WorldWideScience

Sample records for aegypti constituintes quimicos

  1. Chemical constituents of the stems of Spathelia excelsa (rutaceae) and activity against Aedes aegypti; Constituintes quimicos do caule de Spathelia excelsa (rutaceae) e atividade contra Aedes aegypti

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, Aline Carvalho de; Lima, Maria da Paz [Instituto Nacional de Pesquisas da Amazonia (INPA), Manaus, AM (Brazil). Coordenacao de Pesquisas em Produtos Naturais], e-mail: mdapaz@inpa.gov.br; Ferreira, Antonio Gilberto [Universidade Federal de Sao Carlos (UFSCAR), SP (Brazil). Dept. de Quimica; Tadei, Wanderli Pedro; Pinto, Ana Cristina da Silva [Instituto Nacional de Pesquisas da Amazonia (INPA), Manaus, AM (Brazil). Lab. de Vetores de Malaria e Dengue

    2009-07-01

    Phytochemical investigation from the stems of Spathelia excelsa (Rutaceae) collected in Amazonas yielded deacetylspathelin (1), 7,8-dimethoxyflindersine (2), new glabretal-type triterpenoid 3{beta}-angeloyl-21,24-epoxy-7{alpha}, 21{alpha}, 23{alpha}, 25-tetrahydroxy-4{alpha}, 4{beta}, 8{beta}, 10{beta}-tetramethyl-25-dimethyl-14,18-cyclo-5{alpha}, 13{alpha}, 14{alpha}, 17{alpha}-cholestane (3), in addition to the known steroids s-sitosterol and stigmasterol. Their structures were established on the basis of spectral data. The compounds 1 and 3 were assayed on Aedes aegypti (larvicidal and adulticidal activities and compound 3 exhibited larvicidal properties with LC{sub 50} of 4,8 {mu}g/mL. (author)

  2. Water extracts of Brazilian leguminous seeds as rich sources of larvicidal compounds against Aedes aegypti L.

    Directory of Open Access Journals (Sweden)

    Davi F. Farias

    2010-09-01

    Full Text Available This study assessed the toxicity of seed water extracts of 15 leguminous species upon Aedes aegypti larvae. A partial chemical and biochemical characterization of water extracts, as well as the assessment of their acute toxicity in mice, were performed. The extracts of Amburana cearensis, Anadenanthera macrocarpa, Dioclea megacarpa, Enterolobium contortisiliquum and Piptadenia moniliformis caused 100% of mortalit y after 1 to 3 h of exposure. They showed LC50 and LC90 values ranging from 0.43 ± 0.01 to 9.06 ± 0.12 mg/mL and from 0.71 ± 0.02 to 13.03 ± 0.15 mg/mL, respectively. Among the secondary metabolite constituents, the seed water extracts showed tannins, phenols, flavones, favonols, xanthones, saponins and alkaloids. The extracts also showed high soluble proteins content (0.98 to 7.71 mg/mL, lectin (32 to 256 HU/mL and trypsin inhibitory activity (3.64 = 0.43 to 26.19 = 0.05 gIT/kg of flour The electrophoretic profiles showed a great diversity of protein bands, many of which already described as insecticide proteins. The extracts showed low toxicity to mice (LD50 > 0.15 = 0.01 g/kg body weight, but despite these promising results, further studies are necessary to understand the toxicity of these extracts and their constituentsfrom primary and secondary metabolism upon Ae. aegypti.Este trabalho objetivou avaliar a toxicidade dos extratos aquosos de sementes de 15 espécies de leguminosas contra larvas de Aedes aegypti. Foi realizada uma caracterização química e bioquímica parcial dos extratos aquosos e a avaliação da toxicidade aguda em camundongos. Os extratos de Amburana cearensis, Anadenanthera macrocarpa, Dioclea megacarpa, Enterolobium contortisiliquum e Piptadenia moniliformis causaram 100% de mortalidade depois de 1 a 3 h de exposição e mostraram valores de CL50 e CL90 entre 0,43 = 0,01 e 9,06 ± 0,12 e entre 0,71 = 0,02 e 13,03 = 0,15 mg/mL, respectivamente. Dentre os constituintes do metabolismo secundário, os extratos

  3. Variabilidade sazonal dos constituintes da própolis vermelha e bioatividade em Artermia salina

    Directory of Open Access Journals (Sweden)

    Lívio César Cunha Nunes

    Full Text Available A própolis é uma substância resinosa coletada pelas abelhas de diversas partes das plantas. Sua composição depende da época, vegetação e local de coleta. Apresenta diversas atividades biológicas como antimicrobiana, antioxidante, antitumoral, dentre outras. Foi realizado estudo da variabilidade sazonal, nos meses de fevereiro, junho e outubro de 2006, dos constituintes voláteis da própolis vermelha de Pernambuco através da extração por headspace dinâmico e identificação por cromatografia gasosa acoplada com espectrometria de massas (CG-EM. Foram identificados 34 constituintes voláteis, sendo monoterpenos e monoterpenóides, sesquiterpenos e sesquiterpenóides, fenilpropanóides, aldeídos, cetonas e η-alcanos. Os constituintes majoritários foram o trans-anetol, α-copaeno e o metil cis-isoeugenol. Também foi realizado o perfil fitoquímico por cromatografia em camada delgada (CCD, através da qual os constituintes fenólicos foram identificados como majoritários. Com o extrato bruto metanólico da própolis, realizou-se o ensaio de letalidade em Artemia salina, que demonstrou DL50 de 18,9 µg/mL, sugerindo uma possível atividade antitumoral.

  4. Global genetic diversity of Aedes aegypti.

    Science.gov (United States)

    Gloria-Soria, Andrea; Ayala, Diego; Bheecarry, Ambicadutt; Calderon-Arguedas, Olger; Chadee, Dave D; Chiappero, Marina; Coetzee, Maureen; Elahee, Khouaildi Bin; Fernandez-Salas, Ildefonso; Kamal, Hany A; Kamgang, Basile; Khater, Emad I M; Kramer, Laura D; Kramer, Vicki; Lopez-Solis, Alma; Lutomiah, Joel; Martins, Ademir; Micieli, Maria Victoria; Paupy, Christophe; Ponlawat, Alongkot; Rahola, Nil; Rasheed, Syed Basit; Richardson, Joshua B; Saleh, Amag A; Sanchez-Casas, Rosa Maria; Seixas, Gonçalo; Sousa, Carla A; Tabachnick, Walter J; Troyo, Adriana; Powell, Jeffrey R

    2016-11-01

    Mosquitoes, especially Aedes aegypti, are becoming important models for studying invasion biology. We characterized genetic variation at 12 microsatellite loci in 79 populations of Ae. aegypti from 30 countries in six continents, and used them to infer historical and modern patterns of invasion. Our results support the two subspecies Ae. aegypti formosus and Ae. aegypti aegypti as genetically distinct units. Ae. aegypti aegypti populations outside Africa are derived from ancestral African populations and are monophyletic. The two subspecies co-occur in both East Africa (Kenya) and West Africa (Senegal). In rural/forest settings (Rabai District of Kenya), the two subspecies remain genetically distinct, whereas in urban settings, they introgress freely. Populations outside Africa are highly genetically structured likely due to a combination of recent founder effects, discrete discontinuous habitats and low migration rates. Ancestral populations in sub-Saharan Africa are less genetically structured, as are the populations in Asia. Introduction of Ae. aegypti to the New World coinciding with trans-Atlantic shipping in the 16th to 18th centuries was followed by its introduction to Asia in the late 19th century from the New World or from now extinct populations in the Mediterranean Basin. Aedes mascarensis is a genetically distinct sister species to Ae. aegypti s.l. This study provides a reference database of genetic diversity that can be used to determine the likely origin of new introductions that occur regularly for this invasive species. The genetic uniqueness of many populations and regions has important implications for attempts to control Ae. aegypti, especially for the methods using genetic modification of populations. © 2016 John Wiley & Sons Ltd.

  5. Global Genetic Diversity of Aedes aegypti

    Science.gov (United States)

    Gloria-Soria, Andrea; Ayala, Diego; Bheecarry, Ambicadutt; Calderon-Arguedas, Olger; Chadee, Dave D.; Chiappero, Marina; Coetzee, Maureen; Elahee, Khouaildi bin; Fernandez-Salas, Ildefonso; Kamal, Hany A.; Kamgang, Basile; Khater, Emad I. M.; Kramer, Laura D.; Kramer, Vicki; Lopez-Solis, Alma; Lutomiah, Joel; Martins, Ademir; Micieli, Maria Victoria; Paupy, Christophe; Ponlawat, Alongkot; Rahola, Nil; Rasheed, Syed Basit; Richardson, Joshua B.; Saleh, Amag A.; Sanchez-Casas, Rosa Maria; Seixas, Gonçalo; Sousa, Carla A.; Tabachnick, Walter J.; Troyo, Adriana; Powell, Jeffrey R.

    2016-01-01

    Mosquitoes, especially Aedes aegypti, are becoming important models for studying invasion biology. We characterized genetic variation at 12 microsatellite loci in 79 populations of Ae. aegypti, from 30 countries in six continents and used them to infer historical and modern patterns of invasion. Our results support the two subspecies Ae. aegypti formosus and Ae. aegypti aegypti as genetically distinct units. Ae. aegypti aegypti populations outside Africa are derived from ancestral African populations and are monophyletic. The two subspecies co-occur in both East Africa (Kenya) and West Africa (Senegal). In rural/forest settings (Rabai District of Kenya) the two subspecies remain genetically distinct whereas in urban settings they introgress freely. Populations outside Africa are highly genetically structured likely due to a combination of recent founder effects, discrete discontinuous habitats, and low migration rates. Ancestral populations in sub-Saharan Africa are less genetically structured, as are the populations in Asia. Introduction of Ae. aegypti to the New World coinciding with trans-Atlantic shipping in the 16th to 18th Centuries was followed by its introduction to Asia in the late 19th Century from the New World or from now extinct populations in the Mediterranean Basin. Aedes mascarensis is a genetically distinct sister species to Ae. aegypti s.l.. This study provides a reference database of genetic diversity that can be used to determine the likely origin of new introductions that occur regularly for this invasive species. The genetic uniqueness of many populations and regions has important implications for attempts to control Ae. aegypti, especially for methods using genetic modification of populations. PMID:27671732

  6. IDENTIFIKASI AEDES AEGYPTI DAN AEDES ALBOPICTUS

    Directory of Open Access Journals (Sweden)

    Diah Fitri Rahayu

    2013-09-01

    Full Text Available ABSTRAK. Demam Berdarah Dengue (DBD adalah penyakit yang disebabkan oleh virus Dengue yangditularkan oleh nyamuk . Kabupaten Banjarnegara merupakan daerah endemis reseptif DBD. Dari tahun ketahun kasus DBD cenderung meningkat, terutama di tahun 2009 - 2010. Vektor DBD di Kabupaten Banjarnegaraadalah Ae. aegypti dan Ae. albopictus. Ae. aegypti secara makroskopis terlihat sama seperti Ae. albopictus,namun perbedaannya terletak pada morfologi kepala (mesonotum di mana Ae. aegypti memiliki gambar garisseperti kepala kecapi berbentuk dengan dua garis lengkung dan dua garis lurus putih sementara Ae. albopictushanya memiliki satu garis putih di mesonotum tersebut.Kata kunci: identifikasi, Ae. aegypti, Ae. albopictusABSTRACT. Dengue hemorrhagic fever (DHF is a disease caused by the dengue virus transmitted by mosquito.Banjarnegara district is a Dengue receptive endemic area. From year to year the Dengue cases is likely toincrease, especially in 2009 - 2010. The main vector of dengue in Banjarnegara district is Aedes aegypti andAedes albopictus. Ae. aegypti morphologically look like with Ae. albopictus, but the difference lies in the headmorphology (mesonotum where A. aegypti has a picture of the line like a lyre-shaped head with two curved linesand two white straight line while A. albopictus has only one white stripe on the mesonotum.Key words:identification, Ae. aegypti, Ae. albopictus

  7. Temporal genetic stability of Stegomyia aegypti (= Aedes aegypti) populations.

    Science.gov (United States)

    Gloria-Soria, A; Kellner, D A; Brown, J E; Gonzalez-Acosta, C; Kamgang, B; Lutwama, J; Powell, J R

    2016-06-01

    The mosquito Stegomyia aegypti (= Aedes aegypti) (Diptera: Culicidae) is the primary vector of viruses that cause yellow fever, dengue and Chikungunya fever. In the absence of effective vaccines, the reduction of these diseases relies on vector control strategies. The success of these strategies is tightly linked to the population dynamics of target populations. In the present study, 14 collections from St. aegypti populations separated by periods of 1-13 years were analysed to determine their temporal genetic stability. Although temporal structure is discernible in most populations, the degree of temporal differentiation is dependent on the population and does not obscure the geographic structure of the various populations. The results suggest that performing detailed studies in the years prior to and after population reduction- or modification-based control interventions at each target field site may be useful in assessing the probability of success. © 2016 The Royal Entomological Society.

  8. Composição química e toxicidade frente Aedes aegypti L. e Artemia salina Leach do óleo essencial das folhas de Myrcia sylvatica (G. Mey. DC.

    Directory of Open Access Journals (Sweden)

    C.S. ROSA

    2016-03-01

    Full Text Available RESUMO A dengue está entre as doenças virais de propagação vetorial mais importante no mundo, causando sérios impactos de morbidade e mortalidade. Desta forma, o presente trabalho teve como objetivo analisar a composição química e a toxicidade do óleo essencial de Myrcia sylvatica (G. Mey D.C. frente Aedes aegypti e Artemia salina. Folhas de M. sylvatica foram coletadas no Parque Nacional da Chapada das Mesas, no município de Carolina (MA no mês de fevereiro de 2012. O óleo foi obtido por hidrodestilação e sua composição química foi determinada por cromatografia gasosa acoplada à espectrometria de massa (CG/EM. O bioensaio frente Artemia salina e às larvas de 3° estádio de Aedes aegypti foram realizados em diferentes concentrações. Os dados de mortalidade foram avaliados por regressão linear para determinar os valores de CL50. Obteve-se 0,5% de rendimento, sendo o (E-cariofileno o constituinte majoritário. O óleo essencial apresentou uma CL50 = 79,44 µg/mL frente A. salina, sendo considerado altamente tóxico. No entanto, este óleo não demonstrou efeito sobre as larvas de A. aegypti. Considerando que o teste de Artemia salina tem correlação com atividades biológicas de grande interesse terapêutico como antitumoral, o óleo essencial das folhas de M. sylvatica demonstrou potencial para desenvolvimento de produtos farmacêuticos.

  9. Avaliação da atividade antioxidante e quantificação dos principais constituintes bioativos de algumas variedades de frutas cítricas

    OpenAIRE

    Duzzioni, Alexandra Gelsleichter [UNESP

    2009-01-01

    As frutas cítricas são muito consumidas e apreciadas por todo o mundo, não só devido ao seu paladar agradável como também ao seu valor nutricional. São fontes de constituintes bioativos que podem atuar como antioxidantes em defesa ao nosso organismo. Existem relatos principalmente sobre os fitoquímicos e o potencial antioxidante das laranjas, no entanto as tangerinas, que também apresentam estes constituintes e atividade antioxidante, ainda são pouco estudadas. O Brasil se destaca na produção...

  10. Dispersal of Engineered Male Aedes aegypti Mosquitoes.

    Science.gov (United States)

    Winskill, Peter; Carvalho, Danilo O; Capurro, Margareth L; Alphey, Luke; Donnelly, Christl A; McKemey, Andrew R

    2015-11-01

    Aedes aegypti, the principal vector of dengue fever, have been genetically engineered for use in a sterile insect control programme. To improve our understanding of the dispersal ecology of mosquitoes and to inform appropriate release strategies of 'genetically sterile' male Aedes aegypti detailed knowledge of the dispersal ability of the released insects is needed. The dispersal ability of released 'genetically sterile' male Aedes aegypti at a field site in Brazil has been estimated. Dispersal kernels embedded within a generalized linear model framework were used to analyse data collected from three large scale mark release recapture studies. The methodology has been applied to previously published dispersal data to compare the dispersal ability of 'genetically sterile' male Aedes aegypti in contrasting environments. We parameterised dispersal kernels and estimated the mean distance travelled for insects in Brazil: 52.8 m (95% CI: 49.9 m, 56.8 m) and Malaysia: 58.0 m (95% CI: 51.1 m, 71.0 m). Our results provide specific, detailed estimates of the dispersal characteristics of released 'genetically sterile' male Aedes aegypti in the field. The comparative analysis indicates that despite differing environments and recapture rates, key features of the insects' dispersal kernels are conserved across the two studies. The results can be used to inform both risk assessments and release programmes using 'genetically sterile' male Aedes aegypti.

  11. Rhamnolipids: solution against Aedes aegypti?

    Directory of Open Access Journals (Sweden)

    Vinicius Luiz Silva

    2015-02-01

    Full Text Available Aedes aegypti mosquitoes are the primary transmitters of dengue fever, urban yellow fever and chikungunya viruses. This mosquito has developed resistance to the insecticides currently used to control their populations. These chemical insecticides are harmful to the environment and can have negative effects on human health. Rhamnolipids are environmentally compatible biological surfactants, but their insecticidal activity has not been extensively studied. The present study evaluated the potential larvicidal, insecticidal and repellent activities of rhamnolipids against Aedes aegypti. At concentrations of 800, 900 and 1000 mg/L, rhamnolipids eliminated all mosquito larvae in 18 hours and killed 100% of adults at 1000 mg/L. According to the results it may be conclude that rhamnolipids should be applied to control larvae and mosquitos besides present the repellency activity against Aedes aegypti.

  12. EFFECT OF STORAGE TEMPERATURE PERCENTAGE OF EGG HATCHING OF AEDES AEGYPTI IN LABORATORY=PENGARUH SUHU PENYIMPANAN TERHADAP PRESENTASE TETAS TELUR Aedes aegypti DI LABORATORIUM

    Directory of Open Access Journals (Sweden)

    Riyani Setiyaningsih

    2015-03-01

    Full Text Available EnglishABSTRACTAedes aegypti is the vector of Dengue Hemorrhagic Fever (DHF in Indonesia. Ae. aegypti has a high reproductive capacity, one female mosquitoes can lay 100-150 eggs. Eggs of Ae. aegypti can survive on dry temperatures within a few months, thus increasing the chances of transmission of dengue virus The aim of the study was to determine the effect of temperature on egg hatching percentage of Ae. aegypti. Eggs Ae. aegypti colonization in laboratory results are stored at room temperature and refrigerator temperature. Observations percentage of eggs hatching was observed at month zero, one, two, third, fourth, fifth, and sixth. The results of the study until the sixth month percentage of hatching eggs at room temperature was 63,17, 59,26, 24,33, 13,62, 10, and 0%. While storage on egg hatching refrigerator not occur in the first to sixth.INDONESIANAedes aegypti merupakan vektor Demam Berdarah Dengue (DBD di Indonesia. Ae. aegypti memiliki kemampuan reproduksi yang tinggi, satu ekor nyamuk betina dapat bertelur 100-150 butir telur. Telur Ae. aegypti mampu bertahan hidup pada suhu kering dalam beberapa bulan sehingga memperbesar peluang terjadinnya proses penularan virus DBD. Tujuan penelitian adalah mengetahui pengaruh suhu dan lama penyimpanan terhadap presentase penetasan telur Ae. aegypti. Telur Ae. aegypti hasil kolonisasi di laboratorium disimpan pada suhu ruang dan suhu refrigerator. Pengamatan presentase penetasan telur diamati pada bulan ke nol, kesatu, kedua, ketiga, keempat, kelima, dan keenam. Hasil penelitian pada bulan bertama sampai keenam presentase penetasan telur pada suhu ruang adalah 63,17, 59,26, 24,33, 13,62, 10, dan 0%. Sedangkan penyimpanan pada suhu kukas tidak terjadi penetasan telur pada bulan pertama sampai keenam.

  13. Patterns of geographic expansion of Aedes aegypti in the Peruvian Amazon.

    Directory of Open Access Journals (Sweden)

    Sarah Anne Guagliardo

    2014-08-01

    Full Text Available In the Peruvian Amazon, the dengue vector Aedes aegypti is abundant in large urban centers such as Iquitos. In recent years, it has also been found in a number of neighboring rural communities with similar climatic and socioeconomic conditions. To better understand Ae. aegypti spread, we compared characteristics of communities, houses, and containers in infested and uninfested communities.We conducted pupal-demographic surveys and deployed ovitraps in 34 communities surrounding the city of Iquitos. Communities surveyed were located along two transects: the Amazon River and a 95 km highway. We calculated entomological indices, mapped Ae. aegypti presence, and developed univariable and multivariable logistic regression models to predict Ae. aegypti presence at the community, household, or container level.Large communities closer to Iquitos were more likely to be infested with Ae. aegypti. Within infested communities, houses with Ae. aegypti had more passively-filled containers and were more often infested with other mosquito genera than houses without Ae. aegypti. For containers, large water tanks/drums and containers with solar exposure were more likely to be infested with Ae. aegypti. Maps of Ae. aegypti presence revealed a linear pattern of infestation along the highway, and a scattered pattern along the Amazon River. We also identified the geographical limit of Ae. aegypti expansion along the highway at 19.3 km south of Iquitos.In the Peruvian Amazon, Ae. aegypti geographic spread is driven by human transportation networks along rivers and highways. Our results suggest that urban development and oviposition site availability drive Ae. aegypti colonization along roads. Along rivers, boat traffic is likely to drive long-distance dispersal via unintentional transport of mosquitoes on boats.

  14. Toksisitas Insektisida Organofosfat Dan Karbamat Terhadap Nyamuk Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Endang Puji Astuti

    2013-02-01

    Full Text Available Abstract. Aedes aegypti mosquito is increasing problem of public health, being the vector responsible for Dengue and Chikungunya. Chlorpirifos (Organofosfat and Metonil (Carbamate were known to posses insecticide activity against insect. The study was aimed to examine effectiveness of Chlorpirifos and Metonil as insectiside against Ae. aegypti mos­quito Chlorpirifos a significantly higher insecticide activity against Ae. aegypti_than Metonil. The mosquito mortality was observed after 24 h exposure. The LCso value of Chlor­pirifos and Metonil were 0.64 mg/lt and 0,802 mg/lt, against Ae. aegypti mosquito. The mixed of both insecticide was LCso value 108.04 mg/lt, this result prove that mixed of both insecticede not sinergism. The result of th is study suggested that Chlorpirifos more effective insecticide against Ae. aegypti than Metonil. Key Words : Culex quinquefasciatus, insecticide, chlorpirifos, metonil

  15. Workbook on Identification of Aedes Aegypti Larvae.

    Science.gov (United States)

    Pratt, Harry D.; And Others

    This self-instructional booklet is designed to enable yellow fever control workers to identify the larvae of "Aedes aegypti." The morphological features of mosquito larvae are illustrated in this partially programed text, and the distinguishing features of "A. aegypti" indicated. A glossary is included. (AL)

  16. Comparative efficacy of existing surveillance tools for Aedes aegypti in Western Kenya.

    Science.gov (United States)

    Yalwala, Sancto; Clark, Jeffrey; Oullo, David; Ngonga, Daniel; Abuom, David; Wanja, Elizabeth; Bast, Joshua

    2015-12-01

    All traditional surveillance techniques for Aedes aegypti have been developed for the cosmopolitan domestic subspecies Ae. aegypti aegypti, and not the sylvatic subspecies, Ae. aegypti formosus. The predominant form in Western Kenya is Ae. aegypti formosus that is rarely associated with human habitations but is linked to transmission of sylvatic dengue virus strains. We compared five surveillance methods for their effectiveness in sampling Ae. aegypti formosus with the goal of determining a sustainable surveillance strategy in Kenya. The methods included larval and pupal surveys, oviposition trapping, BG-Sentinel trapping, resting boxes, and backpack aspirations. Larval and pupal surveys collected the highest number of Ae. aegypti formosus (51.3%), followed by oviposition traps (45.7%), BG-Sentinel traps (3.0%), and zero collected with either backpack aspiration or resting box collections. No Ae. aegypti formosus larvae or pupae were found indoors. The results indicate that oviposition traps and outdoor larval and pupal surveys were better surveillance methods for Ae. aegypti formosus in Western Kenya. © 2015 The Society for Vector Ecology.

  17. Especificidade da armadilha Adultrap para capturar fêmeas de Aedes aegypti (Diptera: Culicidae Specificity of the Adultrap for capturing females of Aedes aegypti (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    Almério de Castro Gomes

    2007-04-01

    Full Text Available A Adultrap é uma nova armadilha feita para capturar fêmeas de Aedes aegypti. Foram realizados testes para avaliar sua especificidade tendo como referência a técnica da aspiração da espécie em abrigos artificiais. A Adultrap ficou exposta por 24 horas no intradomicílio e peridomicílio de 120 casas sorteadas em dois bairros da Cidade de Foz do Iguaçu, Estado do Paraná. O teste estatístico foi o modelo log-linear de Poisson. O resultado foi a captura de 726 mosquitos Culicidae, dos quais 80 eram Aedes aegypti. A Adultrap capturou apenas fêmeas desta espécie, enquanto o aspirador os dois sexos de Aedes aegypti e mais cinco outras espécies. A Adultrap capturou Aedes aegypti dentro e fora das casas, mas a análise indicou que no peridomicílio a armadilha capturou significantemente mais fêmeas do que a aspiração. Também, ficou evidenciada a sensibilidade da Adultrap para detectar Aedes aegypti em situação de baixa freqüência.The Adultrap is a new trap built for capturing females of Aedes aegypti. Tests were carried out to evaluate the specificity of this trap in comparison with the technique of aspiration of specimens in artificial shelters. Adultraps were kept for 24 hours inside and outside 120 randomly selected homes in two districts of the city of Foz do Iguaçú, State of Paraná. The statistical test was Poisson’s log-linear model. The result was 726 mosquitoes captured, of which 80 were Aedes aegypti. The Adultrap captured only females of this species, while the aspiration method captured both sexes of Aedes aegypti and another five species. The Adultrap captured Aedes aegypti inside and outside the homes, but the analysis indicated that, outside the homes, this trap captured significantly more females than aspiration did. The sensitivity of the Adultrap for detecting females of Aedes aegypti in low-frequency situations was also demonstrated.

  18. TRANSMISI TRANSOVARIAL VIRUS DENGUE PADA TELUR NYAMUK AEDES AEGYPTI(L.

    Directory of Open Access Journals (Sweden)

    Magdalena Desiree Seran

    2013-03-01

    Full Text Available Abstract. The ability of dengue virus to maintain its existence in nature through two mechanisms, both horizontal and vertical transmission (transovarial of the infective female mosquitoes to the next generation. This study aims to investigate the transovarial transmission and transovarial infection rate (TIR of dengue virus in eggs Aedes aegypti infected mother has a peroral virus DEN-2. This study is an experimental study in the laboratory. The population of the study was Ae. aegypti adults who have previously been infected with DEN-2 virus orally and proved to be infected with DEN-2 transovarially (Fl. The research sample was egg of Ae. aegypti from F2 generation which colonized from DEN-2 transovarially infected Ae. aegypti (Fl. Egg squash preparations made as many as 50 samples from jive difJerent mosquito parents. The presence of dengue virus antigen in mosquitoes FO and Fl were checked by SPBC immunocytochemistry method and using monoclonal antibodies DSSC7 (l: 50 as standardized primary antibodies. The results shows the existence of transovarial transmission of dengue virus in eggs Ae. aegypti (F2 were seen in squash preparations in the form of a brownish color egg spread on embryonic tissues (TIR= 52%. It concludes that dengue virus is able to be transmitted vertically through the egg. Keywords: transovarial transmission, eggsquash, Aedes aegypti, transovarial infection rate (TIR Abstrak. Kemampuan virus dengue untuk mempertahankan keberadaanya di alam dilakukan melalui dua mekanisme yaitu transmisi horizontal dan dengan transmisi vertikal (transovarial yaitu dari nyamuk betina infektif ke generasi berikutnya. Penelitian ini bertujuan untuk mengetahui adanya transmisi transovarial dan transovarial infection rate (TIR virus dengue pada telur Ae. aegypti yang induknya telah diinfeksi virus DEN-2 secara peroraI. Penelitian merupakan jenis penelitian eksperimental di laboratorium. Populasi penelitian adalah Ae. aegypti betina dewasa yang

  19. Chemical constituents of Solanum buddleifolium Sendtn; Constituintes quimicos de Solanum buddleifolium Sendtn

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Francisco das Chagas L.; Torres, Maria da conceicao M.; Silveira, Edilberto R.; Pessoa, Otilia Deusdenia L., E-mail: opessoa@ufc.br [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Centro de Ciencias. Dept. de Quimica Organica e Inorganica; Braz-Filho, Raimundo [Universidade Estadual do Norte Fluminense, Campos, RJ (Brazil). Dept. de Quimica; Guedes, Maria Lenise da Silva [Universidade Federal da Bahia (UFBA), Ondina, BA (Brazil). Inst. de Biologia. Dept. de Botanica

    2013-10-01

    The chemical investigation of the stem EtOH extract of S. buddleifolium resulted in the isolation of terpenoids, amides, lignans and a steroidal alkaloid. Based on HRMS, IR and {sup 1}H and {sup 13}C NMR data analysis, the structures of the isolated compounds were identified as: 13-hydroxysolavetivone, betulinic acid, N-trans-caffeoyltyramine, N-trans-feruloyldopamine, N-trans-p-cumaroyltyramine, N-trans-feruloyltyramine, N-trans-feruloyl- 3'-O-methoxydopamine, alangilignoside C, isolariciresinol, polistachiol, (+)-(8R,7'S,8'S)-3{alpha}-O-({beta}-D-glucopiranosyl)-lioniresinol, (-)-(8S,7'R,8'R)-3{alpha}-O-({beta}-D-glucopiranosyl)-lioniresinol and solamargine. The occurrence of terpenoids and amides is common in Solanum, unlike lignans which are rare. The isolated lignans described in this work are reported for the first time in the genus Solanum. (author)

  20. Chemical constituents of Bombacopsis glabra (bombacaceae); Constituintes quimicos de Bombacopsis glabra (bombacaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Paula, Vanderlucia F.; Cruz, Mariluze P. [Universidade Estadual do Sudoeste da Bahia, Jequie, BA (Brazil). Dept. de Quimica e Exatas]. E-mail: vfpaula@uesb.br; Barbosa, Luiz C. de A. [Universidade Federal de Vicosa, MG (Brazil). Dept. de Quimica

    2006-03-15

    The chemical study of the barks of the stem and roots of Bombacopsis glabra (Bombacaceae) led to the isolation identification of 5-hydroxy-3,7,4'-trimethoxyflavone (1), 5-hydroxy-3,6,7,4'-tetramethoxyflavone (2), the naphtoquinone isohemigossypolone (3), the ester triacontyl p-coumarate (4) besides lupeol and a mixture of {beta}-sitosterol and stigmasterol. Their structures were elucidated by spectroscopic analysis, including IR, {sup 1}H and {sup 13}C NMR and MS. All these compounds, except 3, were isolated for the first time in the family. (author)

  1. PENGENDALIAN JENTIK Aedes Aegypti MENGGUNAKAN Mesocyclops Aspericomis MELALUI PARTISIPASI MASYARAKAT

    Directory of Open Access Journals (Sweden)

    Umi Widyastuti

    2012-07-01

    Full Text Available Mesocyclops aspericornis was investigated for its effectiveness in controlling Aedes aegypti larvae in a variety of containers e.g metal drum, cistern, clay jars, and other container made of plastic. A study was carried out in Kenteng hamlet, Tegalrejo village, Salatiga Municipality. It was conducted by health-workers (staff of Vector and Reservoir Control Research Unit and Health Center of Tegalrejo and the community, especially the woman's organization namely "family empowering and welfareness ". which participate in releasing M. aspericornis for controlling Ae. aegypti larvae. The community has responsibility to release M. aspericornis in Kenteng RT01 and 02 as the treated area I. Meanwhile, Health-workers have responsibility to release it in Kenteng RT 04, 05, and 07 as the treated area II and Kenteng RT 03 and 06 as the untreated control area (no M. aspericornis released. The aim of the study were: a, to determine the effectiveness of M. aspericornis in decreasing larval populations of Ae. aegypti in the containers, and b. to determine the Knowledge, Attitude, and Practice (KAP of the community, referring to disease, vector and control of Dengue Haemorhagic Fever (DHF. M. aspericornis was effective to decrease larval populations of Ae. aegypti in Kenteng area. The increasing number of Ae. aegypti larvae free containers of 24.29-84,02% and 35.75-92.01% were shown in respectively treated area I and II. The KAP of the community referring to disease, vector and control of DHF increased after the health education conducted. It's concluded that the community of Kenteng hamlet is active in participation to control Ae. aegypti. As a recommend, control of Ae. aegypti larvae using M. aspericornis through community partisipation should be considered due to a good prospect and effectiveness of this agent to control of Ae. aegypti larvae in the laboratory as well as in the field   Key words : Vector control, M. aspericornis, Ae. aegypti, Dengue

  2. PEMETAAN, KARAKTERISTIK HABITAT DAN STATUS RESISTENSI Aedes aegypti DI KOTA BANJARMASIN KALIMANTAN SELATAN

    Directory of Open Access Journals (Sweden)

    Safitri -

    2013-12-01

    Full Text Available ABSTRACT. Control program of Aedes aegypti in Banjarmasin by using Malation has been done since almost 15 years ago. Related to this, a study about distribution and resistence of Ae.aegypti inBanjarmasin has been done. Ae.aegypti shown to be in almost all area in Banjarmasin, with water container in the bathroom and in the house are more liked. Susceptibility test showed thatthis mosquito was resistence to Malation 0,8%. Therefor, a policy to change this type of insecticide is needed.Key words : Ae.aegypti, resistence, dengue fever, Malation ABSTRAKProgram pengendalian nyamuk Aedes aegypti di Banjarmasin dengan menggunakan Malation telah dilakukan sejak hampir 15 tahun lalu. Terkait hal ini, sebuah studi tentang distribusi dan resistensi Ae. aegypti di Banjarmasin telah dilakukan. Ae. aegypti ditemukan di hampir semua wilayah di Banjarmasin dan lebih menyukai bak mandi dan penampungan air lainnya di dalam rumah. Uji Kerentanan menunjukkan bahwa nyamukini resisten terhadap Malation 0,8%. Maka, kebijakan untuk mengubah jenis insektisida yang digunakan sangat dibutuhkan Kata kunci: Ae. aegypti, resistensi, demam berdarah, Malation

  3. Principales criaderos para Aedes aegypti y culícidos asociados, Argentina Main breeding-containers for Aedes aegypti and associated culicids, Argentina

    Directory of Open Access Journals (Sweden)

    Marina Stein

    2002-10-01

    Full Text Available Se identificaron criaderos de Aedes (Stegomyia aegypti en dos ciudades de la provincia del Chaco (Noreste de Argentina: Presidencia Roque Saenz Peña y Machagai. Los recipientes encontrados en los patios de las viviendas capaces de colectar agua se clasificaron según tipo y tamaño, se contaron y examinaron. Aedes aegypti y Culex quinquefasciatus fueron las especies mas abundantes, encontrándose además Cx. maxi, Cx. saltanensis y Ochlerotatus scapularis. Los neumáticos y cajas de baterías para autos fueron los recipientes que más aportaron a la producción de formas inmaduras de los culícidos colectados. Las lluvias fueron un factor importante para la proliferacion de Ae. aegypti, así como también el habito comun en la población de guardar recipientes en sus casas que permitan el desarrollo de estos culícidos.Breeding containers for Aedes (Stegomyia aegypti were identified in two cities of Chaco Province (northeast Argentina: Presidencia Roque Saenz Peña and Machagai. All water-retaining recipients found in house backyards capable to retain water were classified according to their type and size, counted and checked. Aedes aegypti and Culex quinquefasciatus were the most frequently collected species, being also found Cx. maxi, Cx. saltanensis and Ochlerotatus scapularis. Tires and car batteries represented the most important type of container where immature forms of culicids could be found. Rain was an important factor for Ae. aegypti proliferation, as well as the widespread habit of the population of keeping useless containers at home, which allows the development of culicids.

  4. Shifting patterns of Aedes aegypti fine scale spatial clustering in Iquitos, Peru.

    Science.gov (United States)

    LaCon, Genevieve; Morrison, Amy C; Astete, Helvio; Stoddard, Steven T; Paz-Soldan, Valerie A; Elder, John P; Halsey, Eric S; Scott, Thomas W; Kitron, Uriel; Vazquez-Prokopec, Gonzalo M

    2014-08-01

    Empiric evidence shows that Aedes aegypti abundance is spatially heterogeneous and that some areas and larval habitats produce more mosquitoes than others. There is a knowledge gap, however, with regards to the temporal persistence of such Ae. aegypti abundance hotspots. In this study, we used a longitudinal entomologic dataset from the city of Iquitos, Peru, to (1) quantify the spatial clustering patterns of adult Ae. aegypti and pupae counts per house, (2) determine overlap between clusters, (3) quantify the temporal stability of clusters over nine entomologic surveys spaced four months apart, and (4) quantify the extent of clustering at the household and neighborhood levels. Data from 13,662 household entomological visits performed in two Iquitos neighborhoods differing in Ae. aegypti abundance and dengue virus transmission was analyzed using global and local spatial statistics. The location and extent of Ae. aegypti pupae and adult hotspots (i.e., small groups of houses with significantly [pentomologic surveys. The extent of clustering was used to quantify the probability of finding spatially correlated populations. Our analyses indicate that Ae. aegypti distribution was highly focal (most clusters do not extend beyond 30 meters) and that hotspots of high vector abundance were common on every survey date, but they were temporally unstable over the period of study. Our findings have implications for understanding Ae. aegypti distribution and for the design of surveillance and control activities relying on household-level data. In settings like Iquitos, where there is a relatively low percentage of Ae. aegypti in permanent water-holding containers, identifying and targeting key premises will be significantly challenged by shifting hotspots of Ae. aegypti infestation. Focusing efforts in large geographic areas with historically high levels of transmission may be more effective than targeting Ae. aegypti hotspots.

  5. Shifting patterns of Aedes aegypti fine scale spatial clustering in Iquitos, Peru.

    Directory of Open Access Journals (Sweden)

    Genevieve LaCon

    2014-08-01

    Full Text Available Empiric evidence shows that Aedes aegypti abundance is spatially heterogeneous and that some areas and larval habitats produce more mosquitoes than others. There is a knowledge gap, however, with regards to the temporal persistence of such Ae. aegypti abundance hotspots. In this study, we used a longitudinal entomologic dataset from the city of Iquitos, Peru, to (1 quantify the spatial clustering patterns of adult Ae. aegypti and pupae counts per house, (2 determine overlap between clusters, (3 quantify the temporal stability of clusters over nine entomologic surveys spaced four months apart, and (4 quantify the extent of clustering at the household and neighborhood levels.Data from 13,662 household entomological visits performed in two Iquitos neighborhoods differing in Ae. aegypti abundance and dengue virus transmission was analyzed using global and local spatial statistics. The location and extent of Ae. aegypti pupae and adult hotspots (i.e., small groups of houses with significantly [p<0.05] high mosquito abundance were calculated for each of the 9 entomologic surveys. The extent of clustering was used to quantify the probability of finding spatially correlated populations. Our analyses indicate that Ae. aegypti distribution was highly focal (most clusters do not extend beyond 30 meters and that hotspots of high vector abundance were common on every survey date, but they were temporally unstable over the period of study.Our findings have implications for understanding Ae. aegypti distribution and for the design of surveillance and control activities relying on household-level data. In settings like Iquitos, where there is a relatively low percentage of Ae. aegypti in permanent water-holding containers, identifying and targeting key premises will be significantly challenged by shifting hotspots of Ae. aegypti infestation. Focusing efforts in large geographic areas with historically high levels of transmission may be more effective than

  6. Determinasi Strain Aedes aegypti (Linn. yang Rentan Homozigot dengan Metode Seleksi Indukan Tunggal

    Directory of Open Access Journals (Sweden)

    Isfanda Isfanda

    2017-06-01

    Full Text Available Abstract. Aedes aegypti is a type of mosquito that can carry dengue virus, yellow fever and chikunguya. The spread of this mosquito is very broad, covering almost all tropical regions worldwide. This study aims to determine the vulnerability status of homozygous Ae. aegypti. Sample of Ae. aegypti is mosquito strain from Health Entomology Laboratory Bogor Institute of Agriculture and at random sampling. Ae. aegypti eggs which comes from the breeders hatched separately. Insecticide‐treated paper (impregnated paper malathion, bendiokarb and deltamethrin are use for insecticides testing using WHO test kit. The analysis showed that the mosquito Ae. aegypti tested with a single sib‐selection method and were exposed to the insecticide malathion, propoksur, and showed an increasing trend sipermetrin vulnerability homozygous at each generation. As for the fourth generation (F4 has not shown changes into a strain that is homozygous susceptible to three types of insecticides. The formation of homozygous susceptible strains take over five generations.Keywords: Ae. aegypti, malathion, bendiocarb, deltamethrin, single sib‐selection methodAbstrak. Aedes aegypti merupakan jenis nyamuk yang dapat membawa virus dengue, demam kuning (yellow fever dan chikunguya. Penyebaran nyamuk ini sangat luas, meliputi hampir semua daerah tropis di seluruh dunia. Penelitian ini bertujuan mengetahui status kerentanan nyamuk Ae. aegypti secara homozigot. Nyamuk Ae. aegypti yang dijadikan sampel yaitu nyamuk dewasa strain yang ada di Laboratorium Entomologi Kesehatan Institut Pertanian Bogor dan diambil secara acak. Telur Ae. aegypti yang berasal dari satu indukan ditetaskan secara terpisah. Insektisida yang digunakan untuk pengujian menggunakan kertas berinsektisida (impregnated paper malation, bendiokarb, dan deltametrin dengan menggunakan WHO test kit. Hasil analisis menunjukkan bahwa nyamuk Ae. aegypti yang diuji dengan metode seleksi indukan tunggal serta dipaparkan

  7. The Maxillary Palp of Aedes aegypti, a Model of Multisensory Integration

    Science.gov (United States)

    2014-01-01

    The maxillary palp of Aedes aegypti, a model of multisensory integration Jonathan D. Bohbot, Jackson T. Sparks, Joseph C. Dickens* United States...24 February 2014 Keywords: Aedes aegypti Olfaction Mosquito Maxillary palp Thermosensation Mechanosensation a b s t r a c t Female yellow-fever...mosquitoes, Aedes aegypti, are obligate blood-feeders and vectors of the pathogens that cause dengue fever, yellow fever and Chikungunya. This feeding

  8. Stage-Structured Population Dynamics of AEDES AEGYPTI

    Science.gov (United States)

    Yusoff, Nuraini; Budin, Harun; Ismail, Salemah

    Aedes aegypti is the main vector in the transmission of dengue fever, a vector-borne disease affecting world population living in tropical and sub-tropical countries. Better understanding of the dynamics of its population growth will help in the efforts of controlling the spread of this disease. In looking at the population dynamics of Aedes aegypti, this paper explored the stage-structured modeling of the population growth of the mosquito using the matrix population model. The life cycle of the mosquito was divided into five stages: eggs, larvae, pupae, adult1 and adult2. Developmental rates were obtained for the average Malaysian temperature and these were used in constructing the transition matrix for the matrix model. The model, which was based only on temperature, projected that the population of Aedes aegypti will blow up with time, which is not realistic. For further work, other factors need to be taken into account to obtain a more realistic result.

  9. OVIPOSITION PREFERENCE OF Aedes aegypti AGAINST VARIOUS LEAF EXTRACT AS AN ATRACTANT

    Directory of Open Access Journals (Sweden)

    Sara Gustia Wibowo

    2015-07-01

    Full Text Available Aedes aegypti merupakan vektor pembawa virus Dengue yang menyebabkan penyakit Demam Berdarah Dengue (DBD.Pengendalian secara alami menggunakan bahan nabati merupakan alternatif pengendalian yang ramah lingkungan. Salahsatu pengendalian secara alami adalah memodifikasi ovitrap dengan penambahan zat aktif nabati sebagai atraktan untukmenarik nyamuk bertelur dan dapat menjadi ovisida dan larvasida. Tujuan penelitian ini adalah mengetahui preferensibertelurnya nyamuk Ae. aegypti pada ovitrap dengan ekstrak daun mimba (Azadirachta indica, kecubung (Datura metel,zodia (Evodia suavolens dan jenu (Derris elliptica. Jenis penelitian eksperimen dengan rancangan acak lengkap. Keempatjenis ekstrak daun tersebut diisiikan pada ovitrap, dimasukan ke dalam kandang yang berisi 30 ekor Ae. aegypti dengankondisi kenyang darah. Pengamatan dilakukan setiap hari sampai hari ke-3. Hasil uji preferensi berbagai jenis ekstrak inimenunjukkan ovitrap yang berisi ekstrak daun jenu (D. elliptica lebih banyak ditemukan telur Ae. aegypti dibandingkandengan kontrol maupun ovitrap dengan ekstrak daun lainnya. Persentase telur pada kontainer dengan ekstrak jenu adalah44,2%, sedangkan yang terkecil ekstrak zodia (E. suaveolans 9,2%. Hasil uji Anova menunjukkan bahwa perlakuan antarkelompok berbeda nyata (p=0,000. Tanaman jenu (D. elliptica mempunyai potensi sebagai atraktan terhadap nyamuk Ae.aegypti dalam proses oviposisi.Kata kunci: atraktan, oviposisi, jenu (Derris elliptica, Aedes aegypti

  10. Fauna de mosquitos asociada con Aedes aegypti en Guaduas, Colombia

    Directory of Open Access Journals (Sweden)

    Víctor Alberto Olano

    1993-06-01

    Full Text Available Durante un estudio sobre la ecología del Aedes aegypti llevado a cabo en el área urbana de Guaduas, Colombia, se hallaron un total de siete especies de mosquitos que compartían hábitats con esta especie. Los criaderos en los cuales se encontró un mayor número de mosquitos asociados con el Aedes aegypti fueron los tanques bajos (albercas. Larvas de Toxorhynchites spp. se encontraron en tanques elevados. Se discute la importancia de estos hallazgos con relación a los aspectos de ecología y control del Aedes aegypti.

  11. Susceptibilidade de Aedes aegypti aos inseticidas temephos e cipermetrina, Brasil Susceptibility of Aedes aegypti to temephos and cypermethrin insecticides, Brazil

    Directory of Open Access Journals (Sweden)

    Jonny E Duque Luna

    2004-12-01

    Full Text Available Realizaram-se bioensaios para detectar a susceptibilidade de Aedes aegypti aos inseticidas químicos, temefós e cipermetrina. Os resultados mostraram que esta espécie é suscetível a temefós e apresenta resistência a cipermetrinae.Bioassays were performed in order to detect the susceptibility of Aedes aegypti to the chemical insecticides temephos and cypermethrin. The results showed that this species is susceptible to temephos and presents resistance to cypermethrin.

  12. THE INSECT GROWTH REGULATOR, TRIFLUMURON (OMS-2015 AGAINST AEDES AEGYPTI IN JAKARTA, INDONESIA

    Directory of Open Access Journals (Sweden)

    M. Soekirno

    2012-09-01

    Full Text Available Uji laboratorium dan lapangan dengan IGR Triflumuron (OMS-2015 terhadap larva nyamuk Aedes aegypti telah dilakukan di Jakarta. Uji laboratorium dilakukan dengan 6 variasi dosis, yaitu 0,004; 0,011; 0,034; 0,10; 0,33 dan 1,0 ppm Triflumuron terhadap perkembangan larva nyamuk Ae. aegypti di dalam tempayan. Dari uji laboratorium dapat diketahui bahwa Triflumuron dengan dosis 0,004 ppm dapat menekan perkembangan pupa untuk menjadi dewasa dalam waktu 2 minggu, sedangkan dosis 0,10 ppm menekan padat populasi nyamuk Ae. aegypti selama 4 minggu dan dosis 1,0 ppm menekan padat populasi nyamuk Ae. aegypti selama 8 minggu. Uji lapangan dengan menggunakan Triflumuron di daerah pelabuhan Tanjung Priok, Jakarta, seluas 27 hektar dengan dua kali perlakuan, dengan dosis 0,042 dan 0,075 ppm, terjadi penurunan populasi nyamuk Ae. aegypti dewasa dan indeks pupa menjadi 0 dalam 4 hari setelah perlakuan. Penurunan populasi nyamuk Ae. aegypti dewasa terlihat setelah 2 minggu se­sudah perlakuan dengan tidak berhasilnya larva/pupa menjadi nyamuk dewasa. 

  13. Aedes aegypti D7 Saliva Protein Inhibits Dengue Virus Infection.

    Directory of Open Access Journals (Sweden)

    Michael J Conway

    2016-09-01

    Full Text Available Aedes aegypti is the primary vector of several medically relevant arboviruses including dengue virus (DENV types 1-4. Ae. aegypti transmits DENV by inoculating virus-infected saliva into host skin during probing and feeding. Ae. aegypti saliva contains over one hundred unique proteins and these proteins have diverse functions, including facilitating blood feeding. Previously, we showed that Ae. aegypti salivary gland extracts (SGEs enhanced dissemination of DENV to draining lymph nodes. In contrast, HPLC-fractionation revealed that some SGE components inhibited infection. Here, we show that D7 proteins are enriched in HPLC fractions that are inhibitory to DENV infection, and that recombinant D7 protein can inhibit DENV infection in vitro and in vivo. Further, binding assays indicate that D7 protein can directly interact with DENV virions and recombinant DENV envelope protein. These data reveal a novel role for D7 proteins, which inhibits arbovirus transmission to vertebrates through a direct interaction with virions.

  14. Imidacloprid impairs the post-embryonic development of the midgut in the yellow fever mosquito Stegomyia aegypti (=Aedes aegypti).

    Science.gov (United States)

    Fernandes, K M; Gonzaga, W G; Pascini, T V; Miranda, F R; Tomé, H V V; Serrão, J E; Martins, G F

    2015-09-01

    The mosquito Stegomyia aegypti (=Aedes aegypti) (Diptera: Culicidae) is a vector for the dengue and yellow fever viruses. As blood digestion occurs in the midgut, this organ constitutes the route of entry of many pathogens. The effects of the insecticide imidacloprid on the survival of St. aegypti were investigated and the sub-lethal effects of the insecticide on midgut development were determined. Third instar larvae were exposed to different concentrations of imidacloprid (0.15, 1.5, 3.0, 6.0 and 15.0 p.p.m.) and survival was monitored every 24 h for 10 days. Midguts from imidacloprid-treated insects at different stages of development were dissected and processed for analyses by transmission electron microscopy, immunofluorescence microscopy and terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL) assays. Imidacloprid concentrations of 3.0 and 15.0 p.p.m. were found to affect midgut development similarly. Digestive cells of the fourth instar larvae (L4) midgut exposed to imidacloprid had more multilamellar bodies, abundantly found in the cell apex, and more electron-lucent vacuoles in the basal region compared with those from untreated insects. Moreover, imidacloprid interfered with the differentiation of regenerative cells, dramatically reducing the number of digestive and endocrine cells and leading to malformation of the midgut epithelium in adults. The data demonstrate that imidacloprid can reduce the survival of mosquitoes and thus indicate its potentially high efficacy in the control of St. aegypti populations. © 2015 The Royal Entomological Society.

  15. Aedes aegypti resistance development to commonly used insecticides in Jakarta, Indonesia.

    Directory of Open Access Journals (Sweden)

    Penny Humaidah Hamid

    Full Text Available Aedes aegypti is the primary vector of various relevant arthropod-borne viral infectious diseases worldwide. The mosquito control is still mainly performed by using insecticides but their effectiveness is increasingly questioned nowadays. We here conducted a study on Ae. aegypti resistance development towards several commonly used insecticides in the capital city of Jakarta, Indonesia. In order to achieve this goal, Ae. aegypti eggs from Jakarta were collected with ovitraps and hatched in the insectary of the Gadjah Mada University, Indonesia. The F0 generations were used for WHO resistance tests and knockdown resistance (kdr assays. Presented results clearly showed that there was resistance development of Ae. aegypti populations to the here tested pyrethroid insecticides (i. e. permethrin. Observed mortalities were less than 90% with highest resistance against 0.75% permethrin concentrations. Furthermore, a significant association of V1016G gene mutations with resistance phenotypes to 0.75% permethrin was observed. Nevertheless, the F1534C mutation did not show a significant correlation to resistance development. In conclusion, our results show that populations of Ae. aegypti mosquitoes within the city of Jakarta have developed resistance against several routinely used pyrethroid insecticides in local performed control programs. Thus, the regular verification/assessment of resistance development status will hopefully help in the future to assist local public health authorities in their mosquito control programs by recommending and managing the rotation of different routinely used insecticides with diverse effector mechanisms in order to delay Ae. aegypti resistance development.

  16. The immune strategies of mosquito Aedes aegypti against microbial infection.

    Science.gov (United States)

    Wang, Yan-Hong; Chang, Meng-Meng; Wang, Xue-Li; Zheng, Ai-Hua; Zou, Zhen

    2018-06-01

    Yellow fever mosquito Aedes aegypti transmits many devastating arthropod-borne viruses (arboviruses), such as dengue virus, yellow fever virus, Chikungunya virus, and Zika virus, which cause great concern to human health. Mosquito control is an effective method to block the spread of infectious diseases. Ae. aegypti uses its innate immune system to fight against arboviruses, parasites, and fungi. In this review, we briefly summarize the recent findings in the immune response of Ae. aegypti against arboviral and entomopathogenic infections. This review enriches our understanding of the mosquito immune system and provides evidence to support the development of novel mosquito control strategies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Recomendaciones para la vigilancia de Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Roberto Barrera

    2016-09-01

    Full Text Available La enfermedades causadas por arbovirus transmitidos por Aedes aegypti, como el dengue, el chikungunya y el zika, continúan aumentando en incidencia anual y expansión geográfica. Una limitación clave para el control de A. aegypti ha sido la ausencia de herramientas eficaces para vigilar su población y poder determinar las medidas de control que realmente funcionan. La vigilancia de A. aegypti se ha basado principalmente en la obtención de los índices aédicos, los cuales guardan poca relación con el número de hembras del mosquito, que son las responsables de la transmisión de los virus. El reciente desarrollo de técnicas de muestreo de adultos de este vector promete facilitar las labores de vigilancia y control. En esta revisión se presentan las diversas técnicas de vigilancia del mosquito, así como una discusión sobre su utilidad, con recomendaciones para lograr una vigilancia entomológica más efectiva.

  18. Heat Sensitivity of wMel Wolbachia during Aedes aegypti Development.

    Directory of Open Access Journals (Sweden)

    Jill N Ulrich

    2016-07-01

    Full Text Available The wMel strain of Wolbachia bacteria is known to prevent dengue and Zika virus transmission in the mosquito vector Aedes aegypti. Accordingly, the release of wMel-infected A. aegypti in endemic regions has been recommended by the World Health Organization as a potential strategy for controlling dengue and Zika outbreaks. However, the utility of this approach could be limited if high temperatures in the aquatic habitats where A. aegypti develop are detrimental to Wolbachia. We exposed wMel-infected A. aegypti eggs and larvae to fluctuating daily temperatures of 30-40°C for three, five, or seven days during their development. We found that Wolbachia levels in females emerging from heat treatments were significantly lower than in the controls that had developed at 20-30°C. Notably, seven days of high temperatures starting at the egg stage reduced Wolbachia levels in emerging females to less than 0.1% of the wMel control levels. However, after adult females returned to 20-30°C for 4-7 days, they experienced differing degrees of Wolbachia recovery. Our findings suggest that the spread of Wolbachia in wild A. aegypti populations and any consequent protection from dengue and Zika viruses might be limited in ecosystems that experience periods of extreme heat, but Wolbachia levels recover partially after temperatures return to normal.

  19. Larvicidal activity of Cybistax antisyphilitica against Aedes aegypti larvae.

    Science.gov (United States)

    Rodrigues, A M S; de Paula, J E; Roblot, F; Fournet, A; Espíndola, L S

    2005-12-01

    The larvicidal activity against Aedes aegypti larvae of a stem wood hexane extract of Cybistax antisyphilitica was evaluated. Bioassay-guided fractionation of the crude extract, monitored by larvicidal assay, led to the isolation of a natural quinone identified as 2-hydroxy-3-(3-methyl-2-butenyl)-1.4-naphthoquinone (lapachol). This compound was quite potent against A. aegypti larvae (LC50 26.3 microg/ml).

  20. Role of Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse) in local dengue epidemics in Taiwan.

    Science.gov (United States)

    Tsai, Pui-Jen; Teng, Hwa-Jen

    2016-11-09

    Aedes mosquitoes in Taiwan mainly comprise Aedes albopictus and Ae. aegypti. However, the species contributing to autochthonous dengue spread and the extent at which it occurs remain unclear. Thus, in this study, we spatially analyzed real data to determine spatial features related to local dengue incidence and mosquito density, particularly that of Ae. albopictus and Ae. aegypti. We used bivariate Moran's I statistic and geographically weighted regression (GWR) spatial methods to analyze the globally spatial dependence and locally regressed relationship between (1) imported dengue incidences and Breteau indices (BIs) of Ae. albopictus, (2) imported dengue incidences and BI of Ae. aegypti, (3) autochthonous dengue incidences and BI of Ae. albopictus, (4) autochthonous dengue incidences and BI of Ae. aegypti, (5) all dengue incidences and BI of Ae. albopictus, (6) all dengue incidences and BI of Ae. aegypti, (7) BI of Ae. albopictus and human population density, and (8) BI of Ae. aegypti and human population density in 348 townships in Taiwan. In the GWR models, regression coefficients of spatially regressed relationships between the incidence of autochthonous dengue and vector density of Ae. aegypti were significant and positive in most townships in Taiwan. However, Ae. albopictus had significant but negative regression coefficients in clusters of dengue epidemics. In the global bivariate Moran's index, spatial dependence between the incidence of autochthonous dengue and vector density of Ae. aegypti was significant and exhibited positive correlation in Taiwan (bivariate Moran's index = 0.51). However, Ae. albopictus exhibited positively significant but low correlation (bivariate Moran's index = 0.06). Similar results were observed in the two spatial methods between all dengue incidences and Aedes mosquitoes (Ae. aegypti and Ae. albopictus). The regression coefficients of spatially regressed relationships between imported dengue cases and Aedes mosquitoes

  1. Efectos de la competencia larval en los mosquitos de contenedores artificiales, Aedes aegypti y Culex pipiens (Diptera: Culicidae en condiciones semi-controladas Effects of larval competition between the container mosquitoes, Aedes aegypti and Culex pipiens (Diptera: Culicidae in semi-controlled conditions

    Directory of Open Access Journals (Sweden)

    Analía Francia

    2011-12-01

    Full Text Available Las larvas de los mosquitos Aedes aegypti (Linneo y Culex pipiens Linneo pueden criar conjuntamente en pequeños contenedores artificiales de agua, se genera así una competencia interespecífica y/o intraespecífica. El objetivo de este trabajo fue comparar la magnitud relativa de la competencia intra e interespecífica en A. aegypti y C. pipiens, generada durante el desarrollo larval en contenedores artifi ciales. Las variables medidas como respuesta fueron la supervivencia y el tiempo de desarrollo larval, y la biomasa total producida en estado de pupa. Se criaron larvas de ambos mosquitos en neumáticos de automóvil con agua declorinada y hojarasca. Se introdujeron larvas recién eclosionadas de acuerdo a la densidad (5 estimada según un censo previo de A. aegypti y C. pipiens. Serealizaron los siguientes tratamientos agregando larvas de: (1 A. aegypti hasta alcanzar δ A. aegypti determinada según el censo previo, (2 C. pipiens hasta δ C. pipiens del censo previo, (3 A. aegypti hasta alcanzar la suma de δ A. aegypti y δ C. pipiens del censo previo, (4 C. pipiens hasta alcanzar la suma de δ A. aegypti y δ C. pipiens del censo previo y (5 A. aegypti y C. pipiens hasta δ A. aegypti y δ C. pipiens del censo previo. Las tres variables medidas fueron afectadas por los tratamientos, excepto la supervivencia y la biomasa producida por C. pipiens. Aedes aegypti fue más alterada por la competencia intraespecífica que por la competencia interespecífica. En C. pipiens, la competencia interespecífica superó en sus efectos a la competencia intraespecífica. Existió asimetría competitiva, ya que C. pipiens fue más afectada por A. aegypti que lo contrario.Larvae of Aedes aegypti (Linneo and Culex pipiens Linneo may develop together in small artificial water containers, promoting inter- and/or intra-specific competition. Our aim was to compare the relative importance of interspecific and intraspecific competition in both species during

  2. Truck-mounted Area-wide Application of Pyriproxyfen Targeting Aedes aegypti and Aedes albopictus in Northeast Florida

    Science.gov (United States)

    2014-12-01

    TRUCK-MOUNTED AREA-WIDE APPLICATION OF PYRIPROXYFEN TARGETING AEDES AEGYPTI AND AEDES ALBOPICTUS IN NORTHEAST FLORIDA1 CARL W. DOUD,2,3 ANTHONY M...truck-mounted ultra-low volume applications of pyriproxyfen against Aedes aegypti larvae in artificial water containers and wild adult Ae. albopictus...larval control, Aedes aegypti, Aedes albopictus INTRODUCTION Aedes albopictus (Skuse) (Asian tiger mosquito) and Ae. aegypti (L.) (yellow fever

  3. Toxicity of Thiophenes from Echinops transiliensis (Asteraceae) against Aedes aegypti (Diptera: Culicidae) Larvae

    Science.gov (United States)

    2014-01-01

    Toxicity of Thiophenes from Echinops transiliensis (Asteraceae) against Aedes aegypti (Diptera: Culicidae) Larvae by Hiroshi Nakano*a)b)c), Abbas...larvicides against Aedes aegypti. Structural differences among compounds 3, 5, and 8 consisted in differing AcO and OH groups attached to C(3’’) and C(4...serious human diseases including malaria, Japanese encephalitis, yellow fever, dengue, and filariasis. The urban-adapted Aedes aegypti mosquito has become

  4. Monooxygenase activitity in Aedes aegypti population in Tembalang subdistrict, Semarang city

    Directory of Open Access Journals (Sweden)

    Dyah Widiastuti

    2015-06-01

    Full Text Available Dengue Haemorrhagic Fever (DHF is a major health problem in Tembalang sub district, Semarang City. Fogging with insecticide applications was done frequently as an effort to control Dengue vectors. The use of insecticides from the same class in a long time can lead to resistance in mosquitos’ population. The research aimed to observe the activity of monooxygenases in Aedes aegypti populations in Tembalang Subdistrict, Semarang. The study was conducted during February-November 2014 with a cross-sectional design in 10 villages in Tembalang Subdistirict, Semarang City. Field strains of Ae. aegypti eggs were collected using ovitraps. The collected eggs were grown under standard condition to adult mosquitoes. Mosquitos’ homogenate were stored at -85C and used for biochemical assays. The results showed there was increased monooxygenases activity in Ae. aegypti populations. Resistance to synthetic pyrethroid insecticide in Ae. aegypti mosquitoes population in Tembalang Subdistrict might be caused by the mechanism of detoxification enzymes in particular monooxygenases

  5. VECTOR RESISTANCE STATUS OF DENGUE HEMORRHAGIC FEVER (Aedes aegypti IN THE SIDOREJO DISTRICT SALATIGA CITY AGAINST TEMEPHOS (ORGANOPHOSPHATES

    Directory of Open Access Journals (Sweden)

    Ary Oktsari Yanti S

    2014-06-01

    Full Text Available One of the efforts to control the incidence of Dengue Hemorrhagic Fever (DHF is contrled thedengue vector larvae using larvasida. The most widely larvasida used to control larvae Ae.aegypti is temephos. In Indonesia 1% temephos (abate 1SG has been used since 1976, and since1980 has been used for the eradication program ofAe. aegypti larvae. The purpose of this studyis to determine the resistance status of vectors of dengue hemorrhagic fever (Ae. aegypti ofendemic, sporadic, and potentially in Sub District Sidorejo Salatiga City to temephos(organofosfat. This research was conducted using experimental research design (TrueExperiment, posttcst design with control groups (posttest-only Control Group Design. Thepopulation of the research were larvae of Ae. aegypti collected from the study area. Samples testlarvae were used of Ae. aegypti third and early fourth instars larvae which were maintenance ofthe first generation. The result showed that the mortality percentages of Ae. aegypti larvaeof endemic, sporadic and potential administratives against temephos using WHO standardconcentration (0,625; 0,125; 0,025 mg/1 indicates the mortality of Ae. aegypti larvae by 100%Based on the status resistance criteria, Ae. aegypti larvae from endemic, sporadic, and potentialadministratives of Sidorejo Sub-District, Salatiga City is still susceptible to temephos.Keywords : Status of resistance, Aedes aegypti. TemephosSalah satu upaya menurunkan Demam Berdarah Dengue (DBD adalah melaluipengcndalian jentik vektor DBD dengan larvasida. Larvasida yang digunakan untukmengcndalikan jentik Ae. aegypti adalah temephos. Temephos 1% (abate ISG sudah programdi Indonesia sejak 1976, scjak 1980 telah digunakan secara massal untuk programpemberantasan jentik Ae. aegypti. Tujuan penelitian ini adalah untuk mengetahui status resistensivektor demam berdarah dengue Ae. aegypti di kclurahan endemis, sporadis, dan potensialKecamatan Sidorejo Kota Salatiga terhadap temephos

  6. Pengaruh Frekuensi Penghisapan Darah Terhadap Perkembangan, Reproduksi,vertilitas Dan Rasio Sex Aedes Aegypti

    OpenAIRE

    Setiyaningsih, Riyani; Agustini, Maria

    2012-01-01

    Aedes aegypti is a vector of Dengue hemorrhagic fever in Indonesia. Aedesaegypti has a high reproduction ability. Each individual can produce 50-100 eggs. Which80% of them are fertile. The mosquito is multiple biting (which means each individualsucks blood several time). Based on that background, this research was aimed torecognize the frequency of blood sucking to development, reproduction, fertility, and sexratio of Ae. aegypti. Thirty Ae. aegypti mosquito were put into the plastic cupsindi...

  7. Allergens involved in the cross-reactivity of Aedes aegypti with other arthropods.

    Science.gov (United States)

    Cantillo, Jose Fernando; Puerta, Leonardo; Lafosse-Marin, Sylvie; Subiza, Jose Luis; Caraballo, Luis; Fernandez-Caldas, Enrique

    2017-06-01

    Cross-reactivity between Aedes aegypti and mites, cockroaches, and shrimp has been previously suggested, but the involved molecular components have not been fully described. To evaluate the cross-reactivity between A aegypti and other arthropods. Thirty-four serum samples from patients with asthma and/or allergic rhinitis were selected, and specific IgE to A aegypti, Dermatophagoides pteronyssinus, Dermatophagoides farinae, Blomia tropicalis, Periplaneta americana. and Litopenaeus vannamei was measured by enzyme-linked immunosorbent assay. Cross-reactivity was investigated using pooled serum samples from allergic patients, allergenic extracts, and the recombinant tropomyosins (Aed a 10.0201, Der p 10, Blo t 10, Lit v 1, and Per a 7). Four IgE reactive bands were further characterized by matrix-assisted laser desorption/ionization tandem time of flight. Frequency of positive IgE reactivity was 82.35% to at least one mite species, 64.7% to A aegypti, 29.4% to P americana, and 23.5% to L vannamei. The highest IgE cross-reactivity was seen between A aegypti and D pteronyssinus (96.6%) followed by L vannamei (95.4%), B tropicalis (84.4%), and P americana (75.4%). Recombinant tropomyosins from mites, cockroach, or shrimp inhibited the IgE reactivity to the mosquito at a lower extent than the extracts from these arthropods. Several bands of A aegypti cross-reacted with arthropod extracts, and 4 of them were identified as odorant binding protein, mitochondrial cytochrome C, peptidyl-prolyl cis-trans isomerase, and protein with hypothetical magnesium ion binding function. We identified 4 novel cross-reactive allergens in A aegypti allergenic extract. These molecules could influence the manifestation of allergy to environmental allergens in the tropics. Copyright © 2017 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  8. Swarming Mechanisms in the Yellow Fever Mosquito: Aggregation Pheromones are Involved in the Mating Behavior of Aedes aegypti

    Science.gov (United States)

    2014-12-01

    behavior of Aedes aegypti Emadeldin Y. Fawaz1, Sandra A. Allan2, Ulrich R. Bernier2, Peter J. Obenauer3, and Joseph W. Diclaro II1 1Vector Biology... Aedes aegypti swarming behavior and identified associated chemical cues. Novel evidence is provided that Ae. aegypti females aggregate by means of...the isolated aggregation pheromones in controlling Ae. aegypti. Journal of Vector Ecology 39 (2): 347-354. 2014. Keyword Index: Aedes aegypti, swarm

  9. QUÍMICA DA ATMOSFERA: CONSTITUINTES NATURAIS, POLUENTES E SUAS REAÇÕES

    Directory of Open Access Journals (Sweden)

    Waldir Nagel Schirmer

    2009-01-01

    Full Text Available A química da atmosfera compreende tanto o ar não contaminado (apenas com seus constituintes químicos naturais quanto o ar altamente poluído. De modo geral, os princípios (fenômenos que regem a “atmosfera natural” (sem contaminação são os mesmos que governam as reações numa atmosfera poluída. Uma vez lançados na atmosfera, os gases podem reagir entre si formando, muitas vezes, compostos ainda mais danosos à saúde e/ou ecossistema (caso dos oxidantes fotoquímicos. Assim, o entendimento dos mecanismos de reação desses compostos é primordial na elaboração de estratégias de controle de gases poluentes bem como de uma legislação mais restritiva no que se refere à emissão de tais agentes.

  10. QUÍMICA DA ATMOSFERA: CONSTITUINTES NATURAIS, POLUENTES E SUAS REAÇÕES

    Directory of Open Access Journals (Sweden)

    Waldir Nagel Schirmer

    2008-12-01

    Full Text Available A química da atmosfera compreende tanto o ar não contaminado (apenas com seus constituintes químicos naturais quanto o araltamente poluído. De modo geral, os princípios (fenômenos que regem a “atmosfera natural” (sem contaminação são os mesmosque governam as reações numa atmosfera poluída. Uma vez lançados na atmosfera, os gases podem reagir entre si formando,muitas vezes, compostos ainda mais danosos à saúde e/ou ecossistema (caso dos oxidantes fotoquímicos. Assim, o entendimentodos mecanismos de reação desses compostos é primordial na elaboração de estratégias de controle de gases poluentes bem comode uma legislação mais restritiva no que se refere à emissão de tais agentes.

  11. Dominância de Aedes aegypti sobre Aedes albopictus no litoral sudeste do Brasil Dominance of Aedes aegypti over Aedes albopictus in the southeastern coast of Brazil

    Directory of Open Access Journals (Sweden)

    Ricardo A Passos

    2003-12-01

    Full Text Available OBJETIVO: Analisar a infestação de Aedes aegypti e Aedes albopictus e verificar sua associação com fatores climáticos e com a sua freqüência em recipientes de área urbana. MÉTODOS: Foi selecionado o município de São Sebastião, localizado no litoral Sudeste do Brasil. Foram utilizados os dados do "Programa de Controle de Vetores de Dengue e Febre Amarela no Estado de São Paulo" que realiza a vigilância entomológica em pontos estratégicos, armadilhas e delimitação de focos. Os pontos estratégicos são imóveis onde existem recipientes em condições favoráveis à proliferação de larvas. Para análise dos dados, foram utilizados os testes de significância estatística: Kruskal-Wallis, Dwass-Steel-Chritchlow-Fligne e Mann-Whitney. RESULTADOS: Verificou-se crescimento anual da positividade de armadilhas e pontos estratégicos para Ae. aegypti e diminuição para Ae. albopictus. Observou-se aumento do número de imaturos de Ae. aegypti e diminuição da outra espécie. Na positividade de imóveis para a presença de larvas, verificou-se aumento gradativo do número de imóveis com Ae. Aegypti, superando a positividade para Ae. albopictus. Houve uma fraca correlação das espécies com os fatores abióticos. As maiores freqüências de imaturos de ambas espécies foram em recipientes artificiais passíveis de remoção. CONCLUSÕES: Os resultados evidenciaram no período de estudo a predominância de Ae. aegypti sobre Ae. albopictus em área urbana, indicando que o crescimento populacional do primeiro parece ter afetado a chance de sua coexistência. Sugere-se que algum processo de seleção natural possa estar operando e desse modo contribuindo para levar à separação das duas espécies.OBJECTIVE: To assess infestation of Aedes aegypti and Aedes albopiticus and describe their association with weather conditions and container colonization in urban areas. METHODS: The town of São Sebastião in the southeastern coast of Brazil

  12. Dengue-1 virus and vector competence of Aedes aegypti (Diptera: Culicidae) populations from New Caledonia.

    Science.gov (United States)

    Calvez, Elodie; Guillaumot, Laurent; Girault, Dominique; Richard, Vaea; O'Connor, Olivia; Paoaafaite, Tuterarii; Teurlai, Magali; Pocquet, Nicolas; Cao-Lormeau, Van-Mai; Dupont-Rouzeyrol, Myrielle

    2017-08-09

    Dengue virus (DENV) is the arbovirus with the highest incidence in New Caledonia and in the South Pacific region. In 2012-2014, a major DENV-1 outbreak occurred in New Caledonia. The only known vector of DENV in New Caledonia is Aedes aegypti but no study has yet evaluated the competence of New Caledonia Ae. aegypti populations to transmit DENV. This study compared the ability of field-collected Ae. aegypti from different locations in New Caledonia to transmit the DENV-1 responsible for the 2012-2014 outbreak. This study also aimed to compare the New Caledonia results with the vector competence of Ae. aegypti from French Polynesia as these two French countries have close links, including arbovirus circulation. Three wild Ae. aegypti populations were collected in New Caledonia and one in French Polynesia. Female mosquitoes were orally exposed to DENV-1 (10 6 FFU/ml). Mosquito bodies (thorax and abdomen), heads and saliva were analyzed to measure infection, dissemination, transmission rates and transmission efficiency, at 7, 14 and 21 days post-infection (dpi), respectively. DENV-1 infection rates were heterogeneous, but dissemination rates were high and homogenous among the three Ae. aegypti populations from New Caledonia. Despite this high DENV-1 dissemination rate, the transmission rate, and therefore the transmission efficiency, observed were low. Aedes aegypti population from New Caledonia was less susceptible to infection and had lower ability to transmit DENV-1 than Ae. aegypti populations from French Polynesia. This study suggests that even if susceptible to infection, the New Caledonian Ae. aegypti populations were moderately competent vectors for DENV-1 strain from the 2012-2014 outbreak. These results strongly suggest that other factors might have contributed to the spread of this DENV-1 strain in New Caledonia and in the Pacific region.

  13. Aktivitas enzim monooksigenase pada populasi nyamuk Aedes aegypti di Kecamatan Tembalang, Kota Semarang

    Directory of Open Access Journals (Sweden)

    Dyah Widiastuti

    2015-06-01

    Full Text Available Abstract. Dengue Haemorrhagic Fever (DHF is a major health problem in Tembalang sub district, Semarang City. Fogging with insecticide applications was done frequently as an effort to control Dengue vectors. The use of insecticides from the same class in a long time can lead to resistance in mosquitos’ population. The research aimed to observe the activity of monooxygenases in Aedes aegypti populations in Tembalang Subdistrict, Semarang. The study was conducted during February-November 2014 with a cross-sectional design in 10 villages in Tembalang Subdistirict, Semarang City. Field strains of Ae. aegypti eggs were collected using ovitraps. The collected eggs were grown under standard condition to adult mosquitoes. Mosquitos’ homogenate were stored at -85°C and used for biochemical assays. The results showed there was increased monooxygenases activity in Ae. aegypti populations. Resistance to synthetic pyrethroid insecticide in Ae. aegypti mosquitoes population in Tembalang Subdistrict might be caused by the mechanism of detoxification enzymes in particular monooxygenases Keywords: monooxygenase, insecticide, Ae. aegypti, resistance  Abstrak. Demam Berdarah Dengue (DBD masih menjadi masalah kesehatan utama di Kecamatan Tembalang, Kota Semarang. Tindakan fogging untuk pengendalian vektor DBD sering dilakukan. Penggunaan insektisida dari golongan yang sama dalam waktu cukup lama dapat memicu terjadinya resistensi. Tujuan penelitian untuk mengamati aktivitas enzim monooksigenase pada populasi nyamuk Aedes aegypti di Kecamatan Tembalang, Kota Semarang. Penelitian dilaksanakan bulan Februari-November 2014 dengan desain potong lintang di 10 desa di Kecamatan Tembalang, Kota Semarang. Pada penelitian ini dilakukan pemasangan ovitrap untuk mendapatkan sampel telur yang dipelihara menjadi nyamuk dewasa. Sampel homogenate nyamuk disimpan pada suhu -85°C, selanjutnya dilakukan peng-ujian resistensi dengan uji biokimia untuk melihat aktivitas enzim

  14. Insecticide susceptibility of Aedes aegypti populations from Senegal and Cape Verde Archipelago.

    Science.gov (United States)

    Dia, Ibrahima; Diagne, Cheikh Tidiane; Ba, Yamar; Diallo, Diawo; Konate, Lassana; Diallo, Mawlouth

    2012-10-22

    Two concomitant dengue 3 (DEN-3) epidemics occurred in Cape Verde Archipelago and Senegal between September and October 2009. Aedes aegypti was identified as the vector of these epidemics as several DEN-3 virus strains were isolated from this species in both countries. The susceptibility to pyrethroids, organochlorine, organophosphates and carbamate was investigated in two field strains of Aedes aegypti from both countries using WHO diagnostic bioassay kits in order to monitor their the current status of insecticide susceptibility. The two tested strains were highly resistant to DDT. The Cape Verde strain was found to be susceptible to all others tested insecticides except for propoxur 0.1%, which needs further investigation. The Dakar strain was susceptible to fenitrothion 1% and permethrin 0.75%, but displayed reduced susceptibility to deltamethrin, lambda-cyhalothrin and propoxur. As base-line results, our observations stress a careful management of insecticide use for the control of Ae. aegypti. Indeed, they indicate that DDT is no longer efficient for the control of Ae. aegypti populations in Cape Verde and Dakar and further suggest a thorough follow-up of propoxur susceptibility status in both sites and that of deltamethrin and lambda-cyhalothrin in Ae. aegypti populations in Dakar. Thus, regular monitoring of susceptibility is greatly needed as well as the knowing if this observed resistance/susceptibility is focal or not and for observed resistance, the use of biochemical methods is needed with detailed comparison of resistance levels over a large geographic area. Aedes aegypti, Insecticides, Susceptibility, Cape Verde, Senegal.

  15. The wMel strain of Wolbachia Reduces Transmission of Zika virus by Aedes aegypti.

    Science.gov (United States)

    Aliota, Matthew T; Peinado, Stephen A; Velez, Ivan Dario; Osorio, Jorge E

    2016-07-01

    Zika virus (ZIKV) is causing an explosive outbreak of febrile disease in the Americas. There are no effective antiviral therapies or licensed vaccines for this virus, and mosquito control strategies have not been adequate to contain the virus. A promising candidate for arbovirus control and prevention relies on the introduction of the intracellular bacterium Wolbachia into Aedes aegypti mosquitoes. This primarily has been proposed as a tool to control dengue virus (DENV) transmission; however, evidence suggests Wolbachia infections confer protection for Ae. aegypti against other arboviruses. At present, it is unknown whether or not ZIKV can infect, disseminate, and be transmitted by Wolbachia-infected Ae. aegypti. Using Ae. aegypti infected with the wMel strain of Wolbachia that are being released in Medellin, Colombia, we report that these mosquitoes have reduced vector competence for ZIKV. These results support the use of Wolbachia biocontrol as a multivalent strategy against Ae. aegypti-transmitted viruses.

  16. The resistance map of Aedes aegypti (Linn. to cypermethrin and malathion in Central Java

    Directory of Open Access Journals (Sweden)

    Bina Ikawati

    2015-06-01

    Full Text Available The increasing prevalence of Dengue Haemmorhaegic Fever (DHF is spread through all districts in Indonesia. Dengue Haemorrhagic Fever Control such as vector control, focussing to break DHF transmission. Some research about Ae. aegypti resistance had been done in DHF endemic area in Central Java. Resistance status of Ae. aegypti against insecticide programme promoted by health government in middle and low endemic DHF in Central Java was investigated in this research. Sample collected from 100 houses selected purposively in every village, at every District there were 3 villages selected. Samples consisted of egg, larvae and adult mosquitoes of Ae. aegypti, and reared to get F1. Resistance test of Ae. aegypti done by using WHO susceptibility impregnated paper test procedure. This research showed that Ae. aegypti in all research location had been resistance to malathion 0.8% with mosquitoes mortality average between 13.80%-61.67% and almost all sample is resistance to cypermethrin 0.05% with mosquitoes mortality between 10.00%-63.33% except with sample from Banjarnegara District which has mosquitoes mortality of 84.20%. The conclusion of this research is that Ae. aegypti in all research location had been resistance to malathion. Almost all location resistant to cypermethrin except Banjarnegara District sample which has tolerance level.

