WorldWideScience

Sample records for aecl whiteshell laboratories

  1. DEMONSTRATION SOLIDIFICATION TESTS CONDUCTED ON RADIOACTIVELY CONTAMINATED ORGANIC LIQUIDS AT THE AECL WHITESHELL LABORATORIES

    International Nuclear Information System (INIS)

    Ryz, R. A.; Brunkow, W. G.; Govers, R.; Campbell, D.; Krause, D.

    2002-01-01

    The AECL, Whiteshell Laboratory (WL) near Pinawa Manitoba, Canada, was established in the early 1960's to carry out AECL research and development activities for higher temperature versions of the CANDU(reg s ign) reactor. The initial focus of the research program was the Whiteshell Reactor-1 (WR-1) Organic Cooled Reactor (OCR) that began operation in 1965. The OCR program was discontinued in the early 1970's in favor of the successful heavy-water-cooled CANDU system. WR-1 continued to operate until 1985 in support of AECL nuclear research programs. A consequence of the Federal government's recent program review process was AECL's business decision to discontinue research programs and operations at the Whiteshell Laboratories and to consolidate its' activities at the Chalk River Laboratories. As a result, AECL received government concurrence in 1998 to proceed to plan actions to achieve closure of WL. The planning actions now in progress address the need to safely and effectively transition the WL site from an operational state, in support of AECL's business, to a shutdown and decommissioned state that meets the regulatory requirements for a licensed nuclear site. The decommissioning program that will be required at WL is unique within AECL and Canada since it will need to address the entire research site rather than individual facilities declared redundant. Accordingly, the site nuclear facilities are being systematically placed in a safe shutdown state and planning for the decommissioning work to place the facilities in a secure monitoring and surveillance state is in progress. One aspect of the shutdown activities is to deal with the legacy of radioactively contaminated organic liquid wastes. Use of a polymer powder to solidify these organic wastes was identified as one possibility for improved interim storage of this material pending final disposition

  2. Decommissioning of AECL Whiteshell Laboratories: progress from first five years of legacy funding

    International Nuclear Information System (INIS)

    Swartz, R.S.; Bilinsky, D.M.; Harding, J.W.; Ridgway, W.R.

    2011-01-01

    In 2006, the Government of Canada adopted a new long-term strategy to deal with the nuclear legacy liabilities and initiated a five-year start-up phase. The objective is to safely and cost-effectively reduce these liabilities, and associated risks, based on sound waste management and environmental principles in the best interests of Canadians. AECL's Whiteshell Laboratories is part of the long-term strategy and decommissioning activities are underway. Several redundant non-nuclear buildings have been removed/decommissioned, and redundant nuclear facilities (hot cell facilities, radiochemical laboratories) are being decontaminated and prepared for demolition. This paper describes the progress in the first five-year funding period (2006 April to 2011 March). (author)

  3. Decommissioning of AECL Whiteshell laboratories - 16311

    International Nuclear Information System (INIS)

    Koroll, Grant W.; Bilinsky, Dennis M.; Swartz, Randall S.; Harding, Jeff W.; Rhodes, Michael J.; Ridgway, Randall W.

    2009-01-01

    Whiteshell Laboratories (WL) is a Nuclear Research and Test Establishment near Winnipeg, Canada, operated by AECL since the early 1960's and now under decommissioning. WL occupies approximately 4400 hectares of land and employed more than 1000 staff up to the late-1990's, when the closure decision was made. Nuclear facilities at WL included a research reactor, hot cell facilities and radiochemical laboratories. Programs carried out at the WL site included high level nuclear fuel waste management research, reactor safety research, nuclear materials research, accelerator technology, biophysics, and industrial radiation applications. In preparation for decommissioning, a comprehensive environmental assessment was successfully completed [1] and the Canadian Nuclear Safety Commission issued a six-year decommissioning licence for WL starting in 2003 - the first decommissioning licence issued for a Nuclear Research and Test Establishment in Canada. This paper describes the progress in this first six-year licence period. A significant development in 2006 was the establishment of the Nuclear Legacy Liabilities Program (NLLP), by the Government of Canada, to safely and cost effectively reduce, and eventually eliminate the nuclear legacy liabilities and associated risks, using sound waste management and environmental principles. The NLLP endorsed an accelerated approach to WL Decommissioning, which meant advancing the full decommissioning of buildings and facilities that had originally been planned to be decontaminated and prepared for storage-with-surveillance. As well the NLLP endorsed the construction of enabling facilities - facilities that employ modern waste handling and storage technology on a scale needed for full decommissioning of the large radiochemical laboratories and other nuclear facilities. The decommissioning work and the design and construction of enabling facilities are fully underway. Several redundant non-nuclear buildings have been removed and redundant

  4. Whiteshell labs closure: crisis or opportunity?

    International Nuclear Information System (INIS)

    Simpson, L.

    2003-01-01

    L. Simpson, Mayor, Local Government District of Pinawa, Manitoba, described the impacts and public concerns produced by a hastily planned and executed withdrawal of the primary employer from a dependent company town. The Whiteshell Laboratories of the Crown corporation Atomic Energy of Canada Limited (AECL) were established in Eastern Manitoba in 1963, and Pinawa was created 15 kilometres away. Located in a provincial park region, Pinawa has also become a popular holiday cottage area with 20 000 residents inside a 30-minute radius. In 1995, the AECL Reactor Safety Research Program was moved to Chalk River, and the Nuclear Waste Management Program (NWMP) was left in limbo. Commercial negotiations to go on operating business on the site broke down. The town of Pinawa, the major stakeholder, was kept at arm's length from all discussions. (author)

  5. Validation of Non-Invasive Waste Assay System (Gamma Box Counter) Performance at AECL Whiteshell Laboratories - 13136

    International Nuclear Information System (INIS)

    Attas, E.M.; Bialas, E.; Rhodes, M.J.

    2013-01-01

    Low-level radioactive waste (LLW) in solid form, resulting from decommissioning and operations activities at AECL's Whiteshell Laboratories (WL), is packaged in B-25 and B-1000 standard waste containers and characterized before it is shipped to an on-site interim storage facility, pending AECL decisions on long term management of its LLW. Assay of the waste packages before shipment contributes to an inventory of the interim storage facility and provides data to support acceptance at a future repository. A key characterization step is a gamma spectrometric measurement carried out under standard conditions using an automated, multi-detector Waste Assay System (WAS), purchased from Antech Corporation. A combination of ORTEC gamma acquisition software and custom software is used in this system to incorporate multiple measurements from two collimated high-resolution detectors. The software corrects the intensities of the gamma spectral lines for geometry and attenuation, and generates a table of calculated activities or limits of detection for a user-defined list of radioisotopes that may potentially be present. Validation of WAS performance was a prerequisite to routine operation. Documentation of the validation process provides assurance of the quality of the results produced, which may be needed one or two decades after they were generated. Aspects of the validation included setting up a quality control routine, measurements of standard point sources in reproducible positions, study of the gamma background, optimization of user-selectable software parameters, investigation of the effect of non-uniform distribution of materials and radionuclides, and comparison of results with measurements made using other gamma detector systems designed to assay bulk materials. The following key components of the validation process have been established. A daily quality control routine has been instituted, to verify stability of the gamma detector operation and the background levels

  6. Thermalhydraulic analyses of AECL`s spent fuel dry storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Moffett, R; Sabourin, G [Atomic Energy of Canada Ltd., Montreal, PQ (Canada). CANDU Operations; Banas, A O [Atomic Energy of Canada Ltd., Chalk River, ON (Canada)

    1996-12-31

    This paper presents the validation of one- and three-dimensional thermalhydraulic models to be used to evaluate the thermal performance of AECL`s MACSTOR and CANSTOR spent fuel dry storage modules. For this purpose, we compared analytical results to results of experiments conducted at AECL`s Whiteshell Laboratories where mockups of the MACSTOR module and of a CANDU fuel storage basket were tested. The paper shows improvements to a simple one-dimensional model of the MACSTOR mock-up used previously. The replacement of constant heat transfer coefficients by free convection correlations, the addition of a storage cylinder model, and the addition of a radiation heat transfer model improved the predictions of concrete and storage cylinder temperatures. The paper also presents a new three-dimensional model for flow and heat transfer in the MACSTOR mock-up developed using CFDS-FLOW3D and -RAD3D computer programs. CFDS-FLOW3D code can estimate loss coefficients in complex geometry to an accuracy better than standard engineering correlations. The flow and temperature fields predicted using CFDS-FLOW3D are consistent with the measurements made during MACSTOR mock-up experiments (author). 5 refs., 4 tabs., 9 figs.

  7. AECL's waste management and decommissioning program

    International Nuclear Information System (INIS)

    Kupferschmidt, W.C.H.

    2006-01-01

    Full text: Canada has developed significant expertise in radioactive waste management since the mid 1940s, when the Canadian nuclear program commenced activities at Chalk River Laboratories (CRL). Atomic Energy of Canada Limited (AECL), created as a Federal Crown Corporation in 1952, continues to manage wastes from these early days, as well as other radioactive wastes produced by Canadian hospitals, universities, industry, and operational wastes from AECL's current programs. AECL is also carrying out decommissioning of nuclear facilities and installations in Canada, predominantly at its own sites in Ontario (CRL, and the Douglas Point and Nuclear Power Demonstration prototype reactors), Manitoba (Whiteshell Laboratories) and Quebec (Gentilly-1 prototype reactor). At the CRL site, several major waste management enabling facilities are being developed to facilitate both the near- and long-term management of radioactive wastes. For example, the Liquid Waste Transfer and Storage Project is underway to recover and process highly radioactive liquid wastes, currently stored in underground tanks that, in some cases, date back to the initial operations of the site. This project will stabilize the wastes and place them in modern, monitored storage for subsequent solidification and disposal. Another initiative, the Fuel Packaging and Storage Project, has been initiated to recover and condition degraded used fuel that is currently stored in below-ground standpipes. The fuel will be then be stored in new facilities based on an adaptation of AECL's proven MACSTOR TM * dry storage system, originally designed for intermediate-term above-ground storage of used CANDU fuel bundles. Other commercial-based development work is underway to improve the storage density of the MACSTOR TM design, and to extend its application to interim storage of used LWR fuels as well as to the storage of intermediate-level radioactive waste arising from upcoming reactor refurbishment activities in Canada

  8. Implementing the AECL decommissioning quality assurance program at the Chalk River and Whiteshell Laboratories

    International Nuclear Information System (INIS)

    Colotelo, C.A.; Attas, E.M.; Stephens, M.E.

    2006-01-01

    This paper describes the approach and progress in developing, implementing and maintaining a quality assurance (QA) program for decommissioning at the nuclear facilities managed by Atomic Energy of Canada Limited (AECL). Decommissioning activities conducted by AECL are varied in nature, so the QA program must provide adequate flexibility, while maintaining consistency with accepted quality standards. Well-written documentation adhering to the applicable decommissioning standards is a key factor. Manager commitment and input during the writing of the documentation are also important to ensure relevance of the QA program and effectiveness of implementation. Training in the use of the quality assurance plan and procedures is vital to the understanding of the QA program. Beyond the training aspect there is a need for the quality assurance program to be supported by a QA subject expert who is able to advise the group in implementing the Quality Program with consistency over the range of decommissioning work activities and to provide continual assessment of the quality assurance program for efficiency and effectiveness, with a concomitant continuous improvement process. (author)

  9. Radioactive waste management at AECL

    International Nuclear Information System (INIS)

    Gadsby, R.D.; Allan, C.J.

    2003-01-01

    AECL has maintained an active program in radioactive waste management since 1945, when the Canadian nuclear program commenced activities at the Chalk River Laboratories (CRL). Waste management activities have included operation of waste management storage and processing facilities at AECL's CRL and Whiteshell Laboratories (WL); operation of the Low Level Radioactive Waste Management Office on behalf of Natural Resources Canada to resolve historic radioactive waste problems (largely associated with radioactive ore recovery, transport and processing operations) that are the responsibility of the Federal Government; development of the concept and related technology for geological disposal of Canada's nuclear fuel waste; development of the Intrusion-Resistant Underground Structure (IRUS) disposal concept for low-level nuclear waste; development of dry storage technology for the interim storage of used fuel; and development and assessment of waste processing technology for application in CANDU nuclear power plants and at CRL and WL. Today these activities are continuing. In addition, AECL is: preparing to decommission the nuclear facilities at WL; carrying out a number of smaller decommissioning projects at CRL; putting in place projects to upgrade the low-level liquid waste processing capabilities of the CRL Waste Treatment Centre, recover and process highly active liquid wastes currently in storage, and recover, condition and improve the storage of selected fuel wastes currently stored in below-ground standpipes in the CRL waste management areas; and assessing options for additional remediation projects to improve the management of other wastes currently in storage and to address environmental contamination from past practices. (author)

  10. Compendium of the data used with the SYVAC3-CC3 system model. AECL research No. AECL-11013

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    AECL is evaluating a concept for disposing of nuclear fuel waste from CANDU reactors deep in plutonic rock of the Canadian Shield. As part of this evaluation, models of the physical, chemical, geological, and biological processes that could occur in a sealed disposal vault designed to limit transport of contaminants to the accessible environment were developed. The mathematical models of the transport of radionuclides and toxic chemicals from nuclear fuel waste are incorporated into a computer model named the Systems Variability Analysis Code, Generation 3, and Canadian Concept Model, Generation 3 (SYVAC3-CC3). The report presents the data in the master database used by SYVAC3-CC3 for the postclosure assessment of deep geological disposal, derived from a major program of laboratory and field studies conducted by AECL Research over the past 15 years. The data represents characteristics of a hypothetical vault, certain geologic characteristics of the Whiteshell Research Area, and a general surface environment with a human population living a rural lifestyle on a portion of the Canadian Shield in central Canada.

  11. Expert panel on hydrogeology; report to AECL Research (1992)

    International Nuclear Information System (INIS)

    Domenico, P.A.; Grisak, G.E.; Schwartz, F.W.

    1995-02-01

    In 1992 AECL Research convened a panel of external hydrogeological experts consisting of P.A. Domenico, G.E. Grisak, and F.W. Schwartz, to review AECL's proposed approach to siting a geological repository in the rocks of the Canadian Shield for the safe disposal of Canada's nuclear fuel wastes. In particular the panel was asked to provide its opinion on 1) the soundness of the technical approach developed to characterize the groundwater flow systems for the purpose of selecting a location for a disposal vault, 2) the validity and effectiveness of the geological case study used to demonstrate the performance assessment methodology based on the hydrogeological conditions observed at the Whiteshell Research Area, and 3) the adequacy of the hydrogeological information that AECL proposes to use in its Environmental Impact Statement (EIS) of the disposal concept. This report presents the findings, conclusions and recommendations of the hydrogeology review panel. The report was submitted to AECL Research in 1992 December. (author). 24 refs., 2 tabs., 4 figs

  12. Thermalhydraulic analyses of AECL's spent fuel dry storage systems

    International Nuclear Information System (INIS)

    Moffett, R.; Sabourin, G.

    1995-01-01

    This paper presents the validation of one- and three-dimensional thermalhydraulic models to be used to evaluate the thermal performance of AECL's MACSTOR and CANSTOR spent fuel dry storage modules. For this purpose, we compared analytical results to results of experiments conducted at AECL's Whiteshell Laboratories where mockups of the MACSTOR module and of a CANDU fuel storage basket were tested. The paper shows improvements to a simple one-dimensional model of the MACSTOR mock-up used previously. The replacement of constant heat transfer coefficients by free convection correlations, the addition of a storage cylinder model, and the addition of a radiation heat transfer model improved the predictions of concrete and storage cylinder temperatures. The paper also presents a new three-dimensional model for flow and heat transfer in the MACSTOR mock-up developed using CFDS-FLOW3D and -RAD3D computer programs. CFDS-FLOW3D code can estimate loss coefficients in complex geometry to an accuracy better than standard engineering correlations. The flow and temperature fields predicted using CFDS-FLOW3D are consistent with the measurements made during MACSTOR mock-up experiments (author). 5 refs., 4 tabs., 9 figs

  13. Accelerating the Whiteshell Laboratories Decommissioning Through the Implementation of a Projectized and Delivery-Focused Organization - 13074

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, Brian; Mellor, Russ; Michaluk, Craig [Atomic Energy of Canada Limited, Whiteshell Laboratories, Pinawa, Manitoba (Canada)

    2013-07-01

    Whiteshell Laboratories (WL) is a nuclear research site in Canada that was commissioned in 1964 by Atomic Energy of Canada Limited. It covers a total area of approximately 4,375 hectares (10,800 acres) and includes the main campus site, the Waste Management Area (WMA) and outer areas of land identified as not used for or impacted by nuclear development or operations. The WL site employed up to 1100 staff. Site activities included the successful operation of a 60 MW organic liquid-cooled research reactor from 1965 to 1985, and various research programs including reactor safety research, small reactor development, fuel development, biophysics and radiation applications, as well as work under the Canadian Nuclear Fuel Waste Management Program. In 1997, AECL made a business decision to discontinue research programs and operations at WL, and obtained government concurrence in 1998. The Nuclear Legacy Liabilities Program (NLLP) was established in 2006 by the Canadian Government to remediate nuclear legacy liabilities in a safe and cost effective manner, including the WL site. The NLLP is being implemented by AECL under the governance of a Natural Resources Canada (NRCan)/AECL Joint Oversight Committee (JOC). Significant progress has since been made, and the WL site currently holds the only Canadian Nuclear Safety Commission (CNSC) nuclear research site decommissioning license in Canada. The current decommissioning license is in place until the end of 2018. The present schedule planned for main campus decommissioning is 30 years (to 2037), followed by institutional control of the WMA until a National plan is implemented for the long-term management of nuclear waste. There is an impetus to advance work and complete decommissioning sooner. To accomplish this, AECL has added significant resources, reorganized and moved to a projectized environment. This presentation outlines changes made to the organization, the tools implemented to foster projectization, and the benefits

  14. A revised conceptual hydrogeologic model of a crystalline rock environment, Whiteshell research area, southeastern Manitoba, Canada

    International Nuclear Information System (INIS)

    Stevenson, D.R.; Brown, A.; Davison, C.C.; Gascoyne, M.; McGregor, R.G.; Ophori, D.U.; Scheier, N.W.; Stanchell, F.; Thorne, G.A.; Tomsons, D.K.

    1996-04-01

    A revised conceptual hydrogeologic model of regional groundwater flow in the crystalline rocks of the Whiteshell Research Area (WRA) has been developed by a team of AECL geoscientists. The revised model updates an earlier model developed in 1985, and has a much broader database. This database was compiled from Landsat and airborne radar images, geophysical surveys and surface mapping, and from analyses of fracture logs, hydraulic tests and water samples collected from a network of deep boreholes drilled across the WRA. The boundaries of the revised conceptual model were selected to coincide with the natural hydraulic boundaries assumed for the regional groundwater flow systems in the WRA. The upper and lower boundaries are the water table and a horizontal plane 4 km below ground surface. For modelling purposes the rocks below 4 km are considered to be impermeable. The rocks of the modelled region were divided on the basis of fracture characteristics into three categories: fractured zones (FZs); moderately fractured rock (MFR); and sparsely fractured rock (SFR). The FZs are regions of intensely fractured rock. Seventy-six FZs were selected to form the fault framework within the revised conceptual model. The physical rock/water properties of the FZs, MFR and SFR were selected by analysis of field data from hydraulic and tracer tests, laboratory test data and water quality data. These properties were used to define a mathematical groundwater flow model of the WRA using AECL's MOTIF finite element code (Ophori et al. 1995, 1996). (author). 29 refs., 4 tabs., 12 figs

  15. Controlled drill ampersand blast excavation at AECL's Underground Research Laboratory

    International Nuclear Information System (INIS)

    Kuzyk, G.W.; Onagi, D.P.; Thompson, P.M.

    1996-01-01

    A controlled drill and blast method has been developed and used to excavate the Underground Research Laboratory, a geotechnical facility constructed by Atomic Energy of Canada Limited (AECL) in crystalline rock. It has been demonstrated that the method can effectively reduce the excavation disturbed zone (EDZ) and is suitable for the construction of a used fuel disposal vault in the plutonic rock of the Canadian Shield

  16. ScanSort{sup SM} at Whiteshell Laboratories for sorting of experimental cesium pond soil

    Energy Technology Data Exchange (ETDEWEB)

    Downey, H., E-mail: heath.downey@amecfw.com [Amec Foster Wheeler, Portland, ME (United States)

    2015-07-01

    The ScanSort{sup SM} soil sorting system is a unique and efficient radiological instrument used for measuring and sorting bulk soils and volumetric materials. The system performs automatic radioassay and segregation of preconditioned material using a gamma spectroscopy system mounted above a conveyor belt. It was deployed to the Whiteshell Laboratories site to process the excavated soils generated during the decommissioning of the former Experimental Cesium Pond. The ScanSort{sup SM} system was utilized to segregate material with Cs-137 concentrations above the established site unrestricted release and restricted site reuse levels as well as demonstrated the ability to accurately determine the radioactivity concentrations of the radiologically-impacted material and to confidently segregate volumes of that material for appropriate final disposition. (author)

  17. Microbial analysis of the buffer/container experiment at AECL's underground research laboratory

    International Nuclear Information System (INIS)

    Stroes-Gascoyne, S.

    1996-07-01

    The Buffer/Container Experiment (BCE) was carried out at AECL's Underground Research Laboratory (URL) for 2.5 years to examine the in situ performance of compacted buffer material in a single emplacement borehole under vault-relevant conditions. During decommissioning of this experiment, numerous samples were taken for microbial analysis to determine if the naturally present microbial population in buffer material survived the conditions (i.e., compaction, heat and desiccation) in the BCE and to determine which group(s) of microorganisms would be dominant in such a simulated vault environment. Such knowledge will be very useful in assessing the potential effects of microbial activity on the concept for deep disposal of Canada's nuclear fuel waste, proposed by AECL. 46 refs., 31 tabs., 35 figs

  18. AECL research programs in life sciences

    International Nuclear Information System (INIS)

    Marko, A.M.

    1981-04-01

    The present report summarizes the current research activities in life sciences in the Atomic Energy of Canada Limited-Research Company. The research is carried out at its two main research sites: the Chalk River Nuclear Laboratories and the Whiteshell Nuclear Research Establishment. The summaries cover the following areas of research: radiation biology, medical biophysics, epidemiology, environmental research and dosimetry. (author)

  19. The use of HANDIDET{reg_sign} non-electric detonator assemblies to reduce blast-induced overpressure at AECL`s Underground Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Onagi, D.P.; Keith, S.G.; Kuzyk, G.W. [AECL, Pinawa, Manitoba (Canada). Underground Research Lab.; Proudfoot, D.F. [ICI Explosives Canada, North Delta, British Columbia (Canada)

    1996-12-01

    A number of aspects of the Canadian concept for nuclear fuel waste disposal are being assessed by Atomic Energy of Canada Limited (AECL) in a series of experiments at its Underground Research Laboratory (URL) near Lac du Bonnet, Manitoba, Canada. One of the major objectives of the work being carried out at the URL is to develop and evaluate the methods and technology to ensure safe, permanent disposal of Canada`s nuclear fuel waste. In 1994, AECL excavated access tunnels and a laboratory room for the Quarried Block Fracture Migration Experiment (QBFME) at the 240 Level of the URL. This facility will be used to study the transport of radionuclides in natural fractures in quarried blocks of granite under in-situ groundwater conditions. The experiment is being carried out under a cooperative agreement with the Japan Atomic Energy Research Institute. The excavation of the QBFME access tunnels and laboratory was carried out using controlled blasting techniques that minimized blast-induced overpressure which could have damaged or interrupted other ongoing experiments in the vicinity. The majority of the blasts used conventional long delay non-electric detonators but a number of blasts were carried out using HANDIDET 250/6000 non-electric long delay detonator assemblies and HTD{reg_sign} non-electric short delay trunkline detonator assemblies. The tunnel and laboratory excavation was monitored to determine the levels of blast-induced overpressure. This paper describes the blasting and monitoring results of the blasts using HANDIDET non-electric detonator assemblies and the effectiveness of these detonators in reducing blast-induced overpressure.

