simultaneously. The presence of arabinose and/or xylose in the medium increased the proportion of palmitic and linoleic acid and reduced the proportion of oleic acid in the fatty acids, compared to glucose-grown cells. High cell densities were obtained in both batch (37 g L−1, with 49% lipid in the biomass and fed-batch (35 to 47 g L−1, with 50 to 75% lipid in the biomass cultures. The highest proportion of lipid in the biomass was observed in cultures given nitrogen during the batch phase but none with the feed. However, carbohydrate consumption was incomplete when the feed did not contain nitrogen and the highest total lipid and best substrate consumption were observed in cultures which received a constant low nitrogen supply. Conclusions Lipid production in R. toruloides was lower from arabinose and mixed

  18. Hydrogen production from formic acid in pH-stat fed-batch operation for direct supply to fuel cell.

    Science.gov (United States)

    Shin, Jong-Hwan; Yoon, Jong Hyun; Lee, Seung Hoon; Park, Tai Hyun

    2010-01-01

    Enterobacter asburiae SNU-1 harvested after cultivation was used as a whole cell biocatalyst, for the production of hydrogen. Formic acid was efficiently converted to hydrogen using the harvested cells with an initial hydrogen production rate and total hydrogen production of 491 ml/l/h and 6668 ml/l, respectively, when 1 g/l of whole cell enzyme was used. Moreover, new pH-stat fed-batch operation was conducted, and total hydrogen production was 1.4 times higher than that of batch operation. For practical application, bio-hydrogen produced from formic acid using harvested cells was directly applied to PEMFC for power generation.

  19. Computational fluid dynamics modelling of hydraulics and sedimentation in process reactors during aeration tank settling.

    Science.gov (United States)

    Jensen, M D; Ingildsen, P; Rasmussen, M R; Laursen, J

    2006-01-01

    Aeration tank settling is a control method allowing settling in the process tank during high hydraulic load. The control method is patented. Aeration tank settling has been applied in several waste water treatment plants using the present design of the process tanks. Some process tank designs have shown to be more effective than others. To improve the design of less effective plants, computational fluid dynamics (CFD) modelling of hydraulics and sedimentation has been applied. This paper discusses the results at one particular plant experiencing problems with partly short-circuiting of the inlet and outlet causing a disruption of the sludge blanket at the outlet and thereby reducing the retention of sludge in the process tank. The model has allowed us to establish a clear picture of the problems arising at the plant during aeration tank settling. Secondly, several process tank design changes have been suggested and tested by means of computational fluid dynamics modelling. The most promising design changes have been found and reported.

  20. Kinetic studies on batch cultivation of Trichoderma reesei and application to enhance cellulase production by fed-batch fermentation.

    Science.gov (United States)

    Ma, Lijuan; Li, Chen; Yang, Zhenhua; Jia, Wendi; Zhang, Dongyuan; Chen, Shulin

    2013-07-20

    Reducing the production cost of cellulase as the key enzyme for cellulose hydrolysis to fermentable sugars remains a major challenge for biofuel production. Because of the complexity of cellulase production, kinetic modeling and mass balance calculation can be used as effective tools for process design and optimization. In this study, kinetic models for cell growth, substrate consumption and cellulase production in batch fermentation were developed, and then applied in fed-batch fermentation to enhance cellulase production. Inhibition effect of substrate was considered and a modified Luedeking-Piret model was developed for cellulase production and substrate consumption according to the growth characteristics of Trichoderma reesei. The model predictions fit well with the experimental data. Simulation results showed that higher initial substrate concentration led to decrease of cellulase production rate. Mass balance and kinetic simulation results were applied to determine the feeding strategy. Cellulase production and its corresponding productivity increased by 82.13% after employing the proper feeding strategy in fed-batch fermentation. This method combining mathematics and chemometrics by kinetic modeling and mass balance can not only improve cellulase fermentation process, but also help to better understand the cellulase fermentation process. The model development can also provide insight to other similar fermentation processes. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Fed-batch strategy for enhancing cell growth and C-phycocyanin production of Arthrospira (Spirulina) platensis under phototrophic cultivation.

    Science.gov (United States)

    Xie, Youping; Jin, Yiwen; Zeng, Xianhai; Chen, Jianfeng; Lu, Yinghua; Jing, Keju

    2015-03-01

    The C-phycocyanin generated in blue-green algae Arthrospira platensis is gaining commercial interest due to its nutrition and healthcare value. In this study, the light intensity and initial biomass concentration were manipulated to improve cell growth and C-phycocyanin production of A.platensis in batch cultivation. The results show that low light intensity and high initial biomass concentration led to increased C-phycocyanin accumulation. The best C-phycocyanin productivity occurred when light intensity and initial biomass concentration were 300μmol/m(2)/s and 0.24g/L, respectively. The fed-batch cultivation proved to be an effective strategy to further enhance C-phycocyanin production of A.platensis. The results indicate that C-phycocyanin accumulation not only requires nitrogen-sufficient condition, but also needs other nutrients. The highest C-phycocyanin content (16.1%), production (1034mg/L) and productivity (94.8mg/L/d) were obtained when using fed-batch strategy with 5mM medium feeding. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Benzoate-induced stress enhances xylitol yield in aerobic fed-batch culture of Candida mogii TISTR 5892.

    Science.gov (United States)

    Wannawilai, Siwaporn; Sirisansaneeyakul, Sarote; Chisti, Yusuf

    2015-01-20

    Production of the natural sweetener xylitol from xylose via the yeast Candida mogii TISTR 5892 was compared with and without the growth inhibitor sodium benzoate in the culture medium. Sodium benzoate proved to be an uncompetitive inhibitor in relatively poorly oxygenated shake flask aerobic cultures. In a better controlled aerobic environment of a bioreactor, the role of sodium benzoate could equally well be described as competitive, uncompetitive or noncompetitive inhibitor of growth. In intermittent fed-batch fermentations under highly aerobic conditions, the presence of sodium benzoate at 0.15gL(-1) clearly enhanced the xylitol titer relative to the control culture without the sodium benzoate. The final xylitol concentration and the average xylitol yield on xylose were nearly 50gL(-1) and 0.57gg(-1), respectively, in the presence of sodium benzoate. Both these values were substantially higher than reported for the same fermentation under microaerobic conditions. Therefore, a fed-batch aerobic fermentation in the presence of sodium benzoate is promising for xylitol production using C. mogii. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Effects of the feeding ratio of food waste on fed-batch aerobic composting and its microbial community.

    Science.gov (United States)

    Wang, Xiaojun; Pan, Songqing; Zhang, Zhaoji; Lin, Xiangyu; Zhang, Yuzhen; Chen, Shaohua

    2017-01-01

    To determine the suitable feeding ratio for fed-batch aerobic composting, four fermenters were operated by adding 0%, 5%, 10% or 15% of food waste every day. The results showed that the 5% and 10% treatments were able to maintain continuous thermophilic conditions, while the 15% treatment performed badly in regard to composting temperature, which was probably due to the negative effects of excessive moisture on microbial activity. As composting proceeded, both the 5% and the 10% treatments reached maturity and achieved weight losses of approximately 65%. High-throughput sequencing results indicated that Firmicutes, Proteobacteria, Bacteroidetes and Actinobacteria were the dominant phyla of the community structure. The communities sampled at the thermophilic phases had high similarity and relatively low diversity, while species diversity increased in the maturity phase. This study was devoted to optimizing the fed-batch composting process and assessing bacterial communities, both of which were supplied as a reference for practical application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. A novel process-based model of microbial growth: self-inhibition in Saccharomyces cerevisiae aerobic fed-batch cultures.

    Science.gov (United States)

    Mazzoleni, Stefano; Landi, Carmine; Cartenì, Fabrizio; de Alteriis, Elisabetta; Giannino, Francesco; Paciello, Lucia; Parascandola, Palma

    2015-07-30

    Microbial population dynamics in bioreactors depend on both nutrients availability and changes in the growth environment. Research is still ongoing on the optimization of bioreactor yields focusing on the increase of the maximum achievable cell density. A new process-based model is proposed to describe the aerobic growth of Saccharomyces cerevisiae cultured on glucose as carbon and energy source. The model considers the main metabolic routes of glucose assimilation (fermentation to ethanol and respiration) and the occurrence of inhibition due to the accumulation of both ethanol and other self-produced toxic compounds in the medium. Model simulations reproduced data from classic and new experiments of yeast growth in batch and fed-batch cultures. Model and experimental results showed that the growth decline observed in prolonged fed-batch cultures had to be ascribed to self-produced inhibitory compounds other than ethanol. The presented results clarify the dynamics of microbial growth under different feeding conditions and highlight the relevance of the negative feedback by self-produced inhibitory compounds on the maximum cell densities achieved in a bioreactor.

  5. Fed-batch production of green coconut hydrolysates for high-gravity second-generation bioethanol fermentation with cellulosic yeast.

    Science.gov (United States)

    Soares, Jimmy; Demeke, Mekonnen M; Van de Velde, Miet; Foulquié-Moreno, Maria R; Kerstens, Dorien; Sels, Bert F; Verplaetse, Alex; Fernandes, Antonio Alberto Ribeiro; Thevelein, Johan M; Fernandes, Patricia Machado Bueno

    2017-11-01

    The residual biomass obtained from the production of Cocos nucifera L. (coconut) is a potential source of feedstock for bioethanol production. Even though coconut hydrolysates for ethanol production have previously been obtained, high-solid loads to obtain high sugar and ethanol levels remain a challenge. We investigated the use of a fed-batch regime in the production of sugar-rich hydrolysates from the green coconut fruit and its mesocarp. Fermentation of the hydrolysates obtained from green coconut or its mesocarp, containing 8.4 and 9.7% (w/v) sugar, resulted in 3.8 and 4.3% (v/v) ethanol, respectively. However, green coconut hydrolysate showed a prolonged fermentation lag phase. The inhibitor profile suggested that fatty acids and acetic acid were the main fermentation inhibitors. Therefore, a fed-batch regime with mild alkaline pretreatment followed by saccharification, is presented as a strategy for fermentation of such challenging biomass hydrolysates, even though further improvement of yeast inhibitor tolerance is also needed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Mechanistic Models for Process Development and Optimization of Fed-batch Fermentation Systems

    DEFF Research Database (Denmark)

    Mears, Lisa; Stocks, Stuart M.; Albæk, Mads O.

    2016-01-01

    This work discusses the application of mechanistic models to pilot scale filamentous fungal fermentation systems operated at Novozymes A/S. For on-line applications, a state estimator model is developed based on a stoichiometric balance in order to predict the biomass and product concentration....... This is based on on-line gas measurements and ammonia addition flow rate measurements. Additionally, a mechanistic model is applied offline as a tool for batch planning, based on definition of the process back pressure, aeration rate and stirrer speed. This allows the batch starting fill to be planned, taking...... into account the oxygen transfer conditions, as well as the evaporation rates of the system. Mechanistic models are valuable tools which are applicable for both process development and optimization. The state estimator described will be a valuable tool for future work as part of control strategy development...

  7. Membrane-aerated biofilm reactor for the removal of 1,2-dichloroethane by Pseudomonas sp. strain DCA1.

    Science.gov (United States)

    Hage, J C; Van Houten, R T; Tramper, J; Hartmans, S

    2004-06-01

    A membrane-aerated biofilm reactor (MBR) with a biofilm of Pseudomonas sp. strain DCA1 was studied for the removal of 1,2-dichloroethane (DCA) from water. A hydrophobic membrane was used to create a barrier between the liquid and the gas phase. Inoculation of the MBR with cells of strain DCA1 grown in a continuous culture resulted in the formation of a stable and active DCA-degrading biofilm on the membrane. The maximum removal rate of the MBR was reached at a DCA concentration of approximately 80 micro M. Simulation of the DCA fluxes into the biofilm showed that the MBR performance at lower concentrations was limited by the DCA diffusion rate rather than by kinetic constraints of strain DCA1. Aerobic biodegradation of DCA present in anoxic water could be achieved by supplying oxygen solely from the gas phase to the biofilm grown on the liquid side of the membrane. As a result, direct aeration of the water, which leads to undesired coagulation of iron oxides, could be avoided.

  8. Kinetic model-based feed-forward controlled fed-batch fermentation of Lactobacillus rhamnosus for the production of lactic acid from Arabic date juice.

    Science.gov (United States)

    Choi, Minsung; Al-Zahrani, Saeed M; Lee, Sang Yup

    2014-06-01

    Arabic date is overproduced in Arabic countries such as Saudi Arabia and Iraq and is mostly composed of sugars (70-80 wt%). Here we developed a fed-batch fermentation process by using a kinetic model for the efficient production of lactic acid to a high concentration from Arabic date juice. First, a kinetic model of Lactobacillus rhamnosus grown on date juice in batch fermentation was constructed in EXCEL so that the estimation of parameters and simulation of the model can be easily performed. Then, several fed-batch fermentations were conducted by employing different feeding strategies including pulsed feeding, exponential feeding, and modified exponential feeding. Based on the results of fed-batch fermentations, the kinetic model for fed-batch fermentation was also developed. This new model was used to perform feed-forward controlled fed-batch fermentation, which resulted in the production of 171.79 g l(-1) of lactic acid with the productivity and yield of 1.58 and 0.87 g l(-1) h(-1), respectively.

  9. Amino acid and glucose metabolism in fed-batch CHO cell culture affects antibody production and glycosylation.

    Science.gov (United States)

    Fan, Yuzhou; Jimenez Del Val, Ioscani; Müller, Christian; Wagtberg Sen, Jette; Rasmussen, Søren Kofoed; Kontoravdi, Cleo; Weilguny, Dietmar; Andersen, Mikael Rørdam

    2015-03-01

    Fed-batch Chinese hamster ovary (CHO) cell culture is the most commonly used process for IgG production in the biopharmaceutical industry. Amino acid and glucose consumption, cell growth, metabolism, antibody titer, and N-glycosylation patterns are always the major concerns during upstream process optimization, especially media optimization. Gaining knowledge on their interrelations could provide insight for obtaining higher immunoglobulin G (IgG) titer and better controlling glycosylation-related product quality. In this work, different fed-batch processes with two chemically defined proprietary media and feeds were studied using two IgG-producing cell lines. Our results indicate that the balance of glucose and amino acid concentration in the culture is important for cell growth, IgG titer and N-glycosylation. Accordingly, the ideal fate of glucose and amino acids in the culture could be mainly towards energy and recombinant product, respectively. Accumulation of by-products such as NH4(+) and lactate as a consequence of unbalanced nutrient supply to cell activities inhibits cell growth. The levels of Leu and Arg in the culture, which relate to cell growth and IgG productivity, need to be well controlled. Amino acids with the highest consumption rates correlate with the most abundant amino acids present in the produced IgG, and thus require sufficient availability during culture. Case-by-case analysis is necessary for understanding the effect of media and process optimization on glycosylation. We found that in certain cases the presence of Man5 glycan can be linked to limitation of UDP-GlcNAc biosynthesis as a result of insufficient extracellular Gln. However, under different culture conditions, high Man5 levels can also result from low α-1,3-mannosyl-glycoprotein 2-β-N-acetylglucosaminyltransferase (GnTI) and UDP-GlcNAc transporter activities, which may be attributed to high level of NH4+ in the cell culture. Furthermore, galactosylation of the mAb Fc glycans

  10. Transcriptional response of P. pastoris in fed-batch cultivations to Rhizopus oryzae lipase production reveals UPR induction

    Directory of Open Access Journals (Sweden)

    Valero Francisco

    2007-07-01

    Full Text Available Abstract Background The analysis of transcriptional levels of the genes involved in protein synthesis and secretion is a key factor to understand the host organism's responses to recombinant protein production, as well as their interaction with the cultivation conditions. Novel techniques such as the sandwich hybridization allow monitoring quantitatively the dynamic changes of specific RNAs. In this study, the transcriptional levels of some genes related to the unfolded protein response (UPR and central metabolism of Pichia pastoris were analysed during batch and fed-batch cultivations using an X-33-derived strain expressing a Rhizopus oryzae lipase under control of the formaldehyde dehydrogenase promoter (FLD1, namely the alcohol oxidase gene AOX1, the formaldehyde dehydrogenase FLD1, the protein disulfide isomerase PDI, the KAR2 gene coding for the BiP chaperone, the 26S rRNA and the R. oryzae lipase gene ROL. Results The transcriptional levels of the selected set of genes were first analysed in P. pastoris cells growing in shake flask cultures containing different carbon and nitrogen sources combinations, glycerol + ammonium, methanol + methylamine and sorbitol + methylamine. The transcriptional levels of the AOX1 and FLD1 genes were coherent with the known regulatory mechanism of C1 substrates in P. pastoris, whereas ROL induction lead to the up-regulation of KAR2 and PDI transcriptional levels, thus suggesting that ROL overexpression triggers the UPR. This was further confirmed in fed-batch cultivations performed at different growth rates. Transcriptional levels of the analysed set of genes were generally higher at higher growth rates. Nevertheless, when ROL was overexpressed in a strain having the UPR constitutively activated, significantly lower relative induction levels of these marker genes were detected. Conclusion The bead-based sandwich hybridization assay has shown its potential as a reliable instrument for quantification of

  11. Model-based evaluation of the role of Anammox on nitric oxide and nitrous oxide productions in membrane aerated biofilm reactor

    DEFF Research Database (Denmark)

    Ni, Bing-Jie; Smets, Barth F.; Yuan, Zhiguo

    2013-01-01

    A multispecies one-dimensional biofilm model considering nitric oxide (NO) and nitrous oxide (N2O) productions for membrane aerated biofilm reactor (MABR) that remove nitrogen autotrophically through aerobic ammonia oxidation followed by Anammox is used to study the role of Anammox activity...... on the total nitrogen (TN) removal and the productions of NO and N2O. The model is applied to evaluate how periodic aeration as a control parameter reduces NO and N2O production but maintains high TN removal in MABR. The simulation results show over 3.5% of the removed TN could be attributed to NO and N2O...... production in MABR under the operational conditions optimal for TN removal (72%). An analysis of factors governing the Anammox activity in MABR shows that enhancing Anammox activity not only helps to achieve a high level of nitrogen removal but also reduces NO and N2O productions. Comparison of aeration...

  12. Thermodynamics of metabolic pathways for penicillin production: Analysis of thermodynamic feasibility and free energy changes during fed-batch cultivation

    DEFF Research Database (Denmark)

    Pissarra, P.D.; Nielsen, Jens Bredal

    1997-01-01

    This paper describes the thermodynamic analysis of pathways related to penicillin production in Penicillium chrysogenum. First a thermodynamic feasibility analysis is performed of the L-lysine pathway of which one of the precursors for penicillin biosynthesis (alpha-aminoadipic acid......) is an intermediate. It is found that the L-lysine pathway in P. chrysogenum is thermodynamically feasible and that the calculated standard Gibbs free energy values of the two enzymes controlling the pathway flux indicate that they operate far from equilibrium. It is therefore proposed that the regulation of alpha......-aminoadipate reductase by lysine is important to maintain a high concentration of alpha-aminoadipate in order to direct the carbon flux to penicillin production. Secondly the changes in Gibbs free energy in the penicillin biosynthetic pathway during fed-batch cultivation were studied. The analysis showed that all...

  13. Ethanol production from Sorghum bicolor using both separate and simultaneous saccharification and fermentation in batch and fed batch systems

    DEFF Research Database (Denmark)

    Mehmood, Sajid; Gulfraz, M.; Rana, N. F.

    2009-01-01

    The objective of this work was to find the best combination of different experimental conditions during pre-treatment, enzymatic saccharification, detoxification of inhibitors and fermentation of Sorghum bicolor straw for ethanol production. The optimization of pre-treatment using different...... were used in order to increase the monomeric sugar during enzymatic hydrolysis and it has been observed that the addition of these surfactants contributed significantly in cellulosic conversion but no effect was shown on hemicellulosic hydrolysis. Fermentability of hydrolyzate was tested using...... Saccharomyces cerevisiae Ethanol Red (TM) and it was observed that simultaneous saccharification and fermentation ( SSF) with both batch and fed batch resulted in better ethanol yield as compared to separate hydrolysis and fermentation ( SHF). Detoxification of furan during SHF facilitated reduction...

  14. Glycoprofiling effects of media additives on IgG produced by CHO cells in fed-batch bioreactors

    DEFF Research Database (Denmark)

    Kildegaard, Helene Faustrup; Fan, Yuzhou; Wagtberg Sen, Jette

    2016-01-01

    Therapeutic monoclonal antibodies (mAbs) are mainly produced by heterogonous expression in Chinese hamster ovary (CHO) cells. The glycosylation profile of the mAbs has major impact on the efficacy and safety of the drug and is therefore an important parameter to control during production. In this......Therapeutic monoclonal antibodies (mAbs) are mainly produced by heterogonous expression in Chinese hamster ovary (CHO) cells. The glycosylation profile of the mAbs has major impact on the efficacy and safety of the drug and is therefore an important parameter to control during production....... In this study, the effect on IgG N-glycosylation from feeding CHO cells with eight glycosylation precursors during cultivation was investigated. The study was conducted in fed-batch mode in bioreactors with biological replicates to obtain highly controlled and comparable conditions. We assessed charge...

  15. Production of Medium Chain Length Polyhydroxyalkanoates From Oleic Acid Using Pseudomonas putida PGA1 by Fed Batch Culture

    Directory of Open Access Journals (Sweden)

    Sidik Marsudi

    2010-10-01

    Full Text Available Bacterial polyhydroxyalkanoates (PHAs are a class of p0lymers currently receiving much attention because of their potential as renewable and biodegradable plastics. A wide variety of bacteria has been reported to produce PHAs including Pseudomonas strains. These strains are known as versatile medium chain length PHAs (PHAs-mcl producers using fatty acids as carbon source. Oleic acid was used to produce PHAs-mcl using Pseudomonas putida PGA 1 by continuous feeding of both nitrogen and carbon source, in a fed batch culture. During cell growth, PHAs also accumulated, indicating that PHA production in this organism is growth associated. Residual cell increased until the nitrogen source was depleted. At the end of fermentation, final cell concentration, PHA content, and roductivity were 30.2 g/L, 44.8 % of cell dry weight, and 0.188 g/l/h, respectively.

  16. Production of pullulan by a thermotolerant Aureobasidium pullulans strain in non-stirred fed batch fermentation process

    Directory of Open Access Journals (Sweden)

    Ranjan Singh

    2012-09-01

    Full Text Available Total 95 isolates of Aureobasidium pullulans were isolated from different flowers and leaves samples, out of which 11 thermotolerant strains produced pullulan. One thermotolerant non-melanin pullulan producing strain, designated as RG-5, produced highest pullulan (37.1±1.0 g/l at 42ºC, pH 5.5 in 48h of incubation with 3% sucrose and 0.5% ammonium sulphate in a non-stirred fed batch fermentor of 6 liters capacity. The two liters of initial volume of fermentation medium was further fed with the 2 liters in two successive batches at 5 h interval into the fermentor. The sterile air was supplied only for 10h at the rate of 0.5 vvm.

  17. Production of pullulan by a thermotolerant aureobasidium pullulans strain in non-stirred fed batch fermentation process.

    Science.gov (United States)

    Singh, Ranjan; Gaur, Rajeeva; Tiwari, Soni; Gaur, Manogya Kumar

    2012-07-01

    Total 95 isolates of Aureobasidium pullulans were isolated from different flowers and leaves samples, out of which 11 thermotolerant strains produced pullulan. One thermotolerant non-melanin pullulan producing strain, designated as RG-5, produced highest pullulan (37.1±1.0 g/l) at 42(o)C, pH 5.5 in 48h of incubation with 3% sucrose and 0.5% ammonium sulphate in a non-stirred fed batch fermentor of 6 liters capacity. The two liters of initial volume of fermentation medium was further fed with the 2 liters in two successive batches at 5 h interval into the fermentor. The sterile air was supplied only for 10h at the rate of 0.5 vvm.

  18. Optimization of the Production of Polygalacturonase from Aspergillus kawachii Cloned in Saccharomyces cerevisiae in Batch and Fed-Batch Cultures

    Directory of Open Access Journals (Sweden)

    Diego Jorge Baruque

    2011-01-01

    Full Text Available Polygalacturonases (PG; EC 3.2.1.15 catalyze the hydrolysis of pectin and/or pectic acid and are useful for industrial applications such as juice clarification and pectin extraction. Growth and heterologous expression of recombinant Saccharomyces cerevisiae which expresses an acidic PG from Aspergillus kawachii has been studied in batch and fed-batch cultures. Kinetics and stoichiometric parameters of the recombinant yeast were determined in batch cultures in a synthetic medium. In these cultures, the total biomass concentration, protein concentration, and enzyme activity achieved were 2.2 g/L, 10 mg/L, and 3 U/mL, respectively, to give a productivity of 0.06 U/(mL·h. In fed-batch cultures, various strategies for galactose feeding were used: (i after a glucose growth phase, the addition of a single pulse of galactose which gave a productivity of 0.19 U/(mL·h; (ii after a glucose growth phase, a double pulse of galactose at the same final concentration was added, resulting in a productivity of 0.21 U/(mL·h; (iii a simultaneous feeding of glucose and galactose, yielding a productivity of 1.32 U/(mL·h. Based on these results, the simultaneous feeding of glucose and galactose was by far the most suitable strategy for the production of this enzyme. Moreover, some biochemical characteristics of the recombinant enzyme such as a molecular mass of ~60 kDa, an isoelectric point of 3.7 and its ability to hydrolyze polygalacturonic acid at pH=2.5 were determined.

  19. Ethanol production in an immobilized-cell column reactor: The effects of micro-aeration and dual feeds

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K

    1988-01-01

    Immobilized Saccharomyces cerevesiae cells adsorbed onto wood chips in a packed-bed bioreactor were used for ethanol fermentation from glucose solution. In aerobic and anaerobic batch experiments, an increase in initial glucose concentration resulted in a reduction of the specific growth rate, but no apparent glucose inhibition was found at initial glucose concentrations of ca <120 g/l. Since it is inevitable to use high substrate concentration to obtain high product concentration, experiments were performed in an immobilized-cell reactor (ICR) to examine any improvements achieved by a dual-feed mode over a continuous ICR system. The dual scheme can provide the same total amount of substrate while keeping the maximum substrate concentration to which the cells are exposed to about half of that in the single-feed case. In the dual-feed ICR, the ethanol production rate was 15% higher than that of the single-fed ICR. Experiments in skewed and vertical ICRs were performed to observe the difference in CO{sub 2} bubble removal; the bubbles were smoothly released in the skewed ICR compared to significant CO{sub 2} accumulation in the vertical ICR, and a biomass buildup on the wood surface was also observed. The experimental results indicate that trace amounts of dissolved oxygen stimulated fermentation rates, with one experiment showing a 31% improvement in ethanol productivity using aeration. At a controlled aeration rate, cells were observed to flocculate naturally onto the wood surface. Plugging of the void spaces, due to excess cell growth and intermittent CO{sub 2} holdup, was observed to begin at the base of the packed bed and progressed upward with time, thus undesirable channelling of liquid flow occurred. 200 refs., 76 figs., 21 tabs.

  20. Production of lightweight ceramisite from iron ore tailings and its performance investigation in a biological aerated filter (BAF) reactor

    International Nuclear Information System (INIS)

    Liu Yangsheng; Du Fang; Yuan Li; Zeng Hui; Kong Sifang

    2010-01-01

    The few reuse and large stockpile of iron ore tailings (IOT) led to a series of social and environmental problems. This study investigated the possibility of using the IOT as one of starting materials to prepare lightweight ceramisite (LWC) by a high temperature sintering process. Coal fly ash (CFA) and municipal sewage sludge (SS) were introduced as additives. The LWC was used to serve as a biomedium in a biological aerated filter (BAF) reactor for municipal wastewater treatment, and its purification performance was examined. The effects of sintering parameters on physical properties of the LWC, and leaching concentrations of heavy metals from the LWC were also determined. The microstructure and the phase composition of the LWC were analyzed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Results revealed that: (1) IOT could be used to produce the LWC under the optimal sintering parameters; (2) the leaching concentrations of heavy metals from the LWC were well below their respective regulatory levels in the China Environmental Quality Standards for Surface Water (CEQS); and (3) the BAF reactor with the LWC serving as the biomedium achieved high removal efficiencies for COD Cr (>92%), NH 4 + -N (>62%) and total phosphate (T-P) (>63%). Therefore, the LWC produced from the IOT was suitable to serve as the biomedium in the municipal wastewater treatment.

  1. Development of a mathematical model for the growth associated Polyhydroxybutyrate fermentation by Azohydromonas australica and its use for the design of fed-batch cultivation strategies.

    Science.gov (United States)

    Gahlawat, Geeta; Srivastava, Ashok K

    2013-06-01

    In the present investigation, batch cultivation of Azohydromonas australica DSM 1124 was carried out in a bioreactor for growth associated PHB production. The observed batch PHB production kinetics data was then used for the development of a mathematical model which adequately described the substrate limitation and inhibition during the cultivation. The statistical validity test demonstrated that the proposed mathematical model predictions were significant at 99% confidence level. The model was thereafter extrapolated to fed-batch to identify various nutrients feeding regimes during the bioreactor cultivation to improve the PHB accumulation. The distinct capability of the mathematical model to predict highly dynamic fed-batch cultivation strategies was demonstrated by experimental implementation of two fed-batch cultivation strategies. A significantly high PHB concentration of 22.65 g/L & an overall PHB content of 76% was achieved during constant feed rate fed-batch cultivation which is the highest PHB content reported so far using A. australica. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Citric acid production from hydrolysate of pretreated straw cellulose by Yarrowia lipolytica SWJ-1b using batch and fed-batch cultivation.

    Science.gov (United States)

    Liu, Xiaoyan; Lv, Jinshun; Zhang, Tong; Deng, Yuanfang

    2015-01-01

    In this study, crude cellulase produced by Trichoderma reesei Rut-30 was used to hydrolyze pretreated straw. After the compositions of the hydrolysate of pretreated straw were optimized, the study showed that natural components of pretreated straw without addition of any other components such as (NH4)2SO4, KH2PO4, or Mg(2+) were suitable for citric acid production by Yarrowia lipolytica SWJ-1b, and the optimal ventilatory capacity was 10.0 L/min/L medium. Batch and fed-batch production of citric acid from the hydrolysate of pretreated straw by Yarrowia lipolytica SWJ-1b has been investigated. In the batch cultivation, 25.4 g/L and 26.7 g/L citric acid were yields from glucose and hydrolysate of straw cellulose, respectively, while the cultivation time was 120 hr. In the three-cycle fed-batch cultivation, citric acid (CA) production was increased to 42.4 g/L and the cultivation time was extended to 240 hr. However, iso-citric acid (ICA) yield in fed-batch cultivation (4.0 g/L) was similar to that during the batch cultivation (3.9 g/L), and only 1.6 g/L of reducing sugar was left in the medium at the end of fed-batch cultivation, suggesting that most of the added carbon was used in the cultivation.

  3. Expression of recombinant Pseudomonas stutzeri di-heme cytochrome c(4) by high-cell-density fed-batch cultivation of Pseudomonas putida

    DEFF Research Database (Denmark)

    Thuesen, Marianne Hallberg; Nørgaard, Allan; Hansen, Anne Merete

    2003-01-01

    The gene of the di-heme protein cytochrome c(4) from Pseudomonas stutzeri was expressed in Pseudomonas putida. High-yield expression of the protein was achieved by high-cell-density fed-batch cultivation using an exponential glucose feeding strategy. The recombinant cytochrome c(4) protein...

  4. Batch and multi-step fed-batch enzymatic saccharification of Formiline-pretreated sugarcane bagasse at high solid loadings for high sugar and ethanol titers.

    Science.gov (United States)

    Zhao, Xuebing; Dong, Lei; Chen, Liang; Liu, Dehua

    2013-05-01

    Formiline pretreatment pertains to a biomass fractionation process. In the present work, Formiline-pretreated sugarcane bagasse was hydrolyzed with cellulases by batch and multi-step fed-batch processes at 20% solid loading. For wet pulp, after 144 h incubation with cellulase loading of 10 FPU/g dry solid, fed-batch process obtained ~150 g/L glucose and ~80% glucan conversion, while batch process obtained ~130 g/L glucose with corresponding ~70% glucan conversion. Solid loading could be further increased to 30% for the acetone-dried pulp. By fed-batch hydrolysis of the dried pulp in pH 4.8 buffer solution, glucose concentration could be 247.3±1.6 g/L with corresponding 86.1±0.6% glucan conversion. The enzymatic hydrolyzates could be well converted to ethanol by a subsequent fermentation using Saccharomices cerevisiae with ethanol titer of 60-70 g/L. Batch and fed-batch SSF indicated that Formiline-pretreated substrate showed excellent fermentability. The final ethanol concentration was 80 g/L with corresponding 82.7% of theoretical yield. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. High-level expression of a fungal pyranose oxidase in high cell-density fed-batch cultivations of Escherichia coli using lactose as inducer

    Czech Academy of Sciences Publication Activity Database

    Kotík, Michael; Kočanová, Marcela; Marešová, Helena; Kyslík, Pavel

    2004-01-01

    Roč. 36, - (2004), s. 61-69 ISSN 1046-5928 Institutional research plan: CEZ:AV0Z5020903 Keywords : fed-batch * lactose * inclusion bodies Subject RIV: EE - Microbiology, Virology Impact factor: 1.336, year: 2004

  6. Dimensioning of aerated submerged fixed bed biofilm reactors based on a mathematical biofilm model applied to petrochemical wastewater - the link between theory and practice

    OpenAIRE

    Trojanowicz, Karol; Wójcik, Wtodzimierz

    2014-01-01

    The description of a biofilm mathematical model application for dimensioning an aerated fixed bed biofilm reactor (ASFBBR) for petrochemical wastewater polishing is presented. A simple one-dimensional model of biofilm, developed by P Harremöes, was chosen for this purpose. The model was calibrated and verified under conditions of oil-refinery effluent. The results of ASFBBR dimensioning on the basis of the biofilm model were compared with the bioreactor dimensions determined by application of...

  7. Alternating anoxic feast/aerobic famine condition for improving granular sludge formation in sequencing batch airlift reactor at reduced aeration rate.

    Science.gov (United States)

    Wan, Junfeng; Bessière, Yolaine; Spérandio, Mathieu

    2009-12-01

    In this study the influence of a pre-anoxic feast period on granular sludge formation in a sequencing batch airlift reactor is evaluated. Whereas a purely aerobic SBR was operated as a reference (reactor R2), another reactor (R1) was run with a reduced aeration rate and an alternating anoxic-aerobic cycle reinforced by nitrate feeding. The presence of pre-anoxic phase clearly improved the densification of aggregates and allowed granular sludge formation at reduced air flow rate (superficial air velocity (SAV)=0.63cms(-1)). A low sludge volume index (SVI(30)=45mLg(-1)) and a high MLSS concentration (9-10gL(-1)) were obtained in the anoxic/aerobic system compared to more conventional results for the aerobic reactor. A granular sludge was observed in the anoxic/aerobic system whilst only flocs were observed in the aerobic reference even when operated at a high aeration rate (SAV=2.83cms(-1)). Nitrification was maintained efficiently in the anoxic/aerobic system even when organic loading rate (OLR) was increased up to 2.8kgCODm(-3)d(-1). In the contrary nitrification was unstable in the aerobic system and dropped at high OLR due to competition between autotrophic and heterotrophic growth. The presence of a pre-anoxic period positively affected granulation process via different mechanisms: enhancing heterotrophic growth/storage deeper in the internal anoxic layer of granule, reducing the competition between autotrophic and heterotrophic growth. These processes help to develop dense granular sludge at a moderate aeration rate. This tends to confirm that oxygen transfer is the most limiting factor for granulation at reduced aeration. Hence the use of an alternative electron acceptor (nitrate or nitrite) should be encouraged during feast period for reducing energy demand of the granular sludge process.

  8. Development of a chemically defined platform fed-batch culture media for monoclonal antibody-producing CHO cell lines with optimized choline content.

    Science.gov (United States)

    Kuwae, Shinobu; Miyakawa, Ichiko; Doi, Tomohiro

    2018-01-11

    A chemically defined platform basal medium and feed media were developed using a single Chinese hamster ovary (CHO) cell line that produces a monoclonal antibody (mAb). Cell line A, which showed a peak viable cell density of 5.9 × 10 6  cells/mL and a final mAb titer of 0.5 g/L in batch culture, was selected for the platform media development. Stoichiometrically balanced feed media were developed using glucose as an indicator of cell metabolism to determine the feed rates of all other nutrients. A fed-batch culture of cell line A using the platform fed-batch medium yielded a 6.4 g/L mAb titer, which was 12-fold higher than that of the batch culture. To examine the applicability of the platform basal medium and feed media, three other cell lines (A16, B, and C) that produce mAbs were cultured using the platform fed-batch medium, and they yielded mAb titers of 8.4, 3.3, and 6.2 g/L, respectively. The peak viable cell densities of the three cell lines ranged from 1.3 × 10 7 to 1.8 × 10 7  cells/mL. These results show that the nutritionally balanced fed-batch medium and feeds worked well for other cell lines. During the medium development, we found that choline limitation caused a lower cell viability, a lower mAb titer, a higher mAb aggregate content, and a higher mannose-5 content. The optimal choline chloride to glucose ratio for the CHO cell fed-batch culture was determined. Our platform basal medium and feed media will shorten the medium-development time for mAb-producing cell lines.

  9. Fed-batch bioreactor performance and cell line stability evaluation of the artificial chromosome expression technology expressing an IgG1 in Chinese hamster ovary cells.

    Science.gov (United States)

    Combs, Rodney G; Yu, Erwin; Roe, Susanna; Piatchek, Michele Bailey; Jones, Heather L; Mott, John; Kennard, Malcolm L; Goosney, Danika L; Monteith, Diane

    2011-01-01

    The artificial chromosome expression (ACE) technology system uses an engineered artificial chromosome containing multiple site-specific recombination acceptor sites for the rapid and efficient construction of stable cell lines. The construction of Chinese hamster ovary(CHO) cell lines expressing an IgG1 monoclonal antibody (MAb) using the ACE system has been previously described (Kennard et al., Biotechnol Bioeng. 2009;104:540-553). To further demonstrate the manufacturing feasibility of the ACE system, four CHO cell lines expressing the human IgG1 MAb 4A1 were evaluated in batch and fed-batch shake flasks and in a 2-L fed-batch bioreactor. The batch shake flasks achieved titers between 0.7 and 1.1 g/L, whereas the fed-batch shake flask process improved titers to 2.5–3.0 g/L. The lead 4A1 ACE cell line achieved titers of 4.0 g/L with an average specific productivity of 40 pg/(cell day) when cultured in a non optimized 2-L fed-batch bioreactor using a completely chemically defined process. Generational stability characterization of the lead 4A1-expressing cell line demonstrated that the cell line was stable for up to 75 days in culture. Product quality attributes of the 4A1 MAb produced by the ACE system during the stability evaluation period were unchanged and also comparable to existing expression technologies such as the CHO-dhfr system. The results of this evaluation demonstrate that a clonal, stable MAb-expressing CHO cell line can be produced using ACE technology that performs competitively using a chemically defined fed-batch bioreactor process with comparable product quality attributes to cell lines generated by existing technologies.

  10. Biodegradable poly-ε-caprolactone microcarriers for efficient production of human mesenchymal stromal cells and secreted cytokines in batch and fed-batch bioreactors.

    Science.gov (United States)

    Lam, Alan Tin-Lun; Li, Jian; Toh, Jessica Pei-Wen; Sim, Eileen Jia-Hui; Chen, Allen Kuan-Liang; Chan, Jerry Kok-Yen; Choolani, Mahesh; Reuveny, Shaul; Birch, William R; Oh, Steve Kah-Weng

    2017-03-01

    Large numbers of human mesenchymal stromal cells (MSCs) used for a variety of applications in tissue engineering and cell therapy can be generated by scalable expansion in a bioreactor using microcarriers (MCs) systems. However, the enzymatic digestion process needed to detach cells from the growth surface can affect cell viability and potentially the potency and differentiation efficiency. Thus, the main aim of our study was to develop biocompatible and biodegradable MCs that can support high MSC yields while maintaining their differentiation capability and potency. After cell expansion, the cells that covered MCs can be directly implanted in vivo without the need for cell harvesting or use of scaffold. Poly-ε-caprolactone (PCL) is known as a biocompatible and biodegradable material. However, it cannot be used for generation of MCs because its high density (1.14 g/cm 3 ) would exclude its applicability for suspension MCs in stirred reactors. In this article, we describe expansion and potency of MSCs propagated on low-density (1.06 g/cm 3 ) porous PCL MCs coated with extracellular matrices (LPCLs) in suspended stirred reactors. Using these LPCLs, cell yields of about 4 × 10 4 cells/cm 2 and 7- to 10-fold increases were obtained using four different MSC lines (bone marrow, cord blood, fetal and Wharton's jelly). These yields were comparable with those obtained using non-degradable MCs (Cytodex 3) and higher than two-dimensional monolayer (MNL) cultures. A fed-batch process, which demonstrated faster cell expansion (4.5 × 10 4 cells/cm 2 in 5 days as compared with 7 days in batch culture) and about 70% reduction in growth media usage, was developed and scaled up from 100-mL spinner flask to 1-L controlled bioreactor. Surface marker expression, trilineage differentiation and clonogenic potential of the MSCs expanded on LPCL were not affected. Cytokine secretion kinetics, which occurred mostly during late logarithmic phase, was usually comparable with

  11. Metabolic Control in Mammalian Fed-Batch Cell Cultures for Reduced Lactic Acid Accumulation and Improved Process Robustness

    Directory of Open Access Journals (Sweden)

    Viktor Konakovsky

    2016-01-01

    Full Text Available Biomass and cell-specific metabolic rates usually change dynamically over time, making the “feed according to need” strategy difficult to realize in a commercial fed-batch process. We here demonstrate a novel feeding strategy which is designed to hold a particular metabolic state in a fed-batch process by adaptive feeding in real time. The feed rate is calculated with a transferable biomass model based on capacitance, which changes the nutrient flow stoichiometrically in real time. A limited glucose environment was used to confine the cell in a particular metabolic state. In order to cope with uncertainty, two strategies were tested to change the adaptive feed rate and prevent starvation while in limitation: (i inline pH and online glucose concentration measurement or (ii inline pH alone, which was shown to be sufficient for the problem statement. In this contribution, we achieved metabolic control within a defined target range. The direct benefit was two-fold: the lactic acid profile was improved and pH could be kept stable. Multivariate Data Analysis (MVDA has shown that pH influenced lactic acid production or consumption in historical data sets. We demonstrate that a low pH (around 6.8 is not required for our strategy, as glucose availability is already limiting the flux. On the contrary, we boosted glycolytic flux in glucose limitation by setting the pH to 7.4. This new approach led to a yield of lactic acid/glucose (Y L/G around zero for the whole process time and high titers in our labs. We hypothesize that a higher carbon flux, resulting from a higher pH, may lead to more cells which produce more product. The relevance of this work aims at feeding mammalian cell cultures safely in limitation with a desired metabolic flux range. This resulted in extremely stable, low glucose levels, very robust pH profiles without acid/base interventions and a metabolic state in which lactic acid was consumed instead of being produced from day 1. With

  12. Carbonaceous materials in petrochemical wastewater before and after treatment in an aerated submerged fixed-bed biofilm reactor

    Directory of Open Access Journals (Sweden)

    Trojanowicz Karol

    2016-09-01

    Full Text Available Results of the studies for determining fractions of organic contaminants in a pretreated petrochemical wastewater flowing into a pilot Aerated Submerged Fixed-Bed Biofilm Reactor (ASFBBR are presented and discussed. The method of chemical oxygen demand (COD fractionation consisted of physical tests and biological assays. It was found that the main part of the total COD in the petrochemical, pretreated wastewater was soluble organic substance with average value of 57.6%. The fractions of particulate and colloidal organic matter were found to be 31.8% and 10.6%, respectively. About 40% of COD in the influent was determined as readily biodegradable COD. The inert fraction of the soluble organic matter in the petrochemical wastewater constituted about 60% of the influent colloidal and soluble COD. Determination of degree of hydrolysis (DH of the colloidal fraction of COD was also included in the paper. The estimated value of DH was about 62%. Values of the assayed COD fractions were compared with the same parameters obtained for municipal wastewater by other authors.

  13. Production of sorption functional media (SFM) from clinoptilolite tailings and its performance investigation in a biological aerated filter (BAF) reactor

    International Nuclear Information System (INIS)

    Feng, Yan; Qi, Jingyao; Chi, Liying; Wang, Dong; Wang, Zhaoyang; Li, Ke; Li, Xin

    2013-01-01

    Highlights: ► Sorption functional media (SFM) were prepared using zeolite tailings. ► Two upflow BAFs were applied to treat municipal wastewater. ► SFM BAF brought a relative superiority to haydite reactor. ► SFM BAF has a stronger adaptability to low temperature (6–11°C) for NH 3 -N removal. ► The application provided a promising way in zeolite tailings utilization. -- Abstract: The few reuse and large stockpile of zeolite tailings led to a series of social and environmental problems. This study investigated the possibility of using the zeolite tailings as one of principal raw materials to prepare sorption functional media (SFM) by a high temperature sintering process. The SFM was used to serve as a biomedium in a biological aerated filter (BAF) reactor for domestic wastewater treatment, and its purification performance was examined. The physical, chemical and sorption properties of SFM were also determined. The microstructure of the SFM was analyzed by scanning electron microscopy (SEM). Results revealed that: (1) zeolite tailings could be used to produce the SFM under the optimal sintering parameters; (2) the sorption and desorption isotherm of ammonia nitrogen on SFM could be well described by the Langmuir formula; (3) in terms of removing organic matter, ammonia nitrogen, turbidity and colourity, the performance of the biofilter with SFM was superior to that with haydite; and (4) SFM BAF has a stronger adaptability to low temperature (6–11 °C) for NH 3 -N removal compared to haydite BAF. Therefore, the SFM produced from the zeolite tailings was suitable to serve as the biomedium in the domestic wastewater treatment

  14. Neural Network-Based State Estimation for a Closed-Loop Control Strategy Applied to a Fed-Batch Bioreactor

    Directory of Open Access Journals (Sweden)

    Santiago Rómoli

    2017-01-01

    Full Text Available The lack of online information on some bioprocess variables and the presence of model and parametric uncertainties pose significant challenges to the design of efficient closed-loop control strategies. To address this issue, this work proposes an online state estimator based on a Radial Basis Function (RBF neural network that operates in closed loop together with a control law derived on a linear algebra-based design strategy. The proposed methodology is applied to a class of nonlinear systems with three types of uncertainties: (i time-varying parameters, (ii uncertain nonlinearities, and (iii unmodeled dynamics. To reduce the effect of uncertainties on the bioreactor, some integrators of the tracking error are introduced, which in turn allow the derivation of the proper control actions. This new control scheme guarantees that all signals are uniformly and ultimately bounded, and the tracking error converges to small values. The effectiveness of the proposed approach is illustrated on the basis of simulated experiments on a fed-batch bioreactor, and its performance is compared with two controllers available in the literature.

  15. High level expression of Glomerella cingulata cutinase in dense cultures of Pichia pastoris grown under fed-batch conditions.

    Science.gov (United States)

    Seman, W M K Wan; Bakar, S A; Bukhari, N A; Gaspar, S M; Othman, R; Nathan, S; Mahadi, N M; Jahim, J; Murad, A M A; Bakar, F D Abu

    2014-08-20

    A Pichia pastoris transformant carrying the cutinase cDNA of Glomerella cingulata was over-expressed in a 5L bioreactor (2.0L working volume) under fed-batch conditions. Bioreactor experiments rely on varying selected parameters in repeated rounds of optimisation: here these included duration of induction, pH and temperature. Highest cell densities (320gL(-1) wet cell weight) with a cutinase production of 3800mgL(-1) and an activity of 434UmL(-1) were achieved 24h after induction with methanol in basal salt medium (at pH 5 and 28°C). Characterisation of the cutinase showed that it was stable between pH 6 and pH 11, had an optimum pH of 8.0 and retained activity for 30min at 50°C (optimum temperature 25°C).The preferred substrates of G. cingulata cutinase were the medium- to long-chain ρ-nitrophenyl esters of ρ-nitrophenylcaprylate (C8), ρ-nitrophenyllaurate (C12) and ρ-nitrophenylmyristate (C14), with the highest catalytic efficiency, kcat/Km of 7.7±0.7mM(-1)s(-1) for ρ-nitrophenylcaprylate. Microscopic analyses showed that the G. cingulata cutinase was also capable of depolymerising the high molecular weight synthetic polyester, polyethylene terephthalate. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Biosynthesis of Citric Acid from Glycerol by Acetate Mutants of Yarrowia lipolytica in Fed-Batch Fermentation

    Directory of Open Access Journals (Sweden)

    Anita Rywińska

    2009-01-01

    Full Text Available Pure and crude glycerol from biodiesel production have been used as substrates for citric acid production by acetate-negative mutants of Yarrowia lipolytica in fed-batch fermentation. Both the final concentration and the yield of the product were the highest when Y. lipolytica Wratislavia AWG7 strain was used in the culture with pure or crude glycerol. With a medium containing 200 g/L of glycerol, production reached a maximum of citric acid of 139 g/L after 120 h. This high yield of the product (up to 0.69 g of citric acid per gram of glycerol consumed was achieved with both pure and crude glycerol. Lower yield of citric acid in the culture with Y. lipolytica Wratislavia K1 strain (about 0.45 g/g resulted from increased erythritol concentrations (up to 40 g/L, accumulated simultaneously with the citric acid. The concentration of isocitric acid, a by-product in this fermentation, was very low, in the range from 2.6 to 4.6 g/L.

  17. Production of carotenoids and lipids by Rhodococcus opacus PD630 in batch and fed-batch culture.

    Science.gov (United States)

    Thanapimmetha, Anusith; Suwaleerat, Tharatron; Saisriyoot, Maythee; Chisti, Yusuf; Srinophakun, Penjit

    2017-01-01

    Production of carotenoids by Rhodococcus opacus PD630 is reported. A modified mineral salt medium formulated with glycerol as an inexpensive carbon source was used for the fermentation. Ammonium acetate was the nitrogen source. A dry cell mass concentration of nearly 5.4 g/L could be produced in shake flasks with a carotenoid concentration of 0.54 mg/L. In batch culture in a 5 L bioreactor, without pH control, the maximum dry biomass concentration was ~30 % lower than in shake flasks and the carotenoids concentration was 0.09 mg/L. Both the biomass concentration and the carotenoids concentration could be raised using a fed-batch operation with a feed mixture of ammonium acetate and acetic acid. With this strategy, the final biomass concentration was 8.2 g/L and the carotenoids concentration was 0.20 mg/L in a 10-day fermentation. A control of pH proved to be unnecessary for maximizing the production of carotenoids in this fermentation.

  18. Combined data preprocessing and multivariate statistical analysis characterizes fed-batch culture of mouse hybridoma cells for rational medium design.

    Science.gov (United States)

    Selvarasu, Suresh; Kim, Do Yun; Karimi, Iftekhar A; Lee, Dong-Yup

    2010-10-01

    We present an integrated framework for characterizing fed-batch cultures of mouse hybridoma cells producing monoclonal antibody (mAb). This framework systematically combines data preprocessing, elemental balancing and statistical analysis technique. Initially, specific rates of cell growth, glucose/amino acid consumptions and mAb/metabolite productions were calculated via curve fitting using logistic equations, with subsequent elemental balancing of the preprocessed data indicating the presence of experimental measurement errors. Multivariate statistical analysis was then employed to understand physiological characteristics of the cellular system. The results from principal component analysis (PCA) revealed three major clusters of amino acids with similar trends in their consumption profiles: (i) arginine, threonine and serine, (ii) glycine, tyrosine, phenylalanine, methionine, histidine and asparagine, and (iii) lysine, valine and isoleucine. Further analysis using partial least square (PLS) regression identified key amino acids which were positively or negatively correlated with the cell growth, mAb production and the generation of lactate and ammonia. Based on these results, the optimal concentrations of key amino acids in the feed medium can be inferred, potentially leading to an increase in cell viability and productivity, as well as a decrease in toxic waste production. The study demonstrated how the current methodological framework using multivariate statistical analysis techniques can serve as a potential tool for deriving rational medium design strategies. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Biotransformation of sweet lime pulp waste into high-quality nanocellulose with an excellent productivity using Komagataeibacter europaeus SGP37 under static intermittent fed-batch cultivation.

    Science.gov (United States)

    Dubey, Swati; Singh, Jyoti; Singh, R P

    2018-01-01

    Herein, sweet lime pulp waste (SLPW) was utilized as a low- or no-cost feedstock for the production of bacterial nanocellulose (BNC) alone and in amalgamation with other nutritional supplements by the isolate K. europaeus SGP37 under static batch and static intermittent fed-batch cultivation. The highest yield (26.2±1.50gL -1 ) was obtained in the hot water extract of SLPW supplemented with the components of HS medium, which got further boosted to 38±0.85gL -1 as the cultivation strategy was shifted from static batch to static intermittent fed-batch. BNC obtained from various SLPW medium was similar or even superior to that obtained with standard HS medium in terms of its physicochemical properties. The production yields of BNC thus obtained are significantly higher and fit well in terms of industrial scale production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Systematic optimization of fed-batch simultaneous saccharification and fermentation at high-solid loading based on enzymatic hydrolysis and dynamic metabolic modeling of Saccharomyces cerevisiae.