  17. Chemical constituents of Gustavia Augusta L. (Lecythidaceae); Constituintes quimicos de Gustavia Augusta L. (Lecythidaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Afonso Duarte Leao de; Rocha, Arnaldo F. Imbiriba da; Pinheiro, Maria Lucia Belem; Andrade, Carlos Humberto de S.; Galotta, Ana Lucia de A. Queiroz; Santos, Maria do Perpetuo Socorro S. dos [Amazonas Univ., Manaus, AM (Brazil). Dept. de Quimica]. E-mail: afonsodlsouza@yahoo.com.br

    2001-08-01

    The Gustavia augusta is used in the folk medicine against leishmaniasis and showed anti-inflammatory action. The phyto chemical studies of the plant stem bark have led to the isolation of (22E)-stigmasta-7,22-dien-3{beta}-ol, 24{alpha}(S)-ethyl-5{alpha}-colesta-7, trans-22-dien-3-one, D-friedoolean-14-en-3{beta}-ol, D-friedoolean-14-en-3-one and D-friedoolean-14-en-3{alpha}-ol along with stigmasterol, {alpha}-amyrin, {beta}-amyrin, lupeol, 3{alpha}-hydroxy-lupeol and betulinic acid. The structures of these compounds were identified by IR, GC/M S, {sup 1} H and {sup 1} {sup 3} C NMR spectral analysis and comparison with literature data. (author)

  18. Chemical constituents of Licania tomentosa Benth. (Chrysobalanaceae); Constituintes quimicos de Licania tomentosa Benth. (Chrysobalanaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Castilho, Rachel Oliveira [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Faculdade de Farmacia. Dept. de Produtos Farmaceuticos]. E-mail: roc2006@farmacia.ufmg.br; Kaplan, Maria Auxiliadora Coelho [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Centro de Ciencias da Saude. Nucleo de Pesquisas de Produtos Naturais

    2008-07-01

    This paper describes the chemical constituents isolated from leaves and fruits of Licania tomentosa Benth. The plant materials were successively extracted with hexane and methanol. From the extracts the following compounds were obtained: betulinic acid; licanolide, a new triterpene lactone; oleanolic acid, lupeol; palmitoleic and hexadecanoic acid; a mixture of stigmasterol and sitosterol; and a mixture of tormentic, ursolic and betulinic acid. The structures of the natural products were identified on the basis of spectral data. (author)

  19. Blainvillea rhomboidea: chemical constituents and cytotoxic activity; Blainvillea rhomboidea: constituintes quimicos e atividade citotoxica

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Regina Ferreira; Santos, Helcio Silva dos; Albuquerque, Maria Rose Jane R., E-mail: rjane_7@hotmail.co [Universidade Estadual Vale do Acarau, Sobral, CE (Brazil). Centro de Ciencias Exatas e Tecnologia. Coord. de Quimica; Pessoa, Otilia Deusdenia L. [Universidade Federal do Ceara (DQOI/UFC), Fortaleza (Brazil). Dept. de Quimica Organica e Inorganica; Lotufo, Leticia V. Costa; Pessoa, Claudia do O; Moraes, Manoel Odorico de; Rodrigues, Felipe A. R. [Universidade Federal do Ceara (UFC), Fortaleza (Brazil). Dept. de Fisiologia e Farmacologia

    2010-07-01

    The phytochemical investigation of the ethanol extract from the aerial parts of Blainvillea rhomboidea (Asteraceae) resulted in the isolation and characterization of 8-tigloyloxy-grazielia acid, together with the flavonoids derrone, acacetin, luteolin and luteolin 7-methyl ether, and p-(1-methyl-ethan-1-ol)-phenol. The structures of all compounds were determined by spectroscopic methods ({sup '}H and {sup 13}C NMR and HREIMS) and comparison with published spectral data. The flavonoids luteolin and 7-O-metyl-luteolin, isolated from the active dichloromethane fraction, showed moderate cytotoxic activity. (author)

  20. First Report of Aedes aegypti Transmission of Chikungunya Virus in the Americas.

    Science.gov (United States)

    Díaz-González, Esteban E; Kautz, Tiffany F; Dorantes-Delgado, Alicia; Malo-García, Iliana R; Laguna-Aguilar, Maricela; Langsjoen, Rose M; Chen, Rubing; Auguste, Dawn I; Sánchez-Casas, Rosa M; Danis-Lozano, Rogelio; Weaver, Scott C; Fernández-Salas, Ildefonso

    2015-12-01

    During a chikungunya fever outbreak in late 2014 in Chiapas, Mexico, entomovirological surveillance was performed to incriminate the vector(s). In neighborhoods, 75 households with suspected cases were sampled for mosquitoes, of which 80% (60) harbored Aedes aegypti and 2.7% (2) Aedes albopictus. A total of 1,170 Ae. aegypti and three Ae. albopictus was collected and 81 pools were generated. Although none of the Ae. albopictus pools were chikungunya virus (CHIKV)-positive, 18 Ae. aegypti pools (22.8%) contained CHIKV, yielding an infection rate of 32.3/1,000 mosquitoes. A lack of herd immunity in conjunction with high mosquito populations, poor vector control services in this region, and targeted collections in locations of human cases may explain the high infection rate in this vector. Consistent with predictions from experimental studies, Ae. aegypti appears to be the principal vector of CHIKV in southern Mexico, while the role of Ae. albopictus remains unknown. © The American Society of Tropical Medicine and Hygiene.

  1. Susceptibility status of Aedes aegypti (L.) (Diptera: Culicidae) to temephos in Venezuela.

    Science.gov (United States)

    Alvarez, Leslie C; Ponce, Gustavo; Oviedo, Milagros; Lopez, Beatriz; Flores, Adriana E

    2014-08-01

    Temephos is an insecticide widely used in Venezuela to control the proliferation of the larvae of Aedes aegypti (L.), the principal vector of dengue virus. The aim of this study was to identify the susceptibility to temephos of Ae. aegypti in four locations in western Venezuela: Lara, Tres Esquinas, Ureña and Pampanito. Larval bioassays were conducted on samples collected in 2008 and 2010, and the levels of α- and β-esterases, mixed-function oxidases, glutathione-S-transferase and insensitive acethyl cholinesterase were determined. Larval populations from western Venezuela obtained during 2008 and 2010 were found to be susceptible to temephos, with low resistance ratios and without overexpression of enzymes. The low RR values reveal the effectiveness of temephos in controlling the larval populations of Ae. aegypti. Control strategies must be vigorously monitored to maintain the susceptibility to temephos of these populations of Ae. aegypti. © 2013 Society of Chemical Industry.

  2. Oviposition-stimulant and ovicidal activities of Moringa oleifera lectin on Aedes aegypti.

    Directory of Open Access Journals (Sweden)

    Nataly Diniz de Lima Santos

    Full Text Available Natural insecticides against the vector mosquito Aedes aegypti have been the object of research due to their high level of eco-safety. The water-soluble Moringa oleifera lectin (WSMoL is a larvicidal agent against A. aegypti. This work reports the effects of WSMoL on oviposition and egg hatching of A. aegypti.WSMoL crude preparations (seed extract and 0-60 protein fraction, at 0.1 mg/mL protein concentration, did not affect oviposition, while A. aegypti gravid females laid their eggs preferentially (73% in vessels containing isolated WSMoL (0.1 mg/mL, compared with vessels containing only distilled water (control. Volatile compounds were not detected in WSMoL preparation. The hatchability of fresh eggs deposited in the solutions in the oviposition assay was evaluated. The numbers of hatched larvae in seed extract, 0-60 protein fraction and WSMoL were 45 ± 8.7 %, 20 ± 11 % and 55 ± 7.5 %, respectively, significantly (p<0.05 lower than in controls containing only distilled water (75-95%. Embryos were visualized inside fresh control eggs, but not within eggs that were laid and maintained in WSMoL solution. Ovicidal activity was also assessed using stored A. aegypti eggs. The protein concentrations able to reduce the hatching rate by 50% (EC50 were 0.32, 0.16 and 0.1 mg/mL for seed extract, 0-60 protein fraction and WSMoL, respectively. The absence of hatching of stored eggs treated with WSMoL at 0.3 mg/mL (EC99 after transfer to medium without lectin indicates that embryos within the eggs were killed by WSMoL. The reduction in hatching rate of A. aegypti was not linked to decrease in bacteria population.WSMoL acted both as a chemical stimulant cue for ovipositing females and ovicidal agent at a given concentration. The oviposition-stimulant and ovicidal activities, combined with the previously reported larvicidal activity, make WSMoL a very interesting candidate in integrated A. aegypti control.

  3. Efek Larvasida Bakteri Kitinolitik dari Limbah Kulit Udang terhadap Larva Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Dyah Widiastuti

    2016-06-01

    Full Text Available Abstract. Aedes aegypti is a major vector for Dengue, a deadly disease causing death of millions of people in developing countries both in urban and rural populations. Ae. aegypti control using chemical insecticide was always carried out and lead to a widespread insecticide resistance. Therefore, mosquito biological control is needed to replace the usage of chemical insecticide. A chitinolytic bacteria, was isolated from shrimp’s waste (head and shell. The isolate showed chitinolytic activity as a transparent zone in colony inside the synthetic media, containing (w/v- 0,3 % colloidal chitin, 1% pepton, 0,5% yeast extract, 0,1% NaCl, 0,1% K2HPO4, 0,05% MgSO4.7H2O, 0,001% FeSO4.7H2O, 0,001% ZnSO4.7H2O, and each of 0,0001% CuSO4.5H2O, MnSO4.nH2O and CaCl2.2H2O at pH 7 and 300C after 72 h of incubation. The isolate was identified as gram positive group based on gram staining. In the experimental method, four concentrations of chitinolytic bacteria (4%, 8%, 16% and 32% was exposed to Ae. aegypti larvae. The result showed that chitinolytic bacterium degrades exoskeleton of third instar larvae of Ae. aegypti. Degradation of exoskeleton started on the 2nd days and occurred in thorax region. Probit analysis showed LC50 value was obtaninedat concentration of 2%. Keywords: chitinolytic bacteria, shrimp’s waste, Aedes aegypti Abstrak. Aedes aegypti merupakan vektor utama Dengue, penyakit yang menyebabkan kematian jutaan orang di negara-negara berkembang baik pada populasi perkotaan dan pedesaan. Pengendalian Ae. aegypti menggunakan insektisida kimia selalu dilakukan dan menyebabkan resistensi insektisida secara luas. Oleh karena itu, pengendalian nyamuk secara biologis diperlukan untuk menggantikan penggunaan insektisida kimia. Bakteri kitinolitik telah diisolasi dari limbah udang (kepala dan cangkang. Isolat menunjukkan aktivitas kitinolitik berupa zona bening di sekitar  koloni dalam media sintetik yang mengandung (w/v - 0,3% koloidal kitin, 1

  4. Asymmetrical Competition between Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae Coexisting in Breeding Sites

    Directory of Open Access Journals (Sweden)

    Juan C. Santana-Martínez

    2017-10-01

    Full Text Available Aedes aegypti and Culex quinquefasciatus are mosquito vectors for several tropical diseases that represent a current public health problem. The ecological requirements for each species are different, however, both species show high biological adaptability, which promotes their coexistence in the same breeding sites. The purpose of this study was to assess the effect of larval association between Ae. aegypti and Cx. quinquefasciatus under different laboratory conditions of food supply and temperature, and under field simulated conditions like peridomestic containers. Our findings showed that under field simulated conditions there was no asymmetrical competition in mixed cultures with the different Cx. quinquefasciatus/Ae. aegypti ratios tested. However, under laboratory conditions in which different doses of food supply were evaluated, it was observed that competition between the two species takes place. Larval coexistence under food scarcity conditions (0.95 mg/larva showed that Ae. aegypti had a greater adult emergence than Cx. quinquefasciatus and was capable of depriving Cx. quinquefasciatus of the food needed to complete metamorphosis. In an intermediate dose of food (1.9 mg/larva, the dry weight of Cx. quinquefasciatus adults decreased, and their larval development time increased when Cx. quinquefasciatus/Ae. aegypti ratio was low. Also, a temperature effect was assessed demonstrating that Cx. quinquefasciatus was more vulnerable to changes in temperature. We suggest that Ae. aegypti is more successful in exploiting microhabitats when food is scarce, due to its scrape active feeding habitats and fast larval development times. Therefore, in conditions of food paucity both species will compete, and Ae. aegypti larvae will prevail.

  5. [Aedes aegypti control strategies: a review].

    Science.gov (United States)

    Zara, Ana Laura de Sene Amâncio; Santos, Sandra Maria Dos; Fernandes-Oliveira, Ellen Synthia; Carvalho, Roberta Gomes; Coelho, Giovanini Evelim

    2016-01-01

    to describe the main strategies to control Aedes aegypti, with emphasis on promising technological innovations for use in Brazil. this study is a non-systematic review of the literature. several technologies have been developed as alternatives in the control of Ae. aegypti, using different mechanisms of action, such as selective monitoring of the infestation, social interventions, dispersing insecticides, new biological control agents and molecular techniques for population control of mosquitoes, also considering the combination between them. Evolving technologies require evaluation of the effectiveness, feasibility and costs of implementation strategies as complementary to the actions already recommended by the National Program for Dengue Control. the integration of different compatible and effective vector control strategies, considering the available technologies and regional characteristics, appears to be a viable method to try to reduce the infestation of mosquitoes and the incidence of arbovirus transmitted by them.

  6. Species Distribution Modelling of Aedes aegypti in two dengue-endemic regions of Pakistan.

    Science.gov (United States)

    Fatima, Syeda Hira; Atif, Salman; Rasheed, Syed Basit; Zaidi, Farrah; Hussain, Ejaz

    2016-03-01

    Statistical tools are effectively used to determine the distribution of mosquitoes and to make ecological inferences about the vector-borne disease dynamics. In this study, we utilised species distribution models to understand spatial patterns of Aedes aegypti in two dengue-prevalent regions of Pakistan, Lahore and Swat. Species distribution models can potentially indicate the probability of suitability of Ae. aegypti once introduced to new regions like Swat, where invasion of this species is a recent phenomenon. The distribution of Ae. aegypti was determined by applying the MaxEnt algorithm on a set of potential environmental factors and species sample records. The ecological dependency of species on each environmental variable was analysed using response curves. We quantified the statistical performance of the models based on accuracy assessment and spatial predictions. Our results suggest that Ae. aegypti is widely distributed in Lahore. Human population density and urban infrastructure are primarily responsible for greater probability of mosquito occurrence in this region. In Swat, Ae. aegypti has clumped distribution, where urban patches provide refuge to the species in an otherwise hostile heterogeneous environment and road networks are assumed to have facilitated in passive-mediated dispersal of species. In Pakistan, Ae. aegypti is expanding its range northwards; this could be associated with rapid urbanisation, trade and travel. The main implication of this expansion is that more people are at risk of dengue fever in the northern highlands of Pakistan. © 2016 John Wiley & Sons Ltd.

  7. Proof of concept for a novel insecticide bioassay based on sugar feeding by adult Aedes aegypti (Stegomyia aegypti).

    Science.gov (United States)

    Stell, F M; Roe, R M; Arellano, C; Kennedy, L; Thornton, H; Saavedra-Rodriguez, K; Wesson, D M; Black, W C; Apperson, C S

    2013-09-01

    Aedes aegypti L. (Stegomyia aegypti) (Diptera: Culicidae) is the principal vector of dengue and yellow fever viruses in tropical and subtropical regions of the world. Disease management is largely based on mosquito control achieved by insecticides applied to interior resting surfaces and through space sprays. Population monitoring to detect insecticide resistance is a significant component of integrated disease management programmes. We developed a bioassay method for assessing insecticide susceptibility based on the feeding activity of mosquitoes on plant sugars. Our prototype sugar-insecticide feeding bioassay system was composed of inexpensive, disposable components, contained minimal volumes of insecticide, and was compact and highly transportable. Individual mosquitoes were assayed in a plastic cup that contained a sucrose-permethrin solution. Trypan blue dye was added to create a visual marker in the mosquito's abdomen for ingested sucrose-permethrin solution. Blue faecal spots provided further evidence of solution ingestion. With the sugar-insecticide feeding bioassay, the permethrin susceptibility of Ae. aegypti females from two field-collected strains was characterized by probit analysis of dosage-response data. The field strains were also tested by forced contact of females with permethrin residues on filter paper. Dosage-response patterns were similar, indicating that the sugar-insecticide feeding bioassay had appropriately characterized the permethrin susceptibility of the two strains. © 2012 The Royal Entomological Society.

  8. History of domestication and spread of Aedes aegypti - A Review

    OpenAIRE

    Jeffrey R Powell; Walter J Tabachnick

    2013-01-01

    The adaptation of insect vectors of human diseases to breed in human habitats (domestication) is one of the most important phenomena in medical entomology. Considerable data are available on the vector mosquito Aedes aegypti in this regard and here we integrate the available information including genetics, behaviour, morphology, ecology and biogeography of the mosquito, with human history. We emphasise the tremendous amount of variation possessed by Ae. aegypti for virtually all traits consid...

  9. Differentiation of Aedes aegypti and Aedes notoscriptus (Diptera: Culicidae) eggs using scanning electron microscopy.

    Science.gov (United States)

    Faull, Katherine J; Williams, Craig R

    2016-05-01

    Aedes notoscriptus and Aedes aegypti are both peri-domestic, invasive container-breeding mosquitoes. While the two potential arboviral vectors are bionomically similar, their sympatric distribution in Australia is limited. In this study, analyses of Ae. aegypti and Ae. notoscriptus eggs were enabled using scanning electron microscopy. Significant variations in egg length to width ratio and outer chorionic cell field morphology between Ae. aegypti and Ae. notoscriptus enabled distinction of the two species. Intraspecific variations in cell field morphology also enabled differentiation of the separate populations of both species, highlighting regional and global variation. Our study provides a comprehensive comparative analysis of inter- and intraspecific egg morphological and morphometric variation between two invasive container-breeding mosquitoes. The results indicate a high degree of intraspecific variation in Ae. notoscriptus egg morphology when compared to the eggs of Ae. aegypti. Comparative morphological analyses of Ae. aegypti and Ae. notoscriptus egg attributes using SEM allows differentiation of the species and may be helpful in understanding egg biology in relation to biotope of origin. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Behavioral Response of Aedes aegypti Mosquito towards Essential Oils Using Olfactometer

    Science.gov (United States)

    Uniyal, Ashish; Tikar, Sachin N; Mendki, Murlidhar J; Singh, Ram; Shukla, Shakti V; Agrawal, Om P; Veer, Vijay; Sukumaran, Devanathan

    2016-01-01

    Background: Aedes aegypti mosquito is responsible for transmitting human diseases like dengue and chikungunya. Personal or space protection with insect repellents is a practical approach to reducing human mosquito contact, thereby minimizing disease transmission. Essential oils are natural volatile substances from plants used as protective measure against blood-sucking mosquitoes. Methods: Twenty-three essential oils were evaluated for their repellent effect against Ae. aegypti female mosquito in laboratory conditions using Y-tube olfactometer. Results: The essential oils exhibited varying degree of repellency. Litsea oil showed 50.31%, 60.2 %, and 77.26% effective mean repellency at 1 ppm, 10 ppm and 100 ppm respectively, while DEET exhibited 59.63%, 68.63%, 85.48% and DEPA showed 57.97%, 65.43%, and 80.62% repellency at respective above concentrations. Statistical analysis revealed that among the tested essential oils, litsea oil had effective repellency in comparison with DEET and DEPA against Ae. aegypti mosquito at all concentration. Essential oils, DEET and DEPA showed significant repellence against Ae. aegypti (Poil exhibited effective percentage repellency similar to DEET and DEPA. The essential oils are natural plant products that may be useful for developing safer and newer herbal based effective mosquito repellents. PMID:27308295

  11. Insecticide susceptibility of the dengue vector Aedes aegypti (Diptera: culicidae in Makkah City, Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Al Thbiani Aziz

    2011-06-01

    Full Text Available Objective: To examine the insecticide susceptibility of Aedes aegypti (Ae. aegypti from various sites in Makkah City, Saudi Arabia. Methods: This was examined based on WHO standard procedures. Results: The larvae of Ae. aegypti were susceptible to all larvicides examined, but this susceptibility was more pronounced in wild populations, which tended to show tolerance to icon. Icon was the most effective larvicide with LC 50 values of 0.007 ppm and 0.012 ppm for the laboratory and field strains, respectively. Ae. aegypti adults exposed to lambda-cyhalothrin showed a low mortality rate in comparison with those exposed to deltamethrin and cyfluthrin. Conclusions: The results of the present study indicate differential susceptibility between field and laboratory larval populations. Wild larvae are less susceptible to insecticide treatments than their laboratory-bred counterparts. Taken together, these results suggest that tolerance and the tendency toward resistance to commonly used insecticides are present in Ae. aegypti populations throughout Makkah City, Saudi Arabia.

  12. Oral infection of Aedes aegypti with yellow fever virus: geographic variation and genetic considerations.

    Science.gov (United States)

    Tabachnick, W J; Wallis, G P; Aitken, T H; Miller, B R; Amato, G D; Lorenz, L; Powell, J R; Beaty, B J

    1985-11-01

    Twenty-eight populations representing a worldwide distribution of Aedes aegypti were tested for their ability to become orally infected with yellow fever virus (YFV). Populations had been analyzed for genetic variations at 11 isozyme loci and assigned to one of 8 genetic geographic groups of Ae. aegypti. Infection rates suggest that populations showing isozyme genetic relatedness also demonstrate similarity to oral infection rates with YFV. The findings support the hypothesis that genetic variation exists for oral susceptibility to YFV in Ae. aegypti.

  13. The Aquaporin gene family of the yellow fever mosquito, Aedes aegypti.

    Directory of Open Access Journals (Sweden)

    Lisa L Drake

    2010-12-01

    Full Text Available The mosquito, Aedes aegypti, is the principal vector of the Dengue and yellow fever viruses. During feeding, an adult female can take up more than its own body weight in vertebrate blood. After a blood meal females excrete large amounts of urine through their excretion system, the Malpighian tubules (MT. Diuresis starts within seconds after the mosquito starts feeding. Aquaporins (AQPs are a family of membrane transporters that regulate the flow of water, glycerol and other small molecules across cellular membranes in both prokaryotic and eukaryotic cells. Our aim was to identify aquaporins that function as water channels, mediating transcellular water transport in MTs of adult female Ae. aegypti.Using a bioinformatics approach we screened genome databases and identified six putative AQPs in the genome of Ae. aegypti. Phylogenetic analysis showed that five of the six Ae. aegypti AQPs have high similarity to classical water-transporting AQPs of vertebrates. Using microarray, reverse transcription and real time PCR analysis we found that all six AQPs are expressed in distinct patterns in mosquito tissues/body parts. AaAQP1, 4, and 5 are strongly expressed in the adult female MT. RNAi-mediated knockdown of the MT-expressed mosquito AQPs resulted in significantly reduced diuresis.Our results support the notion that AQP1, 4, and 5 function as water transporters in the MTs of adult female Ae. aegypti mosquitoes. Our results demonstrate the importance of these AQPs for mosquito diuresis after blood ingestion and highlight their potential as targets for the development of novel vector control strategies.

  14. The Aquaporin gene family of the yellow fever mosquito, Aedes aegypti.

    Science.gov (United States)

    Drake, Lisa L; Boudko, Dmitri Y; Marinotti, Osvaldo; Carpenter, Victoria K; Dawe, Angus L; Hansen, Immo A

    2010-12-29

    The mosquito, Aedes aegypti, is the principal vector of the Dengue and yellow fever viruses. During feeding, an adult female can take up more than its own body weight in vertebrate blood. After a blood meal females excrete large amounts of urine through their excretion system, the Malpighian tubules (MT). Diuresis starts within seconds after the mosquito starts feeding. Aquaporins (AQPs) are a family of membrane transporters that regulate the flow of water, glycerol and other small molecules across cellular membranes in both prokaryotic and eukaryotic cells. Our aim was to identify aquaporins that function as water channels, mediating transcellular water transport in MTs of adult female Ae. aegypti. Using a bioinformatics approach we screened genome databases and identified six putative AQPs in the genome of Ae. aegypti. Phylogenetic analysis showed that five of the six Ae. aegypti AQPs have high similarity to classical water-transporting AQPs of vertebrates. Using microarray, reverse transcription and real time PCR analysis we found that all six AQPs are expressed in distinct patterns in mosquito tissues/body parts. AaAQP1, 4, and 5 are strongly expressed in the adult female MT. RNAi-mediated knockdown of the MT-expressed mosquito AQPs resulted in significantly reduced diuresis. Our results support the notion that AQP1, 4, and 5 function as water transporters in the MTs of adult female Ae. aegypti mosquitoes. Our results demonstrate the importance of these AQPs for mosquito diuresis after blood ingestion and highlight their potential as targets for the development of novel vector control strategies.

  15. The global compendium of Aedes aegypti and Ae. albopictus occurrence

    Science.gov (United States)

    Kraemer, Moritz U. G.; Sinka, Marianne E.; Duda, Kirsten A.; Mylne, Adrian; Shearer, Freya M.; Brady, Oliver J.; Messina, Jane P.; Barker, Christopher M.; Moore, Chester G.; Carvalho, Roberta G.; Coelho, Giovanini E.; van Bortel, Wim; Hendrickx, Guy; Schaffner, Francis; Wint, G. R. William; Elyazar, Iqbal R. F.; Teng, Hwa-Jen; Hay, Simon I.

    2015-07-01

    Aedes aegypti and Ae. albopictus are the main vectors transmitting dengue and chikungunya viruses. Despite being pathogens of global public health importance, knowledge of their vectors’ global distribution remains patchy and sparse. A global geographic database of known occurrences of Ae. aegypti and Ae. albopictus between 1960 and 2014 was compiled. Herein we present the database, which comprises occurrence data linked to point or polygon locations, derived from peer-reviewed literature and unpublished studies including national entomological surveys and expert networks. We describe all data collection processes, as well as geo-positioning methods, database management and quality-control procedures. This is the first comprehensive global database of Ae. aegypti and Ae. albopictus occurrence, consisting of 19,930 and 22,137 geo-positioned occurrence records respectively. Both datasets can be used for a variety of mapping and spatial analyses of the vectors and, by inference, the diseases they transmit.

  16. Occurrence of Toxorhynchites guadeloupensis (Dyar and Knab) in oviposition trap of Aedes aegypti (L.) (Diptera: Culicidae)

    International Nuclear Information System (INIS)

    Honorio, Nildimar A.

    2007-01-01

    Toxorhynchites guadeloupensis (Dyar and Knab), a poorly known mosquito species, was observed preying upon Aedes aegypti (L.) larvae, in an oviposition trap placed for routine dengue entomological surveillance, during 2003-2004 in the urban area of Boa Vista, Roraima, Brazil. This is the first report for Tx. guadeloupensis using Ae. aegypti oviposition traps as breeding places. This finding may have important consequences in the epidemiology and local dengue control since Ae. aegypti density is a basic variable in dengue prediction. Whether predation of Ae aegypti by Tx. guadeloupensis in the Amazon is of significance, is a question to be examined. Also, larval predation may be a cause for underestimation of the actual Ae aegypti numbers. Together these hypotheses need to be better investigated as they are directly related to dengue epidemiology, to the success of any outbreak prediction and surveillance program. (author)

  17. Occurrence of Toxorhynchites guadeloupensis (Dyar and Knab) in oviposition trap of Aedes aegypti (L.) (Diptera: Culicidae)

    Energy Technology Data Exchange (ETDEWEB)

    Honorio, Nildimar A. [Instituto Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ (Brazil). Dept. de Entomologia. Lab. de Transmissores de Hematozoarios; Barros, Fabio S.M. de [Universidade Federal de Roraima (UFRR), Boa Vista, RR (Brazil). Centro de Ciencias Biologicas e da Saude. Nucleo Avancado de Vetores; Tsouris, Pantelis; Rosa-Freitas, Maria G. [Freitas and Tsouris Consultants, Spata-Attikis (Greece)]. E-mail: maria@freitas-tsouris.com

    2007-09-15

    Toxorhynchites guadeloupensis (Dyar and Knab), a poorly known mosquito species, was observed preying upon Aedes aegypti (L.) larvae, in an oviposition trap placed for routine dengue entomological surveillance, during 2003-2004 in the urban area of Boa Vista, Roraima, Brazil. This is the first report for Tx. guadeloupensis using Ae. aegypti oviposition traps as breeding places. This finding may have important consequences in the epidemiology and local dengue control since Ae. aegypti density is a basic variable in dengue prediction. Whether predation of Ae aegypti by Tx. guadeloupensis in the Amazon is of significance, is a question to be examined. Also, larval predation may be a cause for underestimation of the actual Ae aegypti numbers. Together these hypotheses need to be better investigated as they are directly related to dengue epidemiology, to the success of any outbreak prediction and surveillance program. (author)

  18. TALEN-Based Gene Disruption in the Dengue Vector Aedes aegypti

    Science.gov (United States)

    Aryan, Azadeh; Anderson, Michelle A. E.; Myles, Kevin M.; Adelman, Zach N.

    2013-01-01

    In addition to its role as the primary vector for dengue viruses, Aedes aegypti has a long history as a genetic model organism for other bloodfeeding mosquitoes, due to its ease of colonization, maintenance and reproductive productivity. Though its genome has been sequenced, functional characterization of many Ae. aegypti genes, pathways and behaviors has been slow. TALE nucleases (TALENs) have been used with great success in a number of organisms to generate site-specific DNA lesions. We evaluated the ability of a TALEN pair to target the Ae. aegypti kmo gene, whose protein product is essential in the production of eye pigmentation. Following injection into pre-blastoderm embryos, 20–40% of fertile survivors produced kmo alleles that failed to complement an existing khw mutation. Most of these individuals produced more than 20% white-eyed progeny, with some producing up to 75%. Mutant alleles were associated with lesions of 1–7 bp specifically at the selected target site. White-eyed individuals could also be recovered following a blind intercross of G1 progeny, yielding several new white-eyed strains in the genetic background of the sequenced Liverpool strain. We conclude that TALENs are highly active in the Ae. aegypti germline, and have the potential to transform how reverse genetic experiments are performed in this important disease vector. PMID:23555893

  19. TALEN-based gene disruption in the dengue vector Aedes aegypti.

    Directory of Open Access Journals (Sweden)

    Azadeh Aryan

    Full Text Available In addition to its role as the primary vector for dengue viruses, Aedes aegypti has a long history as a genetic model organism for other bloodfeeding mosquitoes, due to its ease of colonization, maintenance and reproductive productivity. Though its genome has been sequenced, functional characterization of many Ae. aegypti genes, pathways and behaviors has been slow. TALE nucleases (TALENs have been used with great success in a number of organisms to generate site-specific DNA lesions. We evaluated the ability of a TALEN pair to target the Ae. aegypti kmo gene, whose protein product is essential in the production of eye pigmentation. Following injection into pre-blastoderm embryos, 20-40% of fertile survivors produced kmo alleles that failed to complement an existing kh(w mutation. Most of these individuals produced more than 20% white-eyed progeny, with some producing up to 75%. Mutant alleles were associated with lesions of 1-7 bp specifically at the selected target site. White-eyed individuals could also be recovered following a blind intercross of G1 progeny, yielding several new white-eyed strains in the genetic background of the sequenced Liverpool strain. We conclude that TALENs are highly active in the Ae. aegypti germline, and have the potential to transform how reverse genetic experiments are performed in this important disease vector.

  20. TALEN-based gene disruption in the dengue vector Aedes aegypti.

    Science.gov (United States)

    Aryan, Azadeh; Anderson, Michelle A E; Myles, Kevin M; Adelman, Zach N

    2013-01-01

    In addition to its role as the primary vector for dengue viruses, Aedes aegypti has a long history as a genetic model organism for other bloodfeeding mosquitoes, due to its ease of colonization, maintenance and reproductive productivity. Though its genome has been sequenced, functional characterization of many Ae. aegypti genes, pathways and behaviors has been slow. TALE nucleases (TALENs) have been used with great success in a number of organisms to generate site-specific DNA lesions. We evaluated the ability of a TALEN pair to target the Ae. aegypti kmo gene, whose protein product is essential in the production of eye pigmentation. Following injection into pre-blastoderm embryos, 20-40% of fertile survivors produced kmo alleles that failed to complement an existing kh(w) mutation. Most of these individuals produced more than 20% white-eyed progeny, with some producing up to 75%. Mutant alleles were associated with lesions of 1-7 bp specifically at the selected target site. White-eyed individuals could also be recovered following a blind intercross of G1 progeny, yielding several new white-eyed strains in the genetic background of the sequenced Liverpool strain. We conclude that TALENs are highly active in the Ae. aegypti germline, and have the potential to transform how reverse genetic experiments are performed in this important disease vector.

  1. The Dengue Virus Mosquito Vector Aedes aegypti at High Elevation in México

    Science.gov (United States)

    Lozano-Fuentes, Saul; Hayden, Mary H.; Welsh-Rodriguez, Carlos; Ochoa-Martinez, Carolina; Tapia-Santos, Berenice; Kobylinski, Kevin C.; Uejio, Christopher K.; Zielinski-Gutierrez, Emily; Monache, Luca Delle; Monaghan, Andrew J.; Steinhoff, Daniel F.; Eisen, Lars

    2012-01-01

    México has cities (e.g., México City and Puebla City) located at elevations > 2,000 m and above the elevation ceiling below which local climates allow the dengue virus mosquito vector Aedes aegypti to proliferate. Climate warming could raise this ceiling and place high-elevation cities at risk for dengue virus transmission. To assess the elevation ceiling for Ae. aegypti and determine the potential for using weather/climate parameters to predict mosquito abundance, we surveyed 12 communities along an elevation/climate gradient from Veracruz City (sea level) to Puebla City (∼2,100 m). Ae. aegypti was commonly encountered up to 1,700 m and present but rare from 1,700 to 2,130 m. This finding extends the known elevation range in México by > 300 m. Mosquito abundance was correlated with weather parameters, including temperature indices. Potential larval development sites were abundant in Puebla City and other high-elevation communities, suggesting that Ae. aegypti could proliferate should the climate become warmer. PMID:22987656

  2. PENGARUH FREKUENSI PENGHISAPAN DARAH TERHADAP PERKEMBANGAN, REPRODUKSI,VERTILITAS DAN RASIO SEX Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Riyani Setiyaningsih

    2014-06-01

    Full Text Available Aedes aegypti is a vector of Dengue hemorrhagic fever in Indonesia. Aedesaegypti has a high reproduction ability. Each individual can produce 50-100 eggs. Which80% of them are fertile. The mosquito is multiple biting (which means each individualsucks blood several time. Based on that background, this research was aimed torecognize the frequency of blood sucking to development, reproduction, fertility, and sexratio of Ae. aegypti. Thirty Ae. aegypti mosquito were put into the plastic cupsindividually, then fed with mammals. The treatments were the first, second, third, fourth,and fifth blood sucking. The eggs produced in each blood sucking were hatched andmaintain to become mosquitoes. The parameter measured from each blood sucking istotal egg production, egg fertility, larvae mortality, pupae mortality, and sex ratio. Theresult of the research shows that the frequency of blood sucking affects the production ofegg fertility, but does not affect the total egg production, larvae mortality, pupaemortality, and sex ratio significantly.Key words: sex ratio, egg fertility, reproduction Aedes aegypti adalah vektor Demam berdarah dengue di Indonesia. Ae aegyptimempunyai kemampuan berkembang biak dengan cepat. Setiap individu mempunyaikemampuan menghasilkan telur 50 sampai 100 ekor skali bertclur. Ae. aegypti bersifat multibiting, masing-masing individu mempunyai kemampuan menghisap darah beberapa kali dalamkurun waktu tertentu. Berdasarkan latar belakang tersebut tujuan penelitian ini adalahmendapatkan pengaruh frekuensi penghisapan darah terhadap perkembangan reproduksi,fcrtilitas, dan rasio sex dari Ae. aegypti. Ae aegypti dimasukkan ke dalam cup plastik secaraindividual, kemudian diberikan darah mamalia selama kurang lebih 3 menit. Pemberian darahdilakukan secara bertahap yaitu pemberian darah pertama, kedua, ketiga, ke empat, dan ke limaTelur-telur yang dihasilkan pada masing-masing penghisapan darah di tetaskan dan dipeliharasampai menjadi nyamuk

  3. Mathematical model of temephos resistance in Aedes aegypti mosquito population

    Science.gov (United States)

    Aldila, D.; Nuraini, N.; Soewono, E.; Supriatna, A. K.

    2014-03-01

    Aedes aegypti is the main vector of dengue disease in many tropical and sub-tropical countries. Dengue became major public concern in these countries due to the unavailability of vaccine or drugs for dengue disease in the market. Hence, the only way to control the spread of DF and DHF is by controlling the vectors carrying the disease, for instance with fumigation, temephos or genetic manipulation. Many previous studies conclude that Aedes aegypti may develop resistance to many kind of insecticide, including temephos. Mathematical model for transmission of temephos resistance in Aedes aegypti population is discussed in this paper. Nontrivial equilibrium point of the system and the corresponding existence are shown analytically. The model analysis have shown epidemiological trends condition that permits the coexistence of nontrivial equilibrium is given analytically. Numerical results are given to show parameter sensitivity and some cases of worsening effect values for illustrating possible conditions in the field.

  4. Effect of temperature on the population dynamics of Aedes aegypti

    Science.gov (United States)

    Yusoff, Nuraini; Tokachil, Mohd Najir

    2015-10-01

    Aedes aegypti is one of the main vectors in the transmission of dengue fever. Its abundance may cause the spread of the disease to be more intense. In the study of its biological life cycle, temperature was found to increase the development rate of each stage of this species and thus, accelerate the process of the development from egg to adult. In this paper, a Lefkovitch matrix model will be used to study the stage-structured population dynamics of Aedes aegypti. In constructing the transition matrix, temperature will be taken into account. As a case study, temperature recorded at the Subang Meteorological Station for year 2006 until 2010 will be used. Population dynamics of Aedes aegypti at maximum, average and minimum temperature for each year will be simulated and compared. It is expected that the higher the temperature, the faster the mosquito will breed. The result will be compared to the number of dengue fever incidences to see their relationship.

  5. Investigating Potential Effects of Dengue Virus Infection and Pre-exposure to DEET on Aedes aegypti Behaviors

    Science.gov (United States)

    2016-02-05

    Investigating Potential Effects of Dengue Virus Infection and Pre-exposure to DEET on Aedes aegypti Behaviors by Victor A...exposure to DEET on Aedes aegypti Behaviors" Name of Candidate: Victor Sugiharto Doctor of Philosophy Degree February 5, 2016 DISSERTATION AND...Infection and Pre-exposure to DEET on Aedes aegypti Behaviors" is appropriately acknowledged and. beyond brief excerpts , is with the permission of

  6. Aedes aegypti uses RNA interference in defense against Sindbis virus infection.

    Science.gov (United States)

    Campbell, Corey L; Keene, Kimberly M; Brackney, Douglas E; Olson, Ken E; Blair, Carol D; Wilusz, Jeffrey; Foy, Brian D

    2008-03-17

    RNA interference (RNAi) is an important anti-viral defense mechanism. The Aedes aegypti genome encodes RNAi component orthologs, however, most populations of this mosquito are readily infected by, and subsequently transmit flaviviruses and alphaviruses. The goal of this study was to use Ae. aegypti as a model system to determine how the mosquito's anti-viral RNAi pathway interacts with recombinant Sindbis virus (SINV; family Togaviridae, genus Alphavirus). SINV (TR339-eGFP) (+) strand RNA, infectious virus titers and infection rates transiently increased in mosquitoes following dsRNA injection to cognate Ago2, Dcr2, or TSN mRNAs. Detection of SINV RNA-derived small RNAs at 2 and 7 days post-infection in non-silenced mosquitoes provided important confirmation of RNAi pathway activity. Two different recombinant SINV viruses (MRE16-eGFP and TR339-eGFP) with significant differences in infection kinetics were used to delineate vector/virus interactions in the midgut. We show virus-dependent effects on RNAi component transcript and protein levels during infection. Monitoring midgut Ago2, Dcr2, and TSN transcript levels during infection revealed that only TSN transcripts were significantly increased in midguts over blood-fed controls. Ago2 protein levels were depleted immediately following a non-infectious bloodmeal and varied during SINV infection in a virus-dependent manner. We show that silencing RNAi components in Ae. aegypti results in transient increases in SINV replication. Furthermore, Ae. aegypti RNAi is active during SINV infection as indicated by production of virus-specific siRNAs. Lastly, the RNAi response varies in a virus-dependent manner. These data define important features of RNAi anti-viral defense in Ae. aegypti.

  7. Preferensi Aedes aegypti Meletakkan Telur pada Berbagai Warna Ovitrap di Laboratorium

    Directory of Open Access Journals (Sweden)

    Made Agus Nurjana

    2017-07-01

    Full Text Available ABSTRACTDengue Haemograffic fever is a vector borne disease which caused outbreaks and death. There is no applied vaccine until now, so the effort of prevention and control is to terminate chain of infection mosquito breeding. Factors which influenced  the female mosquitoe to lay their eggsare type of container, color, water, temperature, water source, humidity and environment condition. This study was conducted to determine the preferences of Ae. aegypti mosquitoes to lay aggs in various colors ovitrap in the laboratory of Balai Litbang P2B2 Donggala, January until March 2015. Three repetitions with plastic cup black, blue, white, yellow and pink have been performed with water and filter pappers. 30 mosquitoes blood saturation included in the containers with various colors. The result showed that most of female mosquito laid their eggs in plastic cup black (53,2%. ANOVA analysis showed that the diversity of colors ovitrap produce different the number of eggs Ae. aegypti in each type of countainer color. It is recommended to use black ovitrap for controling populations of Ae, aegypti in environment with regular monitoring.Demam Berdarah Dengue merupakan penyakit yang sering menimbulkan wabah dan dapat menyebabkan kematian. Sampai saat ini belum ditemukan vaksin sehingga pemberantasannya masih didasarkan pada pemutusan mata rantai penularan seperti pemberantasan sarang nyamuk. Beberapa faktor yang mempengaruhi proses bertelur nyamuk antara lain adalah jenis wadah, warna wadah, air, suhu, sumber air, kelembaban dan kondisi lingkungan. Penelitian ini bertujuan  untuk mengetahui preferensi nyamuk Ae. aegypti untuk meletakkan telur pada berbagai warna ovitrap di Laboratorium Balai Litbang P2B2 Donggala bulan Januari sampai Maret 2015. Tiga kali pengulangan dengan mangkok plastik yang berwarna hitam, hijau, biru, putih, kuning dan merah muda. Nyamuk jenuh darah sebanyak 30 ekor dimasukkan kedalam kandang yang berisi mangkok plastik berbagai warna

  8. Novel Wolbachia-transinfected Aedes aegypti mosquitoes possess diverse fitness and vector competence phenotypes.

    Directory of Open Access Journals (Sweden)

    Johanna E Fraser

    2017-12-01

    Full Text Available Wolbachia pipientis from Drosophila melanogaster (wMel is an endosymbiotic bacterium that restricts transmission of human pathogenic flaviviruses and alphaviruses, including dengue, Zika, and chikungunya viruses, when introduced into the mosquito vector Aedes aegypti. To date, wMel-infected Ae. aegypti have been released in field trials in 5 countries to evaluate the effectiveness of this strategy for disease control. Despite the success in establishing wMel-infected mosquitoes in wild populations, and the well-characterized antiviral capabilities of wMel, transinfecting different or additional Wolbachia strains into Ae. aegypti may improve disease impact, and perhaps more importantly, could provide a strategy to account for the possible evolution of resistant arboviruses. Here, we report the successful transinfection of Ae. aegypti with the Wolbachia strains wMelCS (D. melanogaster, wRi (D. simulans and wPip (Culex quinquefasciatus and assess the effects on Ae. aegypti fitness, cytoplasmic incompatibility, tissue tropism and pathogen blocking in a laboratory setting. The results demonstrate that wMelCS provides a similar degree of protection against dengue virus as wMel following an infectious blood meal, and significantly reduces viral RNA levels beyond that of wMel following a direct challenge with infectious virus in mosquitoes, with no additional fitness cost to the host. The protection provided by wRi is markedly weaker than that of wMelCS, consistent with previous characterisations of these lines in Drosophila, while wPip was found to substantially reduce the fitness of Ae. aegypti. Thus, we determine wMelCS as a key candidate for further testing in field-relevant fitness tests and viremic blood feeding challenges in a clinical setting to determine if it may represent an alternative Wolbachia strain with more desirable attributes than wMel for future field testing.

  9. Novel Wolbachia-transinfected Aedes aegypti mosquitoes possess diverse fitness and vector competence phenotypes.

    Science.gov (United States)

    Fraser, Johanna E; De Bruyne, Jyotika Taneja; Iturbe-Ormaetxe, Iñaki; Stepnell, Justin; Burns, Rhiannon L; Flores, Heather A; O'Neill, Scott L

    2017-12-01

    Wolbachia pipientis from Drosophila melanogaster (wMel) is an endosymbiotic bacterium that restricts transmission of human pathogenic flaviviruses and alphaviruses, including dengue, Zika, and chikungunya viruses, when introduced into the mosquito vector Aedes aegypti. To date, wMel-infected Ae. aegypti have been released in field trials in 5 countries to evaluate the effectiveness of this strategy for disease control. Despite the success in establishing wMel-infected mosquitoes in wild populations, and the well-characterized antiviral capabilities of wMel, transinfecting different or additional Wolbachia strains into Ae. aegypti may improve disease impact, and perhaps more importantly, could provide a strategy to account for the possible evolution of resistant arboviruses. Here, we report the successful transinfection of Ae. aegypti with the Wolbachia strains wMelCS (D. melanogaster), wRi (D. simulans) and wPip (Culex quinquefasciatus) and assess the effects on Ae. aegypti fitness, cytoplasmic incompatibility, tissue tropism and pathogen blocking in a laboratory setting. The results demonstrate that wMelCS provides a similar degree of protection against dengue virus as wMel following an infectious blood meal, and significantly reduces viral RNA levels beyond that of wMel following a direct challenge with infectious virus in mosquitoes, with no additional fitness cost to the host. The protection provided by wRi is markedly weaker than that of wMelCS, consistent with previous characterisations of these lines in Drosophila, while wPip was found to substantially reduce the fitness of Ae. aegypti. Thus, we determine wMelCS as a key candidate for further testing in field-relevant fitness tests and viremic blood feeding challenges in a clinical setting to determine if it may represent an alternative Wolbachia strain with more desirable attributes than wMel for future field testing.

  10. Effects of insemination and blood-feeding on locomotor activity of Aedes albopictus and Aedes aegypti (Diptera: Culicidae) females under laboratory conditions.

    Science.gov (United States)

    Lima-Camara, Tamara Nunes; Lima, José Bento Pereira; Bruno, Rafaela Vieira; Peixoto, Alexandre Afranio

    2014-07-02

    Dengue is an arbovirus disease transmitted by two Aedes mosquitoes: Ae. aegypti and Ae. albopictus. Virgin females of these two species generally show a bimodal and diurnal pattern of activity, with early morning and late afternoon peaks. Although some studies on the flight activity of virgin, inseminated and blood-fed Ae. aegypti females have been carried out under laboratory conditions, little is known about the effects of such physiological states on the locomotor activity of Ae. albopictus and Ae. aegypti females. The aim of this study was to analyze, under laboratory conditions, the effects of insemination and blood-feeding on the locomotor activity of Ae. albopictus and Ae. aegypti females under LD 12:12, at 25°C. Both Ae. albopictus and Ae. aegypti females were obtained from established laboratory colonies. Control groups were represented by virgin/unfed Ae. albopictus and Ae. aegypti females. Experiments were conducted under laboratory conditions, using an activity monitor that registers individual activity every thirty minutes. Virgin/unfed Ae. albopictus and Ae. aegypti females showed a diurnal and bimodal pattern of locomotor activity, with peaks at early morning and late afternoon. Insemination and blood-feeding significantly decreased the locomotor activity of Ae. aegypti females, but inseminated/blood-fed Ae. aegypti and Ae. albopictus females showed a similar significant decrease on the locomotor activity compared to virgin/unfed females. This study is the first demonstration of the effects of insemination and blood-feeding on the locomotor activity of Ae. albopictus and Ae. aegypti females under artificial conditions. Data suggest that Ae. albopictus and Ae. aegypti females respond in different ways to physiological status changes and such divergence between these two dengue vectors, associated with several ecological differences, could be related to the greater dengue vectorial capacity of Ae. aegypti in Americas in comparison to Ae. albopictus.

  11. Spatial patterns of high Aedes aegypti oviposition activity in northwestern Argentina.

    Directory of Open Access Journals (Sweden)

    Elizabet Lilia Estallo

    Full Text Available BACKGROUND: In Argentina, dengue has affected mainly the Northern provinces, including Salta. The objective of this study was to analyze the spatial patterns of high Aedes aegypti oviposition activity in San Ramón de la Nueva Orán, northwestern Argentina. The location of clusters as hot spot areas should help control programs to identify priority areas and allocate their resources more effectively. METHODOLOGY: Oviposition activity was detected in Orán City (Salta province using ovitraps, weekly replaced (October 2005-2007. Spatial autocorrelation was measured with Moran's Index and depicted through cluster maps to identify hot spots. Total egg numbers were spatially interpolated and a classified map with Ae. aegypti high oviposition activity areas was performed. Potential breeding and resting (PBR sites were geo-referenced. A logistic regression analysis of interpolated egg numbers and PBR location was performed to generate a predictive mapping of mosquito oviposition activity. PRINCIPAL FINDINGS: Both cluster maps and predictive map were consistent, identifying in central and southern areas of the city high Ae. aegypti oviposition activity. A logistic regression model was successfully developed to predict Ae. aegypti oviposition activity based on distance to PBR sites, with tire dumps having the strongest association with mosquito oviposition activity. A predictive map reflecting probability of oviposition activity was produced. The predictive map delimitated an area of maximum probability of Ae. aegypti oviposition activity in the south of Orán city where tire dumps predominate. The overall fit of the model was acceptable (ROC=0.77, obtaining 99% of sensitivity and 75.29% of specificity. CONCLUSIONS: Distance to tire dumps is inversely associated with high mosquito activity, allowing us to identify hot spots. These methodologies are useful for prevention, surveillance, and control of tropical vector borne diseases and might assist

  12. Oral susceptibility of Singapore Aedes (Stegomyia aegypti (Linnaeus to Zika virus.

    Directory of Open Access Journals (Sweden)

    MeiZhi Irene Li

    Full Text Available Zika virus (ZIKV is a little known flavivirus that caused a major outbreak in 2007, in the South-western Pacific Island of Yap. It causes dengue-like syndromes but with milder symptoms. In Africa, where it was first isolated, ZIKV is mainly transmitted by sylvatic Aedes mosquitoes. The virus has also been isolated from Ae. aegypti and it is considered to be the vector involved in the urban transmission of the virus. Transmission of the virus by an African strain of Ae. aegypti has also been demonstrated under laboratory conditions. The aim of the present study is to describe the oral susceptibility of a Singapore strain of Ae. aegypti to ZIKV, under conditions that simulate local climate.To assess the receptivity of Singapore's Ae. aegypti to the virus, we orally exposed a local mosquito strain to a Ugandan strain of ZIKV. Upon exposure, fully engorged mosquitoes were maintained in an environmental chamber set at 29 °C and 70-75% RH. Eight mosquitoes were then sampled daily from day 1 to day 7, and subsequently on days 10 and 14 post exposure (pe. The virus titer of the midgut and salivary glands of each mosquito were determined using a tissue culture infectious dose(50 (TCID(50 assay. High midgut infection and salivary gland dissemination rates were observed. By day 5 after the infectious blood meal, ZIKV was found in the salivary glands of more than half of the mosquitoes tested (62%; and by day 10, all mosquitoes were potentially infective.This study showed that Singapore's urban Ae. aegypti are susceptible and are potentially capable of transmitting ZIKV. The virus could be established in Singapore should it be introduced. Nevertheless, Singapore's current dengue control strategy is applicable to control ZIKV.

  13. Raw sewage as breeding site to Aedes (Stegomyia) aegypti (Diptera, culicidae).

    Science.gov (United States)

    Chitolina, R F; Anjos, F A; Lima, T S; Castro, E A; Costa-Ribeiro, M C V

    2016-12-01

    The selection of oviposition sites by females of Aedes (Stegomyia) aegypti is a key factor for the larval survival and egg dispersion and has a direct influence in vector control programs. In this study, we evaluated the aspects of reproductive physiology of Ae. aegypti mosquitoes tested in the presence of raw sewage. Ae. aegypti females were used in oviposition bioassays according to two methodologies: (i) choice assay, in which three oviposition substrates were offered in the same cage: treatment (raw sewage), positive control (distilled water) and negative control (1% sodium hypochlorite) and; (ii) no choice assay, in which only one substrate was available. The physicochemical and microbiological analysis of the raw sewage used in this study indicated virtually no levels of chlorine, low levels of dissolved oxygen and high levels of nitrogenous compounds as well as the presence of Escherichia coli and total fecal coliforms. After 72h of oviposition, the eggs were counted and there was no statistically significant difference (p>0.05) in the oviposition rate between raw sewage and positive control in both methodologies. In addition, females were dissected to evaluate egg-retention and also there were no appreciable differences in egg retention even when raw sewage was the only substrate offered. The data also showed that egg hatching and larvae development occurred normally in the raw sewage. Therefore, the present study suggests that Ae. aegypti can adapt to new sites and lay eggs in polluted water, such as the raw sewage. These findings are of particular importance for the control and surveillance programs against Ae. aegypti in countries where the conditions of poor infrastructure and lack of basic sanitation are still an issue. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Efikasi Ekstrak Daun dan Bunga Kecombrang (Etlingera elatior terhadap Larva Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Meiske Elisabeth Koraag

    2016-12-01

    Full Text Available Abstract. Three widely known dengue vector control programs in Indonesia are chemical, biological, and environmental modification control where chemical control with organophosphate insecticide (malathion and temephos is the most common. The long term use of chemical insecticide will result in the vector beingtolerant and eventually resistant to insecticide. One of the alternative solutions is to use biological larvacide from the plant. The objective of this study was to determine the lethal concentration of the extract of Kecombrang (Etlingera elatior leaves and flowers against Aedes aegypti larvae. This was an experimentalstudy where the sample size was determined by using the Federer formula. The study used six different concentrations and four repetitions. Two controls group, Bacillus thuringiensis and water used as positive and negative control. The results showed that the LC50 and LC90 of Kecombrang leave extract were 1.20% and 2.05% respectively whereas for Kecombrang flowers extract were 0,05% and 0.09% respectively. Extract of Kecombrang leaves and flowers is effective to kill Ae. aegypti larvae where the flowers extract is more effective than the leaves extract in killing Ae. aegypti larvae.Keywords: dengue, Ae. aegypti, larvae, Etlingera elatiorAbstrak. Pengendalian vektor penular demam berdarah dengue (DBD yang selama ini dikenal yaitu pengendalian secara kimia, biologi dan modifikasi lingkungan. Pengendalian vektor DBD di Indonesia masih banyak dilakukan dengan menggunakan insektisida dari golongan organofosfat (malation dan temefos. Penggunaan insektisida kimia dalam jangka waktu lama akan memberi efek menekan dan menyeleksi serangga vektor sasaran untuk menjadi toleran sampai resisten. Salah satu solusi alternatif yaitu menggunakan larvasida yang berasal dari tanaman. Penelitian ini bertujuan untuk menentukan daya bunuh ekstrak daun dan bunga kecombrang (Etlingera elatior terhadap larva nyamuk Ae. aegypti. Jenis penelitian yang

  15. Age-Stage, Two-Sex Life Table Characteristics of Aedes albopictus and Aedes Aegypti in Penang Island, Malaysia.

    Science.gov (United States)

    Maimusa, Hamisu A; Ahmad, Abu Hassan; Kassim, Nur Faeza A; Rahim, Junaid

    2016-03-01

    The life table developmental attributes of laboratory colonies of wild strains of Aedes albopictus and Aedes aegypti were analyzed and compared based on the age-stage, two-sex life table. Findings inclusive in this study are: adult preoviposition periods, total preoviposition period, mean intrinsic rate of increase (r), mean finite rate of increase (λ), net reproductive rates (R0), and mean generation time (T). The total preadult development time was 9.47 days for Ae. albopictus and 8.76 days for Ae. aegypti. The life expectancy was 19.01 days for Ae. albopictus and 19.94 days for Ae. aegypti. Mortality occurred mostly during the adult stage. The mean development time for each stage insignificantly correlated with temperature for Ae. albopictus (r  =  -0.208, P > 0.05) and (r  =  -0.312, P > 0.05) for Ae. aegypti. The population parameters suggest that Ae. albopictus and Ae. aegypti populations are r-strategists characterized by a high r, a large R0, and short T. This present study provides the first report to compare the life parameters of Ae. albopictus and Ae. aegypti strains from Penang island, Malaysia.

  16. Germline excision of transgenes in Aedes aegypti by homing endonucleases.

    Science.gov (United States)

    Aryan, Azadeh; Anderson, Michelle A E; Myles, Kevin M; Adelman, Zach N

    2013-01-01

    Aedes (Ae.) aegypti is the primary vector for dengue viruses (serotypes1-4) and chikungunya virus. Homing endonucleases (HEs) are ancient selfish elements that catalyze double-stranded DNA breaks (DSB) in a highly specific manner. In this report, we show that the HEs Y2-I-AniI, I-CreI and I-SceI are all capable of catalyzing the excision of genomic segments from the Ae. aegypti genome in a heritable manner. Y2-I-AniI demonstrated the highest efficiency at two independent genomic targets, with 20-40% of Y2-I-AniI-treated individuals producing offspring that had lost the target transgene. HE-induced DSBs were found to be repaired via the single-strand annealing (SSA) and non-homologous end-joining (NHEJ) pathways in a manner dependent on the availability of direct repeat sequences in the transgene. These results support the development of HE-based gene editing and gene drive strategies in Ae. aegypti, and confirm the utility of HEs in the manipulation and modification of transgenes in this important vector.

  17. The Effects of Pre-Exposure to DEET on the Downstream Blood-Feeding Behaviors of Aedes aegypti Mosquitoes

    Science.gov (United States)

    2016-06-10

    1 Sugiharto et al.: Aedes aegypti blood- Michael J. Turell 1 feeding after DEET pre-exposure Virology Division, USAMRIID 2 1425 Porter...Pre-exposure to DEET on the Downstream Blood-Feeding Behaviors of 9 Aedes aegypti Mosquitoes1 10 11 Victor A. Sugiharto,2 John P. Grieco,2,3...insect behavior for disease prevention. However, genetic insensitivity and 31 habituation in Aedes aegypti (L.) mosquitoes after pre-exposure to DEET

  18. Principales criaderos para Aedes aegypti y culícidos asociados, Argentina

    Directory of Open Access Journals (Sweden)

    Marina Stein

    2002-10-01

    Full Text Available Se identificaron criaderos de Aedes (Stegomyia aegypti en dos ciudades de la provincia del Chaco (Noreste de Argentina: Presidencia Roque Saenz Peña y Machagai. Los recipientes encontrados en los patios de las viviendas capaces de colectar agua se clasificaron según tipo y tamaño, se contaron y examinaron. Aedes aegypti y Culex quinquefasciatus fueron las especies mas abundantes, encontrándose además Cx. maxi, Cx. saltanensis y Ochlerotatus scapularis. Los neumáticos y cajas de baterías para autos fueron los recipientes que más aportaron a la producción de formas inmaduras de los culícidos colectados. Las lluvias fueron un factor importante para la proliferacion de Ae. aegypti, así como también el habito comun en la población de guardar recipientes en sus casas que permitan el desarrollo de estos culícidos.

  19. Principales criaderos para Aedes aegypti y culícidos asociados, Argentina

    Directory of Open Access Journals (Sweden)

    Stein Marina

    2002-01-01

    Full Text Available Se identificaron criaderos de Aedes (Stegomyia aegypti en dos ciudades de la provincia del Chaco (Noreste de Argentina: Presidencia Roque Saenz Peña y Machagai. Los recipientes encontrados en los patios de las viviendas capaces de colectar agua se clasificaron según tipo y tamaño, se contaron y examinaron. Aedes aegypti y Culex quinquefasciatus fueron las especies mas abundantes, encontrándose además Cx. maxi, Cx. saltanensis y Ochlerotatus scapularis. Los neumáticos y cajas de baterías para autos fueron los recipientes que más aportaron a la producción de formas inmaduras de los culícidos colectados. Las lluvias fueron un factor importante para la proliferacion de Ae. aegypti, así como también el habito comun en la población de guardar recipientes en sus casas que permitan el desarrollo de estos culícidos.

  20. Semaphorin-1a is required for Aedes aegypti embryonic nerve cord development.

    Directory of Open Access Journals (Sweden)

    Morgan Haugen

    Full Text Available Although mosquito genome projects have uncovered orthologues of many known developmental regulatory genes, extremely little is known about mosquito development. In this study, the role of semaphorin-1a (sema1a was investigated during vector mosquito embryonic ventral nerve cord development. Expression of sema1a and the plexin A (plexA receptor are detected in the embryonic ventral nerve cords of Aedes aegypti (dengue vector and Anopheles gambiae (malaria vector, suggesting that Sema1a signaling may regulate mosquito nervous system development. Analysis of sema1a function was investigated through siRNA-mediated knockdown in A. aegypti embryos. Knockdown of sema1a during A. aegypti development results in a number of nerve cord phenotypes, including thinning, breakage, and occasional fusion of the longitudinal connectives, thin or absent commissures, and general distortion of the nerve cord. Although analysis of Drosophila melanogaster sema1a loss-of-function mutants uncovered many similar phenotypes, aspects of the longitudinal phenotypes differed between D. melanogaster and A. aegypti. The results of this investigation suggest that Sema1a is required for development of the insect ventral nerve cord, but that the developmental roles of this guidance molecule have diverged in dipteran insects.

  1. Characteristics of Aedes aegypti adult mosquitoes in rural and urban areas of western and coastal Kenya.

    Directory of Open Access Journals (Sweden)

    Bryson Alberto Ndenga

    Full Text Available Aedes aegypti is the main vector for yellow fever, dengue, chikungunya and Zika viruses. Recent outbreaks of dengue and chikungunya have been reported in Kenya. Presence and abundance of this vector is associated with the risk for the occurrence and transmission of these diseases. This study aimed to characterize the presence and abundance of Ae. aegypti adult mosquitoes from rural and urban sites in western and coastal regions of Kenya. Presence and abundance of Ae. aegypti adult mosquitoes were determined indoors and outdoors in two western (urban Kisumu and rural Chulaimbo and two coastal (urban Ukunda and rural Msambweni sites in Kenya. Sampling was performed using quarterly human landing catches, monthly Prokopack automated aspirators and monthly Biogents-sentinel traps. A total of 2,229 adult Ae. aegypti mosquitoes were collected: 785 (35.2% by human landing catches, 459 (20.6% by Prokopack aspiration and 985 (44.2% by Biogents-sentinel traps. About three times as many Ae. aegypti mosquitoes were collected in urban than rural sites (1,650 versus 579. Comparable numbers were collected in western (1,196 and coastal (1,033 sites. Over 80% were collected outdoors through human landing catches and Prokopack aspiration. The probability of collecting Ae. aegypti mosquitoes by human landing catches was significantly higher in the afternoon than morning hours (P<0.001, outdoors than indoors (P<0.001 and in urban than rural sites (P = 0.008. Significantly more Ae. aegypti mosquitoes were collected using Prokopack aspiration outdoors than indoors (P<0.001 and in urban than rural areas (P<0.001. Significantly more mosquitoes were collected using Biogents-sentinel traps in urban than rural areas (P = 0.008 and in western than coastal sites (P = 0.006. The probability of exposure to Ae. aegypti bites was highest in urban areas, outdoors and in the afternoon hours. These characteristics have major implications for the possible transmission of arboviral

  2. Efectos de la competencia larval en los mosquitos de contenedores artificiales, Aedes aegypti y Culex pipiens (Diptera: Culicidae en condiciones semi-controladas

    Directory of Open Access Journals (Sweden)

    Analía FRANCIA

    2011-01-01

    Full Text Available Las larvas de los mosquitos Aedes aegypti (Linneo y Culex pipiens Linneo pueden criar conjuntamente en pequeños contenedores artificiales de agua, se genera así una competencia interespecífica y/o intraespecífica. El objetivo de este trabajo fue comparar la magnitud relativa de la competencia intra e interespecífica en A. aegypti y C. pipiens, generada durante el desarrollo larval en contenedores artificiales. Las variables medidas como respuesta fueron la supervivencia y el tiempo de desarrollo larval, y la biomasa total producida en estado de pupa. Se criaron larvas de ambos mosquitos en neumáticos de automóvil con agua declorinada y hojarasca. Se introdujeron larvas recién eclosionadas de acuerdo a la densidad (δ estimada según un censo previo de A. aegypti y C. pipiens. Se realizaron los siguientes tratamientos agregando larvas de: (1 A. aegypti hasta alcanzar δ A. aegypti determinada según el censo previo, (2 C. pipiens hasta δ C. pipiens del censo previo, (3 A. aegypti hasta alcanzar la suma de δ A. aegypti y δ C. pipiens del censo previo, (4 C. pipiens hasta alcanzar la suma de δ A. aegypti y δ C. pipiens del censo previo y (5 A. aegypti y C. pipiens hasta δ A. aegypti y δ C. pipiens del censo previo. Las tres variables medidas fueron afectadas por los tratamientos, excepto la supervivencia y la biomasa producida por C. pipiens. Aedes aegypti fue más alterada por la competencia intraespecífica que por la competencia interespecífica. En C. pipiens, la competencia interespecífica superó en sus efectos a la competencia intraespecífica. Existió asimetría competitiva, ya que C. pipiens fue más afectada por A. aegypti que lo contrario.

  3. Effect of Quorum Sensing by Staphylococcus epidermidis on the Attraction Response of Female Adult Yellow Fever Mosquitoes, Aedes aegypti aegypti (Linnaeus) (Diptera: Culicidae), to a Blood-Feeding Source.

    Science.gov (United States)

    Zhang, Xinyang; Crippen, Tawni L; Coates, Craig J; Wood, Thomas K; Tomberlin, Jeffery K

    2015-01-01

    Aedes aegypti, the principal vector of yellow fever and dengue fever, is responsible for more than 30,000 deaths annually. Compounds such as carbon dioxide, amino acids, fatty acids and other volatile organic compounds (VOCs) have been widely studied for their role in attracting Ae. aegypti to hosts. Many VOCs from humans are produced by associated skin microbiota. Staphyloccocus epidermidis, although not the most abundant bacteria according to surveys of relative 16S ribosomal RNA abundance, commonly occurs on human skin. Bacteria demonstrate population level decision-making through quorum sensing. Many quorum sensing molecules, such as indole, volatilize and become part of the host odor plum. To date, no one has directly demonstrated the link between quorum sensing (i.e., decision-making) by bacteria associated with a host as a factor regulating arthropod vector attraction. This study examined this specific question with regards to S. epidermidis and Ae. aegypti. Pairwise tests were conducted to examine the response of female Ae. aegypti to combinations of tryptic soy broth (TSB) and S. epidermidis wildtype and agr- strains. The agr gene expresses an accessory gene regulator for quorum sensing; therefore, removing this gene inhibits quorum sensing of the bacteria. Differential attractiveness of mosquitoes to the wildtype and agr- strains was observed. Both wildtype and the agr- strain of S. epidermidis with TSB were marginally more attractive to Ae. aegypti than the TSB alone. Most interestingly, the blood-feeder treated with wildtype S. epidermidis/TSB attracted 74% of Ae. aegypti compared to the agr- strain of S. epidermidis/TSB (P ≤ 0.0001). This study is the first to suggest a role for interkingdom communication between host symbiotic bacteria and mosquitoes. This may have implications for mosquito decision-making with regards to host detection, location and acceptance. We speculate that mosquitoes "eavesdrop" on the chemical discussions occurring between

  4. Effect of Quorum Sensing by Staphylococcus epidermidis on the Attraction Response of Female Adult Yellow Fever Mosquitoes, Aedes aegypti aegypti (Linnaeus (Diptera: Culicidae, to a Blood-Feeding Source.

    Directory of Open Access Journals (Sweden)

    Xinyang Zhang

    Full Text Available Aedes aegypti, the principal vector of yellow fever and dengue fever, is responsible for more than 30,000 deaths annually. Compounds such as carbon dioxide, amino acids, fatty acids and other volatile organic compounds (VOCs have been widely studied for their role in attracting Ae. aegypti to hosts. Many VOCs from humans are produced by associated skin microbiota. Staphyloccocus epidermidis, although not the most abundant bacteria according to surveys of relative 16S ribosomal RNA abundance, commonly occurs on human skin. Bacteria demonstrate population level decision-making through quorum sensing. Many quorum sensing molecules, such as indole, volatilize and become part of the host odor plum. To date, no one has directly demonstrated the link between quorum sensing (i.e., decision-making by bacteria associated with a host as a factor regulating arthropod vector attraction. This study examined this specific question with regards to S. epidermidis and Ae. aegypti. Pairwise tests were conducted to examine the response of female Ae. aegypti to combinations of tryptic soy broth (TSB and S. epidermidis wildtype and agr- strains. The agr gene expresses an accessory gene regulator for quorum sensing; therefore, removing this gene inhibits quorum sensing of the bacteria. Differential attractiveness of mosquitoes to the wildtype and agr- strains was observed. Both wildtype and the agr- strain of S. epidermidis with TSB were marginally more attractive to Ae. aegypti than the TSB alone. Most interestingly, the blood-feeder treated with wildtype S. epidermidis/TSB attracted 74% of Ae. aegypti compared to the agr- strain of S. epidermidis/TSB (P ≤ 0.0001. This study is the first to suggest a role for interkingdom communication between host symbiotic bacteria and mosquitoes. This may have implications for mosquito decision-making with regards to host detection, location and acceptance. We speculate that mosquitoes "eavesdrop" on the chemical discussions

  5. History of domestication and spread of Aedes aegypti--a review.

    Science.gov (United States)

    Powell, Jeffrey R; Tabachnick, Walter J

    2013-01-01

    The adaptation of insect vectors of human diseases to breed in human habitats (domestication) is one of the most important phenomena in medical entomology. Considerable data are available on the vector mosquito Aedes aegypti in this regard and here we integrate the available information including genetics, behaviour, morphology, ecology and biogeography of the mosquito, with human history. We emphasise the tremendous amount of variation possessed by Ae. aegypti for virtually all traits considered. Typological thinking needs to be abandoned to reach a realistic and comprehensive understanding of this important vector of yellow fever, dengue and Chikungunya.

  6. History of domestication and spread of Aedes aegypti - A Review

    Directory of Open Access Journals (Sweden)

    Jeffrey R Powell

    2013-01-01

    Full Text Available The adaptation of insect vectors of human diseases to breed in human habitats (domestication is one of the most important phenomena in medical entomology. Considerable data are available on the vector mosquito Aedes aegypti in this regard and here we integrate the available information including genetics, behaviour, morphology, ecology and biogeography of the mosquito, with human history. We emphasise the tremendous amount of variation possessed by Ae. aegypti for virtually all traits considered. Typological thinking needs to be abandoned to reach a realistic and comprehensive understanding of this important vector of yellow fever, dengue and Chikungunya.

  7. A cross-sectional survey of Aedes aegypti immature abundance in urban and rural household containers in central Colombia.

    Science.gov (United States)

    Overgaard, Hans J; Olano, Víctor Alberto; Jaramillo, Juan Felipe; Matiz, María Inés; Sarmiento, Diana; Stenström, Thor Axel; Alexander, Neal

    2017-07-27

    Aedes aegypti, the major vector of dengue, breeds in domestic water containers. The development of immature mosquitoes in such containers is influenced by various environmental, ecological and socioeconomic factors. Urban and rural disparities in water storage practices and water source supply may affect mosquito immature abundance and, potentially, dengue risk. We evaluated the effect of water and container characteristics on A. aegypti immature abundance in urban and rural areas. Data were collected in the wet season of 2011 in central Colombia from 36 urban and 35 rural containers, which were either mosquito-positive or negative. Immature mosquitoes were identified to species. Data on water and container characteristics were collected from all containers. A total of 1452 Aedes pupae and larvae were collected of which 81% were A. aegypti and 19% A. fluviatilis. Aedes aegypti immatures were found in both urban and rural sites. However, the mean number of A. aegypti pupae was five times higher in containers in the urban sites compared to those in the rural sites. One of the important factors associated with A. aegypti infestation was frequency of container washing. Monthly-washed or never-washed containers were both about four times more likely to be infested than those washed every week. There were no significant differences between urban and rural sites in frequency of washing containers. Aedes aegypti immature infestation was positively associated with total dissolved solids, but negatively associated with dissolved oxygen. Water temperature, total dissolved solids, ammonia, nitrate, and organic matter were significantly higher in urban than in rural containers, which might explain urban-rural differences in breeding of A. aegypti. However, many of these factors vary substantially between studies and in their degree of association with vector breeding, therefore they may not be reliable indices for vector control interventions. Although containers in urban areas

  8. Aedes aegypti on Madeira Island (Portugal): genetic variation of a recently introduced dengue vector.

    Science.gov (United States)

    Seixas, Gonçalo; Salgueiro, Patrícia; Silva, Ana Clara; Campos, Melina; Spenassatto, Carine; Reyes-Lugo, Matías; Novo, Maria Teresa; Ribolla, Paulo Eduardo Martins; Silva Pinto, João Pedro Soares da; Sousa, Carla Alexandra

    2013-01-01

    The increasing population of Aedes aegypti mosquitoes on Madeira Island (Portugal) resulted in the first autochthonous dengue outbreak, which occurred in October 2012. Our study establishes the first genetic evaluation based on the mitochondrial DNA (mtDNA) genes [cytochrome oxidase subunit I (COI) and NADH dehydrogenase subunit 4 (ND4)] and knockdown resistance (kdr) mutations exploring the colonisation history and the genetic diversity of this insular vector population. We included mosquito populations from Brazil and Venezuela in the analysis as putative geographic sources. The Ae. aegypti population from Madeira showed extremely low mtDNA genetic variability, with a single haplotype for COI and ND4. We also detected the presence of two important kdr mutations and the quasi-fixation of one of these mutations (F1534C). These results are consistent with a unique recent founder event that occurred on the island of Ae. aegypti mosquitoes that carry kdr mutations associated with insecticide resistance. Finally, we also report the presence of the F1534C kdr mutation in the Brazil and Venezuela populations. To our knowledge, this is the first time this mutation has been found in South American Ae. aegypti mosquitoes. Given the present risk of Ae. aegypti re-invading continental Europe from Madeira and the recent dengue outbreaks on the island, this information is important to plan surveillance and control measures.

  9. Aktivitas Beberapa Atraktan Pada Perangkap Telur Berperekat Terhadap Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Milana Salim

    2017-02-01

    Full Text Available AbstractControl of Aedes aegypti mosquito as dengue haemorrhagic fever/DHF vector can be conducted using the ovitrap modified into a sticky ovitrap. The addition of attractant substances to the ovitrap can attract more mosquitoes comes to the trap, and prevent mosquitoes laying eggs in other places. The aim of this research was to compare hay infusion water and larva rearing water as attractant which combined with sugar-apple (Annona squamosa seed extract by counting the mosquitoes and eggs trapped. This research used six types medium: hay infusion water, larva rearing water, hay infusion water + sugar-apple seed extract, larva rearing water + sugar-apple seed extract, aquadest + sugar-apple seed extract, and aquadest only as a control. Sample used were 25 gravid female of Ae. aegypti mosquitoes with five replications. Mosquitoes and eggs which trapped were counted. This research showed that the number of mosquito trapped and eggs hatched more found in sticky ovitrap with hay infusion water. Statistic analyzed by ANOVA showed that there is no significant difference towards number off mosquito trapped in sticky ovitrap (p>0,05 whereas the medium material has significant difference towards number off egg hatched than others (p<0,05.Keywords: Sticky ovitrap, attractant, Aedes aegypti AbstrakPengendalian nyamuk Aedes aegypti sebagai vektor demam berdarah dengue/DBD dapat dilakukan menggunakan ovitrap yang dimodifikasi dengan perekat menjadi sticky ovitrap. Penambahan atraktan pada ovitrap dapat menarik lebih banyak nyamuk datang ke perangkap yang dipasang dan mencegah nyamuk bertelur di tempat lain. Tujuan penelitian ini adalah untuk mengetahui aktivitas atraktan air rendaman jerami dan air bekas kolonisasi yang dikombinasikan dengan ekstrak biji srikaya pada sticky ovitrap terhadap jumlah nyamuk dan telur yang ditemukan. Enam jenis media uji digunakan dalam penelitian ini yaitu air rendaman jerami, air bekas kolonisasi nyamuk, air rendaman jerami

  10. Mosquito adulticidal properties of Delonix elata (Family: Fabaceae against dengue vector, Aedes aegypti (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    Mohan Rajeswary

    2014-05-01

    Full Text Available Objective: To determine the adulticidal activity of hexane, benzene, chloroform, ethyl acetate and methanol leaf and seed extracts of Delonix elata (D. elata against Aedes aegypti (Ae. aegypti. Methods: The bioassay was conducted in an experimental kit consisting of two cylindrical plastic tubes both measuring 125 mm×44 mm following the WHO method; mortality of the mosquitoes was recorded after 24 h. Results: The adulticidal activity of plant leaf and seed extracts showed moderate toxic effect on the adult mosquitoes after 24 h of exposure period. However, the highest adulticidal activity was observed in the leaf methanol extract of D. elata against Ae. aegypti with the LC50 and LC90 values 162.87 and 309.32 mg/L, respectively. Conclusions: From this result, it can be concluded the crude extract of D. elata was an excellent potential for controlling Ae. aegypti mosquitoes.

  11. Imaginal discs--a new source of chromosomes for genome mapping of the yellow fever mosquito Aedes aegypti.

    Directory of Open Access Journals (Sweden)

    Maria V Sharakhova

    2011-10-01

    Full Text Available The mosquito Aedes aegypti is the primary global vector for dengue and yellow fever viruses. Sequencing of the Ae. aegypti genome has stimulated research in vector biology and insect genomics. However, the current genome assembly is highly fragmented with only ~31% of the genome being assigned to chromosomes. A lack of a reliable source of chromosomes for physical mapping has been a major impediment to improving the genome assembly of Ae. aegypti.In this study we demonstrate the utility of mitotic chromosomes from imaginal discs of 4(th instar larva for cytogenetic studies of Ae. aegypti. High numbers of mitotic divisions on each slide preparation, large sizes, and reproducible banding patterns of the individual chromosomes simplify cytogenetic procedures. Based on the banding structure of the chromosomes, we have developed idiograms for each of the three Ae. aegypti chromosomes and placed 10 BAC clones and a 18S rDNA probe to precise chromosomal positions.The study identified imaginal discs of 4(th instar larva as a superior source of mitotic chromosomes for Ae. aegypti. The proposed approach allows precise mapping of DNA probes to the chromosomal positions and can be utilized for obtaining a high-quality genome assembly of the yellow fever mosquito.

  12. Control of Aedes aegypti with temephos in a Buenos Aires cemetery, Argentina Control de Aedes aegypti con temefós en un cementerio de Buenos Aires, Argentina Controle de Aedes aegypti com temefós em cemitério de Buenos Aires, Argentina

    Directory of Open Access Journals (Sweden)

    Darío Vezzani

    2004-10-01

    Full Text Available The efficacy of a larvicide, temephos, for controlling Ae. aegypti was evaluated in a cemetery in Buenos Aires, Argentina. Breeding sites decreased from 18.4% in the first study period (Nov 1998 to May 1999, without temephos to 2.2% in the second period (Nov 1999 to May 2000, two applications, and to 0.05% in the third one (Nov 2000 to May 2001, five applications. Ovitraps with eggs decreased from 17% in the first period to 5.8% in the second period, and to 2.9% in the third one. Results suggest that, in Buenos Aires, Ae. aegypti populations are highly susceptible to temephos. It is recommended to limit the use of temephos to prevent potential epidemics rather than for routine control.Se evaluó la eficacia de un larvicida, temefós, para controlar Ae. aegypti en un cementerio de Buenos Aires, Argentina. Los criaderos descendieron de 18,4% en el primer periodo de estudio (Nov 1998 a May 1999, sin temefos a 2,2% en el segundo (Nov 1999 a May 2000, dos aplicaciones, y a 0,05% en el tercero (Nov 2000 a May 2001, cinco aplicaciones. Las ovitrampas con huevos disminuyeron de 17% en el primer periodo a 5,8% en el segundo, y a 2,9% en el tercero. Los resultados sugieren que, en Buenos Aires, las poblaciones de Ae. aegypti son altamente susceptibles al temefós. Es recomendable limitar su uso para prevenir eventuales epidemias y no para el control rutinario.Avaliou-se a eficácia de um larvicida, temefós, para controlar Ae. aegypti em um cemitério de Buenos Aires, Argentina. Os criadouros reduziram de 18,4% no primeiro período de estudo (nov de 1998 a maio de 1999, sem temefós para 2,2% no segundo (nov de 1999 a maio de 2000, duas aplicações, e para 0,05% no terceiro (nov de 2000 a maio de 2001, cinco aplicações. As. ovitrampas com ovos diminuíram de 17% no primeiro período para 5,8% no segundo e para 2,9% no terceiro. Os resultados sugerem que, em Buenos Aires, as populações de Ae. aegypti são altamente susceptíveis ao temefós.

  13. Wolbachia Blocks Currently Circulating Zika Virus Isolates in Brazilian Aedes aegypti Mosquitoes

    OpenAIRE

    Dutra, Heverton Leandro Carneiro; Rocha, Marcele Neves; Dias, Fernando Braga Stehling; Mansur, Simone Brutman; Caragata, Eric Pearce; Moreira, Luciano Andrade

    2016-01-01

    Summary The recent association of Zika virus with cases of microcephaly has sparked a global health crisis and highlighted the need for mechanisms to combat the Zika vector, Aedes aegypti mosquitoes. Wolbachia pipientis, a bacterial endosymbiont of insect, has recently garnered attention as a mechanism for arbovirus control. Here we report that Aedes aegypti harboring Wolbachia are highly resistant to infection with two currently circulating Zika virus isolates from the recent Brazilian epide...

  14. Contact irritant responses of Aedes aegypti Using sublethal concentration and focal application of pyrethroid chemicals.

    Science.gov (United States)

    Manda, Hortance; Shah, Pankhil; Polsomboon, Suppaluck; Chareonviriyaphap, Theeraphap; Castro-Llanos, Fanny; Morrison, Amy; Burrus, Roxanne G; Grieco, John P; Achee, Nicole L

    2013-01-01

    Previous studies have demonstrated contact irritant and spatial repellent behaviors in Aedes aegypti following exposure to sublethal concentrations of chemicals. These sublethal actions are currently being evaluated in the development of a push-pull strategy for Ae. aegypti control. This study reports on mosquito escape responses after exposure to candidate chemicals for a contact irritant focused push-pull strategy using varying concentrations and focal application. Contact irritancy (escape) behavior, knockdown and 24 hour mortality rates were quantified in populations of female Ae. aegypti under laboratory conditions and validated in the field (Thailand and Peru) using experimental huts. Evaluations were conducted using varying concentrations and treatment surface area coverage (SAC) of three pyrethroid insecticides: alphacypermethrin, lambacyhalothrin and deltamethrin. Under laboratory conditions, exposure of Ae. aegypti to alphacypermethrin using the standard field application rate (FAR) resulted in escape responses at 25% and 50% SAC that were comparable with escape responses at 100% SAC. Significant escape responses were also observed at time of exit (by four hours) and 40% increase in escape using ½FAR of alphacypermethrin at 75% SAC compared to a matched chemical-free control. In Peru, however, the maximum increase in Ae. aegypti escape from alphacypermethrin-treated huts was 11%. Results presented here suggest a potential role for sublethal and focal application of contact irritant chemicals in an Ae. aegypti push-pull strategy to reduce human-vector contact inside treated homes. However, the impact of an increase in escape response on dengue virus transmission is currently unknown and will depend on rate of biting on human hosts prior to house exiting.

