WorldWideScience

Sample records for aedes aegypti populations

  1. Stage-Structured Population Dynamics of AEDES AEGYPTI

    Science.gov (United States)

    Yusoff, Nuraini; Budin, Harun; Ismail, Salemah

    Aedes aegypti is the main vector in the transmission of dengue fever, a vector-borne disease affecting world population living in tropical and sub-tropical countries. Better understanding of the dynamics of its population growth will help in the efforts of controlling the spread of this disease. In looking at the population dynamics of Aedes aegypti, this paper explored the stage-structured modeling of the population growth of the mosquito using the matrix population model. The life cycle of the mosquito was divided into five stages: eggs, larvae, pupae, adult1 and adult2. Developmental rates were obtained for the average Malaysian temperature and these were used in constructing the transition matrix for the matrix model. The model, which was based only on temperature, projected that the population of Aedes aegypti will blow up with time, which is not realistic. For further work, other factors need to be taken into account to obtain a more realistic result.

  2. Effect of temperature on the population dynamics of Aedes aegypti

    Science.gov (United States)

    Yusoff, Nuraini; Tokachil, Mohd Najir

    2015-10-01

    Aedes aegypti is one of the main vectors in the transmission of dengue fever. Its abundance may cause the spread of the disease to be more intense. In the study of its biological life cycle, temperature was found to increase the development rate of each stage of this species and thus, accelerate the process of the development from egg to adult. In this paper, a Lefkovitch matrix model will be used to study the stage-structured population dynamics of Aedes aegypti. In constructing the transition matrix, temperature will be taken into account. As a case study, temperature recorded at the Subang Meteorological Station for year 2006 until 2010 will be used. Population dynamics of Aedes aegypti at maximum, average and minimum temperature for each year will be simulated and compared. It is expected that the higher the temperature, the faster the mosquito will breed. The result will be compared to the number of dengue fever incidences to see their relationship.

  3. Mathematical model of temephos resistance in Aedes aegypti mosquito population

    Science.gov (United States)

    Aldila, D.; Nuraini, N.; Soewono, E.; Supriatna, A. K.

    2014-03-01

    Aedes aegypti is the main vector of dengue disease in many tropical and sub-tropical countries. Dengue became major public concern in these countries due to the unavailability of vaccine or drugs for dengue disease in the market. Hence, the only way to control the spread of DF and DHF is by controlling the vectors carrying the disease, for instance with fumigation, temephos or genetic manipulation. Many previous studies conclude that Aedes aegypti may develop resistance to many kind of insecticide, including temephos. Mathematical model for transmission of temephos resistance in Aedes aegypti population is discussed in this paper. Nontrivial equilibrium point of the system and the corresponding existence are shown analytically. The model analysis have shown epidemiological trends condition that permits the coexistence of nontrivial equilibrium is given analytically. Numerical results are given to show parameter sensitivity and some cases of worsening effect values for illustrating possible conditions in the field.

  4. Intraspecific Competition and Population Dynamics of Aedes aegypti

    Science.gov (United States)

    Paixão, C. A.; Charret, I. C.; Lima, R. R.

    2012-04-01

    We report computational simulations for the evolution of the population of the dengue vector, Aedes aegypti mosquitoes. The results suggest that controlling the mosquito population, on the basis of intraspecific competition at the larval stage, can be an efficient mechanism for controlling the spread of the epidemic. The results also show the presence of a kind of genetic evolution in vector population, which results mainly in increasing the average lifespan of individuals in adulthood.

  5. On the analysis of parasite effect for Aedes aegypti and Aedes albopictus population

    Science.gov (United States)

    Kallista, Meta; Aldila, Dipo; Nuraini, Nuning; Soewono, Edy

    2014-03-01

    It has been reported in some countries that the population of Aedes aegypti has been significantly reduced by the invasion of Aedes albopictus. There has been a hypothesis explaining this phenomenon of which investigated the influence of parasites pathogenesis to the competition between these two mosquito species in the fields. Ascogregarina taiwanensis and Ascogregarina culicis are known as parasites that infect Aedes albopictus and Aedes aegypti, respectively. Several studies have concluded that Ascogregarina taiwanensis caused high fatality for Aedes aegypti larvae, but Ascogregarina culicis was not pathogenic to Aedes albopictus larvae. Therefore, Ascogregarina taiwanensis may contribute to reduce the number of populations Aedes aegypti in the fields. Inspired by these facts, a mathematical model depicting interaction between parasites and mosquitoes is constructed in this paper. In this model are included six dynamic mosquito compartments, i.e. egg, larvae, infected larvae, adult, infected adult and one dynamic compartment for parasite. Derivation of the existence criteria and the stability analysis of parasite-free equilibrium as well as the basic offspring for the model are presented. Numerical simulations for sensitivity analysis indicating the invasive species for variation parameters are shown.

  6. Population structure of the mosquito Aedes aegypti (Stegomyia aegypti) in Pakistan.

    Science.gov (United States)

    Rasheed, S B; Boots, M; Frantz, A C; Butlin, R K

    2013-12-01

    Eleven microsatellite markers were used to determine the genetic population structure and spread of Aedes aegypti (Stegomyia aegypti) (Diptera: Culicidae) in Pakistan using mosquitoes collected from 13 different cities. There is a single genetic cluster of Ae. aegypti in Pakistan with a pattern of isolation by distance within the population. The low level of isolation by distance suggests the long-range passive dispersal of this mosquito, which may be facilitated by the tyre trade in Pakistan. A decrease in genetic diversity from south to north suggests a recent spread of this mosquito from Karachi. A strong negative correlation between genetic distance and the quality of road connections shows that populations in cities connected by better road networks are less differentiated, which suggests the human-aided passive dispersal of Ae. aegypti in Pakistan. Dispersal on a large spatial scale may facilitate the strategy of introducing transgenic Ae. aegypti or intracellular bacteria such as Wolbachia to control the spread of dengue disease in Pakistan, but it also emphasizes the need for simple measures to control container breeding sites.

  7. FLAVIVIRUS SUSCPETIBILITY IN Aedes aegypti

    OpenAIRE

    FERNANDEZ, ILDEFONSO; muñoz, lourdes; farfan, jose arturo; beaty, barry; Black, William; gorrochotegi, norma

    2002-01-01

    Aedes aegypti is the primary vector of yellow fever (YF) and dengue fever (DF) flaviviruses worldwide. In this review we focus on past and present research on genetic components and environmental factors in Aedes aegypti that appear to control flavivirus transmission. We review genetic relationships among Ae. Aegypti populations throughout the world and discuss how variation in vector competence is correlated with overall genetic difference among populations. We describe current researc...

  8. Productivity and population density estimates of the dengue vector mosquito Aedes aegypti (Stegomyia aegypti) in Australia.

    Science.gov (United States)

    Williams, C R; Johnson, P H; Ball, T S; Ritchie, S A

    2013-09-01

    New mosquito control strategies centred on the modifying of populations require knowledge of existing population densities at release sites and an understanding of breeding site ecology. Using a quantitative pupal survey method, we investigated production of the dengue vector Aedes aegypti (L.) (Stegomyia aegypti) (Diptera: Culicidae) in Cairns, Queensland, Australia, and found that garden accoutrements represented the most common container type. Deliberately placed 'sentinel' containers were set at seven houses and sampled for pupae over 10 weeks during the wet season. Pupal production was approximately constant; tyres and buckets represented the most productive container types. Sentinel tyres produced the largest female mosquitoes, but were relatively rare in the field survey. We then used field-collected data to make estimates of per premises population density using three different approaches. Estimates of female Ae. aegypti abundance per premises made using the container-inhabiting mosquito simulation (CIMSiM) model [95% confidence interval (CI) 18.5-29.1 females] concorded reasonably well with estimates obtained using a standing crop calculation based on pupal collections (95% CI 8.8-22.5) and using BG-Sentinel traps and a sampling rate correction factor (95% CI 6.2-35.2). By first describing local Ae. aegypti productivity, we were able to compare three separate population density estimates which provided similar results. We anticipate that this will provide researchers and health officials with several tools with which to make estimates of population densities.

  9. Pyrethroid resistance is widespread among Florida populations of Aedes aegypti

    Science.gov (United States)

    Aedes aegypti is an efficient vector of a number of diseases that affect man and is of increasing concern because of the reemergence of dengue and recent identification of locally acquired chikungunya in Florida. Pesticide resistance in this species has been demonstrated in several neighboring coun...

  10. Vector Competence of Aedes aegypti and Aedes polynesiensis Populations from French Polynesia for Chikungunya Virus.

    Directory of Open Access Journals (Sweden)

    Vaea Richard

    2016-05-01

    Full Text Available From October 2014 to March 2015, French Polynesia experienced for the first time a chikungunya outbreak. Two Aedes mosquitoes may have contributed to chikungunya virus (CHIKV transmission in French Polynesia: the worldwide distributed Ae. aegypti and the Polynesian islands-endemic Ae. polynesiensis mosquito.To investigate the vector competence of French Polynesian populations of Ae. aegypti and Ae. polynesiensis for CHIKV, mosquitoes were exposed per os at viral titers of 7 logs tissue culture infectious dose 50%. At 2, 6, 9, 14 and 21 days post-infection (dpi, saliva was collected from each mosquito and inoculated onto C6/36 mosquito cells to check for the presence of CHIKV infectious particles. Legs and body (thorax and abdomen of each mosquito were also collected at the different dpi and submitted separately to viral RNA extraction and CHIKV real-time RT-PCR.CHIKV infection rate, dissemination and transmission efficiencies ranged from 7-90%, 18-78% and 5-53% respectively for Ae. aegypti and from 39-41%, 3-17% and 0-14% respectively for Ae. polynesiensis, depending on the dpi. Infectious saliva was found as early as 2 dpi for Ae. aegypti and from 6 dpi for Ae. polynesiensis. Our laboratory results confirm that the French Polynesian population of Ae. aegypti is highly competent for CHIKV and they provide clear evidence for Ae. polynesiensis to act as an efficient CHIKV vector.As supported by our findings, the presence of two CHIKV competent vectors in French Polynesia certainly contributed to enabling this virus to quickly disseminate from the urban/peri-urban areas colonized by Ae. aegypti to the most remote atolls where Ae. polynesiensis is predominating. Ae. polynesiensis was probably involved in the recent chikungunya outbreaks in Samoa and the Cook Islands. Moreover, this vector may contribute to the risk for CHIKV to emerge in other Polynesian islands like Fiji, and more particularly Wallis where there is no Ae. aegypti.

  11. Characterising the spatial dynamics of sympatric Aedes aegypti and Aedes albopictus populations in the Philippines

    Directory of Open Access Journals (Sweden)

    Jennifer Duncombe

    2013-11-01

    Full Text Available Entomological surveillance and control are essential to the management of dengue fever (DF. Hence, understanding the spatial and temporal patterns of DF vectors, Aedes (Stegomyia aegypti (L. and Ae. (Stegomyia albopictus (Skuse, is paramount. In the Philippines, resources are limited and entomological surveillance and control are generally commenced during epidemics, when transmission is difficult to control. Recent improvements in spatial epidemiological tools and methods offer opportunities to explore more efficient DF surveillance and control solutions: however, there are few examples in the literature from resource-poor settings. The objectives of this study were to: (i explore spatial patterns of Aedes populations and (ii predict areas of high and low vector density to inform DF control in San Jose village, Muntinlupa city, Philippines. Fortnightly, adult female Aedes mosquitoes were collected from 50 double-sticky ovitraps (SOs located in San Jose village for the period June-November 2011. Spatial clustering analysis was performed to identify high and low density clusters of Ae. aegypti and Ae. albopictus mosquitoes. Spatial autocorrelation was assessed by examination of semivariograms, and ordinary kriging was undertaken to create a smoothed surface of predicted vector density in the study area. Our results show that both Ae. aegypti and Ae. albopictus were present in San Jose village during the study period. However, one Aedes species was dominant in a given geographic area at a time, suggesting differing habitat preferences and interspecies competition between vectors. Density maps provide information to direct entomological control activities and advocate the development of geographically enhanced surveillance and control systems to improve DF management in the Philippines.

  12. Irritant and repellent behavioral responses of Aedes aegypti male populations developed for RIDL disease control strategies.

    Science.gov (United States)

    Kongmee, Montathip; Nimmo, Derric; Labbé, Geneviève; Beech, Camilla; Grieco, John; Alphey, Luke; Achees, Nicole

    2010-11-01

    Behavioral responses of Aedes aegypti male populations developed for Release of Insects Carrying a Dominant Lethal (RIDL) technology and a Malaysian wild-type population of two age groups (4-5 and 8-10 d old) were tested under laboratory conditions against chemical irritants and repellents using the high-throughput screening system device. Results indicate that all male Ae. aegypti test populations showed significant (P control interventions implemented in the same disease-endemic locale.

  13. Interspecific Cross-Mating Between Aedes aegypti and Aedes albopictus Laboratory Strains: Implication of Population Density on Mating Behaviors.

    Science.gov (United States)

    Marcela, P; Hassan, A Abu; Hamdan, A; Dieng, H; Kumara, T K

    2015-12-01

    Mating behavior between Aedes aegypti and Ae. albopictus, established colony strains were examined under laboratory conditions (30-cm(3) screened cages) for 5 consecutive days. The effect of selected male densities (30, 20, 10) and female density (20) on the number of swarming, mating pairs, eggs produced, and inseminated females were evaluated. Male densities significantly increased swarming behavior, mating pairs, and egg production of heterospecific females, but female insemination was reduced. Aedes aegypti males mate more readily with heterospecific females than do Ae. albopictus males. The current study suggests that Ae. aegypti males were not species-specific in mating, and if released into the field as practiced in genetically modified mosquito techniques, they may mate with both Ae. aegypti and Ae. albopictus females, hence reducing populations of both species by producing infertile eggs.

  14. Chikungunya virus susceptibility & variation in populations of Aedes aegypti (Diptera: Culicidae mosquito from India

    Directory of Open Access Journals (Sweden)

    Mangesh D Gokhale

    2015-01-01

    Full Text Available Background & objectives: Although having immense clinical relevance, yet only a few studies have been targeted to understand the chikungunya virus (CHIKV susceptibility and growth in Aedes aegypti populations from India. This study was undertaken to investigate CHIKV susceptibility and growth kinetics in Ae. aegypti along with genetic heterogeneity of Ae. aegypti populations. Methods: Dose dependent CHIKV susceptibility and growth kinetic studies for three CHIKV strains reported from India were carried out in Ae. aegypti mosquito populations. The phenotypic variation and genetic heterogeneity in five Ae. aegypti populations were investigated using multivariate morphometrics and allozyme variation studies. Results: The dissemination and growth kinetics studies of the three CHIKV strains showed no selective advantage for a particular strain of CHIKV in Ae. aegypti. At 100 per cent infection rate, five geographic Ae. aegypti populations showed differences in dissemination to three CHIKV strains. Morphometric studies revealed phenotypic variation in all the studied populations. The allelic frequencies, F statistics, and Nei′s genetic identity values showed that genetic differences between the populations were small, but significant. Interpretation & conclusions: The results obtained in this study suggest that genetic background of the vector strongly influences the CHIKV susceptibility in Ae. aegypti.

  15. Monooxygenase activitity in Aedes aegypti population in Tembalang subdistrict, Semarang city

    Directory of Open Access Journals (Sweden)

    Dyah Widiastuti

    2015-06-01

    Full Text Available Dengue Haemorrhagic Fever (DHF is a major health problem in Tembalang sub district, Semarang City. Fogging with insecticide applications was done frequently as an effort to control Dengue vectors. The use of insecticides from the same class in a long time can lead to resistance in mosquitos’ population. The research aimed to observe the activity of monooxygenases in Aedes aegypti populations in Tembalang Subdistrict, Semarang. The study was conducted during February-November 2014 with a cross-sectional design in 10 villages in Tembalang Subdistirict, Semarang City. Field strains of Ae. aegypti eggs were collected using ovitraps. The collected eggs were grown under standard condition to adult mosquitoes. Mosquitos’ homogenate were stored at -85C and used for biochemical assays. The results showed there was increased monooxygenases activity in Ae. aegypti populations. Resistance to synthetic pyrethroid insecticide in Ae. aegypti mosquitoes population in Tembalang Subdistrict might be caused by the mechanism of detoxification enzymes in particular monooxygenases

  16. Microevolution of Aedes aegypti.

    Science.gov (United States)

    Louise, Caroline; Vidal, Paloma Oliveira; Suesdek, Lincoln

    2015-01-01

    Scientific research into the epidemiology of dengue frequently focuses on the microevolution and dispersion of the mosquito Aedes aegypti. One of the world's largest urban agglomerations infested by Ae. aegypti is the Brazilian megalopolis of Sao Paulo, where >26,900 cases of dengue were reported until June 2015. Unfortunately, the dynamics of the genetic variability of Ae. aegypti in the Sao Paulo area have not been well studied. To reduce this knowledge gap, we assessed the morphogenetic variability of a population of Ae. aegypti from a densely urbanised neighbourhood of Sao Paulo. We tested if allelic patterns could vary over a short term and if wing shape could be a predictor of the genetic variation. Over a period of 14 months, we examined the variation of genetic (microsatellites loci) and morphological (wing geometry) markers in Ae. aegypti. Polymorphisms were detected, as revealed by the variability of 20 microsatellite loci (115 alleles combined; overall Fst = 0.0358) and 18 wing landmarks (quantitative estimator Qst = 0.4732). These levels of polymorphism are higher than typically expected to an exotic species. Allelic frequencies of the loci changed over time and temporal variation in the wing shape was even more pronounced, permitting high reclassification levels of chronological samples. In spite of the fact that both markers underwent temporal variation, no correlation was detected between their dynamics. We concluded that microevolution was detected despite the short observational period, but the intensities of change of the markers were discrepant. Wing shape failed from predicting allelic temporal variation. Possibly, natural selection (Qst>Fst) or variance of expressivity of wing phenotype are involved in this discrepancy. Other possibly influential factors on microevolution of Ae. aegypti are worth searching. Additionally, the implications of the rapid evolution and high polymorphism of this mosquito vector on the efficacy of control methods have

  17. Microevolution of Aedes aegypti

    OpenAIRE

    Caroline Louise; Paloma Oliveira Vidal; Lincoln Suesdek

    2015-01-01

    Scientific research into the epidemiology of dengue frequently focuses on the microevolution and dispersion of the mosquito Aedes aegypti. One of the world's largest urban agglomerations infested by Ae. aegypti is the Brazilian megalopolis of Sao Paulo, where >26,900 cases of dengue were reported until June 2015. Unfortunately, the dynamics of the genetic variability of Ae. aegypti in the Sao Paulo area have not been well studied. To reduce this knowledge gap, we assessed the morphogenetic va...

  18. Rhamnolipids: solution against Aedes aegypti?

    Directory of Open Access Journals (Sweden)

    Vinicius Luiz Silva

    2015-02-01

    Full Text Available Aedes aegypti mosquitoes are the primary transmitters of dengue fever, urban yellow fever and chikungunya viruses. This mosquito has developed resistance to the insecticides currently used to control their populations. These chemical insecticides are harmful to the environment and can have negative effects on human health. Rhamnolipids are environmentally compatible biological surfactants, but their insecticidal activity has not been extensively studied. The present study evaluated the potential larvicidal, insecticidal and repellent activities of rhamnolipids against Aedes aegypti. At concentrations of 800, 900 and 1000 mg/L, rhamnolipids eliminated all mosquito larvae in 18 hours and killed 100% of adults at 1000 mg/L. According to the results it may be conclude that rhamnolipids should be applied to control larvae and mosquitos besides present the repellency activity against Aedes aegypti.

  19. Atmospheric control of Aedes aegypti populations in Buenos Aires (Argentina) and its variability

    Science.gov (United States)

    de Garín, A.; Bejarán, R. A.; Carbajo, A. E.; de Casas, S. C.; Schweigmann, N. J.

    The mosquito Aedes aegypti is the main urban vector responsible for the transmission of dengue fever and dengue hemorrhagic fever. The city of Buenos Aires, Argentina, is located at the southern end of the world distribution of the species. The population abundance of Ae. aegypti is mainly regulated by environmental factors. We calculated the potential number of times that a female could lay eggs during its mean life expectancy, based on potential egg production and daily meteorological records. The model considers those variables implying physical hazard to the survival of Ae. aegypti, mosquito flying activity and oviposition. The results, obtained after calibration and validation of the model with field observations, show significant correlation (P<0.001) for different lags depending on the life stage. From these results, more favorable atmospheric conditions for Ae. aegypti reproduction (linked to the urban climatic change) can be observed. The climatic variability in the last decade resembles conditions at the end of 19th century.

  20. Insecticide resistance and its underlying mechanisms in field populations of Aedes aegypti adults (Diptera: Culicidae) in Singapore

    OpenAIRE

    Koou, Sin-Ying; Chong, Chee-Seng; Vythilingam, Indra; Lee, Chow-Yang; Ng, Lee-Ching

    2014-01-01

    Background In Singapore, dose–response bioassays of Aedes aegypti (L.) adults have been conducted, but the mechanisms underlying resistance to insecticides remain unclear. In this study, we evaluated insecticide resistance and its underlying mechanism in field populations of Ae. aegypti adults. Methods Seven populations of Ae. aegypti were collected from public residential areas and assays were conducted according to WHO guidelines to determine their susceptibility to several commonly used in...

  1. Insecticide susceptibility of Aedes aegypti populations from Senegal and Cape Verde Archipelago

    Directory of Open Access Journals (Sweden)

    Dia Ibrahima

    2012-10-01

    Full Text Available Abstract Background Two concomitant dengue 3 (DEN-3 epidemics occurred in Cape Verde Archipelago and Senegal between September and October 2009. Aedes aegypti was identified as the vector of these epidemics as several DEN-3 virus strains were isolated from this species in both countries. The susceptibility to pyrethroids, organochlorine, organophosphates and carbamate was investigated in two field strains of Aedes aegypti from both countries using WHO diagnostic bioassay kits in order to monitor their the current status of insecticide susceptibility. Findings The two tested strains were highly resistant to DDT. The Cape Verde strain was found to be susceptible to all others tested insecticides except for propoxur 0.1%, which needs further investigation. The Dakar strain was susceptible to fenitrothion 1% and permethrin 0.75%, but displayed reduced susceptibility to deltamethrin, lambda-cyhalothrin and propoxur. Conclusions As base-line results, our observations stress a careful management of insecticide use for the control of Ae. aegypti. Indeed, they indicate that DDT is no longer efficient for the control of Ae. aegypti populations in Cape Verde and Dakar and further suggest a thorough follow-up of propoxur susceptibility status in both sites and that of deltamethrin and lambda-cyhalothrin in Ae. aegypti populations in Dakar. Thus, regular monitoring of susceptibility is greatly needed as well as the knowing if this observed resistance/susceptibility is focal or not and for observed resistance, the use of biochemical methods is needed with detailed comparison of resistance levels over a large geographic area. Keywords Aedes aegypti, Insecticides, Susceptibility, Cape Verde, Senegal

  2. Trisomy in Aedes aegypti

    Energy Technology Data Exchange (ETDEWEB)

    Ved Brat, S.; Rai, K.S.

    1975-01-01

    A trisomic (2n = 6 + 1) pupa of the yellow fever mosquito Aedes aegypti has been found. The trisomy involved chromosome 3 which is intermediate in size between 1 and 2. The extra chromosome formed a univalent or a trivalent during meiosis.

  3. Toxicity of spinosad to temephos-resistant Aedes aegypti populations in Brazil.

    Science.gov (United States)

    Dos Santos Dias, Luciana; Macoris, Maria de Lourdes da Graça; Andrighetti, Maria Teresa Macoris; Otrera, Vanessa Camargo Garbeloto; Dias, Adriana Dos Santos; Bauzer, Luiz Guilherme Soares da Rocha; Rodovalho, Cynara de Melo; Martins, Ademir Jesus; Lima, José Bento Pereira

    2017-01-01

    The mosquito Aedes aegypti is the primary vector of different arboviruses and represents a major public health problem. Several Brazilian populations of Ae. aegypti have developed resistance to temephos, the most used organophosphate larvicide. New tools which are less harmful to the environment and safer for humans are becoming increasingly important to control this insect vector. Spinosad, an aerobic fermentation product of a soil actinobacteria, has a favorable environmental profile. It presents selective insecticide properties, a mechanism of action that differs from those of many synthetic chemical insecticides. The toxicity of spinosad and temephos to Aedes aegypti populations from Brazil, which were previously exposed to temephos, were investigated in this study. Larval susceptibility (LC50) to temephos varied from 3μg/L for Rockefeller up to 260 μg/L for Santana do Ipanema field derived population. Larval susceptibility (LC50) to spinosad varied from 23μg/L for Rockefeller up to 93μg/L for Marilia field derived population. In addition, a semi-field trial was performed to evaluate spinosad (NatularTM DT) initial efficacy and persistence toward four field-derived lineages and the Rockefeller lineage, used as an internal control. Spinosad was tested at 0.5mg active ingredient/L in 200L capacity water tanks. Mortality was recorded each 24 hours after exposition and tanks were further recolonized once per week with mortality being recorded daily for eight weeks. Spinosad provided a level equal or superior to 80% mortality during a seven to eight week evaluation period. The assessed populations did not present cross-resistance between spinosad and temephos in laboratory conditions. It demonstrates that spinosad may be a promising larvicide for the control of Ae. aegypti, especially for populations in which resistance to temephos has been detected.

  4. Toxicity of spinosad to temephos-resistant Aedes aegypti populations in Brazil

    Science.gov (United States)

    dos Santos Dias, Luciana; Macoris, Maria de Lourdes da Graça; Andrighetti, Maria Teresa Macoris; Otrera, Vanessa Camargo Garbeloto; Dias, Adriana dos Santos; Bauzer, Luiz Guilherme Soares da Rocha; Rodovalho, Cynara de Melo; Martins, Ademir Jesus; Lima, José Bento Pereira

    2017-01-01

    The mosquito Aedes aegypti is the primary vector of different arboviruses and represents a major public health problem. Several Brazilian populations of Ae. aegypti have developed resistance to temephos, the most used organophosphate larvicide. New tools which are less harmful to the environment and safer for humans are becoming increasingly important to control this insect vector. Spinosad, an aerobic fermentation product of a soil actinobacteria, has a favorable environmental profile. It presents selective insecticide properties, a mechanism of action that differs from those of many synthetic chemical insecticides. The toxicity of spinosad and temephos to Aedes aegypti populations from Brazil, which were previously exposed to temephos, were investigated in this study. Larval susceptibility (LC50) to temephos varied from 3μg/L for Rockefeller up to 260 μg/L for Santana do Ipanema field derived population. Larval susceptibility (LC50) to spinosad varied from 23μg/L for Rockefeller up to 93μg/L for Marilia field derived population. In addition, a semi-field trial was performed to evaluate spinosad (NatularTM DT) initial efficacy and persistence toward four field-derived lineages and the Rockefeller lineage, used as an internal control. Spinosad was tested at 0.5mg active ingredient/L in 200L capacity water tanks. Mortality was recorded each 24 hours after exposition and tanks were further recolonized once per week with mortality being recorded daily for eight weeks. Spinosad provided a level equal or superior to 80% mortality during a seven to eight week evaluation period. The assessed populations did not present cross-resistance between spinosad and temephos in laboratory conditions. It demonstrates that spinosad may be a promising larvicide for the control of Ae. aegypti, especially for populations in which resistance to temephos has been detected. PMID:28301568

  5. Human-Mediated Marine Dispersal Influences the Population Structure of Aedes aegypti in the Philippine Archipelago.

    Directory of Open Access Journals (Sweden)

    Eugenio Fonzi

    Full Text Available Dengue virus (DENV is an extraordinary health burden on global scale, but still lacks effective vaccine. The Philippines is endemic for dengue fever, but massive employment of insecticides favored the development of resistance mutations in its major vector, Aedes aegypti. Alternative vector control strategies consist in releasing artificially modified mosquitos in the wild, but knowledge on their dispersal ability is necessary for a successful implementation. Despite being documented that Ae. aegypti can be passively transported for long distances, no study to date has been aimed at understanding whether human marine transportation can substantially shape the migration patterns of this mosquito. With thousands of islands connected by a dense network of ships, the Philippines is an ideal environment to fill this knowledge gap.Larvae of Ae. aegypti from 15 seaports in seven major islands of central-western Philippines were collected and genotyped at seven microsatellite loci. Low genetic structure and considerable gene flow was found in the area. Univariate and multivariate regression analyses suggested that anthropic factors (specifically the amount of processed cargo and human population density can explain the observed population structure, while geographical distance was not correlated. Interestingly, cargo shipments seem to be more efficient than passenger ships in transporting Ae. aegypti. Bayesian clustering confirmed that Ae. aegypti from busy ports are more genetically similar, while populations from idle ports are relatively structured, regardless of the geographical distance that separates them.The results confirmed the pivotal role of marine human-mediated long-range dispersal in determining the population structure of Ae. aegypti. Hopefully corroborated by further research, the present findings could assist the design of more effective vector control strategies.

  6. Rhamnolipids: solution against Aedes aegypti?

    OpenAIRE

    Silva, Vinicius L.; Lovagliol, Roberta B. [UNESP; Von Zuben,Claudio J.; Contierol, Jonas [UNESP

    2015-01-01

    Aedes aegypti mosquitoes are the primary transmitters of dengue fever, urban yellow fever, and chikungunya viruses. This mosquito has developed resistance to the insecticides currently used to control their populations. These chemical insecticides are harmful to the environment and can have negative effects on human health. Rhamnolipids are environmentally compatible biological surfactants, but their insecticidal activity has not been extensively studied. The present study evaluated the poten...

  7. Rhamnolipids: solution against Aedes aegypti?

    OpenAIRE

    Vinicius Luiz Silva; Roberta Barros Lovaglio; Claudio José Von Zuben; Jonas eContiero

    2015-01-01

    Aedes aegypti mosquitoes are the primary transmitters of dengue fever, urban yellow fever and chikungunya viruses. This mosquito has developed resistance to the insecticides currently used to control their populations. These chemical insecticides are harmful to the environment and can have negative effects on human health. Rhamnolipids are environmentally compatible biological surfactants, but their insecticidal activity has not been extensively studied. The present study evaluated the potent...

  8. The susceptibility of Aedes aegypti populations displaying temephos resistance to Bacillus thuringiensis israelensis: a basis for management

    OpenAIRE

    Araújo, Ana Paula; Araujo Diniz, Diego Felipe; Helvecio, Elisama; de Barros, Rosineide Arruda; Oliveira, Cláudia Maria Fontes; Ayres, Constância Flávia Junqueira; de Melo-Santos, Maria Alice Varjal; Regis, Lêda Narcisa; Silva-Filha, Maria Helena Neves Lobo

    2013-01-01

    Background Aedes aegypti is the vector of dengue virus, and its control is essential to prevent disease transmission. Among the agents available to control this species, biolarvicides based on Bacillus thuringiensis serovar israelensis (Bti) are an effective alternative to replace the organophosphate temephos for controlling populations that display resistance to this insecticide. The major goal of this study was to determine the baseline susceptibility of Brazilian Ae. aegypti populations to...

  9. Dual African origins of global Aedes aegypti s.l. populations revealed by mitochondrial DNA.

    Directory of Open Access Journals (Sweden)

    Michelle Moore

    Full Text Available BACKGROUND: Aedes aegypti is the primary global vector to humans of yellow fever and dengue flaviviruses. Over the past 50 years, many population genetic studies have documented large genetic differences among global populations of this species. These studies initially used morphological polymorphisms, followed later by allozymes, and most recently various molecular genetic markers including microsatellites and mitochondrial markers. In particular, since 2000, fourteen publications and four unpublished datasets have used sequence data from the NADH dehydrogenase subunit 4 mitochondrial gene to compare Ae. aegypti collections and collectively 95 unique mtDNA haplotypes have been found. Phylogenetic analyses in these many studies consistently resolved two clades but no comprehensive study of mtDNA haplotypes have been made in Africa, the continent in which the species originated. METHODS AND FINDINGS: ND4 haplotypes were sequenced in 426 Ae. aegypti s.l. from Senegal, West Africa and Kenya, East Africa. In Senegal 15 and in Kenya 7 new haplotypes were discovered. When added to the 95 published haplotypes and including 6 African Aedes species as outgroups, phylogenetic analyses showed that all but one Senegal haplotype occurred in a basal clade while most East African haplotypes occurred in a second clade arising from the basal clade. Globally distributed haplotypes occurred in both clades demonstrating that populations outside Africa consist of mixtures of mosquitoes from both clades. CONCLUSIONS: Populations of Ae. aegypti outside Africa consist of mosquitoes arising from one of two ancestral clades. One clade is basal and primarily associated with West Africa while the second arises from the first and contains primarily mosquitoes from East Africa.

  10. Insecticide susceptibility of Aedes aegypti populations from Senegal and Cape Verde Archipelago

    OpenAIRE

    Dia Ibrahima; Diagne Cheikh; Ba Yamar; Diallo Diawo; Konate Lassana; Diallo Mawlouth

    2012-01-01

    Abstract Background Two concomitant dengue 3 (DEN-3) epidemics occurred in Cape Verde Archipelago and Senegal between September and October 2009. Aedes aegypti was identified as the vector of these epidemics as several DEN-3 virus strains were isolated from this species in both countries. The susceptibility to pyrethroids, organochlorine, organophosphates and carbamate was investigated in two field strains of Aedes aegypti from both countries using WHO diagnostic bioassay kits in order to mon...

  11. Field Efficacy of New Larvicide Products for Control of Multi-Resistant Aedes aegypti Populations in Martinique (French West Indies)

    OpenAIRE

    Marcombe, Sébastien; Darriet, Frédéric; Agnew, Philip; Etienne, Manuel; Yp-Tcha, Marie-Michelle; Yébakima, André; Corbel, Vincent

    2011-01-01

    World-wide dengue vector control is hampered by the spread of insecticide resistance in Aedes aegypti. We report the resistance status of a wild Ae. aegypti population from Martinique (Vauclin) to conventional larvicides (Bacillus thuringiensis var israeliensis [Bti] and temephos) and potential alternatives (spinosad, diflubenzuron, and pyriproxyfen). The efficacy and residual activity of these insecticides were evaluated under simulated and field conditions. The Vauclin strain exhibited a hi...

  12. Spatial distribution and esterase activity in populations of Aedes (Stegomyia aegypti (Linnaeus (Diptera: Culicidae resistant to temephos

    Directory of Open Access Journals (Sweden)

    Wanessa Porto Tito Gambarra

    2013-04-01

    Full Text Available INTRODUCTION: The need for studies that describe the resistance patterns in populations of Aedes aegypti (Linnaeus in function of their region of origin justified this research, which aimed to characterize the resistance to temephos and to obtain information on esterase activity in populations of Aedes aegypti collected in municipalities of the State of Paraíba. METHODS: Resistance to temephos was evaluated and characterized from the diagnostic dose of 0.352mg i.a./L and multiple concentrations that caused mortalities between 5% and 99%. Electrophoresis of isoenzymes was used to verify the patterns of esterase activity among populations of the vector. RESULTS: All populations of Aedes aegypti were resistant to temephos, presenting a resistance rate (RR greater than 20. The greatest lethal dose 50% of the sample (CL50 was found for the municipality of Lagoa Seca, approximately forty-one times the value of CL50 for the Rockefeller population. The populations characterized as resistant showed two to six regions of α and β-esterase, called EST-1 to EST-6, while the susceptible population was only seen in one region of activity. CONCLUSIONS: Aedes aegypti is widely distributed and shows a high degree of resistance to temephos in all municipalities studied. In all cases, esterases are involved in the metabolism and, consequently, in the resistance to temephos.

  13. Spatial distribution and esterase activity in populations of Aedes (Stegomyia aegypti (Linnaeus (Diptera: Culicidae resistant to temephos

    Directory of Open Access Journals (Sweden)

    Wanessa Porto Tito Gambarra

    2013-09-01

    Full Text Available INTRODUCTION: The need for studies that describe the resistance patterns in populations of Aedes aegypti (Linnaeus in function of their region of origin justified this research, which aimed to characterize the resistance to temephos and to obtain information on esterase activity in populations of Aedes aegypti collected in municipalities of the State of Paraíba. METHODS: Resistance to temephos was evaluated and characterized from the diagnostic dose of 0.352mg i.a./L and multiple concentrations that caused mortalities between 5% and 99%. Electrophoresis of isoenzymes was used to verify the patterns of esterase activity among populations of the vector. RESULTS: All populations of Aedes aegypti were resistant to temephos, presenting a resistance rate (RR greater than 20. The greatest lethal dose 50% of the sample (CL50 was found for the municipality of Lagoa Seca, approximately forty-one times the value of CL50 for the Rockefeller population. The populations characterized as resistant showed two to six regions of α and β-esterase, called EST-1 to EST-6, while the susceptible population was only seen in one region of activity. CONCLUSIONS: Aedes aegypti is widely distributed and shows a high degree of resistance to temephos in all municipalities studied. In all cases, esterases are involved in the metabolism and, consequently, in the resistance to temephos.

  14. Population genomics reveals that an anthropophilic population of Aedes aegypti mosquitoes in West Africa recently gave rise to American and Asian populations of this major disease vector

    KAUST Repository

    Crawford, Jacob E.

    2017-02-20

    BackgroundThe mosquito Aedes aegypti is the main vector of dengue, Zika, chikungunya and yellow fever viruses. This major disease vector is thought to have arisen when the African subspecies Ae. aegypti formosus evolved from being zoophilic and living in forest habitats into a form that specialises on humans and resides near human population centres. The resulting domestic subspecies, Ae. aegypti aegypti, is found throughout the tropics and largely blood-feeds on humans.ResultsTo understand this transition, we have sequenced the exomes of mosquitoes collected from five populations from around the world. We found that Ae. aegypti specimens from an urban population in Senegal in West Africa were more closely related to populations in Mexico and Sri Lanka than they were to a nearby forest population. We estimate that the populations in Senegal and Mexico split just a few hundred years ago, and we found no evidence of Ae. aegypti aegypti mosquitoes migrating back to Africa from elsewhere in the tropics. The out-of-Africa migration was accompanied by a dramatic reduction in effective population size, resulting in a loss of genetic diversity and rare genetic variants.ConclusionsWe conclude that a domestic population of Ae. aegypti in Senegal and domestic populations on other continents are more closely related to each other than to other African populations. This suggests that an ancestral population of Ae. aegypti evolved to become a human specialist in Africa, giving rise to the subspecies Ae. aegypti aegypti. The descendants of this population are still found in West Africa today, and the rest of the world was colonised when mosquitoes from this population migrated out of Africa. This is the first report of an African population of Ae. aegypti aegypti mosquitoes that is closely related to Asian and American populations. As the two subspecies differ in their ability to vector disease, their existence side by side in West Africa may have important implications for

  15. The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations.

    Science.gov (United States)

    Walker, T; Johnson, P H; Moreira, L A; Iturbe-Ormaetxe, I; Frentiu, F D; McMeniman, C J; Leong, Y S; Dong, Y; Axford, J; Kriesner, P; Lloyd, A L; Ritchie, S A; O'Neill, S L; Hoffmann, A A

    2011-08-24

    Dengue fever is the most important mosquito-borne viral disease of humans with more than 50 million cases estimated annually in more than 100 countries. Disturbingly, the geographic range of dengue is currently expanding and the severity of outbreaks is increasing. Control options for dengue are very limited and currently focus on reducing population abundance of the major mosquito vector, Aedes aegypti. These strategies are failing to reduce dengue incidence in tropical communities and there is an urgent need for effective alternatives. It has been proposed that endosymbiotic bacterial Wolbachia infections of insects might be used in novel strategies for dengue control. For example, the wMelPop-CLA Wolbachia strain reduces the lifespan of adult A. aegypti mosquitoes in stably transinfected lines. This life-shortening phenotype was predicted to reduce the potential for dengue transmission. The recent discovery that several Wolbachia infections, including wMelPop-CLA, can also directly influence the susceptibility of insects to infection with a range of insect and human pathogens has markedly changed the potential for Wolbachia infections to control human diseases. Here we describe the successful transinfection of A. aegypti with the avirulent wMel strain of Wolbachia, which induces the reproductive phenotype cytoplasmic incompatibility with minimal apparent fitness costs and high maternal transmission, providing optimal phenotypic effects for invasion. Under semi-field conditions, the wMel strain increased from an initial starting frequency of 0.65 to near fixation within a few generations, invading A. aegypti populations at an accelerated rate relative to trials with the wMelPop-CLA strain. We also show that wMel and wMelPop-CLA strains block transmission of dengue serotype 2 (DENV-2) in A. aegypti, forming the basis of a practical approach to dengue suppression.

  16. Spatial and temporal country-wide survey of temephos resistance in Brazilian populations of Aedes aegypti

    Science.gov (United States)

    Chediak, Mateus; G Pimenta, Fabiano; Coelho, Giovanini E; Braga, Ima A; Lima, José Bento P; Cavalcante, Karina Ribeiro LJ; de Sousa, Lindemberg C; de Melo-Santos, Maria Alice V; Macoris, Maria de Lourdes da G; de Araújo, Ana Paula; Ayres, Constância Flávia J; Andrighetti, Maria Teresa M; Gomes, Ricristhi Gonçalves de A; Campos, Kauara B; Guedes, Raul Narciso C

    2016-01-01

    The organophosphate temephos has been the main insecticide used against larvae of the dengue and yellow fever mosquito (Aedes aegypti) in Brazil since the mid-1980s. Reports of resistance date back to 1995; however, no systematic reports of widespread temephos resistance have occurred to date. As resistance investigation is paramount for strategic decision-making by health officials, our objective here was to investigate the spatial and temporal spread of temephos resistance in Ae. aegypti in Brazil for the last 12 years using discriminating temephos concentrations and the bioassay protocols of the World Health Organization. The mortality results obtained were subjected to spatial analysis for distance interpolation using semi-variance models to generate maps that depict the spread of temephos resistance in Brazil since 1999. The problem has been expanding. Since 2002-2003, approximately half the country has exhibited mosquito populations resistant to temephos. The frequency of temephos resistance and, likely, control failures, which start when the insecticide mortality level drops below 80%, has increased even further since 2004. Few parts of Brazil are able to achieve the target 80% efficacy threshold by 2010/2011, resulting in a significant risk of control failure by temephos in most of the country. The widespread resistance to temephos in Brazilian Ae. aegypti populations greatly compromise effective mosquito control efforts using this insecticide and indicates the urgent need to identify alternative insecticides aided by the preventive elimination of potential mosquito breeding sites. PMID:27143489

  17. Seasonal Genetic Changes of Aedes aegypti (Diptera: Culicidae) Populations in Selected Sites of Cebu City, Philippines.

    Science.gov (United States)

    Sayson, S L; Gloria-Soria, A; Powell, J R; Edillo, F E

    2015-07-01

    Aedes aegypti (L.) is the primary vector of dengue virus in the Philippines, where dengue is endemic. We examined the genetic changes of Ae. aegypti collected from three selected sites in Cebu city, Philippines, during the relatively wet (2011-2012) and dry seasons (2012 and 2013). A total of 493 Ae. aegypti adults, reared in the laboratory from field-collected larvae, were analyzed using 11 microsatellite loci. Seasonal variation was observed in allele frequencies and allelic richness. Average genetic differentiation (DEST=0.018; FST=0.029) in both dry seasons was higher, due to reduced Ne, than in the wet season (DEST=0.006; FST=0.009). Thus, average gene flow was higher in the wet season than in the dry seasons. However, the overall FST estimate (0.02) inclusive of the two seasons showed little genetic differentiation as supported by Bayesian clustering analysis. Results suggest that during the dry season the intense selection that causes a dramatic reduction of population size favors heterozygotes, leading to small pockets of mosquitoes (refuges) that exhibit random genetic differentiation. During the wet season, the genetic composition of the population is reconstituted by the expansion of the refuges that survived the preceding dry season. Source reduction of mosquitoes during the nonepidemic dry season is thus recommended to prevent dengue re-emergence in the subsequent wet season.

  18. Spatial and temporal country-wide survey of temephos resistance in Brazilian populations of Aedes aegypti.

    Science.gov (United States)

    Chediak, Mateus; G Pimenta, Fabiano; Coelho, Giovanini E; Braga, Ima A; Lima, José Bento P; Cavalcante, Karina Ribeiro Lj; Sousa, Lindemberg C de; Melo-Santos, Maria Alice V de; Macoris, Maria de Lourdes da G; Araújo, Ana Paula de; Ayres, Constância Flávia J; Andrighetti, Maria Teresa M; Gomes, Ricristhi Gonçalves de A; Campos, Kauara B; Guedes, Raul Narciso C

    2016-05-01

    The organophosphate temephos has been the main insecticide used against larvae of the dengue and yellow fever mosquito (Aedes aegypti) in Brazil since the mid-1980s. Reports of resistance date back to 1995; however, no systematic reports of widespread temephos resistance have occurred to date. As resistance investigation is paramount for strategic decision-making by health officials, our objective here was to investigate the spatial and temporal spread of temephos resistance in Ae. aegypti in Brazil for the last 12 years using discriminating temephos concentrations and the bioassay protocols of the World Health Organization. The mortality results obtained were subjected to spatial analysis for distance interpolation using semi-variance models to generate maps that depict the spread of temephos resistance in Brazil since 1999. The problem has been expanding. Since 2002-2003, approximately half the country has exhibited mosquito populations resistant to temephos. The frequency of temephos resistance and, likely, control failures, which start when the insecticide mortality level drops below 80%, has increased even further since 2004. Few parts of Brazil are able to achieve the target 80% efficacy threshold by 2010/2011, resulting in a significant risk of control failure by temephos in most of the country. The widespread resistance to temephos in Brazilian Ae. aegypti populations greatly compromise effective mosquito control efforts using this insecticide and indicates the urgent need to identify alternative insecticides aided by the preventive elimination of potential mosquito breeding sites.

  19. Application of wMelPop Wolbachia Strain to Crash Local Populations of Aedes aegypti.

    Directory of Open Access Journals (Sweden)

    Scott A Ritchie

    Full Text Available The endosymbiotic bacteria Wolbachia pipientis (wMel strain has been successfully established in several populations of Aedes aegypti, the primary dengue vector. The virulent Wolbachia strain wMelPop is known to cause several pathological impacts (increased egg mortality, life shortening, etc. reducing overall fitness in the mosquito Ae. aegypti. Increased egg mortality could substantially reduce egg banks in areas with a lengthy monsoonal dry season, and be employed to eliminate local populations. We tested this application under semi-field cage conditions. First, we determined that wMelPop infection significantly reduced the survival of desiccation-resistant eggs of the dengue vector Ae. aegypti, with shade and temperature having a significant impact; nearly all wMelPop-infected eggs failed to hatch after 6 and 10 weeks in summer and winter conditions, respectively. In laboratory selection experiments we found that egg desiccation resistance can be increased by selection, and that this effect of wMelPop infection is due to the nuclear background of the host rather than Wolbachia. We then conducted an invasion of wMelPop within a semi-field cage using sustained weekly releases of wMelPop infected mosquitoes, with fixation achieved after 9 weeks. The egg populations wMelPop infected and an uninfected control were then subjected to a simulated prolonged monsoonal dry season (2.5 months before flooding to induce hatching. The wMelPop infected eggs suffered significantly greater mortality than the controls, with only 0.67% and 4.35% of respective infected and uninfected eggs held in 99% shade hatching after 80 days. These studies suggest that wMelPop could be used to locally eliminate populations of Ae. aegypti that are exposed to prolonged dry conditions, particularly if combined with vector control.

  20. Genome-based polymorphic microsatellite development and validation in the mosquito Aedes aegypti and application to population genetics in Haiti

    Directory of Open Access Journals (Sweden)

    Streit Thomas G

    2009-12-01

    Full Text Available Abstract Background Microsatellite markers have proven useful in genetic studies in many organisms, yet microsatellite-based studies of the dengue and yellow fever vector mosquito Aedes aegypti have been limited by the number of assayable and polymorphic loci available, despite multiple independent efforts to identify them. Here we present strategies for efficient identification and development of useful microsatellites with broad coverage across the Aedes aegypti genome, development of multiplex-ready PCR groups of microsatellite loci, and validation of their utility for population analysis with field collections from Haiti. Results From 79 putative microsatellite loci representing 31 motifs identified in 42 whole genome sequence supercontig assemblies in the Aedes aegypti genome, 33 microsatellites providing genome-wide coverage amplified as single copy sequences in four lab strains, with a range of 2-6 alleles per locus. The tri-nucleotide motifs represented the majority (51% of the polymorphic single copy loci, and none of these was located within a putative open reading frame. Seven groups of 4-5 microsatellite loci each were developed for multiplex-ready PCR. Four multiplex-ready groups were used to investigate population genetics of Aedes aegypti populations sampled in Haiti. Of the 23 loci represented in these groups, 20 were polymorphic with a range of 3-24 alleles per locus (mean = 8.75. Allelic polymorphic information content varied from 0.171 to 0.867 (mean = 0.545. Most loci met Hardy-Weinberg expectations across populations and pairwise FST comparisons identified significant genetic differentiation between some populations. No evidence for genetic isolation by distance was observed. Conclusion Despite limited success in previous reports, we demonstrate that the Aedes aegypti genome is well-populated with single copy, polymorphic microsatellite loci that can be uncovered using the strategy developed here for rapid and efficient

  1. Deltamethrin Resistance Mechanisms in Aedes aegypti Populations from Three French Overseas Territories Worldwide.

    Directory of Open Access Journals (Sweden)

    Isabelle Dusfour

    2015-11-01

    Full Text Available Aedes aegypti is a cosmopolite mosquito, vector of arboviruses. The worldwide studies of its insecticide resistance have demonstrated a strong loss of susceptibility to pyrethroids, the major class of insecticide used for vector control. French overseas territories such as French Guiana (South America, Guadeloupe islands (Lesser Antilles as well as New Caledonia (Pacific Ocean, have encountered such resistance.We initiated a research program on the pyrethroid resistance in French Guiana, Guadeloupe and New Caledonia. Aedes aegypti populations were tested for their deltamethrin resistance level then screened by an improved microarray developed to specifically study metabolic resistance mechanisms. Cytochrome P450 genes were implicated in conferring resistance. CYP6BB2, CYP6M11, CYP6N12, CYP9J9, CYP9J10 and CCE3 genes were upregulated in the resistant populations and were common to other populations at a regional scale. The implication of these genes in resistance phenomenon is therefore strongly suggested. Other genes from detoxification pathways were also differentially regulated. Screening for target site mutations on the voltage-gated sodium channel gene demonstrated the presence of I1016 and C1534.This study highlighted the presence of a common set of differentially up-regulated detoxifying genes, mainly cytochrome P450 genes in all three populations. GUA and GUY populations shared a higher number of those genes compared to CAL. Two kdr mutations well known to be associated to pyrethroid resistance were also detected in those two populations but not in CAL. Different selective pressures and genetic backgrounds can explain such differences. These results are also compared with those obtained from other parts of the world and are discussed in the context of integrative research on vector competence.

  2. Field efficacy of new larvicide products for control of multi-resistant Aedes aegypti populations in Martinique (French West Indies).

    Science.gov (United States)

    Marcombe, Sébastien; Darriet, Frédéric; Agnew, Philip; Etienne, Manuel; Yp-Tcha, Marie-Michelle; Yébakima, André; Corbel, Vincent

    2011-01-01

    World-wide dengue vector control is hampered by the spread of insecticide resistance in Aedes aegypti. We report the resistance status of a wild Ae. aegypti population from Martinique (Vauclin) to conventional larvicides (Bacillus thuringiensis var israeliensis [Bti] and temephos) and potential alternatives (spinosad, diflubenzuron, and pyriproxyfen). The efficacy and residual activity of these insecticides were evaluated under simulated and field conditions. The Vauclin strain exhibited a high level of resistance to temephos, a tolerance to insect growth regulators, and full susceptibility to spinosad and Bti. In simulated trials, pyriproxyfen and Bti showed long residual activities in permanent breeding containers (28 and 37 weeks), whereas under field conditions they failed to curtail Ae. aegypti populations after four weeks. Conversely, diflubenzuron and spinosad showed a residual efficacy of 16 weeks, suggesting that these chemicals may be promising alternatives to Bti and temephos for controlling insecticide-resistant Ae. aegypti populations.

  3. Resistance Status to the Insecticides Temephos, Deltamethrin, and Diflubenzuron in Brazilian Aedes aegypti Populations

    OpenAIRE

    Bellinato, Diogo Fernandes; Viana-Medeiros, Priscila Fernandes; Araújo, Simone Costa; Martins, Ademir J; Lima, José Bento Pereira; Valle, Denise

    2016-01-01

    Insecticides are still largely applied in public health to control disease vectors. In Brazil, organophosphates (OP) and pyrethroids (PY) are used against Aedes aegypti for years. Since 2009 Insect Growth Regulators (IGR) are also employed in the control of larvae. We quantified resistance to temephos (OP), deltamethrin (PY), and diflubenzuron (IGR) of A. aegypti samples from 12 municipalities distributed throughout the country, collected between 2010 and 2012. High levels of resistance to ne...

  4. Trehalase inhibition in Aedes aegypti

    OpenAIRE

    Logan, Carolina Isabel

    2008-01-01

    Aedes aegypti is the principal vector of Dengue virus, the most important mosquito-borne viral disease affecting humans. Infection of Ae. aegypti larvae by the trematode Plagiorchis elegans leads to a disruption of carbohydrate metabolism by preventing the conversion of trehalose to glucose, and the production of an oviposition deterrent compound. This thesis examines the dose-dependent effects of a trehalase inhibitor, Validoxylamine A (VAA), on Ae. aegypti. VAA had no noticeable effect on l...

  5. Resistance Status to the Insecticides Temephos, Deltamethrin, and Diflubenzuron in Brazilian Aedes aegypti Populations

    Science.gov (United States)

    Viana-Medeiros, Priscila Fernandes; Araújo, Simone Costa; Martins, Ademir J.; Lima, José Bento Pereira

    2016-01-01

    Insecticides are still largely applied in public health to control disease vectors. In Brazil, organophosphates (OP) and pyrethroids (PY) are used against Aedes aegypti for years. Since 2009 Insect Growth Regulators (IGR) are also employed in the control of larvae. We quantified resistance to temephos (OP), deltamethrin (PY), and diflubenzuron (IGR) of A. aegypti samples from 12 municipalities distributed throughout the country, collected between 2010 and 2012. High levels of resistance to neurotoxic insecticides were detected in almost all populations: RR95 to temephos varied between 4.0 and 27.1; the lowest RR95 to deltamethrin was 13.1, and values higher than 70.0 were found. In contrast, all samples were susceptible to diflubenzuron (RR95 < 2.3). Biochemical tests performed with larvae and adults discarded the participation of acetylcholinesterase, the OP target, and confirmed involvement of the detoxifying enzymes esterases, mixed function oxidases, and glutathione-S-transferases. The results obtained were discussed taking into account the public chemical control component and the increase in the domestic use of insecticides during dengue epidemic seasons in the evaluated municipalities. PMID:27419140

  6. Resistance Status to the Insecticides Temephos, Deltamethrin, and Diflubenzuron in Brazilian Aedes aegypti Populations

    Directory of Open Access Journals (Sweden)

    Diogo Fernandes Bellinato

    2016-01-01

    Full Text Available Insecticides are still largely applied in public health to control disease vectors. In Brazil, organophosphates (OP and pyrethroids (PY are used against Aedes aegypti for years. Since 2009 Insect Growth Regulators (IGR are also employed in the control of larvae. We quantified resistance to temephos (OP, deltamethrin (PY, and diflubenzuron (IGR of A. aegypti samples from 12 municipalities distributed throughout the country, collected between 2010 and 2012. High levels of resistance to neurotoxic insecticides were detected in almost all populations: RR95 to temephos varied between 4.0 and 27.1; the lowest RR95 to deltamethrin was 13.1, and values higher than 70.0 were found. In contrast, all samples were susceptible to diflubenzuron (RR95 < 2.3. Biochemical tests performed with larvae and adults discarded the participation of acetylcholinesterase, the OP target, and confirmed involvement of the detoxifying enzymes esterases, mixed function oxidases, and glutathione-S-transferases. The results obtained were discussed taking into account the public chemical control component and the increase in the domestic use of insecticides during dengue epidemic seasons in the evaluated municipalities.

  7. Mechanisms of insecticide resistance in field populations of Aedes aegypti (L.) from Quintana Roo, Southern Mexico.

    Science.gov (United States)

    Flores, Adriana E; Grajales, Jaime Salomon; Salas, Ildefonso Fernandez; Garcia, Gustavo Ponce; Becerra, Ma Haydee Loaiza; Lozano, Saul; Brogdon, William G; Black, William C; Beaty, Barry

    2006-12-01

    Potential insecticide-resistance mechanisms were studied with the use of biochemical assays in Aedes aegypti (L.) collected from 5 municipalities representing the north part of Quintana Roo: Benito Juarez, Cozumel, Isla Mujeres, Lazaro Cardenas, and Solidaridad. The activities of alpha and beta esterases, mixed-function oxidases (MFO), glutathione-S-transferase (GST), acethylcholinesterase (AChE), and insensitive acethylcholinesterase (iAChE) were assayed in microplates. Three replicates were performed for each enzyme and 60 males and 60 females were analyzed in each population. The New Orleans (NO) susceptible strain of Ae. aegypti was used as a susceptible reference and the threshold criteria for each enzyme were the highest NO absorbance values. In none of the 6 tests were absorbance values correlated in males and females. alpha esterases were elevated in Benito Juarez, Cozumel females and in Lazaro Cardenas males and females. beta esterases were elevated in Benito Juarez, Cozumel females and in Cozumel and Lazaro Cardenas males. Elevated esterases suggest potential insecticide-resistance mechanisms against organophosphate, carbamate, and some pyrethroid insecticides. Slightly elevated levels of MFOs appeared in Lazaro Cardenas females and in Cozumel, Isla Mujeres, and Solidaridad males. Mechanisms involving iAChE or GST were not apparent.

  8. Insecticide resistance and genetic variability in natural populations of Aedes (Stegomyia aegypti (Diptera: Culicidae from Colombia

    Directory of Open Access Journals (Sweden)

    Oscar A. Aguirre-Obando

    2015-02-01

    Full Text Available Mosquito control prevails as the most efficient method to protect humans from the dengue virus, despite recent efforts to find a vaccine for this disease. We evaluated insecticide resistance and genetic variability in natural populations of Aedes aegypti (Linnaeus, 1762 from Colombia. This is the first Colombian study examining kdr mutations and population structure. Bioassays with larvae of three mosquito populations (Armenia, Calarcá and Montenegro were performed according to the World Health Organization (WHO guidelines, using Temephos. For the analysis of the Val1016Ile mutation and genetic diversity, we sampled recently-emerged adults from four mosquito populations (Armenia, Calarcá, Montenegro and Barcelona. Following the WHO protocol, bioassays implemented with larvae showed resistance to Temephos in mosquito populations from Armenia (77% ± 2 and Calarcá (62% ± 14, and an incipient altered susceptibility at Montenegro (88% ± 8. The RR95 of mosquito populations ranged from 3.7 (Montenegro to 6.0 (Calarca. The Val1016Ile mutation analysis of 107 genotyped samples indicates that 94% of the specimens were homozygous for the wild allele (1016Val and 6% were heterozygous (Val1016Ile. The 1016Ile allele was not found in Barcelona. Genetic variability analysis found three mitochondrial lineages with low genetic diversity and gene flow. In comparison with haplotypes from the American continent, those from this study suggest connections with Mexican and North American populations. These results confirm that a continuous monitoring and managing program of A. aegypti resistance in the state of Quindío is required.

  9. Evaluation of a sticky trap (AedesTraP, made from disposable plastic bottles, as a monitoring tool for Aedes aegypti populations

    Directory of Open Access Journals (Sweden)

    de Santos Eloína Maria

    2012-09-01

    Full Text Available Abstract Background Dengue virus, which is transmitted by Aedes aegypti mosquitoes is the most important emerging viral disease, infecting more than 50 million people annually. Currently used sticky traps are useful tools for monitoring and control of A. aegypti, despite differences in efficiency, labor requirements and cost. In the present work, a field assay was carried out to evaluate the performance of a sticky trap (AedesTrap, produced using disposable material, in capturing gravid Aedes spp. females. Additionally, conditions necessary for the improved performance of the device, such as number of traps per site and location (indoors or outdoors were evaluated. Methods During a one year period, traps were placed in a dengue endemic area in 28 day cycles. The trap, named AedesTrap, consisted of a disposable plastic soda bottle coated inside with colophony resin, which served as a sticky substrate. Disposable bottles were donated by restaurants, and traps were made by laboratory staff, reducing the cost of the sticky trap (less than U$3. Mosquito capture in indoor and outdoor areas was compared by placing the traps in laundry room, kitchen or bedroom (indoors and front or back yard (outdoors. The relationship between the number of AedesTraps and quantity of captured mosquitoes was investigated by utilizing one or three traps/site. Results During a 28 day cycle, a single AedesTrap was capable of capturing up to 15 A. aegypti in a house, with a mean capture of 0.5 to 2.63 females per premise. The AedesTrap collected three times more outdoors versus indoors. Similarly, the capability of detecting Aedes spp. infestation, and of capturing females, was three times higher when using three AedesTraps per house, compared with one trap per house. Conclusions AedesTrap was shown to be capable of capturing A. aegypti and other culicidae, providing information on the adult mosquito population, and allowing the identification of areas critically

  10. Skeeter Buster: a stochastic, spatially explicit modeling tool for studying Aedes aegypti population replacement and population suppression strategies.

    Directory of Open Access Journals (Sweden)

    Krisztian Magori

    Full Text Available BACKGROUND: Dengue is the most important mosquito-borne viral disease affecting humans. The only prevention measure currently available is the control of its vectors, primarily Aedes aegypti. Recent advances in genetic engineering have opened the possibility for a new range of control strategies based on genetically modified mosquitoes. Assessing the potential efficacy of genetic (and conventional strategies requires the availability of modeling tools that accurately describe the dynamics and genetics of Ae. aegypti populations. METHODOLOGY/PRINCIPAL FINDINGS: We describe in this paper a new modeling tool of Ae. aegypti population dynamics and genetics named Skeeter Buster. This model operates at the scale of individual water-filled containers for immature stages and individual properties (houses for adults. The biology of cohorts of mosquitoes is modeled based on the algorithms used in the non-spatial Container Inhabiting Mosquitoes Simulation Model (CIMSiM. Additional features incorporated into Skeeter Buster include stochasticity, spatial structure and detailed population genetics. We observe that the stochastic modeling of individual containers in Skeeter Buster is associated with a strongly reduced temporal variation in stage-specific population densities. We show that heterogeneity in container composition of individual properties has a major impact on spatial heterogeneity in population density between properties. We detail how adult dispersal reduces this spatial heterogeneity. Finally, we present the predicted genetic structure of the population by calculating F(ST values and isolation by distance patterns, and examine the effects of adult dispersal and container movement between properties. CONCLUSIONS/SIGNIFICANCE: We demonstrate that the incorporated stochasticity and level of spatial detail have major impacts on the simulated population dynamics, which could potentially impact predictions in terms of control measures. The capacity

  11. Costly Inheritance and the Persistence of Insecticide Resistance in Aedes aegypti Populations.

    Directory of Open Access Journals (Sweden)

    Helio Schechtman

    Full Text Available Global emergence of arboviruses is a growing public health concern, since most of these diseases have no vaccine or prevention treatment available. In this scenario, vector control through the use of chemical insecticides is one of the most important prevention tools. Nevertheless, their effectiveness has been increasingly compromised by the development of strong resistance observed in field populations, even in spite of fitness costs usually associated to resistance. Using a stage-structured deterministic model parametrised for the Aedes aegypti--the main vector for dengue--we investigated the persistence of resistance by studying the time for a population which displays resistance to insecticide to revert to a susceptible population. By means of a comprehensive series of in-silico experiments, we studied this reversal time as a function of fitness costs and the initial presence of the resistance allele in the population. The resulting map provides both a guiding and a surveillance tool for public health officers to address the resistance situation of field populations. Application to field data from Brazil indicates that reversal can take, in some cases, decades even if fitness costs are not small. As by-products of this investigation, we were able to fit very simple formulas to the reversal times as a function of either cost or initial presence of the resistance allele. In addition, the in-silico experiments also showed that density dependent regulation plays an important role in the dynamics, slowing down the reversal process.

  12. Insecticide resistance in Aedes aegypti populations from Ceará, Brazil

    Directory of Open Access Journals (Sweden)

    Goulart Marilia OF

    2011-01-01

    Full Text Available Abstract Background Organophosphates and pyrethroids are used widely in Brazil to control Aedes aegypti, the main vector of dengue viruses, under the auspices of the National Programme for Dengue Control. Resistance to these insecticides is widespread throughout Brazil. In Ceará the vector is present in 98% of districts and resistance to temephos has been reported previously. Here we measure resistance to temephos and the pyrethroid cypermethrin in three populations from Ceará and use biochemical and molecular assays to characterise resistance mechanisms. Results Resistance to temephos varied widely across the three studied populations, with resistance ratios (RR95 of 7.2, 30 and 192.7 in Juazeiro do Norte, Barbalha and Crato respectively. The high levels of resistance detected in Barbalha and Crato (RR95 ≥ 30 imply a reduction of temephos efficacy, and indeed in simulated field tests reduced effectiveness was observed for the Barbalha population. Two populations (Crato and Barbalha were also resistant to cypermethrin, whilst Juazeiro do Norte showed only an altered susceptibility. The Ile1011Met kdr mutation was detected in all three populations and Val1016Ile in Crato and Juazeiro do Norte. 1011Met was significantly associated with resistance to cypermethrin in the Crato population. Biochemical tests showed that only the activity of esterases and GSTs, among the tested detoxification enzymes, was altered in these populations when compared with the Rockefeller strain. Conclusions Our results demonstrate that two A. aegypti populations from Ceará are under strong selection pressure by temephos, compromising the field effectiveness of this organophosphate. Our results also provide evidence that the process of reducing resistance to this larvicide in the field is difficult and slow and may require more than seven years for reversal. In addition, we show resistance to cypermethrin in two of the three populations studied, and for the first time

  13. Gene editing in Aedes aegypti

    OpenAIRE

    Aryan, Azadeh

    2013-01-01

    Aedes aegypti (Ae. aegypti) is one of the most important vectors of dengue, chikungunya and yellow fever viruses. The use of chemical control strategies such as insecticides is associated with problems including the development of insecticide resistance, side effects on animal and human health, and environmental concerns. Because current methods have not proven sufficient to control these diseases, developing novel, genetics-based, control strategies to limit the transmission of disease is ur...

  14. Stability of the wMel Wolbachia Infection following invasion into Aedes aegypti populations.

    Directory of Open Access Journals (Sweden)

    Ary A Hoffmann

    2014-09-01

    Full Text Available The wMel infection of Drosophila melanogaster was successfully transferred into Aedes aegypti mosquitoes where it has the potential to suppress dengue and other arboviruses. The infection was subsequently spread into two natural populations at Yorkeys Knob and Gordonvale near Cairns, Queensland in 2011. Here we report on the stability of the infection following introduction and we characterize factors influencing the ongoing dynamics of the infection in these two populations. While the Wolbachia infection always remained high and near fixation in both locations, there was a persistent low frequency of uninfected mosquitoes. These uninfected mosquitoes showed weak spatial structure at both release sites although there was some clustering around two areas in Gordonvale. Infected females from both locations showed perfect maternal transmission consistent with patterns previously established pre-release in laboratory tests. After >2 years under field conditions, the infection continued to show complete cytoplasmic incompatibility across multiple gonotrophic cycles but persistent deleterious fitness effects, suggesting that host effects were stable over time. These results point to the stability of Wolbachia infections and their impact on hosts following local invasion, and also highlight the continued persistence of uninfected individuals at a low frequency most likely due to immigration.

  15. The Impact of Selection with Diflubenzuron, a Chitin Synthesis Inhibitor, on the Fitness of Two Brazilian Aedes aegypti Field Populations.

    Science.gov (United States)

    Belinato, Thiago Affonso; Valle, Denise

    2015-01-01

    Several Aedes aegypti field populations are resistant to neurotoxic insecticides, mainly organophoshates and pyrethroids, which are extensively used as larvicides and adulticides, respectively. Diflubenzuron (DFB), a chitin synthesis inhibitor (CSI), was recently approved for use in drinking water, and is presently employed in Brazil for Ae. aegypti control, against populations resistant to the organophosphate temephos. However, tests of DFB efficacy against field Ae. aegypti populations are lacking. In addition, information regarding the dynamics of CSI resistance, and characterization of any potential fitness effects that may arise in conjunction with resistance are essential for new Ae. aegypti control strategies. Here, the efficacy of DFB was evaluated for two Brazilian Ae. aegypti populations known to be resistant to both temephos and the pyrethroid deltamethrin. Laboratory selection for DFB resistance was then performed over six or seven generations, using a fixed dose of insecticide that inhibited 80% of adult emergence in the first generation. The selection process was stopped when adult emergence in the diflubenzuron-treated groups was equivalent to that of the control groups, kept without insecticide. Diflubenzuron was effective against the two Ae. aegypti field populations evaluated, regardless of their resistance level to neurotoxic insecticides. However, only a few generations of DFB selection were sufficient to change the susceptible status of both populations to this compound. Several aspects of mosquito biology were affected in both selected populations, indicating that diflubenzuron resistance acquisition is associated with a fitness cost. We believe that these results can significantly contribute to the design of control strategies involving the use of insect growth regulators.

  16. Population Dynamics of Aedes aegypti and Dengue as Influenced by Weather and Human Behavior in San Juan, Puerto Rico

    Science.gov (United States)

    Barrera, Roberto; Amador, Manuel; MacKay, Andrew J.

    2011-01-01

    Previous studies on the influence of weather on Aedes aegypti dynamics in Puerto Rico suggested that rainfall was a significant driver of immature mosquito populations and dengue incidence, but mostly in the drier areas of the island. We conducted a longitudinal study of Ae. aegypti in two neighborhoods of the metropolitan area of San Juan city, Puerto Rico where rainfall is more uniformly distributed throughout the year. We assessed the impacts of rainfall, temperature, and human activities on the temporal dynamics of adult Ae. aegypti and oviposition. Changes in adult mosquitoes were monitored with BG-Sentinel traps and oviposition activity with CDC enhanced ovitraps. Pupal surveys were conducted during the drier and wetter parts of the year in both neighborhoods to determine the contribution of humans and rains to mosquito production. Mosquito dynamics in each neighborhood was compared with dengue incidence in their respective municipalities during the study. Our results showed that: 1. Most pupae were produced in containers managed by people, which explains the prevalence of adult mosquitoes at times when rainfall was scant; 2. Water meters were documented for the first time as productive habitats for Ae. aegypti; 3. Even though Puerto Rico has a reliable supply of tap water and an active tire recycling program, water storage containers and discarded tires were important mosquito producers; 4. Peaks in mosquito density preceded maximum dengue incidence; and 5. Ae. aegypti dynamics were driven by weather and human activity and oviposition was significantly correlated with dengue incidence. PMID:22206021

  17. Population dynamics of Aedes aegypti and dengue as influenced by weather and human behavior in San Juan, Puerto Rico.

    Directory of Open Access Journals (Sweden)

    Roberto Barrera

    2011-12-01

    Full Text Available Previous studies on the influence of weather on Aedes aegypti dynamics in Puerto Rico suggested that rainfall was a significant driver of immature mosquito populations and dengue incidence, but mostly in the drier areas of the island. We conducted a longitudinal study of Ae. aegypti in two neighborhoods of the metropolitan area of San Juan city, Puerto Rico where rainfall is more uniformly distributed throughout the year. We assessed the impacts of rainfall, temperature, and human activities on the temporal dynamics of adult Ae. aegypti and oviposition. Changes in adult mosquitoes were monitored with BG-Sentinel traps and oviposition activity with CDC enhanced ovitraps. Pupal surveys were conducted during the drier and wetter parts of the year in both neighborhoods to determine the contribution of humans and rains to mosquito production. Mosquito dynamics in each neighborhood was compared with dengue incidence in their respective municipalities during the study. Our results showed that: 1. Most pupae were produced in containers managed by people, which explains the prevalence of adult mosquitoes at times when rainfall was scant; 2. Water meters were documented for the first time as productive habitats for Ae. aegypti; 3. Even though Puerto Rico has a reliable supply of tap water and an active tire recycling program, water storage containers and discarded tires were important mosquito producers; 4. Peaks in mosquito density preceded maximum dengue incidence; and 5. Ae. aegypti dynamics were driven by weather and human activity and oviposition was significantly correlated with dengue incidence.

  18. STATUS KERENTANAN NYAMUK Aedes aegypti TERHADAP MALATHION

    OpenAIRE

    Ratnasari; Ishak, Hasanuddin; Selomo, Makmur

    2016-01-01

    Metode yang digunakan dalam penanggulangan nyamuk Aedes aegypti dewasa adalah dengan menggunakan insektisida jenis organophospat, yaitu malathion melalui fogging (pengasapan). Penelitian ini bertujuan untuk melihat status kerentanan nyamuk Aedes aegypti terhadap malathion 0,8%, 4%, dan 5%.Jenis penelitian yang dilakukan adalah penelitian eksperimental murni dengan rancangan penelitian post-test only with control group design. Jumlah sampel yang digunakan sebesar 1000 nyamuk Aedes aegypti yang...

  19. Modelos y control optimo poblacional del Aedes Aegypti con retardos de tiempo = Models and optimal control of Aedes Aegypti population with time delays

    OpenAIRE

    López Montenegro, Luis Eduardo

    2012-01-01

    La siguiente investigación se enfoca en el planteamiento y estudio de modelos matemáticos que representan el crecimiento y control óptimo poblacional del Aedes aegypti, mosquito transmisor del virus de la enfermedad del dengue. Dichos modelos son planteados mediante sistemas de ecuaciones diferenciales no lineales, que incluyen ecuaciones diferenciales ordinarias y con retardo de tiempo en las variables de estado. Para el estudio de estos modelos se tiene en cuenta un análisis de estabilidad ...

  20. Oviposition activity and seasonal pattern of a population of Aedes (Stegomyia aegypti (L. (Diptera: Culicidae in subtropical Argentina

    Directory of Open Access Journals (Sweden)

    Micieli María Victoria

    2003-01-01

    Full Text Available Monthly oviposition activity and the seasonal density pattern of Aedes aegypti were studied using larvitraps and ovitraps during a research carried out by the Public Health Ministry of Salta Province, in Tartagal, Aguaray and Salvador Mazza cities, in subtropical Argentina. The A. aegypti population was active in both dry and wet seasons with a peak in March, accordant with the heaviest rainfall. From May to November, the immature population level remained low, but increased in December. Ae. aegypti oviposition activity increased during the fall and summer, when the relative humidity was 60% or higher. Eggs were found in large numbers of ovitraps during all seasons but few eggs were observed in each one during winter. The occurrence and the number of eggs laid were variable when both seasons and cities were compared. The reduction of the population during the winter months was related to the low in the relative humidity of the atmosphere. Significant differences were detected between oviposition occurrences in Tartagal and Aguaray and Salvador Mazza cities, but no differences in the number of eggs were observed. Two factors characterize the seasonal distribution pattern of Ae. aegypti in subtropical Argentina, the absence of a break during winter and an oviposition activity concomitant of the high relative humidity of the atmosphere.

  1. Suppression of a Field Population of Aedes aegypti in Brazil by Sustained Release of Transgenic Male Mosquitoes.

    Science.gov (United States)

    Carvalho, Danilo O; McKemey, Andrew R; Garziera, Luiza; Lacroix, Renaud; Donnelly, Christl A; Alphey, Luke; Malavasi, Aldo; Capurro, Margareth L

    2015-01-01

    The increasing burden of dengue, and the relative failure of traditional vector control programs highlight the need to develop new control methods. SIT using self-limiting genetic technology is one such promising method. A self-limiting strain of Aedes aegypti, OX513A, has already reached the stage of field evaluation. Sustained releases of OX513A Ae. aegypti males led to 80% suppression of a target wild Ae. aegypti population in the Cayman Islands in 2010. Here we describe sustained series of field releases of OX513A Ae. aegypti males in a suburb of Juazeiro, Bahia, Brazil. This study spanned over a year and reduced the local Ae. aegypti population by 95% (95% CI: 92.2%-97.5%) based on adult trap data and 81% (95% CI: 74.9-85.2%) based on ovitrap indices compared to the adjacent no-release control area. The mating competitiveness of the released males (0.031; 95% CI: 0.025-0.036) was similar to that estimated in the Cayman trials (0.059; 95% CI: 0.011-0.210), indicating that environmental and target-strain differences had little impact on the mating success of the OX513A males. We conclude that sustained release of OX513A males may be an effective and widely useful method for suppression of the key dengue vector Ae. aegypti. The observed level of suppression would likely be sufficient to prevent dengue epidemics in the locality tested and other areas with similar or lower transmission.