    Science.gov (United States)

    Unrean, Pornkamol; Khajeeram, Sutamat; Laoteng, Kobkul

    2016-03-01

    An integrative simultaneous saccharification and fermentation (SSF) modeling is a useful guiding tool for rapid process optimization to meet the techno-economic requirement of industrial-scale lignocellulosic ethanol production. In this work, we have developed the SSF model composing of a metabolic network of a Saccharomyces cerevisiae cell associated with fermentation kinetics and enzyme hydrolysis model to quantitatively capture dynamic responses of yeast cell growth and fermentation during SSF. By using model-based design of feeding profiles for substrate and yeast cell in the fed-batch SSF process, an efficient ethanol production with high titer of up to 65 g/L and high yield of 85 % of theoretical yield was accomplished. The ethanol titer and productivity was increased by 47 and 41 %, correspondingly, in optimized fed-batch SSF as compared to batch process. The developed integrative SSF model is, therefore, considered as a promising approach for systematic design of economical and sustainable SSF bioprocessing of lignocellulose.

  1. ON-LINE MONITORING OF BIOMASS CONCENTRATION BASED ON A CAPACITANCE SENSOR: ASSESSING THE METHODOLOGY FOR DIFFERENT BACTERIA AND YEAST HIGH CELL DENSITY FED-BATCH CULTURES

    Directory of Open Access Journals (Sweden)

    A. C. L. Horta

    2015-12-01

    Full Text Available Abstract The performance of an in-situ capacitance sensor for on-line monitoring of biomass concentration was evaluated for some of the most important microorganisms in the biotechnology industry: Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris and Bacillus megaterium. A total of 33 batch and fed-batch cultures were carried out in a bench-scale bioreactor and biomass formation trends were followed by dielectric measurements during the growth phase as well as the induction phase, for 5 recombinant E. coli strains. Permittivity measurements and viable cellular concentrations presented a linear correlation for all the studied conditions. In addition, the permittivity signal was further used for inference of the cellular growth rate. The estimated specific growth rates mirrored the main trends of the metabolic states of the different cells and they can be further used for setting-up control strategies in fed-batch cultures.

  2. Quantitative evaluation of yeast's requirement for glycerol formation in very high ethanol performance fed-batch process

    Directory of Open Access Journals (Sweden)

    Nevoigt Elke

    2010-05-01

    Full Text Available Abstract Background Glycerol is the major by-product accounting for up to 5% of the carbon in Saccharomyces cerevisiae ethanolic fermentation. Decreasing glycerol formation may redirect part of the carbon toward ethanol production. However, abolishment of glycerol formation strongly affects yeast's robustness towards different types of stress occurring in an industrial process. In order to assess whether glycerol production can be reduced to a certain extent without jeopardising growth and stress tolerance, the yeast's capacity to synthesize glycerol was adjusted by fine-tuning the activity of the rate-controlling enzyme glycerol 3-phosphate dehydrogenase (GPDH. Two engineered strains whose specific GPDH activity was significantly reduced by two different degrees were comprehensively characterized in a previously developed Very High Ethanol Performance (VHEP fed-batch process. Results The prototrophic strain CEN.PK113-7D was chosen for decreasing glycerol formation capacity. The fine-tuned reduction of specific GPDH activity was achieved by replacing the native GPD1 promoter in the yeast genome by previously generated well-characterized TEF promoter mutant versions in a gpd2Δ background. Two TEF promoter mutant versions were selected for this study, resulting in a residual GPDH activity of 55 and 6%, respectively. The corresponding strains were referred to here as TEFmut7 and TEFmut2. The genetic modifications were accompanied to a strong reduction in glycerol yield on glucose; the level of reduction compared to the wild-type was 61% in TEFmut7 and 88% in TEFmut2. The overall ethanol production yield on glucose was improved from 0.43 g g-1 in the wild type to 0.44 g g-1 measured in TEFmut7 and 0.45 g g-1 in TEFmut2. Although maximal growth rate in the engineered strains was reduced by 20 and 30%, for TEFmut7 and TEFmut2 respectively, strains' ethanol stress robustness was hardly affected; i.e. values for final ethanol concentration (117 ± 4 g

  3. ENHANCED PRODUCTION OF POLYHYDROXYBUTYRATE (PHB FROM AGRO-INDUSTRIAL WASTES; FED-BATCH CULTIVATION AND STATISTICAL MEDIA OPTIMIZATION

    Directory of Open Access Journals (Sweden)

    Mahmoud M. Berekaa

    2016-06-01

    Full Text Available Bacillus megaterium SW1-2 showed enhanced growth and polyhydroxybutyrate (PHB production during cultivation on date palm syrup (DEPS or sugar cane molasses. FT-IR and NMR spectroscopic analyses of the polymer accumulated during growth on DEPS revealed specific absorption peaks characteristic for PHB. 1.65 g/L of PHB (56.9% CDW was produced during growth on medium supplemented with 2 g/L of DEPS. Approximately, 36.1% CDW of PHB were recorded during growth on sugar cane molasses. Six runs of different fed-batch cultivation strategies were tested, the optimal run showed approximately 6.87-fold increase. Modified E2 medium was prefered recording 10.11 and 11.34 g/L of total PHB produced for runs 1 and 2, at the end of 96 h incubation period, respectively. Decrease in PHB was recorded during growth on complex medium (run 3 and run 4. In another independent optimization strategy, ten variables were concurrently examined for their significance on PHB production by Plackett-Burman statistical design for the first time. Among variables, DEPS-II and inoculum concentration followed by KH2PO4 and (NH42SO4 were found to be the most significant variables encourage PHB production. Indeed, DEPS-II or Fresh syrup is more significant than commercial syrup DEPS-I (p-value= 0.05. RPM, incubation period have highly negative effect on PHB production. Role of ago-industrial wastes, especially DEPS, in enhancement of PHB production was closely discussed.

  4. Systematic development of a two-stage fed-batch process for lipid accumulation in Rhodotorula glutinis.

    Science.gov (United States)

    Lorenz, Eric; Runge, Dennis; Marbà-Ardébol, Anna-Maria; Schmacht, Maximilian; Stahl, Ulf; Senz, Martin

    2017-03-20

    The application of oleaginous yeast cells as feed supplement, for instance in aqua culture, can be a meaningful alternative for fish meal and oil additives. Therefore, a two-stage fed-batch process split into growth and lipogenesis phase was systematically developed to enrich the oleaginous yeast Rhodotorula glutinis Rh-00301 with high amounts of lipids at industrial relevant biomasses. Thereby, the different carbon sources glucose, sucrose and glycerol were investigated concerning their abilities to serve as a suited raw material for growth and/or lipid accumulation. With the background of economic efficiency C/N ratios of 40, 50 and 70 were investigated as well. It became apparent that glycerol is an improper carbon source most likely because of the passive diffusion of this compound caused by absence of active transporters. The opposite was observed for sucrose, which is the main carbon source in molasses. Finally, an industrially applicable process was successfully established that ensures biomasses of 106±2gL -1 combined with an attractive lipid content of 63±6% and a high lipid-substrate yield (Y L/S ) of 0.18±0.02gg -1 in a short period of time (84h). Furthermore, during these studies a non-negligible formation of the by-product glycerol was detected. This characteristic of R. glutinis is discussed related to other oleaginous yeasts, where glycerol formation is absent. Nevertheless, due to modifications in the feeding procedure, the formation of glycerol could have been reduced but not avoided. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. A fed-batch strategy to produce high poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) terpolymer yield with enhanced mechanical properties in bioreactor.

    Science.gov (United States)

    Aziz, Nursolehah Abd; Huong, Kai-Hee; Sipaut, Coswald Stephen; Amirul, A A

    2017-11-01

    This study reports an efficient fed-batch strategy to improve poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) [P(3HB-co-3HV-co-4HB)] terpolymer production by Cupriavidus sp. USMAA2-4 with enhanced mechanical properties in bioreactor. The cultivations have been performed by combining oleic acid with γ-butyrolactone at different concentration ratios with 1-pentanol at a fixed concentration. The batch and fed-batch fermentations have resulted in P(3HB-co-3HV-co-4HB) with compositions of 9-35 mol% 3HV and 4-24 mol% 4HB monomers. The DO-stat fed-batch fermentation strategies have significantly improved the production with a maximum 4.4-fold increment of cell dry weight (CDW). Besides, appropriate feeding of the substrates has resulted in an increment of terpolymer productivity from 0.086-0.347 g/L/h, with a significantly shortened cultivation time. The bacterial growth and terpolymer formation have been found to be affected by the concentration of carbon sources supplied. Characterization of P(3HB-co-3HV-co-4HB) has demonstrated that incorporation of 3HV and 4HB monomer has significantly improved the physical and thermodynamic properties of the polymers, by reducing the polymer's crystallinity. The tensile strength, Young's modulus of the terpolymer has been discovered to increase with the increase of M w . The fed-batch fermentation strategies employed in this study have resulted in terpolymers with a range of flexible materials having improved tensile strength and Young's modulus as compared to the terpolymer produced from batch fermentation. Possession of lower melting temperature indicates an enhanced thermal stability which broadens the polymer processing window.

  6. User-friendly optimization approach of fed-batch fermentation conditions for the production of iturin A using artificial neural networks and support vector machine

    Directory of Open Access Journals (Sweden)

    Fudi Chen

    2015-07-01

    Conclusion: According to the modeling results, the GRNN is considered as the most suitable ANN model for the design of the fed-batch fermentation conditions for the production of iturin A because of its high robustness and precision, and the SVM is also considered as a very suitable alternative model. Under the tolerance of 30%, the prediction accuracies of the GRNN and SVM are both 100% respectively in repeated experiments.

  7. Acquisition of data from on-line laser turbidimeter and calculation of some kinetic variables in computer-coupled automated fed-batch culture

    International Nuclear Information System (INIS)

    Kadotani, Y.; Miyamoto, K.; Mishima, N.; Kominami, M.; Yamane, T.

    1995-01-01

    Output signals of a commercially available on-line laser turbidimeter exhibit fluctuations due to air and/or CO 2 bubbles. A simple data processing algorithm and a personal computer software have been developed to smooth the noisy turbidity data acquired, and to utilize them for the on-line calculations of some kinetic variables involved in batch and fed-batch cultures of uniformly dispersed microorganisms. With this software, about 10 3 instantaneous turbidity data acquired over 55 s are averaged and convert it to dry cell concentration, X, every minute. Also, volume of the culture broth, V, is estimated from the averaged output data of weight loss of feed solution reservoir, W, using an electronic balance on which the reservoir is placed. Then, the computer software is used to perform linear regression analyses over the past 30 min of the total biomass, VX, the natural logarithm of the total biomass, ln(VX), and the weight loss, W, in order to calculate volumetric growth rate, d(VX)/dt, specific growth rate, μ [ = dln(VX)/dt] and the rate of W, dW/dt, every minute in a fed-batch culture. The software used to perform the first-order regression analyses of VX, ln(VX) and W was applied to batch or fed-batch cultures of Escherichia coli on minimum synthetic or natural complex media. Sample determination coefficients of the three different variables (VX, ln(VX) and W) were close to unity, indicating that the calculations are accurate. Furthermore, growth yield, Y x/s , and specific substrate consumption rate, q sc , were approximately estimated from the data, dW/dt and in a ‘balanced’ fed-batch culture of E. coli on the minimum synthetic medium where the computer-aided substrate-feeding system automatically matches well with the cell growth. (author)

  8. Dextran Utilization During Its Synthesis by Weissella cibaria RBA12 Can Be Overcome by Fed-Batch Fermentation in a Bioreactor.

    Science.gov (United States)

    Baruah, Rwivoo; Deka, Barsha; Kashyap, Niharika; Goyal, Arun

    2018-01-01

    Weissella cibaria RBA12 produced a maximum of 9 mg/ml dextran (with 90% efficiency) using shake flask culture under the optimized concentration of medium components viz. 2% (w/v) of each sucrose, yeast extract, and K 2 HPO 4 after incubation at optimized conditions of 20 °C and 180 rpm for 24 h. The optimized medium and conditions were used for scale-up of dextran production from Weissella cibaria RBA12 in 2.5-l working volume under batch fermentation in a bioreactor that yielded a maximum of 9.3 mg/ml dextran (with 93% efficiency) at 14 h. After 14 h, dextran produced was utilized by the bacterium till 18 h in its stationary phase under sucrose depleted conditions. Dextran utilization was further studied by fed-batch fermentation using sucrose feed. Dextran on production under fed-batch fermentation in bioreactor gave 35.8 mg/ml after 32 h. In fed-batch mode, there was no decrease in dextran concentration as observed in the batch mode. This showed that the utilization of dextran by Weissella cibaria RBA12 is initiated when there is sucrose depletion and therefore the presence of sucrose can possibly overcome the dextran hydrolysis. This is the first report of utilization of dextran, post-sucrose depletion by Weissella sp. studied in bioreactor.

  9. An optimized fed-batch culture strategy integrated with a one-step fermentation improves L-lactic acid production by Rhizopus oryzae.

    Science.gov (United States)

    Fu, Yongqian; Sun, Xiaolong; Zhu, Huayue; Jiang, Ru; Luo, Xi; Yin, Longfei

    2018-05-21

    In previous work, we proposed a novel modified one-step fermentation fed-batch strategy to efficiently generate L-lactic acid (L-LA) using Rhizopus oryzae. In this study, to further enhance efficiency of L-LA production through one-step fermentation in fed-batch cultures, we systematically investigated the initial peptone- and glucose-feeding approaches, including different initial peptone and glucose concentrations and maintained residual glucose levels. Based on the results of this study, culturing R. oryzae with initial peptone and glucose concentrations of 3.0 and 50.0 g/l, respectively, using a fed-batch strategy is an effective approach of producing L-LA through one-step fermentation. Changing the residual glucose had no obvious effect on the generation of L-LA. We determined the maximum LA production and productivity to be 162 g/l and 6.23 g/(l·h), respectively, during the acid production stage. Compared to our previous work, there was almost no change in L-LA production or yield; however, the productivity of L-LA increased by 14.3%.

  10. [Optimization of cultural condition of genetic engineering strain for antibiotic peptide adenoregulin and research on its fed-batch cultivation].

    Science.gov (United States)

    Zhou, Yu-Xun; Cao, Wei; Wei, Dong-Zhi; Luo, Qing-Ping; Wang, Jin-Zhi

    2005-07-01

    33 amino acid antibiotic peptide adenoregulin (ADR), which were firstly isolated from the skin of South America arboreal frog Phyllomedusa bicolor, forms alpha-helix amphipathic structure in apolar medium and has a wide spectrum of antimicrobial activity and high potency of lytic ability. Adr gene was cloned in pET32a and transformed into Escherichia coli BL21(DE3) . The cultural and inductive conditions of E. coli BL21(DE3)/pET32a-adr have been optimized. The effect of three factors which were time point of induction, concentration of IPTG in the culture and time of induction on the expression level of Trx-ADR was investigated. The results indicated that the expression level was affected by the time point of induction most predominantly. 9 veriaties of media in which BL21 (DE3)/pET32a-adr was cultured and induced were tested to achieve high expression level of target protein. It was found that glucose in the medium played an important role in keeping stable and high expression level of Trx-ADR. The optimal inductive condition is as follows: the culture medium is 2 x YT + 0.5% glucose, the time point of induction is OD600 = 0.9, the final concentration of IPTG in the culture is 0.1 mmol/L and the induction time is 4 h. BL21 (DE3)/pET32a-adr was cultivated according to the strategy of constant pH at early stage and exponential feeding at later stage to obtain high cell density. During the entire fed-batch phase, by controlling the feeding of glucose, the specific growth rate of the culture was controlled at about 0.15 h(-1), the accumulation of acetic acid was controlled at low level (<2 g/L), but the plasmid stability could not be maintained well. At the end of the cultivation, 40% of the bacteria in the culture lost their plasmids. As a result, the expression level of the target protein declined dramatically, but 90% of Trx-ADR was in soluble form. The expressed fusion protein showed no antibacterial activity, while the native form of ADR lysed from Trx-ADR showed

  11. Transformation and fate of 2,4,6-trinitrotoluene (TNT) in anaerobic bioslurry reactors under various aeration schemes: implications for the decontamination of soils.

    Science.gov (United States)

    Newcombe, David A; Crawford, Ronald L

    2007-12-01

    Energetic compounds have been used in a variety of industrial and military applications worldwide leading to widespread environmental contamination. Many of these compounds are toxic and resist degradation by oxidative enzymes resulting in a need for alternative remediation methods. It has been shown that trinitrotoluene (TNT)-contaminated soil subjected to treatment in strictly anaerobic bioreactors results in tight binding of TNT transformation products to soil organic matter. The research presented here examined the fate of TNT and its metabolites in bioreactors under three different aeration regimes. In all treatment regimes, the typical metabolites of aminodinitrotoluenes and diaminonitrotoluenes were observed prior to irreversible binding into the soil fraction of the slurry. Significant transformation of TNT into organic acids or simple diols, as others report in prior work, was not observed in any of the treatments and is an unlikely fate of TNT in anaerobic soil slurries. These results indicate that aeration does not dramatically affect transformation or fate of TNT in reactor systems that receive a rich carbon source but does affect the rate at which metabolites become tightly bound to the soil. The most rapid transformations and lowest redox potentials were observed in reactors in which an aerobic headspace was maintained suggesting that aerobes play a role in establishing conditions that are most conducive to TNT reduction.

  12. Aeration control by monitoring the microbiological activity using fuzzy logic diagnosis and control. Application to a complete autotrophic nitrogen removal reactor

    DEFF Research Database (Denmark)

    Boiocchi, Riccardo; Mauricio Iglesias, Miguel; Vangsgaard, Anna Katrine

    2015-01-01

    Complete Autotrophic Nitrogen Removal (CANR) is a novel process where ammonia is converted to nitrogen gas by different microbial groups. The performance of the process can be compromised by an unbalanced activity of the biomass caused by disturbances or non-optimal operational conditions...... microbial groups on the other hand, the diagnosis provides information on: nitritation, nitratation, anaerobic ammonium oxidation and overall autotrophic nitrogen removal. These four results give insight into the state of the process and are used as inputs for the controller that manipulates the aeration...... to the reactor.The diagnosis tool was first evaluated using 100 days of real process operation data obtained from a lab-scale single-stage autotrophic nitrogen removing reactor. This evaluation revealed that the fuzzy logic diagnosis is able to provide a realistic description of the microbiological state...

  13. Improved productivity of poly (3-hydroxybutyrate) (PHB) in thermophilic Chelatococcus daeguensis TAD1 using glycerol as the growth substrate in a fed-batch culture.

    Science.gov (United States)

    Cui, Bin; Huang, Shaobin; Xu, Fuqian; Zhang, Ruijian; Zhang, Yongqing

    2015-07-01

    A particularly successful polyhydroxyalkanoate (PHA) in industrial applications is poly (3-hydroxybutyrate) (PHB). However, one of the major obstacles for wider application of PHB is the cost of its production and purification. Therefore, it is desirable to discover a method for producing PHB in large quantities at a competitive price. Glycerol is a cheap and widely used carbon source that can be applied in PHB production process. There are numerous advantages to operating fermentation at elevated temperatures; only several thermophilic bacteria are able to accumulate PHB when glycerol is the growth substrate. Here, we report on the possibility of increasing PHB production at low cost using thermophilic Chelatococcus daeguensis TAD1 when glycerol is the growth substrate in a fed-batch culture. We found that (1) excess glycerol inhibited PHB accumulation and (2) organic nitrogen sources, such as tryptone and yeast extract, promoted the growth of C. daeguensis TAD1. In the batch fermentation experiments, we found that using glycerol at low concentrations as the sole carbon source, along with the addition of mixed nitrate (NH4Cl, tryptone, and yeast extract), stimulated PHB accumulation in C. daeguensis TAD1. The results showed that the PHB productivity decreased in the following order: two-stage fed-batch fermentation > fed-batch fermentation > batch fermentation. In optimized culture conditions, a PHB amount of 17.4 g l(-1) was obtained using a two-stage feeding regimen, leading to a productivity rate of 0.434 g l(-1) h(-1), which is the highest productivity rate reported for PHB to date. This high PHB biosynthetic productivity could decrease the total production cost, allowing for further development of industrial applications of PHB.

  14. Structure of nitrogen-converting communities induced by hydraulic retention time and COD/N ratio in constantly aerated granular sludge reactors treating digester supernatant.

    Science.gov (United States)

    Cydzik-Kwiatkowska, Agnieszka; Rusanowska, Paulina; Zielińska, Magdalena; Bernat, Katarzyna; Wojnowska-Baryła, Irena

    2014-02-01

    This study investigated how hydraulic retention time (HRT) and COD/N ratio affect nitrogen-converting consortia in constantly aerated granules treating high-ammonium digester supernatant. Three HRTs (10, 13, 19 h) were tested at COD/N ratios of 4.5 and 2.3. Denaturing gradient gel electrophoresis and relative real-time PCR were used to characterize the microbial communities. When changes in HRT and COD/N increased nitrogen loading, the ratio of the relative abundance of aerobic to anaerobic ammonium-oxidizers decreased. The COD/N ratio determined the species composition of the denitrifiers; however, Thiobacillus denitrificans, Pseudomonas denitrificans and Azoarcus sp. showed a high tolerance to the environmental conditions and occurred in the granules from all reactors. Denitrifier genera that support granule formation were identified, such as Pseudomonas, Shinella, and Flavobacterium. In aerated granules, nirK-possessing bacteria were more diverse than nirS-possessing bacteria. At a low COD/N ratio, N2O-reducer diversity increased because of the presence of bacteria known as aerobic denitrifiers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Characteristics of Corn Stover Pretreated with Liquid Hot Water and Fed-Batch Semi-Simultaneous Saccharification and Fermentation for Bioethanol Production

    Science.gov (United States)

    Li, Xuezhi; Lu, Jie; Zhao, Jian; Qu, Yinbo

    2014-01-01

    Corn stover is a promising feedstock for bioethanol production because of its abundant availability in China. To obtain higher ethanol concentration and higher ethanol yield, liquid hot water (LHW) pretreatment and fed-batch semi-simultaneous saccharification and fermentation (S-SSF) were used to enhance the enzymatic digestibility of corn stover and improve bioconversion of cellulose to ethanol. The results show that solid residues from LHW pretreatment of corn stover can be effectively converted into ethanol at severity factors ranging from 3.95 to 4.54, and the highest amount of xylan removed was approximately 89%. The ethanol concentrations of 38.4 g/L and 39.4 g/L as well as ethanol yields of 78.6% and 79.7% at severity factors of 3.95 and 4.54, respectively, were obtained by fed-batch S-SSF in an optimum conditions (initial substrate consistency of 10%, and 6.1% solid residues added into system at the prehydrolysis time of 6 h). The changes in surface morphological structure, specific surface area, pore volume and diameter of corn stover subjected to LHW process were also analyzed for interpreting the possible improvement mechanism. PMID:24763192

  16. Kinetics of sugars consumption and ethanol inhibition in carob pulp fermentation by Saccharomyces cerevisiae in batch and fed-batch cultures.

    Science.gov (United States)

    Lima-Costa, Maria Emília; Tavares, Catarina; Raposo, Sara; Rodrigues, Brígida; Peinado, José M

    2012-05-01

    The waste materials from the carob processing industry are a potential resource for second-generation bioethanol production. These by-products are small carob kibbles with a high content of soluble sugars (45-50%). Batch and fed-batch Saccharomyces cerevisiae fermentations of high density sugar from carob pods were analyzed in terms of the kinetics of sugars consumption and ethanol inhibition. In all the batch runs, 90-95% of the total sugar was consumed and transformed into ethanol with a yield close to the theoretical maximum (0.47-0.50 g/g), and a final ethanol concentration of 100-110 g/l. In fed-batch runs, fresh carob extract was added when glucose had been consumed. This addition and the subsequent decrease of ethanol concentrations by dilution increased the final ethanol production up to 130 g/l. It seems that invertase activity and yeast tolerance to ethanol are the main factors to be controlled in carob fermentations. The efficiency of highly concentrated carob fermentation makes it a very promising process for use in a second-generation ethanol biorefinery.

  17. Fed batch enzymatic saccharification of food waste improves the sugar concentration in the hydrolysates and eventually the ethanol fermentation by Saccharomyces cerevisiae H058

    Directory of Open Access Journals (Sweden)

    Shoubao Yan

    2012-04-01

    Full Text Available The enzymatic hydrolysis of food waste by commercially available enzymes and the subsequent ethanol fermentation of the hydrolysates by Saccharomyces cerecisiae H058 were studied in this work. The optimum batch enzymatic conditions were found to be saccharification pH of 4.5, temperature of 55!, glucoamylase concentration of 120 u/g, α-amylase concentration of 10 u/g, solid-liquid ratio of 1: 0.75 (w/w. Fed batch hydrolysis process was started with a solid-liquid ratio of 1: 1 (w/w, with solid food waste added at time lapse of 2 h to get a final solid-liquid ratio of 1: 0.5 (w/w. After 4 h of reaction, the reducing sugar concentration reached 194.43 g/L with a enzymatic digestibility of 93.12%. Further fermentation of the batch and fed batch enzymatic hydrolysates, which contained reducing sugar concentration of 131.41 and 194.43 g/L respectively, was performed using Saccharomyces cerevisiae H058, 62.93 and 90.72 g/L ethanol was obtained within 48 h.

  18. Semi-industrial scale (30 m3) fed-batch fermentation for the production of D-lactate by Escherichia coli strain HBUT-D15.

    Science.gov (United States)

    Fu, Xiangmin; Wang, Yongze; Wang, Jinhua; Garza, Erin; Manow, Ryan; Zhou, Shengde

    2017-02-01

    D(-)-lactic acid is needed for manufacturing of stereo-complex poly-lactic acid polymer. Large scale D-lactic acid fermentation, however, has yet to be demonstrated. A genetically engineered Escherichia coli strain, HBUT-D, was adaptively evolved in a 15% calcium lactate medium for improved lactate tolerance. The resulting strain, HBUT-D15, was tested at a lab scale (7 L) by fed-batch fermentation with up to 200 g L -1 of glucose, producing 184-191 g L -1 of D-lactic acid, with a volumetric productivity of 4.38 g L -1  h -1 , a yield of 92%, and an optical purity of 99.9%. The HBUT-D15 was then evaluated at a semi-industrial scale (30 m 3 ) via fed-batch fermentation with up to 160 g L -1 of glucose, producing 146-150 g L -1 of D-lactic acid, with a volumetric productivity of 3.95-4.29 g L -1  h -1 , a yield of 91-94%, and an optical purity of 99.8%. These results are comparable to that of current industrial scale L(+)-lactic acid fermentation.

  19. Experimental evaluation of the oxygen transfer in bubble aeration systems. Full scale experiences in lengthened activated sludge reactors

    International Nuclear Information System (INIS)

    Andreottola, G.; Ragazzi, M.; Tatano, F.

    1999-01-01

    The results of some full-scale oxygen transfer measurements conduced at the lengthened activate sludge tanks of two WWTPs of Trentino Region, are presented and discussed. As far at the tests in clean water are concerned, the non-liner regression method seems non accurate; important conclusion on the correlation between oxygen transfer process and typical parameters (i.e., fine-bubble diffusers, specific air flux) are derived. As far as the test in the wastewater is concerned, an increase of α-value from the inlet to the end of aeration tanks has been observed in the 'Andalo' WWTP [it

  20. The influence of TiO2 and aeration on the kinetics of electrochemical oxidation of phenol in packed bed reactor

    International Nuclear Information System (INIS)

    Wang Lizhang; Zhao Yuemin; Fu Jianfeng

    2008-01-01

    The electrochemical oxidation of phenolic wastewater in a lab-scale reactor, packed into granular activated carbon (GAC) with Ti/SnO 2 anodes and stainless steel cathodes, was interpreted in this study. GAC saturated rapidly if it was only used as sorbent, but application of suitable electric energy for the system simultaneously could recover the adsorption ability of GAC and maintain the continuous running effectively. The titanium dioxide (TiO 2 ) as catalyst and airflow were also applied to the electrochemical reactor to examine the enhancement for phenol oxidation process. Results revealed that the electrochemical degradation of phenol could be reasonably described by first-order kinetics. In addition, it was illustrated that acid region, increased voltage, more dosage of TiO 2 and higher aeration intensity were all beneficial parameters for phenol oxidation rates. By inspecting the relationship between the rate constants (k) and influencing factors, respectively, an overall kinetic model for phenol oxidation was proposed. The kinetics obtained from the experiments under corresponding electrochemical conditions could provide an accurate estimation of phenol concentration effluent and better design of the packed bed reactor

  1. The influence of TiO{sub 2} and aeration on the kinetics of electrochemical oxidation of phenol in packed bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wang Lizhang [College of Environment and Spatial Informatics, China University of Mining and Technology, South Jiefang Road, Quanshan District, Xuzhou City, Jiangsu 221008 (China)], E-mail: wlzh0731@126.com; Zhao Yuemin [School of Chemical Engineering and Technology, China University of Mining and Technology, South Jiefang Road, Quanshan District, Xuzhou City, Jiangsu 221008 (China)], E-mail: ymzhao@cumt.edu.cn; Fu Jianfeng [Department of Environmental Engineering, Southeast University, Nanjing City, Jiangsu 210096 (China)

    2008-12-30

    The electrochemical oxidation of phenolic wastewater in a lab-scale reactor, packed into granular activated carbon (GAC) with Ti/SnO{sub 2} anodes and stainless steel cathodes, was interpreted in this study. GAC saturated rapidly if it was only used as sorbent, but application of suitable electric energy for the system simultaneously could recover the adsorption ability of GAC and maintain the continuous running effectively. The titanium dioxide (TiO{sub 2}) as catalyst and airflow were also applied to the electrochemical reactor to examine the enhancement for phenol oxidation process. Results revealed that the electrochemical degradation of phenol could be reasonably described by first-order kinetics. In addition, it was illustrated that acid region, increased voltage, more dosage of TiO{sub 2} and higher aeration intensity were all beneficial parameters for phenol oxidation rates. By inspecting the relationship between the rate constants (k) and influencing factors, respectively, an overall kinetic model for phenol oxidation was proposed. The kinetics obtained from the experiments under corresponding electrochemical conditions could provide an accurate estimation of phenol concentration effluent and better design of the packed bed reactor.

  2. Aeration-Controlled Formation of Acid in Heterolactic Fermentations

    DEFF Research Database (Denmark)

    Adler-Nissen, Jens

    1994-01-01

    fermentation processes should be analyzed as fed-batch fermentations with oxygen as the limiting substrate. Addition of fructose in limited amounts leads to the formation of one half mole of acetic acid for each mole fructose, thus offering an alternative mechanism for controlling acetic acid formation.......Controlled aeration of Leuconostoc mesenteroides was studied as a possible mechanism for control of the formation of acetic acid, a metabolite of major influence on the taste of lactic fermented foods. Fermentations were carried out in small scale in a medium in which growth was limited...... by the buffer capacity only. Ethanol and acetic acid formed during the fermentation were analyzed by rapid head space gas chromatography, and the ratio of the molar concentrations of these two volatiles quantitatively predicted the balance between the formation of acetic acid and lactic acid. The oxygen...

  3. An integral term adaptive neural control of fed-batch fermentation biotechnological process; Control neuronal adaptable con termino integral para un proceso biotecnologico de fermentacion por lote alimentado

    Energy Technology Data Exchange (ETDEWEB)

    Baruch, Ieroham; Hernandez, Luis Alberto; Barrera Cortes, Josefina [Centro de Investigacion y de Estudios Avanzados, Instituto Politecnico Nacional, Mexico D.F. (Mexico)

    2005-07-15

    A nonlinear mathematical model of aerobic biotechnological process of a fed-batch fermentation system is derived using ordinary differential equations. A neurocontrol is applied using Recurrent Trainable Neural Network (RTNN) plus integral term; the first network performs an approximation of the plant's output; the second network generates the control signal so that the biomass concentration could be regulated by the nutrient influent flow rate into the bioreactor. [Spanish] Un modelo matematico no lineal de un proceso biotecnologico aerobio de un sistema de fermentacion por lote alimentado es presentado mediante ecuaciones diferenciales ordinarias. Es propuesto un control utilizando dos redes neuronales recurrentes entrenables (RNRE) con la adicion de un termino integral; la primera red representa un aproximador de la salida de la planta y la segunda genera la senal de control tal que la concentracion de la biomasa pueda ser regulada mediante la alimentacion de un flujo con nutrientes al biorreactor.

  4. A multi-pronged investigation into the effect of glucose starvation and culture duration on fed-batch CHO cell culture

    DEFF Research Database (Denmark)

    Fan, Yuzhou; Jimenez Del Val, Ioscani; Müller, Christian

    2015-01-01

    to the interplay between the dilution effect associated with change in specific productivity of mAbs and the changed nucleotide sugar metabolism. Herein, we also show and discuss that increased cell culture duration negatively affect the maturation of glycans. In addition, comparative proteomics analysis of cells......In this study, omics-based analysis tools were used to explore the effect of glucose starvation and culture duration on monoclonal antibody (mAb) production in fed-batch CHO cell culture to gain better insight into how these parameters can be controlled to ensure optimal mAb productivity...... and quality. Titer and N-glycosylation of mAbs, as well as proteomic signature and metabolic status of the production cells in the culture were assessed. We found that the impact of glucose starvation on the titer and N-glycosylation of mAbs was dependent on the degree of starvation during early stationary...

  5. An investigation into the preservation of microbial cell banks for α-amylase production during 5 l fed-batch Bacillus licheniformis fermentations.

    Science.gov (United States)

    Hancocks, Nichola H; Thomas, Colin R; Stocks, Stuart M; Hewitt, Christopher J

    2010-10-01

    Fluorescent staining techniques were used for a systematic examination of methods used to cryopreserve microbial cell banks. The aim of cryopreservation here is to ensure subsequent reproducible fermentation performance rather than just post thaw viability. Bacillus licheniformis cell physiology post-thaw is dependent on the cryopreservant (either Tween 80, glycerol or dimethyl sulphoxide) and whilst this had a profound effect on the length of the lag phase, during subsequent 5 l fed-batch fermentations, it had little effect on maximum specific growth rate, final biomass concentration or α-amylase activity. Tween 80 not only protected the cells during freezing but also helped them recover post-thaw resulting in shorter process times.

  6. Using a medium of free amino acids to produce penicillin g acylase in fed-batch cultivations of Bacillus megaterium ATCC 14945

    Directory of Open Access Journals (Sweden)

    R. G. Silva

    2006-03-01

    Full Text Available The production of penicillin G acylase (PGA, an important industrial enzyme from a wild strain of Bacillus megaterium using a pool of free amino acids as substrate was studied in a bench-scale bioreactor. Experiments carried out in shakers showed that the substitution of casein for free amino acids in the presence of cheese whey was the culture medium that provided the highest productivity. Several cultivations were carried out in a bioreactor operated in either batch or fed-batch mode. Batch runs showed that enzyme production is associated with microorganism growth. The following set of amino acids was preferentially consumed: Ala, Arg, Asp, Gly, Lys, Ser, Thr and Trp. On the other hand, the rates of consumption of His, Ile, Leu, Met, Phe, Pro, Tyr and Val were lower.

  7. Adaptation of the xylose fermenting yeast Saccharomyces cerevisiae F12 for improving ethanol production in different fed-batch SSF processes.

    Science.gov (United States)

    Tomás-Pejó, E; Ballesteros, M; Oliva, J M; Olsson, L

    2010-11-01

    An efficient fermenting microorganism for bioethanol production from lignocellulose is highly tolerant to the inhibitors released during pretreatment and is able to ferment efficiently both glucose and xylose. In this study, directed evolution was employed to improve the xylose fermenting Saccharomyces cerevisiae F12 strain for bioethanol production at high substrate loading. Adapted and parental strains were compared with respect to xylose consumption and ethanol production. Adaptation led to an evolved strain more tolerant to the toxic compounds present in the medium. When using concentrated prehydrolysate from steam-pretreated wheat straw with high inhibitor concentration, an improvement of 65 and 20% in xylose consumption and final ethanol concentration, respectively, were achieved using the adapted strain. To address the need of high substrate loadings, fed-batch SSF experiments were performed and an ethanol concentration as high as 27.4 g/l (61% of the theoretical) was obtained with 11.25% (w/w) of water insoluble solids (WIS).

  8. GROWTH AND COMPOSITION OF Arthrospira (Spirulina platensis IN A TUBULAR PHOTOBIOREACTOR USING AMMONIUM NITRATE AS THE NITROGEN SOURCE IN A FED-BATCH PROCESS

    Directory of Open Access Journals (Sweden)

    C. Cruz-Martínez

    2015-06-01

    Full Text Available AbstractNH4NO3 simultaneously provides a readily assimilable nitrogen source (ammonia and a reserve of nitrogen (nitrate, allowing for an increase in Arthrospira platensis biomass production while reducing the cost of the cultivation medium. In this study, a 22plus star central composite experimental design combined with response surface methodology was employed to analyze the influence of light intensity (I and the total amount of added NH4NO3 (Mt on a bench-scale tubular photobioreactor for fed-batch cultures. The maximum cell concentration (Xm, cell productivity (PX and biomass yield on nitrogen (YX/N were evaluated, as were the protein and lipid contents. Under optimized conditions (I = 148 μmol·photons·m-2·s-1 and Mt = 9.7 mM NH4NO3, Xm = 4710 ±34.4 mg·L-1, PX = 478.9 ±3.8 mg·L-1·d-1 and YX/N = 15.87 ±0.13 mg·mg-1 were obtained. The best conditions for protein content in the biomass (63.2% were not the same as those that maximized cell growth (I = 180 μmol·photons·m-2·s-1 and Mt = 22.5 mM NH4NO3. Based on these results, it is possible to conclude that ammonium nitrate is an interesting alternate nitrogen source for the cultivation of A. platensisin a fed-batch process and could be used for other photosynthetic microorganisms.

  9. Effects of C/N ratio on nitrous oxide production from nitrification in a laboratory-scale biological aerated filter reactor.

    Science.gov (United States)

    He, Qiang; Zhu, Yinying; Fan, Leilei; Ai, Hainan; Huangfu, Xiaoliu; Chen, Mei

    2017-03-01

    Emission of nitrous oxide (N 2 O) during biological wastewater treatment is of growing concern. This paper reports findings of the effects of carbon/nitrogen (C/N) ratio on N 2 O production rates in a laboratory-scale biological aerated filter (BAF) reactor, focusing on the biofilm during nitrification. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and microelectrode technology were utilized to evaluate the mechanisms associated with N 2 O production during wastewater treatment using BAF. Results indicated that the ability of N 2 O emission in biofilm at C/N ratio of 2 was much stronger than at C/N ratios of 5 and 8. PCR-DGGE analysis showed that the microbial community structures differed completely after the acclimatization at tested C/N ratios (i.e., 2, 5, and 8). Measurements of critical parameters including dissolved oxygen, oxidation reduction potential, NH 4 + -N, NO 3 - -N, and NO 2 - -N also demonstrated that the internal micro-environment of the biofilm benefit N 2 O production. DNA analysis showed that Proteobacteria comprised the majority of the bacteria, which might mainly result in N 2 O emission. Based on these results, C/N ratio is one of the parameters that play an important role in the N 2 O emission from the BAF reactors during nitrification.

  10. Ethanol production from biomass by repetitive solid-state fed-batch fermentation with continuous recovery of ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Moukamnerd, Churairat; Kino-oka, Masahiro; Sugiyama, Minetaka; Kaneko, Yoshinobu; Harashima, Satoshi; Katakura, Yoshio [Osaka Univ. (Japan). Dept. of Biotechnology; Boonchird, Chuenchit [Mahidol Univ., Bangkok (Thailand). Dept. of Biotechnology; Noda, Hideo [Kansai Chemical Engineering Co., Ltd., Amagasaki (Japan); Ninomiya, Kazuaki [Kanazawa Univ. (Japan). Inst. of International Environment Technology; Shioya, Suteaki [Sojo Univ., Kumamoto (Japan). Dept. of Applied Life Science

    2010-09-15

    To save cost and input energy for bioethanol production, a consolidated continuous solid-state fermentation system composed of a rotating drum reactor, a humidifier, and a condenser was developed. Biomass, saccharifying enzymes, yeast, and a minimum amount of water are introduced into the system. Ethanol produced by simultaneous saccharification and fermentation is continuously recovered as vapor from the headspace of the reactor, while the humidifier compensates for the water loss. From raw corn starch as a biomass model, 95 {+-} 3, 226 {+-} 9, 458 {+-} 26, and 509 {+-} 64 g l{sup -1} of ethanol solutions were recovered continuously when the ethanol content in reactor was controlled at 10-20, 30-50, 50-70 and 75-85 g kg-mixture{sup -1}, respectively. The residue showed a lesser volume and higher solid content than that obtained by conventional liquid fermentation. The cost and energy for intensive waste water treatment are decreased, and the continuous fermentation enabled the sustainability of enzyme activity and yeast in the system. (orig.)

  11. Response coefficient analysis of a fed-batch bioreactor to dissolved oxygen perturbation in complementary cultures during PHB production

    Directory of Open Access Journals (Sweden)

    Patnaik Pratap R

    2008-03-01

    Full Text Available Abstract Background Although the production of poly-β-hydroxybutyrate (PHB has many biological, energetic and environmental advantages over chemically synthesized polymers, synthetic polymers continue to be produced industrially since the productivities of fermentation processes fr PHB are not yet economically competitive. Improvement of a PHB fermentation requires good understanding and optimization under the realistic conditions of large bioreactors. Laboratory-scale studies have shown that co-cultures of Ralstonia eutropha and Lactobacillus delbrueckii generate better fermentation efficiencies than R. eutropha alone. In large bioreactors, incomplete dispersioin and perturbations in the dissolved oxygen (DO concentration, both of which affect the fermentation, have to be considered. This study analyzes the effect of DO fluctuations on bioreactor performance for both ideal and optimally dispersed broths. Results Response coefficient analysis was employed to obtain quantitative information on the effect of DO perturbations on different variables. Three values of the Peclet number (Pe cheracterized three levels of dispersion: Pe = 0.01 for nearly complete dispersion, Pe = 20 for optimum dispersion and Pe = 60 for insufficient dispersion. The response coefficients (RCs of the pairs of bacterial concentrations and the main substrates, glucose and ammonium chloride, showed contrasting variations with time. Lactate, a critical intermediate, and PHB had similar RC profiles but those of lactate were one to two orders of magnitude larger than other RCs. Significantly, the optimum Pe also resulted in the largest RCs, suggesting a balance between productivity and reactor stability. Conclusion Since R. eutropha requires oxygen for its growth whereas L. delbrueckii does not, fluctuations in the DO concentartion have a strong influence on the fermentation. Apart from this, the mechanism of PHB biosynthesis indicates that control of lactate is a critical

  12. Characterization of dissolved organic matter during landfill leachate treatment by sequencing batch reactor, aeration corrosive cell-Fenton, and granular activated carbon in series

    International Nuclear Information System (INIS)

    Bu Lin; Wang Kun; Zhao Qingliang; Wei Liangliang; Zhang Jing; Yang Junchen

    2010-01-01

    Landfill leachate is generally characterized as a complex recalcitrant wastewater containing high concentration of dissolved organic matter (DOM). A combination of sequencing batch reactor (SBR) + aeration corrosive cell-Fenton (ACF) + granular activated carbon (GAC) adsorption in series was proposed for the purpose of removing pollutants in the leachate. Fractionation was also performed to investigate the composition changes and characteristics of the leachate DOM in each treatment process. Experimental results showed that organic matter, in terms of chemical oxygen demand (COD), 5-day biological oxygen demand (BOD 5 ), and dissolved organic carbon (DOC), was reduced by 97.2%, 99.1%, and 98.7%, respectively. To differentiate the DOM portions, leachates were separated into five fractions by XAD-8 and XAD-4 resins: hydrophobic acid (HPO-A), hydrophobic neutral (HPO-N), transphilic acid (TPI-A), transphilic neutral (TPI-N), and hydrophilic fraction (HPI). The predominant fraction in the raw leachate was HPO-A (36% of DOC), while the dominant fraction in the final effluent was HPI (53% of DOC). Accordingly, macromolecules were degraded to simpler ones in a relatively narrow range below 1000 Da. Spectral and chromatographic analyses also showed that most humic-like substances in all fractions were effectively removed during the treatments and led to a simultaneous decrease in aromaticity.

  13. Characterization of dissolved organic matter during landfill leachate treatment by sequencing batch reactor, aeration corrosive cell-Fenton, and granular activated carbon in series

    Energy Technology Data Exchange (ETDEWEB)

    Bu Lin [School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090 (China); Wang Kun [State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090 (China); School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090 (China); Zhao Qingliang, E-mail: zhql1962@yahoo.com.cn [State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090 (China); School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090 (China); Wei Liangliang; Zhang Jing; Yang Junchen [School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090 (China)

    2010-07-15

    Landfill leachate is generally characterized as a complex recalcitrant wastewater containing high concentration of dissolved organic matter (DOM). A combination of sequencing batch reactor (SBR) + aeration corrosive cell-Fenton (ACF) + granular activated carbon (GAC) adsorption in series was proposed for the purpose of removing pollutants in the leachate. Fractionation was also performed to investigate the composition changes and characteristics of the leachate DOM in each treatment process. Experimental results showed that organic matter, in terms of chemical oxygen demand (COD), 5-day biological oxygen demand (BOD{sub 5}), and dissolved organic carbon (DOC), was reduced by 97.2%, 99.1%, and 98.7%, respectively. To differentiate the DOM portions, leachates were separated into five fractions by XAD-8 and XAD-4 resins: hydrophobic acid (HPO-A), hydrophobic neutral (HPO-N), transphilic acid (TPI-A), transphilic neutral (TPI-N), and hydrophilic fraction (HPI). The predominant fraction in the raw leachate was HPO-A (36% of DOC), while the dominant fraction in the final effluent was HPI (53% of DOC). Accordingly, macromolecules were degraded to simpler ones in a relatively narrow range below 1000 Da. Spectral and chromatographic analyses also showed that most humic-like substances in all fractions were effectively removed during the treatments and led to a simultaneous decrease in aromaticity.

  14. COMPARISON OF VACUUM AND HIGH PRESSURE EVAPORATED WOOD HYDROLYZATE FOR ETHANOL PRODUCTION BY REPEATED FED-BATCH USING FLOCCULATING SACCHAROMYCES CEREVISIAE

    Directory of Open Access Journals (Sweden)

    Anahita Dehkhoda

    2009-02-01

    Full Text Available With the aim of increasing the sugars concentration in dilute-acid ligno-cellulosic hydrolyzate to more than 100 g/l for industrial applications, the hydrolyzate from spruce was concentrated about threefold by high-pressure or vacuum evaporations. It was then fermented by repeated fed-batch cultivation using flocculating Saccharomyces cerevisiae with no prior detoxification. The sugars and inhibitors concentrations in the hydrolyzates were compared after the evaporations and also fermenta-tion. The evaporations were carried out either under vacuum (VEH at 0.5 bar and 80°C or with 1.3 bar pressure (HPEH at 107.5°C, which resulted in 153.3 and 164.6 g/l total sugars, respectively. No sugar decomposition occurred during either of the evaporations, while more than 96% of furfural and to a lesser extent formic and acetic acids disappeared from the hydrolyzates. However, HMF and levulinic acid remained in the hydrolyzates and were concentrated proportionally. The concentrated hydrolyzates were then fermented in a 4 l bioreactor with 12-22 g/l yeast and 0.14-0.22 h-1 initial dilute rates (ID. More than 84% of the fermentable sugars present in the VEH were fermented by fed-batch cultivation using 12 g/l yeast and initial dilution rate (ID of 0.22 h-1, and resulted in 0.40±0.01 g/g ethanol from the fermentable sugars in one cycle of fermentation. Fermentation of HPEH was as successful as VEH and resulted in more than 86% of the sugar consumption under the corresponding conditions. By lowering the initial dilution rate to 0.14 h-1, more than 97% of the total fermentable sugars were consumed, and ethanol yield was 0.44±0.01 g/g in one cycle of fermentation. The yeast was able to convert or assimilate HMF, levulinic, acetic, and formic acids by 96, 30, 43, and 74%, respectively.

  15. Effect of aeration interval on oxygen consumption and GHG emission during pig manure composting.

    Science.gov (United States)

    Zeng, Jianfei; Yin, Hongjie; Shen, Xiuli; Liu, Ning; Ge, Jinyi; Han, Lujia; Huang, Guangqun

    2018-02-01

    To verify the optimal aeration interval for oxygen supply and consumption and investigate the effect of aeration interval on GHG emission, reactor-scale composting was conducted with different aeration intervals (0, 10, 30 and 50 min). Although O 2 was sufficiently supplied during aeration period, it could be consumed to  0.902), suggesting that lengthening the duration of aeration interval to some extent could effectively reduce GHG emission. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Production of oleic acid ethyl ester catalyzed by crude rice bran (Oryza sativa lipase in a modified fed-batch system: problem and its solution

    Directory of Open Access Journals (Sweden)

    Indro Prastowo

    2015-01-01

    Full Text Available A fed-batch system was modified for the enzymatic production of Oleic Acid Ethyl Ester (OAEE using rice bran (Oryza sativa lipase by retaining the substrate molar ratio (ethanol/oleic acid at 2.05: 1 during the reaction. It resulted in an increase in the ester conversion up to 76.8% in the first 6 h of the reaction, and then followed by a decrease from 76.8% to 22.9% in 6 h later. Meanwhile, the production of water in the reaction system also showed a similar trend to the trend of ester production. The water was hypothesized to lead lipase to reverse the reaction which resulted in a decrease in both (water and esters in the last 6 h of the reaction. In order to overcome the problem, zeolite powders (25 and 50 mg/ml were added into the reaction system at 5 h of the reaction. As the result, final ester conversions increased drastically up to 90 - 95.7% (1.17 – 1.24 times. The addition also proved a hypothesis that the water was involved in reducing the ester conversion in the last 6 h of the reaction. Thus, the combination was effective to produce the high final ester conversion.

  17. Pilot scale repeated fed-batch fermentation processes of the wine yeast Dekkera bruxellensis for mass production of resveratrol from Polygonum cuspidatum.

    Science.gov (United States)

    Kuo, Hsiao-Ping; Wang, Reuben; Lin, Yi-Sheng; Lai, Jinn-Tsyy; Lo, Yi-Chen; Huang, Shyue-Tsong

    2017-11-01

    Resveratrol has long been used as an ingredient in functional foods. Currently, Polygonum cuspidatum extract is the greatest natural source for resveratrol because of high concentrations of glycosidic-linked resveratrol. Thus, developing a cost-effective procedure to hydrolyze glucoside could substantially enhance resveratrol production from P. cuspidatum. This study selected Dekkera bruxellensis from several microorganisms based on its bioconversion and enzyme-specific activities. We demonstrated that the cells could be reused at least nine times while maintaining an average of 180.67U/L β-glucosidase activity. The average resveratrol bioconversion efficiency within five rounds of repeated usage was 108.77±0.88%. This process worked effectively when the volume was increased to 1200L, a volume at which approximately 35mgL -1 h -1 resveratrol per round was produced. This repeated fed-batch bioconversion process for resveratrol production is comparable to enzyme or cell immobilization strategies in terms of reusing cycles, but without incurring additional costs for immobilization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Dietary supplementation with bovine lactoferrampin-lactoferricin produced by Pichia pastoris fed-batch fermentation affects intestinal microflora in weaned piglets.

    Science.gov (United States)

    Tang, Xiang-Shan; Shao, Hua; Li, Tie-Jun; Tang, Zhi-Ru; Huang, Rui-Ling; Wang, Sheng-Ping; Kong, Xiang-Feng; Wu, Xin; Yin, Yu-Long

    2012-10-01

    This work is aimed at investigating the effects of recombinant bovine lactoferrampin-lactoferricin (LFA-LFC) instead of chlortetracycline on intestinal microflora in weaned piglets. The high cost of peptide production from either native digestion or chemical synthesis limits the clinical application of antimicrobial peptides. The expression of recombinant peptides in yeast may be an effective alternative. In the current study, recombinant LFA-LFC was produced via fed-batch fermentation in recombinant strain Pichia pastoris (KM71) XS10. Uniform design U6(6(4)) was used to optimize the fermentation conditions. The target peptide purified via cation-exchange and size-exclusion chromatography was added into the dietary of weaned piglets. After 21 days, the Lactobacilli, Bifidobacteria, and Enterobacteria in the chyme of the gut were quantified using real-time polymerase chain reaction. The results showed that approximately 82 mg of LFA-LFC was secreted into 1 L of medium under optimized conditions. Moreover, purified peptide showed strong antimicrobial activities against all the tested microorganisms. Compared with the control group, the LFA-LFC group increased the amount of Lactobacilli and Bifidobacteria (P<0.05) in the chyme of the stomach, duodenum, jejunum, ileum, colon, and caecum. These results show that dietary supplementation with LFA-LFC can affect intestinal microflora in weaned piglets.

  19. Fed-batch methanol feeding strategy for recombinant protein production by Pichia pastoris in the presence of co-substrate sorbitol.

    Science.gov (United States)

    Celik, Eda; Calik, Pinar; Oliver, Stephen G

    2009-09-01

    Batch-wise sorbitol addition as a co-substrate at the induction phase of methanol fed-batch fermentation by Pichia pastoris (Mut(+)) was proposed as a beneficial recombinant protein production strategy and the metabolic responses to methanol feeding rate in the presence of sorbitol was systematically investigated. Adding sorbitol batch-wise to the medium provided the following advantages over growth on methanol alone: (a) eliminating the long lag-phase for the cells and reaching 'high cell density production' at t = 24 h of the process (C(X) = 70 g CDW/l); (b) achieving 1.8-fold higher recombinant human erythropoietin (rHuEPO) (at t = 18 h); (c) reducing specific protease production 1.2-fold; (d) eliminating the lactic acid build-up period; (e) lowering the oxygen uptake rate two-fold; and (f) obtaining 1.4-fold higher overall yield coefficients. The maximum specific alcohol oxidase activity was not affected in the presence of sorbitol, and it was observed that sorbitol and methanol were utilized simultaneously. Thus, in the presence of sorbitol, 130 mg/l rHuEPO was produced at t = 24 h, compared to 80 mg/l rHuEPO (t = 24 h) on methanol alone. This work demonstrates not only the ease and efficiency of incorporating sorbitol to fermentations by Mut(+) strains of P. pastoris for the production of any bio-product, but also provides new insights into the metabolism of the methylotrophic yeast P. pastoris.