  15. Evaluation of Three Commercial Backpack Sprayers with Aqualuer (registered trademark) 20-20 Against Caged Adult Aedes aegypti

    Science.gov (United States)

    2016-03-11

    Sprayers with Aqualuer® 20–20 Against Caged Adult Aedes Aegypti Author(s): Derrick Conover, Ali Fulcher, Michael L. Smith, Muhammad Farooq, Marcia K... AEDES AEGYPTI DERRICK CONOVER,1 ALI FULCHER,1 MICHAEL L. SMITH,1 MUHAMMAD FAROOQ,2 MARCIA K. GAINES1 AND RUI-DE XUE1,3 ABSTRACT. Three commercially...adult Aedes aegypti in semifield trials in northeastern Florida. Two battery-powered sprayers, Birchmeier and Hudson, were compared with the standard

  16. Adulticidal properties of Pithecellobium dulce (Roxb.) Benth. (Family: Fabaceae) against dengue vector, Aedes aegypti (Linn.) (Diptera: Culicidae)

    OpenAIRE

    Mohan Rajeswary; Marimuthu Govindarajan

    2014-01-01

    Objective: To examine the toxicity of mosquito adulticidal activity of different solvent leaf and seed extracts of Pithecellobium dulce (P. dulce) against dengue vector, Aedes aegypti (Ae. aegypti). Methods: Adulticidal efficacy of the crude leaf and seed extracts of P. dulce with five different solvents like benzene, hexane, ethyl acetate, methanol and chloroform was tested against the five to six day old adult female mosquitoes of Ae. aegypti. The adult mortality was observed...

  17. Potensi Serbuk Daun Sirih (piper betle, Linn Sebagai Larvasida Nyamuk Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Betriyon Betriyon

    2017-02-01

    Full Text Available Abstract Larvacide was compound/essence used to kill  larvae stadium. Many people used Piper betle to traditional medicine. Piper betle plant L,.has contents bioactive compound as flavonoid compound, atsiri volatile, polifenol, tannin, alkaloid and saponin which have quality as larvacide. Based on the case above, this research aim to put the experiment Piper betle of the Aedes aegypti mosquito instars IV. This was pure experiment research using complete random design. This research was done at laboratory . Larva used was  Aedes aegypti mosquito instars IV. Concentration used of this research was : 0,1; 0,2; 0,3; 0,4; 05 percent b/v. This research has control (+ was temephos 0,0001 persen, control (- was aquades water not added anything. Observation done every hour up to all the larva death with the replication 5 times. Larva death cumulative data on 10th hour and 24 th used to calculate LC50 and LT50 used probit regression analysis than data analyzed using Levene’s test. The result of this research showed that the cost of LC50 piper betle plant L. on 10th hour was 0,54 ± 0,147 persen b/v, than on 24 hour LC50 on concentration 0,07 up to 0,28 percent b/v. the time needed to cross out 50 percent Aedes aegypti instar IV of the concentration 0,05 percent time needed 19. Based on a probit analysis of the relationship between the level of concentration with the number of larvae mortality, Piper betle have activities as larvacide of Aedes aegypti. Keywods: piper betle leaf powder, larvacide, Aedes aegyti AbstrakLarvasida adalah senyawa/zat yang digunakan untuk membunuh stadium larva. Tanaman Piper betle, Linn. (sirih hijau sudah banyak dimanfaatkan oleh kalangan masyarakat sebagai obat tradisional. Daun sirih hijau memiliki kandungan senyawa bioaktif seperti senyawa flavonoid, minyak atsiri, polifenol, tannin, alkaloid dan saponin yang dapat bersifat sebagai larvasida. Penelitian ini bertujuan untuk mengetahui manfaat daun sirih hijau yaitu

  18. On the analysis of parasite effect for Aedes aegypti and Aedes albopictus population

    Science.gov (United States)

    Kallista, Meta; Aldila, Dipo; Nuraini, Nuning; Soewono, Edy

    2014-03-01

    It has been reported in some countries that the population of Aedes aegypti has been significantly reduced by the invasion of Aedes albopictus. There has been a hypothesis explaining this phenomenon of which investigated the influence of parasites pathogenesis to the competition between these two mosquito species in the fields. Ascogregarina taiwanensis and Ascogregarina culicis are known as parasites that infect Aedes albopictus and Aedes aegypti, respectively. Several studies have concluded that Ascogregarina taiwanensis caused high fatality for Aedes aegypti larvae, but Ascogregarina culicis was not pathogenic to Aedes albopictus larvae. Therefore, Ascogregarina taiwanensis may contribute to reduce the number of populations Aedes aegypti in the fields. Inspired by these facts, a mathematical model depicting interaction between parasites and mosquitoes is constructed in this paper. In this model are included six dynamic mosquito compartments, i.e. egg, larvae, infected larvae, adult, infected adult and one dynamic compartment for parasite. Derivation of the existence criteria and the stability analysis of parasite-free equilibrium as well as the basic offspring for the model are presented. Numerical simulations for sensitivity analysis indicating the invasive species for variation parameters are shown.

  19. Evaluation of the antimicrobial activity of crude extracts and isolated constituents from Chresta scapigera Avaliação da atividade antimicrobiana dos extratos brutos e dos constituintes de Chresta scapigera

    Directory of Open Access Journals (Sweden)

    Elisandra C. Schinor

    2007-03-01

    Full Text Available Crude extracts and eight isolated compounds from Chresta scapigera were evaluated for antibacterial and antifungal activities by the agar-well diffusion method. Twenty strains, including Gram-positive and Gram-negative bacteria and yeasts were used in the bioassay. Hexane extracts presented the best results while ethanol extracts did not indicate inhibition of the microbial growth. Amongst the evaluated compounds b-amyrin acetate, tiliroside and luteolin showed the strongest antimicrobial effect.Os extratos brutos e oito constituintes isolados de Chresta scapigera foram avaliados para as atividades antibacteriana e antifúngica, utilizando o método de difusão em ágar. Vinte cepas indicadoras, incluindo bactérias (Gram-positivas e Gram-negativas e leveduras, foram utilizadas no bioensaio. Os melhores resultados foram obtidos para os extratos hexânicos, enquanto os extratos etanólicos não inibiram o crescimento microbiano. Acetato de b-amirina, tilirosídeo e luteolina foram os mais eficazes dentre os constituintes avaliados.

  20. Knockdown resistance (kdr) of the voltage-gated sodium channel gene of Aedes aegypti population in Denpasar, Bali, Indonesia.

    Science.gov (United States)

    Hamid, Penny Humaidah; Prastowo, Joko; Widyasari, Anis; Taubert, Anja; Hermosilla, Carlos

    2017-06-05

    Aedes aegypti is the main vector of several arthropod-borne viral infections in the tropics profoundly affecting humans, such as dengue fever (DF), West Nile (WN), chikungunya and more recently Zika. Eradication of Aedes still largely depends on insecticides, which is the most cost-effective strategy, and often inefficient due to resistance development in exposed Aedes populations. We here conducted a study of Ae. aegypti resistance towards several insecticides regularly used in the city of Denpasar, Bali, Indonesia. Aedes aegypti egg samples were collected with ovitraps and thereafter hatched in the insectary of the Gadjah Mada University. The F0 generation was used for all bioassay-related experiments and knockdown resistance (kdr) assays. Results clearly showed resistance development of Ae. aegypti against tested insecticides. Mortalities of Ae. aegypti were less than 90% with highest resistance observed against 0.75% permethrin. Mosquitoes from the southern parts of Denpasar presented high level of resistance pattern in comparison to those from the western and northern parts of Denpasar. Kdr analysis of voltage-gated sodium channel (Vgsc) gene showed significant association to S989P and V1016G mutations linked to resistance phenotypes against 0.75% permethrin. Conversely, Ae. aegypti F1534C gene mutation did not result in any significant correlation to resistance development. Periodically surveillance of insecticide resistances in Ae. aegypti mosquitoes will help local public health authorities to set better goals and allow proper evaluation of on-going mosquito control strategies. Initial detection of insecticide resistance will contribute to conduct proper actions in delaying mosquito resistance development such as insecticide rotation or combination of compounds in order to prolong chemical efficacy in combating Ae. aegypti vectors in Indonesia.

  1. Genome Investigations of Vector Competence in Aedes aegypti to Inform Novel Arbovirus Disease Control Approaches

    Directory of Open Access Journals (Sweden)

    David W. Severson

    2016-10-01

    Full Text Available Dengue (DENV, yellow fever, chikungunya, and Zika virus transmission to humans by a mosquito host is confounded by both intrinsic and extrinsic variables. Besides virulence factors of the individual arboviruses, likelihood of virus transmission is subject to variability in the genome of the primary mosquito vector, Aedes aegypti. The “vectorial capacity” of A. aegypti varies depending upon its density, biting rate, and survival rate, as well as its intrinsic ability to acquire, host and transmit a given arbovirus. This intrinsic ability is known as “vector competence”. Based on whole transcriptome analysis, several genes and pathways have been predicated to have an association with a susceptible or refractory response in A. aegypti to DENV infection. However, the functional genomics of vector competence of A. aegypti is not well understood, primarily due to lack of integrative approaches in genomic or transcriptomic studies. In this review, we focus on the present status of genomics studies of DENV vector competence in A. aegypti as limited information is available relative to the other arboviruses. We propose future areas of research needed to facilitate the integration of vector and virus genomics and environmental factors to work towards better understanding of vector competence and vectorial capacity in natural conditions.

  2. Susceptibility profile of Aedes aegypti from Santiago Island, Cabo Verde, to insecticides.

    Science.gov (United States)

    Rocha, Hélio Daniel Ribeiro; Paiva, Marcelo Henrique Santos; Silva, Norma Machado; de Araújo, Ana Paula; Camacho, Denise Dos Reis da Rosa de Azevedo; Moura, Aires Januário Fernandes da; Gómez, Lara Ferrero; Ayres, Constância Flávia Junqueira; Santos, Maria Alice Varjal de Melo

    2015-12-01

    In 2009, Cabo Verde diagnosed the first dengue cases, with 21,137 cases reported and Aedes aegypti was identified as the vector. Since the outbreak, chemical insecticides and source reduction were used to control the mosquito population. This study aimed to assess the susceptibility of A. aegypti populations from Santiago, Cabo Verde to insecticides and identify the mechanisms of resistance. Samples of A. aegypti eggs were obtained at two different time periods (2012 and 2014), using ovitraps in different locations in Santiago Island to establish the parental population. F1 larvae were exposed to different concentrations of insecticides (Bacillus thuringiensis var israelensis (Bti), diflubenzuron and temephos) to estimate the lethal concentrations (LC90) and calculate the respective rate of resistance (RR90). Semi-field tests using temephos-ABATE(®) were performed to evaluate the persistence of the product. Bottle tests using female mosquitoes were carried out to determine the susceptibility to the adulticides malathion, cypermethrin and deltamethrin. Biochemical and molecular tests were performed to investigate the presence of metabolic resistance mechanisms, associated with the enzymes glutathione S-transferases (GSTs), esterases and mixed-function oxidases (MFO) and to detect mutations or alterations in the sodium channel and acetylcholinesterase genes. A. aegypti mosquitoes from Santiago exhibited resistance to deltamethrin, cypermethrin (mortality<80%) and temephos (RR90=4.4) but susceptibility to malathion (mortality≥98%), Bti and diflubenzuron. The low level of resistance to temephos did not affect the effectiveness of Abate(®). The enzymatic analysis conducted in 2012 revealed slight changes in the activities of GST (25%), MFO (18%), α-esterase (19%) and β-esterase (17%), but no significant changes in 2014. Target site resistance mutations were not detected. Our results suggest that the A. aegypti population from Santiago is resistant to two major

  3. Genetic structure and phylogeography of Aedes aegypti, the dengue and yellow-fever mosquito vector in Bolivia.

    Science.gov (United States)

    Paupy, Christophe; Le Goff, Gilbert; Brengues, Cécile; Guerra, Mabel; Revollo, Jimmy; Barja Simon, Zaïra; Hervé, Jean-Pierre; Fontenille, Didier

    2012-08-01

    Between the 16th and 18th centuries, Aedes aegypti (Diptera: Culicidae), a mosquito native to Africa, invaded the Americas, where it was successively responsible for the emergence of yellow fever (YF) and dengue (DEN). The species was eradicated from numerous American countries in the mid-20th century, but re-invaded them in the 1970s and 1980s. Little is known about the precise identities of Ae. aegypti populations which successively thrived in South America, or their relation with the epidemiological changes in patterns of YF and DEN. We examined these questions in Bolivia, where Ae. aegypti, eradicated in 1943, re-appeared in the 1980s. We assessed the genetic variability and population genetics of Ae. aegypti samples in order to deduce their genetic structure and likely geographic origin. Using a 21-population set covering Bolivia, we analyzed the polymorphism at nine microsatellite loci and in two mitochondrial DNA regions (COI and ND4). Microsatellite markers revealed a significant genetic structure among geographic populations (F(ST)=0.0627, PBolivia. Analysis of mtDNA sequences revealed the existence of two genetic lineages, one dominant lineage recovered throughout Bolivia, and the second restricted to rural localities in South Bolivia. Phylogenic analysis indicated that this minority lineage was related to West African Ae. aegypti specimens. In conclusion, our results suggested a temporal succession of Ae. aegypti populations in Bolivia, that potentially impacted the epidemiology of dengue and yellow fever. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Local evolution of pyrethroid resistance offsets gene flow among Aedes aegypti collections in Yucatan State, Mexico.

    Science.gov (United States)

    Saavedra-Rodriguez, Karla; Beaty, Meaghan; Lozano-Fuentes, Saul; Denham, Steven; Garcia-Rejon, Julian; Reyes-Solis, Guadalupe; Machain-Williams, Carlos; Loroño-Pino, Maria Alba; Flores-Suarez, Adriana; Ponce-Garcia, Gustavo; Beaty, Barry; Eisen, Lars; Black, William C

    2015-01-01

    The mosquito Aedes aegypti is the major vector of the four serotypes of dengue virus (DENV1-4). Previous studies have shown that Ae. aegypti in Mexico have a high effective migration rate and that gene flow occurs among populations that are up to 150 km apart. Since 2000, pyrethroids have been widely used for suppression of Ae. aegypti in cities in Mexico. In Yucatan State in particular, pyrethroids have been applied in and around dengue case households creating an opportunity for local selection and evolution of resistance. Herein, we test for evidence of local adaptation by comparing patterns of variation among 27 Ae. aegypti collections at 13 single nucleotide polymorphisms (SNPs): two in the voltage-gated sodium channel gene para known to confer knockdown resistance, three in detoxification genes previously associated with pyrethroid resistance, and eight in putatively neutral loci. The SNPs in para varied greatly in frequency among collections, whereas SNPs at the remaining 11 loci showed little variation supporting previous evidence for extensive local gene flow. Among Ae. aegypti in Yucatan State, Mexico, local adaptation to pyrethroids appears to offset the homogenizing effects of gene flow. © The American Society of Tropical Medicine and Hygiene.

  5. Plan Continental de ampliación e intensificación del combate a Aedes aegypti

    Directory of Open Access Journals (Sweden)

    1998-01-01

    Full Text Available Campaigns for the eradication of Aedes aegypti, the mosquito vector responsible for spreading dengue and yellow fever, enjoyed great success during the forties and fifties. Between 1948 and 1962, A. aegypti disappeared from 21 countries in the Region of the Americas, but lack of sustainability of the programs resulted in the gradual reinfestation of practically all countries. In an effort to combat the situation, in 1995 PAHO began to help its Member States with the creation of an expert panel charged with drawing up a continental plan of action for eradicating A. aegypti from all countries. The Continental Plan for expanding and intensifying the war against Aedes aegypti was drawn up in Caracas, Venezuela, in April of 1997, in accordance with the objectives previously established by the countries. The plan's success will depend on having all countries commit themselves to putting it into effect and to providing the national funds that are needed for its full implementation.

  6. Vector Competence of Aedes aegypti and Aedes polynesiensis Populations from French Polynesia for Chikungunya Virus.

    Directory of Open Access Journals (Sweden)

    Vaea Richard

    2016-05-01

    Full Text Available From October 2014 to March 2015, French Polynesia experienced for the first time a chikungunya outbreak. Two Aedes mosquitoes may have contributed to chikungunya virus (CHIKV transmission in French Polynesia: the worldwide distributed Ae. aegypti and the Polynesian islands-endemic Ae. polynesiensis mosquito.To investigate the vector competence of French Polynesian populations of Ae. aegypti and Ae. polynesiensis for CHIKV, mosquitoes were exposed per os at viral titers of 7 logs tissue culture infectious dose 50%. At 2, 6, 9, 14 and 21 days post-infection (dpi, saliva was collected from each mosquito and inoculated onto C6/36 mosquito cells to check for the presence of CHIKV infectious particles. Legs and body (thorax and abdomen of each mosquito were also collected at the different dpi and submitted separately to viral RNA extraction and CHIKV real-time RT-PCR.CHIKV infection rate, dissemination and transmission efficiencies ranged from 7-90%, 18-78% and 5-53% respectively for Ae. aegypti and from 39-41%, 3-17% and 0-14% respectively for Ae. polynesiensis, depending on the dpi. Infectious saliva was found as early as 2 dpi for Ae. aegypti and from 6 dpi for Ae. polynesiensis. Our laboratory results confirm that the French Polynesian population of Ae. aegypti is highly competent for CHIKV and they provide clear evidence for Ae. polynesiensis to act as an efficient CHIKV vector.As supported by our findings, the presence of two CHIKV competent vectors in French Polynesia certainly contributed to enabling this virus to quickly disseminate from the urban/peri-urban areas colonized by Ae. aegypti to the most remote atolls where Ae. polynesiensis is predominating. Ae. polynesiensis was probably involved in the recent chikungunya outbreaks in Samoa and the Cook Islands. Moreover, this vector may contribute to the risk for CHIKV to emerge in other Polynesian islands like Fiji, and more particularly Wallis where there is no Ae. aegypti.

  7. Multiple introductions of the dengue vector, Aedes aegypti, into California.

    Science.gov (United States)

    Pless, Evlyn; Gloria-Soria, Andrea; Evans, Benjamin R; Kramer, Vicki; Bolling, Bethany G; Tabachnick, Walter J; Powell, Jeffrey R

    2017-08-01

    The yellow fever mosquito Aedes aegypti inhabits much of the tropical and subtropical world and is a primary vector of dengue, Zika, and chikungunya viruses. Breeding populations of A. aegypti were first reported in California (CA) in 2013. Initial genetic analyses using 12 microsatellites on collections from Northern CA in 2013 indicated the South Central US region as the likely source of the introduction. We expanded genetic analyses of CA A. aegypti by: (a) examining additional Northern CA samples and including samples from Southern CA, (b) including more southern US populations for comparison, and (c) genotyping a subset of samples at 15,698 SNPs. Major results are: (1) Northern and Southern CA populations are distinct. (2) Northern populations are more genetically diverse than Southern CA populations. (3) Northern and Southern CA groups were likely founded by two independent introductions which came from the South Central US and Southwest US/northern Mexico regions respectively. (4) Our genetic data suggest that the founding events giving rise to the Northern CA and Southern CA populations likely occurred before the populations were first recognized in 2013 and 2014, respectively. (5) A Northern CA population analyzed at multiple time-points (two years apart) is genetically stable, consistent with permanent in situ breeding. These results expand previous work on the origin of California A. aegypti with the novel finding that this species entered California on multiple occasions, likely some years before its initial detection. This work has implications for mosquito surveillance and vector control activities not only in California but also in other regions where the distribution of this invasive mosquito is expanding.

  8. Multiple introductions of the dengue vector, Aedes aegypti, into California.

    Directory of Open Access Journals (Sweden)

    Evlyn Pless

    2017-08-01

    Full Text Available The yellow fever mosquito Aedes aegypti inhabits much of the tropical and subtropical world and is a primary vector of dengue, Zika, and chikungunya viruses. Breeding populations of A. aegypti were first reported in California (CA in 2013. Initial genetic analyses using 12 microsatellites on collections from Northern CA in 2013 indicated the South Central US region as the likely source of the introduction. We expanded genetic analyses of CA A. aegypti by: (a examining additional Northern CA samples and including samples from Southern CA, (b including more southern US populations for comparison, and (c genotyping a subset of samples at 15,698 SNPs. Major results are: (1 Northern and Southern CA populations are distinct. (2 Northern populations are more genetically diverse than Southern CA populations. (3 Northern and Southern CA groups were likely founded by two independent introductions which came from the South Central US and Southwest US/northern Mexico regions respectively. (4 Our genetic data suggest that the founding events giving rise to the Northern CA and Southern CA populations likely occurred before the populations were first recognized in 2013 and 2014, respectively. (5 A Northern CA population analyzed at multiple time-points (two years apart is genetically stable, consistent with permanent in situ breeding. These results expand previous work on the origin of California A. aegypti with the novel finding that this species entered California on multiple occasions, likely some years before its initial detection. This work has implications for mosquito surveillance and vector control activities not only in California but also in other regions where the distribution of this invasive mosquito is expanding.

  9. Adulticidal properties of Pithecellobium dulce (Roxb. Benth. (Family: Fabaceae against dengue vector, Aedes aegypti (Linn. (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    Mohan Rajeswary

    2014-02-01

    Full Text Available Objective: To examine the toxicity of mosquito adulticidal activity of different solvent leaf and seed extracts of Pithecellobium dulce (P. dulce against dengue vector, Aedes aegypti (Ae. aegypti. Methods: Adulticidal efficacy of the crude leaf and seed extracts of P. dulce with five different solvents like benzene, hexane, ethyl acetate, methanol and chloroform was tested against the five to six day old adult female mosquitoes of Ae. aegypti. The adult mortality was observed after 24 h under the laboratory conditions. Results: Among the tested solvents the maximum efficacy was observed in the leaf and seed methanol extract. The LC 50 and LC90 values of P. dulce leaf and seed extract against adults of Ae. aegypti were 218.64, 257.99 mg/L and 426.05, 507.73 mg/L, respectively. No mortality was observed in controls. The Chi-square values were significant at P<0.05 level. Conclusions: From the results it can be concluded the crude extract of P. dulce leaf and seed was an excellent potential for controlling dengue vector mosquito, Ae. aegypti.

  10. Insights into the transcriptome of oenocytes from Aedes aegypti pupae

    Directory of Open Access Journals (Sweden)

    Gustavo Ferreira Martins

    2011-05-01

    Full Text Available Oenocytes are ectodermic cells present in the fat body of several insect species and these cells are considered to be analogous to the mammalian liver, based on their role in lipid storage, metabolism and secretion. Although oenocytes were identified over a century ago, little is known about their messenger RNA expression profiles. In this study, we investigated the transcriptome of Aedes aegypti oenocytes. We constructed a cDNA library from Ae. aegypti MOYO-R strain oenocytes collected from pupae and randomly sequenced 687 clones. After sequences editing and assembly, 326 high-quality contigs were generated. The most abundant transcripts identified corresponded to the cytochrome P450 superfamily, whose members have roles primarily related to detoxification and lipid metabolism. In addition, we identified 18 other transcripts with putative functions associated with lipid metabolism. One such transcript, a fatty acid synthase, is highly represented in the cDNA library of oenocytes. Moreover, oenocytes expressed several immunity-related genes and the majority of these genes were lysozymes. The transcriptional profile suggests that oenocytes play diverse roles, such as detoxification and lipid metabolism, and increase our understanding of the importance of oenocytes in Ae. aegypti homeostasis and immune competence.

  11. Potential for dengue in South Africa: mosquito ecology with particular reference to Aedes aegypti.

    Science.gov (United States)

    Kemp, A; Jupp, P G

    1991-12-01

    Observations on prevalence, geographical distribution, utilization of artificial larval habitats and anthropophilism were made on diurnal mosquitoes at selected localities along the coast of Natal and inland in the Transvaal to identify potential vectors of dengue in South Africa. Larval collections made in artificial containers on the ground, the exposure of bamboo pots as ovitraps in trees and collection of mosquitoes biting man showed the following species as the most likely candidates for vectors: Aedes aegypti, Ae. demeilloni, Ae. simpsoni, Ae. strelitziae, Ae. furcifer, Ae. cordellieri and Eretmapodites quinquevittatus. The bamboo pots showed that Ae. aegypti and Ae. simpsoni were the most widespread species, occurring at 11 of 12 localities. Aedes aegypti was the most prevalent species with mean pot index of 60.3 +/- 9.8% (SE) and abundance index of 0.43 +/- 0.15 (SE). Aedes aegypti was frequently present as larvae in artificial containers at indices of 11-83% (mean 56.8 +/- 5.6%, SE) and was the most anthropophilic species with average biting rates of 10-29 per man-hour at 7 localities. Although Ae. aegypti was abundant in the pots at Ndumu (northern Natal) and at Skukuza (eastern Transvaal), the local populations were poorly anthropophilic at these localities. At some localities, populations of Ae. demeilloni, Ae. simpsoni and Ae. strelitziae had average biting rates of 5.4-9.6 per man-hour. Aedes furcifer was collected for the first time at Durban, extending its distribution southward to latitude 29 degrees 53' S.

  12. Estabilidade constitucional e acordos constitucionais: os processos constituintes de Brasil (1987-1988 e Espanha (1977-1978 Constitutional stability and constitutional agreements: the constituent process of Brazil (1987-1988 and Spain (1977-1978

    Directory of Open Access Journals (Sweden)

    Antonio Gomes Moreira Maués

    2008-12-01

    Full Text Available O artigo analisa os acordos que formaram as maiorias nas assembléias constituintes de Brasil (1987-1988 e Espanha (1977-1978, buscando indentificar sua contribuição para a estabilidade constitucional dos dois países. O estudo foi desenvolvido em três níveis: estudo das normas regimentais das assembléias constituintes; tabulação das votações que aprovaram dispositivos constitucionais; e análise dos debates constitucionais, na qual foram identificados três processos de formação de maiorias, concessões mútuas, não-decisão e maioria aritmética. O trabalho demonstra que o uso de concessões mútuas e da não-decisão na constituinte favorece o processo de construção do consenso em torno da constituição, contribuindo para sua estabilidade.The article analyses the agreements which formed the majorities in the constituent assemblies of Brazil (1987-1988 and Spain (1977-1978, trying to identify its contribution to the constitutional stability in both countries. This analysis is developed through three steps: study of the rules that governed the constituent assemblies; organization of data about the votings which approved constitutional provisions; and analysis of the constitutional debates, in which three process of majority formation have been identified, mutual concessions; no-decision and arithmetical majority. The work shows that the use of mutual concessions and no-decision in the constituent assembly promotes the process of consensus building regarding the constitution, contributing to its stability.

  13. Vector competence of populations of Aedes aegypti from three distinct cities in Kenya for chikungunya virus.

    Directory of Open Access Journals (Sweden)

    Sheila B Agha

    2017-08-01

    Full Text Available In April, 2004, chikungunya virus (CHIKV re-emerged in Kenya and eventually spread to the islands in the Indian Ocean basin, South-East Asia, and the Americas. The virus, which is often associated with high levels of viremia in humans, is mostly transmitted by the urban vector, Aedes aegypti. The expansion of CHIKV presents a public health challenge both locally and internationally. In this study, we investigated the ability of Ae. aegypti mosquitoes from three distinct cities in Kenya; Mombasa (outbreak prone, Kisumu, and Nairobi (no documented outbreak to transmit CHIKV.Aedes aegypti mosquito populations were exposed to different doses of CHIKV (105.6-7.5 plaque-forming units[PFU]/ml in an infectious blood meal. Transmission was ascertained by collecting and testing saliva samples from individual mosquitoes at 5, 7, 9, and 14 days post exposure. Infection and dissemination were estimated by testing body and legs, respectively, for individual mosquitoes at selected days post exposure. Tissue culture assays were used to determine the presence of infectious viral particles in the body, leg, and saliva samples. The number of days post exposure had no effect on infection, dissemination, or transmission rates, but these rates increased with an increase in exposure dose in all three populations. Although the rates were highest in Ae. aegypti from Mombasa at titers ≥106.9 PFU/ml, the differences observed were not statistically significant (χ2 ≤ 1.04, DF = 1, P ≥ 0.31. Overall, about 71% of the infected mosquitoes developed a disseminated infection, of which 21% successfully transmitted the virus into a capillary tube, giving an estimated transmission rate of about 10% for mosquitoes that ingested ≥106.9 PFU/ml of CHIKV. All three populations of Ae. aegypti were infectious as early as 5-7 days post exposure. On average, viral dissemination only occurred when body titers were ≥104 PFU/ml in all populations.Populations of Ae. aegypti from

  14. Vector competence of populations of Aedes aegypti from three distinct cities in Kenya for chikungunya virus.

    Science.gov (United States)

    Agha, Sheila B; Chepkorir, Edith; Mulwa, Francis; Tigoi, Caroline; Arum, Samwel; Guarido, Milehna M; Ambala, Peris; Chelangat, Betty; Lutomiah, Joel; Tchouassi, David P; Turell, Michael J; Sang, Rosemary

    2017-08-01

    In April, 2004, chikungunya virus (CHIKV) re-emerged in Kenya and eventually spread to the islands in the Indian Ocean basin, South-East Asia, and the Americas. The virus, which is often associated with high levels of viremia in humans, is mostly transmitted by the urban vector, Aedes aegypti. The expansion of CHIKV presents a public health challenge both locally and internationally. In this study, we investigated the ability of Ae. aegypti mosquitoes from three distinct cities in Kenya; Mombasa (outbreak prone), Kisumu, and Nairobi (no documented outbreak) to transmit CHIKV. Aedes aegypti mosquito populations were exposed to different doses of CHIKV (105.6-7.5 plaque-forming units[PFU]/ml) in an infectious blood meal. Transmission was ascertained by collecting and testing saliva samples from individual mosquitoes at 5, 7, 9, and 14 days post exposure. Infection and dissemination were estimated by testing body and legs, respectively, for individual mosquitoes at selected days post exposure. Tissue culture assays were used to determine the presence of infectious viral particles in the body, leg, and saliva samples. The number of days post exposure had no effect on infection, dissemination, or transmission rates, but these rates increased with an increase in exposure dose in all three populations. Although the rates were highest in Ae. aegypti from Mombasa at titers ≥106.9 PFU/ml, the differences observed were not statistically significant (χ2 ≤ 1.04, DF = 1, P ≥ 0.31). Overall, about 71% of the infected mosquitoes developed a disseminated infection, of which 21% successfully transmitted the virus into a capillary tube, giving an estimated transmission rate of about 10% for mosquitoes that ingested ≥106.9 PFU/ml of CHIKV. All three populations of Ae. aegypti were infectious as early as 5-7 days post exposure. On average, viral dissemination only occurred when body titers were ≥104 PFU/ml in all populations. Populations of Ae. aegypti from Mombasa, Nairobi

  15. First report on invasion of yellow fever mosquito, Aedes aegypti, at Narita International Airport, Japan in August 2012.

    Science.gov (United States)

    Sukehiro, Nayu; Kida, Nori; Umezawa, Masahiro; Murakami, Takayuki; Arai, Naoko; Jinnai, Tsunesada; Inagaki, Shunichi; Tsuchiya, Hidetoshi; Maruyama, Hiroshi; Tsuda, Yoshio

    2013-01-01

    The invasion of the yellow fever mosquito Aedes aegypti at Narita International Airport, Japan was detected for the first time. During the course of routine vector surveillance at Narita International Airport, 27 Ae. aegypti adults emerged from larvae and pupae collected from a single larvitrap placed near No. 88 spot at passenger terminal 2 on August 8, 2012. After the appearance of Ae. aegypti in the larvitrap, we defined a 400-m buffer zone and started an intensive vector survey using an additional 34 larvitraps and 15 CO2 traps. International aircraft and passenger terminal 2 were also inspected, and one Ae. aegypti male was collected from the cargo space of an international aircraft from Darwin via Manila on August 28, 2012. Larvicide treatment with 1.5% fenitrothion was conducted in 64 catch basins and one ditch in the 400-m buffer zone. Twenty-four large water tanks were also treated at least once with 0.5% pyriproxyfen, an insect growth regulator. No Ae. aegypti eggs or adults were found during the 1-month intensive vector survey after finding larvae and pupae in the larvitrap. We concluded that Ae. aegypti had failed to establish a population at Narita International Airport.

  16. Comparison of BG-Sentinel® Trap and Oviposition Cups for Aedes aegypti and Aedes albopictus Surveillance in Jacksonville, Florida, USA.

    Science.gov (United States)

    Wright, Jennifer A; Larson, Ryan T; Richardson, Alec G; Cote, Noel M; Stoops, Craig A; Clark, Marah; Obenauer, Peter J

    2015-03-01

    The BG-Sentinel® (BGS) trap and oviposition cups (OCs) have both proven effective in the surveillance of Aedes species. This study aimed to determine which of the 2 traps could best characterize the relative population sizes of Aedes albopictus and Aedes aegypti in an urban section of Jacksonville, FL. Until 1986, Ae. aegypti was considered the dominant container-breeding species in urban northeastern Florida. Since the introduction of Ae. albopictus, Ae. aegypti has become almost completely extirpated. In 2011, a resurgence of Ae. aegypti was detected in the urban areas of Jacksonville; thus this study initially set out to determine the extent of Ae. aegypti reintroduction to the area. We determined that the BGS captured a greater number of adult Ae. aegypti than Ae. albopictus, while OCs did not monitor significantly different numbers of either species, even in areas where the BGS traps suggested a predominance of one species over the other. Both traps were effective at detecting Aedes spp.; however, the BGS proved more diverse by detecting over 20 other species as well. Our results show that in order to accurately determine vectorborne disease threats and the impact of control operations on these 2 species, multiple trapping techniques should be utilized when studying Ae. aegypti and Ae. albopictus population dynamics.

  17. Updated Reported Distribution of Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus (Diptera: Culicidae) in the United States, 1995-2016.

    Science.gov (United States)

    Hahn, Micah B; Eisen, Lars; McAllister, Janet; Savage, Harry M; Mutebi, John-Paul; Eisen, Rebecca J

    2017-09-01

    Aedes (Stegomyia) aegypti (L.) and Aedes (Stegomyia) albopictus (Skuse) are potential vectors of Zika, dengue, and chikungunya viruses in the United States. A Zika virus outbreak in Florida in the summer of 2016, driven by Ae. aegypti and resulting in > 200 locally acquired cases of human illness, underscored the need for up-to-date information on the geographic distribution of Ae. aegypti and Ae. albopictus in the United States. In early 2016, we conducted a survey and literature review to compile county records for presence of Ae. aegypti and Ae. albopictus in the United States from 1995 to 2016. Surveillance for these vectors was intensified across the United States during the summer and fall of 2016. At the end of 2016, we therefore conducted a follow-up survey of mosquito control agencies, university researchers, and state and local health departments to document new collection records for Ae. aegypti and Ae. albopictus. The repeated survey at the end of the year added Ae. aegypti collection records from 38 new counties and Ae. albopictus collection records from 127 new counties, representing a 21 and 10 percent increase, respectively, in the number of counties with reported presence of these mosquitoes compared with the previous report. Moreover, through our updated survey, 40 and 183 counties, respectively, added additional years of collection records for Ae. aegypti and Ae. albopictus from 1995 to 2016. Our findings underscore the continued need for systematic surveillance of Ae. aegypti and Ae. albopictus. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.

  18. First record of natural vertical transmission of dengue virus in Aedes aegypti from Cuba.

    Science.gov (United States)

    Gutiérrez-Bugallo, Gladys; Rodriguez-Roche, Rosmari; Díaz, Gisell; Vázquez, Antonio A; Alvarez, Mayling; Rodríguez, Magdalena; Bisset, Juan A; Guzman, Maria G

    2017-10-01

    While horizontal transmission (human-mosquito-human) of dengue viruses largely determines the epidemiology of the disease, vertical transmission (infected female mosquito- infected offspring) has been suggested as a mechanism that ensures maintenance of the virus during adverse conditions for horizontal transmission to occur. The purpose of this study was to analyze the natural infection of larval stages of Aedes aegypti (Diptera: Culicidae) with the dengue virus (DENV) in Cuba. Here, we report vertical transmission of DENV-3 genotype III in natural populations of Ae. aegypti through RT-PCR detection and serotyping plus sequencing. Our report constitutes the first record of vertical transmission of DENV in Ae. aegypti from Cuba with details of its serotype and genotype. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Larvicidal Activity of essential oils from Brazilian plants against Aedes aegypti L.

    Directory of Open Access Journals (Sweden)

    Eveline Solon Barreira Cavalcanti

    2004-08-01

    Full Text Available Aedes aegypti L. is the major vector of dengue fever, an endemic disease in Brazil. In an effort to find effective and affordable ways to control this mosquito, the larvicidal activities of essential oils from nine plants widely found in the Northeast of Brazil were analyzed by measurement of their LC50. The essential oils were extracted by steam distillation and their chemical composition determined by GL-chromatography coupled to mass spectroscopy. The essential oils from Cymbopogon citratus and Lippia sidoides, reported in the literature to have larvicidal properties against A. aegypti, were used for activity comparison. The results show that Ocimum americanum and Ocimum gratissimum have LC50 of 67 ppm and 60 ppm respectively, compared to 63 ppm for L. sidoides and 69 ppm for C. citratus. These results suggest a potential utilization of the essential oil of these two Ocimum species for the control of A. aegypti.

  20. Characteristics of Aedes aegypti adult mosquitoes in rural and urban areas of western and coastal Kenya

    Science.gov (United States)

    Ndenga, Bryson Alberto; Mutuku, Francis Maluki; Ngugi, Harun Njenga; Mbakaya, Joel Omari; Aswani, Peter; Musunzaji, Peter Siema; Vulule, John; Mukoko, Dunstan; Kitron, Uriel; LaBeaud, Angelle Desiree

    2017-01-01

    Aedes aegypti is the main vector for yellow fever, dengue, chikungunya and Zika viruses. Recent outbreaks of dengue and chikungunya have been reported in Kenya. Presence and abundance of this vector is associated with the risk for the occurrence and transmission of these diseases. This study aimed to characterize the presence and abundance of Ae. aegypti adult mosquitoes from rural and urban sites in western and coastal regions of Kenya. Presence and abundance of Ae. aegypti adult mosquitoes were determined indoors and outdoors in two western (urban Kisumu and rural Chulaimbo) and two coastal (urban Ukunda and rural Msambweni) sites in Kenya. Sampling was performed using quarterly human landing catches, monthly Prokopack automated aspirators and monthly Biogents-sentinel traps. A total of 2,229 adult Ae. aegypti mosquitoes were collected: 785 (35.2%) by human landing catches, 459 (20.6%) by Prokopack aspiration and 985 (44.2%) by Biogents-sentinel traps. About three times as many Ae. aegypti mosquitoes were collected in urban than rural sites (1,650 versus 579). Comparable numbers were collected in western (1,196) and coastal (1,033) sites. Over 80% were collected outdoors through human landing catches and Prokopack aspiration. The probability of collecting Ae. aegypti mosquitoes by human landing catches was significantly higher in the afternoon than morning hours (Paegypti mosquitoes were collected using Prokopack aspiration outdoors than indoors (Paegypti bites was highest in urban areas, outdoors and in the afternoon hours. These characteristics have major implications for the possible transmission of arboviral diseases and for the planning of surveillance and control programs. PMID:29261766

  1. Comportamento de formas imaturas de Aedes aegypti, no litoral do Estado de São Paulo Behavior of immatures Aedes aegypti in the coast State of São Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    Carmen Moreno Glasser

    2011-06-01

    Full Text Available INTRODUÇÃO: Em região de alta incidência de dengue, no litoral do Estado de São Paulo, selecionaram-se 9 áreas, com objetivo de avaliar o comportamento de formas imaturas de Aedes aegypti. MÉTODOS: As 9 áreas foram agrupadas em 4 estratos, diferenciados pelo uso e ocupação do solo. Foram coletadas larvas e pupas numa amostra de cerca de 500 imóveis em cada área. RESULTADOS: Apesar do pneu e lona apresentarem as maiores taxas de positividade para Aedes aegypti, o ralo, juntamente com outros recipientes fixos nas edificações foram altamente predominantes entre os recipientes positivos (32 a 76% dos recipientes positivos. As áreas coletivas de prédios e os imóveis não residenciais de grande porte apresentaram as maiores taxas de positividade para Aedes aegypti enquanto os apartamentos, as menores. Os níveis de infestação foram maiores na área residencial com predominância de prédios de apartamentos, onde 76% dos criadouros detectados foram recipientes fixos nas edificações. CONCLUSÕES: Esses conhecimentos são importantes subsídios para a estratégia de controle, pois reforçam a necessidade de atenção especial para determinados tipos de imóveis, bem como da adequação da norma técnica de ralo de água pluvial e da melhoria de manutenção das edificações. Além disso, são necessárias observações sistemáticas que permitam acompanhar a dinâmica de ocupação de diferentes imóveis e recipientes por Aedes aegypti e a incorporação desses conhecimentos nas ações de controle do vetor na região.INTRODUCTION: In a region of high dengue incidence, on the coast of the State of São Paulo, 9 areas were selected to evaluate the behavior of immature Aedes aegypti. METHODS: The 9 areas were grouped into 4 strata according to soil use and occupation. Larvae and pupas were collected in a sample of approximately 500 buildings in each area. RESULTS: Although tires and canvas presented the highest positive rates for

  2. Genetics and morphology of Aedes aegypti (Diptera: Culicidae) in septic tanks in Puerto Rico.

    Science.gov (United States)

    Somers, Gerard; Brown, Julia E; Barrera, Roberto; Powell, Jeffrey R

    2011-11-01

    Dengue viruses, primarily transmitted by the mosquito Aedes aegypti (L.), affect an estimated 50-100 million people yearly. Traditional approaches to control mosquito population numbers, such as the use of pesticides, have had only limited success. Atypical mosquito behavior may be one reason why current vector control efforts have been less efficacious than expected. In Puerto Rico, for example, adult Ae. aegypti have been observed emerging from septic tanks. Interestingly, adults emerging from septic tanks are larger on average than adults collected from surface containers. To determine whether adults colonizing septic tanks constitute a separate Ae. aegypti population, we used 12 previously validated microsatellite loci to examine adult mosquitoes collected from both septic tanks and surface containers, but found no evidence to suggest genetic differentiation. Size differences between septic tank and surface mosquitoes were reduced when nutrient levels were held constant across experimental groups. Despite the absence of evidence suggesting a genetic difference between experimental groups in this study, Ae. aegypti emerging from septic tanks may still represent a more dangerous phenotype and should be given special consideration when developing vector control programs and designing public health interventions in the future.

  3. Tingkat Kerentanan Aedes aegypti (Linn. terhadap Malation di Provinsi Sumatera Selatan

    Directory of Open Access Journals (Sweden)

    Lasbudi P. Ambarita

    2015-07-01

    Full Text Available AbstractDengue vector control program in Indonesia and also South Sumatera Province has been using malathion quite long enough. The extensive use of chemical in dengue vector control can lead to development of resistance. This study aims to determine the susceptibility of Aedes aegypti against malathion in 11 district of South Sumatera Province. Larva or pupae were collected with entomology survey kit and colonized until first generation (F1 that were used for bioassay. This test was conducted according to WHO adult susceptibility bioassay procedure.Twenty five blood-fed mosquitoes were exposed to insecticide impregnated paper in each of 4 WHO test kits and 1 control tube. Aedes aegypti from all study sites were still susceptible to operational dose of malathion (5%after 1 hour exposure. The estimated resistance ratio (ERR of knockdown time (KT to operasional dose of malathion is about 1,02 – 1,27 for KT50 and 0,96 – 1,24 for KT95. The susceptibility test of adult mosquitoes to diagnostic dose (0,8% of malathion showed a variety of susceptibility after 24 hours. Strain of 7 districts showed resistance, 3 districts toleran and 1 district still susceptible. The detection of resistance can actually help public health personnel to formulate appropriate steps in encountering the reduction in effectiveness of vector control efforts.Keywords : Aedes aegypti, Malathion, Susceptibility, South SumateraAbstrakProgram pengendalian vektor DBD di Indonesia termasuk di Provinsi Sumatera Selatan telah cukup lama menggunakan malation dengan konsentrasi 5%. Penggunaan satu jenis insektisida kimiawi secara ekstensif dapat memicu perkembangan resistensi. Penelitian ini bertujuan untuk menentukan status kerentanan Aedes aegypti terhadap malation dari 11 kabupaten/kota di Provinsi Sumatera Selatan. Larva atau pupa dikumpulkan menggunakan alat survei entomologi dan selanjutnyadipelihara hingga mendapatkan generasi pertama (F1 yang akan digunakan pada uji

  4. Contact irritant responses of Aedes aegypti Using sublethal concentration and focal application of pyrethroid chemicals.

    Directory of Open Access Journals (Sweden)

    Hortance Manda

    Full Text Available BACKGROUND: Previous studies have demonstrated contact irritant and spatial repellent behaviors in Aedes aegypti following exposure to sublethal concentrations of chemicals. These sublethal actions are currently being evaluated in the development of a push-pull strategy for Ae. aegypti control. This study reports on mosquito escape responses after exposure to candidate chemicals for a contact irritant focused push-pull strategy using varying concentrations and focal application. METHODS: Contact irritancy (escape behavior, knockdown and 24 hour mortality rates were quantified in populations of female Ae. aegypti under laboratory conditions and validated in the field (Thailand and Peru using experimental huts. Evaluations were conducted using varying concentrations and treatment surface area coverage (SAC of three pyrethroid insecticides: alphacypermethrin, lambacyhalothrin and deltamethrin. RESULTS: Under laboratory conditions, exposure of Ae. aegypti to alphacypermethrin using the standard field application rate (FAR resulted in escape responses at 25% and 50% SAC that were comparable with escape responses at 100% SAC. Significant escape responses were also observed at <100% SAC using ½FAR of all test compounds. In most trials, KD and 24 hour mortality rates were higher in mosquitoes that did not escape than in those that escaped. In Thailand, field validation studies indicated an early time of exit (by four hours and 40% increase in escape using ½FAR of alphacypermethrin at 75% SAC compared to a matched chemical-free control. In Peru, however, the maximum increase in Ae. aegypti escape from alphacypermethrin-treated huts was 11%. CONCLUSIONS/SIGNIFICANCE: Results presented here suggest a potential role for sublethal and focal application of contact irritant chemicals in an Ae. aegypti push-pull strategy to reduce human-vector contact inside treated homes. However, the impact of an increase in escape response on dengue virus transmission is

  5. Evaluación del efecto residual del temephos en larvas de Aedes aegypti en Lima, Perú

    OpenAIRE

    Palomino S, Miriam; Centro Nacional de Salud Pública, Instituto Nacional de Salud. Lima, Perú.; Solari, Lely; Centro Nacional de Salud Pública, Instituto Nacional de Salud. Lima, Perú. Hospital Nacional Hipólito Unánue. Lima, Perú.; León C, Walter; Centro Nacional de Salud Pública, Instituto Nacional de Salud. Lima, Perú.; Vega H, Rosario; Centro Nacional de Control de Calidad, Instituto Nacional de Salud. Lima, Perú.; Vergaray C, Máximo; Centro Nacional de Control de Calidad, Instituto Nacional de Salud. Lima, Perú.; Cubillas, Luis; Dirección de Salud Lima Norte III, Ministerio de Salud. Lima, Perú.; Mosqueda C, Rosa; Centro Nacional de Control de Calidad, Instituto Nacional de Salud. Lima, Perú.; García A, Norma; Centro Nacional de Control de Calidad, Instituto Nacional de Salud. Lima, Perú.

    2006-01-01

    El temephos ha sido usado como la única estrategia de control para Aedes aegypti en Lima durante los últimos años. Objetivo: Evaluar la eficacia residual de temephos para el control de Ae. aegypti en condiciones de campo y laborato - rio en Lima, Perú. Materiales y métodos: Se eligieron ocho tanques bajos de concreto (TBC) depósitos predominan - temente infestados con Ae. aegypti en el distrito de San Juan de Lurigancho, situado al norte del área suburbana de Lima. Se cuantificó el número de ...

  6. ANÁLISE DA VISCOSIDADE E SUA CORRELAÇÃO COM OS CONSTITUINTES DOS VINHOS FINOS DA REGIÃO DA CAMPANHA

    OpenAIRE

    Velcir Rubenich Schirmer

    2013-01-01

    O Rio Grande do Sul é o maior produtor de vinhos do Brasil, em 2011 produziu cerca de 90% dos vinhos nacionais. Das regiões vitivinícolas do Estado, a Região da Campanha vem se destacando na produção de vinhos finos. Cor, aroma, sabor, corpo e a composição fenólica são atributos de qualidade dos vinhos, sendo a viscosidade a propriedade que mais se correlaciona com o corpo do vinho. A concentração de etanol possui correlação com a viscosidade dos vinhos, mas outros constituintes também. Este ...

  7. Cruzamiento interespecífico entre Aedes aegypti y Aedes albopictus en el laboratorio

    OpenAIRE

    Martínez López, Yanisley; Martinez Pérez, Yanet; Acosta Rodríguez, Miriam; Fuentes González, Omar

    2014-01-01

    Introducción: existen algunos estudios realizados para verificar el posible apareamiento interespecífico, pero solo algunos trabajos han obtenido resultados positivos en este fenómeno. Objetivo: probar la posibilidad de obtener huevos viables del cruce entre Aedes aegypti y Aedes albopictus. Métodos: experimentos de apareamiento recíproco entre Aedes aegypti procedentes del insectario del Departamento de Control de Vectores del Instituto de Medicina Tropical "Pedro Kourí" y una población de A...

  8. Programa de computador para reconhecimento da larva de Aedes aegypti e Aedes albopictus

    OpenAIRE

    São Thiago, André Iwersen de; Kupek, Emil; Ferreira Neto, Joaquim Alves; São Thiago, Paulo de Tarso

    2002-01-01

    Software for pattern recognition of the larvae of mosquitoes Aedes aegypti and Aedes albopictus, biological vectors of dengue and yellow fever, has been developed. Rapid field identification of larva using a digital camera linked to a laptop computer equipped with this software may greatly help prevention campaigns.Foi desenvolvido um programa de computador para reconhecimento da larva de Aedes aegypti e Aedes albopictus, vetores biológicos de dengue e febre amarela. O programa possibilita rá...

  9. How does competition among wild type mosquitoes influence the performance of Aedes aegypti and dissemination of Wolbachia pipientis?

    Directory of Open Access Journals (Sweden)

    Suellen de Oliveira

    2017-10-01

    Full Text Available Wolbachia has been deployed in several countries to reduce transmission of dengue, Zika and chikungunya viruses. During releases, Wolbachia-infected females are likely to lay their eggs in local available breeding sites, which might already be colonized by local Aedes sp. mosquitoes. Therefore, there is an urgent need to estimate the deleterious effects of intra and interspecific larval competition on mosquito life history traits, especially on the duration of larval development time, larval mortality and adult size.Three different mosquito populations were used: Ae. aegypti infected with Wolbachia (wMelBr strain, wild Ae. aegypti and wild Ae. albopictus. A total of 21 treatments explored intra and interspecific larval competition with varying larval densities, species proportions and food levels. Each treatment had eight replicates with two distinct food levels: 0.25 or 0.50 g of Chitosan and fallen avocado leaves. Overall, overcrowding reduced fitness correlates of the three populations. Ae. albopictus larvae presented lower larval mortality, shorter development time to adult and smaller wing sizes than Ae. aegypti. The presence of Wolbachia had a slight positive effect on larval biology, since infected individuals had higher survivorship than uninfected Ae. aegypti larvae.In all treatments, Ae. albopictus outperformed both wild Ae. aegypti and the Wolbachia-infected group in larval competition, irrespective of larval density and the amount of food resources. The major force that can slow down Wolbachia invasion is the population density of wild mosquitoes. Given that Ae. aegypti currently dominates in Rio, in comparison with Ae. albopictus frequency, additional attention must be given to the population density of Ae. aegypti during releases to increase the likelihood of Wolbachia invasion.

  10. Septic tanks as larval habitats for the mosquitoes Aedes aegypti and Culex quinquefasciatus in Playa-Playita, Puerto Rico.

    Science.gov (United States)

    Burke, R; Barrera, R; Lewis, M; Kluchinsky, T; Claborn, D

    2010-06-01

    Adult Aedes aegypti (Linnaeus) (Diptera: Culicidae) were previously recovered from emergence traps on septic tanks in southeastern Puerto Rico. In this study we quantified immature mosquito abundance and its relationship with structural variables of the septic tanks and chemical properties of the water containing raw sewage. A miniaturized floating funnel trap was used to sample 89 septic tanks for larvae in the Puerto Rican community of Playa-Playita. Aedes aegypti larvae were recovered from 18% of the sampled tanks (10.3 larvae per septic tank per day). Larval presence was positively associated with cracking of the septic tank walls and uncovered access ports. Larval abundance was positively associated with cracking of the septic tank walls and larger tank surface areas, and inversely associated with the total dissolved solids (TDS). Culex quinquefasciatus (Say) larvae were also recovered from 74% of the septic tanks (129.6 larvae per septic tank per day). Larval presence was negatively associated with TDS in the water and larval abundance was positively associated with cracking of the septic tank walls. A screened, plastic emergence trap was used to sample 93 septic tanks within the community for Ae. aegypti and Cx. quinquefasciatus adults. Aedes aegypti adults were recovered from 49% of the sampled tanks (8.7 adults per septic tank per day) and Cx. quinquefasciatus adults were recovered from 97% of the sampled tanks (155.5 adults per septic tank per day). Aedes aegypti adult presence was positively associated with cracking, uncapped openings and septic water pH. The Ae. aegypti adult counts were positively associated with cracking and inversely associated with TDS and conductivity. This study marks the first published record of the recovery of Ae. aegypti larvae from holding tanks containing raw sewage in the Caribbean region. Our study indicates that Ae. aegypti larvae are present in sewage water and that septic tanks have at least the potential to maintain

  11. QTL mapping of genome regions controlling temephos resistance in larvae of the mosquito Aedes aegypti.

    Science.gov (United States)

    Reyes-Solis, Guadalupe Del Carmen; Saavedra-Rodriguez, Karla; Suarez, Adriana Flores; Black, William C

    2014-10-01

    The mosquito Aedes aegypti is the principal vector of dengue and yellow fever flaviviruses. Temephos is an organophosphate insecticide used globally to suppress Ae. aegypti larval populations but resistance has evolved in many locations. Quantitative Trait Loci (QTL) controlling temephos survival in Ae. aegypti larvae were mapped in a pair of F3 advanced intercross lines arising from temephos resistant parents from Solidaridad, México and temephos susceptible parents from Iquitos, Peru. Two sets of 200 F3 larvae were exposed to a discriminating dose of temephos and then dead larvae were collected and preserved for DNA isolation every two hours up to 16 hours. Larvae surviving longer than 16 hours were considered resistant. For QTL mapping, single nucleotide polymorphisms (SNPs) were identified at 23 single copy genes and 26 microsatellite loci of known physical positions in the Ae. aegypti genome. In both reciprocal crosses, Multiple Interval Mapping identified eleven QTL associated with time until death. In the Solidaridad×Iquitos (SLD×Iq) cross twelve were associated with survival but in the reciprocal IqxSLD cross, only six QTL were survival associated. Polymorphisms at acetylcholine esterase (AchE) loci 1 and 2 were not associated with either resistance phenotype suggesting that target site insensitivity is not an organophosphate resistance mechanism in this region of México. Temephos resistance is under the control of many metabolic genes of small effect and dispersed throughout the Ae. aegypti genome.

  12. LOTION PREPARATION FROM Piper betle L. ESSENTIAL OIL WITH THE ADDITION OF PATCHOULI OIL AS AN Aedes aegypti REPELLENT

    Directory of Open Access Journals (Sweden)

    Mutiara Widawati

    2015-01-01

    Full Text Available Daun Sirih (Piper betle L. merupakan tanaman yang dapat dimanfaatkan sebagai bahan baku repelan. Penelitian bertujuanuntuk mengetahui potensi minyak atsiri dari daun sirih dengan penambahan minyak nilam sebagai repelan. Penelitianeksperimental dengan rancangan post test only control group design dilakukan tahun 2013, menggunakan sampel nyamukAe. aegypti betina lapar darah. Konsentrasi digunakan yaitu 2%, untuk kontrol positif digunakan losion DEET denganulangan lima kali. Lengan diolesi losion sirih selanjutnya dimasukkan pada kurungan berisi 100 ekor nyamuk uji, kemudiandihitung rata-rata jumlah nyamuk hinggap selama lima menit pengamatan setiap jam periode (uji efikasi repelan dilakukanselama 6 jam. Pada kondisi yang sama, diujikan pula losion biasa tanpa minyak sirih dan fiksatif yang dioleskan ke lenganyang lain terhadap nyamuk Ae. aegypti (kontrol negatif. Efektifitas penolakan hinggapan nyamuk Ae. aegypti dianalisismenggunakan daya proteksi, kemudian dianalisis lebih lanjut dengan uji paired t-test. Losion sirih hasil modifikasi yangdioleskan pada lengan mampu menolak hinggapan nyamuk Ae. aegypti. Losion sirih dengan penambahan minyak nilammemiliki daya proteksi rata-rata 90,33%. Walaupun daya proteksi losion sirih tidak berbeda secara nyata dengan dayaproteksi DEET, tetapi masih memenuhi syarat efektivitas repelan. Minyak sirih dengan penambahan minyak nilamberpotensi untuk digunakan sebagai repelan terhadap nyamuk Ae. aegypti.Kata kunci: losion, daun sirih, minyak nilam, repelan, Aedes aegypti

  13. Vector Competence of French Polynesian Aedes aegypti and Aedes polynesiensis for Zika Virus.

    Directory of Open Access Journals (Sweden)

    Vaea Richard

    2016-09-01

    Full Text Available In 2013-2014, French Polynesia experienced for the first time a Zika outbreak. Two Aedes mosquitoes may have contributed to Zika virus (ZIKV transmission in French Polynesia: the worldwide distributed Ae. aegypti and the Polynesian islands-endemic Ae. polynesiensis mosquito.To evaluate their vector competence for ZIKV, mosquitoes were infected per os at viral titers of 7 logs tissue culture infectious dose 50%. At several days post-infection (dpi, saliva was collected from each mosquito and inoculated onto C6/36 mosquito cells to check for the presence of ZIKV infectious particles. Legs and body of each mosquito were also collected and submitted separately to RNA extraction and ZIKV RT-PCR. In Ae. aegypti the infection rate was high as early as 6 dpi and the dissemination efficiency get substantial from 9 dpi while the both rates remained quite low in Ae. polynesiensis. The transmission efficiency was poor in Ae. aegypti until 14 dpi and no infectious saliva was found in Ae. polynesiensis at the time points studied.In our experimental conditions, the late ability of the French Polynesian Ae. aegypti to transmit ZIKV added by the poor competence of Ae. polynesiensis for this virus suggest the possible contribution of another vector for the propagation of ZIKV during the outbreak, in particular in remote islands where Ae. polynesiensis is predominating.

  14. Criadouros de Aedes (Stegomyia aegypti (Linnaeus, 1762 em bromélias nativas na Cidade de Vitória, ES Aedes (Stegomyia aegypti (Linnaeus, 1762 breeding sites in native bromeliads in Vitória City, ES

    Directory of Open Access Journals (Sweden)

    José Benedito Malta Varejão

    2005-05-01

    Full Text Available Alguns insetos transmissores de doenças procriam exclusivamente nas proximidades das residências. O Aedes aegypti, responsável por epidemias de dengue em cidades brasileiras, representa sério risco também para a febre amarela. Com o insucesso da campanha de erradicação do inseto, justifica-se a busca de criadouros fora do alcance das medidas de controle atualmente adotadas. Na Cidade de Vitória, ES, investigou-se a ocorrência de criadouros de Aedes aegypti na água coletada em bromélias nativas, sobre as rochas. Paralelamente, avaliou-se a infestação predial nas áreas urbanas contíguas. Em quatro das cinco áreas investigadas foram encontradas larvas de culicídeos nas bromélias, sendo que em duas foi identificado Aedes aegypti. A presença dos criadouros em bromélias não guardou relação com a infestação predial nas áreas próximas. Torna-se necessário definir se os criadouros em bromélias constituem focos primários do Aedes aegypti, ou se representam uma conseqüência da elevada infestação urbana.Some insects that are vectors of human diseases have accompanied man in his migrations throughout the world and breed exclusively in the proximity of human dwellings. The mosquito Aedes aegypti has been responsible for epidemics of dengue in Brazil and its presence also constitutes a serious risk for future outbreaks of urban yellow fever. The failure of campaigns to eradicate this species justifies the search for alternative breeding sites, which may be beyond the reach of present control measures. In this study the occurrence of Aedes aegypti breeding sites in native bromeliads on rocky slopes was investigated in five areas of Vitória, capital of the Brazilian State of Espírito Santo, ES. Water contained in the bromeliads was collected with the aid of a suction apparatus to search for culicid larvae. The degree of infestation of buildings in adjacent urban areas was evaluated simultaneously. Culicid larvae were found in

  15. Molecular characterization of Aedes aegypti (L. (Diptera: Culicidae of Easter Island based on analysis of the mitochondrial ND4 gene

    Directory of Open Access Journals (Sweden)

    Claudia Andrea Núñez

    2016-06-01

    Full Text Available ABSTRACT Aedes aegypti mosquitoes are the main vector of viruses Dengue, Zika and Chikungunya. Shortly after the first report of the dengue vector Ae. aegypti in Easter Island (Rapa Nui in late 2000, the first disease outbreak dengue occurred. Viral serotyping during the 2002 outbreak revealed a close relationship with Pacific DENV-1 genotype IV viruses, supporting the idea that the virus most likely originated in Tahiti. Mitochondrial NADH dehydrogenase subunit 4 (ND4 DNA sequences generated from 68 specimens of Ae. aegypti from Easter Island reporting a unique finding of a single maternal lineage of Ae. aegypti on Easter Island.

  16. Ecdysis triggering hormone signaling in the yellow fever mosquito Aedes aegypti.

    Science.gov (United States)

    Dai, Li; Adams, Michael E

    2009-05-15

    At the end of each developmental stage, the yellow fever mosquito Aedes aegypti performs the ecdysis behavioral sequence, a precisely timed series of behaviors that culminates in shedding of the old exoskeleton. Here we describe ecdysis triggering hormone-immunoreactive Inka cells located at branch points of major tracheal trunks and loss of staining coincident with ecdysis. Peptides (AeaETH1, AeaETH2) purified from extracts of pharate 4th instar larvae have--PRXamide C-terminal amino acid sequence motifs similar to ETHs previously identified in moths and flies. Injection of synthetic AeaETHs induced premature ecdysis behavior in pharate larvae, pupae and adults. Two functionally distinct subtypes of ETH receptors (AeaETHR-A, AeaETHR-B) of A. aegypti are identified and show high sensitivity and selectivity to ETHs. Increased ETHR transcript levels and behavioral sensitivity to AeaETHs arising in the hours preceding the 4th instar larva-to-pupa ecdysis are correlated with rising ecdysteroid levels, suggesting steroid regulation of receptor gene expression. Our description of natural and ETH-induced ecdysis in A. aegypti should facilitate future approaches directed toward hormone-based interference strategies for control of mosquitoes as human disease vectors.

  17. Targeted genome editing in Aedes aegypti using TALENs.

    Science.gov (United States)

    Aryan, Azadeh; Myles, Kevin M; Adelman, Zach N

    2014-08-15

    The Culicine mosquito, Aedes aegypti, is both a major vector of arthropod-borne viruses (arboviruses) and a genetic model organism for arbovirus transmission. TALE nucleases (TALENs), a group of artificial enzymes capable of generating site-specific DNA lesions, consist of a non-specific FokI endonuclease cleavage domain fused to an engineered DNA binding domain specific to a target site. While TALENs have become an important tool for targeted gene disruption in a variety of organisms, application to the mosquito genome is a new approach. We recently described the use of TALENs to perform heritable genetic disruptions in A. aegypti. Here, we provide detailed methods that will allow other research laboratories to capitalize on the potential of this technology for understanding mosquito gene function. We describe target site selection, transient embryo-based assays to rapidly assess TALEN activity, embryonic microinjection and downstream screening steps to identify target site mutations. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Competence of Aedes aegypti, Ae. albopictus, and Culex quinquefasciatus Mosquitoes as Zika Virus Vectors, China

    Science.gov (United States)

    Liu, Zhuanzhuan; Zhou, Tengfei; Lai, Zetian; Zhang, Zhenhong; Jia, Zhirong; Zhou, Guofa; Williams, Tricia; Xu, Jiabao; Gu, Jinbao; Zhou, Xiaohong; Lin, Lifeng; Yan, Guiyun

    2017-01-01

    In China, the prevention and control of Zika virus disease has been a public health threat since the first imported case was reported in February 2016. To determine the vector competence of potential vector mosquito species, we experimentally infected Aedes aegypti, Ae. albopictus, and Culex quinquefasciatus mosquitoes and determined infection rates, dissemination rates, and transmission rates. We found the highest vector competence for the imported Zika virus in Ae. aegypti mosquitoes, some susceptibility of Ae. albopictus mosquitoes, but no transmission ability for Cx. quinquefasciatus mosquitoes. Considering that, in China, Ae. albopictus mosquitoes are widely distributed but Ae. aegypti mosquito distribution is limited, Ae. albopictus mosquitoes are a potential primary vector for Zika virus and should be targeted in vector control strategies. PMID:28430562

  19. Competence of Aedes aegypti, Ae. albopictus, and Culex quinquefasciatus Mosquitoes as Zika Virus Vectors, China.

    Science.gov (United States)

    Liu, Zhuanzhuan; Zhou, Tengfei; Lai, Zetian; Zhang, Zhenhong; Jia, Zhirong; Zhou, Guofa; Williams, Tricia; Xu, Jiabao; Gu, Jinbao; Zhou, Xiaohong; Lin, Lifeng; Yan, Guiyun; Chen, Xiao-Guang

    2017-07-01

    In China, the prevention and control of Zika virus disease has been a public health threat since the first imported case was reported in February 2016. To determine the vector competence of potential vector mosquito species, we experimentally infected Aedes aegypti, Ae. albopictus, and Culex quinquefasciatus mosquitoes and determined infection rates, dissemination rates, and transmission rates. We found the highest vector competence for the imported Zika virus in Ae. aegypti mosquitoes, some susceptibility of Ae. albopictus mosquitoes, but no transmission ability for Cx. quinquefasciatus mosquitoes. Considering that, in China, Ae. albopictus mosquitoes are widely distributed but Ae. aegypti mosquito distribution is limited, Ae. albopictus mosquitoes are a potential primary vector for Zika virus and should be targeted in vector control strategies.

  20. Susceptibility of Aedes aegypti pupae to neem seed kernal extracts ...

    African Journals Online (AJOL)

    Azadirachta indica) seed kernel extracts (NSKE) on Aedes aegypti. The neem seed kernel powder was sequentially extracted with hexane, benzene, ethyl acetate, acetone, DMSO, 2-propanol, ethanol, methanol and dstiledwater.

  1. The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti.

    Directory of Open Access Journals (Sweden)

    Guowu Bian

    2010-04-01

    Full Text Available Genetic strategies that reduce or block pathogen transmission by mosquitoes have been proposed as a means of augmenting current control measures to reduce the growing burden of vector-borne diseases. The endosymbiotic bacterium Wolbachia has long been promoted as a potential vehicle for introducing disease-resistance genes into mosquitoes, thereby making them refractory to the human pathogens they transmit. Given the large overlap in tissue distribution and intracellular localization between Wolbachia and dengue virus in mosquitoes, we conducted experiments to characterize their interactions. Our results show that Wolbachia inhibits viral replication and dissemination in the main dengue vector, Aedes aegypti. Moreover, the virus transmission potential of Wolbachia-infected Ae. aegypti was significantly diminished when compared to wild-type mosquitoes that did not harbor Wolbachia. At 14 days post-infection, Wolbachia completely blocked dengue transmission in at least 37.5% of Ae. aegypti mosquitoes. We also observed that this Wolbachia-mediated viral interference was associated with an elevated basal immunity and increased longevity in the mosquitoes. These results underscore the potential usefulness of Wolbachia-based control strategies for population replacement.

  2. Identification and characterisation of Aedes aegypti aldehyde dehydrogenases involved in pyrethroid metabolism.

    Directory of Open Access Journals (Sweden)

    Nongkran Lumjuan

    Full Text Available Pyrethroid insecticides, especially permethrin and deltamethrin, have been used extensively worldwide for mosquito control. However, insecticide resistance can spread through a population very rapidly under strong selection pressure from insecticide use. The upregulation of aldehyde dehydrogenase (ALDH has been reported upon pyrethroid treatment. In Aedes aegypti, the increase in ALDH activity against the hydrolytic product of pyrethroid has been observed in DDT/permethrin-resistant strains. The objective of this study was to identify the role of individual ALDHs involved in pyrethroid metabolism.Three ALDHs were identified; two of these, ALDH9948 and ALDH14080, were upregulated in terms of both mRNA and protein levels in a DDT/pyrethroid-resistant strain of Ae. aegypti. Recombinant ALDH9948 and ALDH14080 exhibited oxidase activities to catalyse the oxidation of a permethrin intermediate, phenoxybenzyl aldehyde (PBald, to phenoxybenzoic acid (PBacid.ALDHs have been identified in association with permethrin resistance in Ae. aegypti. Characterisation of recombinant ALDHs confirmed the role of this protein in pyrethroid metabolism. Understanding the biochemical and molecular mechanisms of pyrethroid resistance provides information for improving vector control strategies.

  3. Complement-related proteins control the flavivirus infection of Aedes aegypti by inducing antimicrobial peptides.

    Directory of Open Access Journals (Sweden)

    Xiaoping Xiao

    2014-04-01

    Full Text Available The complement system functions during the early phase of infection and directly mediates pathogen elimination. The recent identification of complement-like factors in arthropods indicates that this system shares common ancestry in vertebrates and invertebrates as an immune defense mechanism. Thioester (TE-containing proteins (TEPs, which show high similarity to mammalian complement C3, are thought to play a key role in innate immunity in arthropods. Herein, we report that a viral recognition cascade composed of two complement-related proteins limits the flaviviral infection of Aedes aegypti. An A. aegypti macroglobulin complement-related factor (AaMCR, belonging to the insect TEP family, is a crucial effector in opposing the flaviviral infection of A. aegypti. However, AaMCR does not directly interact with DENV, and its antiviral effect requires an A. aegypti homologue of scavenger receptor-C (AaSR-C, which interacts with DENV and AaMCR simultaneously in vitro and in vivo. Furthermore, recognition of DENV by the AaSR-C/AaMCR axis regulates the expression of antimicrobial peptides (AMPs, which exerts potent anti-DENV activity. Our results both demonstrate the existence of a viral recognition pathway that controls the flaviviral infection by inducing AMPs and offer insights into a previously unappreciated antiviral function of the complement-like system in arthropods.

  4. [Behavior of immatures Aedes aegypti in the coast State of São Paulo, Brazil].

    Science.gov (United States)

    Glasser, Carmen Moreno; Arduino, Marylene de Brito; Barbosa, Gerson Laurindo; Ciaravolo, Ricardo Mario de Carvalho; Domingos, Maria de Fátima; Oliveira, Cleide Dantas; Pereira, Marisa; Silva, Marcos; Trevisan, Alexandra Myuki Yoshioka

    2011-01-01

    In a region of high dengue incidence, on the coast of the State of São Paulo, 9 areas were selected to evaluate the behavior of immature Aedes aegypti. The 9 areas were grouped into 4 strata according to soil use and occupation. Larvae and pupas were collected in a sample of approximately 500 buildings in each area. Although tires and canvas presented the highest positive rates for Aedes aegypti, drains and other containers fixed to the buildings were highly predominant among positive containers; 32 to 76% of the positive containers in the 4 study strata. Public areas of apartment buildings and large non-residential premises presented the highest positive rates for Aedes Aegypti, while apartments presented the lowest. Infestation levels were greater in residential areas with predominance of apartment buildings, where 76% of the breeding sites detected were containers fixed to the buildings. This knowledge is an important tool in the control strategy, since it reinforces the need for special attention regarding certain types of buildings and the adjustment of technical norms for pluvial water drains and improvement of building maintenance. Moreover, systematic observations are required to follow-up the occupancy dynamic of different buildings and containers by Aedes aegypti and the incorporation of this knowledge in the control of vectors in the region.

  5. Wolbachia infection in Aedes aegypti mosquitoes alters blood meal excretion and delays oviposition without affecting trypsin activity.

    Science.gov (United States)

    Pimenta de Oliveira, Sofia; Dantas de Oliveira, Caroline; Viana Sant'Anna, Mauricio Roberto; Carneiro Dutra, Heverton Leandro; Caragata, Eric Pearce; Moreira, Luciano Andrade

    2017-08-01

    Blood feeding in Aedes aegypti is essential for reproduction, but also permits the mosquito to act as a vector for key human pathogens such as the Zika and dengue viruses. Wolbachia pipientis is an endosymbiotic bacterium that can manipulate the biology of Aedes aegypti mosquitoes, making them less competent hosts for many pathogens. Yet while Wolbachia affects other aspects of host physiology, it is unclear whether it influences physiological processes associated with blood meal digestion. To that end, we examined the effects of wMel Wolbachia infection in Ae. aegypti, on survival post-blood feeding, blood meal excretion, rate of oviposition, expression levels of key genes involved in oogenesis, and activity levels of trypsin blood digestion enzymes. We observed that wMel infection altered the rate and duration of blood meal excretion, delayed the onset of oviposition and was associated with a greater number of eggs being laid later. wMel-infected Ae. aegypti also had lower levels of key yolk protein precursor genes necessary for oogenesis. However, all of these effects occurred without a change in trypsin activity. These results suggest that Wolbachia infection may disrupt normal metabolic processes associated with blood feeding and reproduction in Ae. aegypti. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Molecular studies with Aedes (Stegomyia) aegypti (Linnaeus, 1762), mosquito transmitting the dengue virus.

    Science.gov (United States)

    Pereira, Luciana Patrícia Lima Alves; Brito, Maria Cristiane Aranha; Araruna, Felipe Bastos; de Andrade, Marcelo Souza; Moraes, Denise Fernandes Coutinho; Borges, Antônio Carlos Romão; do Rêgo Barros Pires Leal, Emygdia Rosa

    2017-08-01

    Dengue is an infectious viral disease, which can present a wide clinical picture, ranging from oligo or asymptomatic forms, to bleeding and shock, and can progress to death. The disease problem has increased in recent years, especially in urban and suburban areas of tropical and subtropical regions. There are five dengue viruses, called serotypes (DEN-1, DEN-2, DEN-3, DEN-4, and DEN-5), which belong to the Flaviviridae family and are transmitted to humans through infected mosquito bites, with the main vector the Aedes aegypti mosquito (Linnaeus, 1762). Studies performed with Ae. aegypti, aimed at their identification and analysis of their population structure, are fundamental to improve understanding of the epidemiology of dengue, as well for the definition of strategic actions that reduce the transmission of this disease. Therefore, considering the importance of such research to the development of programs to combat dengue, the present review considers the techniques used for the molecular identification, and evaluation of the genetic variability of Ae. aegypti.

  7. Relative Insecticidal Efficacy of Three Spatial Repellent Integrated Light Sources Against Aedes aegypti.

    Science.gov (United States)

    Shen, Yuan; Xue, Rui-De; Bibbs, Christopher S

    2017-12-01

    Three repellent products, OFF! Mosquito Lamp, Insecticandel, and Rescue DecoShield, were comparatively evaluated against Aedes aegypti in 130-m 2 enclosed areas with a 317-m 3 air volume. The results showed that the OFF! Mosquito Lamp with metofluthrin had a greater effect than the Insecticandel with transfluthrin, which had greater effect than the DecoShield with lemongrass oil and several other plant oils against Ae. aegypti. The OFF! Mosquito Lamp was the only product to exceed 50% mortality. An outdoor semi-field evaluation was conducted to determine the effect by distance of the product. Mosquitoes were stationed in cages at 3, 6, 9, 12, and 15 m away from the treatment in a downwind linear array and exposed for 10 min. They were recorded for knockdown after treatment and at 24 h for mortality. The OFF! Mosquito Lamp produced 100% mortality indoors and >80% knockdown and 90% mortality within 6 m while outdoors against Ae. aegypti.

  8. H+ V-ATPase-Energized Transporters in Brush Border Membrane Vesicles from Whole Larvae of Aedes Aegypti

    Science.gov (United States)

    Brush Border Membrane vesicles (BBMVs) from Whole larvae of Aedes aegypti (AeBBMVWs ) contain an H+ V-ATPase (V), a Na+/H+ antiporter, NHA1 (A) and a Na+-coupled, nutrient amino acid transporter, NAT8 (N), VAN for short. All V-ATPase subunits are present in the Ae. aegypti genome and in the vesicles...

  9. Chemical constituents of the flowers of Pterogyne nitens (caesalpinioideae); Constituintes quimicos das flores Pterogyne nitens (caesalpinioideae)

    Energy Technology Data Exchange (ETDEWEB)

    Regasini, Luis Octavio; Fernandes, Daniara Cristina; Castro-Gamboa, Ian; Silva, Dulce Helena Siqueira; Furlan, Maysa; Bolzani, Vanderlan da Silva [Universidade Estadual Paulista (UNESP), Araraquara, SP (Brazil). Inst. de Quimica. Dept. de Quimica Organica]. E-mail: bolzaniv@iq.unesp.br; Barreiro, Eliezer Jesus [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Faculdade de Farmacia. Centro de Ciencias da Saude; Cardoso-Lopes, Elaine Monteiro; Young, Maria Claudia Marx; Torres, Luce Brandao [Instituto de Botanica, Sao Paulo, SP (Brazil). Secao de Fisiologia e Bioquimica de Plantas; Vellosa, Jose Carlos Rebuglio; Oliveira, Olga Maria Mascarenhas de [Universidade Estadual Paulista (UNESP), Araraquara, SP (Brazil). Inst. de Quimica. Dept. de Quimica e Tecnologia

    2008-07-01

    The phytochemical investigation of the flowers of Pterogyne nitens (Caesalpinioideae) resulted in the isolation and identification of nine phenolic derivatives, quercetin 3-O-sophoroside, taxifolin, astilbin, ourateacatechin, caffeic, ferulic, sinapic, chlorogenic and gallic acid, besides two guanidine alkaloids, pterogynine, pterogynidine. This is the first time these compounds have been reported in P. nitens flowers. As this is a monospecific genus, these secondary metabolites may have taxonomical significance. Their structures were assigned on the basis of spectroscopic analyses, including two-dimensional NMR techniques. (author)

  10. Chemical constituents of Sebastiania macrocarpa Muell. Arg. (Euphorbiaceae); Constituintes quimicos de Sebastiania macrocarpa Muell. Arg. (Euphorbiaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Michele A.A.; Lima, Jefferson Q.; Arriaga, Angela M.C.; Andrade-Neto, Manoel; Braz-Filho, Raimundo [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Quimica Organica e Inorganica; Santiago, Gilvandete M.P.; Bezerra, Beatriz P.; Fereira, Yana S.; Veras, Helenicy N.H. [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Faculdade de Farmacia, Odontologia e Enfermagem. Dept. de Farmacia]. E-mail: gil@ufc.br

    2009-07-01

    The chemical investigation of the methanolic extract of the aerial part of Sebastiania macrocarpa allowed the isolation of the mixture of steroids {beta}-sitosterol and stigmasterol, gallic acid, and scopoletin. The hexane extract of the roots allowed the isolation of the triterpene lupeol and of the macrocyclic diterpene (+)-tonantzitlolone. The structures of all compounds isolated were identified on the basis of their spectral data and by comparison of their spectral data with values described in the literature. This is the first report involving the chemical investigation of this species (author)

  11. Chemical constituents of Vernonia scorpioides (Lam) Pers. (Asteraceae); Constituintes quimicos de Vernonia scorpioides (Lam) Pers. (Asteraceae)

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Adalva Lopes; Aragao, Fabiana Martins; Bandeira, Paulo N.; Santos, Helcio Silva dos; Albuquerque, Maria Rose Jane R., E-mail: rjane_7@hotmail.com [Universidade Estadual Vale do Acarau, Sobral, CE (Brazil). Centro de Ciencias Exatas e Tecnologia. Coordenaco de Quimica; Pessoa, Otilia Deusdenia L.; Silveira, Edilberto R. [Universidade Federal do Ceara (UFCE), Fortaleza (Brazil). Centro de Ciencias. Departamento de Quimica Organica e Inorganica; Nunes, Edson Paula [Universidade Federal do Ceara (UFCE), Fortaleza (Brazil). Departamento de Biologia; Braz-Filho, Raimundo [Universidade Federal Rural do Rio de Janeiro (UFRRJ), Campos dos Goytacazes, RJ (Brazil). Departamento de Quimica

    2013-09-01

    The chemical investigation of hexane and ethanol extracts from the aerial parts of Vernonia scorpioides resulted in the isolation and characterization of a new polyacetylene lactone, rel-4-dihydro-4{beta}-hydroxy-5{alpha}-octa-2,4,6-triynyl-furan-2-(5H)-one, along with the new ethyl 3,4-dihydroxy-6,8,10-triynyldodecanoate, and seven known compounds: taraxasteryl acetate, lupeyl acetate, lupeol, lupenone, {beta}-sitosterol, stigmasterol and luteolin. The structure of all compounds was determined by spectrometric techniques (HR-ESI-MS, {sup 1}H and {sup 13}C NMR and IV) and comparison with published spectral data. (author)

  12. Toxicity of spinosad to temephos-resistant Aedes aegypti populations in Brazil

    Science.gov (United States)

    dos Santos Dias, Luciana; Macoris, Maria de Lourdes da Graça; Andrighetti, Maria Teresa Macoris; Otrera, Vanessa Camargo Garbeloto; Dias, Adriana dos Santos; Bauzer, Luiz Guilherme Soares da Rocha; Rodovalho, Cynara de Melo; Martins, Ademir Jesus; Lima, José Bento Pereira

    2017-01-01

    The mosquito Aedes aegypti is the primary vector of different arboviruses and represents a major public health problem. Several Brazilian populations of Ae. aegypti have developed resistance to temephos, the most used organophosphate larvicide. New tools which are less harmful to the environment and safer for humans are becoming increasingly important to control this insect vector. Spinosad, an aerobic fermentation product of a soil actinobacteria, has a favorable environmental profile. It presents selective insecticide properties, a mechanism of action that differs from those of many synthetic chemical insecticides. The toxicity of spinosad and temephos to Aedes aegypti populations from Brazil, which were previously exposed to temephos, were investigated in this study. Larval susceptibility (LC50) to temephos varied from 3μg/L for Rockefeller up to 260 μg/L for Santana do Ipanema field derived population. Larval susceptibility (LC50) to spinosad varied from 23μg/L for Rockefeller up to 93μg/L for Marilia field derived population. In addition, a semi-field trial was performed to evaluate spinosad (NatularTM DT) initial efficacy and persistence toward four field-derived lineages and the Rockefeller lineage, used as an internal control. Spinosad was tested at 0.5mg active ingredient/L in 200L capacity water tanks. Mortality was recorded each 24 hours after exposition and tanks were further recolonized once per week with mortality being recorded daily for eight weeks. Spinosad provided a level equal or superior to 80% mortality during a seven to eight week evaluation period. The assessed populations did not present cross-resistance between spinosad and temephos in laboratory conditions. It demonstrates that spinosad may be a promising larvicide for the control of Ae. aegypti, especially for populations in which resistance to temephos has been detected. PMID:28301568

  13. Toxicity of spinosad to temephos-resistant Aedes aegypti populations in Brazil.

    Directory of Open Access Journals (Sweden)

    Luciana Dos Santos Dias

    Full Text Available The mosquito Aedes aegypti is the primary vector of different arboviruses and represents a major public health problem. Several Brazilian populations of Ae. aegypti have developed resistance to temephos, the most used organophosphate larvicide. New tools which are less harmful to the environment and safer for humans are becoming increasingly important to control this insect vector. Spinosad, an aerobic fermentation product of a soil actinobacteria, has a favorable environmental profile. It presents selective insecticide properties, a mechanism of action that differs from those of many synthetic chemical insecticides. The toxicity of spinosad and temephos to Aedes aegypti populations from Brazil, which were previously exposed to temephos, were investigated in this study. Larval susceptibility (LC50 to temephos varied from 3μg/L for Rockefeller up to 260 μg/L for Santana do Ipanema field derived population. Larval susceptibility (LC50 to spinosad varied from 23μg/L for Rockefeller up to 93μg/L for Marilia field derived population. In addition, a semi-field trial was performed to evaluate spinosad (NatularTM DT initial efficacy and persistence toward four field-derived lineages and the Rockefeller lineage, used as an internal control. Spinosad was tested at 0.5mg active ingredient/L in 200L capacity water tanks. Mortality was recorded each 24 hours after exposition and tanks were further recolonized once per week with mortality being recorded daily for eight weeks. Spinosad provided a level equal or superior to 80% mortality during a seven to eight week evaluation period. The assessed populations did not present cross-resistance between spinosad and temephos in laboratory conditions. It demonstrates that spinosad may be a promising larvicide for the control of Ae. aegypti, especially for populations in which resistance to temephos has been detected.