  20. A compilation of subsurface hydrogeologic data

    International Nuclear Information System (INIS)

    1986-03-01

    This volume contains a continuation of the fracture data for the research sites discussed in Volume 1 which have been studied in sufficient detail to allow for analysis. The sites discussed in this volume are the following: Climax Granite Nevada Test Site; OCRD Room, Colorado School of Mines; Savannah River Plant, Aiken, South Carolina; Oracle, Arizona; Basalt Waste Isolation Project (BWIP), Hanford, Washington Underground Research Laboratory, AECL, Canada; Atikokan Research Area, AECL; Chalk River Research Area, AECL; Whiteshell Research Area, AECL. Other sources of information have been included where sufficient site specific geologic and hydrogeologic information is provided

  1. AECL's new environmental initiatives

    International Nuclear Information System (INIS)

    McDonnell, F.N.

    1993-01-01

    AECL's research and development expenditures in environmental sciences and waste management technology are about $50 M per year. The main focus of these programs is the Nuclear Fuel Waste Management Program. This research is supplemented by activities in support of laboratory, Environmental Authority and internal waste management requirements, as well as provision of non-nuclear services. AECL intends to become more involved in performing environmental research and development with broader application. The goal is to achieve a relationship with Canadian industry that would involve a substantial portion of AECL's environmental research capabilities. The research directions and priorities of the resulting partnership would be set by the private sector in accordance with their needs and requirements. It is expected that the activities associated with this new environmental initiative will start small and grow in response to perceived needs. AECL is now increasing its non-nuclear research efforts by targeting those markets that appear most attractive. The thrust can be divided into three broad categories: environmental research, environmental services, and environmental products. (Author)

  2. Environmental assessment as a planning tool for the decommissioning of a nuclear research facility in Canada

    International Nuclear Information System (INIS)

    Klukas, M.H.; Grondin, D.J.; Helbrecht, R.A.

    2002-01-01

    Whiteshell Laboratories, a nuclear research facility operated by Atomic Energy of Canada Ltd. (AECL), have provided research facilities for the Canadian Nuclear Industry since the early 1960's. In 1997, AECL made a business decision to discontinue research programs and operations at the laboratories. Shortly thereafter the decision was made in agreement with the Federal Government of Canada to decommission the laboratories. In compliance with its own policy and to meet the requirements of the Canadian Legislation, AECL assessed the potential environmental effects of the project. The Environmental Assessment included studies to evaluate he feasibility of leaving two major project components in place; low-level radioactive waste in trenches located at the Whiteshell Laboratories site and river sediments contaminated from operational effluent releases. For both project components, it was determined that managing the wastes in the existing location was environmentally sound. An extensive follow-up program, comprising of additional monitoring and analysis to verify these findings will be implemented. As a result of these assessments and the assessments for other project components it was concluded that the project was not likely to cause significant adverse effects. The assessment decision was accepted by the Minister of the Environment in 2002 April. (author)

  3. AECL research programs in chemistry

    International Nuclear Information System (INIS)

    Crocker, I.H.; Eastwood, T.A.; Smith, D.R.; Stewart, R.B.; Tomlinson, M.; Torgerson, D.F.

    1980-09-01

    Fundamental or underlying research in chemistry is being done in AECL laboratories to further the understanding of processes involved in current nuclear energy systems and maintain an awareness of progress at the frontiers of chemical research so that new advances can be turned to advantage in future AECL endeavours. The report introduces the current research topics and describes them briefly under the following headings: radiation chemistry, isotope separation, high temperature solution chemistry, fuel reprocessing chemistry, and analytical chemistry. (auth)

  4. A world-class act

    International Nuclear Information System (INIS)

    Richards, Sherrilynne; Thomas, Ron.

    1992-01-01

    In the autumn of 1991, a school on food irradiation held at AECL's Whiteshell Laboratories was attended by 14 food scientists from 12 countries. More than 30 countries have now approved food irradiation. In Canada, Nordion is a world leader with its cobalt-60 irradiators

  5. A compilation of subsurface hydrogeologic data

    International Nuclear Information System (INIS)

    1986-03-01

    This volume contains the permeability data for the research sites discussed in Volume 1 which have been studied in sufficient detail to allow for analysis. These sites are the following: Stripa Mine, Sweden; Finnsjon, Kamlunge, Fjallveden, Gidea, Svartboberget, Sweden; Olkiluoto, Loviisa, Lavia, Finland; Climax Granite Nevada Test Site; OCRD Room, Colorado School of Mines; Savannah River Plant, Aiken, South Carolina; Oracle, Arizona; Basalt Waste Isolation Project (BWIP), Hanford, Washington; Underground Research Laboratory, AECL, Canada; Atikokan Research Area, AECL; Chalk River Research Area, AECL; Whiteshell Research Area, AECL. Other sources of information have been included where sufficient site specific geologic and hydrogeologic information is provided

  6. AECL annual review 1991-1992

    International Nuclear Information System (INIS)

    1992-01-01

    Formed as a Crown Corporation in 1952, AECL consists of two main divisions: AECL CANDU, based in Missisauga and Montreal, responsible for the development, design, marketing and project management of CANDU nuclear power projects; and AECL Research, with its head office in Ottawa and laboratories in Chalk River, Ontario and Pinawa, Manitoba, which supports CANDU and performs the research, development, demonstration and marketing required to apply nuclear sciences and their associated technologies. A strategic plan is under development, which will address the issues of market identification, key partnerships, securing the CANDU technology base, export financing and optimum business structure. In 1991/92 operating income was $16.4 million, up from $7.8 million in 1990/91. Good progress was made on goals to revitalize and upgrade AECL employee's skills and productivity. Key goals for AECL CANDU were: launching the Wolsung 2 reactor project in south Korea; closing the timing and product options for Wolsong 3 and 4; securing new business for Cernavoda 1; and attaining an agreement with either Saskatchewan Power Corp. or the New Brunswick Electric Power Commission regarding the timing of their CANDU 3 projects. Some success was achieved in the first three goals; Saskatchewan has chosen not to proceed with its CANDU 3 plant, but negotiations are continuing in New Brunswick. Key goals for AECL Research were: securing an advanced CANDU research and development program outside the CANDU Owners Group; Disposing of remaining non-nuclear technologies by spin-off, licensing or close-out; rationalizing commercial operations to generate increased revenues; and obtaining the Atomic Energy Control Board's approval of the NRU reactor assessment basis document. Progress was made on all goals

  7. Food for thought in a world of hunger and disease

    International Nuclear Information System (INIS)

    Thomas, R.

    1990-01-01

    The numerous benefits and safety of food irradiation are emphasized in this article. Canada is the world's largest supplier of industrial irradiators. Some 25 irradiators used to irradiate food have been supplied by Nordion. A full-scale pilot plant operates at Institut Armand Frappier in Laval, Quebec, and another food irradiation research facility has been established by Agriculture Canada at Ste. Hyacinthe. AECL conducts research on food irradiation at its Whiteshell Laboratories. AECL is also developing industrial electron accelerators that could be used to irradiate food

  8. Decommissioning of Active Ventilation Systems in a Nuclear R and D Facility to Prepare for Building Demolition (Whiteshell Laboratories Decommissioning Project, Canada) - 13073

    International Nuclear Information System (INIS)

    Wilcox, Brian; May, Doug; Howlett, Don; Bilinsky, Dennis

    2013-01-01

    Whiteshell Laboratories (WL) is a nuclear research establishment owned by the Canadian government and operated by Atomic Energy of Canada Limited (AECL) since the early 1960's. WL is currently under a decommissioning license and the mandate is to remediate the nuclear legacy liabilities in a safe and cost effective manner. The WL Project is the first major nuclear decommissioning project in Canada. A major initiative underway is to decommission and demolish the main R and D Laboratory complex. The Building 300 R and D complex was constructed to accommodate laboratories and offices which were mainly used for research and development associated with organic-cooled reactors, nuclear fuel waste management, reactor safety, advanced fuel cycles and other applications of nuclear energy. Building 300 is a three storey structure of approximately 16,000 m 2 . In order to proceed with building demolition, the contaminated systems inside the building have to be characterized, removed, and the waste managed. There is a significant focus on volume reduction of radioactive waste for the WL project. The active ventilation system is one of the significant contaminated systems in Building 300 that requires decommissioning and removal. The active ventilation system was designed to manage hazardous fumes and radioactivity from ventilation devices (e.g., fume hoods, snorkels and glove boxes) and to prevent the escape of airborne hazardous material outside of the laboratory boundary in the event of an upset condition. The system includes over 200 ventilation devices and 32 active exhaust fan units and high efficiency particulate air (HEPA) filters. The strategy to remove the ventilation system was to work from the laboratory end back to the fan/filter system. Each ventilation duct was radiologically characterized. Fogging was used to minimize loose contamination. Sections of the duct were removed by various cutting methods and bagged for temporary storage prior to disposition

  9. AECL present and future

    International Nuclear Information System (INIS)

    Foster, J.S.

    The history and present activities of the Crown corporation AECL are described. AECL owns limited interests in nuclear power plants and a Manitoba transmission system. AECL is the world's foremost producer of heavy water, and exports CANDU type reactors and radiation processing equipment. AECL backs up the Canadian nuclear power program wherever there is no conflict with private enterprise. (E.C.B.)

  10. Past and future fracturing in AECL Research areas in the superior province of the Canadian Precambrian Shield, with emphasis on the Lac du Bonnet Batholith

    Energy Technology Data Exchange (ETDEWEB)

    Brown, A; Everitt, R A; Martin, C D; Davison, C C [Atomic Energy of Canada Ltd., Pinawa, MB (Canada). Whiteshell Labs.

    1995-10-01

    The likelihood that future fracturing, arising from geologic causes, could occur in the vicinity of a nuclear fuel waste repository in plutonic rock of the Canadian Precambrian Shield, is examined. The report discusses the possible causes of fracturing (both past and future) in Shield rocks. The report then examines case histories of fracture formation in Precambrian plutonic rocks in AECL`s Research Areas, especially the history of the Lac du Bonnet Batholith, in the Whiteshell Area, Manitoba. Initially, fractures can be introduced into intrusive plutonic rocks during crystallization and cooling of an intrusive magma. These fractures are found at all size scales; as late residual magma dyking, hydraulic fracturing by retrograde boiling off of hydrothermal fluids, and, in some cases, through local differential cooling. Subsequent fracturing is largely caused by changes in environmental temperature and stress field, rather than by alteration of the material behaviour of the rock. Pluton emplacement during orogeny is commonly accompanied by uplift and erosional exhumation, altering both the tectonic and the lithostatic stresses, the rock temperature gradient and the pore fluid characteristics.

  11. A compilation of subsurface hydrogeologic data

    International Nuclear Information System (INIS)

    1986-03-01

    This volume contains the storage coefficient, porosity, compressibility and fracture data for the research sites discussed in Volume 1 which have been studied in sufficient detail to allow for analysis. These sites are the following: Stripa Mine, Sweden; Finnsjon, Kamlunge, Fjallveden, Gidea, Svartboberget, Sweden; Olkiluoto, Loviisa, Lavia, Finland; Climax Granite Nevada Test Site; OCRD Room, Colorado School of Mines; Savannah River Plant, Aiken, South Carolina; Oracle, Arizona; Basalt Waste Isolation Project (BWIP), Hanford, Washington; Underground Research Laboratory, AECL, Canada; Atikokan Research Area, AECL; Chalk River Research Area, AECL; Whiteshell Research Area, AECL. Other sources of information have been included where sufficient site specific geologic and hydrogeologic information is provided. The fracture data for the first three of the sites listed above are contained in this volume. The fracture data for the remaining research research sites are discussed in Volume 4

  12. A compendium of the data used with the SYVAC3-CC3 system model

    International Nuclear Information System (INIS)

    Szekely, J.G.; Stephens, M.E.; Witzke, K.H.; Melnyk, T.W.; LeNeveu, D.M.; McConnell, D.B.; Goodwin, B.W.

    1994-12-01

    AECL is evaluating a concept for disposing of nuclear fuel waste from Canada's CANDU reactors deep in plutonic rock of the Canadian Shield. As part of this evaluation, AECL has developed models of the physicals, chemical, geological and biological processes that could occur in a sealed accessible environment over thousands of years. The mathematical models of the transport of radionuclides and toxic chemicals from nuclear fuel waste to the environment are incorporated into a computer model named the SYstems Variability Analysis Code, generation 3, and Canadian Concept model, generation 3 (SYVAC3-CC3). This report reproduces the data in the master database used by SYVAC3-CC3 for the postclosure assessment of deep laboratory and field studies conducted by AECL Research over the past fifteen years, including the investigations at an Underground Research Laboratory excavated to a depth of 450 meters in a large granitic batholith within the Whiteshell Research area near Lac du Bonnet, Manitoba; conceptual engineering studies; detailed analyses of specific features, events and processes; and published literature. The data represent characteristics of a hypothetical vault, certain geological characteristics of the Whiteshell Research area, and a general surface environment with a human population living a rural lifestyle on a portion of the Canadian Shield in central Canada. The data are stored in a master database, which is used with a suite of computer programs to create the input data files used by SYVAC3-CC3. (author). 19 refs., 11 tabs., 2 figs

  13. Revised model of regional groundwater flow of the Whiteshell Research Area: Summary

    International Nuclear Information System (INIS)

    Ophori, D.U.; Stevenson, D.R.; Gascoyne, M.; Brown, A.; Davison, C.C.; Chan, T.; Stanchell, F.W.

    1995-10-01

    Regional groundwater flow of the Whiteshell Research Area (WRA) is simulated in order to evaluate alternative locations for a hypothetical nuclear fuel waste disposal vault that maximizes retention of vault contaminants in the geosphere, and to define boundary conditions for a smaller local model around the vault. A revised conceptual model of the hydrogeologic conditions was constructed using all the information obtained from field investigations at the WRA between 1977 and 1994. All the simulations were performed using AECL's three-dimensional finite-element code, MOTIF. Average values of hydraulic parameters obtained from the field data were used for a base-case simulation, in which freshwater was assumed to occur in the entire flow region. The simulated average groundwater recharge rate for this base case did not compare favourably with the recharge rate that was estimated from the field data. Model calibration was ultimately achieved by modifying the hydraulic parameters and total dissolved solids (TDS) distribution of the fluid in a series of consecutive simulations. The simulated recharge rate for the final calibrated model was 4.8 mm/a which compares well with the rate of 5 mm/a, that was estimated from independent field experiments. The simulated freshwater heads also compared reasonably well with measured heads in the network of boreholes at the WRA. Most of the groundwater flow occurred in local systems between the ground surface and the depth of 2000 m. The travel times, pathways and exit locations of particles released from different depth horizons in the groundwater velocity field of the calibrated model were determined using a particle tracking code, TRACK3D. These results were used to select a location for a hypothetical nuclear fuel waste disposal vault that maximizes the retention of vault contaminants in a long, slow groundwater flow pathways. The selected location is about 5 km northeast of the location of Underground Research Laboratory (URL

  14. AECL's underground research laboratory: technical achievements and lessons learned

    International Nuclear Information System (INIS)

    Ohta, M.M.; Chandler, N.A.

    1997-03-01

    During the development of the research program for the Canadian Nuclear Fuel Waste Management Program in the 1970's, the need for an underground facility was recognized. AECL constructed an Underground Research Laboratory (URL) for large-scale testing and in situ engineering and performance-assessment-related experiments on key aspects of deep geological disposal in a representative geological environment. Ale URL is a unique geotechnical research and development facility because it was constructed in a previously undisturbed portion of a granitic pluton that was well characterized before construction began, and because most of the shaft and experimental areas are below the water table. The specific areas of research, development and demonstration include surface and underground characterization; groundwater and solute transport; in situ rock stress conditions; temperature and time-dependent deformation and failure characteristics of rock; excavation techniques to minimize damage to surrounding rock and to ensure safe working conditions; and the performance of seals and backfills. This report traces the evolution of the URL and summarizes the technical achievements and lessons learned during its siting, design and construction, and operating phases over the last 18 years. (author)

  15. Health and safety at the Whiteshell Nuclear Research Establishment

    International Nuclear Information System (INIS)

    LeNeveu, D.M.

    1982-04-01

    This report outlines the health and safety program at the Whiteshell Nuclear Research Establishment. It describes the procedures in place to ensure that a high standard of conventional industrial and radiation safety is maintained in the workplace

  16. Transport modeling of sorbing tracers in artificial fractures

    International Nuclear Information System (INIS)

    Keum, Dong Kwon; Baik, Min Hoon; Park, Chung Kyun; Cho, Young Hwan; Hahn, Phil Soo.

    1998-02-01

    This study was performed as part of a fifty-man year attachment program between AECL (Atomic Energy Canada Limited) and KAERI. Three kinds of computer code, HDD, POMKAP and VAMKAP, were developed to predict transport of contaminants in fractured rock. MDDM was to calculate the mass transport of contaminants in a single fracture using a simple hydrodynamic dispersion diffusion model. POMKAP was to predict the mass transport of contaminants by a two-dimensional variable aperture model. In parallel with modeling, the validation of models was also performed through the analysis of the migration experimental data obtained in acrylic plastic and granite artificial fracture system at the Whiteshell laboratories, AECL, Canada. (author). 34 refs., 11 tabs., 76 figs

  17. Summary of feasibility studies on in situ disposal as a decommissioning option for nuclear facilities

    International Nuclear Information System (INIS)

    Helbrecht, R.A.

    2002-01-01

    A scoping study was conducted over the period 1998-2000 to consider the feasibility of in situ disposal as a decommissioning option for AECL's Nuclear Power Demonstration Reactor located at Rolphton, Ontario. The results of a detailed assessment are summarized and the study concludes that in situ disposal appears feasible. Additional work required to confirm the results is also identified. A second in situ component, contaminated Winnipeg River sediments at AECL's Whiteshell Laboratory located in Manitoba, was also evaluated. That study concluded that in situ abandonment would have no adverse impact on aquatic life, humans and the environment. A summary of the study is presented as an appendix to the report. (author)

  18. Transport modeling of sorbing tracers in artificial fractures

    Energy Technology Data Exchange (ETDEWEB)

    Keum, Dong Kwon; Baik, Min Hoon; Park, Chung Kyun; Cho, Young Hwan; Hahn, Phil Soo

    1998-02-01

    This study was performed as part of a fifty-man year attachment program between AECL (Atomic Energy Canada Limited) and KAERI. Three kinds of computer code, HDD, POMKAP and VAMKAP, were developed to predict transport of contaminants in fractured rock. MDDM was to calculate the mass transport of contaminants in a single fracture using a simple hydrodynamic dispersion diffusion model. POMKAP was to predict the mass transport of contaminants by a two-dimensional variable aperture model. In parallel with modeling, the validation of models was also performed through the analysis of the migration experimental data obtained in acrylic plastic and granite artificial fracture system at the Whiteshell laboratories, AECL, Canada. (author). 34 refs., 11 tabs., 76 figs.

  19. A neutron scattering device for void fraction measurement in channels of the RD-14M thermalhydraulics test facility

    Energy Technology Data Exchange (ETDEWEB)

    Han, P; Hussein, E M.A. [New Brunswick Univ., Fredericton (Canada). Dept. of Mechanical Engineering; Ingham, P J [Atomic Energy of Canada Ltd., Pinawa, MB (Canada). Whiteshell Labs.

    1996-12-31

    This paper presents a neutron scattering device designed for measuring the void fraction of two-phase flow in the channels or heated sections of the RD-14M Thermalhydraulics Test Facility, located at the AECL Whiteshell Laboratories. The results of an on-line test of the device are presented. The performance of the scatterometer is assessed and is shown to be in agreement with the results inferred from other independent process-parameter measurements. (author). 2 refs., 7 figs.

  20. The use of HANDIDET reg-sign non-electric detonator assemblies to reduce blast-induced overpressure at AECL's Underground Research Laboratory

    International Nuclear Information System (INIS)

    Onagi, D.P.; Keith, S.G.; Kuzyk, G.W.

    1996-01-01

    A number of aspects of the Canadian concept for nuclear fuel waste disposal are being assessed by Atomic Energy of Canada Limited (AECL) in a series of experiments at its Underground Research Laboratory (URL) near Lac du Bonnet, Manitoba, Canada. One of the major objectives of the work being carried out at the URL is to develop and evaluate the methods and technology to ensure safe, permanent disposal of Canada's nuclear fuel waste. In 1994, AECL excavated access tunnels and a laboratory room for the Quarried Block Fracture Migration Experiment (QBFME) at the 240 Level of the URL. This facility will be used to study the transport of radionuclides in natural fractures in quarried blocks of granite under in-situ groundwater conditions. The experiment is being carried out under a cooperative agreement with the Japan Atomic Energy Research Institute. The excavation of the QBFME access tunnels and laboratory was carried out using controlled blasting techniques that minimized blast-induced overpressure which could have damaged or interrupted other ongoing experiments in the vicinity. The majority of the blasts used conventional long delay non-electric detonators but a number of blasts were carried out using HANDIDET 250/6000 non-electric long delay detonator assemblies and HTD reg-sign non-electric short delay trunkline detonator assemblies. The tunnel and laboratory excavation was monitored to determine the levels of blast-induced overpressure. This paper describes the blasting and monitoring results of the blasts using HANDIDET non-electric detonator assemblies and the effectiveness of these detonators in reducing blast-induced overpressure

  1. Development of advanced ceramics at AECL

    International Nuclear Information System (INIS)

    Palmer, B.J.F.; MacEwen, S.R.; Sawicka, B.D.; Hayward, P.J.; Sridhar, S.

    1986-12-01

    Atomic Energy of Canada Limited (AECL) has a long history of developing ceramics for nuclear fission and fusion applications. AECL is now applying its multidisciplinary materials R and D capabilities, including unique capabilities in ceramic processing and nondestructive evaluation, to develop advanced ceramic materials for commercial and industrial applications. This report provides an overview of the facilities and programs associated with the development of advanced ceramics at AECL

  2. AECL hot-cell facilities and post-irradiation examination services

    International Nuclear Information System (INIS)

    Schankula, M.H.; Plaice, E.L.; Woodworth, L.G.

    1998-04-01

    This paper presents an overview of the post-irradiation examination (PIE) services available at AECL's hot-cell facilities (HCF). The HCFs are used primarily to provide PIE support for operating CANDU power reactors in Canada and abroad, and for the examination of experimental fuel bundles and core components irradiated in research reactors at the Chalk River Laboratories (CRL) and off-shore. A variety of examinations and analyses are performed ranging from non-destructive visual and dimensional inspections to detailed optical and scanning electron microscopic examinations. Several hot cells are dedicated to mechanical property testing of structural materials and to determine the fitness-for-service of reactor core components. Facility upgrades and the development of innovative examination techniques continue to improve AECL's PIE capabilities. (author)

  3. AECL hot-cell facilities and post-irradiation examination services

    International Nuclear Information System (INIS)

    Schankula, M.H.; Plaice, E.L.; Woodworth, L.G.

    1995-01-01

    This paper presents an overview of the post-irradiation examination (PIE) services available at AECL's hot-cell facilities (HCF). The HCFs are used primarily to provide PIE support for operating CANDU power reactors in Canada and abroad, and for the examination of experimental fuel bundles and core components irradiated in research reactors at the Chalk River Laboratories (CRL) and off-shore. A variety of examinations and analysis are performed ranging from non-destructive visual and dimensional inspections to detailed optical and scanning electron microscopic examinations. Several hot cells are dedicated to mechanical property testing of structural materials and to determine the fitness-for-service of reactor core components. Facility upgrades and the development of innovative examination techniques continue to improve AECL's PIE capabilities. (author)

  4. Revised model of regional groundwater flow in the Whiteshell research area

    International Nuclear Information System (INIS)

    Ophori, D.U.; Brown, A.; Chan, T.; Davison, C.C.; Gascoyne, M.; Scheier, N.W.; Stanchell, F.W.; Stevenson, D.R.