  20. Production of Medium-Chain-Length Poly(3-Hydroxyalkanoates from Saponified Palm Kernel Oil by Pseudomonas putida: Kinetics of Batch and Fed-Batch Fermentations

    Directory of Open Access Journals (Sweden)

    Annuar, M. S. M.

    2006-01-01

    Full Text Available The kinetics of medium-chain-length poly(3-hydroxyalkanoates, PHAMCL production by Pseudomonas putida PGA1 in batch and fed-batch fermentations were studied. With saponified palm kernel oil (SPKO supplying the free fatty acids mixture as the sole carbon and energy source, PHAMCL accumulation is encouraged under ammonium-limited condition, which is a nitrogen stress environment. The amount of PHAMCL accumulated and its specific production rate, qPHA were influenced by the residual ammonium concentration level in the culture medium. It was observed that in both fermentation modes, when the residual ammonium was exhausted (< 0.05 gL-1, the PHAMCL accumulation (11.9% and qPHA (0.0062 h-1 were significantly reduced. However, this effect can be reversed by feeding low amount of ammonium to the culture, resulting in significantly improved PHAMCL yield (71.4% and specific productivity (0.6 h-1. It is concluded that the feeding of low ammonium concentration to the culture medium during the PHAMCL accumulation has a positive effect on sustaining the PHAMCL biosynthetic capability of the organism. It was also found that increasing SPKO concentration in the medium significantly reduced (up to 50% the volumetric oxygen transfer coefficient (KLa of the fermentation system.

  1. Expression of a mutated SPT15 gene in Saccharomyces cerevisiae enhances both cell growth and ethanol production in microaerobic batch, fed-batch, and simultaneous saccharification and fermentations.

    Science.gov (United States)

    Seong, Yeong-Je; Park, Haeseong; Yang, Jungwoo; Kim, Soo-Jung; Choi, Wonja; Kim, Kyoung Heon; Park, Yong-Cheol

    2017-05-01

    The SPT15 gene encodes a Saccharomyces cerevisiae TATA-binding protein, which is able to globally control the transcription levels of various metabolic and regulatory genes. In this study, a SPT15 gene mutant (S42N, S78R, S163P, and I212N) was expressed in S. cerevisiae BY4741 (BSPT15-M3), of which effects on fermentative yeast properties were evaluated in a series of culture types. By applying different nitrogen sources and air supply conditions in batch culture, organic nitrogen sources and microaerobic condition were decided to be more favorable for both cell growth and ethanol production of the BSPT15-M3 strain than the control S. cerevisiae BY4741 strain expressing the SPT15 gene (BSPT15wt). Microaerobic fed-batch cultures of BSPT15-M3 with glucose shock in the presence of high ethanol content resulted in a 9.5-13.4% higher glucose consumption rate and ethanol productivity than those for the BSPT15wt strain. In addition, BSPT15-M3 showed 4.5 and 3.9% increases in ethanol productivity from cassava hydrolysates and corn starch in simultaneous saccharification and fermentation processes, respectively. It was concluded that overexpression of the mutated SPT15 gene would be a potent strategy to develop robust S. cerevisiae strains with enhanced cell growth and ethanol production abilities.

  2. High-titer and productivity of l-(+)-lactic acid using exponential fed-batch fermentation with Bacillus coagulans arr4, a new thermotolerant bacterial strain.

    Science.gov (United States)

    Coelho, Luciana Fontes; Beitel, Susan Michelz; Sass, Daiane Cristina; Neto, Paulo Marcelo Avila; Contiero, Jonas

    2018-04-01

    Bacillus coagulans arr4 is a thermotolerant microorganism with great biotechnological potential for l-(+)-lactic acid production from granulated sugar and yeast extract. The highest l-(+)-lactic acid production was obtained with Ca(OH) 2 . The maximum production of l-(+)-lactic acid (206.81 g/L) was observed in exponential feeding using granulated sugar solution (900 g/L) and yeast extract (1%) at 50 °C, pH 6.5, and initial granulated sugar concentration of 100 g/L at 39 h. 5.3 g/L h productivity and 97% yield were observed, and no sugar remained. Comparing the simple batch with exponential fed-batch fermentation, the l(+) lactic acid production was improved in 133.22% and dry cell weight was improved in 83.29%, using granulated sugar and yeast extract. This study presents the highest productivity of lactic acid ever observed in the literature, on the fermentation of thermotolerant Bacillus sp. as well as an innovative and high-efficiency purification technology, using low-cost substances as Celite and charcoal. The recovery of lactic acid was 86%, with 100% protein removal, and the fermentation medium (brown color) became a colorless solution.

  3. Fed-batch hydrolysate addition and cell separation by settling in high cell density lignocellulosic ethanol fermentations on AFEX™ corn stover in the Rapid Bioconversion with Integrated recycling Technology process.

    Science.gov (United States)

    Sarks, Cory; Jin, Mingjie; Balan, Venkatesh; Dale, Bruce E

    2017-09-01

    The Rapid Bioconversion with Integrated recycling Technology (RaBIT) process uses enzyme and yeast recycling to improve cellulosic ethanol production economics. The previous versions of the RaBIT process exhibited decreased xylose consumption using cell recycle for a variety of different micro-organisms. Process changes were tested in an attempt to eliminate the xylose consumption decrease. Three different RaBIT process changes were evaluated in this work including (1) shortening the fermentation time, (2) fed-batch hydrolysate addition, and (3) selective cell recycling using a settling method. Shorting the RaBIT fermentation process to 11 h and introducing fed-batch hydrolysate addition eliminated any xylose consumption decrease over ten fermentation cycles; otherwise, decreased xylose consumption was apparent by the third cell recycle event. However, partial removal of yeast cells during recycle was not economical when compared to recycling all yeast cells.

  4. Estudio comparativo de cuatro sistemas de propagación de levadura cervecera por lote alimentado Comparative study of four fed-batch propagation systems of beer yeast

    Directory of Open Access Journals (Sweden)

    Hoyos H.

    1998-06-01

    Full Text Available

    Se realizó la propagación por lotes de levadura cervecera y con base en estos resultados se ajustó un modelo matemático. Se llevaron a cabo cuatro fermentaciones con diferentes técnicas de alimentación y se confrontaron los resultados mediante simulación. Las técnicas estudiadas fueron alimentación puntual, alimentación continua-puntual y de alta densidad. La mayor concentración celular y factor de propagación se presentó con el cultivo de alta densidad. La simulación demostró que la alimentación continua o puntual afecta el comportamiento celular, ya sea sobre la velocidad específica y/o el factor estequiométrico Yx/s . Se encontró que la técnica de alta densidad aumenta el factor estequiométrico Yx/s.

    Beer yeast was propagated using batch culture, and a mathematical model was fitted to the resulting data. Intermittent, continuousintermittent, and high-density fed-batch techniques were used. The highest cell yield was found using the high density technique. Simulation also unveiled an effect of the feeding technique on cellular growth rate and yield. The high density technique increased the stoichiometric factor Yx/s.

  5. Biogas Production from Protein-Rich Biomass: Fed-Batch Anaerobic Fermentation of Casein and of Pig Blood and Associated Changes in Microbial Community Composition

    Science.gov (United States)

    Kovács, Etelka; Wirth, Roland; Maróti, Gergely; Bagi, Zoltán; Rákhely, Gábor; Kovács, Kornél L.

    2013-01-01

    It is generally accepted as a fact in the biogas technology that protein-rich biomass substrates should be avoided due to inevitable process inhibition. Substrate compositions with a low C/N ratio are considered difficult to handle and may lead to process failure, though protein-rich industrial waste products have outstanding biogas generation potential. This common belief has been challenged by using protein-rich substrates, i.e. casein and precipitated pig blood protein in laboratory scale continuously stirred mesophilic fed-batch biogas fermenters. Both substrates proved suitable for sustained biogas production (0.447 L CH4/g protein oDM, i.e. organic total solids) in high yield without any additives, following a period of adaptation of the microbial community. The apparent key limiting factors in the anaerobic degradation of these proteinaceous materials were the accumulation of ammonia and hydrogen sulfide. Changes in time in the composition of the microbiological community were determined by next-generation sequencing-based metagenomic analyses. Characteristic rearrangements of the biogas-producing community upon protein feeding and specific differences due to the individual protein substrates were recognized. The results clearly demonstrate that sustained biogas production is readily achievable, provided the system is well-characterized, understood and controlled. Biogas yields (0.45 L CH4/g oDM) significantly exceeding those of the commonly used agricultural substrates (0.25-0.28 L CH4/g oDM) were routinely obtained. The results amply reveal that these high-energy-content waste products can be converted to biogas, a renewable energy carrier with flexible uses that can replace fossil natural gas in its applications. Process control, with appropriate acclimation of the microbial community to the unusual substrate, is necessary. Metagenomic analysis of the microbial community by next-generation sequencing allows a precise determination of the alterations in

  6. Cellulase production by Penicillium funiculosum and its application in the hydrolysis of sugar cane bagasse for second generation ethanol production by fed batch operation.

    Science.gov (United States)

    Maeda, Roberto Nobuyuki; Barcelos, Carolina Araújo; Santa Anna, Lídia Maria Melo; Pereira, Nei

    2013-01-10

    This study aimed to produce a cellulase blend and to evaluate its application in a simultaneous saccharification and fermentation (SSF) process for second generation ethanol production from sugar cane bagasse. The sugar cane bagasse was subjected to pretreatments (diluted acid and alkaline), as for disorganizing the ligocellulosic complex, and making the cellulose component more amenable to enzymatic hydrolysis. The residual solid fraction was named sugar cane bagasse partially delignified cellulignin (PDC), and was used for enzyme production and ethanol fermentation. The enzyme production was performed in a bioreactor with two inoculum concentrations (5 and 10% v/v). The fermentation inoculated with higher inoculum size reduced the time for maximum enzyme production (from 72 to 48). The enzyme extract was concentrated using tangential ultrafiltration in hollow fiber membranes, and the produced cellulase blend was evaluated for its stability at 37 °C, operation temperature of the simultaneous SSF process, and at 50 °C, optimum temperature of cellulase blend activity. The cellulolytic preparation was stable for at least 300 h at both 37 °C and 50 °C. The ethanol production was carried out by PDC fed-batch SSF process, using the onsite cellulase blend. The feeding strategy circumvented the classic problems of diffusion limitations by diminishing the presence of a high solid:liquid ratio at any time, resulting in high ethanol concentration at the end of the process (100 g/L), which corresponded to a fermentation efficiency of 78% of the maximum obtainable theoretically. The experimental results led to the ratio of 380 L of ethanol per ton of sugar cane bagasse PDC. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Mathematical modeling of fed-batch fermentation of Schizochytrium sp. FJU-512 growth and DHA production using a shift control strategy.

    Science.gov (United States)

    Zhang, Mingliang; Wu, Weibin; Guo, Xiaolei; Weichen, You; Qi, Feng; Jiang, Xianzhang; Huang, Jianzhong

    2018-03-01

    To obtain high-cell-density cultures of Schizochytrium sp. FJU-512 for DHA production, two stages of fermentation strategy were used and carbon/nitrogen ratio, DO and temperature were controlled at different levels. The final dry cell weight, total lipid production and DHA yield in 15 l bioreactor reached 103.9, 37.2 and 16.0 g/l, respectively. For the further study of microbial growth and DHA production dynamics, we established a set of kinetic models for the fed-batch production of DHA by Schizochytrium sp. FJU-512 in 15 and 100 l fermenters and a compensatory parameter n was integrated into the model in order to find the optimal mathematical equations. A modified Logistic model was proposed to fit the cell growth data and the following kinetic parameters were obtained: µ m  = 0.0525/h, X m  = 100 g/l and n  = 4.1717 for the 15 l bioreactor, as well as µ m  = 0.0382/h, X m  = 107.4371 g/l and n  = 10 for the 100 l bioreactor. The Luedeking-Piret equations were utilized to model DHA production, yielding values of α  = 0.0648 g/g and β  = 0.0014 g/g/h for the 15 l bioreactor, while the values of α and β obtained for the 100 l fermentation were 0.0209 g/g and 0.0030 g/g/h. The predicted results compared with experimental data showed that the established models had a good fitting precision and were able to exactly depict the dynamic features of the DHA production process.

  8. Application of simple fed-batch technique to high-level secretory production of insulin precursor using Pichia pastoris with subsequent purification and conversion to human insulin

    Directory of Open Access Journals (Sweden)

    Chugh Dipti

    2010-05-01

    Full Text Available Abstract Background The prevalence of diabetes is predicted to rise significantly in the coming decades. A recent analysis projects that by the year 2030 there will be ~366 million diabetics around the world, leading to an increased demand for inexpensive insulin to make this life-saving drug also affordable for resource poor countries. Results A synthetic insulin precursor (IP-encoding gene, codon-optimized for expression in P. pastoris, was cloned in frame with the Saccharomyces cerevisiae α-factor secretory signal and integrated into the genome of P. pastoris strain X-33. The strain was grown to high-cell density in a batch procedure using a defined medium with low salt and high glycerol concentrations. Following batch growth, production of IP was carried out at methanol concentrations of 2 g L-1, which were kept constant throughout the remaining production phase. This robust feeding strategy led to the secretion of ~3 gram IP per liter of culture broth (corresponding to almost 4 gram IP per liter of cell-free culture supernatant. Using immobilized metal ion affinity chromatography (IMAC as a novel approach for IP purification, 95% of the secreted product was recovered with a purity of 96% from the clarified culture supernatant. Finally, the purified IP was trypsin digested, transpeptidated, deprotected and further purified leading to ~1.5 g of 99% pure recombinant human insulin per liter of culture broth. Conclusions A simple two-phase cultivation process composed of a glycerol batch and a constant methanol fed-batch phase recently developed for the intracellular production of the Hepatitis B surface antigen was adapted to secretory IP production. Compared to the highest previously reported value, this approach resulted in an ~2 fold enhancement of IP production using Pichia based expression systems, thus significantly increasing the efficiency of insulin manufacture.

  9. Efficient soluble expression of disulfide bonded proteins in the cytoplasm of Escherichia coli in fed-batch fermentations on chemically defined minimal media.

    Science.gov (United States)

    Gąciarz, Anna; Khatri, Narendar Kumar; Velez-Suberbie, M Lourdes; Saaranen, Mirva J; Uchida, Yuko; Keshavarz-Moore, Eli; Ruddock, Lloyd W

    2017-06-15

    The production of recombinant proteins containing disulfide bonds in Escherichia coli is challenging. In most cases the protein of interest needs to be either targeted to the oxidizing periplasm or expressed in the cytoplasm in the form of inclusion bodies, then solubilized and re-folded in vitro. Both of these approaches have limitations. Previously we showed that soluble expression of disulfide bonded proteins in the cytoplasm of E. coli is possible at shake flask scale with a system, known as CyDisCo, which is based on co-expression of a protein of interest along with a sulfhydryl oxidase and a disulfide bond isomerase. With CyDisCo it is possible to produce disulfide bonded proteins in the presence of intact reducing pathways in the cytoplasm. Here we scaled up production of four disulfide bonded proteins to stirred tank bioreactors and achieved high cell densities and protein yields in glucose fed-batch fermentations, using an E. coli strain (BW25113) with the cytoplasmic reducing pathways intact. Even without process optimization production of purified human single chain IgA 1 antibody fragment reached 139 mg/L and hen avidin 71 mg/L, while purified yields of human growth hormone 1 and interleukin 6 were around 1 g/L. Preliminary results show that human growth hormone 1 was also efficiently produced in fermentations of W3110 strain and when glucose was replaced with glycerol as the carbon source. Our results show for the first time that efficient production of high yields of soluble disulfide bonded proteins in the cytoplasm of E. coli with the reducing pathways intact is feasible to scale-up to bioreactor cultivations on chemically defined minimal media.

  10. Biogas production from protein-rich biomass: fed-batch anaerobic fermentation of casein and of pig blood and associated changes in microbial community composition.

    Directory of Open Access Journals (Sweden)

    Etelka Kovács

    Full Text Available It is generally accepted as a fact in the biogas technology that protein-rich biomass substrates should be avoided due to inevitable process inhibition. Substrate compositions with a low C/N ratio are considered difficult to handle and may lead to process failure, though protein-rich industrial waste products have outstanding biogas generation potential. This common belief has been challenged by using protein-rich substrates, i.e. casein and precipitated pig blood protein in laboratory scale continuously stirred mesophilic fed-batch biogas fermenters. Both substrates proved suitable for sustained biogas production (0.447 L CH4/g protein oDM, i.e. organic total solids in high yield without any additives, following a period of adaptation of the microbial community. The apparent key limiting factors in the anaerobic degradation of these proteinaceous materials were the accumulation of ammonia and hydrogen sulfide. Changes in time in the composition of the microbiological community were determined by next-generation sequencing-based metagenomic analyses. Characteristic rearrangements of the biogas-producing community upon protein feeding and specific differences due to the individual protein substrates were recognized. The results clearly demonstrate that sustained biogas production is readily achievable, provided the system is well-characterized, understood and controlled. Biogas yields (0.45 L CH4/g oDM significantly exceeding those of the commonly used agricultural substrates (0.25-0.28 L CH4/g oDM were routinely obtained. The results amply reveal that these high-energy-content waste products can be converted to biogas, a renewable energy carrier with flexible uses that can replace fossil natural gas in its applications. Process control, with appropriate acclimation of the microbial community to the unusual substrate, is necessary. Metagenomic analysis of the microbial community by next-generation sequencing allows a precise determination of the

  11. Solar powered dugout aeration

    International Nuclear Information System (INIS)

    Murrell, S.

    2001-10-01

    Pasture dugouts are a significant source of water for livestock on the Canadian Prairies and as such, must maintain the best water quality possible. Aeration improves the water quality and is part of a good management plan to reduce overall water treatment costs. Although dugouts can be aerated naturally through wind and wave action and photosynthesis, this generally aerates only the top portion of the dugout. Artificial aeration by air injection into the lowest point of the dugout ensures that the water is oxygenated throughout the entire dugout. Solar aeration can be used in remote areas where grid power is not practical. With solar powered aeration systems, solar panels are used to generate the electrical power needed to run the compressor while storing excess energy in batteries. A solar aeration system includes solar panels, deep cycle batteries to store excess power, a control board with a regulator, a compressor, a weighed feeder hose, and an air diffuser. This publication presented the design of a solar aeration system and its cost. 1 tab., 3 figs

  12. Enhanced fed-batch production of pyrroloquinoline quinine in Methylobacillus sp. CCTCC M2016079 with a two-stage pH control strategy.

    Science.gov (United States)

    Si, Zhenjun; Machaku, David; Wei, Peilian; Huang, Lei; Cai, Jin; Xu, Zhinan

    2017-06-01

    The effects of pH control strategy and fermentative operation modes on the biosynthesis of pyrroloquinoline quinine (PQQ) were investigated systematically with Methylobacillus sp. CCTCC M2016079 in the present work. Firstly, the shake-flask cultivations and benchtop fermentations at various pH values ranging from 5.3 to 7.8 were studied. Following a kinetic analysis of specific cell growth rate (μ x ) and specific PQQ formation rate (μ p ), the discrepancy in optimal pH values between cell growth and PQQ biosynthesis was observed, which stimulated us to develop a novel two-stage pH control strategy. During this pH-shifted process, the pH in the broth was controlled at 6.8 to promote the cell growth for the first 48 h and then shifted to 5.8 to enhance the PQQ synthesis until the end of fermentation. By applying this pH-shifted control strategy, the maximum PQQ production was improved to 158.61 mg/L in the benchtop fermenter, about 44.9% higher than that under the most suitable constant pH fermentation. Further fed-batch study showed that PQQ production could be improved from 183.38 to 272.21 mg/L by feeding of methanol at the rate of 11.5 mL/h in this two-stage pH process. Meanwhile, the productivity was also increased from 2.02 to 2.84 mg/L/h. In order to support cell growth during the shifted pH stage, the combined feeding of methanol and yeast extract was carried out, which brought about the highest concentration (353.28 mg/L) and productivity (3.27 mg/L/h) of PQQ. This work has revealed the potential of our developed simple and economical strategy for the large-scale production of PQQ.

  13. Cultivo mixotrófico da microalga Spirulina platensis em batelada alimentada Mixotrophic growth of Spirulina platensis in fed-batch mode

    Directory of Open Access Journals (Sweden)

    Adriana Muliterno

    2005-12-01

    Full Text Available A Spirulina platensis tem sido estudada devido a seu alto valor protéico, digestibilidade e por apresentar quantidades significativas de ácidos graxos poliinsaturados, vitaminas, fenólicos e ficocianina, podendo ser utilizada na alimentação humana. A utilização de nutrientes de baixo custo é um fator importante na produção da cianobactéria por possibilitar a redução de custos de processo. Objetivou-se com este trabalho estudar o cultivo mixotrófico da S. platensis por meio da adição de uma fonte orgânica de carbono (glicose em modo bateladaalimentada. Foi utilizado um Planejamento Fatorial Completo 2³ para o cultivo e as variáveis de estudo foram a concentração de glicose (0,5 gL-1 e 1,0 gL-1, a diluição do meio Zarrouk (50% e 75% e a iluminância (1800 lux e 3000 lux. A concentração celular máxima obtida foi de 5,38 gL-1 com uma velocidade específica máxima de crescimento de 0,0063 h-1, nas condições de 0,5 gL-1 de glicose, diluição do meio de 75% e iluminância de 3000 lux.The cyanobacterium Spirulina platensis has been studied due to its high content (~65% of highly digestible protein as well as significant amounts of polyunsaturated fatty acids, phenolics, vitamins, minerals and phycocyanin which could be useful in the human nutrition. The use of nutrients of low costs in the cyanobacterium growth could reduce the costs of production. We studied the fed-batch mixotrophic growth of the S. platensis in Zarrouk's medium with glucose (0.5 gL-1 and 1.0 gL-1 as carbon source and also investigated the effects of dilution (50% and 75%, with water and illumination (1,800 lux and 3,000 lux using a 2³ factorial design. The maximum celular concentration of 5.38 gL-1 and maximum specific growth rate of 0.0063 h-1 were obtained with a glucose concentration of 0.5 gL-1, 50% dilution and 1800 lux of illuminance.

  14. Nitrous oxide production in intermittently aerated Partial Nitritation-Anammox reactor: oxic N2O production dominates and relates with ammonia removal rate

    DEFF Research Database (Denmark)

    Blum, Jan-Michael; Jensen, Marlene Mark; Smets, Barth F.

    2018-01-01

    Emissions of the greenhouse gas nitrous oxide from the Partial Nitritation-Anammox process are of concern and can determine the carbon footprint of the process. In order to reduce nitrous oxide emissions intermittent aeration regimes have been shown to be a promising mode of operation, possibly due...

  15. A dense cell retention culture system using stirred ceramic membrane reactor.

    Science.gov (United States)

    Suzuki, T; Sato, T; Kominami, M

    1994-11-20

    A novel reactor design incorporating porous ceramic tubes into a stirred jar fermentor was developed. The stirred ceramic membrane reactor has two ceramic tubular membrane units inside the vessel and maintains high filtration flux by alternating use for filtering and recovering from clogging. Each filter unit was linked for both extraction of culture broth and gas sparging. High permeability was maintained for long periods by applying the periodical control between filtering and air sparging during the stirred retention culture of Saccharomyces cerevisiae. The ceramic filter aeration system increased the k(L)a to about five times that of ordinary gas sparing. Using the automatic feeding and filtering system, cell mass concentration reached 207 g/L in a short time, while it was 64 g/L in a fed-batch culture. More than 99% of the growing cells were retained in the fermentor by the filtering culture. Both yield and productivity of cells were also increased by controlling the feeding of fresh medium and filtering the supernatant of the dense cells culture. (c) 1994 John Wiley & Sons, Inc.

  16. Development of a two-stage feeding strategy based on the kind and level of feeding nutrients for improving fed-batch production of L-threonine by Escherichia coli.

    Science.gov (United States)

    Liu, Shuwen; Liang, Yong; Liu, Qian; Tao, Tongtong; Lai, Shujuan; Chen, Ning; Wen, Tingyi

    2013-01-01

    Fed-batch fermentation is the predominant method for industrial production of amino acids. In this study, we comprehensively investigated the effects of four kinds of feeding nutrients and developed an accurate optimization strategy for fed-batch production of L-threonine. The production of L-threonine was severely inhibited when cell growth ceased in the bath culture. Similarly, L-threonine production was also associated with cell growth in the carbon-, phosphate-, and sulfate-limited fed-batch cultures, but the accumulation of L-threonine was markedly increased because of the extended production time in the growth stage. Interestingly, auxotrophic amino acid (L-isoleucine)-limited feeding promoted L-threonine production over the non-growth phase. Metabolite analysis indicates that substantial production of acetate and glutamate and the resulting accumulation of ammonium may lead to the inhibition of L-threonine production. During the growth phase, the levels of L-isoleucine were accurately optimized by balancing cell growth and production with Pontryagin's maximum principle, basing on the relationship between the specific growth rate μ and specific production rate ρ. Furthermore, the depletion of L-isoleucine and phosphate at the end of the growth phase favored the synthesis of L-threonine in the subsequent non-growth phase. Combining the two-stage feeding profiles, the final L-threonine concentration and conversion rate were increased by 5.9- and 2.1-fold, respectively, compared to batch processes without feeding control. The identification of efficient feeding nutrient and the development of accurate feeding strategies provide potential guidelines for microbial production of amino acids.

  17. Improved fed-batch production of high-purity PHB (poly-3 hydroxy butyrate) by Cupriavidus necator (MTCC 1472) from sucrose-based cheap substrates under response surface-optimized conditions.

    Science.gov (United States)

    Dey, Pinaki; Rangarajan, Vivek

    2017-10-01

    Experimental investigations were carried out for Cupriavidus necator (MTCC 1472)-based improved production of poly-3 hydroxy butyrate (PHB) through induced nitrogen limiting fed-batch cultivation strategies. Initially Plackett-Burman design and response surface methodology were implemented to optimize most influencing process parameters. With optimized process parameter values, continuous feeding strategies ware applied in a 5-l fermenter with table sugar concentration of 100 g/l, nitrogen concentration of 0.12 g/l for fed-batch fermentation with varying dilution rates of 0.02 and 0.046 1/h. To get enriched production of PHB, concentration of the sugar was further increased to 150 and 200 g/l in feeding. Maximum concentrations of PHB achieved were 22.35 and 23.07 g/l at those dilution rates when sugar concentration maintains at 200 g/l in feeding. At maximum concentration of PHB (23.07 g/l), productivity of 0.58 g/l h was achieved with maximum PHB accumulation efficiency up to 64% of the dry weight of biomass. High purity of PHB, close to medical grade was achieved after surfactant hypochlorite extraction method, and it was further confirmed by SEM, EDX, and XRD studies.

  18. Using continuous UV extinction measurements to monitor and control the aerated phase of sequencing batch reactors; Einsatz der kontinuierlichen UV-Extinktionsmessung fuer die Ueberwachung und Regelung der Belueftungsphase in SBR-Anlagen

    Energy Technology Data Exchange (ETDEWEB)

    Nicolet, L.; Rott, U. [Stuttgart Univ. (Germany). Inst. fuer Siedlungswasserbau, Wasserguete- und Abfallwirtschaft; Bardeck, S. [Optek-Danulat GmbH (Germany)

    1999-07-01

    The work describes the measurement of UV extinction - expressed as the spectral absorption coefficient SAC - at a randomly chosen wave length as a technique for monitoring organic load in effluents from sequencing batch reactors (SBR) at municipal and industrial waste water treatment plants. Further described is to what extent the continuous determination of the SAC can be used in practice for the control of the aerated phase of sequencing batch reactors. By this means, process stabilization and optimization can be achieved and operating reliability can be enhanced. (orig.) [German] Inhalt dieses Beitrages ist es, die Messung der UV-Extinktion - ausgedrueckt durch den spektralen Absorptionskoeffizient (SAK) - bei einer frei gewaehlten Wellenlaenge als Verfahren fuer die Ueberwachung der organischen Belastung in den Ablaeufen von SBR-Anlagen (Sequencing-Batch-Reactor) in der kommunalen und industriellen Abwasserreinigung vorzustellen. Weiterhin soll dargestellt werden, in wieweit die kontinuierliche Bestimmung des SAK in der Praxis fuer die Regelung der beluefteten Phase von SBR-Anlagen eingesetzt werden kann. Hiermit kann eine Prozessstabilisierung und -optimierung der Anlagen erreicht sowie die Betriebssicherheit erhoeht werden. (orig.)

  19. Bioreactor tests preliminary to landfill in situ aeration: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Raga, Roberto, E-mail: roberto.raga@unipd.it [ICEA Department, University of Padova. Via Marzolo, 9, 35131 Padova (Italy); Cossu, Raffaello [ICEA Department, University of Padova. Via Marzolo, 9, 35131 Padova (Italy)

    2013-04-15

    Highlights: ► Carbon and nitrogen mass balances in aerated landfill simulation reactors. ► Waste stabilization in aerated landfill simulation reactors. ► Effect of temperature on biodegradation processes in aerated landfills. - Abstract: Lab scale tests in bioreactor were carried out in the framework of the characterization studies of a landfill where in situ aeration (possibly followed by landfill mining) had been proposed as part of the novel waste management strategy in a region in northern Italy. The tests were run to monitor the effects produced by aerobic conditions at different temperatures on waste sampled at different depths in the landfill, with focus on the carbon and nitrogen conversion during aeration. Temperatures ranging from 35 to 45 °C were chosen, in order to evaluate possible inhibition of biodegradation processes (namely nitrification) at 45 °C in the landfill. The results obtained showed positive effects of the aeration on leachate quality and a significant reduction of waste biodegradability. Although a delay of biodegradation processes was observed in the reactor run at 45 °C, biodegradation rates increased after 2 months of aeration, providing very low values of the relevant parameters (as in the other aerated reactors) by the end of the study. Mass balances were carried out for TOC and N-NH{sub 4}{sup +}; the findings obtained were encouraging and provided evidence of the effectiveness of carbon and nitrogen conversion processes in the aerated landfill simulation reactors.

  20. Bioreactor tests preliminary to landfill in situ aeration: A case study

    International Nuclear Information System (INIS)

    Raga, Roberto; Cossu, Raffaello

    2013-01-01

    Highlights: ► Carbon and nitrogen mass balances in aerated landfill simulation reactors. ► Waste stabilization in aerated landfill simulation reactors. ► Effect of temperature on biodegradation processes in aerated landfills. - Abstract: Lab scale tests in bioreactor were carried out in the framework of the characterization studies of a landfill where in situ aeration (possibly followed by landfill mining) had been proposed as part of the novel waste management strategy in a region in northern Italy. The tests were run to monitor the effects produced by aerobic conditions at different temperatures on waste sampled at different depths in the landfill, with focus on the carbon and nitrogen conversion during aeration. Temperatures ranging from 35 to 45 °C were chosen, in order to evaluate possible inhibition of biodegradation processes (namely nitrification) at 45 °C in the landfill. The results obtained showed positive effects of the aeration on leachate quality and a significant reduction of waste biodegradability. Although a delay of biodegradation processes was observed in the reactor run at 45 °C, biodegradation rates increased after 2 months of aeration, providing very low values of the relevant parameters (as in the other aerated reactors) by the end of the study. Mass balances were carried out for TOC and N-NH 4 + ; the findings obtained were encouraging and provided evidence of the effectiveness of carbon and nitrogen conversion processes in the aerated landfill simulation reactors

  1. Nitrogen-removal performance and community structure of nitrifying bacteria under different aeration modes in an oxidation ditch.

    Science.gov (United States)

    Guo, Chang-Zi; Fu, Wei; Chen, Xue-Mei; Peng, Dang-Cong; Jin, Peng-Kang

    2013-07-01

    Oxidation-ditch operation modes were simulated using sequencing batch reactors (SBRs) with alternate stirring and aerating. The nitrogen-removal efficiencies and nitrifying characteristics of two aeration modes, point aeration and step aeration, were investigated. Under the same air-supply capacity, oxygen dissolved more efficiently in the system with point aeration, forming a larger aerobic zone. The nitrifying effects were similar in point aeration and step aeration, where the average removal efficiencies of NH4(+) N were 98% and 96%, respectively. When the proportion of anoxic and oxic zones was 1, the average removal efficiencies of total nitrogen (TN) were 45% and 66% under point aeration and step aeration, respectively. Step aeration was more beneficial to both anoxic denitrification and simultaneous nitrification and denitrification (SND). The maximum specific ammonia-uptake rates (AUR) of point aeration and step aeration were 4.7 and 4.9 mg NH4(+)/(gMLVSS h), respectively, while the maximum specific nitrite-uptake rates (NUR) of the two systems were 7.4 and 5.3 mg NO2(-)-N/(gMLVSS h), respectively. The proportions of ammonia-oxidizing bacteria (AOB) to all bacteria were 5.1% under point aeration and 7.0% under step aeration, and the proportions of nitrite-oxidizing bacteria (NOB) reached 6.5% and 9.0% under point and step aeration, respectively. The dominant genera of AOB and NOB were Nitrosococcus and Nitrospira, which accounted for 90% and 91%, respectively, under point aeration, and the diversity of nitrifying bacteria was lower than under step aeration. Point aeration was selective of nitrifying bacteria. The abundance of NOB was greater than that of AOB in both of the operation modes, and complete transformation of NH4(+) N to NO3(-)-N was observed without NO2(-)-N accumulation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Management of microbial community composition, architecture and performance in autotrophic nitrogen removing bioreactors through aeration regimes

    DEFF Research Database (Denmark)

    Mutlu, A. Gizem

    to describe aggregation and architectural evolution in nitritation/anammox reactors, incorporating the possible influences of intermediates formed with intermittent aeration. Community analysis revealed an abundant fraction of heterotrophic types despite the absence of organic carbon in the feed. The aerobic...... and anaerobic ammonia oxidizing guilds were dominated by fast-growing Nitrosomonas spp. and Ca. Brocadia spp., while the nitrite oxidizing guild was dominated by high affinity Nitrospira spp. Emission of nitrous oxide (N2O) was evaluated from both reactors under dynamic aeration regimes. Contrary to the widely...... impacts could be isolated, increasing process understanding. It was demonstrated that aeration strategy can be used as a powerful tool to manipulate the microbial community composition, its architecture and reactor performance. We suggest operation via intermittent aeration with short aerated periods...

  3. Accelerated anaerobic hydrolysis rates under a combination of intermittent aeration and anaerobic conditions

    DEFF Research Database (Denmark)

    Jensen, T. R.; Lastra Milone, T.; Petersen, G.

    2017-01-01

    Anaerobic hydrolysis in activated return sludge was investigated in laboratory scale experiments to find if intermittent aeration would accelerate anaerobic hydrolysis rates compared to anaerobic hydrolysis rates under strict anaerobic conditions. The intermittent reactors were set up in a 240 h...... for calculating hydrolysis rates based on soluble COD were compared. Two-way ANOVA with the Bonferroni post-test was performed in order to register any significant difference between reactors with intermittent aeration and strictly anaerobic conditions respectively. The experiment demonstrated a statistically...... significant difference in favor of the reactors with intermittent aeration showing a tendency towards accelerated anaerobic hydrolysis rates due to application of intermittent aeration. The conclusion of the work is thus that intermittent aeration applied in the activated return sludge process (ARP) can...

  4. Passively Aerated Composting of Straw-Rich Pig Manure : Effect of Compost Bed Porosity

    NARCIS (Netherlands)

    Veeken, A.H.M.; Wilde, de V.; Hamelers, H.V.M.

    2002-01-01

    Straw-rich manure from organic pig farming systems can be composted in passively aerated systems as the high application of straw results in a compost bed with good structure and porosity. The passively aerated composting process was simulated in one-dimensional reactors of 2 m3 for straw-rich

  5. Water quality and bacteriology in an aquaculture facility equipped with a new aeration system

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, S.O.; Kulkarni, S.S.; Shirodkar, R.R.; Karekar, S.V.; PraveenKumar, R.; Sreepada, R.A.; Vogelsang, C.; LokaBharathi, P.A.

    .J., & Reyes F L. de los. (2005). Effects of Aeration Cycles on Nitrifying Bacterial Populations and Nitrogen Removal in Intermittently Aerated Reactors. Applied and Environmental Microbiology, 71(12), 8565-8572. Li, Q., Chen, B., Qu, k., Yuan, Y., Li, J...

  6. Biodegradation of 2,4,6-trichlorophenol in a packed-bed biofilm reactor equipped with an internal net draft tube riser for aeration and liquid circulation

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-De Jesus, A.; Romano-Baez, F.J.; Leyva-Amezcua, L.; Juarez-Ramirez, C.; Ruiz-Ordaz, N. [Departamento de Ingenieria Bioquimica, Escuela Nacional de Ciencias Biologicas, IPN. Prol. Carpio y Plan de Ayala, Colonia Santo Tomas, s/n. CP 11340, Mexico, D.F. (Mexico); Galindez-Mayer, J. [Departamento de Ingenieria Bioquimica, Escuela Nacional de Ciencias Biologicas, IPN. Prol. Carpio y Plan de Ayala, Colonia Santo Tomas, s/n. CP 11340, Mexico, D.F. (Mexico)], E-mail: cmayer@encb.ipn.mx

    2009-01-30

    For the aerobic biodegradation of the fungicide and defoliant 2,4,6-trichlorophenol (2,4,6-TCP), a bench-scale packed-bed bioreactor equipped with a net draft tube riser for liquid circulation and oxygenation (PB-ALR) was constructed. To obtain a high packed-bed volume relative to the whole bioreactor volume, a high A{sub D}/A{sub R} ratio was used. Reactor's downcomer was packed with a porous support of volcanic stone fragments. PB-ALR hydrodynamics and oxygen mass transfer behavior was evaluated and compared to the observed behavior of the unpacked reactor operating as an internal airlift reactor (ALR). Overall gas holdup values {epsilon}{sub G}, and zonal oxygen mass transfer coefficients determined at various airflow rates in the PB-ALR, were higher than those obtained with the ALR. When comparing mixing time values obtained in both cases, a slight increment in mixing time was observed when reactor was operated as a PB-ALR. By using a mixed microbial community, the biofilm reactor was used to evaluate the aerobic biodegradation of 2,4,6-TCP. Three bacterial strains identified as Burkholderia sp., Burkholderia kururiensis and Stenotrophomonas sp. constituted the microbial consortium able to cometabolically degrade the 2,4,6-TCP, using phenol as primary substrate. This consortium removed 100% of phenol and near 99% of 2,4,6-TCP. Mineralization and dehalogenation of 2,4,6-TCP was evidenced by high COD removal efficiencies ({approx}95%), and by the stoichiometric release of chloride ions from the halogenated compound ({approx}80%). Finally, it was observed that the microbial consortium was also capable to metabolize 2,4,6-TCP without phenol as primary substrate, with high removal efficiencies (near 100% for 2,4,6-TCP, 92% for COD and 88% for chloride ions)

  7. Supplementation of serum free media with HT is not sufficient to restore growth properties of DHFR-/- cells in fed-batch processes - Implications for designing novel CHO-based expression platforms.

    Science.gov (United States)

    Florin, Lore; Lipske, Carolin; Becker, Eric; Kaufmann, Hitto

    2011-04-10

    DHFR-deficient CHO cells are the most commonly used host cells in the biopharmaceutical industry and over the years, individual substrains have evolved, some have been engineered with improved properties and platform technologies have been designed around them. Unexpectedly, we have observed that different DHFR-deficient CHO cells show only poor growth in fed-batch cultures even in HT supplemented medium, whereas antibody producer cells derived from these hosts achieved least 2-3 fold higher peak cell densities. Using a set of different expression vectors, we were able to show that this impaired growth performance was not due to the selection procedure possibly favouring fast growing clones, but a direct consequence of DHFR deficiency. Re-introduction of the DHFR gene reproducibly restored the growth phenotype to the level of wild-type CHO cells or even beyond which seemed to be dose-dependent. The requirement for a functional DHFR gene to achieve optimal growth under production conditions has direct implications for cell line generation since it suggests that changing to a selection system other than DHFR would require another CHO host which - especially for transgenic CHO strains and tailor-suited process platforms - this could mean significant investments and potential changes in product quality. In these cases, DHFR engineering of the current CHO-DG44 or DuxB11-based host could be an attractive alternative. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. High-titer lactic acid production from NaOH-pretreated corn stover by Bacillus coagulans LA204 using fed-batch simultaneous saccharification and fermentation under non-sterile condition.

    Science.gov (United States)

    Hu, Jinlong; Zhang, Zhenting; Lin, Yanxu; Zhao, Shumiao; Mei, Yuxia; Liang, Yunxiang; Peng, Nan

    2015-04-01

    Lactic acid (LA) is an important chemical with various industrial applications. Non-food feedstock is commercially attractive for use in LA production; however, efficient LA fermentation from lignocellulosic biomass resulting in both high yield and titer faces technical obstacles. In this study, the thermophilic bacterium Bacillus coagulans LA204 demonstrated considerable ability to ferment glucose, xylose, and cellobiose to LA. Importantly, LA204 produces LA from several NaOH-pretreated agro stovers, with remarkably high yields through simultaneous saccharification and fermentation (SSF). A fed-batch SSF process conducted at 50°C and pH 6.0, using a cellulase concentration of 30 FPU (filter paper unit)/g stover and 10 g/L yeast extract in a 5-L bioreactor, was developed to produce LA from 14.4% (w/w) NaOH-pretreated non-sterile corn stover. LA titer, yield, and average productivity reached 97.59 g/L, 0.68 g/g stover, and 1.63 g/L/h, respectively. This study presents a feasible process for lignocellulosic LA production from abundant agro stovers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Evaluation of enzymatic reactors for large-scale panose production.

    Science.gov (United States)

    Fernandes, Fabiano A N; Rodrigues, Sueli

    2007-07-01

    Panose is a trisaccharide constituted by a maltose molecule bonded to a glucose molecule by an alpha-1,6-glycosidic bond. This trisaccharide has potential to be used in the food industry as a noncariogenic sweetener, as the oral flora does not ferment it. Panose can also be considered prebiotic for stimulating the growth of benefic microorganisms, such as lactobacillus and bifidobacteria, and for inhibiting the growth of undesired microorganisms such as E. coli and Salmonella. In this paper, the production of panose by enzymatic synthesis in a batch and a fed-batch reactor was optimized using a mathematical model developed to simulate the process. Results show that optimum production is obtained in a fed-batch process with an optimum production of 11.23 g/l h of panose, which is 51.5% higher than production with batch reactor.

  10. Deflector plants turbine aeration

    International Nuclear Information System (INIS)

    Miller, D.E.; Sheppard, A.R.; Widener, D.W.

    1991-01-01

    Water quality requirements have become a focal point in recent re-licensing of hydroelectric projects. The Federal Energy Regulatory Commission has significantly increased the relevance of license conditions to insure that turbine discharges meet state or other specific criteria for dissolved oxygen (D.O.). Due to naturally occurring depletion of D.O. at increased depths in large reservoirs, water withdrawn from this strata may result in unacceptably low levels of D.O. Different researchers have evaluated various methods of improving D.O. content in hydro turbine discharges, including; diffusers, weirs, oxygen injection, and variations of turbine venting. The authors describe an approach called deflector plate turbine aeration. This computer based, engineered approach allows systems to be evaluated, designed, and installed with predictable performance and costs. Many experts in this field now agree that, to the extent practical, turbine venting offers the most dependable, maintenance free, and cost effective solution to the low D.O. problem. The approach presented in this paper has resulted in proven results

  11. Effects of intermittent and continuous aeration on accelerative stabilization and microbial population dynamics in landfill bioreactors.

    Science.gov (United States)

    Sang, Nguyen Nhu; Soda, Satoshi; Inoue, Daisuke; Sei, Kazunari; Ike, Michihiko

    2009-10-01

    Performance and microbial population dynamics in landfill bioreactors were investigated in laboratory experiments. Three reactors were operated without aeration (control reactor, CR), with cyclic 6-h aeration and 6-h non-aeration (intermittently aerated reactor, IAR), and with continuous aeration (continuously aerated reactor, CAR). Each reactor was loaded with high-organic solid waste. The performance of IAR was highest among the reactors up to day 90. The respective solid weight, organic matter content, and waste volume on day 90 in the CR, IAR, and CAR were 50.9, 39.1, and 47.5%; 46.5, 29.3 and 35.0%; and 69, 38, and 53% of the initial values. Organic carbon and nitrogen compounds in leachate in the IAR and the CAR showed significant decreases in comparison to those in the CR. The most probable number (MPN) values of fungal 18S rDNA in the CAR and the IAR were higher than those in the CR. Terminal restriction fragment length polymorphism analysis showed that unique and diverse eubacterial and archaeal communities were formed in the IAR. The intermittent aeration strategy was favorable for initiation of solubilization of organic matter by the aerobic fungal populations and the reduction of the acid formation phase. Then the anaerobic H(2)-producing bacteria Clostridium became dominant in the IAR. Sulfate-reducing bacteria, which cannot use acetate/sulfate but which instead use various organics/sulfate as the electron donor/acceptor were also dominant in the IAR. Consequently, Methanosarcinales, which are acetate-utilizing methanogens, became the dominant archaea in the IAR, where high methane production was observed.

  12. The development of furrower model blade to paddlewheel aerator for improving aeration efficiency

    Science.gov (United States)

    Bahri, Samsul; Praeko Agus Setiawan, Radite; Hermawan, Wawan; Zairin Junior, Muhammad

    2018-05-01

    The successful of intensive aquaculture is strongly influenced by the ability of the farmers to overcome the deterioration of water quality. The problem is low dissolved oxygen through aeration process. The aerator device which widely used in pond farming is paddle wheel aerator because it is the best aerator in aeration mechanism and usable driven power. However, this aerator still has a low performance of aeration, so that the cost of aerator operational for aquaculture is still high. Up to now, the effort to improve the performance of aeration was made by two-dimensional blade design. Obviously, it does not provide the optimum result due to the power requirements for aeration is directly proportional to the increase of aeration rate. The aim of this research is to develop three-dimensional model furrowed blades. Design of Furrower model blades was 1.6 cm diameter hole, 45º of vertical angle blade position and 30º of the horizontal position. The optimum performance furrowed model blades operated on the submerged blade 9 cm with 567.54 Watt of electrical power consumption and 4.322 m3 of splash coverage volume. The standard efficiency aeration is 2.72 kg O2 kWh-1. The furrowed model blades can improve the aeration efficiency of paddlewheel aerator.

  13. Modeling and optimization of poly(3hydroxybutyrate-co-3hydroxyvalerate) production from cane molasses by Azohydromonas lata MTCC 2311 in a stirred-tank reactor: effect of agitation and aeration regimes.

    Science.gov (United States)

    Zafar, Mohd; Kumar, Shashi; Kumar, Surendra; Dhiman, Amit K

    2012-07-01

    The effects of agitation and aeration rates on copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] production by Azohydromonas lata MTCC 2311 using cane molasses supplemented with propionic acid in a bioreactor were investigated. The experiments were conducted in a three-level factorial design by varying the impeller (150-500 rev min(-1)) and aeration (0.5-1.5 vvm) rates. Further, the data were fitted to mathematical models [quadratic polynomial equation and artificial neural network (ANN)] and process variables were optimized by genetic algorithm-coupled models. ANN and hybrid ANN-GA were found superior for modeling and optimization of process variables, respectively. The maximum copolymer concentration of 7.45 g l(-1) with 21.50 mol% of 3HV was predicted at process variables: agitation speed, 287 rev min(-1); and aeration rate, 0.85 vvm, which upon validation gave 7.20 g l(-1) of P(3HB-co-3HV) with 21 mol% of 3HV with the prediction error (%) of 3.38 and 2.32, respectively. Agitation speed established a relative high importance of 72.19% than of aeration rate (27.80%) for copolymer accumulation. The volumetric gas-liquid mass transfer coefficient (k (L) a) was strongly affected by agitation and aeration rates. The highest P(3HB-co-3HV) productivity of 0.163 g l(-1) h(-1) was achieved at 0.17 s(-1) of k (L) a value. During the early phase of copolymer production process, 3HB monomers were accumulated, which were shifted to 3HV units (9-21%) during the cultivation period of 24-42 h. The enhancement of 7.5 and 34% were reported for P(3HB-co-3HV) production and 3HV content, respectively, by hybrid ANN-GA paradigm, which revealed the significant utilization of cane molasses for improved copolymer production.

  14. Nitrogen removal in the bioreactor landfill system with intermittent aeration at the top of landfilled waste

    International Nuclear Information System (INIS)

    He Ruo; Shen Dongsheng

    2006-01-01

    High ammonia concentration of recycled landfill leachate makes it very difficult to treat. In this work, a vertical aerobic/anoxic/anaerobic lab-scale bioreactor landfill system, which was constructed by intermittent aeration at the top of landfilled waste, as a bioreactor for in situ nitrogen removal was investigated during waste stabilization. Intermittent aeration at the top of landfilled waste might stimulate the growth of nitrifying bacteria and denitrifying bacteria in the top and middle layers of waste. The nitrifying bacteria population for the landfill bioreactor with intermittent aeration system reached between10 6 and 10 8 cells/dry g waste, although it decreased 2 orders of magnitude on day 30, due to the inhibitory effect of the acid environment and high organic matter in the landfilled waste. The denitrifying bacteria population increased by between 4 and 13 orders of magnitude compared with conventional anaerobic landfilled waste layers. Leachate NO 3 - -N concentration was very low in both two experimental landfill reactors. After 105 days operation, leachate NH 4 + -N and TN concentrations for the landfill reactor with intermittent aeration system dropped to 186 and 289 mg/l, respectively, while they were still kept above 1000 mg/l for the landfill reactor without intermittent aerobic system. In addition, there is an increase in the rate of waste stabilization as well as an increase of 12% in the total waste settlement for the landfill reactor with intermittent aeration system

  15. Optimizing aeration rates for minimizing membrane fouling and its effect on sludge characteristics in a moving bed membrane bioreactor

    International Nuclear Information System (INIS)

    Rahimi, Yousef; Torabian, Ali; Mehrdadi, Naser; Habibi-Rezaie, Mehran; Pezeshk, Hamid; Nabi-Bidhendi, Gholam-Reza

    2011-01-01

    Research highlights: → There is an optimum aeration rate in the MBMBR process compartments. → Optimum aeration rate maximizes nutrients removal. → Optimum aeration rate minimizes membrane fouling. → Both aeration rates in MBBR and membrane compartment can affect on membrane permeability. - Abstract: In MBR processes, sufficient aeration is necessary to maintain sustainable flux and to retard membrane fouling. Membrane permeability, sludge characteristics, nutrient removal and biomass growth at various air flow rates in the membrane and moving bed biofilm reactor (MBBR) compartments were studied in a pilot plant. The highest nitrogen and phosphorous removal rates were found at MBBR aeration rates of 151 and 85 L h -1 and a specific aeration demand per membrane area (SAD m ) of 1.2 and 0.4m air 3 m -2 h -1 , respectively. A linear correlation was found between the amount of attached biofilm and the nutrient removal rate. The aeration rate in the MBBR compartment and SAD m significantly influenced the sludge characteristics and membrane permeability. The optimum combination of the aeration rate in the MBBR compartment and SAD m were 151 L h -1 and 0.8-1.2m air 3 m membrane -2 h -1 , respectively.

  16. Optimizing aeration rates for minimizing membrane fouling and its effect on sludge characteristics in a moving bed membrane bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, Yousef, E-mail: yrahimi@ut.ac.ir [Department of Civil and Environmental Engineering, Graduate Faculty of Environment, University of Tehran, No. 25 Qods St., Enghelab Ave., Tehran (Iran, Islamic Republic of); Torabian, Ali, E-mail: atorabi@ut.ac.ir [Department of Civil and Environmental Engineering, Graduate Faculty of Environment, University of Tehran, No. 25 Qods St., Enghelab Ave., Tehran (Iran, Islamic Republic of); Mehrdadi, Naser, E-mail: mehrdadi@ut.ac.ir [Department of Civil and Environmental Engineering, Graduate Faculty of Environment, University of Tehran, No. 25 Qods St., Enghelab Ave., Tehran (Iran, Islamic Republic of); Habibi-Rezaie, Mehran, E-mail: mhabibi@khayam.ut.ac.ir [Department of Biotechnology, Faculty of Biology, College of Science, University of Tehran, No. 25 Qods St., Enghelab Ave., Tehran (Iran, Islamic Republic of); Pezeshk, Hamid, E-mail: pezeshk@khayam.ut.ac.ir [Department of Statistics, Faculty of Mathematics and Computer, College of Science, University of Tehran, No. 25 Qods St., Enghelab Ave., Tehran (Iran, Islamic Republic of); Nabi-Bidhendi, Gholam-Reza, E-mail: ghhendi@ut.ac.ir [Department of Civil and Environmental Engineering, Graduate Faculty of Environment, University of Tehran, No. 25 Qods St., Enghelab Ave., Tehran (Iran, Islamic Republic of)

    2011-02-28

    Research highlights: {yields} There is an optimum aeration rate in the MBMBR process compartments. {yields} Optimum aeration rate maximizes nutrients removal. {yields} Optimum aeration rate minimizes membrane fouling. {yields} Both aeration rates in MBBR and membrane compartment can affect on membrane permeability. - Abstract: In MBR processes, sufficient aeration is necessary to maintain sustainable flux and to retard membrane fouling. Membrane permeability, sludge characteristics, nutrient removal and biomass growth at various air flow rates in the membrane and moving bed biofilm reactor (MBBR) compartments were studied in a pilot plant. The highest nitrogen and phosphorous removal rates were found at MBBR aeration rates of 151 and 85 L h{sup -1} and a specific aeration demand per membrane area (SAD{sub m}) of 1.2 and 0.4m{sub air}{sup 3} m{sup -2} h{sup -1}, respectively. A linear correlation was found between the amount of attached biofilm and the nutrient removal rate. The aeration rate in the MBBR compartment and SAD{sub m} significantly influenced the sludge characteristics and membrane permeability. The optimum combination of the aeration rate in the MBBR compartment and SAD{sub m} were 151 L h{sup -1} and 0.8-1.2m{sub air}{sup 3}m{sub membrane}{sup -2} h{sup -1}, respectively.