  14. Comparative assessment of the bacterial communities associated with Aedes aegypti larvae and water from domestic water storage containers.

    Science.gov (United States)

    Dada, Nsa; Jumas-Bilak, Estelle; Manguin, Sylvie; Seidu, Razak; Stenström, Thor-Axel; Overgaard, Hans J

    2014-08-24

    Domestic water storage containers constitute major Aedes aegypti breeding sites. We present for the first time a comparative analysis of the bacterial communities associated with Ae. aegypti larvae and water from domestic water containers. The 16S rRNA-temporal temperature gradient gel electrophoresis (TTGE) was used to identify and compare bacterial communities in fourth-instar Ae. aegypti larvae and water from larvae positive and negative domestic containers in a rural village in northeastern Thailand. Water samples were cultured for enteric bacteria in addition to TTGE. Sequences obtained from TTGE and bacterial cultures were clustered into operational taxonomic units (OTUs) for analyses. Significantly lower OTU abundance was found in fourth-instar Ae. aegypti larvae compared to mosquito positive water samples. There was no significant difference in OTU abundance between larvae and mosquito negative water samples or between mosquito positive and negative water samples. Larval samples had significantly different OTU diversity compared to mosquito positive and negative water samples, with no significant difference between mosquito positive and negative water samples. The TTGE identified 24 bacterial taxa, belonging to the phyla Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes and TM7 (candidate phylum). Seven of these taxa were identified in larval samples, 16 in mosquito positive and 13 in mosquito negative water samples. Only two taxa, belonging to the phyla Firmicutes and Actinobacteria, were common to both larvae and water samples. Bacilli was the most abundant bacterial class identified from Ae. aegypti larvae, Gammaproteobacteria from mosquito positive water samples, and Flavobacteria from mosquito negative water samples. Enteric bacteria belonging to the class Gammaproteobacteria were sparsely represented in TTGE, but were isolated from both mosquito positive and negative water samples by selective culture. Few bacteria from water samples were

  15. Complex modulation of the Aedes aegypti transcriptome in response to dengue virus infection.

    Science.gov (United States)

    Bonizzoni, Mariangela; Dunn, W Augustine; Campbell, Corey L; Olson, Ken E; Marinotti, Osvaldo; James, Anthony A

    2012-01-01

    Dengue fever is the most important arboviral disease world-wide, with Aedes aegypti being the major vector. Interactions between the mosquito host and dengue viruses (DENV) are complex and vector competence varies among geographically-distinct Ae. aegypti populations. Additionally, dengue is caused by four antigenically-distinct viral serotypes (DENV1-4), each with multiple genotypes. Each virus genotype interacts differently with vertebrate and invertebrate hosts. Analyses of alterations in mosquito transcriptional profiles during DENV infection are expected to provide the basis for identifying networks of genes involved in responses to viruses and contribute to the molecular-genetic understanding of vector competence. In addition, this knowledge is anticipated to support the development of novel disease-control strategies. RNA-seq technology was used to assess genome-wide changes in transcript abundance at 1, 4 and 14 days following DENV2 infection in carcasses, midguts and salivary glands of the Ae. aegypti Chetumal strain. DENV2 affected the expression of 397 Ae. aegypti genes, most of which were down-regulated by viral infection. Differential accumulation of transcripts was mainly tissue- and time-specific. Comparisons of our data with other published reports reveal conservation of functional classes, but limited concordance of specific mosquito genes responsive to DENV2 infection. These results indicate the necessity of additional studies of mosquito-DENV interactions, specifically those focused on recently-derived mosquito strains with multiple dengue virus serotypes and genotypes.

  16. Complex modulation of the Aedes aegypti transcriptome in response to dengue virus infection.

    Directory of Open Access Journals (Sweden)

    Mariangela Bonizzoni

    Full Text Available Dengue fever is the most important arboviral disease world-wide, with Aedes aegypti being the major vector. Interactions between the mosquito host and dengue viruses (DENV are complex and vector competence varies among geographically-distinct Ae. aegypti populations. Additionally, dengue is caused by four antigenically-distinct viral serotypes (DENV1-4, each with multiple genotypes. Each virus genotype interacts differently with vertebrate and invertebrate hosts. Analyses of alterations in mosquito transcriptional profiles during DENV infection are expected to provide the basis for identifying networks of genes involved in responses to viruses and contribute to the molecular-genetic understanding of vector competence. In addition, this knowledge is anticipated to support the development of novel disease-control strategies. RNA-seq technology was used to assess genome-wide changes in transcript abundance at 1, 4 and 14 days following DENV2 infection in carcasses, midguts and salivary glands of the Ae. aegypti Chetumal strain. DENV2 affected the expression of 397 Ae. aegypti genes, most of which were down-regulated by viral infection. Differential accumulation of transcripts was mainly tissue- and time-specific. Comparisons of our data with other published reports reveal conservation of functional classes, but limited concordance of specific mosquito genes responsive to DENV2 infection. These results indicate the necessity of additional studies of mosquito-DENV interactions, specifically those focused on recently-derived mosquito strains with multiple dengue virus serotypes and genotypes.

  17. Aedes (Stegomyia) aegypti in the continental United States: a vector at the cool margin of its geographic range.

    Science.gov (United States)

    Eisen, Lars; Moore, Chester G

    2013-05-01

    After more than a half century without recognized local dengue outbreaks in the continental United States, there were recent outbreaks of autochthonous dengue in the southern parts of Texas (2004-2005) and Florida (2009-2011). This dengue reemergence has provoked interest in the extent of the future threat posed by the yellow fever mosquito, Aedes (Stegomyia) aegypti (L.), the primary vector of dengue and yellow fever viruses in urban settings, to human health in the continental United States. Ae. aegypti is an intriguing example of a vector species that not only occurs in the southernmost portions of the eastern United States today but also is incriminated as the likely primary vector in historical outbreaks of yellow fever as far north as New York, Philadelphia, and Boston, from the 1690s to the 1820s. For vector species with geographic ranges limited, in part, by low temperature and cool range margins occurring in the southern part of the continental United States, as is currently the case for Ae. aegypti, it is tempting to speculate that climate warming may result in a northward range expansion (similar to that seen for Ixodes tick vectors of Lyme borreliosis spirochetes in Scandinavia and southern Canada in recent decades). Although there is no doubt that climate conditions directly impact many aspects of the life history of Ae. aegypti, this mosquito also is closely linked to the human environment and directly influenced by the availability of water-holding containers for oviposition and larval development. Competition with other container-inhabiting mosquito species, particularly Aedes (Stegomyia) albopictus (Skuse), also may impact the presence and local abundance of Ae. aegypti. Field-based studies that focus solely on the impact of weather or climate factors on the presence and abundance of Ae. aegypti, including assessments of the potential impact of climate warming on the mosquito's future range and abundance, do not consider the potential confounding

  18. A review on symmetries for certain Aedes aegypti models

    Science.gov (United States)

    Freire, Igor Leite; Torrisi, Mariano

    2015-04-01

    We summarize our results related with mathematical modeling of Aedes aegypti and its Lie symmetries. Moreover, some explicit, group-invariant solutions are also shown. Weak equivalence transformations of more general reaction diffusion systems are also considered. New classes of solutions are obtained.

  19. Differential Susceptibilities of Aedes aegypti and Aedes albopictus from the Americas to Zika Virus.

    Directory of Open Access Journals (Sweden)

    Thais Chouin-Carneiro

    2016-03-01

    Full Text Available Since the major outbreak in 2007 in the Yap Island, Zika virus (ZIKV causing dengue-like syndromes has affected multiple islands of the South Pacific region. In May 2015, the virus was detected in Brazil and then spread through South and Central America. In December 2015, ZIKV was detected in French Guiana and Martinique. The aim of the study was to evaluate the vector competence of the mosquito spp. Aedes aegypti and Aedes albopictus from the Caribbean (Martinique, Guadeloupe, North America (southern United States, South America (Brazil, French Guiana for the currently circulating Asian genotype of ZIKV isolated from a patient in April 2014 in New Caledonia.Mosquitoes were orally exposed to an Asian genotype of ZIKV (NC-2014-5132. Upon exposure, engorged mosquitoes were maintained at 28° ± 1 °C, a 16h:8h light:dark cycle and 80% humidity. 25-30 mosquitoes were processed at 4, 7 and 14 days post-infection (dpi. Mosquito bodies (thorax and abdomen, heads and saliva were analyzed to measure infection, dissemination and transmission, respectively. High infection but lower disseminated infection and transmission rates were observed for both Ae. aegypti and Ae. albopictus. Ae. aegypti populations from Guadeloupe and French Guiana exhibited a higher dissemination of ZIKV than the other Ae. aegypti populations examined. Transmission of ZIKV was observed in both mosquito species at 14 dpi but at a low level.This study suggests that although susceptible to infection, Ae. aegypti and Ae. albopictus were unexpectedly low competent vectors for ZIKV. This may suggest that other factors such as the large naïve population for ZIKV and the high densities of human-biting mosquitoes contribute to the rapid spread of ZIKV during the current outbreak.

  20. Dengue virus transovarial transmission by Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Monica Dwi Hartanti

    2016-02-01

    Full Text Available Dengue is a disease that is caused by dengue virus and transmitted to humans through the bite of infected Aedes mosquitoes, especially Aedes aegypti. The disease is hyper-endemic in Southeast Asia, where a more severe form, dengue hemorrhagic fever (DHF and dengue shock syndrome (DSS, is a major public health concern. The purpose of the present study was to find evidence of dengue virus transovarial transmision in local vectors in Jakarta. Fifteen Aedes larvae were collected in 2009 from two areas in Tebet subdistrict in South Jakarta, namely one area with the highest and one with the lowest DHF prevalence. All mosquitoes were reared inside two cages in the laboratory, eight mosquitoes in one cage and seven mosquitoes in another cage and given only sucrose solution as their food. The results showed that 20% of the mosquitoes were positive for dengue virus. Dengue virus detection with an immunohistochemical method demonstrated the occurrence of transovarial transmission in local DHF vectors in Tebet subdistrict. Transovarial dengue infection in Ae.aegypti larvae appeared to maintain or enhance epidemics. Further research is needed to investigate the relation of dengue virus transovarial transmission with DHF endemicity in Jakarta.

  1. Dengue virus transovarial transmission by Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Monica Dwi Hartanti

    2010-08-01

    Full Text Available Dengue is a disease that is caused by dengue virus and transmitted to humans through the bite of infected Aedes mosquitoes, especially Aedes aegypti. The disease is hyper-endemic in Southeast Asia, where a more severe form, dengue hemorrhagic fever (DHF and dengue shock syndrome (DSS, is a major public health concern. The purpose of the present study was to find evidence of dengue virus transovarial transmision in local vectors in Jakarta. Fifteen Aedes larvae were collected in 2009 from two areas in Tebet subdistrict in South Jakarta, namely one area with the highest and one with the lowest DHF prevalence. All mosquitoes were reared inside two cages in the laboratory, eight mosquitoes in one cage and seven mosquitoes in another cage and given only sucrose solution as their food. The results showed that 20% of the mosquitoes were positive for dengue virus. Dengue virus detection with an immunohistochemical method demonstrated the occurrence of transovarial transmission in local DHF vectors in Tebet subdistrict. Transovarial dengue infection in Ae.aegypti larvae appeared to maintain or enhance epidemics. Further research is needed to investigate the relation of dengue virus transovarial transmission with DHF endemicity in Jakarta.

  2. Methods for TALEN Evaluation, Use, and Mutation Detection in the Mosquito Aedes aegypti.

    Science.gov (United States)

    Basu, Sanjay; Aryan, Azadeh; Haac, Mary Etna; Myles, Kevin M; Adelman, Zach N

    2016-01-01

    The generation and study of transgenic Aedes aegypti mosquitoes provides an essential tool for elucidating the complex molecular biology of this important vector. Within the field, genetic manipulation has surpassed the proof of principle stage and is now utilized in both applied and theoretical vector control strategies. The application of new instruments, technologies and techniques allows ever more controlled experiments to be conducted. In this text we describe microinjection of Ae. aegypti embryos in the context of evaluating and performing genomic editing with transcription activator-like effector nucleases (TALENs).

  3. Intermolecular interaction of thiosemicarbazone derivatives to solvents and a potential Aedes aegypti target

    Science.gov (United States)

    da Silva, João Bosco P.; Hallwass, Fernando; da Silva, Aluizio G.; Moreira, Diogo Rodrigo; Ramos, Mozart N.; Espíndola, José Wanderlan P.; de Oliveira, Ana Daura T.; Brondani, Dalci José; Leite, Ana Cristina L.; Merz, Kenneth M.

    2015-08-01

    DFT calculations were used to access information about structure, energy and electronic properties of series of phenyl- and phenoxymethyl-(thio)semicarbazone derivatives with demonstrated activity against the larvae of Aedes aegypti in stage L4. The way as the thiosemicarbazone derivatives can interact with solvents like DMSO and water were analyzed from the comparison between calculated and experimental 1H NMR chemical shifts. The evidences of thiosemicarbazone derivatives making H-bond interaction to solvent have provide us insights on how they can interact with a potential A. aegypti's biological target, the Sterol Carrier Protein-2.

  4. Contact Irritant Responses of Aedes aegypti Using Sublethal Concentration and Focal Application of Pyrethroid Chemicals

    OpenAIRE

    Manda, Hortance; Shah, Pankhil; Polsomboon, Suppaluck; Chareonviriyaphap, Theeraphap; Castro-Llanos, Fanny; Morrison, Amy; Burrus, Roxanne G.; Grieco, John P.; Achee, Nicole L.

    2013-01-01

    BACKGROUND: Previous studies have demonstrated contact irritant and spatial repellent behaviors in Aedes aegypti following exposure to sublethal concentrations of chemicals. These sublethal actions are currently being evaluated in the development of a push-pull strategy for Ae. aegypti control. This study reports on mosquito escape responses after exposure to candidate chemicals for a contact irritant focused push-pull strategy using varying concentrations and focal application. METHODS: Cont...

  5. Aedes aegypti: modelo experimental de atividade biológica de fitoprodutos

    Directory of Open Access Journals (Sweden)

    Michele Teixeira Serdeiro

    2017-06-01

    Full Text Available Aedes aegypti (Linnaeus, 1762 é reconhecido como transmissor de várias arboviroses de importância na saúde pública, como a dengue, zika, chikungunya e febre amarela urbana. O principal método de prevenir a transmissão desses vírus ainda é o controle do mosquito vetor. Produtos naturais de origem vegetal vêm sendo investigados, como mais uma ferramenta no controle de vetores, e compostos menos impactantes ao meio ambiente e a saúde humana. Devido à importância deste culicídeo, buscou-se extrato e frações de C. catharinensis com atividade larvicida sobre Ae. aegypti. O extrato bruto metanólico (EBM e sua fração (EBM 1 obtidos da embaúba foram aplicados no meio de criação das larvas (L3 nas concentrações de 10, 30 e 50 μg/mL. O tratamento com C. cahtarinensis resultou na alteração do período de desenvolvimento larval, pupal e de L3-adulto do mosquito. A mortalidade pupal (25% foi obtida pela fração EBM1. Este estudo demonstrou a eficácia de C. catharinensis sobre o período de desenvolvimento de Ae. aegypti.

  6. [Susceptibility of Aedes aegypti (L.) strains from Havana to a Bacillus thuringiensis var. israelensis].

    Science.gov (United States)

    Menéndez Díaz, Zulema; Rodríguez Rodríguez, Jinnay; Gato Armas, René; Companioni Ibañez, Ariamys; Díaz Pérez, Manuel; Bruzón Aguila, Rosa Yirian

    2012-01-01

    the integration of chemical and biological methods is one of the strategies for the vector control, due to the existing environmental problems and the concerns of the community as a result of the synthetic organic insecticide actions. The bacterium called Bacillus thuringiensis var. israelensis in liquid formulation has been widely used in the vector control programs in several countries and has shown high efficacy at lab in Cuba. to determine the susceptibility of Aedes aegypti collected in the municipalities of La Habana province to Bacillus thuringiensis var. israelensis. fifteen Aedes aegypti strains, one from each municipality, were used including larvae and pupas collected in 2010 and one reference strain known as Rockefeller. The aqueous formulation of Bacillus thuringiensis var. israelensis (Bactivec, Labiofam, Cuba) was used. The bioassays complied with the World Health Organization guidelines for use of bacterial larvicides in the public health sector. The larval mortality was read after 24 hours and the results were processed by the statistical system SPSS (11.0) through Probit analysis. the evaluated mosquito strains showed high susceptibility to biolarvicide, there were no significant differences in LC50 values of Ae. aegypti strains, neither in the comparison of these values with those of the reference strain. the presented results indicate that the use of Bacillus thuringiensis var. israelensis continues to be a choice for the control of Aedes aegypti larval populations in La Habana province.

  7. EKSISTENSI DAN SEBARAN NYAMUK AEDES AEGYPTI DAN AEDES ALBOPICTUS DI KAMPUS UNIVERSITAS HASANUDDIN MAKASSAR

    Directory of Open Access Journals (Sweden)

    Yosefina Dota T

    2015-03-01

    Full Text Available Penelitian yang bertujuan untuk mengetahui eksistensi dan sebaran nyamuk Aedes aegypti dan Aedes albopictus telah dilakukan di Kampus Universitas Hasanuddin, Kec. Tamalanrea, Makassar. Penelitian bersifat eksploratif dengan melakukan sampling terhadap lima lokasi yaitu : a Fak. Peternakan (Utara, b Fak. Hukum (Timur, c Pusat Kegiatan Penelitian/PKP (Selatan, d Workshop/Dekat Pondokan mahasiswa (Barat dan e Fak. MIPA (Tengah. Sampling nyamuk menggunakan metode ovitrap (menggunakan attraktan Eluisine Indica L. dan survei terhadap berbagai tempat penampungan air. Sampel telur dan larva nyamuk yang diperoleh disimpan dalam microtube berisi alkohol 70% kemudian diidentifikasi berdasarkan Rueda (2004. Hasil penelitian menunjukkan bahwa Nyamuk Ae. aegypti dan Ae. albopictus ditemukan hidup dan berkembang biak di kampus Universitas Hasanuddin, Makassar. Eksistensi dan sebaran kedua jenis nyamuk tersebut dipengaruhi oleh faktor adanya manusia/masyarakat kampus yang beraktivitas baik di dalam ruangan (indoor maupun di luar ruangan (outdoor, adanya berbagai tempat penampungan air baik buatan (bak mandi, ember maupun barang bekas (botol/kaleng bekas, tempurung kelapa, vegetasi/tanaman dan berbagai macam hewan yang berada di sekitaran kampus. Hasil penelitian dalam ruangan (indoor menunjukkan bahwa nyamuk Ae. aegypti lebih banyak ditemukan hidup di dalam ruangan gedung PKP sedangkan Ae.albopictus lebih banyak di Fak. Hukum. Hasil penelitian di luar ruangan (outdoor menunjukkan bahwa nyamuk Ae. aegypti lebih banyak ditemukan hidup di area Workshop sedangkan Ae.albopictus lebih banyak di area PKP.

  8. Ecdysis period and rate deviations of dengue mosquito vector, Aedes aegypti reared in different artificial water-holding containers.

    Science.gov (United States)

    Almanzor, Beatriz Louise J; Ho, Howell T; Carvajal, Thaddeus M

    2016-03-01

    Artificial water-holding containers (AWHCs) have been well-documented in many Aedes aegypti studies for dengue surveillance and developmental research. Hence, we investigated the role of different AHWCs on the development and ecdysis period of Ae. aegypti dengue vector, a container breeding mosquito. Nine types of AWHCs, namely glass, polystyrene foam, rubber, steel, porcelain, plastic, aluminum, clay and concrete, were chosen for the study. All AWHCs were subjected to the developmental assay for an observation period of 10 days. Regression and hazard analyses were employed to the developmental stages and the characteristics of the AWHCs. The observations revealed that Ae. aegypti development is fastest in glass and polystyrene containers while slowest in concrete containers. Moreover, pupal ecdysis appears to be the most affected by the characteristics of the AWHCs based on regression and hazard analyses. Characteristics of the container that can regulate water temperature seem to be the driving force with regards to the slow or fast development of Ae. aegypti, more notably in pupal ecdysis. The results of the study further strengthen our understanding on the dynamics of Ae. aegypti's developmental biology to different characteristics of artificial water containers. This, in turn, would aid in devising vector control strategies against dengue especially in endemic areas.

  9. Hallazgo de mesocyclops aspericornis (Daday) (Copepoda: Cyclopidae) depredador de larvas de aedes aegypti en Anapoima Colombia (1)

    OpenAIRE

    Marco Fidel Suárez; Dwight Ayala; Michael J. Nelson; Janet W. Reid

    1984-01-01

    En Anapoima, Colombia, se encontró que el copépodo Mesocyclops aspericornis era depredador de larvas del mosquito Aedes aegypti. Este encuentro representa el primer hallazgo de este copépodo en recipientes artificiales en la región neotropical, y el primer hallazgo como depredador de larvas de Aedes aegypti.

  10. High quality RNA isolation from Aedes aegypti midguts using laser microdissection microscopy

    Directory of Open Access Journals (Sweden)

    Gobert Geoffrey N

    2011-05-01

    Full Text Available Abstract Background Laser microdissection microscopy (LMM has potential as a research tool because it allows precise excision of target tissues or cells from a complex biological specimen, and facilitates tissue-specific sample preparation. However, this method has not been used in mosquito vectors to date. To this end, we have developed an LMM method to isolate midgut RNA using Aedes aegypti. Results Total RNA was isolated from Ae. aegypti midguts that were either fresh-frozen or fixed with histological fixatives. Generally, fresh-frozen tissue sections are a common source of quality LMM-derived RNA; however, our aim was to develop an LMM protocol that could inactivate pathogenic viruses by fixation, while simultaneously preserving RNA from arbovirus-infected mosquitoes. Three groups (10 - 15 mosquitoes per group of female Ae. aegypti at 24 or 48-hours post-blood meal were intrathoracically injected with one of seven common fixatives (Bouin's, Carnoy's, Formoy's, Cal-Rite, 4% formalin, 10% neutral buffered formalin, or zinc formalin to evaluate their effect on RNA quality. Total RNA was isolated from the fixed abdomens using a Trizol® method. The results indicated that RNA from Carnoy's and Bouin's fixative samples was comparable to that of fresh frozen midguts (control in duplicate experiments. When Carnoy's and Bouin's were used to fix the midguts for the LMM procedure, however, Carnoy's-fixed RNA clearly showed much less degradation than Bouin's-fixed RNA. In addition, a sample of 5 randomly chosen transcripts were amplified more efficiently using the Carnoy's treated LMM RNA than Bouin's-fixed RNA in quantitative real-time PCR (qRT-PCR assays, suggesting there were more intact target mRNAs in the Carnoy's fixed RNA. The yields of total RNA ranged from 0.3 to 19.0 ng per ~3.0 × 106 μm2 in the LMM procedure. Conclusions Carnoy's fixative was found to be highly compatible with LMM, producing high quality RNA from Ae. aegypti midguts while

  11. Insecticide resistance in two Aedes aegypti (Diptera: Culicidae) strains from Costa Rica.

    Science.gov (United States)

    Bisset, J A; Marín, R; Rodríguez, M M; Severson, D W; Ricardo, Y; French, L; Díaz, M; Pérez, O

    2013-03-01

    Dengue (family Flaviridae, genus Flavivirus, DENV) and dengue hemorrhagic fever (DHF) are presently important public health problems in Costa Rica. The primary strategy for disease control is based on reducing population densities of the main mosquito vector Aedes aegypti (L.) (Diptera: Culicidae). This is heavily dependent on use of chemical insecticides, thus the development of resistance is a frequent threat to control program effectiveness. The objective of this study was to determine the levels of insecticide resistance and the metabolic resistance mechanisms involved in two Ae. aegypti strains collected from two provinces (Puntarenas and Limon) in Costa Rica. Bioassays with larvae were performed according to World Health Organization guidelines and resistance in adults was measured through standard bottle assays. The activities of beta-esterases, cytochrome P450 monooxygenases, and glutathione S-transferases (GST), were assayed through synergists and biochemical tests, wherein the threshold criteria for each enzyme was established using the susceptible Rockefeller strain. The results showed higher resistance levels to the organophosphate (OP) temephos and the pyrethroid deltamethrin in larvae. The efficacy of commercial formulations of temephos in controlling Ae. aegypti populations was 100% mortality up to 11 and 12 d posttreatment with daily water replacements in test containers. Temephos and deltamethrin resistance in larvae were associated with high esterase activity, but not to cytochrome P450 monooxygenase or GST activities. Adult mosquitoes were resistant to deltamethrin, and susceptible to bendiocarb, chlorpyrifos, and cypermethrin. Because temephos and deltamethrin resistance are emerging at the studied sites, alternative insecticides should be considered. The insecticides chlorpyrifos and cypermethrin could be good candidates to use as alternatives for Ae. aegypti control.

  12. Population genomics reveals that an anthropophilic population of Aedes aegypti mosquitoes in West Africa recently gave rise to American and Asian populations of this major disease vector

    KAUST Repository

    Crawford, Jacob E.

    2017-02-20

    BackgroundThe mosquito Aedes aegypti is the main vector of dengue, Zika, chikungunya and yellow fever viruses. This major disease vector is thought to have arisen when the African subspecies Ae. aegypti formosus evolved from being zoophilic and living in forest habitats into a form that specialises on humans and resides near human population centres. The resulting domestic subspecies, Ae. aegypti aegypti, is found throughout the tropics and largely blood-feeds on humans.ResultsTo understand this transition, we have sequenced the exomes of mosquitoes collected from five populations from around the world. We found that Ae. aegypti specimens from an urban population in Senegal in West Africa were more closely related to populations in Mexico and Sri Lanka than they were to a nearby forest population. We estimate that the populations in Senegal and Mexico split just a few hundred years ago, and we found no evidence of Ae. aegypti aegypti mosquitoes migrating back to Africa from elsewhere in the tropics. The out-of-Africa migration was accompanied by a dramatic reduction in effective population size, resulting in a loss of genetic diversity and rare genetic variants.ConclusionsWe conclude that a domestic population of Ae. aegypti in Senegal and domestic populations on other continents are more closely related to each other than to other African populations. This suggests that an ancestral population of Ae. aegypti evolved to become a human specialist in Africa, giving rise to the subspecies Ae. aegypti aegypti. The descendants of this population are still found in West Africa today, and the rest of the world was colonised when mosquitoes from this population migrated out of Africa. This is the first report of an African population of Ae. aegypti aegypti mosquitoes that is closely related to Asian and American populations. As the two subspecies differ in their ability to vector disease, their existence side by side in West Africa may have important implications for

  13. Population genomics reveals that an anthropophilic population of Aedes aegypti mosquitoes in West Africa recently gave rise to American and Asian populations of this major disease vector.

    Science.gov (United States)

    Crawford, Jacob E; Alves, Joel M; Palmer, William J; Day, Jonathan P; Sylla, Massamba; Ramasamy, Ranjan; Surendran, Sinnathamby N; Black, William C; Pain, Arnab; Jiggins, Francis M

    2017-02-28

    The mosquito Aedes aegypti is the main vector of dengue, Zika, chikungunya and yellow fever viruses. This major disease vector is thought to have arisen when the African subspecies Ae. aegypti formosus evolved from being zoophilic and living in forest habitats into a form that specialises on humans and resides near human population centres. The resulting domestic subspecies, Ae. aegypti aegypti, is found throughout the tropics and largely blood-feeds on humans. To understand this transition, we have sequenced the exomes of mosquitoes collected from five populations from around the world. We found that Ae. aegypti specimens from an urban population in Senegal in West Africa were more closely related to populations in Mexico and Sri Lanka than they were to a nearby forest population. We estimate that the populations in Senegal and Mexico split just a few hundred years ago, and we found no evidence of Ae. aegypti aegypti mosquitoes migrating back to Africa from elsewhere in the tropics. The out-of-Africa migration was accompanied by a dramatic reduction in effective population size, resulting in a loss of genetic diversity and rare genetic variants. We conclude that a domestic population of Ae. aegypti in Senegal and domestic populations on other continents are more closely related to each other than to other African populations. This suggests that an ancestral population of Ae. aegypti evolved to become a human specialist in Africa, giving rise to the subspecies Ae. aegypti aegypti. The descendants of this population are still found in West Africa today, and the rest of the world was colonised when mosquitoes from this population migrated out of Africa. This is the first report of an African population of Ae. aegypti aegypti mosquitoes that is closely related to Asian and American populations. As the two subspecies differ in their ability to vector disease, their existence side by side in West Africa may have important implications for disease transmission.

  14. Community-based control of Aedes aegypti by adoption of eco ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    empower women and student communities to estab- lish a sustainable nature ... Control of Aedes aegypti by eco-health methods in Chennai. Pathogens and Global ... predominantly middle class with good/satisfactory housing — often of two ...

  15. CPB1 of Aedes aegypti Interacts with DENV2 E Protein and Regulates Intracellular Viral Accumulation and Release from Midgut Cells

    Directory of Open Access Journals (Sweden)

    Hong-Wai Tham

    2014-12-01

    Full Text Available Aedes aegypti is a principal vector responsible for the transmission of dengue viruses (DENV. To date, vector control remains the key option for dengue disease management. To develop new vector control strategies, a more comprehensive understanding of the biological interactions between DENV and Ae. aegypti is required. In this study, a cDNA library derived from the midgut of female adult Ae. aegypti was used in yeast two-hybrid (Y2H screenings against DENV2 envelope (E protein. Among the many interacting proteins identified, carboxypeptidase B1 (CPB1 was selected, and its biological interaction with E protein in Ae. aegypti primary midgut cells was further validated. Our double immunofluorescent assay showed that CPB1-E interaction occurred in the endoplasmic reticulum (ER of the Ae. aegypti primary midgut cells. Overexpression of CPB1 in mosquito cells resulted in intracellular DENV2 genomic RNA or virus particle accumulation, with a lower amount of virus release. Therefore, we postulated that in Ae. aegypti midgut cells, CPB1 binds to the E protein deposited on the ER intraluminal membranes and inhibits DENV2 RNA encapsulation, thus inhibiting budding from the ER, and may interfere with immature virus transportation to the trans-Golgi network.

  16. Aedes aegypti (Diptera: Culicidae) Longevity and Differential Emergence of Dengue Fever in Two Cities in Sonora, Mexico.

    Science.gov (United States)

    Ernst, Kacey C; Walker, Kathleen R; Reyes-Castro, Pablo; Joy, Teresa K; Castro-Luque, A Lucia; Diaz-Caravantes, Rolando E; Gameros, Mercedes; Haenchen, Steven; Hayden, Mary H; Monaghan, Andrew; Jeffrey-Guttierez, Eileen; Carrière, Yves; Riehle, Michael R

    2017-01-01

    Dengue virus, primarily transmitted by the Aedes aegypti (L.) mosquito, has rapidly expanded in geographic extent over the past several decades. In some areas, however, dengue fever has not emerged despite established Ae. aegypti populations. The reasons for this are unclear and have sometimes been attributed to socio-economic differences. In 2013 we compared Ae. aegypti adult density and population age structure between two cities in Sonora, Mexico: Hermosillo, which has regular seasonal dengue virus transmission, and Nogales, which has minimal transmission. Larval and pupal abundance was greater in Nogales, and adult density was only higher in Hermosillo during September. Population age structure, however, was consistently older in Hermosillo. This difference in longevity may have been one factor that limited dengue virus transmission in Nogales in 2013, as a smaller proportion of Ae. aegypti females survived past the extrinsic incubation period. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Developing Sterile Insect Technique (SIT) as a tool Mosquito Control Districts can use for integrated Aedes aegypti control

    Science.gov (United States)

    New tools are clearly needed for integrated mosquito management of Ae. aegypti. We describe the sterile insect technique (SIT) that we are developing as a method to control Ae. aegypti by partnering with two prominent Florida mosquito control districts (MCD) and the FAO/IAEA Insect Pest Control Sub...

  18. Sodium Channel Mutations and Pyrethroid Resistance in Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Yuzhe Du

    2016-10-01

    Full Text Available Pyrethroid insecticides are widely used to control insect pests and human disease vectors. Voltage-gated sodium channels are the primary targets of pyrethroid insecticides. Mutations in the sodium channel have been shown to be responsible for pyrethroid resistance, known as knockdown resistance (kdr, in various insects including mosquitoes. In Aedes aegypti mosquitoes, the principal urban vectors of dengue, zika, and yellow fever viruses, multiple single nucleotide polymorphisms in the sodium channel gene have been found in pyrethroid-resistant populations and some of them have been functionally confirmed to be responsible for kdr in an in vitro expression system, Xenopus oocytes. This mini-review aims to provide an update on the identification and functional characterization of pyrethroid resistance-associated sodium channel mutations from Aedes aegypti. The collection of kdr mutations not only helped us develop molecular markers for resistance monitoring, but also provided valuable information for computational molecular modeling of pyrethroid receptor sites on the sodium channel.

  19. Identification of germline transcriptional regulatory elements in Aedes aegypti

    Science.gov (United States)

    Akbari, Omar S.; Papathanos, Philippos A.; Sandler, Jeremy E.; Kennedy, Katie; Hay, Bruce A.

    2014-02-01

    The mosquito Aedes aegypti is the principal vector for the yellow fever and dengue viruses, and is also responsible for recent outbreaks of the alphavirus chikungunya. Vector control strategies utilizing engineered gene drive systems are being developed as a means of replacing wild, pathogen transmitting mosquitoes with individuals refractory to disease transmission, or bringing about population suppression. Several of these systems, including Medea, UDMEL, and site-specific nucleases, which can be used to drive genes into populations or bring about population suppression, utilize transcriptional regulatory elements that drive germline-specific expression. Here we report the identification of multiple regulatory elements able to drive gene expression specifically in the female germline, or in the male and female germline, in the mosquito Aedes aegypti. These elements can also be used as tools with which to probe the roles of specific genes in germline function and in the early embryo, through overexpression or RNA interference.

  20. Habitat productivity and pyrethroid susceptibility status of Aedes aegypti mosquitoes in Dar es Salaam, Tanzania.

    Science.gov (United States)

    Mathias, Leah; Baraka, Vito; Philbert, Anitha; Innocent, Ester; Francis, Filbert; Nkwengulila, Gamba; Kweka, Eliningaya J

    2017-06-09

    Aedes aegypti (Diptera: Culicidae) is the main vector of the dengue virus globally. Dengue vector control is mainly based on reducing the vector population through interventions, which target potential breeding sites. However, in Tanzania, little is known about this vector's habitat productivity and insecticide susceptibility status to support evidence-based implementation of control measures. The present study aimed at assessing the productivity and susceptibility status of A. aegypti mosquitoes to pyrethroid-based insecticides in Dar es Salaam, Tanzania. An entomological assessment was conducted between January and July 2015 in six randomly selected wards in Dar es Salaam, Tanzania. Habitat productivity was determined by the number of female adult A. aegypti mosquitoes emerged per square metre. The susceptibility status of adult A. aegypti females after exposure to 0.05% deltamethrin, 0.75% permethrin and 0.05% lambda-cyhalothrin was evaluated using the standard WHO protocols. Mortality rates were recorded after 24 h exposure and the knockdown effect was recorded at the time points of 10, 15, 20, 30, 40, 50 and 60 min to calculate the median knockdown times (KDT 50 and KDT 95 ). The results suggest that disposed tyres had the highest productivity, while water storage tanks had the lowest productivity among the breeding habitats Of A. aegypti mosquitoes. All sites demonstrated reduced susceptibility to deltamethrin (0.05%) within 24 h post exposure, with mortalities ranging from 86.3 ± 1.9 (mean ± SD) to 96.8 ± 0.9 (mean ± SD). The lowest and highest susceptibilities were recorded in Mikocheni and Sinza wards, respectively. Similarly, all sites demonstrated reduced susceptibility permethrin (0.75%) ranging from 83.1 ± 2.1% (mean ± SD) to 96.2 ± 0.9% (mean ± SD), in Kipawa and Sinza, respectively. Relatively low mortality rates were observed in relation to lambda-cyhalothrin (0.05%) at all sites, ranging from 83.1 ± 0

  1. Constituintes químicos de Capraria biflora (Scrophulariaceae) e atividade larvicida de seu óleo essencial

    OpenAIRE

    Souza,Luciana Gregório da S.; Almeida,Macia Cleane S.; Monte,Francisco José Q.; Santiago,Gilvandete Maria P.; Braz-Filho,Raimundo; Lemos,Telma Leda G.; Gomes,Clerton L.; Nascimento,Ronaldo F. do

    2012-01-01

    Analysis of essential oil from fresh leaves of Capraria biflora allowed identification of fourteen essential oil constituents among which thirteen are sesquiterpene compounds, and α-humulene (43.0%) the major constituent. The essential oil was tested for larvicidal activity against Aedes aegypti showing good activity, with LC50 73.39 µg/mL (2.27 g/mL). Chromatographic studies of extracts from roots and stems allowed the isolation of five compounds: naphthoquinone biflorin, sesquiterpene ...

  2. A instabilidade categorial dos constituintes morfológicos: evidência a favor do continuum composição-derivação

    Directory of Open Access Journals (Sweden)

    Carlos Alexandre GONÇALVES

    2016-08-01

    Full Text Available RESUMO Neste artigo, discutimos o estatuto dos seguintes elementos morfológicos frequentemente usados na formação de novas palavras no português brasileiro: afixoides (bio-combustível, eco-sustentabilidade, splinters (choco-tone; sogra-drasta e xenoconstituintes (cyber-café; e-professor. Ao longo do texto, observamos em que medida esses constituintes se comportam como radicais e em que aspectos equivalem a afixos. Pretendemos, com isso, justificar a proposta de continuum defendida por (Baker, 2000 e (Ralli, 2007, ao mesmo tempo em que demonstramos que outras unidades morfológicas, além de radicais e afixos, devem fazer parte dessa escala.

  3. PENGAMATAN TEMPAT PERINDUKAN AEDES AEGYPTI PADA TEMPAT PENAMPUNGAN AIR RUMAH TANGGA PADA MASYARAKAT PENGGUNA AIR OLAHAN

    Directory of Open Access Journals (Sweden)

    H. Hasyimi

    2012-11-01

    Full Text Available An observation of Aedes aegypti breeding places in domestic pipe waters container provided by PAM (Water supply company customer regency was carried out. The area observation in RW (a hamlet 05 kelurahan Papanggo Tanjung priuk North Jakarta. As a control area, RW 04 kelurahan Tanjung Priok in the same district was selected. The observation was conducted on Agust - September 2001. The result showed that Aedes aegypti larvae were found mostly in clay water container or tempayan (66,7 %. The house index (HI rate is 27,3%. In the control area the larvae were found predominantly in bath cistern (65,4% and HI rate is 100%. So in the study area HI rate is lower than in the control area.   Keywords: Aedes aegypti, breeding places, domestic container, house index

  4. Insecticide resistance, associated mechanisms and fitness aspects in two Brazilian Stegomyia aegypti (= Aedes aegypti) populations.

    Science.gov (United States)

    Viana-Medeiros, P F; Bellinato, D F; Martins, A J; Valle, D

    2017-12-01

    In Brazil, insecticide resistance in Stegomyia aegypti (= Aedes aegypti) (Diptera: Culicidae) populations to pyrethroids and to the organophosphate (OP) temephos is disseminated. Currently, insect growth regulators (IGRs) and the OP malathion are employed against larvae and adults, respectively. Bioassays with mosquitoes from two northeast municipalities, Crato and Aracaju, revealed, in both populations, susceptibility to IGRs and malathion (RR 95  ≤ 2.0), confirming the effectiveness of these compounds. By contrast, temephos and deltamethrin (pyrethroid) resistance levels were high (RR 95  > 10), which is consistent with the use of intense chemical control. In Crato, RR 95 values were > 50 for both compounds. Knock-down-resistant (kdr) mutants in the voltage-gated sodium channel, the pyrethroid target site, were found in 43 and 32%, respectively, of Aracaju and Crato mosquitoes. Biochemical assays revealed higher metabolic resistance activity (esterases, mixed function oxidases and glutathione-S-transferases) at Aracaju. With respect to fitness aspects, mating effectiveness was equivalently impaired in both populations, but Aracaju mosquitoes showed more damaging effects in terms of longer larval development, decreased bloodmeal acceptance, reduced engorgement and lower numbers of eggs laid per female. Compared with mosquitoes in Crato, Aracaju mosquitoes exhibited lower OP and pyrethroid RR 95 , increased activity of detoxifying enzymes and greater effect on fitness. The potential relationship between insecticide resistance mechanisms and mosquito viability is discussed. © 2017 The Authors. Medical and Veterinary Entomology published by John Wiley & Sons Ltd on behalf of The Royal Entomological Society.

  5. Sindbis virus infection alters blood feeding responses and DEET repellency in Aedes aegypti (Diptera: Culicidae).

    Science.gov (United States)

    Qualls, Whitney A; Day, Jonathan F; Xue, Rui-De; Bowers, Doria F

    2012-03-01

    Aedes aegypti (L.) (Diptera: Culicidae) female mosquitoes infected systemically with Sindbis virus (SINV) took longer than uninfected mosquitoes to locate and fully engorge on blood. On days 7 and 14 postexposure, blood feeding took 1.3 and 1.5 times longer in mosquitoes with a disseminated SINV infection, respectively. SINV dissemination did not affect the average weight of unfed Ae. aegypti, but did result in a 10 and 12% increase in blood imbibed compared with mosquitoes without a positive SINV dissemination and non-SINV-exposed mosquitoes, respectively. Ae. aegypti mosquitoes with a disseminated SINV infection fed an average of 4 h sooner than uninfected mosquitoes when offered a bloodmeal contained inside a DEET (N,N-diethyl-3-methylbenzamide) saturated (30%) bovine sausage casing. Together, these results indicate that behavioral changes in mosquito host-seeking, blood feeding and sensitivity to DEET occurred in mosquitoes after SINV infection and dissemination.

  6. Biology of two larval morphological phenotypes of Aedes aegypti in Abidjan, Côte d'Ivoire.

    Science.gov (United States)

    Guindo-Coulibaly, N; Diakite, N R; Adja, A M; Coulibaly, J T; Bassa, K F; Konan, Y L; N'Goran, K E

    2017-11-23

    Since 2008, several outbreaks of yellow fever and dengue occurred in Abidjan, the economic capital of Côte d'Ivoire. A better knowledge of the biology of Aedes aegypti populations, the main vector of yellow fever and dengue viruses, is necessary to tailor vector control strategies implemented in the city. This study was designed to determine some biological parameters, occurring during the life cycle of two morphological phenotypes of Ae. aegypti larvae. Mosquitoes were sampled in a suburb of Abidjan (Treichville) using the WHO layer-traps technique. Biological parameters were studied in laboratory under standard conditions of temperature (27°C ± 2°C) and relative humidity (80% ± 10%). Our results indicated that the mean eggs laid by females from 'brown larvae' (BL) (85.95, 95% confidence interval (CI 95%) 78.87-93.02) was higher than those from 'white larvae' (WL) (64.40%, CI 95% 55.27-73.54). The gonotrophic cycle was 3 and 4 days in females from BL and WL, respectively. The overall yield of breeding mosquitoes from BL (63.88%, CI 95% 62.61-65.14) was higher compared with those of mosquitoes from WL (59.73%, CI 95% 58.35-61.12). The sex ratio (male/female) was 0.95 and 1.68 in Ae. aegypti populations from BL and WL, respectively. Females from BL lived slightly longer than those from WL (t = -2.332; P = 0.021). This study shows that Ae. Aegypti populations from BL and WL present different biological parameters during their life cycle. This could have an implication on their ability to transmit human disease viruses such as dengue and yellow fever. Further molecular studies are needed to determine genetic divergence between these Ae. aegypti populations.

  7. Effect of an intervention in storm drains to prevent Aedes aegypti reproduction in Salvador, Brazil.

    Science.gov (United States)

    Souza, Raquel Lima; Mugabe, Vánio André; Paploski, Igor Adolfo Dexheimer; Rodrigues, Moreno S; Moreira, Patrícia Sousa Dos Santos; Nascimento, Leile Camila Jacob; Roundy, Christopher Michael; Weaver, Scott C; Reis, Mitermayer Galvão; Kitron, Uriel; Ribeiro, Guilherme Sousa

    2017-07-11

    Aedes aegypti, the principal vector for dengue, chikungunya and Zika viruses, is a synanthropic species that uses stagnant water to complete its reproductive cycle. In urban settings, rainfall water draining structures, such as storm drains, may retain water and serve as a larval development site for Aedes spp. reproduction. Herein, we describe the effect of a community-based intervention on preventing standing water accumulation in storm drains and their consequent infestation by adult and immature Ae. aegypti and other mosquitoes. Between April and May of 2016, local residents association of Salvador, Brazil, after being informed of water accumulation and Ae. aegypti infestation in the storm drains in their area, performed an intervention on 52 storm drains. The intervention consisted of placing concrete at the bottom of the storm drains to elevate their base to the level of the outflow tube, avoiding water accumulation, and placement of a metal mesh covering the outflow tube to avoid its clogging with debris. To determine the impact of the intervention, we compared the frequency at which the 52 storm drains contained water, as well as adult and immature mosquitoes using data from two surveys performed before and two surveys performed after the intervention. During the pre-intervention period, water accumulated in 48 (92.3%) of the storm drains, and immature Ae. aegypti were found in 11 (21.2%) and adults in 10 (19.2%). After the intervention, water accumulated in 5 (9.6%) of the storm drains (P Aedes mosquitoes (mainly Culex spp.) in the storm drains also decreased after the intervention. This study exemplifies how a simple intervention targeting storm drains can result in a major reduction of water retention, and, consequently, impact Ae. aegypti larval populations. Larger and multi-center evaluations are needed to confirm the potential of citywide structural modifications of storm drains to reduce Aedes spp. infestation level.

  8. Screening of plants found in the State of Amazonas, Brazil for activity against Aedes aegypti larvae Triagem de plantas encontradas no Estado do Amazonas para atividade larvicida contra Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Adrian Martin Pohlit

    2004-01-01

    Full Text Available Ethanol, methanol and water extracts representing mostly native plant species found in the Amazon region were prepared, respectively, by maceration, continuous liquid-solid extraction and infusion, followed by evaporation and freeze-drying. The freeze-dried extracts were tested for lethality toward Aedes aegypti larvae at test concentrations of 500 mg / mL. In general, methanol extracts exhibited the greatest larvicidal activity. The following 7 methanol extracts of (the parts of the indicated plant species were the most active, resulting in 100% mortality in A. aegypti larvae: Tapura amazonica Poepp. (root, Piper aduncum L. (leaf and root, P. tuberculatum Jacq. (leaf, fruit and branch. and Simaba polyphylla (Cavalcante W.W. Thomas (branch.Extratos aquosos, etanólicos e metanólicos, representando principalmente espécies vegetais nativas encontradas na região Amazônica, foram preparados, respectivamente, por infusão, maceração e extração contínua líquido-sólido, seguida de evaporação e liofilização. Os extratos liofilizados foram testados para atividade contra larvas de Aedes aegypti, na concentração única de 500 mg / mL. Os extratos metanólicos foram, em geral, os que apresentaram maior atividade larvicida. Os seguintes 7 extratos metanólicos das (partes das espécies vegetais indicadas foram os mais ativos, provocando 100% de mortalidade em larvas de A. aegypti: Tapura amazonica Poepp. (raiz, Piper aduncum L. (folha e raiz, P. tuberculatum Jacq. (folha, fruto e galho e Simaba polyphylla (Cavalcante W.W. Thomas (galho.

  9. The genetics of chemoreception in the labella and tarsi of Aedes aegypti.

    Science.gov (United States)

    Sparks, Jackson T; Bohbot, Jonathan D; Dickens, Joseph C

    2014-05-01

    The yellow-fever mosquito Aedes aegypti is a major vector of human diseases, such as dengue, yellow fever, chikungunya and West Nile viruses. Chemoreceptor organs on the labella and tarsi are involved in human host evaluation and thus serve as potential foci for the disruption of blood feeding behavior. In addition to host detection, these contact chemoreceptors mediate feeding, oviposition and conspecific recognition; however, the molecular landscape of chemoreception in these tissues remains mostly uncharacterized. Here we report the expression profile of all putative chemoreception genes in the labella and tarsi of both sexes of adult Ae. aegypti and discuss their possible roles in the physiology and behavior of this important disease vector. Published by Elsevier Ltd.

  10. First report of naturally infected Aedes aegypti with chikungunya virus genotype ECSA in the Americas.

    Science.gov (United States)

    Costa-da-Silva, André Luis; Ioshino, Rafaella Sayuri; Petersen, Vivian; Lima, Antonio Fernando; Cunha, Marielton Dos Passos; Wiley, Michael R; Ladner, Jason T; Prieto, Karla; Palacios, Gustavo; Costa, Danuza Duarte; Suesdek, Lincoln; Zanotto, Paolo Marinho de Andrade; Capurro, Margareth Lara

    2017-06-01

    The worldwide expansion of new emergent arboviruses such as Chikungunya and Zika reinforces the importance in understanding the role of mosquito species in spreading these pathogens in affected regions. This knowledge is essential for developing effective programs based on species specificity to avoid the establishment of endemic transmission cycles sustained by the identified local vectors. Although the first autochthonous transmission of Chikungunya virus was described in 2014 in the north of Brazil, the main outbreaks were reported in 2015 and 2016 in the northeast of Brazil. During 5 days of February 2016, we collected mosquitoes in homes of 6 neighborhoods of Aracaju city, the capital of Sergipe state. Four mosquito species were identified but Culex quinquefasciatus and Aedes aegypti were the most abundant. Field-caught mosquitoes were tested for Chikungunya (CHIKV), Zika (ZIKV) and Dengue viruses (DENV) by qRT-PCR and one CHIKV-infected Ae. aegypti female was detected. The complete sequence of CHIKV genome was obtained from this sample and phylogenetic analysis revealed that this isolate belongs to the East-Central-South-African (ECSA) genotype. Our study describes the first identification of a naturally CHIKV-infected Ae. aegypti in Brazil and the first report of a CHIKV from ECSA genotype identified in this species in the Americas. These findings support the notion of Ae. aegypti being a vector involved in CHIKV outbreaks in northeast of Brazil.

  11. A new tent trap for monitoring the daily activity of Aedes aegypti and Aedes albopictus.

    Science.gov (United States)

    Casas Martínez, Mauricio; Orozco Bonilla, Arnoldo; Muñoz Reyes, Miguel; Ulloa García, Armando; Bond, J Guillermo; Valle Mora, Javier; Weber, Manuel; Rojas, Julio C

    2013-12-01

    In this study, we designed a new tent trap; the BioDiVector (BDV) tent trap, consisting of two rectangular tents that use human bait without endangering the technical personnel. The daily activity pattern of Aedes aegypti and Aedes albopictus in intra, peri, and extradomiciliary sites was studied in an endemic area of dengue in southern Mexico by using the BDV tent trap. Totals of 3,128 individuals of Ae. aegypti and 833 Ae. albopictus were captured. More Ae. aegypti males than females were caught, while the opposite was true with Ae. albopictus. The activity of both mosquito species was affected by the interaction between the collection site and time of day. In general, more individuals of both mosquito species were captured at the extradomicillary sites than at the peri and intradomicillary sites. Mosquitoes showed two peaks of activity, one in the morning and the other in the afternoon, but in general this only occurred at the extradomicillary sites, whereas no peak of activity was observed at the intra and peridomicillary sites. Overall, Ae. aegypti had a higher indirect biting rate than Ae. albopictus. Finally, due to its efficiency, simplicity, and low cost, we suggest the use of this innovative tool for entomological surveillance, bionomics and vector incrimination studies in geographical areas where dengue and other arboviruses are present. © 2013 The Society for Vector Ecology.

  12. First report of naturally infected Aedes aegypti with chikungunya virus genotype ECSA in the Americas.

    Directory of Open Access Journals (Sweden)

    André Luis Costa-da-Silva

    2017-06-01

    Full Text Available The worldwide expansion of new emergent arboviruses such as Chikungunya and Zika reinforces the importance in understanding the role of mosquito species in spreading these pathogens in affected regions. This knowledge is essential for developing effective programs based on species specificity to avoid the establishment of endemic transmission cycles sustained by the identified local vectors. Although the first autochthonous transmission of Chikungunya virus was described in 2014 in the north of Brazil, the main outbreaks were reported in 2015 and 2016 in the northeast of Brazil.During 5 days of February 2016, we collected mosquitoes in homes of 6 neighborhoods of Aracaju city, the capital of Sergipe state. Four mosquito species were identified but Culex quinquefasciatus and Aedes aegypti were the most abundant. Field-caught mosquitoes were tested for Chikungunya (CHIKV, Zika (ZIKV and Dengue viruses (DENV by qRT-PCR and one CHIKV-infected Ae. aegypti female was detected. The complete sequence of CHIKV genome was obtained from this sample and phylogenetic analysis revealed that this isolate belongs to the East-Central-South-African (ECSA genotype.Our study describes the first identification of a naturally CHIKV-infected Ae. aegypti in Brazil and the first report of a CHIKV from ECSA genotype identified in this species in the Americas. These findings support the notion of Ae. aegypti being a vector involved in CHIKV outbreaks in northeast of Brazil.

  13. Insecticide susceptibility of Aedes aegypti and Aedes albopictus in Central Africa

    Directory of Open Access Journals (Sweden)

    Nwane Philippe

    2011-05-01

    Full Text Available Abstract Background Aedes aegypti (Linnaeus, 1762 and Aedes albopictus (Skuse, 1894 are the main vectors of dengue (DENV and chikungunya (CHIKV viruses worldwide. As there is still no vaccine or specific treatment for DENV and CHIKV, vector control remains the cornerstone of prevention and outbreak control. Unfortunately, vector control programs are facing operational challenges with mosquitoes becoming resistant to commonly used insecticides in several areas through the world. Throughout Central Africa no recent data are available susceptible/resistant status of either vector species since the introduction/arrival of Ae. albopictus in this area. We therefore studied the level of resistance of these two major vectors to insecticides commonly used in Africa for mosquito control. Results Aedes aegypti and Ae. albopictus were sampled in six urban localities of Cameroon (Garoua, Bertoua, Yaoundé, Bafia, Buea and Gabon (Libreville. Larval bioassays, carried out to determine the lethal concentrations (LC50 and LC95 and resistance ratios (RR50 and RR95 suggested that both vector species were susceptible to Bti (Bacillus thuringiensis var israeliensis and temephos. Bioassays were also performed on adults using WHO diagnostic test kits to assess phenotypic resistance to deltamethrin, DDT, fenitrothion and propoxur. These experiments showed that one population of Ae. aegypti (Libreville and two populations of Ae. albopictus (Buea and Yaoundé were resistant to DDT (mortality 36% to 71%. Resistance to deltamethrin was also suspected in Ae. albopictus from Yaoundé (83% mortality. All other field mosquito populations were susceptible to deltamethrin, DDT, fenitrothion and propoxur. No increase in the knockdown times (Kdt50 and Kdt95 was noted in the Yaoundé resistant population compared to other Ae. albopictus populations, suggesting the possible involvement of metabolic resistance to deltamethrin and DDT. Conclusion In view of the recent increase in

  14. Constituintes químicos de Capraria biflora (Scrophulariaceae) e atividade larvicida de seu óleo essencial

    OpenAIRE

    Souza, Luciana Gregório da S.; Almeida, Macia Cleane S.; Monte, Francisco José Q.; Santiago, Gilvandete Maria P.; Braz-Filho, Raimundo; Lemos, Telma Leda G.; Gomes, Clerton L.; Nascimento, Ronaldo F. do

    2012-01-01

    Analysis of essential oil from fresh leaves of Capraria biflora allowed identification of fourteen essential oil constituents among which thirteen are sesquiterpene compounds, and α-humulene (43.0%) the major constituent. The essential oil was tested for larvicidal activity against Aedes aegypti showing good activity, with LC50 73.39 µg/mL (2.27 g/mL). Chromatographic studies of extracts from roots and stems allowed the isolation of five compounds: naphthoquinone biflorin, sesquiterpene capra...

  15. Tracking the return of Aedes aegypti to Brazil, the major vector of the dengue, chikungunya and Zika viruses.

    Science.gov (United States)

    Kotsakiozi, Panayiota; Gloria-Soria, Andrea; Caccone, Adalgisa; Evans, Benjamin; Schama, Renata; Martins, Ademir Jesus; Powell, Jeffrey R

    2017-07-01

    Aedes aegypti, commonly known as "the yellow fever mosquito", is of great medical concern today primarily as the major vector of dengue, chikungunya and Zika viruses, although yellow fever remains a serious health concern in some regions. The history of Ae. aegypti in Brazil is of particular interest because the country was subjected to a well-documented eradication program during 1940s-1950s. After cessation of the campaign, the mosquito quickly re-established in the early 1970s with several dengue outbreaks reported during the last 30 years. Brazil can be considered the country suffering the most from the yellow fever mosquito, given the high number of dengue, chikungunya and Zika cases reported in the country, after having once been declared "free of Ae. aegypti". We used 12 microsatellite markers to infer the genetic structure of Brazilian Ae. aegypti populations, genetic variability, genetic affinities with neighboring geographic areas, and the timing of their arrival and spread. This enabled us to reconstruct their recent history and evaluate whether the reappearance in Brazil was the result of re-invasion from neighboring non-eradicated areas or re-emergence from local refugia surviving the eradication program. Our results indicate a genetic break separating the northern and southern Brazilian Ae. aegypti populations, with further genetic differentiation within each cluster, especially in southern Brazil. Based on our results, re-invasions from non-eradicated regions are the most likely scenario for the reappearance of Ae. aegypti in Brazil. While populations in the northern cluster are likely to have descended from Venezuela populations as early as the 1970s, southern populations seem to have derived more recently from northern Brazilian areas. Possible entry points are also revealed within both southern and northern clusters that could inform strategies to control and monitor this important arbovirus vector.

  16. Tracking the return of Aedes aegypti to Brazil, the major vector of the dengue, chikungunya and Zika viruses.

    Directory of Open Access Journals (Sweden)

    Panayiota Kotsakiozi

    2017-07-01

    Full Text Available Aedes aegypti, commonly known as "the yellow fever mosquito", is of great medical concern today primarily as the major vector of dengue, chikungunya and Zika viruses, although yellow fever remains a serious health concern in some regions. The history of Ae. aegypti in Brazil is of particular interest because the country was subjected to a well-documented eradication program during 1940s-1950s. After cessation of the campaign, the mosquito quickly re-established in the early 1970s with several dengue outbreaks reported during the last 30 years. Brazil can be considered the country suffering the most from the yellow fever mosquito, given the high number of dengue, chikungunya and Zika cases reported in the country, after having once been declared "free of Ae. aegypti".We used 12 microsatellite markers to infer the genetic structure of Brazilian Ae. aegypti populations, genetic variability, genetic affinities with neighboring geographic areas, and the timing of their arrival and spread. This enabled us to reconstruct their recent history and evaluate whether the reappearance in Brazil was the result of re-invasion from neighboring non-eradicated areas or re-emergence from local refugia surviving the eradication program. Our results indicate a genetic break separating the northern and southern Brazilian Ae. aegypti populations, with further genetic differentiation within each cluster, especially in southern Brazil.Based on our results, re-invasions from non-eradicated regions are the most likely scenario for the reappearance of Ae. aegypti in Brazil. While populations in the northern cluster are likely to have descended from Venezuela populations as early as the 1970s, southern populations seem to have derived more recently from northern Brazilian areas. Possible entry points are also revealed within both southern and northern clusters that could inform strategies to control and monitor this important arbovirus vector.

  17. Chemical and biological study of Tephrosia toxicaria Pers; Estudo quimico e biologico de Tephrosia toxicaria Pers

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcelos, Jackson Nunes e; Lima, Jefferson Queiroz; Lemos, Telma Leda Gomes de; Oliveira, Maria da Conceicao Ferreira de; Almeida, Maria Mozarina Beserra; Andrade-Neto, Manoel; Mafezoli, Jair; Arriaga, Angela Martha Campos; Braz-Filho, Raimundo [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Quimica Organica e Inorganica]. E-mail: angelamcarriaga@yahoo.com.br; Santiago, Gilvandete Maria Pinheiro [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Faculdade de Farmacia, Odontologia e Enfermagem. Dept. de Farmacia

    2009-07-01

    The ethanol extracts from leaves, stems, pods and roots were assayed against the third instar Aedes aegypti larvae and the highest activity was observed in the roots extracts (LC{sub 50} 47.86 ppm). This extract was submitted to partition with hexane, chloroform, ethyl acetate and methanol. The respective fractions were bioassayed and the best larvicidal activities were identified in the hexane (LC{sub 50} 23.99 ppm) and chloroform (LC{sub 50} 13.80 ppm) fractions. Antioxidant activity (DDPH method) was observed in the ethanol extract (IC{sub 50} 276 {mu}g/mL) from roots of T. toxicaria. Fractions from this extract were also tested and the highest antioxidant activity (IC{sub 50} 89 {mu}g/mL) was found in the methanol fraction. The flavonoids iso-obovatin (1), obovatin (2), 6a,12a-dehydro-{beta}-toxicarol (3), 6a,12a-dehydro-{alpha}-toxicarol (4) and {alpha}-toxicarol (5) were isolated and bioassayed against A. aegypti. The flavonoid 5 showed the best larvicidal activity (LC{sub 50} 24.55 ppm). The antioxidant activity of 2 was investigated and showed IC{sub 50} 3.370 {mu}g/ml. The antioxidant and larvicidal activities of Tephrosia toxicaria are reported for the first time. (author)

  18. Germline Cas9 expression yields highly efficient genome engineering in a major worldwide disease vector, Aedes aegypti.

    Science.gov (United States)

    Li, Ming; Bui, Michelle; Yang, Ting; Bowman, Christian S; White, Bradley J; Akbari, Omar S

    2017-12-05

    The development of CRISPR/Cas9 technologies has dramatically increased the accessibility and efficiency of genome editing in many organisms. In general, in vivo germline expression of Cas9 results in substantially higher activity than embryonic injection. However, no transgenic lines expressing Cas9 have been developed for the major mosquito disease vector Aedes aegypti Here, we describe the generation of multiple stable, transgenic Ae. aegypti strains expressing Cas9 in the germline, resulting in dramatic improvements in both the consistency and efficiency of genome modifications using CRISPR. Using these strains, we disrupted numerous genes important for normal morphological development, and even generated triple mutants from a single injection. We have also managed to increase the rates of homology-directed repair by more than an order of magnitude. Given the exceptional mutagenic efficiency and specificity of the Cas9 strains we engineered, they can be used for high-throughput reverse genetic screens to help functionally annotate the Ae. aegypti genome. Additionally, these strains represent a step toward the development of novel population control technologies targeting Ae. aegypti that rely on Cas9-based gene drives. Copyright © 2017 the Author(s). Published by PNAS.

  19. Evaluation of the inhibition of egg laying, larvicidal effects, and bloodfeeding success of Aedes aegypti exposed to permethrin- and bifenthrin-treated military tent fabric.

    Science.gov (United States)

    Frances, S P; Huggins, R L; Cooper, R D

    2008-12-01

    Laboratory studies were conducted to evaluate the effects of treating military canvas tent fabric with bifenthrin and permethrin on the survival of the eggs and larvae of Aedes aegypti. Gravid female Ae. aegypti were able to oviposit on tent canvas treated with either bifenthrin or permethrin. However, none of the eggs laid on treated canvas hatched, and no larvae added to water in treated trays survived. Low residual concentrations of bifenthrin and permethrin on treated canvas prevented the development of eggs and larvae of Ae. aegypti. Inhibition of bloodfeeding was shown when Ae. aegypti adults were exposed to lower concentrations (10-50% of operational concentrations) of bifenthrin- and permethrin-treated canvas tent fabric. These experiments have shown that military tent canvas treated with either bifenthrin or permethrin can reduce the development of Ae. aegypti eggs and larvae and reduce bloodfeeding success of adults.

  20. Scanning electron microscopy of the four larval instars of the Dengue fever vector Aedes aegypti (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    Stefan Schaper

    2006-09-01

    Full Text Available Aedes aegypti is the main insect vector of Dengue fever and dengue hemorrhagic fever/dengue shock syndrome and represents the only vulnerable element in the control of this disease. Therefore, the identification and quantification of this mosquito is an important task; however, the majority of taxonomic keys are based on the 4th larval instar. For that reason, this study describes the four larval instars of A. aegypti using scanning electron microscopy. Morphological changes during larval development were observed at the pecten, comb scales and the ventral brush of the abdominal segment X; however, the 3rd and 4th instars showed similar structures with only a slight variation. The structures described in this study will be helpful in the identification of the four instars of A. aegypti, a fundamental task for comprehending the natural history of dengue mainly in new territories affected. Rev. Biol. Trop. 54 (3: 847-852. Epub 2006 Sept. 29.Aedes aegypti es el principal insecto vector de la fiebre del dengue y del dengue hemorrágico/síndrome del choque por dengue y es el único elemento atacable para el control de esta virosis. La identificación y cuantificación de éste es una tarea importante; no obstante, la mayoría de las llaves taxonómicas se basan en el cuarto estadio larval. Por esta razón, en este trabajo se describen los cuatro estadios larvales de A. aegypti los cuales fueron examinados mediante microscopia electrónica de rastreo. Los cambios morfológicos ocurridos durante el desarrollo larval fueron observados en el pecten, las escamas del peine, el cepillo ventral del décimo segmento. El 3ero y 4to estadios larvales mostraron estructuras similares con sólo ligeras variaciones. Las estructuras descritas en este artículo permiten identificar cualquiera de los cuatro estadios larvales de A. aegypti, lo cual representa una tarea importante en la comprensión de la historia natural del dengue en los nuevos territorios afectados.

  1. The Impact of Selection with Diflubenzuron, a Chitin Synthesis Inhibitor, on the Fitness of Two Brazilian Aedes aegypti Field Populations

    Science.gov (United States)

    Belinato, Thiago Affonso; Valle, Denise

    2015-01-01

    Several Aedes aegypti field populations are resistant to neurotoxic insecticides, mainly organophoshates and pyrethroids, which are extensively used as larvicides and adulticides, respectively. Diflubenzuron (DFB), a chitin synthesis inhibitor (CSI), was recently approved for use in drinking water, and is presently employed in Brazil for Ae. aegypti control, against populations resistant to the organophosphate temephos. However, tests of DFB efficacy against field Ae. aegypti populations are lacking. In addition, information regarding the dynamics of CSI resistance, and characterization of any potential fitness effects that may arise in conjunction with resistance are essential for new Ae. aegypti control strategies. Here, the efficacy of DFB was evaluated for two Brazilian Ae. aegypti populations known to be resistant to both temephos and the pyrethroid deltamethrin. Laboratory selection for DFB resistance was then performed over six or seven generations, using a fixed dose of insecticide that inhibited 80% of adult emergence in the first generation. The selection process was stopped when adult emergence in the diflubenzuron-treated groups was equivalent to that of the control groups, kept without insecticide. Diflubenzuron was effective against the two Ae. aegypti field populations evaluated, regardless of their resistance level to neurotoxic insecticides. However, only a few generations of DFB selection were sufficient to change the susceptible status of both populations to this compound. Several aspects of mosquito biology were affected in both selected populations, indicating that diflubenzuron resistance acquisition is associated with a fitness cost. We believe that these results can significantly contribute to the design of control strategies involving the use of insect growth regulators. PMID:26107715

  2. A Large Scale Biorational Approach Using Bacillus thuringiensis israeliensis (Strain AM65-52) for Managing Aedes aegypti Populations to Prevent Dengue, Chikungunya and Zika Transmission

    Science.gov (United States)

    Pruszynski, Catherine A.; Hribar, Lawrence J.; Mickle, Robert; Leal, Andrea L.

    2017-01-01

    Background Aedes aegypti is a container-inhabiting mosquito and a vector of dengue, chikungunya, and Zika viruses. In 2009 several cases of autochthonous dengue transmission were reported in Key West, Florida, USA prompting a comprehensive response to control A. aegypti. In Key West, larvae of this mosquito develop in containers around human habitations which can be numerous and labor intensive to find and treat. Aerial applications of larvicide covering large areas in a short time can be an efficient and economical method to control A. aegypti. Bacillus thuringiensis israelensis (Bti) is a bacterial larvicide which is highly target specific and appropriate for wide area spraying over urban areas, but to date, there are no studies that evaluate aerial spraying of Bti to control container mosquitoes like A. aegypti. Methodology This paper examines the effectiveness of aerial larvicide applications using VectoBac® WG, a commercially available Bti formulation, for A. aegypti control in an urban setting in the USA. Droplet characteristics and spray drop deposition were evaluated in Key West, Florida, USA. The mortality of A. aegypti in containers placed under canopy in an urban environment was also evaluated. Efficacy of multiple larvicide applications on adult female A. aegypti population reduction was compared between an untreated control and treatment site. Conclusions Droplet characteristics showed that small droplets can penetrate through dense canopy to reach small containers. VectoBac WG droplets reached small containers under heavy canopy in sufficient amounts to cause > 55% mortality on all application days and >90% mortality on 3 of 5 application days while controls had 50%. Aerial larvicide applications using VectoBac WG can cover wide areas in a short period of time and can be effective in controlling A. aegypti and reducing A. aegypti-borne transmission in urban areas similar to Key West, Florida, USA. PMID:28199323

  3. A Large Scale Biorational Approach Using Bacillus thuringiensis israeliensis (Strain AM65-52) for Managing Aedes aegypti Populations to Prevent Dengue, Chikungunya and Zika Transmission.

    Science.gov (United States)

    Pruszynski, Catherine A; Hribar, Lawrence J; Mickle, Robert; Leal, Andrea L

    2017-01-01

    Aedes aegypti is a container-inhabiting mosquito and a vector of dengue, chikungunya, and Zika viruses. In 2009 several cases of autochthonous dengue transmission were reported in Key West, Florida, USA prompting a comprehensive response to control A. aegypti. In Key West, larvae of this mosquito develop in containers around human habitations which can be numerous and labor intensive to find and treat. Aerial applications of larvicide covering large areas in a short time can be an efficient and economical method to control A. aegypti. Bacillus thuringiensis israelensis (Bti) is a bacterial larvicide which is highly target specific and appropriate for wide area spraying over urban areas, but to date, there are no studies that evaluate aerial spraying of Bti to control container mosquitoes like A. aegypti. This paper examines the effectiveness of aerial larvicide applications using VectoBac® WG, a commercially available Bti formulation, for A. aegypti control in an urban setting in the USA. Droplet characteristics and spray drop deposition were evaluated in Key West, Florida, USA. The mortality of A. aegypti in containers placed under canopy in an urban environment was also evaluated. Efficacy of multiple larvicide applications on adult female A. aegypti population reduction was compared between an untreated control and treatment site. Droplet characteristics showed that small droplets can penetrate through dense canopy to reach small containers. VectoBac WG droplets reached small containers under heavy canopy in sufficient amounts to cause > 55% mortality on all application days and >90% mortality on 3 of 5 application days while controls had treated sites was >50%. Aerial larvicide applications using VectoBac WG can cover wide areas in a short period of time and can be effective in controlling A. aegypti and reducing A. aegypti-borne transmission in urban areas similar to Key West, Florida, USA.

  4. A Large Scale Biorational Approach Using Bacillus thuringiensis israeliensis (Strain AM65-52 for Managing Aedes aegypti Populations to Prevent Dengue, Chikungunya and Zika Transmission.

    Directory of Open Access Journals (Sweden)

    Catherine A Pruszynski

    Full Text Available Aedes aegypti is a container-inhabiting mosquito and a vector of dengue, chikungunya, and Zika viruses. In 2009 several cases of autochthonous dengue transmission were reported in Key West, Florida, USA prompting a comprehensive response to control A. aegypti. In Key West, larvae of this mosquito develop in containers around human habitations which can be numerous and labor intensive to find and treat. Aerial applications of larvicide covering large areas in a short time can be an efficient and economical method to control A. aegypti. Bacillus thuringiensis israelensis (Bti is a bacterial larvicide which is highly target specific and appropriate for wide area spraying over urban areas, but to date, there are no studies that evaluate aerial spraying of Bti to control container mosquitoes like A. aegypti.This paper examines the effectiveness of aerial larvicide applications using VectoBac® WG, a commercially available Bti formulation, for A. aegypti control in an urban setting in the USA. Droplet characteristics and spray drop deposition were evaluated in Key West, Florida, USA. The mortality of A. aegypti in containers placed under canopy in an urban environment was also evaluated. Efficacy of multiple larvicide applications on adult female A. aegypti population reduction was compared between an untreated control and treatment site.Droplet characteristics showed that small droplets can penetrate through dense canopy to reach small containers. VectoBac WG droplets reached small containers under heavy canopy in sufficient amounts to cause > 55% mortality on all application days and >90% mortality on 3 of 5 application days while controls had 50%. Aerial larvicide applications using VectoBac WG can cover wide areas in a short period of time and can be effective in controlling A. aegypti and reducing A. aegypti-borne transmission in urban areas similar to Key West, Florida, USA.

  5. The potential impacts of 21st century climatic and population changes on human exposure to the virus vector mosquito Aedes aegypti.

    Science.gov (United States)

    Monaghan, A J; Sampson, K M; Steinhoff, D F; Ernst, K C; Ebi, K L; Jones, B; Hayden, M H

    2018-02-01

    The mosquito Aedes (Ae). aegypti transmits the viruses that cause dengue and chikungunya, two globally-important vector-borne diseases. We investigate how choosing alternate emissions and/or socioeconomic pathways may modulate future human exposure to Ae. aegypti . Occurrence patterns for Ae. aegypti for 2061-2080 are mapped globally using empirically downscaled air temperature and precipitation projections from the Community Earth System Model, for the Representative Concentration Pathway (RCP) 4.5 and 8.5 scenarios. Population growth is quantified using gridded global population projections consistent with two Shared Socioeconomic Pathways (SSPs), SSP3 and SSP5. Change scenarios are compared to a 1950-2000 reference period. A global land area of 56.9 M km 2 is climatically suitable for Ae. aegypti during the reference period, and is projected to increase by 8% (RCP4.5) to 13% (RCP8.5) by 2061-2080. The annual average number of people exposed globally to Ae. aegypti for the reference period is 3794 M, a value projected to statistically significantly increase by 298-460 M (8-12%) by 2061-2080 if only climate change is considered, and by 4805-5084 M (127-134%) for SSP3 and 2232-2483 M (59-65%) for SSP5 considering both climate and population change (lower and upper values of each range represent RCP4.5 and RCP8.5 respectively). Thus, taking the lower-emissions RCP4.5 pathway instead of RCP8.5 may mitigate future human exposure to Ae. aegypti globally, but the effect of population growth on exposure will likely be larger. Regionally, Australia, Europe and North America are projected to have the largest percentage increases in human exposure to Ae. aegypti considering only climate change.

  6. Dual African origins of global Aedes aegypti s.l. populations revealed by mitochondrial DNA.

    Directory of Open Access Journals (Sweden)

    Michelle Moore

    Full Text Available Aedes aegypti is the primary global vector to humans of yellow fever and dengue flaviviruses. Over the past 50 years, many population genetic studies have documented large genetic differences among global populations of this species. These studies initially used morphological polymorphisms, followed later by allozymes, and most recently various molecular genetic markers including microsatellites and mitochondrial markers. In particular, since 2000, fourteen publications and four unpublished datasets have used sequence data from the NADH dehydrogenase subunit 4 mitochondrial gene to compare Ae. aegypti collections and collectively 95 unique mtDNA haplotypes have been found. Phylogenetic analyses in these many studies consistently resolved two clades but no comprehensive study of mtDNA haplotypes have been made in Africa, the continent in which the species originated.ND4 haplotypes were sequenced in 426 Ae. aegypti s.l. from Senegal, West Africa and Kenya, East Africa. In Senegal 15 and in Kenya 7 new haplotypes were discovered. When added to the 95 published haplotypes and including 6 African Aedes species as outgroups, phylogenetic analyses showed that all but one Senegal haplotype occurred in a basal clade while most East African haplotypes occurred in a second clade arising from the basal clade. Globally distributed haplotypes occurred in both clades demonstrating that populations outside Africa consist of mixtures of mosquitoes from both clades.Populations of Ae. aegypti outside Africa consist of mosquitoes arising from one of two ancestral clades. One clade is basal and primarily associated with West Africa while the second arises from the first and contains primarily mosquitoes from East Africa.

  7. Evaluación de la resistencia a insecticidas de una cepa de Aedes aegypti de El Salvador Assessing the insecticide resistance of an Aedes aegypti strain in El Salvador

    Directory of Open Access Journals (Sweden)

    Juan A. Bisset Lazcano

    2009-09-01

    Full Text Available OBJETIVOS: Evaluar el nivel de susceptibilidad a insecticidas de una cepa de Aedes aegypti procedente de El Salvador y describir los posibles mecanismos de resistencia al temefós. MÉTODOS: Se evaluó una cepa de A. aegypti procedente del municipio de Soyapango, departamento de San Salvador, El Salvador. Mediante bioensayos se determinó la susceptibilidad de las larvas al insecticida organofosforado temefós y a tres piretroides (deltametrina, lambdacialotrina y cipermetrina y de los adultos a un insecticida organofosforado (clorpirifós. Se determinó el factor de resistencia (FR50 con respecto a una cepa sensible de referencia (Rockefeller. Se estableció el mecanismo de resistencia al temefós mediante el empleo de sustancias sinergistas, ensayos bioquímicos de actividad enzimática y zimogramas en gel de poliacrilamida. RESULTADOS: Las larvas de la cepa estudiada mostraron una alta resistencia al temefós (FR50 = 24,16. De las enzimas analizadas, se encontró que solo la esterasa A4 estaba vinculada al mecanismo de resistencia al temefós. Los mosquitos adultos resultaron susceptibles a la lambdacialotrina y al clorpirifós y su resistencia a la deltametrina y la cipermetrina quedó en la categoría de verificación. CONCLUSIONES: La resistencia al temefós podría reducir la eficacia del control químico del mosquito A. aegypti en la zona estudiada de El Salvador. Los insecticidas clorpirifós, lambdacialotrina y cipermetrina son buenos candidatos alternativos a utilizar en las nuevas intervenciones de control de este vector.OBJECTIVES: To assess the level of insecticide susceptibility of a certain Aedes aegypti strain found in El Salvador and to explain the mechanisms for its resistance to temephos. METHODS: An A. aegypti strain from the municipality of Soyapango, Department of San Salvador, El Salvador, was studied. Bioassays were used to determine the susceptibility of the larvae to the organophosphate insecticide temephos and to

  8. Oral susceptibility of Aedes aegypti (Diptera: Culicidae) from Senegal for dengue serotypes 1 and 3 viruses.

    Science.gov (United States)

    Gaye, Alioune; Faye, Oumar; Diagne, Cheikh T; Faye, Ousmane; Diallo, Diawo; Weaver, Scott C; Sall, Amadou A; Diallo, Mawlouth

    2014-11-01

    To investigate the potential for domestic and wild populations of Aedes aegypti from Dakar and Kedougou to develop a disseminated infection after exposure to DENV-3 and DENV-1. We have exposed sylvatic and urban population of Ae. aegypti from Senegal to bloomeals containing dengue serotype 1 and 3. At different incubation period, individual mosquito legs/wings and bodies were tested for virus presence using real time RT-PCR to estimate the infection and dissemination rates. The data indicated low susceptibility to DENV-3 (infection: 2.4-15.2%, and dissemination rates: 0-8.3%) and higher susceptibility to DENV-1 (infection and dissemination rates up to 50%). Aedes aegypti from Senegal seem able to develop a disseminated infection of DENV-1 and DENV-3. Further studies are needed to test their ability to transmit the two serotypes. © 2014 John Wiley & Sons Ltd.

  9. Water Level Flux in Household Containers in Vietnam - A Key Determinant of Aedes aegypti Population Dynamics

    Science.gov (United States)

    Jeffery, Jason A. L.; Clements, Archie C. A.; Nguyen, Yen Thi; Nguyen, Le Hoang; Tran, Son Hai; Le, Nghia Trung; Vu, Nam Sinh; Ryan, Peter A.; Kay, Brian H.