    1996-08-01

    Steady-state regional groundwater flow of the Whiteshell Research Area (WRA) has been simulated in order to evaluate alternate locations for a hypothetical nuclear fuel waste disposal vault that maximize the retention of vault contaminants in long, slow groundwater flow paths through the geosphere. A revised conceptual model of the hydrogeologic conditions was constructed using all the information obtained from field investigations at the WRA between 1977 and 1994. All the simulations were performed using AECL's three-dimensional finite element code, MOTIF. A base-case simulation was performed using average value estimates of hydraulic parameters obtained from the field data, and freshwater was assumed to occur in the entire groundwater flow region. The simulated freshwater heads did not compare favourably with the freshwater beads that were derived from the field data. The simulated equivalent freshwater heads for the final calibrated model compared reasonably well with measured heads in the network of boreholes at the WRA. The simulated recharge rate for the final model was 4.8 mm/a Most of the groundwater flow in the model occurred in local systems between ground surface and a depth of 1000 m. A particle tracking code, TRACK3D, was used to determine the pathways, travel times and exit locations of particles released from different depths in the groundwater velocity field of the calibrated model. The exit locations of these pathways were found to be controlled by the network of regional fracture zones in the model. These results were used to select a location for a hypothetical nuclear fuel waste disposal vault in the regional groundwater flow model that maximizes the retention of vault contaminants in long, slow groundwater flow paths. A smaller region of about 75 km 2 was identified around this location for the development of a local geosphere model. (author). 32 refs., 4 tabs., 29 figs

  5. Startup of the Whiteshell irradiation facility

    International Nuclear Information System (INIS)

    Barnard, J.W.; Stanley, F.W.

    1989-01-01

    Recently, a 10-MeV, 1-kW electron linear accelerator was installed in a specially designed irradiation facility at the Whiteshell Nuclear Research Establishment. The facility was designed for radiation applications research in the development of new radiation processes up to the pilot scale level. The accelerator is of advanced design. Automatic startup via computer control makes it compatible with industrial processing. It has been operated successfully as a fully integrated electron irradiator for a number of applications including curing of plastics and composites, sterilization of medical disposables and animal feed irradiation. We report here on our experience during the first six months of operation. (orig.)

  6. Startup of the whiteshell irradiation facility

    Science.gov (United States)

    Barnard, J. W.; Stanley, F. W.

    1989-04-01

    Recently, a 10-MeV, 1-kW electron linear accelerator was installed in a specially designed irradiation facility at the Whiteshell Nuclear Research Establishment. The facility was designed for radiation applications research in the development of new radiation processes up to the pilot scale level. The accelerator is of advanced design. Automatic startup via computer control makes it compatible with industrial processing. It has been operated successfully as a fully integrated electron irradiator for a number of applications including curing of plastics and composites, sterilization of medical disposables and animal feed irradiation. We report here on our experience during the first six months of operation.

  7. Legacy program acquires special equipment for CRL spent fuel. Canadian arm of Rolls Royce delivers unique machines

    International Nuclear Information System (INIS)

    Boyd, F.

    2012-01-01

    Six years ago the federal government accepted its responsibility for the radioactive waste that has resulted from the six decades of nuclear research and development conducted by Atomic Energy of Canada Limited and its predecessor operator of the Chalk River Laboratories (CRL) the National Research Council (1944 - 1952). Nuclear research and development and, particularly, reactor operation at CRL has resulted in outdated and unused research facilities and buildings and a wide variety of buried and stored radioactive waste. In 2006 the federal government established the Nuclear Legacy Liabilities Program (NLLP) with an initial funding of $520 million. The mandate of the NLLP is to deal with the radioactive waste arising from the nuclear research and development program of AECL and also prototype reactors in which it was involved. The timeline for the NLLP extends several decades into the future. The NLLP is implemented through a partnership of Natural Resources Canada (NRCan) and AECL. NRCan is responsible for policy direction and oversight, while AECL is responsible for program implementation and all licences, facilities and lands. About 70 percent of the liabilities from AECL activities are at CRL. Other sites that will be restored under the NLLP are: the Whiteshell Laboratories and Underground Research Laboratory in Manitoba; NPD and Douglas Point reactors in Ontario; and the Gentilly 1 reactor in Quebec. (author)

  8. Experience with remediating radiostrontium-contaminated ground water and surface water with versions of AECL's CHEMIC process

    International Nuclear Information System (INIS)

    Vijayan, S.

    2006-01-01

    Numerous approaches have been developed for the remediation of radiostrontium ( 90 Sr) contaminated ground water and surface water. Several strontium-removal technologies have been assessed and applied at AECL's (Atomic Energy of Canada Limited) Chalk River Laboratories. These include simple ion exchange (based on non-selective natural zeolites or selective synthetic inorganic media), and precipitation and filtration with or without ion exchange as a final polishing step. AECL's CHEMIC process is based on precipitation-microfiltration and ion-exchange steps. This paper presents data related to radiostrontium removal performance and other operational experiences including troubleshooting with two round-the-clock, pilot-scale water remediation plants based on AECL's CHEMIC process at the Chalk River Laboratories site. These plants began operation in the early 1990s. Through optimization of process chemistry and operation, high values for system capability and system availability factors, and low concentrations of 90 Sr in the discharge water approaching drinking water standard can be achieved. (author)

  9. Feasibility study on application of WIMS-AECL to Wolsong-1 refueling simulation

    International Nuclear Information System (INIS)

    Kim, Y.; Lee, S.

    2005-01-01

    'Full text:' At present, in Wolsong nuclear power plant, all of the reactor physics calculations are based on the cell code POWDERPUFS-V (PPV). PPV code use semi-empirical approximation rather than direct solving of transport equation with robust methodology. Switch from PPV to more robust transport solver is world-wide trend in addition to GAI issued from Canadian regulatory body (CNSC). In this paper, feasibility study on the replacement of cell code POWDERPUFS-V (PPV) with WIMS-AECL was performed for Wolsong-1 NPP. The impact of the cell code replacement on physics design parameters and refueling simulation was assessed. First, fuel isotopic composition affecting core reactivity is compared between PPV and WIMS-AECL. Generally it was shown that WIMS-AECL predicts higher uranium fissile concentration while less plutonium concentration as fuel burnup increases compared with prediction of PPV. Infinite multiplication factor of WIMS-AECL is slightly less predicted than that of PPV. Also core reactivity change from operating condition change such as moderator temperature, coolant temperature, fuel temperature and coolant density were compared for both fresh fuel and equilibrium fuel. Specially the analysis of void reactivity which is current hot issue for positive reactivity insertion in LOCA was also performed. As a result of this study, all of WIMS-AECL results were similar to PPV based calculation in the fresh fuel. However, there is a tendency that the deviation between the two codes increases as the fuel burn-up increases. This is because PPV code was made from the laboratory condition with fresh fuel and low fuel temperature. Second, refueling simulation with WIMS-AECL based RFSP was tried to compare with current PPV based RFSP simulation for about 20 months (5775FPD ∼ 6324FPD). To cover wide range of operating parameter condition such as purity of moderator and coolant and boron concentration, tremendous amount of computation time is needed with WIMS-AECL

  10. AECL annual review 1992 - 1993

    International Nuclear Information System (INIS)

    1993-01-01

    1992/93 was a pivotal year for AECL, with the redirection of its strategic plan, the refocussing of its corporate mission, a change in its structural organization to meet new challenges, the contract with South Korea for Wolsong Units 3 and 4 and the Memorandum of Understanding with Saskatchewan. AECL looks forward to the next 12 months as a time of opportunity, confident in the knowledge that they possess the means to succeed. ills

  11. AECL annual review 1992 - 1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    1992/93 was a pivotal year for AECL, with the redirection of its strategic plan, the refocussing of its corporate mission, a change in its structural organization to meet new challenges, the contract with South Korea for Wolsong Units 3 and 4 and the Memorandum of Understanding with Saskatchewan. AECL looks forward to the next 12 months as a time of opportunity, confident in the knowledge that they possess the means to succeed. ills.

  12. AECL strategy for surface-based investigations of potential disposal sites and the development of a geosphere model for a site

    Energy Technology Data Exchange (ETDEWEB)

    Whitaker, S H; Brown, A; Davison, C C; Gascoyne, M; Lodha, G S; Stevenson, D R; Thorne, G A; Tomsons, D [AECL Research, Whiteshell Labs., Pinawa, MB (Canada)

    1994-05-01

    The objective of this report is to summarize AECL`s strategy for surface-based geotechnical site investigations used in screening and evaluating candidate areas and candidate sites for a nuclear fuel waste repository and for the development of geosphere models of sites. The report is one of several prepared by national nuclear fuel waste management programs for the Swedish Nuclear Fuel and Waste Management Co. (SKB) to provide international background on site investigations for SKB`s R and D programme on siting.The scope of the report is limited to surface-based investigations of the geosphere, those done at surface or in boreholes drilled from surface. The report discusses AECL`s investigation strategy and the methods proposed for use in surface-based reconnaissance and detailed site investigations at potential repository sites. Site investigations done for AECL`s Underground Research Laboratory are used to illustrate the approach. The report also discusses AECL`s strategy for developing conceptual and mathematical models of geological conditions at sites and the use of these models in developing a model (Geosphere Model) for use in assessing the performance of the disposal system after a repository is closed. Models based on the site data obtained at the URL are used to illustrate the approach. Finally, the report summarizes the lessons learned from AECL`s R and D program on site investigations and mentions some recent developments in the R and D program. 120 refs, 33 figs, 7 tabs.

  13. Hydrogen recombiner development at AECL

    International Nuclear Information System (INIS)

    Dewit, W.A.; Koroll, G.W.; Loesel Sitar, J.; Graham, W.R.C.

    1997-01-01

    Catalytic recombiners have been developed at AECL for the purpose of hydrogen removal in post-accident nuclear containment buildings. The recombiners are based on a particular catalyst designed by AECL which has extraordinary resistance to fouling from water and water vapour and a large thermodynamic range of operation. The catalysts were developed, originally, for the purpose of heavy water manufacturing by way of a catalytic exchange process. Application of these catalyst materials in recombiners for containment applications began in the late 1980's. The first application was a passive recombiner, qualified for use in control of radiolytic hydrogen in the headspace of a pool-type experimental reactor of AECL design in 1988. The passive, or natural convection recombiner concept has continued development to commercial stage for application in power reactor containments. This paper reviews the AECL recombiner development, describes the current model and shows results from tests of full-scale recombiners in the Large Scale Vented Combustion Test Facility at AECL-WL. The AECL recombiner is designed for compactness and ease of engineering into containment. The design is a simple, open-ended rectangular enclosure with catalyst elements arranged inside to promote optimum convective flow driven by heat of recombination at the catalyst surface. Self start, as evidenced by catalyst heating and initiation of flow, is achieved in less than 1% hydrogen, with available oxygen, at room temperature and 100% relative humidity. This low temperature start-up in condensing atmospheres is viewed as the most challenging condition for wet-proofing effectiveness. Cold start-up is a vital performance requirement in containments, such as CANDU, where engineered air-cooling systems are operating and where long-term hydrogen control is required, after containment atmospheres have cooled. Once started, the removal capacity scales linearly with the inlet cross-section area and the partial

  14. Hydrogeologic characteristics of domains of sparsely fractured rock in the granitic Lac Du Bonnet Batholith, southeastern Manitoba, Canada

    International Nuclear Information System (INIS)

    Stevenson, D.R.; Kozak, E.T.; Davison, C.C.; Gascoyne, M.; Broadfoot, R.A.

    1996-06-01

    The hydrogeologic characteristics of the granitic Lac du Bonnet batholith in southeastern Manitoba have been studied since 1978, as part of AECL's program to assess the concept of disposing of Canada's nuclear fuel waste deep within plutonic rocks of the Canadian Shield (Davison et al. 1994a). These studies have included an extensive program of drilling, logging, testing, sampling and monitoring in 19 deep surface boreholes drilled at Grid areas located across the Lac du Bonnet batholith, at the Whiteshell Laboratory (WL), and in surface and underground boreholes at the Underground Research Laboratory (URL). Based on these investigations domains of low permeability, sparsely fractured rock (SFR) have been identified in the Lac du Bonnet batholith

  15. Past and future fracturing in AECL Research areas in the superior province of the Canadian Precambrian Shield, with emphasis on the Lac du Bonnet Batholith

    International Nuclear Information System (INIS)

    Brown, A.; Everitt, R.A.; Martin, C.D.; Davison, C.C.

    1995-10-01

    The likelihood that future fracturing, arising from geologic causes, could occur in the vicinity of a nuclear fuel waste repository in plutonic rock of the Canadian Precambrian Shield, is examined. The report discusses the possible causes of fracturing (both past and future) in Shield rocks. The report then examines case histories of fracture formation in Precambrian plutonic rocks in AECL's Research Areas, especially the history of the Lac du Bonnet Batholith, in the Whiteshell Area, Manitoba. Initially, fractures can be introduced into intrusive plutonic rocks during crystallization and cooling of an intrusive magma. These fractures are found at all size scales; as late residual magma dyking, hydraulic fracturing by retrograde boiling off of hydrothermal fluids, and, in some cases, through local differential cooling. Subsequent fracturing is largely caused by changes in environmental temperature and stress field, rather than by alteration of the material behaviour of the rock. Pluton emplacement during orogeny is commonly accompanied by uplift and erosional exhumation, altering both the tectonic and the lithostatic stresses, the rock temperature gradient and the pore fluid characteristics

  16. AECL'S approach to managing long term liabilities at Chalk River Laboratories. Annex II

    International Nuclear Information System (INIS)

    Audet, M.C.

    2006-01-01

    Chalk River Laboratories (CRL) is a large nuclear research and development/ industrial site operated by Atomic Energy of Canada Limited (AECL). Construction of the site started in 1944, and it now includes over 100 buildings/facilities operating in various nuclear fields. A well developed decommissioning programme exists at CRL, with progress being made on decommissioning older redundant buildings, in parallel with ongoing site operations and development. The decommissioning programme is predicated on the assumption that the current nuclear operations will continue over a 100 year operating period, but with a decline towards the end of the period. Although decommissioning and remediation work will be carried out throughout the operational period, residual levels of activity remaining in a few areas will require institutional control (IC) for an assumed period of 300 years. The intention is to complete all necessary active remediation work before the start of the IC period and thereafter rely only on passive means to reduce residual contamination to levels that do not require IC measures. The latter include environmental monitoring, active and passive controls to prevent intrusion, and management controls to prohibit access or development. A formal information and records management programme at CRL has been initiated. (author)

  17. Description of the resonance treatment in WIMS-AECL

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, J V

    1993-05-01

    The Stamm`ler resonance treatment as applied within the WIMS-AECL lattice cell code is described. The validation work demonstrating the accuracy of the resonance treatment is reviewed and indicates that the methods used will be accurate for the current range of application within AECL. (author). 22 refs., 6 tabs.

  18. Advancing CANDU technology AECL's Development program

    International Nuclear Information System (INIS)

    Torgerson, D.F.

    1997-01-01

    AECL has a comprehensive product development program that is advancing all aspects of CANDU technology including fuel and fuel cycles, fuel channels, heavy water and tritium technology, safety technology, components and systems, constructability, health and environment, and control and instrumentation. The technology arising from these programs is being incorporated into the CANDU design through an evolutionary process. This evolutionary process is focused on improving economics, enhancing safety and ensuring fuel cycle flexibility to secure fuel supply for the foreseeable future. This strategic thrusts are being used by CANDU designers and researchers to set priorities and goals for AECL's development activities. The goals are part of a 25-year development program that culminates in the 'CANDU X'. The 'CANDU X' is not a specific design - it is a concept that articulates our best extrapolation of what is achievable with the CANDU design over the next 25 years, and includes the advanced features arising from the R and D and engineering to be done over that time. AECL's current product, the 700 MWe class CANDU 6 and the 900 MWe class CANDU 9, both incorporate output from the development programs as the technology become available. A brief description of each development areas is given below. The paper ends with the conclusion that AECL has a clear vision of how CANDU technology and products will evolve over the next several years, and has structured a comprehensive development program to take full advantage of the inherent characteristics of heavy water reactors. (author)

  19. Advances in radiation processing of polymeric materials

    International Nuclear Information System (INIS)

    Makuuchi, K.; Sasak, T.; Vikis, A.C.; Singh, A.

    1993-12-01

    In this paper we review recent advances in industrial applications of electron-beam irradiation in the field of polymer processing at the Takasaki Radiation Chemistry Research Establishment (TRCRE) of JAERI (Japan Atomic Energy Research Institute), and the Whiteshell Laboratories of AECL Research, Canada. Irradiation of a substrate with ionizing radiation produces free radicals through ionization and excitation events. The subsequent chemistry of these radicals is used in radiation processing as a substitute for conventional processing techniques based on heating and/or the addition of chemicals. The advantages of radiation processing include the formation of novel products with desirable material properties, favourable overall process economics and, often, environmental benefits

  20. Annual report 1997--1998. AECL research number AECL-11964

    International Nuclear Information System (INIS)

    1998-01-01

    This is the Annual report of AECL, the legal name of Atomic Energy of Canada Limited. Its mandate is to undertake research into nuclear energy and to develop commercial applications for its developments. This annual report presents information on marketing and commercial operations, product development, CANDU research, waste management and nuclear sciences, environmental management and site refurbishment. A financial review is included, along with management responsibility, an Auditor's report, financial statements, a five-year financial summary, and a list of directors and locations

  1. Dispersion microclimatology of the Whiteshell Nuclear Research Establishment: 1964-1976

    International Nuclear Information System (INIS)

    Davis, P.A.; Reimer, A.

    1980-10-01

    This report discusses the analysis of data collected on the meteorological tower at the Whiteshell Nuclear Research Establishment (WNRE) during the period 1964-1976. The time-averaged characteristics of wind speed, wind direction, temperature and atmospheric stability are described, and the implications which these chacteristics have for the dispersion of a contaminant released to the atmosphere from the WNRE site are discussed. A comparison of the present results with those of a previous two-year analysis of WNRE measurements suggests that a short-term climatology is sufficiently representative of long-term conditions to provide a reliable base for dispersion predictions. (auth)

  2. Technology transfer from Canadian nuclear laboratories

    International Nuclear Information System (INIS)

    MacDonald, R.D.; Evans, W.; MacEwan, J.R.; Melvin, J.G.

    1985-09-01

    Canada has developed a unique nuclear power system, the CANDU reactor. AECL - Research Company (AECL-RC) has played a key role in the CANDU program by supplying its technology to the reactor's designers, constructors and operators. This technology was transferred from our laboratories to our sister AECL companies and to domestic industries and utilities. As CANDUs were built overseas, AECL-RC made its technology available to foreign utilities and agencies. Recently the company has embarked on a new transfer program, commercial R and D for nuclear and non-nuclear customers. During the years of CANDU development, AECL-RC has acquired the skills and technology that are especially valuable to other countries embarking on their own nuclear programs. This report describes AECL-RC's thirty years' experience with the transfer of technology

  3. Progress report, physics and health sciences, physics section, 1986 January 01 - June 30

    International Nuclear Information System (INIS)

    1986-08-01

    The two progress reports PR-PHS-P-1 (AECL-9262) and PR-PHS-HS-1 (AECL-9263) are continuations of the former series in Physics, PR-P-142, (AECL-9103) and in Health Sciences, PH-HS-20 (AECL-9102). The new series have been initiated to take into account the reorganization of the Research Company effective 1986 February 1. It is intended to issue the reports semi-annually on June 30 and December 31 covering the previous six months. The new series cover the same areas as before except that the Accelerator Physics Branch and the Mathematics and Computation Branch activities are no longer included in Physics, and the activities of the Medical Biophysics Branch at Whiteshell are now included in Health Sciences. The latest progress report on the Medical Biophysics work appeared in the WNRE report PR-WHS-73. This report (AECL-9262) covers the research, business and commercial activities of Nuclear Physics, TASCC Operations, Neutron and Solid State Physics, Theoretical Physics and the Fusion Office

  4. Development of square and hexagonal lattice analysis capability in WIMS-AECL

    International Nuclear Information System (INIS)

    Donnelly, J.V.

    1990-11-01

    WIMS, originally developed by the UKAEA (Winfrith), is a widely used computer code for reactor physics analysis of lattice cells. WIMS-AECL (Atomic Energy of Canada Limited) has been developed from a version of the code received from Winfrith in the early 1970s and is generally used within AECL. The facilities existing in the original version of WIMS were very capable for the analysis of reactor designs normally encountered within AECL at that time, such as CANDU fuel lattices, but had limitations in the analysis of more general reactor geometries, such as square light-reactor assemblies. This paper discusses the development and testing of modifications to the two-dimensional collision-probability calculation module in WIMS-AECL to enable more rigorous analysis of lattice geometries based on square or hexagonal cells

  5. Managing wastes from the atomic age and into the future: programs, plans and challenges

    International Nuclear Information System (INIS)

    Miller, J.M.

    2011-01-01

    Various types of waste are generated at Atomic Energy of Canada Limited (AECL) nuclear sites from diversified operations, including research reactor operations, radioisotope production, hot cell operations, nuclear fuel fabrication, research and development activities, facility decommissioning, environmental restoration, etc. AECL is responsible for the safe storage and long-term management of waste generated by Chalk River Laboratories (CRL), Whiteshell Laboratories (WL) and the three partially decommissioned prototype reactors, as well as for the radioactive waste received from off-site waste generators on a fee-for-service basis. As the home for the first nuclear reactor in Canada and nuclear research facilities, CRL has been a pioneer in the management of nuclear waste. Since the dawn of the nuclear era in the 1940s, CRL's waste management facilities have evolved from storage in simple sand trenches to below-ground concrete storage, to above-ground facilities offering multiple barriers of containment. To continuously improve the waste management at AECL, a formal Waste Management Program has been introduced. An important component of this Program is a focus on waste reduction and appropriate waste characterization to ensure wastes are being handled, stored and/or disposed in the most cost-effective manner. In 2006, AECL began implementing the Government of Canada-funded Nuclear Legacy Liabilities Program (NLLP) to deal with nuclear legacy liabilities at AECL sites. Approximately 200,000 to 300,000 cubic metres of waste from earlier operations at AECL requires management through the NLLP, with a yearly increase of several thousand cubic metres. Several of the NLLP projects currently underway are focused on improving the robustness of earlier management practices, as older facilities reach the end of their design life. An important element of the NLLP is the development of an Integrated Waste Plan to ensure optimal selection of enabling facilities and their

  6. Planning a new research reactor for AECL: The MAPLE-MTR concept

    International Nuclear Information System (INIS)

    Lee, A.G.; Lidstone, R.F.; Donnelly, J.V.

    1992-01-01

    AECL Research is assessing its needs and options for future irradiation research facilities. A planning team has been assembled to identify the irradiation requirements for AECL's research programs and compile options for satisfying the irradiation requirements. The planning team is formulating a set of criteria to evaluate the options and will recommend a plan for developing an appropriate research facility. Developing the MAPLE Materials Test Reactor (MAPLE-MTR) concept to satisfy AECL's irradiation requirements is one option under consideration by the planning team. AECL is undertaking this planning phase because the NRU reactor is 35 years old and many components are nearing the end of their design life. This reactor has been a versatile facility for proof testing CANDU components and fuel designs because the CANDU irradiation environment was simulated quite well. However, the CANDU design has matured and the irradiation requirements have changed. Future research programs will emphasize testing CANDU components near or beyond their design limits. To provide these irradiation conditions, the NRU reactor needs to be upgraded. Upgrading and refurbishing the NRU reactor is being considered, but the potentially large costs and regulatory uncertainties make this option very challenging. AECL is also developing the MAPLE-MTR concept as a potential replacement for the NRU reactor. The MAPLE-MTR concept starts from the recent MAPLE-X10 design and licensing experience and adapts this technology to satisfy the primary irradiation requirements of AECL's research programs. This approach should enable AECL to minimize the need for major advances in nuclear technology (e.g., fuel design, heat transfer). The preliminary considerations for developing the MAPLE-MTR concept are presented in this report. A summary of AECL's research programs is presented along with their irradiation requirements. This is followed by a description of safety criteria that need to be taken into

  7. Derived release limits for radionuclides in airborne and liquid effluents for the Whiteshell Nuclear Research Establishment and errata

    International Nuclear Information System (INIS)

    Lemire, A.E.