  2. Suppression of a Field Population of Aedes aegypti in Brazil by Sustained Release of Transgenic Male Mosquitoes.

    Directory of Open Access Journals (Sweden)

    Danilo O Carvalho

    Full Text Available The increasing burden of dengue, and the relative failure of traditional vector control programs highlight the need to develop new control methods. SIT using self-limiting genetic technology is one such promising method. A self-limiting strain of Aedes aegypti, OX513A, has already reached the stage of field evaluation. Sustained releases of OX513A Ae. aegypti males led to 80% suppression of a target wild Ae. aegypti population in the Cayman Islands in 2010. Here we describe sustained series of field releases of OX513A Ae. aegypti males in a suburb of Juazeiro, Bahia, Brazil. This study spanned over a year and reduced the local Ae. aegypti population by 95% (95% CI: 92.2%-97.5% based on adult trap data and 81% (95% CI: 74.9-85.2% based on ovitrap indices compared to the adjacent no-release control area. The mating competitiveness of the released males (0.031; 95% CI: 0.025-0.036 was similar to that estimated in the Cayman trials (0.059; 95% CI: 0.011-0.210, indicating that environmental and target-strain differences had little impact on the mating success of the OX513A males. We conclude that sustained release of OX513A males may be an effective and widely useful method for suppression of the key dengue vector Ae. aegypti. The observed level of suppression would likely be sufficient to prevent dengue epidemics in the locality tested and other areas with similar or lower transmission.

  3. Genetic relationships among populations of Aedes aegypti from Uruguay and northeastern Argentina inferred from ISSR-PCR data.

    Science.gov (United States)

    Soliani, C; Rondan-Dueñas, J; Chiappero, M B; Martínez, M; Da Rosa, E García; Gardenal, C N

    2010-09-01

    Aedes aegypti (L.) (Diptera: Culicidae), the main vector of yellow fever and dengue viruses, was eradicated from Argentina between 1955 and 1963, but reinvaded the country in 1986. In Uruguay, the species was reintroduced in 1997. In this study we used highly polymorphic inter-simple sequence repeats (ISSR) markers to analyse the genetic structure of Ae. aegypti populations from Uruguay and northeastern Argentina to identify possible colonization patterns of the vector. Overall genetic differentiation among populations was high (F(ST) = 0.106) and showed no correlation with geographic distance, which is consistent with the short time since the reintroduction of the species in the area. Differentiation between pairs of Argentine populations (F(ST) 0.072 to 0.221) was on average higher than between Uruguayan populations (F(ST)-0.044 to 0.116). Bayesian estimation of population structure defined four genetic clusters and most populations were admixtures of two of them: Mercedes and Treinta y Tres (Uruguay) were mixtures of clusters 1 and 3; Salto (Uruguay) and Paraná (Argentina) of clusters 1 and 4; Fray Bentos (Uruguay) of clusters 2 and 3, and Gualeguaychú (Argentina) of clusters 2 and 3. Posadas and Buenos Aires in Argentina were fairly genetically homogeneous. Our results suggest that Ae. aegypti recolonized Uruguay from bordering cities in Argentina via bridges over the Uruguay River and also from Brazil.

  4. Excito-repellency of essential oils against an Aedes aegypti (L.) field population in Thailand.

    Science.gov (United States)

    Boonyuan, Wasana; Grieco, John P; Bangs, Michael J; Prabaripai, Atchariya; Tantakom, Siripun; Chareonviriyaphap, Theeraphap

    2014-06-01

    An investigation of the behavioral responses of Aedes aegypti (= Stegomyia aegypti) to various concentrations of essential oils (2.5, 5, and 10%) extracted from hairy basil (Ocimum americanum Linn), ginger (Zingiber officinale Roscoe), lemongrass (Cymbopogon citratus Stapf), citronella grass (Cymbopogon nardus Rendle), and plai (Zingiber cassumunar Roxb) were performed using an excito-repellency test chamber. Results showed that Ae. aegypti exhibited varying levels of escape response in both the contact and noncontact chambers in response to different essential oils. The magnitude of the behaviors changed in a dose-response fashion depending on the percent volume to volume concentration of oil used. A 2.5% concentration of hairy basil oil produced a significantly greater escape response compared to the other extracts at the same concentration (P< 0.05). Oils of ginger, lemongrass, and citronella produced stronger irritant and repellent responses at the median 5% concentration compared to the lowest and highest concentrations. There was marked suppression of escape for both contact and noncontact tests using 10% concentrations of hairy basil, lemongrass, and citronella, with high knockdown for all three oils after 30 min. Hairy basil and lemongrass had the highest insecticidal activity to Ae. aegypti, with LC50 values of 6.3 and 6.7 percent, respectively. We conclude that the essential oils from native plants tested, and likely many other extracts found in plants, have inherent repellent and irritant qualities that should to be screened and optimized for their behavior-modifying properties against Ae. aegypti and other biting arthropods of public health and pest importance.

  5. Genetic variability of a population of Aedes aegypti from Paraná, Brazil, using the mitochondrial ND4 gene

    Directory of Open Access Journals (Sweden)

    Adriana L. Twerdochlib

    2012-06-01

    Full Text Available Genetic variability of a population of Aedes aegypti from Paraná, Brazil, using the mitochondrial ND4 gene. To analyze the genetic variability of populations of Aedes aegypti, 156 samples were collected from 10 municipalities in the state of Paraná, Brazil. A 311 base pairs (bp region of the NADH dehydrogenase subunit 4 (ND4 mitochondrial gene was examined. An analysis of this fragment identified eight distinct haplotypes. The mean genetic diversity was high (h = 0.702; p = 0.01556. AMOVA analysis indicated that most of the variation (67% occurred within populations and the F ST value (0.32996 was highly significant. F ST values were significant in most comparisons among cities. The isolation by distance was not significant (r = -0.1216 and p = 0, 7550, indicating that genetic distance is not related to geographic distance. Neighbor-joining analysis showed two genetically distinct groups within Paraná. The DNA polymorphism and AMOVA data indicate a decreased gene flow in populations from Paraná, which can result in increased vectorial competence.

  6. Nanobiotechnology Solutions against Aedes aegypti

    OpenAIRE

    Durán, Nelson; Islan,German A.; Durán, Marcela; Castro, Guillermo R.

    2016-01-01

    United Nations Children's Fund (UNICEF)/United Nations Development Programme (UNDP)/World Bank/World Health Organization (WHO) implemented the Training in Tropical Diseases (TDR) program with excellent results; however, due to current challenges, this active program requires new and innovative solutions. Nowadays, Aedes aegyptis-borne diseases can be added among neglected diseases. Surveillance and control must be considered owing to a great risk of infection with dengue, chikungunya and zika...

  7. The efficacy of a chitin synthesis inhibitor against field populations of organophosphate-resistant Aedes aegypti in Brazil

    Directory of Open Access Journals (Sweden)

    Nathalia Giglio Fontoura

    2012-05-01

    Full Text Available The mosquito Aedes aegypti is the main focus of dengue control campaigns. Because of widespread resistance against conventional chemical insecticides, chitin synthesis inhibitors (CSIs are considered control alternatives. We evaluated the resistance status of four Brazilian Ae. aegypti populations to both the organophosphate temephos and the pyrethroid deltamethrin, which are used in Brazil to control larvae and adults, respectively. All vector populations exhibited high levels of temephos resistance and varying rates of alterations in their susceptibility to pyrethroids. The effect of the CSI novaluron on these populations was also investigated. Novaluron was effective against all populations under laboratory conditions. Field-simulated assays with partial water replacement were conducted to evaluate novaluron persistence. Bioassays were continued until an adult emergence inhibition of at least 70% was attained. We found a residual effect of eight weeks under indoor conditions and novaluron persisted for five-six weeks in assays conducted in an external area. Our data show that novaluron is effective against the Ae. aegypti populations tested, regardless of their resistance to conventional chemical insecticides.

  8. [Recommendations for the surveillance of Aedes aegypti].

    Science.gov (United States)

    Barrera, Roberto

    2016-09-01

    Diseases caused by arboviruses transmitted by Aedes aegypti, such as dengue, chikungunya and Zika, continue to rise in annual incidence and geographic expansion. A key limitation for achieving control of A. aegypti has been the lack of effective tools for monitoring its population, and thus determine what control measures actually work. Surveillance of A. aegypti has been based mainly on immature indexes, but they bear little relation to the number of mosquito females, which are the ones capable of transmitting the viruses. The recent development of sampling techniques for adults of this vector species promises to facilitate surveillance and control activities. In this review, we present the various monitoring techniques for this mosquito, along with a discussion of their usefulness, and recommendations for improved entomological surveillance.

  9. Surveillance, insecticide resistance and control of an invasive Aedes aegypti (Diptera: Culicidae) population in California.

    Science.gov (United States)

    Cornel, Anthony J; Holeman, Jodi; Nieman, Catelyn C; Lee, Yoosook; Smith, Charles; Amorino, Mark; Brisco, Katherine K; Barrera, Roberto; Lanzaro, Gregory C; Mulligan Iii, F Stephen

    2016-01-01

    The invasion and subsequent establishment in California of Aedes aegypti in 2013 has created new challenges for local mosquito abatement and vector control districts. Studies were undertaken to identify effective and economical strategies to monitor the abundance and spread of this mosquito species as well as for its control. Overall, BG Sentinel (BGS) traps were found to be the most sensitive trap type to measure abundance and spread into new locations. Autocidal-Gravid-Ovitraps (AGO-B), when placed at a site for a week, performed equally to BGS in detecting the presence of female Ae. aegypti. Considering operational cost and our findings, we recommend use of BGS traps for surveillance in response to service requests especially in locations outside the known infestation area. We recommend AGO-Bs be placed at fixed sites, cleared and processed once a week to monitor mosquito abundance within a known infestation area. Long-term high density placements of AGO-Bs were found to show promise as an environmentally friendly trap-kill control strategy. California Ae. aegypti were found to be homozygous for the V1016I mutation in the voltage gated sodium channel gene, which is implicated to be involved in insecticide resistance. This strain originating from Clovis, California was resistant to some pyrethroids but not to deltamethrin in bottle bio-assays. Sentinel cage ultra-low-volume (ULV) trials using a new formulation of deltamethrin (DeltaGard®) demonstrated that it provided some control (average of 56% death in sentinel cages in a 91.4 m spray swath) after a single truck mounted aerial ULV application in residential areas.

  10. Surveillance, insecticide resistance and control of an invasive Aedes aegypti (Diptera: Culicidae) population in California

    Science.gov (United States)

    Cornel, Anthony J.; Holeman, Jodi; Nieman, Catelyn C.; Lee, Yoosook; Smith, Charles; Amorino, Mark; Brisco, Katherine K.; Barrera, Roberto; Lanzaro, Gregory C.; Mulligan III, F. Stephen

    2016-01-01

    The invasion and subsequent establishment in California of Aedes aegypti in 2013 has created new challenges for local mosquito abatement and vector control districts. Studies were undertaken to identify effective and economical strategies to monitor the abundance and spread of this mosquito species as well as for its control. Overall, BG Sentinel (BGS) traps were found to be the most sensitive trap type to measure abundance and spread into new locations. Autocidal-Gravid-Ovitraps (AGO-B), when placed at a site for a week, performed equally to BGS in detecting the presence of female Ae. aegypti. Considering operational cost and our findings, we recommend use of BGS traps for surveillance in response to service requests especially in locations outside the known infestation area. We recommend AGO-Bs be placed at fixed sites, cleared and processed once a week to monitor mosquito abundance within a known infestation area. Long-term high density placements of AGO-Bs were found to show promise as an environmentally friendly trap-kill control strategy. California Ae. aegypti were found to be homozygous for the V1016I mutation in the voltage gated sodium channel gene, which is implicated to be involved in insecticide resistance. This strain originating from Clovis, California was resistant to some pyrethroids but not to deltamethrin in bottle bio-assays. Sentinel cage ultra-low-volume (ULV) trials using a new formulation of deltamethrin (DeltaGard®) demonstrated that it provided some control (average of 56% death in sentinel cages in a 91.4 m spray swath) after a single truck mounted aerial ULV application in residential areas. PMID:27158450

  11. Phenotypic and genotypic profile of pyrethroid resistance in populations of the mosquito Aedes aegypti from Goiânia, Central West Brazil

    Directory of Open Access Journals (Sweden)

    Francesca Guaracyaba Garcia Chapadense

    2015-10-01

    Full Text Available ABSTRACTINTRODUCTION:The mosquito Aedes aegypti has evolved resistance to pyrethroid insecticides. The present study evaluated Ae. aegypti from Goiânia for the resistant phenotype and for mutations associated with resistance.METHODS:Insecticide dose-response bioassays were conducted on mosquitoes descended from field-collected eggs, and polymerase chain reaction (PCR was used to genotype 90 individuals at sites implicated in pyrethroid resistance.RESULTS:All mosquito populations displayed high levels of resistance to deltamethrin, as well as high frequencies of the 1016Ile kdr and 1534Cys kdrmutations.CONCLUSIONS:Aedes aegypti populations in the Goiânia area are highly resistant to deltamethrin, presumably due to high frequencies of kdr(knockdown-resistance mutations.

  12. Exon-Enriched Libraries Reveal Large Genic Differences Between Aedes aegypti from Senegal, West Africa, and Populations Outside Africa.

    Science.gov (United States)

    Dickson, Laura B; Campbell, Corey L; Juneja, Punita; Jiggins, Francis M; Sylla, Massamba; Black, William C

    2017-02-09

    Aedes aegypti is one of the most studied mosquito species, and the principal vector of several arboviruses pathogenic to humans. Recently failure to oviposit, low fecundity, and poor egg-to-adult survival were observed when Ae. aegypti from Senegal (SenAae) West Africa were crossed with Ae. aegypti (Aaa) from outside of Africa, and in SenAae intercrosses. Fluorescent in situ hybridization analyses indicated rearrangements on chromosome 1, and pericentric inversions on chromosomes 2 and 3. Herein, high throughput sequencing (HTS) of exon-enriched libraries was used to compare chromosome-wide genetic diversity among Aaa collections from rural Thailand and Mexico, a sylvatic collection from southeastern Senegal (PK10), and an urban collection from western Senegal (Kaolack). Sex-specific polymorphisms were analyzed in Thailand and PK10 to assess genetic differences between sexes. Expected heterozygosity was greatest in SenAae FST distributions of 15,735 genes among all six pairwise comparisons of the four collections indicated that Mexican and Thailand collections are genetically similar, while FST distributions between PK10 and Kaolack were distinct. All four comparisons of SenAae with Aaa indicated extreme differentiation. FST was uniform between sexes across all chromosomes in Thailand, but were different, especially on the sex autosome 1, in PK10. These patterns correlate with the reproductive isolation noted earlier. We hypothesize that cryptic Ae. aegypti taxa may exist in West Africa, and the large genic differences between Aaa and SenAae detected in the present study have accumulated over a long period following the evolution of chromosome rearrangements in allopatric populations that subsequently cause reproductive isolation when these populations became sympatric.

  13. Developing new approaches for detecting and preventing Aedes aegypti population outbreaks: basis for surveillance, alert and control system

    Directory of Open Access Journals (Sweden)

    Lêda Regis

    2008-02-01

    Full Text Available A new approach to dengue vector surveillance based on permanent egg-collection using a modified ovitrap and Bacillus thuringiensis israelensis(Bti was evaluated in different urban landscapes in Recife, Northeast Brazil. From April 2004 to April 2005, 13 egg-collection cycles of four weeks were carried out. Geo-referenced ovitraps containing grass infusion, Bti and three paddles were placed at fixed sampling stations distributed over five selected sites. Continuous egg-collections yielded more than four million eggs laid into 464 sentinel-ovitraps over one year. The overall positive ovitrap index was 98.5% (over 5,616 trap observations. The egg density index ranged from 100 to 2,500 eggs per trap-cycle, indicating a wide spread and high density of Aedes aegypti (Diptera: Culicidae breeding populations in all sites. Fluctuations in population density over time were observed, particularly a marked increase from January on, or later, according to site. Massive egg-collection carried out at one of the sites prevented such a population outbreak. At intra-site level, egg counts made it possible to identify spots where the vector population is consistently concentrated over the time, pinpointing areas that should be considered high priority for control activities. The results indicate that these could be promising strategies for detecting and preventing Ae. aegypti population outbreaks.

  14. Developing new approaches for detecting and preventing Aedes aegypti population outbreaks: basis for surveillance, alert and control system.

    Science.gov (United States)

    Regis, Lêda; Monteiro, Antonio Miguel; Melo-Santos, Maria Alice Varjal de; SilveiraJr, José Constantino; Furtado, André Freire; Acioli, Ridelane Veiga; Santos, Gleice Maria; Nakazawa, Mitsue; Carvalho, Marilia Sá; Ribeiro Jr, Paulo Justiniano; Souza, Wayner Vieira de

    2008-02-01

    A new approach to dengue vector surveillance based on permanent egg-collection using a modified ovitrap and Bacillus thuringiensis israelensis(Bti) was evaluated in different urban landscapes in Recife, Northeast Brazil. From April 2004 to April 2005, 13 egg-collection cycles of four weeks were carried out. Geo-referenced ovitraps containing grass infusion, Bti and three paddles were placed at fixed sampling stations distributed over five selected sites. Continuous egg-collections yielded more than four million eggs laid into 464 sentinel-ovitraps over one year. The overall positive ovitrap index was 98.5% (over 5,616 trap observations). The egg density index ranged from 100 to 2,500 eggs per trap-cycle, indicating a wide spread and high density of Aedes aegypti (Diptera: Culicidae) breeding populations in all sites. Fluctuations in population density over time were observed, particularly a marked increase from January on, or later, according to site. Massive egg-collection carried out at one of the sites prevented such a population outbreak. At intra-site level, egg counts made it possible to identify spots where the vector population is consistently concentrated over the time, pinpointing areas that should be considered high priority for control activities. The results indicate that these could be promising strategies for detecting and preventing Ae. aegypti population outbreaks.

  15. Fitness evaluation of two Brazilian Aedes aegypti field populations with distinct levels of resistance to the organophosphate temephos

    Directory of Open Access Journals (Sweden)

    Thiago Affonso Belinato

    2012-11-01

    Full Text Available In Brazil, decades of dengue vector control using organophosphates and pyrethroids have led to dissemination of resistance. Although these insecticides have been employed for decades against Aedes aegypti in the country, knowledge of the impact of temephos resistance on vector viability is limited. We evaluated several fitness parameters in two Brazilian Ae. aegypti populations, both classified as deltamethrin resistant but with distinct resistant ratios (RR for temephos. The insecticide-susceptible Rockefeller strain was used as an experimental control. The population presenting the higher temephos resistance level, Aparecida de Goiânia, state of Goiás (RR95 of 19.2, exhibited deficiency in the following four parameters: blood meal acceptance, amount of ingested blood, number of eggs and frequency of inseminated females. Mosquitoes from Boa Vista, state of Roraima, the population with lower temephos resistance level (RR95 of 7.4, presented impairment in only two parameters, blood meal acceptance and frequency of inseminated females. These results indicate that the overall fitness handicap was proportional to temephos resistance levels. However, it is unlikely that these disabilities can be attributed solely to temephos resistance, since both populations are also resistant to deltamethrin and harbour the kdr allele, which indicates resistance to pyrethroids. The effects of reduced fitness in resistant populations are discussed.

  16. Mitochondrial pseudogenes in the nuclear genome of Aedes aegypti mosquitoes: implications for past and future population genetic studies

    Directory of Open Access Journals (Sweden)

    Setha To

    2009-03-01

    Full Text Available Abstract Background Mitochondrial DNA (mtDNA is widely used in population genetic and phylogenetic studies in animals. However, such studies can generate misleading results if the species concerned contain nuclear copies of mtDNA (Numts as these may amplify in addition to, or even instead of, the authentic target mtDNA. The aim of this study was to determine if Numts are present in Aedes aegypti mosquitoes, to characterise any Numts detected, and to assess the utility of using mtDNA for population genetics studies in this species. Results BLAST searches revealed large numbers of Numts in the Ae. aegypti nuclear genome on 146 supercontigs. Although the majority are short (80% Ae. aegypti with ongoing genomic integration, fragmentation and mutation and the secondary movement of Numts within the nuclear genome. The PCR amplification of the putative mtDNA nicotinamide adenine dinucleotide dehydrogenase subunit 4 (ND4 gene from 166 Southeast Asian Ae. aegypti mosquitoes generated a network with two highly divergent lineages (clade 1 and clade 2. Approximately 15% of the ND4 sequences were a composite of those from each clade indicating Numt amplification in addition to, or instead of, mtDNA. Clade 1 was shown to be composed at least partially of Numts by the removal of clade 1-specific bases from composite sequences following enrichment of the mtDNA. It is possible that all the clade 1 sequences in the network were Numts since the clade 2 sequences correspond to the known mitochondrial genome sequence and since all the individuals that produced clade 1 sequences were also found to contain clade 2 mtDNA-like sequences using clade 2-specific primers. However, either or both sets of clade sequences could have Numts since the BLAST searches revealed two long Numts that match clade 2 and one long Numt that matches clade 1. The substantial numbers of mutations in cloned ND4 PCR products also suggest there are both recently-derived clade 1 and clade 2 Numt

  17. Large indoor cage study of the suppression of stable Aedes aegypti populations by the release of thiotepa-sterilised males

    Directory of Open Access Journals (Sweden)

    René Gato

    2014-06-01

    Full Text Available The sterile insect technique (SIT is a promising pest control method in terms of efficacy and environmental compatibility. In this study, we determined the efficacy of thiotepa-sterilised males in reducing the target Aedes aegypti populations. Treated male pupae were released weekly into large laboratory cages at a constant ratio of either 5:1 or 2:1 sterile-to-fertile males. A two-to-one release ratio reduced the hatch rate of eggs laid in the cage by approximately a third and reduced the adult catch rate by approximately a quarter, but a 5:1 release drove the population to elimination after 15 weeks of release. These results indicate that thiotepa exposure is an effective means of sterilising Ae. aegypti and males thus treated are able to reduce the reproductive capacity of a stable population under laboratory conditions. Further testing of the method in semi-field enclosures is required to evaluate the mating competitiveness of sterile males when exposed to natural environmental conditions. If proven effective, SIT using thiotepa-sterilised males may be incorporated into an integrated programme of vector control to combat dengue in Cuba.

  18. Biochemical mechanisms of insecticide resistance in field population of Dengue vector Aedes aegypti (Diptera: Culicidae.

    Directory of Open Access Journals (Sweden)

    R. Muthusamy

    2014-03-01

    Full Text Available Insecticide resistance has been known to be prevalent in several insect species including mosquito. It has become a major problem in vector control programme due to pesticide resistance through detoxification enzymes. The present study investigated the toxicity of Ae. aegypti to organophosphates and pyrethroid insecticide and biochemical mechanisms involved in insecticide resistance in larval population. Larval bioassay revealed an LC50 value of 0.734 ppm for dichlorvos and 1.140 ppm for λ-cyhalothrin exposure. Biochemical assay revealed increased activity of AChE (0.3 µmole/mg protein and GST in dichlorvos (1-1.5 µmole/mg protein treatment and esterase activity in λ-cyhalothrin treated compared to control activity. These studies suggest that AChE and GST is associated with organophosphate and esterase associated with pyrethroid resistance in Ae. aegypti.

  19. Assessing the impact of density dependence in field populations of Aedes aegypti.

    Science.gov (United States)

    Walsh, R K; Facchinelli, L; Ramsey, J M; Bond, J G; Gould, F

    2011-12-01

    Although many laboratory studies of intra-specific competition have been conducted with Ae. aegypti, there have been few studies in natural environments and none that examined density dependence in natural containers at normal field densities. Additionally, current mathematical models that predict Ae. aegypti population dynamics lack empirically-based functions for density-dependence. We performed field experiments in Tapachula, Mexico, where dengue is a significant public health concern. Twenty-one containers with natural food and water that already contained larvae were collected from local houses. Each container was divided in half and the naturally occurring larvae were apportioned in a manner that resulted in one side of the container (high density) having four times the density of the second side (low density). Larvae were counted and pupae were removed daily. Once adults emerged, wing span was measured to estimate body size. Density had a significant impact on larval survival, adult body size, and the time taken to transition from 4(th) instar to pupation. Increased density decreased larval survival by 20% and decreased wing length by an average of 0.19 mm. These results provide a starting point for a better understanding of density dependence in field populations of Ae. aegypti.

  20. Estimation of Aedes aegypti (Diptera: Culicidae population size and adult male survival in an urban area in Panama

    Directory of Open Access Journals (Sweden)

    Marco Neira

    2014-11-01

    Full Text Available Traditional mosquito control strategies rely heavily on the use of chemical insecticides. However, concerns about the efficiency of traditional control methods, environmental impact and emerging pesticide resistance have highlighted the necessity for developing innovative tools for mosquito control. Some novel strategies, including release of insects carrying a dominant lethal gene (RIDL®, rely on the sustained release of modified male mosquitoes and therefore benefit from a thorough understanding of the biology of the male of the species. In this report we present the results of a mark-release-recapture study aimed at: (i establishing the survival in the field of laboratory-reared, wild-type male Aedes aegypti and (b estimating the size of the local adult Ae. aegypti population. The study took place in Panama, a country where recent increases in the incidence and severity of dengue cases have prompted health authorities to evaluate alternative strategies for vector control. Results suggest a life expectancy of 2.3 days for released male mosquitoes (confidence interval: 1.78-2.86. Overall, the male mosquito population was estimated at 58 males/ha (range 12-81 males/ha, which can be extrapolated to an average of 0.64 pupae/person for the study area. The practical implications of these results are discussed.

  1. Estimation of Aedes aegypti (Diptera: Culicidae) population size and adult male survival in an urban area in Panama.

    Science.gov (United States)

    Neira, Marco; Lacroix, Renaud; Cáceres, Lorenzo; Kaiser, Paul E; Young, Josue; Pineda, Lleysa; Black, Isaac; Sosa, Nestor; Nimmo, Derric; Alphey, Luke; McKemey, Andrew

    2014-11-01

    Traditional mosquito control strategies rely heavily on the use of chemical insecticides. However, concerns about the efficiency of traditional control methods, environmental impact and emerging pesticide resistance have highlighted the necessity for developing innovative tools for mosquito control. Some novel strategies, including release of insects carrying a dominant lethal gene (RIDL®), rely on the sustained release of modified male mosquitoes and therefore benefit from a thorough understanding of the biology of the male of the species. In this report we present the results of a mark-release-recapture study aimed at: (i) establishing the survival in the field of laboratory-reared, wild-type male Aedes aegypti and (b) estimating the size of the local adult Ae. aegypti population. The study took place in Panama, a country where recent increases in the incidence and severity of dengue cases have prompted health authorities to evaluate alternative strategies for vector control. Results suggest a life expectancy of 2.3 days for released male mosquitoes (confidence interval: 1.78-2.86). Overall, the male mosquito population was estimated at 58 males/ha (range 12-81 males/ha), which can be extrapolated to an average of 0.64 pupae/person for the study area. The practical implications of these results are discussed.

  2. Co-occurrence of point mutations in the voltage-gated sodium channel of pyrethroid-resistant Aedes aegypti populations in Myanmar.

    Directory of Open Access Journals (Sweden)

    Hitoshi Kawada

    Full Text Available BACKGROUND: Single amino acid substitutions in the voltage-gated sodium channel associated with pyrethroid resistance constitute one of the main causative factors of knockdown resistance in insects. The kdr gene has been observed in several mosquito species; however, point mutations in the para gene of Aedes aegypti populations in Myanmar have not been fully characterized. The aim of the present study was to determine the types and frequencies of mutations in the para gene of Aedes aegypti collected from used tires in Yangon City, Myanmar. METHODOLOGY/PRINCIPAL FINDINGS: We determined high pyrethroid resistance in Aedes aegypti larvae at all collection sites in Yangon City, by using a simplified knockdown bioassay. We showed that V1016G and S989P mutations were widely distributed, with high frequencies (84.4% and 78.8%, respectively. By contrast, we were unable to detect I1011M (or I1011V or L1014F mutations. F1534C mutations were also widely distributed, but with a lower frequency than the V1016G mutation (21.2%. High percentage of co-occurrence of the homozygous V1016G/S989P mutations was detected (65.7%. Additionally, co-occurrence of homozygous V1016G/F1534C mutations (2.9% and homozygous V1016G/F1534C/S989P mutations (0.98% were detected in the present study. CONCLUSIONS/SIGNIFICANCE: Pyrethroid insecticides were first used for malaria control in 1992, and have since been constantly used in Myanmar. This intensive use may explain the strong selection pressure toward Aedes aegypti, because this mosquito is generally a domestic and endophagic species with a preference for indoor breeding. Extensive use of DDT for malaria control before the use of this chemical was banned may also explain the development of pyrethroid resistance in Aedes aegypti.

  3. Evidence for natural vertical transmission of chikungunya viruses in field populations of Aedes aegypti in Delhi and Haryana states in India-a preliminary report.

    Science.gov (United States)

    Jain, Jaspreet; Kushwah, Raja Babu S; Singh, Shashi S; Sharma, Anil; Adak, Tridibes; Singh, Om P; Bhatnagar, Raj Kamal; Subbarao, Sarala K; Sunil, Sujatha

    2016-10-01

    Aedes aegypti and Aedes albopictus are principal vectors for the transmission of chikungunya virus (CHIKV). India is a hub for both dengue and chikungunya infections and there are several reports of co-infection of dengue and chikungunya virus in the clinical scenario. The present pilot entomological survey was conducted to evaluate vertical transmission of CHIKV in Aedes field populations. Aedes immature (larvae and pupae) collection was done in 2012, over a period of six months from selected sites in Delhi and Haryana, India. The immatures collected were reared for adult emergence and species identification was done. A. aegypti male and female mosquitoes were separated and pooled collection spot-wise, RNA extracted and RT PCR performed to test for the presence of CHIKV in the pools. Container index (CI) and minimum infection rate (MIR) were estimated. From study areas that tested positive for CHIKV, adult collections were made and females upon feeding on uninfected blood in laboratory were allowed to lay eggs. The progeny that emerged from these field-collected mothers were tested for CHIKV presence. Our pilot survey showed the existence of A. aegypti population even during peak summer season in a few foci which eventually helped the mosquitoes to tide over adverse environmental conditions and with the start of rainfall, the population exploded within a short period of time. Immatures collected from field and progeny of adults collected from the field were CHIKV positive demonstrating the presence of vertical transmission of chikungunya virus in field population of A. aegypti. The present study further demonstrates the importance of identifying permanent breeding sites for proper Aedes species control.

  4. Workbook on Identification of Aedes Aegypti Larvae.

    Science.gov (United States)

    Pratt, Harry D.; And Others

    This self-instructional booklet is designed to enable yellow fever control workers to identify the larvae of "Aedes aegypti." The morphological features of mosquito larvae are illustrated in this partially programed text, and the distinguishing features of "A. aegypti" indicated. A glossary is included. (AL)

  5. Thiosemicarbazones as Aedes aegypti larvicidal.

    Science.gov (United States)

    da Silva, João Bosco P; Navarro, Daniela Maria do A F; da Silva, Aluizio G; Santos, Geanne K N; Dutra, Kamilla A; Moreira, Diogo Rodrigo; Ramos, Mozart N; Espíndola, José Wanderlan P; de Oliveira, Ana Daura T; Brondani, Dalci José; Leite, Ana Cristina L; Hernandes, Marcelo Zaldini; Pereira, Valéria R A; da Rocha, Lucas F; de Castro, Maria Carolina A B; de Oliveira, Beatriz C; Lan, Que; Merz, Kenneth M

    2015-07-15

    A set of aryl- and phenoxymethyl-(thio)semicarbazones were synthetized, characterized and biologically evaluated against the larvae of Aedes aegypti (A. aegypti), the vector responsible for diseases like Dengue and Yellow Fever. (Q)SAR studies were useful for predicting the activities of the compounds not included to create the QSAR model as well as to predict the features of a new compound with improved activity. Docking studies corroborated experimental evidence of AeSCP-2 as a potential target able to explain the larvicidal properties of its compounds. The trend observed between the in silico Docking scores and the in vitro pLC50 (equals -log LC50, at molar concentration) data indicated that the highest larvicidal compounds, or the compounds with the highest values for pLC50, are usually those with the higher docking scores (i.e., greater in silico affinity for the AeSCP-2 target). Determination of cytotoxicity for these compounds in mammal cells demonstrated that the top larvicide compounds are non-toxic.

  6. A Large Scale Biorational Approach Using Bacillus thuringiensis israeliensis (Strain AM65-52) for Managing Aedes aegypti Populations to Prevent Dengue, Chikungunya and Zika Transmission

    Science.gov (United States)

    Pruszynski, Catherine A.; Hribar, Lawrence J.; Mickle, Robert; Leal, Andrea L.

    2017-01-01

    Background Aedes aegypti is a container-inhabiting mosquito and a vector of dengue, chikungunya, and Zika viruses. In 2009 several cases of autochthonous dengue transmission were reported in Key West, Florida, USA prompting a comprehensive response to control A. aegypti. In Key West, larvae of this mosquito develop in containers around human habitations which can be numerous and labor intensive to find and treat. Aerial applications of larvicide covering large areas in a short time can be an efficient and economical method to control A. aegypti. Bacillus thuringiensis israelensis (Bti) is a bacterial larvicide which is highly target specific and appropriate for wide area spraying over urban areas, but to date, there are no studies that evaluate aerial spraying of Bti to control container mosquitoes like A. aegypti. Methodology This paper examines the effectiveness of aerial larvicide applications using VectoBac® WG, a commercially available Bti formulation, for A. aegypti control in an urban setting in the USA. Droplet characteristics and spray drop deposition were evaluated in Key West, Florida, USA. The mortality of A. aegypti in containers placed under canopy in an urban environment was also evaluated. Efficacy of multiple larvicide applications on adult female A. aegypti population reduction was compared between an untreated control and treatment site. Conclusions Droplet characteristics showed that small droplets can penetrate through dense canopy to reach small containers. VectoBac WG droplets reached small containers under heavy canopy in sufficient amounts to cause > 55% mortality on all application days and >90% mortality on 3 of 5 application days while controls had 50%. Aerial larvicide applications using VectoBac WG can cover wide areas in a short period of time and can be effective in controlling A. aegypti and reducing A. aegypti-borne transmission in urban areas similar to Key West, Florida, USA. PMID:28199323

  7. Contrasting patterns of insecticide resistance and knockdown resistance (kdr in Aedes aegypti populations from Jacarezinho (Brazil after a Dengue Outbreak

    Directory of Open Access Journals (Sweden)

    Oscar Alexander Aguirre-Obando

    2016-03-01

    Full Text Available ABSTRACT After a dengue outbreak, the knowledge on the extent, distribution and mechanisms of insecticide resistance is essential for successful insecticide-based dengue control interventions. Therefore, we evaluated the potential changes to insecticide resistance in natural Aedes aegypti populations to Organophosphates (OP and Pyrethroids (PY after chemical vector control interventions. After a Dengue outbreak in 2010, A. aegypti mosquitoes from the urban area of Jacarezinho (Paraná, Brazil were collected in 2011 and 2012. Insecticide resistance to OP Temephos was assessed in 2011 and 2012 by dose–response bioassays adopting WHO-based protocols. Additionally, in both sampling, PY resistance was also investigated by the Val1016Ile mutation genotyping. In 2011, a random collection of mosquitoes was carried out; while in 2012, the urban area was divided into four regions where mosquitoes were sampled randomly. Bioassays conducted with larvae in 2011 (82 ± 10%; RR95 = 3.6 and 2012 (95 ± 3%; RR95 = 2.5 indicated an incipient altered susceptibility to Temephos. On the other hand, the Val1016IIe mutation analysis in 2011, presented frequencies of the 1016Ilekdr allele equal to 80%. Nevertheless, in 2012, when the urban area of Jacarezinho was analyzed as a single unit, the frequency of the mutant allele was 70%. Additionally, the distribution analysis of the Val1016Ile mutation in 2012 showed the mutant allele frequencies ≥60% in all regions. These outcomes indicated the necessity of developing alternative strategies such as insecticide rotations for delaying the evolution of resistance.

  8. A lethal ovitrap-based mass trapping scheme for dengue control in Australia: II. Impact on populations of the mosquito Aedes aegypti.

    Science.gov (United States)

    Rapley, L P; Johnson, P H; Williams, C R; Silcock, R M; Larkman, M; Long, S A; Russell, R C; Ritchie, S A

    2009-12-01

    In Cairns, Australia, the impacts on Aedes aegypti L. (Diptera: Culicidae) populations of two types of 'lure & kill' (L&K) lethal ovitraps (LOs), the standard lethal ovitrap (SLO) and the biodegradable lethal ovitrap (BLO) were measured during three mass-trapping interventions. To assess the efficacy of the SLO, two interventions (one dry season and one wet season) were conducted in three discrete areas, each lasting 4 weeks, with the following treatments: (i) SLOs (>200 traps, approximately 4/premise), BG-sentinel traps (BGSs; approximately 15, 1/premise) and larval control (container reduction and methoprene treatment) and (ii) larval control alone, and (iii) untreated control. Female Ae. aegypti populations were monitored for 4 weeks pre- and post-treatment in all three areas using BGSs and sticky ovitraps (SOs) or non-lethal regular ovitraps (ROs). In the dry season, 206 SLOs and 15 BGSs set at 54 and 15 houses, respectively, caught and killed an estimated 419 and 73 female Ae. aegypti, respectively. No significant decrease in collection size of female Ae. aegypti could be attributed to the treatments. In the wet season, 243 SLOs and 15 BGSs killed approximately 993 and 119 female Ae. aegypti, respectively. The mean number of female Ae. aegypti collected after 4 weeks with SOs and BGSs was significantly less than the control (LSD post-hoc test). The third mass-trapping intervention was conducted using the BLO during the wet season in Cairns. For this trial, three treatment areas were each provided with BLOs (>500, approximately 4/premise) plus larval control, and an untreated control area was designated. Adult female Ae. aegypti were collected for 4 weeks pre- and post-treatment using 15 BGSs and 20 SOs. During this period, 53.2% of BLOs contained a total of 6654 Ae. aegypti eggs. Over the intervention period, collections of Ae. aegypti in the treatment areas were significantly less than in the control area for BGSs but not SOs. An influx of relatively large

  9. Susceptibilidade larval de populações de Aedes aegypti e Culex quinquefasciatus a inseticidas químicos Larval susceptibility of Aedes aegypti and Culex quinquefasciatus populations to chemical insecticides

    Directory of Open Access Journals (Sweden)

    Jairo Campos

    2003-08-01

    Grande, Mato Grosso do Sul, MS, and Cuiabá, Mato Grosso, MT, in Brazil, subjected to such treatments. RESULTS: Tests for Culex quinquefasciatus larvae from Campinas, SP, allowed suspicion of resistance to cypermethrin and gave evidence of resistance to cyfluthrin. Larvae of this species collected in Campo Grande, MS, and Campinas, SP, presented resistance to temephos. For the colony from the latter locality, the following resistance rates were established: RR50=6.36 and RR95=4.94, in relation to a standard susceptible strain. Moreover, tests for Aedes aegypti showed similar susceptibility to temephos for a field population from Cuiabá, MT, and a laboratory population. CONCLUSIONS: The results indicate resistance of Culex quinquefasciatus to organophosphate and pyrethroid insecticides and make evident the need for evaluation and monitoring of the efficiency of insecticides to be used in mosquito control programs.

  10. Spatial analysis of wing geometry in dengue vector mosquito, Aedes aegypti (L. (Diptera: Culicidae, populations in Metropolitan Manila, Philippines

    Directory of Open Access Journals (Sweden)

    Thaddeus M Carvajal

    2016-01-01

    Interpretation & conclusion: The newly modified wing preparation procedure was able to capture a complete coverage of the wings of Ae. aegypti, thus providing a stronger separation power for very close populations in an urban area. It is also noteworthy that the results of IBD and SA supported the findings of GM in the population structuring of male and female Ae. aegypti. The outcome of the study increases our understanding of the vector, which would be useful in developing effective control strategies.

  11. Evaluation of the role of ATP-binding cassette transporters as a defence mechanism against temephos in populations of Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Estelita Pereira Lima

    2014-11-01

    Full Text Available The role of ATP-binding cassette (ABC transporters in the efflux of the insecticide, temephos, was assessed in the larvae of Aedes aegypti. Bioassays were conducted using mosquito populations that were either susceptible or resistant to temephos by exposure to insecticide alone or in combination with sublethal doses of the ABC transporter inhibitor, verapamil (30, 35 and 40 μM. The best result in the series was obtained with the addition of verapamil (40 μM, which led to a 2x increase in the toxicity of temephos, suggesting that ABC transporters may be partially involved in conferring resistance to the populations evaluated.

  12. Genetic deviation in geographically close populations of the dengue vector Aedes aegypti (Diptera: Culicidae): influence of environmental barriers in South India.

    Science.gov (United States)

    Vadivalagan, Chithravel; Karthika, Pushparaj; Murugan, Kadarkarai; Panneerselvam, Chellasamy; Paulpandi, Manickam; Madhiyazhagan, Pari; Wei, Hui; Aziz, Al Thabiani; Alsalhi, Mohamad Saleh; Devanesan, Sandhanasamy; Nicoletti, Marcello; Paramasivan, Rajaiah; Dinesh, Devakumar; Benelli, Giovanni

    2016-03-01

    Mosquitoes are vectors of devastating pathogens and parasites, causing millions of deaths every year. Dengue is a mosquito-borne viral infection found in tropical and subtropical regions around the world. Recently, dengue transmission has strongly increased in urban and semiurban areas, becoming a major international public health concern. Aedes aegypti (Diptera: Culicidae) is a primary vector of dengue. Shedding light on genetic deviation in A. aegypti populations is of crucial importance to fully understand their molecular ecology and evolution. In this research, haplotype and genetic analyses were conducted using individuals of A. aegypti from 31 localities in the north, southeast, northeast and central regions of Tamil Nadu (South India). The mitochondrial DNA region of cytochrome c oxidase 1 (CO1) gene was used as marker for the analyses. Thirty-one haplotypes sequences were submitted to GenBank and authenticated. The complete haplotype set included 64 haplotypes from various geographical regions clustered into three groups (lineages) separated by three fixed mutational steps, suggesting that the South Indian Ae. aegypti populations were pooled and are linked with West Africa, Columbian and Southeast Asian lineages. The genetic and haplotype diversity was low, indicating reduced gene flow among close populations of the vector, due to geographical barriers such as water bodies. Lastly, the negative values for neutrality tests indicated a bottle-neck effect and supported for low frequency of polymorphism among the haplotypes. Overall, our results add basic knowledge to molecular ecology of the dengue vector A. aegypti, providing the first evidence for multiple introductions of Ae. aegypti populations from Columbia and West Africa in South India.

  13. First report of Stegomyia aegypti (= Aedes aegypti) in Mexico City, Mexico.

    Science.gov (United States)

    Kuri-Morales, P; Correa-Morales, F; González-Acosta, C; Sánchez-Tejeda, G; Dávalos-Becerril, E; Fernanda Juárez-Franco, M; Díaz-Quiñonez, A; Huerta-Jimenéz, H; Mejía-Guevara, M D; Moreno-García, M; González-Roldán, J F

    2017-01-20

    Stegomyia aegypti (= Aedes aegypti) (Diptera: Culicidae) is a species of mosquito that is currently widespread in Mexico. Historically, the mosquito has been distributed across most tropical and subtropical areas lower than 1700 m a.s.l. Currently, populations that are found at higher altitudes in regions with cold and dry climates suggest that these conditions do not limit the colonization and population growth of S. aegypti. During a survey of mosquitoes in September 2015, larvae of S. aegypti mosquitoes were found in two different localities in Mexico City, which is located at about 2250 m a.s.l. Mexico City is the most populous city in Mexico and has inefficient drainage and water supply systems. These factors may result in the provision of numerous larval breeding sites. Mosquito monitoring and surveillance are now priorities for the city.

  14. Population genetic structure of Aedes (Stegomyia aegypti (L. at a micro-spatial scale in Thailand: implications for a dengue suppression strategy.

    Directory of Open Access Journals (Sweden)

    Phanthip Olanratmanee

    Full Text Available BACKGROUND: The genetic population structure of Aedes (Stegomyia aegypti (L., the main vector of dengue virus, is being investigated in areas where a novel dengue suppression program is to be implemented. The aim of the program is to release and establish mosquito populations with impaired virus transmission capabilities. To model effects of the release and devise protocols for its implementation, information about the genetic structure of populations at a range of spatial scales is required. METHODOLOGY/PRINCIPAL FINDINGS: This study investigates a potential release site in the Hua Sam Rong Subdistrict of Plaeng Yao District, Chachoengsao Province, in eastern Thailand which comprises a complex of five villages within a 10 km radius. Aedes aegypti resting indoors was sampled at four different times of year from houses within the five villages. Genetic markers were used to screen the mosquitoes: two Exon Primed Intron Crossing (EPIC markers and five microsatellite markers. The raw allele size was determined using several statistical software packages to analyze the population structure of the mosquito. Estimates of effective population size for each village were low, but there was no evidence of genetic isolation by geographic distance. CONCLUSIONS: The presence of temporary genetic structure is possibly caused by genetic drift due to large contributions of adults from a few breeding containers. This suggests that the introduction of mosquitoes into an area needs to proceed through multiple releases and targeting of sites where mosquitoes are emerging in large numbers.

  15. Mosquito-Producing Containers, Spatial Distribution, and Relationship between Aedes aegypti Population Indices on the Southern Boundary of its Distribution in South America (Salto, Uruguay)

    Science.gov (United States)

    Basso, César; Caffera, Ruben M.; García da Rosa, Elsa; Lairihoy, Rosario; González, Cristina; Norbis, Walter; Roche, Ingrid

    2012-01-01

    A study was conducted in the city of Salto, Uruguay, to identify mosquito-producing containers, the spatial distribution of mosquitoes and the relationship between the different population indices of Aedes aegypti. On each of 312 premises visited, water-filled containers and immature Ae. aegypti mosquitoes were identified. The containers were counted and classified into six categories. Pupae per person and Stegomyia indices were calculated. Pupae per person were represented spatially. The number of each type of container and number of mosquitoes in each were analyzed and compared, and their spatial distribution was analyzed. No significant differences in the number of the different types of containers with mosquitoes or in the number of mosquitoes in each were found. The distribution of the containers with mosquito was random and the distribution of mosquitoes by type of container was aggregated or highly aggregated. PMID:23128295

  16. Identification of germline transcriptional regulatory elements in Aedes aegypti

    Science.gov (United States)

    Akbari, Omar S.; Papathanos, Philippos A.; Sandler, Jeremy E.; Kennedy, Katie; Hay, Bruce A.

    2014-02-01

    The mosquito Aedes aegypti is the principal vector for the yellow fever and dengue viruses, and is also responsible for recent outbreaks of the alphavirus chikungunya. Vector control strategies utilizing engineered gene drive systems are being developed as a means of replacing wild, pathogen transmitting mosquitoes with individuals refractory to disease transmission, or bringing about population suppression. Several of these systems, including Medea, UDMEL, and site-specific nucleases, which can be used to drive genes into populations or bring about population suppression, utilize transcriptional regulatory elements that drive germline-specific expression. Here we report the identification of multiple regulatory elements able to drive gene expression specifically in the female germline, or in the male and female germline, in the mosquito Aedes aegypti. These elements can also be used as tools with which to probe the roles of specific genes in germline function and in the early embryo, through overexpression or RNA interference.

  17. Dominância de Aedes aegypti sobre Aedes albopictus no litoral sudeste do Brasil Dominance of Aedes aegypti over Aedes albopictus in the southeastern coast of Brazil

    Directory of Open Access Journals (Sweden)

    Ricardo A Passos

    2003-12-01

    was selected. It was used data from the Dengue and Yellow Fever Vector Control Program of the State of São Paulo, Brazil, that encompasses entomological surveillance at strategic positions, traps and foci demarcation. Strategic positions sites are fixed sites with containers in adequate conditions for larvae growth. Statistical analysis was performed using Kruskal-Wallis test, Dwass-Steel-Chritchlow-Fligne test and Mann-Whitney test. RESULTS: There was found an annual growth of positive traps and strategic positions of Ae. aegypti and a drop in Ae. albopictus population. An increase in immature Ae. aegypti and a drop of the other species were also seen. A gradual increase of positive dwellings for Ae. aegypti was noticed outgrowing Ae. albopictus population. There was a weak correlation of the Aedes species with abiotic factors. Higher numbers of immature mosquitoes of both species were found in artificial containers which could be eliminated. CONCLUSIONS: The study showed Ae. aegypti was predominant in urban areas, indicating that its growth seems to have affected the coexistence with other species. Natural selection could be in place contributing to Aedes aegypti and albopictus species separation.

  18. Truck-mounted Area-wide Application of Pyriproxyfen Targeting Aedes aegypti and Aedes albopictus in Northeast Florida

    Science.gov (United States)

    2014-12-01

    larval control , Aedes aegypti , Aedes albopictus INTRODUCTION Aedes albopictus (Skuse) (Asian tiger mosquito) and Ae. aegypti (L.) (yellow fever...Bull Fla Mosq Control Assoc 9:48– 52. Seng CM, Setha T, Nealon J, Socheat D, Nathan MB. 2008. Six months of Aedes aegypti control with a novel...TRUCK-MOUNTED AREA-WIDE APPLICATION OF PYRIPROXYFEN TARGETING AEDES AEGYPTI AND AEDES ALBOPICTUS IN NORTHEAST FLORIDA1 CARL W. DOUD,2,3 ANTHONY M

  19. Discovery of Point Mutations in the Voltage-Gated Sodium Channel from African Aedes aegypti Populations: Potential Phylogenetic Reasons for Gene Introgression.

    Directory of Open Access Journals (Sweden)

    Hitoshi Kawada

    2016-06-01

    Full Text Available Yellow fever is endemic in some countries in Africa, and Aedes aegpyti is one of the most important vectors implicated in the outbreak. The mapping of the nation-wide distribution and the detection of insecticide resistance of vector mosquitoes will provide the beneficial information for forecasting of dengue and yellow fever outbreaks and effective control measures.High resistance to DDT was observed in all mosquito colonies collected in Ghana. The resistance and the possible existence of resistance or tolerance to permethrin were suspected in some colonies. High frequencies of point mutations at the voltage-gated sodium channel (F1534C and one heterozygote of the other mutation (V1016I were detected, and this is the first detection on the African continent. The frequency of F1534C allele and the ratio of F1534C homozygotes in Ae. aegypti aegypti (Aaa were significantly higher than those in Ae. aegypti formosus (Aaf. We could detect the two types of introns between exon 20 and 21, and the F1534C mutations were strongly linked with one type of intron, which was commonly found in South East Asian and South and Central American countries, suggesting the possibility that this mutation was introduced from other continents or convergently selected after the introgression of Aaa genes from the above area.The worldwide eradication programs in 1940s and 1950s might have caused high selection pressure on the mosquito populations and expanded the distribution of insecticide-resistant Ae. aegypti populations. Selection of the F1534C point mutation could be hypothesized to have taken place during this period. The selection of the resistant population of Ae. aegypti with the point mutation of F1534C, and the worldwide transportation of vector mosquitoes in accordance with human activity such as trading of used tires, might result in the widespread distribution of F1534C point mutation in tropical countries.

  20. Discovery of Point Mutations in the Voltage-Gated Sodium Channel from African Aedes aegypti Populations: Potential Phylogenetic Reasons for Gene Introgression

    Science.gov (United States)

    Muranami, Yuto; Kawashima, Emiko; Osei, Joseph H. N.; Sakyi, Kojo Yirenkyi; Dadzie, Samuel; de Souza, Dziedzom K.; Appawu, Maxwell; Ohta, Nobuo; Minakawa, Noboru

    2016-01-01

    Background Yellow fever is endemic in some countries in Africa, and Aedes aegpyti is one of the most important vectors implicated in the outbreak. The mapping of the nation-wide distribution and the detection of insecticide resistance of vector mosquitoes will provide the beneficial information for forecasting of dengue and yellow fever outbreaks and effective control measures. Methodology/Principal Findings High resistance to DDT was observed in all mosquito colonies collected in Ghana. The resistance and the possible existence of resistance or tolerance to permethrin were suspected in some colonies. High frequencies of point mutations at the voltage-gated sodium channel (F1534C) and one heterozygote of the other mutation (V1016I) were detected, and this is the first detection on the African continent. The frequency of F1534C allele and the ratio of F1534C homozygotes in Ae. aegypti aegypti (Aaa) were significantly higher than those in Ae. aegypti formosus (Aaf). We could detect the two types of introns between exon 20 and 21, and the F1534C mutations were strongly linked with one type of intron, which was commonly found in South East Asian and South and Central American countries, suggesting the possibility that this mutation was introduced from other continents or convergently selected after the introgression of Aaa genes from the above area. Conclusions/Significance The worldwide eradication programs in 1940s and 1950s might have caused high selection pressure on the mosquito populations and expanded the distribution of insecticide-resistant Ae. aegypti populations. Selection of the F1534C point mutation could be hypothesized to have taken place during this period. The selection of the resistant population of Ae. aegypti with the point mutation of F1534C, and the worldwide transportation of vector mosquitoes in accordance with human activity such as trading of used tires, might result in the widespread distribution of F1534C point mutation in tropical countries

  1. [Ecology of Aedes aegypti and Aedes albopictus in the Americas and disease transmission].

    Science.gov (United States)

    Rey, Jorge R; Lounibos, Philip

    2015-01-01

    The recent range expansion of the mosquito Aedes albopictus has been associated in some areas by declines in abundance or local elimination of Aedes aegypti, but the two species still coexist in large regions of the Americas. We offer a summary of the possible mechanisms responsible for the abundance and displacement pattern observed and of their significance in terms of disease transmission. Among these mechanisms we may mention the competition for limiting resources, the differences in the ability to withstand starvation, the apparent competition through differential effects of the parasite Ascogregarina taiwanensis, and the inhibition of Ae. aegypti egg development by Ae. albopictus larvae. Habitat segregation has been proposed as a mechanism promoting the coexistence of the two species through avoidance of direct competition. Aedes aegypti predominates in urban areas, Ae. albopictus in rural ones, and both species coexist in the suburbs. There is also evidence that in certain areas, habitat segregation in terms of distance from the coast can influence the distribution of both species. Another possible cause of the rapid disappearance of Ae. aegypti is reproductive interference between the species. According to this hypothesis, asymmetric effects of interspecific mating favor Ae. albopictus. This type of reproductive interference can result in the elimination of sympatric populations of the affected species and can be one of the major causes for the swiftness with which Ae. aegypti disappeared from some places in the Americas following invasions by Ae. albopictus.

  2. PENGENDALIAN JENTIK Aedes Aegypti MENGGUNAKAN Mesocyclops Aspericomis MELALUI PARTISIPASI MASYARAKAT

    Directory of Open Access Journals (Sweden)

    Umi Widyastuti

    2012-07-01

    Full Text Available Mesocyclops aspericornis was investigated for its effectiveness in controlling Aedes aegypti larvae in a variety of containers e.g metal drum, cistern, clay jars, and other container made of plastic. A study was carried out in Kenteng hamlet, Tegalrejo village, Salatiga Municipality. It was conducted by health-workers (staff of Vector and Reservoir Control Research Unit and Health Center of Tegalrejo and the community, especially the woman's organization namely "family empowering and welfareness ". which participate in releasing M. aspericornis for controlling Ae. aegypti larvae. The community has responsibility to release M. aspericornis in Kenteng RT01 and 02 as the treated area I. Meanwhile, Health-workers have responsibility to release it in Kenteng RT 04, 05, and 07 as the treated area II and Kenteng RT 03 and 06 as the untreated control area (no M. aspericornis released. The aim of the study were: a, to determine the effectiveness of M. aspericornis in decreasing larval populations of Ae. aegypti in the containers, and b. to determine the Knowledge, Attitude, and Practice (KAP of the community, referring to disease, vector and control of Dengue Haemorhagic Fever (DHF. M. aspericornis was effective to decrease larval populations of Ae. aegypti in Kenteng area. The increasing number of Ae. aegypti larvae free containers of 24.29-84,02% and 35.75-92.01% were shown in respectively treated area I and II. The KAP of the community referring to disease, vector and control of DHF increased after the health education conducted. It's concluded that the community of Kenteng hamlet is active in participation to control Ae. aegypti. As a recommend, control of Ae. aegypti larvae using M. aspericornis through community partisipation should be considered due to a good prospect and effectiveness of this agent to control of Ae. aegypti larvae in the laboratory as well as in the field   Key words : Vector control, M. aspericornis, Ae. aegypti, Dengue

  3. Spatio-temporal distribution of Aedes aegypti (Diptera: Culicidae mitochondrial lineages in cities with distinct dengue incidence rates suggests complex population dynamics of the dengue vector in Colombia.

    Directory of Open Access Journals (Sweden)

    Jeiczon Jaimes-Dueñez

    2015-04-01

    Full Text Available Aedes aegypti is the primary vector of the four serotypes of dengue virus (DENV1-4, Chikungunya and yellow fever virus to humans. Previous population genetic studies have revealed a particular genetic structure among the vector populations in the Americas that suggests differences in the ability to transmit DENV. In Colombia, despite its high epidemiologic importance, the genetic population structure and the phylogeographic depiction of Ae. aegypti, as well as its relationship with the epidemiologic landscapes in cities with heterogeneous incidence levels, remains unknown. We conducted a spatiotemporal analysis with the aim of determining the genetic structure and phylogeography of Colombian populations of Ae. aegypti among cities with different eco-epidemiologic characteristics with regard to DENV.Mitochondrial cytochrome oxidase C subunit 1 (COI--NADH dehydrogenase subunit 4 (ND4 genes were sequenced and analyzed from 341 adult mosquitoes collected during 2012 and 2013 in the Colombian cities of Bello, Riohacha and Villavicencio, which exhibit low, medium and high levels of incidence of DENV, respectively. The results demonstrated a low genetic differentiation over time and a high genetic structure between the cities due to changes in the frequency of two highly supported genetic groups. The phylogeographic analyses indicated that one group (associated with West African populations was found in all the cities throughout the sampling while the second group (associated with East African populations was found in all the samples from Bello and in only one sampling from Riohacha. Environmental factors such as the use of chemical insecticides showed a significant correlation with decreasing genetic diversity, indicating that environmental factors affect the population structure of Ae. aegypti across time and space in these cities.Our results suggest that two Ae. aegypti lineages are present in Colombia; one that is widespread and related to a West

  4. Sodium Channel Mutations and Pyrethroid Resistance in Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Yuzhe Du

    2016-10-01

    Full Text Available Pyrethroid insecticides are widely used to control insect pests and human disease vectors. Voltage-gated sodium channels are the primary targets of pyrethroid insecticides. Mutations in the sodium channel have been shown to be responsible for pyrethroid resistance, known as knockdown resistance (kdr, in various insects including mosquitoes. In Aedes aegypti mosquitoes, the principal urban vectors of dengue, zika, and yellow fever viruses, multiple single nucleotide polymorphisms in the sodium channel gene have been found in pyrethroid-resistant populations and some of them have been functionally confirmed to be responsible for kdr in an in vitro expression system, Xenopus oocytes. This mini-review aims to provide an update on the identification and functional characterization of pyrethroid resistance-associated sodium channel mutations from Aedes aegypti. The collection of kdr mutations not only helped us develop molecular markers for resistance monitoring, but also provided valuable information for computational molecular modeling of pyrethroid receptor sites on the sodium channel.

  5. Sodium Channel Mutations and Pyrethroid Resistance in Aedes aegypti

    Science.gov (United States)

    Du, Yuzhe; Nomura, Yoshiko; Zhorov, Boris S.; Dong, Ke

    2016-01-01

    Pyrethroid insecticides are widely used to control insect pests and human disease vectors. Voltage-gated sodium channels are the primary targets of pyrethroid insecticides. Mutations in the sodium channel have been shown to be responsible for pyrethroid resistance, known as knockdown resistance (kdr), in various insects including mosquitoes. In Aedes aegypti mosquitoes, the principal urban vectors of dengue, zika, and yellow fever viruses, multiple single nucleotide polymorphisms in the sodium channel gene have been found in pyrethroid-resistant populations and some of them have been functionally confirmed to be responsible for kdr in an in vitro expression system, Xenopus oocytes. This mini-review aims to provide an update on the identification and functional characterization of pyrethroid resistance-associated sodium channel mutations from Aedes aegypti. The collection of kdr mutations not only helped us develop molecular markers for resistance monitoring, but also provided valuable information for computational molecular modeling of pyrethroid receptor sites on the sodium channel. PMID:27809228

  6. Aedes aegypti (L.) survival after exposure to ivermectin

    OpenAIRE

    Whitehorn, James; Thi, Long Vo; Dui, Le Thi; Cameron P Simmons

    2013-01-01

    Ivermectin has been shown in in vitro studies to have insecticidal properties against Aedes aegypti adults. This study aimed to assess these properties in vivo. Aedes aegypti survival was not affected by acquiring a blood meal from humans both 5 hours and 24 hours after ingestion of a typical dose of ivermectin.

  7. Aedes aegypti (L.) survival after exposure to ivermectin.

    Science.gov (United States)

    Whitehorn, James; Thi, Long Vo; Dui, Le Thi; Simmons, Cameron P

    2013-03-01

    Ivermectin has been shown in in vitro studies to have insecticidal properties against Aedes aegypti adults. This study aimed to assess these properties in vivo. Aedes aegypti survival was not affected by acquiring a blood meal from humans both 5 hours and 24 hours after ingestion of a typical dose of ivermectin.

  8. Surveillance, insecticide resistance and control of an invasive Aedes aegypti (Diptera: Culicidae population in California [version 3; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Anthony J. Cornel

    2016-08-01

    Full Text Available The invasion and subsequent establishment in California of Aedes aegypti in 2013 has created new challenges for local mosquito abatement and vector control districts. Studies were undertaken to identify effective and economical strategies to monitor the abundance and spread of this mosquito species as well as for its control. Overall, BG Sentinel (BGS traps were found to be the most sensitive trap type to measure abundance and spread into new locations. Autocidal-Gravid-Ovitraps (AGO-B, when placed at a site for a week, performed equally to BGS in detecting the presence of female Ae. aegypti. Considering operational cost and our findings, we recommend use of BGS traps for surveillance in response to service requests especially in locations outside the known infestation area. We recommend AGO-Bs be placed at fixed sites, cleared and processed once a week to monitor mosquito abundance within a known infestation area. Long-term high density placements of AGO-Bs were found to show promise as an environmentally friendly trap-kill control strategy. California Ae. aegypti were found to be homozygous for the V1016I mutation in the voltage gated sodium channel gene, which is implicated to be involved in insecticide resistance. This strain originating from Clovis, California was resistant to some pyrethroids but not to deltamethrin in bottle bio-assays. Sentinel cage ultra-low-volume (ULV trials using a new formulation of deltamethrin (DeltaGard® demonstrated that it provided some control (average of 56% death in sentinel cages in a 91.4 m spray swath after a single truck mounted aerial ULV application in residential areas.

  9. Surveillance, insecticide resistance and control of an invasive Aedes aegypti (Diptera: Culicidae population in California [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Anthony J. Cornel

    2016-03-01

    Full Text Available The invasion and subsequent establishment in California of Aedes aegypti in 2013 has created new challenges for local mosquito abatement and vector control districts. Studies were undertaken to identify effective and economical strategies to monitor the abundance and spread of this mosquito species as well as for its control. Overall, BG Sentinel (BGS traps were found to be the most sensitive trap type to measure abundance and spread into new locations. Autocidal-Gravid-Ovitraps (AGO-B, when placed at a site for a week, performed equally to BGS in detecting the presence of female Ae. aegypti. Considering operational cost and our findings, we recommend use of BGS traps for surveillance in response to service requests especially in locations outside the known infestation area. We recommend AGO-Bs be placed at fixed sites, cleared and processed once a week to monitor mosquito abundance within a known infestation area. Long-term high density placements of AGO-Bs were found to show promise as an environmentally friendly trap-kill control strategy. California Ae. aegypti were found to be homozygous for the V1016I mutation in the voltage gated sodium channel gene, which is implicated to be involved in insecticide resistance. This strain originating from Clovis, California was resistant to some pyrethroids but not to deltamethrin in bottle bio-assays. Sentinel cage ultra-low-volume (ULV trials using a new formulation of deltamethrin (DeltaGard® demonstrated that it provided some control (average of 56% death in sentinel cages in a 91.4 m spray swath after a single truck mounted aerial ULV application in residential areas.

  10. Resistance of Aedes aegypti from the state of São Paulo, Brazil, to organophosphates insecticides

    OpenAIRE

    Macoris Maria de Lourdes G; Andrighetti Maria Teresa M; Takaku Luiz; Glasser Carmen M; Garbeloto Vanessa C; Bracco José Eduardo

    2003-01-01

    Since the reintroduction of Aedes aegypti in the state of São Paulo, in the middle of the 1980-decade, organophosphate insecticides are being used to control the dengue vector. In 1996, an annual program for monitoring the susceptibility of Ae. aegypti to the insecticides was implemented. Some of the results of this monitoring program are presented. Ae. aegypti populations from ten localities have been submitted to bioassays with the diagnostic dose of temephos and fenitrothion. Only two (Mar...

  11. Establishment of Aedes aegypti (L.) in mountainous regions in Mexico: Increasing number of population at risk of mosquito-borne disease and future climate conditions.

    Science.gov (United States)

    Equihua, Miguel; Ibáñez-Bernal, Sergio; Benítez, Griselda; Estrada-Contreras, Israel; Sandoval-Ruiz, César A; Mendoza-Palmero, Fredy S

    2017-02-01

    The study was conducted in the central region of Veracruz Mexico, in the metropolitan area of Xalapa. It is a mountainous area where Aedes aegypti (L.) is not currently endemic. An entomological survey was done along an elevation gradient using the Ae. aegypti occurrences at different life cycle stages. Seven sites were sampled and a total of 24 mosquito species were recorded: 9 species were found in urban areas, 18 in non-urban areas with remnant vegetation, and 3 occurred in both environments. Ae. aegypti was found only in the urban areas, usually below 1200m a.s.l., but in this study was recorded for the first time at 1420m a.s.l. These occurrences, together with additional distribution data in the state of Veracruz were used to developed species distribution models using Maxlike software in R to identify the current projected suitable areas for the establishment of this vector and the human populations that might be affected by dengue transmission at higher elevations. Its emergence in previously unsuitable places appears to be driven by both habitat destruction and biodiversity loss associated with biotic homogenization. A border study using data from the edges of the vector's distribution might allow sensitive monitoring to detect any changes in this mosquito's distribution pattern, and any changes in the anthropic drivers or climate that could increase transmission risk.

  12. Functional Development of the Octenol Response in Aedes aegypti

    Science.gov (United States)

    2013-03-07

    ORIGINAL RESEARCH ARTICLE published: 07 March 2013 doi: 10.3389/fphys.2013.00039 Functional development of the octenol response in Aedes aegypti ...l’Insecte, Signalisation et Communication, Université Pierre et Marie Curie, UMR 1272, F-75252 Paris, France. Attraction of female Aedes aegypti ...environment, but is also influenced by the insect’s physiological state. For anautogenous mosquito species, like A. aegypti , newly emerged adult

  13. Differentiation of Aedes aegypti and Aedes notoscriptus (Diptera: Culicidae) eggs using scanning electron microscopy.

    Science.gov (United States)

    Faull, Katherine J; Williams, Craig R

    2016-05-01

    Aedes notoscriptus and Aedes aegypti are both peri-domestic, invasive container-breeding mosquitoes. While the two potential arboviral vectors are bionomically similar, their sympatric distribution in Australia is limited. In this study, analyses of Ae. aegypti and Ae. notoscriptus eggs were enabled using scanning electron microscopy. Significant variations in egg length to width ratio and outer chorionic cell field morphology between Ae. aegypti and Ae. notoscriptus enabled distinction of the two species. Intraspecific variations in cell field morphology also enabled differentiation of the separate populations of both species, highlighting regional and global variation. Our study provides a comprehensive comparative analysis of inter- and intraspecific egg morphological and morphometric variation between two invasive container-breeding mosquitoes. The results indicate a high degree of intraspecific variation in Ae. notoscriptus egg morphology when compared to the eggs of Ae. aegypti. Comparative morphological analyses of Ae. aegypti and Ae. notoscriptus egg attributes using SEM allows differentiation of the species and may be helpful in understanding egg biology in relation to biotope of origin.

  14. PETA RESISTENSI VEKTOR DEMAM BERDARAH DENGUE Aedes aegypti TERHADAP INSEKTISIDA KELOMPOK ORGANOFOSFAT, KARBAMAT DAN PYRETHROID DI PROPINSI JAWA TENGAH DAN DAERAH ISTIMEWA YOGYAKARTA

    OpenAIRE

    Widiarti Widiarti; Bambang Heriyanto; Damar Tri Boewono; Umi Widyastuti; Mujiono Mujiono; Lasmiati Lasmiati; Yuliadi Yuliadi

    2012-01-01

    Insecticide resistance study to DHF vector Aedes aegypti was carried out in Central Java and Yogyakarta Provinces. The objective of this study was to map the insecticide susceptibility of Aedes aegypti population to the three chemical groups of insecticide used in public health, in Central Java and Yogyakarta. Laboratory-reared, Fl generation of field population of Aedes aegypti from eleven and three Municipalities in Central Java and Yogyakarta Provinces were used respectively. T...

  15. Distribution of Voltage-Gated Sodium Channel (Nav) Alleles among the Aedes aegypti Populations In Central Java Province and Its Association with Resistance to Pyrethroid Insecticides

    OpenAIRE

    Sayono Sayono; Anggie Puspa Nur Hidayati; Sukmal Fahri; Didik Sumanto; Edi Dharmana; Suharyo Hadisaputro; Puji Budi Setia Asih; Din Syafruddin

    2016-01-01

    The emergence of insecticide resistant Aedes aegypti mosquitoes has hampered dengue control efforts. WHO susceptibility tests, using several pyrethroid compounds, were conducted on Ae. aegypti larvae that were collected and raised to adulthood from Semarang, Surakarta, Kudus and Jepara in Java. The AaNa V gene fragment encompassing kdr polymorphic sites from both susceptible and resistant mosquitoes was amplified, and polymorphisms were associated with the resistant phenotype. The insecticide...

  16. Larvicidal activity of Syzygium aromaticum (L.) Merr and Citrus sinensis (L.) Osbeck essential oils and their antagonistic effects with temephos in resistant populations of Aedes aegypti

    Science.gov (United States)

    Araujo, Adriana Faraco de Oliveira; Ribeiro-Paes, João Tadeu; de Deus, Juliana Telles; Cavalcanti, Sócrates Cabral de Holanda; Nunes, Rogéria de Souza; Alves, Péricles Barreto; Macoris, Maria de Lourdes da Graça

    2016-01-01

    Environmentally friendly botanical larvicides are commonly considered as an alternative to synthetic larvicides against Aedes aegypti Linn. In addition, mosquito resistance to currently used larvicides has motivated research to find new compounds acting via different mechanisms of action, with the goal of controlling the spread of mosquitos. Essential oils have been widely studied for this purpose. This work aims to evaluate the larvicidal potential of Syzygium aromaticum and Citrus sinensis essential oils, either alone or in combination with temephos, on Ae. aegypti populations having different levels of organophosphate resistance. The 50% lethal concentration (LC50) of the essential oils alone and in combination with temephos and the influence of essential oils on vector oviposition were evaluated. The results revealed that essential oils exhibited similar larvicidal activity in resistant populations and susceptible populations. However, S. aromaticum and C. sinensis essential oils in combination with temephos did not decrease resistance profiles. The presence of the evaluated essential oils in oviposition sites significantly decreased the number of eggs compared to sites with tap water. Therefore, the evaluated essential oils are suitable for use in mosquito resistance management, whereas their combinations with temephos are not recommended. Additionally, repellency should be considered during formulation development to avoid mosquito deterrence. PMID:27384083

  17. Larvicidal activity of Syzygium aromaticum (L. Merr and Citrus sinensis (L. Osbeck essential oils and their antagonistic effects with temephos in resistant populations of Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Adriana Faraco de Oliveira Araujo

    2016-01-01

    Full Text Available Environmentally friendly botanical larvicides are commonly considered as an alternative to synthetic larvicides against Aedes aegypti Linn. In addition, mosquito resistance to currently used larvicides has motivated research to find new compounds acting via different mechanisms of action, with the goal of controlling the spread of mosquitos. Essential oils have been widely studied for this purpose. This work aims to evaluate the larvicidal potential of Syzygium aromaticum and Citrus sinensis essential oils, either alone or in combination with temephos, on Ae. aegypti populations having different levels of organophosphate resistance. The 50% lethal concentration (LC50 of the essential oils alone and in combination with temephos and the influence of essential oils on vector oviposition were evaluated. The results revealed that essential oils exhibited similar larvicidal activity in resistant populations and susceptible populations. However, S. aromaticum and C. sinensis essential oils in combination with temephos did not decrease resistance profiles. The presence of the evaluated essential oils in oviposition sites significantly decreased the number of eggs compared to sites with tap water. Therefore, the evaluated essential oils are suitable for use in mosquito resistance management, whereas their combinations with temephos are not recommended. Additionally, repellency should be considered during formulation development to avoid mosquito deterrence.

  18. Aedes aegypti resistance to temephos in Argentina.

    Science.gov (United States)

    Seccacini, Emilia; Lucia, Alejandro; Zerba, Eduardo; Licastro, Susana; Masuh, Hector

    2008-12-01

    Monitoring of resistance of Aedes aegypti to temephos was implemented in the provinces of Formosa and Misiones, Argentina, as a response to the need to improve the vigilance for the dengue vector in areas of high risk of dengue. Eggs collected in each locality were reared, and susceptibility to temephos was assayed using larval bioassays. A weak decrease in susceptibility of larvae to temephos was observed in Clorinda and Puerto Iguazú, indicating an incipient resistance with a resistance ratio of 3. No control failures have been observed yet, and this program should allow the early detection of a real problem in our country.

  19. Transovarial Transmission of Dengue Virus on Aedes aegypti (L.

    Directory of Open Access Journals (Sweden)

    Magdalena Desiree Seran

    2012-11-01

    Full Text Available The ability of dengue virus to maintain its existence in nature through two mechanisms, both horizontal and vertical transmission (transovarial of the infective female mosquitoes to the next generation. This study aims to investigate the transovarial transmission and transovarial infection rate (TIR of dengue virus in eggs Aedes aegypti infected mother has a peroral virus DEN-2. This study is an experimental study in the laboratory. The population of the study was Ae. aegypti adults who have previously been infected with DEN-2 virus orally and proved to be infected with DEN-2 transovarially (Fl. The research sample was egg of Ae. aegypti from F2 generation which colonized from DEN-2 transovarially infected Ae. aegypti (Fl. Egg squash preparations made as many as 50 samples from jive difJerent mosquito parents. The presence of dengue virus antigen in mosquitoes FO and Fl were checked by SPBC immunocytochemistry method and using monoclonal antibodies DSSC7 (l:50 as standardized primary antibodies. The results shows the existence of transovarial transmission of dengue virus in eggs Ae. aegypti (F2 were seen in squash preparations in the form of a brownish color egg spread on embryonic tissues (TIR= 52%. It concludes that dengue virus is able to be transmitted vertically through the egg.

  20. Variation in Aedes aegypti Mosquito Competence for Zika Virus Transmission

    Science.gov (United States)

    Roundy, Christopher M.; Azar, Sasha R.; Rossi, Shannan L.; Huang, Jing H.; Leal, Grace; Yun, Ruimei; Fernandez-Salas, Ildefonso; Vitek, Christopher J.; Paploski, Igor A.D.; Kitron, Uriel; Ribeiro, Guilherme S.; Hanley, Kathryn A.