    2012-01-01

    We examined changes in the abundance of immature Aedes aegypti at the household and water storage container level during the dry-season (June-July, 2008) in Tri Nguyen village, central Vietnam. We conducted quantitative immature mosquito surveys of 171 containers in the same 41 households, with replacement of samples, every two days during a 29-day period. We developed multi-level mixed effects regression models to investigate container and household variability in pupal abundance. The percentage of houses that were positive for I/II instars, III/IV instars and pupae during any one survey ranged from 19.5–43.9%, 48.8–75.6% and 17.1–53.7%, respectively. The mean numbers of Ae. aegypti pupae per house ranged between 1.9–12.6 over the study period. Estimates of absolute pupal abundance were highly variable over the 29-day period despite relatively stable weather conditions. Most variability in pupal abundance occurred at the container rather than the household level. A key determinant of Ae. aegypti production was the frequent filling of the containers with water, which caused asynchronous hatching of Ae. aegypti eggs and development of cohorts of immatures. We calculated the probability of the water volume of a large container (>500L) increasing or decreasing by ≥20% to be 0.05 and 0.07 per day, respectively, and for small containers (<500L) to be 0.11 and 0.13 per day, respectively. These human water-management behaviors are important determinants of Ae. aegypti production during the dry season. This has implications for choosing a suitable Wolbachia strain for release as it appears that prolonged egg desiccation does not occur in this village. PMID:22911683

  10. siRNA-Mediated Silencing of doublesex during Female Development of the Dengue Vector Mosquito Aedes aegypti.

    Directory of Open Access Journals (Sweden)

    Keshava Mysore

    2015-11-01

    Full Text Available The development of sex-specific traits, including the female-specific ability to bite humans and vector disease, is critical for vector mosquito reproduction and pathogen transmission. Doublesex (Dsx, a terminal transcription factor in the sex determination pathway, is known to regulate sex-specific gene expression during development of the dengue fever vector mosquito Aedes aegypti. Here, the effects of developmental siRNA-mediated dsx silencing were assessed in adult females. Targeting of dsx during A. aegypti development resulted in decreased female wing size, a correlate for body size, which is typically larger in females. siRNA-mediated targeting of dsx also resulted in decreased length of the adult female proboscis. Although dsx silencing did not impact female membrane blood feeding or mating behavior in the laboratory, decreased fecundity and fertility correlated with decreased ovary length, ovariole length, and ovariole number in dsx knockdown females. Dsx silencing also resulted in disruption of olfactory system development, as evidenced by reduced length of the female antenna and maxillary palp and the sensilla present on these structures, as well as disrupted odorant receptor expression. Female lifespan, a critical component of the ability of A. aegypti to transmit pathogens, was also significantly reduced in adult females following developmental targeting of dsx. The results of this investigation demonstrate that silencing of dsx during A. aegypti development disrupts multiple sex-specific morphological, physiological, and behavioral traits of adult females, a number of which are directly or indirectly linked to mosquito reproduction and pathogen transmission. Moreover, the olfactory phenotypes observed connect Dsx to development of the olfactory system, suggesting that A. aegypti will be an excellent system in which to further assess the developmental genetics of sex-specific chemosensation.

  11. Aedes aegypti Global Suitability Maps Using a Water Container Energy Balance Model for Dengue Risk Applications

    Science.gov (United States)

    Steinhoff, D.

    2015-12-01

    Dengue infections are estimated to total nearly 400 million per year worldwide, with both the geographic range and the magnitude of infections having increased in the past 50 years. The primary dengue vector mosquito Aedes aegypti is closely associated with humans. It lives exclusively in urban and semi-urban areas, preferentially bites humans, and spends its developmental stages in artificial water containers. Climate regulates the development of Ae. aegypti immature mosquitoes in artificial containers. Potential containers for Ae. aegypti immature development include, but are not limited to, small sundry items (e.g., bottles, cans, plastic containers), buckets, tires, barrels, tanks, and cisterns. Successful development of immature mosquitoes from eggs to larvae, pupae, and eventually adults is largely dependent on the availability of water and the thermal properties of the water in the containers. Recent work has shown that physics-based approaches toward modeling container water properties are promising for resolving the complexities of container water dynamics and the effects on immature mosquito development. An energy balance container model developed by the author, termed the Water Height And Temperature in Container Habitats Energy Model (WHATCH'EM), solves for water temperature and height for user-specified containers with readily available weather data. Here we use WHATCH'EM with NASA Earth Science products used as input to construct global suitability maps based on established water temperature ranges for immature Ae. aegypti mosquitoes. A proxy for dengue risk is provided from habitat suitability, but also population estimates, as Ae. aegypti is closely associated with human activity. NASA gridded Global Population of the World data is used to mask out rural areas with low dengue risk. Suitability maps are illustrated for a variety of containers (size, material, color) and shading scenarios.

  12. Expansión del Aedes aegypti a localidades rurales de Cajamarca

    Directory of Open Access Journals (Sweden)

    Lucinda Troyes R

    2006-07-01

    Full Text Available Objetivos: Determinar la presencia, magnitud y expansión de Aedes aegypti en las localidades rurales de las provincias de Jaén y San Ignacio, departamento de Cajamarca. Materiales y métodos: Estudio transversal realizado entre abril y mayo de 2004, en 21 (100% localidades rurales ubicadas en las márgenes de la carretera Jaén-San Ignacio y al interior de ella, hasta en 90 minutos. Se inspeccionó recipientes de 1460 viviendas para la búsqueda de larvas y adultos del mosquito, se determinaron los índices aédicos, de recipiente y de Breteau. Resultados: Se demostró la presencia de Aedes aegypti en tres localidades rurales de la provincia de Jaén y en cuatro de la provincia de San Ignacio. Los índices aédicos variaron de 1,2 a 16,6%. Los recipientes infestados con mayor frecuencia fueron las llantas y los artículos en desuso. Conclusiones: Se reporta la expansión de A. aegypti en la tercera parte de localidades rurales de las provincias de Jaén y San Ignacio; esta expansión necesita ser más estudiada y considerada al implementarse las estrategias de prevención y control del dengue en la DISA Jaén, para evitar la aparición de brotes de dengue clásico, dengue hemorrágico, incluso fiebre amarilla urbana.

  13. Constituintes voláteis de cafés "gourmet" e mole do cerrado do triângulo mineiro em função da torra

    Directory of Open Access Journals (Sweden)

    Nascimento Evandro Afonso do

    2003-01-01

    Full Text Available Neste trabalho foi estudada a variação da composição dos voláteis de dois cafés "gourmet" e de um café mole em função do grau de torrefação. Os cafés provenientes de Araguari, cerrado do Triângulo Mineiro, foram submetidos à torra americana (grãos marrons claros, média (grãos marrons e forte (grãos pretos e, em seguida, moídos e submetidos a uma destilação por arraste de vapor em contra-corrente com diclorometano. A análise de cromatografia gasosa acoplada à espectrometria de massas (CG-EM dos constituintes voláteis mostrou que piridina, pirazina e derivados, furfural e derivados são os principais constituintes voláteis dos cafés analisados. Mostrou ainda que não é possível diferenciar os três tipos de café pelos compostos dominantes (concentração acima de 1% no aroma. Foi observado também que a torra afeta sensivelmente os resultados, sendo que a torra americana, usada normalmente na prova da xícara para classificação sensorial de cafés, produz alguns voláteis de forte impacto no aroma que não aparecem na torra média nem na forte, além de apresentar concentrações dos componentes mais comuns muito diferentes daquelas observadas nas outras duas torras.

  14. Variation in Aedes aegypti Mosquito Competence for Zika Virus Transmission.

    Science.gov (United States)

    Roundy, Christopher M; Azar, Sasha R; Rossi, Shannan L; Huang, Jing H; Leal, Grace; Yun, Ruimei; Fernandez-Salas, Ildefonso; Vitek, Christopher J; Paploski, Igor A D; Kitron, Uriel; Ribeiro, Guilherme S; Hanley, Kathryn A; Weaver, Scott C; Vasilakis, Nikos

    2017-04-01

    To test whether Zika virus has adapted for more efficient transmission by Aedes aegypti mosquitoes, leading to recent urban outbreaks, we fed mosquitoes from Brazil, the Dominican Republic, and the United States artificial blood meals containing 1 of 3 Zika virus strains (Senegal, Cambodia, Mexico) and monitored infection, dissemination, and virus in saliva. Contrary to our hypothesis, Cambodia and Mexica strains were less infectious than the Senegal strain. Only mosquitoes from the Dominican Republic transmitted the Cambodia and Mexica strains. However, blood meals from viremic mice were more infectious than artificial blood meals of comparable doses; the Cambodia strain was not transmitted by mosquitoes from Brazil after artificial blood meals, whereas 61% transmission occurred after a murine blood meal (saliva titers up to 4 log 10 infectious units/collection). Although regional origins of vector populations and virus strain influence transmission efficiency, Ae. aegypti mosquitoes appear to be competent vectors of Zika virus in several regions of the Americas.

  15. wMel limits zika and chikungunya virus infection in a Singapore Wolbachia-introgressed Ae. aegypti strain, wMel-Sg.

    Directory of Open Access Journals (Sweden)

    Cheong Huat Tan

    2017-05-01

    Full Text Available Zika (ZIKV and Chikungunya (CHIKV viruses are emerging Aedes-borne viruses that are spreading outside their known geographic range and causing wide-scale epidemics. It has been reported that these viruses can be transmitted efficiently by Ae. aegypti. Recent studies have shown that Ae. aegypti when transinfected with certain Wolbachia strains shows a reduced replication and dissemination of dengue (DENV, Chikungunya (CHIKV, and Yellow Fever (YFV viruses. The aim of this study was to determine whether the wMel strain of Wolbachia introgressed onto a Singapore Ae. aegypti genetic background was able to limit ZIKV and CHIKV infection in the mosquito.Five to seven-day old mosquitoes either infected or uninfected with wMel Wolbachia were orally infected with a Ugandan strain of ZIKV and several outbreak strains of CHIKV. The midgut and salivary glands of each mosquito were sampled at days 6, 9 and 13 days post infectious blood meal to determine midgut infection and salivary glands dissemination rates, respectively. In general, all wild type Ae. aegypti were found to have high ZIKV and CHIKV infections in their midguts and salivary glands, across all sampling days, compared to Wolbachia infected counterparts. Median viral titre for all viruses in Wolbachia infected mosquitoes were significantly lower across all time points when compared to wild type mosquitoes. Most significantly, all but two and one of the wMel infected mosquitoes had no detectable ZIKV and CHIKV, respectively, in their salivary glands at 14 days post-infectious blood meal.Our results showed that wMel limits both ZIKV and CHIKV infection when introgressed into a Singapore Ae. aegypti genetic background. These results also strongly suggest that female Aedes aegypti carrying Wolbachia will have a reduced capacity to transmit ZIKV and CHIKV.

  16. Chemical constituents of the fruits of Copaifera langsdorffii Desf; Constituintes quimicos dos frutos de Copaifera langsdorffii Desf

    Energy Technology Data Exchange (ETDEWEB)

    Lima Neto, Jose de Sousa [Universidade Federal do Piaui, Teresina, PI (Brazil). Dept. de Quimica; Gramosa, Nilce Viana; Silveira, Edilberto Rocha [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Quimica Organica e Inorganica]. E-mail: nilce@dqoi.ufc.br

    2008-07-01

    Phytochemical investigation of the hexane extract of fruit shells of Copaifera langsdorffii Desf. (Caesalpinioideae) afforded ent-kaur-16-en-19-oic acid, polyalthic acid, nivenolide and the mixture of caryophyllene oxide and ent-kaur-16-en-19-oic acid. The chloroform extract of unripe seeds led to the isolation of coumarin and the GC/MS analysis of the extract allowed the identification of 81.8% of the fatty acid composition after hydrolysis followed by methylation. The main fatty acid identified was oleic acid (33.1%). The isolation of all secondary metabolites was accomplished by modern chromatographic methods and the structure determination was accomplished by spectrometric methods (IR, MS, NMR {sup 1}H and {sup 13}C). (author)

  17. Meta-analysis of studies on chemical, physical and biological agents in the control of Aedes aegypti.

    Science.gov (United States)

    Lima, Estelita Pereira; Goulart, Marília Oliveira Fonseca; Rolim Neto, Modesto Leite

    2015-09-04

    Aedes aegypti is a vector of international concern because it can transmit to humans three important arboviral diseases: yellow fever, dengue and chikungunya. Epidemics that are repeated year after year in a variety of urban centers indicate that there are control failures, allowing the vector to continue expanding. To identify the most effective vector control strategies and the factors that contributed to the success or failure of each strategy, we carried out a systematic review with meta-analysis of articles published in 12 databases, from 1974 to the month of December 2013. We evaluated the association between the use of whatever chemical substance, mechanical agent, biological or integrated actions against A. aegypti and the control of the vector, as measured by 10 indicators. We found 2,791 articles, but after careful selection, only 26 studies remained for analysis related to control interventions implemented in 15 countries, with 5 biological, 5 chemical, 3 mechanical and 13 integrated strategies. The comparison among all of them, indicated that the control of A. aegypti is significantly associated with the type of strategy used, and that integrated interventions consist of the most effective method for controlling A. aegypti. The most effective control method was the integrated approach, considering the influence of eco-bio-social determinants in the virus-vector-man epidemiological chain, and community involvement, starting with community empowerment as active agents of vector control.

  18. Pyrethroid Susceptibility Has Been Maintained in the Dengue Vector, Aedes aegypti (Diptera: Culicidae), in Queensland, Australia.

    Science.gov (United States)

    Endersby-Harshman, Nancy M; Wuliandari, Juli Rochmijati; Harshman, Lawrence G; Frohn, Verena; Johnson, Brian J; Ritchie, Scott A; Hoffmann, Ary A

    2017-11-07

    Although pesticide resistance is common in insect vectors of human diseases, the evolution of resistance might be delayed if management practices are adopted that limit selection of resistance alleles. Outbreaks of dengue fever have occurred in Queensland, Australia, since the late 1800s, leading to ongoing attempts to control the mosquito vector, Aedes aegypti (L.). Since the 1990s, pyrethroid insecticides have been used for this purpose, but have been applied in a strategic manner with a variety of delivery methods including indoor residual spraying, lethal ovitraps, and use of insect growth regulators as larvicides. Separate selection experiments on mosquitoes from Queensland using Type I and Type II pyrethroids did not produce resistant lines of Ae. aegypti, and bioassays of field material from Queensland showed only weak tolerance in comparison with a susceptible line. There was no evidence of knockdown resistance (kdr) mutations in Ae. aegypti from Queensland, in stark contrast to the situation in nearby southeast Asia. We suspect that careful management of pyrethroid insecticide use combined with surveillance and interception of exotic incursions has helped to maintain pyrethroid (and particularly kdr-based) susceptibility in Ae. aegypti in Australia. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Mosquito traps designed to capture Aedes aegypti (Diptera: Culicidae females: preliminary comparison of Adultrap, MosquiTRAP and backpack aspirator efficiency in a dengue-endemic area of Brazil

    Directory of Open Access Journals (Sweden)

    Rafael Maciel-de-Freitas

    2008-09-01

    Full Text Available In this report, the efficiency of Adultrap under field conditions is compared to a CDC backpack aspirator and to MosquiTRAP. An urban dengue-endemic area of Rio de Janeiro was selected to evaluate the efficiency of mosquito traps in capturing Aedes aegypti females. Adultrap and aspirator captured similar numbers of Ae. aegypti females, with the former showing high specificity to gravid individuals (93.6%. A subsequent mark-release-recapture experiment was conducted to evaluate Adultrap and MosquiTRAP efficiency concomitantly. With a 6.34% recapture rate, MosquiTRAP captured a higher mean number of female Ae. aegypti per trap than Adultrap (Ç2 = 14.26; df = 1; p < 0,05. However, some MosquiTRAPs (28.12% contained immature Ae. aegypti after 18 days of exposure in the field and could be pointed as an oviposition site for female mosquitoes. Both trapping methods, designed to collect gravid Ae. aegypti females, seem to be efficient, reliable and may aid routine Ae. aegypti surveillance.

  20. Effective population sizes of a major vector of human diseases, Aedes aegypti.

    Science.gov (United States)

    Saarman, Norah P; Gloria-Soria, Andrea; Anderson, Eric C; Evans, Benjamin R; Pless, Evlyn; Cosme, Luciano V; Gonzalez-Acosta, Cassandra; Kamgang, Basile; Wesson, Dawn M; Powell, Jeffrey R

    2017-12-01

    The effective population size ( N e ) is a fundamental parameter in population genetics that determines the relative strength of selection and random genetic drift, the effect of migration, levels of inbreeding, and linkage disequilibrium. In many cases where it has been estimated in animals, N e is on the order of 10%-20% of the census size. In this study, we use 12 microsatellite markers and 14,888 single nucleotide polymorphisms (SNPs) to empirically estimate N e in Aedes aegypti , the major vector of yellow fever, dengue, chikungunya, and Zika viruses. We used the method of temporal sampling to estimate N e on a global dataset made up of 46 samples of Ae. aegypti that included multiple time points from 17 widely distributed geographic localities. Our N e estimates for Ae. aegypti fell within a broad range (~25-3,000) and averaged between 400 and 600 across all localities and time points sampled. Adult census size (N c ) estimates for this species range between one and five thousand, so the N e / N c ratio is about the same as for most animals. These N e values are lower than estimates available for other insects and have important implications for the design of genetic control strategies to reduce the impact of this species of mosquito on human health.

  1. Present Day and Future Population Dynamics of the Dengue Vector Mosquito Aedes aegypti Using a Water Container Energy Balance Model

    Science.gov (United States)

    Steinhoff, D.

    2017-12-01

    Dengue infections are estimated to total nearly 400 million per year worldwide, with both the geographic range and the magnitude of infections having increased in the past 50 years. The primary dengue vector mosquito Aedes aegypti is closely associated with humans. It lives exclusively in urban and semi-urban areas, preferentially bites humans, and spends its developmental stages in artificial water containers. Climate regulates the development of Ae. aegypti immature mosquitoes in artificial containers. Potential containers for Ae. aegypti immature development include, but are not limited to, small sundry items (e.g., bottles, cans, plastic containers), buckets, tires, barrels, tanks, and cisterns. Successful development of immature mosquitoes from eggs to larvae, pupae, and adults is largely dependent on the availability of water and the thermal properties of the water in the containers. An energy balance container model termed the Water Height And Temperature in Container Habitats Energy Model (WHATCH'EM) solves for water temperature and height for user-specified containers with readily available meteorological data. Output from WHATCH'EM is used to estimate development parameters for the immature life stages of the Ae. aegypti mosquito, allowing for assessment of habitat suitability across varying natural environments. Variability amongst different artificial containers (e.g., size, color, material, shape), shading scenarios, and water availability scenarios is also addressed. WHATCH'EM is also coupled with an Ae. aegypti life cycle model to include the effects of the aforementioned factors on survival. Projections of future climate scenarios that take into account changes not only in temperature but also precipitation, humidity, and radiative effects are used in WHATCH'EM to estimate how Ae. aegypti population dynamics may change.

  2. Impact of Diurnal Temperature Fluctuations during Larval Development on Adult Life History Traits and Insecticide Susceptibility in Two Vectors; Anopheles gambiae and Aedes aegypti

    Science.gov (United States)

    2014-04-30

    ANOPHELES GAMBIAE AND AEDES AEGYPTI. by Jeffrey W. Clark Dissertation submitted to the Faculty of the Department of Preventive Medicine and...Vectors; Anopheles gambiae and Aedes aegypti." Name of Candidate: Jeffrey Clark Doctor of Philosophy Degree April 30, 2014 DISSERTATION AND ABSTRACT...for the many fruitful discussions and the standing offer to help whenever I needed it; and to Joe Wagman, for providing needed Aedes aegypti eggs from

  3. Spatial distribution of potential and positive Aedes aegypti breeding sites

    Directory of Open Access Journals (Sweden)

    Daniel Elías Cuartas

    2017-03-01

    Conclusions: The spatial relationship between positive and potential A. aegypti breeding sites both indoors and outdoors is dynamic and highly sensitive to the characteristics of each territory. Knowing how positive and potential breeding sites are distributed contributes to the prioritization of resources and actions in vector control programs.

  4. Mapping the spatial distribution of Aedes aegypti and Aedes albopictus.

    Science.gov (United States)

    Ding, Fangyu; Fu, Jingying; Jiang, Dong; Hao, Mengmeng; Lin, Gang

    2018-02-01

    Mosquito-borne infectious diseases, such as Rift Valley fever, Dengue, Chikungunya and Zika, have caused mass human death with the transnational expansion fueled by economic globalization. Simulating the distribution of the disease vectors is of great importance in formulating public health planning and disease control strategies. In the present study, we simulated the global distribution of Aedes aegypti and Aedes albopictus at a 5×5km spatial resolution with high-dimensional multidisciplinary datasets and machine learning methods Three relatively popular and robust machine learning models, including support vector machine (SVM), gradient boosting machine (GBM) and random forest (RF), were used. During the fine-tuning process based on training datasets of A. aegypti and A. albopictus, RF models achieved the highest performance with an area under the curve (AUC) of 0.973 and 0.974, respectively, followed by GBM (AUC of 0.971 and 0.972, respectively) and SVM (AUC of 0.963 and 0.964, respectively) models. The simulation difference between RF and GBM models was not statistically significant (p>0.05) based on the validation datasets, whereas statistically significant differences (p<0.05) were observed for RF and GBM simulations compared with SVM simulations. From the simulated maps derived from RF models, we observed that the distribution of A. albopictus was wider than that of A. aegypti along a latitudinal gradient. The discriminatory power of each factor in simulating the global distribution of the two species was also analyzed. Our results provided fundamental information for further study on disease transmission simulation and risk assessment. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. The combination of the entomopathogenic fungus Metarhizium anisopliae with the insecticide Imidacloprid increases virulence against the dengue vector Aedes aegypti (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    Samuels Richard I

    2011-01-01

    Full Text Available Abstract Background Dengue fever transmitted by the mosquito Aedes aegypti, is one of the most rapidly spreading insect borne diseases, stimulating the search for alternatives to current control measures. The dengue vector A. aegypti has received less attention than anophelene species, although more than 2.5 billion people are at risk of infection worldwide. Entomopathogenic fungi are emerging as potential candidates for the control of mosquitoes. Here we continue our studies on the pathogenicity of the entomopathogenic fungus Metarhizium anisopliae against adult A. aegypti females. With the aim of further reducing mean survival times of A. aegypti exposed to fungus impregnated surfaces, a sub-lethal concentration of the neonicotinoid insecticide Imidacloprid (IMI was added to fungal suspensions. Results A sub-lethal concentration of IMI that did not significantly alter the daily survival rates or mean survival percentages of mosquitoes was identified to be 0.1 ppm. This sub-lethal concentration was combined with M. anisopliae conidia (1 × 109 conidia mL-1. Both the combined treatment and the conidia alone were able to reduce the survival of A. aegypti compared with untreated or IMI treated mosquitoes. Importantly, mosquito survival following exposure to the combined treatment for 6 and 12 hrs was significantly reduced when compared with mosquitoes exposed to conidia alone. Conclusions This is the first time that a combination of an insecticide and an entomopathogenic fungus has been tested against A. aegypti. Firstly, the study showed the potential of IMI as an alternative to the currently employed pyrethroid adulticides. Secondly, as an alternative to applications of high concentrations of chemical insecticides, we suggest that adult A. aegypti could be controlled by surface application of entomopathogenic fungi and that the efficiency of these fungi could be increased by combining the fungi with ultra-low concentrations of insecticides

  6. The combination of the entomopathogenic fungus Metarhizium anisopliae with the insecticide Imidacloprid increases virulence against the dengue vector Aedes aegypti (Diptera: Culicidae).

    Science.gov (United States)

    Paula, Adriano R; Carolino, Aline T; Paula, Cátia O; Samuels, Richard I

    2011-01-25

    Dengue fever transmitted by the mosquito Aedes aegypti, is one of the most rapidly spreading insect borne diseases, stimulating the search for alternatives to current control measures. The dengue vector A. aegypti has received less attention than anophelene species, although more than 2.5 billion people are at risk of infection worldwide. Entomopathogenic fungi are emerging as potential candidates for the control of mosquitoes. Here we continue our studies on the pathogenicity of the entomopathogenic fungus Metarhizium anisopliae against adult A. aegypti females. With the aim of further reducing mean survival times of A. aegypti exposed to fungus impregnated surfaces, a sub-lethal concentration of the neonicotinoid insecticide Imidacloprid (IMI) was added to fungal suspensions. A sub-lethal concentration of IMI that did not significantly alter the daily survival rates or mean survival percentages of mosquitoes was identified to be 0.1 ppm. This sub-lethal concentration was combined with M. anisopliae conidia (1 × 10(9) conidia mL(-1)). Both the combined treatment and the conidia alone were able to reduce the survival of A. aegypti compared with untreated or IMI treated mosquitoes. Importantly, mosquito survival following exposure to the combined treatment for 6 and 12 hrs was significantly reduced when compared with mosquitoes exposed to conidia alone. This is the first time that a combination of an insecticide and an entomopathogenic fungus has been tested against A. aegypti. Firstly, the study showed the potential of IMI as an alternative to the currently employed pyrethroid adulticides. Secondly, as an alternative to applications of high concentrations of chemical insecticides, we suggest that adult A. aegypti could be controlled by surface application of entomopathogenic fungi and that the efficiency of these fungi could be increased by combining the fungi with ultra-low concentrations of insecticides, resulting in higher mortality following relatively short

  7. Aedes aegypti, Aedes albopictus, and dengue in Argentina: current knowledge and future directions

    Directory of Open Access Journals (Sweden)

    Darío Vezzani

    2008-02-01

    Full Text Available Since the reinfestation of South American countries by Ae. aegypti, dengue fever (DF and dengue hemorrhagic fever (DHF have become a major public health concern. The aim of this paper was to review the information related with Aedes vectors and dengue in Argentina since the reintroduction of Ae. aegypti in 1986. The geographic distribution of Ae. albopictus is restricted to the Northeast, and that of Ae. aegypti has expanded towards the South and the West in comparison with the records during the eradication campaign in the 1960s. Since 1998, 4,718 DF cases have been reported concentrated in the provinces of Salta, Formosa, Misiones, Jujuy and Corrientes. Despite the circulation of three dengue virus serotypes (DENV-1, -2 and -3 in the North of the country, DHF has not occurred until the present. The information published over the last two decades regarding mosquito abundance, temporal variations, habitat characteristics, competition, and chemical and biological control, was reviewed. Considering the available information, issues pending in Argentina are discussed. The presence of three DENV, the potential spread of Ae. albopictus, and the predicted climate change suggest that dengue situation will get worse in the region. Research efforts should be increased in the Northern provinces, where DHF is currently an actual risk.

  8. Determination of the efficiency of diets for larval development in mass rearing Aedes aegypti (Diptera: Culicidae).

    Science.gov (United States)

    Gunathilaka, P A D H N; Uduwawala, U M H U; Udayanga, N W B A L; Ranathunge, R M T B; Amarasinghe, L D; Abeyewickreme, W

    2017-11-23

    Larval diet quality and rearing conditions have a direct and irreversible effect on adult traits. Therefore, the current study was carried out to optimize the larval diet for mass rearing of Aedes aegypti, for Sterile Insect Technique (SIT)-based applications in Sri Lanka. Five batches of 750 first instar larvae (L 1) of Ae. aegypti were exposed to five different concentrations (2-10%) of International Atomic Energy Agency (IAEA) recommended the larval diet. Morphological development parameters of larva, pupa, and adult were detected at 24 h intervals along with selected growth parameters. Each experiment was replicated five times. General Linear Modeling along with Pearson's correlation analysis were used for statistical treatments. Significant differences (P rate and success, sex ratio, adult success, fecundity and hatching rate of Ae. aegypti. The best quality adults can be produced at larval diet concentration of 10%. However, the 8% larval diet concentration was most suitable for adult male survival.

  9. Population dynamics of Aedes aegypti and dengue as influenced by weather and human behavior in San Juan, Puerto Rico.

    Science.gov (United States)

    Barrera, Roberto; Amador, Manuel; MacKay, Andrew J

    2011-12-01

    Previous studies on the influence of weather on Aedes aegypti dynamics in Puerto Rico suggested that rainfall was a significant driver of immature mosquito populations and dengue incidence, but mostly in the drier areas of the island. We conducted a longitudinal study of Ae. aegypti in two neighborhoods of the metropolitan area of San Juan city, Puerto Rico where rainfall is more uniformly distributed throughout the year. We assessed the impacts of rainfall, temperature, and human activities on the temporal dynamics of adult Ae. aegypti and oviposition. Changes in adult mosquitoes were monitored with BG-Sentinel traps and oviposition activity with CDC enhanced ovitraps. Pupal surveys were conducted during the drier and wetter parts of the year in both neighborhoods to determine the contribution of humans and rains to mosquito production. Mosquito dynamics in each neighborhood was compared with dengue incidence in their respective municipalities during the study. Our results showed that: 1. Most pupae were produced in containers managed by people, which explains the prevalence of adult mosquitoes at times when rainfall was scant; 2. Water meters were documented for the first time as productive habitats for Ae. aegypti; 3. Even though Puerto Rico has a reliable supply of tap water and an active tire recycling program, water storage containers and discarded tires were important mosquito producers; 4. Peaks in mosquito density preceded maximum dengue incidence; and 5. Ae. aegypti dynamics were driven by weather and human activity and oviposition was significantly correlated with dengue incidence.

  10. Effect of Aedes aegypti exposure to spatial repellent chemicals on BG-Sentinel™ trap catches.

    Science.gov (United States)

    Salazar, Ferdinand V; Achee, Nicole L; Grieco, John P; Prabaripai, Atchariya; Ojo, Tolulope A; Eisen, Lars; Dureza, Christine; Polsomboon, Suppaluck; Chareonviriyaphap, Theeraphap

    2013-05-20

    An integrated approach to reduce densities of adult Aedes aegypti inside homes is currently being evaluated under experimentally controlled field conditions. The strategy combines a spatial repellent (SR) treatment (applied indoors) with the Biogents Sentinel™ (BGS) mosquito trap positioned in the outdoor environment. In essence, when combined, the goal is to create a push-pull mechanism that will reduce the probability of human-vector contact. The current study measured BGS recapture rates of Ae. aegypti test cohorts that were exposed to either SR or control (chemical-free) treatments within experimental huts. The objective was to define what, if any, negative impact SR may have on BGS trap efficacy (i.e., reduced BGS collection). Aedes aegypti females were exposed to SR compounds within experimental huts in the form of either treated fabric (DDT and transfluthrin) or mosquito coil (metofluthrin). Test cohorts were released within individual screen house cubicles, each containing 4 BGS traps, following SR exposure according to treatment. Two separate test cohorts were evaluated: (i) immediate release (IR) exposed from 06:00-12:00 hours and released at 12:00 hours and (ii) delayed release (DR) exposed from12:00-18:00 hours and released at 05:30 hours the following day. BGS recapture was monitored at 09:30, 13:30 and 15:30 hours and the cumulative recapture by time point quantified. Exposure of Ae. aegypti females to either DDT or metofluthrin did not significantly impact BGS capture as compared to cohorts of non-exposed females. This was true for both IR and DR exposure populations. IR cohorts exposed to transfluthrin resulted in significantly lower BGS recapture compared to matched controls but this effect was primarily due to high mosquito mortality during transfluthrin trials. Our data indicate no more than minor and short-lived impacts (i.e., reduced attraction) on BGS trap catches following exposure to the pyrethroid compounds transfluthrin and metofluthrin

  11. Effects of Aedes aegypti salivary components on dendritic cell and lymphocyte biology

    Czech Academy of Sciences Publication Activity Database

    Bizzarro, B.; Barros, M.S.; Maciel, C.; Gueroni, D.I.; Lino, C.N.; Campopiano, J.; Kotsyfakis, Michalis; Amarante-Mendes, G.P.; Calvo, E.; Capurro, M.L.; Sa-Nunes, A.

    2013-01-01

    Roč. 6, NOV 2013 (2013), s. 329 ISSN 1756-3305 Institutional support: RVO:60077344 Keywords : dendritic cells * T-cells * Aedes aegypti * saliva * apoptosis Subject RIV: EC - Immunology Impact factor: 3.251, year: 2013

  12. A meta-analysis of the factors influencing development rate variation in Aedes aegypti (Diptera: Culicidae)

    Science.gov (United States)

    2014-01-01

    Background Development rates of Aedes aegypti are known to vary with respect to many abiotic and biotic factors including temperature, resource availability, and intraspecific competition. The relative importance of these factors and their interactions are not well established across populations. We performed meta-analysis on a dataset of development rate estimates from 49 studies. Results Meta-analytic results indicated that the environmental factor of temperature is sufficient to explain development rate variability in Ae. aegypti. While diet and density may greatly impact other developmental phenotypes, these results suggest that for development rate these factors should never be considered to the exclusion of temperature. The effect of temperature on development rate is not homogenous or constant. The sources of heterogeneity of the effect of temperature are difficult to analyze due to lack of consistent reporting of larval rearing methods. Conclusions Temperature is the most important ecological determinant of development rate in Ae. aegypti, but its effect is heterogeneous. Ignoring this heterogeneity is problematic for models of vector population and vector-borne disease transmission. PMID:24495345

  13. Aedes aegypti (Diptera: Culicidae) in Mauritania: First Report on the Presence of the Arbovirus Mosquito Vector in Nouakchott.

    Science.gov (United States)

    Mint Lekweiry, Khadijetou; Ould Ahmedou Salem, Mohamed Salem; Ould Brahim, Khyarhoum; Ould Lemrabott, Mohamed Aly; Brengues, Cécile; Faye, Ousmane; Simard, Frédéric; Ould Mohamed Salem Boukhary, Ali

    2015-07-01

    Aedes aegypti L. (Diptera: Culicidae) is a major vector of yellow fever, dengue, and chikungunya viruses throughout tropical and subtropical areas of the world. Although the southernmost part of Mauritania along the Senegal river has long been recognized at risk of yellow fever transmission, Aedes spp. mosquitoes had never been reported northwards in Mauritania. Here, we report the first observation of Aedes aegypti aegypti (L.) and Aedes (Ochlerotatus) caspius (Pallas, 1771) in the capital city, Nouakchott. We describe the development sites in which larvae of the two species were found, drawing attention to the risk for emergence of arbovirus transmission in the city. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Influence of breeding site availability on the oviposition behaviour of Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Filipe Vieira Santos de Abreu

    2015-08-01

    Full Text Available Despite the importance of the mosquito Aedes aegypti in the transmission of arboviruses, such as yellow fever, Chikungunya fever and dengue fever, some aspects of their behaviour remain unknown. In the present study, the oviposition behaviour of Ae. aegypti females that were exposed to different densities of breeding sites (2, 4, 8 and 16 was evaluated in laboratory and semi-field conditions. The number of breeding sites that were used was proportional to the number available, but tended towards stabilisation. Females used four-six breeding sites on average, with a maximum of 11. A high percentage of eggs was observed in the water, along with the presence of a breeding site termed “favourite”, which received at least 40% of the eggs. The results are discussed in ecological, evolutionary and epidemiological approaches.

  15. Influence of breeding site availability on the oviposition behaviour of Aedes aegypti

    Science.gov (United States)

    de Abreu, Filipe Vieira Santos; Morais, Maira Moreira; Ribeiro, Sérvio Pontes; Eiras, Álvaro Eduardo

    2015-01-01

    Despite the importance of the mosquito Aedes aegypti in the transmission of arboviruses, such as yellow fever, Chikungunya fever and dengue fever, some aspects of their behaviour remain unknown. In the present study, the oviposition behaviour of Ae. aegypti females that were exposed to different densities of breeding sites (2, 4, 8 and 16) was evaluated in laboratory and semi-field conditions. The number of breeding sites that were used was proportional to the number available, but tended towards stabilisation. Females used four-six breeding sites on average, with a maximum of 11. A high percentage of eggs was observed in the water, along with the presence of a breeding site termed “favourite”, which received at least 40% of the eggs. The results are discussed in ecological, evolutionary and epidemiological approaches. PMID:26154742

  16. Geographic distribution of Aedes aegypti and Aedes albopictus collected from used tires in Vietnam.

    Science.gov (United States)

    Higa, Yukiko; Yen, Nguyen Thi; Kawada, Hitoshi; Son, Tran Hai; Hoa, Nguyen Thuy; Takagi, Masahiro

    2010-03-01

    The spatial distribution of Aedes aegypti and Aedes albopictus in environmental and geographical zones, e.g., urban-rural, coastal-mountainous, and north-south, was investigated throughout Vietnam. Immature stages were collected from used tires along roads. The effects of regions, seasons, and the degree of urbanization on the density and the frequency were statistically analyzed. Aedes aegypti predominated in the southern and central regions, while Ae. albopictus predominated in the northern region, which may be related to climatic conditions (temperature and rainfall). Larval collection from used tires may be suitable to assess rapidly the current distribution of dengue mosquitoes for estimating health risks and implementing vector control measures.

  17. Coexistence of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in Peninsular Florida Two Decades After Competitive Displacements.

    Science.gov (United States)

    Lounibos, L Philip; Bargielowski, Irka; Carrasquilla, María Cristina; Nishimura, Naoya

    2016-11-01

    The spread of Aedes albopictus (Skuse) eastward in the mid-1980s from its initial establishment in Houston, TX, was associated with rapid declines and local disappearances of Aedes aegypti (L.) in Gulf Coast states and Florida where annual larval surveillance during the early 1990s described temporal and spatial patterns of competitive displacements in cemeteries and tire shops. Approximately 20 yr later in 2013-2014, we re-visited former collection sites and sampled aquatic immatures of these two species from tire shops in 10 cities on State Route 441 and from 9 cemeteries from Lakeland to Miami in southwest Florida. In the recent samples Ae. aegypti was recovered from three central Florida cities where it had not been detected in 1994, but its northern limit on Rte. 441, Apopka, did not change. Other evidence, such as trends at a few cemeteries, suggested a moderate resurgence of this species since 1994. Cage experiments that exposed female progeny of Ae. aegypti from recent Florida collection sites to interspecific mating by Ae. albopictus males showed that females from coexistence sites had evolved resistance to cross-mating, but Ae. aegypti from sites with no Ae. albopictus were relatively susceptible to satyrization. Habitat classifications of collection sites were reduced by principal component (PC) analysis to four variables that accounted for > 99% of variances; PCs with strong positive loadings for tree cover and ground vegetation were associated with collection sites yielding only Ae. albopictus Within the coexistence range of the two species, the numbers of Ae. aegypti among total Aedes collected were strongly correlated in stepwise logistic regression models with two habitat-derived PCs, distance from the coast, and annual rainfall and mean maximum temperatures at the nearest weather station. Subtle increases in the range of Ae. aegypti since its previous displacements are interpreted in the context of the evolution of resistance to mating

  18. Field and semi-field evaluation of Bacillus thuringiensis var. israelensis versus Temephos® in Aedes aegypti controlAvaliação de campo e simulado de campo de Bacillus thuringiensis var. israelensis versus Temephos® no controle de Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Jose Bento Pereira Lima

    2016-06-01

    Full Text Available Introduction: Aedes aegypti  is a vector of the important arboviruses worldwide. Vector control continues to rely mainly on fighting immature stages. Resistance to the larvicide Temephos® was detected in many regions of Brazil since 2000 what led control programs to search for alternative products, such as Bacillus thuringiensis var. israelensis (Bti. Caicó municipality (Rio Grande do Norte State, Brazil was one of the first cities to use Bti. However, after some time, Bti low persistence was noticed as jeopardizing effective vector control. Objective: To compare the efficacy of two Bti granulate formulations, Vectobac G® and Vectobac WDG® and Temephos® against Ae. aegypti in field and semi-field conditions. Methods: Field tests were carried out in two neighbouring  areas which presented Ae. aegypti infestation indices >3%: Walfredo Gurgel and Boa Passagem, Caicó, RGN, Brazil, in 2004. Semi- field tests were performed in the patio of a building. Results: For the field conditions, mortality rates >80% were maintained for 14 days, average. After nine weeks, positive containers for Ae. aegypti in the field were >10% in the area of application of Bti and <1% in the area where Temephos® was applied. In the semi-field conditions Ae. aegypti larval mortality >80% was maintained for up to 56 days for Temephos®, 35 days for Vectobac G® and 49 days for Vectobac WDG®. Conclusions: The results point out to low Bti persistence in the field, mainly for containers exposed to sunlight. Local climatic and environmental conditions should be regarded when new products are tested due to high regional variability prevailing in Brazil. 

  19. Development and Evaluation of a Pyriproxyfen-treated Device to Control the Dengue Vector, Aedes aegypti (L.) (Diptera: Culicidae)

    Science.gov (United States)

    2013-03-01

    aegypti females lay their eggs in many sites (Harrington and Ed- man, 2001; Reiter, 2007). This behavior im- proves likelihood of survival. Blood-fed Ae...coiled into skeins) or parous ( ovaries stretched and uncoiled) (Service, 1993). Blood-fed, gravid females were not dissected but classified as...deposition. Ishaaya and Horowitz (1992) found newly deposited eggs (0-1 day old) from female sweet- A PyriProxyfen TreATed device for Ae. Aegypti

  20. First detection of natural infection of Aedes aegypti with Zika virus in Brazil and throughout South America

    Directory of Open Access Journals (Sweden)

    Anielly Ferreira-de-Brito

    Full Text Available Zika virus (ZIKV has caused a major epidemic in Brazil and several other American countries. ZIKV is an arbovirus whose natural vectors during epidemics have been poorly determined. In this study, 1,683 mosquitoes collected in the vicinity of ZIKV suspected cases in Rio de Janeiro, Brazil, from June 2015 to May 2016 were screened for natural infection by using molecular methods. Three pools of Aedes aegypti were found with the ZIKV genome, one of which had only one male. This finding supports the occurrence of vertical and/or venereal transmission of ZIKV in Ae. aegypti in nature. None of the examined Ae. albopictus and Culex quinquefasciatus was positive. This is the first report of natural infection by ZIKV in mosquitoes in Brazil and other South American countries. So far, Ae. aegypti is the only confirmed vector of ZIKV during the ongoing Pan-American epidemics.

  1. In silico models for predicting vector control chemicals targeting Aedes aegypti

    Science.gov (United States)

    Devillers, J.; Lagneau, C.; Lattes, A.; Garrigues, J.C.; Clémenté, M.M.; Yébakima, A.

    2014-01-01

    Human arboviral diseases have emerged or re-emerged in numerous countries worldwide due to a number of factors including the lack of progress in vaccine development, lack of drugs, insecticide resistance in mosquitoes, climate changes, societal behaviours, and economical constraints. Thus, Aedes aegypti is the main vector of the yellow fever and dengue fever flaviviruses and is also responsible for several recent outbreaks of the chikungunya alphavirus. As for the other mosquito species, the A. aegypti control relies heavily on the use of insecticides. However, because of increasing resistance to the different families of insecticides, reduction of Aedes populations is becoming increasingly difficult. Despite the unquestionable utility of insecticides in fighting mosquito populations, there are very few new insecticides developed and commercialized for vector control. This is because the high cost of the discovery of an insecticide is not counterbalanced by the ‘low profitability’ of the vector control market. Fortunately, the use of quantitative structure–activity relationship (QSAR) modelling allows the reduction of time and cost in the discovery of new chemical structures potentially active against mosquitoes. In this context, the goal of the present study was to review all the existing QSAR models on A. aegypti. The homology and pharmacophore models were also reviewed. Specific attention was paid to show the variety of targets investigated in Aedes in relation to the physiology and ecology of the mosquito as well as the diversity of the chemical structures which have been proposed, encompassing man-made and natural substances. PMID:25275884

  2. Dengue vector dynamics (Aedes aegypti influenced by climate and social factors in Ecuador: implications for targeted control.

    Directory of Open Access Journals (Sweden)

    Anna M Stewart Ibarra

    Full Text Available BACKGROUND: Dengue fever, a mosquito-borne viral disease, is now the fastest spreading tropical disease globally. Previous studies indicate that climate and human behavior interact to influence dengue virus and vector (Aedes aegypti population dynamics; however, the relative effects of these variables depends on local ecology and social context. We investigated the roles of climate and socio-ecological factors on Ae. aegypti population dynamics in Machala, a city in southern coastal Ecuador where dengue is hyper-endemic. METHODS/PRINCIPAL FINDINGS: We studied two proximate urban localities where we monitored weekly Ae. aegypti oviposition activity (Nov. 2010-June 2011, conducted seasonal pupal surveys, and surveyed household to identify dengue risk factors. The results of this study provide evidence that Ae. aegypti population dynamics are influenced by social risk factors that vary by season and lagged climate variables that vary by locality. Best-fit models to predict the presence of Ae. aegypti pupae included parameters for household water storage practices, access to piped water, the number of households per property, condition of the house and patio, and knowledge and perceptions of dengue. Rainfall and minimum temperature were significant predictors of oviposition activity, although the effect of rainfall varied by locality due to differences in types of water storage containers. CONCLUSIONS: These results indicate the potential to reduce the burden of dengue in this region by conducting focused vector control interventions that target high-risk households and containers in each season and by developing predictive models using climate and non-climate information. These findings provide the region's public health sector with key information for conducting time and location-specific vector control campaigns, and highlight the importance of local socio-ecological studies to understand dengue dynamics. See Text S1 for an executive summary in

  3. Determinación de la resistencia a insecticidas en Aedes aegypti, Anopheles albimanus y Lutzomyia peruensis procedentes del Norte Peruano

    Directory of Open Access Journals (Sweden)

    Franklin Vargas V

    2006-10-01

    Full Text Available Objetivo: Determinar los niveles de resistencia a temephos y deltametrina en cinco poblaciones naturales de Aedes aegypti del norte de Perú (La Libertad y Piura, dos cepas de Anopheles albimanus (Sullana y Tambogrande y una cepa de Lutzomyía spp (Santiago de Chuco, La Libertad. Materiales y métodos: Se realizaron bioensayos en larvas y adultos siguiendo la metodología de la Organización Mundial de la Salud. La visualización de bandas de B-esterasas se hizo por electroforesis en gel de poliacrilamida en larvas de cuarto estadio. Resultados: Las poblaciones de Ae. aegypti de Sullana y Tambogrande (Piura presentaron factores de resistencia (FR a temephos de 6,84 con un KDT50 = 160,42 minutos y 70% de mortalidad a las 24 horas; en tanto en la población de Tambogrande se observó un FR de 5,60, KDT50 = 107,20 y 80% de mortalidad, a diferencia de las cepas de La Esperanza, El Porvenir y Florencia de Mora (La Libertad que fueron susceptibles. Se identificó resistencia en las poblaciones de Ae. aegypti y A. albimanus procedentes de Piura (Tambogrande y Sullana para deltametrina, a diferencia de las poblaciones de Ae.aegypti y Lutzomyia spp de La Libertad que fueron susceptibles. Se identificó la esterasa B2 con un Rf de 0,23 en la población de Ae. aegypti de Sullana. Conclusiones: Dada la susceptibilidad de la población de La Libertad al insecticida temephos, puede seguir siendo usado en el control vectorial de Aedes aegypti; por lo contrario, dada la resistencia observada en poblaciones de Anopheles en Sullana y Tambogrande se debe evaluar el uso de la deltametrina en estas poblaciones. Finalmente, la población de Lutzomyia spp. no presentó resistencia a deltametrina.

  4. Confusion, knock-down and kill of Aedes aegypti using metofluthrin in domestic settings: a powerful tool to prevent dengue transmission?

    Science.gov (United States)

    Ritchie, Scott A; Devine, Gregor J

    2013-09-11

    Dengue control methods are reliant upon control of the vector, primarily Aedes aegypti. Current adulticiding methods in North Queensland include treating premises with residual synthetic pyrethroid insecticides (interior residual spraying; IRS), a laborious, intrusive task. The vapor active synthetic pyrethroid metofluthrin might offer an efficient alternative as some studies indicate that it prevents biting and has strong knockdown effects. However, its expellant and/or irritant effects, longevity, residual activity and the speed with which biting behavior is disrupted have not yet been characterized. We exposed cohorts of Cairns colony (F2-4) Ae. aegypti to rooms (17-24 m3) treated with 5% and 10% AI metofluthrin emanators. Using free-flying and caged populations we measured biting (human landing rate), expulsion through unscreened windows, knockdown and death over periods ranging between a few minutes and 24 hrs. Observations of the behavior of single female Ae. aegypti exposed to metofluthrin were also made. Female Ae. aegypti exposed to 5% or 10% metofluthrin formulations were almost entirely inhibited from biting. This was the result of rapid knockdown and mortality (80-90% in less than one hour) and to the behavioral impacts of exposure that, within minutes, caused female Ae. aegypti to become disoriented, stop landing on hosts, and seek resting sites. Exposed mosquitoes did not exhibit any increased propensity to exit treated rooms and the 10% AI resin remained fully active for at least 20 days. The new, high-dose, resin formulations of metofluthrin act quickly to prevent biting and to knockdown and kill free-flying female Ae. aegypti in our experimental rooms. There was no evidence that metofluthrin induced escape from treated areas. Resin-based metofluthrin emanators show great potential as a replacement for labor intensive IRS for dengue vector control.

  5. Lemongrass Oil Granules AS Aedes Aegypti Larvicide

    OpenAIRE

    Mulyani, Sri

    2014-01-01

    One way to prevent the spread of Haemorrhage Dengue Fever is the use of abate. The use of abate as larvicides often complained causing an unpleasant smell, and can cause resistance. Lemongrass oil is reported to have activity as larvicides, and this study aims to make granules of lemongrass oil preparation, as well as determining the value of LC50, LC90 against larvae of Ae. aegypti instar III. The granules of lemongrass oil preparation are made with lactose filler and binder CMC-Na. Larvicid...

  6. Potencial de Bacillus thuringiensis israelensis Berliner no controle de Aedes aegypti Potential of Bacillus thuringiensis israelensis Berliner for controlling Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Ricardo Antonio Polanczyk

    2003-12-01

    Full Text Available Relata-se a importância da bactéria entomopatogênica Bacillus thuringiensis israelensis para o controle de Aedes aegypti. São abordados a utilização e potencial de B. thuringiensis israelensis contra o mosquito vetor da dengue. Outros aspectos são discutidos como a evolução da resistência dos insetos em relação aos inseticidas químicos e as vantagens e desvantagens do controle microbiano como estratégia de controle. É dada ênfase à importância da utilização desta bactéria no Brasil como alternativa para resolver o problema em questão sem afetar o ambiente, o homem e outros vertebrados nas áreas de risco.The importance of the entomopathogenic bacterium Bacillus thuringiensis israelensis in the control of Aedes aegypti is presented. The use and potential of B. thuringiensis israelensis against the mosquito vector of dengue fever is described. Other aspects such as insect's resistance development against chemicals and advantages and constraints of using microbial control are discussed. Emphasis is given to the importance of the use of this bacterium in Brazil, which could contribute significantly to solving the mosquito problem without affecting the environment, humans and others invertebrate organisms in critical regions.

  7. Intraspecific Competition and Population Dynamics of Aedes aegypti

    Science.gov (United States)

    Paixão, C. A.; Charret, I. C.; Lima, R. R.

    2012-04-01

    We report computational simulations for the evolution of the population of the dengue vector, Aedes aegypti mosquitoes. The results suggest that controlling the mosquito population, on the basis of intraspecific competition at the larval stage, can be an efficient mechanism for controlling the spread of the epidemic. The results also show the presence of a kind of genetic evolution in vector population, which results mainly in increasing the average lifespan of individuals in adulthood.

  8. Copaifera multijuga ethanolic extracts, oil-resin, and its derivatives display larvicidal activity against Anopheles darlingi and Aedes aegypti (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    Frances Tatiane Tavares Trindade

    2013-06-01

    Full Text Available Copaifera spp. is a common tree species found in the tropical region of Latin America, popularly known as copaiba or pau-d'alho. Oil-resin from different Copaifera species and its components present several biological activities such as antimicrobial, anti-inflammatory, antioxidant and insecticidal, including larvicidal activity against mosquitoes. Thus, bark and leaf ethanolic extracts, oil-resin, essential oil and alepterolic acid from Copaifera multijuga Hayne, Fabaceae, were tested as larvicides against the main malaria vector in the north of Brazil, Anopheles darlingi and also Aedes aegypti, the dengue vector. A. darlingi larval mortality was significantly higher than A. aegypti for most tested compounds. Bark and leaf extracts resulted in lower Lethal Concentrations (LC50 values for A. darlingi, 3 and 13 ppm, respectively, while the essential oil provided the lowest LC50 value for A. aegypti, 18 ppm. Despite of that, the lowest LC values were from the alepterolic acid for both species, i.e. 0.9 and 0.7 ppm for A. darlingi and A. aegypti, respectively.

  9. Copaifera multijuga ethanolic extracts, oil-resin, and its derivatives display larvicidal activity against Anopheles darlingi and Aedes aegypti (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    Frances Tatiane Tavares Trindade

    2013-05-01

    Full Text Available Copaifera spp. is a common tree species found in the tropical region of Latin America, popularly known as copaiba or pau-d'alho. Oil-resin from different Copaifera species and its components present several biological activities such as antimicrobial, anti-inflammatory, antioxidant and insecticidal, including larvicidal activity against mosquitoes. Thus, bark and leaf ethanolic extracts, oil-resin, essential oil and alepterolic acid from Copaifera multijuga Hayne, Fabaceae, were tested as larvicides against the main malaria vector in the north of Brazil, Anopheles darlingi and also Aedes aegypti, the dengue vector. A. darlingi larval mortality was significantly higher than A. aegypti for most tested compounds. Bark and leaf extracts resulted in lower Lethal Concentrations (LC50 values for A. darlingi, 3 and 13 ppm, respectively, while the essential oil provided the lowest LC50 value for A. aegypti, 18 ppm. Despite of that, the lowest LC values were from the alepterolic acid for both species, i.e. 0.9 and 0.7 ppm for A. darlingi and A. aegypti, respectively.

  10. Insecticide resistance is mediated by multiple mechanisms in recently introduced Aedes aegypti from Madeira Island (Portugal).

    Science.gov (United States)

    Seixas, Gonçalo; Grigoraki, Linda; Weetman, David; Vicente, José Luís; Silva, Ana Clara; Pinto, João; Vontas, John; Sousa, Carla Alexandra

    2017-07-01

    Aedes aegypti is a major mosquito vector of arboviruses, including dengue, chikungunya and Zika. In 2005, Ae. aegypti was identified for the first time in Madeira Island. Despite an initial insecticide-based vector control program, the species expanded throughout the Southern coast of the island, suggesting the presence of insecticide resistance. Here, we characterized the insecticide resistance status and the underlying mechanisms of two populations of Ae. aegypti from Madeira Island, Funchal and Paúl do Mar. WHO susceptibility bioassays indicated resistance to cyfluthrin, permethrin, fenitrothion and bendiocarb. Use of synergists significantly increased mortality rates, and biochemical assays indicated elevated activities of detoxification enzymes, suggesting the importance of metabolic resistance. Microarray-based transcriptome analysis detected significant upregulation in both populations of nine cytochrome P450 oxidase genes (including four known pyrethroid metabolizing enzymes), the organophosphate metabolizer CCEae3a, Glutathione-S-transferases, and multiple putative cuticle proteins. Genotyping of knockdown resistance loci linked to pyrethroid resistance revealed fixation of the 1534C mutation, and presence with moderate frequencies of the V1016I mutation in each population. Significant resistance to three major insecticide classes (pyrethroid, carbamate and organophosphate) is present in Ae. aegypti from Madeira Island, and appears to be mediated by multiple mechanisms. Implementation of appropriate resistance management strategies including rotation of insecticides with alternative modes of action, and methods other than chemical-based vector control are strongly advised to delay or reverse the spread of resistance and achieve efficient control.

  11. PEMERIKSAAN VIRUS DENGUE-3 PADA NYAMUK Aedes aegypti YANG DIINFEKSI SECARA INTRATHORAKAL DENGAN TEKNIK IMUNOSITOKIMIA MENGGUNAKAN ANTIBODI DSSE10

    Directory of Open Access Journals (Sweden)

    Dyah Widiastuti

    2013-09-01

    Full Text Available ABSTRACTDengue viruses, globally the most prevalent arboviruses, are transmitted to humans by persistently infectedAedes mosquitoes. The most important vector of Dengue virus is the mosquito Ae.aegypti, which should be the main targetof surveillance and control activities. Virologic surveillance for dengue viruses in its vector has been used as an earlywarning system to predict outbreaks. Detection of Dengue virus antigen in mosquito head squash usingimmunocytochemical streptavidin biotin peroxidase complex (SBPC assay is an alternative method for dengue vectorsurveillance. The study aimed to develope immunocytochemical SBPC assay to detect Dengue virus infection in headsquash of Ae.aegypti. The study design was experimental. Artificially-infected adult Ae. aegypti mosquitoes of DENV 3were used as infectious samples and non-infected adult Ae. aegypti mosquitoes were used as normal ones. Theimmunocytochemical SBPC assay using monoclonal antibody DSSE10 then was applied in mosquito head squash todetect Dengue virus antigen. The results were analyzed by descriptive analysis. The immunocytochemical SBPC assaycan detect Dengue virus antigen in mosquito head squash at day 2 postinfection. There are some false positive resultsfound in immunocytochemical SBPC assay.Key Word: Dengue, immunocytochemistry, DSSE10

  12. Susceptibility of larvae of Aedes aegypti (Linnaeus (Diptera: Culicidae to entomopathogenic nematode Heterorhabditis bacteriophora (Poinar (Rhabditida: Heterorhabditidae

    Directory of Open Access Journals (Sweden)

    María L. PESCHIUTTA

    2014-01-01

    Full Text Available Aedes aegypti (Linnaeus (Diptera: Culicidae es vector de los agentes etiológicos de la fiebre amarilla y del dengue. Una alternativa al control químico de este vector es el uso de agentes biológicos. Los nematodos entomopatógenos son efectivos en el control de plagas. La infectividad y el ciclo de vida de un aislado argentino de Heterorhabditis bacteriophora Poinar (Rhabditida: Heterorhabditidae en larvas de A. aegypti se registró por primera vez bajo condiciones de laborato - rio. Para cada unidad experimental, 30 larvas de mosquito de segundo estadio fueron expuestas a 8 dosis del nematodo (0:1, 1:1, 5:1, 15:1, 100:1, 500:1, 750:1, 1500:1. Los juveniles infectivos (JIs utilizados fueron multiplicados sobre Galleria mellonella (Lepidoptera: Pyralidae. La continuidad infectiva de los JIs obtenidos de A. aegypti fue probada aplicándolos en una dosis de 100:1 sobre larvas del mosquito . Las tasas de mortalidad fueron de 0% a 84%. El número de nematodos desarrollados dentro de la larva de mosquito, la mortalidad larval y los nuevos JIs se incrementaron con el aumento de la dosis de nematodos. Los resultados indican que H. bacteriophora es capaz de infectar larvas de A. aegypti , se desarrolla y produce nuevos JIs, permitiendo la continuidad de su ciclo de vida.

  13. Odonate Nymphs: Generalist Predators and their Potential in the Management of Dengue Mosquito, Aedes aegypti (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    Waseem Akram

    2016-01-01

    Full Text Available Background: Dengue is amongst the most serious mosquito-borne infectious disease with hot spots in tropical and subtropical parts of the world. Unfortunately, no licensed vaccine for the disease is currently available in medicine markets. The only option available is the management of dengue vector mosquito, Aedes aegypti (Diptera: Culicidae.Method: Predatory potential of five odonate nymphs namely Anax parthenope, Bradinopyga geminate, Ischnura forcipata, Rhinocypha quadrimaculata, and Orthetrum sabina were evaluated against the 4th instar larvae of the den­gue vector mosquito, Aedes aegypti, under laboratory conditions. The consumption of the mosquito larvae was eval­uated at three water volume levels viz., 1 liter, 2 liter and 3 liter.Results: The number of Ae. aegypti larvae consumed varied significantly among the five species, and at different levels of water volume (P< 0.01. However, the interaction between odonate nymphs and the water volumes was statistically non-significant (P> 0.05. Ischnura forcipata consumed the highest number of Ae. aegypti larvae (n=56 followed by A. parthenope (n=47 and B. geminate (n=46. The number of larvae consumed was decreased with in­creasing search area or water volume, and the highest predation was observed at 1-liter water volume.Conclusion: The odonate nymphs could be a good source of biological agents for the management of the mosquitoes at larval stages. 

  14. Spatial distribution and esterase activity in populations of Aedes (Stegomyia aegypti (Linnaeus (Diptera: Culicidae resistant to temephos

    Directory of Open Access Journals (Sweden)

    Wanessa Porto Tito Gambarra

    2013-04-01

    Full Text Available INTRODUCTION: The need for studies that describe the resistance patterns in populations of Aedes aegypti (Linnaeus in function of their region of origin justified this research, which aimed to characterize the resistance to temephos and to obtain information on esterase activity in populations of Aedes aegypti collected in municipalities of the State of Paraíba. METHODS: Resistance to temephos was evaluated and characterized from the diagnostic dose of 0.352mg i.a./L and multiple concentrations that caused mortalities between 5% and 99%. Electrophoresis of isoenzymes was used to verify the patterns of esterase activity among populations of the vector. RESULTS: All populations of Aedes aegypti were resistant to temephos, presenting a resistance rate (RR greater than 20. The greatest lethal dose 50% of the sample (CL50 was found for the municipality of Lagoa Seca, approximately forty-one times the value of CL50 for the Rockefeller population. The populations characterized as resistant showed two to six regions of α and β-esterase, called EST-1 to EST-6, while the susceptible population was only seen in one region of activity. CONCLUSIONS: Aedes aegypti is widely distributed and shows a high degree of resistance to temephos in all municipalities studied. In all cases, esterases are involved in the metabolism and, consequently, in the resistance to temephos.

  15. The Aedes aegypti toll pathway controls dengue virus infection.

    Directory of Open Access Journals (Sweden)

    Zhiyong Xi

    2008-07-01

    Full Text Available Aedes aegypti, the mosquito vector of dengue viruses, utilizes its innate immune system to ward off a variety of pathogens, some of which can cause disease in humans. To date, the features of insects' innate immune defenses against viruses have mainly been studied in the fruit fly Drosophila melanogaster, which appears to utilize different immune pathways against different types of viruses, in addition to an RNA interference-based defense system. We have used the recently released whole-genome sequence of the Ae. aegypti mosquito, in combination with high-throughput gene expression and RNA interference (RNAi-based reverse genetic analyses, to characterize its response to dengue virus infection in different body compartments. We have further addressed the impact of the mosquito's endogenous microbial flora on virus infection. Our findings indicate a significant role for the Toll pathway in regulating resistance to dengue virus, as indicated by an infection-responsive regulation and functional assessment of several Toll pathway-associated genes. We have also shown that the mosquito's natural microbiota play a role in modulating the dengue virus infection, possibly through basal-level stimulation of the Toll immune pathway.

  16. Oviposition activity and seasonal pattern of a population of Aedes (Stegomyia aegypti (L. (Diptera: Culicidae in subtropical Argentina

    Directory of Open Access Journals (Sweden)

    Micieli María Victoria

    2003-01-01

    Full Text Available Monthly oviposition activity and the seasonal density pattern of Aedes aegypti were studied using larvitraps and ovitraps during a research carried out by the Public Health Ministry of Salta Province, in Tartagal, Aguaray and Salvador Mazza cities, in subtropical Argentina. The A. aegypti population was active in both dry and wet seasons with a peak in March, accordant with the heaviest rainfall. From May to November, the immature population level remained low, but increased in December. Ae. aegypti oviposition activity increased during the fall and summer, when the relative humidity was 60% or higher. Eggs were found in large numbers of ovitraps during all seasons but few eggs were observed in each one during winter. The occurrence and the number of eggs laid were variable when both seasons and cities were compared. The reduction of the population during the winter months was related to the low in the relative humidity of the atmosphere. Significant differences were detected between oviposition occurrences in Tartagal and Aguaray and Salvador Mazza cities, but no differences in the number of eggs were observed. Two factors characterize the seasonal distribution pattern of Ae. aegypti in subtropical Argentina, the absence of a break during winter and an oviposition activity concomitant of the high relative humidity of the atmosphere.

  17. Controlling Aedes aegypti population as DHF vector with radiation based-sterile insect technique in Banjarnegara Regency, Central Java

    International Nuclear Information System (INIS)

    Siti Nurhayati; Bambang Yunianto; Tri Ramadhani; Bina Ikawati; Budi Santoso; Ali Rahayu

    2013-01-01

    The control program of dengue hemorrhagic fever (DHF) in Indonesia is still a problem due to the incomplete integrated handling. Sterile insect technique (SIT) for Aedes aegypti as DHF vector was considered as a potential strategy for controlling the DHF. A preliminary survey was carried out to determine the characteristic of A aegypti population in the study site before the implementation of SIT. The implementation of radiation based-SIT was carried out in Krandegan and Kutabanjar Villages of Banjarnegara Regency, Central Java which involved 99 houses. One hundred gamma rays irradiated male mosquitoes were released to each house up to five times. The eggs, larvae and adult mosquitoes were collected using ovitrap and weekly observed. The initial population density of A. aegypti in the studied area was obtained to be 6 mosquitoes per house with the mean index of house was 15.86% and the mean sterility of sterilized mosquitoes was 79.16%. The SIT effectively reduced A. aegypti population after the fifth release of irradiated mosquitoes into the houses. It can be assumed that the SIT was effective in controlling DHF vector in the studied area, nevertheless, it will be more effective if it is combined with other handling techniques. (author)

  18. Characterization and productivity profiles of Aedes aegypti (L.) breeding habitats across rural and urban landscapes in western and coastal Kenya.

    Science.gov (United States)

    Ngugi, Harun N; Mutuku, Francis M; Ndenga, Bryson A; Musunzaji, Peter S; Mbakaya, Joel O; Aswani, Peter; Irungu, Lucy W; Mukoko, Dunstan; Vulule, John; Kitron, Uriel; LaBeaud, Angelle D

    2017-07-12

    Aedes aegypti, the principal vector for dengue and other emerging arboviruses, breeds preferentially in various man-made and natural container habitats. In the absence of vaccine, epidemiological surveillance and vector control remain the best practices for preventing dengue outbreaks. Effective vector control depends on a good understanding of larval and adult vector ecology of which little is known in Kenya. In the current study, we sought to characterize breeding habitats and establish container productivity profiles of Ae. aegypti in rural and urban sites in western and coastal Kenya. Twenty sentinel houses in each of four study sites (in western and coastal Kenya) were assessed for immature mosquito infestation once a month for a period of 24 months (June 2014 to May 2016). All water-holding containers in and around the households were inspected for Ae. aegypti larvae and pupae. Collections were made from a total of 22,144 container visits: Chulaimbo (7575) and Kisumu (8003) in the west, and from Msambweni (3199) and Ukunda (3367) on the coast. Of these, only 4-5.6% were positive for Ae. aegypti immatures. In all four sites, significantly more positive containers were located outdoors than indoors. A total of 17,537 Ae. aegypti immatures were sampled from 10 container types. The most important habitat types were buckets, drums, tires, and pots, which produced over 75% of all the pupae. Key outdoor containers in the coast were buckets, drums and tires, which accounted for 82% of the pupae, while pots and tires were the only key containers in the western region producing 70% of the pupae. Drums, buckets and pots were the key indoor containers, producing nearly all of the pupae in the coastal sites. No pupae were collected indoors in the western region. The coastal region produced significantly more Ae. aegypti immatures than the western region both inside and outside the sentinel houses. These results indicate that productive Ae. aegypti larval habitats are

  19. Composition of the Essential Oil of Pink Chablis Bluebeard (Caryopteris x clandonensis ’Durio’) and Its Biological Activity against the Yellow Fever Mosquito Aedes aegypti

    Science.gov (United States)

    2016-04-07

    oil of Pink Chablis™ bluebeard (Caryopteris ×clandonensis ’Durio’) and its biological activity against the yellow fever mosquito Aedes aegypti ARTICLE...bluebeard (Caryopteris ×clandonensis ’Durio’) and its biological activity against the yellow fever mosquito Aedes aegypti Eugene K. Blythe1...mosquito [ Aedes aegypti (L.) (Diptera: Culicidae)]. Essential oil from the aerial parts of this mildly aromatic ornamental species was extracted by water

  20. Population dynamics of Aedes aegypti and dengue as influenced by weather and human behavior in San Juan, Puerto Rico.

    Directory of Open Access Journals (Sweden)

    Roberto Barrera

    2011-12-01

    Full Text Available Previous studies on the influence of weather on Aedes aegypti dynamics in Puerto Rico suggested that rainfall was a significant driver of immature mosquito populations and dengue incidence, but mostly in the drier areas of the island. We conducted a longitudinal study of Ae. aegypti in two neighborhoods of the metropolitan area of San Juan city, Puerto Rico where rainfall is more uniformly distributed throughout the year. We assessed the impacts of rainfall, temperature, and human activities on the temporal dynamics of adult Ae. aegypti and oviposition. Changes in adult mosquitoes were monitored with BG-Sentinel traps and oviposition activity with CDC enhanced ovitraps. Pupal surveys were conducted during the drier and wetter parts of the year in both neighborhoods to determine the contribution of humans and rains to mosquito production. Mosquito dynamics in each neighborhood was compared with dengue incidence in their respective municipalities during the study. Our results showed that: 1. Most pupae were produced in containers managed by people, which explains the prevalence of adult mosquitoes at times when rainfall was scant; 2. Water meters were documented for the first time as productive habitats for Ae. aegypti; 3. Even though Puerto Rico has a reliable supply of tap water and an active tire recycling program, water storage containers and discarded tires were important mosquito producers; 4. Peaks in mosquito density preceded maximum dengue incidence; and 5. Ae. aegypti dynamics were driven by weather and human activity and oviposition was significantly correlated with dengue incidence.

  1. Temporal distribution of Aedes aegypti in different districts of Rio de Janeiro, Brazil, measured by two types of traps.

    Science.gov (United States)

    Honório, N A; Codeço, C T; Alves, F C; Magalhães, M A F M; Lourenço-De-Oliveira, R

    2009-09-01

    Dengue dynamics in Rio de Janeiro, Brazil, as in many dengue-endemic regions of the world, is seasonal, with peaks during the wet-hot months. This temporal pattern is generally attributed to the dynamics of its mosquito vector Aedes aegypti (L.). The objectives of this study were to characterize the temporal pattern of Ae. aegypti population dynamics in three neighborhoods of Rio de Janeiro and its association with local meteorological variables; and to compare positivity and density indices obtained with ovitraps and MosquiTraps. The three neighborhoods are distinct in vegetation coverage, sanitation, water supply, and urbanization. Mosquito sampling was carried out weekly, from September 2006 to March 2008, a period during which large dengue epidemics occurred in the city. Our results show peaks of oviposition in early summer 2007 and late summer 2008, detected by both traps. The ovitrap provided a more sensitive index than MosquiTrap. The MosquiTrap detection threshold showed high variation among areas, corresponding to a mean egg density of approximately 25-52 eggs per ovitrap. Both temperature and rainfall were significantly related to Ae. aegypti indices at a short (1 wk) time lag. Our results suggest that mean weekly temperature above 22-24 degrees C is strongly associated with high Ae. aegypti abundance and consequently with an increased risk of dengue transmission. Understanding the effects of meteorological variables on Ae. aegypti population dynamics will help to target control measures at the times when vector populations are greatest, contributing to the development of climate-based control and surveillance measures for dengue fever in a hyperendemic area.

  2. Correlating Remote Sensing Data with the Abundance of Pupae of the Dengue Virus Mosquito Vector, Aedes aegypti, in Central Mexico

    Directory of Open Access Journals (Sweden)

    Max J. Moreno-Madriñán

    2014-05-01

    Full Text Available Using a geographic transect in Central Mexico, with an elevation/climate gradient, but uniformity in socio-economic conditions among study sites, this study evaluates the applicability of three widely-used remote sensing (RS products to link weather conditions with the local abundance of the dengue virus mosquito vector, Aedes aegypti (Ae. aegypti. Field-derived entomological measures included estimates for the percentage of premises with the presence of Ae. aegypti pupae and the abundance of Ae. aegypti pupae per premises. Data on mosquito abundance from field surveys were matched with RS data and analyzed for correlation. Daily daytime and nighttime land surface temperature (LST values were obtained from Moderate Resolution Imaging Spectroradiometer (MODIS/Aqua cloud-free images within the four weeks preceding the field survey. Tropical Rainfall Measuring Mission (TRMM-estimated rainfall accumulation was calculated for the four weeks preceding the field survey. Elevation was estimated through a digital elevation model (DEM. Strong correlations were found between mosquito abundance and RS-derived night LST, elevation and rainfall along the elevation/climate gradient. These findings show that RS data can be used to predict Ae. aegypti abundance, but further studies are needed to define the climatic and socio-economic conditions under which the correlations observed herein can be assumed to apply.

  3. Application of wMelPop Wolbachia Strain to Crash Local Populations of Aedes aegypti.

    Directory of Open Access Journals (Sweden)

    Scott A Ritchie

    Full Text Available The endosymbiotic bacteria Wolbachia pipientis (wMel strain has been successfully established in several populations of Aedes aegypti, the primary dengue vector. The virulent Wolbachia strain wMelPop is known to cause several pathological impacts (increased egg mortality, life shortening, etc. reducing overall fitness in the mosquito Ae. aegypti. Increased egg mortality could substantially reduce egg banks in areas with a lengthy monsoonal dry season, and be employed to eliminate local populations. We tested this application under semi-field cage conditions. First, we determined that wMelPop infection significantly reduced the survival of desiccation-resistant eggs of the dengue vector Ae. aegypti, with shade and temperature having a significant impact; nearly all wMelPop-infected eggs failed to hatch after 6 and 10 weeks in summer and winter conditions, respectively. In laboratory selection experiments we found that egg desiccation resistance can be increased by selection, and that this effect of wMelPop infection is due to the nuclear background of the host rather than Wolbachia. We then conducted an invasion of wMelPop within a semi-field cage using sustained weekly releases of wMelPop infected mosquitoes, with fixation achieved after 9 weeks. The egg populations wMelPop infected and an uninfected control were then subjected to a simulated prolonged monsoonal dry season (2.5 months before flooding to induce hatching. The wMelPop infected eggs suffered significantly greater mortality than the controls, with only 0.67% and 4.35% of respective infected and uninfected eggs held in 99% shade hatching after 80 days. These studies suggest that wMelPop could be used to locally eliminate populations of Ae. aegypti that are exposed to prolonged dry conditions, particularly if combined with vector control.

  4. Efficacy of topical permethrin as repellent against Aedes aegypti's bites.

    Science.gov (United States)

    Miot, Hélio Amante; Ferreira, Daniela Pinho; Mendes, Fabiana Guandalini; Carrenho, Flávia Roberta Hernandes; de Oliveira Amui, Isabela; Carneiro, Carlos Augusto Sá; Madeira, Newton Goulart

    2008-07-15

    Mosquitoes are the most important vectors of infectious diseases and their bites are related to several adverse skin reactions. Permethrin impregnated clothes are an efficient strategy against arthropods' bites; however, its topical efficacy as a repellent has not been well established. We studied the response to permethrin lotion 5 percent and N,N-Diethyl-meta-toluamide (DEET) spray 50 percent applied to the unprotected forearms of 10 volunteers. Each arm was exposed to 20 female mosquitoes of Aedes aegypti. We performed 71 bilateral comparative measurements evaluating the timing for the first bites. The average times for the arm without the product, with permethrin 5 percent, and with DEET 50 percent were: 7.9 seconds, 336.2 seconds and 7512.1 seconds. The results showed a significant difference between repellency times between either product and unprotected controls. In addition, there was a significant difference in time to first bite between permethrin and DEET treated arms (pAedes aegypti bites in this experimental setting. However, permethrin's profile of repellency was significantly inferior to that of DEET.

  5. Bioefficacy of ecbolin A and ecbolin B isolated from Ecbolium viride (Forsk. Alston on dengue vector Aedes aegypti L. (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    Appadurai Daniel Reegan

    2016-06-01

    Full Text Available Ecbolin A and ecbolin B were isolated from ethyl acetate extract of Ecbolium viride (Forsk. Alston root and evaluated for larvicidal and growth disturbance activities against Aedes aegypti L. (Diptera: Culicidae. For larvicidal activity, the third instar larvae of A. aegypti were exposed to different concentrations viz., 1.0, 2.5, 5.0 and 10 ppm for each compound. Among the two compounds screened, ecbolin B recorded highest larvicidal activity with LC50 and LC90 values of 0.70 and 1.42 ppm, respectively. In control, the larval behaviour was normal. The active compound ecbolin B was tested for growth disruption activity at sub lethal concentrations viz., 0.5, 1.0 ppm and observed for malformation like larval gut elongation, larval longevity, intermediates, malformed adults, failed adult emergence and compared with methoprene. The results showed significant level of larva–pupa intermediates, pupa–adult intermediates, malformed adult emergence and less adult formation against A. aegypti. The histopathological results revealed a severe damage on the midgut epithelial columnar cells (CC and cuboidal cells (CU in ecbolin B treated larvae of A. aegypti. Similarly peritrophic membrane (pM was also observed to be damaged in the treated larvae. The present results suggest that, ecbolin B could be used as a larvicidal agent against dengue vector A. aegypti.

  6. Eco-friendly synthesis of silver nanoparticles and its larvicidal property against fourth instar larvae of Aedes aegypti.

    Science.gov (United States)

    Ali, Zainal Abidin; Roslan, Muhammad Aidil; Yahya, Rosiyah; Wan Sulaiman, Wan Yusoff; Puteh, Rustam

    2017-03-01

    In this study, larvicidal activity of silver nanoparticles (AgNPs) synthesised using apple extract against fourth instar larvae of Aedes aegypti was determined. As a result, the AgNPs showed moderate larvicidal effects against Ae. aegypti larvae (LC 50  = 15.76 ppm and LC 90  = 27.7 ppm). In addition, comparison of larvicidal activity performance of AgNPs at high concentration prepared using two different methods showed that Ae. aegypti larvae was fully eliminated within the duration of 2.5 h. From X-ray diffraction, the AgNP crystallites were found to exhibit face centred cubic structure. The average size of these AgNPs as estimated by particle size distribution was in the range of 50-120 nm. The absorption maxima of the synthesised Ag showed characteristic Ag surface plasmon resonance peak. This green synthesis provides an economic, eco-friendly and clean synthesis route to Ag.

  7. Comparative Efficacy of Commercial Mosquito Coils Against Aedes aegypti (Diptera: Culicidae) in Malaysia: A Nationwide Report.

    Science.gov (United States)

    Chin, A C; Chen, C D; Low, V L; Lee, H L; Azidah, A A; Lau, K W; Sofian-Azirun, M

    2017-10-01

    This study was conducted using the glass chamber method to determine the susceptibility status of the dengue vector, Aedes aegypti (L.) from 11 states in Malaysia to commercial mosquito coils containing four different active ingredients, namely metofluthrin, d-allethrin, d-trans allethrin, and prallethrin. Aedes aegypti exhibited various knockdown rates, ranging from 14.44% to 100.00%, 0.00% to 61.67%, 0.00% to 90.00%, and 0.00% to 13.33% for metofluthrin, d-allethrin, d-trans allethrin, and prallethrin, respectively. Overall, mortality rates ranging from 0.00% to 78.33% were also observed among all populations. Additionally, significant associations were detected between the knockdown rates of metofluthrin and d-allethrin, and between metofluthrin and d-trans allethrin, suggesting the occurrence of cross-resistance within pyrethroid insecticides. Overall, this study revealed low insecticidal activity of mosquito coils against Ae. aegypti populations in Malaysia, and consequently may provide minimal personal protection against mosquito bites. © The Author 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Larvicidal activity against Aedes aegypti of Foeniculum vulgare essential oils from Portugal and Cape Verde.

    Science.gov (United States)

    Rocha, Diara Kady; Matosc, Olivia; Novoa, Maria Teresa; Figueiredo, Ana Cristina; Delgado, Manuel; Moiteiro, Cristina

    2015-04-01

    Dengue is a potentially fatal mosquito-borne infection with 50 million cases per year and 2.5 billion people vulnerable to the disease. This major public health problem has recurrent epidemics in Latin America and occurred recently in Cape Verde and Madeira Island. The lack of anti-viral treatment or vaccine makes the control of mosquito vectors a high option to prevent virus transmission. Essential oil (EO) constituents can affect insect's behaviour, being potentially effective in pest control. The present study evaluated the potential use of Foenicultm vulgare (fennel) EO in the control of the dengue vector Aedes aegypti. EOs isolated from fennel aerial parts collected in Cape Verde and from a commercial fennel EO of Portugal were analysed by NMR, GC and GC-MS. trans-Anethole (32 and 30%, respectively), limonene (28 and 18%, respectively) and fenchone (10% in both cases) were the main compounds identified in the EOs isolated from fennel from Cape Verde and Portugal, respectively. The larvicidal activity of the EOs and its major constituents were evaluated, using WHO procedures, against third instar larvae ofAe. aegypti for 24 h. Pure compounds, such as limonene isomers, were also assayed. The lethal concentrations LC50, C90 and LC99 were determined by probit analysis using mortality rates of bioassays. A 99% mortality of Ae. aegypti larvae was estimated at 37.1 and 52.4 µL L-1 of fennel EOs from Cape Verde and Portugal, respectively. Bioassays showed that fennel EOs from both countries displayed strong larvicidal effect against Ae. aegypti, the Cape Verde EO being as active as one of its major constituents, (-)-limonene.

  9. Larvicidal activity of Annona senegalensis and Boswellia dalzielii leaf fractions against Aedes aegypti (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    Younoussa Lame

    2014-12-01

    Full Text Available The purpose of the present study was to evaluate the larvicidal activity of leaf fractions of Annona senegalensis and Boswellia dalzielii against fourth instar larvae of Aedes aegypti. Fourth instar larvae of Ae. aegypti were exposed for 24 hours to various concentrations (312.5-2500 mg/L of methanolic crude extract and its fractions obtained with n-hexane, chloroform, ethyl-acetate and methanol solvents, following WHO method. The mortalities recorded were subjected to ANOVA test for mean comparison and Probit analysis to determine LC50. Preliminary phytochemical screening test for some components of the plants assessed were also evaluated. The phytochemical screening of the two plants revealed the presence of alkaloids, steroids, phenolic compounds, terpenoids, fats and oils in the crude extracts which, after splitting were most distributed in n-hexane and chloroform fractions. Apart from methanol fraction, all products used showed a significant (P<0.001 concentration-dependent toxicity against Ae. aegypti larvae. The LC50 recorded with crude extract were 759.6 and 830.4 mg/L for A. senegalensis and B. dalzielli respectively. After fractionation, n-hexane and chloroform fractions of A. senegalensis revealed more effective activity than others with CL50 values of 379.3 and 595.2 mg/L respectively. As for B. dalzielli, n-hexane (LC50=537.1 mg/L and chloroform (LC50=585.5 mg/L fractions were also the most effective. These results suggest that the n-hexane and chloroform fractions of these plants as a promising larvicide against Ae. aegypti and can constitute the best basic and vital step in the development of a botanical insecticide source.