    1989-08-01

    Radionuclides released to the environment may cause external and internal radiation exposure to man via a number of potential pathways. The resulting radiation dose due to such releases from any operating facility must be kept below dose limits specified in the regulations issued by the Atomic Energy Control Board of Canada. At the Whiteshell Nuclear Research Establishment (WNRE), there is one primary source of liquid effluent to the Winnipeg River via the process water outfall. There are five sources of gaseous effluents: the WR-1 stack; the incinerator stack in the waste management area; the active laboratories building (including the hot cells); the Active-Liquid Waste Treatment Centre; and the compactor-baler in the Waste Management Area. This report presents the methodology and models used to calculate the maximum permissible release rates of radionuclides for each of these sources

  8. AECL's plant Information Technologies

    International Nuclear Information System (INIS)

    DeVerno, M.; Lupton, L.; Didsbury, R.; Judd, R.

    1998-01-01

    The competitiveness of the world-wide energy market is a continual driving force for improvements to CANDU performance and lower operating, maintenance, and administration costs. As in other industries, advanced Information Technologies (IT) are changing the way we work and conduct business. The nuclear industry is no different and there exists strong incentives to improve work processes and provide faster and more flexible access to the information needed to effectively manage and maintain nuclear plant assets. AECL has responded to these forces through the development of a vision of integrated IT systems addressing all phases of nuclear plant development and operations. This includes the initial engineering, design, and construction processes as well as support to the long-term operations and maintenance. Integral to the AECL vision is the need for cost-effective engineering and operational configuration management systems, proactive maintenance processes and systems, and advanced plant surveillance and diagnostics. This paper presents the vision and describes the integrated information systems needed to manage both the design basis and operating plant data systems to ensure the cost-effective, long-term viability of CANDU plants. (author)

  9. AECL strategy for surface-based investigations of potential disposal sites and the development of a geosphere model for a site

    International Nuclear Information System (INIS)

    Whitaker, S.H.; Brown, A.; Davison, C.C.; Gascoyne, M.; Lodha, G.S.; Stevenson, D.R.; Thorne, G.A.; Tomsons, D.

    1994-05-01

    The objective of this report is to summarize AECL's strategy for surface-based geotechnical site investigations used in screening and evaluating candidate areas and candidate sites for a nuclear fuel waste repository and for the development of geosphere models of sites. The report is one of several prepared by national nuclear fuel waste management programs for the Swedish Nuclear Fuel and Waste Management Co. (SKB) to provide international background on site investigations for SKB's R and D programme on siting.The scope of the report is limited to surface-based investigations of the geosphere, those done at surface or in boreholes drilled from surface. The report discusses AECL's investigation strategy and the methods proposed for use in surface-based reconnaissance and detailed site investigations at potential repository sites. Site investigations done for AECL's Underground Research Laboratory are used to illustrate the approach. The report also discusses AECL's strategy for developing conceptual and mathematical models of geological conditions at sites and the use of these models in developing a model (Geosphere Model) for use in assessing the performance of the disposal system after a repository is closed. Models based on the site data obtained at the URL are used to illustrate the approach. Finally, the report summarizes the lessons learned from AECL's R and D program on site investigations and mentions some recent developments in the R and D program. 120 refs, 33 figs, 7 tabs

  10. Current status of the waste identification program at AECL's Chalk River Laboratories

    International Nuclear Information System (INIS)

    Csullog, G.W.; Edwards, N.W.; TerHuurne, M.A.

    1998-01-01

    The management of routine operating waste by Waste Management and Decommissioning (WM and D) at Atomic Energy of Canada Limited's (AECL) Chalk River Laboratories (CRL) is supported by the Waste Identification (WI) Program. The principal purpose of the WI Program is to minimize the cost and the effort associated with waste characterization and waste tracking, which are needed to optimize waste handling, storage and disposal. The major steps in the WI Program are: (1) identify and characterize the processes that generate the routine radioactive wastes accepted by WM and D - radioisotope production, radioisotope use, reactor operation, fuel fabrication, et cetera (2) identify and characterize the routine blocks of waste generated by each process or activity - the initial characterization is based on inference (process knowledge) (3) prepare customized, template data sheets for each routine waste block - templates contain information such as package type, waste material, waste type, solidifying agent, the average non-radiological contaminant inventory, the average radiological contaminant inventory, and the waste class (4) ensure generators 'use the right piece of paper with the right waste' when they transfer waste to WM and D - that is they use the correct template data sheets to transfer routine wastes, by: identifying and marking waste collection points in the generator's facility; ensuring that generators implement effective waste collection/segregation procedures; implementing standard procedures to transfer waste to WM and D; and, auditing waste collection and segregation within a generator's facility (5) determine any additional waste block characterization requirements (is anything needed beyond the original characterization by process knowledge?) This paper describes the WI Program, it provides an example of its implementation, and it summarizes the current status of its implementation for both CRL and non-CRL waste generators. (author)

  11. AECL annual report 1996-1997

    International Nuclear Information System (INIS)

    1997-01-01

    The 1996/1997 Annual Report of Atomic Energy of Canada Ltd. (AECL) is published and submitted to the Honourable member of parliament, Minister of Natural Resources. Included in this report are messages from marketing, commercial operations, product development, CANDU research, waste management, environmental management, financial review and copies of financial statements

  12. AECL annual report 1996-1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The 1996/1997 Annual Report of Atomic Energy of Canada Ltd. (AECL) is published and submitted to the Honourable member of parliament, Minister of Natural Resources. Included in this report are messages from marketing, commercial operations, product development, CANDU research, waste management, environmental management, financial review and copies of financial statements.

  13. The AECL study for an intense neutron - generator (technical details)

    Energy Technology Data Exchange (ETDEWEB)

    Bartholomew, G A; Tunnicliffe, P R

    1966-07-01

    The AECL study for an intense neutron-generator has been in progress for two years. Recently the scientific and technical details and the conceptual designs were compiled in a report supporting proposals addressed to AECL's Board of Directors for further work. The compilation is being issued in this form to permit further discussion of the technical aspects. However readers are asked to appreciate that it was written primarily for an AECL audience, and specifically that those chapters giving tentative information about costs, the rate of investment and similar items have been omitted or modified, many references have been made to interim internal reports in order to complete the local documentation, but these references do not imply that the reports themselves can be made generally available. (author)

  14. The AECL study for an intense neutron - generator (technical details)

    International Nuclear Information System (INIS)

    Bartholomew, G.A.; Tunnicliffe, P.R.

    1966-01-01

    The AECL study for an intense neutron-generator has been in progress for two years. Recently the scientific and technical details and the conceptual designs were compiled in a report supporting proposals addressed to AECL's Board of Directors for further work. The compilation is being issued in this form to permit further discussion of the technical aspects. However readers are asked to appreciate that it was written primarily for an AECL audience, and specifically that those chapters giving tentative information about costs, the rate of investment and similar items have been omitted or modified, many references have been made to interim internal reports in order to complete the local documentation, but these references do not imply that the reports themselves can be made generally available. (author)

  15. AECL research programmes in materials science

    International Nuclear Information System (INIS)

    Cox, B.; Eastwood, T.A.; Mitchell, I.V.; Dutton, R.

    1980-10-01

    The high capacity factors achieved by CANDU nuclear power reactors can be attributed in part to the careful attention which has been paid in the concept and design phases to the selection of materials. Improved tolerance of these materials to the hostile conditions of a reactor core depends upon our understanding of such phenomena as radiation damage, corrosion and cracking. This report is an introduction to some of the fundamental and underlying research programmes that have evolved at the AECL laboratories in response to this need. The interactions of energetic atomic particles with solids on a microscopic scale are considered, first under the general heading of radiation effects, followed by sections on energy loss processes, ion channeling, and crystal lattice defects. The latter section leads into the important programmes on deformation processes (creep and growth) in zirconium. The final section discusses the extensive work on the oxidation and environmental cracking of zirconium alloys. (auth)

  16. Research reactor fuel development at AECL

    International Nuclear Information System (INIS)

    Sears, D.F.; Wang, N.

    2000-09-01

    This paper reviews recent U 3 Si 2 and U-Mo dispersion fuel development activities at AECL. The scope of work includes fabrication development, irradiation testing, post-irradiation examination and performance qualification. U-Mo alloys with a variety of compositions, ranging from 6 to 10 wt % Mo, have been fabricated with high purity and homogeneity in the product. The alloys and powders were characterized using optical and scanning electron microscopy, chemical analysis, and X-ray diffraction and neutron diffraction analysis. U-Mo powder samples have been supplied to the Argonne National Laboratory for irradiation testing in the ATR reactor. Low-enriched uranium fuel elements containing U-7 wt % Mo and U-10 wt % Mo with loadings up to 4.5 gU/cm 3 have been fabricated at CRL for irradiation testing in the NRU reactor. The U-Mo fuel elements will be tested in NRU at linear powers up to 145 kW/m, and to 85 atom % 235 U burnup. (author)

  17. Research reactor fuel development at AECL

    International Nuclear Information System (INIS)

    Sears, D.F.; Wang, N.

    2000-01-01

    This paper reviews recent U 3 Si 2 and U-Mo dispersion fuel development activities at AECL. The scope of work includes fabrication development, irradiation testing, postirradiation examination and performance qualification. U-Mo alloys with a variety of compositions, ranging from 6 to 10 wt % Mo, have been fabricated with high purity and homogeneity in the product. The alloys and powders were characterized using optical and scanning electron microscopy, chemical analysis, and X-ray diffraction and neutron diffraction analysis. U-Mo powder samples have been supplied to the Argonne National Laboratory for irradiation testing in the ATR reactor. Low-enriched uranium fuel elements containing U-7 wt % Mo and U-10 wt % Mo with loadings up to 4.5 gU/cm 3 have been fabricated at CRL for irradiation testing in the NRU reactor. The U-Mo fuel elements will be tested in NRU at linear powers up to 145 kW/m, and to 85 atom % 235 U burnup. (author)

  18. On the difference between DRAGON and WIMS-AECL calculations of the coolant void reactivity

    International Nuclear Information System (INIS)

    Altiparmakov, D.; Roubtsov, D.; Irish, J.D.

    2009-01-01

    A difference in the shape of the burnup dependence of the coolant void reactivity (CVR) has been observed between DRAGON and WIMS-AECL calculations. This paper discusses the root cause of the difference and assesses the impact on burnup and full-core reactor calculations. A Fortran procedure has been developed to run WIMS-AECL as necessary in order to mimic DRAGON burnup calculations with leakage effects included. The comparison of standard WIMS-AECL results and simulated DRAGON results demonstrated that the difference is due to different definitions of CVR. If the same CVR definition is used, then the results of both WIMS-AECL and DRAGON analyses are essentially indistinguishable. The discrepancies in the fuel composition and cell-averaged two-group cross sections that are due to differences in WIMS-AECL and DRAGON leakage treatments are insignificant. (author)

  19. AECL's reliability and maintainability program

    International Nuclear Information System (INIS)

    Wolfe, W.A.; Nieuwhof, G.W.E.

    1976-05-01

    AECL's reliability and maintainability program for nuclear generating stations is described. How the various resources of the company are organized to design and construct stations that operate reliably and safely is shown. Reliability and maintainability includes not only special mathematically oriented techniques, but also the technical skills and organizational abilities of the company. (author)

  20. Comparison of Wims-Aecl / Dragon / RFSP and MCNP results with Zed-2 measurements for control device worth and reactor kinetics - 037

    International Nuclear Information System (INIS)

    Pencer, J.; Choy Wong, F.; Bromley, B.P.; Atfield, J.; Zeller, M.

    2010-01-01

    This paper summarizes comparisons between MCNP5 and WIMS-AECL / DRAGON / RFSP calculations and experimental results obtained from the Zero Energy Deuterium (ZED-2) critical facility at AECL Chalk River Laboratories. MCNP5 and WIMS-AECL / DRAGON / RFSP were used to calculate reactivity worths for two reactivity devices, a mechanical zone controller (MZC) and shut-off rod (SOR) in a lattice similar to that of the ACR-1000 R . WIMS-AECL / DRAGON / RFSP was also used to obtain kinetics parameters for a transient based on a rod drop of a ZED-2 standby absorber rod (SAR). ZED-2 experiments were performed using 43-element ACR Low Enriched Uranium (ACR-LEU) fuel bundles with H 2 O- or air-cooled fuel bundles arranged in a 24-cm pitch square lattice. Calculations with MCNP5 gave biases in device worths that were within 0.2 mk of measured values, while WIMS-AECL / DRAGON / RFSP gave values that were within 0.3 mk of measured values. Transient analyses using the CERBERUS module within RFSP yielded a total delayed neutron fraction (β) that was within 4% of the value derived by point kinetics analysis of experimental data. The corresponding delayed photo-neutron fraction (β photo-neutron ) from CERBERUS was within 5% of that derived by point kinetics. This study has helped quantify the agreement between calculation and measurement for codes that are used in the safety analysis of the ACR-1000 reactor. Results demonstrate good agreement in code predictions. (authors)

  1. The AECL study for an intense neutron - generator (technical details)

    Energy Technology Data Exchange (ETDEWEB)

    Bartholomew, G.A.; Tunnicliffe, P.R

    1966-07-01

    The AECL study for an intense neutron-generator has been in progress for two years. Recently the scientific and technical details and the conceptual designs were compiled in a report supporting proposals addressed to AECL's Board of Directors for further work. The compilation is being issued in this form to permit further discussion of the technical aspects. However readers are asked to appreciate that it was written primarily for an AECL audience, and specifically that those chapters giving tentative information about costs, the rate of investment and similar items have been omitted or modified, many references have been made to interim internal reports in order to complete the local documentation, but these references do not imply that the reports themselves can be made generally available. (author)

  2. The development, qualification and availability of AECL analytical, scientific and design codes

    International Nuclear Information System (INIS)

    Kupferschmidt, W.C.H.; Fehrenbach, P.J.; Wolgemuth, G.A.; McDonald, B.H.; Snell, V.G.

    2001-01-01

    Over the past several years, AECL has embarked on a comprehensive program to develop, qualify and support its key safety and licensing codes, and to make executable versions of these codes available to the international nuclear community. To this end, we have instituted a company-wide Software Quality Assurance (SQA) Program for Analytical, Scientific and Design Computer Programs to ensure that the design, development, maintenance, modification, procurement and use of computer codes within AECL is consistent with today's quality assurance standards. In addition, we have established a comprehensive Code Validation Project (CVP) with the goal of qualifying AECL's 'front-line' safety and licensing codes by 2001 December. The outcome of this initiative will be qualified codes, which are properly verified and validated for the expected range of applications, with associated statements of accuracy and uncertainty for each application. The code qualification program, based on the CSA N286.7 standard, is intended to ensure (1) that errors are not introduced into safety analyses because of deficiencies in the software, (2) that an auditable documentation base is assembled that demonstrates to the regulator that the codes are of acceptable quality, and (3) that these codes are formally qualified for their intended applications. Because AECL and the Canadian nuclear utilities (i.e., Ontario Power Generation, Bruce Power, Hydro Quebec and New Brunswick Power) generally use the same safety and licensing codes, the nuclear industry in Canada has agreed to work cooperatively together towards the development, qualification and maintenance of a common set of analysis tools, referred to as the Industry Standard Toolset (IST). This paper provides an overview of the AECL Software Quality Assurance Program and the Code Validation Project, and their associated linkages to the Canadian nuclear community's Industry Standard Toolset initiative to cooperatively qualify and support commonly

  3. The year 2000 (Y2k) Programme at AECL

    International Nuclear Information System (INIS)

    Pauksens, J.; Jung, D.

    1998-01-01

    In the nuclear industry we make, in total, very extensive use of digital computers and equipment. While use of dates in our application may not be quite so extensive as in other businesses such as banking or insurance, dates are nonetheless employed, and are important in a variety of applications. Furthermore, date-related problems can sometimes propagate into overall system failures or computer crashes. Digital system or digital infrastructure failure can have serious potential consequences in a power plant, utility, or engineering design office. This in turn can have potential impact on public safety or the reliability of power production and delivery of electrical power to the public. A concerted effort is needed, and is underway by nuclear design organizations, and the nuclear utilities in order to identify and fix or avoid the problems in the short time that remains between now and the Year 2000. AECL have a substantial Year 2000 programme underway, addressing both the infrastructure systems at AECL, and AECL's products and services. High priority is placed, in the programme, on assisting AECL's customers with the Year 2000 issue. The programme, and some of the lesson learned to date, are described in this paper. The relationship to equipment vendors' and customers' Year 2000 programs is explained, and the importance of Year 2000 programmes conducted by the customers, to address systems and equipment which are under their control, is highlighted. (authors)

  4. SLOWPOKE

    International Nuclear Information System (INIS)

    Law, Charles.

    1979-01-01

    The SLOWPOKE (Safe Low Power Critical Experiment) reactor was developed by AECL at Whiteshell and Chalk River between 1968 and 1970. It is a neutron-producing reactor of low power with minimal fuel, shielding, and cooling requirements and intrinsic safety. Four Canadian universities and one German one have acquired SLOWPOKE reactors for neutron activation analyses and for student research in nuclear engineering and reactor physics. (LL)

  5. AECL's strategy for decommissioning Canadian nuclear facilities

    International Nuclear Information System (INIS)

    Joubert, W.M.; Pare, F.E.; Pratapagiri, G.

    1992-01-01

    The Canadian policy on decommissioning of nuclear facilities as defined in the Atomic Energy Control Act and Regulations is administered by the Atomic Energy Control Board (AECB), a Federal Government agency. It requires that these facilities be decommissioned according to approved plans which are to be developed by the owner of the nuclear facility during its early stages of design and to be refined during its operating life. In this regulatory environment, Atomic Energy of Canada (AECL) has developed a decommissioning strategy for power stations which consists of three distinctive phases. After presenting AECL's decommissioning philosophy, its foundations are explained and it is described how it has and soon will be applied to various facilities. A brief summary is provided of the experience gained up to date on the implementation of this strategy. (author) 3 figs.; 1 tab

  6. AECL experience in fuel channel inspection

    Energy Technology Data Exchange (ETDEWEB)

    Van Drunen, G. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Gunn, R. [Atomic Energy of Canada Limited, Mississauga, Ontario (Canada); Mayo, W.R. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Scott, D.A. [Atomic Energy of Canada Limited, Mississauga, Ontario (Canada)

    1999-06-01

    Inspection of CANDU fuel channels (FC) is performed to ensure safe and economic reactor operation. CANDU reactor FCs have features that make them a unique non-destructive testing (NDT) challenge. The thin, 4 mm pressure-tube wall means flaws down to about 0.1 mm deep must be reliably detected and characterized. This is one to two orders of magnitude smaller than is usually considered of significant concern for steel piping and pressure vessels. A second unique feature is that inspection sensors must operate in the reactor core--often within 20 cm of highly radioactive fuel. Work on inspection of CANDU reactor FCs at AECL dates back over three decades. In that time, AECL staff have provided equipment and conducted or supervised in-service inspections in about 250 FCs, in addition to over 8000 pre-service FCs. These inspections took place at every existing CANDU reactor except those in India and Romania. Early FC inspections focussed on measurement of changes in dimensions (gauging) resulting from exposure to a combination of neutrons, stress and elevated temperature. Expansion of inspection activities to include volumetric inspection (for flaws) started in the mid-1970s with the discovery of delayed hydride cracking in Pickering 3 and 4 rolled joints. Recognition of other types of flaw mechanisms in the 1980s led to further expansion in both pre-service and in-service inspections. These growing requirements, to meet regulatory as well as economic needs, led to the development of a wide spectrum of inspection technology that now includes tests for hydrogen concentration, structural integrity of core components, flaws, and dimensional change. This paper reviews current CANDU reactor FC inspection requirements. The equipment and techniques developed to satisfy these requirements are also described. The paper concludes with a discussion of work in progress in AECL aimed at providing state-of-the-art FC inspection services. (author)

  7. Evaluation of AECL catalysts for hydrogen fuel-cell applications. Paper no. IGEC-1-073

    International Nuclear Information System (INIS)

    Li, J.; Suppiah, S.; Li, H.; Kutchcoskie, K.J.; Strikwerda, S.

    2005-01-01

    AECL has been engaged in the promotion of the nuclear-hydrogen economy, which envisions that hydrogen fuel cells will generate power using hydrogen as fuel produced by nuclear energy. Since AECL's catalysts developed for the production, upgrading and detritiation of heavy water are very similar to commercial fuel-cell catalysts, a program was initiated to evaluate AECL catalysts for fuel-cell applications. As a first step in this effort, a half-cell test facility was set up to characterize the performance of catalysts for hydrogen fuel cells. This paper outlines the results obtained from cathodic reduction of oxygen in a 0.5 M sulphuric acid solution on a rotating disc electrode at 65 o C. The performance of the catalysts was characterized using standard electrochemical methods including cyclic voltammetry, Voltammogram/Tafel plots and short-term stability plots. Several monometallic Pt and Pt-based bimetallic catalysts were tested and compared with a commercially available catalyst for fuel-cell applications. AECL's monometallic Pt catalysts showed comparable or better activities than commercial catalysts with similar Pt loading. An AECL Pt-based bimetallic catalyst has shown superior performance to a monometallic Pt catalyst with similar Pt loading. Evaluation of various catalyst formulations is ongoing on the half-cell facility at AECL. Further investigation of promising catalysts identified from half-cell test is also being carried out in single fuel cell on test stations under normal fuel-cell operating conditions. (author)

  8. Factors affecting the differences in reactivity and dissolution rates between UO2 and spent nuclear fuel

    International Nuclear Information System (INIS)

    Shoesmith, D.W.; Tait, J.C.; Sunder, S.; Steward, S.; Russo, R.E.; Rudnicki, J.D.

    1996-08-01

    Strategies for the permanent disposal of spent nuclear fuel are being investigated by the U.S. Department of Energy at the Yucca Mountain site and by Atomic Energy of Canada Limited (AECL) in plutonic rock formations in the Canadian Shield. Uranium dioxide is the primary constituent of spent nuclear fuel and dissolution of the matrix is regarded as a necessary step for the release of radionuclides to repository groundwaters. In order to develop models to describe the dissolution of the U0 2 fuel matrix and subsequent release of radionuclides, it is necessary to understand both chemical and oxidative dissolution processes and how they can be affected by parameters such as groundwater composition, pH, temperature, surface area, radiolysis and redox potential. This report summarizes both published and on-going dissolution studies of U0 2 and both LWR and CANDU spent fuels being conducted at the Pacific Northwest Laboratory, Lawrence Livermore National Laboratory and Lawrence Berkeley Laboratory in the U.S. and at AECL's Whiteshell Laboratories in Canada. The studies include both dissolution tests and electrochemical experiments to measure uranium dissolution rates. The report focuses on identifying differences in reactivity towards aqueous dissolution between U0 2 and spent fuel samples as well as estimating bounding values for uranium dissolution rates. This review also outlines the basic tenets for the development of a dissolution model that is based on electrochemical principles. (author). 49 refs., 2 tabs., 11 figs

  9. AECL's support to operating plants world wide

    International Nuclear Information System (INIS)

    Azeez, S.; Kakaria, B.K.; Hinchley, E.M.

    1998-01-01

    Through their operating records, CANDU reactors have established themselves as a successful and cost-effective source of electricity in Canada and abroad. They have proven to be safe, reliable and economical. A variety of factors have contributed to the enviable CANDU record, such as a sound design based on proven principles supported by effective development programs, along with dedicated plant owners committed to excellence in safely maintaining and operating their plants. Atomic Energy of Canada Limited (AECL), the CANDU designer, has continuously maintained a close relationship with owners/operators of the plants in Canada, Argentina, Romania and South Korea. AECL and the plant operators have all benefited from this strengthening relationship by sharing experience and information. CANDU plant operators have been required to respond decisively to the economic realities of downward cost pressures and deregulation. Operating, Maintenance and Administration (OM and A) costs are being given a new focus as plant owners review each cost element to improve the economic returns from their investments. Amongst the three main OM and A constituents, plant maintenance costs are the most variable and have the largest influence on effective plant operations. The correlation between effective plant maintenance and high capacity factors shows clearly the importance of proactive maintenance planning to reduce the frequency and duration of forced plant outages and their negative impacts on plant economics. This paper describes the management processes and organizational structures m AECL that support plant operations and maintenance in operating CANDU plants with cost effective products and services. (author)

  10. A bibliography of AECL publications on reactor safety

    International Nuclear Information System (INIS)

    Hawley, N.J.