    2017-01-01

    To test whether Zika virus has adapted for more efficient transmission by Aedes aegypti mosquitoes, leading to recent urban outbreaks, we fed mosquitoes from Brazil, the Dominican Republic, and the United States artificial blood meals containing 1 of 3 Zika virus strains (Senegal, Cambodia, Mexico) and monitored infection, dissemination, and virus in saliva. Contrary to our hypothesis, Cambodia and Mexica strains were less infectious than the Senegal strain. Only mosquitoes from the Dominican Republic transmitted the Cambodia and Mexica strains. However, blood meals from viremic mice were more infectious than artificial blood meals of comparable doses; the Cambodia strain was not transmitted by mosquitoes from Brazil after artificial blood meals, whereas 61% transmission occurred after a murine blood meal (saliva titers up to 4 log10 infectious units/collection). Although regional origins of vector populations and virus strain influence transmission efficiency, Ae. aegypti mosquitoes appear to be competent vectors of Zika virus in several regions of the Americas. PMID:28287375

  1. Variation in Aedes aegypti Mosquito Competence for Zika Virus Transmission.

    Science.gov (United States)

    Roundy, Christopher M; Azar, Sasha R; Rossi, Shannan L; Huang, Jing H; Leal, Grace; Yun, Ruimei; Fernandez-Salas, Ildefonso; Vitek, Christopher J; Paploski, Igor A D; Kitron, Uriel; Ribeiro, Guilherme S; Hanley, Kathryn A; Weaver, Scott C; Vasilakis, Nikos

    2017-04-01

    To test whether Zika virus has adapted for more efficient transmission by Aedes aegypti mosquitoes, leading to recent urban outbreaks, we fed mosquitoes from Brazil, the Dominican Republic, and the United States artificial blood meals containing 1 of 3 Zika virus strains (Senegal, Cambodia, Mexico) and monitored infection, dissemination, and virus in saliva. Contrary to our hypothesis, Cambodia and Mexica strains were less infectious than the Senegal strain. Only mosquitoes from the Dominican Republic transmitted the Cambodia and Mexica strains. However, blood meals from viremic mice were more infectious than artificial blood meals of comparable doses; the Cambodia strain was not transmitted by mosquitoes from Brazil after artificial blood meals, whereas 61% transmission occurred after a murine blood meal (saliva titers up to 4 log 10 infectious units/collection). Although regional origins of vector populations and virus strain influence transmission efficiency, Ae. aegypti mosquitoes appear to be competent vectors of Zika virus in several regions of the Americas.

  2. Vertical infestation of the dengue vectors Aedes aegypti and Aedes albopictus in apartments in Kuala Lumpur, Malaysia.

    Science.gov (United States)

    Roslan, Muhammad Aidil; Shafie, Aziz; Ngui, Romano; Lim, Yvonne Ai Lian; Sulaiman, Wan Yusoff Wan

    2013-12-01

    Dengue is a serious public health problem in Malaysia. The aim of this study was to compare the vertical infestation of Aedes population in 2 apartments in Kuala Lumpur with different status of dengue incidence (i.e., high-dengue-incidence area and area with no reported dengue cases). The study was also conducted to assess the relationship between environmental factors such as rainfall, temperature, and humidity and Aedes population that may influence Aedes infestation. Surveillance with a mosquito larvae trapping device was conducted for 28 continuous weeks (January to July 2012) in Vista Angkasa (VA) and Inderaloka (IL) apartments located in Kuala Lumpur, Malaysia. The results indicated that both Aedes spp. could be found from ground to higher floor levels of the apartments, with Aedes aegypti being more predominant than Ae. albopictus. Data based on mixed and single breeding of Aedes spp. on different floors did not show any significant difference. Both rainfall (R3; i.e., the amount of rainfall collected during the previous 3 wk before the surveillance period began) and RH data showed significant relationship with the number of Aedes larvae collected in VA and IL. No significant difference was found between the numbers of Aedes larvae in both study areas as well as maximum and minimum temperatures. Results also indicated adaptations of Ae. aegypti to the ecosystem at each elevation of high-rise buildings, with Ae. albopictus staying inside of apartment units.

  3. Differential Susceptibilities of Aedes aegypti and Aedes albopictus from the Americas to Zika Virus.

    Directory of Open Access Journals (Sweden)

    Thais Chouin-Carneiro

    2016-03-01

    Full Text Available Since the major outbreak in 2007 in the Yap Island, Zika virus (ZIKV causing dengue-like syndromes has affected multiple islands of the South Pacific region. In May 2015, the virus was detected in Brazil and then spread through South and Central America. In December 2015, ZIKV was detected in French Guiana and Martinique. The aim of the study was to evaluate the vector competence of the mosquito spp. Aedes aegypti and Aedes albopictus from the Caribbean (Martinique, Guadeloupe, North America (southern United States, South America (Brazil, French Guiana for the currently circulating Asian genotype of ZIKV isolated from a patient in April 2014 in New Caledonia.Mosquitoes were orally exposed to an Asian genotype of ZIKV (NC-2014-5132. Upon exposure, engorged mosquitoes were maintained at 28° ± 1 °C, a 16h:8h light:dark cycle and 80% humidity. 25-30 mosquitoes were processed at 4, 7 and 14 days post-infection (dpi. Mosquito bodies (thorax and abdomen, heads and saliva were analyzed to measure infection, dissemination and transmission, respectively. High infection but lower disseminated infection and transmission rates were observed for both Ae. aegypti and Ae. albopictus. Ae. aegypti populations from Guadeloupe and French Guiana exhibited a higher dissemination of ZIKV than the other Ae. aegypti populations examined. Transmission of ZIKV was observed in both mosquito species at 14 dpi but at a low level.This study suggests that although susceptible to infection, Ae. aegypti and Ae. albopictus were unexpectedly low competent vectors for ZIKV. This may suggest that other factors such as the large naïve population for ZIKV and the high densities of human-biting mosquitoes contribute to the rapid spread of ZIKV during the current outbreak.

  4. Leaf extracts of Melia azedarach Linnaeus (Sapindales: Meliaceae) act as larvicide against Aedes aegypti (Linnaeus, 1762) (Diptera: Culicidae).

    Science.gov (United States)

    Prophiro, Josiane Somariva; Rossi, Juliana Chedid Nogared; Pedroso, Murilo Fernandes; Kanis, Luiz Alberto; Silva, Onilda Santos

    2008-01-01

    The objective of this study was to compare the larvicidal effect of hydroethanolic extracts of fresh and dry leaves of Melia azedarach Linnaeus (Sapindales: Meliaceae) on Aedes aegypti (Linnaeus, 1762) (Diptera: Culicidae). All the extracts evaluated induced mortality among the third and fourth instar larvae of Aedes aegypti after 24 and 48 hours of exposure to the products. Although previous studies had demonstrated the action of seeds and fruits of Melia azedarach against the larvae of different Aedes aegypti populations, the present report is the first to show the larvicidal effect of the fresh and dry leaves of this plant.

  5. Reappearance of Aedes aegypti (Diptera: Culicidae) in Lima, Peru.

    Science.gov (United States)

    Andrade, C S; Cáceres, A G; Vaquerizo, A; Ibañez-Bernal, S; Cachay, L S

    2001-07-01

    We report here the reappearance of Aedes aegypti in the Rimac district, and summarize the history of this mosquito species in Peru since its first detection in 1852. On March 17 2000 were found Ae. aegypti and Culex quinquefasciatus in Mariscal Castilla town, Flor de Amancaes, San Juan de Amancaes, El Altillo and Santa Rosa in the Rimac district, Lima Province.

  6. Truck-mounted area-wide application of pyriproxyfen targeting Aedes aegypti and Aedes albopictus in northeast Florida

    Science.gov (United States)

    This study was conducted to determine the efficacy of truck-mounted ULV applications of pyriproxyfen against Aedes aegypti larvae in artificial water containers and wild adult Ae. albopictus populations in an urban setting. The study was conducted over a 3 ½ month period (Jun – Oct 2012), during wh...

  7. Nota sobre o encontro de Aedes aegypti em bromélias Finding of Aedes aegypti breeding in bromeliad

    OpenAIRE

    Oswaldo Paulo Forattini; Gisela Rita Alvarenga Monteiro Marques

    2000-01-01

    Descreve-se o encontro de formas imaturas de Aedes aegypti em bromélia domesticada para fins decorativos. São feitas considerações sobre as implicações desse encontro para o controle desse mosquito.A breeding place of Aedes aegypti immature forms were found in bromeliads domesticated for decorative purposes. Implications for the control measures were considered.

  8. Evaluation of Insect Growth Regulators Against Field-Collected Aedes aegypti and Aedes albopictus (Diptera: Culicidae) from Malaysia.

    Science.gov (United States)

    Lau, Koon Weng; Chen, Chee Dhang; Lee, Han Lim; Norma-Rashid, Yusoff; Sofian-Azirun, Mohd

    2015-03-01

    Susceptibility status of Aedes aegypti (L.) and Aedes albopictus Skuse larvae obtained from 12 states in Malaysia were evaluated against five insect growth regulators (IGRs), namely, pyriproxyfen, methoprene, diflubenzuron, cyromazine, and novaluron under laboratory conditions. Field populations of Ae. aegypti exhibited moderate resistance toward methoprene and low resistance toward pyriproxyfen, with resistance ratios of 12.7 and 1.4, respectively, but susceptibility to diflubenzuron, cyromazine, and novaluron. On the other hand, field populations of Ae. albopictus exhibited low resistance against diflubenzuron and novaluron, with resistance ratio of 2.1 and 1.0, respectively, but susceptibility to other tested IGRs. Our study concluded that the tested IGRs provide promising results and can be used to control field population of Ae. aegypti and Ae. albopictus, especially cyromazine. The use of IGR should be considered as an alternative when larvae develop resistance to conventional insecticides.

  9. INDEKS ENTOMOLOGI DAN KERENTANAN LARVA Aedes aegypti TERHADAP TEMEFOS DI KELURAHAN KARSAMENAK KECAMATAN KAWALU KOTA TASIKMALAYA

    Directory of Open Access Journals (Sweden)

    Hubullah Fuadzy

    2015-10-01

    Full Text Available AbstrakSalah satu upaya pengendalian vektor nyamuk Aedes aegypti adalah menggunakan larvasida sintetis seperti temefos. Pemanfaatan temefos secara terus menerus dan berulang merupakan faktor risiko terjadinya resistensi. Tujuan penelitian ini adalah untuk menentukan indeks entomologi dan status kerentanan larva Ae. aegypti terhadap temefos di Kelurahan Karsamenak Kecamatan Kawalu Kota Tasikmalaya. Jenis penelitian adalah eksperimen dengan rancangan acak lengkap. Populasi adalah larva nyamuk Ae. aegypti yang diperoleh dari 289 rumah penduduk di Kelurahan Karsamenak, dan sampel adalah 700 larva Ae. aegypti strain Karsamenak. Bioassay menggunakan metode Elliot dan Polson dengan konsentrasi diagnostik WHO sebesar 0,02 ppm. Hasil penelitian menunjukkan bahwa House Index (HI 24,9; Container Index (CI 9,05; Breteau Index (BI 29,07; dan Density Figure (DF 4. Larva Ae. aegypti umumnya ditemukan di Bak Mandi penduduk. Kemudian untuk membunuh 95% larva Ae. aegypti dibutuhkan konsentrasi temefos sebesar (LC95 0,02416 ppm (0,01917 ­ 0,03330 ppm dan RR95 3,02. Kelurahan Karsamenak termasuk wilayah yang potensial untuk penularan penyakit Demam Berdarah Dengue, dan larva Ae. aegypti terindikasi telah resisten terhadap temefos.Kata Kunci : Resisten, Aedes aegypti, temefos, kerentananAbstractOne effort for controlling Aedes aegypti as dengue vector is using synthetic larvacide such as temephos. Utilization of temephos continuously and repeatedly a risk factor for resistance. The objective of this study were to determine the entomology index and susceptibility of Ae. aegypti larvae against temephos in endemic areas of dengue fever in the Karsamenak District Kawalu of Tasikmalaya. The research was a true experimental study with a complete randomized design. The population were the larvae of Ae. aegypti were derived from 289 houses of resident in the Village Karsamenak and the sample was 700 larvae of Ae. aegypti strains Karsamenak. The Bioassay used Elliot and

  10. Free flight of the mosquito Aedes aegypti

    CERN Document Server

    Iams, S M

    2012-01-01

    High speed video observations of free flying male Aedes aegypti mosquitoes, the dengue and yellow fever vector, along with custom measurement methods, enable measurement of wingbeat frequency, body position and body orientation of mosquitoes during flight. We find these mosquitoes flap their wings at approximately 850 Hz. We also generate body yaw, body pitch and wing deviation measurements with standard deviations of less than 1 degree and find that sideways velocity and acceleration are important components of mosquito motion. Rapid turns involving changes in flight direction often involve large sideways accelerations. These do not correspond to commensurate changes in body heading, and the insect's flight direction and body heading are decoupled during flight. These findings call in to question the role of yaw control in mosquito flight. In addition, using orientation data, we find that sideways accelerations are well explained by roll-based rotation of the lift vector. In contrast, the insect's body pitch...

  11. Pyrethroid resistance in Aedes aegypti and Aedes albopictus: Important mosquito vectors of human diseases.

    Science.gov (United States)

    Smith, Letícia B; Kasai, Shinji; Scott, Jeffrey G

    2016-10-01

    Aedes aegypti and A. albopictus mosquitoes are vectors of important human disease viruses, including dengue, yellow fever, chikungunya and Zika. Pyrethroid insecticides are widely used to control adult Aedes mosquitoes, especially during disease outbreaks. Herein, we review the status of pyrethroid resistance in A. aegypti and A. albopictus, mechanisms of resistance, fitness costs associated with resistance alleles and provide suggestions for future research. The widespread use of pyrethroids has given rise to many populations with varying levels of resistance worldwide, albeit with substantial geographical variation. In adult A. aegypti and A. albopictus, resistance levels are generally lower in Asia, Africa and the USA, and higher in Latin America, although there are exceptions. Susceptible populations still exist in several areas of the world, particularly in Asia and South America. Resistance to pyrethroids in larvae is also geographically widespread. The two major mechanisms of pyrethroid resistance are increased detoxification due to P450-monooxygenases, and mutations in the voltage sensitive sodium channel (Vssc) gene. Several P450s have been putatively associated with insecticide resistance, but the specific P450s involved are not fully elucidated. Pyrethroid resistance can be due to single mutations or combinations of mutations in Vssc. The presence of multiple Vssc mutations can lead to extremely high levels of resistance. Suggestions for future research needs are presented.

  12. Fitness of wAlbB Wolbachia Infection in Aedes aegypti: Parameter Estimates in an Outcrossed Background and Potential for Population Invasion.

    Science.gov (United States)

    Axford, Jason K; Ross, Perran A; Yeap, Heng Lin; Callahan, Ashley G; Hoffmann, Ary A

    2016-03-01

    Wolbachia endosymbionts are potentially useful tools for suppressing disease transmission by Aedes aegypti mosquitoes because Wolbachia can interfere with the transmission of dengue and other viruses as well as causing deleterious effects on their mosquito hosts. Most recent research has focused on the wMel infection, but other infections also influence viral transmission and may spread in natural populations. Here, we focus on the wAlbB infection in an Australian outbred background and show that this infection has many features that facilitate its invasion into natural populations including strong cytoplasmic incompatibility, a lack of effect on larval development, an equivalent mating success to uninfected males and perfect maternal transmission fidelity. On the other hand, the infection has deleterious effects when eggs are held in a dried state, falling between wMel and the more virulent wMelPop Wolbachia strains. The impact of this infection on lifespan also appears to be intermediate, consistent with the observation that this infection has a titer in adults between wMel and wMelPop. Population cage experiments indicate that the wAlbB infection establishes in cages when introduced at a frequency of 22%, suggesting that this strain could be successfully introduced into populations and subsequently persist and spread.

  13. Detection of Aedes aegypti, Aedes albopictus, and Aedes koreicus in the Area of Sochi, Russia.

    Science.gov (United States)

    Ganushkina, Ludmila A; Patraman, Ivan V; Rezza, Giovanni; Migliorini, Luigi; Litvinov, Serguei K; Sergiev, Vladimir P

    2016-01-01

    Following the identification of Aedes (Ae.) aegypti in the Sochi area in Russia at the beginning of 2000, entomological surveys were conducted during the summers of 2007, 2011, and 2012, leading to the identification of Ae. albopictus and Ae. koreicus. These findings highlight Russia as being the only country in the World Health Organization European Region with a documented presence of both Ae. aegypti and Ae. albopictus mosquitoes. Both mosquito species are found on the coasts of the Black Sea. Control measures are needed to reduce the possible risks of importing exotic vector-borne infections, such as dengue and chikungunya.

  14. Discriminable roles of Aedes aegypti and Aedes albopictus in establishment of dengue outbreaks in Taiwan.

    Science.gov (United States)

    Yang, Chao-Fu; Hou, Jion-Nun; Chen, Tien-Huang; Chen, Wei-June

    2014-02-01

    Aedes aegypti and Aedes albopictus were reported to be significant as vectors of dengue fever. In Taiwan, the latter is distributed throughout the island while the former appears only south of the Tropic of Cancer; i.e., 23.5°N. In the past decade, there were five outbreaks with over 1000 cases of dengue fever in Taiwan. Without exception, these outbreaks all occurred in the south where the two Aedes mosquitoes are sympartic. According to the Center for Disease Control of Taiwan, imported cases are thought to provide the seeds of dengue outbreaks every year. Mostly, the number of imported cases is greater in northern island, probably due to a larger population of travelers and imported workers from endemic countries. Looking at the example in 2002, northern, central, and southern parts of Taiwan reported 28, 11, and 13 imported cases, respectively. However, 54, 21, and 5309 total cases were confirmed in the corresponding regions over the entire year, indicating a significant skew of case distributions. A hypothesis is thus inspired that the existence of Ae. aegypti is a prerequisite to initiate a dengue outbreak, while participation of Ae. albopictus expands or maintains the scale until the de novo herd immunity reaches high level.

  15. Bacterial Larvicide, Bacillus thuringiensis israelensis Strain AM 65-52 Water Dispersible Granule Formulation Impacts Both Dengue Vector, Aedes aegypti (L.) Population Density and Disease Transmission in Cambodia.

    Science.gov (United States)

    Setha, To; Chantha, Ngan; Benjamin, Seleena; Socheat, Doung

    2016-09-01

    A multi-phased study was conducted in Cambodia from 2005-2011 to measure the impact of larviciding with the bacterial larvicide, Bacillus thuringiensis israelensis (Bti), a water dispersible granule (WG) formulation on the vector, Aedes aegypti (L.) and the epidemiology. In our studies, all in-use containers were treated at 8 g/1000 L, including smaller containers and animal feeders which were found to contribute 23% of Ae aegypti pupae. The treated waters were subjected to routine water exchange activities. Pupal production was suppressed by an average 91% for 8 weeks. Pupal numbers continued to remain significantly lower than the untreated commune (UTC) for 13 weeks post treatment in the peak dengue vector season (p50% of the household in the UTC harbored ≥11 mosquitoes per home. The adult population continued to remain at significantly much lower numbers in the Bti treated commune than in the UTC for 10-12 weeks post treatment (p<0.05). In 2011, a pilot operational program was evaluated in Kandal Province, a temephos resistant site. It was concluded that 2 cycles of Bti treatment in the 6 months monsoon season with complete coverage of the target districts achieved an overall dengue case reduction of 48% in the 6 treated districts compared to the previous year, 2010. Five untreated districts in the same province had an overwhelming increase of 352% of dengue cases during the same period of time. The larvicide efficacy, treatment of all in-use containers at the start of the monsoon season, together with treatment coverage of entire districts interrupted disease transmission in the temephos resistant province.

  16. Bacterial Larvicide, Bacillus thuringiensis israelensis Strain AM 65-52 Water Dispersible Granule Formulation Impacts Both Dengue Vector, Aedes aegypti (L.) Population Density and Disease Transmission in Cambodia

    Science.gov (United States)

    Socheat, Doung

    2016-01-01

    A multi-phased study was conducted in Cambodia from 2005–2011 to measure the impact of larviciding with the bacterial larvicide, Bacillus thuringiensis israelensis (Bti), a water dispersible granule (WG) formulation on the vector, Aedes aegypti (L.) and the epidemiology. In our studies, all in-use containers were treated at 8 g/1000 L, including smaller containers and animal feeders which were found to contribute 23% of Ae aegypti pupae. The treated waters were subjected to routine water exchange activities. Pupal production was suppressed by an average 91% for 8 weeks. Pupal numbers continued to remain significantly lower than the untreated commune (UTC) for 13 weeks post treatment in the peak dengue vector season (p50% of the household in the UTC harbored ≥11 mosquitoes per home. The adult population continued to remain at significantly much lower numbers in the Bti treated commune than in the UTC for 10–12 weeks post treatment (p<0.05). In 2011, a pilot operational program was evaluated in Kandal Province, a temephos resistant site. It was concluded that 2 cycles of Bti treatment in the 6 months monsoon season with complete coverage of the target districts achieved an overall dengue case reduction of 48% in the 6 treated districts compared to the previous year, 2010. Five untreated districts in the same province had an overwhelming increase of 352% of dengue cases during the same period of time. The larvicide efficacy, treatment of all in-use containers at the start of the monsoon season, together with treatment coverage of entire districts interrupted disease transmission in the temephos resistant province. PMID:27627758

  17. Age-Stage, Two-Sex Life Table Characteristics of Aedes albopictus and Aedes Aegypti in Penang Island, Malaysia.

    Science.gov (United States)

    Maimusa, Hamisu A; Ahmad, Abu Hassan; Kassim, Nur Faeza A; Rahim, Junaid

    2016-03-01

    The life table developmental attributes of laboratory colonies of wild strains of Aedes albopictus and Aedes aegypti were analyzed and compared based on the age-stage, two-sex life table. Findings inclusive in this study are: adult preoviposition periods, total preoviposition period, mean intrinsic rate of increase (r), mean finite rate of increase (λ), net reproductive rates (R0), and mean generation time (T). The total preadult development time was 9.47 days for Ae. albopictus and 8.76 days for Ae. aegypti. The life expectancy was 19.01 days for Ae. albopictus and 19.94 days for Ae. aegypti. Mortality occurred mostly during the adult stage. The mean development time for each stage insignificantly correlated with temperature for Ae. albopictus (r  =  -0.208, P > 0.05) and (r  =  -0.312, P > 0.05) for Ae. aegypti. The population parameters suggest that Ae. albopictus and Ae. aegypti populations are r-strategists characterized by a high r, a large R0, and short T. This present study provides the first report to compare the life parameters of Ae. albopictus and Ae. aegypti strains from Penang island, Malaysia.

  18. Aedes aegypti and Aedes albopictus Habitat Preferences in South Texas, USA

    OpenAIRE

    Champion, Samantha R; Vitek, Christopher J.

    2014-01-01

    The South Texas region has a historical record of occasional dengue outbreaks. The recent introduction of chikungunya virus to the Caribbean suggests that this disease may be a concern as well. Six different cities and three field habitat types (residential, tire shops, and cemeteries) were examined for evidence of habitat and longitudinal preference of two vector species, Aedes aegypti and Aedes albopictus. A. aegypti was more prevalent in tire shop sites, while A. albopictus was more preval...

  19. Formulas of components of citronella oil against mosquitoes (Aedes aegypti).

    Science.gov (United States)

    Hsu, Wey-Shin; Yen, Jui-Hung; Wang, Yei-Shung

    2013-01-01

    The mosquito Aedes aegypti is an epidemic vector of several diseases such as dengue fever and yellow fever. Several pesticides are used to control the mosquito population. Because of their frequent use, some mosquitoes have developed resistance. In this study, we used the Y-tube olfactometer to test essential oils of Cymbopogon species and screened specific formulas of components as repellents against Ae. aegypti. At 400 μL, the extracted oil of citronella grass (Cymbopogon nardus) and myrcene produced a low-active response by inhibiting mosquito host-seeking activity. Citronella grass, lemon grass (Cymbopogon citratus), citral and myrcene also produced a low-treatment response to repellents, for more potential to affect host-seeking behavior. Furthermore, the mixture of citral, myrcene, and citronellal oil (C:M:Ci = 6:4:1) greatly affected and inhibited host-seeking behavior (76% active response; 26% treatment response with 40 μL; 42.5%, 18% with 400 μL; and 19%, 23% with 1000 μL). As compared with the result for N,N-diethyl-3-methylbenzamide (DEET; 44%, 22% with 400 μL), adjusting the composition formulas of citronella oil had a synergistic effect, for more effective repellent against Ae. aegypti.

  20. Principales criaderos para Aedes aegypti y culícidos asociados, Argentina Main breeding-containers for Aedes aegypti and associated culicids, Argentina

    Directory of Open Access Journals (Sweden)

    Marina Stein

    2002-10-01

    Full Text Available Se identificaron criaderos de Aedes (Stegomyia aegypti en dos ciudades de la provincia del Chaco (Noreste de Argentina: Presidencia Roque Saenz Peña y Machagai. Los recipientes encontrados en los patios de las viviendas capaces de colectar agua se clasificaron según tipo y tamaño, se contaron y examinaron. Aedes aegypti y Culex quinquefasciatus fueron las especies mas abundantes, encontrándose además Cx. maxi, Cx. saltanensis y Ochlerotatus scapularis. Los neumáticos y cajas de baterías para autos fueron los recipientes que más aportaron a la producción de formas inmaduras de los culícidos colectados. Las lluvias fueron un factor importante para la proliferacion de Ae. aegypti, así como también el habito comun en la población de guardar recipientes en sus casas que permitan el desarrollo de estos culícidos.Breeding containers for Aedes (Stegomyia aegypti were identified in two cities of Chaco Province (northeast Argentina: Presidencia Roque Saenz Peña and Machagai. All water-retaining recipients found in house backyards capable to retain water were classified according to their type and size, counted and checked. Aedes aegypti and Culex quinquefasciatus were the most frequently collected species, being also found Cx. maxi, Cx. saltanensis and Ochlerotatus scapularis. Tires and car batteries represented the most important type of container where immature forms of culicids could be found. Rain was an important factor for Ae. aegypti proliferation, as well as the widespread habit of the population of keeping useless containers at home, which allows the development of culicids.

  1. Effects of Irritant Chemicals on Aedes aegypti Resting Behavior: Is There a Simple Shift to Untreated "Safe Sites"?

    Science.gov (United States)

    2011-07-26

    Effects of Irritant Chemicals on Aedes aegypti Resting Behavior: Is There a Simple Shift to Untreated ‘‘Safe Sites’’? Hortance Manda*, Luana M. Arce... aegypti to irritant and repellent chemicals that can be exploited to reduce man-vector contact. Maximum efficacy of interventions based on irritant...overall impact. Methods: Using a laboratory box assay, resting patterns of two population strains of female Ae. aegypti (THAI and PERU) were evaluated

  2. Modeling the dynamics of a non-limited and a self-limited gene drive system in structured Aedes aegypti populations.

    Science.gov (United States)

    Legros, Mathieu; Xu, Chonggang; Morrison, Amy; Scott, Thomas W; Lloyd, Alun L; Gould, Fred

    2013-01-01

    Recently there have been significant advances in research on genetic strategies to control populations of disease-vectoring insects. Some of these strategies use the gene drive properties of selfish genetic elements to spread physically linked anti-pathogen genes into local vector populations. Because of the potential of these selfish elements to spread through populations, control approaches based on these strategies must be carefully evaluated to ensure a balance between the desirable spread of the refractoriness-conferring genetic cargo and the avoidance of potentially unwanted outcomes such as spread to non-target populations. There is also a need to develop better estimates of the economics of such releases. We present here an evaluation of two such strategies using a biologically realistic mathematical model that simulates the resident Aedes aegypti mosquito population of Iquitos, Peru. One strategy uses the selfish element Medea, a non-limited element that could permanently spread over a large geographic area; the other strategy relies on Killer-Rescue genetic constructs, and has been predicted to have limited spatial and temporal spread. We simulate various operational approaches for deploying these genetic strategies, and quantify the optimal number of released transgenic mosquitoes needed to achieve definitive spread of Medea-linked genes and/or high frequencies of Killer-Rescue-associated elements. We show that for both strategies the most efficient approach for achieving spread of anti-pathogen genes within three years is generally to release adults of both sexes in multiple releases over time. Even though females in these releases should not transmit disease, there could be public concern over such releases, making the less efficient male-only release more practical. This study provides guidelines for operational approaches to population replacement genetic strategies, as well as illustrates the use of detailed spatial models to assist in safe and

  3. Modeling the dynamics of a non-limited and a self-limited gene drive system in structured Aedes aegypti populations.

    Directory of Open Access Journals (Sweden)

    Mathieu Legros

    Full Text Available Recently there have been significant advances in research on genetic strategies to control populations of disease-vectoring insects. Some of these strategies use the gene drive properties of selfish genetic elements to spread physically linked anti-pathogen genes into local vector populations. Because of the potential of these selfish elements to spread through populations, control approaches based on these strategies must be carefully evaluated to ensure a balance between the desirable spread of the refractoriness-conferring genetic cargo and the avoidance of potentially unwanted outcomes such as spread to non-target populations. There is also a need to develop better estimates of the economics of such releases. We present here an evaluation of two such strategies using a biologically realistic mathematical model that simulates the resident Aedes aegypti mosquito population of Iquitos, Peru. One strategy uses the selfish element Medea, a non-limited element that could permanently spread over a large geographic area; the other strategy relies on Killer-Rescue genetic constructs, and has been predicted to have limited spatial and temporal spread. We simulate various operational approaches for deploying these genetic strategies, and quantify the optimal number of released transgenic mosquitoes needed to achieve definitive spread of Medea-linked genes and/or high frequencies of Killer-Rescue-associated elements. We show that for both strategies the most efficient approach for achieving spread of anti-pathogen genes within three years is generally to release adults of both sexes in multiple releases over time. Even though females in these releases should not transmit disease, there could be public concern over such releases, making the less efficient male-only release more practical. This study provides guidelines for operational approaches to population replacement genetic strategies, as well as illustrates the use of detailed spatial models to

  4. The impact of sequential ultra-low volume ground aerosol applications of malathion on the population dynamics of Aedes aegypti (L.).

    Science.gov (United States)

    Focks, D A; Kloter, K O; Carmichael, G T

    1987-05-01

    The efficacy of sequential, ultra-low volume ground aerosol applications of malathion at current U.S. label rates was evaluated as an emergency control measure for adult populations of Aedes aegypti (L.) in New Orleans, Louisiana. Replicates of 11 sequential aerosol treatments applied 12 hr apart during a 5.5-day period reduced mean adult captures and oviposition rates during the treatment period 73% and 75%, respectively. We hypothesize that oviposition was not completely suppressed because females with a developing egg burden remained sequestered during treatment periods or were more tolerant to the pesticide. We further concluded that adults could not be totally suppressed because of continued emergence. After treatment, adult densities recovered to pretreatment and control levels within approximately 1 week. A simulation study of the results suggested that, under the conditions of closely spaced housing and abundant vegetation that is typical of much of New Orleans, a single aerosol killed an average of 88% of the males and only 30% of the females present.

  5. Origin of the dengue fever mosquito, Aedes aegypti, in California.

    Science.gov (United States)

    Gloria-Soria, Andrea; Brown, Julia E; Kramer, Vicki; Hardstone Yoshimizu, Melissa; Powell, Jeffrey R

    2014-01-01

    Dengue fever is among the most widespread vector-borne infectious diseases. The primary vector of dengue is the Aedes aegypti mosquito. Ae. aegypti is prevalent in the tropics and sub-tropics and is closely associated with human habitats outside its native range of Africa. While long established in the southeastern United States of America where dengue is re-emerging, breeding populations have never been reported from California until the summer of 2013. Using 12 highly variable microsatellite loci and a database of reference populations, we have determined that the likely source of the California introduction is the southeastern United States, ruling out introductions from abroad, from the geographically closer Arizona or northern Mexico populations, or an accidental release from a research laboratory. The power to identify the origin of new introductions of invasive vectors of human disease relies heavily on the availability of a panel of reference populations. Our work demonstrates the importance of generating extensive reference databases of genetically fingerprinted human-disease vector populations to aid public health efforts to prevent the introduction and spread of vector-borne diseases.

  6. Vertical Transmission of Zika Virus by Aedes aegypti and Ae. albopictus Mosquitoes.

    Science.gov (United States)

    Ciota, Alexander T; Bialosuknia, Sean M; Ehrbar, Dylan J; Kramer, Laura D

    2017-05-15

    To determine the potential role of vertical transmission in Zika virus expansion, we evaluated larval pools of perorally infected Aedes. aegypti and Ae. albopictus adult female mosquitoes; ≈1/84 larvae tested were Zika virus-positive; and rates varied among mosquito populations. Thus, vertical transmission may play a role in Zika virus spread and maintenance.

  7. Distribution of Voltage-Gated Sodium Channel (Nav) Alleles among the Aedes aegypti Populations In Central Java Province and Its Association with Resistance to Pyrethroid Insecticides.

    Science.gov (United States)

    Sayono, Sayono; Hidayati, Anggie Puspa Nur; Fahri, Sukmal; Sumanto, Didik; Dharmana, Edi; Hadisaputro, Suharyo; Asih, Puji Budi Setia; Syafruddin, Din

    2016-01-01

    The emergence of insecticide resistant Aedes aegypti mosquitoes has hampered dengue control efforts. WHO susceptibility tests, using several pyrethroid compounds, were conducted on Ae. aegypti larvae that were collected and raised to adulthood from Semarang, Surakarta, Kudus and Jepara in Java. The AaNaV gene fragment encompassing kdr polymorphic sites from both susceptible and resistant mosquitoes was amplified, and polymorphisms were associated with the resistant phenotype. The insecticide susceptibility tests demonstrated Ae, aegypti resistance to the pyrethroids, with mortality rates ranging from 1.6%-15.2%. Three non-synonymous polymorphisms (S989P, V1016G and F1534C) and one synonymous polymorphism (codon 982) were detected in the AaNaV gene. Eight AaNaV alleles were observed in specimens from Central Java. Allele 3 (SGF) and allele 7 (PGF) represent the most common alleles found and demonstrated strong associations with resistance to pyrethroids (OR = 2.75, CI: 0.97-7.8 and OR = 7.37, CI: 2.4-22.5, respectively). This is the first report of 8 Ae. aegypti AaNaV alleles, and it indicates the development of resistance in Ae. aegypti in response to pyrethroid insecticide-based selective pressure. These findings strongly suggest the need for an appropriate integrated use of insecticides in the region. The 989P, 1016G and 1534C polymorphisms in the AaNaV gene are potentially valuable molecular markers for pyrethroid insecticide resistance monitoring.

  8. Distribution of Voltage-Gated Sodium Channel (Nav Alleles among the Aedes aegypti Populations In Central Java Province and Its Association with Resistance to Pyrethroid Insecticides.

    Directory of Open Access Journals (Sweden)

    Sayono Sayono

    Full Text Available The emergence of insecticide resistant Aedes aegypti mosquitoes has hampered dengue control efforts. WHO susceptibility tests, using several pyrethroid compounds, were conducted on Ae. aegypti larvae that were collected and raised to adulthood from Semarang, Surakarta, Kudus and Jepara in Java. The AaNaV gene fragment encompassing kdr polymorphic sites from both susceptible and resistant mosquitoes was amplified, and polymorphisms were associated with the resistant phenotype. The insecticide susceptibility tests demonstrated Ae, aegypti resistance to the pyrethroids, with mortality rates ranging from 1.6%-15.2%. Three non-synonymous polymorphisms (S989P, V1016G and F1534C and one synonymous polymorphism (codon 982 were detected in the AaNaV gene. Eight AaNaV alleles were observed in specimens from Central Java. Allele 3 (SGF and allele 7 (PGF represent the most common alleles found and demonstrated strong associations with resistance to pyrethroids (OR = 2.75, CI: 0.97-7.8 and OR = 7.37, CI: 2.4-22.5, respectively. This is the first report of 8 Ae. aegypti AaNaV alleles, and it indicates the development of resistance in Ae. aegypti in response to pyrethroid insecticide-based selective pressure. These findings strongly suggest the need for an appropriate integrated use of insecticides in the region. The 989P, 1016G and 1534C polymorphisms in the AaNaV gene are potentially valuable molecular markers for pyrethroid insecticide resistance monitoring.

  9. Leaf extracts of Melia azedarach Linnaeus (Sapindales: Meliaceae act as larvicide against Aedes aegypti (Linnaeus, 1762 (Diptera: Culicidae Extratos de folhas de Melia azedarach Linnaeus (Sapindales: Meliaceae atuam como larvicida de Aedes aegypti (Linnaeus, 1762 (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    Josiane Somariva Prophiro

    2008-12-01

    Full Text Available The objective of this study was to compare the larvicidal effect of hydroethanolic extracts of fresh and dry leaves of Melia azedarach Linnaeus (Sapindales: Meliaceae on Aedes aegypti (Linnaeus, 1762 (Diptera: Culicidae. All the extracts evaluated induced mortality among the third and fourth instar larvae of Aedes aegypti after 24 and 48 hours of exposure to the products. Although previous studies had demonstrated the action of seeds and fruits of Melia azedarach against the larvae of different Aedes aegypti populations, the present report is the first to show the larvicidal effect of the fresh and dry leaves of this plant.O objetivo deste trabalho foi comparar o efeito larvicida de extratos hidro-etanólicos de folhas verdes e secas de Melia azedarach Linnaeus (Sapindales: Meliaceae em Aedes aegypti (Linnaeus, 1762 (Diptera: Culicidae. Todos os extratos avaliados induziram mortalidade em larvas de 3º e 4º estágios de Aedes aegypti, após 24 e 48 horas de exposição aos produtos. Embora estudos prévios tenham demonstrado a ação de sementes e frutos de Melia azedarach em larvas de diferentes populações de Aedes aegypti, o presente estudo é o primeiro a reportar o efeito larvicida de folhas verdes e secas desta planta.

  10. Software for pattern recognition of the larvae of Aedes aegypti and Aedes albopictus

    Directory of Open Access Journals (Sweden)

    São Thiago André Iwersen de

    2002-01-01

    Full Text Available Software for pattern recognition of the larvae of mosquitoes Aedes aegypti and Aedes albopictus, biological vectors of dengue and yellow fever, has been developed. Rapid field identification of larva using a digital camera linked to a laptop computer equipped with this software may greatly help prevention campaigns.

  11. Software for pattern recognition of the larvae of Aedes aegypti and Aedes albopictus

    OpenAIRE

    São Thiago André Iwersen de; Kupek Emil; Ferreira Neto Joaquim Alves; São Thiago Paulo de Tarso

    2002-01-01

    Software for pattern recognition of the larvae of mosquitoes Aedes aegypti and Aedes albopictus, biological vectors of dengue and yellow fever, has been developed. Rapid field identification of larva using a digital camera linked to a laptop computer equipped with this software may greatly help prevention campaigns.

  12. Insecticide susceptibility of Aedes aegypti and Aedes albopictus in Central Africa

    Directory of Open Access Journals (Sweden)

    Nwane Philippe

    2011-05-01

    Full Text Available Abstract Background Aedes aegypti (Linnaeus, 1762 and Aedes albopictus (Skuse, 1894 are the main vectors of dengue (DENV and chikungunya (CHIKV viruses worldwide. As there is still no vaccine or specific treatment for DENV and CHIKV, vector control remains the cornerstone of prevention and outbreak control. Unfortunately, vector control programs are facing operational challenges with mosquitoes becoming resistant to commonly used insecticides in several areas through the world. Throughout Central Africa no recent data are available susceptible/resistant status of either vector species since the introduction/arrival of Ae. albopictus in this area. We therefore studied the level of resistance of these two major vectors to insecticides commonly used in Africa for mosquito control. Results Aedes aegypti and Ae. albopictus were sampled in six urban localities of Cameroon (Garoua, Bertoua, Yaoundé, Bafia, Buea and Gabon (Libreville. Larval bioassays, carried out to determine the lethal concentrations (LC50 and LC95 and resistance ratios (RR50 and RR95 suggested that both vector species were susceptible to Bti (Bacillus thuringiensis var israeliensis and temephos. Bioassays were also performed on adults using WHO diagnostic test kits to assess phenotypic resistance to deltamethrin, DDT, fenitrothion and propoxur. These experiments showed that one population of Ae. aegypti (Libreville and two populations of Ae. albopictus (Buea and Yaoundé were resistant to DDT (mortality 36% to 71%. Resistance to deltamethrin was also suspected in Ae. albopictus from Yaoundé (83% mortality. All other field mosquito populations were susceptible to deltamethrin, DDT, fenitrothion and propoxur. No increase in the knockdown times (Kdt50 and Kdt95 was noted in the Yaoundé resistant population compared to other Ae. albopictus populations, suggesting the possible involvement of metabolic resistance to deltamethrin and DDT. Conclusion In view of the recent increase in

  13. Pyrethroid Resistance in Malaysian Populations of Dengue Vector Aedes aegypti Is Mediated by CYP9 Family of Cytochrome P450 Genes

    Science.gov (United States)

    Ishak, Intan H.; Kamgang, Basile; Ibrahim, Sulaiman S.; Riveron, Jacob M.; Irving, Helen

    2017-01-01

    Background Dengue control and prevention rely heavily on insecticide-based interventions. However, insecticide resistance in the dengue vector Aedes aegypti, threatens the continued effectiveness of these tools. The molecular basis of the resistance remains uncharacterised in many endemic countries including Malaysia, preventing the design of evidence-based resistance management. Here, we investigated the underlying molecular basis of multiple insecticide resistance in Ae. aegypti populations across Malaysia detecting the major genes driving the metabolic resistance. Methodology/Principal Findings Genome-wide microarray-based transcription analysis was carried out to detect the genes associated with metabolic resistance in these populations. Comparisons of the susceptible New Orleans strain to three non-exposed multiple insecticide resistant field strains; Penang, Kuala Lumpur and Kota Bharu detected 2605, 1480 and 425 differentially expressed transcripts respectively (fold-change>2 and p-value ≤ 0.05). 204 genes were commonly over-expressed with monooxygenase P450 genes (CYP9J27, CYP6CB1, CYP9J26 and CYP9M4) consistently the most up-regulated detoxification genes in all populations, indicating that they possibly play an important role in the resistance. In addition, glutathione S-transferases, carboxylesterases and other gene families commonly associated with insecticide resistance were also over-expressed. Gene Ontology (GO) enrichment analysis indicated an over-representation of GO terms linked to resistance such as monooxygenases, carboxylesterases, glutathione S-transferases and heme-binding. Polymorphism analysis of CYP9J27 sequences revealed a high level of polymorphism (except in Joho Bharu), suggesting a limited directional selection on this gene. In silico analysis of CYP9J27 activity through modelling and docking simulations suggested that this gene is involved in the multiple resistance in Malaysian populations as it is predicted to metabolise

  14. A Multipurpose, High-Throughput Single-Nucleotide Polymorphism Chip for the Dengue and Yellow Fever Mosquito, Aedes aegypti.

    Science.gov (United States)

    Evans, Benjamin R; Gloria-Soria, Andrea; Hou, Lin; McBride, Carolyn; Bonizzoni, Mariangela; Zhao, Hongyu; Powell, Jeffrey R

    2015-02-26

    The dengue and yellow fever mosquito, Aedes aegypti, contributes significantly to global disease burden. Genetic study of Aedes aegypti is essential to understanding its evolutionary history, competence as a disease vector, and the effects and efficacy of vector control methods. The prevalence of repeats and transposable elements in the Aedes aegypti genome complicates marker development and makes genome-wide genetic study challenging. To overcome these challenges, we developed a high-throughput genotyping chip, Axiom_aegypti1. This chip screens for 50,000 single-nucleotide polymorphisms present in Aedes aegypti populations from around the world. The array currently used genotypes 96 samples simultaneously. To ensure that these markers satisfy assumptions commonly made in many genetic analyses, we tested for Mendelian inheritance and linkage disequilibrium in laboratory crosses and a wild population, respectively. We have validated more than 25,000 of these markers to date, and expect this number to increase with more sampling. We also present evidence of the chip's efficacy in distinguishing populations throughout the world. The markers on this chip are ideal for applications ranging from population genetics to genome-wide association studies. This tool makes rapid, cost-effective, and comparable genotype data attainable to diverse sets of Aedes aegypti researchers, from those interested in potential range shifts due to climate change to those characterizing the genetic underpinnings of its competence to transmit disease.

  15. Comparison of BG-Sentinel® Trap and Oviposition Cups for Aedes aegypti and Aedes albopictus Surveillance in Jacksonville, Florida, USA.

    Science.gov (United States)

    Wright, Jennifer A; Larson, Ryan T; Richardson, Alec G; Cote, Noel M; Stoops, Craig A; Clark, Marah; Obenauer, Peter J

    2015-03-01

    The BG-Sentinel® (BGS) trap and oviposition cups (OCs) have both proven effective in the surveillance of Aedes species. This study aimed to determine which of the 2 traps could best characterize the relative population sizes of Aedes albopictus and Aedes aegypti in an urban section of Jacksonville, FL. Until 1986, Ae. aegypti was considered the dominant container-breeding species in urban northeastern Florida. Since the introduction of Ae. albopictus, Ae. aegypti has become almost completely extirpated. In 2011, a resurgence of Ae. aegypti was detected in the urban areas of Jacksonville; thus this study initially set out to determine the extent of Ae. aegypti reintroduction to the area. We determined that the BGS captured a greater number of adult Ae. aegypti than Ae. albopictus, while OCs did not monitor significantly different numbers of either species, even in areas where the BGS traps suggested a predominance of one species over the other. Both traps were effective at detecting Aedes spp.; however, the BGS proved more diverse by detecting over 20 other species as well. Our results show that in order to accurately determine vectorborne disease threats and the impact of control operations on these 2 species, multiple trapping techniques should be utilized when studying Ae. aegypti and Ae. albopictus population dynamics.

  16. Widespread evidence for interspecific mating between Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in nature.

    Science.gov (United States)

    Bargielowski, I E; Lounibos, L P; Shin, D; Smartt, C T; Carrasquilla, M C; Henry, A; Navarro, J C; Paupy, C; Dennett, J A

    2015-12-01

    Aedes aegypti and Aedes albopictus, two important vectors of the dengue and chikungunya viruses to humans, often come in contact in their invasive ranges. In these circumstances, a number of factors are thought to influence their population dynamics, including resource competition among the larval stages, prevailing environmental conditions and reproductive interference in the form of satyrization. As the distribution and abundance of Ae. aegypti and Ae. albopictus have profound epidemiological implications, understanding the competitive interactions that influence these patterns in nature is important. While evidence for resource competition and environmental factors had been gathered from the field, the evidence for reproductive interference, though strongly inferred through laboratory trials, remained sparse (one small-scale field trial). In this paper we demonstrate that low rates (1.12-3.73%) of interspecific mating occur in nature among populations of these species that have co-existed sympatrically from 3 to 150yrs. Finally this report contributes a new species-specific primer set for identifying the paternity of sperm extracted from field collected specimens.

  17. Effect of triflumuron, a chitin synthesis inhibitor, on Aedes aegypti, Aedes albopictus and Culex quinquefasciatus under laboratory conditions

    OpenAIRE

    Belinato,Thiago Affonso; Martins,Ademir Jesus; Lima, José Bento Pereira; Valle,Denise

    2013-01-01

    Background Resistance to traditional insecticides represents a threat to the control of disease vectors. The insect growth regulators (IGR) are a potential alternative to control mosquitoes, including resistant populations. The chitin synthesis inhibitors (CSI) are IGRs, which interfere with the insect molting process and represent one major class of compounds against Aedes aegypti populations resistant to the larvicide organophosphate temephos. In the present study, we evaluated the efficacy...

  18. Geographic distribution of Aedes aegypti and Aedes albopictus collected from used tires in Vietnam.

    Science.gov (United States)

    Higa, Yukiko; Yen, Nguyen Thi; Kawada, Hitoshi; Son, Tran Hai; Hoa, Nguyen Thuy; Takagi, Masahiro

    2010-03-01

    The spatial distribution of Aedes aegypti and Aedes albopictus in environmental and geographical zones, e.g., urban-rural, coastal-mountainous, and north-south, was investigated throughout Vietnam. Immature stages were collected from used tires along roads. The effects of regions, seasons, and the degree of urbanization on the density and the frequency were statistically analyzed. Aedes aegypti predominated in the southern and central regions, while Ae. albopictus predominated in the northern region, which may be related to climatic conditions (temperature and rainfall). Larval collection from used tires may be suitable to assess rapidly the current distribution of dengue mosquitoes for estimating health risks and implementing vector control measures.

  19. The risk of Aedes aegypti breeding and premises condition in South Mexico.

    Science.gov (United States)

    Manrique-Saide, Pablo; Davies, Clive R; Coleman, Paul G; Che-Mendoza, Azael; Dzul-Manzanilla, Felipe; Barrera-Pérez, Mario; Hernández-Betancourt, Silvia; Ayora-Talavera, Guadalupe; Pinkus-Rendón, Miguel; Burciaga-Zúñiga, Pierre; Sánchez Tejeda, Gustavo; Arredondo-Jiménez, Juan I

    2013-12-01

    A recent innovation instrumented for the Dengue Prevention and Control program in Mexico is the use of the premises condition index (PCI) as an indicator of risk for the vector Aedes aegypti infestation in dengue-endemic localities of Mexico. This paper addresses whether further improvements for the dengue control program could be made if the prevalence and productivity of Ae. aegypti populations could be reliably predicted using PCI at the household level, as well as medium-sized neighborhoods. We evaluated the use of PCI to predict the infestation with Aedes aegypti (breeding sites and immature productivity) in Merida, Mexico. The study consisted of a cross-sectional survey based on a cluster-randomized sampling design. We analyzed the statistical association between Aedes infestation and PCI, the extent to which the 3 components of PCI (house maintenance, and tidiness and shading of the patio) contributed to the association between PCI and infestation and whether infestation in a given premises was also affected by the PCI of the surrounding ones. Premises with the lowest PCI had significantly lower Aedes infestation and productivity; and as PCI scores increased infestation levels also tended to increase. Household PCI was significantly associated with Ae. aegypti breeding, largely due to the effect of patio untidiness and patio shade. The mean PCI within the surroundings premises also had a significant and independent explanatory power to predict the risk for infestation, in addition to individual PCI. This is the 1st study in Mexico showing evidence that premises condition as measured by the PCI is related to Ae. aegypti breeding sites and immature productivity. Results suggest that PCI could be used to streamline surveys to inform control efforts at least where Ae. aegypti breeds outdoors, as in Merida. The effect of individual premises, neighborhood condition, and the risk of Aedes infestation imply that the risk for dengue vector infestation can only be

  20. Larvicidal activity of Cestrum nocturnum on Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Chetan Jawale

    2010-03-01

    Full Text Available Aedes aegypti is a vector parasite of the Dengue. New method to control the population of this insect is necessary. In the present work we evaluated the potential of extract from Cestrum nocturnum as larvicide. Methanol extract outstand as highly active larvicide, achieving 100 % larval mortality in 24 hours when tested in the concentration of 45 µg/mL (soxhlet and 25 µg/mL (percolation. Any extract exhibiting significant larvicide activity was further fractioned and the fraction tested according to the WHO protocol. One fraction derived from methanol extract present remarkable LC100 at 12 µg/mL. LC50 of methanol extract and active fraction were found 14 µg/mL and 6 µg/mL respectively. These fractions will be submitted to further fractions aiming to identify the molecules responsible for the larvicide activity.

  1. Aedes cadherin mediates the in vivo toxicity of the Cry11Aa toxin to Aedes aegypti.

    Science.gov (United States)

    Lee, Su-Bum; Chen, Jianwu; Aimanova, Karlygash G; Gill, Sarjeet S

    2015-06-01

    Cadherin plays an important role in the toxicity of Bacillus thuringiensis Cry proteins. We previously cloned a full-length cadherin from Aedes aegypti larvae and reported this protein binds Cry11Aa toxin from B. thuringiensis subsp. israelensis with high affinity, ≈16.7nM. Based on these results, we investigated if Aedes cadherin is involved in the in vivo toxicity of Cry11Aa toxin to Ae. aegypti. We established a mosquito cell line stably expressing the full-length Aedes cadherin and transgenic mosquitoes with silenced Aedes cadherin expression. Cells expressing the Aedes cadherin showed increased sensitivity to Cry11Aa toxin. Cry11Aa toxin at 400nM killed approximately 37% of the cells in 3h. Otherwise, transgenic mosquitoes with silenced Aedes cadherin expression showed increased tolerance to Cry11Aa toxin. Furthermore, cells expressing Aedes cadherin triggered Cry11Aa oligomerization. These results show the Aedes cadherin plays a pivotal role in Cry11Aa toxicity to Ae. aegypti larvae by mediating Cry11Aa oligomerization. However, since high toxicity was not obtained in cadherin-expressing cells, an additional receptor may be needed for manifestation of full toxicity. Moreover, cells expressing Aedes cadherin were sensitive to Cry4Aa and Cry11Ba, but not Cry4Ba. However transgenic mosquitoes with silenced Aedes cadherin expression showed no tolerance to Cry4Aa, Cry4Ba, and Cry11Ba toxins. These results suggest that while Aedes cadherin may mediate Cry4Aa and Cry11Ba toxicity, this cadherin but is not the main receptor of Cry4Aa, Cry4Ba and Cry11Ba toxin in Ae. aegypti.

  2. Susceptibilidade de Aedes aegypti aos inseticidas temephos e cipermetrina, Brasil Susceptibility of Aedes aegypti to temephos and cypermethrin insecticides, Brazil

    OpenAIRE

    Jonny E Duque Luna; Marcos Ferrer Martins; Adriana Felix dos Anjos; Eduardo Fumio Kuwabara; Mário Antônio Navarro-Silva

    2004-01-01

    Realizaram-se bioensaios para detectar a susceptibilidade de Aedes aegypti aos inseticidas químicos, temefós e cipermetrina. Os resultados mostraram que esta espécie é suscetível a temefós e apresenta resistência a cipermetrinae.Bioassays were performed in order to detect the susceptibility of Aedes aegypti to the chemical insecticides temephos and cypermethrin. The results showed that this species is susceptible to temephos and presents resistance to cypermethrin.

  3. Susceptibilidade de Aedes aegypti aos inseticidas temephos e cipermetrina, Brasil Susceptibility of Aedes aegypti to temephos and cypermethrin insecticides, Brazil

    Directory of Open Access Journals (Sweden)

    Jonny E Duque Luna

    2004-12-01

    Full Text Available Realizaram-se bioensaios para detectar a susceptibilidade de Aedes aegypti aos inseticidas químicos, temefós e cipermetrina. Os resultados mostraram que esta espécie é suscetível a temefós e apresenta resistência a cipermetrinae.Bioassays were performed in order to detect the susceptibility of Aedes aegypti to the chemical insecticides temephos and cypermethrin. The results showed that this species is susceptible to temephos and presents resistance to cypermethrin.

  4. A review on symmetries for certain Aedes aegypti models

    Science.gov (United States)

    Freire, Igor Leite; Torrisi, Mariano

    2015-04-01

    We summarize our results related with mathematical modeling of Aedes aegypti and its Lie symmetries. Moreover, some explicit, group-invariant solutions are also shown. Weak equivalence transformations of more general reaction diffusion systems are also considered. New classes of solutions are obtained.

  5. Bioefficacy of crude extract of Cyperus aromaticus (Family:Cyperaceae) cultured cells, against Aedes aegypti and Aedes albopictus mosquitoes

    Institute of Scientific and Technical Information of China (English)

    Fatemeh Kamiabi; Zairi Jaal; Chan Lai Keng

    2013-01-01

    ratio of the adult population either parental or F1 generation of the Aedes mosquito species was not significantly affected by the EI50 dosage of the crude extract of C. aromaticus cultured P4 cells. A significant decrease in the wing length of the treated adult (female and male) of Aedes aegypti as well as the treated female of Ae. albopictus were observed. Longevity of the adult female of the parental generation of both Aedes mosquitoes as well as females of F1 generation of Ae. albopictus were significantly decreased. Conclusions: The present study revealed the potential of the crude extract of C. aromaticus cultured cells in controlling vector mosquito populations in the effort to reduce the transmission of vector borne diseases.

  6. Distribution of Voltage-Gated Sodium Channel (Nav) Alleles among the Aedes aegypti Populations In Central Java Province and Its Association with Resistance to Pyrethroid Insecticides

    Science.gov (United States)

    Sayono, Sayono; Hidayati, Anggie Puspa Nur; Fahri, Sukmal; Sumanto, Didik; Dharmana, Edi; Hadisaputro, Suharyo; Asih, Puji Budi Setia; Syafruddin, Din

    2016-01-01

    The emergence of insecticide resistant Aedes aegypti mosquitoes has hampered dengue control efforts. WHO susceptibility tests, using several pyrethroid compounds, were conducted on Ae. aegypti larvae that were collected and raised to adulthood from Semarang, Surakarta, Kudus and Jepara in Java. The AaNaV gene fragment encompassing kdr polymorphic sites from both susceptible and resistant mosquitoes was amplified, and polymorphisms were associated with the resistant phenotype. The insecticide susceptibility tests demonstrated Ae, aegypti resistance to the pyrethroids, with mortality rates ranging from 1.6%–15.2%. Three non-synonymous polymorphisms (S989P, V1016G and F1534C) and one synonymous polymorphism (codon 982) were detected in the AaNaV gene. Eight AaNaV alleles were observed in specimens from Central Java. Allele 3 (SGF) and allele 7 (PGF) represent the most common alleles found and demonstrated strong associations with resistance to pyrethroids (OR = 2.75, CI: 0.97–7.8 and OR = 7.37, CI: 2.4–22.5, respectively). This is the first report of 8 Ae. aegypti AaNaV alleles, and it indicates the development of resistance in Ae. aegypti in response to pyrethroid insecticide-based selective pressure. These findings strongly suggest the need for an appropriate integrated use of insecticides in the region. The 989P, 1016G and 1534C polymorphisms in the AaNaV gene are potentially valuable molecular markers for pyrethroid insecticide resistance monitoring. PMID:26939002

  7. Vector control measures failed to affect genetic structure of Aedes aegypti in a sentinel metropolitan area of Brazil.

    Science.gov (United States)

    Souza, Kathleen R; Ribeiro, Gilmar; Silva dos Santos, Carlos Gustavo; de Lima, Eliaci Couto; Melo, Paulo R S; Reis, Mitermayer G; Blanton, Ronald E; Silva, Luciano K

    2013-12-01

    In order to evaluate subpopulation differentiation, effective population size (Ne) and evidence for population bottlenecks at various geographic levels, Aedes aegypti larvae were collected longitudinally from 2007 to 2009 from four areas in the city of Salvador, Brazil. The DNA from each larva was isolated and genotyped with five independent microsatellite markers. FST and Jost's D revealed significant population structuring (Pcontrol measures did contribute to vector reduction, but this was not enough to decrease A. aegypti population genetic diversity in Salvador. The understanding of A. aegypti population dynamics may be helpful for planning and evaluation of control measures to make them more effective.

  8. Influence of the Length of Storage on Aedes aegypti (Diptera: Culicidae) Egg Viability.

    Science.gov (United States)

    Brown, Heidi E; Smith, Caitlin; Lashway, Stephanie

    2016-12-22

    Aedes aegypti (L.) is one of the most important arboviral vectors worldwide. Vector control is targeted at immature and adult stages; however, eggs are resistant to desiccation and may repopulate treated areas long after treatment ceases. We investigated the effect of age on Ae. aegypti egg hatching rates using newly colonized populations (F2) from an arid region. We found a strongly negative association where older eggs had lower hatch rates. The capacity of eggs to survive for long periods of time has implications on mosquito control. In addition, the accumulation of eggs in containers should be accounted for in abundance modeling efforts where populations may grow rapidly early in the season.

  9. Aedes aegypti susceptibility to insecticide from Abidjan City, Cote D'ivoire.

    Science.gov (United States)

    Konan, Lucien Yao; Coulibaly, Ibrahima Zanakoungo; Kone, Blaise Atioumounan; Ziogba, Jean-Claude Tokou; Diallo, Adama; Ekra, Daniel Kouadio; Traoré, Karim Sory; Doannio, Marie Christian Julien; Paul, Odehouri-Koudou

    2012-04-01

    The susceptibility of Aedes aegypti adults of three places in Abidjan city selected for an entomological surveillance of potential arbovirus vectors to permethrin, deltamethrin, lambdacyhalothrin, and propoxur was determined using WHO standard procedures. The wild populations of A. aegypti were susceptible to permethrin, deltamethirn, and lambdacyhalothin. Resistance to propoxur was detected in strains collected at the Autonomous Port of Abidjan and at Koumassi (mortality rate: 77%) but possibly resistance to this insecticide at the national zoological park (mortality rate: 90.8%). Populations of the national zoological park were possibly resistant to propoxur whereas those of the Autonomous port of Abidjan and of Koumassi were resistant.

  10. New Records of Aedes aegypti In Southern Oklahoma, 2016.

    Science.gov (United States)

    Bradt, David L; Bradley, Kristy K; Hoback, W Wyatt; Noden, Bruce H

    2017-03-01

    Aedes aegypti is an important subtropical vector species and is predicted to have a limited year-round distribution in the southern United States. Collection of the species has not been officially verified in Oklahoma since 1940. Adult mosquitoes were collected in 42 sites across 7 different cities in Oklahoma using 3 different mosquito traps between May and September 2016. Between July and September 2016, 88 Ae. aegypti adults were collected at 18 different sites in 4 different cities across southern Oklahoma. Centers for Disease Control and Prevention mini light traps baited with CO2 attracted the highest numbers of Ae. aegypti individuals compared to Biogents (BG)-Sentinel(®) traps baited with Biogents (BG)-lure and octenol and Centers for Disease Control and Prevention gravid traps baited with Bermuda grass-infused water. The discovery of Ae. aegypti mosquitoes within urban/exurban areas in Oklahoma is important from an ecological as well as a public health perspective.

  11. Aedes aegypti D7 Saliva Protein Inhibits Dengue Virus Infection

    Science.gov (United States)

    Conway, Michael J.; Londono-Renteria, Berlin; Troupin, Andrea; Watson, Alan M.; Klimstra, William B.; Fikrig, Erol; Colpitts, Tonya M.

    2016-01-01

    Aedes aegypti is the primary vector of several medically relevant arboviruses including dengue virus (DENV) types 1–4. Ae. aegypti transmits DENV by inoculating virus-infected saliva into host skin during probing and feeding. Ae. aegypti saliva contains over one hundred unique proteins and these proteins have diverse functions, including facilitating blood feeding. Previously, we showed that Ae. aegypti salivary gland extracts (SGEs) enhanced dissemination of DENV to draining lymph nodes. In contrast, HPLC-fractionation revealed that some SGE components inhibited infection. Here, we show that D7 proteins are enriched in HPLC fractions that are inhibitory to DENV infection, and that recombinant D7 protein can inhibit DENV infection in vitro and in vivo. Further, binding assays indicate that D7 protein can directly interact with DENV virions and recombinant DENV envelope protein. These data reveal a novel role for D7 proteins, which inhibits arbovirus transmission to vertebrates through a direct interaction with virions. PMID:27632170

  12. Ecological Modeling of Aedes aegypti (L.) Pupal Production in Rural Kamphaeng Phet, Thailand

    NARCIS (Netherlands)

    Aldstadt, J.; Koenraadt, C.J.M.; Fansiri, T.; Kijchalao, U.; Richardson, J.; Jones, J.W.; Scott, T.W.

    2011-01-01

    Background - Aedes aegypti (L.) is the primary vector of dengue, the most important arboviral infection globally. Until an effective vaccine is licensed and rigorously administered, Ae. aegypti control remains the principal tool in preventing and curtailing dengue transmission. Accurate predictions

  13. The Genetics of Chemoreception in the Labella and Tarsi of Aedes aegypti

    Science.gov (United States)

    2014-01-01

    The genetics of chemoreception in the labella and tarsi of Aedes aegypti Jackson T. Sparks, Jonathan D. Bohbot, Joseph C. Dickens* United States...Accepted 15 February 2014 Keywords: Aedes aegypti Olfactory receptor Ionotropic receptor Mosquito Taste Odorant-binding protein a b s t r a c t The yellow...fever mosquito Aedes aegypti is a major vector of human diseases, such as dengue, yellow fever, chikungunya and West Nile viruses. Chemoreceptor

  14. The Maxillary Palp of Aedes aegypti, a Model of Multisensory Integration

    Science.gov (United States)

    2014-01-01

    The maxillary palp of Aedes aegypti , a model of multisensory integration Jonathan D. Bohbot, Jackson T. Sparks, Joseph C. Dickens* United States...24 February 2014 Keywords: Aedes aegypti Olfaction Mosquito Maxillary palp Thermosensation Mechanosensation a b s t r a c t Female yellow-fever...mosquitoes, Aedes aegypti , are obligate blood-feeders and vectors of the pathogens that cause dengue fever, yellow fever and Chikungunya. This feeding

  15. Gene flow, subspecies composition, and dengue virus-2 susceptibility among Aedes aegypti collections in Senegal.

    Directory of Open Access Journals (Sweden)

    Massamba Sylla

    Full Text Available BACKGROUND: Aedes aegypti, the "yellow fever mosquito", is the primary vector to humans of the four serotypes of dengue viruses (DENV1-4 and yellow fever virus (YFV and is a known vector of Chikungunya virus. There are two recognized subspecies of Ae. aegypti sensu latu (s.l.: the presumed ancestral form, Ae. aegypti formosus (Aaf, a primarily sylvan mosquito in sub-Saharan Africa, and Ae. aegypti aegypti (Aaa, found globally in tropical and subtropical regions typically in association with humans. The designation of Ae. aegypti s.l. subspecies arose from observations made in East Africa in the late 1950s that the frequency of pale "forms" of Ae. aegypti was higher in populations in and around human dwellings than in those of the nearby bush. But few studies have been made of Ae. aegypti s.l. in West Africa. To address this deficiency we have been studying the population genetics, subspecies composition and vector competence for DENV-2 of Ae. aegypti s.l. in Senegal. METHODS AND FINDINGS: A population genetic analysis of gene flow was conducted among 1,040 Aedes aegypti s.l. from 19 collections distributed across the five phytogeographic regions of Senegal. Adults lacking pale scales on their first abdominal tergite were classified as Aedes aegypti formosus (Aaf following the original description of the subspecies and the remainder were classified as Aedes aegypti aegypti (Aaa. There was a clear northwest-southeast cline in the abundance of Aaa and Aaf. Collections from the northern Sahelian region contained only Aaa while southern Forest gallery collections contained only Aaf. The two subspecies occurred in sympatry in four collections north of the Gambia in the central Savannah region and Aaa was a minor component of two collections from the Forest gallery area. Mosquitoes from 11 collections were orally challenged with DENV-2 virus. In agreement with the early literature, Aaf had significantly lower vector competence than Aaa. Among pure Aaa

  16. Insecticide susceptibility of Aedes aegypti and Aedes albopictus in Central Africa

    OpenAIRE

    Nwane Philippe; Nchoutpouen Elysée; Chandre Fabrice; Marcombe Sébastien; Kamgang Basile; Etang Josiane; Corbel Vincent; Paupy Christophe

    2011-01-01

    Abstract Background Aedes aegypti (Linnaeus, 1762) and Aedes albopictus (Skuse, 1894) are the main vectors of dengue (DENV) and chikungunya (CHIKV) viruses worldwide. As there is still no vaccine or specific treatment for DENV and CHIKV, vector control remains the cornerstone of prevention and outbreak control. Unfortunately, vector control programs are facing operational challenges with mosquitoes becoming resistant to commonly used insecticides in several areas through the world. Throughout...

  17. Dynamics of Aedes aegypti and Culex quinquefasciatus in septic tanks.

    Science.gov (United States)

    Mackay, Andrew J; Amador, Manuel; Diaz, Annette; Smith, Josh; Barrera, Roberto

    2009-12-01

    Aedes aegypti and Culex quinquefasciatus were found in large numbers emerging from septic tanks in southern Puerto Rico during the dry season. Previous studies suggested that Ae. aegypti uses subterranean aquatic habitats only during dry periods when surface containers do not have water. This research investigated whether septic tanks are alternative aquatic habitats that this mosquito uses during unfavorable times of the year, or whether Ae. aegypti uses this aquatic habitat throughout the year. To assess temporal change, exit traps were used to collect mosquitoes emerging from septic tanks in Playa/Playita, southern Puerto Rico, from November 2006 to October 2007. We also investigated the hypotheses that (1) the production of Ae. aegypti in septic tanks was larger than in surface containers and (2) adult mosquitoes emerging from septic tanks were larger than those emerging from surface containers. This study demonstrated that unsealed septic tanks produced large numbers of Ae. aegypti and Cx. quinquefasciatus throughout the year, without any significant relationship with rainfall. The number of adult Ae. aegypti emerging per day from septic tanks in each community was 3 to 9 times larger than those produced in surface containers. It was also demonstrated that Ae. aegypti emerging from septic tanks were significantly larger than those emerging from surface container habitats. It is recommended that dengue prevention programs include regular inspection and maintenance of septic tanks in communities lacking sewerage.

  18. Current resistance status to temephos in Aedes aegypti from different regions of Argentina

    Directory of Open Access Journals (Sweden)

    G Albrieu Llinás

    2010-02-01

    Full Text Available In Argentina, more than 25,000 cases of dengue were reported in the summer of 2009, even in provinces where the disease was formerly absent. We analysed the susceptibility levels to the larvicide temephos in seven populations of Aedes aegypti, the primary vector of dengue, collected during summer 2007/2008, using the susceptible Rockefeller strain as a control. Although no control failures were observed during the experiment, a majority of the lethal concentration and resistance ratio values indicate an incipient resistance. An integrative program to monitor the resistance of Ae. aegypti to insecticides is needed in the country.

  19. UDP-N-Acetyl glucosamine pyrophosphorylase as novel target for controlling Aedes aegypti – molecular modeling, docking and simulation studies

    Directory of Open Access Journals (Sweden)

    Bhagath Kumar Palaka

    2014-12-01

    Full Text Available Aedes aegypti is a vector that transmits diseases like dengue fever, chikungunya, and yellow fever. It is distributed in all tropical and subtropical regions of the world. According to WHO reports, 40% of the world’s population is currently at risk for dengue fever. As vaccines are not available for such diseases, controlling mosquito population becomes necessary. Hence, this study aims at UDP-N-acetyl glucosamine pyrophosphorylase of Aedes aegypti (AaUAP, an essential enzyme for chitin metabolim in insects, as a drug target. Structure of AaUAP was predicted and validated using in-silico approach. Further, docking studies were performed using a set of 10 inhibitors out of which NAG9 was found to have good docking score, which was further supported by simulation studies. Hence, we propose that NAG9 can be considered as a potential hit in designing new inhibitors to control Aedes aegypti.

  20. History of domestication and spread of Aedes aegypti - A Review

    Directory of Open Access Journals (Sweden)

    Jeffrey R Powell

    2013-01-01

    Full Text Available The adaptation of insect vectors of human diseases to breed in human habitats (domestication is one of the most important phenomena in medical entomology. Considerable data are available on the vector mosquito Aedes aegypti in this regard and here we integrate the available information including genetics, behaviour, morphology, ecology and biogeography of the mosquito, with human history. We emphasise the tremendous amount of variation possessed by Ae. aegypti for virtually all traits considered. Typological thinking needs to be abandoned to reach a realistic and comprehensive understanding of this important vector of yellow fever, dengue and Chikungunya.

  1. A male-determining factor in the mosquito Aedes aegypti

    OpenAIRE

    Hall, Andrew Brantley; Basu, Sanjay; Jiang, Xiaofang; Qi, Yumin; Timoshevskiy, Vladimir A.; Biedler, James K.; Sharakhova, Maria V; Elahi, Rubayet; Michelle A E Anderson; Chen, Xiao-Guang; Sharakhov, Igor V.; Adelman, Zach N.; Tu, Zhijian

    2015-01-01

    Sex determination in the mosquito Aedes aegypti is governed by a dominant male-determining factor (M factor) located within a Y chromosome–like region called the M locus. Here, we show that an M-locus gene, Nix, functions as an M factor in A. aegypti. Nix exhibits persistent M linkage and early embryonic expression, two characteristics required of an M factor. Nix knockout with clustered regularly interspaced short palindromic repeats (CRISPR)–Cas9 resulted in largely feminized genetic males ...

  2. Comparison of BG-Sentinel Trap and Oviposition Cups for Aedes aegypti and Aedes albopictus Surveillance in Jacksonville, Florida, USA

    Science.gov (United States)

    2015-03-01

    COMPARISON OF BG-SENTINELH TRAP AND OVIPOSITION CUPS FOR AEDES AEGYPTI AND AEDES ALBOPICTUS SURVEILLANCE IN JACKSONVILLE, FLORIDA, USA JENNIFER A...tropical and subtropical areas around the world (WHO 2009, Bhatt et al. 2013). In the USA , the principal mosquito vector, Aedes aegypti (L.), has been...virus is well known, the importance of Ae. albopictus in the transmission of arboviruses in the USA , including dengue, is not clear. Specifically, Cache

  3. Spatial and Temporal Variation in Aedes aegypti and Aedes albopictus (Diptera: Culicidae) Numbers in the Yogyakarta Area of Java, Indonesia, With Implications for Wolbachia Releases.

    Science.gov (United States)

    Tantowijoyo, W; Arguni, E; Johnson, P; Budiwati, N; Nurhayati, P I; Fitriana, I; Wardana, S; Ardiansyah, H; Turley, A P; Ryan, P; O'Neill, S L; Hoffmann, A A

    2016-01-01

    of mosquito vector populations, particularly through Wolbachia endosymbionts. The success of these strategies depends on understanding the dynamics of vector populations. In preparation for Wolbachia releases around Yogyakarta, we have studied Aedes populations in five hamlets. Adult monitoring with BioGent- Sentinel (BG-S) traps indicated that hamlet populations had different dynamics across the year; while there was an increase in Aedes aegypti (L.) and Aedes albopictus (Skuse) numbers in the wet season, species abundance remained relatively stable in some hamlets but changed markedly (>2 fold) in others. Local rainfall a month prior to monitoring partly predicted numbers of Ae. aegypti but not Ae. albopictus. Site differences in population size indicated by BG-S traps were also evident in ovitrap data. Egg or larval collections with ovitraps repeated at the same location suggested spatial autocorrelation (aegypti numbers were high. Overall, there was a weak negative association (raegypti and Ae. albopictus numbers in ovitraps when averaged across collections. Ae. albopictus numbers in ovitraps and BG-S traps were positively correlated with vegetation around areas where traps were placed, while Ae. aegypti were negatively correlated with this feature. These data inform intervention strategies by defining periods when mosquito densities are high, highlighting the importance of local site characteristics on populations, and suggesting relatively weak interactions between Ae. aegypti and Ae. albopictus. They also indicate local areas within hamlets where consistently high mosquito densities may influence Wolbachia invasions and other interventions.