  17. Start-Up and Aeration Strategies for a Completely Autotrophic Nitrogen Removal Process in an SBR

    Directory of Open Access Journals (Sweden)

    Xiaoling Zhang

    2017-01-01

    Full Text Available The start-up and performance of the completely autotrophic nitrogen removal via nitrite (CANON process were examined in a sequencing batch reactor (SBR with intermittent aeration. Initially, partial nitrification was established, and then the DO concentration was lowered further, surplus water in the SBR with high nitrite was replaced with tap water, and continuous aeration mode was turned into intermittent aeration mode, while the removal of total nitrogen was still weak. However, the total nitrogen (TN removal efficiency and nitrogen removal loading reached 83.07% and 0.422 kgN/(m3·d, respectively, 14 days after inoculating 0.15 g of CANON biofilm biomass into the SBR. The aggregates formed in SBR were the mixture of activated sludge and granular sludge; the volume ratio of floc and granular sludge was 7 : 3. DNA analysis showed that Planctomycetes-like anammox bacteria and Nitrosomonas-like aerobic ammonium oxidization bacteria were dominant bacteria in the reactor. The influence of aeration strategies on CANON process was investigated using batch tests. The result showed that the strategy of alternating aeration (1 h and nonaeration (1 h was optimum, which can obtain almost the same TN removal efficiency as continuous aeration while reducing the energy consumption, inhibiting the activity of NOB, and enhancing the activity of AAOB.

  18. Oxygen demand for the stabilization of the organic fraction of municipal solid waste in passively aerated bioreactors

    International Nuclear Information System (INIS)

    Kasinski, Slawomir; Wojnowska-Baryla, Irena

    2014-01-01

    Highlights: • The use of an passively aerated reactor enables effective stabilization of OFMSW. • Convective air flow does not inhibit the aerobic stabilization of waste. • The use of an passively aerated reactor reduces the heat loss due to convection. • The volume of supplied air exceeds 1.7–2.88 times the microorganisms demand. - Abstract: Conventional aerobic waste treatment technologies require the use of aeration devices that actively transport air through the stabilized waste mass, which greatly increases operating costs. In addition, improperly operated active aeration systems, may have the adverse effect of cooling the stabilized biomass. Because active aeration can be a limiting factor for the stabilization process, passive aeration can be equally effective and less expensive. Unfortunately, there are few reports documenting the use of passive aeration systems in municipal waste stabilization. There have been doubts raised as to whether a passive aeration system provides enough oxygen to the organic matter mineralization processes. In this paper, the effectiveness of aeration during aerobic stabilization of four different organic fractions of municipal waste in a reactor with an integrated passive ventilation system and leachate recirculation was analyzed. For the study, four fractions separated by a rotary screen were chosen. Despite the high temperatures in the reactor, the air flow rate was below 0.016 m 3 /h. Using Darcy’s equation, theoretical values of the air flow rate were estimated, depending on the intensity of microbial metabolism and the amount of oxygen required for the oxidation of organic compounds. Calculations showed that the volume of supplied air exceeded the microorganisms demand for oxidation and endogenous activity by 1.7–2.88-fold

  19. Design characteristics of Curved Blade Aerator w.r.t. aeration ...

    African Journals Online (AJOL)

    user

    To provide the required amount of oxygen, an aeration system is always ... and number of blades, depth of flow etc and physicochemical properties of the liquid. .... amounts to 29 cm with 12 blades (fiber strips) mounted on each aerator rotor.

  20. Effective pine bark composting with the Dome Aeration Technology

    International Nuclear Information System (INIS)

    Trois, Cristina; Polster, Andreas

    2007-01-01

    In South Africa garden refuse is primarily disposed of in domestic landfills. Due to the large quantities generated, any form of treatment would be beneficial for volume reduction, waste stabilization and resource recovery. Dome Aeration Technology (DAT) is an advanced process for aerobic biological degradation of garden refuse and general waste [Paar, S., Brummack, J., Gemende, B., 1999a. Advantages of dome aeration in mechanical-biological waste treatment. In: Proceedings of the 7th International Waste Management and Landfill Symposium, Cagliari, 4-8 October 1999; Paar, S., Brummack, J., Gemende, B., 1999b. Mechanical-biological waste stabilization by the dome aeration method. Environment Protection Engineering 25 (3/99). Mollekopf, N., Brummack, J., Paar, S., Vorster, K., 2002. Use of the Dome Aeration Technology for biochemical stabilization of waste prior to landfilling. In: Proceedings of the Wastecon 2002, Waste Congress and Exhibition, Durban, South Africa.]. It is a non-reactor open windrow composting process, with the main advantage being that the input material needs no periodic turning. A rotting time of only 3-4 months indicates the high efficiency. Additionally, the low capital/operational costs, low energy inputs and limited plant requirements provide potential for use in aerobic refuse stabilization. The innovation in the DAT process is the passive aeration achieved by thermally driven advection through open windrows caused by temperature differences between the degrading material and the outside environment. This paper investigates the application of Dome Aeration Technology to pine bark composting as part of an integrated waste management strategy. A full-scale field experiment was performed at the Bisasar Road Landfill Site in Durban to assess the influence of climate, waste composition and operational conditions on the process. A test windrow was constructed and measurements of temperature and airflow through the material were taken. The process

  1. New jet-aeration system using 'Supercavitation'.

    Science.gov (United States)

    Schmid, Andreas

    2010-03-01

    A newly developed fine bubble aeration system, by which air is transferred under supercavitation conditions, shows a clearly better performance than traditional, well-known aerators that rely on the jet-pump principle and its performance can be compared to oxygen transfer rates achieved in membrane and foil plate aerators. A prototype supercavitation aerator installed at a sewage treatment plant revealed an air input rate, which was about one third lower than that of the jet-pump system, which it replaced. In spite of this low air input rate, the daily demand of pure oxygen for the additionally installed membrane aeration system went down by approximately 49%, from the original level of about 1,200 m(3)/day to about 600 m(3)/day-and this over a test period of more than 7 months. The observed high oxygen transfer rates cannot be explained by traditional mass transfer mechanisms. It is assumed that a large amount of water being transferred into the gas phase by supercavitation contacting directly oxygen also in the gas phase and thereby overcoming mass transfer hindrances which might be favoured by hydroxyl radicals. With this new aerator, during the first 3 months of test phase, already more than 10,000 Euros had been saved because of the reduced pure oxygen demand.

  2. Maximization of beta-galactosidase production: a simultaneous investigation of agitation and aeration effects.

    Science.gov (United States)

    Alves, Fernanda Germano; Filho, Francisco Maugeri; de Medeiros Burkert, Janaína Fernandes; Kalil, Susana Juliano

    2010-03-01

    In this work, the agitation and aeration effects in the maximization of the beta-galactosidase production from Kluyveromyces marxianus CCT 7082 were investigated simultaneously, in relation to the volumetric enzyme activity and the productivity, as well as the analysis of the lactose consumption and production of glucose, and galactose of this process. Agitation and aeration effects were studied in a 2 L batch stirred reactor. A central composite design (2(2) trials plus three central points) was carried out. Agitation speed varied from 200 to 500 rpm and aeration rate from 0.5 to 1.5 vvm. It has been shown in this study that the volumetric enzyme production was strongly influenced by mixing conditions, while aeration was shown to be less significant. Linear models for activity and productivity due to agitation and aeration were obtained. The favorable condition was 500 rpm and 1.5 vvm, which lead to the best production of 17 U mL(-1) for enzymatic activity, 1.2 U mL(-1) h(-1) for productivity in 14 h of process, a cellular concentration of 11 mg mL(-1), and a 167.2 h(-1) volumetric oxygen transfer coefficient.

  3. AERATION OF THE ICE-COVERED WATER POOLS USING THE WAVE FLOW AERATOR

    Directory of Open Access Journals (Sweden)

    Solomin E.E

    2013-12-01

    Full Text Available This article describes the technical advantages and economic benefits of the ice-covered pool aeration plants consuming power from renewable energy sources. We made a comparative evaluation of the wave flow-aeration method and other methods of pool aeration. We showed the indexes and the characteristics of the wave flow-maker for aeration of ice-covered pools on the territory of Russia. We also made calculations of the economic benefits of aeration plants using the devices converting renewable energy. The project can be scaled and extended to the territory of the CIS, Europe, USA and Canada in the changing climate conditions and the variety of feed reservoirs around the world.

  4. Investigation of aeration rate on Uranium bio leaching in internal airlift bioreactor

    International Nuclear Information System (INIS)

    Zolala, M. R.; Safdari, S. J.; Haghighi Asl, A.; Rashidi, A.

    2012-01-01

    Uranium is leached from the uranium ore of the second anomaly of Saghand by the Acidithiobacillus ferroxidans bacteria in an internal airlift bio-reactor. This study has been made to find the effect of aeration rate as well as its optimal value. The experiments have been carried out at 4 aeration rates to find the best recovery results in the least possible time duration. The results showed that the most percentage of the uranium recovery is in the superficial gas velocity of 0.010 m/s. The recovery at this aeration rate has an efficiency of more than 95 p ercent i n 11 days. Also, the best range for aeration study in the airlift bio-reactor is calculated with a minimum value of 0.0065 m/s which is the critical value of the uranium particle suspension as well as the maximum value of 0.015 m/s. The stress on the bacteria increases the recovery time process in velocities of more than 0.015 m/s.

  5. Effect of micro-aeration on anaerobic digestion of primary sludge under septic tank conditions.

    Science.gov (United States)

    Diak, James; Örmeci, Banu; Kennedy, Kevin J

    2013-04-01

    Micro-aeration, which refers to the addition of very small amounts of air, is a simple technology that can potentially be incorporated in septic tanks to improve the digestion performance. The purpose of this study was to investigate and compare the effects of micro-aeration on anaerobic digestion of primary sludge under septic tank conditions. 1.6 L batch reactor experiments were carried out in duplicate using raw primary sludge, with 4.1 % total solids, and diluted primary sludge, with 2.1 % total solids. Reactors were operated for 5 weeks at room temperature to simulate septic tank conditions. Micro-aeration rate of 0.00156 vvm effectively solubilised chemical oxygen demand (COD) and improved the subsequent degradation of COD. Micro-aeration also increased the generation of ammonia and soluble proteins, but did not improve the reduction in total and volatile solids, or the reduction in carbohydrates. Experiments using diluted sludge samples showed similar trends as the experiments with raw sludge, which suggest that initial solids concentration did not have a significant effect on the degradation of primary sludge under septic tank conditions.

  6. Some effects of aeration on anaerobic digestion

    Energy Technology Data Exchange (ETDEWEB)

    Bhywapathanapun, S

    1972-01-01

    The anaerobic digestion of meat works waste water is made possible by separating the sludge solids, after which necessary amounts of the concentrated sludge are returned to the digester. Sludge recirculation prolongs solid retention time in the digester. However, sludge separation by gravitational sedimentation is almost impossible because the sludge tends to rise with the continuous gassing. Therefore treatment of the sludge suspension prior to sedimentation is necessary for effective solid separation. The present study examined aeration degasification as a method for sludge suspension pretreatment and found that the rates of aeration of 0.75 to 1.0 VVM (0.12 to 0.16 cubic foot of air per gallon of mixed liquor per minute) were optimal for aeration degasification. The toxic effects on the anaerobic bacteria were small, daily gas production being reduced by only 5%.

  7. Reactor

    International Nuclear Information System (INIS)

    Toyama, Masahiro; Kasai, Shigeo.

    1978-01-01

    Purpose: To provide a lmfbr type reactor wherein effusion of coolants through a loop contact portion is reduced even when fuel assemblies float up, and misloading of reactor core constituting elements is prevented thereby improving the reactor safety. Constitution: The reactor core constituents are secured in the reactor by utilizing the differential pressure between the high-pressure cooling chamber and low-pressure cooling chamber. A resistance port is formed at the upper part of a connecting pipe, and which is connect the low-pressure cooling chamber and the lower surface of the reactor core constituent. This resistance part is formed such that the internal sectional area of the connecting pipe is made larger stepwise toward the upper part, and the cylinder is formed larger so that it profiles the inner surface of the connecting pipe. (Aizawa, K.)

  8. Iron removal using an aerated granular filter

    Energy Technology Data Exchange (ETDEWEB)

    Cho, B.Y. [Dongguk University, Seoul (Republic of Korea). College of Engineering

    2005-10-01

    Laboratory scale experiments concerning iron removal from artificial raw water by an artificial filter using anthracite as filter media were conducted. The major findings were that iron oxidation and removal by an aerated filter is mainly a catalytic chemical reaction rather than a biological reaction. Further, iron removal does not perform effectively without aeration. Iron removal was very effective when the pH was weakly acidity. Iron oxide attached to the surface of the media is identified as ferrihydrite, which catalyzes the oxidation of iron as shown by Moessbauer spectra analysis.

  9. Shear reinforced beams in autoclaved aerated concrete

    DEFF Research Database (Denmark)

    Cornelius, Thomas

    2010-01-01

    Shear behaviour in concrete materials is very well documented, for normal density concrete materials. In this paper results of various tests on low density concrete materials like aerated autoclaved concrete (in the following denoted aircrete) will be presented and analyzed for different combinat....... Codes for designing prefabricated reinforced components of aircrete structures have adopted these recently developed approaches.......Shear behaviour in concrete materials is very well documented, for normal density concrete materials. In this paper results of various tests on low density concrete materials like aerated autoclaved concrete (in the following denoted aircrete) will be presented and analyzed for different...

  10. Acid mine water aeration and treatment system

    Science.gov (United States)

    Ackman, Terry E.; Place, John M.

    1987-01-01

    An in-line system is provided for treating acid mine drainage which basically comprises the combination of a jet pump (or pumps) and a static mixer. The jet pump entrains air into the acid waste water using a Venturi effect so as to provide aeration of the waste water while further aeration is provided by the helical vanes of the static mixer. A neutralizing agent is injected into the suction chamber of the jet pump and the static mixer is formed by plural sections offset by 90 degrees.

  11. CO-COMPOSTING LIMBAH PADAT BELTPRESS DAN JERAMI PADI DENGAN AERATED STATIC PILE

    Directory of Open Access Journals (Sweden)

    Nastiti Siswi Indrasti

    2017-07-01

    Full Text Available Solid waste from beltpress machine in wastewater treatment plant is produced as much as 1,25 tons/day but hasnot been utilized, causing unpleasant odour and requires a high cost for disposal. Composting is one of alternative technology that can be applied to solve the problem. The objectives of this research were to examine the influence of the initial C/N value and aeration rate to the rate of co-composting process in reaching the C/N value that corresponds to SNI 19-7030-2004, and to characterize the compost produced. The research design used was factorial Complete Random Design (CRD with two factors and two repetitions. The first factor was C/N value, consisted of 25; 30; 35 and the second factor was aeration rate, consisted of 0; 0,4; 0,8 L/min.kg of dry material. Composting was done using 30 L reactor by giving active intermittent aeration for 1 hour/day during the first 7 days of composting. Effects of initial C/N value and aeration rate were significantly different (P0.05 on pH value. Lower initial C/N value and higher aeration rate attained standard C/N value fastest. The best treatment based on the conformity with SNI 19-7030-2004 was initial C/N25 with aeration rate 0,8 L/minute.kg dry matter. The compost produced met the SNI standards in macro elements, trace elements,and other elements, but didnot qualify the pH value and moisture content.

  12. Reactor

    International Nuclear Information System (INIS)

    Ikeda, Masaomi; Kashimura, Kazuo; Inoue, Kazuyuki; Nishioka, Kazuya.

    1979-01-01

    Purpose: To facilitate the construction of a reactor containment building, whereby the inspections of the outer wall of a reactor container after the completion of the construction of the reactor building can be easily carried out. Constitution: In a reactor accommodated in a container encircled by a building wall, a space is provided between the container and the building wall encircling the container, and a metal wall is provided in the space so that it is fitted in the building wall in an attachable or detatchable manner. (Aizawa, K.)

  13. Methane biofiltration using autoclaved aerated concrete as the carrier material.

    Science.gov (United States)

    Ganendra, Giovanni; Mercado-Garcia, Daniel; Hernandez-Sanabria, Emma; Boeckx, Pascal; Ho, Adrian; Boon, Nico

    2015-09-01

    The methane removal capacity of mixed methane-oxidizing bacteria (MOB) culture in a biofilter setup using autoclaved aerated concrete (AAC) as a highly porous carrier material was tested. Batch experiment was performed to optimize MOB immobilization on AAC specimens where optimum methane removal was obtained when calcium chloride was not added during bacterial inoculation step and 10-mm-thick AAC specimens were used. The immobilized MOB could remove methane at low concentration (~1000 ppmv) in a biofilter setup for 127 days at average removal efficiency (RE) of 28.7 %. Unlike a plug flow reactor, increasing the total volume of the filter by adding a biofilter in series did not result in higher total RE. MOB also exhibited a higher abundance at the bottom of the filter, in proximity with the methane gas inlet where a high methane concentration was found. Overall, an efficient methane biofilter performance could be obtained using AAC as the carrier material.

  14. Calibration and verification of models of organic carbon removal kinetics in Aerated Submerged Fixed-Bed Biofilm Reactors (ASFBBR): a case study of wastewater from an oil-refinery.

    Science.gov (United States)

    Trojanowicz, Karol; Wójcik, Włodzimierz

    2011-01-01

    The article presents a case-study on the calibration and verification of mathematical models of organic carbon removal kinetics in biofilm. The chosen Harremöes and Wanner & Reichert models were calibrated with a set of model parameters obtained both during dedicated studies conducted at pilot- and lab-scales for petrochemical wastewater conditions and from the literature. Next, the models were successfully verified through studies carried out utilizing a pilot ASFBBR type bioreactor installed in an oil-refinery wastewater treatment plant. During verification the pilot biofilm reactor worked under varying surface organic loading rates (SOL), dissolved oxygen concentrations and temperatures. The verification proved that the models can be applied in practice to petrochemical wastewater treatment engineering for e.g. biofilm bioreactor dimensioning.

  15. Effects of tailwater depth on spillway aeration

    African Journals Online (AJOL)

    2011-04-15

    Apr 15, 2011 ... Hydraulic structures such as spillways or weirs with their water-air controlling mechanisms are not only important for their structural properties but also for their effects on downstream ecology. Tailwater depth is an important factor affecting dissolved oxygen transfer and aeration rates of spillways. In this ...

  16. Impacts of aeration and active sludge addition on leachate recirculation bioreactor

    International Nuclear Information System (INIS)

    Dong Jun; Zhao Yongsheng; Henry, Rotich K.; Hong Mei

    2007-01-01

    Stabilization of municipal solid waste (MSW) is affected by moisture, nutrients, oxygen, pH and accumulation of inhibitory fermentation products, etc. Optimization of these parameters could create a favorable environment that promotes the rapid development of the desired microbial population and acceleration of decomposition of MSW. The objectives of this work was to determine the feasibility of enhancing phase separation through intermittent aeration strategy throughout the treatment process; to demonstrate the potential of active sludge for in situ nitrogen removal; to examine the efficiency and evaluate the possibility of in situ removal of contaminants from leachate. The results indicate that the removal ratio of COD, BOD 5 , NH 4 + and total nitrogen are over 80, 81, 75, and 74%, respectively, in the leachate recirculation reactors with aeration; the removal efficiency of NH 4 + and total nitrogen of the reactor which were added active sludge were 88 and 84%, respectively. Therefore, aeration strategy has positive impacts on the solid waste stabilization; addition of active sludge in reactor is favorable for the remediation of the nitrogen; using landfill itself for in situ attenuating the contaminants from leachate is feasible

  17. A simplified analysis of granule behavior in ASBR and UASB reactors treating low-strength synthetic wastewater

    Directory of Open Access Journals (Sweden)

    R. G. Veronez

    2005-09-01

    Full Text Available This work presents an analysis of the changes observed in granule characteristics of sludge in the treatment of synthetic wastewater at a concentration of about 500 mgCOD/L in batch, fed-batch (ASBR and continuous (UASB bench-scale reactors under similar experimental conditions. Physical and microbiological properties of the granules were characterized as average particle size and sedimentation time and by optical and epifluorescence microscopy. Several samples were analyzed in order to identify the morphologies. Granules from sequencing batch and fed-batch reactors, either with or without mechanical mixing, did not undergo any physical or microbiological changes. However, during the experiment granules from the UASB reactor agglomerated due to the formation and accumulation of a viscous material, probably of microbial origin, when operated at low superficial velocities (0.072, 0.10 and 0.19 m/h. When the superficial velocity was increased to 8.0-10.0 m/h by means of liquid-phase recirculation, the granules from the UASB reactor underwent flocculation and the microbiological characteristics changed in such a way that the equilibrium of microbial diversity in the inoculum was not maintained. As a result, the only reactor that maintained efficiency and good solids retention during the assays was the ASBR, showing that there is a correlation between maintenance of microbial diversity and operating mode in the case of anaerobic treatment of low-strength wastewaters.

  18. Radon in water aeration system operational performance

    International Nuclear Information System (INIS)

    Lamarre, B.L.

    1990-01-01

    North East Environmental Products, Inc. is a manufacturer of residential scale aeration systems for removal of radon and volatile organic chemicals from private water supplies. This paper is a review of the operational history of residential scale point of entry (POE) radon aeration systems. Emphasis is placed on the difficulties and solutions encountered in actual installations caused by both mechanical difficulties and water quality parameters. A summary of radon reduction efficiency is presented for wells with radon concentrations from 21,000 to 2,600,000 pCi/L. A discussion of customer concerns and attitudes is presented along with other areas for further technical improvement. Training techniques for dealers and installers are also discussed. An update of the current status of the radon in water industry includes current sales volumes as compared to the potential market and an update on the radon in water MCL standard setting process from an industry perspective

  19. CFD model of an aerating hydrofoil

    International Nuclear Information System (INIS)

    Scott, D; Sabourin, M; Beaulieu, S; Papillon, B; Ellis, C

    2014-01-01

    Improving water quality in the tailrace below hydroelectric dams has become a priority in many river systems. In warm climates, water drawn by the turbine from deep in a reservoir can be deficient in dissolved oxygen (DO), a critical element in maintaining a healthy aquatic ecosystem. Many different solutions have been proposed in order to increase the DO levels in turbine discharge, including: turbine aeration systems (adding air to the water through either the turbine hub, the periphery or through distributed aeration in the runner blades); bubble diffusers in the reservoir or in the tailrace; aerating weirs downstream of the dams; and surface water pumps in the reservoir near the dam. There is a significant potential to increase the effectiveness of these solutions by improving the way that oxygen is introduced into the water; better distributions of bubbles will result in better oxygen transfer. In the present study, a two-phase Computational Fluid Dynamics model has been formulated using a commercial code to study the distribution of air downstream of a simple aerating hydrofoil. The two-phase model uses the Eulerian-Eulerian approach. Appropriate relations are used to model the interphase forces, including the Grace drag force model, the Favre averaged drag force and the Sato enhanced eddy viscosity. The model is validated using experimental results obtained in the water tunnel at the University of Minnesota's Saint Anthony Falls Laboratory. Results are obtained for water velocities between 5 and 10 m/s, air flow rates between 0.5 and 1.5 sL/min and for angles of attack between 0° and -8°. The results of this study show that the CFD model provides a good qualitative comparison to the experimental results by well predicting the wake location at the different flow rates and angles of attack used

  20. Bioaugmentation of an acetate-oxidising anaerobic consortium in up-flow sludge blanket reactor subjected to high ammonia loads

    DEFF Research Database (Denmark)

    Fotidis, Ioannis; Karakashev, Dimitar Borisov; Angelidaki, Irini

    Ammonia is the major inhibitor of anaerobic digestion (AD) process leading to suboptimal utilisation of the biogas potential of the feedstocks and causing economical losses to the biogas plants. However, ammonia is mainly inhibiting the aceticlastic methanogens, while the hydrogenotrophic...... was tested. The co-cultivation in fed-batch of a fast-growing hydrogenotrophic methanogen (i.e. Methanoculleus bourgensis) with the SAO culture was also investigated. Results obtained clearly demonstrated that bioaugmentation of SAO culture in a UASB reactor was not possible most probably due to the slow...

  1. Decentralized wastewater treatment using passively aerated biological filter.

    Science.gov (United States)

    Abou-Elela, Sohair I; Hellal, Mohamed S; Aly, Olfat H; Abo-Elenin, Salah A

    2017-10-13

    This study aimed to evaluate the efficiency of a novel pilot-scale passively aerated biological filter (PABF) as a low energy consumption system for the treatment of municipal wastewater. It consists of four similar compartments, each containing 40% of a non-woven polyester fabric as a bio-bed. The PABF was fed with primary treated wastewater under a hydraulic retention time (HRT) of 3.5 hr and a hydraulic loading rate of 5.5 m 2 /m 3 /d. The effect of media depth, HRT, dissolved oxygen (DO) and surface area of the media on the removal efficiency of pollutants was investigated. Results indicated that increasing media depth along the axis of the reactor and consequently increasing the HRT and DO resulted in great removal of different pollutants. A significant increase in the DO levels in the final effluent up to 6.7 mg/l resulted in good nitrification processes. Statistical analysis using SPSS showed that the reactor performance has significant removal efficiency (p filter systems.

  2. Reactors

    DEFF Research Database (Denmark)

    Shah, Vivek; Vaz Salles, Marcos António

    2018-01-01

    The requirements for OLTP database systems are becoming ever more demanding. Domains such as finance and computer games increasingly mandate that developers be able to encode complex application logic and control transaction latencies in in-memory databases. At the same time, infrastructure...... engineers in these domains need to experiment with and deploy OLTP database architectures that ensure application scalability and maximize resource utilization in modern machines. In this paper, we propose a relational actor programming model for in-memory databases as a novel, holistic approach towards......-level function calls. In contrast to classic transactional models, however, reactors allow developers to take advantage of intra-transaction parallelism and state encapsulation in their applications to reduce latency and improve locality. Moreover, reactors enable a new degree of flexibility in database...

  3. Fungi solubilisation of low rank coal: performances of stirred tank, fluidised bed and packed bed reactors

    CSIR Research Space (South Africa)

    Oboirien, BO

    2013-02-01

    Full Text Available Coal biosolubilisation was investigated in stirred tank reactor, fluidised bed and fixed bed bioreactors with a view to highlight the advantages and shortcomings of each of these reactor configurations. The stirred aerated bioreactor and fluidised...

  4. Comparison between lab- and full-scale applications of in situ aeration of an old landfill and assessment of long-term emission development after completion

    Energy Technology Data Exchange (ETDEWEB)

    Hrad, Marlies; Gamperling, Oliver [Institute of Waste Management, Department of Water–Atmosphere–Environment, University of Natural Resources and Life Sciences, Muthgasse 107, 1190 Vienna (Austria); Huber-Humer, Marion, E-mail: marion.huber-humer@boku.ac.at [Institute of Waste Management, Department of Water–Atmosphere–Environment, University of Natural Resources and Life Sciences, Muthgasse 107, 1190 Vienna (Austria)

    2013-10-15

    authorised Austrian discharge limits. However, the application of in situ aeration at the investigated landfill is a factor 10 behind the lab-based predictions after 3 years of operation, mainly due to technical limitations in the full-scale operation (e.g. high air flow resistivity due to high water content of waste and temporarily high water levels within the landfill; limited efficiency of the aeration wells). In addition, material preparation (e.g. sieving, sorting and homogenisation) prior to the emplacement in Landfill Simulation Reactors (LSRs) must be considered when transferring results from lab- to full-scale application.

  5. Comparison between lab- and full-scale applications of in situ aeration of an old landfill and assessment of long-term emission development after completion

    International Nuclear Information System (INIS)

    Hrad, Marlies; Gamperling, Oliver; Huber-Humer, Marion

    2013-01-01

    Austrian discharge limits. However, the application of in situ aeration at the investigated landfill is a factor 10 behind the lab-based predictions after 3 years of operation, mainly due to technical limitations in the full-scale operation (e.g. high air flow resistivity due to high water content of waste and temporarily high water levels within the landfill; limited efficiency of the aeration wells). In addition, material preparation (e.g. sieving, sorting and homogenisation) prior to the emplacement in Landfill Simulation Reactors (LSRs) must be considered when transferring results from lab- to full-scale application

  6. Mechanisms for naphthalene removal during electrolytic aeration.

    Science.gov (United States)

    Goel, Ramesh K; Flora, Joseph R V; Ferry, John

    2003-02-01

    Batch tests were performed to investigate chemical and physical processes that may result during electrolytic aeration of a contaminated aquifer using naphthalene as a model contaminant. Naphthalene degradation of 58-66% took place electrolytically and occurred at the same rates at a pH of 4 and 7. 1,4-naphthoquinone was identified as a product of the electrolysis. Stripping due to gases produced at the electrodes did not result in any naphthalene loss. Hydrogen peroxide (which may be produced at the cathode) did not have any effect on naphthalene, but the addition of ferrous iron (which may be present in aquifers) resulted in 67-99% disappearance of naphthalene. Chlorine (which may be produced from the anodic oxidation of chloride) can effectively degrade naphthalene at pH of 4, but not at a pH of 7. Mono-, di- and poly chloronaphthalenes were identified as oxidation products. Ferric iron coagulation (due to the oxidation of ferrous iron) did not significantly contribute to naphthalene loss. Overall, electrolytic oxidation and chemical oxidation due to the electrolytic by-products formed are significant abiotic processes that could occur and should be accounted for if bioremediation of PAH-contaminated sites via electrolytic aeration is considered. Possible undesirable products such as chlorinated compounds may be formed when significant amounts of chlorides are present.

  7. Radionuclide migration test using undisturbed aerated soil

    International Nuclear Information System (INIS)

    Yamamoto, Tadatoshi; Ohtsuka, Yoshiro; Ogawa, Hiromichi; Wadachi, Yoshiki

    1988-01-01

    As one of the most important part of safety assessment on the shallow land disposal of lowlevel radioactive waste, the radionuclide migration was studied using undisturbed soil samples, in order to evaluate an exact radionuclide migration in an aerated soil layer. Soil samples used in the migration test were coastal sand and loamy soil which form typical surface soil layers in Japan. The aqueous solution containing 60 CoCl 2 , 85 SrCl 2 and 137 CsCl was fed into the soil column and concentration of each radionuclide both in effluent and in soil was measured. Large amount of radionuclides was adsorbed on the surface of soil column and small amount of radionuclides moved deep into the soil column. Difference in the radionuclide profile was observed in the low concentration portion particularly. It is that some fractions of 60 Co and 137 Cs are stable in non-ionic form and move downward through the soil column together with water. The radionuclide distribution in the surface of soil column can be fairly predicted with a conventional migration equation for ionic radionuclides. As a result of radionuclide adsorption, both aerated soil layers of coastal sand and loamy soil have large barrier ability on the radionuclide migration through the ground. (author)

  8. Oxidation of magnetite in aerated aqueous media

    International Nuclear Information System (INIS)

    Taylor, P.; Owen, D.G.

    1993-04-01

    Metastable equilibria involving phases less stable than hematite can be significantly more oxidizing than the calculated equilibrium between well-crystallized hematite and magnetite. In this report, generalized solubility and stability relationships between magnetite and Fe 2 O 3 .xH 2 O phases are derived to describe the metastable equilibria. Experiments with synthetic magnetite powders in aerated aqueous solutions show that crystalline hematite is formed within days at temperatures above 100 C in pure water or solutions containing anions (e.g., Cl - , SO 4 2 - , HCO 3 - ) that do not form very strong surface complexes with iron oxides. In the presence of dissolved phosphate or silica, however, the dissolution-precipitation route to hematite is strongly inhibited, and maghemite is a persistent metastable product. Thus, phosphate or silica are expected to delay the approach to magnetite-hematite equilibrium in aerated groundwaters conditioned by magnetite. These findings are presented in the context of nuclear fuel waste disposal. (author). 63 refs., 1 tab., 11 figs

  9. Reactor

    International Nuclear Information System (INIS)

    Fujibayashi, Toru.

    1976-01-01

    Object: To provide a boiling water reactor which can enhance a quake resisting strength and flatten power distribution. Structure: At least more than four fuel bundles, in which a plurality of fuel rods are arranged in lattice fashion which upper and lower portions are supported by tie-plates, are bundled and then covered by a square channel box. The control rod is movably arranged within a space formed by adjoining channel boxes. A spacer of trapezoidal section is disposed in the central portion on the side of the channel box over substantially full length in height direction, and a neutron instrumented tube is disposed in the central portion inside the channel box. Thus, where a horizontal load is exerted due to earthquake or the like, the spacers come into contact with each other to support the channel box and prevent it from abnormal vibrations. (Furukawa, Y.)

  10. Relationship between respiratory quotient, nitrification, and nitrous oxide emissions in a forced aerated composting process

    Energy Technology Data Exchange (ETDEWEB)

    Tsutsui, Hirofumi, E-mail: jm-tsutsuih@kochi-u.ac.jp [Research and Education Faculty, Natural Sciences Cluster, Agriculture Unit, Kochi University, B200 Monobe, Nankoku, Kochi (Japan); Japan Science and Technology Agency, CREST (Japan); Fujiwara, Taku [Research and Education Faculty, Natural Sciences Cluster, Agriculture Unit, Kochi University, B200 Monobe, Nankoku, Kochi (Japan); Japan Science and Technology Agency, CREST (Japan); Inoue, Daisuke [Department of Health Science, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara-Minami, Kanagawa (Japan); Japan Science and Technology Agency, CREST (Japan); Ito, Ryusei [Department of Environmental Engineering, Graduate School of Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo, Hokkaido (Japan); Japan Science and Technology Agency, CREST (Japan); Matsukawa, Kazutsugu [Research and Education Faculty, Multidisciplinary Science Cluster, Life and Environmental Medicine Science Unit, Kochi University, B200 Monobe, Nankoku, Kochi (Japan); Japan Science and Technology Agency, CREST (Japan); Funamizu, Naoyuki [Department of Environmental Engineering, Graduate School of Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo, Hokkaido (Japan); Japan Science and Technology Agency, CREST (Japan)

    2015-08-15

    Highlights: • RQ can be an indicator of N{sub 2}O emission in forced aerated composting process. • Emission of N{sub 2}O with nitrification was observed with RQ decrease. • Mass balances demonstrated the RQ decrease was caused by nitrification. • Conversion ratio of oxidized ammonia and total N to N{sub 2}O were ∼2.7%. - Abstract: We assessed the relationship between respiratory quotient (RQ) and nitrification and nitrous oxide (N{sub 2}O) emission in forced aerated composting using lab-scale reactors. Relatively high RQ values from degradation of readily degradable organics initially occurred. RQ then stabilized at slightly lower values, then decreased. Continuous emission of N{sub 2}O was observed during the RQ decrease. Correlation between nitrification and N{sub 2}O emission shows that the latter was triggered by nitrification. Mass balances demonstrated that the O{sub 2} consumption of nitrification (∼24.8 mmol) was slightly higher than that of CO{sub 2} emission (∼20.0 mmol), indicating that the RQ decrease was caused by the occurrence of nitrification. Results indicate that RQ is a useful index, which not only reflects the bioavailability of organics but also predicts the occurrence of nitrification and N{sub 2}O emission in forced aerated composting.

  11. Enhancement of ultrasonic disintegration of sewage sludge by aeration.

    Science.gov (United States)

    Zhao, He; Zhang, Panyue; Zhang, Guangming; Cheng, Rong

    2016-04-01

    Sonication is an effective way for sludge disintegration, which can significantly improve the efficiency of anaerobic digestion to reduce and recycle use of sludge. But high energy consumption limits the wide application of sonication. In order to improve ultrasonic sludge disintegration efficiency and reduce energy consumption, aeration was introduced. Results showed that sludge disintegration efficiency was improved significantly by combining aeration with ultrasound. The aeration flow rate, gas bubble size, ultrasonic density and aeration timing had impacts on sludge disintegration efficiency. Aeration that used in later stage of ultrasonic irradiation with low aeration flow rate, small gas bubbles significantly improved ultrasonic disintegration sludge efficiency. At the optimal conditions of 0.4 W/mL ultrasonic irradiation density, 30 mL/min of aeration flow rate, 5 min of aeration in later stage and small gas bubbles, ultrasonic sludge disintegration efficiency was increased by 45% and one third of ultrasonic energy was saved. This approach will greatly benefit the application of ultrasonic sludge disintegration and strongly promote the treatment and recycle of wastewater sludge. Copyright © 2015. Published by Elsevier B.V.

  12. Influence of aeration and lighting on biomass production and protein ...

    African Journals Online (AJOL)

    The influence aeration and light intensity could have on biomass production and protein biosynthesis in a Spirulina sp. isolated from an oil-polluted brackish water marsh is examined. Biomass, proximal composition and amino acid composition obtained from aerated cultures of the organism were compared with ...

  13. 21 CFR 880.6100 - Ethylene oxide gas aerator cabinet.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ethylene oxide gas aerator cabinet. 880.6100... Miscellaneous Devices § 880.6100 Ethylene oxide gas aerator cabinet. (a) Identification. An ethyene oxide gas... required to remove residual ethylene oxide (ETO) from wrapped medical devices that have undergone ETO...

  14. Automatic Time Regulator for Switching on an Aeration Device for ...

    African Journals Online (AJOL)

    The need to aerate the pond at odd hours due to diurnal limit, save cost and human labor, necessitated the design of an automatic time regulator circuit, which controls the switching on and o of an aeration device at a pre determined and selected time interval (5mins., 10mins., 20mins., 30mins., and 40mins.) This design ...

  15. Role of macrophyte and effect of supplementary aeration in up-flow constructed wetland-microbial fuel cell for simultaneous wastewater treatment and energy recovery.

    Science.gov (United States)

    Oon, Yoong-Ling; Ong, Soon-An; Ho, Li-Ngee; Wong, Yee-Shian; Dahalan, Farrah Aini; Oon, Yoong-Sin; Lehl, Harvinder Kaur; Thung, Wei-Eng; Nordin, Noradiba

    2017-01-01

    This study investigates the role of plant (Elodea nuttallii) and effect of supplementary aeration on wastewater treatment and bioelectricity generation in an up-flow constructed wetland-microbial fuel cell (UFCW-MFC). Aeration rates were varied from 1900 to 0mL/min and a control reactor was operated without supplementary aeration. 600mL/min was the optimum aeration flow rate to achieve highest energy recovery as the oxygen was sufficient to use as terminal electron acceptor for electrical current generation. The maximum voltage output, power density, normalized energy recovery and Coulombic efficiency were 545.77±25mV, 184.75±7.50mW/m 3 , 204.49W/kg COD, 1.29W/m 3 and 10.28%, respectively. The variation of aeration flow rates influenced the NO 3 - and NH 4 + removal differently as nitrification and denitrification involved conflicting requirement. In terms of wastewater treatment performance, at 60mL/min aeration rate, UFCW-MFC achieved 50 and 81% of NO 3 - and NH 4 + removal, respectively. E. nuttallii enhanced nitrification by 17% and significantly contributed to bioelectricity generation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Grey-box modelling of aeration tank settling.

    Science.gov (United States)

    Bechman, Henrik; Nielsen, Marinus K; Poulsen, Niels Kjølstad; Madsen, Henrik

    2002-04-01

    A model of the concentrations of suspended solids (SS) in the aeration tanks and in the effluent from these during Aeration tank settling (ATS) operation is established. The model is based on simple SS mass balances, a model of the sludge settling and a simple model of how the SS concentration in the effluent from the aeration tanks depends on the actual concentrations in the tanks and the sludge blanket depth. The model is formulated in continuous time by means of stochastic differential equations with discrete-time observations. The parameters of the model are estimated using a maximum likelihood method from data from an alternating BioDenipho waste water treatment plant (WWTP). The model is an important tool for analyzing ATS operation and for selecting the appropriate control actions during ATS, as the model can be used to predict the SS amounts in the aeration tanks as well as in the effluent from the aeration tanks.

  17. EXPERIMENTAL STUDY ON THE GAS-LIQUID FLOW IN THE MEMBRANE MICROPORE AERATION BIOREACTOR

    Directory of Open Access Journals (Sweden)

    DONG LIU

    2008-12-01

    Full Text Available Particle Image Velocimetry (PIV has been developed to measure the typical two-phase flow of various work conditions in Membrane Micropore Aeration Bioreactor (MMAB. The fluid phase is separated out using image processing techniques, which provides accurate measurements for the Bioreactor’s flow field, and makes it possible for quantitative analysis of the momentum exchange, heat exchange and the process of micro-admixture. The experimental method PIV used in this paper can preferably measure the complex flow in the reactor and initiates a new approach for the bioreactor design which mainly depends on experience at present.

  18. Nutrients removal in hybrid fluidised bed bioreactors operated with aeration cycles.

    Science.gov (United States)

    Martin, Martin; Enríquez, L López; Fernández-Polanco, M; Villaverde, S; Garcia-Encina, P A

    2007-01-01

    Abstract Two hybrid fluidised bed reactors filled with sepiolite and granular activated carbon (GAC) were operated with short cycled aeration for removing organic matter, total nitrogen and phosphorous, respectively. Both reactors were continuously operated with synthetic and/or industrial wastewater containing 350-500 mg COD/L, 110-130 mg NKT/L, 90-100 mg NH3-N/L and 12-15 mg P/L for 8 months. The reactor filled with sepiolite, treating only synthetic wastewater, removed COD, ammonia, total nitrogen and phosphorous up to 88, 91, 55 and 80% with a hydraulic retention time (HRT) of 10 h, respectively. These efficiencies correspond to removal rates of 0.95 kgCODm(-3)d(-1) and 0.16 kg total N m(-3)d(-1). The reactor filled with GAC was operated for 4 months with synthetic wastewater and 4 months with industrial wastewater, removing 98% of COD, 96% of ammonia, and 66% of total nitrogen, with an HRT of 13.6 h. No significant phosphorous removing activity was observed in this reactor. Microbial communities growing with both reactors were followed using polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) techniques. The microbial fingerprints, i.e. DGGE profiles, indicated that biological communities in both reactors were stable along the operational period even when the operating conditions were changed.

  19. Anaerobic digestion of solid waste in RAS: Effect of reactor type on the biochemical acidogenic potential (BAP) and assessment of the biochemical methane potential (BMP) by a batch assay

    DEFF Research Database (Denmark)

    Suhr, Karin Isabel; Letelier-Gordo, Carlos Octavio; Lund, Ivar

    2015-01-01

    the biochemical acidogenic potential of solid waste from juvenile rainbow trout was evaluated by measuring the yield of volatile fatty acids (VFA) during anaerobic digestion by batch or fed-batch reactor operation at hydrolysis time (HT) / hydraulic retention time (HRT) of 1, 5, or 10 days (and for batch......Anaerobic digestion is a way to utilize the potential energy contained in solid waste produced in recirculating aquaculture systems (RASs), either by providing acidogenic products for driving heterotrophic denitrification on site or by directly producing combustive methane. In this study...

  20. Dewaterability of sludge digested in extended aeration plants using ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-07-19

    Jul 19, 2010 ... extended aeration (EA) or anaerobic digestion were compared on full and lab scale sand drying ... Novak, 1999) and to the reduction of iron concentration in ... nutrient removal and provide semi-plug flow conditions to reduce.

  1. Aeration strategy for biofilm cultivation of the microalga Scenedesmus dimorphus.

    Science.gov (United States)

    Ji, Chunli; Wang, Junfeng; Liu, Tianzhong

    2015-10-01

    Biofilm cultivation of microalgae may be useful for biofuel production. However, many aspects for this cultivation method have not been well assessed. Accordingly, aeration strategy for biofilm cultivation of Scenedesmus dimorphus has been explored. Biomass, lipid and triacylglycerol (TAG) productivity in increased S. dimorphus as the CO2 concentration increased within 0.038-0.5% and kept constant with further increases. The biomass, lipid and TAG productivity increased with the speed increasing and an obvious threshold point was observed at 6.6 ml(-2) min(-1). The lipid and TAG content was unaffected by the aeration rate. Both the CO2 concentration as well as aeration speed affected the growth of S. dimorphus in biofilm cultivation. The optimized aeration strategy for biofilm cultivation was continuous air flow enriched with 1% CO2 (v/v) at 6.6 ml(-2) min(-1).

  2. Aeration and mass transfer optimization in a rectangular airlift loop photobioreactor for the production of microalgae.

    Science.gov (United States)

    Guo, Xin; Yao, Lishan; Huang, Qingshan

    2015-08-01

    Effects of superficial gas velocity and top clearance on gas holdup, liquid circulation velocity, mixing time, and mass transfer coefficient are investigated in a new airlift loop photobioreactor (PBR), and empirical models for its rational control and scale-up are proposed. In addition, the impact of top clearance on hydrodynamics, especially on the gas holdup in the internal airlift loop reactor, is clarified; a novel volume expansion technique is developed to determine the low gas holdup in the PBR. Moreover, a model strain of Chlorella vulgaris is cultivated in the PBR and the volumetric power is analyzed with a classic model, and then the aeration is optimized. It shows that the designed PBR, a cost-effective reactor, is promising for the mass cultivation of microalgae. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Study of test methods for radionuclide migration in aerated zone

    International Nuclear Information System (INIS)

    Li Shushen; Guo Zede; Wang Zhiming

    1993-01-01

    Aerated zone is an important natural barrier against transport of radionuclides released from disposal facilities of LLRW. This paper introduces study methods for radionuclide migration in aerated zone, including determination of water movement, laboratory simulation test, and field tracing test. For one purpose, results obtained with different methods are compared. These methods have been used in a five-year cooperative research project between CIRP and JAERI for an establishment of methodology for safety assessment on shallow land disposal of LLRW

  4. Groundwater Quality Improvement by Using Aeration and Filtration Methods

    OpenAIRE

    Nik N. Nik Daud; Nur H. Izehar; B. Yusuf; Thamer A. Mohamed; A. Ahsan

    2013-01-01

    An experiment was conducted using two aeration methods (water-into-air and air-into-water) and followed by filtration processes using manganese greensand material. The properties of groundwater such as pH, dissolved oxygen, turbidity and heavy metal concentration (iron and manganese) will be assessed. The objectives of this study are i) to determine the effective aeration method and ii) to assess the effectiveness of manganese greensand as filter media in removing iron an...

  5. Intermittent Aeration Suppresses Nitrite-Oxidizing Bacteria in Membrane-Aerated Biofilms: A Model-Based Explanation

    DEFF Research Database (Denmark)

    Ma, Yunjie; Domingo Felez, Carlos; Plósz, Benedek G.

    2017-01-01

    . On the basis of dissolved oxygen (DO), ammonium, nitrite, and nitrate profiles within the biofilm and in the bulk, a 1-dimensional nitrifying biofilm model was developed and calibrated. The model was utilized to explore the potential mechanisms of NOB suppression associated with intermittent aeration...... nitritation, strategies to suppress nitrite-oxidizing bacteria (NOB) are needed, which are ideally grounded on an understanding of underlying mechanisms. In this study, a nitrifying MABR was operated under intermittent aeration. During eight months of operation, AOB dominated, while NOB were suppressed...... during intermittent aeration was mostly explained by periodic inhibition caused by free ammonia due to periodic transient pH upshifts. Dissolved oxygen limitation did not govern NOB suppression. Different intermittent aeration strategies were then evaluated for nitritation success in intermittently...

  6. Characterization of Odorant Compounds from Mechanical Aerated Pile Composting and Static Aerated Pile Composting

    Directory of Open Access Journals (Sweden)

    Priyanka Kumari

    2016-04-01

    Full Text Available We studied airborne contaminants (airborne particulates and odorous compounds emitted from compost facilities in South Korea. There are primarily two different types of composting systems operating in Korean farms, namely mechanical aerated pile composting (MAPC and aerated static pile composting (SAPC. In this study, we analyzed various particulate matters (PM10, PM7, PM2.5, PM1, and total suspended particles, volatile organic compounds and ammonia, and correlated these airborne contaminants with microclimatic parameters, i.e., temperature and relative humidity. Most of the analyzed airborne particulates (PM7, PM2.5, and PM1 were detected in high concentration at SAPC facilities compered to MAPC; however these differences were statistically non-significant. Similarly, most of the odorants did not vary significantly between MAPC and SAPC facilities, except for dimethyl sulfide (DMS and skatole. DMS concentrations were significantly higher in MAPC facilities, whereas skatole concentrations were significantly higher in SAPC facilities. The microclimate variables also did not vary significantly between MAPC and SAPC facilities, and did not correlate significantly with most of the airborne particles and odorous compounds, suggesting that microclimate variables did not influence their emission from compost facilities. These findings provide insight into the airborne contaminants that are emitted from compost facilities and the two different types of composting agitation systems.

  7. Characterization of Odorant Compounds from Mechanical Aerated Pile Composting and Static Aerated Pile Composting.

    Science.gov (United States)

    Kumari, Priyanka; Lee, Joonhee; Choi, Hong-Lim

    2016-04-01

    We studied airborne contaminants (airborne particulates and odorous compounds) emitted from compost facilities in South Korea. There are primarily two different types of composting systems operating in Korean farms, namely mechanical aerated pile composting (MAPC) and aerated static pile composting (SAPC). In this study, we analyzed various particulate matters (PM10, PM7, PM2.5, PM1, and total suspended particles), volatile organic compounds and ammonia, and correlated these airborne contaminants with microclimatic parameters, i.e., temperature and relative humidity. Most of the analyzed airborne particulates (PM7, PM2.5, and PM1) were detected in high concentration at SAPC facilities compered to MAPC; however these differences were statistically non-significant. Similarly, most of the odorants did not vary significantly between MAPC and SAPC facilities, except for dimethyl sulfide (DMS) and skatole. DMS concentrations were significantly higher in MAPC facilities, whereas skatole concentrations were significantly higher in SAPC facilities. The microclimate variables also did not vary significantly between MAPC and SAPC facilities, and did not correlate significantly with most of the airborne particles and odorous compounds, suggesting that microclimate variables did not influence their emission from compost facilities. These findings provide insight into the airborne contaminants that are emitted from compost facilities and the two different types of composting agitation systems.

  8. Activated Sludge and Aerobic Biofilm Reactors

    OpenAIRE

    Von Sperling, Marcos

    2007-01-01

    "Activated Sludge and Aerobic Biofilm Reactors is the fifth volume in the series Biological Wastewater Treatment. The first part of the book is devoted to the activated sludge process, covering the removal of organic matter, nitrogen and phosphorus.A detailed analysis of the biological reactor (aeration tank) and the final sedimentation tanks is provided. The second part of the book covers aerobic biofilm reactors, especially trickling filters, rotating biological contractors and submerged ae...

  9. Analysis of Process Gases and Trace Contaminants in Membrane-Aerated Gaseous Effluent Streams.

    Science.gov (United States)

    Coutts, Janelle L.; Lunn, Griffin Michael; Meyer, Caitlin E.