    1979-12-01

    AECL Publications on Reactor Safety in CANDU Reactors are listed in this bibliography. The listing is chronological and the accompanying index is by subject. The bibliography will be brought up to date annually. (auth)

  11. A bibliography of AECL publications on environmental research

    International Nuclear Information System (INIS)

    Hawley, N.J.

    1978-12-01

    Publications in the open literature on environmental research performed by AECL personnel are listed chronologically with the first entry dated 1951. It is intended that the bibliography should be brought up to date yearly. (author)

  12. The Y2K program for scientific-analysis computer programs at AECL

    International Nuclear Information System (INIS)

    Popovic, J.; Gaver, C.; Chapman, D.

    1999-01-01

    The evaluation of scientific-analysis computer programs for year-2000 compliance is part of AECL' s year-2000 (Y2K) initiative, which addresses both the infrastructure systems at AECL and AECL's products and services. This paper describes the Y2K-compliance program for scientific-analysis computer codes. This program involves the integrated evaluation of the computer hardware, middleware, and third-party software in addition to the scientific codes developed in-house. The project involves several steps: the assessment of the scientific computer programs for Y2K compliance, performing any required corrective actions, porting the programs to Y2K-compliant platforms, and verification of the programs after porting. Some programs or program versions, deemed no longer required in the year 2000 and beyond, will be retired and archived. (author)

  13. The Y2K program for scientific-analysis computer programs at AECL

    International Nuclear Information System (INIS)

    Popovic, J.; Gaver, C.; Chapman, D.

    1999-01-01

    The evaluation of scientific analysis computer programs for year-2000 compliance is part of AECL's year-2000 (Y2K) initiative, which addresses both the infrastructure systems at AECL and AECL's products and services. This paper describes the Y2K-compliance program for scientific-analysis computer codes. This program involves the integrated evaluation of the computer hardware, middleware, and third-party software in addition to the scientific codes developed in-house. The project involves several steps: the assessment of the scientific computer programs for Y2K compliance, performing any required corrective actions, porting the programs to Y2K-compliant platforms, and verification of the programs after porting. Some programs or program versions, deemed no longer required in the year 2000 and beyond, will be retired and archived. (author)

  14. AECL's participation in the commissioning of Point Lepreau generating station unit 1

    International Nuclear Information System (INIS)

    Chawla, S.; Singh, K.; Yerramilli, S.

    1983-05-01

    Support from Atomic Energy of Canada Ltd. (AECL) to Point Lepreau during the commissioning program has been in the form of: seconded staff for commissioning program management, preparation of commissioning procedures, and hands-on commissioning of several systems; analysis of test results; engineering service for problem solving and modifications; design engineering for changes and additions; procurement of urgently-needed parts and materials; technological advice; review of operational limits; interpretation of design manuals and assistance with and preparation of submissions to regulatory authorities; and development of equipment and procedures for inspection and repairs. This, together with AECL's experience in the commissioning of other 600 MWe stations, Douglas Point and Ontario Hydro stations, provides AECL with a wide range of expertise for providing operating station support services for CANDU stations

  15. Final report of the AECL/SKB Cigar Lake analog study. AECL research No. AECL-10851

    Energy Technology Data Exchange (ETDEWEB)

    Cramer, J J; Smellie, J A.T. [eds.

    1994-07-15

    AECL has conducted natural analog studies on the Cigar Lake uranium deposit in northern Saskatchewan since 1984 as part of the Canadian Nuclear Fuel Waste Management Program. This report provides background information and summarizes the results of the study, emphasizing the analog aspects and the implications of modelling activities related to the performance assessment of disposal concepts for nuclear fuel wastes developed in both Canada and Sweden. The study was undertaken to obtain an understanding of the process involved in, and the effects of, steady-state water-rock interaction and trace-element migration in and around the deposit, including paleo-migration processes since the deposit was formed. To achieve these objectives, databases and models were produced to evaluate the equilibrium thermodynamic codes and databases; the role of colloids, organics, and microbes in transport processes for radionuclides; and the stability of UO2 and the influence of radiolysis on UO2 dissolution and radionuclide migration.

  16. Use of borehole-geophysical logs and hydrologic tests to characterize crystalline rock for nuclear-waste storage, Whiteshell Nuclear Research Establishment, Manitoba, and Chalk River Nuclear Laboratory, Ontario, Canada

    International Nuclear Information System (INIS)

    Davison, C.C.

    1982-12-01

    A number of borehole methods were used in the investigation of crystalline rocks at Whiteshell Nuclear Research Establishment and Chalk River Nuclear Laboratory in Canada. The selection of a crystalline-rock mass for the storage of nuclear waste likely will require the drilling and testing of a number of deep investigative boreholes in the rock mass. Although coring of at least one hole in each new area is essential, methods for making in-situ geophysical and hydrologic measurements can substitute for widespread coring and result in significant savings in time and money. Borehole-geophysical logging techniques permit the lateral extrapolation of data from a core hole. Log response is related to rock type, alteration, and the location and character of fractures. The geophysical logs that particularly are useful for these purposes are the acoustic televiewer and acoustic waveform, neutron and gamma, resistivity, temperature, and caliper. The acoustic-televiewer log of the borehole wall can provide high resolution data on the orientation and apparent width of fractures. In situ hydraulic tests of single fractures or fracture zones isolated by packers provide quantitative information on permeability, extent, and interconnection. The computer analysis of digitized acoustic waveforms has identified a part of the waveform that has amplitude variations related to permeabilities measured in the boreholes by packer tests. 38 refs., 37 figs., 4 tabs

  17. Studies on groundwater flow and radionuclide migration at underground environments. Final report of collaboration research between JAERI and AECL

    International Nuclear Information System (INIS)

    Ogawa, Hiromichi; Nagao, Seiya; Yamaguchi, Tetsuji

    2001-01-01

    The Japan Atomic Energy Research Institute (JAERI) conducted a collaboration program Phase II with the Atomic Energy of Canada Limited (AECL) from 1994 to 1998. The program was started to contribute the establishment of safety assessment methodology for the geological disposal of high-level radioactive wastes on the basis of the results from the Phase I program (1987-1993). The Phase II program consisted of following experimental items: (1) radionuclide migration experiments for quarried blocks (1m x 1m x 1m) of granite with natural fracture under in-situ geochemical conditions at 240 m level of Underground Research Laboratory of AECL; (2) study on the effects of dissolved organic materials extracted from natural groundwaters on radionuclide migration; (3) study on groundwater flow using environmental isotopes at two different geologic environments; (4) development of groundwater flow and radionuclide transport model for heterogeneous geological media. The mobility of radionuclides was retarded in the fracture by the deep geological conditions and the fracture paths. The groundwater humic substances with high molecular size were enhanced for the mobility of radionuclides in the sand and granitic media due to the complexation. The application of 36 Cl and 129 I for the analysis on the long-term groundwater flow can be validated on the basis of investigation at the URL site. Moreover, the geostatistical model for the analysis on groundwater flow and radionuclide migration was developed, and was able to describe the groundwater flow and the migration of environmental tracers at AECL sites. This report summaries the results of the Phase II program between JAERI and AECL. (author)

  18. Studies on groundwater flow and radionuclide migration at underground environments. Final report of collaboration research between JAERI and AECL

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Hiromichi; Nagao, Seiya; Yamaguchi, Tetsuji [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    2001-01-01

    The Japan Atomic Energy Research Institute (JAERI) conducted a collaboration program Phase II with the Atomic Energy of Canada Limited (AECL) from 1994 to 1998. The program was started to contribute the establishment of safety assessment methodology for the geological disposal of high-level radioactive wastes on the basis of the results from the Phase I program (1987-1993). The Phase II program consisted of following experimental items: (1) radionuclide migration experiments for quarried blocks (1m x 1m x 1m) of granite with natural fracture under in-situ geochemical conditions at 240 m level of Underground Research Laboratory of AECL; (2) study on the effects of dissolved organic materials extracted from natural groundwaters on radionuclide migration; (3) study on groundwater flow using environmental isotopes at two different geologic environments; (4) development of groundwater flow and radionuclide transport model for heterogeneous geological media. The mobility of radionuclides was retarded in the fracture by the deep geological conditions and the fracture paths. The groundwater humic substances with high molecular size were enhanced for the mobility of radionuclides in the sand and granitic media due to the complexation. The application of {sup 36}Cl and {sup 129}I for the analysis on the long-term groundwater flow can be validated on the basis of investigation at the URL site. Moreover, the geostatistical model for the analysis on groundwater flow and radionuclide migration was developed, and was able to describe the groundwater flow and the migration of environmental tracers at AECL sites. This report summaries the results of the Phase II program between JAERI and AECL. (author)

  19. AECL's advanced CANDU reactor - the ACR

    International Nuclear Information System (INIS)

    Alizadeh, Ala; Allsop, Peter; Hedges, Ken; Hopwood, Jerry; Yu, Stephen

    2003-01-01

    The ACR, the next generation CANDU design, represents the next step in development of the CANDU family of designs. AECL has achieved significant incremental improvements to the mid-size CANDU 6 nuclear power plant through successive projects, both in design and in project delivery. Building on this knowledge base, AECL is continuing to adapt the CANDU design to develop the ACR. This paper summarizes the ACR design features, which include major improvements in economics, inherent safety characteristics, performance and construction methods. Aimed at producing electrical power at a capital cost significantly less than that of the current reactor designs, the ACR is an evolutionary design based on the very successful CANDU 6 reactor. The new ACR product is specifically designed to produce power at a cost competitive with other forms of power generation while achieving short construction times, improved safety, international licensability, high investor returns, and low investor risk. It achieves these targets by taking advantage of the latest advances in both pressure-tube and pressure-vessel reactor technologies and experience. The flexibility and development potential of the fuel channel approach also enables designs to be developed that address priorities identified in international long-term specification programs such as the US Department of Energy (DOE) sponsored Generation IV program and IAEA hosted INPRO program. ACR-700 can be built in 36 months with a 48 month project duration, and deliver a lifetime capacity factor in excess of 90%. Overall, the ACR design represents a balance of proven design basis and innovations to give step improvements in safety, reliability and economics. The ACR development program, now well into the detail design stage, includes parallel formal licensing in the USA and Canada. Based on the status of the ACR design and AECL's on-going experience delivering reactor projects on-time and on-budget, the first ACR could be in service by

  20. The AECL operator companion

    International Nuclear Information System (INIS)

    Lupton, L.R.; Anderson, L.L.; Basso, R.A.J.

    1989-11-01

    As CANDU plants become more complex, and are operated under tighter constraints and for longer periods between outages, plant operations staff will have to absorb more information to correctly and rapidly respond to upsets. A development program is underway at AECL to use expert systems and interactive media tools to assist operations staff of existing and future CANDU plants. The complete system for plant information access and display, on-line advice and diagnosis, and interactive operating procedures is called the Operator Companion. A prototype, consisting of operator consoles, expert systems and simulation modules in a distributed architecture, is currently being developed to demonstrate the concepts of the Operator Companion

  1. Interface code between WIMS-AECL and RFSP-IST for coupling computing

    International Nuclear Information System (INIS)

    Xu Liangwang; Liu Yu; Jia Baoshan

    2007-01-01

    A code based on the protocols of Telnet and FTP is developed with C++ for coupling computing between WIMS-AECL and RFSP-IST. the input document of WIMS-AECL and RFSP-ISP cna be generated automatically and be submitted to server, the output document will be downloaded by the end of computing. the function of analyzing standard output document is also included in this code. After simple updating, this code can meet the requirement of other code using input document, e.g. CATHENA. A pilot study of the relation between void fraction and reactivity in TACR, some valuable conclusions has been achieved. (authors)

  2. Final report of the AECL/SKB Cigar Lake analog study

    International Nuclear Information System (INIS)

    Cramer, J.J.

    1994-07-01

    The Cigar Lake uranium deposit is located in northern Saskatchewan, Canada. The 1.3-billion-year-old deposit is located at a depth of about 450 m below surface in a water-saturated sandstone at the unconformity contact with the high-grade metamorphic rocks of the Canadian Shield. The uranium mineralization, consisting primarily of uraninite (UO 2 ), is surrounded by a clay-rich halo in both sandstone and basement rocks, and remains extremely well preserved and intact. The average grade of the mineralization is ∼ 8 wt.% U; locally grades are as high as ∼ 55 wt.%U. The Cigar lake deposit has many features that parallel those being considered within the Canadian concept for disposal of nuclear fuel waste. Specifically, the deposit provides analog information relevant to the stability of UO 2 fuel waste, the performance of clay-based barriers, radionuclide migration, colloid formation, radiolysis, fission-product geochemistry and general aspects of water-rock interaction. The main geochemical studies on this deposit focus on the evolution of groundwater compositions in the deposit and on their redox chemistry with respect to the uranium, iron and sulphide systems. Since 1984, through cooperation from the owners of the Cigar lake deposit, analog studies have been conducted. AECL, with support from Ontario Hydro under the auspices of the CANDU Owners Group, initiated international participation in 1989 through collaboration with the Swedish Nuclear Fuel and Waste Management Company (SKB) and, more recently, with the Los Alamos National Laboratory (LANL). This report gives the results of the various studies carried out during the 3-year collaboration between AECL and SKB, as well as a summary of the LANL study. It provides detailed information on the generated databases and models, and integrates this information into conclusions for use in safety assessment of the Canadian, Swedish and United States disposal concepts. 15 refs., 25 figs., 55 tabs

  3. Follow-up of AECL employees involved in the decontamination of NRU in 1958

    International Nuclear Information System (INIS)

    Werner, M.M.; Myers, D.K.; Morrison, D.P.

    1982-09-01

    In May 1958 the NRU reactor hall was badly contaminated by a damaged fuel rod that broke apart during its removal from the reactor. Radioactive fission products were spread around the reactor hall and into adjacent areas when a piece of the fuel rod fell into the maintenance pit and burned. AECL staff and others completed the decontamination in 2 1/2 months. This paper reports the results of a follow-up study of the AECL participants. No statistically significant increases in deaths from cancer or other diseases were found in this group

  4. Validation of WIMS-AECL/(MULTICELL)/RFSP system by the results of phase-B test at Wolsung-II unit

    Energy Technology Data Exchange (ETDEWEB)

    Hong, In Seob; Min, Byung Joo; Suk, Ho Chun [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-03-01

    The object of this study is the validation of WIMS-AECL lattice code which has been proposed for the substitution of POWDERPUFS-V(PPV) code. For the validation of this code, WIMS-AECL/(MULTICELL)/RFSP (lattice calculation/(incremental cross section calculation)/core calculation) code system has been used for the Post-Simulation of Phase-B physics Test at Wolsung-II unit. This code system had been used for the Wolsong-I and Point Lepraeu reactors, but after a few modifications of WIMS-AECL input values for Wolsong-II, the results of WIMS-AECL/RFSP code calculations are much improved to those of the old ones. Most of the results show good estimation except moderator temperature coefficient test. And the verification of this result must be done, which is one of the further work. 6 figs., 15 tabs. (Author)

  5. Modelling iodine behaviour using LIRIC 3.0

    Energy Technology Data Exchange (ETDEWEB)

    Wren, J C; Glowa, G A; Ball, J M [Atomic Energy of Canada Ltd., Pinawa, MB (Canada). Whiteshell Labs.

    1996-12-01

    The overall objective of the iodine chemistry research program at the Whiteshell Laboratories of AECL is to develop and validate the LIRIC (Library of Iodine Reactions In Containment) model. The model, once validated, is intended as either a stand-alone analytical tool or for incorporation into a code for licensing analyses of fission-product behaviour in containment. LIRIC is currently being used to assess the role and importance of individual phenomena on iodine volatility under reactor accident conditions and, thus, help to establish priorities within the iodine research program. The LIRIC model has undergone significant alterations since it was last reported (LIRIC 2.0), mainly as a result of considerable development in understanding of iodine behaviour over the last few years. The new version, LIRIC 3.0, has been used to simulate various results from the Radioiodine Test Facility (RTF) with reasonable success, although under somewhat limited conditions.

  6. Recent findings on the oxidation of UO2 fuel under nominally dry storage conditions

    International Nuclear Information System (INIS)

    Taylor, P.; McEachern, R.J.; Sunder, S.; Wasywich, K.M.; Miller, N.H.; Wood, D.D.

    1995-01-01

    This paper is an overview of fuel-storage demonstration experiments, supporting research on UO 2 oxidation, and associated model development, in progress at AECL's Whiteshell Laboratories. The work is being performed to determine the time/temperature limits for safe storage of irradiated CANDU fuel in dry air. The most significant recent experimental finding has been the detection of small quantities of U 3 O 8 , formed over periods of one to several years in a variety of experiments at 150-170 deg C. Another important trading is the slight suppression of U 3 O 8 formation in SIMFUEL and other doped U0 2 formulations. The development of a nucleation-and-growth model for U 3 O 8 formation is discussed, along with available activation energy data. These provide a basis for predicting U 3 O 8 formation rates under dry-storage conditions, and hence optimizing fuel storage strategies. (author)

  7. AECL's mixed waste management program

    International Nuclear Information System (INIS)

    Peori, R.; Hulley, V.

    2006-01-01

    Every nuclear facility has it, they wish that they didn't but they have generated and do possess m ixed waste , and until now there has been no permanent disposition option; it has been for the most been simply maintained in interim storage. The nuclear industry has been responsibly developing permanent solutions for solid radioactive waste for over fifty years and for non-radioactive, chemically hazardous waste, for the last twenty years. Mixed waste (radioactive and chemically hazardous waste) however, because of its special, duo-hazard nature, has been a continuing challenge. The Hazardous Waste and Segregation Program (HW and SP) at AECL's CRL has, over the past ten years, been developing solutions to deal with their own in-house mixed waste and, as a result, have developed solutions that they would like to share with other generators within the nuclear industry. The main aim of this paper is to document and describe the early development of the solutions for both aqueous and organic liquid wastes and to advertise to other generators of this waste type how these solutions can be implemented to solve their mixed waste problems. Atomic Energy of Canada Limited (AECL) and in particular, CRL has been satisfactorily disposing of mixed waste for the last seven years. CRL has developed a program that not only disposes of mixed waste, but offers a full service mixed waste management program to customers within Canada (that could eventually include U.S. sites as well) that has developed the experience and expertise to evaluate and optimize current practices, dispose of legacy inventories, and set up an efficient segregation system to reduce and effectively manage, both the volumes and expense of, the ongoing generation of mixed waste for all generators of mixed waste. (author)

  8. AECL IMPELA electron beam industrial irradiators

    International Nuclear Information System (INIS)

    Labrie, J.P.; Drewell, N.H.; Ebrahim, N.A.; Lawrence, C.B.; Mason, V.A.; Ungrin, J.; White, B.F.

    1989-01-01

    A family of industrial irradiators is being developed by AECL to cover an electron-beam energy range from 5 to 18 MeV at beam powers between 20 and 250 kW. The IMPELA family of irradiators is designed for push button, reliable operation. The major irradiator components are modular, allowing for later upgrades to meet increased demands in either electron or X-ray mode. Interface between the control system, irradiator availability and dose quality assurance is in conformance with the most demanding specifications. The IMPELA irradiators use a klystron-driven, standing-wave, L-band accelerator structure with direct injection from a rugged, triode electron gun. Direct control of the accelerating field during the beam pulse ensures constant output beam energy, independent of beam power. The first member of the family, the IMPELA 10/50 (10 MeV, 50 kW), is in the final stages of assembly at Chalk River Nuclear Laboratories. The IMPELA 10/50 is constructed around a 3.25 m long, high-power-capacity accelerator structure operated at a duty factor of 5%. Beam loading exceeds 60%. The rf power is provided by a 2 MW/150 kW modulated-anode klystron protected from load mismatches by a circulator. This prototype will be used to demonstrate the reliability and dose uniformity targets of the IMPELA family. Full beam operation of the IMPELA 10/50 is scheduled for early 1989. (orig.)

  9. AECL's concept for the disposal of nuclear fuel waste and the importance of its implementation

    International Nuclear Information System (INIS)

    Allan, C.J.

    1993-07-01

    Since 1978, Canada has been investigating a concept for permanently dealing with the nuclear fuel waste from Canadian CANDU (Canada Deuterium Uranium) nuclear generating stations. The concept is based on disposing of the waste in a vault excavated 500 to 1000 m deep in intrusive igneous rock of the Canadian Shield. AECL Research will soon be submitting an environmental impact statement (EIS) on the concept for review by a Panel through the federal environmental assessment and review process (EARP). In accordance with AECL Research's mandate and in keeping with the detailed requirements of the review Panel, AECL Research has conducted extensive studies on a wide variety of technical and socio-economic issues associated with the concept. If the concept is accepted, we can and should continue our responsible approach and take the next steps towards constructing a disposal facility for Canada's used nuclear fuel waste

  10. Final report of the AECL/SKB Cigar Lake analog study

    International Nuclear Information System (INIS)

    Cramer, J.

    1994-05-01

    The Cigar Lake uranium deposit is located in northern Saskatchewan, Canada. The 1.3-billion-year-old deposit is located at a depth of about 450 m below surface in a water-saturated sandstone at the unconformity contact with the high-grade metamorphic rocks of the Canadian Shield. The Cigar Lake deposit has many features that parallel those being considered within the Canadian concept for disposal of nuclear fuel waste. The study of these natural structures and processes provides valuable insight toward the eventual design and site selection of a nuclear fuel waste repository. The main feature of this analog is the absence of any indication on the surface of the rich uranium ore 450 m below. This indicates that the combination of natural barriers has been effective in isolating the uranium ore from the surface environment. More specifically, the deposit provides analog information relevant to the stability of UO 2 fuel waste, the performance of clay-based barriers, radionuclide migration, colloid formation, radiolysis, fission-product geochemistry and general aspects of water-rock interaction. The main geochemical studies on this deposit focus on the evolution of groundwater compositions in the deposit and on their redox chemistry with respect to the uranium, iron and sulphide systems. Since 1984, through cooperation from the owners of the Cigar Lake deposit, analog studies have been conducted. AECL, with support from Ontario Hydro under the auspices of the CANDU Owners Group, initiated international participation in 1989 through collaboration with the Swedish Nuclear Fuel and Waste Management Company (SKB) and, more recently, with the Los Alamos National Laboratory (LANL). This report gives the results of the various studies carried out during the 3-year collaboration between AECL and SKB, as well as a summery of the LANL study. It provides detailed information on the generated databases and models, and integrates this information into conclusions for use in safety

  11. Sensitivity analysis using two-dimensional models of the Whiteshell geosphere

    Energy Technology Data Exchange (ETDEWEB)

    Scheier, N. W.; Chan, T.; Stanchell, F. W.

    1992-12-01

    As part of the assessment of the environmental impact of disposing of immobilized nuclear fuel waste in a vault deep within plutonic rock, detailed modelling of groundwater flow, heat transport and containment transport through the geosphere is being performed using the MOTIF finite-element computer code. The first geosphere model is being developed using data from the Whiteshell Research Area, with a hypothetical disposal vault at a depth of 500 m. This report briefly describes the conceptual model and then describes in detail the two-dimensional simulations used to help initially define an adequate three-dimensional representation, select a suitable form for the simplified model to be used in the overall systems assessment with the SYVAC computer code, and perform some sensitivity analysis. The sensitivity analysis considers variations in the rock layer properties, variations in fracture zone configurations, the impact of grouting a vault/fracture zone intersection, and variations in boundary conditions. This study shows that the configuration of major fracture zones can have a major influence on groundwater flow patterns. The flows in the major fracture zones can have high velocities and large volumes. The proximity of the radionuclide source to a major fracture zone may strongly influence the time it takes for a radionuclide to be transported to the surface. (auth)

  12. Safety re-assessment of AECL test and research reactors

    International Nuclear Information System (INIS)

    Winfield, D.J.