  4. Shifting patterns of Aedes aegypti fine scale spatial clustering in Iquitos, Peru.

    Directory of Open Access Journals (Sweden)

    Genevieve LaCon

    2014-08-01

    Full Text Available Empiric evidence shows that Aedes aegypti abundance is spatially heterogeneous and that some areas and larval habitats produce more mosquitoes than others. There is a knowledge gap, however, with regards to the temporal persistence of such Ae. aegypti abundance hotspots. In this study, we used a longitudinal entomologic dataset from the city of Iquitos, Peru, to (1 quantify the spatial clustering patterns of adult Ae. aegypti and pupae counts per house, (2 determine overlap between clusters, (3 quantify the temporal stability of clusters over nine entomologic surveys spaced four months apart, and (4 quantify the extent of clustering at the household and neighborhood levels.Data from 13,662 household entomological visits performed in two Iquitos neighborhoods differing in Ae. aegypti abundance and dengue virus transmission was analyzed using global and local spatial statistics. The location and extent of Ae. aegypti pupae and adult hotspots (i.e., small groups of houses with significantly [p<0.05] high mosquito abundance were calculated for each of the 9 entomologic surveys. The extent of clustering was used to quantify the probability of finding spatially correlated populations. Our analyses indicate that Ae. aegypti distribution was highly focal (most clusters do not extend beyond 30 meters and that hotspots of high vector abundance were common on every survey date, but they were temporally unstable over the period of study.Our findings have implications for understanding Ae. aegypti distribution and for the design of surveillance and control activities relying on household-level data. In settings like Iquitos, where there is a relatively low percentage of Ae. aegypti in permanent water-holding containers, identifying and targeting key premises will be significantly challenged by shifting hotspots of Ae. aegypti infestation. Focusing efforts in large geographic areas with historically high levels of transmission may be more effective than

  5. Indoor Resting Behavior of Aedes aegypti (Diptera: Culicidae) in Acapulco, Mexico.

    Science.gov (United States)

    Dzul-Manzanilla, Felipe; Ibarra-López, Jésus; Bibiano Marín, Wilbert; Martini-Jaimes, Andrés; Leyva, Joel Torres; Correa-Morales, Fabián; Huerta, Herón; Manrique-Saide, Pablo; Prokopec, Gonzalo Vazquez M

    2016-12-22

    The markedly anthropophilic and endophilic behaviors of Aedes aegypti (L.) make it a very efficient vector of dengue, chikungunya, and Zika viruses. Although a large body of research has investigated the immature habitats and conditions for adult emergence, relatively few studies have focused on the indoor resting behavior and distribution of vectors within houses. We investigated the resting behavior of Ae. aegypti indoors in 979 houses of the city of Acapulco, Mexico, by performing exhaustive indoor mosquito collections to describe the rooms and height at which mosquitoes were found resting. In total, 1,403 adult and 747 female Ae. aegypti were collected, primarily indoors (98% adults and 99% females). Primary resting locations included bedrooms (44%), living rooms (25%), and bathrooms (20%), followed by kitchens (9%). Aedes aegypti significantly rested below 1.5 m of height (82% adults, 83% females, and 87% bloodfed females); the odds of finding adult Ae. aegypti mosquitoes below 1.5 m was 17 times higher than above 1.5 m. Our findings provide relevant information for the design of insecticide-based interventions selectively targeting the adult resting population, such as indoor residual spraying.

  6. EFFICACY OF THAI NEEM OIL AGAINST AEDES AEGYPTI (L.) LARVAE.

    Science.gov (United States)

    Silapanuntakul, Suthep; Keanjoom, Romnalin; Pandii, Wongdyan; Boonchuen, Supawadee; Sombatsiri, Kwanchai

    2016-05-01

    Trees with larvicidal activity may be found in Thailand. We conducted this study to evaluate the efficacy and length of efficacy of Thai neem (Azadirachta siamensis) oil emulsion and an alginate bead of Thai neem oil formulation against early fourth stage Aedes aegypti larvae using a dipping test. The Thai neem oil emulsion had significantly greater larvicidal activity than the alginate bead formulation at 12 to 60 hours post-exposure (p neem oil formulation resulted in 100% mortality among the early fourth stage Aedes aegypti larvae at 48 hours, while the alginate bead formulation resulted in 98% larval mortality at 84 hours and 100% mortality at 96 hours. The mean larval mortality using the Thai neem oil emulsion dropped to < 25% by 12 days and with the alginate beads dropped to < 25% by 15 days of exposure.

  7. Targeted genome editing in Aedes aegypti using TALENs

    OpenAIRE

    Aryan, Azadeh; Myles, Kevin M.; Adelman, Zach N.

    2014-01-01

    The Culicine mosquito, Aedes aegypti, is both a major vector of arthropod-borne viruses (arboviruses) and a genetic model organism for arbovirus transmission. TALE nucleases (TALENs), a group of artificial enzymes capable of generating site-specific DNA lesions, consist of a non-specific FokI endonuclease cleavage domain fused to an engineered DNA binding domain specific to a target site. While TALENs have become an important tool for targeted gene disruption in a variety of organisms, applic...

  8. Ring canals in the ovarian follicles of Aedes aegypti

    Energy Technology Data Exchange (ETDEWEB)

    Mathew, G.; Rai, K.S.

    1976-07-01

    In the ovarian follicles of Aedes aegypti, the oocyte develops from 1 of 8 interconnected cystocytes. The cytoplasmic interconnections, the ring canals, have an electron dense rim in which are embedded an array of parallel filaments. The ring canal in presumptive follicle is generally devoid of organelles, while that in the more advanced secondary follicle encloses ribosomes, vesicles and mitochondria. Ring canals may furnish a means for the transfer of materials including ribosomes and mitochondria from nurse cells to the oocyte.

  9. Similarity solutions for systems arising from an Aedes aegypti model

    Science.gov (United States)

    Freire, Igor Leite; Torrisi, Mariano

    2014-04-01

    In a recent paper a new model for the Aedes aegypti mosquito dispersal dynamics was proposed and its Lie point symmetries were investigated. According to the carried group classification, the maximal symmetry Lie algebra of the nonlinear cases is reached whenever the advection term vanishes. In this work we analyze the family of systems obtained when the wind effects on the proposed model are neglected. Wide new classes of solutions to the systems under consideration are obtained.

  10. The global compendium of Aedes aegypti and Ae. albopictus occurrence

    Science.gov (United States)

    Kraemer, Moritz U. G.; Sinka, Marianne E.; Duda, Kirsten A.; Mylne, Adrian; Shearer, Freya M.; Brady, Oliver J.; Messina, Jane P.; Barker, Christopher M.; Moore, Chester G.; Carvalho, Roberta G.; Coelho, Giovanini E.; van Bortel, Wim; Hendrickx, Guy; Schaffner, Francis; Wint, G. R. William; Elyazar, Iqbal R. F.; Teng, Hwa-Jen; Hay, Simon I.

    2015-07-01

    Aedes aegypti and Ae. albopictus are the main vectors transmitting dengue and chikungunya viruses. Despite being pathogens of global public health importance, knowledge of their vectors’ global distribution remains patchy and sparse. A global geographic database of known occurrences of Ae. aegypti and Ae. albopictus between 1960 and 2014 was compiled. Herein we present the database, which comprises occurrence data linked to point or polygon locations, derived from peer-reviewed literature and unpublished studies including national entomological surveys and expert networks. We describe all data collection processes, as well as geo-positioning methods, database management and quality-control procedures. This is the first comprehensive global database of Ae. aegypti and Ae. albopictus occurrence, consisting of 19,930 and 22,137 geo-positioned occurrence records respectively. Both datasets can be used for a variety of mapping and spatial analyses of the vectors and, by inference, the diseases they transmit.

  11. Aedes albopictus et Aedes aegypti à l'île de La Réunion

    OpenAIRE

    Salvan, M; Mouchet,Jean

    1994-01-01

    #Aedes albopictus$ et #Aedes aegypti$ (forme #typicus$) cohabitent à l'île de la Réunion. La première espèce, vecteur probable de la dengue, très anthropophile, occupe une aire de distribution beaucoup plus grande que la seconde et se développe dans les gîtes domestiques aussi bien que sauvages. La seconde ne pique pas l'homme et ses gîtes sont toujours sauvages : elle y est toujours associée à la première mais en faible proportion. La forme #typicus$ d'#Aedes aegypti$ étant généralement anth...

  12. Data documenting the potential distribution of Aedes aegypti in the center of Veracruz, Mexico.

    Science.gov (United States)

    Estrada-Contreras, Israel; Sandoval-Ruiz, César A; Mendoza-Palmero, Fredy S; Ibáñez-Bernal, Sergio; Equihua, Miguel; Benítez, Griselda

    2017-02-01

    The data presented in this article are related to the research article entitled "Establishment of Aedes aegypti (L.) in mountainous regions in Mexico: Increasing number of population at risk of mosquito-borne disease and future climate conditions" (M. Equihua, S. Ibáñez-Bernal, G. Benítez, I. Estrada-Contreras, C.A. Sandoval-Ruiz, F.S. Mendoza-Palmero, 2016) [1]. This article provides presence records in shapefile format used to generate maps of potential distribution of Aedes aegypti with different climate change scenarios as well as each of the maps obtained in raster format. In addition, tables with values of potential distribution of the vector as well as the average values of probability of presence including data of the mosquito incidence along the altitudinal range.

  13. Data documenting the potential distribution of Aedes aegypti in the center of Veracruz, Mexico

    Directory of Open Access Journals (Sweden)

    Israel Estrada-Contreras

    2017-02-01

    Full Text Available The data presented in this article are related to the research article entitled “Establishment of Aedes aegypti (L. in mountainous regions in Mexico: Increasing number of population at risk of mosquito-borne disease and future climate conditions” (M. Equihua, S. Ibáñez-Bernal, G. Benítez, I. Estrada-Contreras, C.A. Sandoval-Ruiz, F.S. Mendoza-Palmero, 2016 [1]. This article provides presence records in shapefile format used to generate maps of potential distribution of Aedes aegypti with different climate change scenarios as well as each of the maps obtained in raster format. In addition, tables with values of potential distribution of the vector as well as the average values of probability of presence including data of the mosquito incidence along the altitudinal range.

  14. Bacteria as a source of oviposition attractant for Aedes aegypti mosquitoes.

    Science.gov (United States)

    Arbaoui, A A; Chua, T H

    2014-03-01

    Since a safe and effective mass vaccination program against dengue fever is not presently available, a good way to prevent and control dengue outbreaks depends mainly on controlling the mosquito vectors. Aedes aegypti mosquito populations can be monitored and reduced by using ovitraps baited with organic infusions. A series of laboratory experiments were conducted which demonstrated that the bacteria in bamboo leaf infusion produce volatile attractants and contact chemical stimulants attractive to the female mosquitoes. The results showed that the female mosquitoes laid most of their eggs (59.9 ± 8.1 vs 2.9 ± 2.8 eggs, PAedes mosquitoes. Aedes aegypti laid significantly more eggs (63.3 ± 6.5 vs 3.1 ± 2.4 eggs, P<0.001) in bacteria suspension compared to sterile R2A medium. Our results suggest microbial activity has a role in the production of odorants that mediate the oviposition response of gravid mosquitoes.

  15. In silico models for predicting vector control chemicals targeting Aedes aegypti.

    Science.gov (United States)

    Devillers, J; Lagneau, C; Lattes, A; Garrigues, J C; Clémenté, M M; Yébakima, A

    2014-01-01

    Human arboviral diseases have emerged or re-emerged in numerous countries worldwide due to a number of factors including the lack of progress in vaccine development, lack of drugs, insecticide resistance in mosquitoes, climate changes, societal behaviours, and economical constraints. Thus, Aedes aegypti is the main vector of the yellow fever and dengue fever flaviviruses and is also responsible for several recent outbreaks of the chikungunya alphavirus. As for the other mosquito species, the A. aegypti control relies heavily on the use of insecticides. However, because of increasing resistance to the different families of insecticides, reduction of Aedes populations is becoming increasingly difficult. Despite the unquestionable utility of insecticides in fighting mosquito populations, there are very few new insecticides developed and commercialized for vector control. This is because the high cost of the discovery of an insecticide is not counterbalanced by the 'low profitability' of the vector control market. Fortunately, the use of quantitative structure-activity relationship (QSAR) modelling allows the reduction of time and cost in the discovery of new chemical structures potentially active against mosquitoes. In this context, the goal of the present study was to review all the existing QSAR models on A. aegypti. The homology and pharmacophore models were also reviewed. Specific attention was paid to show the variety of targets investigated in Aedes in relation to the physiology and ecology of the mosquito as well as the diversity of the chemical structures which have been proposed, encompassing man-made and natural substances.

  16. Optimization of the Aedes aegypti Control Strategies for Integrated Vector Management

    Directory of Open Access Journals (Sweden)

    Marat Rafikov

    2015-01-01

    Full Text Available We formulate an infinite-time quadratic functional minimization problem of Aedes aegypti mosquito population. Three techniques of mosquito population management, chemical insecticide control, sterile insect technique control, and environmental carrying capacity reduction, are combined in order to obtain the most sustainable strategy to reduce mosquito population and consequently dengue disease. The solution of the optimization control problem is based on the ideas of the Dynamic Programming and Lyapunov Stability using State-Dependent Riccati Equation (SDRE control method. Different scenarios are analyzed combining three mentioned population management efforts in order to assess the most sustainable policy to reduce the mosquito population.

  17. Biogeography of the two major arbovirus mosquito vectors, Aedes aegypti and Aedes albopictus (Diptera, Culicidae, in Madagascar

    Directory of Open Access Journals (Sweden)

    Raharimalala Fara

    2012-03-01

    Full Text Available Abstract Background In the past ten years, the Indian Ocean region has been the theatre of severe epidemics of chikungunya and dengue. These outbreaks coincided with a high increase in populations of Aedes albopictus that outcompete its sister taxon Aedes aegypti in most islands sampled. The objective of this work was to update the entomological survey of the two Aedes species in the island of Madagascar which has to face these arboviroses. Methods The sampling of Aedes mosquitoes was conducted during two years, from October 2007 to October 2009, in fifteen localities from eight regions of contrasting climates. Captured adults were identified immediately whereas immature stages were bred until adult stage for determination. Phylogenetic analysis was performed using two mtDNA genes, COI and ND5 and trees were constructed by the maximum likelihood (ML method with the gene time reversible (GTR model. Experimental infections with the chikungunya virus strain 06.21 at a titer of 107.5 pfu/mL were performed to evaluate the vector competence of field-collected mosquitoes. Disseminated infection rates were measured fourteen days after infection by immunofluorescence assay performed on head squashes. Results The species Aedes aegypti was detected in only six sites in native forests and natural reserves. In contrast, the species Aedes albopictus was found in 13 out of the 15 sites sampled. Breeding sites were mostly found in man-made environments such as discarded containers, used tires, abandoned buckets, coconuts, and bamboo cuts. Linear regression models showed that the abundance of Ae. albopictus was significantly influenced by the sampling region (F = 62.00, p -16 and period (F = 36.22, p = 2.548 × 10-13, that are associated with ecological and climate variations. Phylogenetic analysis of the invasive Ae. albopictus distinguished haplotypes from South Asia and South America from those of Madagascar, but the markers used were not discriminant enough

  18. Evidence for Aedes aegypti (Diptera: Culicidae) Oviposition on Boats in the Peruvian Amazon.

    Science.gov (United States)

    Guagliardo, Sarah Anne; Morrison, Amy C; Luis Barboza, Jose; Wesson, Dawn M; Ponnusamy, Loganathan; Astete, Helvio; Vazquez-Prokopec, Gonzalo; Kitron, Uriel

    2015-07-01

    Dengue vector Aedes aegypti L. is invading peri-urban and rural areas throughout Latin America. Our previous research in the Peruvian Amazon has shown that river boats are heavily infested with immature and adult Ae. aegypti mosquitoes, likely playing a major role in their long-distance dispersal and successful invasion. However, the presence of immature mosquitoes provides no information about the timing of oviposition, and whether it took place in the boats. Here, we used baited ovitraps deployed on river boats to test the hypothesis that Ae. aegypti oviposition occurs during boat travel. We deployed 360 ovitraps on 60 different barges during August and October of 2013, and February 2014 (with 20 barges sampled during each month). We found that Ae. aegypti mosquitoes in 22 individual ovitraps from 15 of the 60 barges (premise index 25%) across all sampling dates. Further, the distribution of Ae. aegypti egg abundance was highly aggregated: 2.6% of traps (N=7) were responsible for 71.8% of eggs found, and 1.5% of traps (N=4) were responsible for all (100%) of the larvae found. Similarly, 5% of boats were responsible for the 71.47% of eggs. Our results provide strong evidence that Ae. aegypti oviposition commonly occurs during boat travel. Baited ovitraps could represent a cost-effective means of monitoring and controlling mosquito populations on boats.

  19. Chemicals isolated from Justicia adhatoda Linn reduce fitness of the mosquito, Aedes aegypti L.

    Science.gov (United States)

    Thanigaivel, Annamalai; Senthil-Nathan, Sengottayan; Vasantha-Srinivasan, Prabhakaran; Edwin, Edward-Sam; Ponsankar, Athirstam; Selin-Rani, Selvaraj; Pradeepa, Venkatraman; Chellappandian, Muthiah; Kalaivani, Kandaswamy; Abdel-Megeed, Ahmed; Narayanan, Raman; Murugan, Kadarkarai

    2017-04-01

    Extracts from Justicia adhatoda L. (Acanthaceae) strongly reduced the fitness of the mosquito, Aedes aegypti Linn. The methanolic extracts inhibited several enzymes responsible for protecting insects from oxidative and other damage, including glutathione-S-transferase, superoxide dismutase, cytochrome P450, and α- and β-esterases. They increased repellency (maximum repellency at 100 ppm) in host-seeking adult females using the "arm-in cage assay." Histopathological examination showed the extracts led to serious midgut cell damage. Justicia adhatoda extracts led to reduced fecundity and oviposition of gravid females compared to controls. The extracts led to substantially reduced A. aegypti survival. We infer that the extracts have potential to reduce pathogen transmission by suppressing population growth of A. aegypti, and possibly other mosquito species.

  20. Sustained, area-wide control of Aedes aegypti using CDC autocidal gravid ovitraps.

    Science.gov (United States)

    Barrera, Roberto; Amador, Manuel; Acevedo, Verónica; Hemme, Ryan R; Félix, Gilberto

    2014-12-01

    We have shown that the Centers for Disease Control and Prevention (CDC) autocidal gravid ovitraps (AGO trap) reduced the Aedes aegypti population and prevented mosquito outbreaks in southern Puerto Rico. After showing treatment efficacy for 1 year, we deployed three traps per home in an area that formerly did not have traps and in a site that served as the intervention area. Two new areas were selected as reference sites to compare the density of Ae. aegypti without traps. We monitored mosquitoes and weather every week in all four sites. The hypotheses were the density of Ae. aegypti in the former reference area converges to the low levels observed in the intervention area, and mosquito density in both areas having control traps is lower than in the new reference areas. Mosquito density in the former reference area decreased 79% and mosquito density in the new reference areas was 88% greater than in the intervention areas.

  1. Analysis of genetic relatedness between populations of Aedes aegypti from different geographic regions of São Paulo state, Brazil Análise de relacionamento genético entre populações de Aedes aegypti de diferentes regiões geográficas do Estado de São Paulo, Brasil

    Directory of Open Access Journals (Sweden)

    Veruska Marques dos Santos

    2003-04-01

    Full Text Available RAPD markers have been used for the analysis of genetic differentiation of Aedes aegypti, because they allow the study of genetic relationships among populations. The aim of this study was to identify populations in different geographic regions of the São Paulo State in order to understand the infestation pattern of A. aegypti. The dendrogram constructed with the combined data set of the RAPD patterns showed that the mosquitoes were segregated into two major clusters. Mosquitoes from the Western region of the São Paulo State constituted one cluster and the other was composed of mosquitoes from a laboratory strain and from a coastal city, where the largest Latin American port is located. These data are in agreement with the report on the infestation in the São Paulo State. The genetic proximity was greater between mosquitoes whose geographic origin was closer. However, mosquitoes from the coastal city were genetically closer to laboratory-reared mosquitoes than to field-collected mosquitoes from the São Paulo State. The origin of the infestation in this place remains unclear, but certainly it is related to mosquitoes of origins different from those that infested the West and North region of the State in the 80's.Marcadores de RAPD são utilizados para a análise de diferenciação genética de Aedes aegypti, pois permitem o estudo do relacionamento genético entre populações. Este estudo procurou identificar populações em diferentes regiões geográficas do Estado de São Paulo visando entender o padrão de infestação do A. aegypti. O dendrograma construído com os dados combinados dos padrões de RAPD mostrou que os mosquitos foram separados em dois grupos principais. Mosquitos da região oeste do Estado de São Paulo constituíram um grupo e o outro grupo foi composto de mosquitos de uma cepa de laboratório juntamente com mosquitos de uma cidade litorânea onde se localiza o maior porto da América Latina. Estes dados concordam com o

  2. Ecological modeling of Aedes aegypti (L. pupal production in rural Kamphaeng Phet, Thailand.

    Directory of Open Access Journals (Sweden)

    Jared Aldstadt

    Full Text Available BACKGROUND: Aedes aegypti (L. is the primary vector of dengue, the most important arboviral infection globally. Until an effective vaccine is licensed and rigorously administered, Ae. aegypti control remains the principal tool in preventing and curtailing dengue transmission. Accurate predictions of vector populations are required to assess control methods and develop effective population reduction strategies. Ae. aegypti develops primarily in artificial water holding containers. Release recapture studies indicate that most adult Ae. aegypti do not disperse over long distances. We expect, therefore, that containers in an area of high development site density are more likely to be oviposition sites and to be more frequently used as oviposition sites than containers that are relatively isolated from other development sites. After accounting for individual container characteristics, containers more frequently used as oviposition sites are likely to produce adult mosquitoes consistently and at a higher rate. To this point, most studies of Ae. aegypti populations ignore the spatial density of larval development sites. METHODOLOGY: Pupal surveys were carried out from 2004 to 2007 in rural Kamphaeng Phet, Thailand. In total, 84,840 samples of water holding containers were used to estimate model parameters. Regression modeling was used to assess the effect of larval development site density, access to piped water, and seasonal variation on container productivity. A varying-coefficients model was employed to account for the large differences in productivity between container types. A two-part modeling structure, called a hurdle model, accounts for the large number of zeroes and overdispersion present in pupal population counts. FINDINGS: The number of suitable larval development sites and their density in the environment were the primary determinants of the distribution and abundance of Ae. aegypti pupae. The productivity of most container types

  3. Spatial and temporal patterns in pupal and adult production of the dengue vector Aedes aegypti in Kamphaeng Phet, Thailand

    NARCIS (Netherlands)

    Koenraadt, C.J.M.; Aldstadt, J.; Kijchalao, U.; Sithiprasasna, R.; Getis, A.; Jones, J.W.; Scott, T.W.

    2008-01-01

    We investigated how temporal and spatial effects confound the functional relationship between pupal and adult populations of Aedes aegypti and thus the value of pupal numbers as predictors of dengue transmission risk in Kamphaeng Phet, Thailand. We found considerable seasonal shifts in productivity

  4. Aedes aegypti (Diptera: Culicidae) Biting Deterrence: Structure-Activity Relationship of Saturated and Unsaturated Fatty Acids

    Science.gov (United States)

    2012-11-01

    VECTOR CONTROL, PEST MANAGEMENT, RESISTANCE, REPELLENTS Aedes aegypti (Diptera: Culicidae) Biting Deterrence: Structure- Activity Relationship of...deterrent effects of a series of saturated and unsaturated fatty acids against Aedes aegypti (L), yellow fever mosquito (Diptera: Culicidae) using theK...greater thanDEET againstAe. aegypti and their relative repellency varied according to species tested. The MED values of 120 (C11:0), 145 (C12:0) and

  5. Mosquitocidal and Oviposition Repellent Activities of the Extracts of Seaweed Bryopsis pennata on Aedes aegypti and Aedes albopictus

    Directory of Open Access Journals (Sweden)

    Ke-Xin Yu

    2015-08-01

    Full Text Available The ever-increasing threat from infectious diseases and the development of insecticide resistance in mosquito populations drive the global search for new natural insecticides. The aims of this study were to evaluate the mosquitocidal activity of the extracts of seaweed Bryopsis pennata against dengue vectors Aedes aegypti and Aedes albopictus, and determine the seaweed’s toxic effect on brine shrimp nauplii (as a non-target organism. In addition, the chemical compositions of the active larvicidal extract and fraction were analyzed by using liquid chromatography-mass spectrometry (LC-MS. Chloroform extract exhibited strong ovicidal activity (with LC50 values of 229.3 and 250.5 µg/mL and larvicidal activity against Ae. aegypti and Ae. albopictus. The larvicidal potential of chloroform extract was further ascertained when its A7 fraction exhibited strong toxic effect against Ae. aegypti (LC50 = 4.7 µg/mL and Ae. albopictus (LC50 = 5.3 µg/mL. LC-MS analysis of the chloroform extract gave a tentative identification of 13 compounds; Bis-(3-oxoundecyl tetrasulfide was identified as the major compound in A7 fraction. Methanol extract showed strong repellent effect against female oviposition, along with weak adulticidal activity against mosquito and weak toxicity against brine shrimp nauplii. The mosquitocidal results of B. pennata suggest further investigation for the development of effective insecticide.

  6. Mosquitocidal and Oviposition Repellent Activities of the Extracts of Seaweed Bryopsis pennata on Aedes aegypti and Aedes albopictus.

    Science.gov (United States)

    Yu, Ke-Xin; Wong, Ching-Lee; Ahmad, Rohani; Jantan, Ibrahim

    2015-01-01

    The ever-increasing threat from infectious diseases and the development of insecticide resistance in mosquito populations drive the global search for new natural insecticides. The aims of this study were to evaluate the mosquitocidal activity of the extracts of seaweed Bryopsis pennata against dengue vectors Aedes aegypti and Aedes albopictus, and determine the seaweed's toxic effect on brine shrimp nauplii (as a non-target organism). In addition, the chemical compositions of the active larvicidal extract and fraction were analyzed by using liquid chromatography-mass spectrometry (LC-MS). Chloroform extract exhibited strong ovicidal activity (with LC50 values of 229.3 and 250.5 µg/mL) and larvicidal activity against Ae. aegypti and Ae. albopictus. The larvicidal potential of chloroform extract was further ascertained when its A7 fraction exhibited strong toxic effect against Ae. aegypti (LC50 = 4.7 µg/mL) and Ae. albopictus (LC50 = 5.3 µg/mL). LC-MS analysis of the chloroform extract gave a tentative identification of 13 compounds; Bis-(3-oxoundecyl) tetrasulfide was identified as the major compound in A7 fraction. Methanol extract showed strong repellent effect against female oviposition, along with weak adulticidal activity against mosquito and weak toxicity against brine shrimp nauplii. The mosquitocidal results of B. pennata suggest further investigation for the development of effective insecticide.

  7. Susceptibility of Florida Aedes aegypti and Aedes albopictus to dengue viruses from Puerto Rico.

    Science.gov (United States)

    Alto, Barry W; Smartt, Chelsea T; Shin, Dongyoung; Bettinardi, David; Malicoate, Jolene; Anderson, Sheri L; Richards, Stephanie L

    2014-12-01

    Locally acquired dengue cases in the continental U.S. are rare. However, outbreaks of dengue-1 during 2009, 2010, and 2013 in Florida and dengue-1 and -2 in Texas suggest vulnerability to transmission. Travel and commerce between Puerto Rico and the U.S. mainland is common, which may pose a risk for traveler-imported dengue cases. Mosquitoes were collected in Florida and used to evaluate their susceptibility to dengue viruses (DENV) from Puerto Rico. Aedes aegypti and Ae. albopictus were susceptible to virus infection with DENV-1 and -2. No significant differences were observed in rates of midgut infection or dissemination between Ae. aegypti or Ae. albopictus for DENV-1 (6-14%). Aedes aegypti was significantly more susceptible to midgut infection with DENV-2 than Ae. albopictus (Ae. aegypti, ∼28%; Ae. albopictus, ∼9%). The dissemination rate with dengue-2 virus for Ae. aegypti (23%) was greater than Ae. albopictus (0%), suggesting that Ae. albopictus is not likely to be an important transmitter of the DENV-2 isolate from Puerto Rico. These results are discussed in light of Florida's vulnerability to DENV transmission.

  8. Experience- and age-mediated oviposition behaviour in the yellow fever mosquito Stegomyia aegypti (=Aedes aegypti).

    Science.gov (United States)

    Ruktanonchai, N W; Lounibos, L P; Smith, D L; Allan, S A

    2015-09-01

    In repeated behaviours such as those of feeding and reproduction, past experiences can inform future behaviour. By altering their behaviour in response to environmental stimuli, insects in highly variable landscapes can tailor their behaviour to their particular environment. In particular, female mosquitoes may benefit from plasticity in their choice of egg-laying site as these sites are often temporally variable and clustered. The opportunity to adapt egg-laying behaviour to past experience also exists for mosquito populations as females typically lay eggs multiple times throughout their lives. Whether experience and age affect egg-laying (or oviposition) behaviour in the mosquito Stegomyia aegypti (=Aedes aegypti) (Diptera: Culicidae) was assessed using a wind tunnel. Initially, gravid mosquitoes were provided with a cup containing either repellent or well water. After ovipositing in these cups, the mosquitoes were blood-fed and introduced into a wind tunnel. In this wind tunnel, an oviposition cup containing repellent was placed in the immediate vicinity of the gravid mosquitoes. A cup containing well water was placed at the opposite end of the tunnel so that if the females flew across the chamber, they encountered the well water cup, in which they readily laid eggs. Mosquitoes previously exposed to repellent cups became significantly more likely to later lay eggs in repellent cups, suggesting that previous experience with suboptimal oviposition sites informs mosquitoes of the characteristics of nearby oviposition sites. These results provide further evidence that mosquitoes modify behaviour in response to environmental information and are demonstrated in a vector species in which behavioural plasticity may be ecologically and epidemiologically meaningful.

  9. Evaluation of Bifenthrin and Acorus calamus Linn. Extract against Aedes aegypti L. and Aedes albopictus (Skuse

    Directory of Open Access Journals (Sweden)

    S Sulaiman

    2008-12-01

    Full Text Available "nBackground: Bifenthrin and Acorus calamus Linn extract were evaluated against dengue vectors in the laboratory."nMethods: Both Bifenthrin and Acorus calamus Linn crude hexane extract were bioassayed against the adults and larval stages of dengue vectors Aedes aegypti L. and Aedes albopictus(Skuse in the laboratory."nResults: The A. calamus crude hexane extract exhibited a larvicidal activity against 4th-instar Ae. aegypti larvae with LC50 and LC90 values of 0.4418 and 11.3935 ppm respectively. The plant crude extract exhibited against Ae. albopictus larvae with a higher LC50 and LC90 values of 21.2555 ppm and 36.1061 ppm, respectively. There was a significant difference on the effect of A. calamus extract on both Aedes spp. Larvae (P< 0.05. However, bifenthrin showed a significant difference on larvicidal effect to that of A. calamus hexane extract on both Aedes spp (P< 0.05. In testing the adulticidal activity, this plant extract exhibited the LC50 and LC90 values of 17.4075 and 252.9458 ppm against Ae .aegypti and a higher LC50 and LC90 values of 43.9952 and 446.1365 ppm respectively on Ae. albopictus. There was no significant difference on the effect of A. calamus extract on both Aedes spp adults (P> 0.05."nConclusion: Bifenthrin however showed a significant difference on both Aedes spp adults (P< 0.05. With the wide availability of A. calamus in Malaysia, it could be utilized for controlling dengue vectors. "n 

  10. Assessing the feasibility of controlling Aedes aegypti with transgenic methods: a model-based evaluation.

    Directory of Open Access Journals (Sweden)

    Mathieu Legros

    Full Text Available Suppression of dengue and malaria through releases of genetically engineered mosquitoes might soon become feasible. Aedes aegypti mosquitoes carrying a conditionally lethal transgene have recently been used to suppress local vector populations in small-scale field releases. Prior to releases of transgenic insects on a wider scale, however, most regulatory authorities will require additional evidence that suppression will be effective in natural heterogeneous habitats. We use a spatially explicit stochastic model of an Ae. aegypti population in Iquitos, Peru, along with an uncertainty analysis of its predictions, to quantitatively assess the outcome of varied operational approaches for releases of transgenic strains with conditional death of females. We show that population elimination might be an unrealistic objective in heterogeneous populations. We demonstrate that substantial suppression can nonetheless be achieved if releases are deployed in a uniform spatial pattern using strains combining multiple lethal elements, illustrating the importance of detailed spatial models for guiding genetic mosquito control strategies.

  11. The Siren's Song: Exploitation of Female Flight Tones to Passively Capture Male Aedes aegypti (Diptera: Culicidae).

    Science.gov (United States)

    Johnson, Brian J; Ritchie, Scott A

    2016-01-01

    The need to capture male mosquitoes has intensified recently as a result of a number of male-based sterile insect technique (SIT) and population-modification programs focused on Aedes aegypti (L.) having initiated field releases. Here, we report the results of the successful exploitation of the attraction of male Ae. aegypti to female flight tones to enhance male collections in nonmechanical passive (nonbattery powered) Gravid Aedes Traps (GAT). Prior to field studies, male attraction to female flight tones of 484 and 560 Hz, as well as to a male flight tone of 715 Hz, were assessed in a series of controlled release-recapture and semifield trials. These trials determined that a pure tone of 484 Hz was significantly more attractive to free-flying males than the other flight tones and enabled their collection in sound-baited GATs (ca. 95% capture rate after 2 h; 484 Hz at 65 dB). In contrast, gravid females were unresponsive to male or female flight tones and were evenly distributed among sound-baited and control GATs. Importantly, under normal field conditions sound-baited GATs (484 Hz at 70 dB) captured significantly more male Ae. aegypti per 24-h trap interval (1.3 ± 0.37) than controls (0.2 ± 0.13). Overall, sound-bated GATs captured approximately twice as many Ae. aegypti (male and female; 3.0 ± 0.68 per interval, 30 total) than controls (1.5 ± 0.56 per interval, 15 total). These results reveal that sound-baited GATs are a simple and effective surveillance tool for Ae. aegypti that would allow current male-based SIT and population-modification programs to effectively monitor males in their target populations.

  12. Risk factors for the presence of Aedes aegypti and Aedes albopictus in domestic water-holding containers in areas impacted by the Nam Theun 2 hydroelectric project, Laos

    NARCIS (Netherlands)

    Hiscox, A.F.; Kaye, A.; Vongphayloth, K.; Banks, I.; Piffer, M.; Khammanithong, P.; Sananikhom, P.; Kaul, S.; Hill, N.; Lindsay, S.W.; Brey, P.T.

    2013-01-01

    We assessed risk factors for vectors of dengue and chikungunya viruses near a new hydroelectric project, Nam Theun 2, in Laos. Immature stages of Aedes aegypti were found only in sites within 40 km of the urban provincial capital, but Aedes albopictus was found throughout. Aedes aegypti pupae were m

  13. Historical inability to control Aedes aegypti as a main contributor of fast dispersal of chikungunya outbreaks in Latin America.

    Science.gov (United States)

    Fernández-Salas, Ildefonso; Danis-Lozano, Rogelio; Casas-Martínez, Mauricio; Ulloa, Armando; Bond, J Guillermo; Marina, Carlos F; Lopez-Ordóñez, Teresa; Elizondo-Quiroga, Armando; Torres-Monzón, Jorge A; Díaz-González, Esteban E

    2015-12-01

    The arrival of chikungunya fever (CHIKF) in Latin American countries has been expected to trigger epidemics and challenge health systems. Historically considered as dengue-endemic countries, abundant Aedes aegypti populations make this region highly vulnerable to chikungunya virus (CHIKV) circulation. This review describes the current dengue and CHIKF epidemiological situations, as well as the role of uncontrolled Ae. aegypti and Aedes albopictus vectors in spreading the emerging CHIKV. Comments are included relating to the vector competence of both species and failures of surveillance and vector control measures. Dengue endemicity is a reflection of these abundant and persistent Aedes populations that are now spreading CHIKV in the Americas. This article forms part of a symposium in Antiviral Research on "Chikungunya discovers the New World."

  14. Argonaute 2 Suppresses Japanese Encephalitis Virus Infection in Aedes aegypti.

    Science.gov (United States)

    Sasaki, Toshinori; Kuwata, Ryusei; Hoshino, Keita; Isawa, Haruhiko; Sawabe, Kyoko; Kobayashi, Mutsuo

    2017-01-24

    There are three main innate immune mechanisms against viruses in mosquitoes. Infection with the flavivirus dengue virus is controlled by RNA interference (RNAi) and the JAK-STAT and Toll signaling pathways. This study showed that another flavivirus, Japanese encephalitis virus (JEV), did not invade the salivary glands of Aedes aegypti and that this may be a result of the innate immune resistance to the virus. Argonaute 2 (Ago2) plays a critical role in the RNAi pathway. To understand the mechanism of JEV resistance, we focused on Ago2 as a possible target of JEV. Here, we show that the expression of MyD88 (a mediator of Toll signaling) and Ago2 mRNAs was induced by JEV in the salivary glands of Ae. aegypti mosquitoes and that Ago2, JAK, and domeless (DOME) mRNAs were induced by JEV in the bodies of Ae. aegypti mosquitoes. Double-stranded (ds) Ago2 RNA enhanced JEV infection, and the virus was detected in salivary glands by immunofluorescence assay. In contrast, MyD88 dsRNA had no effect on JEV infection. These data suggest that Ago2 plays a crucial role in mediating the innate immune response of Ae. aegypti to JEV in a manner similar to that employed by dengue virus.

  15. Experimental transmission of Mayaro virus by Aedes aegypti.

    Science.gov (United States)

    Long, Kanya C; Ziegler, Sarah A; Thangamani, Saravanan; Hausser, Nicole L; Kochel, Tadeusz J; Higgs, Stephen; Tesh, Robert B

    2011-10-01

    Outbreaks of Mayaro fever have been associated with a sylvatic cycle of Mayaro virus (MAYV) transmission in South America. To evaluate the potential for a common urban mosquito to transmit MAYV, laboratory vector competence studies were performed with Aedes aegypti from Iquitos, Peru. Oral infection in Ae. aegypti ranged from 0% (0/31) to 84% (31/37), with blood meal virus titers between 3.4 log(10) and 7.3 log(10) plaque-forming units (PFU)/mL. Transmission of MAYV by 70% (21/30) of infected mosquitoes was shown by saliva collection and exposure to suckling mice. Amount of viral RNA in febrile humans, determined by real-time polymerase chain reaction, ranged from 2.7 to 5.3 log(10) PFU equivalents/mL. Oral susceptibility of Ae. aegypti to MAYV at titers encountered in viremic humans may limit opportunities to initiate an urban cycle; however, transmission of MAYV by Ae. aegypti shows the vector competence of this species and suggests potential for urban transmission.

  16. Targeted genome editing in Aedes aegypti using TALENs.

    Science.gov (United States)

    Aryan, Azadeh; Myles, Kevin M; Adelman, Zach N

    2014-08-15

    The Culicine mosquito, Aedes aegypti, is both a major vector of arthropod-borne viruses (arboviruses) and a genetic model organism for arbovirus transmission. TALE nucleases (TALENs), a group of artificial enzymes capable of generating site-specific DNA lesions, consist of a non-specific FokI endonuclease cleavage domain fused to an engineered DNA binding domain specific to a target site. While TALENs have become an important tool for targeted gene disruption in a variety of organisms, application to the mosquito genome is a new approach. We recently described the use of TALENs to perform heritable genetic disruptions in A. aegypti. Here, we provide detailed methods that will allow other research laboratories to capitalize on the potential of this technology for understanding mosquito gene function. We describe target site selection, transient embryo-based assays to rapidly assess TALEN activity, embryonic microinjection and downstream screening steps to identify target site mutations.

  17. Oviposition and olfaction responses of Aedes aegypti mosquitoes to insecticides.

    Science.gov (United States)

    Canyon, D V; Muller, R

    2013-12-01

    Insecticide applications are not particularly effective on Aedes aegypti mosquitoes which has been attributed to their 'closet' behaviour, or ability to rest in places that remain unexposed to insecticides. Some researchers have suggested that insecticides repel mosquitoes, which would result in less exposure and increased dispersal. If repellence due to insecticides is a fact, acquiring a vector-borne disease, such as dengue, could legitimately be attributed to local vector control efforts and this would lead to restitution claims. This study thus investigated the effect of insecticide presence on mosquito behaviour indirectly via oviposition and directly via olfactory response. In all experiments, oviposition in each insecticide compared to its water and ethanol controls was not significantly different. This indicates that Ae. aegypti mosquitoes are not affected by insecticide presence and that increased dispersal is unlikely to be caused by vector control spraying.

  18. Aedes aegypti (Diptera: Culicidae) Longevity and Differential Emergence of Dengue Fever in Two Cities in Sonora, Mexico.

    Science.gov (United States)

    Ernst, Kacey C; Walker, Kathleen R; Reyes-Castro, Pablo; Joy, Teresa K; Castro-Luque, A Lucia; Diaz-Caravantes, Rolando E; Gameros, Mercedes; Haenchen, Steven; Hayden, Mary H; Monaghan, Andrew; Jeffrey-Guttierez, Eileen; Carrière, Yves; Riehle, Michael R

    2017-01-01

    Dengue virus, primarily transmitted by the Aedes aegypti (L.) mosquito, has rapidly expanded in geographic extent over the past several decades. In some areas, however, dengue fever has not emerged despite established Ae. aegypti populations. The reasons for this are unclear and have sometimes been attributed to socio-economic differences. In 2013 we compared Ae. aegypti adult density and population age structure between two cities in Sonora, Mexico: Hermosillo, which has regular seasonal dengue virus transmission, and Nogales, which has minimal transmission. Larval and pupal abundance was greater in Nogales, and adult density was only higher in Hermosillo during September. Population age structure, however, was consistently older in Hermosillo. This difference in longevity may have been one factor that limited dengue virus transmission in Nogales in 2013, as a smaller proportion of Ae. aegypti females survived past the extrinsic incubation period.

  19. Especificidade da armadilha Adultrap para capturar fêmeas de Aedes aegypti (Diptera: Culicidae Specificity of the Adultrap for capturing females of Aedes aegypti (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    Almério de Castro Gomes

    2007-04-01

    Full Text Available A Adultrap é uma nova armadilha feita para capturar fêmeas de Aedes aegypti. Foram realizados testes para avaliar sua especificidade tendo como referência a técnica da aspiração da espécie em abrigos artificiais. A Adultrap ficou exposta por 24 horas no intradomicílio e peridomicílio de 120 casas sorteadas em dois bairros da Cidade de Foz do Iguaçu, Estado do Paraná. O teste estatístico foi o modelo log-linear de Poisson. O resultado foi a captura de 726 mosquitos Culicidae, dos quais 80 eram Aedes aegypti. A Adultrap capturou apenas fêmeas desta espécie, enquanto o aspirador os dois sexos de Aedes aegypti e mais cinco outras espécies. A Adultrap capturou Aedes aegypti dentro e fora das casas, mas a análise indicou que no peridomicílio a armadilha capturou significantemente mais fêmeas do que a aspiração. Também, ficou evidenciada a sensibilidade da Adultrap para detectar Aedes aegypti em situação de baixa freqüência.The Adultrap is a new trap built for capturing females of Aedes aegypti. Tests were carried out to evaluate the specificity of this trap in comparison with the technique of aspiration of specimens in artificial shelters. Adultraps were kept for 24 hours inside and outside 120 randomly selected homes in two districts of the city of Foz do Iguaçú, State of Paraná. The statistical test was Poisson’s log-linear model. The result was 726 mosquitoes captured, of which 80 were Aedes aegypti. The Adultrap captured only females of this species, while the aspiration method captured both sexes of Aedes aegypti and another five species. The Adultrap captured Aedes aegypti inside and outside the homes, but the analysis indicated that, outside the homes, this trap captured significantly more females than aspiration did. The sensitivity of the Adultrap for detecting females of Aedes aegypti in low-frequency situations was also demonstrated.

  20. Aedes aegypti Larvicidal Sesquiterpene Alkaloids from Maytenus oblongata.

    Science.gov (United States)

    Touré, Seindé; Nirma, Charlotte; Falkowski, Michael; Dusfour, Isabelle; Boulogne, Isabelle; Jahn-Oyac, Arnaud; Coke, Maïra; Azam, Didier; Girod, Romain; Moriou, Céline; Odonne, Guillaume; Stien, Didier; Houël, Emeline; Eparvier, Véronique

    2017-02-24

    Four new sesquiterpene alkaloids (1-4) with a β-dihydroagrofuran skeleton and a new triterpenoid (5) were isolated from an ethyl acetate extract of Maytenus oblongata stems. Their structures were elucidated using 1D and 2D NMR spectroscopy as well as MS and ECD experiments. The M. oblongata stem EtOAc extract and the pure compounds isolated were tested for larvicidal activity against Aedes aegypti under laboratory conditions, and compounds 2 and 3 were found to be active.

  1. A LUTA HUMANA CONTRA O Aedes aegypti

    OpenAIRE

    Silva, Cleidson de Morais; Lourenço, Gizelli Santos; Olea, Roberto Sigfrido Gallegos

    2013-01-01

    No Brasil, a partir dos anos 60, as mudanças demográficas geradas por intenso êxodo rural resultaram em crescimento desordenado das cidades. Dois fatores que podem ter colaborado com essa desorganização são a falta de abastecimento de água, que obriga a um armazenamento muitas vezes precário e também a ausência de destino adequado do lixo, constituído principalmente por latas, garrafas plásticas, vidro, pneus velhos, entre outros. Ambos fatores podem ajudar a explicar o ressurgimento do Aedes...

  2. Heat Sensitivity of wMel Wolbachia during Aedes aegypti Development.

    Directory of Open Access Journals (Sweden)

    Jill N Ulrich

    2016-07-01

    Full Text Available The wMel strain of Wolbachia bacteria is known to prevent dengue and Zika virus transmission in the mosquito vector Aedes aegypti. Accordingly, the release of wMel-infected A. aegypti in endemic regions has been recommended by the World Health Organization as a potential strategy for controlling dengue and Zika outbreaks. However, the utility of this approach could be limited if high temperatures in the aquatic habitats where A. aegypti develop are detrimental to Wolbachia. We exposed wMel-infected A. aegypti eggs and larvae to fluctuating daily temperatures of 30-40°C for three, five, or seven days during their development. We found that Wolbachia levels in females emerging from heat treatments were significantly lower than in the controls that had developed at 20-30°C. Notably, seven days of high temperatures starting at the egg stage reduced Wolbachia levels in emerging females to less than 0.1% of the wMel control levels. However, after adult females returned to 20-30°C for 4-7 days, they experienced differing degrees of Wolbachia recovery. Our findings suggest that the spread of Wolbachia in wild A. aegypti populations and any consequent protection from dengue and Zika viruses might be limited in ecosystems that experience periods of extreme heat, but Wolbachia levels recover partially after temperatures return to normal.

  3. Heat Sensitivity of wMel Wolbachia during Aedes aegypti Development.

    Science.gov (United States)

    Ulrich, Jill N; Beier, John C; Devine, Gregor J; Hugo, Leon E

    2016-07-01

    The wMel strain of Wolbachia bacteria is known to prevent dengue and Zika virus transmission in the mosquito vector Aedes aegypti. Accordingly, the release of wMel-infected A. aegypti in endemic regions has been recommended by the World Health Organization as a potential strategy for controlling dengue and Zika outbreaks. However, the utility of this approach could be limited if high temperatures in the aquatic habitats where A. aegypti develop are detrimental to Wolbachia. We exposed wMel-infected A. aegypti eggs and larvae to fluctuating daily temperatures of 30-40°C for three, five, or seven days during their development. We found that Wolbachia levels in females emerging from heat treatments were significantly lower than in the controls that had developed at 20-30°C. Notably, seven days of high temperatures starting at the egg stage reduced Wolbachia levels in emerging females to less than 0.1% of the wMel control levels. However, after adult females returned to 20-30°C for 4-7 days, they experienced differing degrees of Wolbachia recovery. Our findings suggest that the spread of Wolbachia in wild A. aegypti populations and any consequent protection from dengue and Zika viruses might be limited in ecosystems that experience periods of extreme heat, but Wolbachia levels recover partially after temperatures return to normal.

  4. Local Evolution of Pyrethroid Resistance Offsets Gene Flow Among Aedes aegypti Collections in Yucatan State, Mexico

    Science.gov (United States)

    Saavedra-Rodriguez, Karla; Beaty, Meaghan; Lozano-Fuentes, Saul; Denham, Steven; Garcia-Rejon, Julian; Reyes-Solis, Guadalupe; Machain-Williams, Carlos; Loroño-Pino, Maria Alba; Flores-Suarez, Adriana; Ponce-Garcia, Gustavo; Beaty, Barry; Eisen, Lars; Black, William C.

    2015-01-01

    The mosquito Aedes aegypti is the major vector of the four serotypes of dengue virus (DENV1–4). Previous studies have shown that Ae. aegypti in Mexico have a high effective migration rate and that gene flow occurs among populations that are up to 150 km apart. Since 2000, pyrethroids have been widely used for suppression of Ae. aegypti in cities in Mexico. In Yucatan State in particular, pyrethroids have been applied in and around dengue case households creating an opportunity for local selection and evolution of resistance. Herein, we test for evidence of local adaptation by comparing patterns of variation among 27 Ae. aegypti collections at 13 single nucleotide polymorphisms (SNPs): two in the voltage-gated sodium channel gene para known to confer knockdown resistance, three in detoxification genes previously associated with pyrethroid resistance, and eight in putatively neutral loci. The SNPs in para varied greatly in frequency among collections, whereas SNPs at the remaining 11 loci showed little variation supporting previous evidence for extensive local gene flow. Among Ae. aegypti in Yucatan State, Mexico, local adaptation to pyrethroids appears to offset the homogenizing effects of gene flow. PMID:25371186

  5. Local evolution of pyrethroid resistance offsets gene flow among Aedes aegypti collections in Yucatan State, Mexico.

    Science.gov (United States)

    Saavedra-Rodriguez, Karla; Beaty, Meaghan; Lozano-Fuentes, Saul; Denham, Steven; Garcia-Rejon, Julian; Reyes-Solis, Guadalupe; Machain-Williams, Carlos; Loroño-Pino, Maria Alba; Flores-Suarez, Adriana; Ponce-Garcia, Gustavo; Beaty, Barry; Eisen, Lars; Black, William C

    2015-01-01

    The mosquito Aedes aegypti is the major vector of the four serotypes of dengue virus (DENV1-4). Previous studies have shown that Ae. aegypti in Mexico have a high effective migration rate and that gene flow occurs among populations that are up to 150 km apart. Since 2000, pyrethroids have been widely used for suppression of Ae. aegypti in cities in Mexico. In Yucatan State in particular, pyrethroids have been applied in and around dengue case households creating an opportunity for local selection and evolution of resistance. Herein, we test for evidence of local adaptation by comparing patterns of variation among 27 Ae. aegypti collections at 13 single nucleotide polymorphisms (SNPs): two in the voltage-gated sodium channel gene para known to confer knockdown resistance, three in detoxification genes previously associated with pyrethroid resistance, and eight in putatively neutral loci. The SNPs in para varied greatly in frequency among collections, whereas SNPs at the remaining 11 loci showed little variation supporting previous evidence for extensive local gene flow. Among Ae. aegypti in Yucatan State, Mexico, local adaptation to pyrethroids appears to offset the homogenizing effects of gene flow.

  6. Seasonal Differences in Density But Similar Competitive Impact of Aedes albopictus (Skuse) on Aedes aegypti (L.) in Rio de Janeiro, Brazil.

    Science.gov (United States)

    Camara, Daniel Cardoso Portela; Codeço, Claudia Torres; Juliano, Steven A; Lounibos, L Philip; Riback, Thais Irene Souza; Pereira, Glaucio Rocha; Honorio, Nildimar Alves

    2016-01-01

    Previous studies have shown that the negative effects of density of Ae. albopictus on Ae. aegypti exceed those of Ae. aegypti on Ae. albopictus for population growth, adult size, survivorship, and developmental rate. This competitive superiority has been invoked to explain the displacement of Ae. aegypti by Ae. albopictus in the southeastern USA. In Brazil, these species coexist in many vegetated suburban and rural areas. We investigated a related, but less-well-studied question: do effects of Ae. albopictus on Ae. aegypti larval development and survival occur under field conditions at realistic densities across multiple seasons in Brazil? We conducted additive competition experiments in a vegetated area of Rio de Janeiro where these species coexist. We tested the hypothesis that Ae. aegypti (the focal species, at a fixed density) suffers negative effects on development and survivorship across a gradient of increasing densities of Ae. albopictus (the associate species) in three seasons. The results showed statistically significant effects of both season and larval density on Ae. aegypti survivorship, and significant effects of season on development rate, with no significant season-density interactions. Densities of Aedes larvae in these habitats differed among seasons by a factor of up to 7x. Overall, Spring was the most favorable season for Ae. aegypti survivorship and development. Results showed that under natural conditions the negative competitive effects of Ae. albopictus on Ae. aegypti were expressed primarily as lower survivorship. Coexistence between Ae. aegypti and Ae. albopictus in vegetated areas is likely affected by seasonal environmental differences, such as detrital resource levels or egg desiccation, which can influence competition between these species. Interactions between these Aedes are important in Brazil, where both species are well established and widely distributed and vector dengue, Zika and chikungunya viruses.

  7. Seasonal Differences in Density But Similar Competitive Impact of Aedes albopictus (Skuse on Aedes aegypti (L. in Rio de Janeiro, Brazil.

    Directory of Open Access Journals (Sweden)

    Daniel Cardoso Portela Camara

    Full Text Available Previous studies have shown that the negative effects of density of Ae. albopictus on Ae. aegypti exceed those of Ae. aegypti on Ae. albopictus for population growth, adult size, survivorship, and developmental rate. This competitive superiority has been invoked to explain the displacement of Ae. aegypti by Ae. albopictus in the southeastern USA. In Brazil, these species coexist in many vegetated suburban and rural areas. We investigated a related, but less-well-studied question: do effects of Ae. albopictus on Ae. aegypti larval development and survival occur under field conditions at realistic densities across multiple seasons in Brazil? We conducted additive competition experiments in a vegetated area of Rio de Janeiro where these species coexist. We tested the hypothesis that Ae. aegypti (the focal species, at a fixed density suffers negative effects on development and survivorship across a gradient of increasing densities of Ae. albopictus (the associate species in three seasons. The results showed statistically significant effects of both season and larval density on Ae. aegypti survivorship, and significant effects of season on development rate, with no significant season-density interactions. Densities of Aedes larvae in these habitats differed among seasons by a factor of up to 7x. Overall, Spring was the most favorable season for Ae. aegypti survivorship and development. Results showed that under natural conditions the negative competitive effects of Ae. albopictus on Ae. aegypti were expressed primarily as lower survivorship. Coexistence between Ae. aegypti and Ae. albopictus in vegetated areas is likely affected by seasonal environmental differences, such as detrital resource levels or egg desiccation, which can influence competition between these species. Interactions between these Aedes are important in Brazil, where both species are well established and widely distributed and vector dengue, Zika and chikungunya viruses.

  8. A new tent trap for monitoring the daily activity of Aedes aegypti and Aedes albopictus.

    Science.gov (United States)

    Casas Martínez, Mauricio; Orozco Bonilla, Arnoldo; Muñoz Reyes, Miguel; Ulloa García, Armando; Bond, J Guillermo; Valle Mora, Javier; Weber, Manuel; Rojas, Julio C

    2013-12-01

    In this study, we designed a new tent trap; the BioDiVector (BDV) tent trap, consisting of two rectangular tents that use human bait without endangering the technical personnel. The daily activity pattern of Aedes aegypti and Aedes albopictus in intra, peri, and extradomiciliary sites was studied in an endemic area of dengue in southern Mexico by using the BDV tent trap. Totals of 3,128 individuals of Ae. aegypti and 833 Ae. albopictus were captured. More Ae. aegypti males than females were caught, while the opposite was true with Ae. albopictus. The activity of both mosquito species was affected by the interaction between the collection site and time of day. In general, more individuals of both mosquito species were captured at the extradomicillary sites than at the peri and intradomicillary sites. Mosquitoes showed two peaks of activity, one in the morning and the other in the afternoon, but in general this only occurred at the extradomicillary sites, whereas no peak of activity was observed at the intra and peridomicillary sites. Overall, Ae. aegypti had a higher indirect biting rate than Ae. albopictus. Finally, due to its efficiency, simplicity, and low cost, we suggest the use of this innovative tool for entomological surveillance, bionomics and vector incrimination studies in geographical areas where dengue and other arboviruses are present.

  9. Costs of Three Wolbachia Infections on the Survival of Aedes aegypti Larvae under Starvation Conditions.

    Science.gov (United States)

    Ross, Perran A; Endersby, Nancy M; Hoffmann, Ary A

    2016-01-01

    The mosquito Aedes aegypti, the principal vector of dengue virus, has recently been infected experimentally with Wolbachia: intracellular bacteria that possess potential as dengue biological control agents. Wolbachia depend on their hosts for nutrients they are unable to synthesize themselves. Consequently, competition between Wolbachia and their host for resources could reduce host fitness under the competitive conditions commonly experienced by larvae of Ae. aegypti in the field, hampering the invasion of Wolbachia into natural mosquito populations. We assess the survival and development of Ae. aegypti larvae under starvation conditions when infected with each of three experimentally-generated Wolbachia strains: wMel, wMelPop and wAlbB, and compare their fitness to wild-type uninfected larvae. We find that all three Wolbachia infections reduce the survival of larvae relative to those that are uninfected, and the severity of the effect is concordant with previously characterized fitness costs to other life stages. We also investigate the ability of larvae to recover from extended food deprivation and find no effect of Wolbachia on this trait. Aedes aegypti larvae of all infection types were able to resume their development after one month of no food, pupate rapidly, emerge at a large size, and exhibit complete cytoplasmic incompatibility and maternal transmission. A lowered ability of Wolbachia-infected larvae to survive under starvation conditions will increase the threshold infection frequency required for Wolbachia to establish in highly competitive natural Ae. aegypti populations and will also reduce the speed of invasion. This study also provides insights into survival strategies of larvae when developing in stressful environments.

  10. Discriminating lethal concentrations and efficacy of six pyrethroids for control of Aedes aegypti in Thailand.

    Science.gov (United States)

    Juntarajumnong, Waraporn; Pimnon, Sunthorn; Bangs, Michael J; Thanispong, Kanutcharee; Chareonviriyaphap, Theeraphap

    2012-03-01

    Establishing baseline insecticide discriminating doses is crucial in accurately determining susceptibility status and changing temporal patterns of physiological response in mosquito populations. Pyrethroids are the predominant chemicals used for controlling adult Aedes aegypti and Ae. albopictus, both vectors of dengue viruses, in Thailand. Presently, only 2 pyrethroids, permethrin and lambda-cyhalothrin, have published diagnostic dose rates for monitoring Ae. aegypti. This study established the diagnostic lethal concentrations for 6 different pyrethroids available in Thailand for dengue vector control. United States Department of Agriculture insecticide-susceptible strain of Ae. aegypti was used to establish the baseline concentrations for subsequent susceptibility testing of field populations. Our findings showed lower discriminating concentrations for lambda-cyhalothrin and permethrin than those recommended by the World Health Organization (WHO), at 2.5- and 1.7-fold lower dosing, respectively. The susceptibility status of 3 different geographical populations of field-collected Ae. aegypti were tested using the standard WHO procedures. All 3 field strains demonstrated varying levels of physiological resistance to each compound. We conclude that establishing the baseline diagnostic concentration of an insecticide is of paramount importance in accurately determining the susceptibility status in field-collected mosquitoes. If possible, discriminating doses should be established for all insecticides and test assays run concurrently with a known susceptible strain for more accurate monitoring of resistance in mosquito populations in Thailand.

  11. Prevalence of Aedes aegypti Linnaeus and Aedes albopictus Skuse in Koderma, Jharkhand.

    Science.gov (United States)

    Singh, R K; Dhiman, R C; Dua, V K

    2011-09-01

    Entomological survey was carried out in different localities of Koderma district of Jharkhand with a view to study the prevalence, distribution and stratification of areas for Aedes mosquito species. A total of 233 houses were covered during house to house larval and adult survey. Aedes breeding could be detected in 157 houses. In all, a total of 942 domestic water containers were searched, out of which 461 were found positive. The overall house index(HI) container index(CI) breteau index(B1) and pupal index(PI) were 67.38%, 48.94%, 197.85% and 79.4%, respectively. The survey revealed that Aedes aegypti Linnaeus and Aedes albopictus Skuse are well established in Koderma with most of the areas showing high adult and larval indices. The preventive strategy needs to be directed towards minimizing the breeding potential of Aedes and water management practice by individuals along with implementation of urban bye-laws as well as IEC activities to contain Aedes breeding in future.

  12. Evaluation of the present dengue situation and control strategies against Aedes aegypti in Cebu City, Philippines.

    Science.gov (United States)

    Mahilum, Milagros M; Ludwig, Mario; Madon, Minoo B; Becker, Norbert

    2005-12-01

    The present dengue situation and methods to control Aedes aegypti larvae in Cebu City, Philippines, were evaluated for the development of an integrated community-based dengue control program. The study included the detection of dengue infection among Filipino patients, surveying mosquito breeding sites to determine larval population density of Aedes aegypti, an evaluation of public knowledge, attitude, and personal protection practices against dengue, and an evaluation of the efficacy of VectoBac DT/Culinex Tab tablets based on Bacillus thuringiensis israelensis against Ae. aegypti larvae. Of the 173 human sera samples that were assayed for dengue viruses, 94.9% were positive, 2.2% negative and 2.8% equivocal. Thirty households were randomly chosen per Barangay "Villages" (lowest level of formal local administration). Of the 489 breeding sites surveyed, 29.4% were infested with Ae. aegypti larvae, with discarded tires having the highest infestation rate (69.4%). A survey of people's knowledge, attitude, and practices for integrated community-based dengue control showed that 68.7% of the interviewees were aware that dengue is transmitted by mosquitoes, but only 4.3% knew that a virus was the cause of the disease. The efficacy of one and two tablets of VectoBac DT/Culinex Tab, based on Bacillus thuringiensis israelensis, was assessed against the larvae of Ae. aegypti exposed to sunshine and shaded water containers in semi-field and field tests. In semi-field tests, 100% mortality was achieved until the 18th and 30th day after the application of one and two tablets, respectively, in sun-exposed containers. In shaded containers, 100% mortality was observed until the 30th and 36th day after the application of one and two tablets, respectively. In field tests, the tablets were effective for approximately 3 weeks.

  13. Field validation of the gravid Aedes trap (GAT) for collection of Aedes aegypti (Diptera: Culicidae).

    Science.gov (United States)

    Ritchie, Scott A; Buhagiar, Tamara S; Townsend, Michael; Hoffmann, Ary; Van Den Hurk, Andrew F; McMahon, Jamie L; Eiras, Alvaro E

    2014-01-01

    Current surveillance methods for adult Aedes aegypti (L.) are expensive, require electrical power (e.g., the BG-Sentinel trap, BGS), are labor intensive (aspirators), or require difficult to use and costly adhesives (sticky ovitraps). Field trials were conducted in Cairns (Australia) to compare the efficacy of the newly designed Gravid Aedes Trap (GAT) against existing sticky ovitraps (MosquiTRAP and double sticky ovitrap) and the BGS. Latin square design trials confirmed that alarge GAT using a 9.2-liters bucket treated with Mortein Barrier Outdoor Surface Spray ([AI] 0.3 g/kg imiprothrin and 0.6 g/kg deltamethrin) outperformed a smaller 1.2-liters GAT and collected, on average, 3.7x and 2.4X more female Ae. aegypti than the MosquiTRAP and double sticky ovitrap, respectively. Field trials showed that the GAT collected 10-50% less female Ae. aegypti than the BGS trap but 30% more gravid mosquitoes than the BGS. Trials using the BGS and the GAT indicated that there was no difference in capture rates between female Ae. aegypti uninfected and infected with the wMel strain of Wolbachia, and wMel infection rates were nearly identical at >90% to field captured Ae. aegypti. The potential for the GAT to be used for dengue virus surveillance was also demonstrated with dengue virus type 3 RNA detected in five-sixths and six-sixths pools ofAe. aegypti stored in a GAT held at 28 degreeC and 60% relative humidity for 7 and 14 d, respectively. Mosquito knock down in GATs treated with Mortein surface spray set in 30, 70, and 99% shade was comparable for up to 2 mo, with only approximately 10% of adults escaping. The GAT is therefore a useful tool for capturing adult Ae. aegypti and may be suitable for other container-inhabiting species such as Aedes albopictus (Skuse) and Culex quinquefasciatus Say. The low cost and practicality of operation make the GAT suitable for vector surveillance and projects requiring monitoring of mosquitoes for Wolbachia and arboviruses, especially in

  14. Diversidade de criadouros e tipos de imóveis freqüentados por Aedes albopictus e Aedes aegypti Diversity of oviposition containers and buildings where Aedes albopictus and Aedes aegypti can be found

    Directory of Open Access Journals (Sweden)

    Vanderlei C da Silva

    2006-12-01

    Full Text Available OBJETIVOS: Verificar a diversidade de criadouros e tipos de imóveis freqüentados por fêmeas de Aedes albopictus e Aedes aegypti. MÉTODOS: O estudo foi realizado nos anos de 2002 e 2003 no bairro de Campo Grande, Rio de Janeiro, RJ. Realizou-se pesquisa larvária em diferentes tipos de imóveis. As larvas encontradas foram identificadas em laboratório. A freqüência de larvas dessas duas espécies foi computada nos diversos criadouros disponíveis. Foram calculados os índices de infestação predial e de Breteau, as diferenças foram testadas pelo qui-quadrado. RESULTADOS: Os tipos de imóveis positivos para os aedinos foram: residências (83,9% do total; igrejas, escolas, clubes (6,8%; terrenos baldios (6,4%; e comércios (2,8%. Das 9.153 larvas, 12,0% eram de Aedes albopictus e 88,0% de Aedes aegypti. Para aquela espécie, os recipientes onde foram mais encontradas foram ralos (25,4%, latas, garrafas, vasilhames (23,9% e vasos com plantas (16,2%. Aedes aegypti mostrou-se mais freqüente nos criadouros que Aedes albopictus (chi2=145,067, pOBJECTIVE: To assess the diversity of oviposition containers and buildings where females of Aedes albopictus and Aedes aegypti can be found. METHODS: A study was carried out in the city of Rio de Janeiro, Southern Brazil, between 2002 and 2003. Larvae in different types of buildings were investigated, and immature forms found were then sent to the laboratory for identification. The larval frequency for both mosquitoes was estimated in the oviposition containers available. The Breteau index and the building infestation index were calculated and differences were tested using the Chi-square test. RESULTS: The types of buildings that were positive for Aedes albopictus and Aedes aegypti were: dwellings (83.9%; churches, schools, clubs (6.8%; vacant land (6.4%; and businesses (2.8%. Of 9,153 larvae collected, 12.0% were Aedes albopictus and 88.0% were Aedes aegypti. Aedes albopictus were mostly found in drains

  15. Evaluation of Sumithion L-40 against Aedes aegypti (L.) and Aedes albopictus Skuse.

    Science.gov (United States)

    Loke, S R; Sing, K W; Teoh, G N; Lee, H L

    2015-03-01

    Space spraying of chemical insecticides is still an important mean of controlling Aedes mosquitoes and dengue transmission. For this purpose, the bioefficacy of space-sprayed chemical insecticide should be evaluated from time to time. A simulation field trial was conducted outdoor in an open field and indoor in unoccupied flat units in Kuala Lumpur, to evaluate the adulticidal and larvicidal effects of Sumithion L-40, a ULV formulation of fenitrothion. A thermal fogger with a discharge rate of 240 ml/min was used to disperse Sumithion L-40 at 3 different dosages (350 ml/ha, 500 ml/ha, 750 ml/ha) against lab-bred larvae and adult female Aedes aegypti and Aedes albopictus. An average of more than 80% adult mortality was achieved for outdoor space spray, and 100% adult mortality for indoor space spray, in all tested dosages. Outdoor larvicidal effect was noted up to 14 days and 7 days at a dosage of 500 and 750 ml/ha for Ae. aegypti and Ae. albopictus, respectively. Indoor larvicidal effect was up to 21 days (500 ml/ha) and 14 days (750 ml/ha), respectively, after spraying with larval mortality > 50% against Ae. aegypti. This study concluded that the effective dosage of Sumithion L-40 thermally applied against adult Ae. aegypti and Ae. albopictus indoor and outdoor is 500 and 750 ml/ha. Based on these dosages, effective indoor spray volume is 0.4 - 0.6 ml/m³. Additional indoor and outdoor larvicidal effect will be observed at these application dosages, in addition to adult mortality.

  16. Proof of concept for a novel insecticide bioassay based on sugar feeding by adult Aedes aegypti (Stegomyia aegypti).

    Science.gov (United States)

    Stell, F M; Roe, R M; Arellano, C; Kennedy, L; Thornton, H; Saavedra-Rodriguez, K; Wesson, D M; Black, W C; Apperson, C S

    2013-09-01

    Aedes aegypti L. (Stegomyia aegypti) (Diptera: Culicidae) is the principal vector of dengue and yellow fever viruses in tropical and subtropical regions of the world. Disease management is largely based on mosquito control achieved by insecticides applied to interior resting surfaces and through space sprays. Population monitoring to detect insecticide resistance is a significant component of integrated disease management programmes. We developed a bioassay method for assessing insecticide susceptibility based on the feeding activity of mosquitoes on plant sugars. Our prototype sugar-insecticide feeding bioassay system was composed of inexpensive, disposable components, contained minimal volumes of insecticide, and was compact and highly transportable. Individual mosquitoes were assayed in a plastic cup that contained a sucrose-permethrin solution. Trypan blue dye was added to create a visual marker in the mosquito's abdomen for ingested sucrose-permethrin solution. Blue faecal spots provided further evidence of solution ingestion. With the sugar-insecticide feeding bioassay, the permethrin susceptibility of Ae. aegypti females from two field-collected strains was characterized by probit analysis of dosage-response data. The field strains were also tested by forced contact of females with permethrin residues on filter paper. Dosage-response patterns were similar, indicating that the sugar-insecticide feeding bioassay had appropriately characterized the permethrin susceptibility of the two strains.

  17. Cost effectiveness of Aedes aegypti control programmes: participatory versus vertical.

    Science.gov (United States)

    Baly, A; Toledo, M E; Boelaert, M; Reyes, A; Vanlerberghe, V; Ceballos, E; Carvajal, M; Maso, R; La Rosa, M; Denis, O; Van der Stuyft, P

    2007-06-01

    We conducted an economic appraisal of two strategies for Aedes aegypti control: a vertical versus a community-based approach. Costs were calculated for the period 2000-2002 in three pilot areas of Santiago de Cuba where a community intervention was implemented and compared with three control areas with routine vertical programme activities. Reduction in A. aegypti foci was chosen as the measure of effectiveness. The pre-intervention number of foci (614 vs. 632) and economical costs for vector control (US$243746 vs. US$263486) were comparable in the intervention and control areas. During the intervention period (2001-2002), a 13% decrease in recurrent costs for the health system was observed. Within the control areas, these recurrent relative costs remained stable. The number of A. aegypti foci in the pilot areas and the control areas fell by 459 and 467, respectively. The community-based approach was more cost effective from a health system perspective (US$964 vs. US$1406 per focus) as well as from society perspective (US$1508 vs. US$1767 per focus).

  18. Comprehensive DNA methylation analysis of the Aedes aegypti genome

    Science.gov (United States)

    Falckenhayn, Cassandra; Carneiro, Vitor Coutinho; de Mendonça Amarante, Anderson; Schmid, Katharina; Hanna, Katharina; Kang, Seokyoung; Helm, Mark; Dimopoulos, George; Fantappié, Marcelo Rosado; Lyko, Frank

    2016-01-01

    Aedes aegypti mosquitoes are important vectors of viral diseases. Mosquito host factors play key roles in virus control and it has been suggested that dengue virus replication is regulated by Dnmt2-mediated DNA methylation. However, recent studies have shown that Dnmt2 is a tRNA methyltransferase and that Dnmt2-dependent methylomes lack defined DNA methylation patterns, thus necessitating a systematic re-evaluation of the mosquito genome methylation status. We have now searched the Ae. aegypti genome for candidate DNA modification enzymes. This failed to reveal any known (cytosine-5) DNA methyltransferases, but identified homologues for the Dnmt2 tRNA methyltransferase, the Mettl4 (adenine-6) DNA methyltransferase, and the Tet DNA demethylase. All genes were expressed at variable levels throughout mosquito development. Mass spectrometry demonstrated that DNA methylation levels were several orders of magnitude below the levels that are usually detected in organisms with DNA methylation-dependent epigenetic regulation. Furthermore, whole-genome bisulfite sequencing failed to reveal any evidence of defined DNA methylation patterns. These results suggest that the Ae. aegypti genome is unmethylated. Interestingly, additional RNA bisulfite sequencing provided first evidence for Dnmt2-mediated tRNA methylation in mosquitoes. These findings have important implications for understanding the mechanism of Dnmt2-dependent virus regulation. PMID:27805064

  19. Insights into the transcriptome of oenocytes from Aedes aegypti pupae

    Directory of Open Access Journals (Sweden)

    Gustavo Ferreira Martins

    2011-05-01

    Full Text Available Oenocytes are ectodermic cells present in the fat body of several insect species and these cells are considered to be analogous to the mammalian liver, based on their role in lipid storage, metabolism and secretion. Although oenocytes were identified over a century ago, little is known about their messenger RNA expression profiles. In this study, we investigated the transcriptome of Aedes aegypti oenocytes. We constructed a cDNA library from Ae. aegypti MOYO-R strain oenocytes collected from pupae and randomly sequenced 687 clones. After sequences editing and assembly, 326 high-quality contigs were generated. The most abundant transcripts identified corresponded to the cytochrome P450 superfamily, whose members have roles primarily related to detoxification and lipid metabolism. In addition, we identified 18 other transcripts with putative functions associated with lipid metabolism. One such transcript, a fatty acid synthase, is highly represented in the cDNA library of oenocytes. Moreover, oenocytes expressed several immunity-related genes and the majority of these genes were lysozymes. The transcriptional profile suggests that oenocytes play diverse roles, such as detoxification and lipid metabolism, and increase our understanding of the importance of oenocytes in Ae. aegypti homeostasis and immune competence.

  20. Genetics and morphology of Aedes aegypti (Diptera: Culicidae) in septic tanks in Puerto Rico.

    Science.gov (United States)

    Somers, Gerard; Brown, Julia E; Barrera, Roberto; Powell, Jeffrey R

    2011-11-01

    Dengue viruses, primarily transmitted by the mosquito Aedes aegypti (L.), affect an estimated 50-100 million people yearly. Traditional approaches to control mosquito population numbers, such as the use of pesticides, have had only limited success. Atypical mosquito behavior may be one reason why current vector control efforts have been less efficacious than expected. In Puerto Rico, for example, adult Ae. aegypti have been observed emerging from septic tanks. Interestingly, adults emerging from septic tanks are larger on average than adults collected from surface containers. To determine whether adults colonizing septic tanks constitute a separate Ae. aegypti population, we used 12 previously validated microsatellite loci to examine adult mosquitoes collected from both septic tanks and surface containers, but found no evidence to suggest genetic differentiation. Size differences between septic tank and surface mosquitoes were reduced when nutrient levels were held constant across experimental groups. Despite the absence of evidence suggesting a genetic difference between experimental groups in this study, Ae. aegypti emerging from septic tanks may still represent a more dangerous phenotype and should be given special consideration when developing vector control programs and designing public health interventions in the future.

  1. Development and evaluation of a pyriproxyfen-treated device to control the dengue vector, Aedes aegypti (L.) (Diptera:Culicidae).

    Science.gov (United States)

    Ponlawat, Alongkot; Fansiri, Thanyalak; Kurusarttra, Somwang; Pongsiri, Arissara; McCardle, Patrick W; Evans, Brian P; Evans, Brain P; Richardson, Jason H

    2013-03-01

    The resurgence of dengue fever and the chikungunya epidemic make the control of Aedes aegypti mosquitoes, the vectors of these diseases, critically important. We developed and evaluated an Ae. aegypti control device that is visually-attractive to mosquitoes. This pyriproxyfen-treated device was evaluated for its impact on Ae. aegypti egg production and population dynamics in dengue-endemic areas in Thailand. The device consists of a "high rise" shaped ovitrap/ resting station covered with black cotton cloth. The device is easily collapsible and transportable. Ae. aegypti are generally drawn towards darker, shadier areas making this device physically attractive as a resting station to mosquitoes of all physiological stages. The results show this device suppressed Ae. aegypti populations after it was introduced into a village. The observed effect was primarily the result of the Ae. aegypti exposure to pyriproxyfen shortly after adult emergence or after taking a blood meal resulting in decreased egg production. We believe the device may be further improved physically and the formulation should be replaced to provide even better efficacy for controlling Ae. aegypti mosquito, populations.

  2. Investigating the Potential Range Expansion of the Vector Mosquito Aedes aegypti in Mexico with NASA Earth Science Remote Sensing Results

    Science.gov (United States)

    Crosson, W. L.; Eisen, L.; Estes, M. G.; Estes, S. M.; Hayden, M.; Lozano-Fuentes, S.; Monaghan, A. J.; Moreno Madriñán, M. J.; Ochoa, C.; Quattrochi, D.; Tapia, B.; Welsh-Rodriguez, C. M.