  10. Perturbed cholesterol and vesicular trafficking associated with dengue blocking in Wolbachia-infected Aedes aegypti cells.

    Science.gov (United States)

    Geoghegan, Vincent; Stainton, Kirsty; Rainey, Stephanie M; Ant, Thomas H; Dowle, Adam A; Larson, Tony; Hester, Svenja; Charles, Philip D; Thomas, Benjamin; Sinkins, Steven P

    2017-09-13

    Wolbachia are intracellular maternally inherited bacteria that can spread through insect populations and block virus transmission by mosquitoes, providing an important approach to dengue control. To better understand the mechanisms of virus inhibition, we here perform proteomic quantification of the effects of Wolbachia in Aedes aegypti mosquito cells and midgut. Perturbations are observed in vesicular trafficking, lipid metabolism and in the endoplasmic reticulum that could impact viral entry and replication. Wolbachia-infected cells display a differential cholesterol profile, including elevated levels of esterified cholesterol, that is consistent with perturbed intracellular cholesterol trafficking. Cyclodextrins have been shown to reverse lipid accumulation defects in cells with disrupted cholesterol homeostasis. Treatment of Wolbachia-infected Ae. aegypti cells with 2-hydroxypropyl-β-cyclodextrin restores dengue replication in Wolbachia-carrying cells, suggesting dengue is inhibited in Wolbachia-infected cells by localised cholesterol accumulation. These results demonstrate parallels between the cellular Wolbachia viral inhibition phenotype and lipid storage genetic disorders. Wolbachia infection of mosquitoes can block dengue virus infection and is tested in field trials, but the mechanism of action is unclear. Using proteomics, Geoghegan et al. here identify effects of Wolbachia on cholesterol homeostasis and dengue virus replication in Aedes aegypti.

  11. Effect of water availability in opening containers of breeding site on Aedes aegypti life cycle

    Science.gov (United States)

    Tokachil, Najir; Yusoff, Nuraini; Saaid, Alif; Appandi, Najwa; Harun, Farhana

    2017-11-01

    The distribution of rainfall is one of the factors which contribute to the development of Aedes aegypti life cycle. The fluctuation of rainfall might influence the acceleration of Aedes aegypti growth by providing sufficient breeding sites. In this research, the availability of water in an opening container of the breeding site is considered as a significant variable which affects the distinct stages structure in mosquito life cycle which egg, larva, pupa, and adult. A stage-structured Lefkovitch matrix model was used by considering the quantity of water contains in an opening container and life cycle of Aedes aegypti. The maximum depth of water in the container was also taken into account in order to find the time duration of mosquito life cycle to complete. We found that the maximum depth of water availability in mosquito breeding site influenced the abundance of the mosquito population. Hence, the containers are filled with sufficient water be able to stand from hot temperature for several days before drying out might continue to provide mosquito breeding site. In the future, it is recommended to consider other factors which affect the quantity of water in mosquito breeding sites such as heavy rain and wind blows.

  12. Peningkatan dan aktivitas enzim asetilkolinesterase pada nyamuk Aedes aegypti yang diseleksi dengan malation

    Directory of Open Access Journals (Sweden)

    Dwi Jayanti Gunandini

    2017-02-01

    Full Text Available The Elevated and Activity of Acetilcholinesterase Enzyme on Aedes aegypti Selected by Malathion. The aim of this research was to study the effect of selection by malathion on the activity level  Acetilcholinesterase enzyme on Aedes aegypti mosquitoes. Selection of Aedes aegypti larval by mean of malathion have been conducted for 20 generations. During the selection process time has been increased of concentration applied and exposure. For generation 0-5 (F0-F5, a concentration of 25 µl/l (24 ppm was used to expose the larvae to malathion for five minutes. In generation 6-10 (F6-F10 the concentration has increased to 50 µl/l (48 ppm; in F11-F15 the concentration used was 100 µl/l (96 ppm whereas in F16-F20 200µl/l (192 ppm was used. Mosquito generations that would be regarded as representative and reference groups were F0, F5, F10, F15 and F20. The LC50 of F0, F5, F10, F15 and F20 was 0,025; 0,032; 0,042; 0,062 and 0,071 ppm respectively. Increases LT50 values was also observed in Aedes aegypti selected by malathion. The LT50 of F0, F5, F10, F15 and F20 generations was 7,9; 11,3; 18; 30,6 and 33,1 minutes respectively. The low levels of malathion resistance could be conferred by the elevated of α-esterase. The values of the α-esterase in F0, F5, F10, F15 and F20 were 0,155; 0,174; 0,203; 0,209 and 0,215 µmol/min/mg protein respectively. The acetilcholinesterase activities were also raised in F0, F5, F10, F15 and F20, the value of acetilcholinesterase activities were 20,35; 20,26; 23,14; 23,18 and 24,9%.

  13. Global Transcriptome Analysis of Aedes aegypti Mosquitoes in Response to Zika Virus Infection.

    Science.gov (United States)

    Etebari, Kayvan; Hegde, Shivanand; Saldaña, Miguel A; Widen, Steven G; Wood, Thomas G; Asgari, Sassan; Hughes, Grant L

    2017-01-01

    Zika virus (ZIKV) of the Flaviviridae family is a recently emerged mosquito-borne virus that has been implicated in the surge of the number of microcephaly instances in South America. The recent rapid spread of the virus led to its declaration as a global health emergency by the World Health Organization. The virus is transmitted mainly by the mosquito Aedes aegypti , which is also the vector of dengue virus; however, little is known about the interactions of the virus with the mosquito vector. In this study, we investigated the transcriptome profiles of whole A. aegypti mosquitoes in response to ZIKV infection at 2, 7, and 14 days postinfection using transcriptome sequencing. Results showed changes in the abundance of a large number of transcripts at each time point following infection, with 18 transcripts commonly changed among the three time points. Gene ontology analysis revealed that most of the altered genes are involved in metabolic processes, cellular processes, and proteolysis. In addition, 486 long intergenic noncoding RNAs that were altered upon ZIKV infection were identified. Further, we found changes of a number of potential mRNA target genes correlating with those of altered host microRNAs. The outcomes provide a basic understanding of A. aegypti responses to ZIKV and help to determine host factors involved in replication or mosquito host antiviral response against the virus. IMPORTANCE Vector-borne viruses pose great risks to human health. Zika virus has recently emerged as a global threat, rapidly expanding its distribution. Understanding the interactions of the virus with mosquito vectors at the molecular level is vital for devising new approaches in inhibiting virus transmission. In this study, we embarked on analyzing the transcriptional response of Aedes aegypti mosquitoes to Zika virus infection. Results showed large changes in both coding and long noncoding RNAs. Analysis of these genes showed similarities with other flaviviruses, including

  14. Comparison of BG-Sentinel Trap and Oviposition Cups for Aedes aegypti and Aedes albopictus Surveillance in Jacksonville, Florida, USA

    Science.gov (United States)

    2015-03-01

    COMPARISON OF BG-SENTINELH TRAP AND OVIPOSITION CUPS FOR AEDES AEGYPTI AND AEDES ALBOPICTUS SURVEILLANCE IN JACKSONVILLE, FLORIDA, USA JENNIFER A...trap and oviposition cups (OCs) have both proven effective in the surveillance of Aedes species. This study aimed to determine which of the 2 traps could...best characterize the relative population sizes of Aedes albopictus and Aedes aegypti in an urban section of Jacksonville, FL. Until 1986, Ae

  15. Susceptibility of Ae. aegypti (Diptera: Culicidae) to infection with epidemic (subtype IC) and enzootic (subtypes ID, IIIC, IIID) Venezuelan equine encephalitis complex alphaviruses.

    Science.gov (United States)

    Ortiz, Diana I; Kang, Wenli; Weaver, Scoti C

    2008-11-01

    To test the hypothesis that enzootic and epidemic Venezuelan equine encephalitis (VEE) complex alphaviruses can infect and be transmitted by Ae. aegypti, we conducted a series of experimental infection studies. One set of experiments tested the susceptibility of geographic strains of Ae. aegypti from Peru and Texas (U.S.A.) for epidemic (subtype IC) and enzootic (subtype ID) strains from Colombia/Venezuela, whereas the second set of experiments tested the susceptibility of Ae. aegypti from Iquitos, Peru, to enzootic VEE complex strains (subtypes ID, IIIC, and IIID) isolated in the same region, at different infectious doses. Experimental infections using artificial bloodmeals suggested that Ae. aegypti mosquitoes, particularly the strain from Iquitos, Peru, is moderately to highly susceptible to all of these VEE complex alphaviruses. The occurrence of enzootic VEE complex viruses circulating endemically in Iquitos suggests the possibility of a dengue-like transmission cycle among humans in tropical cities.

  16. Constituintes químicos voláteis e não-voláteis de Moringa oleifera Lam., Moringaceae

    Directory of Open Access Journals (Sweden)

    Milena B. Barreto

    Full Text Available O estudo fitoquímico do extrato etanólico das folhas de Moringa oleifera Lam., Moringaceae, resultou no isolamento dos derivados benzilnitrilas niazirina, niazirinina e 4-hidroxifenil-acetonitrila, enquanto que das cascas dos frutos somente o octacosano foi obtido. Os óleos essenciais das folhas, flores e frutos foram analisados por cromatografia gasosa acoplada a espectrometria de massa. Os constituintes principais identificados foram: fitol (21,6% e timol (9,6% nas folhas, octadecano (27,4% e ácido hexadecanóico (18,4% nas flores e docosano (32,7% e tetracosano (24,0% nos frutos. As estruturas dos compostos isolados foram identificadas a partir de técnicas espectroscópicas (RMN, IV e EM. A 4-hidroxifenil-acetonitrila está sendo citada pela primeira vez para o gênero Moringa e os óleos essenciais das flores e frutos estão sendo citados pela primeira vez para a espécie M. oleifera.

  17. Expression profile of genes during resistance reversal in a temephos selected strain of the dengue vector, Aedes aegypti.

    Directory of Open Access Journals (Sweden)

    Clare Strode

    Full Text Available BACKGROUND: The mosquito Aedes aegypti is one of the most important disease vectors because it transmits two major arboviruses, dengue and yellow fever, which cause significant global morbidity and mortality. Chemical insecticides form the cornerstone of vector control. The organophosphate temephos a larvicide recommended by WHO for controlling Ae. aegypti, however, resistance to this compound has been reported in many countries, including Brazil. METHODOLOGY/PRINCIPAL FINDINGS: The aim of this study was to identify genes implicated in metabolic resistance in an Ae. aegypti temephos resistant strain, named RecR, through microarray analysis. We utilized a custom 'Ae. aegypti detox chip' and validated microarray data through RT-PCR comparing susceptible and resistant individuals. In addition, we analyzed gene expression in 4(th instar larvae from a reversed susceptible strain (RecRev, exposed and unexposed to temephos. The results obtained revealed a set of 13 and 6 genes significantly over expressed in resistant adult mosquitoes and larvae, respectively. One of these genes, the cytochrome P450 CYP6N12, was up-regulated in both stages. RT-PCR confirmed the microarray results and, additionally, showed no difference in gene expression between temephos exposed and unexposed RecRev mosquitoes. This suggested that the differences in the transcript profiles among the strains are heritable due to a selection process and are not caused by immediate insecticide exposure. Reversal of temephos resistance was demonstrated and, importantly, there was a positive correlation between a decrease in the resistance ratio and an accompanying decrease in the expression levels of previously over expressed genes. Some of the genes identified here have also been implicated in metabolic resistance in other mosquito species and insecticide resistant populations of Ae. aegypti. CONCLUSIONS/SIGNIFICANCE: The identification of gene expression signatures associated to

  18. Larvicidal & ovicidal efficacy of Pithecellobium dulce (Roxb. Benth. (Fabaceae against Anopheles stephensi Liston & Aedes aegypti Linn. (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    M Govindarajan

    2013-01-01

    Full Text Available Background & objectives: In view of the recently increased interest in developing plant origin insecticides as an alternative to chemical insecticide, this study was undertaken to assess the larvicidal and ovicidal potential of the crude hexane, benzene, chloroform, ethyl acetate and methanol solvent extracts from the medicinal plant Pithecellobium dulce against the mosquito vectors, Anopheles stephensi and Aedes aegypti (Diptera: Culicidae. Methods: Larvicidal activity of P. dulce plant extracts was studied in the range of 60 to 450 mg/l against early third instar larvae of An. stephensi and Ae. aegypti in the laboratory. The larval mortality was observed after 24 h of exposure. The ovicidal activity was determined against An. stephensi and Ae. aegypti to various concentrations ranging from 100 to 750 mg/l under the laboratory conditions. Mean per cent hatchability of the eggs were observed after 48 h post treatment. Results: All leaf and seed extracts showed moderate larvicidal and ovicidal effects; however, the highest larval mortality was found in methanol extract of leaf of P. dulce against the larvae of An. stephensi and Ae. aegypti with the LC 50 and LC 90 values 145.43, 155.78 mg/l and 251.23, 279.73 mg/l, respectively. The per cent hatchability was inversely proportional to the concentration of extract and directly proportional to the eggs. Zero hatchability was observed at 400 mg/l for leaf methanol extract and 625 mg/l for seed methanol extract of P. dulce against An. stephensi and Ae. aegypti, respectively. Compared to leaf extracts, seed extracts have low potency against the two mosquitoes. Interpretation & conclusions: The present results suggest that the leaf and seed extracts of P. dulce have the potential to be used as an ideal eco-friendly approach for the control of mosquitoes.

  19. Larvicidal & ovicidal efficacy of Pithecellobium dulce (Roxb.) Benth. (Fabaceae) against Anopheles stephensi Liston & Aedes aegypti Linn. (Diptera: Culicidae).

    Science.gov (United States)

    Govindarajan, M; Rajeswary, M; Sivakumar, R

    2013-01-01

    In view of the recently increased interest in developing plant origin insecticides as an alternative to chemical insecticide, this study was undertaken to assess the larvicidal and ovicidal potential of the crude hexane, benzene, chloroform, ethyl acetate and methanol solvent extracts from the medicinal plant Pithecellobium dulce against the mosquito vectors, Anopheles stephensi and Aedes aegypti (Diptera: Culicidae). Larvicidal activity of P. dulce plant extracts was studied in the range of 60 to 450 mg/l against early third instar larvae of An. stephensi and Ae. aegypti in the laboratory. The larval mortality was observed after 24 h of exposure. The ovicidal activity was determined against An. stephensi and Ae. aegypti to various concentrations ranging from 100 to 750 mg/l under the laboratory conditions. Mean per cent hatchability of the eggs were observed after 48 h post treatment. All leaf and seed extracts showed moderate larvicidal and ovicidal effects; however, the highest larval mortality was found in methanol extract of leaf of P. dulce against the larvae of An. stephensi and Ae. aegypti with the LC₅₀ and LC₉₀ values 145.43, 155.78 mg/l and 251.23, 279.73 mg/l, respectively. The per cent hatchability was inversely proportional to the concentration of extract and directly proportional to the eggs. Zero hatchability was observed at 400 mg/l for leaf methanol extract and 625 mg/l for seed methanol extract of P. dulce against An. stephensi and Ae. aegypti, respectively. Compared to leaf extracts, seed extracts have low potency against the two mosquitoes. The present results suggest that the leaf and seed extracts of P. dulce have the potential to be used as an ideal eco-friendly approach for the control of mosquitoes.

  20. Chemical Composition of Buddleja polystachya Aerial Parts and its Bioactivity against Aedes aegypti.

    Science.gov (United States)

    El-Gamal, Ali; Al-Massarani, Shaza; Fawzy, Ghada; Ati, Hanan; Al-Rehaily, Adnan; Basudan, Omer; Abdel-Kader, Maged; Tabanca, Nurhayat; Becnel, James

    2017-09-25

    A new acylatediridoid glycoside, 6-O-α-L-(2″-acetyl-4″-O-trans-isoferuloyl) rhamnopyranosyl catalpol (9) together with 18 known compounds belonging to the iridoids, flavonoids, triterpene saponin glycosides and phenylethanoids (1-8, 10-18) were isolated from the aerial parts and the flowers of Buddleja polystachya. Their structures were elucidated on the basis of spectroscopic evidence and comparison with that reported in the literature. Promising adulticidal activity was shown for all extracts when tested for adulticidal and larvicidal activities against Ae. aegypti mosquitoes. Therefore, isolated compounds (1-10, 12-14 and 19) were bioassayed for their adulticidal activity. Compound 1 (phytol) was highly active with an LD 50 value of 1.27 ± 0.08 μg/mosquito against adult female Ae. aegypti.

  1. Tratamento focal e perifocal contra Aëdes aegypti

    Directory of Open Access Journals (Sweden)

    Milton Moura Lima

    1987-06-01

    Full Text Available Em quatro bairros da cidade do Rio de Janeiro, foram feitos ensaios de tratamento focal com abate granulado a 1 ppm e perifocal com pó molhável de Sumition a 2,5%. Esses tratamentos foram feitos tanto isoladamente quanto em conjunto e, também, associados à aplicação de inseticida a ultrabaixo volume. Os índices prediais, levantados um mês depois de terminado o trabalho, mostraram que o tratamento focal dispensa qualquer medida auxiliar. O tratamento perifocal mostrou-se inócuo e incapaz de impedir o aparecimento de larvas de Aëdes aegypti e de outros insetos, em pneus pintados, na face externa, com Sumition e com Malation.In four districts of the city of Rio dc Janeiro focal treatment essays with granulated Abate at 1 ppm and perifocal treatment essays with wettable powder of Sumithion at 2,5% were performed. These were made either alone or in combination as well as associated to insecticides applied at ultra low volume. The premise indices obtained one month after the treatments indicates that the focal treatment alone is effective, no other addicional methods being necessary. The perifocal treatment is not effective and did not prevent the development of Aedes aegypti larvae and other insects in tires which had their external surface painted with Sumithion and Malathion.

  2. Temporal distribution and insecticide resistance profile of two major arbovirus vectors Aedes aegypti and Aedes albopictus in Yaoundé, the capital city of Cameroon.

    Science.gov (United States)

    Kamgang, Basile; Yougang, Aurelie P; Tchoupo, Micareme; Riveron, Jacob M; Wondji, Charles

    2017-10-10

    Aedes aegypti and Ae. albopictus are the major epidemic vectors of several arbovirus diseases such as yellow fever, dengue, Zika and chikungunya worldwide. Both Aedes vectors are presents in Cameroon; however, knowledge on the dynamic of the distribution of these species across cities and their resistance profile to insecticide are limited. Here, we assessed the current distribution of Ae. aegypti and Ae. albopictus in Yaoundé, the Capital City, established the resistance profile to insecticides and explored the resistance mechanisms involved. Immature stages of Aedes were sampled in several breeding sites in December 2015 (dry season) and June 2016 (rainy season) in three central neighborhoods and four peripheral neighborhoods and reared to adult stage. The G0 adults were used for molecular identification and genotyping of F1534C mutation in Ae. aegypti. Bioassays and piperonyl butoxide (PBO) assays were carried out according to WHO guidelines. Analysis revealed that both species Ae. aegypti and Ae. albopictus are present in all prospected sites in Yaounde. However, in the dry season Ae. aegypti is most abundant in neighborhoods located in downtown. In contrast, Ae. albopictus was found most prevalent in suburbs whatever the season and in downtown during the rainy season. Bioassay analysis showed that both Ae. aegypti and Ae. albopictus, are resistant to 0.05% deltamethrin, 0.1% bendiocarb and 4% dichlorodiphenyltrichloroethane (DDT). A decreased of susceptibility to 0.75% permethrin and a full susceptibility to malathion 5% was observed. The mortality rate was increased after pre-exposure to synergist PBO. None of Ae. aegypti assayed revealed the presence of F1534C mutation. These findings are useful to planning vector control programme against arbovirus vectors in Cameroon and can be used as baseline in Africa where data on Aedes resistance is very scarce to plan further works.

  3. Ecological studies on the breeding of Aedes aegypti and other mosquitos in shells of the giant African snail Achatina fulica

    Science.gov (United States)

    Trpis, Milan

    1973-01-01

    The breeding of larvae of Aedes aegypti, Aedes simpsoni, and Eretmapodites quinquevittatus in empty shells of Achatina fulica was studied in the coastal zone of Dar es Salaam, Tanzania. The average density of shells was estimated to be 228 per ha. From 11 to 35% were positive for mosquito larvae. A. aegypti were found in 82-84% of positive shells; A. simpsoni in 8-13%. On Msasani peninsula, during the 3-month rainy season April—June 1970, the larval density of A. aegypti in shells was estimated at 1 100 per ha, that of A. simpsoni and E. quinquevittatus being estimated at 60 and 280 larvae per ha, respectively. Empty shells of A. fulica may contain up to 250 ml of water (average: 56.5 ml). The number of larvae per shell varies from 1 to 35 (average: 8.4) and it was estimated that, depending on the availability of food, and other factors, approximately 10 ml of water are required per larva. Viable eggs of A. aegypti were still to be found in 4% of the shells at the end of the dry season. PMID:4148745

  4. Laboratory Evaluation of a Novel Lethal Ovitrap for Control of Aedes aegypti

    Science.gov (United States)

    Aedes aegypti and Aedes albopictus are known to flourish in a variety of natural and residential habitats and are competent vectors of at least 22 different arboviruses including dengue, chikungunya, and zika. Their global distribution, anthropophilic nature, and vector competency make them species ...

  5. Wolbachia Blocks Currently Circulating Zika Virus Isolates in Brazilian Aedes aegypti Mosquitoes.

    Science.gov (United States)

    Dutra, Heverton Leandro Carneiro; Rocha, Marcele Neves; Dias, Fernando Braga Stehling; Mansur, Simone Brutman; Caragata, Eric Pearce; Moreira, Luciano Andrade

    2016-06-08

    The recent association of Zika virus with cases of microcephaly has sparked a global health crisis and highlighted the need for mechanisms to combat the Zika vector, Aedes aegypti mosquitoes. Wolbachia pipientis, a bacterial endosymbiont of insect, has recently garnered attention as a mechanism for arbovirus control. Here we report that Aedes aegypti harboring Wolbachia are highly resistant to infection with two currently circulating Zika virus isolates from the recent Brazilian epidemic. Wolbachia-harboring mosquitoes displayed lower viral prevalence and intensity and decreased disseminated infection and, critically, did not carry infectious virus in the saliva, suggesting that viral transmission was blocked. Our data indicate that the use of Wolbachia-harboring mosquitoes could represent an effective mechanism to reduce Zika virus transmission and should be included as part of Zika control strategies. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  6. Abundance and prevalence of Aedes aegypti immatures and relationships with household water storage in rural areas in southern Viet Nam.

    Science.gov (United States)

    Nguyen, Le Anh P; Clements, Archie C A; Jeffery, Jason A L; Yen, Nguyen Thi; Nam, Vu Sinh; Vaughan, Gregory; Shinkfield, Ramon; Kutcher, Simon C; Gatton, Michelle L; Kay, Brian H; Ryan, Peter A

    2011-06-01

    Since 2000, the Government of Viet Nam has committed to provide rural communities with increased access to safe water through a variety of household water supply schemes (wells, ferrocement tanks and jars) and piped water schemes. One possible, unintended consequence of these schemes is the concomitant increase in water containers that may serve as habitats for dengue mosquito immatures, principally Aedes aegypti. To assess these possible impacts we undertook detailed household surveys of Ae. aegypti immatures, water storage containers and various socioeconomic factors in three rural communes in southern Viet Nam. Positive relationships between the numbers of household water storage containers and the prevalence and abundance of Ae. aegypti immatures were found. Overall, water storage containers accounted for 92-97% and 93-96% of the standing crops of III/IV instars and pupae, respectively. Interestingly, households with higher socioeconomic levels had significantly higher numbers of water storage containers and therefore greater risk of Ae. aegypti infestation. Even after provision of piped water to houses, householders continued to store water in containers and there was no observed decrease in water storage container abundance in these houses, compared to those that relied entirely on stored water. These findings highlight the householders' concerns about the limited availability of water and their strong behavoural patterns associated with storage of water. We conclude that household water storage container availability is a major risk factor for infestation with Ae. aegypti immatures, and that recent investment in rural water supply infrastructure are unlikely to mitigate this risk, at least in the short term.

  7. Aedes aegypti Larvicidal Sesquiterpene Alkaloids from Maytenus oblongata.

    Science.gov (United States)

    Touré, Seindé; Nirma, Charlotte; Falkowski, Michael; Dusfour, Isabelle; Boulogne, Isabelle; Jahn-Oyac, Arnaud; Coke, Maïra; Azam, Didier; Girod, Romain; Moriou, Céline; Odonne, Guillaume; Stien, Didier; Houël, Emeline; Eparvier, Véronique

    2017-02-24

    Four new sesquiterpene alkaloids (1-4) with a β-dihydroagrofuran skeleton and a new triterpenoid (5) were isolated from an ethyl acetate extract of Maytenus oblongata stems. Their structures were elucidated using 1D and 2D NMR spectroscopy as well as MS and ECD experiments. The M. oblongata stem EtOAc extract and the pure compounds isolated were tested for larvicidal activity against Aedes aegypti under laboratory conditions, and compounds 2 and 3 were found to be active.

  8. Increasing Role of Roof Gutters as Aedes aegypti (Diptera: Culicidae Breeding Sites in Guadeloupe (French West Indies and Consequences on Dengue Transmission and Vector Control

    Directory of Open Access Journals (Sweden)

    Joël Gustave

    2012-01-01

    Full Text Available During the past ten years, the islands of Guadeloupe (French West Indies are facing dengue epidemics with increasing numbers of cases and fatal occurrences. The vector Aedes aegypti is submitted to intensive control, with little effect on mosquito populations. The hypothesis that important Ae. aegypti breeding sites are not controlled is investigated herein. For that purpose, the roof gutters of 123 houses were systematically investigated, and the percentage of gutters positive for Ae. aegypti varied from 17.2% to 37.5%, from humid to dry locations. In the dryer location, most of houses had no other breeding sites. The results show that roof gutters are becoming the most important Ae. aegypti breeding sites in some locations in Guadeloupe, with consequences on dengue transmission and vector control.

  9. Larval development of Aedes aegypti and Aedes albopictus in peri-urban brackish water and its implications for transmission of arboviral diseases.

    Directory of Open Access Journals (Sweden)

    Ranjan Ramasamy

    2011-11-01

    Full Text Available Aedes aegypti (Linnaeus and Aedes albopictus Skuse mosquitoes transmit serious human arboviral diseases including yellow fever, dengue and chikungunya in many tropical and sub-tropical countries. Females of the two species have adapted to undergo preimaginal development in natural or artificial collections of freshwater near human habitations and feed on human blood. While there is an effective vaccine against yellow fever, the control of dengue and chikungunya is mainly dependent on reducing freshwater preimaginal development habitats of the two vectors. We show here that Ae. aegypti and Ae. albopictus lay eggs and their larvae survive to emerge as adults in brackish water (water with 30 ppt salt are termed fresh, brackish and saline respectively. Brackish water with salinity of 2 to 15 ppt in discarded plastic and glass containers, abandoned fishing boats and unused wells in coastal peri-urban environment were found to contain Ae. aegypti and Ae. albopictus larvae. Relatively high incidence of dengue in Jaffna city, Sri Lanka was observed in the vicinity of brackish water habitats containing Ae. aegypti larvae. These observations raise the possibility that brackish water-adapted Ae. aegypti and Ae. albopictus may play a hitherto unrecognized role in transmitting dengue, chikungunya and yellow fever in coastal urban areas. National and international health authorities therefore need to take the findings into consideration and extend their vector control efforts, which are presently focused on urban freshwater habitats, to include brackish water larval development habitats.

  10. Determinants of heterogeneous blood feeding patterns by Aedes aegypti in Iquitos, Peru.

    Science.gov (United States)

    Liebman, Kelly A; Stoddard, Steven T; Reiner, Robert C; Perkins, T Alex; Astete, Helvio; Sihuincha, Moises; Halsey, Eric S; Kochel, Tadeusz J; Morrison, Amy C; Scott, Thomas W

    2014-02-01

    Heterogeneous mosquito biting results in different individuals in a population receiving an uneven number of bites. This is a feature of many vector-borne disease systems that, if understood, could guide preventative control efforts toward individuals who are expected to contribute most to pathogen transmission. We aimed to characterize factors determining biting patterns of Aedes aegypti, the principal mosquito vector of dengue virus. Engorged female Ae. aegypti and human cheek swabs were collected from 19 houses in Iquitos, Peru. We recorded the body size, age, and sex of 275 consenting residents. Movement in and out of the house over a week (time in house) and mosquito abundance were recorded on eight separate occasions in each household over twelve months. We identified the individuals bitten by 96 engorged mosquitoes over this period by amplifying specific human microsatellite markers in mosquito blood meals and human cheek swabs. Using a multinomial model assuming a saturating relationship (power), we found that, relative to other residents of a home, an individual's likelihood of being bitten in the home was directly proportional to time spent in their home and body surface area (ptime at home are more likely to receive Ae. aegypti bites in their homes than other household residents. These findings are consistent with the idea that measurable characteristics of individuals can inform predictions of the extent to which different people will be bitten. This has implications for an improved understanding of heterogeneity in different people's contributions to pathogen transmission, and enhanced interventions that include the people and places that contribute most to pathogen amplification and spread.

  11. The Influence of Dengue Virus Serotype-2 Infection on Aedes aegypti (Diptera: Culicidae) Motivation and Avidity to Blood Feed

    OpenAIRE

    Maciel-de-Freitas, Rafael; Sylvestre, Gabriel; Gandini, Mariana; Koella, Jacob C.

    2013-01-01

    BACKGROUND: Dengue virus (DENV) is transmitted by Aedes aegypti, a species that lives in close association with human dwellings. The behavior of DENV-infected mosquitoes needs further investigation, especially regarding the potential influence of DENV on mosquito biting motivation and avidity. METHODOLOGY/PRINCIPAL FINDINGS: We orally challenged 4-5 day-old Ae. aegypti females with a low passage DENV serotype -2 (DENV-2) to test whether the virus influences motivation to feed (the likelihood ...

  12. Oviposition Site Selection by the Dengue Vector Aedes aegypti and Its Implications for Dengue Control

    Science.gov (United States)

    Wong, Jacklyn; Stoddard, Steven T.; Astete, Helvio; Morrison, Amy C.; Scott, Thomas W.

    2011-01-01

    Background Because no dengue vaccine or antiviral therapy is commercially available, controlling the primary mosquito vector, Aedes aegypti, is currently the only means to prevent dengue outbreaks. Traditional models of Ae. aegypti assume that population dynamics are regulated by density-dependent larval competition for food and little affected by oviposition behavior. Due to direct impacts on offspring survival and development, however, mosquito choice in oviposition site can have important consequences for population regulation that should be taken into account when designing vector control programs. Methodology/Principal Findings We examined oviposition patterns by Ae. aegypti among 591 naturally occurring containers and a set of experimental containers in Iquitos, Peru. Using larval starvation bioassays as an indirect measure of container food content, we assessed whether females select containers with the most food for their offspring. Our data indicate that choice of egg-laying site is influenced by conspecific larvae and pupae, container fill method, container size, lid, and sun exposure. Although larval food positively influenced oviposition, our results did not support the hypothesis that females act primarily to maximize food for larvae. Females were most strongly attracted to sites containing immature conspecifics, even when potential competitors for their progeny were present in abundance. Conclusion/Significance Due to strong conspecific attraction, egg-laying behavior may contribute more to regulating Ae. aegypti populations than previously thought. If highly infested containers are targeted for removal or larvicide application, females that would have preferentially oviposited in those sites may instead distribute their eggs among other suitable, previously unoccupied containers. Strategies that kill mosquitoes late in their development (i.e., insect growth regulators that kill pupae rather than larvae) will enhance vector control by creating

  13. Aedes aegypti entomological indices in an endemic area for dengue in Sao Paulo State, Brazil

    Directory of Open Access Journals (Sweden)

    Eliane A Favaro

    2013-06-01

    Full Text Available OBJECTIVE: To evaluate the most productive types of properties and containers for Aedes aegypti and the spatial distribution of entomological indices. METHODS: Between December 2006 and February 2007, the vector's immature forms were collected to obtain entomological indices in 9,875 properties in the Jaguare neighborhood of Sao Jose do Rio Preto, SP, Southeastern Brazil. In March and April 2007, a questionnaire about the conditions and characteristics of properties was administered. Logistic regression was used to identify variables associated with the presence of pupae at the properties. Indices calculated per block were combined with a geo-referenced map, and thematic maps of these indices were obtained using statistical interpolation. RESULTS: The properties inspected had the following Ae. aegypti indices: Breteau Index = 18.9, 3.7 larvae and 0.42 pupae per property, 5.2 containers harboring Ae. aegypti per hectare, 100.0 larvae and 11.6 pupae per hectare, and 1.3 larvae and 0.15 pupae per inhabitant. The presence of yards, gardens and animals was associated with the presence of pupae. CONCLUSIONS: Specific types of properties and containers that simultaneously had low frequencies among those positive for the vector and high participation in the productivity of larvae and pupae were not identified. The use of indices including larval and pupal counts does not provide further information beyond that obtained from the traditional Stegomyia indices in locations with characteristics similar to those of São José do Rio Preto. The indices calculated per area were found to be more accurate for the spatial assessment of infestation. The Ae. aegypti infestation levels exhibited extensive spatial variation, indicating that the assessment of infestation in micro areas is needed.

  14. Fatores associados à ocorrência de formas imaturas de Aedes aegypti na Ilha do Governador, Rio de Janeiro, Brasil Factors associated to the ocurrence of immature forms of Aedes aegypti in the Ilha do Governador, Rio de Janeiro, Brazil

    Directory of Open Access Journals (Sweden)

    Reinaldo Souza-Santos

    1999-08-01

    Full Text Available Aedes aegypti é o vetor urbano da dengue, doença que pode resultar em epidemias. Estudos ecológicos tornam-se importantes uma vez que populações do vetor de diferentes áreas podem diferir quanto a características bio-ecológicas, relevantes para orientar ações de controle. Este trabalho objetiva identificar e analisar fatores associados à ocorrência de formas imaturas de A. aegypti na Ilha do Governador, Rio de Janeiro, a partir dos dados da Fundação Nacional de Saúde (FNS. Os resultados mostram que 58,04% do total de criadouros inspecionados foram constituídos por suportes para vasos com plantas, vasilhames de plástico ou vidro abandonados no peridomicílio. Maiores percentuais de criadouros positivos foram observados para pneus (1,41%, tanques, poços e cisternas (0,93%, e barris, tonéis e tinas (0,64%. Maiores proporções de criadouros positivos durante o verão foram as dos grandes reservatórios de água e a dos criadouros provenientes do lixo doméstico. No inverno, verificamos maior valor para os pequenos reservatórios de água para uso doméstico. As maiores proporções de criadouros positivos foram observadas após três meses sem atividades da FNS. A análise fatorial mostrou que o principal fator determinante da ocorrência de fases imaturas de A. aegypti é aquele que leva em consideração os fatores meteorológicos. A eliminação e tratamento de criadouros pelos agentes da FNS apresentaram-se como menos importantes. Tais fatos apontam a necessidade de controle contínuo, indicando menor atenção da FNS, durante o inverno, em relação aos pequenos reservatórios, que podem manter formas imaturas de A. aegypti.Aedes aegypti is the vector of dengue, a disease that can result in epidemics. Ecological studies are important because different geographical populations of the vector may differ in their bio-ecological characteristics, which can be helpful in guiding control actions. The objective of this study was to

  15. Effects of insemination and blood-feeding on locomotor activity of Aedes albopictus and Aedes aegypti (Diptera: Culicidae) females under laboratory conditions

    OpenAIRE

    Lima-Camara, Tamara N; Lima, José B P; Bruno, Rafaela V; Peixoto, Alexandre A

    2014-01-01

    Abstract Background Dengue is an arbovirus disease transmitted by two Aedes mosquitoes: Ae. aegypti and Ae. albopictus. Virgin females of these two species generally show a bimodal and diurnal pattern of activity, with early morning and late afternoon peaks. Although some studies on the flight activity of virgin, inseminated and blood-fed Ae. aegypti females have been carried out under laboratory conditions, little...

  16. Persistência e eficácia do regulador de crescimento pyriproxyfen em condições de laboratório para Aedes aegypti Persistence and efficacy of growth regulator pyriproxyfen in laboratory conditions for Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Marcelo Carvalho de Resende

    2006-02-01

    Full Text Available A persistência e a eficácia do regulador de crescimento pyriproxyfen foram testadas em concentrações de 0,01 e 0,05ppm, contra larvas de Aedes aegypti, utilizando os recipientes caixas d'água (45 litros, frascos de vidro (5 litros e baldes de plástico (20 litros. As avaliações foram nos dias 1, 7, 15, 30, 45, 60, 90 e 120 após o tratamento usando larvas de 3º e 4º estádio de Aedes aegypti. Foi calculado o percentual de mortalidade de larvas, pupas e adultos, percentual de inibição de emergência de adulto e duração dos bioensaios. Observou-se que a persistência foi de 45 dias e 90 dias para concentração final de 0,01 e 0,05ppm de pyriproxyfen, respectivamente. Observamos que a mortalidade de pupas foi significativamente maior que a de larvas e de adultos para todos os recipientes e concentrações.The persistence and efficacy of growth regulator pyriproxyfen were evaluated in two final concentrations 0.01 and 0.05ppm against Aedes aegypti larvae in laboratory conditions using three types of containers: cement box (45 liters, glass bottle (5 litersand plastic bucket (20 liters. The tests were carried after 1, 7, 15, 30, 45, 60, 90 and 120 days of treatment against Aedes aegypti larvae 3rd and 4th instar. The percentages of larvae, pupae and adult mortality, the percentage of adult emergence inhibition and time duration of bioassays were calculated. A was observed a persistence of 45 and 90 days by using 0.01 and 0.05ppm final concentrations of pyriproxyfen, respectively, was observed. We observed that mortality in the pupa stage was significantly higher than larvae and adults mortality for all containers and concentrations.

  17. Field Validation of a Transcriptional Assay for the Prediction of Age of Uncaged Aedes aegypti Mosquitoes in Northern Australia

    Science.gov (United States)

    Hugo, Leon E.; Cook, Peter E.; Johnson, Petrina H.; Rapley, Luke P.; Kay, Brian H.; Ryan, Peter A.; Ritchie, Scott A.; O'Neill, Scott L.

    2010-01-01

    Background New strategies to eliminate dengue have been proposed that specifically target older Aedes aegypti mosquitoes, the proportion of the vector population that is potentially capable of transmitting dengue viruses. Evaluation of these strategies will require accurate and high-throughput methods of predicting mosquito age. We previously developed an age prediction assay for individual Ae. aegypti females based on the transcriptional profiles of a selection of age responsive genes. Here we conducted field testing of the method on Ae. aegypti that were entirely uncaged and free to engage in natural behavior. Methodology/Principal Findings We produced “free-range” test specimens by releasing 8007 adult Ae. aegypti inside and around an isolated homestead in north Queensland, Australia, and recapturing females at two day intervals. We applied a TaqMan probe-based assay design that enabled high-throughput quantitative RT-PCR of four transcripts from three age-responsive genes and a reference gene. An age prediction model was calibrated on mosquitoes maintained in small sentinel cages, in which 68.8% of the variance in gene transcription measures was explained by age. The model was then used to predict the ages of the free-range females. The relationship between the predicted and actual ages achieved an R2 value of 0.62 for predictions of females up to 29 days old. Transcriptional profiles and age predictions were not affected by physiological variation associated with the blood feeding/egg development cycle and we show that the age grading method could be applied to differentiate between two populations of mosquitoes having a two-fold difference in mean life expectancy. Conclusions/Significance The transcriptional profiles of age responsive genes facilitated age estimates of near-wild Ae. aegypti females. Our age prediction assay for Ae. aegypti provides a useful tool for the evaluation of mosquito control interventions against dengue where mosquito

  18. Field validation of a transcriptional assay for the prediction of age of uncaged Aedes aegypti mosquitoes in Northern Australia.

    Directory of Open Access Journals (Sweden)

    Leon E Hugo

    Full Text Available BACKGROUND: New strategies to eliminate dengue have been proposed that specifically target older Aedes aegypti mosquitoes, the proportion of the vector population that is potentially capable of transmitting dengue viruses. Evaluation of these strategies will require accurate and high-throughput methods of predicting mosquito age. We previously developed an age prediction assay for individual Ae. aegypti females based on the transcriptional profiles of a selection of age responsive genes. Here we conducted field testing of the method on Ae. aegypti that were entirely uncaged and free to engage in natural behavior. METHODOLOGY/PRINCIPAL FINDINGS: We produced "free-range" test specimens by releasing 8007 adult Ae. aegypti inside and around an isolated homestead in north Queensland, Australia, and recapturing females at two day intervals. We applied a TaqMan probe-based assay design that enabled high-throughput quantitative RT-PCR of four transcripts from three age-responsive genes and a reference gene. An age prediction model was calibrated on mosquitoes maintained in small sentinel cages, in which 68.8% of the variance in gene transcription measures was explained by age. The model was then used to predict the ages of the free-range females. The relationship between the predicted and actual ages achieved an R(2 value of 0.62 for predictions of females up to 29 days old. Transcriptional profiles and age predictions were not affected by physiological variation associated with the blood feeding/egg development cycle and we show that the age grading method could be applied to differentiate between two populations of mosquitoes having a two-fold difference in mean life expectancy. CONCLUSIONS/SIGNIFICANCE: The transcriptional profiles of age responsive genes facilitated age estimates of near-wild Ae. aegypti females. Our age prediction assay for Ae. aegypti provides a useful tool for the evaluation of mosquito control interventions against dengue where

  19. Susceptibility of adult female Aedes aegypti (Diptera: Culicidae to the entomopathogenic fungus Metarhizium anisopliae is modified following blood feeding

    Directory of Open Access Journals (Sweden)

    Samuels Richard I

    2011-05-01

    Full Text Available Abstract Background The mosquito Aedes aegypti, vector of dengue fever, is a target for control by entomopathogenic fungi. Recent studies by our group have shown the susceptibility of adult A. aegypti to fungal infection by Metarhizium anisopliae. This fungus is currently being tested under field conditions. However, it is unknown whether blood-fed A. aegypti females are equally susceptible to infection by entomopathogenic fungi as sucrose fed females. Insect populations will be composed of females in a range of nutritional states. The fungus should be equally efficient at reducing survival of insects that rest on fungus impregnated surfaces following a blood meal as those coming into contact with fungi before host feeding. This could be an important factor when considering the behavior of A. aegypti females that can blood feed on multiple hosts over a short time period. Methods Female A. aegypti of the Rockefeller strain and a wild strain were infected with two isolates of the entomopathogenic fungus M. anisopliae (LPP 133 and ESALQ 818 using an indirect contact bioassay at different times following blood feeding. Survival rates were monitored on a daily basis and one-way analysis of variance combined with Duncan's post-hoc test or Log-rank survival curve analysis were used for statistical comparisons of susceptibility to infection. Results Blood feeding rapidly reduced susceptibility to infection, determined by the difference in survival rates and survival curves, when females were exposed to either of the two M. anisopliae isolates. Following a time lag which probably coincided with digestion of the blood meal (96-120 h post-feeding, host susceptibility to infection returned to pre-blood fed (sucrose fed levels. Conclusions Reduced susceptibility of A. aegypti to fungi following a blood meal is of concern. Furthermore, engorged females seeking out intra-domicile resting places post-blood feeding, would be predicted to rest for prolonged

  20. Susceptibility of adult female Aedes aegypti (Diptera: Culicidae) to the entomopathogenic fungus Metarhizium anisopliae is modified following blood feeding.

    Science.gov (United States)

    Paula, Adriano R; Carolino, Aline T; Silva, Carlos P; Samuels, Richard I

    2011-05-26

    The mosquito Aedes aegypti, vector of dengue fever, is a target for control by entomopathogenic fungi. Recent studies by our group have shown the susceptibility of adult A. aegypti to fungal infection by Metarhizium anisopliae. This fungus is currently being tested under field conditions. However, it is unknown whether blood-fed A. aegypti females are equally susceptible to infection by entomopathogenic fungi as sucrose fed females. Insect populations will be composed of females in a range of nutritional states. The fungus should be equally efficient at reducing survival of insects that rest on fungus impregnated surfaces following a blood meal as those coming into contact with fungi before host feeding. This could be an important factor when considering the behavior of A. aegypti females that can blood feed on multiple hosts over a short time period. Female A. aegypti of the Rockefeller strain and a wild strain were infected with two isolates of the entomopathogenic fungus M. anisopliae (LPP 133 and ESALQ 818) using an indirect contact bioassay at different times following blood feeding. Survival rates were monitored on a daily basis and one-way analysis of variance combined with Duncan's post-hoc test or Log-rank survival curve analysis were used for statistical comparisons of susceptibility to infection. Blood feeding rapidly reduced susceptibility to infection, determined by the difference in survival rates and survival curves, when females were exposed to either of the two M. anisopliae isolates. Following a time lag which probably coincided with digestion of the blood meal (96-120 h post-feeding), host susceptibility to infection returned to pre-blood fed (sucrose fed) levels. Reduced susceptibility of A. aegypti to fungi following a blood meal is of concern. Furthermore, engorged females seeking out intra-domicile resting places post-blood feeding, would be predicted to rest for prolonged periods on fungus impregnated black cloths, thus optimizing infection

  1. Chemical constituents and antiedematogenic activity of Peltodon radicans (Lamiaceae); Constituintes quimicos e atividade antiedematogenica de Peltodon radicans (Lamiaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Habdel Nasser Rocha da [Universidade Federal de Roraima, Boa Vista, RR (Brazil). Centro de Ciencias e Tecnologia. Dept. de Quimica; Santos, Maria Cristina dos [Universidade Federal do Amazonas, Manaus, AM (Brazil). Inst. de Ciencias Biologicas. Dept. de Parasitologia; Alcantara, Antonio Flavio de Carvalho; Silva, Marilda Conceicao; Franca, Roberta Cabral; Pilo-Veloso, Dorila [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Inst. de Ciencias Exatas. Dept. de Quimica]. E-mail: aalcantara@zeus.qui.ufmg.br

    2008-07-01

    Most of the snakebite incidents in the Amazon region involve Bothrops atrox, whose venom presents the most potent edematogenic and necrotic activities in the genus. This work describes the studies of isolation of the chemical constituents and antiedematogenic activity of the species Peltodon radicans (Lamiaceae), which is used in the treatment of snakebites and scorpion stings in the region. The extracts presented aliphatic hydrocarbons, 3{beta}-OH,{beta}-amirin (1), 3{beta}-OH,a-amirin (2), {beta}-sitosterol (3), stigmasterol (4), ursolic acid (5), 2{alpha},3{beta},19{alpha}- trihydroxy-urs-12-en-28-oic acid (tormentic acid, 6), methyl 3{beta}-hydroxy,28-methyl-ursolate (7), sitosterol-3-O-{beta}-D-glucopyranoside (8), and stigmasterol-3-O-{beta}-D-glucopyranoside (9). The flower extracts presented the higher antiedematogenic activity. This is the first report on the study of the flowers, stem, and roots of this plant. (author)

  2. Chemical constituents and antioxidant activity of Byrsonima gardneriana (Malpighiaceae); Constituintes quimicos e atividade antioxidante de Byrsonima gardneriana (Malpighiaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Rolim, Thaisa Leite; Wanderley, Flavia Talita de Sousa; Cunha, Emidio Vasconcelos Leitao da, E-mail: emidio@ltf.ufpb.br [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Centro de Ciencias da Saude. Laboratorio de Tecnologia Farmaceutica Prof. Delby Fernandes de Medeiros; Tavares, Josean Fechine [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Centro de Ciencias da Saude. Departamento de Ciencias Farmaceuticas; Oliveira, Adriana Maria Fernandes de [Universidade Federal de Campina Grande (UFCG), Cajazeiras, PB (Brazil). Unidade Academica de Ciencias da Vida; Assis, Temilce Simoes [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Centro de Ciencias da Saude. Departamento de Fisiologia e Patologia

    2013-09-01

    The phytochemical investigation of Byrsonima gardneriana led to the isolation of five triterpenes and one flavonoid: D:B-Friedoolean-5-en-3-one (1), friedoolean-14-en-3-one (2), friedelan-3-one (3), lup-20(29)-en-3-ol (4), 3{beta}-hydroxiolean-12-ene (5) and 3,3',4',5,7-pentahydroxyflavan (6). Their structures were assigned based on spectroscopic analyses, including two-dimensional NMR techniques and comparison with published spectral data. Antioxidant activities of ethanol extract and phases were measured using the 1,2-diphenyl- 2-picryl-hydrazyl (DPPH) free radical scavenging assay, evaluation of total phenolic content and trolox equivalent antioxidant capacity (TEAC). (author)

  3. Chemical constituents of leaves from Riedeliella graciliflora Harms (Leguminosae); Constituintes quimicos das folhas de Riedeliella graciliflora Harms (Leguminosae)

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Mayker Lazaro Dantas; Souza, Alex Fonseca; Rodrigues, Edilene Delphino; Garcez, Fernanda Rodrigues; Garcez, Walmir Silva, E-mail: walmir.garcez@ufms.br [Universidade Federal de Mato Grosso do Sul, Campo Grande, MS (Brazil). Dept. de Quimica; Abot, Alfredo [Universidade Estadual de Mato Grosso do Sul (UEMGS), Aquidauana, MS (Brazil). Unidade Universitaria de Aquidauana

    2012-07-01

    A new salicylic acid derivative, pentacosanyl salicylate, was isolated from the leaves of the plant toxic to cattle, Riedeliella graciliflora, in addition to a digalactosyldiacylglycerol (DGDG), 1,2-di-O-{alpha}-linolenoy1-3-O-{alpha}-D-galactopyranosy1 -(1{yields}6)-{beta}-D-galactopyranosyl-glycerol, kaempferol-3-O-{beta}-D-glucopyranoside, kaempferol-3-O-{alpha}-L-rhamnopyranoside, quercetin-3-O-{alpha}-L-rhamnopyranoside, rutin, (+)-catechin and the dimer (+)-catechin-(4{beta}-8)-catechin, glutinol, squalene, {beta}-sitosterol, stigmasterol, phytol, {beta}-carotene, a-tocopherol and ficaprenol-12. Their structures were determined using spectral techniques (MS, IR, and NMR-1D and 2D) and based on literature data. (author)

  4. Chemical constituents and leishmanicidal activity of Gustavia elliptica (Lecythidaceae); Constituintes quimicos e atividade leishmanicida de Gustavia elliptica (Lecythidaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Maria de Fatima Oliveira; Melo, Ana Claudia Rodrigues de; Pinheiro, Maria Lucia Belem; Silva, Jefferson Rocha de Andrade; Souza, Afonso Duarte Leao de, E-mail: souzadq@ufam.edu.br [Universidade Federal do Amazonas (UFAM), Manaus, AM (Brazil). Dept. de Quimica; Barison, Andersson; Campos, Francinete Ramos [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept. de Quimica; Amaral, Ana Claudia Fernandes [Fundacao Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ (Brazil). Instituto de Tecnologia de Farmacos. Farmanguinhos; Machado, Gerzia Maria de Carvalho; Leon, Leonor Laura Pinto [Fundacao Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ (Brazil). Dept. de Imunologia

    2011-07-01

    The phyto chemical investigation of the stem bark and leaves of G. elliptica provided a mixture of the norisoprenoids blumenol B and 6-epi blumenol B along with the triterpenes friedelin, as the major constituent, friedelan ol, ursa-9(11),12-dien-3-ol, a-amyrin, b-amyrin, morentenol, epifriedelanol, as well as the sesquiterpenes trans-caryophyllene, a-humulene, ethyl hydnocarpate and other fatty acid esters. The identification of the compounds was performed on basis of spectrometric methods such as GC-MS, IR, MS and 1D and 2D NMR. Stem bark extracts showed significant leishmanicidal activity against promastigote forms of Leishmania braziliensis, with the best results for the chloroform extract. (author)

  5. Repellent activity of Cnidoscolus phyllacanthus Mart. and Ricinus communis L. extracts against Aedes aegypti L. oviposition behavior

    Directory of Open Access Journals (Sweden)

    Lafayette Pereira Candido

    2015-12-01

    Full Text Available Female Aedes aegypti lay their eggs on nearly any moist substrate. Methods with potential to repel oviposition may reduce infestation, thereby contributing to control of epidemics. We evaluated the influence of Cnidoscolus phyllacanthus and Ricinus communis plant extracts on the oviposition behavior of A. aegypti. Lethal concentrations were first determined in experiments with larvae after 24 h of exposure, after which LC50 and LC90 were used to test oviposition repellency. The experiment consisted of an oviposition preference test based multiple-choice and no-choice assays. The Oviposition Activity Indices (OAIs from the multiple-choice test using both R. communis and C. phyllacanthus were negative, suggesting oviposition repellent and deterrent activity. The LC90 of both plant extracts deterred oviposition by this vector, as demonstrated by an OAI = value of -1. In the choice study, mean oviposition values were significantly different between R. communis and C. phyllacanthus. In the absence of choice, mosquitoes laid eggs independent of the substrate. In conclusion, our OAI values indicate that all substrates used repelled oviposition by A. aegypti.

  6. Treatment of horses with cypermethrin against the biting flies Culicoides nubeculosus, Aedes aegypti and Culex quinquefasciatus.

    Science.gov (United States)

    Papadopoulos, E; Rowlinson, M; Bartram, D; Carpenter, S; Mellor, P; Wall, R

    2010-04-19

    An in vitro assay was used to assess the efficacy of the proprietary pyrethroid insecticide cypermethrin applied to horses (Deosect spray, 5.0%, w/v Fort Dodge Animal Health) against the biting midge Culicoides nubeculosus (Meigen) (Diptera: Ceratopogonidae) and the mosquitoes Aedes aegypti Linneaus and Culex quinquefasciatus Say (Diptera: Culicidae). Hair was collected from the back, belly and legs of the horses immediately prior to treatment and 7, 14, 21, 28 and 35 days after treatment, and also from untreated controls. In laboratory assays groups of 10 adult female C. nubeculosus, Ae. aegypti or C. quinquefasciatus were exposed to 0.5g of hair for 3min. In all cases, little or no mortality was observed in insects kept in contact with the pre-treatment samples or the untreated controls. With post-treatment samples for C. nubeculosus, mortality was close to 80% 7 days after treatment and then declined gradually; mean mortality was still at around 50% for hair collected 35 days after treatment. In general, Ae. aegypti and C. quinquefasciatus appeared to be less susceptible to cypermethrin than C. nubeculosus and the attenuation of the toxic effect declined more quickly with time after treatment. There were differences in the toxicity of hair from different body regions, with hair from the back consistently inducing the highest mortality and hair from the legs the lowest; this effect was more pronounced for C. nubeculosus than Ae. aegypti or C. quinquefasciatus. The results demonstrate the potential for topical insecticide treatment to offer protection to horses against biting flies; but highlight the major differences that exist in susceptibility between different insect species.

  7. UDP-N-Acetyl glucosamine pyrophosphorylase as novel target for controlling Aedes aegypti – molecular modeling, docking and simulation studies

    Directory of Open Access Journals (Sweden)

    Bhagath Kumar Palaka

    2014-12-01

    Full Text Available Aedes aegypti is a vector that transmits diseases like dengue fever, chikungunya, and yellow fever. It is distributed in all tropical and subtropical regions of the world. According to WHO reports, 40% of the world’s population is currently at risk for dengue fever. As vaccines are not available for such diseases, controlling mosquito population becomes necessary. Hence, this study aims at UDP-N-acetyl glucosamine pyrophosphorylase of Aedes aegypti (AaUAP, an essential enzyme for chitin metabolim in insects, as a drug target. Structure of AaUAP was predicted and validated using in-silico approach. Further, docking studies were performed using a set of 10 inhibitors out of which NAG9 was found to have good docking score, which was further supported by simulation studies. Hence, we propose that NAG9 can be considered as a potential hit in designing new inhibitors to control Aedes aegypti.

  8. Ciclo de vida de Aedes (Stegomyia aegypti (Diptera, Culicidae em águas com diferentes características Life cycle of Aedes (Stegomyia aegypti (Diptera, Culicidae in water with different characteristics

    Directory of Open Access Journals (Sweden)

    Eduardo B. Beserra

    2009-09-01

    Full Text Available O trabalho teve por objetivo avaliar o efeito da qualidade da água no desenvolvimento de Aedes aegypti (Linnaeus, 1762. O ciclo de vida desse vetor foi estudado em águas de esgoto bruto, efluente de reator UASB, efluente de lagoa de polimento, efluente de filtro anaeróbio, água de chuva e água desclorada. Diariamente avaliaram-se o período de desenvolvimento e as viabilidades de ovo, larva, pupa, longevidade e a fecundidade dos adultos. A duração do período larval variou de 5,6 a 9,1 dias, sendo a sobrevivência baixa em águas de esgoto bruto, efluente de reator UASB, efluente de lagoa de polimento e efluente de filtro anaeróbio. Não foram observadas diferenças nas durações e viabilidades das fases de ovo e pupa, longevidade e fecundidade dos adultos. Constatou-se que, apesar da baixa viabilidade larval, é possível o desenvolvimento do A. aegypti em águas com elevados graus de poluição e que todos os tratamentos permitiram o desenvolvimento desse vetor.The present work aimed to estimate the effect of water quality in the development of Aedes aegypti (Linnaeus, 1762. The life cycle of this vector was studied in raw sewage water, effluent of UASB reactor, effluent of polishing lagoon, effluent of anaerobic filter, rainwater and de-chlorinated water. The development period, egg viability and larval and pupal survival were evaluated daily as well as the adult longevity and fecundity. The duration of larval period showed a variation of 5.6 to 9.1 days. Survival was considered low in raw sewage water, effluent of UASB reactor, effluent of polishing lagoon and effluent of anaerobic filter. No difference in terms of the duration and egg and pupal viability nor in the adult longevity and fecundity was detected. It was verified that despite a reduction in larval viability, A. aegypti could accomplish total development in waters with high pollution degree and that all the treatments were suitable to the development of this vector.

  9. Screening for larvicidal activity of ethanolic and aqueous extracts of selected plants against Aedes aegypti and Aedes albopictus larvae

    Directory of Open Access Journals (Sweden)

    Michael Russelle Alvarez

    2016-02-01

    Full Text Available Objective: To screen for larvicidal activity of aqueous and ethanolic extracts (95% ethanol from Selaginella elmeri, Christella dentata, Elatostema sinnatum, Curculigo capitulata, Euphorbia hirta, Murraya koenigii (M. koenigii, Alpinia speciosa, Cymbopogon citratus, Eucalyptus globulus (E. globulus, Jatropha curcas (J. curcas, Psidium guajava, Gliricidia sepium, Ixora coccinea and Capsicum frutescens (C. frutescens against Aedes aegypti (A. aegypti and Aedes albopictus (A. albopictus 3rd instar larvae. Methods: Ethanolic and aqueous extracts were screened for larvicidal activity by exposing the A. aegypti and A. albopictus 3rd instar larvae (15 larvae per trial, triplicates for 48 h, counting the mortalities every 24 h. Additionally, phytochemical screening for flavonoids, tannins, alkaloids, anthraquinones, anthrones, coumarins, indoles and steroids were performed on active extracts using spray tests. Results: Against A. aegypti, the three most active extracts were C. frutescens ethanolic (100% after 24 and 48 h, J. curcas ethanolic (84.44% after 24 h and 88.89% after 48 h and M. koenigii ethanolic (53.33% after 24 h and 71.11% after 48 h. On the other hand, against A. albopictus, the three most active extracts were C. frutescens ethanolic (93.33% after 24 h and 100% after 48 h, J. curcas ethanolic (77.78% after 24 h and 82.22% after 48 h and E. globulus ethanolic (64.44% after 24 h and 73.33% after 48 h. Phytochemical screening was also performed on the active extracts, revealing alkaloids, tannins, indoles and steroids. Conclusios: The results demonstrate the larvicidal activities of ethanolic extracts of Cymbopogon citratus, Euphorbia hirta, Ixora coccinea, Gliricidia sepium, M. koenigii, E. globulus, J. curcas and C. frutescens against A. aegypti and A. albopictus 3rd instar larvae. These could be used as potential larvicidal agents for the control of these mosquitoes.

  10. Co-occurrence of point mutations in the voltage-gated sodium channel of pyrethroid-resistant Aedes aegypti populations in Myanmar.

    Science.gov (United States)

    Kawada, Hitoshi; Oo, Sai Zaw Min; Thaung, Sein; Kawashima, Emiko; Maung, Yan Naung Maung; Thu, Hlaing Myat; Thant, Kyaw Zin; Minakawa, Noboru

    2014-01-01

    Single amino acid substitutions in the voltage-gated sodium channel associated with pyrethroid resistance constitute one of the main causative factors of knockdown resistance in insects. The kdr gene has been observed in several mosquito species; however, point mutations in the para gene of Aedes aegypti populations in Myanmar have not been fully characterized. The aim of the present study was to determine the types and frequencies of mutations in the para gene of Aedes aegypti collected from used tires in Yangon City, Myanmar. We determined high pyrethroid resistance in Aedes aegypti larvae at all collection sites in Yangon City, by using a simplified knockdown bioassay. We showed that V1016G and S989P mutations were widely distributed, with high frequencies (84.4% and 78.8%, respectively). By contrast, we were unable to detect I1011M (or I1011V) or L1014F mutations. F1534C mutations were also widely distributed, but with a lower frequency than the V1016G mutation (21.2%). High percentage of co-occurrence of the homozygous V1016G/S989P mutations was detected (65.7%). Additionally, co-occurrence of homozygous V1016G/F1534C mutations (2.9%) and homozygous V1016G/F1534C/S989P mutations (0.98%) were detected in the present study. Pyrethroid insecticides were first used for malaria control in 1992, and have since been constantly used in Myanmar. This intensive use may explain the strong selection pressure toward Aedes aegypti, because this mosquito is generally a domestic and endophagic species with a preference for indoor breeding. Extensive use of DDT for malaria control before the use of this chemical was banned may also explain the development of pyrethroid resistance in Aedes aegypti.

  11. Co-occurrence of Point Mutations in the Voltage-Gated Sodium Channel of Pyrethroid-Resistant Aedes aegypti Populations in Myanmar

    Science.gov (United States)

    Kawada, Hitoshi; Oo, Sai Zaw Min; Thaung, Sein; Kawashima, Emiko; Maung, Yan Naung Maung; Thu, Hlaing Myat; Thant, Kyaw Zin; Minakawa, Noboru

    2014-01-01

    Background Single amino acid substitutions in the voltage-gated sodium channel associated with pyrethroid resistance constitute one of the main causative factors of knockdown resistance in insects. The kdr gene has been observed in several mosquito species; however, point mutations in the para gene of Aedes aegypti populations in Myanmar have not been fully characterized. The aim of the present study was to determine the types and frequencies of mutations in the para gene of Aedes aegypti collected from used tires in Yangon City, Myanmar. Methodology/Principal Findings We determined high pyrethroid resistance in Aedes aegypti larvae at all collection sites in Yangon City, by using a simplified knockdown bioassay. We showed that V1016G and S989P mutations were widely distributed, with high frequencies (84.4% and 78.8%, respectively). By contrast, we were unable to detect I1011M (or I1011V) or L1014F mutations. F1534C mutations were also widely distributed, but with a lower frequency than the V1016G mutation (21.2%). High percentage of co-occurrence of the homozygous V1016G/S989P mutations was detected (65.7%). Additionally, co-occurrence of homozygous V1016G/F1534C mutations (2.9%) and homozygous V1016G/F1534C/S989P mutations (0.98%) were detected in the present study. Conclusions/Significance Pyrethroid insecticides were first used for malaria control in 1992, and have since been constantly used in Myanmar. This intensive use may explain the strong selection pressure toward Aedes aegypti, because this mosquito is generally a domestic and endophagic species with a preference for indoor breeding. Extensive use of DDT for malaria control before the use of this chemical was banned may also explain the development of pyrethroid resistance in Aedes aegypti. PMID:25077956

  12. Effects of sublethal exposure to metofluthrin on the fitness of Aedes aegypti in a domestic setting in Cairns, Queensland.

    Science.gov (United States)

    Buhagiar, Tamara S; Devine, Gregor J; Ritchie, Scott A

    2017-05-31

    Metofluthrin is highly effective at reducing biting activity in Aedes aegypti. Its efficacy lies in the rapid onset of confusion, knockdown, and subsequent kill of a mosquito. In the field, there are a variety of scenarios that might result in sublethal exposure to metofluthrin, including mosquitoes that are active at the margins of the chemical's lethal range, brief exposure as mosquitoes fly in and out of treated spaces or decreasing efficacy of the emanators with time. Sublethal effects are key elements of insecticide exposure and selection. The metofluthrin dose for each treatment group of male and female Ae. aegypti was controlled using exposure time intervals to a 10% active ingredient (AI) metofluthrin emanator. Room size and distance from the emanator for all groups was maintained at 3 m. In bioassay cages, male Ae. aegypti were exposed at 0, 5, 10, 20, 30 and 40-min intervals. Females were exposed in bioassay cages at 0, 10, 20, 30, 40 and 60-min intervals. Mortality rates and fecundity were observed between the exposure time groups for both sexes. Female Ae. aegypti exposed for 60 min had a significantly higher mortality rate (50%), after a 24-h recovery period, than other exposure times, 10, 20, 30 and 40 min (P metofluthrin exposure were as likely to produce viable eggs with an unexposed female as males that had not been exposed (P > 0.05). Regardless of sex, if a mosquito survived exposure, it would be as biologically successful as its unexposed counterpart. Portability of the metofluthrin emanator and delayed knockdown effects create opportunities for sublethal exposure and potential pyrethroid resistance development in Ae. aegypti, and should be taken into consideration in recommendations for field application of this product, including minimum exposure periods and a prescribed number of emanators per room based on volume.

  13. Influence des engrais de type NPK sur l’oviposition d’Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Darriet F.

    2008-03-01

    Full Text Available Les engrais sont des associations de minéraux destinées à apporter aux plantes des compléments nutritifs nécessaires à leur croissance. Les engrais modernes de type NPK combinent les trois éléments de base que sont l’azote (N, le phosphore (P et le potassium (K. Dans cette étude de laboratoire réalisée dans des tunnels expérimentaux, nous avons étudié l’influence de solutions aqueuses contenant différentes concentrations en engrais NPK sur l’oviposition de femelles d’Aedes aegypti. Les résultats ont montré que les solutions contenant les concentrations en NK = 17-33 mg/l et P = 23-47 mg/l attiraient significativement plus de femelles gravides que l’eau osmosée seule (P 0,05. Ces résultats suggèrent que certaines teneurs en engrais NPK peuvent influencer le comportement de ponte du moustique Ae. aegypti.

  14. Effects of socio-demographic characteristics and household water management on Aedes aegypti production in suburban and rural villages in Laos and Thailand.

    Science.gov (United States)

    Vannavong, Nanthasane; Seidu, Razak; Stenström, Thor-Axel; Dada, Nsa; Overgaard, Hans J

    2017-04-04

    Dengue fever is a mosquito-borne disease accounting for 50-100 million annual cases globally. Laos and Thailand are countries in south-east Asia where the disease is endemic in both urban and rural areas. Household water storage containers, which are favourable breeding sites for dengue mosquitoes, are common in these areas, due to intermittent or limited access to water supply. This study assessed the effect of household water management and socio-demographic risk factors on Aedes aegypti infestation of water storage containers. A cross-sectional survey of 239 households in Laos (124 suburban and 115 rural), and 248 households in Thailand (127 suburban and 121 rural) was conducted. Entomological surveys alongside semi-structured interviews and observations were conducted to obtain information on Ae. aegypti infestation, socio-demographic factors and water management. Zero-inflated negative binomial regression models were used to assess risk factors associated with Ae. aegypti pupal infestation. Household water management rather than socio-demographic factors were more likely to be associated with the infestation of water containers with Ae. aegypti pupae. Factors that was significantly associated with Ae. aegypti infestation were tanks, less frequent cleaning of containers, containers without lids, and containers located outdoors or in toilets/bathrooms. Associations between Ae. aegypti pupae infestation, household water management, and socio-demographic factors were found, with risk factors for Ae. aegypti infestation being specific to each study setting. Most of the containers did not have lids, larvicides, such as temephos was seldom used, and containers were not cleaned regularly; factors are facilitating dengue vector proliferation. It is recommended that, in Lao villages, health messages should promote proper use and maintenance of tightly fitted lids, and temephos in tanks, which were the most infested containers. Recommendations for Thailand are that small

  15. The effects of x-irradiation in the mosquito Aedes aegypti (L)

    International Nuclear Information System (INIS)

    Read, N.G.

    1980-01-01

    Newly emerged mosquitoes (Aedes aegypti (L)) were exposed to doses of 500 to 32,000 rad X-irradiation and the LD 50 and mean survival time determined. Radiation doses between 500 and 8,000 rad had only a slight effect on longevity whereas exposure to 32,000 had an appreciable effect. The midgut structure of newly emerged, X-irradiated female Aedes aegypti imagines was examined at set intervals after irradiation. The cytochemical localization of midgut acid phosphatase, alkaline phosphatase and adenosine triphosphatase, and also quantitative estimates of midgut acid and alkaline phosphatase were carried out on mosquitoes exposed to 32,000 rad. Considerable changes in the structure of the midgut cells were apparent. With 500, 4,000 and 8,000 rad there was evidence of cellular repair and recovery. However, with 32,000 rad cellular damage was most extensive, with considerable loss of cell structure. The ultrastructural changes noted suggest that the primary radiation damage was to the plasma and organelle membranes, which is in agreement with the membrane-damage/enzyme release hypothesis. (author)

  16. Natural vertical transmission of dengue viruses by Aedes aegypti in Bolivia

    Science.gov (United States)

    Le Goff, G.; Revollo, J.; Guerra, M.; Cruz, M.; Barja Simon, Z.; Roca, Y.; Vargas Florès, J.; Hervé, J.P.

    2011-01-01

    The natural transmission of dengue virus from an infected female mosquito to its progeny, namely the vertical transmission, was researched in wild caught Aedes aegypti during an important outbreak in the town of Santa Cruz de la Sierra, Bolivia. Mosquitoes were collected at the preimaginal stages (eggs, larvae and pupae) then reared up to adult stage for viral detection using molecular methods. Dengue virus serotypes 1 and 3 were found to be co-circulating with significant higher prevalence in male than in female mosquitoes. Of the 97 pools of Ae. aegypti (n = 635 male and 748 female specimens) screened, 14 pools, collected in February-May in 2007, were found positive for dengue virus infection: five DEN-1 and nine DEN-3. The average true infection rate (TIR) and minimum infection rate (MIR) were respectively 1.08% and 1.01%. These observations suggest that vertical transmission of dengue virus may be detected in vectors at the peak of an outbreak as well as several months before an epidemic occurs in human population. PMID:21894270

  17. Impact of Wolbachia on infection with chikungunya and yellow fever viruses in the mosquito vector Aedes aegypti.

    Directory of Open Access Journals (Sweden)

    Andrew F van den Hurk

    Full Text Available Incidence of disease due to dengue (DENV, chikungunya (CHIKV and yellow fever (YFV viruses is increasing in many parts of the world. The viruses are primarily transmitted by Aedes aegypti, a highly domesticated mosquito species that is notoriously difficult to control. When transinfected into Ae. aegypti, the intracellular bacterium Wolbachia has recently been shown to inhibit replication of DENVs, CHIKV, malaria parasites and filarial nematodes, providing a potentially powerful biocontrol strategy for human pathogens. Because the extent of pathogen reduction can be influenced by the strain of bacterium, we examined whether the wMel strain of Wolbachia influenced CHIKV and YFV infection in Ae. aegypti. Following exposure to viremic blood meals, CHIKV infection and dissemination rates were significantly reduced in mosquitoes with the wMel strain of Wolbachia compared to Wolbachia-uninfected controls. However, similar rates of infection and dissemination were observed in wMel infected and non-infected Ae. aegypti when intrathoracic inoculation was used to deliver virus. YFV infection, dissemination and replication were similar in wMel-infected and control mosquitoes following intrathoracic inoculations. In contrast, mosquitoes with the wMelPop strain of Wolbachia showed at least a 10(4 times reduction in YFV RNA copies compared to controls. The extent of reduction in virus infection depended on Wolbachia strain, titer and strain of the virus, and mode of exposure. Although originally proposed for dengue biocontrol, our results indicate a Wolbachia-based strategy also holds considerable promise for YFV and CHIKV suppression.

  18. Investigating the Potential Range Expansion of the Vector Mosquito Aedes aegypti in Mexico with NASA Earth Science Remote Sensing Results

    Science.gov (United States)

    Crosson, W. L.; Eisen, L.; Estes, M. G.; Estes, S. M.; Hayden, M.; Lozano-Fuentes, S.; Monaghan, A. J.; Moreno Madriñán, M. J.; Ochoa, C.; Quattrochi, D.; Tapia, B.; Welsh-Rodriguez, C. M.

    2012-12-01

    In tropical and sub-tropical regions, the mosquito Aedes aegypti is the major vector for the virus causing dengue, a serious public health issue in these areas. Through ongoing NSF- and NASA-funded studies, field surveys of Aedes aegypti and an integrated modeling approach are being used to improve our understanding of the potential range of the mosquito to expand toward heavily populated high elevation areas such as Mexico City under various climate change and socio-economic scenarios. This work serves three primary objectives: (1) Employ NASA remotely-sensed data to supplement the environmental monitoring and modeling component of the project. These data -- for example, surface temperature, precipitation, vegetation indices, soil moisture and elevation -- are critical for understanding the habitat necessary for mosquito survival and abundance; (2) Implement training sessions to instruct scientists and students from Mexico and the U.S. on how to use remote sensing and implement the NASA SERVIR Regional Visualization and Monitoring System; (3) Employ the SERVIR framework to optimize the dissemination of key project results in order to increase their societal relevance and benefits in developing climate adaptation strategies. Field surveys of larval, pupal and adult Aedes aegypti, as well as detailed physical and social household characteristics, were conducted in the summers of 2011and 2012 at geographic scales from the household to the community along a transect from sea level to 2400 m ASL. These data are being used in models to estimate Aedes aegypti habitat suitability. In 2011, Aedes aegypti were identified at an elevation of over 2150 m in Puebla, the highest elevation at which this species has been observed.

  19. A survey of bacterial, fungal and plant metabolites against Aedes aegypti (Diptera: Culicidae, the vector of yellow and dengue fevers and Zika virus

    Directory of Open Access Journals (Sweden)

    Masi Marco

    2017-06-01

    Full Text Available Aedes aegypti L. is the major vector of the arboviruses responsible for dengue fever, one of the most devastating human diseases. Some bacterial, fungal and plant metabolites belonging to different chemical subgroups, including Amaryllidaceae alkaloids, anthracenes, azoxymethoxytetrahydropyrans, cytochalasans, 2,5-diketopiperazines, isochromanones, naphthoquinones, organic small acids and their methyl esters, sterols and terpenes including sesquiterpenes and diterpenes, were tested for their larvicidal and adulticidal activity against Ae. aegypti. Out of 23 compounds tested, gliotoxin exhibited mosquitocidal activity in both bioassays with an LC50 value of 0.0257 ± 0.001 µg/µL against 1st instar Ae. aegypti and LD50 value of 2.79 ± 0.1197 µg/mosquito against adult female Ae. aegypti. 2-Methoxy-1,4-naphthoquinone and cytochalasin A showed LC50 values of 0.0851 ± 0.0012 µg/µL and 0.0854 ± 0.0019 µg/µL, respectively, against Ae. aegypti larvae. In adult bioassays, fusaric acid (LD50= 0.8349 ± 0.0118 µg/mosquito, 3-nitropropionic acid (LD50 = 1.6641 ± 0.0494 µg/mosquito and α-costic acid (LD50 = 2.547 ± 0.0835 µg/mosquito exhibited adulticidal activity. Results from the current study confirm that compounds belonging to cytochalsin, diketopiperazine, naphthoquinone and low molecular weight organic acid groups are active and may stimulate further SAR investigations.

  20. Chemical Composition and Larvicidal Activity of Essential Oils Extracted from Brazilian Legal Amazon Plants against Aedes aegypti L. (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    Clarice Noleto Dias

    2015-01-01

    Full Text Available The mosquito Aedes aegypti L. (Diptera: Culicidae is the major vector of dengue and chikungunya fever. The lack of effective therapies and vaccines for these diseases highlights the need for alternative strategies to control the spread of virus. Therefore, this study investigated the larvicidal potential of essential oils from common plant species obtained from the Chapada das Mesas National Park, Brazil, against third instar A. aegypti larvae. The chemical composition of these oils was determined by gas chromatography coupled to mass spectrometry. The essential oils of Eugenia piauhiensis Vellaff., Myrcia erythroxylon O. Berg, Psidium myrsinites DC., and Siparuna camporum (Tul. A. DC. were observed to be mainly composed of sesquiterpene hydrocarbons. The essential oil of Lippia gracilis Schauer was composed of oxygenated monoterpenes. Four of the five tested oils were effective against the A. aegypti larvae, with the lethal concentration (LC50 ranging from 230 to 292 mg/L after 24 h of exposure. Overall, this work demonstrated the possibility of developing larvicidal products against A. aegypti by using essential oils from the flora of the Brazilian Legal Amazon. This in turn demonstrates the potential of using natural resources for the control of disease vectors.

  1. Insecticide Resistance and Metabolic Mechanisms Involved in Larval and Adult Stages of Aedes aegypti Insecticide-Resistant Reference Strains from Cuba.

    Science.gov (United States)

    Bisset, Juan Andrés; Rodríguez, María Magdalena; French, Leydis; Severson, David W; Gutiérrez, Gladys; Hurtado, Daymi; Fuentes, Ilario

    2014-12-01

    Studies were conducted to compare levels of insecticide resistance and to determine the metabolic resistance mechanisms in larval and adult stages of Aedes aegypti from Cuba. Three insecticide-resistant reference strains of Ae. aegypti from Cuba were examined. These strains were derived from a Santiago de Cuba strain isolated in 1997; it was previously subjected to a strong selection for resistance to temephos (SAN-F6), deltamethrin (SAN-F12), and propoxur (SAN-F13) and routinely maintained in the laboratory under selection pressure up to the present time, when the study was carried out. In addition, an insecticide-susceptible strain was used for comparison. The insecticide resistance in larvae and adults was determined using standard World Health Organization methodologies. Insecticide resistance mechanisms were determined by biochemical assays. The esterases (α EST and β EST) and mixed function oxidase (MFO) activities were significantly higher in adults than in the larvae of the three resistant strains studied. The association of resistance level with the biochemical mechanism for each insecticide was established for each stage. The observed differences between larval and adult stages of Ae. aegypti in their levels of insecticide resistance and the biochemical mechanisms involved should be included as part of monitoring and surveillance activities in Ae. aegypti vector control programs.

  2. Co-breeding Association of Aedes albopictus (Skuse) and Aedes aegypti (Linnaeus) (Diptera: Culicidae) in Relation to Location and Container Size.

    Science.gov (United States)

    Hashim, Nur Aida; Ahmad, Abu Hassan; Talib, Anita; Athaillah, Farida; Krishnan, Kumara Thevan

    2018-03-01

    The occurrence of major outbreaks of dengue, and other vector borne diseases such as chikungunya and zika in tropical and subtropical regions has rendered control of the diseases a top-priority for many affected countries including Malaysia. Control of the mosquito vectors Aedes aegypti and Aedes albopictus through the reduction of breeding sites and the application of insecticides to kill immature forms and adults are the main control efforts to combat these diseases. The present study describes the association between Ae. albopictus and Ae. aegypti in shared breeding sites. This study is important given that any measure taken against one species may affect the other. A yearlong larval survey was conducted in four dengue endemic areas of Penang Island. Sorenson's coefficient index indicated that no association between number of the immatures of the two species regardless of container size and study location. Therefore, the mean number Ae. albopictus immature was not decreased in the presence of Ae. aegypti in shared breeding container. However Ae. aegypti appeared to prefer breeding in habitats not occupied by Ae. albopictus , the two species sharing breeding sites only where available containers were limited. In control efforts, eliminating the preferred breeding containers for one species might not affect or reduce the population of the other species.

  3. The effect of photoperiod on life history and blood-feeding activity in Aedes albopictus and Aedes aegypti (Diptera: Culicidae).

    Science.gov (United States)

    Costanzo, K S; Schelble, S; Jerz, K; Keenan, M

    2015-06-01

    Several studies have examined how climatic variables such as temperature and precipitation may affect life history traits in mosquitoes that are important to disease transmission. Despite its importance as a seasonal cue in nature, studies investigating the influence of photoperiod on such traits are relatively few. This study aims to investigate how photoperiod alters life history traits, survival, and blood-feeding activity in Aedes albopictus (Skuse) and Aedes aegypti (Linnaeus). We performed three experiments that tested the effects of day length on female survival, development time, adult size, fecundity, adult life span, and propensity to blood feed in Ae. albopictus and Ae. aegypti. Each experiment had three photoperiod treatments: 1) short-day (10L:14D), 2) control (12L:12D), and 3) long-day (14L:10D). Aedes albopictus adult females were consistently larger in size when reared in short-day conditions. Aedes aegypti adult females from short-day treatments lived longer and were more likely to take a blood meal compared to other treatments. We discuss how species-specific responses may reflect alternative strategies evolved to increase survival during unfavorable conditions. We review the potential impacts of these responses on seasonal transmission patterns, such as potentially increasing vectorial capacity of Ae. aegypti during periods of shorter day lengths. © 2015 The Society for Vector Ecology.