    1990-01-01

    Atomic Energy of Canada Limited currently has four operating engineering test/research reactors of various sizes and ages; a new isotope-production reactor Maple-X10, under construction at Chalk River Nuclear Laboratories (CRNL), and a heating demonstration reactor, SDR, undergoing high-power commissioning at Whiteshell Nuclear Research Establishment (WNRE). The company is also performing design studies of small reactors for hot water and electricity production. The older reactors are ZED-2, PTR, NRX, and NRU; these range in age from 42 years (NRX) to 29 years (ZED-2). Since 1984, limited-scope safety re-assessments have been underway on three of these reactors (ZED-2, NRX AND NRU). ZED-2 and PTR are operated by the Reactor Physics Branch; all other reactors are operated by the respective site Reactor Operations Branches. For the older reactors the original safety reports produced were entirely deterministic in nature and based on the design-basis accident concept. The limited scope safety re-assessments for these older reactors, carried out over the past 5 years, have comprised both quantitative probabilistic safety-assessment techniques, such as event tree and fault analysis, and/or qualitative techniques, such as failure mode and effect analysis. The technique used for an individual assessment was dependent upon the specific scope required. This paper discusses the types of analyses carried out, specific insights/recommendations resulting from the analysis, and the plan for future analysis. In addition, during the last four years safety assessments have been carried out on the new isotope-, heat-, and electricity-producing reactors, as part of the safety design review, commissioning and licensing activities

  13. Proceedings of the OECD/NEA/CSNI workshop on the implementation of hydrogen mitigation techniques

    International Nuclear Information System (INIS)

    Koroll, G.W.; Rohde, J.; Royen, J.

    1997-03-01

    The Workshop on the Implementation of Hydrogen Mitigation Techniques was held in Winnipeg, Manitoba,Canada from 1996 May 13 to 15. It was organized in collaboration with the Whiteshell Laboratories of Atomic Energy of Canada Limited (AECL), Ontario Hydro and the CANDU Owner's Group (COG). Sixty-five experts from twelve OECD Member countries and the Russian Federation attended the meeting. Papers presented in the sessions included topics: accident management and analysis, relevant aspects of hydrogen production, distribution and mixing, engineering, technology, possible side-effects consequences and new designs. The objectives of the Workshop were the following: to establish the state of the art of hydrogen mitigation techniques, with emphasis on igniters and catalytic recombiners; to exchange information on Member countries' strategies in managing hydrogen mitigation, and to establish dialogue as to differences in approach; to determine whether there is now an adequate technical basis for such strategies or whether more work is needed; to exchange information on future plans for implementation of hydrogen mitigation techniques

  14. Validation of MCNP and WIMS-AECL/DRAGON/RFSP for ACR-1000 applications

    International Nuclear Information System (INIS)

    Bromley, Blair P.; Adams, Fred P.; Zeller, Michael B.; Watts, David G.; Shukhman, Boris V.; Pencer, Jeremy

    2008-01-01

    This paper gives a summary of the validation of the reactor physics codes WIMS-AECL, DRAGON, RFSP and MCNP5, which are being used in the design, operation, and safety analysis of the ACR-1000 R . The standards and guidelines being followed for code validation of the suite are established in CSA Standard N286.7-99 and ANS Standard ANS-19.3-2005. These codes are being validated for the calculation of key output parameters associated with various reactor physics phenomena of importance during normal operations and postulated accident conditions in an ACR-1000 reactor. Experimental data from a variety of sources are being used for validation. The bulk of the validation data is from critical experiments in the ZED-2 research reactor with ACR-type lattices. To supplement and complement ZED-2 data, qualified and applicable data are being taken from other power and research reactors, such as existing CANDU R units, FUGEN, NRU and SPERT research reactors, and the DCA critical facility. MCNP simulations of the ACR-1000 are also being used for validating WIMS-AECL/ DRAGON/RFSP, which involves extending the validation results for MCNP through the assistance of TSUNAMI analyses. Code validation against commissioning data in the first-build ACR-1000 will be confirmatory. The code validation is establishing the biases and uncertainties in the calculations of the WIMS-AECL/DRAGON/RFSP suite for the evaluation of various key parameters of importance in the reactor physics analysis of the ACR-1000. (authors)

  15. Status and Plans for work on pressure tube creep at AECL

    International Nuclear Information System (INIS)

    Bickel, Grant A.

    2013-01-01

    AECL research goals: • Develop empirical models to: – regress out operating conditions/extrinsic factors – rank relative strain behavior of measured in-service pressure tubes; • Correlate the ranked strains to manufacturing variables and the microstructure to: – Develop mechanistic insights – Optimize manufacturing/microstructure for improved pressure tube performance

  16. AECL's advanced code program

    Energy Technology Data Exchange (ETDEWEB)

    McGee, G.; Ball, J. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2012-07-01

    This paper discusses the advanced code project at AECL.Current suite of Analytical, Scientific and Design (ASD) computer codes in use by Canadian Nuclear Power Industry is mostly developed 20 or more years ago. It is increasingly difficult to develop and maintain. It consist of many independent tools and integrated analysis is difficult, time consuming and error-prone. The objectives of this project is to demonstrate that nuclear facility systems, structures and components meet their design objectives in terms of function, cost, and safety; demonstrate that the nuclear facility meets licensing requirements in terms of consequences of off-normal events; dose to public, workers, impact on environment and demonstrate that the nuclear facility meets operational requirements with respect to on-power fuelling and outage management.

  17. Shaft extension design at the Underground Research Laboratory, Pinawa, Manitoba

    International Nuclear Information System (INIS)

    Kuzyk, G.W.; Ball, A.E.

    1991-01-01

    AECL Research has constructed an underground laboratory for the research and development required for the Canadian Nuclear Fuel Waste Management Program. The experimental program in the laboratory will contribute to the assessment of the feasibility and safety of nuclear fuel waste disposal deep in stable plutonic rock. In 1988, AECL extended the shaft of the Underground Research Laboratory (URL) from the existing 255 m depth to a depth of 443 m in cooperation with the United States Department of Energy. The project, which involved carrying out research activities while excavation and construction work was in progress, required careful planning. To accommodate the research programs, full-face blasting with a burn cut was used to advance the shaft. Existing facilities at the URL had to be modified to accommodate an expanded underground facility at a new depth. This paper discusses the design criteria, shaft-sinking methods and approaches used to accommodate the research work during this shaft extension project. (11 refs., 11 figs.)

  18. Co-operative projects with AECL in the fields of hydrogeology and geochemistry

    International Nuclear Information System (INIS)

    1985-01-01

    The report covers collaborative study with Atomic Energy of Canada Limited on geological aspects of waste disposal in crystalline rocks. A field test of the sinusoidal hydraulic pressure pulse method was carried out at the URL site to try to define hydraulic properties of major horizontal fractures. The trials were generally successful and observable sine and square wave signals were transmitted. Owing to the limited scale of the programme, and some equipment problems, the results proved difficult to interpret, although the speed and flexibility of the method was demonstrated. A second aspect of collaboration was to be the field comparison of the AECL and NERC/BGS borehole geochemical probes. In the event, the AECL probe development programme was curtailed and a Swedish design selected for purchase. Effort thus switched to technical comparison of the SGAB probe with the NERC/BGS design. Since both are still at various development points the collaboration was limited to technical exchange. The results are presented. (author)

  19. Hydrology and hydrochemistry for the Rice Creek watershed of the Whiteshell Research Area, 1986--1990

    Energy Technology Data Exchange (ETDEWEB)

    Thorne, G. A.; Laporte, J. M.; Clarke, D.

    1992-12-01

    This report presents data and results of a hydrometeorological study carried out in the Rice Creek Watershed of the Whiteshell Research Area during 1986-90. Major water budget components, such as precipitation, runoff, groundwater, storage and evaporation, are evaluated and discussed. men annual precipitation was 544 mm, mean runoff was 101 mm, with evapo-transpiration as the residual being 443 mm. The steady-state groundwater component of the runoff is estimated to be less than 2 mm/unit area, or less than 2% of men annual basin yield. Water chemistry data for precipitation,l surface waters, and groundwaters are presented and the relative concentrations compared to provide information about sources of streamflow. Data on a major storm event that provided precipitation with an estimated return period of over 100 a are presented. Also discussed are the effects of beaver dams on the hydrology of a major tributary of the Rice Creek watershed. (auth)

  20. Field tracer transport experiments at the site of Canada's underground research laboratory

    International Nuclear Information System (INIS)

    Frost, L.H.; Davison, C.C.; Vandergraaf, T.T.; Scheier, N.W.; Kozak, E.T.

    1997-01-01

    To gain a better understanding of the processes affecting solute transport in fractured crystalline rock, groundwater tracer experiments are being performed within natural fracture domains and excavation damage zones at various scales at the site of AECL's Underground Research Laboratory (URL). The main objective of these experiments is to develop and demonstrate methods for characterizing the solute transport properties within fractured crystalline rock. Estimates of these properties are in turn being used in AECL's conceptual and numerical models of groundwater flow and solute transport through the geosphere surrounding a nuclear fuel waste disposal vault in plutonic rock of the Canadian Shield. (author)

  1. AECL experience with low-level radioactive waste technologies

    International Nuclear Information System (INIS)

    Buckley, L.P.; Charlesworth, D.H.

    1988-08-01

    Atomic Energy of Canada Limited (AECL), as the Canadian government agency responsible for research and development of peaceful uses of nuclear energy, has had experience in handling a wide variety of radioactive wastes for over 40 years. Low-level radioactive waste (LLRW) is generated in Canada from nuclear fuel manufacturers and nuclear power facilities, from medical and industrial uses of radioisotopes and from research facilities. The technologies with which AECL has strength lie in the areas of processing, storage, disposal and safety assessment of LLRW. While compaction and incineration are the predominant methods practised for solid wastes, purification techniques and volume reduction methods are used for liquid wastes. The methods for processing continue to be developed to improve and increase the efficiency of operation and to accommodate the transition from storage of the waste to disposal. Site-specific studies and planning for a LLRW disposal repository to replace current storage facilities are well underway with in-service operation to begin in 1991. The waste will be disposed of in an intrusion-resistant underground structure designed to have a service life of over 500 years. Beyond this period of time the radioactivity in the waste will have decayed to innocuous levels. Safety assessments of LLRW disposal are performed with the aid of a series of interconnected mathematical models developed at Chalk River specifically to predict the movement of radionuclides through and away from the repository after its closure and the subsequent health effects of the released radionuclides on the public. The various technologies for dealing with radioactive wastes from their creation to disposal will be discussed. 14 refs

  2. Radiation protection aspects of AECL's retube/refurbishment projects

    International Nuclear Information System (INIS)

    Zhuang, Y.; Boss, C.R.; Pontikakis, N.

    2007-01-01

    In contrast to the construction of a new nuclear reactor, Retube/Refurbishment of nuclear reactors that have been in operation for many years will involve fabrication of a new core in a radiation environment. Careful planning of the radiation protection (RP) program is crucial to ensure the protection of workers and the environment, and the success of the projects. This paper describes the key RP activities currently underway in AECL's Retube/Refurbishment projects, covering RP during retubing tooling and system designs, retubing work planning, retubing operation, and waste transfer and management. The discussion will focus on RP initiatives from engineering design aspects of the projects. (author)

  3. Proceedings of the OECD/NEA/CSNI workshop on the implementation of hydrogen mitigation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Koroll, G.W. [Atomic Energy of Canada Limited, Pinawa, Manitoba (Canada); Rohde, J. [GRS, Koln (Germany); Royen, J. [OECD NEA, Issy-les-Moulineaux (France)

    1997-03-01

    The Workshop on the Implementation of Hydrogen Mitigation Techniques was held in Winnipeg, Manitoba,Canada from 1996 May 13 to 15. It was organized in collaboration with the Whiteshell Laboratories of Atomic Energy of Canada Limited (AECL), Ontario Hydro and the CANDU Owner's Group (COG). Sixty-five experts from twelve OECD Member countries and the Russian Federation attended the meeting. Papers presented in the sessions included topics: accident management and analysis, relevant aspects of hydrogen production, distribution and mixing, engineering, technology, possible side-effects consequences and new designs. The objectives of the Workshop were the following: to establish the state of the art of hydrogen mitigation techniques, with emphasis on igniters and catalytic recombiners; to exchange information on Member countries' strategies in managing hydrogen mitigation, and to establish dialogue as to differences in approach; to determine whether there is now an adequate technical basis for such strategies or whether more work is needed; to exchange information on future plans for implementation of hydrogen mitigation techniques.

  4. New capabilities of the lattice code WIMS-AECL

    International Nuclear Information System (INIS)

    Altiparmakov, Dimitar

    2008-01-01

    The lattice code WIMS-AECL has been restructured and rewritten in Fortran 95 in order to increase the accuracy of its responses and extend its capabilities. Significant changes of computing algorithms have been made in the following two areas: geometric calculations and resonance self-shielding. Among various geometry enhancements, the code is no longer restricted to deal with single lattice cell problems. The multi-cell capability allows modelling of various lattice structures such as checkerboard lattices, a de-fuelled channel, and core-reflector interface problems. The new resonance method performs distributed resonance self-shielding including the skin effect. This paper describes the main code changes and presents selected code verification results. (authors)

  5. AECL's progress in DUPIC fuel development

    International Nuclear Information System (INIS)

    Sullivan, J.D.; Ryz, M.A.; Lee, J.W.

    1997-01-01

    Previous papers described progress in choosing a fabrication route for the DUPIC (Direct Use of Spent PWR Fuel in CANDU) fuel cycle [1], details of the OREOX (Oxidation Reduction of Oxide fuel) process, and preliminary results of out-cell and small-scale in-cell experiments [2]. AECL's project to develop the DUPIC fuel cycle has now progressed to the stage of fabricating DUPIC fuel elements for irradiation testing in a research reactor. Because of the high radiation fields around the spent PWR fuel, all work is being done in hot cells. The equipment used for fabrication of the DUPIC fuel elements is described in this paper. The commissioning, in-cell installation and current status of the fabrication process are also described and plans for the completion of this phase of the DUPIC project are outlined. The goal of this phase of the project is demonstration of the technical feasibility of the DUPIC fuel cycle. (author)

  6. Rock fracture dynamics research at AECL's Underground Research Laboratory: applications to geological disposal of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Young, R.P. [Univ. of Toronto, Toronto, ON (Canada); Haycox, J.R. [Applied Seismology Consultants Limited, Shrewsbury, Shropshire (United Kingdom); Martino, J. [Atomic Energy of Canada Limited, Pinawa, MB (Canada)

    2011-07-01

    Studies of rock fracture dynamics at AECL's Underground Research Laboratory (URL) have helped to provide a fundamental understanding of how crystalline rock responds to stresses induced from excavation, pressurization and temperature changes. The data acquired continue to provide insights into how a facility for the future geological disposal of radioactive waste could be engineered. Research into microseismic (MS), acoustic emission (AE), and ultrasonic velocity measurements has been performed on the full-scale sealed, pressurized, and heated horizontal elliptical tunnel at the Tunnel Sealing Experiment (TSX). The continuous monitoring of the experiment for 8 years provides a unique dataset for the understanding of the medium-term performance of an engineered disposal facility. This paper summarizes the results, interpretations and key findings of the experiment paying particular focus to the heating and cooling/depressurization of the chamber. Initial drilling of the tunnel and bulkheads causes microfracturing around the tunnel, mapped by MS and AEs, and is used as a benchmark for fracturing representing the excavated damaged zone (EDZ). There is no further extension to the volume during pressurization or heating of the tunnel suggesting an increase in crack density and coalescence of cracks rather than extension into unfractured rock. The dominant structure within the seismic cloud has been investigated using a statistical approach applying the three-point method. MS events in the roof exhibit a dominant pattern of sub-horizontal and shallow-dipping well defined planar features, but during cooling and depressurization a 45 degree dip normal to the tunnel axis is observed, which may be caused by movement in the rock-concrete interface due to differential cooling of the bulkhead and host rock. Cooling and depressurization of the TSX have not led to a significant increase in the number of MS or AE events. Ultrasonic results suggest the rock gets even stiffer

  7. Advanced fuel development at AECL: What does the future hold for CANDU fuels/fuel cycles?

    Energy Technology Data Exchange (ETDEWEB)

    Kupferschmidt, W.C.H. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2013-07-01

    This paper outlines advanced fuel development at AECL. It discusses expanding the limits of fuel utilization, deploy alternate fuel cycles, increase fuel flexibility, employ recycled fuels; increase safety and reliability, decrease environmental impact and develop proliferation resistant fuel and fuel cycle.

  8. The large-scale vented combustion test facility at AECL-WL: description and preliminary test results

    International Nuclear Information System (INIS)

    Loesel Sitar, J.; Koroll, G.W.; Dewit, W.A.; Bowles, E.M.; Harding, J.; Sabanski, C.L.; Kumar, R.K.

    1997-01-01

    Implementation of hydrogen mitigation systems in nuclear reactor containments requires testing the effectiveness of the mitigation system, reliability and availability of the hardware, potential consequences of its use and the technical basis for hardware placement, on a meaningful scale. Similarly, the development and validation of containment codes used in nuclear reactor safety analysis require detailed combustion data from medium- and large-scale facilities. A Large-Scale Combustion Test Facility measuring 10 m x 4 m x 3 m (volume, 120 m 3 ) has been constructed and commissioned at Whiteshell Laboratories to perform a wide variety of combustion experiments. The facility is designed to be versatile so that many geometrical configurations can be achieved. The facility incorporates extensive capabilities for instrumentation and high speed data acquisition, on-line gas sampling and analysis. Other features of the facility include operation at elevated temperatures up to 150 degrees C, easy access to the interior, and remote operation. Initial thermodynamic conditions in the facility can be controlled to within 0.1 vol% of constituent gases. The first series of experiments examined vented combustion in the full 120 m 3 -volume configuration with vent areas in the range of 0.56 to 2.24 m 2 . The experiments were performed at ∼27 degrees C and near-atmospheric pressures, with hydrogen concentrations in the range of 8 to 12% by volume. This paper describes the Large-Scale Vented Combustion Test Facility and preliminary results from the first series of experiments. (author)

  9. Factors controlling the population size of microbes in groundwater from AECL's Underground Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Stroes-Gascoyne, S.; Hamon, C. [Atomic Energy of Canada Limited, Whiteshell Labs., Pinawa, Manitoba (Canada); Mills, K. [University of Saskatoon, Saskatoon, SK (Canada); Rana, S.; Vaidyanathan, S. [Deep River Science Academy, Whiteshell Campus Summer 1997, Pinawa, Manitoba (Canada)

    2001-01-01

    Microbial populations in groundwaters from AECL's Underground Research Laboratory (URL) range from 10{sup 3} to 10{sup 5} cells/mL. Based on the total dissolved organic carbon (DOC), nitrate and phosphate content of these waters, populations of about 10{sup 5} to 10{sup 7} cells/mL should be possible. Upon storage of groundwater samples, total cell counts generally increase and viable cell counts always increase. A study was undertaken to determine what controls the in situ microbial population size in groundwater and what causes this population to grow upon sampling. Fresh URL groundwater was filter-sterilized, inoculated with small quantities of the unaltered water and incubated in the absence and presence of added nutrients (nitrate, phosphate and glucose). Unfiltered groundwater and R2A growth medium inoculated with unaltered groundwater, were also incubated. Microbial changes over time were followed by total and viable (on R2A medium) cell counts. Results showed that in the absence of any nutrient addition, populations grew to between 5 x 10{sup 5} to 4 x 10{sup 6} cells/mL, regardless of the initial size of the population ({approx}10{sup 1} to 10{sup 4} cells/mL), suggesting that nutrients for growth were available in the unamended groundwater. It was hypothesized that the original groundwater population was in 'equilibrium' with the underground environment, which likely included a large population of sessile cells in biofilms on fracture surfaces. Sampling of the groundwater removed the large demand on nutrient supplies by the sessile population which subsequently allowed the planktonic population to grow to a new 'equilibrium' with the available nutrients in the sample bottles. Addition of single nutrients (C, N or P) did not increase cell numbers, suggesting that more than one nutrient is limiting growth. Glucose was used very efficiently aerobically in the presence of both added N and P, but somewhat less under anaerobic

  10. The Atomic Energy of Canada Limited (AECL) employee health study

    International Nuclear Information System (INIS)

    Myers, D.K.; Werner, M.M.

    1985-01-01

    A preliminary examination of records relating to past Chalk River employees provides some reassurance that large numbers of cancer deaths that might be related to occupational radiation exposure do not exist in the groups of employees studied to the end of 1982. The lack of reliable information on deaths of ex-employees who left AECL for other employment prevented the inclusion of this group in this preliminary study. This information will presumably be obtained during the course of the more comprehensive Atomic Energy of Canada Ltd. employee health study. 6 refs

  11. Sensitivity of 238U resonance absorption to library multigroup structure as calculated by WIMS-AECL

    International Nuclear Information System (INIS)

    Laughton, P.J.; Donnelly, J.V.

    1995-01-01

    In simulations of the TRX-1 experimental lattice, WIMS-AECL overpredicts, relative to MCNP, resonance absorption in neutron-energy groups containing the three large, low-lying resonances of 238 U when a standard ENDF/B-V-based library is used. A total excess in these groups of 4.0 neutron captures by 238 U per thousand fission neutrons has been observed. Similar comparisons are made in this work for the MIT-4 experimental lattice and simplified CANDU lattice cells containing 37-element fuel, with and without heavy-water coolant. Eleven different 89-group cross-section libraries were constructed for WIMS-AECL from ENDF/B-V data: only the neutron-energy-group boundaries used in generating multigroup cross sections and the Goldstein-Cohen correction factors differ from one library to the next. The first library uses the original 89-group structure, and the other ten involve energy groups of varying widths centred on the three large, low-lying resonances of 238 U. For TRX-1, some reduction in total discrepancy in 238 U capture can be achieved by using a new structure, although the improvement is small. The discrepancies in 238 U capture are of the same order for the MIT-4 case as those observed for TRX-1 for both the original group structure and the ten new structures. The WIMS-AECL calculation of 238 U resonance absorption in the same ranges of energy for the simplified CANDU 37-element lattice are in better agreement with MCNP than they are for TRX-1 and MIT-4: when the original structure is used, WIMS-AECL underpredicts total capture rate by 238 U in the energy range of interest by only 0.56 per thousand fission neutrons (coolant present) and 0.88 per thousand fission neutrons (voided coolant channel). The discrepancies are reduced when some of the new structures are used. For almost all of the cases considered here-TRX-1, MIT-4 and CANDU with coolant-better group-by-group agreement of 238 U capture around the 6.67-eV resonance is achieved by using a new library

  12. Operating Experience of MACSTOR Modules at CANDU 6 Stations

    International Nuclear Information System (INIS)

    Beaudoin, Robert R.

    2005-01-01

    Over the last three decades, Atomic Energy of Canada Limited (AECL) has contributed to the technology development and implementation of dry spent fuel management facilities in Canada, Korea and Romania During that period, AECL has developed a number of concrete canister models and the MACSTOR200 module, a medium size air-cooled vault with a 228 MgU (Mega grams of Uranium) capacity. AECL's dry storage technologies were used for the construction of eight large-scale above ground dry storage facilities for CANDU spent fuel. As of 2005, those facilities have an installed capacity in excess of 5,000 MgU. Since 1995, the two newest dry storage installations built for CANDU 6 reactors at Gentilly 2 (Canada) and Cernavoda (Romania) used the MACSTOR 200 module. Seven such modules have been built at Gentilly 2 during the 1995 to 2004 period and one at Cernavoda in 2003. The construction and operating experience of those modules is reviewed in this paper. The MACSTOR 200 modules were initially designed for a 50-year service life, with recent units at Gentilly 2 licensed for a 100-year service life in a rural (non-maritime) climate. During the 1995-2005 period, six of the eight modules were loaded with fuel. Their operation has brought a significant amount of experience on loading operations, performance of fuel handling equipment, radiation shielding, heat transfer, monitoring of the two confinement boundaries and radiation dose to personnel. Heat dissipation performance of the MACSTOR 200 was initially licensed using values derived from full scale tests made at AECL's Whiteshell Research Laboratories, that were backed-up by temperature measurements made on the first two modules. Results and computer models developed for the MACSTOR 200 module are described. Korea Hydro and Nuclear Power (KHNP) and its subsidiary Nuclear Environment Technology Institute (NETEC), in collaboration with Hyundai Engineering Company Ltd. (HEC) and AECL, are developing a new dry storage module to

  13. A numerical study of the effects of a discrete fracture and an excavation damage zone on 129I transport through the geosphere

    International Nuclear Information System (INIS)

    Chan, T.; Scheier, N.W.; O'Connor, P.A.