    2012-12-01

    In tropical and sub-tropical regions, the mosquito Aedes aegypti is the major vector for the virus causing dengue, a serious public health issue in these areas. Through ongoing NSF- and NASA-funded studies, field surveys of Aedes aegypti and an integrated modeling approach are being used to improve our understanding of the potential range of the mosquito to expand toward heavily populated high elevation areas such as Mexico City under various climate change and socio-economic scenarios. This work serves three primary objectives: (1) Employ NASA remotely-sensed data to supplement the environmental monitoring and modeling component of the project. These data -- for example, surface temperature, precipitation, vegetation indices, soil moisture and elevation -- are critical for understanding the habitat necessary for mosquito survival and abundance; (2) Implement training sessions to instruct scientists and students from Mexico and the U.S. on how to use remote sensing and implement the NASA SERVIR Regional Visualization and Monitoring System; (3) Employ the SERVIR framework to optimize the dissemination of key project results in order to increase their societal relevance and benefits in developing climate adaptation strategies. Field surveys of larval, pupal and adult Aedes aegypti, as well as detailed physical and social household characteristics, were conducted in the summers of 2011and 2012 at geographic scales from the household to the community along a transect from sea level to 2400 m ASL. These data are being used in models to estimate Aedes aegypti habitat suitability. In 2011, Aedes aegypti were identified at an elevation of over 2150 m in Puebla, the highest elevation at which this species has been observed.

  3. Mosquito larvicidal effect of orthophosporic acid and lactic acid individually or their combined form on Aedes aegypti

    Institute of Scientific and Technical Information of China (English)

    Supratik Chakraborty; Someshwar Singha; Goutam Chandra

    2010-01-01

    Objective: To observe the effect of two common organic acids on the larvae of Aedes aegypti (Ae. aegypti) (L), the natural vector of dengue fever/dengue hemorrhage fever, chikugunya and allergic skin reaction especially in children. Methods: Two common organic acids (lactic acid and orthophosporic acid of gradually increasing concentration) were used against laboratory reared third instars larvae of Ae. aegypti in order to observe the rate of mortality after 8, 16 and 24 h of post exposure respectively in laboratory. Results: Larval mortality rates recorded were in the following sequences: orthophosphoric acid and lactic acid at 1:1 combination >orthophosphoric acid>lactic acid. Conclusions: These two organic acids may be used perfectly in combination (1:1) along with other conventional vector control methods to reduce the Ae. aegypti population, especially in those areas where surveillance and supervisory mechanism are poor or insufficient.

  4. Susceptibility profile of Aedes aegypti from Santiago Island, Cabo Verde, to insecticides.

    Science.gov (United States)

    Rocha, Hélio Daniel Ribeiro; Paiva, Marcelo Henrique Santos; Silva, Norma Machado; de Araújo, Ana Paula; Camacho, Denise dos Reis da Rosa de Azevedo; Moura, Aires Januário Fernandes da; Gómez, Lara Ferrero; Ayres, Constância Flávia Junqueira; Santos, Maria Alice Varjal de Melo

    2015-12-01

    In 2009, Cabo Verde diagnosed the first dengue cases, with 21,137 cases reported and Aedes aegypti was identified as the vector. Since the outbreak, chemical insecticides and source reduction were used to control the mosquito population. This study aimed to assess the susceptibility of A. aegypti populations from Santiago, Cabo Verde to insecticides and identify the mechanisms of resistance. Samples of A. aegypti eggs were obtained at two different time periods (2012 and 2014), using ovitraps in different locations in Santiago Island to establish the parental population. F1 larvae were exposed to different concentrations of insecticides (Bacillus thuringiensis var israelensis (Bti), diflubenzuron and temephos) to estimate the lethal concentrations (LC90) and calculate the respective rate of resistance (RR90). Semi-field tests using temephos-ABATE(®) were performed to evaluate the persistence of the product. Bottle tests using female mosquitoes were carried out to determine the susceptibility to the adulticides malathion, cypermethrin and deltamethrin. Biochemical and molecular tests were performed to investigate the presence of metabolic resistance mechanisms, associated with the enzymes glutathione S-transferases (GSTs), esterases and mixed-function oxidases (MFO) and to detect mutations or alterations in the sodium channel and acetylcholinesterase genes. A. aegypti mosquitoes from Santiago exhibited resistance to deltamethrin, cypermethrin (mortalityaegypti population from Santiago is resistant to two major insecticides used for vector control, deltamethrin and temephos. To our knowledge, this is the first report of temephos resistance in an African A. aegypti population. The low level of temephos resistance was maintained from 2012-2014, which suggested the imposition of selective pressure, although it was not possible to identify the resistance mechanisms involved. These data show that the potential failures in the local mosquito control program are not

  5. Adulticidal Activity of Olea Vera, Linum Usitatissimum and Piper Nigera Against Anopheles Stephensi and Aedes Aegypti Under Laboratory Conditions

    Directory of Open Access Journals (Sweden)

    SA Hassan

    2011-12-01

    Full Text Available Background: There are several plant extractions which are being used for mosquito control. The aim of this study was to evaluate the efficacy of Olea vera, Linum usitatissimum and Piper nigera against Anopheles stephensi and Aedes aegypti under laboratory conditions. Methods: These tests were carried out using WHO recommended bioassay method for adult mosquitoes. Results: The extracts from black pepper was more effective as adulticide with lowest LC50 values (2.26% and 8.4% against Aedes aegypti and Anopheles stephensi after 24 h of exposure while after 48h (1.56% and 5.11% respec­tively. In terms of LC90 value black pepper was best with (8.66% and 30.1% against Ae. aegypti and An. stephensi after 24 h of exposure while after 48h (4.59% and 17.3% respectively. In terms of LT50 black pepper took 15 h to kill 50% tested population of Ae. aegypti while against An. stephensi it took more than 2 days. In terms of percentage mortality black pepper kill 84% of the population of Ae. aegypti and 44.75% of the An. stephensi population. Conclusion: Black pepper showed best results in term of LC50, LC90, LT50 and percentage mortality against Ae. ae­gypti and An. stephensi. Our study suggested that the plant extracts have potential to kill adult mosquitoes, are environment friendly and can be used for the control of mosquitoes.

  6. Resistance Status of Aedes aegypti to Cypermethrin through Susceptibility Method in Cimahi City

    OpenAIRE

    Yuneu Yuliasih; Rina Marina; Mara Ipa; Firda Yanuar Pradani

    2011-01-01

    Vector control of dengue usually doing by using insecticides, whether by government or insecticides used in household. Using to much insecticides for long time can caused resistence of mosquito. This research aim to know resistance status of Aedes aegypti from endemic rural in district Cimahi to cypermethrin (synthetic pyretroid). Resistance status knowing by susceptibility methods (WHO standard) with using impregnated paper that containing cypermethrin 0.2% and 0.4%. Aedes aegypti spread by ...

  7. BIOENSAYO DE IVERMECTINA CONTRA LARVAS DE AEDES AEGYPTI, ALTERNATIVA PARA CONTROL DEL DENGUE EN ECUADOR

    OpenAIRE

    Silva Bustillos, Ricardo José

    2014-01-01

    The purpose of this research is to propose the use of ivermectin against the larvae of Aedes aegypti for dengue control in drinking water and as a vector control mechanism against the resistance of larvicides used today. In this study, various bioassays were conducted with ivermectin until 50% lethal dose (LD 50%) and it was demonstrated that with the use of antiparasitic human and veterinary use at very low concentrations, it is able to prevent the development of Aedes aegypti larvae. Result...

  8. Evaluation of Three Commercial Backpack Sprayers with Aqualuer (registered trademark) 20-20 Against Caged Adult Aedes aegypti

    Science.gov (United States)

    2016-03-11

    Sprayers with Aqualuer® 20–20 Against Caged Adult Aedes Aegypti Author(s): Derrick Conover, Ali Fulcher, Michael L. Smith, Muhammad Farooq, Marcia K...AEDES AEGYPTI DERRICK CONOVER,1 ALI FULCHER,1 MICHAEL L. SMITH,1 MUHAMMAD FAROOQ,2 MARCIA K. GAINES1 AND RUI-DE XUE1,3 ABSTRACT. Three commercially...adult Aedes aegypti in semifield trials in northeastern Florida. Two battery-powered sprayers, Birchmeier and Hudson, were compared with the standard

  9. Functional Characterization of the Octenol Receptor Neuron on the Maxillary Palps of the Yellow Fever Mosquito, Aedes aegypti

    Science.gov (United States)

    2011-06-30

    Functional Characterization of the Octenol Receptor Neuron on the Maxillary Palps of the Yellow Fever Mosquito, Aedes aegypti Alan J. Grant, Joseph C...Dickens JC (2011) Functional Characterization of the Octenol Receptor Neuron on the Maxillary Palps of the Yellow Fever Mosquito, Aedes aegypti . PLoS...palps. Both sexes of mosquitoes possess basiconic sensilla that contain three neurons; in Aedes aegypti these sensilla number about 35 in females and 21

  10. Contact irritant responses of Aedes aegypti Using sublethal concentration and focal application of pyrethroid chemicals.

    Directory of Open Access Journals (Sweden)

    Hortance Manda

    Full Text Available BACKGROUND: Previous studies have demonstrated contact irritant and spatial repellent behaviors in Aedes aegypti following exposure to sublethal concentrations of chemicals. These sublethal actions are currently being evaluated in the development of a push-pull strategy for Ae. aegypti control. This study reports on mosquito escape responses after exposure to candidate chemicals for a contact irritant focused push-pull strategy using varying concentrations and focal application. METHODS: Contact irritancy (escape behavior, knockdown and 24 hour mortality rates were quantified in populations of female Ae. aegypti under laboratory conditions and validated in the field (Thailand and Peru using experimental huts. Evaluations were conducted using varying concentrations and treatment surface area coverage (SAC of three pyrethroid insecticides: alphacypermethrin, lambacyhalothrin and deltamethrin. RESULTS: Under laboratory conditions, exposure of Ae. aegypti to alphacypermethrin using the standard field application rate (FAR resulted in escape responses at 25% and 50% SAC that were comparable with escape responses at 100% SAC. Significant escape responses were also observed at <100% SAC using ½FAR of all test compounds. In most trials, KD and 24 hour mortality rates were higher in mosquitoes that did not escape than in those that escaped. In Thailand, field validation studies indicated an early time of exit (by four hours and 40% increase in escape using ½FAR of alphacypermethrin at 75% SAC compared to a matched chemical-free control. In Peru, however, the maximum increase in Ae. aegypti escape from alphacypermethrin-treated huts was 11%. CONCLUSIONS/SIGNIFICANCE: Results presented here suggest a potential role for sublethal and focal application of contact irritant chemicals in an Ae. aegypti push-pull strategy to reduce human-vector contact inside treated homes. However, the impact of an increase in escape response on dengue virus transmission is

  11. Long-term spatio-temporal dynamics of the mosquito Aedes aegypti in temperate Argentina.

    Science.gov (United States)

    Fischer, S; De Majo, M S; Quiroga, L; Paez, M; Schweigmann, N

    2017-04-01

    Buenos Aires city is located near the southern limit of the distribution of Aedes aegypti (Diptera: Culicidae). This study aimed to assess long-term variations in the abundance of Ae. aegypti in Buenos Aires in relation to changes in climatic conditions. Ae. aegypti weekly oviposition activity was analyzed and compared through nine warm seasons from 1998 to 2014, with 200 ovitraps placed across the whole extension of the city. The temporal and spatial dynamics of abundances were compared among seasons, and their relation with climatic variables were analyzed. Results showed a trend to higher peak abundances, a higher number of infested sites, and longer duration of the oviposition season through subsequent years, consistent with a long-term colonization process. In contrast, thermal favorability and rainfall pattern did not show a consistent trend of changes. The long-term increase in abundance, and the recently documented expansion of Ae. aegypti to colder areas of Buenos Aires province suggest that local populations might be adapting to lower temperature conditions. The steadily increasing abundances may have implications on the risk of dengue transmission.

  12. Lethal ovitrap deployment for Aedes aegypti control: potential implications for non-target organisms.

    Science.gov (United States)

    Long, Sharron A; Jacups, Susan P; Ritchie, Scott A

    2015-06-01

    In Australia, dengue control combines source reduction with lethal ovitraps to reduce Aedes aegypti populations during outbreaks. Lethal ovitraps are considered a sustainable and environmentally friendly method of controlling container-inhabiting mosquitoes, however, to-date, this claim has not been quantified. This study assesses the potential impact of lethal ovitraps on non-target organisms when used to control Ae. aegypti in tropical Australia. For retention of specimens, we substituted standard sticky ovitraps for lethal ovitraps. We collected 988 Ae. aegypti and 44,132 non-target specimens over 13 months from 16 sites. Although Ae. aegypti comprised only 2.2% of the total collection, they were were the eighth most dominant taxa collected, on the 93(rd) percentile. Of the non-target organisms, Collembola were the dominant taxa, 44.2%, with 36.8% and 10.5% Diptera and Hymenoptera, respectively. Of the Dipterans, 61% were family Phoridae. Lethal ovitraps were visited by 90 insect or invertebrate families in total. Ovitraps are attractive to Collembola, Phoridae, Sciaridae, Formicidae, and Culicidae, with minimal attraction by Apidae and other commonly monitored non-target organisms. For container-inhabiting mosquitoes, LOs are cost effective operationally, requiring minimal staff resources for placement and retrieval.

  13. Development and Evaluation of a Pyriproxyfen-treated Device to Control the Dengue Vector, Aedes aegypti (L.) (Diptera: Culicidae)

    Science.gov (United States)

    2013-03-01

    A PyriProxyfen TreATed device for Ae. Aegypti conTrol Vol 44 No. 2 March 2013 167 Correspondence: Alongkot Ponlawat, Depart- ment of Entomology...of Defense, or the US Governments. DEVELOPMENT AND EVALUATION OF A PYRIPROXYFEN- TREATED DEVICE TO CONTROL THE DENGUE VECTOR, AEDES AEGYPTI (L...control of Aedes aegypti mosquitoes, the vectors of these diseases, critically important. We developed and evaluated an Ae. aegypti control device

  14. Imidacloprid impairs the post-embryonic development of the midgut in the yellow fever mosquito Stegomyia aegypti (=Aedes aegypti).

    Science.gov (United States)

    Fernandes, K M; Gonzaga, W G; Pascini, T V; Miranda, F R; Tomé, H V V; Serrão, J E; Martins, G F

    2015-09-01

    The mosquito Stegomyia aegypti (=Aedes aegypti) (Diptera: Culicidae) is a vector for the dengue and yellow fever viruses. As blood digestion occurs in the midgut, this organ constitutes the route of entry of many pathogens. The effects of the insecticide imidacloprid on the survival of St. aegypti were investigated and the sub-lethal effects of the insecticide on midgut development were determined. Third instar larvae were exposed to different concentrations of imidacloprid (0.15, 1.5, 3.0, 6.0 and 15.0 p.p.m.) and survival was monitored every 24 h for 10 days. Midguts from imidacloprid-treated insects at different stages of development were dissected and processed for analyses by transmission electron microscopy, immunofluorescence microscopy and terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL) assays. Imidacloprid concentrations of 3.0 and 15.0 p.p.m. were found to affect midgut development similarly. Digestive cells of the fourth instar larvae (L4) midgut exposed to imidacloprid had more multilamellar bodies, abundantly found in the cell apex, and more electron-lucent vacuoles in the basal region compared with those from untreated insects. Moreover, imidacloprid interfered with the differentiation of regenerative cells, dramatically reducing the number of digestive and endocrine cells and leading to malformation of the midgut epithelium in adults. The data demonstrate that imidacloprid can reduce the survival of mosquitoes and thus indicate its potentially high efficacy in the control of St. aegypti populations.

  15. Structure-Activity Relationships of 33 Carboxamides as Toxicants Against Female Aedes aegypti (Diptera: Culicidae)

    Science.gov (United States)

    2010-01-01

    there is a safe and effective vac- cine for the yellow fever virus, epidemic transmission still occurs in Africa with sporadic cases in South America...aegypti (L.) from Quintana Roo, Southern Mexico . J. Am. Mosq. Control. Assoc. 22: 672Ð677. Fouque, F., and R. Carinci. 1996. [Aedes aegypti in French Guiana

  16. Vector Competence of French Polynesian Aedes aegypti and Aedes polynesiensis for Zika Virus

    Science.gov (United States)

    Richard, Vaea; Paoaafaite, Tuterarii; Cao-Lormeau, Van-Mai

    2016-01-01

    Background In 2013–2014, French Polynesia experienced for the first time a Zika outbreak. Two Aedes mosquitoes may have contributed to Zika virus (ZIKV) transmission in French Polynesia: the worldwide distributed Ae. aegypti and the Polynesian islands-endemic Ae. polynesiensis mosquito. Methodology/Principal Findings To evaluate their vector competence for ZIKV, mosquitoes were infected per os at viral titers of 7 logs tissue culture infectious dose 50%. At several days post-infection (dpi), saliva was collected from each mosquito and inoculated onto C6/36 mosquito cells to check for the presence of ZIKV infectious particles. Legs and body of each mosquito were also collected and submitted separately to RNA extraction and ZIKV RT-PCR. In Ae. aegypti the infection rate was high as early as 6 dpi and the dissemination efficiency get substantial from 9 dpi while the both rates remained quite low in Ae. polynesiensis. The transmission efficiency was poor in Ae. aegypti until 14 dpi and no infectious saliva was found in Ae. polynesiensis at the time points studied. Conclusions/Significance In our experimental conditions, the late ability of the French Polynesian Ae. aegypti to transmit ZIKV added by the poor competence of Ae. polynesiensis for this virus suggest the possible contribution of another vector for the propagation of ZIKV during the outbreak, in particular in remote islands where Ae. polynesiensis is predominating. PMID:27654962

  17. Genetic Diversity and Phylogeny of Aedes aegypti, the Main Arbovirus Vector in the Pacific.

    Directory of Open Access Journals (Sweden)

    Elodie Calvez

    2016-01-01

    Full Text Available The Pacific region is an area unique in the world, composed of thousands of islands with differing climates and environments. The spreading and establishment of the mosquito Aedes aegypti in these islands might be linked to human migration. Ae. aegypti is the major vector of arboviruses (dengue, chikungunya and Zika viruses in the region. The intense circulation of these viruses in the Pacific during the last decade led to an increase of vector control measures by local health authorities. The aim of this study is to analyze the genetic relationships among Ae. aegypti populations in this region.We studied the genetic variability and population genetics of 270 Ae. aegypti, sampled from 9 locations in New Caledonia, Fiji, Tonga and French Polynesia by analyzing nine microsatellites and two mitochondrial DNA regions (CO1 and ND4. Microsatellite markers revealed heterogeneity in the genetic structure between the western, central and eastern Pacific island countries. The microsatellite markers indicate a statistically moderate differentiation (FST = 0.136; P < = 0.001 in relation to island isolation. A high degree of mixed ancestry can be observed in the most important towns (e.g. Noumea, Suva and Papeete compared with the most isolated islands (e.g. Ouvea and Vaitahu. Phylogenetic analysis indicated that most of samples are related to Asian and American specimens.Our results suggest a link between human migrations in the Pacific region and the origin of Ae. aegypti populations. The genetic pattern observed might be linked to the island isolation and to the different environmental conditions or ecosystems.

  18. Association of insecticide use and alteration on Aedes aegypti susceptibility status

    Directory of Open Access Journals (Sweden)

    Maria de Lourdes da Graça Macoris

    2007-12-01

    Full Text Available Dengue and dengue hemorrhagic fever, vector-borne diseases transmitted by the mosquito Aedes aegypti, are presently important public health problems in Brazil. As the strategy for disease control is based on vector control through the use of insecticides, the development of resistance is a threat to programs efficacy. The objective of this study was to compare the Aedes aegypti susceptibility in nine vector populations from the state of São Paulo and seven from Northeast region of Brazil, since there was a difference on group of insecticide used between the areas. Bioassays with larvae and adult were performed according to the World Health Organization methods.The results showed higher resistance levels to organophosphates group in populations from the Northeast region where this group was used for both larvae and adult control than in São Paulo where organophosphates were used for larvae and pyretroids for adult control. Resistance to pyretroids in adults was widespread in São Paulo after ten years of use of cypermethrin while in vector populations from the Northeast region it was punctual. The difference in resistance profile between the areas is in accordance to the group of insecticide used.

  19. Thermal sensitivity of Aedes aegypti from Australia: empirical data and prediction of effects on distribution.

    Science.gov (United States)

    Richardson, Kelly; Hoffmann, Ary A; Johnson, Petrina; Ritchie, Scott; Kearney, Michael R

    2011-07-01

    An understanding of physiological sensitivity to temperature and its variability is important for predicting habitat suitability for disease vectors under different climatic regimes. In this study, we characterized the thermal sensitivity of larval developmental rates and survival in several Australian mainland populations of the dengue virus vector Aedes aegypti. Males developed more rapidly than females, but there were no differences among populations for development time or survival despite previously demonstrated genetic differentiation for neutral markers. Optimal development and survival temperatures were 37 degrees C and 25 degrees C, respectively. The values for maximal development and survival were similar to standard functions used in the container inhabiting simulation (CIMSIM) model for predicting population dynamics ofAe. aegypti populations, but CIMSIM assumed a lower optimal temperature. Heat stress experiments indicated that larvae could withstand water temperatures up to 44 degrees C regardless of the rate at which temperature was increased. Results from development time measured under constant temperatures could predict development time under fluctuating conditions, whereas CIMSIM predicted faster rates of development. This difference acts to reduce the predicted potential number of generations of Ae. aegypti per year in Australia, although it does not influence its predicted distribution, which depends critically on the nature of the aquatic breeding sites.

  20. Identification of carboxylesterase genes implicated in temephos resistance in the dengue vector Aedes aegypti.

    Directory of Open Access Journals (Sweden)

    Rodolphe Poupardin

    2014-03-01

    Full Text Available BACKGROUND: Thailand is currently experiencing one of its worst dengue outbreaks in decades. As in most countries where this disease is endemic, dengue control in Thailand is largely reliant on the use of insecticides targeting both immature and adult stages of the Aedes mosquito, with the organophosphate insecticide, temephos, being the insecticide of choice for attacking the mosquito larvae. Resistance to temephos was first detected in Aedes aegypti larvae in Thailand approximately 25 years ago but the mechanism responsible for this resistance has not been determined. PRINCIPAL FINDINGS: Bioassays on Ae. aegypti larvae from Thailand detected temephos resistance ratios ranging from 3.5 fold in Chiang Mai to nearly 10 fold in Nakhon Sawan (NS province. Synergist and biochemical assays suggested a role for increased carboxylesterase (CCE activities in conferring temephos resistance in the NS population and microarray analysis revealed that the CCE gene, CCEae3a, was upregulated more than 60 fold in the NS population compared to the susceptible population. Upregulation of CCEae3a was shown to be partially due to gene duplication. Another CCE gene, CCEae6a, was also highly regulated in both comparisons. Sequencing and in silico structure prediction of CCEae3a showed that several amino acid polymorphisms in the NS population may also play a role in the increased resistance phenotype. SIGNIFICANCE: Carboxylesterases have previously been implicated in conferring temephos resistance in Ae aegypti but the specific member(s of this family responsible for this phenotype have not been identified. The identification of a strong candidate is an important step in the development of new molecular diagnostic tools for management of temephos resistant populations and thus improved control of dengue.

  1. Repellents Inhibit P450 Enzymes in Stegomyia (Aedes) aegypti

    Science.gov (United States)

    Jaramillo Ramirez, Gloria Isabel; Logan, James G.; Loza-Reyes, Elisa; Stashenko, Elena; Moores, Graham D.

    2012-01-01

    The primary defence against mosquitoes and other disease vectors is often the application of a repellent. Despite their common use, the mechanism(s) underlying the activity of repellents is not fully understood, with even the mode of action of DEET having been reported to be via different mechanisms; e.g. interference with olfactory receptor neurones or actively detected by olfactory receptor neurones on the antennae or maxillary palps. In this study, we discuss a novel mechanism for repellence, one of P450 inhibition. Thirteen essential oil extracts from Colombian plants were assayed for potency as P450 inhibitors, using a kinetic fluorometric assay, and for repellency using a modified World Health Organisation Pesticide Evaluations Scheme (WHOPES) arm-in cage assay with Stegomyia (Aedes) aegypti mosquitoes. Bootstrap analysis on the inhibition analysis revealed a significant correlation between P450-inhibition and repellent activity of the oils. PMID:23152795

  2. Fine structure of the malpighian tubule in Aedes aegypti

    Energy Technology Data Exchange (ETDEWEB)

    Mathew, G.; Rai, K.S.

    1976-07-01

    The malpighian tubule in Aedes aegypti adults is formed by 2 cell types: the principal cell which forms the great bulk of the tubule, and the stellate cell interspersed singly along the tubule. Both cell types possess ultrastructural features characteristic of cells engaged in ion balance and osmoregulation. These include extensive basal infolding and the differentiation of an apical brush border of microvilli. The central area of the cytoplasm of the principal cell is highly vacuolated while in the stellate cell it is finely granular lacking vacuoles. The microvilli in the principal cells enclose elongated, dense mitochondria whereas the stellate cell microvilli lack mitochondria. Excretory granules of an as yet unknown chemical nature accumulate in the principal cell cytoplasm after a blood meal.

  3. Repellents inhibit P450 enzymes in Stegomyia (Aedes aegypti.

    Directory of Open Access Journals (Sweden)

    Gloria Isabel Jaramillo Ramirez

    Full Text Available The primary defence against mosquitoes and other disease vectors is often the application of a repellent. Despite their common use, the mechanism(s underlying the activity of repellents is not fully understood, with even the mode of action of DEET having been reported to be via different mechanisms; e.g. interference with olfactory receptor neurones or actively detected by olfactory receptor neurones on the antennae or maxillary palps. In this study, we discuss a novel mechanism for repellence, one of P450 inhibition. Thirteen essential oil extracts from Colombian plants were assayed for potency as P450 inhibitors, using a kinetic fluorometric assay, and for repellency using a modified World Health Organisation Pesticide Evaluations Scheme (WHOPES arm-in cage assay with Stegomyia (Aedes aegypti mosquitoes. Bootstrap analysis on the inhibition analysis revealed a significant correlation between P450-inhibition and repellent activity of the oils.

  4. Larvicidal activity of some Cerrado plant extracts against Aedes aegypti.

    Science.gov (United States)

    Rodrigues, A M S; De Paula, J E; Degallier, N; Molez, J E; Espindola, L S

    2006-06-01

    One hundred ninety hexanic and ethanolic extract from 27 plant species from the Cerrado biome of Brazil were tested for larvicidal activity against 3rd-stage Aedes aegypti larvae at 500 microg/ml. Fourteen extracts from 7 species showed activity (>65% mortality) against the larvae. Of these Dugeutia furfuracea, Piptocarpha rotundifolia, Casearia sylvestris var. lingua, Serjania lethalis, and Xylopia aromatica were active at 56.6, 162.31, 232.4, 285.76, and 384.37 microg/ml, respectively. Annona crassiflora and Cybistax antisyphilitica showed activity at 23.06 and 27.61 microg/ml. The larvicidal properties of these species are described for the first time, and may prove to be promising in active chemical compound isolation.

  5. Bioassay and biochemical studies of the status of pirimiphos-methyl and cypermethrin resistance in Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus (Diptera: Culicidae) in Singapore.

    Science.gov (United States)

    Lee, R M L; Choong, C T H; Goh, B P L; Ng, L C; Lam-Phua, S G

    2014-12-01

    Aedes (Stegomyia) aegypti (Linnaeus) and Ae. (Stegomyia) albopictus (Skuse) were sampled from five regions of Singapore (Central, North East, North West, South East and South West) and tested with diagnostic concentrations of the technical grade insecticides, pirimiphos-methyl and cypermethrin. Biochemical assays were performed on the same populations of Ae. aegypti and Ae. albopictus to determine activities of detoxifying enzymes, including non-specific esterase (EST), monooxygenase (MFO) and acetylcholinesterase (AChE). The diagnostic test showed that all Ae. aegypti populations were susceptible to pirimiphos-methyl (mortality = 99 to 100%), but resistant to cypermethrin (mortality = 11 to 76%). Resistance to pirimiphos-methyl was observed in all Ae. albopictus populations (mortality = 49 to 74%) while cypermethrin resistance was detected in most Ae. albopictus populations (mortality = 40 to 75%), except those from Central (mortality = 86%) and South East (mortality = 94%) showing incipient resistance. The biochemical assays showed that there was significant enhancement (P aegypti populations. The biochemical assay results suggested that AChE could play a role in pirimiphos-methyl resistance of Ae. albopictus in South West, South East and North East regions. The small but significant increase in EST activities in Ae. aegypti from all regions suggest that it may play a role in the observed cypermethrin resistance.

  6. Spatial and temporal patterns of abundance of Aedes aegypti L. (Stegomyia aegypti) and Aedes albopictus (Skuse) [Stegomyia albopictus (Skuse)] in southern Florida.

    Science.gov (United States)

    Reiskind, M H; Lounibos, L P

    2013-12-01

    Invasion by mosquito vectors of disease may impact the distribution of resident mosquitoes, resulting in novel patterns of vectors and concomitant risk for disease. One example of such an impact is the invasion by Aedes albopictus (Skuse) [Stegomyia albopictus (Skuse)] (Diptera: Culicidae) of North America and this species' interaction with Aedes aegypti L. (Stegomyia aegypti L). We hypothesized that Ae. aegypti would be found in urban, coastal areas that experience hotter and drier conditions, whereas Ae. albopictus would be more commonly found in suburban and rural areas that are cooler and wetter. In addition, we hypothesized that Ae. aegypti would be more abundant early in the wet season, whereas Ae. albopictus would be more abundant later in the wet season. Urban areas were drier, hotter and contained more Ae. aegypti than suburban or rural areas. Aedes aegypti was relatively more abundant early in the wet season, whereas Ae. albopictus was more abundant in both the late wet season and the dry season. The spatial patterns of inter- and intraspecific encounters between these species were also described. The distribution of these mosquitoes is correlated with abiotic conditions, and with temperature, humidity and the relative availability of rain-filled containers. Understanding the ecological determinants of species distribution can provide insight into the biology of these vectors and important information for their appropriate control.

  7. PETA RESISTENSI VEKTOR DEMAM BERDARAH DENGUE Aedes aegypti TERHADAP INSEKTISIDA KELOMPOK ORGANOFOSFAT, KARBAMAT DAN PYRETHROID DI PROPINSI JAWA TENGAH DAN DAERAH ISTIMEWA YOGYAKARTA

    Directory of Open Access Journals (Sweden)

    Widiarti Widiarti

    2012-07-01

    Full Text Available Insecticide resistance study to DHF vector Aedes aegypti was carried out in Central Java and Yogyakarta Provinces. The objective of this study was to map the insecticide susceptibility of Aedes aegypti population to the three chemical groups of insecticide used in public health, in Central Java and Yogyakarta. Laboratory-reared, Fl generation of field population of Aedes aegypti from eleven and three Municipalities in Central Java and Yogyakarta Provinces were used respectively. The susceptitibility test were carried out using impregnated paper base on WHO recommended doses which are 0.8% Mala­thion, 0.1 % Bendiokarb 0.75 % Permethrin, 0.05 % Lambdasihalotrin, 0.05 % Cyper­methrin dan 0.5 % Etofenproks. The results suggested that population of Aedes aegypti collected from eleven municipalities, regencies/cities in Central Java and Yogyakarta Province were resistant to Malathion 0,8 %, Bendiocarb 0.1 %, Lambdasihalotrin 0.05 % and Permethrin 0.75 %, including Deltamethrin 0.05 % and Etofenproks 0.5 %. However, in several location of this study were found the population of Ae. aegypti remain susceptible to Cypermethrin 0.05 % and Bendiocarb 0.1 %. It is important to rotate the insecticides which are used for fogging, especially Malathion.

  8. Cumulative mortality of Aedes aegypti larvae treated with compounds

    Science.gov (United States)

    Torres, Sandra Maria; da Cruz, Nadine Louise Nicolau; Rolim, Vitor Pereira de Matos; Cavalcanti, Maria Inês de Assis; Alves, Leucio Câmara; da Silva, Valdemiro Amaro

    2014-01-01

    OBJECTIVE To evaluate the larvicidal activity of Azadirachta indica, Melaleuca alternifolia, carapa guianensis essential oils and fermented extract of Carica papaya against Aedes aegypti (Linnaeus, 1762) (Diptera: Culicidae). METHODS The larvicide test was performed in triplicate with 300 larvae for each experimental group using the third larval stage, which were exposed for 24h. The groups were: positive control with industrial larvicide (BTI) in concentrations of 0.37 ppm (PC1) and 0.06 ppm (PC2); treated with compounds of essential oils and fermented extract, 50.0% concentration (G1); treated with compounds of essential oils and fermented extract, 25.0% concentration (G2); treated with compounds of essential oils and fermented extract, 12.5% concentration (G3); and negative control group using water (NC1) and using dimethyl (NC2). The larvae were monitored every 60 min using direct visualization. RESULTS No mortality occurred in experimental groups NC1 and NC2 in the 24h exposure period, whereas there was 100% mortality in the PC1 and PC2 groups compared to NC1 and NC2. Mortality rates of 65.0%, 50.0% and 78.0% were observed in the groups G1, G2 and G3 respectively, compared with NC1 and NC2. CONCLUSIONS The association between three essential oils from Azadirachta indica, Melaleuca alternifolia, Carapa guianensis and fermented extract of Carica papaya was efficient at all concentrations. Therefore, it can be used in Aedes aegypti Liverpool third larvae stage control programs. PMID:25119939

  9. Cumulative mortality of Aedes aegypti larvae treated with compounds.

    Science.gov (United States)

    Torres, Sandra Maria; Cruz, Nadine Louise Nicolau da; Rolim, Vitor Pereira de Matos; Cavalcanti, Maria Inês de Assis; Alves, Leucio Câmara; Silva Júnior, Valdemiro Amaro da

    2014-06-01

    OBJECTIVE To evaluate the larvicidal activity of Azadirachta indica, Melaleuca alternifolia, carapa guianensis essential oils and fermented extract of Carica papaya against Aedes aegypti (Linnaeus, 1762) (Diptera: Culicidae). METHODS The larvicide test was performed in triplicate with 300 larvae for each experimental group using the third larval stage, which were exposed for 24h. The groups were: positive control with industrial larvicide (BTI) in concentrations of 0.37 ppm (PC1) and 0.06 ppm (PC2); treated with compounds of essential oils and fermented extract, 50.0% concentration (G1); treated with compounds of essential oils and fermented extract, 25.0% concentration (G2); treated with compounds of essential oils and fermented extract, 12.5% concentration (G3); and negative control group using water (NC1) and using dimethyl (NC2). The larvae were monitored every 60 min using direct visualization. RESULTS No mortality occurred in experimental groups NC1 and NC2 in the 24h exposure period, whereas there was 100% mortality in the PC1 and PC2 groups compared to NC1 and NC2. Mortality rates of 65.0%, 50.0% and 78.0% were observed in the groups G1, G2 and G3 respectively, compared with NC1 and NC2. CONCLUSIONS The association between three essential oils from Azadirachta indica, Melaleuca alternifolia, Carapa guianensis and fermented extract of Carica papaya was efficient at all concentrations. Therefore, it can be used in Aedes aegypti Liverpool third larvae stage control programs.

  10. Cumulative mortality of Aedes aegypti larvae treated with compounds

    Directory of Open Access Journals (Sweden)

    Sandra Maria Torres

    2014-06-01

    Full Text Available OBJECTIVE To evaluate the larvicidal activity of Azadirachta indica, Melaleuca alternifolia, carapa guianensis essential oils and fermented extract of Carica papaya against Aedes aegypti (Linnaeus, 1762 (Diptera: Culicidae. METHODS The larvicide test was performed in triplicate with 300 larvae for each experimental group using the third larval stage, which were exposed for 24h. The groups were: positive control with industrial larvicide (BTI in concentrations of 0.37 ppm (PC1 and 0.06 ppm (PC2; treated with compounds of essential oils and fermented extract, 50.0% concentration (G1; treated with compounds of essential oils and fermented extract, 25.0% concentration (G2; treated with compounds of essential oils and fermented extract, 12.5% concentration (G3; and negative control group using water (NC1 and using dimethyl (NC2. The larvae were monitored every 60 min using direct visualization. RESULTS No mortality occurred in experimental groups NC1 and NC2 in the 24h exposure period, whereas there was 100% mortality in the PC1 and PC2 groups compared to NC1 and NC2. Mortality rates of 65.0%, 50.0% and 78.0% were observed in the groups G1, G2 and G3 respectively, compared with NC1 and NC2. CONCLUSIONS The association between three essential oils from Azadirachta indica, Melaleuca alternifolia, Carapa guianensis and fermented extract of Carica papaya was efficient at all concentrations. Therefore, it can be used in Aedes aegypti Liverpool third larvae stage control programs.

  11. Toxicity of Thiophenes from Echinops transiliensis (Asteraceae) against Aedes aegypti (Diptera: Culicidae) Larvae

    Science.gov (United States)

    2014-01-01

    Toxicity of Thiophenes from Echinops transiliensis (Asteraceae) against Aedes aegypti (Diptera: Culicidae) Larvae by Hiroshi Nakano*a)b)c), Abbas...larvicides against Aedes aegypti . Structural differences among compounds 3, 5, and 8 consisted in differing AcO and OH groups attached to C(3’’) and C(4...mg/ml), 4 (LC50 , 17.95 mg/ml), 6 (LC50 , 18.55 mg/ml), and 7 (LC50 , 19.97 mg/ml). These data indicated that A. aegypti larvicidal activities of

  12. Gene Silencing in Adult Aedes aegypti Mosquitoes Through Oral Delivery of Double-Stranded RNA

    Science.gov (United States)

    2012-01-01

    OR I GI N AL C ONTR I BUTI O N Gene silencing in adult Aedes aegypti mosquitoes through oral delivery of double-stranded RNA M. R. Coy1, N. D...we tested whether such an approach could be used in the yellow fever mosquito, Aedes aegypti . Using a non-specific dsRNA construct, we found that...adult Ae. aegypti ingested dsRNA through this method and that the ingested dsRNA can be recovered from the mosquitoes post-feeding. Through the feeding of

  13. Aedes aegypti Global Suitability Maps Using a Water Container Energy Balance Model for Dengue Risk Applications

    Science.gov (United States)

    Steinhoff, D.

    2015-12-01

    Dengue infections are estimated to total nearly 400 million per year worldwide, with both the geographic range and the magnitude of infections having increased in the past 50 years. The primary dengue vector mosquito Aedes aegypti is closely associated with humans. It lives exclusively in urban and semi-urban areas, preferentially bites humans, and spends its developmental stages in artificial water containers. Climate regulates the development of Ae. aegypti immature mosquitoes in artificial containers. Potential containers for Ae. aegypti immature development include, but are not limited to, small sundry items (e.g., bottles, cans, plastic containers), buckets, tires, barrels, tanks, and cisterns. Successful development of immature mosquitoes from eggs to larvae, pupae, and eventually adults is largely dependent on the availability of water and the thermal properties of the water in the containers. Recent work has shown that physics-based approaches toward modeling container water properties are promising for resolving the complexities of container water dynamics and the effects on immature mosquito development. An energy balance container model developed by the author, termed the Water Height And Temperature in Container Habitats Energy Model (WHATCH'EM), solves for water temperature and height for user-specified containers with readily available weather data. Here we use WHATCH'EM with NASA Earth Science products used as input to construct global suitability maps based on established water temperature ranges for immature Ae. aegypti mosquitoes. A proxy for dengue risk is provided from habitat suitability, but also population estimates, as Ae. aegypti is closely associated with human activity. NASA gridded Global Population of the World data is used to mask out rural areas with low dengue risk. Suitability maps are illustrated for a variety of containers (size, material, color) and shading scenarios.

  14. Effect of Photoperiod On Permethrin Resistance In Aedes aegypti.

    Science.gov (United States)

    Villanueva, O Karina; Ponce, Gustavo; Lopez, Beatriz; Gutierrez, Selene M; Rodriguez, Iram P; Reyes, Guadalupe; Saavedra, Karla J; Black, William C; Garcia, Julian; Beaty, Barry; Eisen, Lars; Flores, Adriana E

    2016-12-01

    Living organisms have been exposed to light-dark cycles that allowed them to adapt to different ecological niches. Circadian cycles affect hormone release, metabolism, and response to xenobiotic compounds. Current studies have shown that insect susceptibility to toxic agents depends on circadian cycles, mainly because the biochemical processes involved in detoxification and responses to oxidative stress are modulated by this process. The goal of this study was to determine the effect of photoperiod on resistance to permethrin in Aedes aegypti . Collections of Ae. aegypti from 4 locations in Yucatan, southern Mexico, were subjected to 2 different photoperiod schemes: dark (0 h light:24 h dark) and natural photoperiod (12 h light:12 h dark). The comparison of both photoperiods was evaluated with respect to permethrin resistance using bottle bioassays and by monitoring the possible mechanism related such as enzymatic activity and by the frequency of 2 knockdown resistance mutations in the voltage-dependent sodium channel gene (V1016I and F1534C). The susceptible strain was used as a reference. The mosquitoes in dark photoperiod showed a reduction in resistance to the pyrethroid. The α-esterases and glutathione S-transferase enzymatic activities showed lower levels in the dark photoperiod, and the frequencies of V1016I knockdown resistance mutation showed significant difference between photoperiod schemes.

  15. Inhibition of Zika virus by Wolbachia in Aedes aegypti

    Science.gov (United States)

    Caragata, Eric Pearce; Dutra, Heverton Leandro Carneiro; Moreira, Luciano Andrade

    2016-01-01

    Through association with cases of microcephaly in 2015, Zika virus (ZIKV) has transitioned from a relatively unknown mosquito-transmitted pathogen to a global health emergency, emphasizing the need to improve existing mosquito control programs to prevent future disease outbreaks. The response to Zika must involve a paradigm shift from traditional to novel methods of mosquito control, and according to the World Health Organization should incorporate the release of mosquitoes infected with the bacterial endosymbiont Wolbachia pipientis. In our recent paper [Dutra, HLC et al., Cell Host & Microbe 2016] we investigated the potential of Wolbachia infections in Aedes aegypti to restrict infection and transmission of Zika virus recently isolated in Brazil. Wolbachia is now well known for its ability to block or reduce infection with a variety of pathogens in different mosquito species including the dengue (DENV), yellow fever, and chikungunya viruses, and malaria-causing Plasmodium, and consequently has great potential to control mosquito-transmitted diseases across the globe. Our results demonstrated that the wMel Wolbachia strain in Brazilian Ae. aegypti is a strong inhibitor of ZIKV infection, and furthermore appears to prevent transmission of infectious viral particles in mosquito saliva, which highlights the bacterium’s suitability for more widespread use in Zika control. PMID:28357366

  16. Regulation of Antimicrobial Peptides in Aedes aegypti Aag2 Cells.

    Science.gov (United States)

    Zhang, Rudian; Zhu, Yibin; Pang, Xiaojing; Xiao, Xiaoping; Zhang, Renli; Cheng, Gong

    2017-01-01

    Antimicrobial peptides (AMPs) are an important group of immune effectors that play a role in combating microbial infections in invertebrates. Most of the current information on the regulation of insect AMPs in microbial infection have been gained from Drosophila, and their regulation in other insects are still not completely understood. Here, we generated an AMP induction profile in response to infections with some Gram-negative, -positive bacteria, and fungi in Aedes aegypti embryonic Aag2 cells. Most of the AMP inductions caused by the gram-negative bacteria was controlled by the Immune deficiency (Imd) pathway; nonetheless, Gambicin, an AMP gene discovered only in mosquitoes, was combinatorially regulated by the Imd, Toll and JAK-STAT pathways in the Aag2 cells. Gambicin promoter analyses including specific sequence motif deletions implicated these three pathways in Gambicin activity, as shown by a luciferase assay. Moreover, the recognition between Rel1 (refer to Dif/Dorsal in Drosophila) and STAT and their regulatory sites at the Gambicin promoter site was validated by a super-shift electrophoretic mobility shift assay (EMSA). Our study provides information that increases our understanding of the regulation of AMPs in response to microbial infections in mosquitoes. And it is a new finding that the A. aegypti AMPs are mainly regulated Imd pathway only, which is quite different from the previous understanding obtained from Drosophila.

  17. Larvicidal activity against Aedes aegypti of pacharin from Bauhinia acuruana.

    Science.gov (United States)

    da Silva Góis, Roberto Wagner; de Sousa, Leôncio Mesquita; Santiago, Gilvandete Maria Pinheiro; Romero, Nirla Rodrigues; Lemos, Telma Leda Gomes; Arriaga, Angela Martha Campos; Braz-Filho, Raimundo

    2013-07-01

    The aim of the present study was to evaluate the activity of pacharin isolated from the ethanol extract from roots of Bauhinia acuruana on third-instar larvae of Aedes aegypti Linn. (Diptera: Culicidae). The crude ethanol extract showed larvicidal activity at the concentration of 500 μg/mL. Given this larvicidal activity, this extract was submitted to chromatographic fractionation on a silica gel column eluted with n-hexane, dichloromethane, ethyl ether, ethyl acetate, and methanol in order to isolate the active compound(s). Pacharin, obtained in pure form from fraction eluted with ethyl ether, was evaluated for their larvicidal effects against A. aegypti. In these bioassays, the larvae were exposed at concentrations of 500, 250, 100, 50, and 25 μg/mL of the crude ethanol extract or pacharin. After 24 h, the number of dead larvae was counted and the LC₅₀ values for larval mortality were calculated. Pacharin showed LC50 value of 78.9 ± 1.8 μg/mL. The structure of isolated compound was identified on the basis of their spectral data (IR, 1D- and 2D-NMR) and by comparison with literature spectral data. The results indicate pacharin as a potential natural larvicide.

  18. The Aedes aegypti toll pathway controls dengue virus infection.

    Directory of Open Access Journals (Sweden)

    Zhiyong Xi

    2008-07-01

    Full Text Available Aedes aegypti, the mosquito vector of dengue viruses, utilizes its innate immune system to ward off a variety of pathogens, some of which can cause disease in humans. To date, the features of insects' innate immune defenses against viruses have mainly been studied in the fruit fly Drosophila melanogaster, which appears to utilize different immune pathways against different types of viruses, in addition to an RNA interference-based defense system. We have used the recently released whole-genome sequence of the Ae. aegypti mosquito, in combination with high-throughput gene expression and RNA interference (RNAi-based reverse genetic analyses, to characterize its response to dengue virus infection in different body compartments. We have further addressed the impact of the mosquito's endogenous microbial flora on virus infection. Our findings indicate a significant role for the Toll pathway in regulating resistance to dengue virus, as indicated by an infection-responsive regulation and functional assessment of several Toll pathway-associated genes. We have also shown that the mosquito's natural microbiota play a role in modulating the dengue virus infection, possibly through basal-level stimulation of the Toll immune pathway.

  19. Regulation of Antimicrobial Peptides in Aedes aegypti Aag2 Cells

    Science.gov (United States)

    Zhang, Rudian; Zhu, Yibin; Pang, Xiaojing; Xiao, Xiaoping; Zhang, Renli; Cheng, Gong

    2017-01-01

    Antimicrobial peptides (AMPs) are an important group of immune effectors that play a role in combating microbial infections in invertebrates. Most of the current information on the regulation of insect AMPs in microbial infection have been gained from Drosophila, and their regulation in other insects are still not completely understood. Here, we generated an AMP induction profile in response to infections with some Gram-negative, -positive bacteria, and fungi in Aedes aegypti embryonic Aag2 cells. Most of the AMP inductions caused by the gram-negative bacteria was controlled by the Immune deficiency (Imd) pathway; nonetheless, Gambicin, an AMP gene discovered only in mosquitoes, was combinatorially regulated by the Imd, Toll and JAK-STAT pathways in the Aag2 cells. Gambicin promoter analyses including specific sequence motif deletions implicated these three pathways in Gambicin activity, as shown by a luciferase assay. Moreover, the recognition between Rel1 (refer to Dif/Dorsal in Drosophila) and STAT and their regulatory sites at the Gambicin promoter site was validated by a super-shift electrophoretic mobility shift assay (EMSA). Our study provides information that increases our understanding of the regulation of AMPs in response to microbial infections in mosquitoes. And it is a new finding that the A. aegypti AMPs are mainly regulated Imd pathway only, which is quite different from the previous understanding obtained from Drosophila. PMID:28217557

  20. [Aedes aegypti and Aedes albopictus in bromeliads grown in the Bauru Municipal Botanical Gardens, São Paulo, Brazil].

    Science.gov (United States)

    Oliveira, Viviane Camila de; Almeida, Luiz Carlos de

    2017-01-23

    The aim of this study was to observe the occurrence of mosquito larvae, especially Aedes aegypti and Aedes albopictus, in the tanks and axillae of bromeliads at the Bauru Municipal Botanical Gardens, São Paulo, Brazil, highlighting the epidemiological implications for the use of these plants. The majority of the larvae belonged to mosquitos from genus Culex, with only occasional findings of A. aegypti and A. albopictus. The use of screens for protection of the plants, exposure to sunlight, and larger amounts of water in the tanks may have influenced the occurrence and grouping of larvae.

  1. Dispersion of Aedes aegypti (Linnaeus, 1762 and Aedes albopictus (Skuse, 1894 in the rural zone of north Paraná State

    Directory of Open Access Journals (Sweden)

    José Lopes

    2004-09-01

    Full Text Available Seventy-two tyres were placed in four transects (Northern, Southern, Eastern and Western, every 5 km, from the Londrina city limits to the rural areas, to verify the dispersion of Aedes aegypti and Ae. albopictus vectors. Mosquito larvae were collected fortnightly from August 1998 to August 1999. Data were organized according to the average number of larvae collected for each species in each collection site. A total of 62,517 mosquito larvae were collected and distributed into the following species: Aedes albopictus (21.71%; Ae. aegypti (5.54%; Ae. terrens (0.53%; Ae. fluviatilis (0.36%; Anopheles argyritarsi (0.01%; Culex quinquefasciatus (48.37%; Cx. mollis (8.88%; Cx. eduardoi (8.65%; Cx. corniger (0.61%; Cx. bigoti (0.24%; Cx. grupo coronator (0.12%; Limatus durhanii (4.61% e Toxorhynchites sp. (0.32%. There was a drastic decrease in the Ae. aegypti population from the city limits to the rural area (x1= 21.72 ± 4.71; x2=0.00 and an increase in the population of Ae. albopictus (x1 = 15.64 ± 2.73; x2 = 38.37 ± 8.87. Aedes aegypti was not present in the collection sites located 30 km away from the urban area; however, Ae. albopictus was found in all the sites. Although the frequency rate for the Aedes aegypti was low, both species were dispersed in the rural area studied. The redimensioning of these vectors’ control areas is recommended since rural areas can function as reservoirs for these species.Com o objetivo de avaliar a dispersão de Aedes aegypti e Ae. albopictus para a área rural, foram instalados pneus em quatro transectos (Norte, Sul, Leste e Oeste, a cada 5 Km, do limite da zona urbana de Londrina em direção a zona rural. Larvas de Culicidae foram coletadas quinzenalmente de agosto de 1998 a agosto de 1999. Um total de 62.517 larvas de Culicidae foram coletadas, distribuídas entre as seguintes espécies: Aedes albopictus (21.71%; Ae. aegypti (5.54%; Ae. terrens (0.53%; Ae. fluviatilis (0.36%; Anopheles argyritarsi (0

  2. Horizontal gene transfer between Wolbachia and the mosquito Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Walker Thomas

    2009-01-01

    Full Text Available Abstract Background The evolutionary importance of horizontal gene transfer (HGT from Wolbachia endosymbiotic bacteria to their eukaryotic hosts is a topic of considerable interest and debate. Recent transfers of genome fragments from Wolbachia into insect chromosomes have been reported, but it has been argued that these fragments may be on an evolutionary trajectory to degradation and loss. Results We have discovered a case of HGT, involving two adjacent genes, between the genomes of Wolbachia and the currently Wolbachia-uninfected mosquito Aedes aegypti, an important human disease vector. The lower level of sequence identity between Wolbachia and insect, the transcription of all the genes involved, and the fact that we have identified homologs of the two genes in another Aedes species (Ae. mascarensis, suggest that these genes are being expressed after an extended evolutionary period since horizontal transfer, and therefore that the transfer has functional significance. The association of these genes with Wolbachia prophage regions also provides a mechanism for the transfer. Conclusion The data support the argument that HGT between Wolbachia endosymbiotic bacteria and their hosts has produced evolutionary innovation.

  3. Implications of saline concentrations for the performance and competitive interactions of the mosquitoes Aedes aegypti (Stegomyia aegypti) and Aedes albopictus (Stegomyia albopictus).

    Science.gov (United States)

    Yee, D A; Himel, E; Reiskind, M H; Vamosi, S M

    2014-03-01

    Aedes albopictus (Stegomyia albopictus) (Diptera: Culicidae) has probably supplanted Aedes aegypti (Stegomyia aegypti) throughout most of its historical range in the U.S.A., although Ae. aegypti still exists in large coastal cities in southern Florida. We measured salt concentrations in field containers along an axis perpendicular to the coast and examined intraspecific outcomes in these species under different salt concentrations in a factorial study using varying intra- and interspecific densities in different conditions of salinity to order to determine if salt could mitigate the documented competitive superiority of Ae. albopictus. Salt in field containers declined away from the coast, with maximal values similar to our lower salt concentrations. Egg hatching and short-term survival of pupae and late instars were not affected by salt concentrations; survival of early instars of both species decreased at higher concentrations. In high salt conditions, Ae. aegypti achieved higher survival. In the longterm experiment, both species displayed longer development times. Salt did not affect interactions for either species; Ae. aegypti survived in the highest salt conditions, regardless of density. The tolerance of Ae. aegypti to high salt concentrations may allow it to use coastal containers, although because salt did not mediate interspecific interactions between Ae. aegypti and Ae. albopictus, the ultimate effects of salt on the coexistence of these species or exclusion of either species remain unknown.

  4. Freqüência de larvas e pupas de Aedes aegypti e Aedes albopictus em armadilhas, Brasil Frequency of Aedes aegypti and Aedes albopictus larvae and pupae in traps, Brazil

    Directory of Open Access Journals (Sweden)

    Nildimar Alves Honório

    2001-08-01

    Full Text Available OBJETIVO: Avaliar a freqüência mensal de larvas e pupas de Ae. albopictus, Ae. aegypti e de outras espécies de mosquitos e verificar a influência de fatores ambientais dessas espécies em pneus. MÉTODOS: A pesquisa foi desenvolvida no município de Nova Iguaçu, Estado do Rio de Janeiro, Brasil. Efetuaram-se coletas mensais de formas imaturas, em quatro pneus, no período de novembro de 1997 a outubro de 1998. Os pneus foram numerados e dispostos em forma de pirâmide, um na base (pneu 1 e os três restantes (2, 3 e 4 inclinados sobre o primeiro. Os pneus 1 e 4 eram mais sombreados, e 2 e 3 eram expostos ao sol, já que não eram alcançados, como os demais, pela sombra de árvores e de um galinheiro próximos a esses pneus. Foram estudadas as variáveis: pluviosidade; temperatura ambiente; volume; pH da água; e condições de isolamento de água em pneus. RESULTADOS: Coletaram-se 10.310 larvas e 612 pupas. Ae. albopictus foi a espécie predominante tanto na fase larvar quanto na de pupa; Ae. aegypti e Ae. albopictus foram coletados em todos os meses, sendo mais freqüentes naqueles de maior pluviosidade. A temperatura, a pluviosidade e o volume de água apresentaram diferenças significativas, quando correlacionados ao número de larvas de Ae. aegypti. Não houve diferença significativa na freqüência de larvas quanto ao pH da água. Registrou-se maior número de larvas de Ae. albopictus em pneus mais sombreados. CONCLUSÕES: Ae. albopictus instala-se muito mais freqüentemente em pneus do que Ae. aegypti. Pneus descartados parecem representar importantes focos de manutenção de ambos os Aedes, durante todo o ano. Mesmo próximo uns ao outros, os pneus podem oferecer diferentes condições para a colonização desses mosquitos, de acordo com o volume d'água e a exposição ao sol.OBJECTIVE: To evaluate the monthly frequency of larvae and pupae of Aedes albopictus, Aedes aegypti and other mosquitoe species in tires, and the influence

  5. Status Resistensi Aedes aegypti (Linn. terhadap Organofosfat di Tiga Kotamadya DKI Jakarta

    Directory of Open Access Journals (Sweden)

    Heni Prasetyowati

    2016-07-01

    Full Text Available High cases of Dengue Fever in Jakarta  increased efforts to control the population of Aedes aegypti by using insecticides. Insecticides which are often used in that control are malathion and temefos which derived from the class of organophospat. Associated with resistance in many areas, the purpose of this article is to know the susceptibility of Ae. aegypti in endemic areas in Jakarta to insecticide malathion and temefos. This study was an observational study with cross sectional design. Research sites in nine Puskesmas in East Jakarta, West Jakarta and South Jakarta. The study population was all the houses located in  highest endemic area  in nine regions of Puskesmas. Sample survey in the form of 100 homes / buildings in each area. Larvae survey conducted in the home / building, then the larvae obtained were collected for later colonization to  3rd generation. Susceptibility test to 0.8% malathion is done by using impregnated paper refers to the WHO method, whereas susceptibility test to temefos test was conducted by elliot.   Result of this research shows that  in all research areas have been resistant to organophosphate insecticides (Temefos and Malathion 0.8%. The use in the long term is suspected to be the cause of resistance to the insecticide malathion Ae.aegypti 0.8% and temefos 0,02ppm.  

  6. Reinvestigation of an endogenous meiotic drive system in the mosquito, Aedes aegypti (Diptera: Culicidae).

    Science.gov (United States)

    Mori, Akio; Chadee, Dave D; Graham, Douglas H; Severson, David W

    2004-11-01

    We have initiated efforts to determine the molecular basis for the M(D) meiotic drive system in the mosquito, Aedes aegypti. The effect of the M(D) gene is a highly male-biased sex ratio, but varies depending on the frequency and sensitivity of a susceptible responder m(s) allele. The M(D) system has potential as a mechanism for driving trangenes for pathogen resistance into natural Ae. aegypti populations. Because all previously existing laboratory strains carrying the M(D) gene have been lost, we have selected for a new strain, T37, that carries a strong driver. Matings between T37 males and drive-susceptible m(s) females result in progeny with highly biased sex ratios, wherein only approximately 14.7% females are produced. We discuss the potential for identifying M(D) candidate genes based on comparisons with the well-described Drosophila melanogaster segregation distorter (SD) meiotic drive system and considerations for release of transgenic Ae. aegypti into natural populations where M(D) and insensitive m3 alleles are likely segregating.

  7. Aedes aegypti uses RNA interference in defense against Sindbis virus infection

    Directory of Open Access Journals (Sweden)

    Wilusz Jeffrey

    2008-03-01

    Full Text Available Abstract Background RNA interference (RNAi is an important anti-viral defense mechanism. The Aedes aegypti genome encodes RNAi component orthologs, however, most populations of this mosquito are readily infected by, and subsequently transmit flaviviruses and alphaviruses. The goal of this study was to use Ae. aegypti as a model system to determine how the mosquito's anti-viral RNAi pathway interacts with recombinant Sindbis virus (SINV; family Togaviridae, genus Alphavirus. Results SINV (TR339-eGFP (+ strand RNA, infectious virus titers and infection rates transiently increased in mosquitoes following dsRNA injection to cognate Ago2, Dcr2, or TSN mRNAs. Detection of SINV RNA-derived small RNAs at 2 and 7 days post-infection in non-silenced mosquitoes provided important confirmation of RNAi pathway activity. Two different recombinant SINV viruses (MRE16-eGFP and TR339-eGFP with significant differences in infection kinetics were used to delineate vector/virus interactions in the midgut. We show virus-dependent effects on RNAi component transcript and protein levels during infection. Monitoring midgut Ago2, Dcr2, and TSN transcript levels during infection revealed that only TSN transcripts were significantly increased in midguts over blood-fed controls. Ago2 protein levels were depleted immediately following a non-infectious bloodmeal and varied during SINV infection in a virus-dependent manner. Conclusion We show that silencing RNAi components in Ae. aegypti results in transient increases in SINV replication. Furthermore, Ae. aegypti RNAi is active during SINV infection as indicated by production of virus-specific siRNAs. Lastly, the RNAi response varies in a virus-dependent manner. These data define important features of RNAi anti-viral defense in Ae. aegypti.

  8. The wMel Strain of Wolbachia Reduces Transmission of Chikungunya Virus in Aedes aegypti

    Science.gov (United States)

    Aliota, Matthew T.; Walker, Emma C.; Uribe Yepes, Alexander; Dario Velez, Ivan; Christensen, Bruce M.; Osorio, Jorge E.

    2016-01-01

    Background New approaches to preventing chikungunya virus (CHIKV) are needed because current methods are limited to controlling mosquito populations, and they have not prevented the invasion of this virus into new locales, nor have they been sufficient to control the virus upon arrival. A promising candidate for arbovirus control and prevention relies on the introduction of the intracellular bacterium Wolbachia into Aedes aegypti mosquitoes. This primarily has been proposed as a tool to control dengue virus (DENV) transmission; however, evidence suggests Wolbachia infections confer protection for Ae. aegypti against CHIKV. Although this approach holds much promise for limiting virus transmission, at present our understanding of the ability of CHIKV to infect, disseminate, and be transmitted by wMel-infected Ae. aegypti currently being used at Wolbachia release sites is limited. Methodology/Principal Findings Using Ae. aegypti infected with the wMel strain of Wolbachia that are being released in Medellin, Colombia, we report that these mosquitoes have reduced vector competence for CHIKV, even with extremely high viral titers in the bloodmeal. In addition, we examined the dynamics of CHIKV infection over the course of four to seven days post feeding. Wolbachia-infected mosquitoes remained non-infective over the duration of seven days, i.e., no infectious virus was detected in the saliva when exposed to bloodmeals of moderate viremia, but CHIKV-exposed, wild type mosquitoes did have viral loads in the saliva consistent with what has been reported elsewhere. Finally, the presence of wMel infection had no impact on the lifespan of mosquitoes as compared to wild type mosquitoes following CHIKV infection. Conclusions/Significance These results could have an impact on vector control strategies in areas where Ae. aegypti are transmitting both DENV and CHIKV; i.e., they argue for further exploration, both in the laboratory and the field, on the feasibility of expanding this

  9. The wMel Strain of Wolbachia Reduces Transmission of Chikungunya Virus in Aedes aegypti.

    Directory of Open Access Journals (Sweden)

    Matthew T Aliota

    2016-04-01

    Full Text Available New approaches to preventing chikungunya virus (CHIKV are needed because current methods are limited to controlling mosquito populations, and they have not prevented the invasion of this virus into new locales, nor have they been sufficient to control the virus upon arrival. A promising candidate for arbovirus control and prevention relies on the introduction of the intracellular bacterium Wolbachia into Aedes aegypti mosquitoes. This primarily has been proposed as a tool to control dengue virus (DENV transmission; however, evidence suggests Wolbachia infections confer protection for Ae. aegypti against CHIKV. Although this approach holds much promise for limiting virus transmission, at present our understanding of the ability of CHIKV to infect, disseminate, and be transmitted by wMel-infected Ae. aegypti currently being used at Wolbachia release sites is limited.Using Ae. aegypti infected with the wMel strain of Wolbachia that are being released in Medellin, Colombia, we report that these mosquitoes have reduced vector competence for CHIKV, even with extremely high viral titers in the bloodmeal. In addition, we examined the dynamics of CHIKV infection over the course of four to seven days post feeding. Wolbachia-infected mosquitoes remained non-infective over the duration of seven days, i.e., no infectious virus was detected in the saliva when exposed to bloodmeals of moderate viremia, but CHIKV-exposed, wild type mosquitoes did have viral loads in the saliva consistent with what has been reported elsewhere. Finally, the presence of wMel infection had no impact on the lifespan of mosquitoes as compared to wild type mosquitoes following CHIKV infection.These results could have an impact on vector control strategies in areas where Ae. aegypti are transmitting both DENV and CHIKV; i.e., they argue for further exploration, both in the laboratory and the field, on the feasibility of expanding this technology beyond DENV.

  10. Salinity responsive aquaporins in the anal papillae of the larval mosquito, Aedes aegypti.

    Science.gov (United States)

    Akhter, Hina; Misyura, Lidiya; Bui, Phuong; Donini, Andrew

    2017-01-01

    The larvae of the mosquito, Aedes aegypti normally inhabit freshwater (FW) where they face dilution of body fluids by osmotic influx of water. In response, the physiological actions of the anal papillae result in ion uptake while the Malpighian tubules and rectum work in concert to excrete excess water. In an apparent paradox, the anal papillae express aquaporins (AQPs) and are sites of water permeability which, if AQPs are expressed by the epithelium, apparently exaggerates the influx of water from their dilute environment. Recently, naturally breeding populations of A. aegypti were found in brackish water (BW), an environment which limits the osmotic gradient. Given that salinization of FW is an emerging environmental issue and that these larvae would presumably need to adjust to these changing conditions, this study investigates the expression of AQPs in the anal papillae and their response to rearing in hypo-osmotic and near isosmotic conditions. Transcripts of all six Aedes AQP homologs were detectable in the anal papillae and the transcript abundance of three AQP homologs in the papillae was different between rearing conditions. Using custom made antibodies, expression of two of these AQP homologs (AQP4 and AQP5) was localized to the syncytial epithelium of the anal papillae. Furthermore, the changes in transcript abundance of these two AQPs between the rearing conditions, were manifested at the protein level. Results suggest that AQP4 and AQP5 play an important physiological role in larval responses to changes in environmental salinity.

  11. Adult survivorship of the dengue mosquito Aedes aegypti varies seasonally in central Vietnam.

    Directory of Open Access Journals (Sweden)

    Leon E Hugo

    2014-02-01

    Full Text Available The survival characteristics of the mosquito Aedes aegypti affect transmission rates of dengue because transmission requires infected mosquitoes to survive long enough for the virus to infect the salivary glands. Mosquito survival is assumed to be high in tropical, dengue endemic, countries like Vietnam. However, the survival rates of wild populations of mosquitoes are seldom measured due the difficulty of predicting mosquito age. Hon Mieu Island in central Vietnam is the site of a pilot release of Ae. aegypti infected with a strain of Wolbachia pipientis bacteria (wMelPop that induces virus interference and mosquito life-shortening. We used the most accurate mosquito age grading approach, transcriptional profiling, to establish the survival patterns of the mosquito population from the population age structure. Furthermore, estimations were validated on mosquitoes released into a large semi-field environment consisting of an enclosed house, garden and yard to incorporate natural environmental variability. Mosquito survival was highest during the dry/cool (January-April and dry/hot (May-August seasons, when 92 and 64% of Hon Mieu mosquitoes had survived to an age that they were able to transmit dengue (12 d, respectively. This was reduced to 29% during the wet/cool season from September to December. The presence of Ae. aegypti older than 12 d during each season is likely to facilitate the observed continuity of dengue transmission in the region. We provide season specific Ae. aegypti survival models for improved dengue epidemiology and evaluation of mosquito control strategies that aim to reduce mosquito survival to break the dengue transmission cycle.

  12. Adult survivorship of the dengue mosquito Aedes aegypti varies seasonally in central Vietnam.

    Science.gov (United States)

    Hugo, Leon E; Jeffery, Jason A L; Trewin, Brendan J; Wockner, Leesa F; Nguyen, Thi Yen; Nguyen, Hoang Le; Nghia, Le Trung; Hine, Emma; Ryan, Peter A; Kay, Brian H

    2014-02-01

    The survival characteristics of the mosquito Aedes aegypti affect transmission rates of dengue because transmission requires infected mosquitoes to survive long enough for the virus to infect the salivary glands. Mosquito survival is assumed to be high in tropical, dengue endemic, countries like Vietnam. However, the survival rates of wild populations of mosquitoes are seldom measured due the difficulty of predicting mosquito age. Hon Mieu Island in central Vietnam is the site of a pilot release of Ae. aegypti infected with a strain of Wolbachia pipientis bacteria (wMelPop) that induces virus interference and mosquito life-shortening. We used the most accurate mosquito age grading approach, transcriptional profiling, to establish the survival patterns of the mosquito population from the population age structure. Furthermore, estimations were validated on mosquitoes released into a large semi-field environment consisting of an enclosed house, garden and yard to incorporate natural environmental variability. Mosquito survival was highest during the dry/cool (January-April) and dry/hot (May-August) seasons, when 92 and 64% of Hon Mieu mosquitoes had survived to an age that they were able to transmit dengue (12 d), respectively. This was reduced to 29% during the wet/cool season from September to December. The presence of Ae. aegypti older than 12 d during each season is likely to facilitate the observed continuity of dengue transmission in the region. We provide season specific Ae. aegypti survival models for improved dengue epidemiology and evaluation of mosquito control strategies that aim to reduce mosquito survival to break the dengue transmission cycle.

  13. Oviposition site selection by the dengue vector Aedes aegypti and its implications for dengue control.

    Directory of Open Access Journals (Sweden)

    Jacklyn Wong

    Full Text Available BACKGROUND: Because no dengue vaccine or antiviral therapy is commercially available, controlling the primary mosquito vector, Aedes aegypti, is currently the only means to prevent dengue outbreaks. Traditional models of Ae. aegypti assume that population dynamics are regulated by density-dependent larval competition for food and little affected by oviposition behavior. Due to direct impacts on offspring survival and development, however, mosquito choice in oviposition site can have important consequences for population regulation that should be taken into account when designing vector control programs. METHODOLOGY/PRINCIPAL FINDINGS: We examined oviposition patterns by Ae. aegypti among 591 naturally occurring containers and a set of experimental containers in Iquitos, Peru. Using larval starvation bioassays as an indirect measure of container food content, we assessed whether females select containers with the most food for their offspring. Our data indicate that choice of egg-laying site is influenced by conspecific larvae and pupae, container fill method, container size, lid, and sun exposure. Although larval food positively influenced oviposition, our results did not support the hypothesis that females act primarily to maximize food for larvae. Females were most strongly attracted to sites containing immature conspecifics, even when potential competitors for their progeny were present in abundance. CONCLUSION/SIGNIFICANCE: Due to strong conspecific attraction, egg-laying behavior may contribute more to regulating Ae. aegypti populations than previously thought. If highly infested containers are targeted for removal or larvicide application, females that would have preferentially oviposited in those sites may instead distribute their eggs among other suitable, previously unoccupied containers. Strategies that kill mosquitoes late in their development (i.e., insect growth regulators that kill pupae rather than larvae will enhance vector

  14. Identification and characterisation of Aedes aegypti aldehyde dehydrogenases involved in pyrethroid metabolism.

    Directory of Open Access Journals (Sweden)

    Nongkran Lumjuan

    Full Text Available Pyrethroid insecticides, especially permethrin and deltamethrin, have been used extensively worldwide for mosquito control. However, insecticide resistance can spread through a population very rapidly under strong selection pressure from insecticide use. The upregulation of aldehyde dehydrogenase (ALDH has been reported upon pyrethroid treatment. In Aedes aegypti, the increase in ALDH activity against the hydrolytic product of pyrethroid has been observed in DDT/permethrin-resistant strains. The objective of this study was to identify the role of individual ALDHs involved in pyrethroid metabolism.Three ALDHs were identified; two of these, ALDH9948 and ALDH14080, were upregulated in terms of both mRNA and protein levels in a DDT/pyrethroid-resistant strain of Ae. aegypti. Recombinant ALDH9948 and ALDH14080 exhibited oxidase activities to catalyse the oxidation of a permethrin intermediate, phenoxybenzyl aldehyde (PBald, to phenoxybenzoic acid (PBacid.ALDHs have been identified in association with permethrin resistance in Ae. aegypti. Characterisation of recombinant ALDHs confirmed the role of this protein in pyrethroid metabolism. Understanding the biochemical and molecular mechanisms of pyrethroid resistance provides information for improving vector control strategies.

  15. The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti.

    Directory of Open Access Journals (Sweden)

    Guowu Bian

    2010-04-01

    Full Text Available Genetic strategies that reduce or block pathogen transmission by mosquitoes have been proposed as a means of augmenting current control measures to reduce the growing burden of vector-borne diseases. The endosymbiotic bacterium Wolbachia has long been promoted as a potential vehicle for introducing disease-resistance genes into mosquitoes, thereby making them refractory to the human pathogens they transmit. Given the large overlap in tissue distribution and intracellular localization between Wolbachia and dengue virus in mosquitoes, we conducted experiments to characterize their interactions. Our results show that Wolbachia inhibits viral replication and dissemination in the main dengue vector, Aedes aegypti. Moreover, the virus transmission potential of Wolbachia-infected Ae. aegypti was significantly diminished when compared to wild-type mosquitoes that did not harbor Wolbachia. At 14 days post-infection, Wolbachia completely blocked dengue transmission in at least 37.5% of Ae. aegypti mosquitoes. We also observed that this Wolbachia-mediated viral interference was associated with an elevated basal immunity and increased longevity in the mosquitoes. These results underscore the potential usefulness of Wolbachia-based control strategies for population replacement.

  16. Intraspecific variation in desiccation survival time of Aedes aegypti (L.) mosquito eggs of Australian origin.

    Science.gov (United States)

    Faull, Katherine J; Williams, Craig R

    2015-12-01

    Aedes aegypti (L.) mosquitoes preferentially oviposit in natural and artificial receptacles where their eggs are able to withstand drying as water levels fluctuate. Desiccation-resistant eggs also increase the potential for establishment in non-native habitats while providing logistical impediments to control programs. Viability and mean survival times of eggs stored under three dryness conditions for up to 367 days were investigated among three field-derived colonies of Australian Ae. aegypti to understand variation in desiccation survival. Further investigations compared egg survival between an established colony and its wild counterpart. Our results confirmed that Ae. aegypti eggs can withstand desiccation for extended periods of time with approximately 2-15% egg viability recorded after one year and viability remaining above 88% under all conditions through 56 days. Intraspecific variations in egg survival times were recorded, suggesting local adaptation while each of the colonies demonstrated a consistent preference for higher humidity. Egg volume varied between the populations, suggesting a relationship between egg volume and survival time, with the marginally larger eggs (Charters Towers and Innisfail) having greater desiccation resistance over the range of conditions. The strong survivorship of Charters Towers eggs in dry, warm conditions demonstrates the adaptive significance of a desiccation-resistant egg.

  17. Differential transcription profiles in Aedes aegypti detoxification genes after temephos selection.

    Science.gov (United States)

    Saavedra-Rodriguez, K; Strode, C; Flores, A E; Garcia-Luna, S; Reyes-Solis, G; Ranson, H; Hemingway, J; Black, W C

    2014-04-01

    The mosquito Aedes aegypti is the main vector of Dengue and Yellow Fever flaviviruses. The organophosphate insecticide temephos is a larvicide that is used globally to control Ae. aegypti populations; many of which have in turn evolved resistance. Target site alteration in the acetylcholine esterase of this species has not being identified. Instead, we tracked changes in transcription of metabolic detoxification genes using the Ae. aegypti 'Detox Chip' microarray during five generations of temephos selection. We selected for temephos resistance in three replicates in each of six collections, five from Mexico, and one from Peru. The response to selection was tracked in terms of lethal concentrations. Uniform upregulation was seen in the epsilon class glutathione-S-transferase (eGST) genes in strains from Mexico prior to laboratory selection, while eGSTs in the Iquitos Peru strain became upregulated after five generations of temephos selection. While expression of many carboxyl/cholinesterase esterase (CCE) genes increased with selection, no single esterase was consistently upregulated and this same pattern was noted in the cytochrome P450 monooxygenase (CYP) genes and in other genes involved in reduction or oxidation of xenobiotics. Bioassays using glutathione-S-transferase (GST), CCE and CYP inhibitors suggest that various CCEs instead of GSTs are the main metabolic mechanism conferring resistance to temephos. We show that temephos-selected strains show no cross resistance to permethrin and that genes associated with temephos selection are largely independent of those selected with permethrin in a previous study.