    2015-01-01

    In membrane-aerated biofilm reactors (MABRs), hollow fibers are used to supply oxygen to the biofilms and bulk fluid. A pressure and concentration gradient between the inner volume of the fibers and the reactor reservoir drives oxygen mass transport across the fibers toward the bulk solution, providing the fiber-adhered biofilm with oxygen. Conversely, bacterial metabolic gases from the bulk liquid, as well as from the biofilm, move opposite to the flow of oxygen, entering the hollow fiber and out of the reactor. Metabolic gases are excellent indicators of biofilm vitality, and can aid in microbial identification. Certain gases can be indicative of system perturbations and control anomalies, or potentially unwanted biological processes occurring within the reactor. In confined environments, such as those found during spaceflight, it is important to understand what compounds are being stripped from the reactor and potentially released into the crew cabin to determine the appropriateness or the requirement for additional mitigation factors. Reactor effluent gas analysis focused on samples provided from Kennedy Space Center's sub-scale MABRs, as well as Johnson Space Center's full-scale MABRs, using infrared spectroscopy and gas chromatography techniques. Process gases, such as carbon dioxide, oxygen, nitrogen, nitrogen dioxide, and nitrous oxide, were quantified to monitor reactor operations. Solid Phase Microextraction (SPME) GC-MS analysis was used to identify trace volatile compounds. Compounds of interest were subsequently quantified. Reactor supply air was examined to establish target compound baseline concentrations. Concentration levels were compared to average ISS concentration values and/or Spacecraft Maximum Allowable Concentration (SMAC) levels where appropriate. Based on a review of to-date results, current trace contaminant control systems (TCCS) currently on board the ISS should be able to handle the added load from bioreactor systems without the need

  10. Uso de lagoa aerada facultativa como polimento do reator anaeróbio de manta de lodo UASB no tratamento de dejetos de suínos em escala laboratorial The efficiency of an aerated pond used for treating the effluent of an UASB reactor (upflow anaerobic sludge blanket reactor treating swine manure in a lab-scale system

    Directory of Open Access Journals (Sweden)

    Fernanda Ribeiro do Carmo

    2004-06-01

    Full Text Available As atividades agroindustriais têm se voltado não somente para o aumento da produtividade, mas também para a conservação do meio ambiente. A suinocultura é, sem dúvida, uma das atividades agroindustriais mais poluidoras, principalmente no Estado de Minas Gerais. Sendo assim, objetivou-se desenvolver e operar uma Lagoa Aerada Facultativa (LAF em escala de bancada (laboratorial, e como polimento de um Reator Anaeróbio de Manta de Lodo (UASB, visando a tratar os dejetos de suínos com máxima eficiência e custo mínimo. O experimento foi conduzido no Laboratório de Análise de Água do Departamento de Engenharia (LAADEG da Universidade Federal de Lavras (UFLA, sendo composto por um tanque de acidificação e equalização (TAE, um reator anaeróbio de manta de lodo (UASB e uma lagoa aerada facultativa (LAF para polimento. As análises fisico-químicas realizadas foram: pH, DBO5, DQO T, Sólidos Totais (fixos e voláteis, Temperatura, Nitrogênio, Fósforo, Alcalinidade e Acidez Total. A unidade LAF mostrou uma eficiência média de 83 e 42% de DQO T e Nitrogênio Total, respectivamente. O sistema proporcionou remoção média de 93, 84 e 85% de DQO T, DBO5 e Sólidos Totais Voláteis, respectivamente.Nowadays the agro-industry activities have not only focused its direction to the production increasing, but also, to the environmental preservation. The swine production is amo doubt, an activity, which can be considered, one of the most pollutants, mainly in the Minas Gerais State (BRAZIL. Therefore, this research aimed at developing and operating an Upflow Anaerobic Sludge Blanket Reactor (UASB, followed by an Aerobic Facultative Pound (AFP (Lab-Scale, with the objective of treating the liquid effluent originated from swine with the maximum efficiency and lower costs. The experiment was carried out in the Laboratory of Water Analysis of the Engineering Department of the Federal University of Lavras (UFLA. The system was assembled with an

  11. PIV Study of Aeration Efficient of Stepped Spillway System

    Science.gov (United States)

    Abas, M. A.; Jamil, R.; Rozainy, M. R.; Zainol, M. A.; Adlan, M. N.; Keong, C. W.

    2017-06-01

    This paper investigates the three-dimensional (3D) simulation of Cascade aerator system using Lattice Boltzmann simulation and laboratory experiment was carried out to investigate the flow, aeration and cavitation in the spillway. Different configurations of stepped spillway are designed in this project in order to investigate the relationship between the configurations of stepped spillway and cavitation in the flow. The aeration in the stepped spillway will also be investigated. The experimental result will be compared with the simulated result at the end of this project. The figure of flow pattern at the 3rd step in simulation and experiment for Set 1 and Set 2 are look similar between LBM simulation and the experiment findings. This will provide a better understanding of the cavitation, aeration and flow in different configurations of the stepped spillway. In addition the occurrence of negative pressure region in the stepped spillway, increases the possibility of cavitation to occur. The cavitation will damage the structure of the stepped spillway. Furthermore, it also founds that increasing in barrier thickness of the stepped spillway will improve the aeration efficiency and reduce the cavitation in stepped spillway.

  12. Aerated drilling cutting transport analysis in geothermal well

    Science.gov (United States)

    Wakhyudin, Aris; Setiawan, Deni; Dwi Marjuan, Oscar

    2017-12-01

    Aeratad drilling widely used for geothermal drilling especially when drilled into predicted production zone. Aerated drilling give better performance on preventing lost circulation problem, improving rate of penetration, and avoiding drilling fluid invasion to productive zone. While well is drilled, cutting is produced and should be carried to surface by drilling fluid. Hole problem, especially pipe sticking will occur while the cutting is not lifted properly to surface. The problem will effect on drilling schedule; non-productive time finally result more cost to be spent. Geothermal formation has different characteristic comparing oil and gas formation. Geothermal mainly has igneous rock while oil and gas mostly sedimentary rock. In same depth, formation pressure in geothermal well commonly lower than oil and gas well while formation temperature geothermal well is higher. While aerated drilling is applied in geothermal well, Igneous rock density has higher density than sedimentary rock and aerated drilling fluid is lighter than water based mud hence minimum velocity requirement to transport cutting is larger than in oil/gas well drilling. Temperature and pressure also has impact on drilling fluid (aerated) density. High temperature in geothermal well decrease drilling fluid density hence the effect of pressure and temperature also considered. In this paper, Aerated drilling cutting transport performance on geothermal well will be analysed due to different rock and drilling fluid density. Additionally, temperature and pressure effect on drilling fluid density also presented to merge.

  13. Microfaunal indicators, Ciliophora phylogeny and protozoan population shifts in an intermittently aerated and fed bioreactor

    International Nuclear Information System (INIS)

    Ntougias, Spyridon; Tanasidis, Spartakos; Melidis, Paraschos

    2011-01-01

    Microfauna community structure was examined in the mixed liquor of a bench-scale bioreactor equipped with an intermittent aeration and feeding system. The reactor was operated under an intermittent aeration of 25 min in every 1 h and varying feeding conditions (0.264, 0.403 and 0.773 kg BOD 5 /m 3 d). A total of 14 protozoan and metazoan taxa were identified by microscopic examination. Sessile ciliates, followed by crawling ciliates, were the major protozoan groups under 0.403 kg BOD 5 /m 3 d organic loading conditions, while sessile ciliate population was remarkably increased under an organic loading of 0.773 kg BOD 5 /m 3 d. Principal Component Analysis and Pearson correlation coefficient tests were performed in order to reveal relationships between microfauna community and operational parameters. Ciliophora specific-18S rRNA gene clone library was constructed to identify ciliate diversity under 0.773 kg BOD 5 /m 3 d organic loading conditions. Ciliophora diversity consisted of members of Aspidiscidae, Epistylidae, Opisthonectidae and Vorticellidae, with the majority of the clones being associated with the species Vorticella fusca. At least one novel phylogenetic linkage among Ciliophora was identified. Comparisons made after molecular characterization and microscopic examination of Ciliophora community showed that the estimation of broad ciliate groups is useful for ecological considerations and evaluation of the operational conditions in wastewater treatment plants.

  14. Microfaunal indicators, Ciliophora phylogeny and protozoan population shifts in an intermittently aerated and fed bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Ntougias, Spyridon, E-mail: sntougia@env.duth.gr [Democritus University of Thrace, Department of Environmental Engineering, Laboratory of Wastewater Management and Treatment Technologies, Vas. Sofias 12, 67100 Xanthi (Greece); Tanasidis, Spartakos; Melidis, Paraschos [Democritus University of Thrace, Department of Environmental Engineering, Laboratory of Wastewater Management and Treatment Technologies, Vas. Sofias 12, 67100 Xanthi (Greece)

    2011-02-28

    Microfauna community structure was examined in the mixed liquor of a bench-scale bioreactor equipped with an intermittent aeration and feeding system. The reactor was operated under an intermittent aeration of 25 min in every 1 h and varying feeding conditions (0.264, 0.403 and 0.773 kg BOD{sub 5}/m{sup 3} d). A total of 14 protozoan and metazoan taxa were identified by microscopic examination. Sessile ciliates, followed by crawling ciliates, were the major protozoan groups under 0.403 kg BOD{sub 5}/m{sup 3} d organic loading conditions, while sessile ciliate population was remarkably increased under an organic loading of 0.773 kg BOD{sub 5}/m{sup 3} d. Principal Component Analysis and Pearson correlation coefficient tests were performed in order to reveal relationships between microfauna community and operational parameters. Ciliophora specific-18S rRNA gene clone library was constructed to identify ciliate diversity under 0.773 kg BOD{sub 5}/m{sup 3} d organic loading conditions. Ciliophora diversity consisted of members of Aspidiscidae, Epistylidae, Opisthonectidae and Vorticellidae, with the majority of the clones being associated with the species Vorticella fusca. At least one novel phylogenetic linkage among Ciliophora was identified. Comparisons made after molecular characterization and microscopic examination of Ciliophora community showed that the estimation of broad ciliate groups is useful for ecological considerations and evaluation of the operational conditions in wastewater treatment plants.

  15. Bubbling jet characteristics in an aeration tank; Aeration sonai kiho funryu no ryudo kyodo

    Energy Technology Data Exchange (ETDEWEB)

    Kaji, M; Iguchi, M; Okita, K [Osaka University, Osaka (Japan). Faculty of Engineering; Nakatani, T [Kobe University, Kobe (Japan). Faculty of Engineering

    1996-11-25

    Laser Doppler velocimeter measurements were made to investigate bubbling jet characteristics in an aeration tank at a pressure of 200 kPa. The data were compared with previous measurements at atmospheric and reduced pressures. Bubble frequencies at the nozzle outlet were correlated with the mass flow rate of gas rather than the volumetric flow rate. In the far field where the buoyancy force of bubbles prevails, the axial and radial distributions of the mean velocity components, the r. m. s. values of turbulence components, the Reynolds shear stress and the skewness and flatness factors of the turbulence components obtained at an elevated pressure agreed well with those obtained at the atmospheric pressure for the same volumetric gas flow rate. Consequently, the liquid flow characteristics including the turbulence structure in the far field are not influenced by an increase in surface pressure as long as the volumetric gas flow rate is the same. 13 refs., 14 figs.

  16. Aspects concerning the quality of aeration for environmental friendly turbines

    Energy Technology Data Exchange (ETDEWEB)

    Bunea, F; Oprina, G [Hydrodynamics Department, National Institute for R and D in Electrical Engineering ICPE-CA, Splaiul Unirii, 313, Bucharest, 030138 (Romania); Houde, S; Ciocan, G D [Laboratoire de Machines Hydrauliques, Pavillon Adrien-Pouliot Universite Laval, 1065 rue de la medecine, Quebec G1V 0A6 (Canada); Baran, G; Pincovschi, I, E-mail: buneaflorentina@yahoo.co [Hydraulics, Hydraulic Machinery and Environmental Engineering Department, University Polytechnic of Bucharest, Splaiul Independentei, 313, Bucharest, 060042 (Romania)

    2010-08-15

    The hydro renewable energy provides a reliable power source; it does not pollute the air or land but affects the aquatic habitat due to low dissolved oxygen (DO) level in the water discharged from turbines. Hydro-turbines intake generally withdraws water from the bottom layer of the reservoirs with low DO level. In the different methods used for improving DO downstream the hydropower plants the volume of air is considered to be the main parameter of the injection. The energetic consumption is affected, in terms of loss of turbine efficiency due to air injection. The authors propose a study to show the importance of the quality of air injection, meaning bubble size, pressure loss on the aeration device etc. Different types of fine bubble aeration systems have been tested and compared. The capacity to predict the aeration by numerical simulation is analysed.

  17. Studies of radon mitigation in well water by aeration

    International Nuclear Information System (INIS)

    Mafra, Karina Cristina; Paschuk, Sergei A.; Denyak, Valeriy; Reque, Marilson; Correa, Janine Nicolosi; Barbosa, Laercio

    2011-01-01

    The 222 Rn concentration in natural water in different countries usually is about few Bq/L and is the subject of the National legislation as well as International norms and recommendations. The United States Environmental Protection Agency (USEPA) established a limit of 11.1 Bq/L for the radon level in drinking water and this limit is considered as guideline in Canada and many countries of the European Union. This work presents the results of study of radon ( 222 Rn) concentration reduction in well water using the aeration process developed at the Laboratory of Applied Nuclear Physics of the Federal University of Technology (UTFPR). The water samples were collected from a well at Pinheirinho region of Curitiba in 2011. Experimental setup was based on the Radon Monitor (AlphaGUARD). The 222 Rn concentration was analyzed using the software DataEXPERT by Genitron Instruments, taking into account the volume of water sample, its temperature, atmospheric pressure and the total volume of the air in the vessels. Initial concentration of radon in water samples was 28,67 Bq/L which is bigger than maximum concentration recommended by USEPA. The mitigation was performed by means of diffusion aeration of water samples of 15L during the time interval of 24 hours following a period of 4 days. The efficiency of aeration mitigation was controlled by comparing the activity of radon in aerated water with reference water samples that were not aerated. Obtained results show very satisfactory decrease of 222 Rn activity in water samples even after few hours of intense aeration. (author)

  18. Influence of rotor circumference speed on flotation cell aeration

    Energy Technology Data Exchange (ETDEWEB)

    Dedek, F; Bortlik, V

    1978-01-01

    Laboratory test results of flotation experiments conducted in Czechoslovakia with the use of coal flotation particles <0.5 mm are presented. Three different cells and rotors were used, type MS, Denver, VRF 2 with various rotor diameters ranging from 40 mm to 95 mm. Nine tables show the results with varying flotation time, circumferenial velocity, flotation reagents and aeration. Test procedures are discussed; main results are that circumferenial velocity cannot be used as a decisive parameter for cell aeration and flotation efficiency, and that a direct transfer of parameters cannot be made to flotation cells with a different design and to larger industrial equipment. (4 refs.) (In German)

  19. Odorous gaseous emissions as influence by process condition for the forced aeration composting of pig slaughterhouse sludge

    Energy Technology Data Exchange (ETDEWEB)

    Blazy, V., E-mail: vincent.blazy@irstea.fr [Irstea, UR GERE, 17 Avenue de Cucillé, CS 64427, F-35044 Rennes (France); Guardia, A. de, E-mail: amaury.de-guardia@irstea.fr [Irstea, UR GERE, 17 Avenue de Cucillé, CS 64427, F-35044 Rennes (France); Benoist, J.C; Daumoin, M. [Irstea, UR GERE, 17 Avenue de Cucillé, CS 64427, F-35044 Rennes (France); Lemasle, M.; Wolbert, D. [Laboratoire Sciences Chimiques de Rennes - équipe Chimie et Ingénierie des Procédés, UMR 6226 CNRS, ENSCR, Avenue du Général Leclerc, 35700 Rennes (France); Barrington, S., E-mail: suzellebarrington@sympatico.ca [Irstea, UR GERE, 17 Avenue de Cucillé, CS 64427, F-35044 Rennes (France); Concordia University, Department of Building, Civil and Environmental Engineering, 1455 de Maisonneuve, Montréal, QC H3G 1M8 (Canada)

    2014-07-15

    Highlights: • The gaseous emissions produced by various composting process conditions were characterized and quantified. • Nine compounds were potentially odorous: TMA, NH{sub 3}, 2-pentanone, 1-propanol-2-methyl, acetophenone and sulphur forms. • The tested composting process conditions reduced odour emissions by a factor of 5–10. • A reduction of 10{sup 5} to 10{sup 6} is required to reach an odour threshold limit at peak event emissions. • Both aeration rate and bulking agent had the most impact on reducing odour emissions. - Abstract: Compost sustainability requires a better control of its gaseous emissions responsible for several impacts including odours. Indeed, composting odours have stopped the operation of many platforms and prevented the installation of others. Accordingly, present technologies collecting and treating gases emitted from composting are not satisfactory and alternative solutions must be found. Thus, the aim of this paper was to study the influence of composting process conditions on gaseous emissions. Pig slaughterhouse sludge mixed with wood chips was composted under forced aeration in 300 L laboratory reactors. The process conditions studied were: aeration rate of 1.68, 4.03, 6.22, 9.80 and 13.44 L/h/kg of wet sludge; incorporation ratio of 0.55, 0.83 and 1.1 (kg of wet wood chips/kg of wet sludge), and; bulking agent particles size of <10, 10 < 20 and 20 < 30 mm. Out-going gases were sampled every 2 days and their composition was analysed using gas chromatography coupled with mass spectrometry (GC–MS). Fifty-nine compounds were identified and quantified. Dividing the cumulated mass production over 30 days of composting, by odour threshold, 9 compounds were identified as main potential odour contributors: hydrogen sulphide, trimethylamine, ammonia, 2-pentanone, 1-propanol-2-methyl, dimethyl sulphide, dimethyl disulphide, dimethyl trisulphide and acetophenone. Five gaseous compounds were correlated with both aeration rate and

  20. Odorous gaseous emissions as influence by process condition for the forced aeration composting of pig slaughterhouse sludge

    International Nuclear Information System (INIS)

    Blazy, V.; Guardia, A. de; Benoist, J.C; Daumoin, M.; Lemasle, M.; Wolbert, D.; Barrington, S.

    2014-01-01

    Highlights: • The gaseous emissions produced by various composting process conditions were characterized and quantified. • Nine compounds were potentially odorous: TMA, NH 3 , 2-pentanone, 1-propanol-2-methyl, acetophenone and sulphur forms. • The tested composting process conditions reduced odour emissions by a factor of 5–10. • A reduction of 10 5 to 10 6 is required to reach an odour threshold limit at peak event emissions. • Both aeration rate and bulking agent had the most impact on reducing odour emissions. - Abstract: Compost sustainability requires a better control of its gaseous emissions responsible for several impacts including odours. Indeed, composting odours have stopped the operation of many platforms and prevented the installation of others. Accordingly, present technologies collecting and treating gases emitted from composting are not satisfactory and alternative solutions must be found. Thus, the aim of this paper was to study the influence of composting process conditions on gaseous emissions. Pig slaughterhouse sludge mixed with wood chips was composted under forced aeration in 300 L laboratory reactors. The process conditions studied were: aeration rate of 1.68, 4.03, 6.22, 9.80 and 13.44 L/h/kg of wet sludge; incorporation ratio of 0.55, 0.83 and 1.1 (kg of wet wood chips/kg of wet sludge), and; bulking agent particles size of <10, 10 < 20 and 20 < 30 mm. Out-going gases were sampled every 2 days and their composition was analysed using gas chromatography coupled with mass spectrometry (GC–MS). Fifty-nine compounds were identified and quantified. Dividing the cumulated mass production over 30 days of composting, by odour threshold, 9 compounds were identified as main potential odour contributors: hydrogen sulphide, trimethylamine, ammonia, 2-pentanone, 1-propanol-2-methyl, dimethyl sulphide, dimethyl disulphide, dimethyl trisulphide and acetophenone. Five gaseous compounds were correlated with both aeration rate and bulking agent

  1. Winery wastewater treatment by a combined process: long term aerated storage and Fenton's reagent.

    Science.gov (United States)

    Lucas, Marco S; Mouta, Maria; Pirra, António; Peres, José A

    2009-01-01

    The degradation of the organic pollutants present in winery wastewater was carried out by the combination of two successive steps: an aerobic biological process followed by a chemical oxidation process using Fenton's reagent. The main goal of this study was to evaluate the temporal characteristics of solids and chemical oxygen demand (COD) present in winery wastewater in a long term aerated storage bioreactor. The performance of different air dosage daily supplied to the biologic reactor, in laboratory and pilot scale, were examined. The long term hydraulic retention time, 11 weeks, contributed remarkably to the reduction of COD (about 90%) and the combination with the Fenton's reagent led to a high overall COD reduction that reached 99.5% when the mass ratio (R = H(2)O(2)/COD) used was equal to 2.5, maintaining constant the molar ratio H(2)O(2)/Fe(2+)=15.

  2. Remoção de matéria orgânica e sólidos suspensos por nova configuração de biofiltro aeróbio submerso no pós-tratamento de efluente de reator UASB Removal of organic matter and suspended solids by a new configuration of biological aerated filter in the post-treatment of UASB reactor effluent

    Directory of Open Access Journals (Sweden)

    Saulo Varela Della Giustina

    2010-09-01

    Full Text Available O pós-tratamento de efluentes de reatores anaeróbios é um processo necessário para o atendimento dos padrões de emissão. Os resultados aqui apresentados mostram a viabilidade de uso de uma nova configuração de biofiltro aeróbio submerso (BAS no pós-tratamento desses efluentes. Os BAS multiestágio apresentam uma câmara anaeróbia (V=12,6L, seguido de uma câmara aeróbia (V=30L e uma câmara anóxica (V=26,4L, todas em série (V total=70L. Neste estudo, foi analisada a remoção de sólidos suspensos (SS, DQO e DBO5. Foram utilizados três BAS multi-estágio preenchidos com três diferentes materiais-suporte: tampas e gargalos PET (165m²/m³, pedra britada n. 4 (50m²/m³ e anéis Pall 1,5'' (135m²/m³. Os reatores foram operados com valores de tempos de detenção hidráulicas (TDH de 4,1, 8,2 e 12,3 horas, e três taxas de aplicação superficial (TAS (21, 12 e 8m³/m².d. A associação dos reatores UASB+BAS possibilitou remoções de DQO total superiores a 90% para os BAS 1 e 3, e 85% para o BAS 2, sendo independente do TDH aplicado. A remoção de SS foi maior no BAS contendo anéis Pall, provavelmente devido ao maior índice de vazios desse material.The post-treatment of effluents from anaerobic reactors is normally a mandatory step to meet the emission standards. The results presented here show the feasibility of using a new configuration of biological aerated filter (BAF in the post-treatment of UASB reactors. The multi-stage BAF presents an anaerobic chamber (V=12.6L, followed by an aerobic chamber (V=30L and an anoxic chamber (V=26.4L, all in series (total V=70L. This study examined the removal of suspended solids (SS, COD and BOD5. Three multi-stage BAF filled with three different packing materials were used: lids and bottlenecks of PET bottles (165m²/m³, gravel n. 4 (50m²/m³ and Pall rings 1.5'' (135m²/m³. The reactors were operated with the values of hydraulic detention time (HDT of 4.1, 8.2 and 12.3 hours, and

  3. Colloid formation in groundwater by subsurface aeration: characterisation of the geo-colloids and their counterparts

    NARCIS (Netherlands)

    Wolthoorn, A.; Temminghoff, E.J.M.; Riemsdijk, van W.H.

    2004-01-01

    Subsurface aeration is used to oxidise Fe in situ in groundwater to make the water potable. In a groundwater system with pH > 7, subsurface aeration results in a non-mobile Fe precipitate and mobile Fe colloids. Since originally the goal of subsurface aeration is to remove Fe in situ, the

  4. The impact of aeration on potato ( Solanum tuberosum L.) minituber ...

    African Journals Online (AJOL)

    Aeroponic systems are more effective than hydroponics for minituber production, as provided by the optimal system for root oxygenation. The study was conducted to improve conventional hydroponic systems by applying aeration so as to enhance potato minituber production yield via providing adequate oxygen in the root ...

  5. Tailwater concerns and the history of turbine aeration

    International Nuclear Information System (INIS)

    Bohac, C.E.; Ruane, R.J.

    1991-01-01

    All new proposals for hydropower development and many of the almost 300 hydroelectric projects which will be relicensed before 2000 will have to address the issue of minimum dissolved oxygen concentrations. This paper highlights some of the causes and concerns of low dissolved oxygen concentrations in releases from hydropower projects and describes the history of hydroturbine aeration for reaerating these releases

  6. Renewable energy for the aeration of wastewater ponds.

    Science.gov (United States)

    Hobus, I; Hegemann, W

    2003-01-01

    The application of a decentralised renewable energy supply for the aeration of wastewater ponds, and the influence of an unsteady oxygen supply on the specific conversion rate and biocoenose was investigated. With the discontinuous aeration the specific conversion rate is increased as compared to facultative ponds. The estimation of the microorganisms consortia was done with in situ hybridisation techniques. A significant shift in the bacteria population with the chosen specific probes for anaerobic, sulphate reducing and nitrifying bacteria could not be detected. Wastewater ponds have sufficient buffer volume to compensate for the fluctuating energy supply. But the efficiency of the energy supply of a photovoltaic plant decreases in shallow lakes (d photovoltaic and wind power plant, energy management, aeration system and wastewater pond, a simulation model was developed and tested. The application of renewable energy for the aeration of wastewater ponds is a useful alternative for the redevelopment of overloaded ponds as well as the construction of new wastewater ponds, especially in areas with an inadequate central electricity grid and a high availability of wind and solar energy.

  7. Passively Aerated Composting of Straw-Rich Organic Pig Manure

    NARCIS (Netherlands)

    Veeken, A.H.M.; Wilde, de V.; Szanto, G.; Hamelers, H.V.M.

    2002-01-01

    In this study pig manure from organic farming systems is composted with passive aeration. Effectiveness of the composting process strongly depended on the density of the compost. Best results were observed at a density of 700 kg/m3, where both aerobic degradation and drying were adequate and

  8. A review and investigations of some properties of foamed aerated ...

    African Journals Online (AJOL)

    The properties investigated on foamed aerated concrete having a designed density of 1600kg/m3 were: workability, density, compressive strength, tensile strength, and the water absorption capacity. The results showed that at the designed density adopted for this work, the material was workable and repeatable.

  9. Non-autoclaved aerated concrete with mineral additives

    Science.gov (United States)

    Il'ina, L. V.; Rakov, M. A.

    2016-01-01

    We investigated the effect of joint grinding of Portland cement clinker, silica and carbonate components and mineral additives to specific surface of 280 - 300 m2/kg on the properties (strength, average density and thermal conductivity) of non-autoclaved aerated concrete, and the porosity of the hardened cement paste produced from Portland cement clinker with mineral additives. The joint grinding of the Portland cement clinker with silica and carbonate components and mineral additives reduces the energy consumption of non-autoclaved aerated concrete production. The efficiency of mineral additives (diopside, wollastonite) is due to the closeness the composition, the type of chemical bonds, physical and chemical characteristics (specific enthalpy of formation, specific entropy) to anhydrous clinker minerals and their hydration products. Considering the influence of these additions on hydration of clinker minerals and formation of hardened cement paste structure, dispersed wollastonite and diopside should be used as mineral additives. The hardness and, consequently, the elastic modulus of diopside are higher than that of hardened cement paste. As a result, there is a redistribution of stresses in the hardened cement paste interporous partitions and hardening, both the partitions and aerated concrete on the whole. The mineral additives introduction allowed to obtain the non-autoclaved aerated concrete with average density 580 kg/m3, compressive strength of 3.3 MPa and thermal conductivity of 0.131 W/(m.°C).

  10. Modelling and test of aeration tank settling (ATS)

    DEFF Research Database (Denmark)

    Nielsen, M. K.; Bechmann, H.; Henze, Mogens

    2000-01-01

    The use of aeration tank settling during high hydraulic loads on large wastewater treatment plants has previously been demonstrated as a reliable technique and proven valuable. The paper proposes a simplified deterministic model to predict the efficiency of the method. It is shown...

  11. Dewaterability of sludge digested in extended aeration plants using ...

    African Journals Online (AJOL)

    Dewaterability of unconditioned sludge digested in full scale and lab scale experiments using either extended aeration (EA) or anaerobic digestion were compared on full and lab scale sand drying beds. Sludge digested in EA plants resulted in improvement in sludge dewaterability compared to sludge digested ...

  12. PROJECT OF COAGULANT DISPENSER IN PULVERIZATION AERATOR WITH WIND DRIVE

    Directory of Open Access Journals (Sweden)

    Ewa Osuch

    2017-09-01

    Full Text Available Lakes are one of most important freshwater ecosystems, playing significant role in functioning of nature and human economy. Swarzędzkie Lake is good example of ecosystem, which in last half-century was exposed to the influence of strong anthropopressure. Direct inflow of sewage with large number of biogens coming to the lake with water of inflows caused distinct disturbance of its functioning. In autumn 2011 restoration begined on Swarzędzkie Lake for reduction of lake trophy and improvement of water quality. For achieving better and quicker effect, simultaneously combination of some methods was applied, among others method of oxygenation of over-bottom water with help of pulverization aerator and method of precise inactivation of phosphorus in water depths. Characterization and analysis of improved coagulant dispenser applying active substance only during work of pulverization aerator is the aim of this thesis. Principle of dispenser work, its structure and location in pulverization aerator were explained. It was stated, that introduction to water a factor initiating process of phosphorus inactivation causes significant reduction of mineral phosphorus in water and size of coagulant dose correlates with intensity of work of pulverization aerator with wind drive.

  13. Characterization and behaviour of Autoclaved Aerated Concrete before Autoclaving

    NARCIS (Netherlands)

    Straub, Chr.; Florea, M.V.A.; Brouwers, H.J.H.; Schmidt, Wolfram; Msinjili, Nsesheye Susan

    In order to achieve a high quality Autoclaved Aerated Concrete (AAC) product, certain steps need to be ensured: the characterization of the raw materials, a proper mixing and correct slurry behaviour to achieve a good green body during green curing. In the current research the emphasis is on all of

  14. Investigation of flashing de-aeration with and without recirculation

    International Nuclear Information System (INIS)

    Kjellstroem, B.; Toecksberg, B.

    1977-06-01

    A series of experiments with flashing de-areation has been carried out at the institute of Thermal Energytechnology of the Royal Institute of Technology in Stockholm. The results of the experiments with flashing de-areation without recirculation of the condensate show very low contents of dissolved oxygen in the de-aerated water. The results indicate that the de-aeration process is independent of the pressure. De-aeration efficiencies over 99 percent were measured. The continued experiments with recirculation of the condensate show a considerably deteriorated de-aeration performance together with a marked pressure dependency. A simple theoretical model has been formulated which explains these results. Comparisons between the experimental data and calculations with this model indicate that a conservative estimation of the oxygen content of the outgoing water can be obtained if the oxygen content of the recirculated condensate is calculated for the partial pressure of noncondensible gases equal to the total pressure in the condensor. It seems also possible to estimate a lower limit for the oxygen content of the outgoing water. The range of oxygen content between those limits is about a factor of 10 for the conditions investigated. Further studies of the uptake of oxygen during condensation seem necessary if a more accurate prediction is desired

  15. Porosimetric, Thermal and Strength Tests of Aerated and Nonaerated Concretes

    Science.gov (United States)

    Strzałkowski, Jarosław; Garbalińska, Halina

    2017-10-01

    The paper presents the results of porosimetry tests of lightweight concretes, obtained with three research methods. Impact of different porosity structures on the basic thermal and strength properties was also evaluated. Tests were performed, using the pressure gauge method on fresh concrete mixes, as well as using the mercury porosimetry test and optic RapidAir method on specimens prepared from mature composites. The study was conducted on lightweight concretes, based on expanded clay aggregate and fly ash aggregate, in two variants: with non-aerated and aerated cement matrix. In addition, two reference concretes, based on normal aggregate, were prepared, also in two variants of matrix aeration. Changes in thermal conductivity λ and volumetric specific heat cv throughout the first three months of curing of the concretes were examined. Additionally, tests for compressive strength on cubic samples were performed during the first three months of curing. It was found that the pressure gauge method, performed on a fresh mix, gave lowered values of porosity, compared to the other methods. The mercury porosity tests showed high sensitivity in evaluation of pores smaller than 30μm. Unfortunately, this technique is not suitable for analysing pores greater than 300μm. On the other hand, the optical method proves good in evaluation of large pores, greater than 300μm. The paper also presents results of correlation of individual methods of porosity testing. A consolidated graph of the pore structure, derived from both mercury and optical methods, was presented, too. For the all of six tested concretes, differential graphs of porosity, prepared with both methods, show a very broad convergence. The thermal test results indicate usefulness of aeration of the cement matrix of the composites based on lightweight aggregates for the further reduction of the thermal conductivity coefficient λ of the materials. The lowest values of the λ coefficient were obtained for the aerated

  16. Experimental evaluation of the oxygen transfer in bubble aeration systems. Full scale experiences in lengthened activated sludge reactors; Valutazione sperimantale del trasferimento dell'ossigeno in sistemi di aerazione a bolle fini. Esperienza a scala reale in reattori a fanghi attivi a forma allungata

    Energy Technology Data Exchange (ETDEWEB)

    Andreottola, G.; Ragazzi, M.; Tatano, F. [Trento Univ. (Italy). Dipt. di Ingegneria Civile. Ist. di Ingegneria Sanitaria-Ambientale

    1999-06-01

    The results of some full-scale oxygen transfer measurements conduced at the lengthened activate sludge tanks of two WWTPs of Trentino Region, are presented and discussed. As far at the tests in clean water are concerned, the non-liner regression method seems non accurate; important conclusion on the correlation between oxygen transfer process and typical parameters (i.e., fine-bubble diffusers, specific air flux) are derived. As far as the test in the wastewater is concerned, an increase of {alpha}-value from the inlet to the end of aeration tanks has been observed in the 'Andalo' WWTP. [Italian] Vengono presentati e discussi i risultati di alcune prove di ossigenazione a scala reale condotte presso due impianti di depurazione del Trentino. Con riferimento alle prove di acqua pulita, il metodo di elaborazione dati tramite regressione non lineare ai minimi quadrati e' apparso piu' preciso; inoltre si sono dedotti importanti considerazioni sulla correlazione tra processo di trasferimento dell'ossigeno e alcuni parametri di influenza (densita' diffusori, profondita' d'acqua, fouling diffusori, portata d'aria). La prova in liquame condotta presso l'impianto 'Andalo', ha rilevato un andamento crescente del fattore di correzione {alpha} verso 'in-out' di vasca.

  17. Aeration to degas CO2, increase pH, and increase iron oxidation rates for efficient treatment of net alkaline mine drainage

    International Nuclear Information System (INIS)

    Kirby, C.S.; Dennis, A.; Kahler, A.

    2009-01-01

    Passive treatment systems for mine drainage use no energy other than gravity, but they require greater area than active treatment systems. Researchers are considering 'hybrid' systems that have passive and active components for increased efficiency, especially where space limitations render passive-only technology ineffective. Flow-through reactor field experiments were conducted at two large net-alkaline anthracite mine discharges in central Pennsylvania. Assuming an Fe removal rate of 20 g m -2 day -1 and Fe loading from field data, 3.6 x 10 3 and 3.0 x 10 4 m 2 oxidation ponds would be required for the passive treatment of Site 21 and Packer 5 discharges, respectively. However, only a small area is available at each site. This paper demonstrates aeration to drive off CO 2 , increase pH, and increase Fe(II) oxidation rates, enabling treatment within a small area compared to passive treatment methods, and introduces a geochemical model to accurately predict these rates as well as semi-passive treatment system sizing parameters. Both net-alkaline discharges were suboxic with a pH of ∼5.7, Fe(II) concentration of ∼16 mg L -1 , and low Mn and Al concentrations. Flow rates were ∼4000 L min -1 at Site 21 and 15,000 L min -1 at Packer 5. Three-h aeration experiments with flow rates scaled to a 14-L reactor resulted in pH increases from 5.7 to greater than 7, temperature increases from 12 to 22 deg. C, dissolved O 2 increases to saturation with respect to the atmosphere, and Fe(II) concentration decreases from 16 to -1 . A 17,000-L pilot-scale reactor at Site 21 produced similar results although aeration was not as complete as in the smaller reactor. Two non-aerated experiments at Site 21 with 13 and 25-h run times resulted in pH changes of ≤0.2 and Fe(II) concentration decreases of less than 3 mg L -1 . An Fe(II) oxidation model written in a differential equation solver matched the field experiments very well using field-measured pH, temperature, dissolved O 2

  18. Treatment and re-use of urban sewage by means of aerated submerged biological filters and tertiary treatment; Depuracion y reutilizacion de las aguas residuales urbanas mediante filtros biologicos sumergidos aireados con tratamiento terciario

    Energy Technology Data Exchange (ETDEWEB)

    Mujal, F. J.

    2000-07-01

    The installations required for treating and re-using urban waste waters are reviewed. The treatment system put forward is called AERATED SURMERGED BIOLOGICAL FILTER AQUA PROCESS (S.B.F.). In this system, once that water has been clarified, it is treated biologically in an aerated reactor containing porous ceramic balls. After this it is filtered with silica+anthracite as a tertiary treatment. This technique minimize energy consumption and achieve optimum treatment performance at low running costs, as it requires little maintenance. Once the waste water has been treated in this way, the effluent is suitable for re-use to irrigate crops or infiltrate into underground aquifers. (Author)

  19. Research on sludge-fly ash ceramic particles (SFCP) for synthetic and municipal wastewater treatment in biological aerated filter (BAF).

    Science.gov (United States)

    Zhao, Yaqin; Yue, Qinyan; Li, Renbo; Yue, Min; Han, Shuxin; Gao, Baoyu; Li, Qian; Yu, Hui

    2009-11-01

    Sludge-fly ash ceramic particles (SFCP) and clay ceramic particles (CCP) were employed in two lab-scale up-flow biological aerated filters (BAF) for wastewater treatment to investigate the availability of SFCP used as biofilm support compared with CCP. For synthetic wastewater, under the selected hydraulic retention times (HRT) of 1.5, 0.75 and 0.37 h, respectively, the removal efficiencies of chemical oxygen demand (COD(Cr)) and ammonium nitrogen (NH(4)(+)-N) in SFCP reactor were all higher than those of CCP reactor all through the media height. Moreover, better capabilities responding to loading shock and faster recovery after short intermittence were observed in the SFCP reactor compared with the CCP reactor. For municipal wastewater treatment, which was carried out under HRT of 0.75 h, air-liquid ratio of 7.5 and backwashing period of 48 h, the SFCP reactor also performed better than the CCP reactor, especially for the removal of NH(4)(+)-N.

  20. PREPARATION OF ULTRA-LOW VOLUME WEIGHT AUTOCLAVED AERATED CONCRETE

    Directory of Open Access Journals (Sweden)

    Ondrej Koutny

    2016-12-01

    Full Text Available Autoclaved aerated concrete is a modern construction material that gains its popularity especially due to its thermal insulation performance resulting from low volume weight and porous structure with sufficient mechanical strength. Nowadays, there are attempts to use this material for thermal insulation purposes and to replace current systems, which have many disadvantages, mainly concerning durability. The key for improvement of thermal insulation properties is therefore obtaining a material based on autoclaved aerated concrete with extremely low volume weight (below 200 kg/m ³ ensuring good thermal isolation properties, but with sufficient mechanical properties to allow easy manipulation. This material can be prepared by foaming very fine powder materials such as silica fume or very finely ground sand. This paper deals with the possibilities of preparation and summarizes the basic requirements for successful preparation of such a material.

  1. Landfill aeration for emission control before and during landfill mining.

    Science.gov (United States)

    Raga, Roberto; Cossu, Raffaello; Heerenklage, Joern; Pivato, Alberto; Ritzkowski, Marco

    2015-12-01

    The landfill of Modena, in northern Italy, is now crossed by the new high velocity railway line connecting Milan and Bologna. Waste was completely removed from a part of the landfill and a trench for the train line was built. With the aim of facilitating excavation and further disposal of the material extracted, suitable measures were defined. In order to prevent undesired emissions into the excavation area, the aerobic in situ stabilisation by means of the Airflow technology took place before and during the Landfill Mining. Specific project features involved the pneumatic leachate extraction from the aeration wells (to keep the leachate table low inside the landfill and increase the volume of waste available for air migration) and the controlled moisture addition into a limited zone, for a preliminary evaluation of the effects on process enhancement. Waste and leachate were periodically sampled in the landfill during the aeration before the excavation, for quality assessment over time; the evolution of biogas composition in the landfill body and in the extraction system for different plant set-ups during the project was monitored, with specific focus on uncontrolled migration into the excavation area. Waste biological stability significantly increased during the aeration (waste respiration index dropped to 33% of the initial value after six months). Leachate head decreased from 4 to 1.5m; leachate recirculation tests proved the beneficial effects of moisture addition on temperature control, without hampering waste aerobization. Proper management of the aeration plant enabled the minimization of uncontrolled biogas emissions into the excavation area. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Biological iron oxidation by Gallionella spp. in drinking water production under fully aerated conditions.

    Science.gov (United States)

    de Vet, W W J M; Dinkla, I J T; Rietveld, L C; van Loosdrecht, M C M

    2011-11-01

    Iron oxidation under neutral conditions (pH 6.5-8) may be a homo- or heterogeneous chemically- or a biologically-mediated process. The chemical oxidation is supposed to outpace the biological process under slightly alkaline conditions (pH 7-8). The iron oxidation kinetics and growth of Gallionella spp. - obligatory chemolithotrophic iron oxidizers - were assessed in natural, organic carbon-containing water, in continuous lab-scale reactors and full-scale groundwater trickling filters in the Netherlands. From Gallionella cell numbers determined by qPCR, balances were made for all systems. The homogeneous chemical iron oxidation occurred in accordance with the literature, but was retarded by a low water temperature (13 °C). The contribution of the heterogeneous chemical oxidation was, despite the presence of freshly formed iron oxyhydroxides, much lower than in previous studies in ultrapure water. This could be caused by the adsorption of natural organic matter (NOM) on the iron oxide surfaces. In the oxygen-saturated natural water with a pH ranging from 6.5 to 7.7, Gallionella spp. grew uninhibited and biological iron oxidation was an important, and probably the dominant, process. Gallionella growth was not even inhibited in a full-scale filter after plate aeration. From this we conclude that Gallionella spp. can grow under neutral pH and fully aerated conditions when the chemical iron oxidation is retarded by low water temperature and inhibition of the autocatalytic iron oxidation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. UASB/flash aeration enable complete treatment of municipal wastewater for reuse.

    Science.gov (United States)

    Khan, Abid Ali; Gaur, Rubia Zahid; Lew, Beni; Diamantis, Vasileios; Mehrotra, Indu; Kazmi, A A

    2012-08-01

    A simple, efficient and cost-effective method for municipal wastewater treatment is examined in this paper. The municipal wastewater is treated using an upflow anaerobic sludge bed (UASB) reactor followed by flash aeration (FA) as the post-treatment, without implementing aerobic biological processes. The UASB reactor was operated without recycle, at hydraulic retention time (HRT) of 8 h and achieved consistent removal of BOD, COD and TSS of 60-70% for more than 12 months. The effect of FA on UASB effluent post-treatment was studied at different HRT (15, 30 and 60 min) and dissolved oxygen (DO) concentrations (low DO = 1-2 mg/L and high DO = 5-6 mg/L). The optimum conditions for BOD, COD and sulfide removal were 30-60 min HRT and high DO concentration inside the FA tank. The final effluent after clarification was characterized by BOD and COD values of 28-35 and 50-58 mg/L, respectively. Sulfides were removed by more than 80%, but the fecal coliform only by ~2 log. The UASB followed by FA is a simple and efficient process for municipal wastewater treatment, except for fecal coliform, enabling water and nutrients recycling to agriculture.

  4. The effect of aeration and solar intensity power on photocatalytic degradation of textile industrial wastewater using TiO2 thin film

    International Nuclear Information System (INIS)

    Abu Kassim, N.F.; Ku Hamid, K.H.; Azizan, A.

    2006-01-01

    Solar photo catalytic degradation of the textile industry wastewater using TiO 2 thin films was studied. This experiment was performed to investigate the effect of aeration and solar intensity power on decreasing of Chemical Oxygen Demand (COD). A serpentine flow photo catalytic reactor was developed for this purpose. TiO 2 thin films photo catalyst supported on the stainless steel 304 substrates were prepared using sol-gel dip coating method. The results of thin films were characterized by Scanning Electron Microscopy (SEM) and X-Ray Diffractometer (XRD). XRD result showed that the prepared thin films gave the anatase crystallite formation whilst SEM demonstrated the macro pores were formed. Finally, the aeration and solar intensity power factors are considered to be responsible for the photo catalytic degradation. (Author)

  5. Investigations of the efficiency of enzyme production technologies using modelling tools

    DEFF Research Database (Denmark)

    Albæk, Mads Orla; Gernaey, Krist; Hansen, Morten Skov

    Growing markets and new innovative applications of industrial enzymes leads to increased interest in efficient production of these products. Most industrial enzymes are currently produced in traditional stirred tank reactors in submerged fed batch culture. The limiting parameter in such processes...... fermentations of the filamentous fungus Trichoderma reesei in 550litre pilot scale stirred tank reactors for a range of process conditions. Based on the experimental data a process model has been created, which satisfactory simulates the effect of the changing process conditions: Aeration rate, agitation speed...

  6. The effects of agitation and aeration on the production of gluconic acid by Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Dronawat, S.N.; Svihla, C.K.; Hanley, T.R. [Univ. of Louisville, KY (United States)

    1995-12-31

    The effects of agitation and aeration in the production of gluconic acid by Aspergillus niger from a glucose medium were investigated. Experiments were conducted at aeration rates of 5.0 and 10.0 L/min. Four different agitation speeds were investigated for each aeration rate. Gluconic acid concentration and biomass concentration were analyzed, and the rate of consumption of substrate by A. niger was noted. The main purpose of this work was to find the optimal conditions of agitation and aeration for the growth of A. niger and production of gluconic acid in submerged culture in a batch fermentor at a bench-top scale. The oxygen-transfer rates at different agitation and aeration rates were calculated. The gluconic acid concentration and rate of growth of A. niger increased with increase in the agitation and aeration rates.

  7. Violent breaking wave impacts. Part 3. Effects of scale and aeration

    DEFF Research Database (Denmark)

    Bredmose, Henrik; Bullock, G. N.; Hogg, A. J.

    2015-01-01

    . The Bagnold-Mitsuyasu scaling law for the compression of an air pocket by a piston of incompressible water is rederived and generalised to 3D air pockets of arbitrary shape. Numerical results for wall pressure, force and impulse are then presented for a flip-through impact, a low-aeration impact and a high......The effects of scale and aeration on violent breaking wave impacts with trapped and entrained air are investigated both analytically and numerically. By dimensional analysis we show that the impact pressures for Froude scaled conditions prior to the impact depend on the scale and aeration level......-aeration impact, for nine scales and five levels of initial aeration. Two of these impact types trap a pocket of air at the wall. Among the findings of the paper is that for fixed initial aeration, impact pressures from the flip-through impact broadly follow Froude scaling. This is also the case for the two...

  8. Using a biological aerated filter to treat mixed water-borne volatile organic compounds and assessing its emissions

    Institute of Scientific and Technical Information of China (English)

    CHENG Wen-Hsi

    2009-01-01

    A biological aerated filter (BAF) was evaluated as a fixed-biofilm processes to remove water-borne volatile organic compounds (VOCs) from a multiple layer ceramic capacitor (MLCC) manufacturing plant in southern Taiwan.The components of VOC were identified to be toluene,1,2,4-trimethylbenzene,1,3,5-trimethylbenzene,bromodichloromethane and isopropanol (IPA).The full-scale BAF was constructed of two separate reactors in series,respectively using 10-cm and 15-cm diameter polypropylene balls as the packing materials and a successful preliminary bench-scale experiment was performed to feasibility.Performance results show that the BAF removed over 90% chemical oxygen demand (COD) from the influent with (1188 ± 605) mg/L of COD.A total organic loading of 2.76 kg biochemical oxygen demand (BOD)/(m~3 packing·d) was determined for the packed bed,in which the flow pattern approached that of a mixed flow.A limited VOC concentration of (0.97 ± 0.29) ppmv (as methane) was emitted from the BAF system.Moreover,the emission rate of VOC was calculated using the proposed formula,based on an air-water mass equilibrium relationship,and compared to the simulated results obtained using the Water 9 model.Both estimation approaches of calculation and model simulation using Water 9 evaluating VOC emissions reveal that 0.1% IPA (0.0031-0.0037 kg/d) was aerated into a gaseous phase,and 30% to 40% (0.006-0.008 kg/d) of the toluene was aerated.

  9. Landfill aeration in the framework of a reclamation project in Northern Italy.

    Science.gov (United States)

    Raga, Roberto; Cossu, Raffaello

    2014-03-01

    In situ aeration by means of the Airflow technology was proposed for landfill conditioning before landfill mining in the framework of a reclamation project in Northern Italy. A 1-year aeration project was carried out on part of the landfill with the objective of evaluating the effectiveness of the Airflow technology for landfill aerobization, the evolution of waste biological stability during aeration and the effects on leachate and biogas quality and emissions. The main outcomes of the 1-year aeration project are presented in the paper. The beneficial effect of the aeration on waste biological stability was clear (63% reduction of the respiration index); however, the effectiveness of aeration on the lower part of the landfill is questionable, due to the limited potential for air migration into the leachate saturated layers. During the 1-year in situ aeration project approx. 275 MgC were discharged from the landfill body with the extracted gas, corresponding to 4.6 gC/kgDM. However, due to the presence of anaerobic niches in the aerated landfill, approx. 46% of this amount was extracted as CH4, which is higher than reported in other aeration projects. The O2 conversion quota was lower than reported in other similar projects, mainly due to the higher air flow rates applied. The results obtained enabled valuable recommendations to be made for the subsequent application of the Airflow technology to the whole landfill. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Experimental silo-dryer-aerator for the storage of soybean grains

    Directory of Open Access Journals (Sweden)

    Paulo C. Coradi

    Full Text Available ABSTRACT This study aimed to verify the capacity of silo-dryer-aerator prototype equipment operating as a silo-storage-aerator for soybean quality analysis. Soybeans with water content of 17% (wet basis – w.b. were dried and stored in a silo-dryer-aerator system that was designed using a drying chamber, four independent storage cells, and a static capacity of 164 kg. Another batch of grains was stored in a silo-storage-aerator with a capacity of 1,200 kg. The experiment was set up in a completely randomized factorial 5 × 4 experimental design including five grain batches stored after being dried at 30, 40, and 50 °C (mixed grains were dried at three temperatures in the silo-dryer-aerator cells and one mixed grain batch stored in the silo-storage-aerator system under ambient air conditions for four storage times (zero, one, two, and three months. There was no difference between the grains stored in the silo-dryer-aerator and silo-storage-aerator at the end of the three-month storage in terms of the physico-chemical quality. The storage time associated with drying at 50 °C caused a reduction in the physical-chemical quality of the grains. The silo-dryer-aerator system was presented as a possible alternative to store soybean (Glycine max L. grains.

  11. Effect of influent aeration on removal of organic matter from coffee processing wastewater in constructed wetlands.

    Science.gov (United States)

    Rossmann, Maike; Matos, Antonio Teixeira; Abreu, Edgar Carneiro; Silva, Fabyano Fonseca; Borges, Alisson Carraro

    2013-10-15

    The aim of the present study was to evaluate the influence of aeration and vegetation on the removal of organic matter in coffee processing wastewater (CPW) treated in 4 constructed wetlands (CWs), characterized as follows: (i) ryegrass (Lolium multiflorum) cultivated system operating with an aerated influent; (ii) non-cultivated system operating with an aerated influent, (iii) ryegrass cultivated system operating with a non-aerated influent; and (iv) non-cultivated system operating with a non-aerated influent. The lowest average chemical oxygen demand (COD), biochemical oxygen demand (BOD) and total suspended solids (TSS) removal efficiencies of 87, 84 and 73%, respectively, were obtained in the ryegrass cultivated system operating with a non-aerated influent. However, ryegrass cultivation did not influence the removal efficiency of organic matter. Artificial aeration of the CPW, prior to its injection in the CW, did not improve the removal efficiencies of organic matter. On other hand it did contribute to increase the instantaneous rate at which the maximum COD removal efficiency was reached. Although aeration did not result in greater organic matter removal efficiencies, it is important to consider the benefits of aeration on the removal of the other compounds. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. DESAIN KONTROL AERATOR PADA INSTALASI PENGOLAHAN AIR LIMBAH SUWUNG DENGAN FUZZY LOGIC

    Directory of Open Access Journals (Sweden)

    I Made Mataram

    2010-12-01

    Full Text Available Limbah merupakan buangan yang dihasilkan dari suatu proses produksi baik industri maupun domestik (rumahtangga dan harus dikelola agar tidak menimbulkan pencemaran dan penurunan kualitas lingkungan. InstalasiPengolahan Air Limbah (IPAL merupakan suatu tempat pengolahan limbah yang bertempat di daerah Suwung.Pengolahan limbah cair dilakukan dengan menggunakan sistem kolam aerasi dan kolam sedimentasi.Pada proses aerasi yaitu proses reduksi BOD (Biological Oxygen Demand dan COD (Chemical OxygenDemand secara aerob digunakan aerator sebagai penghasil oksigen yaitu dengan cara menempatkan aerator didalam kolam aerasi sehingga menghasilkan oksigen berupa buih udara yang tercampur dengan air. Untuk IPALSuwung pengoperasian aerator masih dengan cara manual yaitu dioperasikan pada jam tertentu sehingga inputjumlah oksigen terkadang tidak sesuai dengan karakteristik input limbah yang diolah, maka diperlukan suatu sistemkontrol pengoperasian aerator yang dapat menghasilkan oksigen guna mereduksi COD secara tepat sesuai bakumutu limbahDalam penelitian ini dilakukan perencanaan desain kontrol pengoperasian aerator dengan fuzzy logic. Desainpengontrolan dengan menggunakan logika fuzzy pada pengoperasian aerator sudah dapat dibuat dan dapat bekerjasesuai dengan karateristik input/ouput limbah, ini terlihat dari lama operasi aerator yang bekerja sudah sesuaidengan input limbah. Penggunaan energi listrik dengan pengontrolan fuzzy pada pengoperasian aerator lebih rendahdibandingkan dengan penggunaan energi listrik pengoperasian secara manual, ini terlihat dari penggunaan energipengoperasian aerator manual dan fuzzy pada bulan Oktober 2010 yang memiliki selisih sebesar 6.693 kWh, bulanNovember 2010

  13. Composting of tobacco plant waste by manual turning and forced aeration system

    OpenAIRE

    Nonglak Saithep

    2009-01-01

    The efficiency of tobacco plant waste composting, by the manual turning and the forced aeration system, was compared. Tobacco plant waste, cow manure, urea fertiliser, and a compost inoculum mixture at a 100:10:0.2:0.01 ratio respectively, with 60% (w/v) moisture content, were set up in piling forms. The piles of the manual turning system were provided with turning aeration by hand at intervals of 7 days during the composting process. For the forced aeration system, each pile was aerated by a...