    1997-10-01

    A numerical study has been conducted to investigate the effects of a discrete fracture and an excavation damage zone (EDZ) on groundwater mediated transport of I2 9 from a hypothetical nuclear fuel waste disposal vault through saturated, sparsely fractured plutonic rock to the biosphere. The reference disposal system simulated in the present work is based on the median value case of the postclosure assessment case study presented by AECL to support the Environmental Impact Statement (EIS) submitted to the Canadian Environmental Assessment Agency (CEAA). In particular, the reference geosphere is based mainly on hydrogeological characteristics at the site of AECL's Underground Research Laboratory in the Whiteshell Research Area, southeastern Manitoba. Several features not explicitly simulated in the EIS postclosure assessment case study are investigated in this study. These include the hypothetical possibility of a discrete fracture or a narrow fracture zone existing in the rock in the immediate vicinity of the disposal vault. This hypothetical fracture is modeled as a discrete fracture that connects or almost connects the vault to nearby fracture zone LD1. Simulations are performed using a combination of three-dimensional flow model and corresponding two-dimensional transport models, and the MOTIF finite-element code. It should be emphasized that the primary purpose of the present study it to investigate the relative importance of the various possible features in the rock in the immediate vicinity of the vault. Detailed numerical modelling of the effectiveness of various engineered barriers that could be used to mitigate any negative effects of such features is beyond the scope of this study

  14. Heating- and growing-degree days at Chalk River Nuclear Laboratories, 1976-1980

    International Nuclear Information System (INIS)

    Jay, P.C.; Wildsmith, D.P.

    1981-05-01

    An update of the report, Heating- and Growing-Degree-Days at Chalk River Nuclear Laboratories (AECL-5547) is presented along with various other meteorological variables which were not included in the previous publication. Also included, and shown in graph form, are the monthly degree-day frequencies. (author)

  15. Rationalization and future planning for AECL's research reactor capability

    International Nuclear Information System (INIS)

    Slater, J.B.

    1990-01-01

    AECL's research reactor capability has played a crucial role in the development of Canada's nuclear program. All essential concepts for the CANDU reactors were developed and tested in the NRX and NRU reactors, and in parallel, important contributions to basic physics were made. The technical feasibility of advanced fuel cycles and of the organic-cooled option for CANDU reactors were also demonstrated in the two reactors and the WR-1 reactor. In addition, an important and growing radio-isotope production industry was established and marketed on a world-wide basis. In 1984, however, it was recognized that a review and rationalization of the research reactor capability was required. The commercial success of the CANDU reactor system had reduced the scope and size of the required development program. Limited research and development funding and competition from other research facilities and programs, required that the scope be reduced to a support basis essential to maintain strategic capability. Currently, AECL, is part-way through this rationalization program and completion should be attained during 1992/93 when the MAPLE reactor is operational and decisions on NRX decommissioning will be made. A companion paper describes some of the unique operational and maintenance problems which have resulted from this program and the solutions which have been developed. Future planning must recognize the age of the NRU reactor (currently 32 years) and the need to plan for eventual replacement. Strategy is being developed and supporting studies include a full technical assessment of the NRU reactor and the required age-related upgrading program, evaluation of the performance characteristics and costs of potential future replacement reactors, particularly the advanced MAPLE concept, and opportunities for international co-operation in developing mutually supportive research programs

  16. A study of the mortality of AECL employees. V

    International Nuclear Information System (INIS)

    Gribbin, M.A.; Howe, G.R.; Weeks, J.L.

    1992-09-01

    A study has been underway since 1980 on the mortality of past and present AECL employees. The study population consists of 13,491 persons, 9997 males and 3494 females, for a total of 262,403.5 person-years at risk. During the period 1950-1985, 1299 deaths occurred in this population. The number of female deaths (121) is too few for detailed analysis, but the 1178 deaths in the male population represent a useful basis for this study. The present report examines mortality patterns in the AECL cohort between 1950 and 1985 by comparing the observed mortality with that expected in the general population for three groups of workers: those with no exposure, those with up to 50 mSv, and those with more than 50 mSv. Comparisons among the three groups of employees are discussed. The number of deaths is fewer than would be expected on the basis of general population statistics for both males who were exposed to ionizing radiation and those who were not exposed. The findings were similar for the 'all cancer' and 'all other deaths' groupings. In the group of exposed males, elevated Standardized Mortality Ratios (SMRs) are seen for non-Hodgkin's lymphoma and for buccal cavity, rectum and rectosigmoid junction, and prostate cancers. There are elevated SMRs for lymphatic and myeloid leukemias and for large intestine, prostate, brain and biliary system cancers in the 'unexposed' male group. The number of cases identified in all of these cancers is small and the confidence intervals are wide, such that none of the elevated SMRs is statistically significant. The report compares the findings of this study with those of similar studies published in the past decade. (Author) (28 tabs., 33 refs., 2 figs.)

  17. Radiochemistry Lab Decommissioning and Dismantlement. AECL, Chalk River Labs, Ontario, Canada

    International Nuclear Information System (INIS)

    Kenny, Stephen

    2008-01-01

    Atomic Energy of Canada (AECL) was originally founded in the mid 1940's to perform research in radiation and nuclear areas under the Canadian Defense Department. In the mid 50's The Canadian government embarked on several research and development programs for the development of the Candu Reactor. AECL was initially built as a temporary site and is now faced with many redundant buildings. Prior to 2004 small amounts of Decommissioning work was in progress. Many reasons for deferring decommissioning activities were used with the predominant ones being: 1. Reduction in radiation doses to workers during the final dismantlement, 2. Development of a long-term solution for the management of radioactive wastes in Canada, 3. Financial constraints presented by the number of facilities shutdown that would require decommissioning funds and the absence of an approved funding strategy. This has led to the development of a comprehensive decommissioning plan that is all inclusive of AECL's current and legacy liabilities. Canada does not have a long-term disposal site; therefore waste minimization becomes the driving factor behind decontamination for decommissioning before and during dismantlement. This decommissioning job was a great learning experience for decommissioning and the associated contractors who worked on this project. Throughout the life of the project there was a constant focus on waste minimization. This focus was constantly in conflict with regulatory compliance primarily with respect to fire regulations and protecting the facility along with adjacent facilities during the decommissioning activities. Discrepancies in historical documents forced the project to treat every space as a contaminated space until proven differently. Decommissioning and dismantlement within an operating site adds to the complexity of the tasks especially when it is being conducted in the heart of the plant. This project was very successful with no lost time accidents in over one hundred

  18. Analysis of the results for the AECL cohort in the IARC study on the radiogenic cancer risk among nuclear industry workers in fifteen countries

    Energy Technology Data Exchange (ETDEWEB)

    Ashmore, J.P. [Ponsonby and Associates, Manotick, Ontario (Canada); Gentner, N.E. [Consultant, Petawawa, Ontario (Canada); Osborne, R.V. [Ranasara Consultants Inc., Deep River, Ontario (Canada)

    2007-03-31

    Over the last two decades there have been attempts to estimate the risks from occupational exposure in the nuclear industry by epidemiological assessments on cohorts of workers. However, generally low doses and relatively small worker populations have limited the precision of such studies. In 1995 the International Agency for Research on Cancer (IARC) completed a study that involved workers from facilities in the USA, UK and AECL. In 2005, IARC completed a further study involving nuclear workers from 15 countries including Canada. Surprisingly, the risk ascribed to the Canadian cohort for all cancers excluding leukaemia, driven by the AECL component, was significantly higher than the cohort as a whole. The work described in this report is an attempt to unravel what might have accounted for the divergence between the results for the AECL cohort and the others.

  19. Analysis of the results for the AECL cohort in the IARC study on the radiogenic cancer risk among nuclear industry workers in fifteen countries

    International Nuclear Information System (INIS)

    Ashmore, J.P.; Gentner, N.E.; Osborne, R.V.

    2007-01-01

    Over the last two decades there have been attempts to estimate the risks from occupational exposure in the nuclear industry by epidemiological assessments on cohorts of workers. However, generally low doses and relatively small worker populations have limited the precision of such studies. In 1995 the International Agency for Research on Cancer (IARC) completed a study that involved workers from facilities in the USA, UK and AECL. In 2005, IARC completed a further study involving nuclear workers from 15 countries including Canada. Surprisingly, the risk ascribed to the Canadian cohort for all cancers excluding leukaemia, driven by the AECL component, was significantly higher than the cohort as a whole. The work described in this report is an attempt to unravel what might have accounted for the divergence between the results for the AECL cohort and the others

  20. Some highlights of research and development at AECL

    International Nuclear Information System (INIS)

    Langford, W.J.; Rae, H.K.

    1980-06-01

    The research and development programs of AECL have as their goal the strengthening of the knowledge and ability necessary to achieve national objectives in the field of nuclear energy. These objectives include a nuclear reactor system appropriate to Canada's industrial capabilities, now realized, and the extension of that system, through scientific and technological development, to serve the nation's needs for the forseeable future. The Company's programs are carefully integrated and focused to use the available funding to maximum advantage. The research facilities on which the program depends are among the best in the world, and support a full spectrum of research from fundamental nuclear physics to full-scale power reactor component irradiation and testing. In this report it has only been possible to high-light some important facets of the programs in each of the principal areas currently employing our energies. (auth)

  1. Hydrogen problems related to reactor accidents

    International Nuclear Information System (INIS)

    Bujor, A.

    1993-09-01

    At reactor accidents, the combustion of hydrogen causes pressure and temperature transients which pose supplementary loads in containment. In certain conditions, they could reach hazardous levels and impair the integrity of the containment and the operability of the safety systems. The mechanisms of chemical reactions specific for the hydrogen-oxygen system are presented. Conditions in which combustion can occur and the various combustion modes, including the transition to detonation are also described. The related safety aspects and mitigation methods are discussed. Examples for particular applications and safety approaches for various types of reactors, included those promoted for the advanced reactors are also given. Presentation of the experimental research completed at AECL-Research, Whiteshell Laboratory is given, where the multi-point ignition effects for constant volume and for vented combustion of dry hydrogen-air mixtures in various geometries have been investigated. Various aspects of modelling and simulation of hydrogen combustion are discussed. The adaptations and the new models implemented in the codes VENT and CONTAIN, aimed to widen the simulation capabilities of hydrogen combustion models are described. The capabilities and limitations of the modelling assumptions of these two codes are also evaluated. (EG) (11 tabs., 39 ills., 82 refs.)

  2. The flashcal process for the fabrication of fuel-metal oxides using the whiteshell roto-spray calciner

    International Nuclear Information System (INIS)

    Sridhar, T.S.

    1988-01-01

    A one-step, continuous, thermochemical calcination process, called the FLASHCAL (Flash Calcination) process has been developed for the production of single- and mixed-oxide powders of fuel metals (uranium, thorium and plutonium) from the respective nitrate solutions using the Whiteshell Roto-Spray Calciner (RSC). The metal-nitrate feed solution, either by itself or mixed with a suitable chemical reactant or additive, is converted to its oxide powder in the RSC at temperatures between 300 and 600 0 C. Rapid denitration takes place in the calciner, yielding the metal-oxide powders while simultaneously destroying any excess chemical additive and reaction by-products. In the production of precursor oxide powders suitable for fuel fabrication, the FLASHCAL process has advantages over batch calcination and other processes that involve precipitation and filtration steps because fewer processing and handling operations are needed. Results obtained with thorium nitrate and uranium nitrate-thorium nitrate mixtures indicate that some measure of control over the size distribution and morphology of the oxide product powders is possible in this process with the proper selection of chemical additive, as well as the operating parameters of the calciner

  3. The AECL reactor development programme

    International Nuclear Information System (INIS)

    Menelely, D.A.

    1997-01-01

    The modem CANDU-PHWR power reactor is the result of more than 50 years of evolutionary design development in Canada. It is one of only three commercially successful designs in the world to this date. The basis for future development is the CANDU 6 and CANDU 9 models. Four of the first type are operating and four more will go an line before the end of this decade. The CANDU 9 is a modernized single-unit version of the twelve large multi-unit plants operated by Ontario Hydro. All of these plants use proven technology which resulted from research, development, design construction, and operating experience over the past 25 years. Looking forward another 25 years, AECL plans to retain all of the essential features that distinguish today's CANDU reactors (heavy water moderation, on-power fuelling simple bundle design, horizontal fuel channels, etc.). The end product of the planned 25-year development program is more than a specific design - it is a concept which embodies advanced features expected from ongoing R and D programs. To carry out the evolutionary work we have selected seven main areas for development: Safety Technology, Fuel and Fuel Cycles, Fuel Channels, Systems and Components, Heavy Water and Tritium Information Technology, and Construction. There are three strategic measures of success for each of these work areas: improved economics, advanced fuel cycle utilization, and enhanced safety/plant robustness. The paper describes these work programs and the overall goals of each of them. (author)

  4. Validation of DRAGON code in connection with WIMS-AECL/RFSP code system based on ENDF/B-VI library and two group model

    International Nuclear Information System (INIS)

    Hong, In Seob; Suk, Ho Chun; Kim, Soon Young; Jo, Chang Keun

    2002-06-01

    The major objective of this research is to validate the incremental cross section property of DRAGON code in connection with WIMS-AECL/DRAGON/RFSP code system with ENDF/B-VI library and full 2G calculation model. The direct comparison between the incremental cross section results calculated by DRAGON with ENDF/B-VI and ENDF/B-V and MULTICELL with ENDF/B-V indicate that there are not much differences between the incremental cross sections of DRAGON with ENDF/B-V and ENDF/B-VI, but there exists large discrepancies between the results of DRAGON and those of MULTICELL. In the analysis of the difference between calculated and measured reactivity worths of various types of control devices during Phase-B Post-Simulation of Wolsong Units 2, 3 and 4, WIMS-AECL/DRAGON/RFSP analysis well agrees with those of previous WIMS-AECL /MULTICELL/RFSP analysis within very small differences. From those results, we can conclude that DRAGON code can be used as a general purpose incremental cross section generation tool for not only the natural uranium fuel but also slightly enriched fuel such as RU or SEU, to cover the shortcomings of natural uranium based MULTICELL code

  5. Habitats of small mammals at Whiteshell Nuclear Research Establishment

    Energy Technology Data Exchange (ETDEWEB)

    Iverson, S L; Turner, B N

    1973-12-01

    The small mammals in the area around the Whiteshell Nuclear Research Establishment in southeastern Manitoba were sampled by approximately 110,000 snap- trap nights in a 5 year period. Habitats trapped were divided into major types on the basis of the tree species present, and occurrences of the different species of shrubs and herbs in each habitat type were noted. The major habitats were mixed deciduous, aspen, ash, mixed coniferous, The small mammal component of the mixed deciduous forest was dominated by Peromyscus maniculatus and Clethrionomys gapperi but all of the other species included in this study were also present. In both aspen and ash forests, Microtus pennsylvanicus and C. gapperi were the most numerous species, with Sorex arcticus reaching its greatest abundance in the latter. In the open field, M. pennsylvanicus was most abundant, followed by Zapus hudsonius, C. gapperi, M. pennsylvanicus and Sorex cinereus were the most numerous mammals in the black spruce bog community, and also extended into the black spruce forest. All of the species studied, except Napaeozapus insignis and S. arcticus, were present in the mixed coniferous forest. S. arcticus and S. cinereus, although captured in habitats ranging from heavy forest to open field, appeared to be most numerous in young forests and other intermediate habitats. Blarina brevicauda was most numerous in older forests. P. maniculatus and N. insignis were most common in the mixed deciduous forest, but P. maniculatus occurred more frequently than N. insignis in the younger forests. P. maniculatus showed a significant positive relationship with large tree diameter and low percentages of ground cover. C. gapperi was captured in highest numbers in the mixed deciduous and coniferous forests, but was also found in the other types of forest in greater numbers than P. maniculaius. M. pennsylvanicus and Zapus hudsonius were most common in the open field, but both species were present in the forests. Analysis of data

  6. Control of blast overpressure and vibrations at the Underground Research Laboratory

    International Nuclear Information System (INIS)

    Kuzyk, G.W.; Onagi, D.P.; Mohanty, B.

    1991-01-01

    AECL Research (AECL) has constructed an Underground Research Laboratory (URL) as a facility for research and development in the Canadian Nuclear Fuel Waste Management Program. The objectives of the program are to develop and evaluate the technology to ensure safe, permanent disposal of Canada's nuclear fuel waste. Several multidisciplinary experiments and engineering demonstrations are planned for the URL over the next ten years. In 1989, AECL excavated a test room for the Buffer/Container Experiment at the 240 Level. The blasts were designed to limit vibration and overpressure damage because the excavation was located close to existing furnishings and services that were very susceptible to blast-induced vibration and overpressure. An experimental room, which contained sensitive instrumentation, was located within 30 m of the initial blasts. A concrete floor slab, timber curtains and a bulkhead were installed to protect furnishings and services from fly-rock and overpressure. Five of the initial blasts were monitored. This paper describes the results of the monitoring program and the effectiveness of the blast design, floor slab and timber curtains and bulkhead in reducing blast overpressure and vibrations at the blast site. It is shown that greater than a 20-fold reduction in both blast vibrations and air overpressures can be achieved with specific combinations of blast design, installation of timber curtains and construction of a concrete floor slab

  7. Effluent and environmental monitoring of Chalk River Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Pilgrim, T.; De Waele, C.; Gallagher, C. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    Atomic Energy of Canada Limited's (AECL's) Environmental Protection Program has been gathering environmental monitoring data at its Chalk River Laboratories (CRL) for over 60 years. The comprehensive effluent and environmental monitoring program at CRL consists of more than 600 sampling locations, including the Ottawa River, with approximately 60,000 analyses performed on air and liquid effluent parameters each year. Monitoring for a variety of radiological and non-radiological parameters is regularly conducted on various media, including ambient air, foodstuff (e.g. milk, fish, garden produce, large game, and farm animals), groundwater, Ottawa River water and other surface water on and off-site. The purpose of the monitoring program is to verify that past and current radiological and non-radiological emissions derived from AECL operations and activities, such as process water effluent into the Ottawa River, are below regulatory limits and demonstrate that CRL operations do not negatively affect the quality of water on or leaving the site. In fact, ongoing program reports demonstrate that radiological emissions are well below regulatory limits and have been declining for the past five years, and that non-radiological contaminants do not negatively affect the quality of water on and off the site. Two updated Canadian Standards Association (CSA) standards for Effluent and Environmental monitoring have come into effect and have resulted in some changes to the AECL Program. This presentation will discuss effluent and surface water monitoring results, the observed trends, the changes triggered by the CSA standards, and a path forward for the future. (author)

  8. AECL international standard problem ISP-41 FU/1 follow-up exercise (Phase 1): Containment Iodine Computer Code Exercise: Parametric Studies

    International Nuclear Information System (INIS)

    Ball, J.; Glowa, G.; Wren, J.; Ewig, F.; Dickenson, S.; Billarand, Y.; Cantrel, L.; Rydl, A.; Royen, J.

    2001-06-01

    This report describes the results of the second phase of International Standard Problem (ISP) 41, an iodine behaviour code comparison exercise. The first phase of the study, which was based on a simple Radioiodine Test Facility (RTF) experiment, demonstrated that all of the iodine behaviour codes had the capability to reproduce iodine behaviour for a narrow range of conditions (single temperature, no organic impurities, controlled pH steps). The current phase, a parametric study, was designed to evaluate the sensitivity of iodine behaviour codes to boundary conditions such as pH, dose rate, temperature and initial I- concentration. The codes used in this exercise were IODE (IPSN), IODE (NRIR), IMPAIR (GRS), INSPECT (AEAT), IMOD (AECL) and LIRIC (AECL). The parametric study described in this report identified several areas of discrepancy between the various codes. In general, the codes agree regarding qualitative trends, but their predictions regarding the actual amount of volatile iodine varied considerably. The largest source of the discrepancies between code predictions appears to be their different approaches to modelling the formation and destruction of organic iodides. A recommendation arising from this exercise is that an additional code comparison exercise be performed on organic iodide formation, against data obtained from intermediate-scale studies (two RTF (AECL, Canada) and two CAIMAN facility (IPSN, France) experiments have been chosen). This comparison will allow each of the code users to realistically evaluate and improve the organic iodide behaviour sub-models within their codes. (authors)

  9. ZZ CANDULIB-AECL, Burnup-Dependent ORIGEN-S Cross-Section Libraries for Candu Reactor Fuels

    International Nuclear Information System (INIS)

    2002-01-01

    1 - Historical background and information: - 28-element fuel cross-section library: Format: Designed for use with the ORIGEN-S isotope generation and depletion code. Materials: Co, Ge, As, Se, Br, Kr, Rb, Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Te, I, Xe, Cs, Ba, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Lu, Ta, W, Re, Au, Th, Pa, U, Np, Pu, Am, Cm. Origin: ENDSF, ENDF/B-IV, -V and -VI Weighting spectrum: determined using WIMS-AECL transport code. - 37-element fuel cross-section library: Format: Designed for use with the ORIGEN-S isotope generation and depletion code. Materials: Co, Ge, As, Se, Br, Kr, Rb, Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Te, I, Xe, Cs, Ba, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Lu, Ta, W, Re, Au, Th, Pa, U, Np, Pu, Am, Cm. Origin: ENDSF, ENDF/B-IV, -V and -VI Weighting spectrum: determined using WIMS-AECL transport code. In 1995, updated ORIGEN-S cross-section libraries were created as part of a program to upgrade and standardize the computer codes and nuclear data employed for used fuel characterization. This effort was funded through collaboration between Atomic Energy of Canada Limited and the Canadian Nuclear Power Utilities, under the Candu Owners Group (COG). The updated cross sections were generated using the WIMS-AECL lattice code and ENDF/B-V and -VI based data to provide cross section consistency with reactor physics codes. 2 - Application of the data: The libraries in this data collection are designed for characterising used fuel from Candu pressurized heavy water reactors. Two libraries are provided: one for the standard 28-element fuel bundle design, the other for the 37-element fuel bundle design. The libraries were generated for typical reactor operating conditions. The libraries are designed for use with the ORIGEN-S isotope generation and depletion code. 3 - Source and scope of data: The Candu libraries are updated with cross sections from a variety of different sources. Capture

  10. Thermohydrogeological modelling of the Whiteshell research area

    International Nuclear Information System (INIS)

    Chan, T.; Nakka, B.W.; O'Connor, P.A.; Uphori, D.U.; Reid, J.A.K.; Scheier, N.W.; Stanchell, F.W.

    1998-01-01

    This report presents details of the modelling that was done to support the development of the simplified geosphere model (GEONET), which was used in the assessment that was presented in the Environmental Impact Statement on the proposed concept for the disposal of Canada's nuclear fuel waste. Detailed modelling of groundwater flow, heat transport and contaminant transport through the geosphere was performed using the MOTIF finite-element computer code and the particle-tracking code TRACK3D. The GEONET model was developed using data from the Whiteshell Research Area, with a hypothetical disposal vault located at a depth of 500 m. This report first briefly describes the conceptual model and summarises the two-dimensional (2-D) simulations that were used initially to define an adequate 3-D representation of the system. The analysis showed that the configuration of major fracture zones could have a large influence on the groundwater flow patterns. These major fracture zones can have high velocities and large flows. The proximity of the radionuclide source to a major fracture zone may strongly influence the time for a radionuclide to be transported from the disposal vault to the surface. Groundwater flow was then simulated and advective/convective particle tracking was conducted in the selected 3-D representation of the system, to aid in selecting a suitable form for the simplified model to be used in the overall systems assessment with the SYVAC3-CC3 computer code. Sensitivity analyses were performed on the effects of (a) different natural geometries of part of the model domain, (b) different hydraulic properties, (c) construction, operation and closure of the vault, (d) the presence of a water supply well and (e) the presence of an open borehole. These analyses indicated that the shape of the topography and the presence of a major low-dipping fracture zone focuses groundwater passing through the vault into a discharge area that is much smaller than the area of the

  11. Safety requirements in the design of research reactors: A Canadian perspective

    International Nuclear Information System (INIS)

    Lee, A.G.; Langman, V.J.