  4. AVALIAÇÃO DA VIRULENCIA DE BLASTOSPOROS DE Metarhizium anisopliae NO CONTROLE DE LARVAS DE CAMPO DO MOSQUITO Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Aline Teixeira Carolino

    2016-11-01

    Full Text Available Atualmente no Brasil, o mosquito Aedes aegypti é transmissor das arboviroses dengue, chikungunya e Zika. Não existe tratamento específico para estas doenças. A redução da população do vetor ainda é o método mais eficaz para reduzir a taxa dessas arboviroses. O presente estudo comparou a virulência de conídios e blastosporos de Metarhizium anisopliae contra larvas do mosquito A. aegypti provenientes de coletas no campo. Blastosporos foram mais virulentos para larvas, sendo observada mortalidade total das larvas em apenas 48 horas. Larvas infectadas com conídios apresentaram 100% de mortalidade no quinto dia pós-infecção. O presente estudo mostra que blastosporos apresentam grande potencial para controle de larvas de A. aegypti no campo.

  5. Susceptibilidad de Aedes aegypti a DDT, deltametrina y lambdacialotrina en Colombia Susceptibility of Aedes aegypti to DDT, deltamethrin, and lambda-cyhalothrin in Colombia

    Directory of Open Access Journals (Sweden)

    Liliana Santacoloma Varón

    2010-01-01

    Full Text Available OBJETIVOS: Evaluar el estado de susceptibilidad a insecticidas piretroides deltametrina y lambdacialotrina y al organoclorado DDT, e identificar los mecanismos bioquímicos asociados con resistencia en 13 poblaciones naturales de Aedes aegypti recolectadas en localidades de Colombia donde el dengue es un grave problema de salud pública. MÉTODOS: Se recolectaron y criaron en condiciones controladas formas inmaduras de diferentes criaderos naturales del vector para cada localidad. Con la generación F2 se realizaron bioensayos utilizando las metodologías OMS 1981 (papeles impregnados y CDC 1998 (botellas impregnadas. En las poblaciones con mortalidades compatibles con disminución de la susceptibilidad, se midieron los niveles de esterasas no específicas (ENE, oxidasas de función mixta (OFM y acetilcolinesterasa modificada (ACEM mediante pruebas colorimétricas. RESULTADOS: Todas las poblaciones del mosquito evaluadas evidenciaron resistencia al organoclorado DDT. En cuanto a los piretroides, se encontró resistencia generalizada a lambdacialotrina pero no a deltametrina. Los mecanismos bioquímicos de resistencia evaluados permitieron encontrar 7 de 11 poblaciones con ENE elevadas y una población con OFM incrementadas. CONCLUSIONES: Se descarta la resistencia cruzada de tipo fisiológico entre el DDT y lambdacialotrina en las poblaciones de A. aegypti evaluadas. La resistencia fisiológica a lambdacialotrina parece asociarse con el incremento de las ENE. El comportamiento diferencial en los niveles de susceptibilidad y los valores enzimáticos entre poblaciones se asociaron con la variabilidad genética y presión de selección química a nivel local.OBJECTIVES: To assess the susceptibility status of 13 natural populations of Aedes aegypti (collected from sites in Colombia where dengue is a serious public health problem to the pyrethroids, deltamethrin and lambda-cyhalothrin, and to the organochlorine, DDT, and to identify any biochemical

  6. The impact of insecticide applications on the dynamics of resistance: The case of four Aedes aegypti populations from different Brazilian regions

    Science.gov (United States)

    Martins, Ademir de Jesus; Maciel-de-Freitas, Rafael; Linss, Jutta Gerlinde Birggitt; Araújo, Simone Costa; Lima, José Bento Pereira; Valle, Denise

    2018-01-01

    Background In the tropics, the utilization of insecticides is still an important strategy for controlling Aedes aegypti, the principle vector of dengue, chikungunya and Zika viruses. However, increasing insecticide resistance in Ae. aegypti populations might hinder insecticide efficacy on a long-term basis. It will be important to understand the dynamics and evolution of insecticide resistance by assessing its frequency and the mechanisms by which it occurs. Methodology/Principal findings The insecticide resistance status of four Brazilian Ae. aegypti populations was monitored. Quantitative bioassays with the major insecticides employed in the country was performed: the adulticide deltamethrin (a pyrethroid—PY) and the larvicides, temephos (an organophosphate) and diflubenzuron (a chitin synthesis inhibitor). Temephos resistance was detected in all populations although exhibiting a slight decrease over time probably due to the interruption of field use. All vector populations were susceptible to diflubenzuron, recently introduced in the country to control Ae. aegypti. Resistance against deltamethrin was extremely high in three populations. Molecular assays investigated substitutions in the voltage gated sodium channel (NaV), the PY target site, at positions 1011, 1016 and 1534. Elevated frequencies of substitutions Val1016Ile and Phe1534Cys related to high PY resistance levels were identified. Biochemical assays detected alterations in the activities of two detoxifying enzyme classes related to metabolic resistance, glutathion-S-transferases and esterases. The results obtained were evaluated in the context of both recent insecticide use and the records of dengue incidence in each locality. Conclusions/Significance The four Ae. aegypti populations evaluated were resistant to the neurotoxic insecticides, temephos and deltamethrin. However, they were still susceptible to diflubenzuron. A probable correlation between adult insect resistance to PY and the domestic

  7. Community-Based Control of Aedes aegypti By Using Mesocyclops in Southern Vietnam

    Science.gov (United States)

    Nam, Vu Sinh; Yen, Nguyen Thi; Duc, Hoang Minh; Tu, Tran Cong; Thang, Vu Trong; Le, Nguyen Hoang; San, Le Hoang; Loan, Luu Le; Huong, Vu Thi Que; Khanh, Ly Huynh Kim; Trang, Huynh Thi Thuy; Lam, Leonie Z. Y.; Kutcher, Simon C.; Aaskov, John G.; Jeffery, Jason A. L.; Ryan, Peter A.; Kay, Brian H.

    2012-01-01

    We previously reported a new community-based mosquito control strategy that resulted in elimination of Aedes aegypti (Linn.) in 40 of 46 communes in northern and central Vietnam, and with annual recurrent total costs (direct and indirect) of only $0.28–$0.89 international dollars per person. This control strategy was extended to four provinces in southern Vietnam in Long An and Hau Giang (2004–2007) and to Long An, Ben Tre, and Vinh Long (2005–2010). In a total of 14 communes with 124,743 residents, the mean ± SD of adult female Ae. aegypti was reduced from 0.93 ± 0.62 to 0.06 ± 0.09, and the reduction of immature Ae. aegypti averaged 98.8%. By the final survey, no adults could be collected in 6 of 14 communes, and one commune, Binh Thanh, also had no immature forms. Although the community-based programs also involved community education and clean-up campaigns, the prevalence of Mesocyclops in large water storage containers > 50 liters increased from 12.77 ± 8.39 to 75.69 ± 9.17% over periods of 15–45 months. At the conclusion of the study, no confirmed dengue cases were detected in four of the five communes for which diagnostic serologic analysis was performed. The rate of progress was faster in communes that were added in stages to the program but the reason for this finding was unclear. At the completion of the formal project, sustainability funds were set up to provide each commune with the financial means to ensure that community-based dengue control activities continued. PMID:22556087

  8. Global risk mapping for major diseases transmitted by Aedes aegypti and Aedes albopictus.

    Science.gov (United States)

    Leta, Samson; Beyene, Tariku Jibat; De Clercq, Eva M; Amenu, Kebede; Kraemer, Moritz U G; Revie, Crawford W

    2018-02-01

    The objective of this study was to map the global risk of the major arboviral diseases transmitted by Aedes aegypti and Aedes albopictus by identifying areas where the diseases are reported, either through active transmission or travel-related outbreaks, as well as areas where the diseases are not currently reported but are nonetheless suitable for the vector. Data relating to five arboviral diseases (Zika, dengue fever, chikungunya, yellow fever, and Rift Valley fever (RVF)) were extracted from some of the largest contemporary databases and paired with data on the known distribution of their vectors, A. aegypti and A. albopictus. The disease occurrence data for the selected diseases were compiled from literature dating as far back as 1952 to as recent as 2017. The resulting datasets were aggregated at the country level, except in the case of the USA, where state-level data were used. Spatial analysis was used to process the data and to develop risk maps. Out of the 250 countries/territories considered, 215 (86%) are potentially suitable for the survival and establishment of A. aegypti and/or A. albopictus. A. albopictus has suitability foci in 197 countries/territories, while there are 188 that are suitable for A. aegypti. There is considerable variation in the suitability range among countries/territories, but many of the tropical regions of the world provide high suitability over extensive areas. Globally, 146 (58.4%) countries/territories reported at least one arboviral disease, while 123 (49.2%) reported more than one of the above diseases. The overall numbers of countries/territories reporting autochthonous vector-borne occurrences of Zika, dengue, chikungunya, yellow fever, and RVF, were 85, 111, 106, 43, and 39, respectively. With 215 countries/territories potentially suitable for the most important arboviral disease vectors and more than half of these reporting cases, arboviral diseases are indeed a global public health threat. The increasing proportion of

  9. Identifying the effective concentration for spatial repellency of the dengue vector Aedes aegypti.

    Science.gov (United States)

    Achee, Nicole; Masuoka, Penny; Smith, Philip; Martin, Nicholas; Chareonviryiphap, Theeraphap; Polsomboon, Suppaluck; Hendarto, Joko; Grieco, John

    2012-12-28

    Current efforts are underway to quantify the chemical concentration in a treated air space that elicits a spatial repellent (deterrent) response in a vector population. Such information will facilitate identifying the optimum active ingredient (AI) dosage and intervention coverage important for the development of spatial repellent tools--one of several novel strategies being evaluated for vector-borne disease control. This study reports initial findings from air sampling experiments conducted under field conditions to describe the relationship between air concentrations of repellent AIs and deterrent behavior in the dengue vector, Aedes aegypti. Air samples were taken inside and outdoors of experimental huts located in Pu Tuey Village, Kanchanaburi Province, Thailand in conjunction with mosquito behavioral evaluations. A mark-release-recapture study design using interception traps was used to measure deterrency of Ae. aegypti against 0.00625% metofluthrin coils and DDT-treated fabric (2g/m2) within separate experimental trials. Sentinel mosquito cohorts were positioned adjacent to air sampling locations to monitor knock down responses to AI within the treated air space. Air samples were analyzed using two techniques: the U.S. Environmental Protection Agency (USEPA) Compendium Method TO-10A and thermal desorption (TD). Both the USEPA TO-10A and TD air sampling methods were able to detect and quantify volatized AIs under field conditions. Air samples indicated concentrations of both repellent chemicals below thresholds required for toxic responses (mortality) in mosquitoes. These concentrations elicited up to a 58% and 70% reduction in Ae. aegypti entry (i.e., deterrency) into treated experimental huts using metofluthrin coils and DDT-treated fabric, respectively. Minimal knock down was observed in sentinel mosquito cohorts positioned adjacent to air sampling locations during both chemical evaluations. This study is the first to describe two air sampling

  10. Identifying the effective concentration for spatial repellency of the dengue vector Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Achee Nicole

    2012-12-01

    Full Text Available Abstract Background Current efforts are underway to quantify the chemical concentration in a treated air space that elicits a spatial repellent (deterrent response in a vector population. Such information will facilitate identifying the optimum active ingredient (AI dosage and intervention coverage important for the development of spatial repellent tools – one of several novel strategies being evaluated for vector-borne disease control. This study reports initial findings from air sampling experiments conducted under field conditions to describe the relationship between air concentrations of repellent AIs and deterrent behavior in the dengue vector, Aedes aegypti. Methods Air samples were taken inside and outdoors of experimental huts located in Pu Tuey Village, Kanchanaburi Province, Thailand in conjunction with mosquito behavioral evaluations. A mark-release-recapture study design using interception traps was used to measure deterrency of Ae. aegypti against 0.00625% metofluthrin coils and DDT-treated fabric (2g/m2 within separate experimental trials. Sentinel mosquito cohorts were positioned adjacent to air sampling locations to monitor knock down responses to AI within the treated air space. Air samples were analyzed using two techniques: the U.S. Environmental Protection Agency (USEPA Compendium Method TO-10A and thermal desorption (TD. Results Both the USEPA TO-10A and TD air sampling methods were able to detect and quantify volatized AIs under field conditions. Air samples indicated concentrations of both repellent chemicals below thresholds required for toxic responses (mortality in mosquitoes. These concentrations elicited up to a 58% and 70% reduction in Ae. aegypti entry (i.e., deterrency into treated experimental huts using metofluthrin coils and DDT-treated fabric, respectively. Minimal knock down was observed in sentinel mosquito cohorts positioned adjacent to air sampling locations during both chemical evaluations. Conclusions

  11. Synthesis and Mosquitocidal Activity of a Series of Hydrazone Derivatives against Aedes aegypti

    Science.gov (United States)

    Background: Aedes aegypti is an important mosquito vector for the transmission of several infectious diseases. Current insecticides play a vital role in controlling mosquitoes; however, the frequent use of insecticides has led to the development of insecticide resistance. In order to control mosquit...

  12. Effect of the Topical Repellent para-Menthane-3,8-diol on Blood Feeding Behavior and Fecundity of the Dengue Virus Vector Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Jugyeong Lee

    2018-06-01

    Full Text Available Dengue fever is an acute disease caused by the dengue virus and transmitted primarily by the mosquito Aedes aegypti. The current strategy for dengue prevention is vector control including the use of topical repellents to reduce mosquito biting. Although N,N-diethyl-m-methylbenzamide (DEET is the most common active ingredient in topical repellent products, para-menthane-3,8-diol (PMD is also used commercially. Studies have indicated PMD reduced biting by 90–95% for up to 6–8 h, similar to the efficacy of DEET, depending on the testing environment. The purpose of this study was to evaluate the behavioral effects of PMD on Ae. aegypti blood feeding and fecundity to explore the potential impact of PMD on downstream mosquito life-history traits. Two experiments were performed. In both experiments, cohorts of female Ae. aegypti (Belize strain were exposed to 20% PMD or ethanol for 10 min in a closed system and introduced to an artificial membrane feeding system. Following a 30min feed time, mosquitoes of Experiment 1 were killed and weighed as a proxy measure of blood meal, whereas mosquitoes of Experiment 2 were monitored for oviposition, a measure of fecundity. Results showed a statistically significant reduction (p < 0.001 in the percentage of Ae. aegypti that blood-fed when exposed to PMD (38% compared to those non-exposed (49%. No significant difference in fecundity between test populations was indicated. These findings suggest that exposure of Ae. aegypti to 20% PMD may influence the probability of subsequent blood feeding but of those mosquitoes that do blood feed, egg-lay density is not affected. Further studies are warranted to investigate the full range of effects of PMD exposure on other Ae. aegypti life-history traits such as mating, to continue characterizing the potential effects of PMD to impact overall vector population dynamics.

  13. Spatial and Temporal Variation in Aedes aegypti and Aedes albopictus (Diptera: Culicidae) Numbers in the Yogyakarta Area of Java, Indonesia, With Implications for Wolbachia Releases.

    Science.gov (United States)

    Tantowijoyo, W; Arguni, E; Johnson, P; Budiwati, N; Nurhayati, P I; Fitriana, I; Wardana, S; Ardiansyah, H; Turley, A P; Ryan, P; O'Neill, S L; Hoffmann, A A

    2016-01-01

    of mosquito vector populations, particularly through Wolbachia endosymbionts. The success of these strategies depends on understanding the dynamics of vector populations. In preparation for Wolbachia releases around Yogyakarta, we have studied Aedes populations in five hamlets. Adult monitoring with BioGent- Sentinel (BG-S) traps indicated that hamlet populations had different dynamics across the year; while there was an increase in Aedes aegypti (L.) and Aedes albopictus (Skuse) numbers in the wet season, species abundance remained relatively stable in some hamlets but changed markedly (>2 fold) in others. Local rainfall a month prior to monitoring partly predicted numbers of Ae. aegypti but not Ae. albopictus. Site differences in population size indicated by BG-S traps were also evident in ovitrap data. Egg or larval collections with ovitraps repeated at the same location suggested spatial autocorrelation (<250 m) in the areas of the hamlets where Ae. aegypti numbers were high. Overall, there was a weak negative association (r<0.43) between Ae. aegypti and Ae. albopictus numbers in ovitraps when averaged across collections. Ae. albopictus numbers in ovitraps and BG-S traps were positively correlated with vegetation around areas where traps were placed, while Ae. aegypti were negatively correlated with this feature. These data inform intervention strategies by defining periods when mosquito densities are high, highlighting the importance of local site characteristics on populations, and suggesting relatively weak interactions between Ae. aegypti and Ae. albopictus. They also indicate local areas within hamlets where consistently high mosquito densities may influence Wolbachia invasions and other interventions.

  14. Effects of piperonyl butoxide on the toxicity of the organophosphate temephos and the role of esterases in the insecticide resistance of Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Boscolli Barbosa Pereira

    2014-10-01

    Full Text Available Introduction The effects of piperonyl butoxide (PBO on the toxicity of the organophosphate temephos (TE and the role of esterases in the resistance of Aedes aegypti to this insecticide were evaluated. Methods A. aegypti L4 larvae susceptible and resistant to TE were pre-treated with PBO solutions in acetone at concentrations of 0.125, 0.25, 0.5, 1, and 2% for 24h and subsequently exposed to a diagnostic concentration of 0.02mg/L aqueous TE solution. The esterase activity of the larvae extracts pre-treated with varying PBO concentrations and exposed to TE for three time periods was determined. Results At concentrations of 0.25, 0.5, 1, and 2%, PBO showed a significant synergistic effect with TE toxicity. High levels of esterase activity were associated with the survival of A. aegypti L4 larvae exposed to TE only. Conclusions The results of the biochemical assays suggest that PBO has a significant inhibitory effect on the total esterase activity in A. aegypti larvae.

  15. Leaking Containers: Success and Failure in Controlling the Mosquito Aedes aegypti in Brazil.

    Science.gov (United States)

    Löwy, Ilana

    2017-04-01

    In 1958, the Pan American Health Organization declared that Brazil had successfully eradicated the mosquito Aedes aegypti, responsible for the transmission of yellow fever, dengue fever, chikungunya, and Zika virus. Yet in 2016 the Brazilian minister of health described the situation of dengue fever as "catastrophic." Discussing the recent epidemic of Zika virus, which amplified the crisis produced by the persistence of dengue fever, Brazil's president declared in January 2016 that "we are in the process of losing the war against the mosquito Aedes aegypti." I discuss the reasons for the failure to contain Aedes in Brazil and the consequences of this failure. A longue durée perspective favors a view of the Zika epidemic that does not present it as a health crisis to be contained with a technical solution alone but as a pathology that has the persistence of deeply entrenched structural problems and vulnerabilities.

  16. Genome-wide SNPs lead to strong signals of geographic structure and relatedness patterns in the major arbovirus vector, Aedes aegypti.

    Science.gov (United States)

    Rašić, Gordana; Filipović, Igor; Weeks, Andrew R; Hoffmann, Ary A

    2014-04-11

    Genetic markers are widely used to understand the biology and population dynamics of disease vectors, but often markers are limited in the resolution they provide. In particular, the delineation of population structure, fine scale movement and patterns of relatedness are often obscured unless numerous markers are available. To address this issue in the major arbovirus vector, the yellow fever mosquito (Aedes aegypti), we used double digest Restriction-site Associated DNA (ddRAD) sequencing for the discovery of genome-wide single nucleotide polymorphisms (SNPs). We aimed to characterize the new SNP set and to test the resolution against previously described microsatellite markers in detecting broad and fine-scale genetic patterns in Ae. aegypti. We developed bioinformatics tools that support the customization of restriction enzyme-based protocols for SNP discovery. We showed that our approach for RAD library construction achieves unbiased genome representation that reflects true evolutionary processes. In Ae. aegypti samples from three continents we identified more than 18,000 putative SNPs. They were widely distributed across the three Ae. aegypti chromosomes, with 47.9% found in intergenic regions and 17.8% in exons of over 2,300 genes. Pattern of their imputed effects in ORFs and UTRs were consistent with those found in a recent transcriptome study. We demonstrated that individual mosquitoes from Indonesia, Australia, Vietnam and Brazil can be assigned with a very high degree of confidence to their region of origin using a large SNP panel. We also showed that familial relatedness of samples from a 0.4 km2 area could be confidently established with a subset of SNPs. Using a cost-effective customized RAD sequencing approach supported by our bioinformatics tools, we characterized over 18,000 SNPs in field samples of the dengue fever mosquito Ae. aegypti. The variants were annotated and positioned onto the three Ae. aegypti chromosomes. The new SNP set provided much

  17. Exploiting silver nanoparticles with PMAA against aedes aegypti larvae development: potential larvicidal activity

    Science.gov (United States)

    Carvalho, Mariana T.; de Santana, Gisele S.; de Andrade, Audrey N.; Cabral, Amanda; da Silva Rosa-Leão, Nairane; de Melo-Santos, Maria Alice V.; Gomes, Anderson S. L.

    2018-02-01

    Aedes aegypti is one of the mosquito species with major epidemiological importance in Brazil, involved with the transmission of the arboviruses such as Dengue, Chikungunya and Zika. Since the mosquito is well adapted to the urban environments, where there are large amounts of breeding sites for larvae and pupae, its control has become increasingly difficult. Since 1996, the usual control is made by using chemical larvicides, but the continued use of some of these compounds has led to the selection of A. aegypti resistant populations. Therefore, the search for new insecticidal substances is necessary to guarantee the control of this specie. Our goal is to establish a new larvicide with high toxicity without the drawback of resistance. For this, we developed a low-cost green synthesized silver nanoparticles with a poly(methacrylic acid) outer layer, catalyzed with ultra violet light. We tested nanoparticles samples produced from different batches in laboratory bioassays against fourth-instar larvae. The results showed a desired toxic activity, presenting 10% to 100% of mortalities in concentrations ranging from 0.01 to 1.1 ppm, and from the bioassay we have obtained LC50 = 0.027 ppm and LC90 = 0.044 ppm, after 24 hours of exposure. Imaging the threated larvae by optical microscopy and optical coherence tomography helped to clarify the potential larvae death mechanism. These results associated with the simplicity and low cost of production of these silver nanoparticles, reveal their great potential for the development of products to control of A. aegypti larvae.

  18. Effect of Cymbopogon citratus (lemongrass) and Syzygium aromaticum (clove) oils on the morphology and mortality of Aedes aegypti and Anopheles dirus larvae.

    Science.gov (United States)

    Soonwera, Mayura; Phasomkusolsil, Siriporn

    2016-04-01

    Cymbopogon citratus (lemongrass) and Syzygium aromaticum (clove) oils were evaluated to determine mortality rates, morphological aberrations, and persistence when used against third and fourth larval instars of Aedes aegypti and Anopheles dirus. The oils were evaluated at 1, 5, and 10 % concentrations in mixtures with soybean oil. Persistence of higher concentrations was measured over a period of 10 days. For Ae. aegypti, both plant oils caused various morphological aberrations to include deformed larvae, incomplete eclosion, white pupae, deformed pupae, dead normal pupae, and incomplete pupal eclosion. All of these aberrations led to larval mortality. In Ae. aegypti larvae, there were no significant differences in mortality at days 1, 5, and 10 or between third and fourth larval instar exposure. In An. dirus, morphological aberrations were rare and S. aromaticum oil was more effective in causing mortality among all larval stages. Both oils were equally effective at producing mortality on days 1, 5, and 10. Both oils had slightly increased LT50 rates from day 1 to day 10. In conclusion, both lemongrass and clove oils have significant effects on the immature stages of Ae. aegypti and An. dirus and could potentially be developed for use as larvicides.

  19. UJI REPELEN (DAYA TOLAK BEBERAPA EKSTRAK TUMBUHAN TERHADAP GIGITAN NYAMUK Aedes aegypti VEKTOR DEMAM BERDARAH DENGUE

    Directory of Open Access Journals (Sweden)

    Hasan Boesri Boesri

    2015-10-01

    Full Text Available AbstrakPenyakit­ Demam ­Berdarah ­Dengue,­Malaria,­filaria­sejauh­ini­masih­menjadi­masalah­kesehatan­masyarakat.Penggunaan insektisida nabati banyak memberikan keuntungan diantaranya ramah lingkungan, tidak memberikan dampak buruk pada kesehatan dan bahan dasar ada di sekitar pemukiman. Berdasarkan banyaknya keuntungan yang didapatkan, maka dipandang perlu untuk mencari insektisida nabati sebagai repelen untuk  menolak gigitan nyamuk  penular penyakit. Penelitian ini merupakan eksperimen murni, tentang pembuatan ekstrak dari berbagai­bahan­tanaman­serta­uji­efektifitas­daya­tolak­nyamuknya­dan­dilakukan­di­laboratorium.­Pembuatanekstrak dilakukan di Laboratorium Farmasi Universitas Gajah Mada Yogyakarta, sedangkan  untuk pengujian ekstrak terhadap nyamuk Aedes aegypti dilakukan di laboratorium uji insektisida Balai Besar Litbang Vektor dan Reservoir Penyakit. Hasil penelitian uji  repelen beberapa ekstrak tumbuhan adalah pada dosis 100%  yang mampu menolak gigitan nyamuk di atas 80% per jam  antara lain ekstrak daun Zodia mampu menolak sampai 2 jam sebanyak 88,2%. Ekstrak daun tembakau  mampu menolak  selama 3 jam sebanyak  84,9%, ekstrak daun gondopuro mampu menolak selama 1 jam sebanyak  83,3%,  ekstrak daun Serai Wangi mampu menolak selama 2 jam sebanyak 85,1%. Ekstrak daun cengkeh mampu menolak selama 4 jam sebanyak, 81,7%. Ekstrak bunga krisan mampu menolak selama 1 jam sebanyak 89,6%, Sedangkan ekstrak daun suren, akar tuba dan lavender hanya mampu menolak gigitan nyamuk Aedes aegypti di bawah 80%.Kata kunci : ekstrak, repelen, Aedes aegyptiAbstractDengue­Haemorrhagic­Fever,­malaria,­filaria­so­far­are­public­health­problem.­The­use­of­plant-based­­insecticidesare­many­eco-friendly­benefits,­do­not­give­bad­impact­on­­health­and­basic­materials­are­all­around­settlements.­Itis necessary to look for botanical insecticides as repellent to resist bites mosquito

  20. Mitochondrial Physiology in the Major Arbovirus Vector Aedes aegypti: Substrate Preferences and Sexual Differences Define Respiratory Capacity and Superoxide Production

    Science.gov (United States)

    Soares, Juliana B. R. Correa; Gaviraghi, Alessandro; Oliveira, Marcus F.

    2015-01-01

    Adult females of Aedes aegypti are facultative blood sucking insects and vectors of Dengue and yellow fever viruses. Insect dispersal plays a central role in disease transmission and the extremely high energy demand posed by flight is accomplished by a very efficient oxidative phosphorylation process, which take place within flight muscle mitochondria. These organelles play a central role in energy metabolism, interconnecting nutrient oxidation to ATP synthesis, but also represent an important site of cellular superoxide production. Given the importance of mitochondria to cell physiology, and the potential contributions of this organelle for A. aegypti biology and vectorial capacity, here, we conducted a systematic assessment of mitochondrial physiology in flight muscle of young adult A. aegypti fed exclusively with sugar. This was carried out by determining the activities of mitochondrial enzymes, the substrate preferences to sustain respiration, the mitochondrial bioenergetic efficiency and capacity, in both mitochondria-enriched preparations and mechanically permeabilized flight muscle in both sexes. We also determined the substrates preferences to promote mitochondrial superoxide generation and the main sites where it is produced within this organelle. We observed that respiration in A. aegypti mitochondria was essentially driven by complex I and glycerol 3 phosphate dehydrogenase substrates, which promoted distinct mitochondrial bioenergetic capacities, but with preserved efficiencies. Respiration mediated by proline oxidation in female mitochondria was strikingly higher than in males. Mitochondrial superoxide production was essentially mediated through proline and glycerol 3 phosphate oxidation, which took place at sites other than complex I. Finally, differences in mitochondrial superoxide production among sexes were only observed in male oxidizing glycerol 3 phosphate, exhibiting higher rates than in female. Together, these data represent a significant step

  1. Spatial Models for Prediction and Early Warning of Aedes aegypti Proliferation from Data on Climate Change and Variability in Cuba.

    Science.gov (United States)

    Ortiz, Paulo L; Rivero, Alina; Linares, Yzenia; Pérez, Alina; Vázquez, Juan R

    2015-04-01

    Climate variability, the primary expression of climate change, is one of the most important environmental problems affecting human health, particularly vector-borne diseases. Despite research efforts worldwide, there are few studies addressing the use of information on climate variability for prevention and early warning of vector-borne infectious diseases. Show the utility of climate information for vector surveillance by developing spatial models using an entomological indicator and information on predicted climate variability in Cuba to provide early warning of danger of increased risk of dengue transmission. An ecological study was carried out using retrospective and prospective analyses of time series combined with spatial statistics. Several entomological and climatic indicators were considered using complex Bultó indices -1 and -2. Moran's I spatial autocorrelation coefficient specified for a matrix of neighbors with a radius of 20 km, was used to identify the spatial structure. Spatial structure simulation was based on simultaneous autoregressive and conditional autoregressive models; agreement between predicted and observed values for number of Aedes aegypti foci was determined by the concordance index Di and skill factor Bi. Spatial and temporal distributions of populations of Aedes aegypti were obtained. Models for describing, simulating and predicting spatial patterns of Aedes aegypti populations associated with climate variability patterns were put forward. The ranges of climate variability affecting Aedes aegypti populations were identified. Forecast maps were generated for the municipal level. Using the Bultó indices of climate variability, it is possible to construct spatial models for predicting increased Aedes aegypti populations in Cuba. At 20 x 20 km resolution, the models are able to provide warning of potential changes in vector populations in rainy and dry seasons and by month, thus demonstrating the usefulness of climate information for

  2. Ciclos de vida comparados de Aedes aegypti (Diptera, Culicidae do semiárido da Paraíba

    Directory of Open Access Journals (Sweden)

    Francisco P. de Castro Jr.

    2013-06-01

    Full Text Available O presente trabalho teve como objetivo comparar os ciclos de vida entre amostras de populações de Aedes aegypti (Linnaeus, 1762 coletadas em dez municípios localizados no semiárido paraibano. Os ciclos de vida foram estudados a uma temperatura de 26 ± 2ºC, umidade relativa de 60 ± 10% e fotofase de 12 horas. Diariamente foram avaliados os períodos de desenvolvimentos e as viabilidades das fases de ovo, larva e pupa, bem como a razão sexual, longevidade, tamanho e fecundidade dos adultos. Foi realizada uma análise de agrupamento, utilizando-se uma matriz de distância euclidiana através do método da média não-ponderada. As durações e viabilidades para as fases de ovo, larva e pupa apresentaram respectivamente, uma variação média de 3,7 a 4,7 dias e 82,8% a 97,7%, 9,1 a 10,8 dias e 91,2% a 99,2% e de 2,1 a 2,5 dias e 93,5% a 98,4%. O comprimento alar foi de 5,13 a 5,34 mm para as fêmeas e de 4,18 a 4,25 mm para os machos. A menor fecundidade (153,6 ovos/fêmea ocorreu na população de A. aegypti oriunda de Pedra Lavrada, enquanto que a maior fecundidade (310,6 ovos/fêmea foi constatada para A. aegypti de Campina Grande. A análise de agrupamento com base na similaridade dos dados biológicos revelou a formação de dois grandes grupos distintos, onde as populações de A. aegypti de Serra Branca e Cuité apresentam maior similaridade entre si. As diferenças de ciclos biológicos verificadas entre as populações de A. aegypti demonstra a capacidade dessa espécie de sofrer variações na sua biologia e se adaptar às diferentes condições ambientais, favorecendo a permanência deste inseto nessas áreas com aumento do risco de transmissão do vírus da dengue.

  3. Age-dependent effects of oral infection with dengue virus on Aedes aegypti (Diptera: Culicidae) feeding behavior, survival, oviposition success and fecundity.

    Science.gov (United States)

    Sylvestre, Gabriel; Gandini, Mariana; Maciel-de-Freitas, Rafael

    2013-01-01

    Aedes aegypti is the main vector of dengue, a disease that is increasing its geographical range as well as incidence rates. Despite its public health importance, the effect of dengue virus (DENV) on some mosquito traits remains unknown. Here, we investigated the impact of DENV-2 infection on the feeding behavior, survival, oviposition success and fecundity of Ae. aegypti females. After orally-challenging Ae. aegypti females with a DENV-2 strain using a membrane feeder, we monitored the feeding behavior, survival, oviposition success and fecundity throughout the mosquito lifespan. We observed an age-dependent cost of DENV infection on mosquito feeding behavior and fecundity. Infected individuals took more time to ingest blood from anesthetized mice in the 2(nd) and 3(rd) weeks post-infection, and also longer overall blood-feeding times in the 3(rd) week post-infection, when females were around 20 days old. Often, infected Ae. aegypti females did not lay eggs and when they were laid, smaller number of eggs were laid compared to uninfected controls. A reduction in the number of eggs laid per female was evident starting on the 3(rd) week post-infection. DENV-2 negatively affected mosquito lifespan, since overall the longevity of infected females was halved compared to that of the uninfected control group. The DENV-2 strain tested significantly affected Ae. aegypti traits directly correlated with vectorial capacity or mosquito population density, such as feeding behavior, survival, fecundity and oviposition success. Infected mosquitoes spent more time ingesting blood, had reduced lifespan, laid eggs less frequently, and when they did lay eggs, the clutches were smaller than uninfected mosquitoes.

  4. Age-dependent effects of oral infection with dengue virus on Aedes aegypti (Diptera: Culicidae feeding behavior, survival, oviposition success and fecundity.

    Directory of Open Access Journals (Sweden)

    Gabriel Sylvestre

    Full Text Available BACKGROUND: Aedes aegypti is the main vector of dengue, a disease that is increasing its geographical range as well as incidence rates. Despite its public health importance, the effect of dengue virus (DENV on some mosquito traits remains unknown. Here, we investigated the impact of DENV-2 infection on the feeding behavior, survival, oviposition success and fecundity of Ae. aegypti females. METHODS/PRINCIPAL FINDINGS: After orally-challenging Ae. aegypti females with a DENV-2 strain using a membrane feeder, we monitored the feeding behavior, survival, oviposition success and fecundity throughout the mosquito lifespan. We observed an age-dependent cost of DENV infection on mosquito feeding behavior and fecundity. Infected individuals took more time to ingest blood from anesthetized mice in the 2(nd and 3(rd weeks post-infection, and also longer overall blood-feeding times in the 3(rd week post-infection, when females were around 20 days old. Often, infected Ae. aegypti females did not lay eggs and when they were laid, smaller number of eggs were laid compared to uninfected controls. A reduction in the number of eggs laid per female was evident starting on the 3(rd week post-infection. DENV-2 negatively affected mosquito lifespan, since overall the longevity of infected females was halved compared to that of the uninfected control group. CONCLUSIONS: The DENV-2 strain tested significantly affected Ae. aegypti traits directly correlated with vectorial capacity or mosquito population density, such as feeding behavior, survival, fecundity and oviposition success. Infected mosquitoes spent more time ingesting blood, had reduced lifespan, laid eggs less frequently, and when they did lay eggs, the clutches were smaller than uninfected mosquitoes.

  5. Heritable CRISPR/Cas9-mediated genome editing in the yellow fever mosquito, Aedes aegypti.

    Directory of Open Access Journals (Sweden)

    Shengzhang Dong

    Full Text Available In vivo targeted gene disruption is a powerful tool to study gene function. Thus far, two tools for genome editing in Aedes aegypti have been applied, zinc-finger nucleases (ZFN and transcription activator-like effector nucleases (TALEN. As a promising alternative to ZFN and TALEN, which are difficult to produce and validate using standard molecular biological techniques, the clustered regularly interspaced short palindromic repeats/CRISPR-associated sequence 9 (CRISPR/Cas9 system has recently been discovered as a "do-it-yourself" genome editing tool. Here, we describe the use of CRISPR/Cas9 in the mosquito vector, Aedes aegypti. In a transgenic mosquito line expressing both Dsred and enhanced cyan fluorescent protein (ECFP from the eye tissue-specific 3xP3 promoter in separated but tightly linked expression cassettes, we targeted the ECFP nucleotide sequence for disruption. When supplying the Cas9 enzyme and two sgRNAs targeting different regions of the ECFP gene as in vitro transcribed mRNAs for germline transformation, we recovered four different G1 pools (5.5% knockout efficiency where individuals still expressed DsRed but no longer ECFP. PCR amplification, cloning, and sequencing of PCR amplicons revealed indels in the ECFP target gene ranging from 2-27 nucleotides. These results show for the first time that CRISPR/Cas9 mediated gene editing is achievable in Ae. aegypti, paving the way for further functional genomics related studies in this mosquito species.

  6. Oral ingestion of transgenic RIDL Ae. aegypti larvae has no negative effect on two predator Toxorhynchites species.

    Directory of Open Access Journals (Sweden)

    Oreenaiza Nordin

    Full Text Available Dengue is the most important mosquito-borne viral disease. No specific treatment or vaccine is currently available; traditional vector control methods can rarely achieve adequate control. Recently, the RIDL (Release of Insect carrying Dominant Lethality approach has been developed, based on the sterile insect technique, in which genetically engineered 'sterile' homozygous RIDL male insects are released to mate wild females; the offspring inherit a copy of the RIDL construct and die. A RIDL strain of the dengue mosquito, Aedes aegypti, OX513A, expresses a fluorescent marker gene for identification (DsRed2 and a protein (tTAV that causes the offspring to die. We examined whether these proteins could adversely affect predators that may feed on the insect. Aedes aegypti is a peri-domestic mosquito that typically breeds in small, rain-water-filled containers and has no specific predators. Toxorhynchites larvae feed on small aquatic organisms and are easily reared in the laboratory where they can be fed exclusively on mosquito larvae. To evaluate the effect of a predator feeding on a diet of RIDL insects, OX513A Ae. aegypti larvae were fed to two different species of Toxorhynchites (Tx. splendens and Tx. amboinensis and effects on life table parameters of all life stages were compared to being fed on wild type larvae. No significant negative effect was observed on any life table parameter studied; this outcome and the benign nature of the expressed proteins (tTAV and DsRed2 indicate that Ae. aegypti OX513A RIDL strain is unlikely to have any adverse effects on predators in the environment.

  7. Establishment of a Wolbachia Superinfection in Aedes aegypti Mosquitoes as a Potential Approach for Future Resistance Management.

    Directory of Open Access Journals (Sweden)

    D Albert Joubert

    2016-02-01

    Full Text Available Wolbachia pipientis is an endosymbiotic bacterium estimated to chronically infect between 40-75% of all arthropod species. Aedes aegypti, the principle mosquito vector of dengue virus (DENV, is not a natural host of Wolbachia. The transinfection of Wolbachia strains such as wAlbB, wMel and wMelPop-CLA into Ae. aegypti has been shown to significantly reduce the vector competence of this mosquito for a range of human pathogens in the laboratory. This has led to wMel-transinfected Ae. aegypti currently being released in five countries to evaluate its effectiveness to control dengue disease in human populations. Here we describe the generation of a superinfected Ae. aegypti mosquito line simultaneously infected with two avirulent Wolbachia strains, wMel and wAlbB. The line carries a high overall Wolbachia density and tissue localisation of the individual strains is very similar to each respective single infected parental line. The superinfected line induces unidirectional cytoplasmic incompatibility (CI when crossed to each single infected parental line, suggesting that the superinfection would have the capacity to replace either of the single constituent infections already present in a mosquito population. No significant differences in fitness parameters were observed between the superinfected line and the parental lines under the experimental conditions tested. Finally, the superinfected line blocks DENV replication more efficiently than the single wMel strain when challenged with blood meals from viremic dengue patients. These results suggest that the deployment of superinfections could be used to replace single infections and may represent an effective strategy to help manage potential resistance by DENV to field deployments of single infected strains.

  8. Distribuição de Aedes aegypti e do dengue no Estado do Maranhão, Brasil

    Directory of Open Access Journals (Sweden)

    Rebêlo José Manuel Macário

    1999-01-01

    Full Text Available O dengue e o Aedes aegypti encontram-se disseminados em municípios de todas as regiões do Maranhão. No ano de 1995, foram trabalhados 87 dos 136 municípios em que se divide geograficamente o Estado, 176 localidades e 480.687 imóveis. Foram considerados positivos para Ae. aegypti trinta municípios (34,4%, 118 localidades (67,0% e 10.357 imóveis (2,1%. Dos municípios positivos, três pertencem à Ilha de São Luís, sete à Amazônia Maranhense, 12 à zona dos cerrados meridionais, cinco à zona mista de matas-cerrados-cocais. Nas zonas que seguem - campos aluviais, matas-cocais e dunas-restinga -, Ae. aegypti foi encontrado em apenas um município. Os índices de positividade predial foram mais elevados na Amazônia Maranhense (3,5% e na Ilha de São Luís (2,5%, por constituírem as rotas de maior fluxo migratório da população e de escoamento de produtos entre o Maranhão e os estados vizinhos e também por serem áreas onde estão localizados os grandes centros urbanos e econômicos do Estado. Os índices de infestação predial por Ae. aegypti e de casos de dengue notificados foram maiores nos meses úmidos, mostrando a importância das chuvas na formação de criadouros do vetor e na distribuição de Aedes e do dengue.

  9. The effect of Piper aduncum Linn. (Family: Piperaceae) essential oil as aerosol spray against Aedes aegypti (L.) and Aedes albopictus Skuse.

    Science.gov (United States)

    Misni, Norashiqin; Othman, Hidayatulfathi; Sulaiman, Sallehudin

    2011-08-01

    The bioefficacy of Piper aduncum L. essential oil formulated in aerosol cans was evaluated against Aedes aegypti and Aedes albopictus in a simulated room. The aerosol spray test was based on the Malaysian test standard for aerosol (MS 1221:1991UDC 632.982.2 modified from WHO 2009 methodology) and examined the knockdown effect within 20 minutes of exposure. Mortality rate after 24 hour of holding period was also determined. A commercial aerosol spray (0.09% prallethrin 0.05% d-phenothrin) was also tested as a comparison. Our results showed that the knockdown effect of the commercial aerosol spray and P. aduncum essential oil spray (8% and 10% concentrations) was significantly higher in Ae. albopictus adult females, when compared with that of Ae. aegypti adult females (P<0.05). There was a significant difference in knockdown between commercial aerosol spray and essential oil spray for both Aedes spp. (P<0.05). The essential oil induced significantly higher mortality in Ae. aegypti (80%) than in Ae. albopictus (71.6%) (P<0.05). The commercial aerosol spray caused 97.7% and 86.5% mortality against Ae. aegypti and Ae. albopictus respectively (P<0.05). Based on these data, P. aduncum essential oil has the potential to be used as an aerosol spray against Aedes spp.

  10. Suitability of containers from different sources as breeding sites of Aedes aegypti (L. in a cemetery of Buenos Aires City, Argentina

    Directory of Open Access Journals (Sweden)

    Darío Vezzani

    2002-09-01

    Full Text Available Cemeteries are ideal urban areas to study the importance of different types of containers as breeding sites of Aedes aegypti (L.. In the present study, the suitability of plastic, glass, ceramic and metal containers was evaluated in four patches within a cemetery of Buenos Aires City, Argentina. Between October 1998 and May 2000, we found 215 breeding sites of Ae. aegypti out of 13,022 water-filled containers examined. In two patches containing microenvironments sheltered from the sun, the use of the different types of containers was proportional to the offer (correlation coefficient = 0.99, P < 0.05 in both cases. In the remaining patches, plastic and metal containers were the most and less frequent breeding sites, respectively (P < 0.001 in both cases. The number of immatures per breeding site (median = 4.5 did not show significant differences among the four types of containers examined (H3, 215 = 1.216, P = 0.749. Differences found in patches from a same cemetery suggest that different microenvironmental conditions affect the suitability of each type of container for Ae. aegypti breeding. Plastic containers appeared as key breeding sites that should be removed to reduce the Ae. aegypti population in the study area.

  11. Daya Repelan dan Uji Iritasi Formula Lotion Ekstrak Etanol Daun Sirih (Piper Betle Linn) dengan Variasi Basis Lanolin terhadap Nyamuk Aedes Aegypti

    OpenAIRE

    Fitriana, Apri Yudis; Wahyuningrum, Retno; Sudarso, Sudarso

    2012-01-01

    Demam berdarah dengue (DBD) yang ditularkan melalui gigitan nyamuk Aedes aegypti dan Aedes albopictus betina masih menjadi masalah kesehatan khususnya di Indonesia. Sediaan repelan biasa digunakan untuk menghindari gangguan atau gigitan nyamuk Aedes aegypti. Namun sediaan repelan mengandung Diethyl toluamide (DEET) yang dalam penggunaannya dapat menyebabkan eritema (kemerahan pada kulit) dan iritasi. Penelitian ini bertujuan untuk menentukan aktivitas daya repelan lotion ekstrak daun sirih de...

  12. Constituintes químicos de Capraria biflora (Scrophulariaceae e atividade larvicida de seu óleo essencial

    Directory of Open Access Journals (Sweden)

    Luciana Gregório da S. Souza

    2012-01-01

    Full Text Available Analysis of essential oil from fresh leaves of Capraria biflora allowed identification of fourteen essential oil constituents among which thirteen are sesquiterpene compounds, and α-humulene (43.0% the major constituent. The essential oil was tested for larvicidal activity against Aedes aegypti showing good activity, with LC50 73.39 µg/mL (2.27 g/mL. Chromatographic studies of extracts from roots and stems allowed the isolation of five compounds: naphthoquinone biflorin, sesquiterpene caprariolide B, the steroid β-sitosterol, the carbohydrate D-mannitol and iridoid myopochlorin first reported in the species C. biflora. The structures of compounds were characterized by spectroscopic data, IR, MS, NMR13C, NMR¹H, NOE, HSQC and HMBC.

  13. Semi-Field Evaluation of Metofluthrin-Impregnated Nets on Host-Seeking Aedes aegypti and Anopheles dirus.

    Science.gov (United States)

    Ponlawat, Alongkot; Kankaew, Prasan; Chanaimongkol, Somporn; Pongsiri, Arissara; Richardson, Jason H; Evans, Brian P

    2016-06-01

    The efficacy of a metofluthrin-impregnated net (MIN) known as the "Mushikonazu" on the house entry behavior of female Aedes aegypti and Anopheles dirus mosquitoes was evaluated using a semi-field 50-m tunnel setup. While the MIN is labeled for the control of chironomids and moth flies, this study determined the feasibility of using the device, given its current construction and metofluthrin formulation, as a spatial repellent against mosquitoes. Sentinel and cone bioassays were used to determine the insecticidal effect of the MIN. A spatial activity index (SAI) was calculated to evaluate responses of the mosquitoes. For the spatial repellent evaluation against Ae. aegypti, the overall mean of SAI was slightly less than 0 at wk 1 after the MIN application and then decreased for the last 4 wk showing a preference to treatment tent. For An. dirus, the mean SAI at wk 1 was positive, indicating a presumed repellent effect of the MIN against An. dirus. For the subsequent 4 wk, the SAI was negative, indicating a preference for the MIN. Results suggested that the MIN may not be a promising approach to repel Ae. aegypti and An. dirus under field conditions in Thailand. However, it remains probable that the MIN may be effective as a spatial repellent if modifications are made to the metofluthrin concentration or formulation and/or the construction of the device.

  14. Toxicological evaluation of essential oil from the leaves of Croton tetradenius (Euphorbiaceae) on Aedes aegypti and Mus musculus.

    Science.gov (United States)

    Carvalho, Karine da Silva; E Silva, Sandra Lúcia da Cunha; de Souza, Ivone Antonia; Gualberto, Simone Andrade; da Cruz, Rômulo Carlos Dantas; Dos Santos, Frances Regiane; de Carvalho, Mário Geraldo

    2016-09-01

    For control of Aedes aegypti, the main vector of dengue, botanical insecticides can be a viable alternative. Herein, we evaluated the chemical composition and insecticidal activity of the essential oils of the leaves of Croton tetradenius on Ae. aegypti larvae and adults. We also evaluated the acute toxicity in Mus musculus. The essential oil chemical analysis was performed using chromatography coupled with mass spectrometry and flame ionization detection. Female mice were used for assessing toxicity according to the Organization for Economic Cooperation and Development's Test Guideline 423/2001. Doses administered to mice orally and intraperitoneally were 5, 50, 300, and 2000 mg kg(-1). There was a greater toxic effect on larvae (LC50 = 0.152 mg mL(-1) and LC90 = 0.297 mg mL(-1)) and on adults (LC50 = 1.842 mg mL(-1) and LC90 = 3.156 mg mL(-1)) of Ae. aegypti after 24 h of exposure, when compared to other periods of exposure. Chemical analysis revealed 26 components, with camphor (25.49 %) as the major component. The acute toxicity via the intraperitoneal route identified an LD50 = 200 mg kg(-1) and by the oral route an LD50 = 500 mg kg(-1). Thus, the essential oil of C. tetradenius presents insecticidal potential for Ae. aegypti and has high safety threshold at the concentrations evaluated in this study.

  15. Entomopathogenic fungi and their potential for the management of Aedes aegypti (Diptera: Culicidae in the Americas

    Directory of Open Access Journals (Sweden)

    Harry C Evans

    Full Text Available Classical biological control has been used extensively for the management of exotic weeds and agricultural pests, but never for alien insect vectors of medical importance. This simple but elegant control strategy involves the introduction of coevolved natural enemies from the centre of origin of the target alien species. Aedes aegypti - the primary vector of the dengue, yellow fever and Zika flaviviruses - is just such an invasive alien in the Americas where it arrived accidentally from its West African home during the slave trade. Here, we introduce the concept of exploiting entomopathogenic fungi from Africa for the classical biological control of Ae. aegypti in the Americas. Fungal pathogens attacking arthropods are ubiquitous in tropical forests and are important components in the natural balance of arthropod populations. They can produce a range of specialised spore forms, as well as inducing a variety of bizarre behaviours in their hosts, in order to maximise infection. The fungal groups recorded as specialised pathogens of mosquito hosts worldwide are described and discussed. We opine that similar fungal pathogens will be found attacking and manipulating Ae. aegypti in African forests and that these could be employed for an economic, environmentally-safe and long-term solution to the flavivirus pandemics in the Americas.

  16. Variation in Aedes aegypti (Linnaeus) (Diptera, Culicidae) infestation in artificial containers in Caxias, state of Maranhão, Brazil.

    Science.gov (United States)

    Soares-da-Silva, Joelma; Ibiapina, Sebastiana Silva; Bezerra, Juliana Maria Trindade; Tadei, Wanderli Pedro; Pinheiro, Valéria Cristina Soares

    2012-01-01

    Dengue is a serious public health problem worldwide, with cases reported annually in tropical and subtropical regions. Aedes aegypti (Linnaeus, 1762), the main vector of dengue, is a domiciliary species with high dispersal and survival capacities and can use various artificial containers as breeding sites. We assessed potential container breeding sites of A. aegypti in the municipality of Caxias, Maranhão, Brazil. In the initial phase, we analyzed 900 properties in 3 neighborhoods during the dry and rainy seasons (August-October 2005 and February-April 2006, respectively). During the second sampling period, September 2006-August 2007, we used 5 assessment cycles for 300 properties in a single neighborhood. During the dry and rainy seasons, water-storage containers comprised 55.7% (n = 1,970) and 48.5% (n = 1,836) of the total containers inspected, and showed the highest productivity of immature A. aegypti; we found 23.7 and 106.1 individuals/container, respectively, in peridomicile sites. In intradomicile sites, water-storage containers were also the most important breeding sites with 86.4% (n = 973) and 85.6% (n = 900) of all containers and a mean of 7.9 and 108.3 individuals/container in the dry and rainy seaso-October 2006 (1,342). The highest number of positives (70) was recorded in May, mostly (94%) in storage containers. Storage containers are the principal and most productive A. aegypti breeding sites and are a major contributing factor to the maintenance of this vector in Caxias.

  17. Larvicidal activity against Aedes aegypti of pacharin from Bauhinia acuruana.

    Science.gov (United States)

    da Silva Góis, Roberto Wagner; de Sousa, Leôncio Mesquita; Santiago, Gilvandete Maria Pinheiro; Romero, Nirla Rodrigues; Lemos, Telma Leda Gomes; Arriaga, Angela Martha Campos; Braz-Filho, Raimundo

    2013-07-01

    The aim of the present study was to evaluate the activity of pacharin isolated from the ethanol extract from roots of Bauhinia acuruana on third-instar larvae of Aedes aegypti Linn. (Diptera: Culicidae). The crude ethanol extract showed larvicidal activity at the concentration of 500 μg/mL. Given this larvicidal activity, this extract was submitted to chromatographic fractionation on a silica gel column eluted with n-hexane, dichloromethane, ethyl ether, ethyl acetate, and methanol in order to isolate the active compound(s). Pacharin, obtained in pure form from fraction eluted with ethyl ether, was evaluated for their larvicidal effects against A. aegypti. In these bioassays, the larvae were exposed at concentrations of 500, 250, 100, 50, and 25 μg/mL of the crude ethanol extract or pacharin. After 24 h, the number of dead larvae was counted and the LC₅₀ values for larval mortality were calculated. Pacharin showed LC50 value of 78.9 ± 1.8 μg/mL. The structure of isolated compound was identified on the basis of their spectral data (IR, 1D- and 2D-NMR) and by comparison with literature spectral data. The results indicate pacharin as a potential natural larvicide.

  18. Dengue virus replicates and accumulates in Aedes aegypti salivary glands

    Energy Technology Data Exchange (ETDEWEB)

    Raquin, Vincent, E-mail: vincent.raquin@univ-lyon1.fr [Insect-Virus Interactions Group, Department of Genomes and Genetics, Institut Pasteur, 75015 Paris (France); Centre National de la Recherche Scientifique, Unité de Recherche Associée 3012, 75015 Paris (France); Lambrechts, Louis, E-mail: louis.lambrechts@pasteur.fr [Insect-Virus Interactions Group, Department of Genomes and Genetics, Institut Pasteur, 75015 Paris (France); Centre National de la Recherche Scientifique, Unité de Recherche Associée 3012, 75015 Paris (France)

    2017-07-15

    Dengue virus (DENV) is an RNA virus transmitted among humans by mosquito vectors, mainly Aedes aegypti. DENV transmission requires viral dissemination from the mosquito midgut to the salivary glands. During this process the virus undergoes several population bottlenecks, which are stochastic reductions in population size that restrict intra-host viral genetic diversity and limit the efficiency of natural selection. Despite the implications for virus transmission and evolution, DENV replication in salivary glands has not been directly demonstrated. Here, we used a strand-specific quantitative RT-PCR assay to demonstrate that negative-strand DENV RNA is produced in Ae. aegypti salivary glands, providing conclusive evidence that viral replication occurs in this tissue. Furthermore, we showed that the concentration of DENV genomic RNA in salivary glands increases significantly over time, indicating that active replication likely replenishes DENV genetic diversity prior to transmission. These findings improve our understanding of the biological determinants of DENV fitness and evolution. - Highlights: •Strand-specific RT-qPCR allows accurate quantification of DENV (-) RNA in mosquito tissues. •Detection of DENV (-) RNA in salivary glands provides evidence of viral replication in this tissue. •Viral replication in salivary glands likely replenishes DENV genetic diversity prior to transmission.

  19. Dengue virus replicates and accumulates in Aedes aegypti salivary glands

    International Nuclear Information System (INIS)

    Raquin, Vincent; Lambrechts, Louis

    2017-01-01

    Dengue virus (DENV) is an RNA virus transmitted among humans by mosquito vectors, mainly Aedes aegypti. DENV transmission requires viral dissemination from the mosquito midgut to the salivary glands. During this process the virus undergoes several population bottlenecks, which are stochastic reductions in population size that restrict intra-host viral genetic diversity and limit the efficiency of natural selection. Despite the implications for virus transmission and evolution, DENV replication in salivary glands has not been directly demonstrated. Here, we used a strand-specific quantitative RT-PCR assay to demonstrate that negative-strand DENV RNA is produced in Ae. aegypti salivary glands, providing conclusive evidence that viral replication occurs in this tissue. Furthermore, we showed that the concentration of DENV genomic RNA in salivary glands increases significantly over time, indicating that active replication likely replenishes DENV genetic diversity prior to transmission. These findings improve our understanding of the biological determinants of DENV fitness and evolution. - Highlights: •Strand-specific RT-qPCR allows accurate quantification of DENV (-) RNA in mosquito tissues. •Detection of DENV (-) RNA in salivary glands provides evidence of viral replication in this tissue. •Viral replication in salivary glands likely replenishes DENV genetic diversity prior to transmission.

  20. Global dynamics of a PDE model for aedes aegypti mosquitoe incorporating female sexual preference

    KAUST Repository

    Parshad, Rana; Agusto, Folashade B.

    2011-01-01

    In this paper we study the long time dynamics of a reaction diffusion system, describing the spread of Aedes aegypti mosquitoes, which are the primary cause of dengue infection. The system incorporates a control attempt via the sterile insect

  1. Exploring New Thermal Fog and Ultra-Low Volume Technologies to Improve Indoor Control of the Dengue Vector, Aedes aegypti (Diptera: Culicidae)

    Science.gov (United States)

    2014-07-01

    Dengue Vector, Aedes aegypti (Diptera: Culicidae) JAMES F. HARWOOD,1,2 MUHAMMAD FAROOQ,1 ALEC G. RICHARDSON,1 CARL W. DOUD,1 JOHN L. PUTNAM,3 DANIEL E...vector, Aedes aegypti (L.), inside human habitations must be performed quickly and efÞciently to reduce the risk of transmission during dengue...immediate knockdown of vector populations that may lower the risk of infection and allow other suppression strategies to be implemented. KEY WORDS Aedes

  2. Relação entre os constituintes do solo e seu comportamento espectral Relationship between the soil constituents and its spectral behavior

    Directory of Open Access Journals (Sweden)

    Ricardo Simão Diniz Dalmolin

    2005-04-01

    Full Text Available A reflectância espectral de solos é a expressão que registra o fluxo de radiação eletromagnética refletida pelo solo em relação ao fluxo radiante. Como os solos apresentam diferentes constituintes, os mesmos podem ser identificados e em certos casos quantificados pela análise de sua resposta espectral. Os principais constituintes dos solos que influenciam seu comportamento espectral são a matéria orgânica, óxidos de ferro, argilominerais, além da distribuição granulométrica e umidade. A utilização da reflectância espectral visando obter informações na identificação e quantificação de características do solo de maneira rápida e não invasiva, tanto em nível laboratorial como em nível orbital, tem ocorrido principalmente em países desenvolvidos. No Brasil, o interesse de pesquisadores pelo estudo do comportamento espectral de solos vem crescendo desde a década de 80 do século passado, sendo esta linha de pesquisa relativamente jovem e necessitada de suporte de pesquisa para melhor entendimento dos efeitos da interação da energia eletromagnética entre os diferentes componentes do solo.The spectral soil reflectance is an expression that characterizes the electromagnetic radiation reflected by soil surface. Most of the soil constituents can be identified and sometimes quantified by the spectral behavior. The main soil constituents that influence its spectral behavior are the organic matter, iron oxides, mineralogy and clay content and moisture. The use of soil reflectance allows to obtain information to quickly identify and quantify the soil characteristics, both in laboratory and orbital levels, but it has been tested and used mainly in developed countries. In Brazil, the research interest for the study of the soil spectral reflectance started in the 1980’s, being a recent research area which needs research support to achieve a better understanding of the spectral interaction among the different components of

  3. Determinación de la sensibilidad a insecticidas organofosforados, carbamato y piretroides en poblaciones de Aedes aegypti Linneaus, 1762 (Díptera: Culicidae de Panamá

    Directory of Open Access Journals (Sweden)

    Lorenzo Cáceres

    2013-08-01

    Full Text Available Introducción. Se llevó a cabo un estudio para determinar la sensibilidad de Aedes aegypti provenientes de regiones de alto riesgo de transmisión de dengue en Panamá, a insecticidas organofosforados, carbamatos y piretroides. Objetivo. Evaluar la sensibilidad a insecticidas piretroides, organofosforados y carbamatos en poblaciones de Ae. aegypti provenientes de ocho sitios pertenecientes a siete municipios de Panamá. Materiales y métodos. Se recolectaron poblaciones de Ae. aegypti en diferentes tipos de criaderos localizados en áreas urbanas y se criaron en condiciones controladas de laboratorio. Con la generación F1 de cada una de las cepas se hicieron bioensayos de sensibilidad siguiendo la metodología estandarizada por la Organización Mundial de la Salud para larvas y adultos. Resultados. Las ocho cepas de Ae. aegypti resultaron sensibles a los insecticidas piretroides deltametrina, lambdacihalotrina y ciflutrina, el organofosforado fenitrotión y los carbamato propoxur y bendiocarb. Solo la cepa CHITRE resultó con resistencia moderada al insecticida deltametrina enlarvas (FR50=5x. Sin embargo, en adultos resultó sensible. Conclusiones. Es necesaria la vigilancia periódica de la sensibilidad de las poblaciones de Ae. aegypti de los municipios evaluados, con el propósito de conservar en las poblaciones el carácter sensible a estos insecticidas. Los insecticidas aplicados para el control de Ae. aegypti pueden seguir siendoutilizados en los municipios evaluados, pero depende de la sensibilidad de los mosquitos en el área específica.   doi: http://dx.doi.org/10.7705/biomedica.v33i0.703

  4. Landing periodicity of the mosquito Aedes aegypti in Trinidad in relation to the timing of insecticidal space-spraying.

    Science.gov (United States)

    Chadee, D D

    1988-04-01

    Diel landing periodicity (biting cycle) of domestic Aedes aegypti (L.) in Trinidad, West Indies, was monitored using human bait during January-August 1980. The periodicity of females was predominantly diurnal (95.2% arriving during daylight or twilight) and bimodal, with consistent peaks at 06.00-07.00 and 17.00-18.00 hours. The diel periodicities at indoor and outdoor sites were virtually identical. Larger numbers of adults were collected outside than inside houses. It is recommended that the time of insecticidal ULV adulticiding should coincide with peaks in landing periodicity of the Ae.aegypti adults.

  5. Comportamento de formas imaturas de Aedes aegypti, no litoral do Estado de São Paulo

    Directory of Open Access Journals (Sweden)

    Carmen Moreno Glasser

    2011-06-01

    Full Text Available INTRODUÇÃO: Em região de alta incidência de dengue, no litoral do Estado de São Paulo, selecionaram-se 9 áreas, com objetivo de avaliar o comportamento de formas imaturas de Aedes aegypti. MÉTODOS: As 9 áreas foram agrupadas em 4 estratos, diferenciados pelo uso e ocupação do solo. Foram coletadas larvas e pupas numa amostra de cerca de 500 imóveis em cada área. RESULTADOS: Apesar do pneu e lona apresentarem as maiores taxas de positividade para Aedes aegypti, o ralo, juntamente com outros recipientes fixos nas edificações foram altamente predominantes entre os recipientes positivos (32 a 76% dos recipientes positivos. As áreas coletivas de prédios e os imóveis não residenciais de grande porte apresentaram as maiores taxas de positividade para Aedes aegypti enquanto os apartamentos, as menores. Os níveis de infestação foram maiores na área residencial com predominância de prédios de apartamentos, onde 76% dos criadouros detectados foram recipientes fixos nas edificações. CONCLUSÕES: Esses conhecimentos são importantes subsídios para a estratégia de controle, pois reforçam a necessidade de atenção especial para determinados tipos de imóveis, bem como da adequação da norma técnica de ralo de água pluvial e da melhoria de manutenção das edificações. Além disso, são necessárias observações sistemáticas que permitam acompanhar a dinâmica de ocupação de diferentes imóveis e recipientes por Aedes aegypti e a incorporação desses conhecimentos nas ações de controle do vetor na região.

  6. Ecología de Aedes aegypti y Aedes albopictus en América y transmisión de enfermedades

    Directory of Open Access Journals (Sweden)

    Jorge R. Rey

    2015-06-01

    Otra posible causa de la rápida desaparición de Ae. aegypti es la interferencia reproductiva entre las dos especies. De acuerdo con esta hipótesis, los efectos asimétricos de los apareamientos entre especies favorecen a Ae. albopictus. Este tipo de interferencia reproductiva podría ser la causante de la eliminación de poblaciones simpátricas de las especies involucradas y de la rapidez con que Ae. aegypti ha desaparecido de muchos lugares en América luego de la invasión de Ae. albopictus.

  7. Evaluación del temefos y pyriproxifeno para el control de larvas de Aedes aegypti en condiciones de laboratorio

    OpenAIRE

    Pérez, María; Ministerio de Salud. Lima, Perú.

    2017-01-01

    Objetivo: Evaluar la eficacia del temefos frente al pyriproxifeno a diferentes dosis (0.01, 0.02, 0.03, 0.04 y 0.05 ppb) para el control de larvas de Aedes aegypti en condiciones de laboratorio.Materiales y métodos: Estudio experimental con grupo de control, que incorporó a 2000 larvas de Aedes aegypti provenientes de la jurisdicción de Collique III Zona, Comas - Perú, y la cepa Rockefeller como control susceptible. Sedeterminó la diferencia en tiempo de inicio de la acción larvicida; así mis...

  8. Determinants of heterogeneous blood feeding patterns by Aedes aegypti in Iquitos, Peru.

    Directory of Open Access Journals (Sweden)

    Kelly A Liebman

    2014-02-01

    Full Text Available Heterogeneous mosquito biting results in different individuals in a population receiving an uneven number of bites. This is a feature of many vector-borne disease systems that, if understood, could guide preventative control efforts toward individuals who are expected to contribute most to pathogen transmission. We aimed to characterize factors determining biting patterns of Aedes aegypti, the principal mosquito vector of dengue virus.Engorged female Ae. aegypti and human cheek swabs were collected from 19 houses in Iquitos, Peru. We recorded the body size, age, and sex of 275 consenting residents. Movement in and out of the house over a week (time in house and mosquito abundance were recorded on eight separate occasions in each household over twelve months. We identified the individuals bitten by 96 engorged mosquitoes over this period by amplifying specific human microsatellite markers in mosquito blood meals and human cheek swabs. Using a multinomial model assuming a saturating relationship (power, we found that, relative to other residents of a home, an individual's likelihood of being bitten in the home was directly proportional to time spent in their home and body surface area (p<0.05. A linear function fit the relationship equally well (ΔAIC<1.Our results indicate that larger people and those who spend more time at home are more likely to receive Ae. aegypti bites in their homes than other household residents. These findings are consistent with the idea that measurable characteristics of individuals can inform predictions of the extent to which different people will be bitten. This has implications for an improved understanding of heterogeneity in different people's contributions to pathogen transmission, and enhanced interventions that include the people and places that contribute most to pathogen amplification and spread.

  9. Vertical Transmission of Zika Virus by Aedes aegypti and Ae. albopictus Mosquitoes.

    Science.gov (United States)

    Ciota, Alexander T; Bialosuknia, Sean M; Ehrbar, Dylan J; Kramer, Laura D

    2017-05-01

    To determine the potential role of vertical transmission in Zika virus expansion, we evaluated larval pools of perorally infected Aedes aegypti and Ae. albopictus adult female mosquitoes; ≈1/84 larvae tested were Zika virus-positive; and rates varied among mosquito populations. Thus, vertical transmission may play a role in Zika virus spread and maintenance.

  10. Genome-based polymorphic microsatellite development and validation in the mosquito Aedes aegypti and application to population genetics in Haiti

    Directory of Open Access Journals (Sweden)

    Streit Thomas G

    2009-12-01

    Full Text Available Abstract Background Microsatellite markers have proven useful in genetic studies in many organisms, yet microsatellite-based studies of the dengue and yellow fever vector mosquito Aedes aegypti have been limited by the number of assayable and polymorphic loci available, despite multiple independent efforts to identify them. Here we present strategies for efficient identification and development of useful microsatellites with broad coverage across the Aedes aegypti genome, development of multiplex-ready PCR groups of microsatellite loci, and validation of their utility for population analysis with field collections from Haiti. Results From 79 putative microsatellite loci representing 31 motifs identified in 42 whole genome sequence supercontig assemblies in the Aedes aegypti genome, 33 microsatellites providing genome-wide coverage amplified as single copy sequences in four lab strains, with a range of 2-6 alleles per locus. The tri-nucleotide motifs represented the majority (51% of the polymorphic single copy loci, and none of these was located within a putative open reading frame. Seven groups of 4-5 microsatellite loci each were developed for multiplex-ready PCR. Four multiplex-ready groups were used to investigate population genetics of Aedes aegypti populations sampled in Haiti. Of the 23 loci represented in these groups, 20 were polymorphic with a range of 3-24 alleles per locus (mean = 8.75. Allelic polymorphic information content varied from 0.171 to 0.867 (mean = 0.545. Most loci met Hardy-Weinberg expectations across populations and pairwise FST comparisons identified significant genetic differentiation between some populations. No evidence for genetic isolation by distance was observed. Conclusion Despite limited success in previous reports, we demonstrate that the Aedes aegypti genome is well-populated with single copy, polymorphic microsatellite loci that can be uncovered using the strategy developed here for rapid and efficient

  11. Modeling the Environmental Suitability for Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus (Diptera: Culicidae) in the Contiguous United States.

    Science.gov (United States)

    Johnson, Tammi L; Haque, Ubydul; Monaghan, Andrew J; Eisen, Lars; Hahn, Micah B; Hayden, Mary H; Savage, Harry M; McAllister, Janet; Mutebi, John-Paul; Eisen, Rebecca J

    2017-11-07

    The mosquitoes Aedes (Stegomyia) aegypti (L.)(Diptera:Culicidae) and Ae. (Stegomyia) albopictus (Skuse) (Diptera:Culicidae) transmit dengue, chikungunya, and Zika viruses and represent a growing public health threat in parts of the United States where they are established. To complement existing mosquito presence records based on discontinuous, non-systematic surveillance efforts, we developed county-scale environmental suitability maps for both species using maximum entropy modeling to fit climatic variables to county presence records from 1960-2016 in the contiguous United States. The predictive models for Ae. aegypti and Ae. albopictus had an overall accuracy of 0.84 and 0.85, respectively. Cumulative growing degree days (GDDs) during the winter months, an indicator of overall warmth, was the most important predictive variable for both species and was positively associated with environmental suitability. The number (percentage) of counties classified as environmentally suitable, based on models with 90 or 99% sensitivity, ranged from 1,443 (46%) to 2,209 (71%) for Ae. aegypti and from 1,726 (55%) to 2,329 (75%) for Ae. albopictus. Increasing model sensitivity results in more counties classified as suitable, at least for summer survival, from which there are no mosquito records. We anticipate that Ae. aegypti and Ae. albopictus will be found more commonly in counties classified as suitable based on the lower 90% sensitivity threshold compared with the higher 99% threshold. Counties predicted suitable with 90% sensitivity should therefore be a top priority for expanded mosquito surveillance efforts while still keeping in mind that Ae. aegypti and Ae. albopictus may be introduced, via accidental transport of eggs or immatures, and potentially proliferate during the warmest part of the year anywhere within the geographic areas delineated by the 99% sensitivity model. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work

  12. Molecular and Phytochemical Investigation of Angelica dahurica and Angelica pubescentis Essential Oils and Their Biological Activity against Aedes aegypti, Stephanitis pyrioides, and Colletotrichum Species

    Science.gov (United States)

    2014-08-18

    Molecular and Phytochemical Investigation of Angelica dahurica and Angelica pubescentis Essential Oils and Their Biological Activity against Aedes ...against yellow fever mosquito, Aedes aegypti, and azalea lace bugs, Stephanitis pyrioides, than A. pubescentis root oil. The major compounds in the A...dahurica, Angelica pubescentis, internal transcribed spacer region, Colletotrichum species, Aedes aegypti, Stephanitis pyrioides, 1-dodecanol, 1

  13. Factors favoring houseplant container infestation with Aedes aegypti larvae in Marília, São Paulo, Brazil Factores que favorecen la infestación de recipientes con plantas domésticas por larvas de Aedes aegypti en Marília, São Paulo, Brasil

    Directory of Open Access Journals (Sweden)

    M. L. G. Macoris

    1997-04-01

    Full Text Available Since reinvasion of São Paulo State by the Aedes aegypti (L. mosquito in 1985, flower pots and vases have been important larval habitats despite educational messages focusing on their control. The objectives of this study were to characterize flower pots and vases as larval habitats with respect to the quantities present and infested, the types of plants involved, and the specific locations of the mosquito larvae; to explore local names for houseplants; and to examine factors affecting acceptance of control measures. The results showed an average of more than four potential plant-related larval habitats per premises, of which only 0.4% were occupied by the vector. Plant-related containers represented 31% of all the containers with Aedes aegypti larvae. Although a sample of 126 respondents was able to list 105 different houseplant names, 49% of the positive plants were of two types: ferns and the ornamental plant Dieffenbachia avoena. The public's apparent unwillingness to accept recommended anti-aegypti control measures involving houseplants seems related to the relative rarity of aegypti larvae in the very common houseplant containers, the control program's poor credibility as a source of information about plants, and a perception that the recommended control measures are harmful to plants. An intervention currently being planned for dengue control will use educational material that refers specifically to those plants whose containers are most commonly found to harbor aegypti larvae; it will also utilize information sources such as botanists with greater credibility regarding plants; and it will set out alternative plant care recommendations that are more likely to appeal as beneficial to the plants and that will stand a better chance of being accepted.Desde 1985, después de la reinfestación de mosquitos Aedes aegypti (L. en el Estado de São Paulo, se encontró que --a pesar de la diseminación de mensajes educativos destinados a su control

  14. Wingbeat frequency-sweep and visual stimuli for trapping male Aedes aegypti (Diptera: Culicidae)

    Science.gov (United States)

    Combinations of female wingbeat acoustic cues and visual cues were evaluated to determine their potential for use in male Aedes aegypti (L.) traps in peridomestic environments. A modified Centers for Disease control (CDC) light trap using a 350-500 Hz frequency-sweep broadcast from a speaker as an a...

  15. Effect of isodillapiole on the expression of the insecticide resistance genes GSTE7 and CYP6N12 in Aedes aegypti from central Amazonia.

    Science.gov (United States)

    Lima, V S; Pinto, A C; Rafael, M S

    2015-12-11

    The yellow fever mosquito Aedes (Stegomyia) aegypti is the main vector of dengue arbovirus and other arboviruses. Dengue prevention measures for the control of A. aegypti involve mainly the use of synthetic insecticides. The constant use of insecticides has caused resistance in this mosquito. Alternative studies on plant extracts and their products have been conducted with the aim of controlling the spread of the mosquito. Dillapiole is a compound found in essential oils of the plant Piper aduncum (Piperaceae) which has been effective as a biopesticide against A. aegypti. Isodillapiole is a semisynthetic substance obtained by the isomerization of dillapiole. In the present study, isodillapiole was evaluated for its potential to induce differential expression of insecticide resistance genes (GSTE7 and CYP6N12) in 3rd instar larvae of A. aegypti. These larvae were exposed to this compound at two concentrations (20 and 40 μg/mL) for 4 h during four generations (G1, G2, G3, and G4). Quantitative RT-PCR was used to assess the expression of GSTE7 and CYP6N12 genes. GSTE7 and CYP6N12 relative expression levels were higher at 20 than at 40 μg/mL and varied among generations. The decrease in GSTE7 and CYP6N12 expression levels at the highest isodillapiole concentration suggests that larvae may have suffered from metabolic stress, revealing a potential alternative product in the control of A. aegypti.

  16. Blood Feeding Status, Gonotrophic Cycle and Survivorship of Aedes (Stegomyia) aegypti (L.) (Diptera: Culicidae) Caught in Churches from Merida, Yucatan, Mexico.

    Science.gov (United States)

    Baak-Baak, C M; Ulloa-Garcia, A; Cigarroa-Toledo, N; Tzuc Dzul, J C; Machain-Williams, C; Torres-Chable, O M; Navarro, J C; Garcia-Rejon, J E

    2017-12-01

    Blood-feeding status, gonotrophic cycle, and survival rates of Aedes (Stegmyia) aegypti (L.) was investigated in catholic churches from Merida, Yucatan. Female Ae. aegypti were caught using backpack aspirator during 25 consecutive days in rainy (2015) and dry season (2016). Blood-feeding status was determined by external examination of the abdomen and classified as unfed, fed, and gravid. Daily changes in the parous-nulliparous ratio were recorded, and the gonotrophic cycle length was estimated by a time series analysis. Also, was observed the vitellogenesis to monitoring egg maturity. In total, 408 females Ae. aegypti were caught, and there was a significant difference in the number of females collected per season (Z = -6.729, P ≤ 0.05). A great number was caught in the rainy season (n = 329). In the dry season, 79 females were caught, which the fed females were twice greatest than the unfed. The length of gonotrophic cycle was estimated on the base of a high correlation coefficient value appearing every 4 days in rainy at 26.7 ± 1.22°C, and 3 days in dry season at 29.8 ± 1.47°C. The daily survival rate of the Ae. aegypti population was higher in both seasons, 0.94 and 0.93 for the rainy and dry season, respectively. The minimum time estimated for developing mature eggs after blood feeding was similar in both seasons (3.5 days in rainy versus 3.25 days in dry). The measurement of the vectorial capacity of Ae. aegypti in catholic churches could help to understand the dynamics of transmission of arboviruses in sites with high human aggregation.

  17. Evaluation of the larvicidal efficiency of stem, roots and leaves of the weed, Parthenium hysterophorus (Family: Asteraceae against Aedes aegypti L.

    Directory of Open Access Journals (Sweden)

    Sarita Kumar

    2012-10-01

    Full Text Available Objective: To assess the larvicidal potential of various extracts prepared from the stem, roots and leaves of Parthenium hysterophorus (P. hysterophorus against 3rd and 4th instars of Aedes aegypti (Ae. aegypti. Methods: The extracts from each part were prepared with four solvents; petroleum ether, hexane, acetone and diethyl ether. Each part was dried, powdered and soaked in different solvents, separately, for five days. The crude extracts thus formed were concentrated using rotary evaporator and stored as stock solution of 1 000 mg/L. Results: All the extracts prepared from the leaves were found ineffective against both the instars causing only 10%-40% mortality. Against 3rd instars, the hexane and petroleum ether extracts prepared from the stem of P. hysterophorus were found effective exhibiting LC50 values of 379.76 and 438.57 mg/L, respectively. Likewise the hexane and petroleum ether extracts from the Parthenium roots resulted in LC50 values of 432.38 and 562.50 mg/L, respectively, against 4th instars of Ae. aegypti revealing their larvicidal potential. It was further found that the hexane extracts, whether from roots or stem, were 13-28% more effective than the petroleum ether extracts. The qualitative phytochemical study of the effective extracts from the stems and roots showed the presence of alkaloids, saponins, terpenoids and flavonoids in different combinations. Conclusions: Our investigations demonstrated the potential of P. hysterophorus roots and stems against Ae. aegypti larvae and their benefits as new types of mosquito larvicides. Variety of types and levels of active constituents in each kind of extract may be responsible for the variability in their potential against Ae. aegypti. Further research is needed to identify these components.

  18. Ovicidal activity of Ageratina adenophora (Family: Asteraceae) against dengue vector, Aedes aegypti (Diptera: Culicidae)

    Science.gov (United States)

    To determine the ovicidal efficacy of different solvent leaf extracts of Ageratina adenophora against dengue vector Aedes aegypti . Methods: The ovicidal efficacy of the crude leaf extracts of A. adenophora with five different solvents (hexane, benzene, chloroform, ethyl acetate, methanol) and was ...

  19. Spatial repellency screening in a high-throughput apparatus with Aedes aegypti and Anopheles gambiae

    Science.gov (United States)

    Spatial repellents are essential for personal protection against mosquitoes, such as Aedes aegypti and Anopheles gambiae, to reduce annoyance biting and transmission of mosquito-borne diseases. The number of safe and effective repellents, including DEET, picaridin, and IR3535, is limited and contin...

  20. Efficacy of Blood Sources and Artificial Blood Feeding Methods in Rearing of Aedes aegypti (Diptera: Culicidae) for Sterile Insect Technique and Incompatible Insect Technique Approaches in Sri Lanka.

    Science.gov (United States)

    Gunathilaka, Nayana; Ranathunge, Tharaka; Udayanga, Lahiru; Abeyewickreme, Wimaladharma

    2017-01-01

    Selection of the artificial membrane feeding technique and blood meal source has been recognized as key considerations in mass rearing of vectors. Artificial membrane feeding techniques, namely, glass plate, metal plate, and Hemotek membrane feeding method, and three blood sources (human, cattle, and chicken) were evaluated based on feeding rates, fecundity, and hatching rates of Aedes aegypti . Significance in the variations among blood feeding was investigated by one-way ANOVA, cluster analysis of variance (ANOSIM), and principal coordinates (PCO) analysis. Feeding rates of Ae. aegypti significantly differed among the membrane feeding techniques as suggested by one-way ANOVA ( p feeding technique. Blood feeding rate of Ae. aegypti was higher with human blood followed by cattle and chicken blood, respectively. However, no significant difference was observed from the mosquitoes fed with cattle and human blood, in terms of fecundity, oviposition rate, and fertility as suggested by one-way ANOVA ( p > 0.05). Metal plate method could be recommended as the most effective membrane feeding technique for mass rearing of Ae. aegypti , due to its high feeding rate and cost effectiveness. Cattle blood could be recommended for mass rearing Ae. aegypti .

  1. Assessment of Local Mosquito Species Incriminates Aedes aegypti as the Potential Vector of Zika Virus in Australia.

    Directory of Open Access Journals (Sweden)

    Sonja Hall-Mendelin

    2016-09-01

    Full Text Available Within the last 10 years Zika virus (ZIKV has caused unprecedented epidemics of human disease in the nations and territories of the western Pacific and South America, and continues to escalate in both endemic and non-endemic regions. We evaluated the vector competence of Australian mosquitoes for ZIKV to assess their potential role in virus transmission.Mosquitoes were exposed to infectious blood meals containing the prototype African ZIKV strain. After 14 days incubation at 28°C and high relative humidity, infection, dissemination and transmission rates were assessed. Infection in Culex annulirostris and Cx. sitiens could not be detected. 8% of Cx. quinquefasciatus were infected, but the virus did not disseminate in this species. Despite having infection rates > 50%, Aedes notoscriptus and Ae. vigilax did not transmit ZIKV. In contrast, Ae. aegypti had infection and transmission rates of 57% and 27%, respectively. In susceptibility trials, the virus dose required to infect 50% (ID50 of Ae. aegypti was106.4 tissue culture infectious dose50 (TCID50/mL. Additionally, a threshold viral load within the mosquito of at least 105.1 TCID50 equivalents/mL had to be reached before virus transmission occurred.We confirmed Ae. aegypti to be the most likely mosquito vector of ZIKV in Australia, although the restricted distribution of this species will limit the receptive zone to northern Queensland where this species occurs. Importantly, the role in ZIKV transmission of Culex and other Aedes spp. tested will be negligible. Despite being the implicated vector, the relatively high ID50 and need for a high titer disseminated infection in Ae. aegypti suggest that high mosquito population densities will be required to facilitate epidemic ZIKV transmission among the currently immunologically naïve human population in Australia.