  14. Research on the Efficiency of Drinking Water Aeration Systems

    Directory of Open Access Journals (Sweden)

    Andrius Styra

    2011-02-01

    Full Text Available A number of modern iron removal systems used in individual houses do not work properly. One of the reasons could be inappropriate work of the aeration system. Therefore, the aim of this research is to analyze three types of jet pumps used in individual houses in Lithuania and compare the amount of sucked oxygen with demand for dissolved oxygen the amount of which is calculated. When summarizing the results of research, it was discovered that the ejector worked unstable when flow was low, and therefore stable operation require additional pressure.Article in Lithuanian

  15. A novel aerated surface flow constructed wetland using exhaust gas from biological wastewater treatment: Performance and mechanisms.

    Science.gov (United States)

    Zhang, Xinwen; Hu, Zhen; Zhang, Jian; Fan, Jinlin; Ngo, Huu Hao; Guo, Wenshan; Zeng, Chujun; Wu, Yiwen; Wang, Siyuan

    2018-02-01

    In this study, a novel aerated surface flow constructed wetland (SFCW) using exhaust gas from biological wastewater treatment was investigated. Compared with un-aerated SFCW, the introduction of exhaust gas into SFCW significantly improved NH 4 + -N, TN and COD removal efficiencies by 68.30 ± 2.06%, 24.92 ± 1.13% and 73.92 ± 2.36%, respectively. The pollutants removal mechanism was related to the microbial abundance and the highest microbial abundance was observed in the SFCW with exhaust gas because of the introduction of exhaust gas from sequencing batch reactor (SBR), and thereby optimizing nitrogen transformation processes. Moreover, SFCW would significantly mitigate the risk of exhaust gas pollution. SFCW removed 20.00 ± 1.23%, 34.78 ± 1.39%, and 59.50 ± 2.33% of H 2 S, NH 3 and N 2 O in the exhaust gas, respectively. And 31.32 ± 2.23% and 32.02 ± 2.86% of bacterial and fungal aerosols in exhaust gas were also removed through passing SFCW, respectively. Copyright © 2017. Published by Elsevier Ltd.

  16. Measurements of N2O and CH4 from the aerated composting of food waste

    International Nuclear Information System (INIS)

    He, Y.; Sun, T.; Inamori, Y.; Mizuochi, M.; Kong, H.; Iwami, N.

    2000-01-01

    Emissions of N 2 O and CH 4 from an aerated composting system were investigated using small-scale simulated reactors. The results show relatively high emissions of N 2 O at the beginning of composting, in proportion to the application amount of food waste. After 2 days, the N 2 O emission decreased to 0.53 ppmv on average, near to the background level in the atmosphere (0.45 ppmv). The addition of composted cattle manure increased N 2 O emissions not only at the beginning of composting, but also during the later period and resulted in two peak emission curves. Good correlation was observed between the N 2 O concentration at the air outlet and NO 2 - concentration in waste, suggesting a generation pathway for N 2 O from NO 2 - to N 2 O. Methane was only detected in treatments containing composted cattle manure. The high emission of methane illustrates the involvement of anoxic/anaerobic microorganisms with the addition of composted manure. The result suggests the existence of anoxic or anaerobic microsite inside the waste particles even though ventilation was employed during the composting process

  17. Startup of a Partial Nitritation-Anammox MBBR and the Implementation of pH-Based Aeration Control.

    Science.gov (United States)

    Klaus, Stephanie; Baumler, Rick; Rutherford, Bob; Thesing, Glenn; Zhao, Hong; Bott, Charles

    2017-06-01

      The single-stage deammonification moving bed biofilm reactor (MBBR) is a process for treating high strength nitrogen waste streams. In this process, partial nitritation and anaerobic ammonia oxidation (anammox) occur simultaneously within a biofilm attached to plastic carriers. An existing tank at the James River Treatment Plant (76 ML/d) in Newport News, Virginia was modified to install a sidestream deammonification MBBR process. This was the second sidestream deammonification process in North America and the first MBBR type installation. After 4 months the process achieved greater than 85% ammonia removal at the design loading rate of 2.4 g /m2·d (256 kg /d) signaling the end of startup. Based on observations during startup and process optimization phases, a novel pH-based control system was developed that maximizes ammonium removal and results in stable aeration and effluent alkalinity.

  18. Nitrous oxide emissions from an intermittent aeration activated sludge system of an urban wastewater treatment plant

    Directory of Open Access Journals (Sweden)

    William Z. de Mello

    2013-01-01

    Full Text Available This study investigated the emission of N2O during the sequential aerated (60-min and non-aerated (30-min stages of an intermittent aeration cycle in an activated sludge wastewater treatment plant (WWTP. N2O emission occurred during both stages; however, emission was much higher during aeration. Air stripping is the major factor controlling transfer of N2O from the sewage to the atmosphere. The N2O emissions exclusively from the aeration tank represented 0.10% of the influent total nitrogen load and the per capita emission factor was almost 3 times higher than that suggested by the IPCC for inventories of N2O emission from WWTPs.

  19. Aeration to degas CO{sub 2}, increase pH, and increase iron oxidation rates for efficient treatment of net alkaline mine drainage

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, C.S.; Dennis, A.; Kahler, A. [Bucknell University, Lewisburg, PA (United States). Dept. of Geology

    2009-07-15

    Passive treatment systems for mine drainage use no energy other than gravity, but they require greater area than active treatment systems. Researchers are considering 'hybrid' systems that have passive and active components for increased efficiency, especially where space limitations render passive-only technology ineffective. Flow-through reactor field experiments were conducted at two large net-alkaline anthracite mine discharges in central Pennsylvania. Assuming an Fe removal rate of 20 g m{sup -2} day{sup -1} and Fe loading from field data, 3.6 x 10{sup 3} and 3.0 x 10{sup 4} m{sup 2} oxidation ponds would be required for the passive treatment of Site 21 and Packer 5 discharges, respectively. However, only a small area is available at each site. This paper demonstrates aeration to drive off CO{sub 2}, increase pH, and increase Fe(II) oxidation rates, enabling treatment within a small area compared to passive treatment methods, and introduces a geochemical model to accurately predict these rates as well as semi-passive treatment system sizing parameters. Iron(II) oxidation modeling of actively aerated systems predicted that a 1-m deep pond with 10 times less area than estimated for passive treatment would lower Fe(II) concentrations to less than 1 mg L-1 at summer and winter temperatures for both sites. The use of active aeration for treatment Of CO{sub 2}-rich, net-alkaline discharges (including partially treated effluent from anoxic limestone drains) can result in considerably reduced treatment area for oxidation and may lower treatment costs, but settling of Fe hydroxides was not considered in this study. The reduced capital cost for earthmoving will need to be compared to energy and maintenance costs for aeration.

  20. Study on low intensity aeration oxygenation model and optimization for shallow water

    Science.gov (United States)

    Chen, Xiao; Ding, Zhibin; Ding, Jian; Wang, Yi

    2018-02-01

    Aeration/oxygenation is an effective measure to improve self-purification capacity in shallow water treatment while high energy consumption, high noise and expensive management refrain the development and the application of this process. Based on two-film theory, the theoretical model of the three-dimensional partial differential equation of aeration in shallow water is established. In order to simplify the equation, the basic assumptions of gas-liquid mass transfer in vertical direction and concentration diffusion in horizontal direction are proposed based on engineering practice and are tested by the simulation results of gas holdup which are obtained by simulating the gas-liquid two-phase flow in aeration tank under low-intensity condition. Based on the basic assumptions and the theory of shallow permeability, the model of three-dimensional partial differential equations is simplified and the calculation model of low-intensity aeration oxygenation is obtained. The model is verified through comparing the aeration experiment. Conclusions as follows: (1)The calculation model of gas-liquid mass transfer in vertical direction and concentration diffusion in horizontal direction can reflect the process of aeration well; (2) Under low-intensity conditions, the long-term aeration and oxygenation is theoretically feasible to enhance the self-purification capacity of water bodies; (3) In the case of the same total aeration intensity, the effect of multipoint distributed aeration on the diffusion of oxygen concentration in the horizontal direction is obvious; (4) In the shallow water treatment, reducing the volume of aeration equipment with the methods of miniaturization, array, low-intensity, mobilization to overcome the high energy consumption, large size, noise and other problems can provide a good reference.

  1. Study on oxygen transfer by solid jet aerator with multiple openings

    Directory of Open Access Journals (Sweden)

    B.K. Shukla

    2018-04-01

    Full Text Available In the current study, two different sets of solid jet aerators having area of openings equal to 594.96 mm2 and 246.30 mm2 with rectangular nozzles having rounded ends were studied. Each set consisted of aerators having one, two, four and eight openings. The oxygenation performance of every model was studied for five different discharges of 1.11 l/s, 2.10 l/s, 2.96 l/s, 3.83 l/s and 4.69 l/s were studied. At low discharges, the aerator having lesser number of openings demonstrated more oxygen-transfer efficiency whereas at higher discharges, the aerator having more number of openings yielded more oxygenation-efficiency. Maximum value of oxygen-transfer efficiency of 21.53 kg-O2/kW-hr was obtained for the discharge of 1.11 l/s for single nozzle aerator; however the maximum oxygen-transfer factor of 2.0 × 10−2 s−1 was obtained at discharge of 4.69 l/s for aerator having eight numbers of openings having area of 594.96 mm2. On the other hand, maximum oxygen transfer efficiency of 10.93 kg-O2/kW-hr was demonstrated by aerator with single opening at a discharge of 1.11 l/s and maximum oxygen transfer factor of 7.83 × 10−3 s−1 was obtained from aerator with eight openings at a discharge of 4.69 l/s corresponding to set of aerators with area of openings equal to 246.30 mm2. Multiple non-linear regression modelling was applied to predict oxygen transfer of the aerators for different combinations of input parameters. At the end, the models were compared with conventional methods of aeration and were found to be competitive with traditional devices. Keywords: Plunging jet, Jet aerator, Oxygen transfer, Aeration, Dissolved oxygen

  2. Development of a simultaneous partial nitrification and anaerobic ammonia oxidation process in a single reactor.

    Science.gov (United States)

    Cho, Sunja; Fujii, Naoki; Lee, Taeho; Okabe, Satoshi

    2011-01-01

    Up-flow oxygen-controlled biofilm reactors equipped with a non-woven fabric support were used as a single reactor system for autotrophic nitrogen removal based on a combined partial nitrification and anaerobic ammonium oxidation (anammox) reaction. The up-flow biofilm reactors were initiated as either a partial nitrifying reactor or an anammox reactor, respectively, and simultaneous partial nitrification and anammox was established by careful control of the aeration rate. The combined partial nitrification and anammox reaction was successfully developed in both biofilm reactors without additional biomass inoculation. The reactor initiated as the anammox reactor gave a slightly higher and more stable mean nitrogen removal rate of 0.35 (±0.19) kg-N m(-3) d(-1) than the reactor initiated as the partial nitrifying reactor (0.23 (±0.16) kg-N m(-3) d(-1)). FISH analysis revealed that the biofilm in the reactor started as the anammox reactor were composed of anammox bacteria located in inner anoxic layers that were surrounded by surface aerobic AOB layers, whereas AOB and anammox bacteria were mixed without a distinguishable niche in the biofilm in the reactor started as the partial nitrifying reactor. However, it was difficult to efficiently maintain the stable partial nitrification owing to inefficient aeration in the reactor, which is a key to development of the combined partial nitrification and anammox reaction in a single biofilm reactor. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Cracking in autoclaved aerated concrete: Experimental investigation and XFEM modeling

    International Nuclear Information System (INIS)

    Ferretti, D.; Michelini, E.; Rosati, G.

    2015-01-01

    The paper aims to investigate and model cracking development in beams and deep-beams made of autoclaved aerated concrete (AAC). Fracture mechanics of AAC has been first studied by performing three-point bending tests on beams, similar to those commonly used for ordinary concrete elements. In some of these tests, crack growth has been also monitored by using ESPI laser technique. In this way, it has been possible to calibrate the main parameters of a proper cohesive law by means of extended finite element inverse analysis. Subsequently, cracking tests have been also performed on deep-beams, whose behavior is more representative of full scale walls. To validate the proposed cohesive law, deep-beam experimental behavior has been finally simulated through XFEM

  4. Cracking in autoclaved aerated concrete: Experimental investigation and XFEM modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ferretti, D., E-mail: daniele.ferretti@unipr.it [Department of Civil, Environmental, Land Management Engineering and Architecture, University of Parma, P.co Area delle Scienze 181/A, 43124 Parma (Italy); Michelini, E. [Department of Civil, Environmental, Land Management Engineering and Architecture, University of Parma, P.co Area delle Scienze 181/A, 43124 Parma (Italy); Rosati, G. [Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza L. Da Vinci 32, 20133 Milano (Italy)

    2015-01-15

    The paper aims to investigate and model cracking development in beams and deep-beams made of autoclaved aerated concrete (AAC). Fracture mechanics of AAC has been first studied by performing three-point bending tests on beams, similar to those commonly used for ordinary concrete elements. In some of these tests, crack growth has been also monitored by using ESPI laser technique. In this way, it has been possible to calibrate the main parameters of a proper cohesive law by means of extended finite element inverse analysis. Subsequently, cracking tests have been also performed on deep-beams, whose behavior is more representative of full scale walls. To validate the proposed cohesive law, deep-beam experimental behavior has been finally simulated through XFEM.

  5. Thermal conductivity of newspaper sandwiched aerated lightweight concrete panel

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Soon-Ching; Low, Kaw-Sai [Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Genting Kelang, Setapak, 53300 Kuala Lumpur, Wilayah Persekutuan (Malaysia)

    2010-12-15

    Investigation on the thermal conductivity of newspaper sandwiched aerated lightweight concrete (ALC) panels is the main purpose of this study. Various densities of ALC panels ranging from 1700, 1400 and 1100 kg/m{sup 3} with three different aerial intensities of newspaper sandwiched were produced. Investigation was limited to the effect of aerial intensity of newspaper sandwiched and the effect of density of ALC on thermal conductivity. It is found that the thermal conductivity of newspaper sandwiched ALC panels reduced remarkably compared to control ALC panels. The reduction was recorded at 18.0%, 21.8% and 20.7% correspond to densities of 1700, 1400 and 1100 kg/m{sup 3} with just a mere 0.05 g/cm{sup 2} aerial intensity of newspaper sandwiched. Newspaper sandwiched has a significant impact on the performance of thermal conductivity of ALC panels based on regression analysis. (author)

  6. Nitrous oxide reduction genetic potential from the microbial community of an intermittently aerated partial nitritation SBR treating mature landfill leachate.

    Science.gov (United States)

    Gabarró, J; Hernández-Del Amo, E; Gich, F; Ruscalleda, M; Balaguer, M D; Colprim, J

    2013-12-01

    This study investigates the microbial community dynamics in an intermittently aerated partial nitritation (PN) SBR treating landfill leachate, with emphasis to the nosZ encoding gene. PN was successfully achieved and high effluent stability and suitability for a later anammox reactor was ensured. Anoxic feedings allowed denitrifying activity in the reactor. The influent composition influenced the mixed liquor suspended solids concentration leading to variations of specific operational rates. The bacterial community was low diverse due to the stringent conditions in the reactor, and was mostly enriched by members of Betaproteobacteria and Bacteroidetes as determined by 16S rRNA sequencing from excised DGGE melting types. The qPCR analysis for nitrogen cycle-related enzymes (amoA, nirS, nirK and nosZ) demonstrated high amoA enrichment but being nirS the most relatively abundant gene. nosZ was also enriched from the seed sludge. Linear correlation was found mostly between nirS and the organic specific rates. Finally, Bacteroidetes sequenced in this study by 16S rRNA DGGE were not sequenced for nosZ DGGE, indicating that not all denitrifiers deal with complete denitrification. However, nosZ encoding gene bacteria was found during the whole experiment indicating the genetic potential to reduce N2O. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Litter aeration and spread of Salmonella in broilers.

    Science.gov (United States)

    Bodí, Sara González; Garcia, Arantxa Villagra; García, Santiago Vega; Orenga, Clara Marín

    2013-08-01

    Litter quality in the poultry sector is one of the main parameters of health, productivity, and animal welfare. Therefore, innovative management methods have been developed to improve the quality of litter. One of them is litter aeration (LA) by tumbling. However, there is little information related to the effect of this technique on the spreading of pathogens of public health importance such as Salmonella. In this context, the objective of this study was to determine the epidemiology of Salmonella in poultry farms, when serial LA were implemented during the rearing cycle of broilers. For this purpose, an experimental broiler farm with 3 identical rooms was used in the study. Two rooms were assigned to the LA treatment, and the other one served as the control room. Environmental samples were taken in poultry houses after LA in 4 consecutive weeks at the end of the cycle. All samples collected were analyzed according to the standards of the International Organization for Standardization (ISO 6579:2002, Annex D). The results of this study showed that in the control and treated rooms, the percentage of positive samples for Salmonella decreased in the first 3 LA sessions (LA 1, LA 2, and LA 3). However, in the last LA session of rearing (LA 4), the percentage of positive samples increased from 8.2 to 33.2% in the control room instead the treated rooms where the positive samples decreased (P = 0.017). Thus, the aeration of the litter as litter management technique in poultry broiler production does not increase the shedding or the spread of Salmonella throughout broiler houses. In addition, it could be an effective technique to reduce the infective pressure of this bacterium in several areas of the farm or in certain moments of the rearing period with more risk of multiplication and spreading of Salmonella.

  8. Ammonia-based feedforward and feedback aeration control in activated sludge processes.

    Science.gov (United States)

    Rieger, Leiv; Jones, Richard M; Dold, Peter L; Bott, Charles B

    2014-01-01

    Aeration control at wastewater treatment plants based on ammonia as the controlled variable is applied for one of two reasons: (1) to reduce aeration costs, or (2) to reduce peaks in effluent ammonia. Aeration limitation has proven to result in significant energy savings, may reduce external carbon addition, and can improve denitrification and biological phosphorus (bio-P) performance. Ammonia control for limiting aeration has been based mainly on feedback control to constrain complete nitrification by maintaining approximately one to two milligrams of nitrogen per liter of ammonia in the effluent. Increased attention has been given to feedforward ammonia control, where aeration control is based on monitoring influent ammonia load. Typically, the intent is to anticipate the impact of sudden load changes, and thereby reduce effluent ammonia peaks. This paper evaluates the fundamentals of ammonia control with a primary focus on feedforward control concepts. A case study discussion is presented that reviews different ammonia-based control approaches. In most instances, feedback control meets the objectives for both aeration limitation and containment of effluent ammonia peaks. Feedforward control, applied specifically for switching aeration on or off in swing zones, can be beneficial when the plant encounters particularly unusual influent disturbances.

  9. Optimization of aeration for biodiesel production by Scenedesmus obliquus grown in municipal wastewater.

    Science.gov (United States)

    Han, Song-Fang; Jin, Wenbiao; Tu, Renjie; Abomohra, Abd El-Fatah; Wang, Zhi-Han

    2016-07-01

    Despite the significant breakthroughs in research on microalgae as a feedstock for biodiesel, its production cost is still much higher than that of fossil diesel. One possible solution to overcome this problem is to optimize algal growth and lipid production in wastewater. The present study examines the optimization of pretreatment of municipal wastewater and aeration conditions in order to enhance the lipid productivity of Scenedesmus obliquus. Results showed that no significant differences were recorded in lipid productivity of S. obliquus grown in primary settled or sterilized municipal wastewater; however, ultrasound pretreatment of wastewater significantly decreased the lipid production. Whereas, aeration rates of 0.2 vvm significantly increased lipid content by 51 %, with respect to the non-aerated culture, which resulted in maximum lipid productivity (32.5 mg L(-1) day(-1)). Furthermore, aeration enrichment by 2 % CO2 resulted in increase of lipid productivity by 46 % over the CO2 non-enriched aerated culture. Fatty acid profile showed that optimized aeration significantly enhanced monounsaturated fatty acid production, composed mainly of C18:1, by 1.8 times over the non-aerated S. obliquus culture with insignificant changes in polyunsaturated fatty acid proportion; suggesting better biodiesel characteristics for the optimized culture.

  10. Development of a model for activated sludge aeration systems: linking air supply, distribution, and demand.

    Science.gov (United States)

    Schraa, Oliver; Rieger, Leiv; Alex, Jens

    2017-02-01

    During the design of a water resource recovery facility, it is becoming industry practice to use simulation software to assist with process design. Aeration is one of the key components of the activated sludge process, and is one of the most important aspects of modelling wastewater treatment systems. However, aeration systems are typically not modelled in detail in most wastewater treatment process modelling studies. A comprehensive dynamic aeration system model has been developed that captures both air supply and demand. The model includes sub-models for blowers, pipes, fittings, and valves. An extended diffuser model predicts both oxygen transfer efficiency within an aeration basin and pressure drop across the diffusers. The aeration system model allows engineers to analyse aeration systems as a whole to determine biological air requirements, blower performance, air distribution, control valve impacts, controller design and tuning, and energy costs. This enables engineers to trouble-shoot the entire aeration system including process, equipment and controls. It also allows much more realistic design of these highly complex systems.

  11. Composting of tobacco plant waste by manual turning and forced aeration system

    Directory of Open Access Journals (Sweden)

    Nonglak Saithep

    2009-05-01

    Full Text Available The efficiency of tobacco plant waste composting, by the manual turning and the forced aeration system, was compared. Tobacco plant waste, cow manure, urea fertiliser, and a compost inoculum mixture at a 100:10:0.2:0.01 ratio respectively, with 60% (w/v moisture content, were set up in piling forms. The piles of the manual turning system were provided with turning aeration by hand at intervals of 7 days during the composting process. For the forced aeration system, each pile was aerated by a 3-HP air pump with a flow rate of 19 litres min-1 for 15 minutes every morning and evening. The completely randomised design of turned and force-aerated piles was performed in triplicate. The composting activity of both systems during the composting period was measured by several parameters: temperature, pH, moisture content, C/N ratio, growth of microorganisms, cellulase activity, and nicotine degradation in the set-up piles. Both systems had similar temperature, pH, and moisture content conditions in the piles during the composting process. However, the forced aeration system was more advantageous for the growth of mesophilic and thermophilic microorganisms, for cellulase activity from cellulase-producing microorganisms, and for nicotine degradation, when compared to the manual turning system. In conclusion, the forced aeration system was more efficient than the manual turning system in composting and is a viable alternative method for the composting process.

  12. EFFECT OF HYDRAULIC AND GEOMETRICAL PROPERTIES ON STEPPED CASCADE AERATION SYSTEM

    Directory of Open Access Journals (Sweden)

    VEDHACHALAM RATHINAKUMAR

    2017-03-01

    Full Text Available Stepped cascade aeration system is commonly used to aerate the water and wastewater to increase the dissolved oxygen during pre and post treatment process. In the present research, experiments were conducted to evaluate the performance of a rectangular Cascade Aeration System with varying flow rates, risers and tread by maintaining constant width of the channel using water collected from reverse osmosis plant. The experiments were carried out with four different risers such as 0.15 m, 0.18 m, 0.225 m and 0.30 m. Each rise was investigated with five different tread of 0.60 m, 0.55 m, 0.50 m, 0.45 m and 0.40 m. Comprehensive experimental investigations were carried out for different hydraulic loading rates of 0.005 to 0.035 m3/s/m2. Results obtained from the experiments reveals that increasing dimensionless discharges promotes more aeration, attains a maximum up to dimensionless discharge= 2.22 and beyond this there was a significant decrease in aeration. In addition, the increased in number of steps significantly enhances air entertainment and surface fall rate in the Stepped Cascade Aeration System. A regression equation was derived by keeping aeration efficiency as response with dimensionless discharge and oxygen saturation concentration as influencing parameters. The dimension less discharge is a function of critical depth of the rectangular channel and step height, whereas oxygen saturation concentration represents the ratio of oxygen deficit and oxygen saturation concentration. Based on the experimental results, the optimum design and/or results such as number of steps (12 numbers and hydraulic loading rate (0.025 m3/s/m2 with fixed tread width of 0.6 m were identified to achieve maximum aeration rate (0.5-0.60 in Aeration system.

  13. 3D-modelling of the thermal circumstances of a lake under artificial aeration

    Science.gov (United States)

    Tian, Xiaoqing; Pan, Huachen; Köngäs, Petrina; Horppila, Jukka

    2017-12-01

    A 3D-model was developed to study the effects of hypolimnetic aeration on the temperature profile of a thermally stratified Lake Vesijärvi (southern Finland). Aeration was conducted by pumping epilimnetic water through the thermocline to the hypolimnion without breaking the thermal stratification. The model used time transient equation based on Navier-Stokes equation. The model was fitted to the vertical temperature distribution and environmental parameters (wind, air temperature, and solar radiation) before the onset of aeration, and the model was used to predict the vertical temperature distribution 3 and 15 days after the onset of aeration (1 August and 22 August). The difference between the modelled and observed temperature was on average 0.6 °C. The average percentage model error was 4.0% on 1 August and 3.7% on 22 August. In the epilimnion, model accuracy depended on the difference between the observed temperature and boundary conditions. In the hypolimnion, the model residual decreased with increasing depth. On 1 August, the model predicted a homogenous temperature profile in the hypolimnion, while the observed temperature decreased moderately from the thermocline to the bottom. This was because the effect of sediment was not included in the model. On 22 August, the modelled and observed temperatures near the bottom were identical demonstrating that the heat transfer by the aerator masked the effect of sediment and that exclusion of sediment heat from the model does not cause considerable error unless very short-term effects of aeration are studied. In all, the model successfully described the effects of the aerator on the lake's temperature profile. The results confirmed the validity of the applied computational fluid dynamic in artificial aeration; based on the simulated results, the effect of aeration can be predicted.

  14. Design of high efficiency and energy saving aeration device for aquaculture

    Science.gov (United States)

    Liu, Sibo

    2017-03-01

    Energy efficient aeration device for aquaculture, in line with "by more than a generation, dynamic aeration" train of thought for technical design and improvement. Removable aeration terminal as the core, multi-level water to improve the method, the mobile fading pore aeration, intelligent mobile and open and close as the main function, aimed at solving the existing pond aeration efficiency, low energy consumption is high, the function of a single problem. From energy saving, efficiency, biological bacteria on the three directions, the aquaculture industry of energy conservation and emissions reduction. Device of the main advantages are: 1, original mobile fading aerator on the one hand, to expand the scope of work, playing a micro porous aeration of dissolved oxygen with high efficiency and to achieve "by more than a generation", on the other hand, through the sports equipment, stir the mixture of water, the water surface of photosynthesis of plants rich in dissolved oxygen input parts of the tank, compared to the stillness of the aerator can be more fully dissolved oxygen.2, through the opening of the pressure sensor indirect control device, can make the equipment timely and stop operation, convenient in use at the same time avoid the waste of energy.3, the biofilm suspension in aeration terminal, can be accomplished by nitration of microbial multi-level water improvement, still can make biofilm increase rate of netting in the movement process, the biological and mechanical aerobic promote each other, improve the efficiency of both. In addition, the device has small power consumption, low cost of characteristics. And have a certain degree of technical barriers, have their own intellectual property rights, and high degree of product market demand, easily accepted by customers, has a very high popularization value.

  15. Passive aeration composting of chicken litter: effects of aeration pipe orientation and perforation size on losses of compost elements.

    Science.gov (United States)

    Ogunwande, Gbolabo A; Osunade, James A

    2011-01-01

    A passive aeration composting study was undertaken to investigate the effects of aeration pipe orientation (PO) and perforation size (PS) on some physico-chemical properties of chicken litter (chicken manure + sawdust) during composting. The experimental set up was a two-factor completely randomised block design with two pipe orientations: horizontal (Ho) and vertical (Ve), and three perforation sizes: 15, 25 and 35 mm diameter. The properties monitored during composting were pile temperature, moisture content (MC), pH, electrical conductivity (EC), total carbon (C(T)), total nitrogen (N(T)) and total phosphorus (P(T)). Moisture level in the piles was periodically replenished to 60% for efficient microbial activities. The results of the study showed that optimum composting conditions (thermophilic temperatures and sanitation requirements) were attained in all the piles. During composting, both PO and PS significantly affected pile temperature, moisture level, pH, C(T) loss and P(T) gain. EC was only affected by PO while N(T) was affected by PS. Neither PO nor PS had a significant effect on the C:N ratio. A vertical pipe was effective for uniform air distribution, hence, uniform composting rate within the composting pile. The final values showed that PO of Ve and PS of 35 mm diameter resulted in the least loss in N(T). The PO of Ho was as effective as Ve in the conservation of C(T) and P(T). Similarly, the three PSs were equally effective in the conservation of C(T) and P(T). In conclusion, the combined effects of PO and PS showed that treatments Ve35 and Ve15 were the most effective in minimizing N(T) loss. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Treatment Wetland Aeration without Electricity? Lessons Learned from the First Experiment Using a Wind-Driven Air Pump

    Directory of Open Access Journals (Sweden)

    Johannes Boog

    2016-11-01

    Full Text Available Aerated treatment wetlands have become an increasingly recognized technology for treating wastewaters from domestic and various industrial origins. To date, treatment wetland aeration is provided by air pumps which require access to the energy grid. The requirement for electricity increases the ecological footprint of an aerated wetland and limits the application of this technology to areas with centralized electrical infrastructure. Wind power offers another possibility as a driver for wetland aeration, but its use for this purpose has not yet been investigated. This paper reports the first experimental trial using a simple wind-driven air pump to replace the conventional electric air blowers of an aerated horizontal subsurface flow wetland. The wind-driven air pump was connected to a two-year old horizontal flow aerated wetland which had been in continuous (24 h aeration since startup. The wind-driven aeration system functioned, however it was not specifically adapted to wetland aeration. As a result, treatment performance decreased compared to prior continuous aeration. Inconsistent wind speed at the site may have resulted in insufficient pressure within the aeration manifold, resulting in insufficient air supply to the wetland. This paper discusses the lessons learned during the experiment.

  17. Construction, start-up and operation of a continuously aerated ...

    African Journals Online (AJOL)

    scale SHARON reactor are discussed, along with the construction of the reactor. Special attention is given to the start-up in view of possible toxic effects of high nitrogen concentrations (up to 4 000 mgN·ℓ-1) on the nitrifier population and ...

  18. [Measurement and analysis of micropore aeration system's oxygenating ability under operation condition in waste water treatment plant].

    Science.gov (United States)

    Wu, Yuan-Yuan; Zhou, Xiao-Hong; Shi, Han-Chang; Qiu, Yong

    2013-01-01

    Using the aeration pool in the fourth-stage at Wuxi Lucun Waste Water Treatment Plant (WWTP) as experimental setup, off-gas method was selected to measure the oxygenating ability parameters of micropore aerators in a real WWTP operating condition and these values were compared with those in fresh water to evaluate the performance of the micropore aerators. Results showed that the micropore aerators which were distributed in different galleries of the aeration pool had significantly different oxygenating abilities under operation condition. The oxygenating ability of the micropore aerators distributed in the same gallery changed slightly during one day. Comparing with the oxygenating ability in fresh water, it decreased a lot in the real aeration pool, in more details, under the real WWTP operating condition, the values of oxygen transfer coefficient K(La) oxygenation capacity OC and oxygen utilization E(a) decreased by 43%, 57% and 76%, respectively.

  19. Production of ethanol in batch and fed-batch fermentation of soluble sugar

    International Nuclear Information System (INIS)

    Chaudhary, M.Y.; Shah, M.A.; Shah, F.H.

    1991-01-01

    Keeping in view of the demand and need for alternate energy source, especially liquid fuels and the availability of raw materials in Pakistan, we have carried out biochemical and technological studies for ethanol through fermentation of renewable substrates. Molasses and sugar cane have been used as substrate for yeast fermentation. Selected yeast were used in both batch and semi continuous fermentation of molasses. Clarified dilute molasses were fermented with different strains of Saccharomyces cerevisiae. Ethanol concentration after 64 hours batch fermentation reached 9.4% with 90% yield based on sugar content. During feed batch system similar results were obtained after a fermentation cycle of 48 hours resulting in higher productivity. Similarly carbohydrates in fruit juices and hydro lysates of biomass can be economically fermented to ethanol to be used as feed stock for other chemicals. (author)

  20. Optimization of a fed-batch fermentation process for production of ...

    African Journals Online (AJOL)

    African Journal of Biotechnology. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 10, No 9 (2011) >. Log in or Register to get access to full text downloads.

  1. Tracking control of concentration profiles in a fed-batch bioreactor using a linear algebra methodology.

    Science.gov (United States)

    Rómoli, Santiago; Serrano, Mario Emanuel; Ortiz, Oscar Alberto; Vega, Jorge Rubén; Eduardo Scaglia, Gustavo Juan

    2015-07-01

    Based on a linear algebra approach, this paper aims at developing a novel control law able to track reference profiles that were previously-determined in the literature. A main advantage of the proposed strategy is that the control actions are obtained by solving a system of linear equations. The optimal controller parameters are selected through Monte Carlo Randomized Algorithm in order to minimize a proposed cost index. The controller performance is evaluated through several tests, and compared with other controller reported in the literature. Finally, a Monte Carlo Randomized Algorithm is conducted to assess the performance of the proposed controller. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Biocatalytic hydroxylation of linoleic acid in a double-fed batch system with lipoxygenase and cysteine

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Elshof, M.B.W.; Veldink, G.A.

    1998-01-01

    The enzymatic large-scale preparation of unsaturated fatty acid hydroperoxides is the first step in the preparation of the corresponding fatty acid hydroxides. Since hydroxides are more suitable than hydroperoxides as precursors of fine chemicals like certain flavour compounds, a convenient and

  3. Boosted structured additive regression for Escherichia coli fed-batch fermentation modeling.

    Science.gov (United States)

    Melcher, Michael; Scharl, Theresa; Luchner, Markus; Striedner, Gerald; Leisch, Friedrich

    2017-02-01

    The quality of biopharmaceuticals and patients' safety are of highest priority and there are tremendous efforts to replace empirical production process designs by knowledge-based approaches. Main challenge in this context is that real-time access to process variables related to product quality and quantity is severely limited. To date comprehensive on- and offline monitoring platforms are used to generate process data sets that allow for development of mechanistic and/or data driven models for real-time prediction of these important quantities. Ultimate goal is to implement model based feed-back control loops that facilitate online control of product quality. In this contribution, we explore structured additive regression (STAR) models in combination with boosting as a variable selection tool for modeling the cell dry mass, product concentration, and optical density on the basis of online available process variables and two-dimensional fluorescence spectroscopic data. STAR models are powerful extensions of linear models allowing for inclusion of smooth effects or interactions between predictors. Boosting constructs the final model in a stepwise manner and provides a variable importance measure via predictor selection frequencies. Our results show that the cell dry mass can be modeled with a relative error of about ±3%, the optical density with ±6%, the soluble protein with ±16%, and the insoluble product with an accuracy of ±12%. Biotechnol. Bioeng. 2017;114: 321-334. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Cybernetic modeling based on pathway analysis for Penicillium chrysogenum fed-batch fermentation.

    Science.gov (United States)

    Geng, Jun; Yuan, Jingqi

    2010-08-01

    A macrokinetic model employing cybernetic methodology is proposed to describe mycelium growth and penicillin production. Based on the primordial and complete metabolic network of Penicillium chrysogenum found in the literature, the modeling procedure is guided by metabolic flux analysis and cybernetic modeling framework. The abstracted cybernetic model describes the transients of the consumption rates of the substrates, the assimilation rates of intermediates, the biomass growth rate, as well as the penicillin formation rate. Combined with the bioreactor model, these reaction rates are linked with the most important state variables, i.e., mycelium, substrate and product concentrations. Simplex method is used to estimate the sensitive parameters of the model. Finally, validation of the model is carried out with 20 batches of industrial-scale penicillin cultivation.

  5. A review of control strategies for manipulating the feed rate in fed-batch fermentation processes

    DEFF Research Database (Denmark)

    Mears, Lisa; Stocks, Stuart M.; Sin, Gürkan

    2017-01-01

    . This review covers a range of strategies which have been employed to use the feed rate as a manipulated variable in a control strategy. The feed rate is chosen as the focus for this review, as it is seen that this variable may be used towards many different objectives depending on the process of interest...

  6. Production-process optimization algorithm: Application to fed-batch bioprocess

    Czech Academy of Sciences Publication Activity Database

    Pčolka, M.; Čelikovský, Sergej

    2017-01-01

    Roč. 354, č. 18 (2017), s. 8529-8551 ISSN 0016-0032 R&D Projects: GA ČR(CZ) GA17-04682S Institutional support: RVO:67985556 Keywords : Optimal control * Bioprocess * Optimization Subject RIV: BC - Control Systems Theory OBOR OECD: Automation and control systems Impact factor: 3.139, year: 2016 https://doi.org/10.1016/j.jfranklin.2017.10.012

  7. Degradation of chlorophenol mixtures in a fed-batch system by two ...

    African Journals Online (AJOL)

    2010-12-16

    Dec 16, 2010 ... water is fed to the biological treatment unit either intermittently or ... the same culture in a binary mixture and in ternary mixture of 2,4,6TCP; 2,3,5 .... Solving the balance equation (Eq. (2)) with the initial condi- tions of the ...

  8. Multi-objective optimization of glycopeptide antibiotic production in batch and fed batch processes

    DEFF Research Database (Denmark)

    Maiti, Soumen K.; Eliasson Lantz, Anna; Bhushan, Mani

    2011-01-01

    batch operations using process model for Amycolatopsis balhimycina, a glycopeptide antibiotic producer. This resulted in a set of several pareto optimal solutions with the two objectives ranging from (0.75gl−1, 3.97g$-1) to (0.44gl−1, 5.19g$-1) for batch and from (1.5gl−1, 5.46g$-1) to (1.1gl−1, 6.34g...

  9. Determination of the Removal Efficiency of Linear Alkyl Benzene Sulphonate Acids (LAS in Fixed Bed Aeration Tank and Conventional Activated Sludge

    Directory of Open Access Journals (Sweden)

    Asghar Ebrahimi

    2011-03-01

    Full Text Available Linear Alkyl Benzene Sulphonate Acids (LAS are one of the anionic surfactants that are produced and used in large quantities in different countries and find their way into the natural environment through sewer systems. These compounds may potentially cause environmental hazards in such surface waters as rivers. It is, therefore, necessary to remove as much of these compounds as possible by biological processes in wastewater treatment plants. For this purpose, four parallel biological reactors were constructed that used the conventional activated sludge and aeration tanks with fixed bed on the bench scale in order to evaluate the removal efficiency of LAS. The reactors were operated under conditions similar to domestic wastewater treatment plants. Parameters of interest were measured according to standard methods and ANOVA and T-test were used for the statistical analysis of the data. The results showed that aeration tanks with fixed beds yielded higher values of LAS and COD removal and air consumption compared to the conventional activated sludge system. It was shown that the two systems studied achieved LAS removal efficiencies of 96% and 94% for an influent LAS concentration of 5 mg/L. Further, it was found that the effluents from both systems satisfied water quality standards for discharge into surface waters (

  10. Removal of radon by aeration: testing of various aeration techniques for small water works. For European Commission under Contract No FI4PCT960054 TENAWA project

    International Nuclear Information System (INIS)

    Salonen, L.; Mehtonen, J.; Turunen, H.; Mjoenes, L.; Hagberg, N.; Raff, O.

    2002-12-01

    Capability of various aeration techniques to remove radon from water in small waterworks was studied as a part of project (Treatment Techniques for Removing Natural Radionuclides from Drinking Water), which was carried out during 1997-1999 on a cost-shared basis (contract No. F14PCT960054) with The European Commission (CEC) under the supervision of the Directorate-General XII Radiation Protection Research Unit. In TENAWA project both laboratory and field experiments were performed in order to find reliable methods and equipment for removing natural radionuclides from ground water originating either from private wells or small waterworks. Because such techniques are more often needed in private households than at waterworks, the main emphasis of the research was aimed to solve the water treatment problems related to the private water supplies, especially bedrock wells. Radon was the most important radionuclide to be removed from water at waterworks whereas the removal of other radionuclides ( 234,238 U, 226,228 Ra, 210 Pb and 210 Po) was oft required from radonrich bedrock waters. The currently available methods and equipment were mainly tested during the field and laboratory experiments but the project was also aimed to find new materials, absorbents and membranes applicable for radionuclide removal from various types of ground waters (e.g. soft, hard, acidic). Because iron, manganese or organic occur in waters with radionuclides, their simultaneous removal was also studied. The project was divided into 13 work packages. In this report the results of the work package 2.2 are described. Elevated levels of radon and other natural radionuclides in European ground waters have been observed mainly in wide areas of the crystalline Scandinavian bedrock, especially in the granite rock areas of Finland and Sweden but also in more limited crystalline rock areas of Central and Southern Europe, Ukraine and Scotland. The radon removal efficiencies of different aeration methods

  11. How effective is aeration with vortex flow regulators? Pilot scale experiments

    Science.gov (United States)

    Wójtowicz, Patryk; Szlachta, Małgorzata

    2017-11-01

    Vortex flow regulators (VFR) are used in urban drainage systems as a replacement for traditional flow throttling devices. Vortex regulators are not only very efficient energy dissipators but also atomizers which are beneficial for sewer aeration. A deficit of dissolved oxygen can be a problem in both natural waters and sewerage. Hydrodynamic flow regulators can boost oxygen concentration preventing putrefaction and improving treatment of stormwater and wastewater. We were first to investigate the aeration efficiency of semi-commercial scale cylindrical vortex flow regulators to determine the potential of their application in environmental engineering and to propose modification to enhance the aeration capacity of basic designs. Different device geometries and arrangements of active outlets for both single and double discharge vortex regulators were tested in a recirculating system. In this study, we present a concise review of the current state of our extensive research on the aeration efficiency of vortex flow regulators and their application in sewerage systems.

  12. Nonlinear Modeling of Autoclaved Aerated Concrete Masonry Wall Strengthened using Ferrocement Sandwich Structure

    KAUST Repository

    M., Abdel-Mooty; M., El-Kashef; E., Fahmy; M., Abou-Zeid; M., Haroun

    2011-01-01

    Autoclaved Aerated Concrete (AAC) block are used mainly as non-load-bearing walls that provide heat insulation. This results in considerable saving in cooling energy particularly in hot desert environment with large variation of daily and seasonal

  13. Research About the Corosive Effects of FeCl3 in the Aeration Wastewater Basin

    Science.gov (United States)

    Panaitescu, C.; Petrescu, M. G.

    2018-01-01

    Biological aeration of industrial wastewater is a very impressive process in the treatment of wastewater. The involvement of chemical reagents in this process, however, implies the intensification of the corrosion processes due to both pollutants in the wastewater and the chemical reactions that occur when the coagulation / flocculation reagents are added. This paper explores the action of ferric chloride (FeCl3) on metallic parts in the aeration basin. The most affected structures are metal. At the classical basins the aeration systems were made of P295GH materials. The corrosion produced is uneven. The analysis of the high degree of corrosion was done according to the national and international standards. Finally, the paper supports the replacement of the existing aeration system with an anticorrosive material.

  14. Study on water infiltration in loess aerated zone at CIRP's field test site

    International Nuclear Information System (INIS)

    Du Zhongde; Zhao Yingjie; Ni Dongqi; Ma Binghui; Xu Zhaoyi; Tadao Tanaka; Masayuki Mukai

    2000-01-01

    Vertical joints and large pores existing uniquely in loess cause difference between loess and other homogenous soil media in water infiltration. Field test of water infiltration in loess aerated zone of and analysis with hydraulic theory of soil concludes that for the loess aerated zone of vertical joints existing in it makes little contribution to water infiltration under unsaturated condition, and large pores in the media would significantly retard water infiltration

  15. Low frequency aeration of pig slurry affects slurry characteristics and emissions of greenhouse gases and ammonia.

    Science.gov (United States)

    Calvet, Salvador; Hunt, John; Misselbrook, Tom H

    2017-07-01

    Low frequency aeration of slurries may reduce ammonia (NH 3 ) and methane (CH 4 ) emissions without increasing nitrous oxide (N 2 O) emissions. The aim of this study was to quantify this potential reduction and to establish the underlying mechanisms. A batch experiment was designed with 6 tanks with 1 m 3 of pig slurry each. After an initial phase of 7 days when none of the tanks were aerated, a second phase of 4 weeks subjected three of the tanks to aeration (2 min every 6 h, airflow 10 m 3  h -1 ), whereas the other three tanks remained as a control. A final phase of 9 days was established with no aeration in any tank. Emissions of NH 3 , CH 4 , carbon dioxide (CO 2 ) and N 2 O were measured. In the initial phase no differences in emissions were detected, but during the second phase aeration increased NH 3 emissions by 20% with respect to the controls (8.48 vs. 7.07 g m -3  [slurry] d -1 , P emissions were 40% lower in the aerated tanks (2.04 vs. 3.39 g m -3  [slurry] d -1 , P emissions remained after the aeration phase had finished. No effect was detected for CO 2 , and no relevant N 2 O emissions were detected during the experiment. Our results demonstrate that low frequency aeration of stored pig slurry increases slurry pH and increases NH 3 emissions.

  16. Simultaneous improvement of waste gas purification and nitrogen removal using a novel aerated vertical flow constructed wetland.

    Science.gov (United States)

    Zhang, Xinwen; Hu, Zhen; Ngo, Huu Hao; Zhang, Jian; Guo, Wenshan; Liang, Shuang; Xie, Huijun

    2018-03-01

    Insufficient oxygen supply is identified as one of the major factors limiting organic pollutant and nitrogen (N) removal in constructed wetlands (CWs). This study designed a novel aerated vertical flow constructed wetland (VFCW) using waste gas from biological wastewater treatment systems to improve pollutant removal in CWs, its potential in purifying waste gas was also identified. Compared with unaerated VFCW, the introduction of waste gas significantly improved NH 4 + -N and TN removal efficiencies by 128.48 ± 3.13% and 59.09 ± 2.26%, respectively. Furthermore, the waste gas ingredients, including H 2 S, NH 3 , greenhouse gas (N 2 O) and microbial aerosols, were remarkably reduced after passing through the VFCW. The removal efficiencies of H 2 S, NH 3 and N 2 O were 77.78 ± 3.46%, 52.17 ± 2.53%, and 87.40 ± 3.89%, respectively. In addition, the bacterial and fungal aerosols in waste gas were effectively removed with removal efficiencies of 42.72 ± 3.21% and 47.89 ± 2.82%, respectively. Microbial analysis results revealed that the high microbial community abundance in the VFCW, caused by the introduction of waste gas from the sequencing batch reactor (SBR), led to its optimized nitrogen transformation processes. These results suggested that the VFCW intermittently aerated with waste gas may have potential application for purifying wastewater treatment plant effluent and waste gas, simultaneously. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Application of two component biodegradable carriers in a particle-fixed biofilm airlift suspension reactor: development and structure of biofilms.

    Science.gov (United States)

    Hille, Andrea; He, Mei; Ochmann, Clemens; Neu, Thomas R; Horn, Harald

    2009-01-01

    Two component biodegradable carriers for biofilm airlift suspension (BAS) reactors were investigated with respect to development of biofilm structure and oxygen transport inside the biofilm. The carriers were composed of PHB (polyhydroxybutyrate), which is easily degradable and PCL (caprolactone), which is less easily degradable by heterotrophic microorganisms. Cryosectioning combined with classical light microscopy and CLSM was used to identify the surface structure of the carrier material over a period of 250 days of biofilm cultivation in an airlift reactor. Pores of 50 to several hundred micrometers depth are formed due to the preferred degradation of PHB. Furthermore, microelectrode studies show the transport mechanism for different types of biofilm structures, which were generated under different substrate conditions. At high loading rates, the growth of a rather loosely structured biofilm with high penetration depths of oxygen was found. Strong changes of substrate concentration during fed-batch mode operation of the reactor enhance the growth of filamentous biofilms on the carriers. Mass transport in the outer regions of such biofilms was mainly driven by advection.

  18. Radioactivity in houses built of aerated concrete based on alum shale

    International Nuclear Information System (INIS)

    Swedjemark, G.A.

    1980-01-01

    The highest activities in commonly used Swedish building materials are found in aerated concrete based on alum shale. The enhanced activity level is due to the high content of radium-226. The average activity concentration of radium-226 varies between different producers of aerated concrete based on alum shale from 700 Bq kg - (20 pCi g - ) to 2 400 Bq kg - (65 pCi g - ). Houses built in the same way with the same amounts of aerated concrete can therefore have very different gamma levels and very different concentrations of radon in the air with the same air exchange rate. Aerated concrete based on alum shale was used as a building material in Sweden from 1930 to 1975. The average concentration of radon daughters found in houses built of aerated concrete based to a major extent on alum shale is about 100 bq/m 3 (2.7 pCi 1 - ). The highest radon concentrations have been found in houses built entirely of aerated concrete based on alum shale. A group of 9 houses with natural draught ventilation systems has been investigated with regard to the concentration of radon, the equilibrium equivalent concentration of radon (EEC) and the gamma dose rate. The air exchange rates varied between the houses from 0.21 to 0.43 h - and the radon concentration from 540 Bq m - (15 pCi 1 - ) to 1 160 Bq m - (31 pCi 1 - ). The values given are averages for each house. (author)

  19. Iodine-infused aeration for hull fouling prevention: a vessel-scale study.

    Science.gov (United States)

    Dickenson, Natasha C; Krumholz, Jason S; Hunsucker, Kelli Z; Radicone, Michael

    2017-11-01

    Biofouling is a significant economic and ecological problem, causing reduced vessel performance and increases in fuel consumption and emissions. Previous research has shown iodine vapor (I 2 )-infused aeration to be an environmentally friendly method for deterring the settlement of fouling organisms. An aeration system was deployed on a vessel with hull sections coated with two types of antifoulant coatings, Intersleek ® 1100 (fouling-release) and Interspeed ® BRA-640 (ablative copper biocide), as well as an inert epoxy barrier coating, to assess the effectiveness of aeration in conjunction with common marine coatings. I 2 -infused aeration resulted in consistent reductions of 80-90% in hard fouling across all three coatings. Additionally, aeration reduced the soft fouling rate by 45-70% when used in conjunction with both Intersleek ® and Interspeed ® BRA versus those coatings alone. The results of this study highlight the contribution of I 2 -infused aeration as a standalone mechanism for fouling prevention or as a complement to traditional antifouling coatings.

  20. The aeration period of a model nuclear waste repository

    International Nuclear Information System (INIS)

    Sharland, S.M.; Tasker, P.W.

    1987-02-01

    We have constructed a model of the evolution of oxygen in a cement backfill which includes both its depletion through the canister corrosion reactions and its migration in the cement pores. The results indicate that the duration in which mild steel waste canisters may be subject to localised corrosion is very much shorter than the intended lifetime of the repository components, provided there is no external source of oxygen. For canisters spaced 1.2m apart, the model predicts a maximum aeration period of approximately 65 years, assuming high oxygen content and diffusivity in the backfill and low leakage current on the canisters (0.01 μA cm -2 ). In such a case a reducing environment is established throughout the backfill within this period. Under conditions of more restricted oxygen transport, reducing conditions are still established within a relatively short time in the immediate vicinity of the canisters, but the oxidation potential elsewhere in the backfill is then controlled by the uniform corrosion rate of the canisters. (author)

  1. Comparative test on nuclide migration in aerated zone

    International Nuclear Information System (INIS)

    Li Shushen; Zhao Yingjie; Wu Qinghua; Wang Zhiming; Hao Janzhong; Ji Shaowei; Guo Liangtian; Guo Zhiming

    2002-01-01

    In order to study the influence of different tracer source layer material on nuclide migration behavior, the comparative test on stable elements Sr, Nd and Ce migration in aerated loess zone was carried out using loess and arenaceous quartz as the tracer source layer materials respectively. The test lasted 470 days. During the test, four times of sampling were done. The testing results indicate that under artificial sprinkling of 5 mm/h and 3 h/d, Nd and Ce not only in loess tracer source layer but also in arenaceous quartz tracer source layer did not obviously downwards migrated. Concentration peak of Sr for loess layer migrated down about 15 cm in 470 d (mass center moved down about 10 cm) but for arenaceous quartz layer the concentration peak of Sr did not obviously migrated down (mass center moved down about 2.7 cm). The test results show that very thin arenaceous quartz layer with thickness of 7 mm is also able to shield unsaturated water flow obviously. This is the main reason why the nuclides in arenaceous quartz layer migrate down slowly

  2. Mechanisms and methods for biofouling prevention via aeration

    Science.gov (United States)

    Dickenson, Natasha; Henoch, Charles; Belden, Jesse

    2013-11-01

    Biofouling is a major problem for the Navy and marine industries, with significant economic and ecological consequences. Specifically, biofouling on immersed hull surfaces generates increased drag and thus requires increased fuel consumption to maintain speed. Considerable effort has been spent developing techniques to prevent and control biofouling, but with limited success. Control methods that have proven to be effective are costly, time consuming, or negatively affect the environment. Recently, aeration via bubble injection along submerged surfaces has been shown to achieve long-lasting antifouling effects, and is the only effective non-toxic method available. An understanding of the basic mechanisms by which bubble-induced flow impedes biofouling is lacking, but is essential for the design of large-scale systems. We present results from an experimental investigation of several bubble induced flow fields over an inclined plate with simultaneous measurements of the fluid velocity and bubble characteristics using Digital article Image Velocimetry and high speed digital video. Trajectories of representative larval organisms are also resolved and linked with the flow field measurements to determine the mechanisms responsible for biofouling prevention.