  18. EFEKTIVITAS PEMANASAN KELAMBU BERINSEKTISIDA, OLYSET TERHADAP NYAMUK AEDES AEGYPTI (DIPTERA: CULICIDAE

    Directory of Open Access Journals (Sweden)

    Upik Kesumawati Hadi

    2012-11-01

    Full Text Available The aim of this research was to know the effectiveness of heating insecticide bednet, against the mosquito Aedes aegypti. As many as 240 Olyset samples from eleven health centers in Bangka District were tested its effectiveness against mosquitoes with WHO ball test method. In these test, there were used 25 Aedes aegypti female, and 3-5 days old. Bednet sample treatments was collected from six health centreareas that the people washed and heated the nets. Control samples was taken from five health centre areas where the people only washed their nets without heating. Sample collections were done for four periods with interval time of three months, from September 2007 to June 2008. The observation on knockdown effect/mortality of Aedes aegypti was done on 30 minutes, 60 minutes, and 24 hours after 3 minutes exposured. The effectiveness of Olyset bed net was based on the value of knock-down time 50% (KT-50. The result showed that the difference of the average percentage mortality of Aedes aegypti after 30 minutes, 60 minutes and 24 hours exposured on period of I, II, III and IV in the control groups and on the treatment groups were not significant enough. However, based on the value of KT-50, the heat regeneration on Olyset net has a better effectiveness compared with the control (P<0,05. Keywords: Olyset, long-lasting insecticidal net, Aedes aegypti, heat regeneration

  19. Larvicidal activity of a toxin from the seeds of Jatropha curcas Linn. against Aedes aegypti Linn. and Culex quinquefasciatus Say.

    Science.gov (United States)

    Chanthakan, Nuchsuk; Nuanchawee, Wetprasit; Sittiruk, Roytrakul; Sunanta, Ratanapo

    2012-06-01

    The larvicidal effects of the crude protein extract and purified toxin, Jc-SCRIP, from the seed coat of Jatropha curcas Linn. against the third instar larvae of mosquitoes, Aedes aegypti Linn. and Culex quinquefasciatus Say, were investigated. This test compared the effects of the purified toxin with crude protein extracts from seed kernels of J. curcas and Ricinus communis. At various concentrations of purified toxin and crude protein extract, the larval mortality of both Ae. aegypti and Cx. quinquefasciatus were positively correlated with increased exposure time. The larvae of Cx. quinquefasciatus were more susceptible to the toxin and both extracts than the larvae of Ae. aegypti. After 24 hours of exposure, the extract showed larvicidal activity against Ae. aegypti and Cx. quinquefasciatus with (LC50) values of 3.89 mg/ml and 0.0575 mg/ml, respectively. The toxin, Jc-SCRIP, showed larvicidal activity against Ae. aegypti and Cx. quinquefasciatus with (LC50) values of 1.44 mg/ml and 0.0303 mg/ ml, respectively. These results indicated that the crude protein extract and Jc-SCRIP were more toxic to the third instar larvae of Cx. quinquefasciatus than that of Ae. aegypti. The potent larvicidal activities of the seed coat extract and the Jc-SCRIP toxin from J. curcas suggest that they may be used as bioactive agents to control the mosquito population.

  20. The effect of photoperiod on life history and blood-feeding activity in Aedes albopictus and Aedes aegypti (Diptera: Culicidae).

    Science.gov (United States)

    Costanzo, K S; Schelble, S; Jerz, K; Keenan, M

    2015-06-01

    Several studies have examined how climatic variables such as temperature and precipitation may affect life history traits in mosquitoes that are important to disease transmission. Despite its importance as a seasonal cue in nature, studies investigating the influence of photoperiod on such traits are relatively few. This study aims to investigate how photoperiod alters life history traits, survival, and blood-feeding activity in Aedes albopictus (Skuse) and Aedes aegypti (Linnaeus). We performed three experiments that tested the effects of day length on female survival, development time, adult size, fecundity, adult life span, and propensity to blood feed in Ae. albopictus and Ae. aegypti. Each experiment had three photoperiod treatments: 1) short-day (10L:14D), 2) control (12L:12D), and 3) long-day (14L:10D). Aedes albopictus adult females were consistently larger in size when reared in short-day conditions. Aedes aegypti adult females from short-day treatments lived longer and were more likely to take a blood meal compared to other treatments. We discuss how species-specific responses may reflect alternative strategies evolved to increase survival during unfavorable conditions. We review the potential impacts of these responses on seasonal transmission patterns, such as potentially increasing vectorial capacity of Ae. aegypti during periods of shorter day lengths.

  1. Oviposition-stimulant and ovicidal activities of Moringa oleifera lectin on Aedes aegypti.

    Directory of Open Access Journals (Sweden)

    Nataly Diniz de Lima Santos

    Full Text Available BACKGROUND: Natural insecticides against the vector mosquito Aedes aegypti have been the object of research due to their high level of eco-safety. The water-soluble Moringa oleifera lectin (WSMoL is a larvicidal agent against A. aegypti. This work reports the effects of WSMoL on oviposition and egg hatching of A. aegypti. METHODOLOGY/PRINCIPAL FINDINGS: WSMoL crude preparations (seed extract and 0-60 protein fraction, at 0.1 mg/mL protein concentration, did not affect oviposition, while A. aegypti gravid females laid their eggs preferentially (73% in vessels containing isolated WSMoL (0.1 mg/mL, compared with vessels containing only distilled water (control. Volatile compounds were not detected in WSMoL preparation. The hatchability of fresh eggs deposited in the solutions in the oviposition assay was evaluated. The numbers of hatched larvae in seed extract, 0-60 protein fraction and WSMoL were 45 ± 8.7 %, 20 ± 11 % and 55 ± 7.5 %, respectively, significantly (p<0.05 lower than in controls containing only distilled water (75-95%. Embryos were visualized inside fresh control eggs, but not within eggs that were laid and maintained in WSMoL solution. Ovicidal activity was also assessed using stored A. aegypti eggs. The protein concentrations able to reduce the hatching rate by 50% (EC50 were 0.32, 0.16 and 0.1 mg/mL for seed extract, 0-60 protein fraction and WSMoL, respectively. The absence of hatching of stored eggs treated with WSMoL at 0.3 mg/mL (EC99 after transfer to medium without lectin indicates that embryos within the eggs were killed by WSMoL. The reduction in hatching rate of A. aegypti was not linked to decrease in bacteria population. CONCLUSIONS/SIGNIFICANCE: WSMoL acted both as a chemical stimulant cue for ovipositing females and ovicidal agent at a given concentration. The oviposition-stimulant and ovicidal activities, combined with the previously reported larvicidal activity, make WSMoL a very interesting candidate in

  2. Oviposition-Stimulant and Ovicidal Activities of Moringa oleifera Lectin on Aedes aegypti

    Science.gov (United States)

    Santos, Nataly Diniz de Lima; de Moura, Kézia Santana; Napoleão, Thiago Henrique; Santos, Geanne Karla Novais; Coelho, Luana Cassandra Breitenbach Barroso; Navarro, Daniela Maria do Amaral Ferraz; Paiva, Patrícia Maria Guedes

    2012-01-01

    Background Natural insecticides against the vector mosquito Aedes aegypti have been the object of research due to their high level of eco-safety. The water-soluble Moringa oleifera lectin (WSMoL) is a larvicidal agent against A. aegypti. This work reports the effects of WSMoL on oviposition and egg hatching of A. aegypti. Methodology/Principal Findings WSMoL crude preparations (seed extract and 0–60 protein fraction), at 0.1 mg/mL protein concentration, did not affect oviposition, while A. aegypti gravid females laid their eggs preferentially (73%) in vessels containing isolated WSMoL (0.1 mg/mL), compared with vessels containing only distilled water (control). Volatile compounds were not detected in WSMoL preparation. The hatchability of fresh eggs deposited in the solutions in the oviposition assay was evaluated. The numbers of hatched larvae in seed extract, 0–60 protein fraction and WSMoL were 45±8.7 %, 20±11 % and 55±7.5 %, respectively, significantly (pactivity was also assessed using stored A. aegypti eggs. The protein concentrations able to reduce the hatching rate by 50% (EC50) were 0.32, 0.16 and 0.1 mg/mL for seed extract, 0–60 protein fraction and WSMoL, respectively. The absence of hatching of stored eggs treated with WSMoL at 0.3 mg/mL (EC99) after transfer to medium without lectin indicates that embryos within the eggs were killed by WSMoL. The reduction in hatching rate of A. aegypti was not linked to decrease in bacteria population. Conclusions/Significance WSMoL acted both as a chemical stimulant cue for ovipositing females and ovicidal agent at a given concentration. The oviposition-stimulant and ovicidal activities, combined with the previously reported larvicidal activity, make WSMoL a very interesting candidate in integrated A. aegypti control. PMID:22970317

  3. Aedes aegypti (Diptera: Culicidae) in Mauritania: First Report on the Presence of the Arbovirus Mosquito Vector in Nouakchott.

    Science.gov (United States)

    Mint Lekweiry, Khadijetou; Ould Ahmedou Salem, Mohamed Salem; Ould Brahim, Khyarhoum; Ould Lemrabott, Mohamed Aly; Brengues, Cécile; Faye, Ousmane; Simard, Frédéric; Ould Mohamed Salem Boukhary, Ali

    2015-07-01

    Aedes aegypti L. (Diptera: Culicidae) is a major vector of yellow fever, dengue, and chikungunya viruses throughout tropical and subtropical areas of the world. Although the southernmost part of Mauritania along the Senegal river has long been recognized at risk of yellow fever transmission, Aedes spp. mosquitoes had never been reported northwards in Mauritania. Here, we report the first observation of Aedes aegypti aegypti (L.) and Aedes (Ochlerotatus) caspius (Pallas, 1771) in the capital city, Nouakchott. We describe the development sites in which larvae of the two species were found, drawing attention to the risk for emergence of arbovirus transmission in the city.

  4. Wolbachia-associated bacterial protection in the mosquito Aedes aegypti.

    Directory of Open Access Journals (Sweden)

    Yixin H Ye

    Full Text Available BACKGROUND: Wolbachia infections confer protection for their insect hosts against a range of pathogens including bacteria, viruses, nematodes and the malaria parasite. A single mechanism that might explain this broad-based pathogen protection is immune priming, in which the presence of the symbiont upregulates the basal immune response, preparing the insect to defend against subsequent pathogen infection. A study that compared natural Wolbachia infections in Drosophila melanogaster with the mosquito vector Aedes aegypti artificially transinfected with the same strains has suggested that innate immune priming may only occur in recent host-Wolbachia associations. This same study also revealed that while immune priming may play a role in viral protection it cannot explain the entirety of the effect. METHODOLOGY/FINDINGS: Here we assess whether the level of innate immune priming induced by different Wolbachia strains in A. aegypti is correlated with the degree of protection conferred against bacterial pathogens. We show that Wolbachia strains wMel and wMelPop, currently being tested for field release for dengue biocontrol, differ in their protective abilities. The wMelPop strain provides stronger, more broad-based protection than wMel, and this is likely explained by both the higher induction of immune gene expression and the strain-specific activation of particular genes. We also show that Wolbachia densities themselves decline during pathogen infection, likely as a result of the immune induction. CONCLUSIONS/SIGNIFICANCE: This work shows a correlation between innate immune priming and bacterial protection phenotypes. The ability of the Toll pathway, melanisation and antimicrobial peptides to enhance viral protection or to provide the basis of malaria protection should be further explored in the context of this two-strain comparison. This work raises the questions of whether Wolbachia may improve the ability of wild mosquitoes to survive pathogen

  5. Fine Scale Spatiotemporal Clustering of Dengue Virus Transmission in Children and Aedes aegypti in Rural Thai Villages

    Science.gov (United States)

    2012-07-01

    Fine Scale Spatiotemporal Clustering of Dengue Virus Transmission in Children and Aedes aegypti in Rural Thai Villages In-Kyu Yoon1*, Arthur Getis2...between infected humans and Aedes aegypti in Thai villages. Methodology/Principal Findings: Geographic cluster investigations of 100-meter radius were...in rural Thailand. Child contacts and Ae. aegypti from cluster houses were assessed for DENV infection. Spatiotemporal, demographic, and entomological

  6. Surveilans Aedes aegypti di Daerah Endemis Demam Berdarah Dengue

    Directory of Open Access Journals (Sweden)

    Sunaryo Sunaryo

    2014-05-01

    district/city connected with the population of A. aegypti. This matter proved with high percentage of houses that found A. aegypti (House Index > 10% and the high of container that containing A. aegypti in every houses (Breteau Index. The high of ovitrap index (OI was 40% in Kalikabong village, Purbalingga district. The proportion of controllable sites more than disposable sites, meaning the house as the high risk of mosquito breeding sites.

  7. Transcriptome analysis of Aedes aegypti transgenic mosquitoes with altered immunity.

    Directory of Open Access Journals (Sweden)

    Zhen Zou

    2011-11-01

    Full Text Available The mosquito immune system is involved in pathogen-elicited defense responses. The NF-κB factors REL1 and REL2 are downstream transcription activators of Toll and IMD immune pathways, respectively. We have used genome-wide microarray analyses to characterize fat-body-specific gene transcript repertoires activated by either REL1 or REL2 in two transgenic strains of the mosquito Aedes aegypti. Vitellogenin gene promoter was used in each transgenic strain to ectopically express either REL1 (REL1+ or REL2 (REL2+ in a sex, tissue, and stage specific manner. There was a significant change in the transcript abundance of 297 (79 up- and 218 down-regulated and 299 (123 up- and 176 down-regulated genes in fat bodies of REL1+ and REL2+, respectively. Over half of the induced genes had predicted functions in immunity, and a large group of these was co-regulated by REL1 and REL2. By generating a hybrid transgenic strain, which ectopically expresses both REL1 and REL2, we have shown a synergistic action of these NF-κB factors in activating immune genes. The REL1+ immune transcriptome showed a significant overlap with that of cactus (RNAi-depleted mosquitoes (50%. In contrast, the REL2+ -regulated transcriptome differed from the relatively small group of gene transcripts regulated by RNAi depletion of a putative inhibitor of the IMD pathway, caspar (35 up- and 140 down-regulated, suggesting that caspar contributes to regulation of a subset of IMD-pathway controlled genes. Infections of the wild type Ae. aegypti with Plasmodium gallinaceum elicited the transcription of a distinct subset of immune genes (76 up- and 25 down-regulated relative to that observed in REL1+ and REL2+ mosquitoes. Considerable overlap was observed between the fat body transcriptome of Plasmodium-infected mosquitoes and that of mosquitoes with transiently depleted PIAS, an inhibitor of the JAK-STAT pathway. PIAS gene silencing reduced Plasmodium proliferation in Ae. aegypti, indicating

  8. Energetics of r- vs. K-selection in two African strains of Aedes aegypti

    Energy Technology Data Exchange (ETDEWEB)

    Schlosser, I.J. (Illinois State Univ., Normal); Buffington, J.D.

    1977-03-15

    Two strains of the mosquito Aedes aegypti obtained in Tanzania in 1971 from a village habitat (House) and a feral habitat (Bamboo) only 100 meters apart demonstrated differences in both their physiological and population ecology, suggesting some genetic isolation between them. Their population attributes indicate that House is more r-selected and Bamboo is more K-selected. Measurements of respiration indicate that despite a number of differences between the strains, the energy cost of the immature part of the life cycle is essentially the same for both of them. However each strain has adopted a different strategy in using this energy: in Bamboo more is incorporated into biomass, while in House more goes to maintaining the life cycle. The immature life cycle proceeds more rapidly in House. These observations suggest a generalization that for similar organisms differing life table strategies may be employed but only to the extent that an apparently definite energy cost is paid.

  9. Use of the CDC autocidal gravid ovitrap to control and prevent outbreaks of Aedes aegypti (Diptera: Culicidae).

    Science.gov (United States)

    Barrera, Roberto; Amador, Manuel; Acevedo, Veronica; Caban, Belkis; Felix, Gilberto; Mackay, Andrew J

    2014-01-01

    Populations ofAedes aegypti (L.) can be managed through reductions in adult mosquito survival, number of offspring produced, or both. Direct adult mortality can be caused by the use of space sprays or residual insecticides to mosquito resting sites, and with a variety of residual insecticide-impregnated surfaces that are being tested, such as curtains, covers for water-storage vessels, bednets, and ovitraps. The fertility ofAe. aegypti populations can be reduced by the use of autocidal oviposition cups that prevent the development of mosquitoes inside the trap by mechanical means or larvicides, as well as by releasing sterile, transgenic, and para-transgenic mosquitoes. Survival and fertility can be simultaneously reduced by capturing gravid female Ae. aegypti with sticky gravid traps. We tested the effectiveness of the novel Centers for Disease Control and Prevention autocidal gravid ovitrap (CDC-AGO trap) to control natural populations ofAe. aegypti under field conditions in two isolated urban areas (reference vs. intervention areas) in southern Puerto Rico for 1 yr. There were significant reductions in the captures of female Ae. aegypti (53-70%) in the intervention area The presence of three to four AGO control traps per home in 81% of the houses prevented outbreaks of Ae. aegypti, which would be expected after rains. Mosquito captures in BG-Sentinel and AGO traps were significantly and positively correlated, showing that AGO traps are useful and inexpensive mosquito surveillance devices. The use of AGO traps to manage Ae. aegypti populations is compatible with other control means such as source reduction, larviciding, adulticiding, sterile insect techniques, induced cytoplasmic incompatibility, and dominant lethal gene systems.

  10. PENGAMATAN TEMPAT PERINDUKAN AEDES AEGYPTI PADA TEMPAT PENAMPUNGAN AIR RUMAH TANGGA PADA MASYARAKAT PENGGUNA AIR OLAHAN

    Directory of Open Access Journals (Sweden)

    H. Hasyimi

    2012-11-01

    Full Text Available An observation of Aedes aegypti breeding places in domestic pipe waters container provided by PAM (Water supply company customer regency was carried out. The area observation in RW (a hamlet 05 kelurahan Papanggo Tanjung priuk North Jakarta. As a control area, RW 04 kelurahan Tanjung Priok in the same district was selected. The observation was conducted on Agust - September 2001. The result showed that Aedes aegypti larvae were found mostly in clay water container or tempayan (66,7 %. The house index (HI rate is 27,3%. In the control area the larvae were found predominantly in bath cistern (65,4% and HI rate is 100%. So in the study area HI rate is lower than in the control area.   Keywords: Aedes aegypti, breeding places, domestic container, house index

  11. Solution structure of FK506-binding protein 12 from Aedes aegypti.

    Science.gov (United States)

    Chakraborty, Goutam; Shin, Joon; Nguyen, Quoc Toan; Harikishore, Amaravadhi; Baek, Kwanghee; Yoon, Ho Sup

    2012-10-01

    Dengue remains one of the major public concerns as the virus eludes the immune response. Currently, no vaccines or antiviral therapeutics are available for dengue prevention or treatment. Immunosuppressive drug FK506 shows an antimalarial activity, and its molecular target, FK506-binding protein (FKBP), was identified in human Plasmodium parasites. Likewise, a conserved FKBP family protein has also been identified in Aedes aegypti (AaFKBP12), which is expected to play a similar role in the life cycle of Aedes aegypti, the primary vector of dengue virus infection. As FKBPs belong to a highly conserved class of immunophilin family and are involved in key biological regulations, they are considered as attractive pharmacological targets. In this study, we have determined the nuclear magnetic resonance solution structure of AaFKBP12, a novel FKBP member from Aedes aegypti, and presented its structural features, which may facilitate the design of potential inhibitory ligands against the dengue-transmitting mosquitoes.

  12. Natural transovarial dengue virus infection rate in both sexes of dark and pale forms of Aedes aegypti from an urban area of Bangkok, Thailand.

    Science.gov (United States)

    Thongrungkiat, Supatra; Wasinpiyamongkol, Ladawan; Maneekan, Pannamas; Prummongkol, Samrerng; Samung, Yudthana

    2012-09-01

    Transovarial dengue virus infection status of two forms of adult Aedes aegypti (dark or Ae. aegypti type form and pale or form queenslandensis), reared from field-collected larval and pupal stages, was determined by one-step RT-PCR and dengue viral serotype by nested-PCR. Natural transovarial transmission (TOT) of dengue virus was detected in the two Ae. aegypti forms, and in both adult males and females. Male Ae. aegypti had a higher rate of TOT dengue virus infection than female. The overall minimum infection rate among the male and female populations was 19.5 and 12.3 per 1,000 mosquitoes, respectively. All four dengue serotypes were detected in mosquito samples, with DEN-4 being the predominant serotype. Thus, both male and female Ae. aegypti have influences on the epidemiology of dengue virus transmission.

  13. Larvicidal activity of plant extracts on Aedes Aegypti L.

    Institute of Scientific and Technical Information of China (English)

    Anitha Rajasekaran; Geethapriya Duraikannan

    2012-01-01

    Objective: To evaluate the larvicidal activity of plant extracts on Aedes aegypti. Methods:Petroleum ether, Chloroform and aqueous extracts obtained from Acalypha indica, Aerva lanata,Boerhaavia diffusa, Commelina benghalensis, Gompherna sps, Datura stramonium, Euphorpia hirta, Cynodon dactylon, Lantana camara and Tridax procumbens were used for larvicidal activity at concentration of 1000μg/ml and the mortality rate was calculated after 24 and 48hrs . The LC50 for the extracts were also estimated after 24 hrs. Results: The petroleum ether extract ofLantana camara, Tridax procumbens and Datura stramonium showed 100% mortality after 48hrs of incubation. Tridax procumbens petroleum ether extract had the least LC50 of 219 μg/ml followed by Lantana and Datura with 251and 288 μg/ml respectively. A combination of petroleum ether extracts of Aerva lanata and Cynodon dactylon, Boerhaavia diffusa and Commelina benghalensis exhibited 100% mortality of larvae. Formulation-1 inhibited the metamorphosis of the larvae by retaining 60% in its larval stage. Petroleum ether extracts of Lantana, Tridax, Datura and a combination of extracts were effective larvicide. The formulations proved to be effective in inhibiting the metamorphosis. Alkaloids and flavonoids were present in datura petroleum ether extract . Conclusions: Either the crude extracts of Datura stramonium, Lantana camara and Tridax procumbens or its phytochemicals can be used as effective vector control agents individually or in combination.

  14. Intriguing olfactory proteins from the yellow fever mosquito, Aedes aegypti

    Science.gov (United States)

    Ishida, Yuko; Chen, Angela M.; Tsuruda, Jennifer M.; Cornel, Anthon J.; Debboun, Mustapha; Leal, Walter S.

    2004-09-01

    Four antennae-specific proteins (AaegOBP1, AaegOBP2, AaegOBP3, and AaegASP1) were isolated from the yellow fever mosquito, Aedes aegypti and their full-length cDNAs were cloned. RT-PCR indicated that they are expressed in female and, to a lesser extent, in male antennae, but not in control tissues (legs). AaegOBP1 and AaegOBP3 showed significant similarity to previously identified mosquito odorant-binding proteins (OBPs) in cysteine spacing pattern and sequence. Two of the isolated proteins have a total of eight cysteine residues. The similarity of the spacing pattern of the cysteine residues and amino acid sequence to those of previously identified olfactory proteins suggests that one of the cysteine-rich proteins (AaegOBP2) is an OBP. The other (AaegASP1) did not belong to any group of known OBPs. Structural analyses indicate that six of the cysteine residues in AaegOBP2 are linked in a similar pattern to the previously known cysteine pairing in OBPs, i.e., Cys-24 Cys-55, Cys-51 Cys-104, Cys-95 Cys-113. The additional disulfide bridge, Cys-38 Cys-125, knits the extended C-terminal segment of the protein to a predicted α2-helix. As indicated by circular dichroism (CD) spectra, the extra rigidity seems to prevent the predicted formation of a C-terminal α-helix at low pH.

  15. Uji Efektifitas Atraktan pada Lethal Ovitrap terhadap Jumlah dan Daya Tetas Telur Nyamuk Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Milana Salim

    2015-11-01

    Full Text Available AbstractControl of Aedes aegypti mosquito as dengue haemorrhagic fever (DHF vector can be conducted by using the ovitrap modified into a lethal ovitrap. The addition of attractant substances to the ovitrap can attract more mosquitoes to come in to the trap, and prevent the mosquitoes to lay eggs in other places. The aim of this research was to compare the percentage of the number of eggs trapped, the number of eggs that hatched and the percentage of larval mortality in lethal ovitrap modified with the addition of two types of attractant. This research was an experiment research with a complete random design. The samples used were female bloodfed Ae. aegypti mosquito. The insecticide used was water extract of Annona squamosa seed, and the attractants used were hay infus at water with concentration of 20% and larval rearing water of the Ae. aegypti. Aquades used as control. The results showed that hay infusion was more effective than larval rearing water in attracting female Ae. aegypti mosquito to lay eggs. The highest mortality was found in the combination of lethal ovitrap and hay infusion. The combination could be an alternative controlling strategy for DHF management program in order to reduce the density of Ae. aegypti mosquito and minimize the dengue transmission in a region.Keywords : Lethal Ovitrap, attractant, Aedes aegyptiAbstrakPengendalian nyamuk Aedes aegypti sebagai vektor demam berdarah dengue (DBD dapat dilakukan dengan menggunaan ovitrap yang dimodifikasi menjadi lethal ovitrap. Penambahan zat atraktanpada ovitrap dapat menarik lebih banyak nyamuk untuk datang ke perangkap yang dipasang dan mencegah nyamuk bertelur di tempat lain. Penelitian ini bertujuan untuk membandingkan persentase jumlah telur terperangkap, jumlah telur menetas dan mortalitas larva pada lethal ovitrap yang diberi tambahan dua jenis atraktan. Insektisida yang digunakan adalah ekstrak air biji srikaya (Annona squamosa, sedangkan atraktan yang digunakan adalah

  16. [Aedes (Stegomyia) aegypti L. and associated culicidae fauna in a urban area of southern Brazil].

    Science.gov (United States)

    Lopes, J; da Silva, M A; Borsato, A M; de Oliveira, V D; Oliveira, F J

    1993-10-01

    Some aspects of the ecology of eleven species of Culicidae that were found breeding in recipients in an urban area of Southern Brazil are presented. A great variety of recipients were listed as efficient breeding sites. Apparently Aedes aegypti has been recently introduced into the region and was limited to two areas of the city. Culex quinquefasciatus, Cx. coronator, Ae. aegypti, Ae. fluviatilis e Limatus durhamii were the predominant species.

  17. Larvicidal activity of Annona senegalensis and Boswellia dalzielii leaf fractions against Aedes aegypti (Diptera: Culicidae)

    OpenAIRE

    Younoussa Lame; Elias Nchiwan Nukenine; Danga Yinyang Simon Pierre; Charles Okechukwu Esimone

    2014-01-01

    The purpose of the present study was to evaluate the larvicidal activity of leaf fractions of Annona senegalensis and Boswellia dalzielii against fourth instar larvae of Aedes aegypti. Fourth instar larvae of Ae. aegypti were exposed for 24 hours to various concentrations (312.5-2500 mg/L) of methanolic crude extract and its fractions obtained with n-hexane, chloroform, ethyl-acetate and methanol solvents, following WHO method. The mortalities recorded were subjected to ANOVA test for mean co...

  18. Recent rapid rise of a permethrin knock down resistance allele in Aedes aegypti in Mexico.

    OpenAIRE

    Gustavo Ponce García; FLORES, ADRIANA E.; Ildefonso Fernández-Salas; Karla Saavedra-Rodríguez; Guadalupe Reyes-Solis; Saul Lozano-Fuentes; J Guillermo Bond; Mauricio Casas-Martínez; Ramsey, Janine M.; Julián García-Rejón; Marco Domínguez-Galera; Hilary Ranson; Janet Hemingway; Lars Eisen; William C Black Iv

    2009-01-01

    BACKGROUND: Aedes aegypti, the 'yellow fever mosquito', is the primary vector to humans of dengue and yellow fever flaviviruses (DENV, YFV), and is a known vector of the chikungunya alphavirus (CV). Because vaccines are not yet available for DENV or CV or are inadequately distributed in developing countries (YFV), management of Ae. aegypti remains the primary option to prevent and control outbreaks of the diseases caused by these arboviruses. Permethrin is one of the most widely used active i...

  19. Identification of Aedes aegypti and its Respective Life Stages by Real-Time PCR

    Science.gov (United States)

    2004-06-01

    RTO-MP-HFM-108 22 - 1 Identification of Aedes aegypti and its Respective Life Stages by Real - Time PCR James C. McAvin1*; Major David E...Stages by Real - Time PCR 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK...grade water Identification of Aedes aegypti and its Respective Life Stages by Real - Time PCR RTO-MP-HFM-108 22 - 3 for no template controls

  20. Effect of common salt on laboratory reared immature stages ofAedes aegypti (L)

    Institute of Scientific and Technical Information of China (English)

    Mukhopadhyay AK; Tamizharasu W; Satya Babu P; Chandra G; Hati AK

    2010-01-01

    Objective:To observe the effect of common salt (NaCl) on immature stages of laboratory reared Aedes aegypti (L).Methods:A laboratory colony ofAedes aegypti mosquitoes of Rajahmundry strain was established in the laboratory of National Institute for Communicable Disease(NICD), Rajahmundry unit at (26±2) ℃ with relative humidity of (70±10)%. 1.00%, 1.25% and 1.50% solutions of common salt (NaCl) were selected to observe the susceptibility status of immature stages ofAedes aegypti in laboratory.Results: Fifty percent larvae ofAedes aegyptidied within 19, 31 and 48 hours when exposed to 1.50%, 1.25% and 1.00% common salt solution, respectively. Ninety percent of the larvae died within 29, 57 and 108 hours when exposed to the same salt solutions, respectively. Very high pupal mortality was observed varying from 81.8% to 40.0%. Formation of pupae was found inversely proportional in the presence of concentration of common salt in breeding water.Conclusions: With easy availability, less toxicity and long lasting nature, common salt may be applied in unused containers, especially in junkyards where surveillance mechanism is poor along with other conventional vector control methods in order to control breeding ofAedes aegypti, the vector of dengue/ dengue hemorrhagic fever and chikungunya.

  1. Dengue viruses binding proteins from Aedes aegypti and Aedes polynesiensis salivary glands

    Directory of Open Access Journals (Sweden)

    Cao-Lormeau Van-Mai

    2009-03-01

    Full Text Available Abstract Dengue virus (DENV, the etiological agent of dengue fever, is transmitted to the human host during blood uptake by an infective mosquito. Infection of vector salivary glands and further injection of infectious saliva into the human host are key events of the DENV transmission cycle. However, the molecular mechanisms of DENV entry into the mosquito salivary glands have not been clearly identified. Otherwise, although it was demonstrated for other vector-transmitted pathogens that insect salivary components may interact with host immune agents and impact the establishment of infection, the role of mosquito saliva on DENV infection in human has been only poorly documented. To identify salivary gland molecules which might interact with DENV at these key steps of transmission cycle, we investigated the presence of proteins able to bind DENV in salivary gland extracts (SGE from two mosquito species. Using virus overlay protein binding assay, we detected several proteins able to bind DENV in SGE from Aedes aegypti (L. and Aedes polynesiensis (Marks. The present findings pave the way for the identification of proteins mediating DENV attachment or entry into mosquito salivary glands, and of saliva-secreted proteins those might be bound to the virus at the earliest step of human infection. The present findings might contribute to the identification of new targets for anti-dengue strategies.

  2. Assessment of the relationship between entomologic indicators of Aedes aegypti and the epidemic occurrence of dengue virus 3 in a susceptible population, São José do Rio Preto, São Paulo, Brazil.

    Science.gov (United States)

    Chiaravalloti-Neto, Francisco; Pereira, Mariza; Fávaro, Eliane Aparecida; Dibo, Margareth Regina; Mondini, Adriano; Rodrigues-Junior, Antonio Luiz; Chierotti, Ana Patrícia; Nogueira, Maurício Lacerda

    2015-02-01

    The aims of this study were to describe the occurrence of dengue in space and time and to assess the relationships between dengue incidence and entomologic indicators. We selected the dengue autochthonous cases that occurred between September 2005 and August 2007 in São José do Rio Preto to calculate incidence rates by month, year and census tracts. The monthly incidence rates of the city were compared to the monthly Breteau indices (BI) of the São José do Rio Region. Between December 2006 and February 2007, an entomological survey was conducted to collect immature forms of Aedes aegypti in Jaguaré, a São José do Rio Preto neighborhood, and to obtain entomological indices. These indices were represented using statistical interpolation. To represent the occurrence of dengue in the Jaguaré neighborhood in 2006 and 2007, we used the Kernel ratio and to evaluate the relationship between dengue and the entomological indices, we used a generalized additive model in a spatial case-control design. Between September 2005 and August 2007, the occurrence of dengue in São José do Rio Preto was almost entirely caused by DENV3, and the monthly incidence rates presented high correlation coefficients with the monthly BI. In Jaguaré neighborhood, the entomological indices calculated by hectare were better predictors of the spatial distribution of dengue than the indices calculated by properties, but the pupae quantification did not show better prediction qualities than the indices based on the container positivity, in relation to the risk of dengue occurrence. The fact that the municipality's population had a high susceptibility to the serotype DENV3 before the development of this research, along with the almost total predominance of the occurrence of this serotype between 2005 and 2007, facilitated the analysis of the epidemiological situation of the disease and allowed us to connect it to the entomological indicators.

  3. PENGARUH "ICON IMPREGNATED CLOTH" TERHADAP POPULASI AEDES AEGYPTI DI DAERAH PERKOTAAN

    Directory of Open Access Journals (Sweden)

    Widiarti Widiarti

    2012-09-01

    Full Text Available An investigation to study the effect of ICON Impregnated Cloth on Aedes aegypty population in a semi wban area was conducted at Mapagan housing estate, Ungaran subdistrict, Semarang regency. Each house was provided with a cloth made from 65% polyester fibre and 35% combed cotton, 115 x 200 cm  in size. This cloth was impregnated with Icon at a dosage of 0,04 g a,i.lm and installed on the wall of dark, undisturbed area of bedroom, closest to mosquito breeding place. The entomological evaluation of indoor resting mosquitoes showed a significant reduction in the treated area during 2-3 months follow up whereas other parameters showed only a slight reduction, and was not significant compared to the control area.

  4. Phylogeography of Aedes aegypti (yellow fever mosquito) in South Florida: mtDNA evidence for human-aided dispersal.

    Science.gov (United States)

    Damal, Kavitha; Murrell, Ebony G; Juliano, Steven A; Conn, Jan E; Loew, Sabine S

    2013-09-01

    The invasive dengue vector Aedes aegypti has persisted for > 200 years in South Florida in the United States. We tested the hypotheses that Florida's landscape creates dispersal barriers and corridors and that long-distance human-aided dispersal structures populations of Ae. aegypti. We evaluated the phylogeography of 362 individuals from Florida's East and West Coasts with a 760-bp (418- and 342-bp fragments of ND5 and ND4, respectively) mitochondrial sequence. Populations from these two coasts were not significantly differentiated, suggesting that limited urbanization in central Florida is not a strong barrier to gene flow. Evidence for long-distance dispersal between Ft. Lauderdale and the West and Ft. Myers and the East indicates the importance of human-aided dispersal. West Coast populations showed no genetic differentiation, indicating that West Coast rivers and bays did not significantly impede gene flow. Phylogeographic analysis of haplotypes showed two distinct matrilines with no geographic patterns, suggesting multiple introductions or balancing selection.

  5. Prevention of dengue outbreaks through Aedes aegypti oviposition activity forecasting method.

    Science.gov (United States)

    Estallo, Elizabet L; Ludueña-Almeida, Francisco F; Visintin, Andrés M; Scavuzzo, Carlos M; Introini, María V; Zaidenberg, Mario; Almirón, Walter R

    2011-05-01

    Dengue has affected the north provinces of Argentina, mainly Salta province. The 2009 outbreak, with 5 deaths and >27,000 infected, was the most important, and the first to extend into the central area of the country. This article includes research on seasonal Aedes aegypti abundance variation in Orán City (Salta province), and determination of the date of mosquito population increase and an estimation of the date of maximum rate of increase as well as the intrinsic rate of natural increase (r), to detect the optimal time to apply vector control measures. Between September 2005 and March 2007, ovitraps were randomly distributed in the city to collect Ae. aegypti eggs. The variation observed in the number of collected eggs was described by fitting a third-degree polynomial by the least square method, allowing to determine the time when population increase began (week 1), after the temperate and dry season. Eggs were collected throughout the year, with the highest variation in abundance during the warm and rainy season, and the maximum value registered in February 2007. The rate of increase of the number of eggs laid per week peaked between weeks 9 and 10 after the beginning of the population increase (week 1). Week 1 depends on temperature, it occurs after getting over the thermal threshold and the needed accumulation of 160 degree-day is reached. Consequently, week 1 changes depending on temperature. Peak abundance of eggs during 2005-2006 was recorded on week 15 (after week 1); during 2006-2007, the peak was observed on week 22. Estimation of the intrinsic rate of natural increase (r) of Ae. aegypti is useful not only to determine optimal time to apply vector control measures with better cost-benefit, but also to add an insecticide control strategy against the vector to diminish the possibility of resistance.

  6. Aedes aegypti (L.) in Latin American and Caribbean region: With growing evidence for vector adaptation to climate change?

    Science.gov (United States)

    Chadee, Dave D; Martinez, Raymond

    2016-04-01

    Within Latin America and the Caribbean region the impact of climate change has been associated with the effects of rainfall and temperature on seasonal outbreaks of dengue but few studies have been conducted on the impacts of climate on the behaviour and ecology of Aedes aegypti mosquitoes.This study was conducted to examine the adaptive behaviours currently being employed by A. aegypti mosquitoes exposed to the force of climate change in LAC countries. The literature on the association between climate and dengue incidence is small and sometimes speculative. Few laboratory and field studies have identified research gaps. Laboratory and field experiments were designed and conducted to better understand the container preferences, climate-associated-adaptive behaviour, ecology and the effects of different temperatures and light regimens on the life history of A. aegypti mosquitoes. A. aegypti adaptive behaviours and changes in container preferences demonstrate how complex dengue transmission dynamics is, in different ecosystems. The use of underground drains and septic tanks represents a major behaviour change identified and compounds an already difficult task to control A. aegypti populations. A business as usual approach will exacerbate the problem and lead to more frequent outbreaks of dengue and chikungunya in LAC countries unless both area-wide and targeted vector control approaches are adopted. The current evidence and the results from proposed transdisciplinary research on dengue within different ecosystems will help guide the development of new vector control strategies and foster a better understanding of climate change impacts on vector-borne disease transmission.

  7. Larvicidal activity of leguminous seeds and grains against Aedes aegypti and Culex pipiens pallens.

    Science.gov (United States)

    Jang, Young-Su; Baek, Bong-Rae; Yang, Young-Cheol; Kim, Moo-Key; Lee, Hoi-Seon

    2002-09-01

    Larvicidal activity of methanol extracts of 26 leguminous seeds and 20 grains against early 4th-stage larvae of Aedes aegypti and Culex pipiens pallens was examined. At 200 ppm of the extracts from Cassia obtusifolia, Cassia tora, and Vicia tetrasperma, more than 90% mortality was obtained in larvae of Ae. aegypti and Cx. pipiens pallens. Extract of C. tora gave 86.7 and 100% mortality in the larvae of Ae. aegypti and Cx. pipiens pallens at 40 ppm but 59.2 and 78.3% mortality against larvae of Ae. aegypti and Cx. pipiens pallens at 20 ppm, respectively. At 40 ppm, extract of C. obtusifolia caused 51.4 and 68.5% mortality of the 4th-stage larvae of Ae. aegypti and Cx. pipiens pallens, respectively. Larvicidal activity of extract of C obtusifolia was significantly reduced when used at 20 ppm. Further studies of these plants as possible agents for mosquito control are warranted.

  8. The wMel strain of Wolbachia Reduces Transmission of Zika virus by Aedes aegypti

    Science.gov (United States)

    Aliota, Matthew T.; Peinado, Stephen A.; Velez, Ivan Dario; Osorio, Jorge E.

    2016-01-01

    Zika virus (ZIKV) is causing an explosive outbreak of febrile disease in the Americas. There are no effective antiviral therapies or licensed vaccines for this virus, and mosquito control strategies have not been adequate to contain the virus. A promising candidate for arbovirus control and prevention relies on the introduction of the intracellular bacterium Wolbachia into Aedes aegypti mosquitoes. This primarily has been proposed as a tool to control dengue virus (DENV) transmission; however, evidence suggests Wolbachia infections confer protection for Ae. aegypti against other arboviruses. At present, it is unknown whether or not ZIKV can infect, disseminate, and be transmitted by Wolbachia-infected Ae. aegypti. Using Ae. aegypti infected with the wMel strain of Wolbachia that are being released in Medellin, Colombia, we report that these mosquitoes have reduced vector competence for ZIKV. These results support the use of Wolbachia biocontrol as a multivalent strategy against Ae. aegypti-transmitted viruses. PMID:27364935

  9. Occurrence of Toxorhynchites guadeloupensis (Dyar and Knab) in oviposition trap of Aedes aegypti (L.) (Diptera: Culicidae)

    Energy Technology Data Exchange (ETDEWEB)

    Honorio, Nildimar A. [Instituto Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ (Brazil). Dept. de Entomologia. Lab. de Transmissores de Hematozoarios; Barros, Fabio S.M. de [Universidade Federal de Roraima (UFRR), Boa Vista, RR (Brazil). Centro de Ciencias Biologicas e da Saude. Nucleo Avancado de Vetores; Tsouris, Pantelis; Rosa-Freitas, Maria G. [Freitas and Tsouris Consultants, Spata-Attikis (Greece)]. E-mail: maria@freitas-tsouris.com

    2007-09-15

    Toxorhynchites guadeloupensis (Dyar and Knab), a poorly known mosquito species, was observed preying upon Aedes aegypti (L.) larvae, in an oviposition trap placed for routine dengue entomological surveillance, during 2003-2004 in the urban area of Boa Vista, Roraima, Brazil. This is the first report for Tx. guadeloupensis using Ae. aegypti oviposition traps as breeding places. This finding may have important consequences in the epidemiology and local dengue control since Ae. aegypti density is a basic variable in dengue prediction. Whether predation of Ae aegypti by Tx. guadeloupensis in the Amazon is of significance, is a question to be examined. Also, larval predation may be a cause for underestimation of the actual Ae aegypti numbers. Together these hypotheses need to be better investigated as they are directly related to dengue epidemiology, to the success of any outbreak prediction and surveillance program. (author)

  10. Potency of Gynura pseudochina (L. DC. Extract as Aedes aegypti (Linn. Larvacide

    Directory of Open Access Journals (Sweden)

    Rina Marina

    2012-06-01

    Full Text Available Aedes aegypti is the main vector of dengue virus transmission for dengue fever. The effective method to reduce dengue cases is to used a biological insecticides such as Gynura pseudochina at larval stage of A.aegypti. The research was performed to find out the Gy. pseudochina leafs extracts potential as an Ae. aegypti larvacide. This experimental research conducted with completely randomized design that used seven different concentrations (0%, 5%, 6%, 7%, 8%, 9%, 10%. As the result, there were mean differences in the Ae. aegypti larvae mortality at each concentration of Gy. pseudochina group, except for the concentration 5% to 6% and 9% to 10%. After 24 hours treatment, LC50 was gained at 6.271% extract concentration with a lower limit at 5.322% and upper limit at 7.005%. This result shows, Gy. pseudochina leafs extracts has proved to be a potential Ae. aegypti larvacide.

  11. Amostragem por larva-única na vigilância de Aedes aegypti Single-larva sampling for Aedes aegypti surveillance

    Directory of Open Access Journals (Sweden)

    José Eduardo Bracco

    1995-04-01

    Full Text Available Com a finalidade de testar a metodologia de amostragem por larva-única na vigilância entomológica do Aedes aegypti, foram pesquisados domicílios do Município de Araraquara, SP (Brasil. Nos criadouros que continham larvas de Aedes uma delas foi coletada. Como controle, após a coleta da larva-única, todas as larvas foram coletadas para identificação posterior. Esse processo foi repetido no laboratório. Dos 447 domicílios visitados, apenas 12 foram considerados positivos e 20 criadouros foram identificados; destes, 13 continham larvas de Aedes; 5, larvas de Aedes e Culex e 2, larvas de Culex. Os resultados mostram o reconhecimento correto, no campo, de todos os criadouros, evidenciando que o método poderia ser utilizado na vigilância entomológica de municípios sem infestação domiciliar ou infestados apenas com uma única espécie de Aedes.Buildings in Araraquara city, Southeastern Brazil, were searched during a year for the presence of Aedes larvae using single larva sampling in order to check the single-larva methodology. In those breeding places in wich Aedes larvae were found, one of them was collected. As a control, after the single larva had been collected, all the larvae from the breeding place were collected for later identification. This process was repeated in the laboratory. Of the 447 domiciles searched, 12 were considered positive and 20 breeding places were found. Of the breeding places, 13 contained Aedes larvae, 5 both Aedes and Culex larvae and 2 Culex larvae only. The results show that all the breeding places in the field were properly recognited showing the method may be used for Aedes surveillance in cities infested with one species only or without any domiciliary infestation.

  12. Comparative efficacy of existing surveillance tools for Aedes aegypti in Western Kenya.

    Science.gov (United States)

    Yalwala, Sancto; Clark, Jeffrey; Oullo, David; Ngonga, Daniel; Abuom, David; Wanja, Elizabeth; Bast, Joshua

    2015-12-01

    All traditional surveillance techniques for Aedes aegypti have been developed for the cosmopolitan domestic subspecies Ae. aegypti aegypti, and not the sylvatic subspecies, Ae. aegypti formosus. The predominant form in Western Kenya is Ae. aegypti formosus that is rarely associated with human habitations but is linked to transmission of sylvatic dengue virus strains. We compared five surveillance methods for their effectiveness in sampling Ae. aegypti formosus with the goal of determining a sustainable surveillance strategy in Kenya. The methods included larval and pupal surveys, oviposition trapping, BG-Sentinel trapping, resting boxes, and backpack aspirations. Larval and pupal surveys collected the highest number of Ae. aegypti formosus (51.3%), followed by oviposition traps (45.7%), BG-Sentinel traps (3.0%), and zero collected with either backpack aspiration or resting box collections. No Ae. aegypti formosus larvae or pupae were found indoors. The results indicate that oviposition traps and outdoor larval and pupal surveys were better surveillance methods for Ae. aegypti formosus in Western Kenya.

  13. Efficacy of thermal fog application of deltacide, a synergized mixture of pyrethroids, against Aedes aegypti, the vector of dengue.

    Science.gov (United States)

    Mani, T R; Arunachalam, N; Rajendran, R; Satyanarayana, K; Dash, A P

    2005-12-01

    We evaluated the efficacy of indoor and peridomestic thermal fog applications of deltacide, a synergized mixture of pyrethroids (S-bioallethrin 0.7% w/v, deltamethrin 0.5% w/v and piperonyl butoxide 8.9% w/v) against adult populations of Aedes aegypti in Chennai, Tamil Nadu, India. We bioassayed adult caged mosquitoes, counted indoor resting and human landing adult mosquitoes and assessed the percentage of potential breeding sites with Aedes larvae. The bioassay mortalities indicated that the knockdown and killing effect was greater when fogging was applied inside houses rather than around them. Peridomestic thermal fogging reduced the resting and biting populations by 76% and 40%, respectively for the 3 days after treatment, whereas indoor fogging suppressed adult populations for 5 days.

  14. Patient-based dengue virus surveillance in Aedes aegypti from Recife, Brazil

    Directory of Open Access Journals (Sweden)

    D.R.D. Guedes

    2010-06-01

    Full Text Available Background & objectives: Dengue is currently one of the most important arthropod-borne diseasesand may be caused by four different dengue virus serotypes (DENV-1 to DENV-4, transmittedmainly by Aedes aegypti (Diptera: Culicidae mosquitoes. With the lack of a dengue vaccine,vector control strategies constitute a crucial mode to prevent or reduce disease transmission. Inthis context, DENV detection in natural Ae. aegypti populations may serve as a potential additionaltool for early prediction systems of dengue outbreaks, leading to an intensification of vector controlmeasures, aimed at reducing disease transmission. In Brazil, this type of surveillance has beenperformed sporadically by a few groups and has not been incorporated as a routine activity incontrol programs. This study aimed at detecting DENV in natural Ae. aegypti from Recife,Pernambuco, to check the circulating serotypes and the occurrence of transovarial transmission inlocal mosquito populations.Methods: From January 2005 to June 2006, mosquitoes (adults and eggs were collected in houseswhere people with clinical suspicion of dengue infection lived at. RNA was extracted from pooledmosquitoes and RT-PCR was performed in these samples for detection of the four DENV serotypes.Results & conclusion: Out of 83 pools of adult mosquitoes collected in the field, nine were positivefor DENV: five for DENV-1, two for DENV-2 and two for DENV-3. From 139 pools of adultmosquitoes reared from collected eggs, there were 17 positive pools: three for DENV-1, 10 forDENV-2, and four for DENV-3. These results are discussed in the paper in regard to the localdengue epidemiological data. The conclusions clearly point to the informative power and sensitivityof DENV entomological surveillance and to the importance of including mosquito immature formsin this strategy.

  15. Human probing behavior of Aedes aegypti when infected with a life-shortening strain of Wolbachia.

    Directory of Open Access Journals (Sweden)

    Luciano A Moreira

    Full Text Available BACKGROUND: Mosquitoes are vectors of many serious pathogens in tropical and sub-tropical countries. Current control strategies almost entirely rely upon insecticides, which increasingly face the problems of high cost, increasing mosquito resistance and negative effects on non-target organisms. Alternative strategies include the proposed use of inherited life-shortening agents, such as the Wolbachia bacterium. By shortening mosquito vector lifespan, Wolbachia could potentially reduce the vectorial capacity of mosquito populations. We have recently been able to stably transinfect Aedes aegypti mosquitoes with the life-shortening Wolbachia strain wMelPop, and are assessing various aspects of its interaction with the mosquito host to determine its likely impact on pathogen transmission as well as its potential ability to invade A. aegypti populations. METHODOLOGY/PRINCIPAL FINDINGS: Here we have examined the probing behavior of Wolbachia-infected mosquitoes in an attempt to understand both the broader impact of Wolbachia infection on mosquito biology and, in particular, vectorial capacity. The probing behavior of wMelPop-infected mosquitoes at four adult ages was examined and compared to uninfected controls during video-recorded feeding trials on a human hand. Wolbachia-positive insects, from 15 days of age, showed a drastic increase in the time spent pre-probing and probing relative to uninfected controls. Two other important features for blood feeding, saliva volume and apyrase content of saliva, were also studied. CONCLUSIONS/SIGNIFICANCE: As A. aegypti infected with wMelPop age, they show increasing difficulty in completing the process of blood feeding effectively and efficiently. Wolbachia-infected mosquitoes on average produced smaller volumes of saliva that still contained the same amount of apyrase activity as uninfected mosquitoes. These effects on blood feeding behavior may reduce vectorial capacity and point to underlying physiological

  16. Physiological and morphological aspects of Aedes aegypti developing larvae: effects of the chitin synthesis inhibitor novaluron.

    Science.gov (United States)

    Farnesi, Luana C; Brito, José M; Linss, Jutta G; Pelajo-Machado, Marcelo; Valle, Denise; Rezende, Gustavo L

    2012-01-01

    Population control of the dengue vector mosquito, Aedes aegypti, is difficult due to many reasons, one being the development of resistance to neurotoxic insecticides employed. The biosynthesis of chitin, a major constituent of insect cuticle, is a novel target for population control. Novaluron is a benzoylphenylurea (BPU) that acts as a chitin synthesis inhibitor, already used against mosquitoes. However, information regarding BPU effects on immature mosquito stages and physiological parameters related with mosquito larval development are scarce. A set of physiological parameters were recorded in control developing larvae and novaluron was administered continuously to Ae. aegypti larvae, since early third instar. Larval instar period duration was recorded from third instar until pupation. Chitin content was measured during third and fourth instars. Fourth instars were processed histochemically at the mesothorax region, stained with hematoxylin and eosin (HE) for assessment of internal tissues, and labeled with WGA-FITC to reveal chitinized structures. In control larvae: i) there is a chitin content increase during both third and fourth instars where late third instars contain more chitin than early fourth instars; ii) thoracic organs and a continuous cuticle, closely associated with the underlying epidermis were observed; iii) chitin was continuously present throughout integument cuticle. Novaluron treatment inhibited adult emergence, induced immature mortality, altered adult sex ratio and caused delay in larval development. Moreover, novaluron: i) significantly affected chitin content during larval development; ii) induced a discontinuous and altered cuticle in some regions while epidermis was often thinner or missing; iii) rendered chitin cuticle presence discontinuous and less evident. In both control and novaluron larvae, chitin was present in the peritrophic matrix. This study showed quantitatively and qualitatively evidences of novaluron effects on Ae

  17. Physiological and morphological aspects of Aedes aegypti developing larvae: effects of the chitin synthesis inhibitor novaluron.

    Directory of Open Access Journals (Sweden)

    Luana C Farnesi

    Full Text Available Population control of the dengue vector mosquito, Aedes aegypti, is difficult due to many reasons, one being the development of resistance to neurotoxic insecticides employed. The biosynthesis of chitin, a major constituent of insect cuticle, is a novel target for population control. Novaluron is a benzoylphenylurea (BPU that acts as a chitin synthesis inhibitor, already used against mosquitoes. However, information regarding BPU effects on immature mosquito stages and physiological parameters related with mosquito larval development are scarce. A set of physiological parameters were recorded in control developing larvae and novaluron was administered continuously to Ae. aegypti larvae, since early third instar. Larval instar period duration was recorded from third instar until pupation. Chitin content was measured during third and fourth instars. Fourth instars were processed histochemically at the mesothorax region, stained with hematoxylin and eosin (HE for assessment of internal tissues, and labeled with WGA-FITC to reveal chitinized structures. In control larvae: i there is a chitin content increase during both third and fourth instars where late third instars contain more chitin than early fourth instars; ii thoracic organs and a continuous cuticle, closely associated with the underlying epidermis were observed; iii chitin was continuously present throughout integument cuticle. Novaluron treatment inhibited adult emergence, induced immature mortality, altered adult sex ratio and caused delay in larval development. Moreover, novaluron: i significantly affected chitin content during larval development; ii induced a discontinuous and altered cuticle in some regions while epidermis was often thinner or missing; iii rendered chitin cuticle presence discontinuous and less evident. In both control and novaluron larvae, chitin was present in the peritrophic matrix. This study showed quantitatively and qualitatively evidences of novaluron effects

  18. Crystal structures of Aedes aegypti alanine glyoxylate aminotransferase.

    Science.gov (United States)

    Han, Qian; Robinson, Howard; Gao, Yi Gui; Vogelaar, Nancy; Wilson, Scott R; Rizzi, Menico; Li, Jianyong

    2006-12-01

    Mosquitoes are unique in having evolved two alanine glyoxylate aminotransferases (AGTs). One is 3-hydroxykynurenine transaminase (HKT), which is primarily responsible for catalyzing the transamination of 3-hydroxykynurenine (3-HK) to xanthurenic acid (XA). Interestingly, XA is used by malaria parasites as a chemical trigger for their development within the mosquito. This 3-HK to XA conversion is considered the major mechanism mosquitoes use to detoxify the chemically reactive and potentially toxic 3-HK. The other AGT is a typical dipteran insect AGT and is specific for converting glyoxylic acid to glycine. Here we report the 1.75A high-resolution three-dimensional crystal structure of AGT from the mosquito Aedes aegypti (AeAGT) and structures of its complexes with reactants glyoxylic acid and alanine at 1.75 and 2.1A resolution, respectively. This is the first time that the three-dimensional crystal structures of an AGT with its amino acceptor, glyoxylic acid, and amino donor, alanine, have been determined. The protein is dimeric and adopts the type I-fold of pyridoxal 5-phosphate (PLP)-dependent aminotransferases. The PLP co-factor is covalently bound to the active site in the crystal structure, and its binding site is similar to those of other AGTs. The comparison of the AeAGT-glyoxylic acid structure with other AGT structures revealed that these glyoxylic acid binding residues are conserved in most AGTs. Comparison of the AeAGT-alanine structure with that of the Anopheles HKT-inhibitor complex suggests that a Ser-Asn-Phe motif in the latter may be responsible for the substrate specificity of HKT enzymes for 3-HK.

  19. Aedes aegypti salivary gland extract ameliorates experimental inflammatory bowel disease.

    Science.gov (United States)

    Sales-Campos, Helioswilton; de Souza, Patricia Reis; Basso, Paulo José; Ramos, Anderson Daniel; Nardini, Viviani; Chica, Javier Emílio Lazo; Capurro, Margareth Lara; Sá-Nunes, Anderson; de Barros Cardoso, Cristina Ribeiro

    2015-05-01

    Current therapies for inflammatory bowel disease (IBD) are not totally effective, resulting in persistent and recurrent disease for many patients. Mosquito saliva contains immunomodulatory molecules and therein could represent a novel therapy for IBD. Here, we demonstrated the therapeutic activity of salivary gland extract (SGE) of Aedes aegypti on dextran sulfate sodium (DSS)-induced colitis. For this purpose, C57BL/6 male mice were exposed to 3% DSS in drinking water and treated with SGE at early (days 3-5) or late (days 5-8) time points, followed by euthanasia on days 6 and 9, respectively, for sample collection. The results showed an improvement in clinical disease outcome and postmortem scores after SGE treatment, accompanied by the systemic reduction in peripheral blood lymphocytes, with no impact on bone marrow and mesenteric lymph nodes cellularity or macrophages toxicity. Moreover, a local diminishment of IFN-γ, TNF-α, IL-1β and IL-5 cytokines together with a reduction in the inflammatory area were observed in the colon of SGE-treated mice. Strikingly, early treatment with SGE led to mice protection from a late DSS re-challenging, as observed by decreased clinical and postmortem scores, besides reduced circulating lymphocytes, indicating that the mosquito saliva may present components able to prevent disease relapse. Indeed, high performance liquid chromatography (HPLC) experiments pointed to a major SGE pool fraction (F3) able to ameliorate disease signs. In conclusion, SGE and its components might represent a source of important immunomodulatory molecules with promising therapeutic activity for IBD.

  20. Insecticide susceptible/resistance status in Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus (Diptera : Culicidae) in Thailand during 2003-2005

    OpenAIRE

    Jirakanjanakit, N.; Rongnoparut, P.; Saengtharatip, S.; T Chareonviriyaphap; Duchn, S.; Bellec, Christian; Yoksan, S

    2007-01-01

    Susceptibility baselines and diagnostic doses of the technical grade insecticides deltamethrin, permethrin, fenitrothion, and propoxur were established based on Aedes aegypti (L.), Bora (French Polynesia), a reference susceptible strain. Field-collected Aedes mosquitoes from each part of Thailand were subjected to bioassay for their susceptibility to the diagnostic doses of each insecticide. Almost all Ae. aegypti collected were incipient resistant or resistant to deltamethrin and permethrin,...

  1. Patterns of geographic expansion of Aedes aegypti in the Peruvian Amazon.

    Directory of Open Access Journals (Sweden)

    Sarah Anne Guagliardo

    2014-08-01

    Full Text Available In the Peruvian Amazon, the dengue vector Aedes aegypti is abundant in large urban centers such as Iquitos. In recent years, it has also been found in a number of neighboring rural communities with similar climatic and socioeconomic conditions. To better understand Ae. aegypti spread, we compared characteristics of communities, houses, and containers in infested and uninfested communities.We conducted pupal-demographic surveys and deployed ovitraps in 34 communities surrounding the city of Iquitos. Communities surveyed were located along two transects: the Amazon River and a 95 km highway. We calculated entomological indices, mapped Ae. aegypti presence, and developed univariable and multivariable logistic regression models to predict Ae. aegypti presence at the community, household, or container level.Large communities closer to Iquitos were more likely to be infested with Ae. aegypti. Within infested communities, houses with Ae. aegypti had more passively-filled containers and were more often infested with other mosquito genera than houses without Ae. aegypti. For containers, large water tanks/drums and containers with solar exposure were more likely to be infested with Ae. aegypti. Maps of Ae. aegypti presence revealed a linear pattern of infestation along the highway, and a scattered pattern along the Amazon River. We also identified the geographical limit of Ae. aegypti expansion along the highway at 19.3 km south of Iquitos.In the Peruvian Amazon, Ae. aegypti geographic spread is driven by human transportation networks along rivers and highways. Our results suggest that urban development and oviposition site availability drive Ae. aegypti colonization along roads. Along rivers, boat traffic is likely to drive long-distance dispersal via unintentional transport of mosquitoes on boats.

  2. Ovicidal activity of Metarhizium brunneum (Mb F52) on dengue fever vector, Aedes aegypti

    Science.gov (United States)

    The ovicidal activity of Metarhizium brunneum F52 (Mb F52) grown from granules was evaluated against Aedes aegypti eggs over time. Survival of larvae from treated eggs was significantly less when compared with untreated eggs at 7, 10 and 14 days post treatment. Only 27 % of treated eggs produced vi...

  3. Mosquito activity of a series of chalcones and 2-pyrazoline derivatives against Aedes aegypti

    Science.gov (United States)

    Aedes aegypti (L.) (Diptera: Culicidae) transmit pathogens to humans, leading to diseases such as yellow fever and dengue fever. Repellents and insecticides are two common interventions to reduce mosquito biting and thereby disease risk. However, overreliance on a chemical or class of chemicals c...

  4. Toxicity of Cephalaria species and their individual constituents against Aedes aegypti

    Science.gov (United States)

    Crude acetone and ethanol extracts of the aerial parts of 21 Cephalaria species collected from Turkey were investigated for larvicidal and adult topical activity against Aedes aegypti. The ethanol extracts from C. elazigensis var. purpurea, C. anatolica, and C. elmaliensis possessed the highest mort...

  5. Wingbeat frequency-sweep and visual stimuli for trapping male Aedes aegypti

    Science.gov (United States)

    Combinations of female wingbeat acoustic cues and visual cues were evaluated to determine their potential for use in male Aedes aegypti (L.) traps in peridomestic environments. A modified Centers for Disease control (CDC) light trap using a 350-500 Hz frequency-sweep broadcast from a speaker as an a...

  6. Aerial ULV application of Dibrom against Aedes aegypti in simulated urban and rural residences

    Science.gov (United States)

    Reaching endophilic Aedes aegypti mosquito vectors of dengue located in human residences with aerial ULV pesticide applications is a prominent complication in operational wide area public health mosquito control activities. We conducted separate trials with a military C-130 fixed wing aircraft fitte...

  7. Transgenic expression of the Aedes aegypti CYP9J28 confers pyrethroid resistance in Drosophila melanogaster

    NARCIS (Netherlands)

    Pavlidi, N.; Monastirioti, M.; Daborn, P.; Van Leeuwen, T.; Vontas, J.

    2012-01-01

    The emergence and spread of insecticide resistance in mosquitoes, such as the major vector of dengue and yellow fever Aedes aegypti, is a major public health problem. A number of studies have been conducted to-date aiming to identify specific molecular changes that are associated with the phenotype,

  8. Synthesis and larvicidal and adult topical activity of some hydrazide-hydrazone derivatives against Aedes aegypti

    Science.gov (United States)

    A series of novel hydrazide-hydrazone derivatives were synthesized and evaluated for their larvicidal and adult topical activity against Aedes aegypti. The proposed structures of all the synthesized compounds were confirmed using elemental analysis, UV, IR, 1H-NMR, 13C-NMR and mass spectroscopy. Com...

  9. Indoor volatiles of primary school classrooms in Tapachula, Chiapas, Mexico, are attractants to Aedes aegypti females

    NARCIS (Netherlands)

    Estrada, J.L.T.; Delgado, S.M.R.; Takken, W.

    2013-01-01

    We determined the behavioral response of Aedes aegypti females to volatile compounds collected in indoor primary school classrooms. Volatiles were collected from classrooms from 0800 through 1030 h and 1130 through 1400 h in urban and rural schools in Tapachula, Chiapas, Mexico. Female responses to

  10. Infection of adult Aedes aegypti and Ae. albopictus mosquitoes with the entomopathogenic fungus Metarhizium anisopliae

    NARCIS (Netherlands)

    Scholte, E.J.; Takken, W.; Knols, B.G.J.

    2007-01-01

    This study describes a laboratory investigation on the use of the insect-pathogenic fungus Metarhizium anisopliae against adult Aedes aegypti and Ae. albopictus mosquitoes. At a dosage of 1.6 × 1010 conidia/m2, applied on material that served as a mosquito resting site, an average of 87.1 ± 2.65% of

  11. Ovicidal activity of Ageratina adenophora (Family: Asteraceae) against dengue vector, Aedes aegypti (Diptera: Culicidae)

    Science.gov (United States)

    To determine the ovicidal efficacy of different solvent leaf extracts of Ageratina adenophora against dengue vector Aedes aegypti . Methods: The ovicidal efficacy of the crude leaf extracts of A. adenophora with five different solvents (hexane, benzene, chloroform, ethyl acetate, methanol) and was ...

  12. VERTICAL TRANSMISSION OF DENGUE VIRUS IN Aedes aegypti COLLECTED IN PUERTO IGUAZÚ, MISIONES, ARGENTINA

    OpenAIRE

    Manuel Espinosa; Sergio Giamperetti; Marcelo Abril; Alfredo Seijo

    2014-01-01

    A finding of vertical transmission of the DEN 3 virus in male specimens of Aedes aegypti, collected in the 2009 fall-winter period, in Puerto Iguazú city, Misiones, Argentina, using the RT-PCR technique in a 15-specimen pool is reported. This result is analyzed within the context of the epidemiological situation of Argentina's northeast border.

  13. Different repellents for Aedes aegypti against blood-feeding and oviposition.

    Science.gov (United States)

    Afify, Ali; Horlacher, Bérénice; Roller, Johannes; Galizia, C Giovanni

    2014-01-01

    Methyl N,N-dimethyl anthranilate (MDA), ethyl anthranilate (EA) and butyl anthranilate (BA) were previously shown to repel Aedes aegypti mosquitoes from landing on human skin. However, the effect of these compounds on the orientation of flying mosquitoes in a choice situation and their effect on mosquito oviposition are not yet known. Here, we used a modified Y-tube olfactometer to test the effect of these compounds on the orientation of Aedes aegypti flying towards skin odor (human fingers), and we tested their effect on Aedes aegypti oviposition choice in a cage assay. In both behavioral situations we compared the effect to the well-documented repellent N,N-diethyl-meta-toluamide (DEET). MDA, EA, and DEET inhibited Aedes aegypti from flying towards skin odor while BA had no such effect. Conversely, MDA had no effect on oviposition while EA, BA, and DEET deterred oviposition, with the strongest effect observed for BA. Thus, we confirm that EA and DEET are generally repellent, while MDA is repellent only in a host-seeking context, and BA is deterrent only in an oviposition context. These compounds appear of potential use in mosquito control programs.

  14. Resistance Status of Aedes aegypti to Cypermethrin through Susceptibility Method in Cimahi City

    Directory of Open Access Journals (Sweden)

    Yuneu Yuliasih

    2011-06-01

    Full Text Available Vector control of dengue usually doing by using insecticides, whether by government or insecticides used in household. Using to much insecticides for long time can caused resistence of mosquito. This research aim to know resistance status of Aedes aegypti from endemic rural in district Cimahi to cypermethrin (synthetic pyretroid. Resistance status knowing by susceptibility methods (WHO standard with using impregnated paper that containing cypermethrin 0.2% and 0.4%. Aedes aegypti spread by it for 15, 30, 45 and 60 minutes. Number of mortality count by percentage death mosquito in each time and each concentration of cypermethrin. Data interpreted by WHO standard, which percentage of death mosquito <80% is resistance, between 80-98% is tolerance and 99-100% is susceptible. Aedes aegypti from endemic rural in district Cimahi showed resistance of cypermethrin 0.2% and 0.4%. This result showed that all mosquito still alive after 15 minutes spreading by cypermethrin 0.2%, and only 6.7% mosquito death in cypermethrin 0.4%. After 30 minutes, death mosquito counted 46.7% in cypermethrin 0.2% and 73.3% in 0.4%. 46.7% mosquito was death in 45 and 60 minutes spreading by cypermethrin 0.2% and 73.3% in 0.4%. The result showed resistance ratio (RR50 of mosquito is 4.6. Aedes aegypti from endemic rural in district Cimahi showed a resistance to cypermethrin 0.2% and 0.4%.

  15. Permethrin Induces Overexpression of Cytochrome c Oxidase Subunit 3 in Aedes aegypti

    Science.gov (United States)

    Using quantitative PCR (QPCR), the relative transcriptional levels of cytochrome c oxidase subunit 3 (CO3) were studied in Aedes aegypti (L.) in response to treatments with acetone, permethrin, or fipronil. The transcriptional levels of CO3 were significantly (p <0.05) higher in acetone-treated Ae. ...

  16. Vertical transmission of dengue virus in Aedes aegypti collected in Puerto Iguazú, Misiones, Argentina.

    Science.gov (United States)

    Espinosa, Manuel; Giamperetti, Sergio; Abril, Marcelo; Seijo, Alfredo

    2014-01-01

    A finding of vertical transmission of the DEN 3 virus in male specimens of Aedes aegypti, collected in the 2009 fall-winter period, in Puerto Iguazú city, Misiones, Argentina, using the RT-PCR technique in a 15-specimen pool is reported. This result is analyzed within the context of the epidemiological situation of Argentina's northeast border.

  17. Chikungunya Virus in Febrile Humans and Aedes aegypti Mosquitoes, Yucatan, Mexico

    Science.gov (United States)

    Cigarroa-Toledo, Nohemi; Blitvich, Bradley J.; Cetina-Trejo, Rosa C.; Talavera-Aguilar, Lourdes G.; Baak-Baak, Carlos M.; Torres-Chablé, Oswaldo M.; Hamid, Md-Nafiz; Friedberg, Iddo; González-Martinez, Pedro; Alonzo-Salomon, Gabriela; Rosado-Paredes, Elsy P.; Rivero-Cárdenas, Nubia; Reyes-Solis, Guadalupe C.; Farfan-Ale, Jose A.; Garcia-Rejon, Julian E.

    2016-01-01

    Chikungunya virus (CHIKV) was isolated from 12 febrile humans in Yucatan, Mexico, in 2015. One patient was co-infected with dengue virus type 1. Two additional CHIKV isolates were obtained from Aedes aegypti mosquitoes collected in the homes of patients. Phylogenetic analysis showed that the CHIKV isolates belong to the Asian lineage. PMID:27347760

  18. VERTICAL TRANSMISSION OF DENGUE VIRUS IN Aedes aegypti COLLECTED IN PUERTO IGUAZÚ, MISIONES, ARGENTINA

    Directory of Open Access Journals (Sweden)

    Manuel Espinosa

    2014-04-01

    Full Text Available A finding of vertical transmission of the DEN 3 virus in male specimens of Aedes aegypti, collected in the 2009 fall-winter period, in Puerto Iguazú city, Misiones, Argentina, using the RT-PCR technique in a 15-specimen pool is reported. This result is analyzed within the context of the epidemiological situation of Argentina's northeast border.

  19. Chikungunya Virus in Febrile Humans and Aedes aegypti Mosquitoes, Yucatan, Mexico.

    Science.gov (United States)

    Cigarroa-Toledo, Nohemi; Blitvich, Bradley J; Cetina-Trejo, Rosa C; Talavera-Aguilar, Lourdes G; Baak-Baak, Carlos M; Torres-Chablé, Oswaldo M; Hamid, Md-Nafiz; Friedberg, Iddo; González-Martinez, Pedro; Alonzo-Salomon, Gabriela; Rosado-Paredes, Elsy P; Rivero-Cárdenas, Nubia; Reyes-Solis, Guadalupe C; Farfan-Ale, Jose A; Garcia-Rejon, Julian E; Machain-Williams, Carlos

    2016-10-01

    Chikungunya virus (CHIKV) was isolated from 12 febrile humans in Yucatan, Mexico, in 2015. One patient was co-infected with dengue virus type 1. Two additional CHIKV isolates were obtained from Aedes aegypti mosquitoes collected in the homes of patients. Phylogenetic analysis showed that the CHIKV isolates belong to the Asian lineage.

  20. Wolbachia Infections in Aedes aegypti Differ Markedly in Their Response to Cyclical Heat Stress.

    Science.gov (United States)

    Ross, Perran A; Wiwatanaratanabutr, Itsanun; Axford, Jason K; White, Vanessa L; Endersby-Harshman, Nancy M; Hoffmann, Ary A

    2017-01-01

    Aedes aegypti mosquitoes infected with Wolbachia bacteria are currently being released for arbovirus suppression around the world. Their potential to invade populations and persist will depend on interactions with environmental conditions, particularly as larvae are often exposed to fluctuating and extreme temperatures in the field. We reared Ae. aegypti larvae infected with different types of Wolbachia (wMel, wAlbB and wMelPop-CLA) under diurnal cyclical temperatures. Rearing wMel and wMelPop-CLA-infected larvae at 26-37°C reduced the expression of cytoplasmic incompatibility, a reproductive manipulation induced by Wolbachia. We also observed a sharp reduction in the density of Wolbachia in adults. Furthermore, the wMel and wMelPop-CLA infections were not transmitted to the next generation when mosquitoes were exposed to 26-37°C across all life stages. In contrast, the wAlbB infection was maintained at a high density, exhibited complete cytoplasmic incompatibility, and was transmitted from mother to offspring with a high fidelity under this temperature cycle. These findings have implications for the potential success of Wolbachia interventions across different environments and highlight the importance of temperature control in rearing.

  1. Wolbachia Infections in Aedes aegypti Differ Markedly in Their Response to Cyclical Heat Stress

    Science.gov (United States)

    Wiwatanaratanabutr, Itsanun; White, Vanessa L.; Hoffmann, Ary A.

    2017-01-01

    Aedes aegypti mosquitoes infected with Wolbachia bacteria are currently being released for arbovirus suppression around the world. Their potential to invade populations and persist will depend on interactions with environmental conditions, particularly as larvae are often exposed to fluctuating and extreme temperatures in the field. We reared Ae. aegypti larvae infected with different types of Wolbachia (wMel, wAlbB and wMelPop-CLA) under diurnal cyclical temperatures. Rearing wMel and wMelPop-CLA-infected larvae at 26–37°C reduced the expression of cytoplasmic incompatibility, a reproductive manipulation induced by Wolbachia. We also observed a sharp reduction in the density of Wolbachia in adults. Furthermore, the wMel and wMelPop-CLA infections were not transmitted to the next generation when mosquitoes were exposed to 26–37°C across all life stages. In contrast, the wAlbB infection was maintained at a high density, exhibited complete cytoplasmic incompatibility, and was transmitted from mother to offspring with a high fidelity under this temperature cycle. These findings have implications for the potential success of Wolbachia interventions across different environments and highlight the importance of temperature control in rearing. PMID:28056065

  2. Limited dengue virus replication in field-collected Aedes aegypti mosquitoes infected with Wolbachia.

    Directory of Open Access Journals (Sweden)

    Francesca D Frentiu

    2014-02-01

    Full Text Available INTRODUCTION: Dengue is one of the most widespread mosquito-borne diseases in the world. The causative agent, dengue virus (DENV, is primarily transmitted by the mosquito Aedes aegypti, a species that has proved difficult to control using conventional methods. The discovery that A. aegypti transinfected with the wMel strain of Wolbachia showed limited DENV replication led to trial field releases of these mosquitoes in Cairns, Australia as a biocontrol strategy for the virus. METHODOLOGY/PRINCIPAL FINDINGS: Field collected wMel mosquitoes that were challenged with three DENV serotypes displayed limited rates of body infection, viral replication and dissemination to the head compared to uninfected controls. Rates of dengue infection, replication and dissemination in field wMel mosquitoes were similar to those observed in the original transinfected wMel line that had been maintained in the laboratory. We found that wMel was distributed in similar body tissues in field mosquitoes as in laboratory ones, but, at seven days following blood-feeding, wMel densities increased to a greater extent in field mosquitoes. CONCLUSIONS/SIGNIFICANCE: Our results indicate that virus-blocking is likely to persist in Wolbachia-infected mosquitoes after their release and establishment in wild populations, suggesting that Wolbachia biocontrol may be a successful strategy for reducing dengue transmission in the field.