  2. Assessment of Local Mosquito Species Incriminates Aedes aegypti as the Potential Vector of Zika Virus in Australia.

    Science.gov (United States)

    Hall-Mendelin, Sonja; Pyke, Alyssa T; Moore, Peter R; Mackay, Ian M; McMahon, Jamie L; Ritchie, Scott A; Taylor, Carmel T; Moore, Frederick A J; van den Hurk, Andrew F

    2016-09-01

    Within the last 10 years Zika virus (ZIKV) has caused unprecedented epidemics of human disease in the nations and territories of the western Pacific and South America, and continues to escalate in both endemic and non-endemic regions. We evaluated the vector competence of Australian mosquitoes for ZIKV to assess their potential role in virus transmission. Mosquitoes were exposed to infectious blood meals containing the prototype African ZIKV strain. After 14 days incubation at 28°C and high relative humidity, infection, dissemination and transmission rates were assessed. Infection in Culex annulirostris and Cx. sitiens could not be detected. 8% of Cx. quinquefasciatus were infected, but the virus did not disseminate in this species. Despite having infection rates > 50%, Aedes notoscriptus and Ae. vigilax did not transmit ZIKV. In contrast, Ae. aegypti had infection and transmission rates of 57% and 27%, respectively. In susceptibility trials, the virus dose required to infect 50% (ID50) of Ae. aegypti was106.4 tissue culture infectious dose50 (TCID50)/mL. Additionally, a threshold viral load within the mosquito of at least 105.1 TCID50 equivalents/mL had to be reached before virus transmission occurred. We confirmed Ae. aegypti to be the most likely mosquito vector of ZIKV in Australia, although the restricted distribution of this species will limit the receptive zone to northern Queensland where this species occurs. Importantly, the role in ZIKV transmission of Culex and other Aedes spp. tested will be negligible. Despite being the implicated vector, the relatively high ID50 and need for a high titer disseminated infection in Ae. aegypti suggest that high mosquito population densities will be required to facilitate epidemic ZIKV transmission among the currently immunologically naïve human population in Australia.

  3. Ecología del Aedes aegypti en un pueblo de Colombia, Suramérica

    Directory of Open Access Journals (Sweden)

    Milton E. Tinker

    1993-03-01

    Full Text Available Un estudio de la ecología de las larvas y adultos del Aedes aegypti fue llevado a cabo en Guaduas (Cundinamarca entre noviembre de 1978 y noviembre de 1979. Este estudio comprendió cuatro ciclos de inspección, dos en época seca y dos en época lluviosa. Las albercas fueron encontradas como el mejor hábitat larvario para ambas estaciones. Las llantas fueron igualmente importantes en la época de lluvia. Las alcobas constituyeron el hábitat más favorable para los adultos. En general más predios estaban infestados por adultos que por larvas. La prueba de las precipitinas indicó que la mayoría de las hembras de Aedes aegypti se alimentaron sobre el hombre. Las colecciones con cebo humano demostraron 2 picos de actividad: 10 -1 1 a.m. y 4-5 p.m.

  4. Aedes Aegypti en zona rural del municipio de La Mesa (Cundinamarca Colombia, S. A.

    Directory of Open Access Journals (Sweden)

    Alberto Morales

    1981-12-01

    Full Text Available Es bien sabida la importancia del mosquito Aedes aegypti en la transmisión, de los cuatro tipos conocidos del virus del Dengue y del virus de la Fiebre Amarilla Urbana. El Último episodio de Fiebre Amarilla Urbana en Colombia ocurrió en el año de 1929 en la población de Socorro (Santander; sin embargo, la presencia del mosquito en áreas urbanas cercanas a focos enzoóticos de Fiebre Amarilla Selvática constituye un peligro potencial. Desde el año de 1972 se vienen presentando en el país epidemias de Dengue debidas al virus tipo II, más tarde hizo su aparición el tipo III y más recientemente el tipoI, todos transmitidos por A. aegypti, el único vector conocido de Dengue en las Américas.

  5. Potential use of Piper nigrum ethanol extract against pyrethroid-resistant Aedes aegypti larvae Utilização em potencial do extrato alcoólico de Piper nigrum como larvicida em Aedes aegypti resistente a piretróides

    Directory of Open Access Journals (Sweden)

    Naomi Kato Simas

    2007-08-01

    Full Text Available Fractionation of Piper nigrum ethanol extract, biomonitored by assays on pyrethroid-resistant Aedes aegypti larvae yielded isolation of the larvicidal amides piperolein-A and piperine. Comparing LC50 values, the ethanol extract (0. 98 ppm was the most toxic, followed by piperolein-A (1. 46ppm and piperine (1. 53ppm.O fracionamento do extrato etanólico de Piper nigrum biomonitorado por ensaios em larvas de Aedes aegypti resistentes a piretróides resultou no isolamento das amidas larvicidas piperoleína-A e piperina. Comparando-se os valores de CL50, o extrato etanólico (0. 98ppm foi o mais tóxico, seguido pela piperoleína-A (1. 46ppm e piperina (1. 53ppm.

  6. Vector competence of the Aedes aegypti population from Santiago Island, Cape Verde, to different serotypes of dengue virus.

    Science.gov (United States)

    da Moura, Aires Januário Fernandes; de Melo Santos, Maria Alice Varjal; Oliveira, Claudia Maria Fontes; Guedes, Duschinka Ribeiro Duarte; de Carvalho-Leandro, Danilo; da Cruz Brito, Maria Lidia; Rocha, Hélio Daniel Ribeiro; Gómez, Lara Ferrero; Ayres, Constância Flávia Junqueira

    2015-02-19

    Dengue is an arboviral disease caused by dengue virus (DENV), whose main vectors are the mosquitoes Aedes aegypti and Aedes albopictus. A. aegypti is the only DENV vector in Cape Verde, an African country that suffered its first outbreak of dengue in 2009. However, little is known about the variation in the level of vector competence of this mosquito population to the different DENV serotypes. This study aimed to evaluate the vector competence of A. aegypti from the island of Santiago, Cape Verde, to four DENV serotypes and to detect DENV vertical transmission. Mosquitoes were fed on blood containing DENV serotypes and were dissected at 7, 14 and 21 days post-infection (dpi) to detect the virus in the midgut, head and salivary glands (SG) using RT-PCR. Additionally, the number of copies of viral RNA present in the SG was determined by qRT-PCR. Furthermore, eggs were collected in the field and adult mosquitoes obtained were analyzed by RT-PCR and the platelia dengue NS1 antigen kit to detect transovarial transmission. High rates of SG infection were observed for DENV-2 and DENV-3 whereas for DENV-1, viral RNA was only detected in the midgut and head. DENV-4 did not spread to the head or SG, maintaining the infection only in the midgut. The number of viral RNA copies in the SG did not vary significantly between DENV-2 and DENV-3 or among the different periods of incubation and the various titers of DENV tested. With respect to DENV surveillance in mosquitoes obtained from the eggs collected in the field, no samples were positive. Although no DENV positive samples were collected from the field in 2014, it is important to highlight that the A. aegypti population from Santiago Islands exhibited different degrees of susceptibility to DENV serotypes. This population showed a high vector competence for DENV-2 and DENV-3 strains and a low susceptibility to DENV-1 and DENV-4. Viral RNA copies in the SG remained constant for at least 21 dpi, which may enhance the vector

  7. THE TRANSMISSION OF EQUINE ENCEPHALOMYELITIS VIRUS BY AEDES AEGYPTI.

    Science.gov (United States)

    Merrill, M H; Tenbroeck, C

    1935-10-31

    In confirming Kelser's work on the transmission of equine encephalomyelitis of the western type by Aëdes aegypti it has been learned that the mosquitoes must be fed virus of high titer if positive results are to be secured. A period of from 4 to 5 days after feeding either on infected guinea pigs or on brain containing virus must elapse before the disease is transmitted by biting, but after this time transmission regularly results for a period of about 2 months. By inoculation, virus can be demonstrated in the bodies of infected mosquitoes for the duration of life. Although virus multiplies in the mosquitoes and is generally distributed in their bodies, repeated attempts to demonstrate it in the eggs from females known to be infected as well as in larvae, pupae, and adults from such eggs have been uniformly negative. Larvae have not taken up virus added to the water in which they were living. Male mosquitoes have been infected with virus by feeding but they have not transmitted the virus to normal females, nor have males transmitted the virus from infected to normal females. When virus of the eastern instead of the western type is used transmission experiments with Aëdes aegypti are negative. Apparently this virus is incapable of penetrating the intestinal mucosa of the mosquito. If, however, it is inoculated into the body cavity by needle puncture it persists and transmission experiments are positive.

  8. Pengaruh Pengasapan (Thermal Fogging Insektisida Piretroid (Malation 95% Terhadap Nyamuk Aedes aegypti dan Culex quinquefasciatus di Pemukiman

    Directory of Open Access Journals (Sweden)

    Hasan Boesri

    2013-02-01

    Full Text Available Abstracts. The evaluation of piretroid insecticide (active ingredient Malation 95% was con­ducted in Sub district Tengarang, Semarang Segency, Central Java Province. The insecti­cide was applied using thermal fogging method for dosages of 125, 250, 375, 500 and 625 ml/ha (diluted in diesel to 10 litters. The evaluation of the efficacy was conducted against two mosquito species, Aedes aegypti (the main dengue haemorrhagic fever and Culex quinquefasciatus (the urban lymphatic fil­ariasis vector. Result of the evaluation was revealed that dosages of 500 and 625 ml/ha were effective against both tested mosquito species indoor and outdoor.Key Word: Aedes aegypti, Culex quinquefasciatus, insecticide Piretroid (Malation 95%, thermal fogging.

  9. Similarity solutions for systems arising from an Aedes aegypti model

    Science.gov (United States)

    Freire, Igor Leite; Torrisi, Mariano

    2014-04-01

    In a recent paper a new model for the Aedes aegypti mosquito dispersal dynamics was proposed and its Lie point symmetries were investigated. According to the carried group classification, the maximal symmetry Lie algebra of the nonlinear cases is reached whenever the advection term vanishes. In this work we analyze the family of systems obtained when the wind effects on the proposed model are neglected. Wide new classes of solutions to the systems under consideration are obtained.

  10. Insect repellent activity of medicinal plant oils against Aedes aegypti (Linn.), Anopheles minimus (Theobald) and Culex quinquefasciatus Say based on protection time and biting rate.

    Science.gov (United States)

    Phasomkusolsil, Siriporn; Soonwera, Mayura

    2010-07-01

    This study investigated insect bite protection and length of the protection with 30 repellents which were divided into 3 categories: plant oil, essential oil and essential oil with ethyl alcohol, tested against three mosquito species, Aedes aegypti, Anopheles minimus and Culex quinquefasciatus, under laboratory conditions. The plant oil group was comprised of Phlai (Zingiber cassumunar) and Sweet basil (Ocimum basilicum). Both substances were effective as repellents and feeding deterrents against An. minimus (205 minutes protection time and a biting rate of 0.9%), Cx. quinquefasciatus (165 minutes protection time and 0.9% biting rate) and Ae. aegypti (90 minutes protection time and 0.8% biting rate). Essential oil from citronella grass (Cymbopogon nardus) exhibited protection against biting from all 3 mosquito species: for An. minimus, Cx. quinquefasciatus and Ae. aegypti, the results were 130 minutes and 0.9%, 140 minutes and 0.8%, and 115 minutes and 0.8%, respectively. The period of protection time against Ae. aegypti for all repellent candidates tested was lower than the Thai Industrial Standards Institute (TISI) determined time of greater than 2 hours.

  11. Variation in Aedes aegypti (Linnaeus (Diptera, Culicidae infestation in artificial containers in Caxias, state of Maranhão, Brazil

    Directory of Open Access Journals (Sweden)

    Joelma Soares-da-Silva

    2012-04-01

    Full Text Available INTRODUCTION: Dengue is a serious public health problem worldwide, with cases reported annually in tropical and subtropical regions. Aedes aegypti (Linnaeus, 1762, the main vector of dengue, is a domiciliary species with high dispersal and survival capacities and can use various artificial containers as breeding sites. We assessed potential container breeding sites of A. aegypti in the municipality of Caxias, Maranhão, Brazil. METHODS: In the initial phase, we analyzed 900 properties in 3 neighborhoods during the dry and rainy seasons (August-October 2005 and February-April 2006, respectively. During the second sampling period, September 2006-August 2007, we used 5 assessment cycles for 300 properties in a single neighborhood. RESULTS: During the dry and rainy seasons, water-storage containers comprised 55.7% (n = 1,970 and 48.5% (n = 1,836 of the total containers inspected, and showed the highest productivity of immature A. aegypti; we found 23.7 and 106.1 individuals/container, respectively, in peridomicile sites. In intradomicile sites, water-storage containers were also the most important breeding sites with 86.4% (n = 973 and 85.6% (n = 900 of all containers and a mean of 7.9 and 108.3 individuals/container in the dry and rainy seaso-October 2006 (1,342. The highest number of positives (70 was recorded in May, mostly (94% in storage containers. CONCLUSIONS: Storage containers are the principal and most productive A. aegypti breeding sites and are a major contributing factor to the maintenance of this vector in Caxias.

  12. Spatial and temporal country-wide survey of temephos resistance in Brazilian populations of Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Mateus Chediak

    2016-01-01

    Full Text Available The organophosphate temephos has been the main insecticide used against larvae of the dengue and yellow fever mosquito (Aedes aegypti in Brazil since the mid-1980s. Reports of resistance date back to 1995; however, no systematic reports of widespread temephos resistance have occurred to date. As resistance investigation is paramount for strategic decision-making by health officials, our objective here was to investigate the spatial and temporal spread of temephos resistance in Ae. aegypti in Brazil for the last 12 years using discriminating temephos concentrations and the bioassay protocols of the World Health Organization. The mortality results obtained were subjected to spatial analysis for distance interpolation using semi-variance models to generate maps that depict the spread of temephos resistance in Brazil since 1999. The problem has been expanding. Since 2002-2003, approximately half the country has exhibited mosquito populations resistant to temephos. The frequency of temephos resistance and, likely, control failures, which start when the insecticide mortality level drops below 80%, has increased even further since 2004. Few parts of Brazil are able to achieve the target 80% efficacy threshold by 2010/2011, resulting in a significant risk of control failure by temephos in most of the country. The widespread resistance to temephos in Brazilian Ae. aegypti populations greatly compromise effective mosquito control efforts using this insecticide and indicates the urgent need to identify alternative insecticides aided by the preventive elimination of potential mosquito breeding sites.

  13. Evaluation of two sweeping methods for estimating the number of immature Aedes aegypti (Diptera: Culicidae in large containers

    Directory of Open Access Journals (Sweden)

    Margareth Regina Dibo

    2013-07-01

    Full Text Available Introduction Here, we evaluated sweeping methods used to estimate the number of immature Aedes aegypti in large containers. Methods III/IV instars and pupae at a 9:1 ratio were placed in three types of containers with, each one with three different water levels. Two sweeping methods were tested: water-surface sweeping and five-sweep netting. The data were analyzed using linear regression. Results The five-sweep netting technique was more suitable for drums and water-tanks, while the water-surface sweeping method provided the best results for swimming pools. Conclusions Both sweeping methods are useful tools in epidemiological surveillance programs for the control of Aedes aegypti.

  14. Pinpointing P450s Associated with Pyrethroid Metabolism in the Dengue Vector, Aedes aegypti: Developing New Tools to Combat Insecticide Resistance

    OpenAIRE

    Stevenson, Bradley J.; Pignatelli, Patricia; Nikou, Dimitra; Paine, Mark J. I.

    2012-01-01

    Background\\ud \\ud Pyrethroids are increasingly used to block the transmission of diseases spread by Aedes aegypti such as dengue and yellow fever. However, insecticide resistance poses a serious threat, thus there is an urgent need to identify the genes and proteins associated with pyrethroid resistance in order to produce effective counter measures. In Ae. aegypti, overexpression of P450s such as the CYP9J32 gene have been linked with pyrethroid resistance. Our aim was to confirm the role of...

  15. Interpolación espacial de la abundancia larval de Aedes aegypti para localizar focos de infestación Spatial interpolation of Aedes aegypti larvae abundance for locating infestation foci

    Directory of Open Access Journals (Sweden)

    Larry Niño

    2011-06-01

    Full Text Available OBJETIVO: Diseñar e implementar una metodología de vigilancia que localice los focos de infestación de Aedes aegypti con el empleo de larvitrampas y técnicas de interpolación espacial, las cuales permiten estimar la abundancia vectorial de forma continua en el espacio a partir del conteo de individuos colectados en el área de estudio. MÉTODOS: Se instalaron 228 larvitrampas -a razón de una por manzana- en la zona más densamente poblada de la comuna cinco de Villavicencio (Meta. Con la información regionalizada de la abundancia de larvas se realizaron interpolaciones espaciales con las técnicas polígonos de Voronoi, Kriging ordinario y ponderación de distancias inversas. RESULTADOS: Se presenta una metodología alternativa para la vigilancia del vector del dengue, basada en el uso de larvitrampas y técnicas de interpolación espacial, con las cuales se obtuvieron mapas de superficie sustentados en observaciones puntuales. CONCLUSIONES: Los resultados muestran que esta estrategia aventaja a los índices normalmente usados, dado que permite visualizar de manera continua el nivel de infestación vectorial y por ende el riesgo de transmisión de dengue de acuerdo al grado de infestación por A. aegypti. Es de esperar que su adopción contribuya a planificar, optimizar y evaluar con mayor efectividad las actividades de prevención y control.OBJECTIVE: Design and implement a surveillance method for locating Aedes aegypti infestation foci with the use of larvae traps and spatial interpolation techniques, which facilitate the ongoing estimation of vector abundance in the area by counting the individuals collected in the study area. METHODs: A total of 228 larvae traps were installed-at a rate of one per block-in the most densely populated area of commune five of Villavicencio (Meta. With regionalized information on larvae abundance, spatial interpolations were conducted with the Voronoi polygon, ordinary kriging, and inverse distance

  16. Robust heat-inducible gene expression by two endogenous hsp70-derived promoters in transgenic Aedes aegypti

    Science.gov (United States)

    Carpenetti, Tiffany L. G.; Aryan, Azadeh; Myles, Kevin M.; Adelman, Zach N.

    2011-01-01

    Aedes aegypti is an important vector of the viruses that cause dengue fever, dengue hemorrhagic fever, and yellow fever. Reverse genetic approaches to the study of gene function in this mosquito have been limited by the lack of a robust inducible promoter to allow precise temporal control over a protein-encoding or hairpin RNA transgene. Likewise, investigations into the molecular and biochemical basis of vector competence would benefit from the ability to activate an anti-pathogen molecule at specific times during infection. We have characterized the ability of genomic sequences derived from two Ae. aegypti hsp70 genes to drive heat-inducible expression of a reporter in both transient and germline transformation contexts. AaHsp70-luciferase transcripts accumulated specifically after heat shock, and displayed a pattern of rapid induction and decay similar to endogenous AaHsp70 genes. Luciferase expression in transgenic Ae. aegypti increased by ∼25-50 fold in whole adults by four hours after heat-shock, with significant activity (∼20 fold) remaining at 24 hr. Heat-induced expression was even more dramatic in midgut tissues, with one strain showing a ∼2500-fold increase in luciferase activity. The AaHsp70 promoters described could be valuable for gene function studies as well as for the precise timing of the expression of anti-pathogen molecules. PMID:22142225

  17. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds.

    Science.gov (United States)

    Dudchenko, Olga; Batra, Sanjit S; Omer, Arina D; Nyquist, Sarah K; Hoeger, Marie; Durand, Neva C; Shamim, Muhammad S; Machol, Ido; Lander, Eric S; Aiden, Aviva Presser; Aiden, Erez Lieberman

    2017-04-07

    The Zika outbreak, spread by the Aedes aegypti mosquito, highlights the need to create high-quality assemblies of large genomes in a rapid and cost-effective way. Here we combine Hi-C data with existing draft assemblies to generate chromosome-length scaffolds. We validate this method by assembling a human genome, de novo, from short reads alone (67× coverage). We then combine our method with draft sequences to create genome assemblies of the mosquito disease vectors Ae aegypti and Culex quinquefasciatus , each consisting of three scaffolds corresponding to the three chromosomes in each species. These assemblies indicate that almost all genomic rearrangements among these species occur within, rather than between, chromosome arms. The genome assembly procedure we describe is fast, inexpensive, and accurate, and can be applied to many species. Copyright © 2017, American Association for the Advancement of Science.

  18. Feeding response of Aedes aegypti and Anopheles dirus (Diptera: Culicidae) using out-of-date human blood in a membrane feeding apparatus.

    Science.gov (United States)

    Pothikasikorn, Jinrapa; Boonplueang, Rapee; Suebsaeng, Chalermchai; Khaengraeng, Rungpetch; Chareonviriyaphap, Theeraphap

    2010-06-01

    The colonization of Aedes aegypti and Anopheles dirus was performed using out-of-date human blood from a blood bank as a nutritional supply dispensed from a common artificial feeder. Preserved human blood was collected and used for feeding on days 5, 15, and 25 after date of expiration and dispensed from a common artificial feeder to rear the mosquitoes. Ae. aegypti had a feeding rate of 78.7, 62, and 18% at the respective intervals while An. dirus had a rate of 80, 56.8, and 7.3% on the same respective days. Direct feeding on live hamsters resulted in a rate of 96 and 90% for Ae. aegypti and An. dirus, respectively. Although egg production rates decreased from the day 5 feeding to the day 25 feeding, all of the developmental stages resulting from An. dirus fed at day 5 and 15 showed insignificant differences when compared with direct feeding on the blood of a hamster.

  19. Efficacy of Blood Sources and Artificial Blood Feeding Methods in Rearing of Aedes aegypti (Diptera: Culicidae for Sterile Insect Technique and Incompatible Insect Technique Approaches in Sri Lanka

    Directory of Open Access Journals (Sweden)

    Nayana Gunathilaka

    2017-01-01

    Full Text Available Introduction. Selection of the artificial membrane feeding technique and blood meal source has been recognized as key considerations in mass rearing of vectors. Methodology. Artificial membrane feeding techniques, namely, glass plate, metal plate, and Hemotek membrane feeding method, and three blood sources (human, cattle, and chicken were evaluated based on feeding rates, fecundity, and hatching rates of Aedes aegypti. Significance in the variations among blood feeding was investigated by one-way ANOVA, cluster analysis of variance (ANOSIM, and principal coordinates (PCO analysis. Results. Feeding rates of Ae. aegypti significantly differed among the membrane feeding techniques as suggested by one-way ANOVA (p0.05. Conclusions. Metal plate method could be recommended as the most effective membrane feeding technique for mass rearing of Ae. aegypti, due to its high feeding rate and cost effectiveness. Cattle blood could be recommended for mass rearing Ae. aegypti.

  20. Distribution of Voltage-Gated Sodium Channel (Nav) Alleles among the Aedes aegypti Populations In Central Java Province and Its Association with Resistance to Pyrethroid Insecticides.

    Science.gov (United States)

    Sayono, Sayono; Hidayati, Anggie Puspa Nur; Fahri, Sukmal; Sumanto, Didik; Dharmana, Edi; Hadisaputro, Suharyo; Asih, Puji Budi Setia; Syafruddin, Din

    2016-01-01

    The emergence of insecticide resistant Aedes aegypti mosquitoes has hampered dengue control efforts. WHO susceptibility tests, using several pyrethroid compounds, were conducted on Ae. aegypti larvae that were collected and raised to adulthood from Semarang, Surakarta, Kudus and Jepara in Java. The AaNaV gene fragment encompassing kdr polymorphic sites from both susceptible and resistant mosquitoes was amplified, and polymorphisms were associated with the resistant phenotype. The insecticide susceptibility tests demonstrated Ae, aegypti resistance to the pyrethroids, with mortality rates ranging from 1.6%-15.2%. Three non-synonymous polymorphisms (S989P, V1016G and F1534C) and one synonymous polymorphism (codon 982) were detected in the AaNaV gene. Eight AaNaV alleles were observed in specimens from Central Java. Allele 3 (SGF) and allele 7 (PGF) represent the most common alleles found and demonstrated strong associations with resistance to pyrethroids (OR = 2.75, CI: 0.97-7.8 and OR = 7.37, CI: 2.4-22.5, respectively). This is the first report of 8 Ae. aegypti AaNaV alleles, and it indicates the development of resistance in Ae. aegypti in response to pyrethroid insecticide-based selective pressure. These findings strongly suggest the need for an appropriate integrated use of insecticides in the region. The 989P, 1016G and 1534C polymorphisms in the AaNaV gene are potentially valuable molecular markers for pyrethroid insecticide resistance monitoring.

  1. Enkapsulasi B. bassiana menggunakan maizena dan daya infeksinya terhadap larva Aedes aegypti, Anopheles sp., Culex sp.

    Directory of Open Access Journals (Sweden)

    Mutiara Widawati

    2015-12-01

    Full Text Available Abstract. Encapsulation formulae of mycoinsecticide have to be able to maintain fungus viability and pathogenicity. This mycoinsecticide was developed as an alternative way to control mosquito borne disease. The aim of this study was to encapsulate Beauveria bassiana as viable storage and have the capability to kill larvae of Aedes aegypti, Anopheles sp. and Culex sp. Mosquito larvae obtained from laboratory reared at health research laboratory; Loka Litbang P2B2 Ciamis. The treatments made in this study were the formu-lation of cornstarch and controls for comparison. This study showed potential formulation of cornstarch encapsulation as a biolarvacidal. Cornstarch formulations proven to be succeed in maintaining fungus viability, however, the pathogenicity of the microcapsule still not effective to kill Aedes, Culex and Anopheles larvae. Keywords: encapsulation, Beauveria bassiana, Ae.aegypti, Anopheles sp., Culex sp. Abstrak. Pembuatan formula bioinsektisida yang optimal sebagai salah satu alternatif untuk pengen-dalian nyamuk vektor perlu di kembangkan. Sediaan mikoinsektisida yang dibuat harus dapat memper-tahankan viabilitas jamur B. bassiana sehingga masih efektif pada saat penggunaannya. Salah satu cara yang digunakan untuk menjaga kestabilan sediaan mikoinsektisida yang berdampak langsung pada via-bilitas jamur adalah dengan menerapkan metode enkapsulasi. Penelitian ini bertujuan untuk meng-hasilkan sediaan mikokapsul dari Beauvaria bassiana melalui proses enkapsulasi menggunakan maizena yang memiliki kapabilitas tinggi sebagai penyimpan B. bassiana dan efektif dalam membunuh larva dan telur Aedes aegypti, Anopheles sp. dan Culex sp. Semua larva uji berasal dari insektarium laboratorium penelitian kesehatan Loka litbang P2B2 Ciamis. Pembuatan enkapsulasi dimulai dengan kultur dan pema-nenan B. bassiana, uji viabilitas, proses enkapsulasi serta uji larvasida di laboratorium. Uji dilakukan dengan satu perlakuan dan satu kontrol untuk

  2. Risk factors for the presence of Aedes aegypti and Aedes albopictus in domestic water-holding containers in areas impacted by the Nam Theun 2 hydroelectric project, Laos

    NARCIS (Netherlands)

    Hiscox, A.F.; Kaye, A.; Vongphayloth, K.; Banks, I.; Piffer, M.; Khammanithong, P.; Sananikhom, P.; Kaul, S.; Hill, N.; Lindsay, S.W.; Brey, P.T.

    2013-01-01

    We assessed risk factors for vectors of dengue and chikungunya viruses near a new hydroelectric project, Nam Theun 2, in Laos. Immature stages of Aedes aegypti were found only in sites within 40 km of the urban provincial capital, but Aedes albopictus was found throughout. Aedes aegypti pupae were

  3. Evaluación de estrategias comunitarias para el control de Aedes aegypti en Cali, Colombia

    Directory of Open Access Journals (Sweden)

    Clara Beatriz Ocampo

    2009-06-01

    Conclusiones. La ausencia de diferencias significativas entre las intervenciones y el bloque control sugiere que las actividades educacionales junto con las visitas periódicas a las casas producen reducciones similares de los estadios inmaduros y adultos de Ae. aegypti.

  4. Repellent activity of herbal essential oils against Aedes aegypti (Linn. and Culex quinquefasciatus (Say.

    Directory of Open Access Journals (Sweden)

    Duangkamon Sritabutra

    2013-08-01

    Full Text Available Objective: To determine the mosquito repellent activity of herbal essential oils against female Aedes aegypti and Culex quinquefasciatus. Methods: On a volunteer’s forearm, 0.1 mL of each essential oil was applied to 3 cm伊10 cm of exposed skin. The protection time was recorded for 3 min after every 30 min. Results: Essential oil from clove oil in olive oil and in coconut oil gave the longest lasting period of 76.50 min and 96.00 min respectively against Aedes aegypti. The citronella grass oil in olive oil, citronella grass oil in coconut oil and lemongrass oil in coconut oil exhibited protection against Culex quinquefasciatus at 165.00, 105.00, and 112.50 min respectively. Conclusions: The results clearly indicated that clove, citronella and lemongrass oil were the most promising for repellency against mosquito species. These oils could be used to develop a new formulation to control mosquitoes.

  5. Larvicidal activity of some Cerrado plant extracts against Aedes aegypti

    OpenAIRE

    Rodrigues, A.M.S.; De Paula, J.E.; Dégallier, Nicolas; Molez, Jean-François; Espindola, L.S.

    2006-01-01

    One hundred ninety hexanic and ethanolic extracts from 27 plant species from the Cerrado biome of Brazil were tested for larvicidal activity against 3rd-stage Aedes aegypti larvae at 500 mu g/ml. Fourteen extracts from 7 species showed activity (> 65% mortality) against the larvae. Of these, Duguetia furfuracea, Piptocarpha rotundifolia, Casearia sylvestris var. lingua, Serjania lethalis, and Xylopia aromatica were active at 56.6, 162.31, 232.4, 285.76, and 384.37 mu g/ml, respectively. Annon...

  6. Recent rapid rise of a permethrin knock down resistance allele in Aedes aegypti in México.

    Science.gov (United States)

    García, Gustavo Ponce; Flores, Adriana E; Fernández-Salas, Ildefonso; Saavedra-Rodríguez, Karla; Reyes-Solis, Guadalupe; Lozano-Fuentes, Saul; Guillermo Bond, J; Casas-Martínez, Mauricio; Ramsey, Janine M; García-Rejón, Julián; Domínguez-Galera, Marco; Ranson, Hilary; Hemingway, Janet; Eisen, Lars; Black IV, William C

    2009-10-13

    Aedes aegypti, the 'yellow fever mosquito', is the primary vector to humans of dengue and yellow fever flaviviruses (DENV, YFV), and is a known vector of the chikungunya alphavirus (CV). Because vaccines are not yet available for DENV or CV or are inadequately distributed in developing countries (YFV), management of Ae. aegypti remains the primary option to prevent and control outbreaks of the diseases caused by these arboviruses. Permethrin is one of the most widely used active ingredients in insecticides for suppression of adult Ae. aegypti. In 2007, we documented a replacement mutation in codon 1,016 of the voltage-gated sodium channel gene (para) of Ae. aegypti that encodes an isoleucine rather than a valine and confers resistance to permethrin. Ile1,016 segregates as a recessive allele conferring knockdown resistance to homozygous mosquitoes at 5-10 microg of permethrin in bottle bioassays. A total of 81 field collections containing 3,951 Ae. aegypti were made throughout México from 1996 to 2009. These mosquitoes were analyzed for the frequency of the Ile1,016 mutation using a melting-curve PCR assay. Dramatic increases in frequencies of Ile1,016 were recorded from the late 1990's to 2006-2009 in several states including Nuevo León in the north, Veracruz on the central Atlantic coast, and Yucatán, Quintana Roo and Chiapas in the south. From 1996 to 2000, the overall frequency of Ile1,016 was 0.04% (95% confidence interval (CI95) = 0.12%; n = 1,359 mosquitoes examined). The earliest detection of Ile1,016 was in Nuevo Laredo on the U.S. border in 1997. By 2003-2004 the overall frequency of Ile1,016 had increased approximately 100-fold to 2.7% (+ or - 0.80% CI95; n = 808). When checked again in 2006, the frequency had increased slightly to 3.9% (+ or - 1.15% CI95; n = 473). This was followed in 2007-2009 by a sudden jump in Ile1,016 frequency to 33.2% (+ or - 1.99% CI95; n = 1,074 mosquitoes). There was spatial heterogeneity in Ile1,016 frequencies among 2007

  7. Recent rapid rise of a permethrin knock down resistance allele in Aedes aegypti in México.

    Directory of Open Access Journals (Sweden)

    Gustavo Ponce García

    Full Text Available BACKGROUND: Aedes aegypti, the 'yellow fever mosquito', is the primary vector to humans of dengue and yellow fever flaviviruses (DENV, YFV, and is a known vector of the chikungunya alphavirus (CV. Because vaccines are not yet available for DENV or CV or are inadequately distributed in developing countries (YFV, management of Ae. aegypti remains the primary option to prevent and control outbreaks of the diseases caused by these arboviruses. Permethrin is one of the most widely used active ingredients in insecticides for suppression of adult Ae. aegypti. In 2007, we documented a replacement mutation in codon 1,016 of the voltage-gated sodium channel gene (para of Ae. aegypti that encodes an isoleucine rather than a valine and confers resistance to permethrin. Ile1,016 segregates as a recessive allele conferring knockdown resistance to homozygous mosquitoes at 5-10 microg of permethrin in bottle bioassays. METHODS AND FINDINGS: A total of 81 field collections containing 3,951 Ae. aegypti were made throughout México from 1996 to 2009. These mosquitoes were analyzed for the frequency of the Ile1,016 mutation using a melting-curve PCR assay. Dramatic increases in frequencies of Ile1,016 were recorded from the late 1990's to 2006-2009 in several states including Nuevo León in the north, Veracruz on the central Atlantic coast, and Yucatán, Quintana Roo and Chiapas in the south. From 1996 to 2000, the overall frequency of Ile1,016 was 0.04% (95% confidence interval (CI95 = 0.12%; n = 1,359 mosquitoes examined. The earliest detection of Ile1,016 was in Nuevo Laredo on the U.S. border in 1997. By 2003-2004 the overall frequency of Ile1,016 had increased approximately 100-fold to 2.7% (+ or - 0.80% CI95; n = 808. When checked again in 2006, the frequency had increased slightly to 3.9% (+ or - 1.15% CI95; n = 473. This was followed in 2007-2009 by a sudden jump in Ile1,016 frequency to 33.2% (+ or - 1.99% CI95; n = 1,074 mosquitoes. There was spatial

  8. Effects of larval crowding on development time, survival and weight at metamorphosis in Aedes aegypti (Diptera: Culicidae Efectos del hacinamiento larval en el tiempo de desarrollo, la supervivencia y el peso en la metamorfosis de Aedes aegypti (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    Arnaldo Maciá

    2009-06-01

    Full Text Available The effects of larval crowding on survival, weight at metamorphosis and development time were assessed in the dengue mosquito, Aedes aegypti L., under a controlled environment. Larval cohorts were bred at 7 different densities (4, 8, 16, 32, 64, 128 and 256 larvae / 175 ml pot, while keeping constant water volume and food amount and quality, under controlled temperature and photoperiod. Natural detritus, mainly leaves, obtained from containers naturally colonized by A. aegypti, were used as a source of nutrients for larvae. Development time, mortality, mass at metamorphosis, and total biomass were recorded for each density. Development time ranged from 4 to 23 days in males, and from 5 to 24 in females, whereby larvae took longer to develop at 64 (females and 128 (males larvae per recipient. At high densities there was a male-biased sex proportion. At densities equal to or higher than 0.4 larvae/ml (0.32 larvae/cm² there was an increase of mortality. An inverse relationship between larval density and pupal weight was detected. Biomass per individual reached asymptotic values of about 1 mg/individual at a density of 128 individuals/pot (0.64 larvae/cm². This experiment shows that this southern strain of A. aegypti is sensitive to crowding in small containers.Los efectos del hacinamiento larval sobre el tiempo de desarrollo, la supervivencia y el peso en la metamorfosis fueron estudiados en el mosquito del dengue, Aedes aegypti L., en el laboratorio. Se criaron cohortes de larvas en 7 densidades (4, 8, 16, 32, 64, 128 y 256 larvas/ recipiente de 175 ml mientras se mantuvo constante el volumen de agua y la calidad y cantidad de alimento, bajo fotoperíodo y temperatura controlados. Se usaron detritos naturales, principalmente hojas, obtenidos de contenedores colonizados naturalmente por A. aegypti como fuente de nutrientes para las larvas. En cada densidad se registraron el tiempo de desarrollo, la mortalidad, el peso en la metamorfosis y la

  9. Control of Aedes aegypti larvae in household water containers by Chinese cat fish.

    Science.gov (United States)

    Wu, N; Wang, S S; Han, G X; Xu, R M; Tang, G K; Qian, C

    1987-01-01

    In 1980-81 an outbreak of dengue fever occurred in Guangdong province and in Guangxi-Zhuang autonomous region in the central-southern part of China. Subsequently, a nationwide survey indicated that the vector of the disease, Aedes aegypti, was confined to the coastal strip of Guangdong and Guangxi-Zhuang. Since the first case in the outbreak occurred in Guangxi-Zhuang, a community-based programme to control A. aegypti was set up in eight fishing villages of this region where the mosquito was breeding in household water containers. The principal method of control was use of the indigenous edible fish Clarias fuscus (Chinese cat fish), which is highly larvivorous and tolerant of harsh environmental conditions. Each container was stocked with a young fish, which could survive there for periods of up to a year. A team of primary medical personnel (barefoot doctors) made sure that the programme was correctly implemented. The programme was monitored from 1981 to 1985 in three of the villages, and the results indicated that the Breteau index remained at a low level throughout this period.

  10. Invasiveness of Aedes aegypti and Aedes albopictus and Vectorial Capacity for Chikungunya Virus.

    Science.gov (United States)

    Lounibos, Leon Philip; Kramer, Laura D

    2016-12-15

    In this review, we highlight biological characteristics of Aedes aegypti and Aedes albopictus, 2 invasive mosquito species and primary vectors of chikungunya virus (CHIKV), that set the tone of these species' invasiveness, vector competence, and vectorial capacity (VC). The invasiveness of both species, as well as their public health threats as vectors, is enhanced by preference for human blood. Vector competence, characterized by the efficiency of an ingested arbovirus to replicate and become infectious in the mosquito, depends largely on vector and virus genetics, and most A. aegypti and A. albopictus populations thus far tested confer vector competence for CHIKV. VC, an entomological analog of the pathogen's basic reproductive rate (R 0 ), is epidemiologically more important than vector competence but less frequently measured, owing to challenges in obtaining valid estimates of parameters such as vector survivorship and host feeding rates. Understanding the complexities of these factors will be pivotal in curbing CHIKV transmission. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  11. Host-feeding pattern of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in heterogeneous landscapes of South Andaman, Andaman and Nicobar Islands, India.

    Science.gov (United States)

    Sivan, Arun; Shriram, A N; Sunish, I P; Vidhya, P T

    2015-09-01

    Mosquito foraging behavior is a determinant of host-vector contact and has an impact on the risk of arboviral epidemics. Therefore, blood-feeding patterns is a useful tool for assessing the role in pathogen transmission by vector mosquitoes. Competent vectors of dengue and chikungunya viz. Aedes aegypti and Aedes albopictus are widely prevalent in the Andaman and Nicobar archipelago. Considering the vector potential, medical importance of both these mosquito species and lack of information on host-feeding patterns, blood meal analysis of both these vector mosquitoes was undertaken. Biogents Sentinel traps were used for sampling blooded mosquitoes, for identifying the source of blood meal by agar gel-precipitin test. We identified vertebrate source of 147 and 104 blood meals in Ae. aegypti and Ae. albopictus from heterogeneous landscapes in South Andaman district. Results revealed that Ae. aegypti (88 %) and Ae. albopictus (49 %) fed on human and a small proportion on mammals and fowls, indicative of predominance of anthropophilism. Ae. aegypti predominantly fed on human blood (94.2 %-densely built urban, 89.8 %-low vegetation coverage, and 78.3 %-medium vegetation coverage). Anthropophilism in Ae. albopictus was maximal in densely built urban (90.5 %) and progressively decreased from low vegetation-vegetation/forested continuum (66.7, 36.4, and 8.7 %), indicating plasticity in feeding across these landscapes. Epidemiological significance of the findings is discussed.

  12. Productive container types for Aedes aegypti immatures in Mérida, México.

    Science.gov (United States)

    García-Rejón, Julian E; López-Uribe, Mildred P; Loroño-Pino, María Alba; Farfán-Ale, José Arturo; Del Najera-Vazquez, Maria Rosario; Lozano-Fuentes, Saul; Beaty, Barry J; Eisen, Lars

    2011-05-01

    During 2007-2010, we examined which container types in Mérida, México, are most productive for Aedes aegypti (L.) immatures. Surveys for mosquito immatures followed routine surveillance methodology and container type classifications used by Servicios de Salud de Yucatán. Our main findings were that (1) small and larger discarded containers that serve no particular purpose and therefore can be removed from the environment contribute strongly to larval and pupal production in Mérida, and (2) the importance of different container types can vary among sets of residential premises as well as between dry and wet periods. These results may help to guide future implementation in Mérida of control efforts that target the most productive container types for Ae. aegypti immatures. Furthermore, if the Patio Limpio cleanup campaign that currently is ongoing in Mérida proves successful in removing discarded containers as important immature development sites, then we should see dramatic changes in the most productive container types in the future as the mosquito is forced to switch to other container types, which perhaps also will be easier to include in highly targeted mosquito control interventions.

  13. Skeeter Buster: a stochastic, spatially explicit modeling tool for studying Aedes aegypti population replacement and population suppression strategies.

    Directory of Open Access Journals (Sweden)

    Krisztian Magori

    2009-09-01

    Full Text Available Dengue is the most important mosquito-borne viral disease affecting humans. The only prevention measure currently available is the control of its vectors, primarily Aedes aegypti. Recent advances in genetic engineering have opened the possibility for a new range of control strategies based on genetically modified mosquitoes. Assessing the potential efficacy of genetic (and conventional strategies requires the availability of modeling tools that accurately describe the dynamics and genetics of Ae. aegypti populations.We describe in this paper a new modeling tool of Ae. aegypti population dynamics and genetics named Skeeter Buster. This model operates at the scale of individual water-filled containers for immature stages and individual properties (houses for adults. The biology of cohorts of mosquitoes is modeled based on the algorithms used in the non-spatial Container Inhabiting Mosquitoes Simulation Model (CIMSiM. Additional features incorporated into Skeeter Buster include stochasticity, spatial structure and detailed population genetics. We observe that the stochastic modeling of individual containers in Skeeter Buster is associated with a strongly reduced temporal variation in stage-specific population densities. We show that heterogeneity in container composition of individual properties has a major impact on spatial heterogeneity in population density between properties. We detail how adult dispersal reduces this spatial heterogeneity. Finally, we present the predicted genetic structure of the population by calculating F(ST values and isolation by distance patterns, and examine the effects of adult dispersal and container movement between properties.We demonstrate that the incorporated stochasticity and level of spatial detail have major impacts on the simulated population dynamics, which could potentially impact predictions in terms of control measures. The capacity to describe population genetics confers the ability to model the outcome

  14. Vectorial capacity of Aedes aegypti for dengue virus type 2 is reduced with co-infection of Metarhizium anisopliae.

    Science.gov (United States)

    Garza-Hernández, Javier A; Rodríguez-Pérez, Mario A; Salazar, Ma Isabel; Russell, Tanya L; Adeleke, Monsuru A; de Luna-Santillana, Erik de J; Reyes-Villanueva, Filiberto

    2013-01-01

    Aedes aegypti, is the major dengue vector and a worldwide public health threat combated basically by chemical insecticides. In this study, the vectorial competence of Ae. aegypti co-infected with a mildly virulent Metarhizium anisopliae and fed with blood infected with the DENV-2 virus, was examined. The study encompassed three bioassays (B). In B1 the median lethal time (LT50) of Ae. aegypti exposed to M. anisopliae was determined in four treatments: co-infected (CI), single-fungus infection (SF), single-virus infection (SV) and control (C). In B2, the mortality and viral infection rate in midgut and in head were registered in fifty females of CI and in SV. In B3, the same treatments as in B1 but with females separated individually were tested to evaluate the effect on fecundity and gonotrophic cycle length. Survival in CI and SF females was 70% shorter than the one of those in SV and control. Overall viral infection rate in CI and SV were 76 and 84% but the mortality at day six post-infection was 78% (54% infected) and 6% respectively. Survivors with virus in head at day seven post-infection were 12 and 64% in both CI and SV mosquitoes. Fecundity and gonotrophic cycle length were reduced in 52 and 40% in CI compared to the ones in control. Fungus-induced mortality for the CI group was 78%. Of the survivors, 12% (6/50) could potentially transmit DENV-2, as opposed to 64% (32/50) of the SV group, meaning a 5-fold reduction in the number of infective mosquitoes. This is the first report on a fungus that reduces the vectorial capacity of Ae. aegypti infected with the DENV-2 virus.

  15. Characterizing the Aedes aegypti Population in a Vietnamese Village in Preparation for a Wolbachia-Based Mosquito Control Strategy to Eliminate Dengue

    Science.gov (United States)

    Jeffery, Jason A. L.; Thi Yen, Nguyen; Nam, Vu Sinh; Nghia, Le Trung; Hoffmann, Ary A.; Kay, Brian H.; Ryan, Peter A.

    2009-01-01

    Background A life-shortening strain of the obligate intracellular bacteria Wolbachia, called wMelPop, is seen as a promising new tool for the control of Aedes aegypti. However, developing a vector control strategy based on the release of mosquitoes transinfected with wMelPop requires detailed knowledge of the demographics of the target population. Methodology/Principal Findings In Tri Nguyen village (611 households) on Hon Mieu Island in central Vietnam, we conducted nine quantitative entomologic surveys over 14 months to determine if Ae. aegypti populations were spatially and temporally homogenous, and to estimate population size. There was no obvious relationship between mosquito (larval, pupal or adult) abundance and temperature and rainfall, and no area of the village supported consistently high numbers of mosquitoes. In almost all surveys, key premises produced high numbers of Ae. aegypti. However, these premises were not consistent between surveys. For an intervention based on a single release of wMelPop-infected Ae. aegypti, release ratios of infected to uninfected adult mosquitoes of all age classes are estimated to be 1.8–6.7∶1 for gravid females (and similarly aged males) or teneral adults, respectively. We calculated that adult female mosquito abundance in Tri Nguyen village could range from 1.1 to 43.3 individuals of all age classes per house. Thus, an intervention could require the release of 2–78 wMelPop-infected gravid females and similarly aged males per house, or 7–290 infected teneral female and male mosquitoes per house. Conclusions/Significance Given the variability we encountered, this study highlights the importance of multiple entomologic surveys when evaluating the spatial structure of a vector population or estimating population size. If a single release of wMelPop-infected Ae. aegypti were to occur when wild Ae. aegypti abundance was at its maximum, a preintervention control program would be necessary to ensure that there was no

  16. Characterizing the Aedes aegypti population in a Vietnamese village in preparation for a Wolbachia-based mosquito control strategy to eliminate dengue.

    Directory of Open Access Journals (Sweden)

    Jason A L Jeffery

    Full Text Available BACKGROUND: A life-shortening strain of the obligate intracellular bacteria Wolbachia, called wMelPop, is seen as a promising new tool for the control of Aedes aegypti. However, developing a vector control strategy based on the release of mosquitoes transinfected with wMelPop requires detailed knowledge of the demographics of the target population. METHODOLOGY/PRINCIPAL FINDINGS: In Tri Nguyen village (611 households on Hon Mieu Island in central Vietnam, we conducted nine quantitative entomologic surveys over 14 months to determine if Ae. aegypti populations were spatially and temporally homogenous, and to estimate population size. There was no obvious relationship between mosquito (larval, pupal or adult abundance and temperature and rainfall, and no area of the village supported consistently high numbers of mosquitoes. In almost all surveys, key premises produced high numbers of Ae. aegypti. However, these premises were not consistent between surveys. For an intervention based on a single release of wMelPop-infected Ae. aegypti, release ratios of infected to uninfected adult mosquitoes of all age classes are estimated to be 1.8-6.7ratio1 for gravid females (and similarly aged males or teneral adults, respectively. We calculated that adult female mosquito abundance in Tri Nguyen village could range from 1.1 to 43.3 individuals of all age classes per house. Thus, an intervention could require the release of 2-78 wMelPop-infected gravid females and similarly aged males per house, or 7-290 infected teneral female and male mosquitoes per house. CONCLUSIONS/SIGNIFICANCE: Given the variability we encountered, this study highlights the importance of multiple entomologic surveys when evaluating the spatial structure of a vector population or estimating population size. If a single release of wMelPop-infected Ae. aegypti were to occur when wild Ae. aegypti abundance was at its maximum, a preintervention control program would be necessary to ensure that

  17. A Sequence of Flushing and Drying of Breeding Habitats of Aedes aegypti (L. Prior to the Low Dengue Season in Singapore.

    Directory of Open Access Journals (Sweden)

    Osama M E Seidahmed

    2016-07-01

    Full Text Available In dengue-endemic areas, transmission shows both a seasonal and interannual variability. To investigate how rainfall impacts dengue seasonality in Singapore, we carried out a longitudinal survey in the Geylang neighborhood from August 2014 to August 2015. The survey comprised of twice-weekly random inspections to outdoor breeding habitats and continuous monitoring for positive ones. In addition, observations of rainstorms were collected. Out of 6824 inspected habitats, 67 contained Aedes aegypti, 11 contained Aedes albopictus and 24 contained Culex spp. The main outdoors habitat of Aedes aegypti was storm drains (54/67. We found that 80% of breeding sites in drains (43/54 were lost after intense rainstorms related to the wet phase of the Northeast monsoon (NE between November 2014 and early January 2015. Subsequently, 95% (41/43 of these flushed drains had dried out during the dry phase of the NE in late January-February 2015. A return in the outdoor breeding of Aedes aegypti was observed after the onset of Southwest monsoon (SW between May and August 2015. There was also a reduction in productivity of breeding habitats for larvae and pupae after the onset of the NE. In wet equatorial regions like Singapore, rainfall varies with the monsoons. A monsoon-driven sequence of flushing and drying shapes the outdoor seasonal abundance of Aedes aegypti. This finding can be used to optimize vector control strategies and better understand dengue in the context of climate change.

  18. A Sequence of Flushing and Drying of Breeding Habitats of Aedes aegypti (L.) Prior to the Low Dengue Season in Singapore.

    Science.gov (United States)

    Seidahmed, Osama M E; Eltahir, Elfatih A B

    2016-07-01

    In dengue-endemic areas, transmission shows both a seasonal and interannual variability. To investigate how rainfall impacts dengue seasonality in Singapore, we carried out a longitudinal survey in the Geylang neighborhood from August 2014 to August 2015. The survey comprised of twice-weekly random inspections to outdoor breeding habitats and continuous monitoring for positive ones. In addition, observations of rainstorms were collected. Out of 6824 inspected habitats, 67 contained Aedes aegypti, 11 contained Aedes albopictus and 24 contained Culex spp. The main outdoors habitat of Aedes aegypti was storm drains (54/67). We found that 80% of breeding sites in drains (43/54) were lost after intense rainstorms related to the wet phase of the Northeast monsoon (NE) between November 2014 and early January 2015. Subsequently, 95% (41/43) of these flushed drains had dried out during the dry phase of the NE in late January-February 2015. A return in the outdoor breeding of Aedes aegypti was observed after the onset of Southwest monsoon (SW) between May and August 2015. There was also a reduction in productivity of breeding habitats for larvae and pupae after the onset of the NE. In wet equatorial regions like Singapore, rainfall varies with the monsoons. A monsoon-driven sequence of flushing and drying shapes the outdoor seasonal abundance of Aedes aegypti. This finding can be used to optimize vector control strategies and better understand dengue in the context of climate change.

  19. Spinosad as an effective larvicide for control of Aedes albopictus and Aedes aegypti, vectors of dengue in southern Mexico.

    Science.gov (United States)

    Marina, Carlos F; Bond, J Guillermo; Casas, Mauricio; Muñoz, José; Orozco, Arnoldo; Valle, Javier; Williams, Trevor

    2011-01-01

    Field trials were conducted during the wet and dry seasons in periurban and semi-rural cemeteries in southern Mexico to determine the efficacy of a suspension concentrate formulation of spinosad (Tracer 480SC) on the inhibition of development of Aedes albopictus L. and Ae. aegypti Skuse. For this, oviposition traps were treated with spinosad (1 or 5 mg L(-1)), Bacillus thuringiensis israelensis (Bti, VectoBac 12AS), a sustained release formulation of temephos and a water control. Ae. albopictus was subordinate to Ae. aegypti during the dry season, but became dominant or codominant during the wet season at both sites. The two species could not be differentiated in field counts on oviposition traps. Mean numbers of larvae + pupae of Aedes spp. in Bti-treated containers were similar to the control at both sites during both seasons. The duration of complete absence of aquatic stages varied from 5 to 13 weeks for the spinosad treatments and from 6 to 9 weeks for the temephos treatment, depending on site, season and product concentration. Predatory Toxorhynchites theobaldi Dyar and Knab suffered low mortality in control and Bti treatments, but high mortality in spinosad and temephos treatments. Egg counts and percentage of egg hatch of Aedes spp. increased significantly between the dry and wet seasons, but significant treatment differences were not detected. Temephos granules and a suspension concentrate formulation of spinosad were both highly effective larvicides against Ae. aegypti and Ae. albopictus. These compounds merit detailed evaluation for inclusion in integrated control programs targeted at Ae. aegypti and Ae. albopictus in regions where they represent important vectors of human diseases. Copyright © 2010 Society of Chemical Industry.

  20. Toxicological effects of chemical constituents from Piper against the environmental burden Aedes aegypti Liston and their impact on non-target toxicity evaluation against biomonitoring aquatic insects.

    Science.gov (United States)

    Vasantha-Srinivasan, Prabhakaran; Thanigaivel, Annamalai; Edwin, Edward-Sam; Ponsankar, Athirstam; Senthil-Nathan, Sengottayan; Selin-Rani, Selvaraj; Kalaivani, Kandaswamy; Hunter, Wayne B; Duraipandiyan, Veeramuthu; Al-Dhabi, Naif Abdullah

    2018-04-01

    Dengue is the most rapidly spreading mosquito-borne viral disease in the world. The mosquito, Aedes aegypti, also spreads Yellow fever, Chikungunya, and Zika virus. As the primary vector for dengue, Ae. aegypti now occurs in over 20 countries and is a serious concern with reports of increasing insecticide resistance. Developing new treatments to manage mosquitoes are needed. Formulation of crude volatile oil from Piper betle leaves (Pb-CVO) was evaluated as a potential treatment which showed larvicidal, ovipositional, and repellency effects. Gut-histology and enzyme profiles were analyzed post treatment under in-vitro conditions. The Pb-CVO from leaves of field collected plants was obtained by steam distillation and separated through rotary evaporation. The Pb-CVO were evaluated for chemical constituents through GC-MS analyses revealed 20 vital compounds. The peak area was establish to be superior in Eudesm-7(11)-en-4-ol (14.95%). Pb-CVO were determined and tested as four different concentrations (0.25, 0.5, 1.0, and 1.5 mg/L) of Pb-CVO towards Ae. aegypti. The larvicidal effects exhibited dose dependent mortality being greatest at 1.5 mg Pb-CVO/10 g leaves. The LC 50 occurred at 0.63 mg Pb-CVO/L. Larva of Ae. aegypti exposed to Pb-CVO showed significantly reduced digestive enzyme actions of α- and β-carboxylesterases. In contrast, GST and CYP450 enzyme levels increased significantly as concentration increased. Correspondingly, oviposition deterrence index and egg hatch of Ae. aegypti exposed to sub-lethal doses of Pb-CVO demonstrated a strong effect suitable for population suppression. Repellency at 0.6 mg Pb-CVO applied as oil had a protection time of 15-210 min. Mid-gut histological of Ae. aegypti larvae showed severe damage when treated with 0.6 mg of Pb-CVO treatment compared to the control. Non-toxic effects against aquatic beneficial insects, such as Anisops bouvieri and Toxorhynchites splendens, were observed at the highest concentrations, exposed

  1. Wolbachia infection does not alter attraction of the mosquito Aedes (Stegomyia) aegypti to human odours

    NARCIS (Netherlands)

    Turley, A.P.; Smallegange, R.C.; Takken, W.; Zalucki, M.P.; O'Neill, S.L.; McGraw, E.A.

    2014-01-01

    The insect endosymbiont Wolbachia pipientis (Rickettsiales: Rickettsiaceae) is undergoing field trials around the world to determine if it can reduce transmission of dengue virus from the mosquito Stegomyia aegypti to humans. Two different Wolbachia strains have been released to date. The primary

  2. [The factors associated with the occurrence of immature forms of Aedes aegypti in Ilha do Governador, Rio de Janeiro, Brazil].

    Science.gov (United States)

    Souza-Santos, R

    1999-01-01

    Aedes aegypti is the vector of dengue, a disease that can result in epidemics. Ecological studies are important because different geographical populations of the vector may differ in their bioecological characteristics, which can be helpful in guiding control actions. The objective of this study was to identify and to analyze some factors associated with the occurrence of immature forms of A. aegypti on Ilha do Governador, Rio de Janeiro, using data from the National Health Foundation (FNS). The results showed that 58.04% of all the containers examined were supports for plant pots, and plastic or glass cans discarded in the yard. The highest percentages of positive breeding sites were observed in tires (1.41%), wells and cisterns (0.93%), and barrels and large metal cans (0.64%). In the summer, the proportion of positivity was higher for big containers used for water storage and for containers discarded in the yard. In the winter the proportion was higher for small containers used for water storage. The highest rates of positive containers were observed after three months without FNS activities. Our results show the necessity to continue the control, and suggest that less attention was paid to small containers during the winter by FNS. Factorial analysis showed that the determinant factor for the occurrence of immature forms of A. aegypti is represented by environmental factors, while elimination and treatment of breeding sites by FNS play a less important role, a fact possibly causing the maintenance of immature forms of A. aegypti.

  3. Site-specific cassette exchange systems in the Aedes aegypti mosquito and the Plutella xylostella moth.

    Directory of Open Access Journals (Sweden)

    Roya Elaine Haghighat-Khah

    Full Text Available Genetically engineered insects are being evaluated as potential tools to decrease the economic and public health burden of mosquitoes and agricultural pest insects. Here we describe a new tool for the reliable and targeted genome manipulation of pest insects for research and field release using recombinase mediated cassette exchange (RMCE mechanisms. We successfully demonstrated the established ΦC31-RMCE method in the yellow fever mosquito, Aedes aegypti, which is the first report of RMCE in mosquitoes. A new variant of this RMCE system, called iRMCE, combines the ΦC31-att integration system and Cre or FLP-mediated excision to remove extraneous sequences introduced as part of the site-specific integration process. Complete iRMCE was achieved in two important insect pests, Aedes aegypti and the diamondback moth, Plutella xylostella, demonstrating the transferability of the system across a wide phylogenetic range of insect pests.

  4. Site-Specific Cassette Exchange Systems in the Aedes aegypti Mosquito and the Plutella xylostella Moth

    Science.gov (United States)

    Haghighat-Khah, Roya Elaine; Scaife, Sarah; Martins, Sara; St John, Oliver; Matzen, Kelly Jean; Morrison, Neil; Alphey, Luke

    2015-01-01

    Genetically engineered insects are being evaluated as potential tools to decrease the economic and public health burden of mosquitoes and agricultural pest insects. Here we describe a new tool for the reliable and targeted genome manipulation of pest insects for research and field release using recombinase mediated cassette exchange (RMCE) mechanisms. We successfully demonstrated the established ΦC31-RMCE method in the yellow fever mosquito, Aedes aegypti, which is the first report of RMCE in mosquitoes. A new variant of this RMCE system, called iRMCE, combines the ΦC31-att integration system and Cre or FLP-mediated excision to remove extraneous sequences introduced as part of the site-specific integration process. Complete iRMCE was achieved in two important insect pests, Aedes aegypti and the diamondback moth, Plutella xylostella, demonstrating the transferability of the system across a wide phylogenetic range of insect pests. PMID:25830287

  5. Presencia de Aedes (Stegomyia aegypti (Linnaeus, 1762 y su infección natural con el virus del dengue en alturas no registradas para Colombia

    Directory of Open Access Journals (Sweden)

    Freddy Ruiz-López

    2016-06-01

    Conclusión. Por primera vez se registró A. aegypti a 2.302 msnm, la mayor altitud registrada para este vector en Colombia. De igual forma, se encontró infección con el virus del dengue a 1.984 msnm. Estos hallazgos son significativos, ya que determinan regiones de Colombia con riesgo potencial de transmisión autóctona de dengue y otros arbovirus por A. aegypti.

  6. Relationship between Aedes aegypti production and occurrence of Escherichia coli in domestic water storage containers in rural and sub-urban villages in Thailand and Laos.

    Science.gov (United States)

    Dada, Nsa; Vannavong, Nanthasane; Seidu, Razak; Lenhart, Audrey; Stenström, Thor Axel; Chareonviriyaphap, Theeraphap; Overgaard, Hans J

    2013-06-01

    In a cross-sectional survey in one rural and one suburban village each in Thailand and Laos the relationship between Aedes aegypti production and Escherichia coli contamination in household water storage containers was investigated. Entomological and microbiological surveys were conducted in 250 and 239 houses in Thailand and Laos, respectively. Entomological indices across all four villages were high, indicating a high risk for dengue transmission. Significantly more Ae. aegypti pupae were produced in containers contaminated with E. coli as compared to those that were not, with the odds of Ae. aegypti infested containers being contaminated with E. coli ranging from two to five. The level of E. coli contamination varied across container classes but contamination levels were not significantly associated with the number of pupae produced. We conclude that the observed relationship between Ae. aegypti production and presence of E. coli in household water storage containers suggests a causal relationship between dengue and diarrheal disease at these sites. How this relationship can be exploited for the combined and cost-effective control of dengue and diarrheal diseases requires further research. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Insecticide resistance status of Aedes aegypti (L.) from Colombia.

    Science.gov (United States)

    Fonseca-González, Idalyd; Quiñones, Martha L; Lenhart, Audrey; Brogdon, William G

    2011-04-01

    To evaluate the insecticide susceptibility status of Aedes aegypti (L.) in Colombia, and as part of the National Network of Insecticide Resistance Surveillance, 12 mosquito populations were assessed for resistance to pyrethroids, organophosphates and DDT. Bioassays were performed using WHO and CDC methodologies. The underlying resistance mechanisms were investigated through biochemical assays and RT-PCR. All mosquito populations were susceptible to malathion, deltamethrin and cyfluthrin, and highly resistant to DDT and etofenprox. Resistance to lambda-cyhalothrin, permethrin and fenitrothion ranged from moderate to high in some populations from Chocó and Putumayo states. In Antioquia state, the Santa Fe population was resistant to fenitrothion. Biochemical assays showed high levels of both cytochrome P450 monooxygenases (CYP) and non-specific esterases (NSE) in some of the fenitrothion- and pyrethroid-resistant populations. All populations showed high levels of glutathione-S-transferase (GST) activity. GSTe2 gene was found overexpressed in DDT-resistant populations compared with Rockefeller susceptible strain. Differences in insecticide resistance status were observed between insecticides and localities. Although the biochemical assay results suggest that CYP and NSE could play an important role in the pyrethroid and fenitrothion resistance detected, other mechanisms remain to be investigated, including knockdown resistance. Resistance to DDT was high in all populations, and GST activity is probably the main enzymatic mechanism associated with this resistance. The results of this study provide baseline data on insecticide resistance in Colombian A. aegypti populations, and will allow comparison of changes in susceptibility status in this vector over time. Copyright © 2011 Society of Chemical Industry.

  8. Effect of the diet and genotype on body measurements and non-constituints of carcass of wooless lambs finished in a feedlot Efeito de dieta e genótipo sobre medidas morfométricas e não constituintes da carcaça de cordeiros deslanados terminados em confinamento

    Directory of Open Access Journals (Sweden)

    Ana Sancha Malveira Batista

    2007-12-01

    Full Text Available The objective of this study was to evaluate the body and carcass measurements, and non-constituents of carcass of wooless lambs, fed diets with two energetic levels. Eighteen lambs from genotype Morada Nova, Santa Inês and crossbred Dorper x Santa Inês were used. Diets with low and high energy content were composed of 2.5 Mcal EM/kg and 2.94 Mcal EM/kg MS, respectively. Body measurements used in the study were: withers height, height croup, body length, leg length, toracic perimeter, leg circunference, scrotal circunference, body score, body capability 1 (CC1 and body capability 2 (CC2. Non-constituents of carcass studied here were head weight, liver, heart, spleen, vesicle, blood, kidney, hooves, skin and lung + trachea. Moreover, traits of carcass were studied: carcass length, leg length, thigh perimeter, croup perimeter, thorax depth, toracic perimeter and chester width. Data were analized by model which included the effects of diets and genotype, beyond of the weigth as covariable. Diets affected (P<0,05 the body score and body capability (CC2. The genotype afeccted (P<0,05 the withers height, height croup, leg length, scrotal circunference, body score, body capability, CC1 and CC2. For carcass measurements the diet affected only the thoracic perimeter and chester width. The genotype affected the leg length, thigh perimeter and croup perimeter. Among the not carcass components, live, spleen, blood, hooves and skin were affected by the diets, while the genotype affected head, live, kidney and Hooves.O objetivo dessa pesquisa foi avaliar as medidas corporais, medidas de carcaça e componentes não constituintes carcaça de cordeiros deslanados submetidos a dietas com dois níveis energéticos em confinamento. Foram utilizados 18 cordeiros de cada genótipo: Morada Nova, Santa Inês e mestiços Dorper x Santa Inês. As rações de baixo e alto nível energético, eram constituídas com 2,5 Mcal EM/kg MS e 2,94 Mcal EM/kg MS, respectivamente

  9. Detection of all four dengue serotypes in Aedes aegypti female mosquitoes collected in a rural area in Colombia.

    Science.gov (United States)

    Pérez-Castro, Rosalía; Castellanos, Jaime E; Olano, Víctor A; Matiz, María Inés; Jaramillo, Juan F; Vargas, Sandra L; Sarmiento, Diana M; Stenström, Thor Axel; Overgaard, Hans J

    2016-04-01

    The Aedes aegypti vector for dengue virus (DENV) has been reported in urban and periurban areas. The information about DENV circulation in mosquitoes in Colombian rural areas is limited, so we aimed to evaluate the presence of DENV in Ae. aegypti females caught in rural locations of two Colombian municipalities, Anapoima and La Mesa. Mosquitoes from 497 rural households in 44 different rural settlements were collected. Pools of about 20 Ae. aegypti females were processed for DENV serotype detection. DENV in mosquitoes was detected in 74% of the analysed settlements with a pool positivity rate of 62%. The estimated individual mosquito infection rate was 4.12% and the minimum infection rate was 33.3/1,000 mosquitoes. All four serotypes were detected; the most frequent being DENV-2 (50%) and DENV-1 (35%). Two-three serotypes were detected simultaneously in separate pools. This is the first report on the co-occurrence of natural DENV infection of mosquitoes in Colombian rural areas. The findings are important for understanding dengue transmission and planning control strategies. A potential latent virus reservoir in rural areas could spill over to urban areas during population movements. Detecting DENV in wild-caught adult mosquitoes should be included in the development of dengue epidemic forecasting models.

  10. Detection of all four dengue serotypes in Aedes aegypti female mosquitoes collected in a rural area in Colombia

    Directory of Open Access Journals (Sweden)

    Rosalía Pérez-Castro

    2016-04-01

    Full Text Available The Aedes aegypti vector for dengue virus (DENV has been reported in urban and periurban areas. The information about DENV circulation in mosquitoes in Colombian rural areas is limited, so we aimed to evaluate the presence of DENV in Ae. aegypti females caught in rural locations of two Colombian municipalities, Anapoima and La Mesa. Mosquitoes from 497 rural households in 44 different rural settlements were collected. Pools of about 20 Ae. aegypti females were processed for DENV serotype detection. DENV in mosquitoes was detected in 74% of the analysed settlements with a pool positivity rate of 62%. The estimated individual mosquito infection rate was 4.12% and the minimum infection rate was 33.3/1,000 mosquitoes. All four serotypes were detected; the most frequent being DENV-2 (50% and DENV-1 (35%. Two-three serotypes were detected simultaneously in separate pools. This is the first report on the co-occurrence of natural DENV infection of mosquitoes in Colombian rural areas. The findings are important for understanding dengue transmission and planning control strategies. A potential latent virus reservoir in rural areas could spill over to urban areas during population movements. Detecting DENV in wild-caught adult mosquitoes should be included in the development of dengue epidemic forecasting models.

  11. The effect of shade on the container index and pupal productivity of the mosquitoes Aedes aegypti and Culex pipiens breeding in artificial containers.

    Science.gov (United States)

    Vezzani, D; Albicócco, A P

    2009-03-01

    The aim of this study was to assess whether certain attributes of larval breeding sites are correlated with pupal productivity (i.e. numbers of pupae collected per sampling period), so that these could be used as the focus for control measures to enhance control efficiency. Therefore, the objectives were to identify the months of highest pupal productivity of Aedes aegypti (L.) and Culex pipiens L. (Diptera: Culicidae) in an urban temperate cemetery in Argentina where artificial containers of containers and to determine whether the composition of the containers affected pupal productivity. Over a period of 9 months, 200 randomly chosen water-filled containers (100 sunlit and 100 shaded), out of approximately 3738 containers present (approximately 54% in shade), were examined each month within a cemetery (5 ha) in Buenos Aires (October 2006 to June 2007). In total, 3440 immatures of Cx pipiens and 1974 of Ae. aegypti were collected. The larvae : pupae ratio was 10 times greater for the former, indicating that larval mortality was greater for Cx pipiens. Both mosquito species showed a higher container index (CI) in shaded than in sunlit containers (Ae. aegypti: 12.8% vs. 6.9% [chi(2) = 17.6, P container and the number of pupae per pupa-positive container did not differ significantly between sunlit and shaded containers for either species. Therefore, the overall relative productivity of pupae per ha of Ae. aegypti and Cx pipiens was 2.3 and 1.8 times greater, respectively, in shaded than in sunlit areas as a result of the greater CIs of containers in shaded areas. Neither the CI nor the number of immatures per infested container differed significantly among container types of different materials in either lighting condition. The maximum CI and total pupal counts occurred in March for Ae. aegypti and in January and February for Cx pipiens. The estimated peak abundance of pupae in the whole cemetery reached a total of approximately 4388 in the middle of March for Ae

  12. Effect of temperature on life history traits during immature development of Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae) from Córdoba city, Argentina.

    Science.gov (United States)

    Grech, Marta G; Sartor, Paolo D; Almirón, Walter R; Ludueña-Almeida, Francisco F

    2015-06-01

    We investigated how ambient temperature under fluctuating conditions affects the larval-pupal immature traits of Aedes aegypti and Culex quinquefasciatus mosquitoes from Córdoba city, Argentina, and established each species development threshold and physiological time. Based on life tables, three cohorts of each mosquito species were reared in the laboratory under small fluctuating temperatures conditions of 15.2±1.7°C, 17.9±1.6°C, 21.6±0.7°C and 25.3±0.4°C for Ae. aegypti, and 16.6±1.7°C, 18.7±1.7°C and 25.2±0.3°C for Cx. quinquefasciatus. Immature development time and survival values, and also thermal development threshold and physiological time were estimated. Development times of all larval and pupal stages of Ae. aegypti and Cx. quinquefasciatus were significantly affected by the rearing temperatures, decreasing when temperature increased. Mean Ae. aegypti total (larva+pupa) development time ranged from 21.9 to 8.6 days, at 15.2 and 25.3°C, whereas, for Cx. quinquefasciatus varied between 23.5 to 9.2 days at 16.6 and 25.2°C, respectively. Larval and pupal survival of both species was affected by different rearing temperatures, increasing in general as temperature increased. For Ae. aegypti the total immature survival ranged from 26% at 15.2°C to 92% at 21.6°C; however, temperature did not have significant effect on this variable. The total immature survival of Cx. quinquefasciatus was significantly and positively affected by temperatures, ranging from 32 to 88%, at 16.6 and 25.2°C. The temperature development threshold and the physiological time estimated for Ae. aegypti and Cx. quinquefasciatus were 11.11°C and 93.74 degree-days, and 10.96°C and 136.87 degree-days, respectively. The results of the present study showed that temperature significantly affects the larval-pupal immature traits of these mosquito species of sanitary importance, from the central region of Argentina. All the parameters recorded are useful for the development of

  13. PADRONIZAÇÃO DA SÍNTESE DOS PRINCIPAIS CONSTITUINTES FEROMONAIS DE INSETOS DOS GÊNEROS METAMASIUS E RHYNCHOPHORUS

    Directory of Open Access Journals (Sweden)

    JOHNNATAN DUARTE DE FREITAS

    2011-05-01

    Full Text Available Os curculionídeos são insetos que causam grandes problemas econômicos aos agricultores e atingem culturas, como coco, dendê, cana-de-açúcar, milho, banana, algodão, etc. O controle de pragas agrícolas, ainda hoje, utiliza grandes quantidades de inseticidas, que são prejudiciais à saúde dos animais, do homem e do meio ambiente. Uma alternativa ao uso desses inseticidas é o uso de feromônios, por serem mais seletivos e menos tóxicos. Nesse trabalho, descrevemos a síntese, em escala preparativa, dos compostos (±-5-Nonanol, (±-2-Metil-4-octanol, (±-2-Metil-4-heptanol, (±-3-Metil-4-octanol, (±-5-Metil-4-octanol, (±-4-Metil-5-nonanol, (±-6-Metil-2-hepten-4-ol, 2-Metil-4-octanona, 2-Metil-4-heptanona e (±-4-Metil-5-nonanona, principais constituintes feromonais de alguns insetos dos gêneros Metamasius e Rhynchophoruseas. A síntese consistiu na reação de Grignard entre um aldeído e um brometo de alquilmagnésio. As oxidações dos álcoois para obtenção das cetonas foram realizadas com hipoclorito de sódio.

  14. Ovicidal activity of Metarhizium brunneum (Mb F52) on dengue fever vector, Aedes aegypti

    Science.gov (United States)

    The ovicidal activity of Metarhizium brunneum F52 (Mb F52) grown from granules was evaluated against Aedes aegypti eggs over time. Survival of larvae from treated eggs was significantly less when compared with untreated eggs at 7, 10 and 14 days post treatment. Only 27 % of treated eggs produced vi...

  15. Near-Infrared Spectroscopy, a Rapid Method for Predicting the Age of Male and Female Wild-Type and Wolbachia Infected Aedes aegypti.

    Directory of Open Access Journals (Sweden)

    Maggy T Sikulu-Lord

    2016-10-01

    Full Text Available Estimating the age distribution of mosquito populations is crucial for assessing their capacity to transmit disease and for evaluating the efficacy of available vector control programs. This study reports on the capacity of the near-infrared spectroscopy (NIRS technique to rapidly predict the ages of the principal dengue and Zika vector, Aedes aegypti. The age of wild-type males and females, and males and females infected with wMel and wMelPop strains of Wolbachia pipientis were characterized using this method. Calibrations were developed using spectra collected from their heads and thoraces using partial least squares (PLS regression. A highly significant correlation was found between the true and predicted ages of mosquitoes. The coefficients of determination for wild-type females and males across all age groups were R2 = 0.84 and 0.78, respectively. The coefficients of determination for the age of wMel and wMelPop infected females were 0.71 and 0.80, respectively (P< 0.001 in both instances. The age of wild-type female Ae. aegypti could be identified as < or ≥ 8 days old with an accuracy of 91% (N = 501, whereas female Ae. aegypti infected with wMel and wMelPop were differentiated into the two age groups with an accuracy of 83% (N = 284 and 78% (N = 229, respectively. Our results also indicate NIRS can distinguish between young and old male wild-type, wMel and wMelPop infected Ae. aegypti with accuracies of 87% (N = 253, 83% (N = 277 and 78% (N = 234, respectively. We have demonstrated the potential of NIRS as a predictor of the age of female and male wild-type and Wolbachia infected Ae. aegypti mosquitoes under laboratory conditions. After field validation, the tool has the potential to offer a cheap and rapid alternative for surveillance of dengue and Zika vector control programs.

  16. Discovery of Point Mutations in the Voltage-Gated Sodium Channel from African Aedes aegypti Populations: Potential Phylogenetic Reasons for Gene Introgression

    Science.gov (United States)

    Muranami, Yuto; Kawashima, Emiko; Osei, Joseph H. N.; Sakyi, Kojo Yirenkyi; Dadzie, Samuel; de Souza, Dziedzom K.; Appawu, Maxwell; Ohta, Nobuo; Minakawa, Noboru

    2016-01-01

    Background Yellow fever is endemic in some countries in Africa, and Aedes aegpyti is one of the most important vectors implicated in the outbreak. The mapping of the nation-wide distribution and the detection of insecticide resistance of vector mosquitoes will provide the beneficial information for forecasting of dengue and yellow fever outbreaks and effective control measures. Methodology/Principal Findings High resistance to DDT was observed in all mosquito colonies collected in Ghana. The resistance and the possible existence of resistance or tolerance to permethrin were suspected in some colonies. High frequencies of point mutations at the voltage-gated sodium channel (F1534C) and one heterozygote of the other mutation (V1016I) were detected, and this is the first detection on the African continent. The frequency of F1534C allele and the ratio of F1534C homozygotes in Ae. aegypti aegypti (Aaa) were significantly higher than those in Ae. aegypti formosus (Aaf). We could detect the two types of introns between exon 20 and 21, and the F1534C mutations were strongly linked with one type of intron, which was commonly found in South East Asian and South and Central American countries, suggesting the possibility that this mutation was introduced from other continents or convergently selected after the introgression of Aaa genes from the above area. Conclusions/Significance The worldwide eradication programs in 1940s and 1950s might have caused high selection pressure on the mosquito populations and expanded the distribution of insecticide-resistant Ae. aegypti populations. Selection of the F1534C point mutation could be hypothesized to have taken place during this period. The selection of the resistant population of Ae. aegypti with the point mutation of F1534C, and the worldwide transportation of vector mosquitoes in accordance with human activity such as trading of used tires, might result in the widespread distribution of F1534C point mutation in tropical countries

  17. Dengue virus type 2 infections of Aedes aegypti are modulated by the mosquito's RNA interference pathway.

    Directory of Open Access Journals (Sweden)

    Irma Sánchez-Vargas

    2009-02-01

    Full Text Available A number of studies have shown that both innate and adaptive immune defense mechanisms greatly influence the course of human dengue virus (DENV infections, but little is known about the innate immune response of the mosquito vector Aedes aegypti to arbovirus infection. We present evidence here that a major component of the mosquito innate immune response, RNA interference (RNAi, is an important modulator of mosquito infections. The RNAi response is triggered by double-stranded RNA (dsRNA, which occurs in the cytoplasm as a result of positive-sense RNA virus infection, leading to production of small interfering RNAs (siRNAs. These siRNAs are instrumental in degradation of viral mRNA with sequence homology to the dsRNA trigger and thereby inhibition of virus replication. We show that although dengue virus type 2 (DENV2 infection of Ae. aegypti cultured cells and oral infection of adult mosquitoes generated dsRNA and production of DENV2-specific siRNAs, virus replication and release of infectious virus persisted, suggesting viral circumvention of RNAi. We also show that DENV2 does not completely evade RNAi, since impairing the pathway by silencing expression of dcr2, r2d2, or ago2, genes encoding important sensor and effector proteins in the RNAi pathway, increased virus replication in the vector and decreased the extrinsic incubation period required for virus transmission. Our findings indicate a major role for RNAi as a determinant of DENV transmission by Ae. aegypti.

  18. Comparative efficacy of IR3535 and deet as repellents against adult Aedes aegypti and Culex quinquefasciatus.

    Science.gov (United States)

    Cilek, J E; Petersen, J L; Hallmon, C E

    2004-09-01

    Arm-in-cage laboratory evaluations of 2 proprietary formulations of the mosquito repellents IR3535 and N,N-diethyl-3-methylbenzamide (deet; aqueous cream, hydroalcoholic spray) were made with 10 and 20% concentrations of each repellent. Also, 4 commercially available products containing IR3535 (Expedition insect repellent 20.07% active ingredient [AI], Bug Guard Plus with SPF30 sunscreen 7.5% AI, Bug Guard Plus with SPF15 sunscreen 7.5% AI, and Bug Guard Plus 7.5% AI) were tested. All comparisons were made on an equal formulation or concentration basis. Eight volunteers tested all formulations or products 3 times against laboratory-reared, Aedes aegypti and Culex quinquefasciatus mosquitoes (6-10 days old). Products were applied to a forearm at the rate of 0.002 g/cm2. The other forearm was not treated and served as a control. Elapsed time to 1st and 2nd consecutive bite was recorded. Mean protection time (i.e., time to 1st bite) with proprietary formulations of IR3535 were comparable to those of deet, with 20% concentrations providing greater protection against Ae. aegypti (3 h) and Cx. quinquefasciatus (6 h). Mean protection time for commercial products containing IR3535 ranged from nearly 90 to 170 min for Ae. aegypti and 3.5 to 6.5 h for Cx. quinquefasciatus. Mean time to the 2nd bite was similar to time to 1st bite for each mosquito species, product, and formulation.

  19. Potential topical natural repellent against Ae. aegypti, Culex sp. and Anopheles sp. mosquitoes

    Directory of Open Access Journals (Sweden)

    Dewi Nur Hodijah

    2014-08-01

    Full Text Available AbstrakLatar belakang:Minyak atsiri daun sirih diketahui mempunyai daya proteksi. Dibuatkan losion berdasarkan pengantar sediaan farmasi yang ditambahkan minyak atsiri daun nilam. Sediaan losion dipilih agar dapat menempel lebih lama di permukaan kulit. Tujuan penelitian ini untuk membandingkan daya proteksi antara losion dengan penambahan minyak nilam dan losion tanpa penambahan minyak nilam dibandingkan daya proteksi dengan DEET. Metode: Penelitian ini merupakan penelitian eksperimental laboratorium. Semua nyamuk uji berasal dari insektarium laboratorium penelitian kesehatan Loka litbang P