  3. DECREASE OF SOLIDS IN GRAY WATER BY AERATION PROCESS

    Directory of Open Access Journals (Sweden)

    Gerardo Alonso Torres-Avalos

    2017-07-01

    Full Text Available The activated sludge process is a biological treatment consisting basically of agitation and aeration of a waste water mixture and a selected microorganisms sludge. The oxidation of organic matter was determined with several tests such as BOD5 (Biochemical Oxygen Demand, TSS (Total Sedimented Solids, SS (Sediment Solids, TDS (Total Dissolved Solids, FVS (fixed and volatile solids and finally a measurement of treated water turbidity. The results obtained for the reduction of the organic load during the first two days of treatment (samples 1, 2 and 3 are visible in each of the organic loading tests; during the last two days according to the samples 4 and 5 the solids showed an increase in organic load. The related organoleptic properties such as color showed a notable decrease. As for the tests performed at pH show a change, samples 1, 2 and 3 approaching a range where they are neutral and the last two samples (4 and 5 the pH has an elevation until it becomes alkaline. The efficiency of the method used for the treatment of residual water during the first days reduced the organic load with a variation of TS and TSS of 760, 569 ppm respectively. This is a viable alternative since this is a low cost method with short term results because organoleptic properties such as odor and color were lost during the first day of treatment.

  4. Evaluation of sequential aerated treatment of wastewater from hardboard mill

    Directory of Open Access Journals (Sweden)

    S. Videla

    1998-01-01

    Full Text Available Wastewater from a hardboard mill characterized by a high organic content (15-30 g/L COD was studied in a bench scale sequential aerated system in order to define a start up strategy. Inlet COD concentration varied from 0.5 to 25 g/L and the hydraulic retention time was maintained at 5 days. The sequential system proposed could reduce BOD, COD, TSS and phenol over 90% except when the inlet COD concentration was lower than 25 g/L.Água residual proveniente de uma indústria de tabuleiro de fibra dura caracterizada por ter um elevado conteúdo orgânico (15-30 g/L DQO foi estudada utilizando um sistema arejado seqüêncial de forma a definir uma estratégia de start up. A concentração de DQO na entrada do sistema variou na faixa de 0,5-25 g/L e o tempo de residência hidráulico foi mantido em 5 dias. O sistema seqüêncial proposto reduziu DBO, DQO, SST e fenol sobre 90% quando a concentração de DQO na entrada foi menor a 25 g/L.

  5. Hydroxyl radical induced degradation of salicylates in aerated aqueous solution

    International Nuclear Information System (INIS)

    Szabó, László; Tóth, Tünde; Homlok, Renáta; Rácz, Gergely; Takács, Erzsébet; Wojnárovits, László

    2014-01-01

    Ionizing radiation induced degradation of acetylsalicylic acid, its hydrolysis product salicylic acid and a salicylic acid derivative 5-sulpho-salicylic acid, was investigated in dilute aqueous solutions by UV–vis spectrophotometry, HPLC separation and diode-array or MS/MS detection, chemical oxygen demand, total organic carbon content and by Vibrio fischeri toxicity measurements. Hydroxyl radicals were shown to degrade these molecules readily, and first degradation products were hydroxylated derivatives in all cases. Due to the by-products, among them hydrogen peroxide, the toxicity first increased and then decreased with the absorbed dose. With prolonged irradiation complete mineralization was achieved. - Highlights: • In OH induced reactions of salicylates first products are hydroxylated derivatives. • With prolonged irradiation dihydroxy derivatives also form. • In aerated solutions the one-electron oxidant OH induces 3–4 oxidations. • Toxicity first increases and then decreases with dose mainly due to H 2 O 2 formation. • The toxicity in tap water is smaller than in pure water

  6. Characterization and Modeling of Fundamental Parameters of a Membrane-Aerated Biological Reactor

    Data.gov (United States)

    National Aeronautics and Space Administration — Inherent in the expansion of human presence in space is the development of life support systems that are capable of meeting the demands of extended space habitation....

  7. Start-up strategies of membrane-aerated biofilm reactor (MABR) for completely autotrophic nitrogen removal

    DEFF Research Database (Denmark)

    Sun, Sheng-Peng; Pellicer i Nàcher, Carles; Terada, Akihiko

    2009-01-01

    Completely autotrophic nitrogen removal, coupling aerobic and anaerobic ammonium oxidation, can be achieved via redox stratified biofilms growing on gas-permeable membranes. These sequential reactions are mediated by aerobic and anaerobic ammonium oxidizing bacteria (AOB and AnAOB). The major...

  8. Investigation on flow pattern by submersible mechanical aerator aused in anaerobic-aerobic tank. Kenki koki ken'yo suichu aerator ni yoru sonai ryudo no chosa kensho

    Energy Technology Data Exchange (ETDEWEB)

    Ogasawara, M; Inoue, H; Kamei, T; Kato, N [Ebara Corp., Tokyo (Japan)

    1994-01-20

    As explained in the present report, flow pattern was verified in a submersible aerator tank for both anaerobic and aerobic wastewater treatment (submersible plant for the mechanical agitation and aeration). The verification was made in a water passage of the sewage treatment plant. The flowing was conditioned as per the measurement of both flow velocity and activated sludge concentration. The submersible aerator was installed so that balance might be kept in ventilating pressure between it and the diffusing plate. The flowing on the tank bottom was stabilized by installing a special guide at the outlet of aerator. The result was as follows: in both tanks during the anaerobic operation, the flow velocity was 0.15m/s as a whole and higher than the standard of 0.1m/s on the tank bottom. Under the tank top and at the middle of tank height, the flow velocity is lower than that on the tank bottom and the intake of dissolved oxygen is weak. In both tanks during the aerobic operation, the flow velocity as a whole is higher than that during the anaerobic operation. It is attributable to the airlift effect. The flow pattern during the aerobic operation is characterized by the flow which is generated, by airlift effect, under the tank top toward the wall. Then, that flow effectively works for the flowing on the tank bottom. Hardly dispersed, the pollutant concentration indicates that the flowing is sufficient in the tank. 4 refs., 6 figs., 3 tabs.

  9. Ambient iron-mediated aeration (IMA) for water reuse.

    Science.gov (United States)

    Deng, Yang; Englehardt, James D; Abdul-Aziz, Samer; Bataille, Tristan; Cueto, Josenrique; De Leon, Omar; Wright, Mary E; Gardinali, Piero; Narayanan, Aarthi; Polar, Jose; Tomoyuki, Shibata

    2013-02-01

    Global water shortages caused by rapidly expanding population, escalating water consumption, and dwindling water reserves have rendered water reuse a strategically significant approach to meet current and future water demand. This study is the first to our knowledge to evaluate the technical feasibility of iron-mediated aeration (IMA), an innovative, potentially economical, holistic, oxidizing co-precipitation process operating at room temperature, atmospheric pressure, and neutral pH, for water reuse. In the IMA process, dissolved oxygen (O₂) was continuously activated by zero-valent iron (Fe⁰) to produce reactive oxygen species (ROS) at ambient pH, temperature, and pressure. Concurrently, iron sludge was generated as a result of iron corrosion. Bench-scale tests were conducted to study the performance of IMA for treatment of secondary effluent, natural surface water, and simulated contaminated water. The following removal efficiencies were achieved: 82.2% glyoxylic acid, ~100% formaldehyde as an oxidation product of glyoxylic acid, 94% of Ca²⁺ and associated alkalinity, 44% of chemical oxygen demand (COD), 26% of electrical conductivity (EC), 98% of di-n-butyl phthalate (DBP), 80% of 17β-estradiol (E2), 45% of total nitrogen (TN), 96% of total phosphorus (TP), 99.8% of total Cr, >90% of total Ni, 99% of color, 3.2 log removal of total coliform, and 2.4 log removal of E. Coli. Removal was attributed principally to chemical oxidation, precipitation, co-precipitation, coagulation, adsorption, and air stripping concurrently occurring during the IMA treatment. Results suggest that IMA is a promising treatment technology for water reuse. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Treatment of mature landfill leachate by internal micro-electrolysis integrated with coagulation: A comparative study on a novel sequencing batch reactor based on zero valent iron

    International Nuclear Information System (INIS)

    Ying, Diwen; Peng, Juan; Xu, Xinyan; Li, Kan; Wang, Yalin; Jia, Jinping

    2012-01-01

    Highlights: ► Specifically-designed SIME reactor for treatment of mature landfill leachate. ► Excellent removal efficiencies of COD (86.1%), color (95.3%), and HA (81.8%). ► Combination effect of IME without aeration and IME with aeration. ► Optimal pH of 5, Fe/C of 1:1, gas flow rate of 80 L h −1 , and H 2 O 2 of 100 mg L −1 . - Abstract: A comparative study of treating mature landfill leachate with various treatment processes was conducted to investigate whether the method of combined processes of internal micro-electrolysis (IME) without aeration and IME with full aeration in one reactor was an efficient treatment for mature landfill leachate. A specifically designed novel sequencing batch internal micro-electrolysis reactor (SIME) with the latest automation technology was employed in the experiment. Experimental data showed that combined processes obtained a high COD removal efficiency of 73.7 ± 1.3%, which was 15.2% and 24.8% higher than that of the IME with and without aeration, respectively. The SIME reactor also exhibited a COD removal efficiency of 86.1 ± 3.8% to mature landfill leachate in the continuous operation, which is much higher (p 2 O 2 , were optimized. All results show that the SIME reactor is a promising and efficient technology in treating mature landfill leachate.

  11. Kinetics and oxidative mechanism for H2O2-enhanced iron-mediated aeration (IMA) treatment of recalcitrant organic compounds in mature landfill leachate

    International Nuclear Information System (INIS)

    Deng Yang; Englehardt, James D.

    2009-01-01

    A hydrogen peroxide (H 2 O 2 )-enhanced iron (Fe 0 )-mediated aeration (IMA) process has been recently demonstrated to effectively remove organic wastes from mature landfill leachate. In this paper, the kinetics and oxidative mechanisms of the enhanced IMA treatment were studied. Bench-scale full factorial tests were conducted in an orbital shaker reactor for treatment of a mature leachate with an initial chemical oxygen demand (COD) of 900-1200 mg/L. At the maximum aeration rate (8.3 mL air/min mL sample), process variables significantly influencing the rates of H 2 O 2 decay and COD removal were pH (3.0-8.0), initial H 2 O 2 doses (0.21-0.84 M), and Fe 0 surface area concentrations (0.06-0.30 m 2 /L). Empirical kinetic models were developed and verified for the degradation of H 2 O 2 and COD. High DO maintained by a high aeration rate slowed the H 2 O 2 self-decomposition, accelerated Fe 0 consumption, and enhanced the COD removal. In hydroxyl radical (OH·) scavenging tests, the rate of removal of glyoxylic acid (target compound) was not inhibited by the addition of para-chlorobenzoic acid (OH· scavenger) at pH 7.0-7.5, ruling out hydroxyl radical as the principal oxidant in neutral-weakly basic solution. These experimental results show that this enhanced IMA technology is a potential alternative for the treatment of high strength recalcitrant organic wastewaters.

  12. Kinetics and oxidative mechanism for H2O2-enhanced iron-mediated aeration (IMA) treatment of recalcitrant organic compounds in mature landfill leachate.

    Science.gov (United States)

    Deng, Yang; Englehardt, James D

    2009-09-30

    A hydrogen peroxide (H(2)O(2))-enhanced iron (Fe(0))-mediated aeration (IMA) process has been recently demonstrated to effectively remove organic wastes from mature landfill leachate. In this paper, the kinetics and oxidative mechanisms of the enhanced IMA treatment were studied. Bench-scale full factorial tests were conducted in an orbital shaker reactor for treatment of a mature leachate with an initial chemical oxygen demand (COD) of 900-1200 mg/L. At the maximum aeration rate (8.3 mL air/min mL sample), process variables significantly influencing the rates of H(2)O(2) decay and COD removal were pH (3.0-8.0), initial H(2)O(2) doses (0.21-0.84 M), and Fe(0) surface area concentrations (0.06-0.30 m(2)/L). Empirical kinetic models were developed and verified for the degradation of H(2)O(2) and COD. High DO maintained by a high aeration rate slowed the H(2)O(2) self-decomposition, accelerated Fe(0) consumption, and enhanced the COD removal. In hydroxyl radical (OH*) scavenging tests, the rate of removal of glyoxylic acid (target compound) was not inhibited by the addition of para-chlorobenzoic acid (OH* scavenger) at pH 7.0-7.5, ruling out hydroxyl radical as the principal oxidant in neutral-weakly basic solution. These experimental results show that this enhanced IMA technology is a potential alternative for the treatment of high strength recalcitrant organic wastewaters.

  13. Kinetics and oxidative mechanism for H{sub 2}O{sub 2}-enhanced iron-mediated aeration (IMA) treatment of recalcitrant organic compounds in mature landfill leachate

    Energy Technology Data Exchange (ETDEWEB)

    Deng Yang, E-mail: yang.deng@upr.edu [Department of Civil Engineering and Surveying, University of Puerto Rico, PO BOX 9041, Mayaguez, PR 00681 (Puerto Rico); Englehardt, James D. [Department of Civil, Architectural and Environmental Engineering, University of Miami, PO BOX 248294, Coral Gables, FL 33124-0630 (United States)

    2009-09-30

    A hydrogen peroxide (H{sub 2}O{sub 2})-enhanced iron (Fe{sup 0})-mediated aeration (IMA) process has been recently demonstrated to effectively remove organic wastes from mature landfill leachate. In this paper, the kinetics and oxidative mechanisms of the enhanced IMA treatment were studied. Bench-scale full factorial tests were conducted in an orbital shaker reactor for treatment of a mature leachate with an initial chemical oxygen demand (COD) of 900-1200 mg/L. At the maximum aeration rate (8.3 mL air/min mL sample), process variables significantly influencing the rates of H{sub 2}O{sub 2} decay and COD removal were pH (3.0-8.0), initial H{sub 2}O{sub 2} doses (0.21-0.84 M), and Fe{sup 0} surface area concentrations (0.06-0.30 m{sup 2}/L). Empirical kinetic models were developed and verified for the degradation of H{sub 2}O{sub 2} and COD. High DO maintained by a high aeration rate slowed the H{sub 2}O{sub 2} self-decomposition, accelerated Fe{sup 0} consumption, and enhanced the COD removal. In hydroxyl radical (OH{center_dot}) scavenging tests, the rate of removal of glyoxylic acid (target compound) was not inhibited by the addition of para-chlorobenzoic acid (OH{center_dot} scavenger) at pH 7.0-7.5, ruling out hydroxyl radical as the principal oxidant in neutral-weakly basic solution. These experimental results show that this enhanced IMA technology is a potential alternative for the treatment of high strength recalcitrant organic wastewaters.

  14. Yields and Nutritional of Greenhouse Tomato in Response to Different Soil Aeration Volume at two depths of Subsurface drip irrigation

    Science.gov (United States)

    Li, Yuan; Niu, Wenquan; Dyck, Miles; Wang, Jingwei; Zou, Xiaoyang

    2016-01-01

    This study investigated the effects of 4 aeration levels (varied by injection of air to the soil through subsurface irrigation lines) at two subsurface irrigation line depths (15 and 40 cm) on plant growth, yield and nutritional quality of greenhouse tomato. In all experiments, fruit number, width and length, yield, vitamin C, lycopene and sugar/acid ratio of tomato markedly increased in response to the aeration treatments. Vitamin C, lycopene, and sugar/acid ratio increased by 41%, 2%, and 43%, respectively, in the 1.5 times standard aeration volume compared with the no-aeration treatment. An interaction between aeration level and depth of irrigation line was also observed with yield, fruit number, fruit length, vitamin C and sugar/acid ratio of greenhouse tomato increasing at each aeration level when irrigation lines were placed at 40 cm depth. However, when the irrigation lines were 15 cm deep, the trend of total fruit yields, fruit width, fruit length and sugar/acid ratio first increased and then decreased with increasing aeration level. Total soluble solids and titrable acid decreased with increasing aeration level both at 15 and 40 cm irrigation line placement. When all of the quality factors, yields and economic benefit are considered together, the combination of 40 cm line depth and “standard” aeration level was the optimum combination. PMID:27995970

  15. Impact of post-infiltration soil aeration at different growth stages of sub-surface trickle-irrigated tomato plants

    Science.gov (United States)

    Li, Yuan; Jia, Zong-xia; Niu, Wen-Quan; Wang, Jing-wei

    2016-07-01

    Sensitivity to low rhizosphere soil aeration may change over time and therefore plant response may also depend on different growth stages of a crop. This study quantified effects of soil aeration during 5 different periods, on growth and yield of trickle-irrigated potted single tomato plants. Irrigation levels were 0.6 to 0.7 (low level) or 0.7 to 0.8 (high level) of total water holding capacity of the pots. Soil was aerated by injecting 2.5 l of air into each pot through the drip tubing immediately after irrigation. Fresh fruit yield, above ground plant dry weight, plant height, and leaf area index response to these treatments were measured. For all these 4 response variables, means of post-infiltration aeration between 58 to 85 days after sowing were 13.4, 43.5, 13.7, and 37.7% higher than those for the non-aerated pots, respectively. The results indicated that: post-infiltration soil aeration can positively impact the yield and growth of sub-surface trickle-irrigated potted tomato plants; positive effects on plant growth can be obtained with aeration during the whole growth period or with aeration for partial periods; positive growth effects of partial periods of aeration appears to persist and result in yield benefit.

  16. Corrosion behavior of electrodeposited Co-Fe alloys in aerated solutions

    Energy Technology Data Exchange (ETDEWEB)

    Chansena, A. [Research Unit on Corrosion, College of Data Storage Innovation, King Mongkut' s Institute of Technology Ladkrabang, Bangkok 10520 (Thailand); Sutthiruangwong, S., E-mail: sutha.su@kmitl.ac.th [Department of Chemistry, Faculty of Science, King Mongkut' s Institute of Technology Ladkrabang, Bangkok 10520 (Thailand); Research Unit on Corrosion, College of Data Storage Innovation, King Mongkut' s Institute of Technology Ladkrabang, Bangkok 10520 (Thailand)

    2017-05-01

    Co-Fe alloy is an important component for reader-writer in hard disk drive. The surface of the alloy is exposed to the environment both in gas phase and in liquid phase during manufacturing process. The study of corrosion behavior of Co-Fe alloys can provide useful fundamental data for reader-writer production planning especially when corrosion becomes a major problem. The corrosion study of electrodeposited Co-Fe alloys from cyclic galvanodynamic polarization was performed using potentiodynamic polarization technique. The composition of electrodeposited Co-Fe alloys was determined by X-ray fluorescence spectrometry. The patterns from X-ray diffractometer showed that the crystal structure of electrodeposited Co-Fe alloys was body-centered cubic. A vibrating sample magnetometer was used for magnetic measurements. The saturation magnetization (M{sub s}) was increased and the intrinsic coercivity (H{sub ci}) was decreased with increasing Fe content. The corrosion rate study was performed in aerated deionized water and aerated acidic solutions at pH 3, 4 and 5. The corrosion rate diagram for Co-Fe alloys was constructed. It was found that the corrosion rate of Co-Fe alloys was increased with increasing Fe content in both aerated deionized water and aerated acidic solutions. In aerated pH 3 solution, the Co-Fe alloy containing 78.8% Fe showed the highest corrosion rate of 7.7 mm yr{sup −1} with the highest M{sub s} of 32.0 A m{sup 2} kg{sup −1}. The corrosion rate of the alloy with 23.8% Fe was at 1.1 mm yr{sup −1} with M{sub s} of 1.2 A m{sup 2} kg{sup −1}. In aerated deionized water, the alloy with the highest Fe content of 78.5% still showed the highest corrosion rate of 0.0059 mm yr{sup −1} while the alloy with the lowest Fe content of 20.4% gave the lowest corrosion rate of 0.0045 mm yr{sup −1}. - Highlights: • The aeration during corrosion measurement simulates reader-writer head production environment. • The corrosion rate diagram for Co-Fe alloys

  17. Empirical characterisation and mathematical modelling of settlement in composting batch reactors

    OpenAIRE

    Illa Alibés, Josep; Prenafeta Boldú, Francesc Xavier; Bonmatí Blasi, August; Flotats Ripoll, Xavier

    2012-01-01

    The settlement of organic matter during composting was measured at different levels during the active biodegradation phase in forced-aerated static reactors loaded with different mixtures of organic wastes. The temperature evolution and the concentration of oxygen and carbon dioxide were also recorded in the exhaust gases. T

  18. SYSTEM OF PRECISE DOSING OF COAGULANT IN THE PULVERIZING AERATOR POWERED BY WIND USING FUZZY LOGIC

    Directory of Open Access Journals (Sweden)

    Andrzej Osuch

    2017-06-01

    Full Text Available One of the methods used to support land restoration lakes is the method of pulverizing aeration. Use of aerators powered exclusively by wind improves the condition of reservoirs, while not compromising the environment. The pulverizing aeration process drive is windy on the water aeration zone near bottom, while removing harmful gases anaerobic metabolism. Aerators of this type due to the unique method of operation also enable dosing of inactivation coagulants with oxygenated water to the depths of the lake. Mileage coagulant dosing can be made dependent on the speed of the wind, which has an impact on the performance of his work, because with the increase of wind speed dispensing valve coagulants should be stronger open. One of the methods for assessing the state of lakes is to measure water transparency. The softer visibility, the most likely state of the water is better. Dosage of coagulant so you can make the transparency of the water. Similarly, with increasing transparency water dispensing valve should be more covered up. Control of the drain valve dispenser coagulant can be simultaneously dependent on two factors. The study was designed method of control drain valve dispenser coagulant using fuzzy inference.

  19. Aerated biofilters with multiple-level air injection configurations to enhance biological treatment of methane emissions.

    Science.gov (United States)

    Farrokhzadeh, Hasti; Hettiaratchi, J Patrick A; Jayasinghe, Poornima; Kumar, Sunil

    2017-09-01

    Aiming to improve conventional methane biofilter performance, a multiple-level aeration biofilter design is proposed. Laboratory flow-through column experiments were conducted to evaluate three actively-aerated methane biofilter configurations. Columns were aerated at one, two, and three levels of the bed depth, with air introduced at flow rates calculated from methane oxidation reaction stoichiometry. Inlet methane loading rates were increased in five stages between 6 and 18mL/min. The effects of methane feeding rate, levels of aeration, and residence time on methane oxidation rates were determined. Samples collected after completion of flow-through experiments were used to determine methane oxidation kinetic parameters, V max , K m , and methanotrophic community distribution across biofilter columns. Results obtained from mixed variances analysis and response surfaces, as well as methanotrophic activity data, suggested that, biofilter column with two aeration levels has the most even performance over time, maintaining 85.1% average oxidation efficiency over 95days of experiments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Chemical Oxygen Demand abatement in sewage using Micro-Aeration Enhanced Ecological Floating Bed

    Science.gov (United States)

    Shi, Hongle; Zhou, Gaofeng; Liu, Yiqing; Tan, Jiancong; Fu, Yongsheng

    2018-02-01

    The traditional ecological floating bed combined with micro-aeration system and artificial medium was developed for the removal of contaminants and remediation of surface water. This micro-aeration enhanced ecological floating bed (MAEEFB) consisted of aeration unit, microbial processing unit and aquatic plant unit. Batch experiments were conducted in different operating conditions on the removal of chemical oxygen demand (COD) in the sewage using MAEEFB. The removal rate of COD by MAEEFB, enhanced ecological floating bed (EEFB) and traditional ecological floating bed (TEFB) in the same reaction conditions was 59.2%, 56.9% and 30.6%, respectively, indicating that the combination of micro-aeration system and artificial medium could enhance the removal efficiency of COD in TEFB. In MAEEFB, the aeration intensity should be designed reasonablely considering both treatment efficiency and operation cost. Only increasing the specific surface area of the packing cannot effectively improve the purification efficiency of water. Factors like packing material, ability of intercepting organics and complicated extent of microorganisms attaching on the packing should also be considered.

  1. Production of environmentally friendly aerated concrete with required construction and operational properties

    Directory of Open Access Journals (Sweden)

    Tkach Evgeniya

    2018-01-01

    Full Text Available The purpose of these studies is to justify the feasibility of recycling different types of industrial waste instead of conventional expensive raw materials in production of environmentally friendly aerated concrete with required construction and operational properties. The impact of wastes from various industries on the environmental condition of affected areas, as well as the results of their environmental assessment were analyzed to determine whether these wastes could be used in production of high-performance building materials. The assessment of industrial wastes in aerated concrete production suggests that industrial wastes of hazard class IV can be recycled to produce aerated concrete. An environmentally friendly method for large-scale waste recycling, including a two-step environmentally sustainable mechanism, was developed. The basic quality indicators of the modified aerated concrete proved that the environmental safety could be enhanced by strengthening the structure, increasing its uniformity and improving thermal insulation properties. The modified non-autoclaved aerated concrete products with improved physical and operational properties were developed. They have the following properties: density – D700; class of concrete – B3.5; thermal transmittance coefficient – 0.143 W/(m·°C; frost resistance – F75.

  2. Microbial nar-GFP cell sensors reveal oxygen limitations in highly agitated and aerated laboratory-scale fermentors

    Directory of Open Access Journals (Sweden)

    Rao Govind

    2009-01-01

    Full Text Available Abstract Background Small-scale microbial fermentations are often assumed to be homogeneous, and oxygen limitation due to inadequate micromixing is often overlooked as a potential problem. To assess the relative degree of micromixing, and hence propensity for oxygen limitation, a new cellular oxygen sensor has been developed. The oxygen responsive E. coli nitrate reductase (nar promoter was used to construct an oxygen reporter plasmid (pNar-GFPuv which allows cell-based reporting of oxygen limitation. Because there are greater than 109 cells in a fermentor, one can outfit a vessel with more than 109 sensors. Our concept was tested in high density, lab-scale (5 L, fed-batch, E. coli fermentations operated with varied mixing efficiency – one verses four impellers. Results In both cases, bioreactors were maintained identically at greater than 80% dissolved oxygen (DO during batch phase and at approximately 20% DO during fed-batch phase. Trends for glucose consumption, biomass and DO showed nearly identical behavior. However, fermentations with only one impeller showed significantly higher GFPuv expression than those with four, indicating a higher degree of fluid segregation sufficient for cellular oxygen deprivation. As the characteristic time for GFPuv expression (approx 90 min. is much larger than that for mixing (approx 10 s, increased specific fluorescence represents an averaged effect of oxygen limitation over time and by natural extension, over space. Conclusion Thus, the pNar-GFPuv plasmid enabled bioreactor-wide oxygen sensing in that bacterial cells served as individual recirculating sensors integrating their responses over space and time. We envision cell-based oxygen sensors may find utility in a wide variety of bioprocessing applications.

  3. Effect of airflow on biodrying of gardening wastes in reactors.

    Science.gov (United States)

    Colomer-Mendoza, F J; Herrera-Prats, L; Robles-Martínez, F; Gallardo-Izquierdo, A; Piña-Guzmán, A B

    2013-05-01

    Biodrying consists of reducing moisture by using the heat from aerobic bio-degradation. The parameters that control the process are: aeration, temperature during the process, initial moisture of biowaste, and temperature and relative humidity of the input air. Lawn mowing and garden waste from the gardens of the University Jaume I, Castellón (Spain) were used as a substrate. Biodrying was performed in 10 reactors with known air volumes from 0.88 to 6.42 L/(min x kg dry weight). To promote aeration, 5 of the reactors had 15% of a bulking agent added. The experiment lasted 20 days. After the experiments it was found that the bulking agent led to greater weight loss. However, the increased airflow rate was not linearly proportional to the weight loss.

  4. Radon removal equipment based on aeration: A literature study of tests performed in Sweden between 1981 and 1996

    International Nuclear Information System (INIS)

    Mjoenes, L.

    2000-02-01

    In Sweden some principles to reduce the radon concentration in drinking water were tested in the beginning of the 1980s. Spray aeration under atmospheric pressure, diffused bubble aeration, aeration in the pressure tank and different combinations of these principles were studied. Aeration in the drill hole and adsorption on granulated activated char-coal were also tested. The best results, about 70 % reduction, were obtained with aeration in the pressure tank with a spray system combined with diffused air bubbling. The Oerebro project in the beginning of the 1990s included on site testing of five different aeration solutions: Aeration in the drill hole, aeration in the storage tank, ejector aeration, shallow tray aeration and packed column aeration. The radon removal efficiency varied between 20 % and 99 %. In 1994 a study intended to test the radon removal capacity of different water treatment equipment was performed. Six units of radon separators were included but most of the tested equipment was installed for other water treatment purposes. The performed measurements showed that the only types of equipment that reduce the radon concentration efficiently are radon separators and reverse osmosis filters. The radon removal capacity of the radon separators varied between 23 % and 97 %. In 1996 the nine most common radon separators on the Swedish market were tested. The results showed that the tested radon removal equipment worked well, although the technical quality and chosen technical solutions were not always the best. The radon removal capacity of the units participating in this test was in most cases between 96 and 99 %. In some cases the capacity exceeded 99 %. In order to reach this radon removal capacity the water must be recirculated in a storage tank under atmospheric pressure

  5. Radon removal equipment based on aeration: A literature study of tests performed in Sweden between 1981 and 1996

    Energy Technology Data Exchange (ETDEWEB)

    Mjoenes, L

    2000-02-01

    In Sweden some principles to reduce the radon concentration in drinking water were tested in the beginning of the 1980s. Spray aeration under atmospheric pressure, diffused bubble aeration, aeration in the pressure tank and different combinations of these principles were studied. Aeration in the drill hole and adsorption on granulated activated char-coal were also tested. The best results, about 70 % reduction, were obtained with aeration in the pressure tank with a spray system combined with diffused air bubbling. The Oerebro project in the beginning of the 1990s included on site testing of five different aeration solutions: Aeration in the drill hole, aeration in the storage tank, ejector aeration, shallow tray aeration and packed column aeration. The radon removal efficiency varied between 20 % and 99 %. In 1994 a study intended to test the radon removal capacity of different water treatment equipment was performed. Six units of radon separators were included but most of the tested equipment was installed for other water treatment purposes. The performed measurements showed that the only types of equipment that reduce the radon concentration efficiently are radon separators and reverse osmosis filters. The radon removal capacity of the radon separators varied between 23 % and 97 %. In 1996 the nine most common radon separators on the Swedish market were tested. The results showed that the tested radon removal equipment worked well, although the technical quality and chosen technical solutions were not always the best. The radon removal capacity of the units participating in this test was in most cases between 96 and 99 %. In some cases the capacity exceeded 99 %. In order to reach this radon removal capacity the water must be recirculated in a storage tank under atmospheric pressure.

  6. Effect of aerated concrete blockwork joints on the heat transfer performance uniformity

    Science.gov (United States)

    Pukhkal, Viktor; Murgul, Vera

    2018-03-01

    Analysis of data on the effect of joints of the aerated concrete blocks on the heat transfer uniformity of exterior walls was carried out. It was concluded, that the values of the heat transfer performance uniformity factor in the literature sources were obtained for the regular fragment of a wall construction by approximate addition of thermal conductivities. Heat flow patterns for the aerated concrete exterior walls amid different values of the thermal conductivity factors and design ambient air temperature of -26 °C were calculated with the use of "ELCUT" software for modelling of thermal patterns by finite element method. There were defined the values for the heat transfer performance uniformity factor, reduced total thermal resistance and heat-flux density for the exterior walls. The calculated values of the heat transfer performance uniformity factors, as a function of the coefficient of thermal conductivity of aerated concrete blocks, differ from the known data by a more rigorous thermal and physical substantiation.

  7. [Research of aeration with bio-film technology to treat urban landscape water].

    Science.gov (United States)

    Song, Ying-Wei; Nie, Zhi-Dan; Nian, Yue-Gang; Huang, Min-Sheng; Huang, Jian-Jun; Yan, Hai-Hong; Zhang, Yang

    2008-01-01

    Research of the aeration with bio-film technology was carried out to treat scenic water of a sanatorium in Beijing. The aim of the research was improving the water habitat by increasing the transparency and reducing the concentration of N and P. The equipments were set in a 5,000 m2 water area, which combined the plug flow jet aerator with the elastic biological filler. The research indicated that the transparency increased from 25 cm to 120 cm by the technology. The removal efficiencies of NH4(+)-N, NO3(-)-N and TP were 86.6% , 90% and 73.3%, but there was only 22.4% for TN. The concentration of DO increased from 4.3 mg/L to 7 mg/L. In a word, the aeration with bio-film technology was an effective measure to improve the water habitat by increasing the transparency.

  8. Flexural Behaviour of Precast Aerated Concrete Panel (PACP with Added Fibrous Material: An Overview

    Directory of Open Access Journals (Sweden)

    Abdul Rahim Noor Hazlin

    2017-01-01

    Full Text Available The usage of precast aerated concrete panel as an IBS system has become the main alternative to conventional construction system. The usage of this panel system contributes to a sustainable and environmental friendly construction. This paper presents an overview of the precast aerated concrete panel with added fibrous material (PACP. PACP is fabricated from aerated foamed concrete with added Polypropylene fibers (PP. The influence of PP on the mechanical properties of PACP are studied and reviewed from previous research. The structural behaviour of precast concrete panel subjected to flexure load is also reviewed. It is found that PP has significant affects on the concrete mixture’s compressive stregth, tensile strength and flexural strength. It is also found that PP manage to control the crack propagation in the concrete panel.

  9. Thermal Response Of An Aerated Concrete Wall With Micro-Encapsulated Phase Change Material

    Science.gov (United States)

    Halúzová, Dušana

    2015-06-01

    For many years Phase Change Materials (PCM) have attracted attention due to their ability to store large amounts of thermal energy. This property makes them a candidate for the use of passive heat storage. In many applications, they are used to avoid the overheating of the temperature of an indoor environment. This paper describes the behavior of phase change materials that are inbuilt in aerated concrete blocks. Two building samples of an aerated concrete wall were measured in laboratory equipment called "twin-boxes". The first box consists of a traditional aerated concrete wall; the second one has additional PCM micro-encapsulated in the wall. The heat flux through the wall was measured and compared to simulation results modeled in the ESP-r program. This experimental measurement provides a foundation for a model that can be used to analyze further building constructions.

  10. Influence of agitation speeds and aeration rates on the Xylanase activity of Aspergillus niger SS7

    Directory of Open Access Journals (Sweden)

    Yasser Bakri

    2011-08-01

    Full Text Available In this study, the effect of agitation and aeration rates on xylanase activity of Aspergillus niger SS7 in 3-litre stirred tank bioreactor was investigated. The agitation rates tested were 100, 200 and 300 rpm at each airflow rates of 0.5, 1.0 and 1.5 vvm. The maximum xylanase activity in mono- agitator system was at the agitation speed of 200 rpm and aeration rate of 1.0 vvm. In bi-agitator system, at low agitation speed (100 rpm, the xylanase activity was enhanced by 13% compared to mono- agitator system for an aeration rate of 1.0 vvm. Xylanase productivity in continuous culture was higher by approximately 3.5 times than in batch culture.

  11. Pilot scale experiment with MBR operated in intermittent aeration condition: analysis of biological performance.

    Science.gov (United States)

    Capodici, M; Di Bella, G; Di Trapani, D; Torregrossa, M

    2015-02-01

    The effect of intermittent aeration (IA) on a MBR system was investigated. The study was aimed at analyzing different working conditions and the influence of different IA cycles on the biological performance of the MBR pilot plant, in terms of organic carbon and ammonium removal as well as extracellular polymeric substances (EPSs) production. The membrane modules were placed in a separate compartment, continuously aerated. This configuration allowed to disconnect from the filtration stage the biological phenomena occurring into the IA bioreactor. The observed results highlighted good efficiencies, in terms of organic carbon and ammonium removal. It was noticed a significant soluble microbial products (SMPs) release, likely related to the higher metabolic stress that anoxic conditions exerted on the biomass. However, the proposed configuration, with the membranes in a separate compartment, allowed to reduce the EPSs in the membrane tank even during the non-aerated phase, thus lowering fouling development. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Photocatalytic reactors for treating water pollution with solar illumination: a simplified analysis for n-steps flow reactors with recirculation

    Energy Technology Data Exchange (ETDEWEB)

    Sagawe, G.; Bahnemann, D. [Universitaet Hannover (Germany). Institut fuer Technische Chemie; Brandi, R.J.; Cassano, A.E. [INTEC Universidad Nacional del Litoral and CONICET, Sante Fe (Argentina)

    2005-09-01

    The concentration of dissolved oxygen in water, in equilibrium with atmospheric air (ca. 8 ppm at 20{sup o}C), defines the limits of all practical oxidizing processes for removing pollutants in photocatalytic reactors. To solve this limitation, an alternative approach to that of a continuously aerated reactor is the use of a recirculating system with aeration performed after every cycle at the reactor entering stream. As defined by the nature of a single recirculating step (the need of a reactor operation at a rather low concentration range), this procedure results in a very low photonic efficiency (thus requiring a large photon collecting area and consequently increasing the capital cost). The design engineer will have to resort to a series of several reactors with recirculation. This solution may then lead to a very high Photonic Efficiency for the entire process (i.e., a reduced light harvesting area) at the price of an increase in the required capital cost (due to the larger number of reactors). This paper provides a very simple analysis and analytical expressions that can be used to estimate, for a desired degree of degradation, a trade-off solution between a high number of reactors and a very large surface area to collect the solar photons. (author)

  13. Colloid formation in groundwater by subsurface aeration: characterisation of the geo-colloids and their counterparts

    International Nuclear Information System (INIS)

    Wolthoorn, Anke; Temminghoff, Erwin J.M.; Riemsdijk, Willem H. van

    2004-01-01

    Subsurface aeration is used to oxidise Fe in situ in groundwater to make the water potable. In a groundwater system with pH > 7, subsurface aeration results in a non-mobile Fe precipitate and mobile Fe colloids. Since originally the goal of subsurface aeration is to remove Fe in situ, the formation of non-mobile Fe precipitate is the desired result. In addition to this intended effect, subsurface aeration may also strongly enhance the microbiological removal of NH 4 in the purification station. A hypothesis is that mobile Fe colloids may be the link between subsurface aeration and the positive effect on the microbiological removal of NH 4 . The objective of this study is to characterise the mobile Fe colloids and to derive a synthetic substitute for the naturally formed Fe colloids in order to be able to apply the Fe colloids as a management tool to enhance the removal of NH 4 in the process of producing drinking water from groundwater. At a purification station in The Netherlands natural Fe colloids from an aerated well were sampled. Furthermore, eight synthetic Fe colloids were prepared by oxidising synthetic solutions differing in elemental composition. The colloids were analysed using chemical analysis and electron microscopy (SEM and SEM-EDAX). The Fe colloids sampled in the field contained Fe, Ca, Na, PO 4 and Mn. Also in the synthetic Fe colloids PO 4 , Ca, Na and Mn were the most important elements next to Fe. Phosphate and dissolved organic C strongly influenced the morphology of the synthetic Fe colloids. When both the elemental composition and the morphology of the Fe colloids are taken into account, the synthetic Fe colloids formed in the synthetic solution containing Fe, Mn, PO 4 , SiO 4 and dissolved organic matter best match the Fe colloids from the field

  14. Colloid formation in groundwater by subsurface aeration: characterisation of the geo-colloids and their counterparts

    Energy Technology Data Exchange (ETDEWEB)

    Wolthoorn, Anke; Temminghoff, Erwin J.M.; Riemsdijk, Willem H. van

    2004-09-01

    Subsurface aeration is used to oxidise Fe in situ in groundwater to make the water potable. In a groundwater system with pH > 7, subsurface aeration results in a non-mobile Fe precipitate and mobile Fe colloids. Since originally the goal of subsurface aeration is to remove Fe in situ, the formation of non-mobile Fe precipitate is the desired result. In addition to this intended effect, subsurface aeration may also strongly enhance the microbiological removal of NH{sub 4} in the purification station. A hypothesis is that mobile Fe colloids may be the link between subsurface aeration and the positive effect on the microbiological removal of NH{sub 4}. The objective of this study is to characterise the mobile Fe colloids and to derive a synthetic substitute for the naturally formed Fe colloids in order to be able to apply the Fe colloids as a management tool to enhance the removal of NH{sub 4} in the process of producing drinking water from groundwater. At a purification station in The Netherlands natural Fe colloids from an aerated well were sampled. Furthermore, eight synthetic Fe colloids were prepared by oxidising synthetic solutions differing in elemental composition. The colloids were analysed using chemical analysis and electron microscopy (SEM and SEM-EDAX). The Fe colloids sampled in the field contained Fe, Ca, Na, PO{sub 4} and Mn. Also in the synthetic Fe colloids PO{sub 4}, Ca, Na and Mn were the most important elements next to Fe. Phosphate and dissolved organic C strongly influenced the morphology of the synthetic Fe colloids. When both the elemental composition and the morphology of the Fe colloids are taken into account, the synthetic Fe colloids formed in the synthetic solution containing Fe, Mn, PO{sub 4}, SiO{sub 4} and dissolved organic matter best match the Fe colloids from the field.

  15. Waste Stabilization Ponds and Aerated Lagoons Performance in Removal of Wastewater Indicator Microorganisms

    Directory of Open Access Journals (Sweden)

    Seyed ali Ghasemi

    2013-08-01

    Full Text Available In this work, the performance of two treatment plants in the City of Mashhad, one with an aerated lagoons system and the other one with waste stabilization ponds system were evaluated in regard to their efficiency in reduction of pathogenic microorganisms. For this purpose, over a period of one year (with 15-days intervals, samples were taken from the influent and effluent (prior to disinfection unit of the above mentioned treatment plants. The samples then were analyzed for parameters such as temperature, pH, density of total coliforms (TC and fecal coliforms (FC, dissolved oxygen and total suspended solids concentration. The results indicated that the aerated lagoons system was much more efficient in removal of indicator bacteria than the waste stabilization ponds during autumn and winter periods. However during the summer months, the waste stabilization ponds showed a higher efficiency in this regard. In general, the waste stabilization ponds system reduced the density of TC and FC by 0.21-2.15 log10 and 0.20-2.33 log10, respectively. In contrast, the levels of reduction in aerated lagoons system were in the range of 0.29-2.03 log10 for TC and 0.42-2.40 log10 for FC. Results indicated that solar intensity, pH and dissolved oxygen concentration were found to be the most significant parameters that reduced the microorganisms population in waste stabilization ponds, While, in the aerated lagoons system, the dissolved oxygen concentration in aerated basin and solar intensity play the most important role. In general, without receiving an adequate disinfection, the effluent from waste stabilization ponds and aerated lagoons cannot provide the microbiological standards required for irrigation of agricultural crops.

  16. Improved Aeration Process - Catalytic Role Of The Iron Oxides In Arsenic Oxidation And Coprecipitation

    DEFF Research Database (Denmark)

    Kowalski, Krysztof; Søgaard, Erik Gydesen

    2013-01-01

    Demands for a better drinking water quality, especially concerning arsenic, a compound with many adverse health effects, put a pressure on the utilities to ensure the best treatment technologies that meet nowadays and possible future quality standards. The aim of this paper is to introduce...... an improved aeration process that can also help in developing better arsenic removal treatment. The results present advantages of arsenic oxidation in an aeration process in the presence of ferrihydrite surface that have been shown to adsorb arsenic simultaneously to its oxidation. The presence...

  17. Utilizing whey protein isolate and polysaccharide complexes to stabilize aerated dairy gels.

    Science.gov (United States)

    O'Chiu, Emily; Vardhanabhuti, Bongkosh

    2017-05-01

    Heated soluble complexes of whey protein isolate (WPI) with polysaccharides may be used to modify the properties of aerated dairy gels, which could be formulated into novel-textured high-protein desserts. The objective of this study was to determine the effect of polysaccharide charge density and concentration within a WPI-polysaccharide complex on the physical properties of aerated gels. Three polysaccharides having different degrees of charge density were chosen: low-methoxyl pectin, high-methoxyl type D pectin, and guar gum. Heated complexes were prepared by heating the mixed dispersions (8% protein, 0 to 1% polysaccharide) at pH 7. To form aerated gels, 2% glucono-δ-lactone was added to the dispersions of skim milk powder and heated complex and foam was generated by whipping with a handheld frother. The foam set into a gel as the glucono-δ-lactone acidified to a final pH of 4.5. The aerated gels were evaluated for overrun, drainage, gel strength, and viscoelastic properties. Without heated complexes, stable aerated gels could not be formed. Overrun of aerated gel decreased (up to 73%) as polysaccharide concentration increased from 0.105 to 0.315% due to increased viscosity, which limited air incorporation. A negative relationship was found between percent drainage and dispersion viscosity. However, plotting of drainage against dispersion viscosity separated by polysaccharide type revealed that drainage decreased most in samples with high-charge-density, low-methoxyl pectin followed by those with low-charge-density, high-methoxyl type D pectin. Aerated gels with guar gum (no charge) did not show improvement to stability. Rheological results showed no significant difference in gelation time among samples; therefore, stronger interactions between WPI and high-charge-density polysaccharide were likely responsible for increased stability. Stable dairy aerated gels can be created from WPI-polysaccharide complexes. High-charge-density polysaccharides, at

  18. The Application of EIS and PIV Methods to the Measurement of Aerated Flow

    Directory of Open Access Journals (Sweden)

    Fejfarová M.

    2013-04-01

    Full Text Available The paper describes measurements in the aerated water medium using modern methods PIV (Particle Image Velocimetry and EIS (Electrical Impedance Spectrometry, which are applied in the Laboratory of Water Management Research (LVV of the Department of Water Structures (UVST at the Faculty of Civil Engineering (FAST of Brno University of Technology (VUT. Measurements of the water medium were carried out for three different aeration intensities at special experimental workplaces. The experiment was focused on the capability of the methods to monitor the air content in the water.

  19. Study of the liquid-film-forming apparatus as an alternative aeration system: design criteria and operating condition.

    Science.gov (United States)

    Hongprasith, Narapong; Imai, Tsuyoshi; Painmanakul, Pisut

    2017-06-01

    Aeration is an important factor in aquaculture systems because it is a vital condition for all organisms that live in water and respire aerobically. Generally, mechanical surface aerators are widely used in Thailand due to their advantage for increasing dissolved oxygen (DO) and for their horizontal mixing of aquaculture ponds with large surface areas. However, these systems still have some drawbacks, primarily the low oxygen transfer efficiency (OTE) and energy. Regarding this issue, alternative aeration systems should be studied and applied. Therefore, this research aims to study the aeration mechanism obtained by the diffused-air aeration combined with a liquid-film-forming apparatus (LFFA). The effect of gas flow rates, types, and patterns of aerator installation were investigated in an aquaculture pond of 10 m × 10 m × 1.5 m. The analytical parameters were volumetric mass transfer coefficient (k L a), OTE, and aeration efficiency (AE). From the results, the '4-D' with partitions was proposed as the suitable pattern for the LFFA installation. The advantage could be obtained from high energy performance with 1.2 kg/kW h of AE. Then, the operation conditions can be applied as a design guideline for this alternative aeration system in the aquaculture ponds.

  20. Nuclear reactors

    International Nuclear Information System (INIS)

    Barre, Bertrand

    2015-10-01

    After some remarks on the nuclear fuel, on the chain reaction control, on fuel loading and unloading, this article proposes descriptions of the design, principles and operations of different types of nuclear reactors as well as comments on their presence and use in different countries: pressurized water reactors (design of the primary and secondary circuits, volume and chemistry control, backup injection circuits), boiling water reactors, heavy water reactors, graphite and boiling water reactors, graphite-gas reactors, fast breeder reactors, and fourth generation reactors (definition, fast breeding). For these last ones, six concepts are presented: sodium-cooled fast reactor, lead-cooled fast reactor, gas-cooled fast reactor, high temperature gas-cooled reactor, supercritical water-cooled reactor, and molten salt reactor

  1. Formation of combustible hydrocarbons and H2 during photocatalytic decomposition of various organic compounds under aerated and deaerated conditions.

    Science.gov (United States)

    Mozia, Sylwia; Kułagowska, Aleksandra; Morawski, Antoni W

    2014-11-26

    A possibility of photocatalytic production of useful aliphatic hydrocarbons and H2 from various organic compounds, including acetic acid, methanol, ethanol and glucose, over Fe-modified TiO2 is discussed. In particular, the influence of the reaction atmosphere (N2, air) was investigated. Different gases were identified in the headspace volume of the reactor depending on the substrate. In general, the evolution of the gases was more effective in air compared to a N2 atmosphere. In the presence of air, the gaseous phase contained CO2, CH4 and H2, regardless of the substrate used. Moreover, formation of C2H6 and C3H8 in the case of acetic acid and C2H6 in the case of ethanol was observed. In case of acetic acid and methanol an increase in H2 evolution under aerated conditions was observed. It was concluded that the photocatalytic decomposition of organic compounds with simultaneous generation of combustible hydrocarbons and hydrogen could be a promising method of "green energy" production.

  2. Tertiary treatment of textile wastewater with combined media biological aerated filter (CMBAF) at different hydraulic loadings and dissolved oxygen concentrations

    International Nuclear Information System (INIS)

    Liu Fang; Zhao Chaocheng; Zhao Dongfeng; Liu Guohua

    2008-01-01

    An up-flow biological aerated filter packed with two layers media was employed for tertiary treatment of textile wastewater secondary effluent. Under steady state conditions, good performance of the reactor was achieved and the average COD, NH 4 + -N and total nitrogen (TN) in the effluent were 31, 2 and 8 mg/L, respectively. For a fixed dissolved oxygen (DO) concentration, an increase of hydraulic loading resulted in a decrease in substrate removal. With the increase of hydraulic loadings from 0.13 to 0.78 m 3 /(m 2 h), the removal efficiencies of COD, NH 4 + -N and TN all decreased, which dropped from 52 to 38%, from 90 to 68% and from 45 to 33%, respectively. In addition, the results also confirmed that the increase of COD and NH 4 + -N removal efficiencies resulted from the increase of DO concentrations, but this variation trend was not observed for TN removal. With the increase of DO concentrations from 2.4 to 6.1 mg/L, the removal efficiencies of COD and NH 4 + -N were 39-53% and 64-88%, whenas TN removal efficiencies increased from 39 to 42% and then dropped to 35%

  3. Composite wastewater treatment by aerated electrocoagulation and modified peroxi-coagulation processes.

    Science.gov (United States)

    Kumar, Abhijeet; Nidheesh, P V; Suresh Kumar, M

    2018-08-01

    Treatment of composite wastewater generating from the industrial estates is a great challenge. The present study examines the applicability of aerated electrocoagulation and modified peroxi-coagulation processes for removing color and COD from composite wastewater. Iron plates were used as anodes and cathodes in both electrochemical processes and experiments were carried out in a working volume of 2 L. Aeration enhanced the efficiency of electrocoagulation process significantly. More than 50% of COD and 60% of color were removed after 1 h of electrocoagulation process operated at pH 3 and applied voltage of 1 V. Efficiency of the modified peroxi-coagulation process was significantly higher than that of aerated electrocoagulation. COD and color removal efficiencies of the modified peroxi-coagulation process were found as 77.7% and 97%, respectively after 1 h of electrolysis operated at 1 V, solution pH 3 and 50 mM hydrogen peroxide addition. This improved efficiency of modified peroxi-coagulation compared to aerated electrocoagulation is mainly due to the attack of in-situ generated hydroxyl radicals. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Treatment of landfill leachate using an aerated, horizontal subsurface-flow constructed wetland.

    Science.gov (United States)

    Nivala, J; Hoos, M B; Cross, C; Wallace, S; Parkin, G

    2007-07-15

    A pilot-scale subsurface-flow constructed wetland was installed at the Jones County Municipal Landfill, near Anamosa, Iowa, in August 1999 to demonstrate the use of constructed wetlands as a viable low-cost treatment option for leachate generated at small landfills. The system was equipped with a patented wetland aeration process to aid in removal of organic matter and ammonia nitrogen. The high iron content of the leachate caused the aeration system to cease 2 years into operation. Upon the installation of a pretreatment chamber for iron removal and a new aeration system, treatment efficiencies dramatically improved. Seasonal performance with and without aeration is reported for 5-day biochemical oxygen demand (BOD(5)), chemical oxygen demand (COD), ammonia nitrogen (NH(4)-N), and nitrate nitrogen (NO(3)-N). Since winter air temperatures in Iowa can be very cold, a layer of mulch insulation was installed on top of the wetland bed to keep the system from freezing. When the insulation layer was properly maintained (either through sufficient litterfall or replenishing the mulch layer), the wetland sustained air temperatures of as low as -26 degrees C without freezing problems.

  5. Optimization and control of the activated sludge process by adaptation of aeration tank volume

    Energy Technology Data Exchange (ETDEWEB)

    Staud, R

    1982-04-01

    Purpose of full scale studies conducted at a municipal wastewater treatment plant at Schwetzingen, Germany, was to optimize the activated sludge treatment process. Influent loading fluctuations were answered by operating a distinct number of the four parallel treatment plant units (aeration tank/clarifier) present. During the intermediate period of time the aerators were also switched off, and the activated sludge was kept anaerobically. The purpose of this particular technique is to equalize the nutrient supply of the microorganisms to gain an improved metabolic potential, as well as to decrease the energy demand for aeration. A mathematical algorithm for process control was developed to accomplish this technique. Initial parameters are inflow rate, MLSS and plateau-BOD to evaluate the substrate concentration. The results of the full scale studies prove the practicability of this concept. Equalization of the F:M ratio fluctuations leads to an increase of the average substrate loading but not to any decrease in the overall process efficiency. Anaerobic sludge storage did not cause any problem. Odor problems could be handled by limitation of the storage period to 24 hours. As far as energy consumption for aeration is concerned a decrease by 47% percent could be achieved.