  3. Gender-related family head schooling and Aedes aegypti larval breeding risk in Southern Mexico

    Directory of Open Access Journals (Sweden)

    Danis-Lozano Rogelio

    2002-01-01

    Full Text Available Objective. To investigate if family head genre-associated education is related to the risk of domiciliary Aedes aegypti larval breeding in a dengue-endemic village of Southern Mexico. Material and Methods. A family head was considered to have a low education level if he/she had not completed elementary school. To estimate larval breeding risk within each household, a three-category Maya index was constructed using a weighted estimation of controllable and disposable domestic water containers. A socio-economic index was constructed based on household construction characteristics. Results. Low-level education of either family head was associated to higher larval breeding risk. Households with low-educated mothers had more larval breeding containers. These associations persisted after adjusting for household socio-economic level. Conclusions. These results indicate that households with female family heads with low education levels accumulate more containers that favor Ae. aegypti breeding, and that education campaigns for dengue control should be addressed to this part of the population.

  4. Evaluation of novel insecticides for control of dengue vector Aedes aegypti (Diptera: Culicidae).

    Science.gov (United States)

    Paul, Ayesa; Harrington, Laura C; Scott, Jeffrey G

    2006-01-01

    Insecticides are one of the major tools for controlling vector populations and for reducing the transmission of human pathogens. However, there are few new insecticides being developed and marketed for vector control. Herein, we report on the toxicity of six novel insecticides to both adult and larval Aedes aegypti (L). and the toxicity of three novel insect growth regulators (IGRs) to larvae. Four insecticides were highly or moderately toxic to larvae with LC50 values of 16 (chlorfenapyr), 70 (hydramethylnon), 79 (indoxacarb), and 84 ng/ml (imidacloprid). Diafenthiuron and chlorfenapyr were moderately toxic to adult mosquitoes with LC50 values of 13 and 92 ng/cm2, respectively. Imidacloprid was strongly synergized by piperonyl butoxide (PBO) in Ae. aegypti adults, suggesting that neonicotinoids are intrinsically very toxic to adult mosquitoes (in the absence of detoxification). The effect of PBO on the toxicity in adults and larvae was considerably different, both in terms of the insecticides that were synergized (or antagonized for chlorfenapyr versus adults) and in terms of the degree of synergism. This result implies that the cytochrome P450s involved in metabolism of these insecticides are different between adults and larvae. Pyriproxyfen was confirmed as a potent IGR (EC50 of 0.0017 ng/ml) for mosquitoes, although tebufenozide lacked activity. The potential for use of these materials in mosquito control is discussed.

  5. Analisis faktor-faktor yang berhubungan dengan keberadaan jentik Aedes aegypti di Puskesmas III Denpasar Selatan

    Directory of Open Access Journals (Sweden)

    Ida Bagus Ekaputra

    2014-02-01

    Full Text Available The Community Health Center (CHC III of South Denpasar is one of the endemic areas of Dengue Hemorrhagic Fever (DHF in Denpasar, Bali Province. Dengue morbidity rate was high (>55 per 100,000 population, while the Percentage of Larvae Free Rate (PLFR was low (<95%. This study was aimed at discovering the relationship between community's knowledge, attitude, behavior of Aedes aegypti (Ae. aegypti larvae eradication and environmental health with the existence of Ae. aegypti larvae in the working area of CHC III of South Denpasar. A cross-sectional study was conducted with 147 households using systematic random sampling from a total of 5781 households. The respondents were the head of the family unit. The independent variables were knowledge, attitude, behavior and environmental health, while the dependent variable was the presence of Ae. aegypti mosquito larvae. The data were collected by using interview and observation in the respondent's house using instruments of questionnaire. The data were then analysed in stages covering the univariate, bivariate and multivariate analysis. Results indicated the PLFR was 87.1%. The variables related to the existence of larva were behavior (PR=17.89; 95%CI: 4.99-64.11 and environmental health (PR=7,08; 95%CI: 2.48-20.23. Multivariate analysis revealed that dominant variable was the behavior (PR=11,60, 95%CI: 2,98-45,13. Meanwhile, knowledge and attitude were not statistically associated with the existence of larvae. It can be concluded that the behavioral changes efforts that support of Ae. aegypti larvae eradication is still needed. It was recommended that the CHC needs to upscale health promotion efforts addressing the severity of DHF and prevention methods, cross-sector coordination, and involvement from healthcare providers as well as specially employed field workers in developing societies to eradicate mosquito breeding in order to increase the community's behavior of mosquito-larva eradication in order

  6. PENENTUAN STATUS RESISTENSI Aedes aegypti DENGAN METODE SUSCEPTIBILITY DI KOTA CIMAHI TERHADAP CYPERMETHRIN

    Directory of Open Access Journals (Sweden)

    Firda Yanuar Pradani

    2013-12-01

    Full Text Available ABSTRACT Background:  vector control of DBD usually doing by using insecticides, whether by government or insecticides used in household.  Using to much insecticides for long time can caused resistence of mosquito.  This research aim to know resistance status of Aedes aegypti from endemic rural in district Cimahi to cypermethrin (synthetic pyretroid. Methods:  resistance status knowing by susceptibility methods (WHO standard with usingimpregnated paper that containing cypermethrin 0,2% and 0,4%.  Aedes aegypti spread by it for 15, 30, 45 and 60 minutes.  Number of mortality count by percentage death mosquito in each time and each concentration of cypermethrin.  Data interpreted by WHO standard, which percentage ofdeath mosquito <80% is resistance, between 80-98% is tolerance and 99-100% is susceptible. Result: Aedes aegypti from endemic rural in district Cimahi showed resistance of cypermethrin 0,2% and 0,4%. This result showed that all mosquito still alive after 15 minutes spreading bycypermethrin 0,2%, and only 6,7% mosquito death in cypermethrin 0,4%.  After 30 minutes, death mosquito counted 46,7% in cypermethrin 0,2% and 73,3% in 0,4%.  46,7% mosquito was death in 45 and 60 minutes spreading by cypermethrin 0,2% and 73,3% in 0,4%.  The resultshowed resistance ratio (RR50 of mosquito is 4,6.Conclution: Aedes aegypti from endemic rural in distric Cimahi showed a resistance to cypermethrin 0,2% and 0,4%.Key words:  Aedes aegypti, cypermethrin, resistance, Cimahi district ABSTRAK Latar Belakang: pengendalian vektor DBD biasanya dilakukan dengan menggunakan insektisida, apakah oleh pemerintah atau insektisida yang digunakan dalam rumah tangga. penggunaan insektisida dalam jumlah yang banyak dan waktu yang lama dapat menyebabkan nyamuk resisten.Penelitian ini bertujuan untuk mengetahui status resistensi nyamuk Aedes aegypti dari daerah pedesaan endemik di kabupaten Cimahi terhadap cypermethrin (pyretroid sintetis. Metode : mengetahui

  7. Oviposition and flight orientation response of Aedes aegypti to certain aromatic aryl hydrazono esters.

    Science.gov (United States)

    Guha, Lopamudra; Seenivasagan, T; Bandyopadhyay, Prabal; Iqbal, S Thanvir; Sathe, Manisha; Sharma, Pratibha; Parashar, B D; Kaushik, M P

    2012-09-01

    Aedes aegypti is a day-biting, highly anthropophilic mosquito and a potential vector of dengue and chikungunya in India. A. aegypti is a container breeder, generally oviposit in the stored and fresh water bodies, and discarded containers near residential areas that provide suitable habitats for oviposition by gravid females. The diurnal activity and endophilic nature of these mosquitoes have increased the frequency of contact with human being. Assured blood meal from human host in an infested area leads to increased disease occurrence. Gravid mosquitoes can potentially be lured to attractant-treated traps and could subsequently be killed with insecticides or growth regulators. In this direction, oviposition by A. aegypti females to aryl hydrazono esters (AHE)-treated bowls at 10 ppm concentration was tested in dual choice experiment, and their orientation response to these ester compounds was studied in Y-tube olfactometer. Among the esters tested, AHE-2, AHE-11 and AHE-12 elicited increased egg deposition with oviposition activity indices (OAI) of +0.39, +0.24 and +0.48, respectively, compared to control; in contrast, AHE-8, AHE-9 and AHE-10 showed negative oviposition response with OAI of -0.46, -0.35 and -0.29, respectively, at 10 mg/L. In the Y-tube olfactometer bioassay, AHE-2 attracted 60 % females compared to control, while to the odour of AHE-11 and AHE-12, about 70 % of the females were trapped in treated chambers. In contrast, only 27-30 % of gravid females entered the chamber releasing AHE-8, AHE-9 and AHE-10 odour plumes, while 70 % entered control chamber, evincing a possible non-preference of treatment odours as well as interference with olfactory receptors. These compounds have the potential for application as oviposition stimulants or deterrents for surveillance and control of mosquito population using ovitraps.

  8. Electroantennogram, flight orientation, and oviposition responses of Aedes aegypti to the oviposition pheromone n-heneicosane.

    Science.gov (United States)

    Seenivasagan, T; Sharma, Kavita R; Sekhar, K; Ganesan, K; Prakash, Shri; Vijayaraghavan, R

    2009-03-01

    Oviposition pheromones specifically influence the females of many insects to lay eggs in the sites resulting in more egg deposition. A previous report describes the principal role of n-heneicosane (C(21)) identified and characterized from the larval cuticle of Aedes aegypti (L.) in attracting the gravid mosquitoes to oviposit in treated substrates among other chemical components. However, the means by which this compound is perceived by the females for oviposition has not been reported. In this study, we have recorded the peripheral olfactory responses from the antenna of Ae. aegypti from 10(-7) g to 10(-3) g doses of n-heneicosane. The EAG response of female mosquitoes increased in a dose-dependent manner with increasing stimulus strength. In the orientation assay using Y-maze olfactometer, female mosquitoes were attracted to the odor plume of 10(-6) g and 10(-5) g dose, while the higher dose of 10(-3) g plume enforced repellency to gravid mosquitoes. The response to oviposition substrates by gravid Ae. aegypti females differed across the range of concentrations of n-heneicosane under multiple choice conditions, larger number of eggs were deposited in 10 ppm (10 mg/l) solutions compared to lower and higher concentrations indicating 10 ppm was most attractive. Application of n-heneicosane at 10 ppm in breeding habitats will be a useful method to attract the gravid mosquitoes using ovitraps for surveillance and monitoring. The possible use of this compound in monitoring of mosquito population in endemic areas in relevance to integrated vector management strategies is discussed in detail.

  9. Temephos resistance in Aedes aegypti in Colombia compromises dengue vector control.

    Directory of Open Access Journals (Sweden)

    Nelson Grisales

    Full Text Available BACKGROUND: Control and prevention of dengue relies heavily on the application of insecticides to control dengue vector mosquitoes. In Colombia, application of the larvicide temephos to the aquatic breeding sites of Aedes aegypti is a key part of the dengue control strategy. Resistance to temephos was recently detected in the dengue-endemic city of Cucuta, leading to questions about its efficacy as a control tool. Here, we characterize the underlying mechanisms and estimate the operational impact of this resistance. METHODOLOGY/PRINCIPAL FINDINGS: Larval bioassays of Ae. aegypti larvae from Cucuta determined the temephos LC50 to be 0.066 ppm (95% CI 0.06-0.074, approximately 15× higher than the value obtained from a susceptible laboratory colony. The efficacy of the field dose of temephos at killing this resistant Cucuta population was greatly reduced, with mortality rates <80% two weeks after application and <50% after 4 weeks. Neither biochemical assays nor partial sequencing of the ace-1 gene implicated target site resistance as the primary resistance mechanism. Synergism assays and microarray analysis suggested that metabolic mechanisms were most likely responsible for the temephos resistance. Interestingly, although the greatest synergism was observed with the carboxylesterase inhibitor, DEF, the primary candidate genes from the microarray analysis, and confirmed by quantitative PCR, were cytochrome P450 oxidases, notably CYP6N12, CYP6F3 and CYP6M11. CONCLUSIONS/SIGNIFICANCE: In Colombia, resistance to temephos in Ae. aegypti compromises the duration of its effect as a vector control tool. Several candidate genes potentially responsible for metabolic resistance to temephos were identified. Given the limited number of insecticides that are approved for vector control, future chemical-based control strategies should take into account the mechanisms underlying the resistance to discern which insecticides would likely lead to the greatest

  10. Leaking Containers: Success and Failure in Controlling the Mosquito Aedes aegypti in Brazil.

    Science.gov (United States)

    Löwy, Ilana

    2017-04-01

    In 1958, the Pan American Health Organization declared that Brazil had successfully eradicated the mosquito Aedes aegypti, responsible for the transmission of yellow fever, dengue fever, chikungunya, and Zika virus. Yet in 2016 the Brazilian minister of health described the situation of dengue fever as "catastrophic." Discussing the recent epidemic of Zika virus, which amplified the crisis produced by the persistence of dengue fever, Brazil's president declared in January 2016 that "we are in the process of losing the war against the mosquito Aedes aegypti." I discuss the reasons for the failure to contain Aedes in Brazil and the consequences of this failure. A longue durée perspective favors a view of the Zika epidemic that does not present it as a health crisis to be contained with a technical solution alone but as a pathology that has the persistence of deeply entrenched structural problems and vulnerabilities.

  11. KERENTANAN LARVA AEDES AEGYPTI TERHADAP TEMEFOS DI TIGA KELURAHAN ENDEMIS DEMAM BERDARAH DENGUE KOTA SUKABUMI

    Directory of Open Access Journals (Sweden)

    Hubullah Fuadzy

    2015-04-01

    Full Text Available AbstractResistance of Aedes aegypti larvae against temephos influeneed the efforts of Dengue Fever vector control . The purpose of this study was to determine the status of susceptibility of Ae. aegypti larvae against temephos in three Dengue Fever endemic areas in Sukabumi. Design laboratory experiment with random design. approach group. Sample of Ae. aegypti larvae instar 3 and 4 had been taken from Subdistrict Baros, Sriwedari, Nangeleng. Susceptibility test, in performed according to WorldHealth Organization (WHO. Result of this study, according to WHO recommended concentration 0.02 ppm showed thatlarvae in Subdistrict Baros, Sriwedari, and Nangeleng still susteptible against temephos with Ae. aegypti larvae mortality of 100%. Effective concentration 50% (LC50dan 99% (LC99 in subdistrict Baros were 0.00169 and 0,01711; Sriwedari were 0.00125 and 0.00313: Nanggeleng were 0.00214 and 0.00762 (ppm.respectinely Higher resistance ratio occur to Subdistrict Baros with level resistance of RR99 7.34. In Conclution, temephos still effective to beused as larvicide for vector control in those three endemic of Dengue Fever in Sukabumi.Keywords : Susceptibility, Aedes aegypty, Temephos, SukabumiAbstrakResistensi larva Aedes aegypti terhadap temefos dapat mempengaruhi upaya pengendalian vektor Demam Berdarah Dengue. Tujuan penelitian adalah menentukan status kerentanan larva Ae. aegypti terhadap temefos di tiga Kelurahan endemis Demam Berdarah Dengue Kota Sukabumi. Jenis penelitian adalah eksperimental laboratorium dengan pendekatan rancangan acak kelompok. Sampel adalah larva Ae. aegypti instar 3 dan 4 dari Kelurahan Baros, Sriwedari, dan Nangeleng. Uji kerentanan dilakukan berdasarkan metode Bioassay WHO. Hasil penelitian berdasarkan katagori konsentrasi yang dianjurkan WHO sebesar 0,02 ppm menunjukkan bahwa Kelurahan Baros, Sriwedari, dan Nangeleng masih rentan terhadap temefos dengan kematian larva Ae. aegypti 100%. Konsentrasi efektif 50% (LC50 dan

  12. Multiple factors contribute to anautogenous reproduction by the mosquito Aedes aegypti.

    Science.gov (United States)

    Gulia-Nuss, Monika; Elliot, Anne; Brown, Mark R; Strand, Michael R

    2015-11-01

    Aedes aegypti is an anautogenous mosquito that must blood feed on a vertebrate host to produce and lay a clutch of eggs. The rockpool mosquito, Georgecraigius atropalpus, is related to A. aegypti but is a facultatively autogenous species that produces its first clutch of eggs shortly after emerging without blood feeding. Consumption of a blood meal by A. aegypti triggers the release of ovary ecdysteroidogenic hormone (OEH) and insulin-like peptide 3 (ILP3) from the brain, which stimulate egg formation. OEH and ILP3 also stimulate egg formation in G. atropalpus but are released at eclosion independently of blood feeding. These results collectively suggest that blood meal dependent release of OEH and ILP3 is one factor that prevents A. aegypti from reproducing autogenously. Here, we examined two other factors that potentially inhibit autogeny in A. aegypti: teneral nutrient reserves and the ability of OEH and ILP3 to stimulate egg formation in the absence of blood feeding. Measures of nutrient reserves showed that newly emerged A. aegypti females had similar wet weights but significantly lower protein and glycogen reserves than G. atropalpus females when larvae were reared under identical conditions. OEH stimulated non-blood fed A. aegypti females to produce ecdysteroid hormone and package yolk into oocytes more strongly than ILP3. OEH also reduced host seeking and blood feeding behavior, yet females produced few mature eggs. Overall, our results indicate that multiple factors prevent A. aegypti from reproducing autogenously.

  13. The effects of plant essential oils on escape response and mortality rate of Aedes aegypti and Anopheles minimus.

    Science.gov (United States)

    Sathantriphop, Sunaiyana; Achee, Nicole L; Sanguanpong, Unchalee; Chareonviriyaphap, Theeraphap

    2015-12-01

    The High Throughput Screening System (HITSS) has been applied in insecticide behavioral response studies with various mosquito species. In general, chemical or natural compounds can produce a range of insect responses: contact irritancy, spatial repellency, knock-down, and toxicity. This study characterized these actions in essential oils derived from citronella, hairy basil, catnip, and vetiver in comparison to DEET and picaridin against Aedes aegypti and Anopheles minimus mosquito populations. Results indicated the two mosquito species exhibited significantly different (P0.05) against Ae. aegypti. Spatial repellency responses were elicited in both mosquito species when exposed to all compounds, but the strength of the repellent response was dependent on compound and concentration. Data show that higher test concentrations had greatest toxic effects on both mosquito populations, but vetiver had no toxic effect on Ae. aegypti and picaridin did not elicit toxicity in either Ae. aegypti or An. minimus at any test concentration. Ultimately, this study demonstrates the ability of the HITSS assay to guide selection of effective plant essential oils for repelling, irritating, and killing mosquitoes.

  14. A virulent Wolbachia infection decreases the viability of the dengue vector Aedes aegypti during periods of embryonic quiescence.

    Directory of Open Access Journals (Sweden)

    Conor J McMeniman

    Full Text Available A new approach for dengue control has been proposed that relies on life-shortening strains of the obligate intracellular bacterium Wolbachia pipientis to modify mosquito population age structure and reduce pathogen transmission. Previously we reported the stable transinfection of the major dengue vector Aedes aegypti with a life-shortening Wolbachia strain (wMelPop-CLA from the vinegar fly Drosophila melanogaster. Here, we report a further characterization of the phenotypic effects of this virulent Wolbachia infection on several life-history traits of Ae. aegypti. Minor costs of wMelPop-CLA infection for pre-imaginal survivorship, development and adult size were found. However, we discovered that the wMelPop-CLA infection dramatically decreased the viability of desiccated Ae. aegypti eggs over time. Similarly, the reproductive fitness of wMelPop-CLA infected Ae. aegypti females declined with age. These results reveal a general pattern associated with wMelPop-CLA induced pathogenesis in this mosquito species, where host fitness costs increase during aging of both immature and adult life-history stages. In addition to influencing the invasion dynamics of this particular Wolbachia strain, we suggest that the negative impact of wMelPop-CLA on embryonic quiescence may have applied utility as a tool to reduce mosquito population size in regions with pronounced dry seasons or in regions that experience cool winters.

  15. Leaf extracts of Melia azedarach Linnaeus (Sapindales: Meliaceae) act as larvicide against Aedes aegypti (Linnaeus, 1762) (Diptera: Culicidae) Extratos de folhas de Melia azedarach Linnaeus (Sapindales: Meliaceae) atuam como larvicida de Aedes aegypti (Linnaeus, 1762) (Diptera: Culicidae)

    OpenAIRE

    2008-01-01

    The objective of this study was to compare the larvicidal effect of hydroethanolic extracts of fresh and dry leaves of Melia azedarach Linnaeus (Sapindales: Meliaceae) on Aedes aegypti (Linnaeus, 1762) (Diptera: Culicidae). All the extracts evaluated induced mortality among the third and fourth instar larvae of Aedes aegypti after 24 and 48 hours of exposure to the products. Although previous studies had demonstrated the action of seeds and fruits of Melia azedarach against the larvae of diff...

  16. Reported Distribution of Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus in the United States, 1995-2016 (Diptera: Culicidae).

    Science.gov (United States)

    Hahn, Micah B; Eisen, Rebecca J; Eisen, Lars; Boegler, Karen A; Moore, Chester G; McAllister, Janet; Savage, Harry M; Mutebi, John-Paul

    2016-06-09

    Aedes (Stegomyia) aegypti (L.) and Aedes (Stegomyia) albopictus (Skuse) transmit arboviruses that are increasing threats to human health in the Americas, particularly dengue, chikungunya, and Zika viruses. Epidemics of the associated arboviral diseases have been limited to South and Central America, Mexico, and the Caribbean in the Western Hemisphere, with only minor localized outbreaks in the United States. Nevertheless, accurate and up-to-date information for the geographical ranges of Ae. aegypti and Ae. albopictus in the United States is urgently needed to guide surveillance and enhance control capacity for these mosquitoes. We compiled county records for presence of Ae. aegypti and Ae. albopictus in the United States from 1995-2016, presented here in map format. Records were derived from the Centers for Disease Control and Prevention ArboNET database, VectorMap, the published literature, and a survey of mosquito control agencies, university researchers, and state and local health departments. Between January 1995 and March 2016, 183 counties from 26 states and the District of Columbia reported occurrence of Ae. aegypti, and 1,241 counties from 40 states and the District of Columbia reported occurrence of Ae. albopictus During the same time period, Ae. aegypti was collected in 3 or more years from 94 counties from 14 states and the District of Columbia, and Ae. albopictus was collected during 3 or more years from 514 counties in 34 states and the District of Columbia. Our findings underscore the need for systematic surveillance of Ae. aegypti and Ae. albopictus in the United States and delineate areas with risk for the transmission of these introduced arboviruses.

  17. Mapping Past, Present, and Future Climatic Suitability for Invasive Aedes Aegypti and Aedes Albopictus in the United States: A Process-Based Modeling Approach Using CMIP5 Downscaled Climate Scenarios

    Science.gov (United States)

    Donnelly, Marisa Anne Pella; Marcantonio, Matteo; Melton, Forrest S.; Barker, Christopher M.

    2016-01-01

    The ongoing spread of the mosquitoes, Aedes aegypti and Aedes albopictus, in the continental United States leaves new areas at risk for local transmission of dengue, chikungunya, and Zika viruses. All three viruses have caused major disease outbreaks in the Americas with infected travelers returning regularly to the U.S. The expanding range of these mosquitoes raises questions about whether recent spread has been enabled by climate change or other anthropogenic influences. In this analysis, we used downscaled climate scenarios from the NASA Earth Exchange Global Daily Downscaled Projections (NEX GDDP) dataset to model Ae. aegypti and Ae. albopictus population growth rates across the United States. We used a stage-structured matrix population model to understand past and present climatic suitability for these vectors, and to project future suitability under CMIP5 climate change scenarios. Our results indicate that much of the southern U.S. is suitable for both Ae. aegypti and Ae. albopictus year-round. In addition, a large proportion of the U.S. is seasonally suitable for mosquito population growth, creating the potential for periodic incursions into new areas. Changes in climatic suitability in recent decades for Ae. aegypti and Ae. albopictus have occurred already in many regions of the U.S., and model projections of future climate suggest that climate change will continue to reshape the range of Ae. aegypti and Ae. albopictus in the U.S., and potentially the risk of the viruses they transmit.

  18. Leaf extracts of Melia azedarach Linnaeus (Sapindales: Meliaceae) act as larvicide against Aedes aegypti (Linnaeus, 1762) (Diptera: Culicidae)

    OpenAIRE

    2008-01-01

    The objective of this study was to compare the larvicidal effect of hydroethanolic extracts of fresh and dry leaves of Melia azedarach Linnaeus (Sapindales: Meliaceae) on Aedes aegypti (Linnaeus, 1762) (Diptera: Culicidae). All the extracts evaluated induced mortality among the third and fourth instar larvae of Aedes aegypti after 24 and 48 hours of exposure to the products. Although previous studies had demonstrated the action of seeds and fruits of Melia azedarach against the larvae of diff...

  19. PATOGENITAS CENDAWAN BEAUVERIA BASSIANA TERHADAP LARVA NYAMUK AEDES AEGYPTI DAN CULEX PIPIENS QUINQUEFASCIATUS DI LABORATORIUM

    Directory of Open Access Journals (Sweden)

    Amrul Munif

    2012-09-01

    Full Text Available The capability of Beauveria bassiana fungus to kill mosquito larvae was challenged with Aedes aegypti and Culex pipiens quinquefasciatus in a study conducted at the entomology laboratory of the Health Ecology Research Centre. Cx. p. quinquefeasciatus was more sensitive compared to Ae. aegypti to the B. bassiana strain from Sukamandi (West Java, which is probably due to the mosquitoes behaviour and conidiospore larvacidal effect. Conidia dust application, with a dosage of 2.2 mglliter, to water surface, within 48 hours was able to kill almost all the Cx. p. quinquefasciatus. However a dosage of 4 mglliter was required to kill all the Ae.aegypti. And a dosage of 1.3 mg conidiospore I liter is able to kill 50% Cx. p. quinquefasciatus. It seems that B. bassiana has greater capability to eradicate Cx. p. quinquefasciatus compared to Ae. aegypti

  20. Oral Susceptibility to Yellow Fever Virus of Aedes aegypti from Brazil

    Directory of Open Access Journals (Sweden)

    Lourenço-de-Oliveira Ricardo

    2002-01-01

    Full Text Available The oral susceptibility to yellow fever virus was evaluated in 23 Aedes aegypti samples from Brazil. Six Ae. aegypti samples from Africa, America and Asia were also tested for comparison. Mosquito samples from Asia showed the highest infection rates. Infection rates for the Brazilian Ae. aegypti reached 48.6%, but were under 13% in 60% of sample tested. We concluded that although the low infection rates estimated for some Brazilian mosquito samples may not favor the establishment of urban cycle of yellow fever in some parts of the country, the founding of Ae. aegypti of noteworthy susceptibility to the virus in cities located in endemic and transition areas of sylvatic yellow fever, do pose a threat of the re-emergence of the urban transmission of the disease in Brazil.

  1. Assessment of Local Mosquito Species Incriminates Aedes aegypti as the Potential Vector of Zika Virus in Australia

    Science.gov (United States)

    Hall-Mendelin, Sonja; Pyke, Alyssa T.; Moore, Peter R.; Mackay, Ian M.; McMahon, Jamie L.; Ritchie, Scott A.; Taylor, Carmel T.; Moore, Frederick A.J.; van den Hurk, Andrew F.

    2016-01-01

    Background Within the last 10 years Zika virus (ZIKV) has caused unprecedented epidemics of human disease in the nations and territories of the western Pacific and South America, and continues to escalate in both endemic and non-endemic regions. We evaluated the vector competence of Australian mosquitoes for ZIKV to assess their potential role in virus transmission. Methodology/Principal Findings Mosquitoes were exposed to infectious blood meals containing the prototype African ZIKV strain. After 14 days incubation at 28°C and high relative humidity, infection, dissemination and transmission rates were assessed. Infection in Culex annulirostris and Cx. sitiens could not be detected. 8% of Cx. quinquefasciatus were infected, but the virus did not disseminate in this species. Despite having infection rates > 50%, Aedes notoscriptus and Ae. vigilax did not transmit ZIKV. In contrast, Ae. aegypti had infection and transmission rates of 57% and 27%, respectively. In susceptibility trials, the virus dose required to infect 50% (ID50) of Ae. aegypti was106.4 tissue culture infectious dose50 (TCID50)/mL. Additionally, a threshold viral load within the mosquito of at least 105.1 TCID50 equivalents/mL had to be reached before virus transmission occurred. Conclusions/Significance We confirmed Ae. aegypti to be the most likely mosquito vector of ZIKV in Australia, although the restricted distribution of this species will limit the receptive zone to northern Queensland where this species occurs. Importantly, the role in ZIKV transmission of Culex and other Aedes spp. tested will be negligible. Despite being the implicated vector, the relatively high ID50 and need for a high titer disseminated infection in Ae. aegypti suggest that high mosquito population densities will be required to facilitate epidemic ZIKV transmission among the currently immunologically naïve human population in Australia. PMID:27643685

  2. Vector competence in West African Aedes aegypti Is Flavivirus species and genotype dependent.

    Directory of Open Access Journals (Sweden)

    Laura B Dickson

    2014-10-01

    Full Text Available Vector competence of Aedes aegypti mosquitoes is a quantitative genetic trait that varies among geographic locations and among different flavivirus species and genotypes within species. The subspecies Ae. aegypti formosus, found mostly in sub-Saharan Africa, is considered to be refractory to both dengue (DENV and yellow fever viruses (YFV compared to the more globally distributed Ae. aegypti aegypti. Within Senegal, vector competence varies with collection site and DENV-2 viral isolate, but knowledge about the interaction of West African Ae. aegypti with different flaviviruses is lacking. The current study utilizes low passage isolates of dengue-2 (DENV-2-75505 sylvatic genotype and yellow fever (YFV BA-55 -West African Genotype I, or YFV DAK 1279-West African Genotype II from West Africa and field derived Ae. aegypti collected throughout Senegal to determine whether vector competence is flavivirus or virus genotype dependent.Eight collections of 20-30 mosquitoes from different sites were fed a bloodmeal containing either DENV-2 or either isolate of YFV. Midgut and disseminated infection phenotypes were determined 14 days post infection. Collections varied significantly in the rate and intensity of midgut and disseminated infection among the three viruses.Overall, vector competence was dependent upon both viral and vector strains. Importantly, contrary to previous studies, sylvatic collections of Ae. aegypti showed high levels of disseminated infection for local isolates of both DENV-2 and YFV.

  3. SUSCEPTIBILITY OF DENGUE HAEMORRHAGIC FEVER VECTOR (Aedes aegypti AGAINST ORGANOPHOSPHATE INSECTICIDES (MALATHION AND TEMEPHOS IN SOME DISTRICTS OF YOGYAKARTA AND CENTRAL JAVA PROVINCES

    Directory of Open Access Journals (Sweden)

    Damar Tri Boewono

    2012-11-01

    Full Text Available SUSCEPTIBILITY OF DENGUE HAEMORRHAGIC FEVER VECTOR (Aedes aegypti AGAINST ORGANOPHOSPHATE INSECTICIDES (MALATHION AND TEMEPHOS IN SOME DISTRICTS OF YOGYAKARTA AND CENTRAL JAVA PROVINCES

  4. Estudo de áreas e depósitos preferenciais de Aedes albopictus (Skuse, 1894 e Aedes aegypti (Linnaeus, 1762 no Município de Paracambi – Rio de Janeiro, Brasil

    Directory of Open Access Journals (Sweden)

    Vanessa Aparecida Ribeiro Canela Soares

    2008-12-01

    Full Text Available Resumo. A presença de Aedes albopictus e Aedes aegypti em área urbana representa um risco potencial do inter-relacionamento dessa espécie de mosquito com a população. Este estudo teve como objetivo avaliar a presença do Ae. albopictus (S. e de Ae. aegypti (L. no município de Paracambi, Estado do Rio de Janeiro, Brasil. As amostras foram obtidas através de coletas das formas imaturas em depósitos e/ou criadouros (caixas d’água, cisternas, tanques, ocos de árvores, lixo, pneus, etc em três áreas do município (urbana, rural e área de transição no período de 12 meses. Os resultados mostraram que Ae. albopictus distribuiu-se igualmente nas áreas urbanas e rurais. A área urbana e a área de transição apresentaram uma maior positividade para Ae. aegypti. Os produtos de descartes, caracterizados por depósito de letra I = outros (artificiais especiais, foram os preferenciais para ambas as espécies de mosquito. Study of the preferred areas and deposits of Aedes albopictus (Skuse, 1894 and Aedes aegypti (Linnaeus, 1762 in the Paracambi city, Rio de Janeiro, Brazil. Abstract. The presence of Aedes albopictus (S. and Aedes aegypti (L. in urban areas represents a potential risk of inter-relationship of this species of mosquito with the population. This study aimed to evaluate the presence of Ae. albopictus and Ae. aegypti in the Paracambi city, Rio de Janeiro State, Brazil. Samples were obtained from collections of immature forms in deposits (water tanks, cisterns, tanks, hollow trees, trash, tires, etc. in three areas of the city (urban, rural and the transition area in the last 12 months. The results showed that Ae. albopictus is also distributed in urban and rural areas. The urban area and the area of transition had a higher positive for Ae. aegypti. They refused material that is the distinguished mark of letter I = other (artificial special deposit has been preferred for both species of mosquito.

  5. Susceptibility status of Aedes aegypti (L.) (Diptera: Culicidae) to temephos from three districts of Tamil Nadu, India

    OpenAIRE

    MUTHUSAMY, R; M S Shivakumar

    2015-01-01

    Background & objectives: Dengue is the most rapidly expanding arboviral disease in India. Aedes aegypti is the primary vector of dengue fever. Chemical insecticides have long been used in the vector control programmes along with other control measures. However, continuous use of insecticides targeting Ae. aegypti may lead to development of insecticide resistance. Though resistance in Ae. aegypti has been reported, the mutation in ace-1 gene associated with temephos resistance is not reported ...

  6. Dengue vector dynamics (Aedes aegypti influenced by climate and social factors in Ecuador: implications for targeted control.

    Directory of Open Access Journals (Sweden)

    Anna M Stewart Ibarra

    Full Text Available BACKGROUND: Dengue fever, a mosquito-borne viral disease, is now the fastest spreading tropical disease globally. Previous studies indicate that climate and human behavior interact to influence dengue virus and vector (Aedes aegypti population dynamics; however, the relative effects of these variables depends on local ecology and social context. We investigated the roles of climate and socio-ecological factors on Ae. aegypti population dynamics in Machala, a city in southern coastal Ecuador where dengue is hyper-endemic. METHODS/PRINCIPAL FINDINGS: We studied two proximate urban localities where we monitored weekly Ae. aegypti oviposition activity (Nov. 2010-June 2011, conducted seasonal pupal surveys, and surveyed household to identify dengue risk factors. The results of this study provide evidence that Ae. aegypti population dynamics are influenced by social risk factors that vary by season and lagged climate variables that vary by locality. Best-fit models to predict the presence of Ae. aegypti pupae included parameters for household water storage practices, access to piped water, the number of households per property, condition of the house and patio, and knowledge and perceptions of dengue. Rainfall and minimum temperature were significant predictors of oviposition activity, although the effect of rainfall varied by locality due to differences in types of water storage containers. CONCLUSIONS: These results indicate the potential to reduce the burden of dengue in this region by conducting focused vector control interventions that target high-risk households and containers in each season and by developing predictive models using climate and non-climate information. These findings provide the region's public health sector with key information for conducting time and location-specific vector control campaigns, and highlight the importance of local socio-ecological studies to understand dengue dynamics. See Text S1 for an executive summary in

  7. Dengue Vector Dynamics (Aedes aegypti) Influenced by Climate and Social Factors in Ecuador: Implications for Targeted Control

    Science.gov (United States)

    Stewart Ibarra, Anna M.; Ryan, Sadie J.; Beltrán, Efrain; Mejía, Raúl; Silva, Mercy; Muñoz, Ángel

    2013-01-01

    Background Dengue fever, a mosquito-borne viral disease, is now the fastest spreading tropical disease globally. Previous studies indicate that climate and human behavior interact to influence dengue virus and vector (Aedes aegypti) population dynamics; however, the relative effects of these variables depends on local ecology and social context. We investigated the roles of climate and socio-ecological factors on Ae. aegypti population dynamics in Machala, a city in southern coastal Ecuador where dengue is hyper-endemic. Methods/Principal findings We studied two proximate urban localities where we monitored weekly Ae. aegypti oviposition activity (Nov. 2010-June 2011), conducted seasonal pupal surveys, and surveyed household to identify dengue risk factors. The results of this study provide evidence that Ae. aegypti population dynamics are influenced by social risk factors that vary by season and lagged climate variables that vary by locality. Best-fit models to predict the presence of Ae. aegypti pupae included parameters for household water storage practices, access to piped water, the number of households per property, condition of the house and patio, and knowledge and perceptions of dengue. Rainfall and minimum temperature were significant predictors of oviposition activity, although the effect of rainfall varied by locality due to differences in types of water storage containers. Conclusions These results indicate the potential to reduce the burden of dengue in this region by conducting focused vector control interventions that target high-risk households and containers in each season and by developing predictive models using climate and non-climate information. These findings provide the region's public health sector with key information for conducting time and location-specific vector control campaigns, and highlight the importance of local socio-ecological studies to understand dengue dynamics. See Text S1 for an executive summary in Spanish. PMID:24324542

  8. Temporal distribution of Aedes aegypti in different districts of Rio de Janeiro, Brazil, measured by two types of traps.

    Science.gov (United States)

    Honório, N A; Codeço, C T; Alves, F C; Magalhães, M A F M; Lourenço-De-Oliveira, R

    2009-09-01

    Dengue dynamics in Rio de Janeiro, Brazil, as in many dengue-endemic regions of the world, is seasonal, with peaks during the wet-hot months. This temporal pattern is generally attributed to the dynamics of its mosquito vector Aedes aegypti (L.). The objectives of this study were to characterize the temporal pattern of Ae. aegypti population dynamics in three neighborhoods of Rio de Janeiro and its association with local meteorological variables; and to compare positivity and density indices obtained with ovitraps and MosquiTraps. The three neighborhoods are distinct in vegetation coverage, sanitation, water supply, and urbanization. Mosquito sampling was carried out weekly, from September 2006 to March 2008, a period during which large dengue epidemics occurred in the city. Our results show peaks of oviposition in early summer 2007 and late summer 2008, detected by both traps. The ovitrap provided a more sensitive index than MosquiTrap. The MosquiTrap detection threshold showed high variation among areas, corresponding to a mean egg density of approximately 25-52 eggs per ovitrap. Both temperature and rainfall were significantly related to Ae. aegypti indices at a short (1 wk) time lag. Our results suggest that mean weekly temperature above 22-24 degrees C is strongly associated with high Ae. aegypti abundance and consequently with an increased risk of dengue transmission. Understanding the effects of meteorological variables on Ae. aegypti population dynamics will help to target control measures at the times when vector populations are greatest, contributing to the development of climate-based control and surveillance measures for dengue fever in a hyperendemic area.

  9. Human and environmental factors affecting Aedes aegypti distribution in an arid urban environment.

    Science.gov (United States)

    Walker, Kathleen R; Joy, Teresa K; Ellers-Kirk, Christa; Ramberg, Frank B

    2011-06-01

    Aedes aegypti has reappeared in urban communities in the southwestern U.S.A. in the 1990s after a 40-year absence. In 2003 and 2004, a systematic survey was conducted throughout metropolitan Tucson, AZ, to identify human and environmental factors associated with Ae. aegypti distribution within an arid urban area. Aedes aegypti presence and abundance were measured monthly using the Centers for Disease Control and Prevention enhanced oviposition traps at sampling sites established in a grid at 3- to 4-km intervals across the city. Sampling occurred in the summer rainy season (July through September), the peak of mosquito activity in the region. Multiple regression analyses were conducted to determine relationships between mosquito density and factors that could influence mosquito distribution. House age was the only factor that showed a consistent significant association with Ae. aegypti abundance in both years: older houses had more mosquito eggs. This is the 1st study of Ae. aegypti distribution at a local level to identify house age as an explanatory factor independent of other human demographic factors. Further research into the reasons why mosquitoes were more abundant around older homes may help inform and refine future vector surveillance and control efforts in the event of a dengue outbreak in the region.

  10. Efectos de la competencia larval en los mosquitos de contenedores artificiales, Aedes aegypti y Culex pipiens (Diptera: Culicidae en condiciones semi-controladas Effects of larval competition between the container mosquitoes, Aedes aegypti and Culex pipiens (Diptera: Culicidae in semi-controlled conditions

    Directory of Open Access Journals (Sweden)

    Analía Francia

    2011-12-01

    Full Text Available Las larvas de los mosquitos Aedes aegypti (Linneo y Culex pipiens Linneo pueden criar conjuntamente en pequeños contenedores artificiales de agua, se genera así una competencia interespecífica y/o intraespecífica. El objetivo de este trabajo fue comparar la magnitud relativa de la competencia intra e interespecífica en A. aegypti y C. pipiens, generada durante el desarrollo larval en contenedores artifi ciales. Las variables medidas como respuesta fueron la supervivencia y el tiempo de desarrollo larval, y la biomasa total producida en estado de pupa. Se criaron larvas de ambos mosquitos en neumáticos de automóvil con agua declorinada y hojarasca. Se introdujeron larvas recién eclosionadas de acuerdo a la densidad (5 estimada según un censo previo de A. aegypti y C. pipiens. Serealizaron los siguientes tratamientos agregando larvas de: (1 A. aegypti hasta alcanzar δ A. aegypti determinada según el censo previo, (2 C. pipiens hasta δ C. pipiens del censo previo, (3 A. aegypti hasta alcanzar la suma de δ A. aegypti y δ C. pipiens del censo previo, (4 C. pipiens hasta alcanzar la suma de δ A. aegypti y δ C. pipiens del censo previo y (5 A. aegypti y C. pipiens hasta δ A. aegypti y δ C. pipiens del censo previo. Las tres variables medidas fueron afectadas por los tratamientos, excepto la supervivencia y la biomasa producida por C. pipiens. Aedes aegypti fue más alterada por la competencia intraespecífica que por la competencia interespecífica. En C. pipiens, la competencia interespecífica superó en sus efectos a la competencia intraespecífica. Existió asimetría competitiva, ya que C. pipiens fue más afectada por A. aegypti que lo contrario.Larvae of Aedes aegypti (Linneo and Culex pipiens Linneo may develop together in small artificial water containers, promoting inter- and/or intra-specific competition. Our aim was to compare the relative importance of interspecific and intraspecific competition in both species during

  11. Identification of a major Quantitative Trait Locus determining resistance to the organophosphate temephos in the dengue vector mosquito Aedes aegypti.

    Science.gov (United States)

    Paiva, Marcelo H S; Lovin, Diane D; Mori, Akio; Melo-Santos, Maria A V; Severson, David W; Ayres, Constância F J

    2016-01-01

    Organophosphate insecticides (OP) have extensively been used to control mosquitoes, such as the vector Aedes aegypti. Unfortunately, OP resistance has hampered control programs worldwide. We used Quantitative Trait Locus (QTL) mapping to evaluate temephos resistance in two F1 intercross populations derived from crosses between a resistant Ae. aegypti strain (RecR) and two susceptible strains (MoyoD and Red). A single major effect QTL was identified on chromosome 2 of both segregating populations, named rtt1 (resistance to temephos 1). Bioinformatics analyses identified a cluster of carboxylesterase genes (CCE) within the rtt1 interval. qRT-PCR demonstrated that different CCEs were up-regulated in F2 resistant individuals from both crosses. However, none exceeded the 2-fold expression. Primary mechanisms for temephos resistance may vary between Ae. aegypti populations, yet also appear to support previous findings suggesting that multiple linked esterase genes may contribute to temephos resistance in the RecR strain as well as other populations.

  12. Identifying the effective concentration for spatial repellency of the dengue vector Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Achee Nicole

    2012-12-01

    Full Text Available Abstract Background Current efforts are underway to quantify the chemical concentration in a treated air space that elicits a spatial repellent (deterrent response in a vector population. Such information will facilitate identifying the optimum active ingredient (AI dosage and intervention coverage important for the development of spatial repellent tools – one of several novel strategies being evaluated for vector-borne disease control. This study reports initial findings from air sampling experiments conducted under field conditions to describe the relationship between air concentrations of repellent AIs and deterrent behavior in the dengue vector, Aedes aegypti. Methods Air samples were taken inside and outdoors of experimental huts located in Pu Tuey Village, Kanchanaburi Province, Thailand in conjunction with mosquito behavioral evaluations. A mark-release-recapture study design using interception traps was used to measure deterrency of Ae. aegypti against 0.00625% metofluthrin coils and DDT-treated fabric (2g/m2 within separate experimental trials. Sentinel mosquito cohorts were positioned adjacent to air sampling locations to monitor knock down responses to AI within the treated air space. Air samples were analyzed using two techniques: the U.S. Environmental Protection Agency (USEPA Compendium Method TO-10A and thermal desorption (TD. Results Both the USEPA TO-10A and TD air sampling methods were able to detect and quantify volatized AIs under field conditions. Air samples indicated concentrations of both repellent chemicals below thresholds required for toxic responses (mortality in mosquitoes. These concentrations elicited up to a 58% and 70% reduction in Ae. aegypti entry (i.e., deterrency into treated experimental huts using metofluthrin coils and DDT-treated fabric, respectively. Minimal knock down was observed in sentinel mosquito cohorts positioned adjacent to air sampling locations during both chemical evaluations. Conclusions

  13. Metarhizium brunneum Blastospore Pathogenesis in Aedes aegypti Larvae: Attack on Several Fronts Accelerates Mortality

    Science.gov (United States)

    Alkhaibari, Abeer M.; Carolino, Aline T.; Yavasoglu, Sare I.; Maffeis, Thierry; Mattoso, Thalles C.; Bull, James C.; Samuels, Richard I.; Butt, Tariq M.

    2016-01-01

    Aedes aegypti is the vector of a wide range of diseases (e.g. yellow fever, dengue, Chikungunya and Zika) which impact on over half the world’s population. Entomopathogenic fungi such as Metarhizium anisopliae and Beauveria bassiana have been found to be highly efficacious in killing mosquito larvae but only now are the underlying mechanisms for pathogenesis being elucidated. Recently it was shown that conidia of M. anisopliae caused stress induced mortality in Ae. aegypti larvae, a different mode of pathogenicity to that normally seen in terrestrial hosts. Blastospores constitute a different form of inoculum produced by this fungus when cultured in liquid media and although blastospores are generally considered to be more virulent than conidia no evidence has been presented to explain why. In our study, using a range of biochemical, molecular and microscopy methods, the infection process of Metarhizium brunneum (formerly M. anisopliae) ARSEF 4556 blastospores was investigated. It appears that the blastospores, unlike conidia, readily adhere to and penetrate mosquito larval cuticle. The blastospores are readily ingested by the larvae but unlike the conidia are able infect the insect through the gut and rapidly invade the haemocoel. The fact that pathogenicity related genes were upregulated in blastospores exposed to larvae prior to invasion, suggests the fungus was detecting host derived cues. Similarly, immune and defence genes were upregulated in the host prior to infection suggesting mosquitoes were also able to detect pathogen-derived cues. The hydrophilic blastospores produce copious mucilage, which probably facilitates adhesion to the host but do not appear to depend on production of Pr1, a cuticle degrading subtilisin protease, for penetration since protease inhibitors did not significantly alter blastospore virulence. The fact the blastospores have multiple routes of entry (cuticle and gut) may explain why this form of the inoculum killed Ae. aegypti

  14. Metarhizium brunneum Blastospore Pathogenesis in Aedes aegypti Larvae: Attack on Several Fronts Accelerates Mortality.

    Directory of Open Access Journals (Sweden)

    Abeer M Alkhaibari

    2016-07-01

    Full Text Available Aedes aegypti is the vector of a wide range of diseases (e.g. yellow fever, dengue, Chikungunya and Zika which impact on over half the world's population. Entomopathogenic fungi such as Metarhizium anisopliae and Beauveria bassiana have been found to be highly efficacious in killing mosquito larvae but only now are the underlying mechanisms for pathogenesis being elucidated. Recently it was shown that conidia of M. anisopliae caused stress induced mortality in Ae. aegypti larvae, a different mode of pathogenicity to that normally seen in terrestrial hosts. Blastospores constitute a different form of inoculum produced by this fungus when cultured in liquid media and although blastospores are generally considered to be more virulent than conidia no evidence has been presented to explain why. In our study, using a range of biochemical, molecular and microscopy methods, the infection process of Metarhizium brunneum (formerly M. anisopliae ARSEF 4556 blastospores was investigated. It appears that the blastospores, unlike conidia, readily adhere to and penetrate mosquito larval cuticle. The blastospores are readily ingested by the larvae but unlike the conidia are able infect the insect through the gut and rapidly invade the haemocoel. The fact that pathogenicity related genes were upregulated in blastospores exposed to larvae prior to invasion, suggests the fungus was detecting host derived cues. Similarly, immune and defence genes were upregulated in the host prior to infection suggesting mosquitoes were also able to detect pathogen-derived cues. The hydrophilic blastospores produce copious mucilage, which probably facilitates adhesion to the host but do not appear to depend on production of Pr1, a cuticle degrading subtilisin protease, for penetration since protease inhibitors did not significantly alter blastospore virulence. The fact the blastospores have multiple routes of entry (cuticle and gut may explain why this form of the inoculum killed

  15. Screening for larvicidal activity of ethanolic and aqueous extracts of selected plants against Aedes aegypti and Aedes albopictus larvae

    Institute of Scientific and Technical Information of China (English)

    Michael RusselleAlvarez; Francisco Heralde III; Noel Quiming

    2016-01-01

    Objective: To screen for larvicidal activity of aqueous and ethanolic extracts (95% ethanol) from Selaginella elmeri, Christella dentata, Elatostema sinnatum, Curculigo capitulata, Euphorbia hirta, Murraya koenigii (M. koenigii), Alpinia speciosa, Cymbopogon citratus, Eucalyptus globulus (E. globulus), Jatropha curcas (J. curcas), Psidium guajava, Gliricidia sepium, Ixora coccinea and Capsicum frutescens (C. frutescens) against Aedes aegypti (A. aegypti) and Aedes albopictus (A. albopictus) 3rd instar larvae. Methods: Ethanolic and aqueous extracts were screened for larvicidal activity by exposing the A. aegypti and A. albopictus 3rd instar larvae (15 larvae per trial, triplicates) for 48 h, counting the mortalities every 24 h. Additionally, phytochemical screening for flavonoids, tannins, alkaloids, anthraquinones, anthrones, coumarins, indoles and steroids were performed on active extracts using spray tests. Results: Against A. aegypti, the three most active extracts were C. frutescens ethanolic (100%after 24 and 48 h), J. curcas ethanolic (84.44% after 24 h and 88.89% after 48 h) and M. koenigii ethanolic (53.33% after 24 h and 71.11% after 48 h). On the other hand, against A. albopictus, the three most active extracts were C. frutescens ethanolic (93.33% after 24 h and 100% after 48 h), J. curcas ethanolic (77.78% after 24 h and 82.22% after 48 h) and E. globulus ethanolic (64.44% after 24 h and 73.33% after 48 h). Phytochemical screening was also performed on the active extracts, revealing alkaloids, tannins, indoles and steroids. Conclusios: The results demonstrate the larvicidal activities of ethanolic extracts of Cymbopogon citratus, Euphorbia hirta, Ixora coccinea, Gliricidia sepium, M. koenigii, E. globulus, J. curcas and C. frutescens against A. aegypti and A. albopictus 3rd instar larvae. These could be used as potential larvicidal agents for the control of these mosquitoes.

  16. Oviposition response of Aedes aegypti mosquitoes to different concentrations of hay infusion in Trinidad, West Indies.

    Science.gov (United States)

    Chadee, D D; Lakhan, A; Ramdath, W R; Persad, R C

    1993-09-01

    Ovitraps containing various concentrations of hay infusion and tap water were exposed weekly in the field for 15 wk to determine the oviposition patterns of Aedes aegypti. The results showed 10, 20, 60 and 80% hay infusions each attracted similar numbers of Ae. aegypti eggs oviposited and egg occurrences. No repellent effect was observed. In another field study, significantly more eggs and egg occurrences were collected from 25 and 50% hay infusions and tap water. The differences in these results from those of a previous study in Puerto Rico are discussed.

  17. Intermolecular interaction of thiosemicarbazone derivatives to solvents and a potential Aedes aegypti target

    Science.gov (United States)

    da Silva, João Bosco P.; Hallwass, Fernando; da Silva, Aluizio G.; Moreira, Diogo Rodrigo; Ramos, Mozart N.; Espíndola, José Wanderlan P.; de Oliveira, Ana Daura T.; Brondani, Dalci José; Leite, Ana Cristina L.; Merz, Kenneth M.

    2015-08-01

    DFT calculations were used to access information about structure, energy and electronic properties of series of phenyl- and phenoxymethyl-(thio)semicarbazone derivatives with demonstrated activity against the larvae of Aedes aegypti in stage L4. The way as the thiosemicarbazone derivatives can interact with solvents like DMSO and water were analyzed from the comparison between calculated and experimental 1H NMR chemical shifts. The evidences of thiosemicarbazone derivatives making H-bond interaction to solvent have provide us insights on how they can interact with a potential A. aegypti's biological target, the Sterol Carrier Protein-2.

  18. The logistic model for predicting the non-gonoactive Aedes aegypti females

    OpenAIRE

    Filiberto Reyes; Rodríguez, Mario A.

    2004-01-01

    Objetivo. Estimar la probabilidad para que una hembra de Aedes aegypti, previamente alimentada con sangre humana, permanezca no gonoactiva, sin madurar huevos, dependiendo del tamaño corporal y tipo de colecta. Material y métodos. Se hicieron 10 muestreos de Ae aegypti.: seis de hembras capturadas en cebo humano, dos de nulíparas y dos colectadas en reposo intradomiciliar. Cada muestreo incluyó 60 hembras, en tres colonias endémicas para dengue, en Monterrey, Nuevo León, México, entre 1994 y ...

  19. Methods for TALEN evaluation, use, and mutation detection in the mosquito Aedes aegypti

    Science.gov (United States)

    Basu, Sanjay; Aryan, Azadeh; Haac, Mary Etna; Myles, Kevin M.; Adelman, Zach N.

    2016-01-01

    The generation and study of transgenic Aedes aegypti mosquitoes provides an essential tool for elucidating the complex molecular biology of this important vector. Within the field, genetic manipulation has now surpassed the proof of principle stage and is now utilised in both applied and theoretical vector control strategies. The application of new instruments, technologies and techniques allows ever more controlled experiments to be conducted. In this text we describe microinjection of Ae. aegypti embryos in the context of evaluating and performing genomic editing with transcription activator-like effector nucleases (TALENs). PMID:26443221

  20. Methods for TALEN Evaluation, Use, and Mutation Detection in the Mosquito Aedes aegypti.

    Science.gov (United States)

    Basu, Sanjay; Aryan, Azadeh; Haac, Mary Etna; Myles, Kevin M; Adelman, Zach N

    2016-01-01

    The generation and study of transgenic Aedes aegypti mosquitoes provides an essential tool for elucidating the complex molecular biology of this important vector. Within the field, genetic manipulation has surpassed the proof of principle stage and is now utilized in both applied and theoretical vector control strategies. The application of new instruments, technologies and techniques allows ever more controlled experiments to be conducted. In this text we describe microinjection of Ae. aegypti embryos in the context of evaluating and performing genomic editing with transcription activator-like effector nucleases (TALENs).

  1. History of domestication and spread of Aedes aegypti--a review.

    Science.gov (United States)

    Powell, Jeffrey R; Tabachnick, Walter J

    2013-01-01

    The adaptation of insect vectors of human diseases to breed in human habitats (domestication) is one of the most important phenomena in medical entomology. Considerable data are available on the vector mosquito Aedes aegypti in this regard and here we integrate the available information including genetics, behaviour, morphology, ecology and biogeography of the mosquito, with human history. We emphasise the tremendous amount of variation possessed by Ae. aegypti for virtually all traits considered. Typological thinking needs to be abandoned to reach a realistic and comprehensive understanding of this important vector of yellow fever, dengue and Chikungunya.

  2. Antiviral Hammerhead Ribozymes Are Effective for Developing Transgenic Suppression of Chikungunya Virus in Aedes aegypti Mosquitoes

    Directory of Open Access Journals (Sweden)

    Priya Mishra

    2016-06-01

    Full Text Available The chikungunya virus (CHIKV is an emerging pathogen with widespread distribution in regions of Africa, India, and Asia that threatens to spread into temperate climates with the introduction of its major vector, Aedes albopictus. CHIKV causes a disease frequently misdiagnosed as dengue fever, with potentially life-threatening symptoms that can result in a longer-term debilitating arthritis. The increasing risk of spread from endemic regions via human travel and commerce and the current absence of a vaccine put a significant proportion of the world population at risk for this disease. In this study we designed and tested hammerhead ribozymes (hRzs targeting CHIKV structural protein genes of the RNA genome as potential antivirals both at the cellular and in vivo level. We employed the CHIKV strain 181/25, which exhibits similar infectivity rates in both Vero cell cultures and mosquitoes. Virus suppression assay performed on transformed Vero cell clones of all seven hRzs demonstrated that all are effective at inhibiting CHIKV in Vero cells, with hRz #9 and #14 being the most effective. piggyBac transformation vectors were constructed using the Ae. aegypti t-RNAval Pol III promoted hRz #9 and #14 effector genes to establish a total of nine unique transgenic Higgs White Eye (HWE Ae. aegypti lines. Following confirmation of transgene expression by real-time polymerase chain reaction (RT-PCR, comparative TCID50-IFA analysis, in situ Immuno-fluorescent Assays (IFA and analysis of salivary CHIKV titers demonstrated effective suppression of virus replication at 7 dpi in heterozygous females of each of these transgenic lines compared with control HWE mosquitoes. This report provides a proof that appropriately engineered hRzs are powerful antiviral effector genes suitable for population replacement strategies

  3. Antiviral Hammerhead Ribozymes Are Effective for Developing Transgenic Suppression of Chikungunya Virus in Aedes aegypti Mosquitoes

    Science.gov (United States)

    Mishra, Priya; Furey, Colleen; Balaraman, Velmurugan; Fraser, Malcolm J.

    2016-01-01

    The chikungunya virus (CHIKV) is an emerging pathogen with widespread distribution in regions of Africa, India, and Asia that threatens to spread into temperate climates with the introduction of its major vector, Aedes albopictus. CHIKV causes a disease frequently misdiagnosed as dengue fever, with potentially life-threatening symptoms that can result in a longer-term debilitating arthritis. The increasing risk of spread from endemic regions via human travel and commerce and the current absence of a vaccine put a significant proportion of the world population at risk for this disease. In this study we designed and tested hammerhead ribozymes (hRzs) targeting CHIKV structural protein genes of the RNA genome as potential antivirals both at the cellular and in vivo level. We employed the CHIKV strain 181/25, which exhibits similar infectivity rates in both Vero cell cultures and mosquitoes. Virus suppression assay performed on transformed Vero cell clones of all seven hRzs demonstrated that all are effective at inhibiting CHIKV in Vero cells, with hRz #9 and #14 being the most effective. piggyBac transformation vectors were constructed using the Ae. aegypti t-RNAval Pol III promoted hRz #9 and #14 effector genes to establish a total of nine unique transgenic Higgs White Eye (HWE) Ae. aegypti lines. Following confirmation of transgene expression by real-time polymerase chain reaction (RT-PCR), comparative TCID50-IFA analysis, in situ Immuno-fluorescent Assays (IFA) and analysis of salivary CHIKV titers demonstrated effective suppression of virus replication at 7 dpi in heterozygous females of each of these transgenic lines compared with control HWE mosquitoes. This report provides a proof that appropriately engineered hRzs are powerful antiviral effector genes suitable for population replacement strategies PMID:27294950

  4. PENGARUH FREKUENSI PENGHISAPAN DARAH TERHADAP PERKEMBANGAN, REPRODUKSI,VERTILITAS DAN RASIO SEX Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Riyani Setiyaningsih

    2014-06-01

    Full Text Available Aedes aegypti is a vector of Dengue hemorrhagic fever in Indonesia. Aedesaegypti has a high reproduction ability. Each individual can produce 50-100 eggs. Which80% of them are fertile. The mosquito is multiple biting (which means each individualsucks blood several time. Based on that background, this research was aimed torecognize the frequency of blood sucking to development, reproduction, fertility, and sexratio of Ae. aegypti. Thirty Ae. aegypti mosquito were put into the plastic cupsindividually, then fed with mammals. The treatments were the first, second, third, fourth,and fifth blood sucking. The eggs produced in each blood sucking were hatched andmaintain to become mosquitoes. The parameter measured from each blood sucking istotal egg production, egg fertility, larvae mortality, pupae mortality, and sex ratio. Theresult of the research shows that the frequency of blood sucking affects the production ofegg fertility, but does not affect the total egg production, larvae mortality, pupaemortality, and sex ratio significantly.Key words: sex ratio, egg fertility, reproduction Aedes aegypti adalah vektor Demam berdarah dengue di Indonesia. Ae aegyptimempunyai kemampuan berkembang biak dengan cepat. Setiap individu mempunyaikemampuan menghasilkan telur 50 sampai 100 ekor skali bertclur. Ae. aegypti bersifat multibiting, masing-masing individu mempunyai kemampuan menghisap darah beberapa kali dalamkurun waktu tertentu. Berdasarkan latar belakang tersebut tujuan penelitian ini adalahmendapatkan pengaruh frekuensi penghisapan darah terhadap perkembangan reproduksi,fcrtilitas, dan rasio sex dari Ae. aegypti. Ae aegypti dimasukkan ke dalam cup plastik secaraindividual, kemudian diberikan darah mamalia selama kurang lebih 3 menit. Pemberian darahdilakukan secara bertahap yaitu pemberian darah pertama, kedua, ketiga, ke empat, dan ke limaTelur-telur yang dihasilkan pada masing-masing penghisapan darah di tetaskan dan dipeliharasampai menjadi nyamuk

  5. Variação sazonal de Aedes aegypti e Aedes albopictus no município de Potim, São Paulo Seasonal variation of Aedes aegypti and Aedes albopictus in a city of Southeastern Brazil

    Directory of Open Access Journals (Sweden)

    Lígia Leandro Nunes Serpa

    2006-12-01

    Full Text Available OBJETIVO: Verificar a variação sazonal de Aedes aegypti e Aedes albopictus e testar a associação da abundância das espécies com fatores abióticos. MÉTODOS: De novembro de 2002 a outubro de 2003 foram realizadas coletas mensais de imaturos de culicídeos em pneus-armadilha expostos por 15 dias em área urbana de Potim, Vale do Paraíba, SP, Brasil. Os imaturos foram criados em laboratório por 29 dias e identificados segundo espécie. A associação com temperatura, pluviosidade e umidade relativa do ar foram testadas utilizando-se correlações de Spearman (r s. As estatísticas descritivas foram apresentadas pela média e erro-padrão (EP e nos testes foi utilizado alfa=0,05. RESULTADOS: Do total de 20.727 imaturos coletados, 95,3% eram Ae. aegypti e 4,7% Ae. albopictus. A espécie Ae. aegypti esteve presente em todas as estações/meses do ano e Ae. albopictus somente de novembro a julho. As associações das espécies coletadas com fatores abióticos foram significantes em relação à temperatura máxima para Ae. aegypti (p=0,04 e Ae. albopictus (p=0,01, e pluviosidade (p=0,02 para esta última espécie. CONCLUSÕES: Ambas espécies apresentaram variação sazonal. Porém, Ae. aegypti esteve presente durante todo ano, com maiores quedas de densidade entre abril e maio e entre junho e julho. Ae. albopictus menos abundante, foi encontrado apenas de novembro a julho, com o pico em abril. A maior abundância de Ae. aegypti em relação à Ae. albopictus em área urbana mostrou maior capacidade de Ae. aegypti em colonizar pneus. A existência de tal criadouro no ambiente pode ser importante na manutenção e abundância de Ae. aegypti.OBJECTIVE: To assess the seasonal variation of Aedes aegypti and Aedes albopictus and to estimate the association between the species abundance and abiotic factors. METHODS: Tire-traps were kept for a period of 15 days monthly in an urban area of the city of Potim in the state of São Paulo, Southeastern

  6. Susceptibility to insecticides and resistance mechanisms in Aedes aegypti from the Colombian Caribbean Region.

    Science.gov (United States)

    Maestre-Serrano, Ronald; Gomez-Camargo, Doris; Ponce-Garcia, Gustavo; Flores, Adriana E

    2014-11-01

    We determined the susceptibility to insecticides and the biochemical and molecular mechanisms involved in resistance in nine populations of Aedes aegypti (L.) of the Colombian Caribbean region. Bioassays were performed on larvae for susceptibility to temephos and on adults to the insecticides malathion, fenitrothion, pirimiphos-methyl, permethrin, deltamethrin, λ-cyhalothrin and cyfluthrin. The resistance ratio (RR) for each insecticide in the populations was determined, using the susceptible Rockefeller strain as a susceptible control. Additionally, we evaluated the response of the populations to the diagnostic dose (DD) of the organochlorine pesticide DDT. The following biochemical mechanisms associated with resistance were studied: α-esterases, β-esterases, mixed-function oxidases (MFO), glutathione s-transferases (GST) and insensitive acetylcholinesterase (iAChE) as well as the presence of kdr I1,016 mutation and its frequency. All populations studied showed susceptibility to the organophosphates evaluated (RR < 5-fold), except for the Puerto Colombia and Soledad populations which showed high resistance (RR 15-fold) and moderate resistance (RR 5-fold) to temephos, respectively, and Sincelejo (Sucre) with moderate resistance to pirimiphos-methyl (RR 5-fold). All populations evaluated with DD of DDT were found to be resistant with 2-28% of mortality. Variability was observed in the resistance to pyrethroids: permethrin (RR 1.2- to 30.8-fold), deltamethrin RR 0.9- to 37.8-fold), λ-cyalothrin (RR 3.4- to 83-fold) and cyfluthrin (RR 0.3- to 33.8-fold). Incipiently α-esterases and MFO levels were found in the Valledupar population; MFO showed the same profile in Cienaga and GST in the Sincelejo population, all other populations showed unaltered profiles of the enzymes evaluated. The kdr I1,016 mutation was found in all populations evaluated with variability in its allelic and genotypic frequencies.

  7. Radiation cytogentics of the yellow-fever mosquito Aedes aegypti and the plant genus Collinsia. Final report, April 1967--September 1977

    Energy Technology Data Exchange (ETDEWEB)

    Rai, K.S.

    1977-01-01

    The major objectives of the project on Aedes aegypti, which is one of the most important disease vectors of man, were to study the cytogenetic effects of radiation and certain chemical mutagens, the genetics of radiation-induced chromosomal rearrangements with particular attention to reciprocal translocations, and the possibility of using translocations for genetic control of natural populations. Results reported on work done during the years 1967 and 1977 show these objectives have been mostly accomplished.

  8. Insecticidal and repellent activity of Siparuna guianensis Aubl. (Negramina against Aedes aegypti and Culex quinquefasciatus.

    Directory of Open Access Journals (Sweden)

    Raimundo Wagner Souza Aguiar

    Full Text Available This study investigated the toxic effects of essential oils isolated from Siparuna guianensis against Aedes aegypti, Culex quinquefasciatus (eggs, larvae, pupae, and adult and Aedes albopictus (C6/36 cells. The oviposition-deterring activity, egg viability, and repellence activity in the presence of different essential oils concentrations were determined. The essential oils showed high toxicity to all developmental stages of A. aegypti and C. quinquefasciatus. Furthermore, the oils also showed high repellent activity towards the adult stage of mosquitoes (0.025 to 0.550 μg/cm2 skin conferred 100% repellence up to 120 min and in contact with cultured insect cells (C6/36 induced death possibly by necrosis. The results presented in this work show the potential of S. guianensis essential oils for the development of an alternative and effective method for the natural control of mosquitoes in homes and urban areas.

  9. Insecticidal and repellent activity of Siparuna guianensis Aubl. (Negramina) against Aedes aegypti and Culex quinquefasciatus.

    Science.gov (United States)

    Aguiar, Raimundo Wagner Souza; dos Santos, Suetonio Fernandes; da Silva Morgado, Fabricio; Ascencio, Sergio Donizeti; de Mendonça Lopes, Magnólia; Viana, Kelvinson Fernandes; Didonet, Julcemar; Ribeiro, Bergmann Morais

    2015-01-01

    This study investigated the toxic effects of essential oils isolated from Siparuna guianensis against Aedes aegypti, Culex quinquefasciatus (eggs, larvae, pupae, and adult) and Aedes albopictus (C6/36) cells. The oviposition-deterring activity, egg viability, and repellence activity in the presence of different essential oils concentrations were determined. The essential oils showed high toxicity to all developmental stages of A. aegypti and C. quinquefasciatus. Furthermore, the oils also showed high repellent activity towards the adult stage of mosquitoes (0.025 to 0.550 μg/cm2 skin conferred 100% repellence up to 120 min) and in contact with cultured insect cells (C6/36) induced death possibly by necrosis. The results presented in this work show the potential of S. guianensis essential oils for the development of an alternative and effective method for the natural control of mosquitoes in homes and urban areas.

  10. First report on susceptibility of wild Aedes aegypti (Diptera: Culicidae) using Carapa guianensis (Meliaceae) and Copaifera sp. (Leguminosae).

    Science.gov (United States)

    Prophiro, Josiane S; da Silva, Mario Antonio Navarro; Kanis, Luiz A; da Rocha, Louyse Caroline B P; Duque-Luna, Jonny E; da Silva, Onilda S

    2012-02-01

    Oils of Carapa guianensis and Copaifera spp. are well known in the Amazonian region as natural insect repellent, and studies have reported their efficiency as larvicide against some laboratory mosquito species. However, in wild populations of mosquitoes, these oils have not yet been evaluated. Thus, the objective of this study was to investigate their efficiency as larvicide in wild populations of Aedes aegypti with a history of exposure to organophosphate. The susceptibility of larvae was determined under three different temperatures, 15°C, 20°C, and 30°C. For each test, 1,000 larvae were used (late third instar and early fourth instar-four replicates of 25 larvae per concentration). Statistical tests were used to identify significant differences. The results demonstrated that as the laboratory A. aegypti, the wild populations of A. aegypti were also susceptible to C. guianensis and Copaifera sp. oils. The lethal concentrations for Copaifera sp. ranged from LC(50) 47 to LC(90) 91 (milligrams per liter), and for C. guianensis, they were LC(50) 136 to LC(90) 551 (milligrams per liter). In relation to different temperature, the effectiveness of the oils on larvae mortality was directly related to the increase of temperature, and better results were observed for temperature at 25°C. The results presented here indicate the potential larvicidal activity of C. guianensis and species of Copaifera, in populations of A. aegypti from the wild. Therefore, the results presented here are very important since such populations are primarily responsible for transmitting the dengue virus in the environment.

  11. The Insecticide Susceptibility Status of Aedes aegypti (Diptera: Culicidae) in Farm and Nonfarm Sites of Lagos State, Nigeria.

    Science.gov (United States)

    Ayorinde, A; Oboh, B; Oduola, A; Otubanjo, O

    2015-01-01

    Nigeria is one of the malaria-endemic countries. In Lagos State, Nigeria, various malaria vector control programs including the use of chemical insecticides are currently being implemented. This study was designed to provide information on the susceptibility status of some nontargeted vectors such as Aedes aegypti. Adult Ae. aegypti mosquitoes from two farm sites and a nonfarm site were exposed to World Health Organization test papers impregnated with Deltamethrin (0.05%), Permethrin (0.75%), and DDT (4%) insecticides. The Knockdown time (KdT50 and KdT95) and percentage mortality after 24 h post exposure were determined. In all the exposed mosquito populations to permethrin, mortality rate > 98% (susceptibility) was recorded, whereas mortality rates  98% (susceptibility) to deltamethrin were observed in the nonfarm site and farm sites mosquito populations, respectively. All the mosquito populations were resistant to DDT in 2 yr. The KdT50 of the populations to DDT increased (60.2-69.6) in one of the farm sites and the nonfarm site (68.9-199.96), while a decrease (243-63.4) in another farm site in 2 yr. Significant difference (P aegypti mosquitoes in the second year after exposure to deltamethrin and DDT. An increase in KdT95 after exposure to deltamethrin in the first year was recorded. Higher KdT values and lower mortality rates in Ae. aegypti populations in the nonfarm sites are indications there are existing factors selecting for insecticide resistance outside agricultural use of insecticides.

  12. THE INSECT GROWTH REGULATOR, TRIFLUMURON (OMS-2015 AGAINST AEDES AEGYPTI IN JAKARTA, INDONESIA

    Directory of Open Access Journals (Sweden)

    M. Soekirno

    2012-09-01

    Full Text Available Uji laboratorium dan lapangan dengan IGR Triflumuron (OMS-2015 terhadap larva nyamuk Aedes aegypti telah dilakukan di Jakarta. Uji laboratorium dilakukan dengan 6 variasi dosis, yaitu 0,004; 0,011; 0,034; 0,10; 0,33 dan 1,0 ppm Triflumuron terhadap perkembangan larva nyamuk Ae. aegypti di dalam tempayan. Dari uji laboratorium dapat diketahui bahwa Triflumuron dengan dosis 0,004 ppm dapat menekan perkembangan pupa untuk menjadi dewasa dalam waktu 2 minggu, sedangkan dosis 0,10 ppm menekan padat populasi nyamuk Ae. aegypti selama 4 minggu dan dosis 1,0 ppm menekan padat populasi nyamuk Ae. aegypti selama 8 minggu. Uji lapangan dengan menggunakan Triflumuron di daerah pelabuhan Tanjung Priok, Jakarta, seluas 27 hektar dengan dua kali perlakuan, dengan dosis 0,042 dan 0,075 ppm, terjadi penurunan populasi nyamuk Ae. aegypti dewasa dan indeks pupa menjadi 0 dalam 4 hari setelah perlakuan. Penurunan populasi nyamuk Ae. aegypti dewasa terlihat setelah 2 minggu se­sudah perlakuan dengan tidak berhasilnya larva/pupa menjadi nyamuk dewasa. 

  13. Mosquito-Borne Diseases and Omics: Salivary Gland Proteome of the Female Aedes aegypti Mosquito.

    Science.gov (United States)

    Dhawan, Rakhi; Kumar, Manish; Mohanty, Ajeet Kumar; Dey, Gourav; Advani, Jayshree; Prasad, T S Keshava; Kumar, Ashwani

    2017-01-01

    The female Aedes aegypti mosquito is an important vector for several tropical and subtropical diseases such as dengue, chikungunya, and Zika and yellow fever. The disease viruses infect the mosquito and subsequently spread to the salivary glands after which the viruses can be transmitted to humans with probing or feeding by the mosquito. Omics systems sciences offer the opportunity to characterize vectors and can inform disease surveillance, vector control and development of innovative diagnostics, personalized medicines, vaccines, and insecticide targets. Using high-resolution mass spectrometry, we performed an analysis of the A. aegypti salivary gland proteome. The A. aegypti proteome resulted in acquisition of 83,836 spectra. Upon searches against the protein database of the A. aegypti, these spectra were assigned to 5417 unique peptides, belonging to 1208 proteins. To the best of our knowledge, this is the largest set of proteins identified in the A. aegypti salivary gland. Of note, 29 proteins were involved in immunity-related pathways in salivary glands. A subset of these proteins is known to interact with disease viruses. Another 15 proteins with signal cleavage site were found to be secretory in nature, and thus possibly playing critical roles in blood meal ingestion. These findings provide a baseline to advance our understanding of vector-borne diseases and vector-pathogen interactions before virus transmission in global health, and might therefore enable future design and development of virus-blocking strategies and novel molecular targets in the mosquito vector A. aegypti.

  14. The wMel strain of Wolbachia Reduces Transmission of Zika virus by Aedes aegypti

    OpenAIRE

    Matthew T Aliota; Stephen A. Peinado; Ivan Dario Velez; Osorio, Jorge E.

    2016-01-01

    Zika virus (ZIKV) is causing an explosive outbreak of febrile disease in the Americas. There are no effective antiviral therapies or licensed vaccines for this virus, and mosquito control strategies have not been adequate to contain the virus. A promising candidate for arbovirus control and prevention relies on the introduction of the intracellular bacterium Wolbachia into Aedes aegypti mosquitoes. This primarily has been proposed as a tool to control dengue virus (DENV) transmission; however...