  6. Integral parameters for characterizing water, energy, and aeration properties of soilless plant growth media

    Science.gov (United States)

    Chamindu Deepagoda, T. K. K.; Chen Lopez, Jose Choc; Møldrup, Per; de Jonge, Lis Wollesen; Tuller, Markus

    2013-10-01

    Over the last decade there has been a significant shift in global agricultural practice. Because the rapid increase of human population poses unprecedented challenges to production of an adequate and economically feasible food supply for undernourished populations, soilless greenhouse production systems are regaining increased worldwide attention. The optimal control of water availability and aeration is an essential prerequisite to successfully operate plant growth systems with soilless substrates such as aggregated foamed glass, perlite, rockwool, coconut coir, or mixtures thereof. While there are considerable empirical and theoretical efforts devoted to characterize water retention and aeration substrate properties, a holistic, physically-based approach considering water retention and aeration concurrently is lacking. In this study, the previously developed concept of integral water storage and energy was expanded to dual-porosity substrates and an analog integral oxygen diffusivity parameter was introduced to simultaneously characterize aeration properties of four common soilless greenhouse growth media. Integral parameters were derived for greenhouse crops in general, as well as for tomatoes. The integral approach provided important insights for irrigation management and for potential optimization of substrate properties. Furthermore, an observed relationship between the integral parameters for water availability and oxygen diffusivity can be potentially applied for the design of advanced irrigation and management strategies to ensure stress-free growth conditions, while conserving water resources.

  7. Scanning electron microscopy of autoclaved aerated concrete with supplementary raw materials

    NARCIS (Netherlands)

    Straub, C.; Florea, M.V.A.; Brouwers, H.J.H.; Nisperos, Arturo G.; Pöllmann, Herbert

    Microscopy is a key analysis technology for the understanding of the achieved properties of building materials. In the case of Autoclaved Aerated Concrete (AAC) it is even more important due to the phase transformation during the hydrothermal hardening. The incorporation of substitution materials in

  8. EVALUATING THE COSTS OF PACKED-TOWER AERATION AND GAC FOR CONTROLLING SELECTED ORGANICS

    Science.gov (United States)

    This article focuses on a preliminary cost analysis that compares liquid-phase granular activated carbon (GAC) treatment with packed-tower aeration (PTA) treatment, with and without air emissions control. The sensitivity of cost to design and operating variables is also discussed...

  9. Circulation induced by diffused aeration in a shallow lake | Toné ...

    African Journals Online (AJOL)

    Field surveys were carried out to investigate the surface jet flows and the resulting circulation patterns generated by diffused aeration in a shallow lake. In conrast to previous studies, the experimental conditions included point-source bubble plumes with very high air flow rates (100–400 L/min) relative to the shallow water ...

  10. Sodium carbonate activated slag as cement replacement in autoclaved aerated concrete

    NARCIS (Netherlands)

    Yuan, B.; Straub, C.; Segers, S.; Yu, Q.; Brouwers, H.J.H.

    2017-01-01

    This paper aims to study the suitability of fully replacing cement by sodium carbonate activated slag in producing autoclaved aerated concrete (AAC). The material properties of the product are characterized in terms of green strength development, mechanical properties, pore related properties such

  11. Embedded system in Arduino platform with Fuzzy control to support the grain aeration decision

    Directory of Open Access Journals (Sweden)

    Albino Szesz Junior

    Full Text Available ABSTRACT: Aeration is currently the most commonly used technique to improve the drying and storage of grain, depending on temperature and water content of the grain, as of the temperature and relative humidity of the outside air. In order to monitor temperature and humidity of the grain mass, it is possible to have a network of sensors in the cells of both internal and external storage. Use of artificial intelligence through Fuzzy theory, has been used since the 60s and enables their application on various forms. Thus, it is observed that the aeration of grain in function of representing a system of controlled environment can be studied in relation to the application of this theory. Therefore, the aim of this paper is to present an embedded Fuzzy control system based on the mathematical model of CRUZ et al. (2002 and applied to the Arduino platform, for decision support in aeration of grain. For this, an embedded Arduino system was developed, which received the environmental values of temperature and humidity to then be processed in a Fuzzy controller and return the output as a recommendation to control the aeration process rationally. Comparing the results obtained from the graph presented by LASSERAN (1981 it was observed that the system is effective.

  12. Feasibility study of a V-shaped pipe for passive aeration composting.

    Science.gov (United States)

    Ogunwande, Gbolabo A

    2011-03-01

    A V-shaped (Vs) pipe was improvised for composting of chicken litter in passive aeration piles. Three piles, equipped with horizontal (Ho), vertical (Ve) and Vs pipes were set up. The three treatments were replicated thrice. The effects of the aeration pipe on the physico-chemical properties of chicken litter and air distribution within the composting piles were investigated during composting. The properties monitored were temperature, pH, electrical conductivity, moisture content, total carbon, total nitrogen, total phosphorus and carbon-to-nitrogen ratio. Moisture level in the piles was replenished fortnightly to 60% during composting. The results of the study showed that all the piles attained the optimum temperature range (40-65°C) for effective composting and satisfied the requirements for sanitation. The non-significant (p > 0.05) temperature difference within the piles with Ve and Vs pipes indicated that these pipes were effective for uniform air distribution within the pile. The aeration pipe had significant (p ≤ 0.05) effect on pile temperature, pre-replenishment moisture content, pH and total phosphorus. In conclusion, the study showed that the Vs pipe is feasible and effective for passive aeration composting.

  13. Physio-Microstructural Properties of Aerated Cement Slurry for Lightweight Structures

    Science.gov (United States)

    Salem, Talal; Hamadna, Sameer; Darsanasiri, A. G. N. D.; Soroushian, Parviz; Balchandra, Anagi; Al-Chaar, Ghassan

    2018-01-01

    Cementitious composites, including ferrocement and continuous fiber reinforced cement, are increasingly considered for building construction and repair. One alternative in processing of these composites is to infiltrate the reinforcement (continuous fibers or chicken mesh) with a flowable cementitious slurry. The relatively high density of cementitious binders, when compared with polymeric binders, are a setback in efforts to introduce cementitious composites as lower-cost, fire-resistant, and durable alternatives to polymer composites. Aeration of the slurry is an effective means of reducing the density of cementitious composites. This approach, however, compromises the mechanical properties of cementitious binders. An experimental program was undertaken in order to assess the potential for production of aerated slurry with a desired balance of density, mechanical performance, and barrier qualities. The potential for nondestructive monitoring of strength development in aerated cementitious slurry was also investigated. This research produced aerated slurries with densities as low as 0.9 g/cm3 with viable mechanical and barrier qualities for production of composites. The microstructure of these composites was also investigated. PMID:29649163

  14. A full-scale biological aerated filtration system application in the ...

    African Journals Online (AJOL)

    The treated wastewater characteristics are in compliance with the Egyptian law which regulates the discharge of industrial wastewater to the sewerage system. The results from each treatment process proved to be efficient for the treatment of such wastewater. Keywords: Paints wastewater treatment, Biological aerated filter ...

  15. Application of glass recycling by-products in Autoclaved Aerated Concrete

    NARCIS (Netherlands)

    Straub, Chr.; Florea, M.V.A.; Brouwers, H.J.H.; Schmidt, Wolfram; Msinjili, Nsesheye Susan

    Autoclaved Aerated Concrete (AAC) is a construction material with a large range of applications. In order to generate more sustainable materials, the possibility of the incorporation of by-products and left-over-materials from various processes is investigated. The focus of this research is the

  16. Fe(II) oxidation kinetics and Fe hydroxyphosphate precipitation upon aeration of anaerobic (ground)water

    NARCIS (Netherlands)

    van der Grift, B.; Griffioen, J.; Behrends, T.; Wassen, M.J.; Schot, P.P.; Osté, Leonard

    2015-01-01

    Exfiltration of anaerobic Fe-rich groundwater into surface water plays an important role in controlling the transport of phosphate (P) from agricultural areas to the sea. Previous laboratory and field studies showed that Fe(II) oxidation upon aeration leads to effective immobilization of dissolved P

  17. Field study of nitrous oxide production with in situ aeration in a closed landfill site.

    Science.gov (United States)

    Nag, Mitali; Shimaoka, Takayuki; Nakayama, Hirofumi; Komiya, Teppei; Xiaoli, Chai

    2016-03-01

    Nitrous oxide (N(2)O) has gained considerable attention as a contributor to global warming and depilation of stratospheric ozone layer. Landfill is one of the high emitters of greenhouse gas such as methane and N(2)O during the biodegradation of solid waste. Landfill aeration has been attracted increasing attention worldwide for fast, controlled and sustainable conversion of landfills into a biological stabilized condition, however landfill aeration impel N(2)O emission with ammonia removal. N(2)O originates from the biodegradation, or the combustion of nitrogen-containing solid waste during the microbial process of nitrification and denitrification. During these two processes, formation of N(2)O as a by-product from nitrification, or as an intermediate product of denitrification. In this study, air was injected into a closed landfill site and investigated the major N(2)O production factors and correlations established between them. The in-situ aeration experiment was carried out by three sets of gas collection pipes along with temperature probes were installed at three different distances of one, two and three meter away from the aeration point; named points A-C, respectively. Each set of pipes consisted of three different pipes at three different depths of 0.0, 0.75 and 1.5 m from the bottom of the cover soil. Landfill gases composition was monitored weekly and gas samples were collected for analysis of nitrous oxide concentrations. It was evaluated that temperatures within the range of 30-40°C with high oxygen content led to higher generation of nitrous oxide with high aeration rate. Lower O(2) content can infuse N(2)O production during nitrification and high O(2) inhibit denitrification which would affect N(2)O production. The findings provide insights concerning the production potentials of N(2)O in an aerated landfill that may help to minimize with appropriate control of the operational parameters and biological reactions of N turnover. Investigation of

  18. Combination of Methoprene and Controlled Aeration to Manage Insects in Stored Wheat.

    Science.gov (United States)

    Liu, Samuel S; Arthur, Frank H; VanGundy, Douglas; Phillips, Thomas W

    2016-06-17

    A commercial formulation of the insect growth regulator methoprene was applied to wheat stored in small bins either alone or in combination with controlled aeration of the bins, to lower grain temperature for insect pest management of stored wheat. Grain temperatures were monitored and modified by a computer-controlled thermocouple system that also activated the aeration system at programmed set-points to move cool ambient air through the grain mass to lower grain temperature. Results from sampling insect populations in experimental storage bins along with laboratory mortality bioassays of insects placed on wheat taken from the bins over the course of the storage period showed that methoprene was very effective in controlling infestation by the externally-feeding stored grain insects Plodia interpunctella (Hübner), the Indian meal moth Tribolium castaneum (Herbst), the red flour beetle, Cryptolestes ferrugineus (Stephens), the rusty grain beetle, and also for the internal-feeding pest Rhyzopertha dominica( Fauvel), the lesser grain borer. Methoprene did not give good control of the internal-feeding pest Sitophilus oryzae (L.), the rice weevil. Aeration alone was somewhat effective in suppressing insect population development, while methoprene alone or when combined with aeration greatly enhanced insect control. Commercial grain grading for industry quality standards at the end of the storage period confirmed the impact of insect suppression on maintaining high quality of the stored wheat. This field experiment shows that methoprene combined with aeration to cool grain can be effective for pest management of stored wheat in the southern plains of the United States of America.

  19. Spatiotemporal Aeration and Lung Injury Patterns Are Influenced by the First Inflation Strategy at Birth.

    Science.gov (United States)

    Tingay, David G; Rajapaksa, Anushi; Zonneveld, C Elroy; Black, Don; Perkins, Elizabeth J; Adler, Andy; Grychtol, Bartłomiej; Lavizzari, Anna; Frerichs, Inéz; Zahra, Valerie A; Davis, Peter G

    2016-02-01

    Ineffective aeration during the first inflations at birth creates regional aeration and ventilation defects, initiating injurious pathways. This study aimed to compare a sustained first inflation at birth or dynamic end-expiratory supported recruitment during tidal inflations against ventilation without intentional recruitment on gas exchange, lung mechanics, spatiotemporal regional aeration and tidal ventilation, and regional lung injury in preterm lambs. Lambs (127 ± 2 d gestation), instrumented at birth, were ventilated for 60 minutes from birth with either lung-protective positive pressure ventilation (control) or as per control after either an initial 30 seconds of 40 cm H2O sustained inflation (SI) or an initial stepwise end-expiratory pressure recruitment maneuver during tidal inflations (duration 180 s; open lung ventilation [OLV]). At study completion, molecular markers of lung injury were analyzed. The initial use of an OLV maneuver, but not SI, at birth resulted in improved lung compliance, oxygenation, end-expiratory lung volume, and reduced ventilatory needs compared with control, persisting throughout the study. These changes were due to more uniform inter- and intrasubject gravity-dependent spatiotemporal patterns of aeration (measured using electrical impedance tomography). Spatial distribution of tidal ventilation was more stable after either recruitment maneuver. All strategies caused regional lung injury patterns that mirrored associated regional volume states. Irrespective of strategy, spatiotemporal volume loss was consistently associated with up-regulation of early growth response-1 expression. Our results show that mechanical and molecular consequences of lung aeration at birth are not simply related to rapidity of fluid clearance; they are also related to spatiotemporal pressure-volume interactions within the lung during inflation and deflation.

  20. A New Control and Design of PEM Fuel Cell System Powered Diffused Air Aeration System

    Directory of Open Access Journals (Sweden)

    Hassen T. Dorrah

    2012-06-01

    Full Text Available The goal of aquaculture ponds is to maximize production and profits while holding labor and management efforts to the minimum. Poor water quality in most ponds causes risk of fish kills, disease outbreaks which lead to minimization of pond production. Dissolved Oxygen (DO is considered to be among the most important water quality parameters in fish culture. Fish ponds in aquaculture farms are usually located in remote areas where grid lines are at far distance. Aeration of ponds is required to prevent mortality and to intensify production, especially when feeding is practical, and in warm regions. To increase pond production it is necessary to control dissolved oxygen. Aeration offers the most immediate and practical solution to water quality problems encountered at higher stocking and feeding rates. Many units of aeration system are electrical units so using a continuous, high reliability, affordable, and environmentally friendly power sources is necessary. Fuel cells have become one of the major areas of research in the academia and the industry. Aeration of water by using PEM fuel cell power is not only a new application of the renewable energy, but also, it provides an affordable method to promote biodiversity in stagnant ponds and lakes. This paper presents a new design and control of PEM fuel cell powered a diffused air aeration system for a shrimp farm in Mersa Matruh in Egypt. Also Artificial intelligence (AI control techniques are used to control the fuel cell output power by controlling its input gases flow rate. Moreover the mathematical modeling and simulation of PEM fuel cell is introduced. A comparative study is applied between the performance of fuzzy logic controller (FLC and neural network controller (NNC. The results show the effectiveness of NNC over FLC.

  1. Numerical and experimental investigation of the self-inducing turbine aeration capacity

    International Nuclear Information System (INIS)

    Achouri, Ryma; Dhaouadi, Hatem; Mhiri, Hatem; Bournot, Philippe

    2014-01-01

    Highlights: • Numerical and experimental study of k L a coefficient of a self-inducing turbine. • Validation of experimental results. • Numerical study of k L a variation with the variation of impeller submersion and blade inclination. • Numerical study of the flow field and hydrodynamic parameters. - Abstract: Self-inducing turbines are a model of mixers that ensure the aeration of a fluid field without using a sparger and a surface aerator. Nevertheless, this type of turbines remain quite complicated in terms of behavior of the fluid within the tank, and its actual aeration capacity varies depending on the type of turbine used. The studied turbine is self-inducing and made of three blades and each blade contains five holes. In this work, we evaluated experimentally – using the technique of dynamic oxygenation and deoxygenating – the aeration capacity of our impeller by calculating the volumetric mass transfer coefficient k L a for various submergences and various inclination angles of the blade. This work was then validated by a numerical modeling using the commercial code Fluent, and the flow within the tank as well as the evolution of the hydrodynamic parameters was also studied. The simulation is steady state with a VOF multiphase model and the realizable k–ε turbulence model. We finally concluded that k L a decreases with the increase of the inclination angle and with the increase of the submergence of our turbine. We could also study the hydrodynamic parameters of the flow such as the power number, the aeration number and the shear rate

  2. Combination of Methoprene and Controlled Aeration to Manage Insects in Stored Wheat

    Directory of Open Access Journals (Sweden)

    Samuel S. Liu

    2016-06-01

    Full Text Available A commercial formulation of the insect growth regulator methoprene was applied to wheat stored in small bins either alone or in combination with controlled aeration of the bins, to lower grain temperature for insect pest management of stored wheat. Grain temperatures were monitored and modified by a computer-controlled thermocouple system that also activated the aeration system at programmed set-points to move cool ambient air through the grain mass to lower grain temperature. Results from sampling insect populations in experimental storage bins along with laboratory mortality bioassays of insects placed on wheat taken from the bins over the course of the storage period showed that methoprene was very effective in controlling infestation by the externally-feeding stored grain insects Plodia interpunctella (Hübner, the Indian meal moth Tribolium castaneum (Herbst, the red flour beetle, Cryptolestes ferrugineus (Stephens, the rusty grain beetle, and also for the internal-feeding pest Rhyzopertha dominica( Fauvel, the lesser grain borer. Methoprene did not give good control of the internal-feeding pest Sitophilus oryzae (L., the rice weevil. Aeration alone was somewhat effective in suppressing insect population development, while methoprene alone or when combined with aeration greatly enhanced insect control. Commercial grain grading for industry quality standards at the end of the storage period confirmed the impact of insect suppression on maintaining high quality of the stored wheat. This field experiment shows that methoprene combined with aeration to cool grain can be effective for pest management of stored wheat in the southern plains of the United States of America.

  3. H Reactor

    Data.gov (United States)

    Federal Laboratory Consortium — The H Reactor was the first reactor to be built at Hanford after World War II.It became operational in October of 1949, and represented the fourth nuclear reactor on...

  4. Improvement of poly-γ-glutamic acid biosynthesis in a moving bed biofilm reactor by Bacillus subtilis NX-2.

    Science.gov (United States)

    Jiang, Yongxiang; Tang, Bao; Xu, Zongqi; Liu, Kun; Xu, Zheng; Feng, Xiaohai; Xu, Hong

    2016-10-01

    The production of poly-γ-glutamic acid (γ-PGA) by Bacillus subtilis NX-2 using a moving bed biofilm reactor (MBBR) system was tested for the first time in this study. Polypropylene TL-2 was chosen as a suitable carrier, and γ-PGA concentration of 42.7±0.86g/L and productivity of 0.59±0.06g/(Lh) were obtained in batch fermentation. After application of the strategy of dissolved oxygen (DO)-stat feeding, higher γ-PGA concentration and productivity were achieved than with glucose feedback feeding. Finally, the repeated fed-batch cultures implemented in the MBBR system showed high stability, and the maximal γ-PGA concentration and productivity of 74.2g/L and 1.24g/(Lh) were achieved, respectively. In addition, the promotion of oxygen transfer by an MBBR carrier was well explained by a computational fluid dynamics (CFD) simulation. These results suggest that an MBBR system could be applied to large-scale γ-PGA production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. A Comparative Study of Temperature Optimal Control in a Solid State Fermentation Process for Edible Mushroom Growing

    Directory of Open Access Journals (Sweden)

    K. J. Gurubel

    2017-04-01

    Full Text Available In this paper, optimal control strategies for temperature trajectory determination in order to maximize thermophilic bacteria in a fed-batch solid-state fermentation reactor are proposed. This process is modeled by nonlinear differential equations, which has been previously validated experimentally with scale reactor temperature profiles. The dynamic input aeration rate of the reactor is determined to increase microorganisms growth of a selective substrate for edible mushroom cultivation. In industrial practice, the process is comprised of three thermal stages with constant input air flow and three types of microorganisms in a 150-hour lapse. Scytalidium thermophilum and actinobacteria are desired in order to obtain a final biomass composition with acceptable microorganisms concentration. The Steepest Descent gradient algorithm in continuous time and the Gradient Projection algorithm in discrete-time are used for the process optimal control. A comparison of simulation results in the presence of disturbances is presented, where the resulting temperature trajectories exhibit similar tendencies as industrial data.

  6. Effect of light and aeration on the metamorphosis rate from nauplii to protozoea and larval quality of Litopenaeus vannamei

    Directory of Open Access Journals (Sweden)

    Hadja Radtke Nunes

    2010-06-01

    Full Text Available In order to determine the optimal ranges of the factors light intensity and aeration that reflect the best rate of metamorphosis from nauplii to the first protozoea stage of Litopenaeus vannamei, and also the highest quality of the larvae, two separate experiments were carried out. The nauplii were exposed to four different light intensities (0; 5,000; 10,000; and 15,000 lux and four aeration conditions (static, low, medium and strong. The data were subjected to one-way ANOVA (significance level of 5%, followed by Tukey test for comparison of means. There were no significant differences between the percentages of metamorphosis under the different conditions of light and aeration that were tested (P>0.05. However, the score of the quality of the larvae was significantly lower (P<0.05 for the condition of continuous darkness (0 lux and the treatment with low intensity of aeration compared to other treatments in both experiments.

  7. Incidence of secondary aeration in confined flames of high pressure premixed atmospheric burner

    International Nuclear Information System (INIS)

    Cadavid Sierra, Francisco Javier; Buitrago Garcia, Jorge Enrique; Velasquez, Daniel

    2002-01-01

    In this work an experimental study about the variables that affect the secondary aeration has been applied. The relationships with phenomena that affect the proper operation of the combustion chamber are discussed in detail. These phenomena are quenching, flame stabilization and the combustion product recirculation. A flexible combustion system developed to allow variations in the volume of combustion chamber, the area of secondary air entrance, the outlet of combustion products and the thermal output is presented. Also, the system could vary the inlet of primary air, though the study is carried out with maximal working area. The experimental setup allowed to compare and to find the influence of design parameters mentioned above on the secondary aeration and also to obtain the insight that the most important design parameters were combustion product outlet and the combustion intensity

  8. Binary Effect of Fly Ash and Palm Oil Fuel Ash on Heat of Hydration Aerated Concrete

    Science.gov (United States)

    Mehmannavaz, Taha; Ismail, Mohammad; Radin Sumadi, Salihuddin; Rafique Bhutta, Muhammad Aamer; Samadi, Mostafa

    2014-01-01

    The binary effect of pulverized fuel ash (PFA) and palm oil fuel ash (POFA) on heat of hydration of aerated concrete was studied. Three aerated concrete mixes were prepared, namely, concrete containing 100% ordinary Portland cement (control sample or Type I), binary concrete made from 50% POFA (Type II), and ternary concrete containing 30% POFA and 20% PFA (Type III). It is found that the temperature increases due to heat of hydration through all the concrete specimens especially in the control sample. However, the total temperature rises caused by the heat of hydration through both of the new binary and ternary concrete were significantly lower than the control sample. The obtained results reveal that the replacement of Portland cement with binary and ternary materials is beneficial, particularly for mass concrete where thermal cracking due to extreme heat rise is of great concern. PMID:24696646

  9. Measuring a critical stress for continuous prevention of marine biofouling accumulation with aeration.

    Science.gov (United States)

    Menesses, Mark; Belden, Jesse; Dickenson, Natasha; Bird, James

    2017-10-01

    When cleaning the hull of a ship, significant shear stresses are needed to remove established biofouling organisms. Given that there exists a link between the amount of time that fouling accumulates and the stress required to remove it, it is not surprising that more frequent grooming requires less shear stress. Yet, it is unclear if there is a minimum stress needed to prevent the growth of macrofouling in the limit of continuous grooming. This manuscript shows that single bubble stream aeration provides continuous grooming and prevents biofouling accumulation in regions where the average wall stress exceeds ~0.01 Pa. This value was found by comparing observations of biofouling growth from field studies with complementary laboratory measurements that probe the associated flow fields. These results suggest that aeration and other continuous grooming systems must exceed a wall stress of 0.01 Pa to prevent macrofouling accumulation.

  10. Settlement determination of operating moisture of autoclaved aerated concrete in different climatic zones

    Directory of Open Access Journals (Sweden)

    Pastushkov Pavel Pavlovich

    Full Text Available In the process of operation of buildings the moisture state of enveloping structures materials is changing depending on their construction features, properties of the material, temperature and moisture conditions in the premises, climatic conditions of the construction area. Moisture mode determines the operational properties of the enveloping structures of a building. It directly influences the thermal characteristics of enveloping structure and energy efficiency of the applied materials. The analysis of the methods for calculation of moisture behavior of enclosing structures is carried out. The research relevance of operational moisture of AAC is substantiated. Experimental studies and results of the sorption moisturizing and water vapor permeability of leading marks of aerated concrete are carried out. The authors offer the results of numerical calculations of the moisture behavior of aerated concrete in the walls with mark D400 with facade thermal insulation composite systems - with external plaster layers for different climatic zones of construction.

  11. Mechanical properties of lightweight aerated concrete with different aluminium powder content

    Directory of Open Access Journals (Sweden)

    Shabbar Rana

    2017-01-01

    Full Text Available Aerated concrete is produced by introducing gas into a concrete, the amount dependent upon the requirements for strength. One method to achieve this is by using powdered aluminium which reacts with the calcium hydroxide produced upon hydration of the cement. The aim of the current study was to investigate the influence of the powder content on the mechanical properties of aerated concrete namely; compressive and flexural strengths, modulus of elasticity, density and porosity. The results indicated that an increase in aluminium content caused a decrease in the compressive and tensile strengths. It also produced a decrease in the modulus of elasticity. When the aluminium content increased, the density decreased and the porosity increased.

  12. THE INFLUENCE OF A HALLOYSITE ADDITIVE ON THE PERFORMANCE OF AUTOCLAVED AERATED CONCRETE

    Directory of Open Access Journals (Sweden)

    Z. Owsiak

    2015-03-01

    Full Text Available This paper presents the results from the tests of autoclaved aerated concrete with halloysite as a cement additive. Good pozzolanic properties make it a suitable material to be used as a partial replacement of a portion of cement. Basic physical and mechanical properties of the composites with various mineral content are discussed. The compressive strength test results indicate an increase in strength of the AAC containing 2.5 % and 5 % halloysite relative to the reference specimen. Thermal conductivity and density values remained at the same level. Observations of the microstructure in the scanning electron microscope confirmed the results from the XRD tests. Anhydrite was observed in addition to tobermorite. The results from the tests of the autoclaved aerated concretes in which halloysite was incorporated as 7.5 % and 10 % cement replacement showed an increase in compressive strength, density and thermal conductivity values.

  13. Turbine Aeration Design Software for Mitigating Adverse Environmental Impacts Resulting From Conventional Hydropower Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Gulliver, John S. [Univ. of Minnesota, Minneapolis, MN (United States)

    2015-03-01

    Conventional hydropower turbine aeration test-bed for computational routines and software tools for improving environmental mitigation technologies for conventional hydropower systems. In achieving this goal, we have partnered with Alstom, a global leader in energy technology development and United States power generation, with additional funding from the Initiative for Renewable Energy and the Environment (IREE) and the College of Science and Engineering (CSE) at the UMN

  14. Autoclaved aerated concrete : shaping the evolution of residential construction in the United States.

    OpenAIRE

    Bukoski, Steven C.

    1998-01-01

    CIVINS (Civilian Institutions) Thesis document Precast Autoclaved Aerated Concrete (AAC) is a proven construction material used in Europe for over 70 years. Introduced to the United States in 1990, construction thus far is limited to commercial and custom borne applications. Premium benefits include energy efficiency and resistance to natural disaster and pests. Despite being the leading residential construction material in Europe and Japan, lumber is the leading material of choice in the ...

  15. Temperature control of paddy bulk storage with aeration-thermosyphon heat pipe

    International Nuclear Information System (INIS)

    Dussadee, Natthawud; Punsaensri, Tammasak; Kiatsiriroat, Tanongkiat

    2007-01-01

    A technology of an aeration-thermosyphon heat pipe is developed for controlling paddy temperature in a paddy bulk silo. A prototype of paddy bulk storage of 1000 kg has a set of copper tubes with steel fins embedded in the paddy bed. The total heat transfer area of the tubes with fins is 16 m 2 . The tubes act as the evaporator of a thermosyphon heat pipe and absorb heat resulting from the paddy respiration. The thermosyphon has a total condenser area of 12.2 m 2 that is exposed to ambient air. At the bottom of the silo, ambient air is fed upward through the paddy bed for the aeration. The initial moisture content of the paddy is around 12.8% wet basis. A mathematical model to predict the paddy bed temperature in the silo with the hybrid aeration-thermosyphon is developed, and the results agree very well with the experimental data. The operating period of its blower could be found from the simulation. The blower is on when the paddy bed temperature, T b , is over or equal to 28 deg. C and the difference temperature between the bed and the ambient, T d , is over or equal to 1 deg. C. The appropriate evaporator area should be over 8 m 2 . At the area of 8 m 2 , the operation time of the blower is 8-9% of the annual period compared with 30-40% for normal aeration alone. The monthly paddy bed temperature could be maintained between 24 and 27 deg. C under the climate of Chiang Mai, Thailand

  16. Effect of aeration on the fermentative activity of Saccharomyces cerevisiae cultured in apple juice

    OpenAIRE

    Estela-Escalante, W.; Rychtera, M.; Melzoch, K.; Hatta-Sakoda, B.

    2012-01-01

    The influence of aeration on the fermentative activity of Saccharomyces cerevisiaeRTVE V 15-1-416 was studied in order to evaluate the synthesis of fermentation by-products. To achieve this, the strain was cultured in Erlenmeyer flasks and bioreactor containing sterilized and aroma removed apple juice. The chemical compounds produced during fermentations in shaken (200 min-¹) and static (without agitation) flasks and bioreactor, all in batch mode, were determined by GC and HPLC. The results s...

  17. A Trade Study of Two Membrane-Aerated Biological Water Processors

    Science.gov (United States)

    Allada, Ram; Lange, Kevin; Vega. Leticia; Roberts, Michael S.; Jackson, Andrew; Anderson, Molly; Pickering, Karen

    2011-01-01

    Biologically based systems are under evaluation as primary water processors for next generation life support systems due to their low power requirements and their inherent regenerative nature. This paper will summarize the results of two recent studies involving membrane aerated biological water processors and present results of a trade study comparing the two systems with regards to waste stream composition, nutrient loading and system design. Results of optimal configurations will be presented.

  18. Bioremediation of contaminated mixtures of desert mining soil and sawdust with fuel oil by aerated in-vessel composting in the Atacama Region (Chile)

    International Nuclear Information System (INIS)

    Godoy-Faundez, Alex; Antizar-Ladislao, Blanca; Reyes-Bozo, Lorenzo; Camano, Andres; Saez-Navarrete, Cesar

    2008-01-01

    Since early 1900s, with the beginning of mining operations and especially in the last decade, small, although repetitive spills of fuel oil had occurred frequently in the Chilean mining desert industry during reparation and maintenance of machinery, as well as casual accidents. Normally, soils and sawdust had been used as cheap readily available sorbent materials of spills of fuel oil, consisting of complex mixtures of aliphatic and aromatic hydrocarbons. Chilean legislation considers these fuel oil contaminated mixtures of soil and sawdust as hazardous wastes, and thus they must be contained. It remains unknown whether it would be feasible to clean-up Chilean desert soils with high salinity and metal content, historically polluted with different commercial fuel oil, and contained during years. Thus, this study evaluated the feasibility of aerated in-vessel composting at a laboratory scale as a bioremediation technology to clean-up contaminated desert mining soils (fuel concentration > 50,000 mg kg -1 ) and sawdust (fuel concentration > 225,000 mg kg -1 ) in the Atacama Region. The composting reactors were operated using five soil to sawdust ratios (S:SD, 1:0, 3:1, 1:1, 1:3, 0:1, on a dry weight basis) under mesophilic temperatures (30-40 deg. C), constant moisture content (MC, 50%) and continuous aeration (16 l min -1 ) during 56 days. Fuel oil concentration and physico-chemical changes in the composting reactors were monitored following standard procedures. The highest (59%) and the lowest (35%) contaminant removals were observed in the contaminated sawdust and contaminated soil reactors after 56 days of treatment, respectively. The S:SD ratio, time of treatment and interaction between both factors had a significant effect (p < 0.050) on the contaminant removal. The results of this research indicate that bioremediation of an aged contaminated mixture of desert mining soil and sawdust with fuel oil is feasible. This study recommends a S:SD ratio 1:3 and a correct

  19. Bioremediation of contaminated mixtures of desert mining soil and sawdust with fuel oil by aerated in-vessel composting in the Atacama Region (Chile).

    Science.gov (United States)

    Godoy-Faúndez, Alex; Antizar-Ladislao, Blanca; Reyes-Bozo, Lorenzo; Camaño, Andrés; Sáez-Navarrete, César

    2008-03-01

    Since early 1900s, with the beginning of mining operations and especially in the last decade, small, although repetitive spills of fuel oil had occurred frequently in the Chilean mining desert industry during reparation and maintenance of machinery, as well as casual accidents. Normally, soils and sawdust had been used as cheap readily available sorbent materials of spills of fuel oil, consisting of complex mixtures of aliphatic and aromatic hydrocarbons. Chilean legislation considers these fuel oil contaminated mixtures of soil and sawdust as hazardous wastes, and thus they must be contained. It remains unknown whether it would be feasible to clean-up Chilean desert soils with high salinity and metal content, historically polluted with different commercial fuel oil, and contained during years. Thus, this study evaluated the feasibility of aerated in-vessel composting at a laboratory scale as a bioremediation technology to clean-up contaminated desert mining soils (fuel concentration>50,000 mg kg(-1)) and sawdust (fuel concentration>225,000 mg kg(-1)) in the Atacama Region. The composting reactors were operated using five soil to sawdust ratios (S:SD, 1:0, 3:1, 1:1, 1:3, 0:1, on a dry weight basis) under mesophilic temperatures (30-40 degrees C), constant moisture content (MC, 50%) and continuous aeration (16 l min(-1)) during 56 days. Fuel oil concentration and physico-chemical changes in the composting reactors were monitored following standard procedures. The highest (59%) and the lowest (35%) contaminant removals were observed in the contaminated sawdust and contaminated soil reactors after 56 days of treatment, respectively. The S:SD ratio, time of treatment and interaction between both factors had a significant effect (pcontaminant removal. The results of this research indicate that bioremediation of an aged contaminated mixture of desert mining soil and sawdust with fuel oil is feasible. This study recommends a S:SD ratio 1:3 and a correct nutrient balance

  20. Effect of aerated concrete blockwork joints on the heat transfer performance uniformity

    Directory of Open Access Journals (Sweden)

    Pukhkal Viktor

    2018-01-01

    Full Text Available Analysis of data on the effect of joints of the aerated concrete blocks on the heat transfer uniformity of exterior walls was carried out. It was concluded, that the values of the heat transfer performance uniformity factor in the literature sources were obtained for the regular fragment of a wall construction by approximate addition of thermal conductivities. Heat flow patterns for the aerated concrete exterior walls amid different values of the thermal conductivity factors and design ambient air temperature of -26 °C were calculated with the use of “ELCUT” software for modelling of thermal patterns by finite element method. There were defined the values for the heat transfer performance uniformity factor, reduced total thermal resistance and heat-flux density for the exterior walls. The calculated values of the heat transfer performance uniformity factors, as a function of the coefficient of thermal conductivity of aerated concrete blocks, differ from the known data by a more rigorous thermal and physical substantiation.

  1. Properties of Agro-Industrial Aerated Concrete as Potential Thermal Insulation for Building

    Directory of Open Access Journals (Sweden)

    Aminudin Eeydzah

    2016-01-01

    Full Text Available The present paper is aiming to provide an actual state of the development of non autoclaved Agro-Industrial aerated concrete by using multiple ashes as improvement of thermal behavior for building. The feasibility of Agro-Industrial wastes as lightweight concrete by utilizing the Palm Oil Fuel Ash (POFA as binder replacement and bottom ash as fine aggregate was investigated in this paper. Portland cement, bottom ash, aluminum powder and lime (Ca(OH2 were used in this study. The POFA was used to replace Portland cement and Hydrated Lime at 0%, 5%, 10% and 15% by weight and aluminum powder was added at 0.75% dry weight in order to form bubbles. The compressive strength, water absorption, porosity and the thermal conductivity test were carried out after the concrete were water cured for 7 days and later being exposed to the air and water until 28days. The results show that the 20% replacements give the optimum strength of 7.143MPa and 30% give the best thermal conductivity with 0.48W/mK. Hence, this study aim, was to develop an agro-industrial aerated concrete good in insulation but having an optimum strength. Hence, it has been found that the more the percentage of POFA is added the lower the thermal conductivity since the pore structure is increasing and by the optimization done, 30% replacement has been chosen as the best mix design for Agro-Industrial Aerated Concrete.

  2. Delayed ultraviolet light-induced cessation of respiration by inadequate aeration of Escherichia coli

    International Nuclear Information System (INIS)

    Joshi, J.G.; Swenson, P.A.; Schenley, R.L.

    1977-01-01

    Inadequately aerated Escherichia coli B/r cultures did not shut their respiration off 60 min after ultraviolet light (52 J/m 2 at 254 nm) as they did when well supplied with oxygen. Since cessation of respiration is associated with cell death, the result suggested that oxygen toxicity by superoxide radicals generated by cell metabolism might be responsible for cell death. The specific activity of superoxide dismutase, which scavenges O 2 - radicals, increased twofold after 90 min of adequate aeration, but the specific activity of catalase remained constant. Respiration and viability of irradiated cells were affected not at all by the presence of superoxide dismutase and only slightly by the presence of catalase. Metal ions such as Mn 2+ and Fe 2+ , inducers of superoxide dismutase, had no effect on respiration and viability. When irradiated cells were incubated under N 2 for 90 min, the respiration, growth, and viability time-course responses were the same as for cells not exposed to anaerobiosis. We conclude that superoxide anions generated at the time of irradiation play no part in cessation of respiration and cell death and that inadequate aeration or anaerobiosis delays the ultraviolet light-induced synthesis of proteins responsible for the irreversible cessation of respiration

  3. Effects of Aeration Treatment on γ-Aminobutyric Acid Accumulation in Germinated Tartary Buckwheat (Fagopyrum tataricum

    Directory of Open Access Journals (Sweden)

    Yuanxin Guo

    2016-01-01

    Full Text Available To explore the optimum condition of γ-aminobutyric acid (GABA accumulation in germinated tartary buckwheat, effects of some factors including aeration treatment, physiological indexes, air flow rate, culture temperature, and pH value of cultivating solution under hypoxia on GABA in germinated tartary buckwheat were investigated. The results showed that the dark cultures with distilled water at 30°C, 2 days, and aeration stress with 1.0 L/min air flow rate at 30°C were optimal for GABA accumulation. Under these conditions, the predicted content of GABA was up to 371.98 μg/g DW. The analysis of correlation indicated that there was a significant correlation (P<0.01 between GABA accumulation and physiological indexes. Box-Behnken experimental analysis revealed that optimal conditions with aeration treatment for GABA accumulation in germinated tartary buckwheat were air flow rate of 1.04 L/min, culture temperature of 31.25°C, and a pH value of 4.21. Under these conditions, the GABA content was predicted as high as 386.20 μg/g DW, which was close to the measured value (379.00±9.30 μg/g DW. The variance analysis and validation test suggested that this established regression model could predict GABA accumulation in tartary buckwheat during germination.

  4. Greenhouse gas production and efficiency of planted and artificially aerated constructed wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Maltais-Landry, Gabriel [Departement des sciences biologiques, Universite de Montreal 90, rue Vincent-D' Indy, Montreal (Ciheam), H2V 2S9 (Canada); Institut de recherche en biologie vegetale, Universite de Montreal 4101, rue Sherbrooke Est, Montreal (Ciheam), H1X 2B2 (Canada)], E-mail: gabriel.maltais-landry@umontreal.ca; Maranger, Roxane [Departement des sciences biologiques, Universite de Montreal 90, rue Vincent-D' Indy, Montreal (Ciheam), H2V 2S9 (Canada)], E-mail: r.maranger@umontreal.ca; Brisson, Jacques [Departement des sciences biologiques, Universite de Montreal 90, rue Vincent-D' Indy, Montreal (Ciheam), H2V 2S9 (Canada); Institut de recherche en biologie vegetale, Universite de Montreal 4101, rue Sherbrooke Est, Montreal (Ciheam), H1X 2B2 (Canada)], E-mail: jacques.brisson@umontreal.ca; Chazarenc, Florent [Institut de recherche en biologie vegetale, Universite de Montreal 4101, rue Sherbrooke Est, Montreal (Ciheam), H1X 2B2 (Canada)

    2009-03-15

    Greenhouse gas (GHG) emissions by constructed wetlands (CWs) could mitigate the environmental benefits of nutrient removal in these man-made ecosystems. We studied the effect of 3 different macrophyte species and artificial aeration on the rates of nitrous oxide (N{sub 2}O), carbon dioxide (CO{sub 2}) and methane (CH{sub 4}) production in CW mesocosms over three seasons. CW emitted 2-10 times more GHG than natural wetlands. Overall, CH{sub 4} was the most important GHG emitted in unplanted treatments. Oxygen availability through artificial aeration reduced CH{sub 4} fluxes. Plant presence also decreased CH{sub 4} fluxes but favoured CO{sub 2} production. Nitrous oxide had a minor contribution to global warming potential (GWP < 15%). The introduction of oxygen through artificial aeration combined with plant presence, particularly Typha angustifolia, had the overall best performance among the treatments tested in this study, including lowest GWP, greatest nutrient removal, and best hydraulic properties. - Methane is the main greenhouse gas produced in constructed wetlands and oxygen availability is the main factor controlling fluxes.

  5. Bubble growth as a means to measure dissolved nitrogen concentration in aerated water

    Science.gov (United States)

    Ando, Keita; Yamashita, Tatsuya

    2017-11-01

    Controlling the amount of dissolved gases in water is important, for example, to food processing; it is essential to quantitatively evaluate dissolved gas concentration. The concentration of dissolved oxygen (DO) can be measured by commercial DO meters, but that of dissolved nitrogen (DN) cannot be obtained easily. Here, we propose a means to measure DN concentration based on Epstein-Plesset-type analysis of bubble growth under dissolved gas supersaturation. DO supersaturation in water is produced by oxygen microbubble aeration. The diffusion-driven growth of bubbles nucleated at glass surfaces in contact with the aerated water is first observed. The observed growth is then compared to the extended Epstein-Plesset theory that considers Fick's mass transfer of both DO and DN across bubble interfaces; in this comparison, the unknown DN concentration is treated as a fitting parameter. Comparisons between the experiment and the theory suggest, as expected, that DN can be effectively purged by oxygen microbubble aeration. This study was supported in part by the Mizuho Foundation for the Promotion of Science and by a MEXT Grant-in-Aid for the Program for Leading Graduate Schools.

  6. Modeling of mixing in stirred bioreactors 4. mixing time for aerated bacteria, yeasts and fungus broths

    Directory of Open Access Journals (Sweden)

    Cascaval Dan

    2004-01-01

    Full Text Available The mixing time for bioreactors depends mainly on the rheoiogicai properties of the broths, the biomass concentration and morphology, mixing system characteristics and fermentation conditions. For quantifying the influence of these factors on the mixing efficiency for stirred bioreactors, aerated broths of bacteria (P. shermanii, yeasts (S. cerevisiae and fungi (P. chrysogenum, free mycelia and mycelial aggregates of different concentrations have been investigated using a laboratory bioreactor with a double turbine impeller. The experimental data indicated that the influence of the rotation speed, aeration rate and stirrer positions on the mixing intensity strongly differ from one system to another and must be correlated with the microorganism characteristics, namely: the biomass concentration and morphology. Moreover, compared with non-aerated broths, variations of the mixing time with the considered parameters are very different, due to the complex flow mechanism of gas-liquid dispersions. By means of the experimental data and using a multiregression analysis method some mathematical correlations for the mixing time of the general form: tm = a1*Cx2+a2*Cx+a3*IgVa+a4-N2+a5-N+a6/a7*L2+a8*L+a9 were established. The proposed equations offer good agreement with the experiments, the average deviation being ±6.7% - ±9.4 and are adequate for the flow regime Re < 25,000.

  7. Computational fluid dynamics simulations of membrane filtration process adapted for water treatment of aerated sewage lagoons.

    Science.gov (United States)

    Cano, Grégory; Mouahid, Adil; Carretier, Emilie; Guasp, Pascal; Dhaler, Didier; Castelas, Bernard; Moulin, Philippe

    2015-01-01

    The aim of this study is to apply the membrane bioreactor technology in an oxidation ditch in submerged conditions. This new wastewater filtration process will benefit rural areas (membranes developed without support are immersed in an aeration well and work in suction mode. The development of the membrane without support and more precisely the performance of spacers are approached by computational fluid dynamics in order to provide the best compromise between pressure drop/flow velocity and permeate flux. The numerical results on the layout and the membrane modules' geometry in the aeration well indicate that the optimal configuration is to install the membranes horizontally on three levels. Membranes should be connected to each other to a manifold providing a total membrane area of 18 m². Loss rate compared to the theoretical throughput is relatively low (less than 3%). Preliminary data obtained by modeling the lagoon provide access to its hydrodynamics, revealing that recirculation zones can be optimized by making changes in the operating conditions. The experimental validation of these results and taking into account the aeration in the numerical models are underway.

  8. The response of archaeal species to seasonal variables in a subtropical aerated soil: insight into the low abundant methanogens.

    Science.gov (United States)

    Xie, Wei; Jiao, Na; Ma, Cenling; Fang, Sa; Phelps, Tommy J; Zhu, Ruixin; Zhang, Chuanlun

    2017-08-01

    Archaea are cosmopolitan in aerated soils around the world. While the dominance of Thaumarchaeota has been reported in most soils, the methanogens are recently found to be ubiquitous but with low abundances in the aerated soil globally. However, the seasonal changes of Archaea community in the aerated soils are still in the mist. In this study, we investigated the change of Archaea in the context of environmental variables over a period of 12 months in a subtropical soil on the Chongming Island, China. The results showed that Nitrososphaera spp. were the dominant archaeal population while the methanogens were in low proportions but highly diverse (including five genera: Methanobacterium, Methanocella, Methanosaeta, Methanosarcina, and Methanomassiliicoccus) in the aerated soil samples determined by high throughput sequencing. A total of 126 LSA correlations were found in the dataset including all the 72 archaeal OTUs and 8 environmental factors. A significance index defined as the pagerank score of each OTU divided by its relative abundance was used to evaluate the significance of each OTU. The results showed that five out of 17 methanogen OTUs were significantly positively correlated with temperature, suggesting those methanogens might increase with temperature rather than being dormant in the aerated soils. Given the metabolic response of methanogens to temperature under aerated soil conditions, their contribution to the global methane cycle warrants evaluation.

  9. The effect of aeration on the removal of wastewater-derived pharmaceutical residues from groundwater - a laboratory study.

    Science.gov (United States)

    Burke, Victoria; Duennbier, Uwe; Massmann, Gudrun

    2013-01-01

    Several studies on waste- or drinking water treatment processes as well as on groundwater have recently shown that some pharmaceutical residues (PRs) are redox-sensitive. Hence, their (bio)degradation depends on the redox conditions prevalent in the aquifer. Groundwater, providing raw water for drinking water production, is often anoxic and aeration is a widespread treatment method applied mainly to eliminate unwanted iron and manganese from the water. As a side-effect, aeration may trigger the elimination of PRs. Within the present study the influence of aeration on the fate of a number of wastewater derived analgesics and their residues as well as several antimicrobial compounds was investigated. For this purpose, anoxic groundwater was transferred into stainless steel tanks, some of which were aerated while others were continuously kept anoxic. Results prove that the degradation of six phenazone type compounds is dependent on oxygen availability and compounds are efficiently removed under oxic conditions only. Concerning the antimicrobials, doxycycline and trimethoprim were better removed during aeration, whereas a slightly improved removal under anoxic conditions was observed for clindamycin, roxithromycin and clarithromycin. The study provides first laboratory proof of the redox-sensitivity of several organic trace pollutants. In addition, results demonstrate that aeration is an effective treatment for the elimination of a number of wastewater derived PRs.

  10. Increased Production of Hydrogen Peroxide by Lactobacillus delbrueckii subsp. bulgaricus upon Aeration: Involvement of an NADH Oxidase in Oxidative Stress

    Science.gov (United States)

    Marty-Teysset, C.; de la Torre, F.; Garel, J.-R.

    2000-01-01

    The growth of Lactobacillus delbrueckii subsp. bulgaricus (L. delbrueckii subsp. bulgaricus) on lactose was altered upon aerating the cultures by agitation. Aeration caused the bacteria to enter early into stationary phase, thus reducing markedly the biomass production but without modifying the maximum growth rate. The early entry into stationary phase of aerated cultures was probably related to the accumulation of hydrogen peroxide in the medium. Indeed, the concentration of hydrogen peroxide in aerated cultures was two to three times higher than in unaerated ones. Also, a similar shift from exponential to stationary phase could be induced in unaerated cultures by adding increasing concentrations of hydrogen peroxide. A significant fraction of the hydrogen peroxide produced by L. delbrueckii subsp. bulgaricus originated from the reduction of molecular oxygen by NADH catalyzed by an NADH:H2O2 oxidase. The specific activity of this NADH oxidase was the same in aerated and unaerated cultures, suggesting that the amount of this enzyme was not directly regulated by oxygen. Aeration did not change the homolactic character of lactose fermentation by L. delbrueckii subsp. bulgaricus and most of the NADH was reoxidized by lactate dehydrogenase with pyruvate. This indicated that NADH oxidase had no (or a very small) energetic role and could be involved in eliminating oxygen. PMID:10618234

  11. A field study on phytoremediation of dredged sediment contaminated by heavy metals and nutrients: the impacts of sediment aeration.

    Science.gov (United States)

    Wu, Juan; Yang, Lihua; Zhong, Fei; Cheng, Shuiping

    2014-12-01

    Compared to traditional chemical or physical treatments, phytoremediation has proved to be a cost-effective and environmentally sound alternative for remediation of contaminated dredged sediment. A field study was conducted in a sediment disposal site predominantly colonized by Typha angustifolia under different sediment moisture conditions to estimate the phytoremediation effects of dredged sediment. The moisture content was 37.30 % and 48.27 % in aerated and waterlogged sediment, respectively. Total nitrogen (TN) content was higher in the waterlogged sediment than in the aerated sediment. The total Cd contents were lower in aerated sediment, which was mainly resulted from the lower exchangeable fraction of Cd. The bioaccumulation of P, Cu and Pb in T. angustifolia was promoted by waterlogging, and the belowground tissue concentrations and accumulation factors (AFs) of Cu were higher than that of other metals, which can be explained by that Cu is an essential micronutrient for plants. Consistent with many previous studies, T. angustifolia showed higher metal levels in roots than in above-ground tissues at both the sediment conditions. Due to the improved biomass produced in the aerated sediment, the removals of nutrients and the metals by plant harvest were higher from aerated sediment than from waterlogged sediment. It was indicated that maintaining the dredged sediment aerated can avoid release risk and plant uptake of metals, while the opposite management option can promote phytoextraction of these contaminants.

  12. Reactor Physics

    International Nuclear Information System (INIS)

    Ait Abderrahim, A.

    2002-01-01

    SCK-CEN's Reactor Physics and MYRRHA Department offers expertise in various areas of reactor physics, in particular in neutron and gamma calculations, reactor dosimetry, reactor operation and control, reactor code benchmarking and reactor safety calculations. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 materials testing reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2001 are summarised

  13. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2001-04-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised.

  14. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2002-04-01

    SCK-CEN's Reactor Physics and MYRRHA Department offers expertise in various areas of reactor physics, in particular in neutron and gamma calculations, reactor dosimetry, reactor operation and control, reactor code benchmarking and reactor safety calculations. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 materials testing reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2001 are summarised.

  15. Reactor Physics

    International Nuclear Information System (INIS)

    Ait Abderrahim, A.

    2001-01-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised

  16. Reactor operation

    CERN Document Server

    Shaw, J

    2013-01-01

    Reactor Operation covers the theoretical aspects and design information of nuclear reactors. This book is composed of nine chapters that also consider their control, calibration, and experimentation.The opening chapters present the general problems of reactor operation and the principles of reactor control and operation. The succeeding chapters deal with the instrumentation, start-up, pre-commissioning, and physical experiments of nuclear reactors. The remaining chapters are devoted to the control rod calibrations and temperature coefficient measurements in the reactor. These chapters also exp

  17. Reactor safeguards

    CERN Document Server

    Russell, Charles R

    1962-01-01

    Reactor Safeguards provides information for all who are interested in the subject of reactor safeguards. Much of the material is descriptive although some sections are written for the engineer or physicist directly concerned with hazards analysis or site selection problems. The book opens with an introductory chapter on radiation hazards, the construction of nuclear reactors, safety issues, and the operation of nuclear reactors. This is followed by separate chapters that discuss radioactive materials, reactor kinetics, control and safety systems, containment, safety features for water reactor

  18. Nuclear reactors

    International Nuclear Information System (INIS)

    Middleton, J.E.

    1977-01-01

    Reference is made to water cooled reactors and in particular to the cooling system of steam generating heavy water reactors (SGHWR). A two-coolant circuit is described for the latter. Full constructural details are given. (U.K.)

  19. Reactor decommissioning

    International Nuclear Information System (INIS)

    Lawton, H.

    1984-01-01

    A pioneering project on the decommissioning of the Windscale Advanced Gas-cooled Reactor, by the UKAEA, is described. Reactor data; policy; waste management; remote handling equipment; development; and recording and timescales, are all briefly discussed. (U.K.)

  20. RA Reactor

    International Nuclear Information System (INIS)

    1978-02-01

    In addition to basic characteristics of the RA reactor, organizational scheme and financial incentives, this document covers describes the state of the reactor components after 18 years of operation, problems concerned with obtaining the licence for operation with 80% fuel, problems of spent fuel storage in the storage pool of the reactor building and the need for renewal of reactor equipment, first of all instrumentation [sr