  15. Temephos Resistance in Aedes aegypti in Colombia Compromises Dengue Vector Control

    OpenAIRE

    Nelson Grisales; Rodolphe Poupardin; Santiago Gomez; Idalyd Fonseca-Gonzalez; Hilary Ranson; Audrey Lenhart

    2013-01-01

    BACKGROUND: Control and prevention of dengue relies heavily on the application of insecticides to control dengue vector mosquitoes. In Colombia, application of the larvicide temephos to the aquatic breeding sites of Aedes aegypti is a key part of the dengue control strategy. Resistance to temephos was recently detected in the dengue-endemic city of Cucuta, leading to questions about its efficacy as a control tool. Here, we characterize the underlying mechanisms and estimate the operational im...

  16. Screening of Methanolic Plant Extracts against Larvae of Aedes aegypti and Anopheles stephensi in Mysore

    OpenAIRE

    Thirumalapura Krishnaiah Mohankumar; Kumuda Sathigal Shivanna; Vijayan Valiakottukal Achuttan

    2016-01-01

    Background: Mosquitoes transmit serious human diseases, causing millions of death every year. Vector control is facing a threat due to the emergence of resistance to synthetic insecticides. Insecticides of botanical origin may serve as suitable alternative biocontrol techniques in the future. Nine different locally available medicinally important plants suspected to posse larvicidal property were screened against fourth instar larvae of Aedes aegypti and Anoph­eles stephensi to a series of co...

  17. PENENTUAN STATUS RESISTENSI Aedes aegypti DENGAN METODE SUSCEPTIBILITY DI KOTA CIMAHI TERHADAP CYPERMETHRIN

    OpenAIRE

    Firda Yanuar Pradani; Mara Ipa; Rina Marina; Yuneu Yuliasih

    2013-01-01

    ABSTRACT Background:  vector control of DBD usually doing by using insecticides, whether by government or insecticides used in household.  Using to much insecticides for long time can caused resistence of mosquito.  This research aim to know resistance status of Aedes aegypti from endemic rural in district Cimahi to cypermethrin (synthetic pyretroid). Methods:  resistance status knowing by susceptibility methods (WHO standard) with usingimpregnated paper that containing cypermethrin 0,2% and ...

  18. PENGARUH EKSTRAK DAUN SIRSAK Annona muricata L TERHADAP PERIODE MENGHISAP DARAH NYAMUK Aedes aegypti

    OpenAIRE

    Pangadongan, Acice T.

    2016-01-01

    Telah dilakukan penelitian tentang pengaruh ekstrak daun sirsak Annona muricata L terhadap periode menghisap darah nyamuk Aedes aegypti. Penelitian ini bersifat eksperimental menggunakan ekstrak daun sirsak dalam bentuk spray konsentrasi 3,7%, 7,5%, 15% dan 30% yang disemprotkan ke tangan. Selanjutnya dimasukkan ke dalam kandang yang telah berisi sampel uji nyamuk betina sebanyak 20 ekor, pengamatan dimulai pukul 08.00-18.00 WITA. Aktivitas ekstrak dihitung dengan cara menghitung jumlah nyam...

  19. Susceptibility of Aedes aegypti (Diptera: Culicidae) to Acanthamoeba polyphaga (Sarcomastigophora: Acanthamoebidae).

    Science.gov (United States)

    Rott, Marilise; Caumo, Karin; Sauter, Ismael; Eckert, Janina; da Rosa, Luana; da Silva, Onilda

    2010-06-01

    To date there is no report on mosquitoes infected with free-living amoebae. For this reason, the aim of this study was to verify if Aedes aegypti could be susceptible to Acanthamoeba polyphaga under laboratory conditions, so trophozoites were offered as a unique food resource for larvae of first instar. The results show that those amoebae are able to infect and colonize the mosquito gut and could be re-isolated of all stages of the mosquito (larvae, pupae, and adults).

  20. Aedes aegypti sebagai Vektor Demam Berdarah Dengue Berdasarkan Pengamatan di Alam

    Directory of Open Access Journals (Sweden)

    M. Hasyimi

    2012-09-01

    Full Text Available Demam berdarah atau Demam Berdarah Dengue (DBD masih merupakan masalah kesehatan masyarakat. Terutama bagi kota-kota besar yang penduduknya padat dan mobilitas tinggi. Nyamuk Aedes aegypti merupakan penyebar utama penyakit ini, di samping Ae. albopictus. Berhubung sampai saat ini penyakit DBD belum ada obatnya dan vaksin untuk pencegahannya maka pemberantasan penyakit DBD ini dipusatkan kepada pengendalian nyamuk penularnya. Metode pengendalian telah dilakukan dengan bermacam-macam cara, baik secar kimiawi maupun bukan kimiawi.

  1. Evaluation of Household Bleach as an Ovicide for the Control of Aedes aegypti.

    Science.gov (United States)

    Mackay, Andrew J; Amador, Manuel; Felix, Gilberto; Acevedo, Veronica; Barrera, Roberto

    2015-03-01

    Accumulations of dormant eggs in container habitats allow Aedes aegypti populations to survive harsh environmental conditions and may frustrate control interventions directed at larval and adult life stages. While sodium hypochlorite solutions (NaOCl) have long been recognized as ovicides for use against dengue vectors, the susceptibility of eggs to spray applications has not been robustly evaluated on substrate materials representative of the most frequently utilized artificial container habitats. Experiments were performed under controlled and natural conditions by applying dilutions of household bleach (52.5 ppt NaOCl) as a spray to eggs on plastic, rubber, and concrete surfaces, with and without a smectite clay thickener. Laboratory assays identified the minimum NaOCl concentrations required to eliminate eggs on plastic (10 ppt), rubber (20 ppt) and concrete (20 ppt) surfaces. Addition of smectite clay reduced the minimum effective concentration to 10 ppt NaOCl for all 3 substrates. A minimum exposure period of 24 h was required to completely eliminate egg viability on concrete surfaces, even at the highest NaOCl concentration (52.5 ppt). Field experiments verified that spray application of a 1∶3 dilution of household bleach mixed with smectite clay can reduce egg hatching by ≥ 99% in shaded and sun-exposed plastic containers. Similarly, 4∶1 dilution of household bleach (with or without smectite clay) eliminated ≥ 98% of eggs from concrete surfaces in outdoor, water-filled drums. In this study, we propose a practical, effective and safe strategy for using household bleach to eliminate Ae. aegypti eggs in a range of artificial container habitats.

  2. Effects of inbreeding and genetic modification on Aedes aegypti larval competition and adult energy reserves

    Directory of Open Access Journals (Sweden)

    Kormaksson Matthias

    2010-10-01

    Full Text Available Abstract Background Genetic modification of mosquitoes offers a promising strategy for the prevention and control of mosquito-borne diseases. For such a strategy to be effective, it is critically important that engineered strains are competitive enough to serve their intended function in population replacement or reduction of wild mosquitoes in nature. Thus far, fitness evaluations of genetically modified strains have not addressed the effects of competition among the aquatic stages and its consequences for adult fitness. We therefore tested the competitive success of combinations of wild, inbred and transgenic (created in the inbred background immature stages of the dengue vector Aedes aegypti in the presence of optimal and sub-optimal larval diets. Results The wild strain of Ae. aegypti demonstrated greater performance (based on a composite index of survival, development rate and size than the inbred strain, which in turn demonstrated greater performance than the genetically modified strain. Moreover, increasing competition through lowering the amount of diet available per larva affected fitness disproportionately: transgenic larvae had a reduced index of performance (95-119% compared to inbred (50-88% and wild type larvae (38-54%. In terms of teneral energy reserves (glycogen, lipid and sugar, adult wild type mosquitoes had more reserves directly available for flight, dispersal and basic metabolic functions than transgenic and inbred mosquitoes. Conclusions Our study provides a detailed assessment of inter- and intra-strain competition across aquatic stages of wild type, inbred, and transgenic mosquitoes and the impact of these conditions on adult energy reserves. Although it is not clear what competitive level is adequate for success of transgenic strains in nature, strong gene drive mechanisms are likely to be necessary in order to overcome competitive disadvantages in the larval stage that carryover to affect adult fitness.

  3. Heterogeneous feeding patterns of the dengue vector, Aedes aegypti, on individual human hosts in rural Thailand.

    Directory of Open Access Journals (Sweden)

    Laura C Harrington

    2014-08-01

    Full Text Available Mosquito biting frequency and how bites are distributed among different people can have significant epidemiologic effects. An improved understanding of mosquito vector-human interactions would refine knowledge of the entomological processes supporting pathogen transmission and could reveal targets for minimizing risk and breaking pathogen transmission cycles.We used human DNA blood meal profiling of the dengue virus (DENV vector, Aedes aegypti, to quantify its contact with human hosts and to infer epidemiologic implications of its blood feeding behavior. We determined the number of different people bitten, biting frequency by host age, size, mosquito age, and the number of times each person was bitten. Of 3,677 engorged mosquitoes collected and 1,186 complete DNA profiles, only 420 meals matched people from the study area, indicating that Ae. aegypti feed on people moving transiently through communities to conduct daily business. 10-13% of engorged mosquitoes fed on more than one person. No biting rate differences were detected between high- and low-dengue transmission seasons. We estimate that 43-46% of engorged mosquitoes bit more than one person within each gonotrophic cycle. Most multiple meals were from residents of the mosquito collection house or neighbors. People ≤ 25 years old were bitten less often than older people. Some hosts were fed on frequently, with three hosts bitten nine times. Interaction networks for mosquitoes and humans revealed biologically significant blood feeding hotspots, including community marketplaces.High multiple-feeding rates and feeding on community visitors are likely important features in the efficient transmission and rapid spread of DENV. These results help explain why reducing vector populations alone is difficult for dengue prevention and support the argument for additional studies of mosquito feeding behavior, which when integrated with a greater understanding of human behavior will refine estimates of

  4. [Biology and thermal exigency of Aedes aegypti (L.) (Diptera: Culicidae) from four bioclimatic localities of Paraíba].

    Science.gov (United States)

    Beserra, Eduardo B; de Castro, Francisco P; dos Santos, José W; Santos, Tatiana da S; Fernandes, Carlos R M

    2006-01-01

    The present work aimed at estimating the thermal requirements for the development and the number of generations per year of Aedes aegypti (L.) under natural conditions. The life cycle of A. aegypti populations was studied at constant temperatures of 18, 22, 26, 30 and 34 degrees C, and 12 h photophase. The development period, egg viability and larval and pupal survival were evaluated daily as well as adult longevity and fecundity. The low threshold temperature of development (Tb) and the thermal constant (K) were determined. The number of generations per year in laboratory and field were also estimated. The favorable temperature to A. aegypti development is between 21 degrees C and 29 degrees C, and to longevity and fecundity is between 22 degrees C and 30 degrees C. The egg to adult basal temperature, thermal constant and the number of generations in field were, in order, 9.5, 8.5, 3.4, 7.1, 13.5 degrees C; 244.5, 273.9, 298.5, 280.9 and 161.8 degree-days; and 21.9, 23.8, 24.2, 21.1 and 22.1 generations in populations from Boqueirão, Brejo dos Santos, Campina Grande, Itaporanga and Remígio.

  5. Comparison of the Insecticidal Characteristics of Commercially Available Plant Essential Oils Against Aedes aegypti and Anopheles gambiae (Diptera: Culicidae).

    Science.gov (United States)

    Norris, Edmund J; Gross, Aaron D; Dunphy, Brendan M; Bessette, Steven; Bartholomay, Lyric; Coats, Joel R

    2015-09-01

    Aedes aegypti and Anopheles gambiae are two mosquito species that represent significant threats to global public health as vectors of Dengue virus and malaria parasites, respectively. Although mosquito populations have been effectively controlled through the use of synthetic insecticides, the emergence of widespread insecticide-resistance in wild mosquito populations is a strong motivation to explore new insecticidal chemistries. For these studies, Ae. aegypti and An. gambiae were treated with commercially available plant essential oils via topical application. The relative toxicity of each essential oil was determined, as measured by the 24-h LD(50) and percentage knockdown at 1 h, as compared with a variety of synthetic pyrethroids. For Ae. aegypti, the most toxic essential oil (patchouli oil) was ∼1,700-times less toxic than the least toxic synthetic pyrethroid, bifenthrin. For An. gambiae, the most toxic essential oil (patchouli oil) was ∼685-times less toxic than the least toxic synthetic pyrethroid. A wide variety of toxicities were observed among the essential oils screened. Also, plant essential oils were analyzed via gas chromatography/mass spectrometry (GC/MS) to identify the major components in each of the samples screened in this study. While the toxicities of these plant essential oils were demonstrated to be lower than those of the synthetic pyrethroids tested, the large amount of GC/MS data and bioactivity data for each essential oil presented in this study will serve as a valuable resource for future studies exploring the insecticidal quality of plant essential oils.

  6. Chemical and biological insecticides select distinct gene expression patterns in Aedes aegypti mosquito.

    Science.gov (United States)

    Després, Laurence; Stalinski, Renaud; Faucon, Frédéric; Navratil, Vincent; Viari, Alain; Paris, Margot; Tetreau, Guillaume; Poupardin, Rodolphe; Riaz, Muhammad Asam; Bonin, Aurélie; Reynaud, Stéphane; David, Jean-Philippe

    2014-12-01

    Worldwide evolution of mosquito resistance to chemical insecticides represents a major challenge for public health, and the future of vector control largely relies on the development of biological insecticides that can be used in combination with chemicals (integrated management), with the expectation that populations already resistant to chemicals will not become readily resistant to biological insecticides. However, little is known about the metabolic pathways affected by selection with chemical or biological insecticides. Here we show that Aedes aegypti, a laboratory mosquito strain selected with a biological insecticide (Bacillus thuringiensis israelensis, Bti) evolved increased transcription of many genes coding for endopeptidases while most genes coding for detoxification enzymes were under-expressed. By contrast, in strains selected with chemicals, genes encoding detoxification enzymes were mostly over-expressed. In all the resistant strains, genes involved in immune response were under-transcribed, suggesting that basal immunity might be a general adjustment variable to compensate metabolic costs caused by insecticide selection. Bioassays generally showed no evidence for an increased susceptibility of selected strains towards the other insecticide type, and all chemical-resistant strains were as susceptible to Bti as the unselected parent strain, which is a good premise for sustainable integrated management of mosquito populations resistant to chemicals.

  7. Expression profile of genes during resistance reversal in a temephos selected strain of the dengue vector, Aedes aegypti.

    Directory of Open Access Journals (Sweden)

    Clare Strode

    Full Text Available BACKGROUND: The mosquito Aedes aegypti is one of the most important disease vectors because it transmits two major arboviruses, dengue and yellow fever, which cause significant global morbidity and mortality. Chemical insecticides form the cornerstone of vector control. The organophosphate temephos a larvicide recommended by WHO for controlling Ae. aegypti, however, resistance to this compound has been reported in many countries, including Brazil. METHODOLOGY/PRINCIPAL FINDINGS: The aim of this study was to identify genes implicated in metabolic resistance in an Ae. aegypti temephos resistant strain, named RecR, through microarray analysis. We utilized a custom 'Ae. aegypti detox chip' and validated microarray data through RT-PCR comparing susceptible and resistant individuals. In addition, we analyzed gene expression in 4(th instar larvae from a reversed susceptible strain (RecRev, exposed and unexposed to temephos. The results obtained revealed a set of 13 and 6 genes significantly over expressed in resistant adult mosquitoes and larvae, respectively. One of these genes, the cytochrome P450 CYP6N12, was up-regulated in both stages. RT-PCR confirmed the microarray results and, additionally, showed no difference in gene expression between temephos exposed and unexposed RecRev mosquitoes. This suggested that the differences in the transcript profiles among the strains are heritable due to a selection process and are not caused by immediate insecticide exposure. Reversal of temephos resistance was demonstrated and, importantly, there was a positive correlation between a decrease in the resistance ratio and an accompanying decrease in the expression levels of previously over expressed genes. Some of the genes identified here have also been implicated in metabolic resistance in other mosquito species and insecticide resistant populations of Ae. aegypti. CONCLUSIONS/SIGNIFICANCE: The identification of gene expression signatures associated to

  8. Electroantennogram, flight orientation and oviposition responses of Anopheles stephensi and Aedes aegypti to a fatty acid ester-propyl octadecanoate.

    Science.gov (United States)

    Seenivasagan, Thangaraj; Sharma, Kavita R; Prakash, Shri

    2012-10-01

    Studies were carried out to evaluate the role of a C(21)-fatty acid ester; propyl octadecanoate (PO) for olfaction-mediated behavioral responses of urban malaria vector, Anopheles stephensi and dengue vector, Aedes aegypti mosquitoes using electroantennogram (EAG), flight orientation and oviposition experiments. Dose dependent electrophysiological responses were recorded for PO from the antenna of both mosquito species in which 10(-5) g elicited significant EAG response. An. stephensi exhibited 2.4, 4.2 and 5.5 fold increased EAG response compared to control, while Ae. aegypti showed 1.9, 4.6 and 5.8 fold EAG responses respectively at 10(-7) g, 10(-6) g and 10(-5) g doses. In the Y-tube olfactometer, 77-80% gravid females of An. stephensi, and 64-77% of Ae. aegypti were caught in the chambers releasing 10(-6) g and 10(-5) g plume of PO. The synthetic fatty acid ester loaded onto an effervescent tablet at 0.1 mg/L, 1 mg/L and 10 mg/L elicited increased ovipositional responses from gravid mosquitoes compared to control. The oviposition activity indices (OAI) of An. stephensi females were +0.40, +0.51 and +0.58, whereas the OAI for Ae. aegypti females were +0.05, +0.36 and +0.57 respectively in 0.1, 1, 10 mg/L of PO; indicated concentration dependent increased egg deposition. Similarly, in the residual activity studies, oviposition substrates treated with PO on effervescent tablet at 1mg/L and 10mg/L received significantly increased egg deposition by gravid females of both mosquito species for up to 1 week compared to control substrates. PO can potentially be used in ovitraps to monitor An. stephensi and Ae. aegypti populations in the vector surveillance programs.

  9. A novel autocidal ovitrap for the surveillance and control of Aedes aegypti.

    Science.gov (United States)

    Barrera, Roberto; Mackay, Andrew J; Amador, Manuel

    2013-09-01

    We describe an inexpensive autocidal ovitrap for Aedes aegypti that uses cross-linked polyacrylamide (PAM) gel as the oviposition substrate. Aedes aegypti females readily laid eggs on PAM gel that had been hydrated with either hay infusion or water. Aedes aegypti larvae that hatched from their eggs desiccated on the surface of the PAM gel. We tested the effects of gel hydration, texture, and type of attractant on trap performance, and compared the capture rates of standard ovitraps with those of PAM gel ovitraps in the field. The results showed that the number of eggs did not vary over a range of gel hydration levels (40-100%) and that more eggs were recovered from ovitraps containing coarse gel than from those containing homogenized gel. The PAM gel hydrated with hay infusion was more attractive to gravid female mosquitoes than gel hydrated with water. In the field, the number of eggs recovered from autocidal ovitraps with PAM gel was similar to that recovered from standard ovitraps with hay infusion.

  10. [Larvicidal activity of Anacardium humile Saint Hill oil on Aedes aegypti (Linnaeus, 1762) (Diptera, Culicidae)].

    Science.gov (United States)

    Porto, Karla Rejane de Andrade; Roel, Antonia Railda; Silva, Márcia Marlene da; Coelho, Rosemary Matias; Scheleder, Eloty Justina Dias; Jeller, Alex Haroldo

    2008-01-01

    The objective of this study was to evaluate the potential of Anacardium humile (monkey nuts) against Aedes aegypti larvae. Hexane, ethanol and aqueous extracts and oil from leaves were obtained from plant material collected from the Brazilian savanna. These were tested at concentrations of 1%, 0.5%, 0.25%, 0.125%, 0.05% and 0.0125%, diluted in 1% dimethyl sulfoxide. The dead larvae were counted 24 hours later. The Probit analysis method was used to obtain the LC(50) and the respective confidence intervals. The conclusion was that only the oil extracted from Anacardium humile leaves caused 100% mortality among fourth-instar Aedes aegypti larvae, using concentrations of up to 0.125%. This seems to indicate that the active ingredients are present in the most apolar phase. This indicates that this plant has potential use as a larvicide against Aedes aegypti. However, new tests should be carried out using other plant organs, as well as using other methods and solvents for the extraction.

  11. Insecticide-driven patterns of genetic variation in the dengue vector Aedes aegypti in Martinique Island.

    Directory of Open Access Journals (Sweden)

    Sébastien Marcombe

    Full Text Available Effective vector control is currently challenged worldwide by the evolution of resistance to all classes of chemical insecticides in mosquitoes. In Martinique, populations of the dengue vector Aedes aegypti have been intensively treated with temephos and deltamethrin insecticides over the last fifty years, resulting in heterogeneous levels of resistance across the island. Resistance spreading depends on standing genetic variation, selection intensity and gene flow among populations. To determine gene flow intensity, we first investigated neutral patterns of genetic variability in sixteen populations representative of the many environments found in Martinique and experiencing various levels of insecticide pressure, using 6 microsatellites. Allelic richness was lower in populations resistant to deltamethrin, and consanguinity was higher in populations resistant to temephos, consistent with a negative effect of insecticide pressure on neutral genetic diversity. The global genetic differentiation was low, suggesting high gene flow among populations, but significant structure was found, with a pattern of isolation-by-distance at the global scale. Then, we investigated adaptive patterns of divergence in six out of the 16 populations using 319 single nucleotide polymorphisms (SNPs. Five SNP outliers displaying levels of genetic differentiation out of neutral expectations were detected, including the kdr-V1016I mutation in the voltage-gated sodium channel gene. Association tests revealed a total of seven SNPs associated with deltamethrin resistance. Six other SNPs were associated with temephos resistance, including two non-synonymous substitutions in an alkaline phosphatase and in a sulfotransferase respectively. Altogether, both neutral and adaptive patterns of genetic variation in mosquito populations appear to be largely driven by insecticide pressure in Martinique.

  12. Reduced oviposition of Aedes aegypti gravid females in domestic containers with predatory fish.

    Science.gov (United States)

    Pamplona, Luciano de Góes Cavalcanti; Alencar, Carlos H; Lima, José Wellington O; Heukelbach, Jörg

    2009-11-01

    The presence of pathogens or predators in water may alter oviposition behaviour of gravid female Aedes aegypti mosquitoes. We evaluated the oviposition behaviour of A. aegypti in recipients containing larvivorous fish (Betta splendens and Poecilia reticulata). In four breeders, fish specimens were placed in 15 l of dechlorined water. Four control breeders only contained dechlorined water. Breeders with eucatex ovitraps and approximately 100 male and female mosquitoes were placed in wire netting cages. During a period of 7 weeks, eggs on the ovitraps were counted weekly. The median number of eggs laid in recipients with B. splendens (32.5/week) was lower than in those with P. reticulata (200.5/week) and the control group (186.5/week; P splendens showed a lower position than those used as controls (-0627). We conclude that B. splendens can be used to effectively prevent gravid A. aegypti females from laying eggs in large water containers.

  13. The impact of temperature on the bionomics of Aedes (Stegomyia) aegypti, with special reference to the cool geographic range margins.

    Science.gov (United States)

    Eisen, Lars; Monaghan, Andrew J; Lozano-Fuentes, Saul; Steinhoff, Daniel F; Hayden, Mary H; Bieringer, Paul E

    2014-05-01

    The mosquito Aedes (Stegomyia) aegypti (L.), which occurs widely in the subtropics and tropics, is the primary urban vector of dengue and yellow fever viruses, and an important vector of chikungunya virus. There is substantial interest in how climate change may impact the bionomics and pathogen transmission potential of this mosquito. This Forum article focuses specifically on the effects of temperature on the bionomics of Ae. aegypti, with special emphasis on the cool geographic range margins where future rising temperatures could facilitate population growth. Key aims are to: 1) broadly define intra-annual (seasonal) patterns of occurrence and abundance of Ae. aegypti, and their relation to climate conditions; 2) synthesize the existing quantitative knowledge of how temperature impacts the bionomics of different life stages of Ae. aegypti; 3) better define the temperature ranges for which existing population dynamics models for Ae. aegypti are likely to produce robust predictions; 4) explore potential impacts of climate warming on human risk for exposure to Ae. aegypti at its cool range margins; and 5) identify knowledge or data gaps that hinder our ability to predict risk of human exposure to Ae. aegypti at the cool margins of its geographic range now and in the future. We first outline basic scenarios for intra-annual occurrence and abundance patterns for Ae. aegypti, and then show that these scenarios segregate with regard to climate conditions in selected cities where they occur. We then review how near-constant and intentionally fluctuating temperatures impact development times and survival of eggs and immatures. A subset of data, generated in controlled experimental studies, from the published literature is used to plot development rates and survival of eggs, larvae, and pupae in relation to water temperature. The general shape of the relationship between water temperature and development rate is similar for eggs, larvae, and pupae. Once the lower

  14. Molecular characterization of Aedes aegypti (L. (Diptera: Culicidae of Easter Island based on analysis of the mitochondrial ND4 gene

    Directory of Open Access Journals (Sweden)

    Claudia Andrea Núñez

    2016-06-01

    Full Text Available ABSTRACT Aedes aegypti mosquitoes are the main vector of viruses Dengue, Zika and Chikungunya. Shortly after the first report of the dengue vector Ae. aegypti in Easter Island (Rapa Nui in late 2000, the first disease outbreak dengue occurred. Viral serotyping during the 2002 outbreak revealed a close relationship with Pacific DENV-1 genotype IV viruses, supporting the idea that the virus most likely originated in Tahiti. Mitochondrial NADH dehydrogenase subunit 4 (ND4 DNA sequences generated from 68 specimens of Ae. aegypti from Easter Island reporting a unique finding of a single maternal lineage of Ae. aegypti on Easter Island.

  15. A study on container breeding mosquitoes with special reference to Aedes (Stegomyia aegypti and Aedes albopictus in Thiruvananthapuram district, India

    Directory of Open Access Journals (Sweden)

    K. Vijayakumar

    2014-01-01

    Full Text Available Background & objectives: The district of Thiruvananthapuram reports the maximum number of cases of dengue in the state of Kerala. To determine the larval diversity, density and breeding site preferences of Aedes mosquitoes, during pre-monsoon and monsoon periods in urban and rural areas of Thiruvananthapuram district. Methods: Based on the daily reports of dengue cases, 70 clusters were identified in Thiruvananthapuram district. A cross-sectional larval survey was done in the domestic and peri-domestic areas of 1750 houses, using the WHO standard techniques. The larval indices were calculated, and the larvae were identified by using taxonomic keys. Urban and rural differences and the variations during pre-monsoon and monsoon seasons were also studied. Results: In the surveyed houses, 15% had mosquito breeding, with 88% having Aedes larvae. The house index, container index and the breteau index were 13.08, 13.28 and 16.57%, respectively. About 86% of the clusters were found positive for Aedes albopictus and 11% for Ae. aegypti. Aedes albopictus was distributed almost equally in rural and urban clusters, whereas the distribution of Ae. aegypti was significantly higher in urban areas (p = 0.03. The most common water holding containers found (outdoor were of plastic, followed by coconut shells. The breeding preference ratio was highest for tyres. Significantly lesser positivity was found for containers during monsoon period when compared to pre-monsoon period. Conclusion: The geographical distribution of Ae. albopictus is significantly high in peri-domestic areas and, therefore, its epidemiological role in the widespread disease occurrence needs to be studied. The discarded tyres being the most preferred breeding sites, where IEC activities will help in source reduction.

  16. Comparative Susceptibility of Aedes albopictus and Aedes aegypti to Dengue Virus Infection After Feeding on Blood of Viremic Humans: Implications for Public Health.

    Science.gov (United States)

    Whitehorn, James; Kien, Duong Thi Hue; Nguyen, Nguyet Minh; Nguyen, Hoa L; Kyrylos, Peter P; Carrington, Lauren B; Tran, Chau Nguyen Bich; Quyen, Nguyen Thanh Ha; Thi, Long Vo; Le Thi, Dui; Truong, Nguyen Thanh; Luong, Tai Thi Hue; Nguyen, Chau Van Vinh; Wills, Bridget; Wolbers, Marcel; Simmons, Cameron P

    2015-10-15

    Aedes albopictus is secondary to Aedes aegypti as a vector of dengue viruses (DENVs) in settings of endemicity, but it plays an important role in areas of dengue emergence. This study compared the susceptibility of these 2 species to DENV infection by performing 232 direct blood-feeding experiments on 118 viremic patients with dengue in Vietnam. Field-derived A. albopictus acquired DENV infections as readily as A. aegypti after blood feeding. Once infected, A. albopictus permitted higher concentrations of DENV RNA to accumulate in abdominal tissues, compared with A. aegypti. However, the odds of A. albopictus having infectious saliva were lower than the odds observed for A. aegypti (odds ratio, 0.70; 95% confidence interval, .52-.93). These results quantitate the susceptibility of A. albopictus to DENV infection and will assist parameterization of models for predicting disease risk in settings where A. albopictus is present.

  17. Reservatórios domiciliares de água e controle do Aedes aegypti Household water reservoirs and control of Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Oswaldo Paulo Forattini

    2003-10-01

    Full Text Available Os reservatórios domiciliares de água, comumente conhecidos como caixas d'água, constituem fonte de desenvolvimento do Aedes aegypti. Em áreas com edificações precárias existe tendência para situar essas caixas sobre a laje das casas. Todavia, observa-se na arquitetura moderna a mesma situação em relação a esses recipientes, mesmo em condomínios de luxo. Assim sendo, chama-se a atenção para a necessidade de, na vigilância entomológica, ter cuidado especial para tais reservatórios domiciliares de água.Water reservoirs for domestic use are important sites for the development of Aedes aegypti. In poor areas, these reservoirs are often located outdoors upon flat rooftops. In modern architecture buildings, however, the same is seen even in high-class condominiums. Special attention should be given to these modern architectural constructions during entomological surveillance.

  18. Detection of all four dengue serotypes in Aedes aegypti female mosquitoes collected in a rural area in Colombia

    Directory of Open Access Journals (Sweden)

    Rosalía Pérez-Castro

    2016-04-01

    Full Text Available The Aedes aegypti vector for dengue virus (DENV has been reported in urban and periurban areas. The information about DENV circulation in mosquitoes in Colombian rural areas is limited, so we aimed to evaluate the presence of DENV in Ae. aegypti females caught in rural locations of two Colombian municipalities, Anapoima and La Mesa. Mosquitoes from 497 rural households in 44 different rural settlements were collected. Pools of about 20 Ae. aegypti females were processed for DENV serotype detection. DENV in mosquitoes was detected in 74% of the analysed settlements with a pool positivity rate of 62%. The estimated individual mosquito infection rate was 4.12% and the minimum infection rate was 33.3/1,000 mosquitoes. All four serotypes were detected; the most frequent being DENV-2 (50% and DENV-1 (35%. Two-three serotypes were detected simultaneously in separate pools. This is the first report on the co-occurrence of natural DENV infection of mosquitoes in Colombian rural areas. The findings are important for understanding dengue transmission and planning control strategies. A potential latent virus reservoir in rural areas could spill over to urban areas during population movements. Detecting DENV in wild-caught adult mosquitoes should be included in the development of dengue epidemic forecasting models.

  19. Sublethal effect of pyriproxyfen released from a fumigant formulation on fecundity, fertility, and ovicidal action in Aedes aegypti (Diptera: Culicidae).

    Science.gov (United States)

    Harburguer, Laura; Zerba, Eduardo; Licastro, Susana

    2014-03-01

    Dengue and dengue hemorrhagic fever are mosquito-borne viral diseases that coincide with the distribution of Aedes aegypti (L.), the primary vector in the tropical and semitropical world. With no available vaccine, controlling the dengue vector is essential to prevent epidemics. The effects of the insect growth regulator pyriproxyfen on Ae. aegypti adults that survived a treatment with a sublethal dose were investigated in the laboratory, including effects on their reproductive potential. Pyriproxyfen was released from a fumigant formulation at a dose causing 20 or 40% emergence inhibition (%EI). Females were dissected before and after blood feeding and the basal follicle number was counted. There were no differences between the control and treated group on the basal follicle number for both doses used. Fertility and fecundity were reduced at a concentration of EI40 but no at EI20. There was no ovicidal effect of pyriproxyfen by immersion of eggs in treated water neither when the females laid their eggs on a pyriproxyfen-treated surface. This work shows that sublethal doses of pyriproxyfen can have effects on fertility and fecundity ofAe. aegypti females, which together with its larvicidal activity could contribute to an overall decrease in a given population.

  20. Detection of all four dengue serotypes in Aedes aegypti female mosquitoes collected in a rural area in Colombia.

    Science.gov (United States)

    Pérez-Castro, Rosalía; Castellanos, Jaime E; Olano, Víctor A; Matiz, María Inés; Jaramillo, Juan F; Vargas, Sandra L; Sarmiento, Diana M; Stenström, Thor Axel; Overgaard, Hans J

    2016-04-01

    The Aedes aegypti vector for dengue virus (DENV) has been reported in urban and periurban areas. The information about DENV circulation in mosquitoes in Colombian rural areas is limited, so we aimed to evaluate the presence of DENV in Ae. aegypti females caught in rural locations of two Colombian municipalities, Anapoima and La Mesa. Mosquitoes from 497 rural households in 44 different rural settlements were collected. Pools of about 20 Ae. aegypti females were processed for DENV serotype detection. DENV in mosquitoes was detected in 74% of the analysed settlements with a pool positivity rate of 62%. The estimated individual mosquito infection rate was 4.12% and the minimum infection rate was 33.3/1,000 mosquitoes. All four serotypes were detected; the most frequent being DENV-2 (50%) and DENV-1 (35%). Two-three serotypes were detected simultaneously in separate pools. This is the first report on the co-occurrence of natural DENV infection of mosquitoes in Colombian rural areas. The findings are important for understanding dengue transmission and planning control strategies. A potential latent virus reservoir in rural areas could spill over to urban areas during population movements. Detecting DENV in wild-caught adult mosquitoes should be included in the development of dengue epidemic forecasting models.

  1. Fitness costs of resistance to Bti toxins in the dengue vector Aedes aegypti.

    Science.gov (United States)

    Paris, Margot; David, Jean-Philippe; Despres, Laurence

    2011-08-01

    Sustainable insect vector disease control strategies involve delaying the evolution of resistance to insecticides in natural populations. The evolutionary dynamics of resistance in the field is highly dependent on the fitness cost of resistance alleles. To successfully manage resistance evolution in target species, it is not only important to find evidence of fitness cost in resistant insects, but also to determine at which stage of the insect's life it is expressed. Here, we show that resistance costs to the bacterio-insecticide Bacillus thuringiensis subsp. israelensis (Bti) are expressed at all the life-stages of the dengue vector Aedes aegypti, including egg survival, larval development time, and female fecundity. We show that the storage of eggs for 4 months is long enough to counter-select resistance alleles. This suggests that Bti resistance is not likely to evolve in temperate climates where most mosquito species overwinter as eggs. In tropical regions with a rapid turn-over of generations, resistance alleles are likely to be counter-selected in only few generations without treatment through fitness costs expressed in terms of larval development time and female fecundity. We discuss the implications of our findings in terms of sustainable management strategies in light of the challenge of preserving the long-term efficiency of this environmentally safe anti-mosquito bio-insecticide.

  2. An aggregation pheromone modulates lekking behavior in the vector mosquito Aedes aegypti (Diptera: Culicidae).

    Science.gov (United States)

    Cabrera, Maira; Jaffe, Klaus

    2007-03-01

    Males of Aedes aegypti mosquitoes formed swarms in the laboratory, triggered by the onset of the photophase or by the presence of odors from a rat (which is a potential host for females). The swarm attracted both males and females and increased mating activity. The number of copulas per mosquito was positively correlated with the number of mosquitoes in the swarm and with the duration of the swarm. Swarming and mating activity increased with the presence of a host for females. Young sexually immature males, less than 24 h old, flew but did not swarm nor copulate. Observations using an olfactometer showed that swarming males produced a volatile pheromone that stimulates the flying activity of females at a distance. Females also produce a volatile attractant. The results suggest that males, and possibly also females, produce an aggregation pheromone that attracts males and females towards the swarm. The characteristics of the pheromone-mediated swarm may be described as a 3-dimensional lek. Our results suggest that the development of pheromone-based control systems and/or pheromone traps for the monitoring of vector populations is feasible, adding a new tool to combat this vector of several human pathogens.

  3. Indonesian strategy in reducing Aedes aegypty diseases in ASEAN economic community era

    Directory of Open Access Journals (Sweden)

    Ramadhan Tosepu

    2015-07-01

    Full Text Available Indonesia is one of the countries that has a very strategic role in the ASEAN region. The state of readiness of Indonesia in ASEAN Economic Community (AEC 2015 will involve all elements of the society due to very large population. Economically, Indonesia should be able to compete with ASEAN countries, and human resources should also be prepared. On the other hand, shifts and movements of the people between countries will be increased, this could be a threat for the country. However, those who are ready with the human resources, it might be a positive value, otherwise, it might be a weakness for unprepared countries. AEC era is not only economic power that should be concerned, but also health problems that should be a priority. Nowadays, the Aedes aegypti cases are still high in Indonesia. This paper aims to describe the strategies to reduce the disease, which also be a focus of government. [Int J Res Med Sci 2015; 3(7.000: 1578-1582

  4. Vector competence of Aedes aegypti mosquitoes for filarial nematodes is affected by age and nutrient limitation.

    Science.gov (United States)

    Ariani, Cristina V; Juneja, Punita; Smith, Sophia; Tinsley, Matthew C; Jiggins, Francis M

    2015-01-01

    Mosquitoes are one of the most important vectors of human disease. The ability of mosquitoes to transmit disease is dependent on the age structure of the population, as mosquitoes must survive long enough for the parasites to complete their development and infect another human. Age could have additional effects due to mortality rates and vector competence changing as mosquitoes senesce, but these are comparatively poorly understood. We have investigated these factors using the mosquito Aedes aegypti and the filarial nematode Brugia malayi. Rather than observing any effects of immune senescence, we found that older mosquitoes were more resistant, but this only occurred if they had previously been maintained on a nutrient-poor diet of fructose. Constant blood feeding reversed this decline in vector competence, meaning that the number of parasites remained relatively unchanged as mosquitoes aged. Old females that had been maintained on fructose also experienced a sharp spike in mortality after an infected blood meal ("refeeding syndrome") and few survived long enough for the parasite to develop. Again, this effect was prevented by frequent blood meals. Our results indicate that old mosquitoes may be inefficient vectors due to low vector competence and high mortality, but that frequent blood meals can prevent these effects of age.

  5. Involvement of metabolic resistance and F1534C kdr mutation in the pyrethroid resistance mechanisms of Aedes aegypti in India.

    Science.gov (United States)

    Muthusamy, R; Shivakumar, M S

    2015-08-01

    Pesticide resistance poses a serious problem for worldwide mosquito control programs. Resistance to insecticides can be caused by an increased metabolic detoxification of the insecticide and/or by target site insensitivity. In the present study, we estimated the tolerance of Indian Aedes aegypti populations using adult bioassays that revealed high resistance levels of the field populations to permethrin (RR-6, 5.8 and 5.1 folds) compared to our susceptible population. Enzymatic assays revealed increased activities of glutathione S-transferase and carboxylesterase enzymes in the field populations comparatively to the susceptible population. PBO synergist assays did not confirm that cytochrome P450 monooxygenase metabolic detoxification acted as a major cause of resistance. Hence the role of target site resistance was therefore investigated. A single substitution Phe1534Cys in the voltage gated sodium channel was found in domain III, segment 6 (III-S6) of the resistance populations (allele frequency=0.59, 0.51 and 0.47) suggesting its potential role in permethrin resistance in A. aegypti.

  6. Factors influencing the seasonal abundance of Aedes (Stegomyia) aegypti and the control strategy of dengue and dengue haemorrhagic fever in Thanlyin Township, Yangon City, Myanmar.

    Science.gov (United States)

    Oo, T T; Storch, V; Madon, M B; Becker, N

    2011-08-01

    From June 2006 to May 2007, mosquito surveys were conducted in Thanlyin Township, Yangon City, Myanmar, to determine factors influencing the abundance of Aedes aegypti (Stegomyia aegypti) during the rainy season. Both the biological and environmental factors were included in this study. Increase in the hatchability of egg, larval survival rate, the shortened larval life-span and increased pupation rates supplemented by rainfall (i.e. continuous flooding of the containers, stimulate the continuous hatching of eggs) were observed for correlation with the increase in population density of Ae. aegypti during the rainy season in the study area. Control strategy of Ae. aegypti to analyze the infestation in the community (study area) with larval Ae. aegypti, integrated management measures including health education, attitudes and practices regarding dengue and dengue haemorrhagic fever, transmission of the disease and possible preventive measures, reduction of breeding sites and testing the efficacy of Bacillus thuringiensis israelensis (B.t.i.) with respect to the reduction level of Ae. aegypti larvae in breeding sources, were taken into consideration.

  7. Expression of heat shock proteins (HSPs) in Aedes aegypti (L) and Aedes albopictus (Skuse) (Diptera: Culicidae) larvae in response to thermal stress.

    Science.gov (United States)

    Sivan, Arun; Shriram, Ananganallur Nagarajan; Muruganandam, Nagarajan; Thamizhmani, Ramanathan

    2017-03-01

    Climatic changes are responsible, to a certain extent for the occurrence and spread of arboviral pathogens world over. Temperature is one of the important abiotic factors influencing the physiological processes of mosquitoes. Several genes of heat shock protein (HSP) families are known to be expressed in mosquitoes, which aid in overcoming stress induced by elevated temperature. In order to understand expression of HSP family genes in the Andaman population of Aedes aegypti and Aedes albopictus, we used quantitative real-time polymerase chain reaction (qPCR) to examine expression levels of HSPs in response to thermal stress under laboratory and in actual field conditions. HSP genes AeaHsp26, AeaHsp83 and AeaHsc70 were examined by comparing relative transcript expression levels at 31°C, 33°C, 34°C, 37°C and 39°C respectively. Enhanced up-regulation of HSPs was evident in third instar larvae of Ae. aegypti with rise in water temperatures (31°C, 33°C, 34°C) in the containers in the nature and thermally stressed (37°C and 39°C) in laboratory conditions. In Ae. albopictus up-regulation of HSPs was observed in field conditions at 34°C only and when thermally treated at 37°C, while down regulation was evident in larvae subjected to thermal stress in laboratory at 39°C. Data on expression levels revealed that larvae of Ae. aegypti was tolerant to thermal stress, while Ae. albopictus larvae was sensitive to heat shock treatment. Statistical analysis indicated that AeaHsp83 genes were significantly up-regulated in Ae. aegypti larvae after 360min exposure to high temperature (39°C). The difference in expression levels of AeaHsp26, AeaHsc70 and AeaHsp83 genes in Ae. albopictus larvae was statistically significant between different exposure temperatures. All of these genes were significantly up-regulated at 37°C. These results indicate that AeaHsp26, AeaHsc70 and AeaHsp83 are important markers of stress and perhaps function as proteins conferring protection and

  8. A dengue receptor as possible genetic marker of vector competence in Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Black William C

    2008-07-01

    Full Text Available Abstract Background Vector competence refers to the intrinsic permissiveness of an arthropod vector for infection, replication and transmission of a virus. Notwithstanding studies of Quantitative Trait Loci (QTL that influence the ability of Aedes aegypti midgut (MG to become infected with dengue virus (DENV, no study to date has been undertaken to identify genetic markers of vector competence. Furthermore, it is known that mosquito populations differ greatly in their susceptibility to flaviviruses. Differences in vector competence may, at least in part, be due to the presence of specific midgut epithelial receptors and their identification would be a significant step forward in understanding the interaction of the virus with the mosquito. The first interaction of DENV with the insect is through proteins in the apical membrane of the midgut epithelium resulting in binding and receptor-mediated endocytosis of the virus, and this determines cell permissiveness to infection. The susceptibility of mosquitoes to infection may therefore depend on their specific virus receptors. To study this interaction in Ae. aegypti strains that differ in their vector competence for DENV, we investigated the DS3 strain (susceptible to DENV, the IBO-11 strain (refractory to infection and the membrane escape barrier strain, DMEB, which is infected exclusively in the midgut epithelial cells. Results (1 We determined the MG proteins that bind DENV by an overlay protein binding assay (VOPBA in Ae. aegypti mosquitoes of the DS3, DMEB and IBO-11 strains. The main protein identified had an apparent molecular weight of 67 kDa, although the protein identified in the IBO-11 strain showed a lower mass (64 kDa. (2 The midgut proteins recognized by DENV were also determined by VOPBA after two-dimensional gel electrophoresis. (3 To determine whether the same proteins were identified in all three strains, we obtained polyclonal antibodies against R67 and R64 and tested them against

  9. Oviposition and Embryotoxicity of Indigofera suffruticosa on Early Development of Aedes aegypti (Diptera: Culicidae).

    Science.gov (United States)

    Vieira, Jeymesson Raphael Cardoso; Leite, Roberta Maria Pereira; Lima, Izabela Rangel; Navarro, Daniela do Amaral Ferraz; Bianco, Everson Miguel; Leite, Sônia Pereira

    2012-01-01

    Aqueous extract of Indigofera suffruticosa leaves obtained by infusion was used to evaluate the oviposition, its effect on development of eggs and larvae, and morphological changes in larvae of Aedes aegypti. The bioassays were carried out with aqueous extract in different concentrations on eggs, larvae, and female mosquitoes, and the morphological changes were observed in midgut of larvae. The extract showed repellent activity on A. aegypti mosquitoes, reducing significantly the egg laying by females with control substrate (343 (185-406)) compared with the treated substrate (88 (13-210)). No eclosion of A. aegypti eggs at different concentrations studied was observed. The controleclodedin 35%. At concentration of 250 μg/mL, 93.3% of larvae remained in the second instar of development and at concentrations of 500, 750, and 1000 μg/mL the inhibitory effect was lower with percentages of 20%, 53.3%, and 46.6%, respectively. Morphological changes like disruption on the peritrophic envelope (PE), discontinued underlying epithelium, increased gut lumen, and segments with hypertrophic aspects were observed in anterior region of medium midgut of larvae of A. aegypti. The results showed repellent activity, specific embryotoxicity, and general growth retardation in A. aegypti by medium containing aqueous extract of I. suffruticosa leaves.

  10. Oviposition and Embryotoxicity of Indigofera suffruticosa on Early Development of Aedes aegypti (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    Jeymesson Raphael Cardoso Vieira

    2012-01-01

    Full Text Available Aqueous extract of Indigofera suffruticosa leaves obtained by infusion was used to evaluate the oviposition, its effect on development of eggs and larvae, and morphological changes in larvae of Aedes aegypti. The bioassays were carried out with aqueous extract in different concentrations on eggs, larvae, and female mosquitoes, and the morphological changes were observed in midgut of larvae. The extract showed repellent activity on A. aegypti mosquitoes, reducing significantly the egg laying by females with control substrate (343 (185–406 compared with the treated substrate (88 (13–210. No eclosion of A. aegypti eggs at different concentrations studied was observed. The controleclodedin 35%. At concentration of 250 μg/mL, 93.3% of larvae remained in the second instar of development and at concentrations of 500, 750, and 1000 μg/mL the inhibitory effect was lower with percentages of 20%, 53.3%, and 46.6%, respectively. Morphological changes like disruption on the peritrophic envelope (PE, discontinued underlying epithelium, increased gut lumen, and segments with hypertrophic aspects were observed in anterior region of medium midgut of larvae of A. aegypti. The results showed repellent activity, specific embryotoxicity, and general growth retardation in A. aegypti by medium containing aqueous extract of I. suffruticosa leaves.

  11. Myco-synthesis of silver nanoparticles using Beauveria bassiana against dengue vector, Aedes aegypti (Diptera: Culicidae).

    Science.gov (United States)

    Banu, A Najitha; Balasubramanian, C

    2014-08-01

    The efficacy of silver synthesized biolarvicide with the help of entomopathogenic fungus, Beauveria bassiana, was assessed against the different larval instars of dengue vector, Aedes aegypti. The silver nanoparticles were observed and characterized by a scanning electron microscope (SEM) and energy-dispersive X-ray (EDX). A surface plasmon resonance band was observed at 420 nm in UV-vis spectrophotometer. The characterization was confirmed by shape (spherical), size 36.88-60.93 nm, and EDX spectral peak at 3 keV of silver nanoparticles. The synthesized silver nanoparticles have been tested against the different larval instars of Ae. aegypti at different concentrations for a period of 24 h. Ae. aegypti larvae were found more susceptible to the synthesized silver nanoparticles. The LC50 and LC90 values are 0.79 and 1.09 ppm with respect to the Ae. aegypti treated with B. bassiana (Bb) silver nanoparticles (AgNPs). First and second instar larvae of Ae. aegypti have shown cent percent mortality while third and fourth instars found 50.0, 56.6, 70.0, 80.0, and 86.6 and 52.4, 60.0, 68.5, 76.0, and 83.3% mortality at 24 h of exposure in 0.06 and 1.00 ppm, respectively. It is suggested that the entomopathogenic fungus synthesized silver nanoparticles would be appropriate for environmentally safer and greener approach for new leeway in vector control strategy through a biological process.

  12. Genome Investigations of Vector Competence in Aedes aegypti to Inform Novel Arbovirus Disease Control Approaches

    Directory of Open Access Journals (Sweden)

    David W. Severson

    2016-10-01

    Full Text Available Dengue (DENV, yellow fever, chikungunya, and Zika virus transmission to humans by a mosquito host is confounded by both intrinsic and extrinsic variables. Besides virulence factors of the individual arboviruses, likelihood of virus transmission is subject to variability in the genome of the primary mosquito vector, Aedes aegypti. The “vectorial capacity” of A. aegypti varies depending upon its density, biting rate, and survival rate, as well as its intrinsic ability to acquire, host and transmit a given arbovirus. This intrinsic ability is known as “vector competence”. Based on whole transcriptome analysis, several genes and pathways have been predicated to have an association with a susceptible or refractory response in A. aegypti to DENV infection. However, the functional genomics of vector competence of A. aegypti is not well understood, primarily due to lack of integrative approaches in genomic or transcriptomic studies. In this review, we focus on the present status of genomics studies of DENV vector competence in A. aegypti as limited information is available relative to the other arboviruses. We propose future areas of research needed to facilitate the integration of vector and virus genomics and environmental factors to work towards better understanding of vector competence and vectorial capacity in natural conditions.

  13. Genome Investigations of Vector Competence in Aedes aegypti to Inform Novel Arbovirus Disease Control Approaches.

    Science.gov (United States)

    Severson, David W; Behura, Susanta K

    2016-10-30

    Dengue (DENV), yellow fever, chikungunya, and Zika virus transmission to humans by a mosquito host is confounded by both intrinsic and extrinsic variables. Besides virulence factors of the individual arboviruses, likelihood of virus transmission is subject to variability in the genome of the primary mosquito vector, Aedes aegypti. The "vectorial capacity" of A. aegypti varies depending upon its density, biting rate, and survival rate, as well as its intrinsic ability to acquire, host and transmit a given arbovirus. This intrinsic ability is known as "vector competence". Based on whole transcriptome analysis, several genes and pathways have been predicated to have an association with a susceptible or refractory response in A. aegypti to DENV infection. However, the functional genomics of vector competence of A. aegypti is not well understood, primarily due to lack of integrative approaches in genomic or transcriptomic studies. In this review, we focus on the present status of genomics studies of DENV vector competence in A. aegypti as limited information is available relative to the other arboviruses. We propose future areas of research needed to facilitate the integration of vector and virus genomics and environmental factors to work towards better understanding of vector competence and vectorial capacity in natural conditions.

  14. Real-time PCR Tests in Dutch Exotic Mosquito Surveys; Implementation of Aedes aegypti and Aedes albopictus Identification Tests, and the Development of Tests for the Identification of Aedes atropalpus and Aedes japonicus japonicus (Diptera: Culicidae).

    Science.gov (United States)

    van de Vossenberg, B T L H; Ibáñez-Justicia, A; Metz-Verschure, E; van Veen, E J; Bruil-Dieters, M L; Scholte, E J

    2015-05-01

    Since 2009, The Netherlands Food and Consumer Product Safety Authority carries out surveys focusing on, amongst others, the presence of invasive mosquito species (IMS). Special attention is given to exotic container-breeding Aedes species Aedes aegypti (L.), Aedes albopictus (Skuse), Aedes atropalpus (Coquillett), and Aedes japonicus japonicus (Theobald). This study describes the implementation of real-time PCR tests described by Hill et al. (2008) for the identification of Ae. aegypti and Ae. albopictus, and the development of two novel real-time PCR tests for the identification of Ae. atropalpus and Ae. j. japonicus. Initial test showed that optimization of elements of the Ae. aegypti and Ae. albopictus tests was needed. Method validation tests were performed to determine if the implemented and newly developed tests are fit for routine diagnostics. Performance criteria of analytical sensitivity, analytical specificity, selectivity, repeatability, and reproducibility were determined. In addition, experiments were performed to determine the influence of environmental conditions on the usability of DNA extracted from mosquito specimens trapped in BG-Sentinel traps. The real-time PCR tests were demonstrated to be sensitive, specific, repeatable, reproducible, and are less prone to false negative results compared to partial cytochrome c oxidase I gene sequencing owing to the DNA fragmentation caused by environmental influences.

  15. Surveillance and control of Aedes aegypti in epidemic areas of Taiwan.

    Science.gov (United States)

    Lin, T H

    1994-12-01

    Aedes aegypti is the main, if not the only, vector of dengue fever in Taiwan. The dengue epidemics that have occurred in Taiwan correlate with the distribution of Aedes aegypti which is limited to south of the Tropic of Cancer. During the 1987 outbreak of dengue fever in Taiwan, the average larval density for the months July-December in the five cities and counties of southern Taiwan was 2,284 larvae per 100 households. After control measures were taken, the average annual larval density in the years from 1988 to 1993 declined to 1,580, 671, 442, 178, 110, and 88 larvae per 100 households, respectively. During 1987-1988, the number of confirmed cases and the Breteau index of Aedes aegypti showed an obvious positive relationship (r = 0.74) in the most heavily infected 25 cities and towns. Our Institute has conducted eight training courses since 1989 for 176 health workers who serve in their respective areas as local scouts for monitoring Aedes larval density. The number of cities and towns surveyed by them in the years 1990-1993 was 116, 149, 254, and 156, respectively. The number of households covered by space spraying with permethrin was 43, 183 in 1991, 11,186 in 1992 and 4,856 in 1993. Residual spraying with alphacypermethrin was applied to houses in areas where the Breteau index was above 35. The number of houses treated in the years 1990-1993 was 4,735, 32,279, 33,726 and 17,848, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Larvicidal potentiality, longevity and fecundity inhibitory activities of Bacillus sphaericus (Bs G3-IV on vector mosquitoes, Aedes aegypti and Culex quinquefasciatus

    Directory of Open Access Journals (Sweden)

    Arjunan Nareshkumar

    2012-12-01

    Full Text Available Intervention measures to control the transmission of vector-borne diseases include control of the vector population. In mosquito control, synthetic insecticides used against both the larvae (larvicides and adults (adulticides create numerous problems, such as environmental pollution, insecticide resistance and toxic hazards to humans. In the present study, a bacterial pesticide, Bacillus sphaericus (Bs G3-IV, was used to control the dengue and filarial vectors, Aedes aegypti and Culex quinquefasciatus. Bacillus sphaericus (Bs G3-IV was very effective against Aedes aegypti and Culex quinquefasciatus, showing significant larval mortality. Evaluated lethal concentrations (LC50 and LC90 were age-dependent, with early instars requiring a lower concentration compared with later stages of mosquitoes. Culex quinquefasciatus was more susceptible to Bacillus sphaericus (Bs G3-IV than was Aedes aegypti. Fecundity rate was highly reduced after treatment with different concentrations of Bacillus sphaericus (Bs G3-IV. Larval and pupal longevity both decreased after treatment with Bacillus sphaericus (Bs G3-IV, total number of days was lower in the B. sphaericus treatments compared with the control. Our results show the bacterial pesticide Bacillus sphaericus (Bs G3-IV to be an effective mosquito control agent that can be used for more integrated pest management programs.

  17. Exploring New Thermal Fog and Ultra-Low Volume Technologies to Improve Indoor Control of the Dengue Vector, Aedes aegypti (Diptera: Culicidae)

    Science.gov (United States)

    2014-07-01

    Dengue Vector, Aedes aegypti (Diptera: Culicidae) JAMES F. HARWOOD,1,2 MUHAMMAD FAROOQ,1 ALEC G. RICHARDSON,1 CARL W. DOUD,1 JOHN L. PUTNAM,3 DANIEL E...vector, Aedes aegypti (L.), inside human habitations must be performed quickly and efÞciently to reduce the risk of transmission during dengue...ULV]and thermal fog)wereevaluated for their ability toprovide immediate control of Ae. aegypti mosquitoes with a contact insecticide inside simulated

  18. Germ band retraction as a landmark in glucose metabolism during Aedes aegypti embryogenesis

    Directory of Open Access Journals (Sweden)

    Logullo Carlos

    2010-02-01

    Full Text Available Abstract Background The mosquito A. aegypti is vector of dengue and other viruses. New methods of vector control are needed and can be achieved by a better understanding of the life cycle of this insect. Embryogenesis is a part of A. aegypty life cycle that is poorly understood. In insects in general and in mosquitoes in particular energetic metabolism is well studied during oogenesis, when the oocyte exhibits fast growth, accumulating carbohydrates, lipids and proteins that will meet the regulatory and metabolic needs of the developing embryo. On the other hand, events related with energetic metabolism during A. aegypti embryogenesis are unknown. Results Glucose metabolism was investigated throughout Aedes aegypti (Diptera embryonic development. Both cellular blastoderm formation (CBf, 5 h after egg laying - HAE and germ band retraction (GBr, 24 HAE may be considered landmarks regarding glucose 6-phosphate (G6P destination. We observed high levels of glucose 6-phosphate dehydrogenase (G6PDH activity at the very beginning of embryogenesis, which nevertheless decreased up to 5 HAE. This activity is correlated with the need for nucleotide precursors generated by the pentose phosphate pathway (PPP, of which G6PDH is the key enzyme. We suggest the synchronism of egg metabolism with carbohydrate distribution based on the decreasing levels of phosphoenolpyruvate carboxykinase (PEPCK activity and on the elevation observed in protein content up to 24 HAE. Concomitantly, increasing levels of hexokinase (HK and pyruvate kinase (PK activity were observed, and PEPCK reached a peak around 48 HAE. Glycogen synthase kinase (GSK3 activity was also monitored and shown to be inversely correlated with glycogen distribution during embryogenesis. Conclusions The results herein support the hypothesis that glucose metabolic fate changes according to developmental embryonic stages. Germ band retraction is a moment that was characterized as a landmark in glucose

  19. Studies on insecticide susceptibility of Aedes aegypti (Linn) and Aedes albopictus (Skuse) vectors of dengue and chikungunya in Andaman and Nicobar Islands, India.

    Science.gov (United States)

    Sivan, Arun; Shriram, A N; Sunish, I P; Vidhya, P T

    2015-12-01

    Dengue and chikungunya are important arboviral infections in the Andaman Islands. Competent vectors viz. Aedes aegypti and Aedes albopictus are widely prevalent. The most effective proven method for interrupting the transmission of these arboviruses is vector control, mediated through insecticides. Currently, DDT and temephos are the insecticides used for vector control in these islands. Lack of information on susceptibility necessitated assessing the susceptibility profile of A. aegypti and A. albopictus. F1 generation of adult and larvae were assayed, and LT50 and LT90 values were interpreted following the World Health Organization (WHO) protocol. Adults were found resistant to DDT-4 % while susceptible to dieldrin-0.4 %. Against organophosphates, both showed resistance to fenitrothion but susceptible to malathion-5 %. Both species showed resistance to carbamate and bendiocarb-0.1 % while susceptible to propoxur-0.1 %. Of the four synthetic pyrethroids, both were susceptible to deltamethrin-0.05 %, while resistant to permethrin-0.75 %, lambdacyhalothrin-0.05 % and cyfluthrin-0.15 %. Larvae of both species showed resistance to temephos at 0.02 mg/L but susceptible to malathion at 1 mg/L and fenthion at 0.05 mg/L. Currently, there is no prescribed WHO dose for adult-insecticide susceptibility testing. The emergence of resistance to DDT and temephos in the vector population poses a challenge to the on-going vector control measures. The results highlight the need for monitoring resistance to insecticides in the vector population. Impetus for source reduction and alternative choices of control measures are discussed for tackling future threat of arboviral infections in these islands.

  20. Temporal patterns of abundance of Aedes aegypti and Aedes albopictus (Diptera: Culicidae and mitochondrial DNA analysis of Ae. albopictus in the Central African Republic.

    Directory of Open Access Journals (Sweden)

    Basile Kamgang

    Full Text Available The invasive Asian tiger mosquito Aedes albopictus (Diptera: Culicidae was first reported in central Africa in 2000, in Cameroon, with the indigenous mosquito species Ae. aegypti (Diptera: Culicidae. Today, this invasive species is present in almost all countries of the region, including the Central African Republic (CAR, where it was first recorded in 2009. As invasive species of mosquitoes can affect the distribution of native species, resulting in new patterns of vectors and concomitant risk for disease, we undertook a comparative study early and late in the wet season in the capital and the main cities of CAR to document infestation and the ecological preferences of the two species. In addition, we determined the probable geographical origin of invasive populations of Ae. albopictus with two mitochondrial DNA genes, COI and ND5. Analysis revealed that Ae. aegypti was more abundant earlier in the wet season and Ae. albopictus in the late wet season. Used tyres were the most heavily colonized productive larval habitats for both species in both seasons. The invasive species Ae. albopictus predominated over the resident species at all sites in which the two species were sympatric. Mitochondrial DNA analysis revealed broad low genetic diversity, confirming recent introduction of Ae. albopictus in CAR. Phylogeographical analysis based on COI polymorphism indicated that the Ae. albopictus haplotype in the CAR population segregated into two lineages, suggesting multiple sources of Ae. albopictus. These data may have important implications for vector control strategies in central Africa.

  1. UJI REPELEN (DAYA TOLAK BEBERAPA EKSTRAK TUMBUHAN TERHADAP GIGITAN NYAMUK Aedes aegypti VEKTOR DEMAM BERDARAH DENGUE

    Directory of Open Access Journals (Sweden)

    Hasan Boesri Boesri

    2015-10-01

    Full Text Available AbstrakPenyakit­ Demam ­Berdarah ­Dengue,­Malaria,­filaria­sejauh­ini­masih­menjadi­masalah­kesehatan­masyarakat.Penggunaan insektisida nabati banyak memberikan keuntungan diantaranya ramah lingkungan, tidak memberikan dampak buruk pada kesehatan dan bahan dasar ada di sekitar pemukiman. Berdasarkan banyaknya keuntungan yang didapatkan, maka dipandang perlu untuk mencari insektisida nabati sebagai repelen untuk  menolak gigitan nyamuk  penular penyakit. Penelitian ini merupakan eksperimen murni, tentang pembuatan ekstrak dari berbagai­bahan­tanaman­serta­uji­efektifitas­daya­tolak­nyamuknya­dan­dilakukan­di­laboratorium.­Pembuatanekstrak dilakukan di Laboratorium Farmasi Universitas Gajah Mada Yogyakarta, sedangkan  untuk pengujian ekstrak terhadap nyamuk Aedes aegypti dilakukan di laboratorium uji insektisida Balai Besar Litbang Vektor dan Reservoir Penyakit. Hasil penelitian uji  repelen beberapa ekstrak tumbuhan adalah pada dosis 100%  yang mampu menolak gigitan nyamuk di atas 80% per jam  antara lain ekstrak daun Zodia mampu menolak sampai 2 jam sebanyak 88,2%. Ekstrak daun tembakau  mampu menolak  selama 3 jam sebanyak  84,9%, ekstrak daun gondopuro mampu menolak selama 1 jam sebanyak  83,3%,  ekstrak daun Serai Wangi mampu menolak selama 2 jam sebanyak 85,1%. Ekstrak daun cengkeh mampu menolak selama 4 jam sebanyak, 81,7%. Ekstrak bunga krisan mampu menolak selama 1 jam sebanyak 89,6%, Sedangkan ekstrak daun suren, akar tuba dan lavender hanya mampu menolak gigitan nyamuk Aedes aegypti di bawah 80%.Kata kunci : ekstrak, repelen, Aedes aegyptiAbstractDengue­Haemorrhagic­Fever,­malaria,­filaria­so­far­are­public­health­problem.­The­use­of­plant-based­­insecticidesare­many­eco-friendly­benefits,­do­not­give­bad­impact­on­­health­and­basic­materials­are­all­around­settlements.­Itis necessary to look for botanical insecticides as repellent to resist bites mosquito

  2. Fatores associados à ocorrência de formas imaturas de Aedes aegypti na Ilha do Governador, Rio de Janeiro, Brasil Factors associated to the ocurrence of immature forms of Aedes aegypti in the Ilha do Governador, Rio de Janeiro, Brazil

    Directory of Open Access Journals (Sweden)

    Reinaldo Souza-Santos

    1999-08-01

    Full Text Available Aedes aegypti é o vetor urbano da dengue, doença que pode resultar em epidemias. Estudos ecológicos tornam-se importantes uma vez que populações do vetor de diferentes áreas podem diferir quanto a características bio-ecológicas, relevantes para orientar ações de controle. Este trabalho objetiva identificar e analisar fatores associados à ocorrência de formas imaturas de A. aegypti na Ilha do Governador, Rio de Janeiro, a partir dos dados da Fundação Nacional de Saúde (FNS. Os resultados mostram que 58,04% do total de criadouros inspecionados foram constituídos por suportes para vasos com plantas, vasilhames de plástico ou vidro abandonados no peridomicílio. Maiores percentuais de criadouros positivos foram observados para pneus (1,41%, tanques, poços e cisternas (0,93%, e barris, tonéis e tinas (0,64%. Maiores proporções de criadouros positivos durante o verão foram as dos grandes reservatórios de água e a dos criadouros provenientes do lixo doméstico. No inverno, verificamos maior valor para os pequenos reservatórios de água para uso doméstico. As maiores proporções de criadouros positivos foram observadas após três meses sem atividades da FNS. A análise fatorial mostrou que o principal fator determinante da ocorrência de fases imaturas de A. aegypti é aquele que leva em consideração os fatores meteorológicos. A eliminação e tratamento de criadouros pelos agentes da FNS apresentaram-se como menos importantes. Tais fatos apontam a necessidade de controle contínuo, indicando menor atenção da FNS, durante o inverno, em relação aos pequenos reservatórios, que podem manter formas imaturas de A. aegypti.Aedes aegypti is the vector of dengue, a disease that can result in epidemics. Ecological studies are important because different geographical populations of the vector may differ in their bio-ecological characteristics, which can be helpful in guiding control actions. The objective of this study was to

  3. Criadouros de Aedes (Stegomyia aegypti (Linnaeus, 1762 em bromélias nativas na Cidade de Vitória, ES Aedes (Stegomyia aegypti (Linnaeus, 1762 breeding sites in native bromeliads in Vitória City, ES

    Directory of Open Access Journals (Sweden)

    José Benedito Malta Varejão

    2005-05-01

    Full Text Available Alguns insetos transmissores de doenças procriam exclusivamente nas proximidades das residências. O Aedes aegypti, responsável por epidemias de dengue em cidades brasileiras, representa sério risco também para a febre amarela. Com o insucesso da campanha de erradicação do inseto, justifica-se a busca de criadouros fora do alcance das medidas de controle atualmente adotadas. Na Cidade de Vitória, ES, investigou-se a ocorrência de criadouros de Aedes aegypti na água coletada em bromélias nativas, sobre as rochas. Paralelamente, avaliou-se a infestação predial nas áreas urbanas contíguas. Em quatro das cinco áreas investigadas foram encontradas larvas de culicídeos nas bromélias, sendo que em duas foi identificado Aedes aegypti. A presença dos criadouros em bromélias não guardou relação com a infestação predial nas áreas próximas. Torna-se necessário definir se os criadouros em bromélias constituem focos primários do Aedes aegypti, ou se representam uma conseqüência da elevada infestação urbana.Some insects that are vectors of human diseases have accompanied man in his migrations throughout the world and breed exclusively in the proximity of human dwellings. The mosquito Aedes aegypti has been responsible for epidemics of dengue in Brazil and its presence also constitutes a serious risk for future outbreaks of urban yellow fever. The failure of campaigns to eradicate this species justifies the search for alternative breeding sites, which may be beyond the reach of present control measures. In this study the occurrence of Aedes aegypti breeding sites in native bromeliads on rocky slopes was investigated in five areas of Vitória, capital of the Brazilian State of Espírito Santo, ES. Water contained in the bromeliads was collected with the aid of a suction apparatus to search for culicid larvae. The degree of infestation of buildings in adjacent urban areas was evaluated simultaneously. Culicid larvae were found in

  4. Field validation of a transcriptional assay for the prediction of age of uncaged Aedes aegypti mosquitoes in Northern Australia.

    Directory of Open Access Journals (Sweden)

    Leon E Hugo

    Full Text Available BACKGROUND: New strategies to eliminate dengue have been proposed that specifically target older Aedes aegypti mosquitoes, the proportion of the vector population that is potentially capable of transmitting dengue viruses. Evaluation of these strategies will require accurate and high-throughput methods of predicting mosquito age. We previously developed an age prediction assay for individual Ae. aegypti females based on the transcriptional profiles of a selection of age responsive genes. Here we conducted field testing of the method on Ae. aegypti that were entirely uncaged and free to engage in natural behavior. METHODOLOGY/PRINCIPAL FINDINGS: We produced "free-range" test specimens by releasing 8007 adult Ae. aegypti inside and around an isolated homestead in north Queensland, Australia, and recapturing females at two day intervals. We applied a TaqMan probe-based assay design that enabled high-throughput quantitative RT-PCR of four transcripts from three age-responsive genes and a reference gene. An age prediction model was calibrated on mosquitoes maintained in small sentinel cages, in which 68.8% of the variance in gene transcription measures was explained by age. The model was then used to predict the ages of the free-range females. The relationship between the predicted and actual ages achieved an R(2 value of 0.62 for predictions of females up to 29 days old. Transcriptional profiles and age predictions were not affected by physiological variation associated with the blood feeding/egg development cycle and we show that the age grading method could be applied to differentiate between two populations of mosquitoes having a two-fold difference in mean life expectancy. CONCLUSIONS/SIGNIFICANCE: The transcriptional profiles of age responsive genes facilitated age estimates of near-wild Ae. aegypti females. Our age prediction assay for Ae. aegypti provides a useful tool for the evaluation of mosquito control interventions against dengue where

  5. Principales criaderos para Aedes aegypti y culícidos asociados, Argentina

    Directory of Open Access Journals (Sweden)

    Stein Marina

    2002-01-01

    Full Text Available Se identificaron criaderos de Aedes (Stegomyia aegypti en dos ciudades de la provincia del Chaco (Noreste de Argentina: Presidencia Roque Saenz Peña y Machagai. Los recipientes encontrados en los patios de las viviendas capaces de colectar agua se clasificaron según tipo y tamaño, se contaron y examinaron. Aedes aegypti y Culex quinquefasciatus fueron las especies mas abundantes, encontrándose además Cx. maxi, Cx. saltanensis y Ochlerotatus scapularis. Los neumáticos y cajas de baterías para autos fueron los recipientes que más aportaron a la producción de formas inmaduras de los culícidos colectados. Las lluvias fueron un factor importante para la proliferacion de Ae. aegypti, así como también el habito comun en la población de guardar recipientes en sus casas que permitan el desarrollo de estos culícidos.

  6. Heritable CRISPR/Cas9-mediated genome editing in the yellow fever mosquito, Aedes aegypti.

    Directory of Open Access Journals (Sweden)

    Shengzhang Dong

    Full Text Available In vivo targeted gene disruption is a powerful tool to study gene function. Thus far, two tools for genome editing in Aedes aegypti have been applied, zinc-finger nucleases (ZFN and transcription activator-like effector nucleases (TALEN. As a promising alternative to ZFN and TALEN, which are difficult to produce and validate using standard molecular biological techniques, the clustered regularly interspaced short palindromic repeats/CRISPR-associated sequence 9 (CRISPR/Cas9 system has recently been discovered as a "do-it-yourself" genome editing tool. Here, we describe the use of CRISPR/Cas9 in the mosquito vector, Aedes aegypti. In a transgenic mosquito line expressing both Dsred and enhanced cyan fluorescent protein (ECFP from the eye tissue-specific 3xP3 promoter in separated but tightly linked expression cassettes, we targeted the ECFP nucleotide sequence for disruption. When supplying the Cas9 enzyme and two sgRNAs targeting different regions of the ECFP gene as in vitro transcribed mRNAs for germline transformation, we recovered four different G1 pools (5.5% knockout efficiency where individuals still expressed DsRed but no longer ECFP. PCR amplification, cloning, and sequencing of PCR amplicons revealed indels in the ECFP target gene ranging from 2-27 nucleotides. These results show for the first time that CRISPR/Cas9 mediated gene editing is achievable in Ae. aegypti, paving the way for further functional genomics related studies in this mosquito species.

  7. Principales criaderos para Aedes aegypti y culícidos asociados, Argentina

    Directory of Open Access Journals (Sweden)

    Marina Stein

    2002-10-01

    Full Text Available Se identificaron criaderos de Aedes (Stegomyia aegypti en dos ciudades de la provincia del Chaco (Noreste de Argentina: Presidencia Roque Saenz Peña y Machagai. Los recipientes encontrados en los patios de las viviendas capaces de colectar agua se clasificaron según tipo y tamaño, se contaron y examinaron. Aedes aegypti y Culex quinquefasciatus fueron las especies mas abundantes, encontrándose además Cx. maxi, Cx. saltanensis y Ochlerotatus scapularis. Los neumáticos y cajas de baterías para autos fueron los recipientes que más aportaron a la producción de formas inmaduras de los culícidos colectados. Las lluvias fueron un factor importante para la proliferacion de Ae. aegypti, así como también el habito comun en la población de guardar recipientes en sus casas que permitan el desarrollo de estos culícidos.

  8. Heritable CRISPR/Cas9-mediated genome editing in the yellow fever mosquito, Aedes aegypti.

    Science.gov (United States)

    Dong, Shengzhang; Lin, Jingyi; Held, Nicole L; Clem, Rollie J; Passarelli, A Lorena; Franz, Alexander W E

    2015-01-01

    In vivo targeted gene disruption is a powerful tool to study gene function. Thus far, two tools for genome editing in Aedes aegypti have been applied, zinc-finger nucleases (ZFN) and transcription activator-like effector nucleases (TALEN). As a promising alternative to ZFN and TALEN, which are difficult to produce and validate using standard molecular biological techniques, the clustered regularly interspaced short palindromic repeats/CRISPR-associated sequence 9 (CRISPR/Cas9) system has recently been discovered as a "do-it-yourself" genome editing tool. Here, we describe the use of CRISPR/Cas9 in the mosquito vector, Aedes aegypti. In a transgenic mosquito line expressing both Dsred and enhanced cyan fluorescent protein (ECFP) from the eye tissue-specific 3xP3 promoter in separated but tightly linked expression cassettes, we targeted the ECFP nucleotide sequence for disruption. When supplying the Cas9 enzyme and two sgRNAs targeting different regions of the ECFP gene as in vitro transcribed mRNAs for germline transformation, we recovered four different G1 pools (5.5% knockout efficiency) where individuals still expressed DsRed but no longer ECFP. PCR amplification, cloning, and sequencing of PCR amplicons revealed indels in the ECFP target gene ranging from 2-27 nucleotides. These results show for the first time that CRISPR/Cas9 mediated gene editing is achievable in Ae. aegypti, paving the way for further functional genomics related studies in this mosquito species.

  9. Weather Variability Associated with Aedes (Stegomyia) aegypti (Dengue Vector) Oviposition Dynamics in Northwestern Argentina

    Science.gov (United States)

    Estallo, Elizabet L.; Ludueña-Almeida, Francisco F.; Introini, María V.; Zaidenberg, Mario; Almirón, Walter R.

    2015-01-01

    This study aims to develop a forecasting model by assessing the weather variability associated with seasonal fluctuation of Aedes aegypti oviposition dynamic at a city level in Orán, in northwestern Argentina. Oviposition dynamics were assessed by weekly monitoring of 90 ovitra