    2000-01-01

    In Canada, the formal development of safety requirements for the design of research reactors in general began under an inter-organizational Small Reactor Criteria Committee. This committee developed safety and licensing criteria for use by several small reactor projects in their licensing discussions with the Atomic Energy Control Board. The small reactor projects or facilities represented included the MAPLE-X10 reactor, the proposed SES-10 heating reactor and its prototype, the SDR reactor at the Whiteshell Laboratories, the Korea Multipurpose Research Reactor (a.k.a., HANARO) in Korea, the SCORE project, and the McMaster University Nuclear Reactor. The top level set of criteria which form a safety philosophy and serve as a framework for more detailed developments was presented at an IAEA Conference in 1989. AECL continued this work to develop safety principles and design criteria for new small reactors. The first major application of this work has been to the design, safety analysis and licensing of the MAPLE 1 and 2 reactors for the MDS Nordion Medical Isotope Reactor Project. This paper provides an overview of the safety principles and design criteria. Examples of an implementation of these safety principles and design criteria are drawn from the work to design the MAPLE 1 and 2 reactors. (author)

  12. AECL R and D's role in promoting nuclear research and education

    International Nuclear Information System (INIS)

    Sadhankar, R.

    2009-01-01

    Nuclear renaissance has created new opportunities for new technology development and has also brought along the challenge of meeting the growing demand of trained personnel in the nuclear science and engineering. Towards meeting this challenge, AECL R and D organization is actively promoting and supporting the creation of nuclear research capabilities at the universities and also effectively leveraging the R and D at the universities. It has also put in place several new initiatives to attract and develop the talented young people for careers in nuclear science and engineering. This paper describes various interactions and collaborations with the universities that supports the nuclear R and D at the universities and develop highly qualified personnel for the future nuclear R and D needs. (author)

  13. Program of experiments for the operating phase of the Underground Research Laboratory

    International Nuclear Information System (INIS)

    Simmons, G.R.; Bilinsky, D.M.; Davison, C.C.; Gray, M.N.; Kjartanson, B.H.; Martin, C.D.; Peters, D.A.; Lang, P.A.

    1992-09-01

    The Underground Research Laboratory (URL) is one of the major research and development facilities that AECL Research has constructed in support of the Canadian Nuclear Fuel Waste Management Program. The URL is a unique geotechnical research facility constructed in previously undisturbed plutonic rock, which was well characterized before construction. The site evaluation and construction phases of the URL project have been completed and the operating phase is beginning. A program of operating phase experiments that address AECL's objectives for in situ testing has been selected. These experiments were subjected to an external peer review and a subsequent review by the URL Experiment Committee in 1989. The comments from the external peer review were incorporated into the experiment plans, and the revised experiments were accepted by the URL Experiment Committee. Summaries of both reviews are presented. The schedule for implementing the experiments and the quality assurance to be applied during implementation are also summarized. (Author) (9 refs., 11 figs.)

  14. Antibiotics from bacillus subtilis AECL90 - effect of trace elements and carbohydrates on antibiotic production

    International Nuclear Information System (INIS)

    Malik, M.A.; Shaukat, G.A.; Ahmed, M.S.

    1990-01-01

    Three types of antibiotics S, X and F characteristically bioactive against staphylococcic, xanthomonas and fungi are elaborated by Bacillus Subtilis AECL 69 when grown in molasses peptone malt extract sucrose. No antibiotic production was observed when molasses was omitted from the growth medium. A mineral salt mixture was devised that could replace molasses and restore the production of antibiotics. Influence of various carbohydrates on the production of antibiotics was also studied. Mannose and mannitol had inhibitory effect on the antibiotic production. (author)

  15. Sensitivity analysis on various parameters for lattice analysis of DUPIC fuel with WIMS-AECL code

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Gyu Hong; Choi, Hang Bok; Park, Jee Won [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    The code WIMS-AECL has been used for the lattice analysis of DUPIC fuel. The lattice parameters calculated by the code is sensitive to the choice of number of parameters, such as the number of tracking lines, number of condensed groups, mesh spacing in the moderator region, other parameters vital to the calculation of probabilities and burnup analysis. We have studied this sensitivity with respect to these parameters and recommend their proper values which are necessary for carrying out the lattice analysis of DUPIC fuel.

  16. Sensitivity analysis on various parameters for lattice analysis of DUPIC fuel with WIMS-AECL code

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Gyu Hong; Choi, Hang Bok; Park, Jee Won [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    The code WIMS-AECL has been used for the lattice analysis of DUPIC fuel. The lattice parameters calculated by the code is sensitive to the choice of number of parameters, such as the number of tracking lines, number of condensed groups, mesh spacing in the moderator region, other parameters vital to the calculation of probabilities and burnup analysis. We have studied this sensitivity with respect to these parameters and recommend their proper values which are necessary for carrying out the lattice analysis of DUPIC fuel.

  17. Comparison of MCNP and WIMS-AECL/RFSP calculations with high temperature substitution experiments in ZED-2 using CANFLEX-L VRF

    International Nuclear Information System (INIS)

    Pencer, J.; Bromley, B.P.; Watts, D.G.; Carlson, P.; Rauket, A.; Zeller, M.

    2009-01-01

    This paper summarizes comparisons of calculation results from MCNP5 and WIMS-AECL / RFSP with experimental results obtained from the Zero Energy Deuterium (ZED-2) critical facility, examining CANFLEX Low Void Reactivity Fuel (CANFLEX-LVRF) in heated channels, substituted into a reference lattice and cooled under ACR-like coolant conditions, with H 2 O, air, or CO 2 as an air substitute. CANFLEX-LVRF shares features in common with the ACR-1000 fuel, notably an increase in enrichment (over natural uranium) in the outer elements of the fuel bundle, and presence of a neutron absorber in the central element. The reference and substituted fuel channels were arranged in a 24.5-cm hexagonal lattice in order to provide neutron similarity to the 24-cm square lattice pitch of the ACR-1000. These results therefore provide useful data for validation of the reactor physics toolset for use in ACR-1000 applications. For the mixed lattices, results for both MCNP5 and WIMS-AECL / RFSP show small biases in k eff , ranging from -7 mk to -5 mk, small biases in coolant void reactivity, ranging from -1 mk to +0.5 mk, and good agreement for copper activation rate distributions (based on calculated neutron flux). Bare core MCNP and WIMS-AECL stand-alone results, based on substitution analysis, also show small biases in k eff , ranging from -6 mk to -0.4 mk, and small biases in coolant void reactivity, ranging from -0.3 mk to +3.7 mk. This validation exercise thus gives good agreement between measurement and calculation and provides confidence in the accuracy of the physics toolset. (author)

  18. An accident involving transport of radioactive materials, Canada 1994 March

    Energy Technology Data Exchange (ETDEWEB)

    Keeling, F; Dunn, L E.G. [Atomic Energy of Canada Ltd., Chalk River, ON (Canada)

    1996-12-31

    AECL-Chalk River Laboratories (CRL) located at Chalk River, Ontario, routinely ships radioisotopes in bulk to Nordion International Inc. in Kanata, Ontario. On 1994 March 22, an AECL vehicle carrying three packages containing radioisotopes collided with a tractor trailer carrying steel, approximately 15 km east of the Chalk River Laboratories. The AECL-CRL emergency response plan was activated. A series of post-accident meetings were held to evaluate the effectiveness of the plan and to address any identified deficiencies. AECL-CRL is continuing to work towards addressing the identified deficiencies. (author). 2 figs.

  19. An accident involving transport of radioactive materials, Canada 1994 March

    International Nuclear Information System (INIS)

    Keeling, F.; Dunn, L.E.G.

    1995-01-01

    AECL-Chalk River Laboratories (CRL) located at Chalk River, Ontario, routinely ships radioisotopes in bulk to Nordion International Inc. in Kanata, Ontario. On 1994 March 22, an AECL vehicle carrying three packages containing radioisotopes collided with a tractor trailer carrying steel, approximately 15 km east of the Chalk River Laboratories. The AECL-CRL emergency response plan was activated. A series of post-accident meetings were held to evaluate the effectiveness of the plan and to address any identified deficiencies. AECL-CRL is continuing to work towards addressing the identified deficiencies. (author). 2 figs

  20. Fretting wear of steam generator tubes: high-temperature tests on AECL rig

    International Nuclear Information System (INIS)

    Guerout, F.; Zbinden, M.

    1993-07-01

    The R and DD has undertaken the study of fretting-wear of Alloy 600 S.G. tubes which occurs by contact with migrating items. The test series was performed in Canada at AECL Research (Atomic Energy of Canada Limited) as part of an exchange program. Four types of configuration were envisaged: a tube-to-drilled hole support contact which provides reference results and three types of tube-to-support contacts which simulate the tube fretting-wear induced by a welding rod, a threaded rod and a knife-edge rod support. This programme is completed by the study of the contact between a S.G. tube and a neighbouring S.G. tube which has been broken after plugging. (authors). 1 tab., 3 refs

  1. AECL's research and development program in environmental science and technology

    International Nuclear Information System (INIS)

    Cornett, R.J.

    1998-07-01

    AECL's radiological research and development (R and D) program encompasses work on sources of radiation exposure, radionuclide transport through the environment and potential impacts on biota and on human health. The application of the radiation protection knowledge and technology developed in this program provides cradle-to-grave management for CANDU and related nuclear technologies. This document provides an overview of the Environmental Science and Technology (ES and T) program which is one of the technical areas of R and D within the radiological R and D program. The ES and T program uses science from three main areas: radiochemistry, mathematical modelling and environmental assessment. In addition to providing an overview of the program, this summary also gives specific examples of recent technical work in each of the three areas. These technical examples illustrate the applied nature of the ES and T program and the close coupling of the program to CANDU customer requirements. (author)

  2. The dynamic analysis facility at the Chalk River Nuclear Laboratories

    International Nuclear Information System (INIS)

    Argue, D.S.; Howatt, W.T.

    1979-10-01

    The Dynamic Analysis Facility at the Chalk River Nuclear Laboratories (CRNL) of Atomic Energy of Canada Limited (AECL) comprises a Hybrid Computer, consisting of two Applied Dynamic International AD/FIVE analog computers and a Digital Equipment Corporation (DEC) PDP-11/55 digital computer, and a Program Development System based on a DEC PDP-11/45 digital computer. This report describes the functions of the various hardware components of the Dynamic Analysis Facility and the interactions between them. A brief description of the software available to the user is also given. (auth)

  3. Laboratory and modeling studies in search of the critical hydrogen concentration

    International Nuclear Information System (INIS)

    Bartels, David; Wu, Weiqiang; Kanjana, Kotchaphan; Sims, Howard; Henshaw, Jim

    2012-09-01

    The great success of hydrogen water chemistry (HWC) for primary coolant in nuclear power plants is due to the prevention of net radiolysis and to maintenance of the corrosion potential below -230 mV (SHE) where the rate of stress corrosion cracking is minimized. The critical hydrogen concentration or CHC has been defined as that concentration of excess H 2 in primary coolant water, which prevents net water radiolysis via the chain reaction OH + H 2 ↔H 2 O + H (1, -1) H + H 2 O 2 → H 2 O + OH (2) The principle oxidizing free radical (OH) is thus converted into a reducing radical (H), oxidation products are reduced back to water, and the net result is no chemical change. A set of benchmark experiments at the U2 reactor in Chalk River have been reported in an extensive AECL report, which indicate that the CHC in this reactor is ca. 25 micro-molar. Using the review of yields and reaction rates set forth in another recent AECL report, the Chalk River experiments have been modelled in work at NNL, Harwell. The model was not able to successfully reproduce the experimental CHC, or the steady-state H 2 concentrations (SSH2) in the absence of excess hydrogen. A sensitivity analysis of the entire model was carried out. Essentially three important variables have been found to dominate the result. Reaction rate (1) is overwhelmingly important in determining how much H 2 is needed to accomplish the chain back-reaction. Almost with equal importance, the back reaction (-1) needs to be considered at 300 deg. C, but there is some uncertainty of its magnitude. Finally, the relative yields of radicals and molecular products (i.e. H 2 , H 2 O 2 ) in particular H 2 :OH from the radiolysis are critical. Laboratory studies of hydrogenated water radiation chemistry have been carried out with a van de Graaff electron accelerator at Notre Dame Radiation Laboratory. Modelling of the hydrogen produced as a function of the hydrogen input, suggests that the reaction rate (-1) is ca. two

  4. Antibiotics from bacillus subtilis AECL69 8. isolation and purification of a complex of antibacterial antibiotics x

    International Nuclear Information System (INIS)

    Ahmad, M.S.; Malik, M.A.; Shaukat, G.A.

    1996-01-01

    A bacterial strain bacillus subtilis AECL69 produces two anti bacterial antibiotics in a specified complex or synthetic medium. One of the antibiotics is characteristically active against Xanthomonas citri. Procedures have been described to isolate and purify a complex of xanthmonas antibiotics from the fermented complex broths, and from the fermented synthetic medium as well. Paper chromatography coupled with bioautography has shown that the complex of xanthomonas antibiotics has at least three components. The three components were indicated irrespective of the fact whether it was isolated from the fermented complex or synthetic broth. (author)

  5. SLOWPOKE: heating reactors in the urban environment

    International Nuclear Information System (INIS)

    Hilborn, J.W.; Lynch, G.F.

    1988-06-01

    Since global energy requirements are expected to double over the next 40 years, nuclear heating could become as important as nuclear electricity generation. To fill that need, AECL has designed a 10 MW nuclear heating plant for large buildings. Producing hot water at temperatures below 100 degrees Celsius, it incorporates a small pool-type reactor based on the successful SLOWPOKE Research Reactor. A 2 MW prototype is now being tested at the Whiteshell Nuclear Research Establishment in Manitoba, and the design of a 10 MW commercial unit is well advanced. With capital costs in the range $5 million to $7 million, unit energy costs could be as low as $0.02 per kWh, for a unit operating at 50% load factor over a 25-year period. By keeping the reactor power low and the water temperature below 100 degrees Celsius, much of the complexity of the large nuclear power plants can be avoided, thus allowing these small, safe, nuclear heating systems to be economically viable

  6. Development, irradiation testing and PIE of UMo fuel at AECL

    International Nuclear Information System (INIS)

    Sears, D.F.

    2005-01-01

    This paper reviews recent U-Mo dispersion fuel development, irradiation testing and postirradiation examination (PIE) activities at AECL. Low-enriched uranium fuel alloys and powders have been fabricated at Chalk River Labs, with compositions ranging from U-7Mo to U-10Mo. The bulk alloys and powders were characterized using optical and scanning electron microscopy, chemical analysis, X-ray diffraction and neutron diffraction analysis. The analyses confirmed that the powders were of high quality, and in the desired gamma phase. Subsequently, kilogram quantities of DU-Mo and LEU-Mo powder have been manufactured for commercial customers. Mini-elements have been fabricated with LEU-7Mo and LEU-10Mo dispersed in aluminum, with a nominal loading of 4.5 gU/cm 3 . These have been irradiated in the NRU reactor at linear powers up to 100 kW/m. The mini-elements achieved 60 atom% 235 U burnup in 2004 March, and the irradiation is continuing to a planned discharge burnup of 80 atom% 235 U. Interim PIE has been conducted on mini-elements that were removed after 20 atom% 235 U burnup. The PIE results are presented in this paper. (author)

  7. The balanced scorecard advantage: Driving strategic change into Canada's nuclear laboratory site operations

    International Nuclear Information System (INIS)

    Lafreniere, P.; Weeks, D.

    2001-01-01

    The challenges presented by the size, diversity, complexity and history of the Facilities and Nuclear Operations (FNO) Group at AECL's Chalk River Laboratories (CRL) required a change to the traditional management approach. As a result, a strategy was adopted that focused on integrating contemporary business practices such as process mapping, activity based management and use of the Balanced Scorecard methodology into the operational culture at CRL. In addition, revitalization of the performance management methods process was undertaken to provide a tool for assessment of business and individual performance. performance. (author)

  8. Microbial analysis of the buffer/container experiment at AECL`s Underground Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Stroes-Gascoyne, S; Hamon, C J; Haveman, S A; Delaney, T L [Atomic Energy of Canada Ltd., Pinawa, MB (Canada). Whiteshell Labs; Pedersen, K; Ekendahl, S; Jahromi, N; Arlinger, J; Hallbeck, L [Univ. of Goeteborg, (Sweden). Dept. of General and Marine Microbiology; Daumas, S; Dekeyser, K [Guiges Recherche Appliquee en Microbiologie, Aix-en-Provence, (France)

    1996-05-01

    The Buffer/Container experiment was carried out for 2.5 years to examine the in-situ performance of compacted buffer material in a single emplacement borehole under vault-relevant conditions. During decommissioning of this experiment, numerous samples were taken for microbial analysis to determine if the naturally present microbial population in buffer material survived to conditions and to determine which groups of microorganisms would be dominant in such a simulated vault environment. Microbial analyses were initiated within 24 hour of sampling for all types of samples taken. The culture results showed an almost universal disappearance of viable microorganisms in the samples taken from near the heater surface. The microbial activity measurements confirmed the lack of viable organisms with very weak or no activity measured in most of these samples. Generally, aerobic heterotrophic culture conditions gave the highest mean colony-forming units (CFU) values at both 25 and 50 C. Under anaerobic conditions, and especially at 50 C, lower mean CFU values were obtained. In all samples analyzed, numbers of sulfate reducing bacteria were less than 1000 CFU/g dry material. Methanogens were either not present or were found in very low numbers. Anaerobic sulfur oxidizing bacteria were found in higher numbers in most sample types with sufficient moisture. The statistical evaluation of the culture data demonstrated clearly that the water content was the variable limiting the viability of the bacteria present, and not the temperature. 68 refs, 35 figs, 37 tabs.

  9. Variations in the response of AECL random coil seals as a function of the angular position of the probe

    International Nuclear Information System (INIS)

    Silk, M.G.

    1986-04-01

    The AECL random coil seal is to be used as a Nuclear Safeguards seal to deter and detect tampering with nuclear material in store. To be effective the ultrasonic signature from the seal must remain constant and be different from that of other seals. Angular variations in the ultrasonic response from certain seals have, however, been observed and the programme of study reported here has been carried out in order to clarify the source of this variation. It is shown that the variation observed may most probably be attributed to the ultrasonic probes used in the investigation and, in particular, to deviation of the probe beam from circularity. However it is probable that the angle of the beam with respect to the probe case (squint) is also a contributory factor. In addition, to reduce the degree of angular variation it is important to exclude air bubbles and to ensure that the coil is placed as centrally in the beam as possible. It is anticipated that the exclusion of air bubbles will be easier in the field than in the laboratory studies. The need to place the seal reasonably centrally with respect to the beam places some minor limits on the coil design and also makes it essential that the probe fits closely into its holder in the seal as any slackness may give rise to signature variations. (author)

  10. Groundwater chemistry and fracture mineralogy in the Whiteshell Research Area: Supporting data for the geosphere and biosphere transport models

    Energy Technology Data Exchange (ETDEWEB)

    Gascoyne, M.; Kamineni, D. C.

    1992-02-15

    For the case study in the Environmental Impact Statement for the Canadian Nuclear Fuel Waste Management Program, segments of the geosphere transport model (GEONET) have been assigned groundwater chemical properties and mineralogical abundances based on data obtained from analysis of groundwaters and rock types in the Whiteshell Research Area. For the groundwaters, salinity and redox conditions range from 0.5 g/L and +200 mV for the shallowest to 25 g/L and -300 mV for the deepest rock layers in the model. The salinity and redox trends of the segments are consistent with observations of other Canadian Shield environments and with concentrations of redox-sensitive species in the groundwater and fracture mineralogy. Modal volume percent of minerals estimated from thin sections of core samples have been used as input data for the same segments of GEONET. The most common minerals include chlorite, muscovite, clays (mainly illite), calcite and iron oxides. In addition, iodide concentrations for these segments have also been determined from available data to provide supporting data for the biosphere transport model (BIOTRAC). The concentrations range from 5 ug/L for shallow to 350 ug/L for deep groundwaters. Likely iodode concentrations for well water or near-surface water discharging into a lake in BIOTRAC range from 5 to 70 ug/L depending on well depth. A uniform probability distribution function is regarded as most appropriate for the groundwater data inputs and a normal distribution is most suitable for the mineralogical modal percent composition. (auth)

  11. Management of legacy spent nuclear fuel wastes at the Chalk River Laboratories: operating experience and progress towards waste remediation

    International Nuclear Information System (INIS)

    Cox, D.S.; Bainbridge, I.B.; Greenfield, K.R.

    2006-01-01

    AECL has been managing and storing a diversity of spent nuclear fuel, arising from operations at its Chalk River Laboratories (CRL) site over more than 50 years. A subset of about 22 tonnes of research reactor fuels, primarily metallic uranium, have been identified as a high priority for remediation, based on monitoring and inspection that has determined that these fuels and their storage containers are corroding. This paper describes the Fuel Packaging and Storage (FPS) project, which AECL has launched to retrieve these fuels from current storage, and to emplace them in a new above-ground dry storage system, as a prerequisite step to decommissioning some of the early-design waste storage structures at CRL. The retrieved fuels will be packaged in a new storage container, and subjected to a cold vacuum drying process that will remove moisture, and thereby reduce the extent of future corrosion and degradation. The FPS project will enable improved interim storage to be implemented for legacy fuels at CRL, until a decision is made on the ultimate disposition of legacy fuels in Canada. (author)

  12. Simulating thermal behavior of AECL's spent fuel dry storage system with CATHENA

    International Nuclear Information System (INIS)

    Sabourin, G.

    1998-01-01

    This paper documents the comparisons between CATHENA predictions and temperature measurements taken at the Gentilly-2 NPP spent fuel dry storage facility and in a mock--up of a storage basket placed inside a storage cylinder. It also presents CATHENA temperature predictions related to the storage of spent fuel in MACSTOR modules as planned for Ignalina NPP, Lithuania. CATHENA has been chosen because it can simulate many noncondensable gases including air and helium, and because of its great flexibility in the representation of the MACSTOR module geometry. The results of the simulations show good agreement with the experimental measurements. The two comparisons indicate that CATHENA can be used to simulate heat transfer from the fuel to the external air circuit of the spent fuel dry storage system. For the Ignalina MACSTOR module, containing RBMK fuel having higher heat release than typical CANDU fuel, CATHENA predicts that the maximum fuel temperature is expected to be around 240 deg C, giving an acceptable margin below the maximum allowed temperature of 300 deg C. In conclusion, this paper shows that the thermalhydraulic code CATHENA can accurately predict the thermal behavior AECL's air cooled spent fuel dry storage system. (author)

  13. PCI fuel failure analysis: a report on a cooperative program undertaken by Pacific Northwest Laboratory and Chalk River Nuclear Laboratories

    International Nuclear Information System (INIS)

    Mohr, C.L.; Pankaskie, P.J.; Heasler, P.G.; Wood, J.C.

    1979-12-01

    Reactor fuel failure data sets in the form of initial power (P/sub i/), final power (P/sub f/), transient increase in power (ΔP), and burnup (Bu) were obtained for pressurized heavy water reactors (PHWRs), boiling water reactors (BWRs), and pressurized water reactors (PWRs). These data sets were evaluated and used as the basis for developing two predictive fuel failure models, a graphical concept called the PCI-OGRAM, and a nonlinear regression based model called PROFIT. The PCI-OGRAM is an extension of the FUELOGRAM developed by AECL. It is based on a critical threshold concept for stress dependent stress corrosion cracking. The PROFIT model, developed at Pacific Northwest Laboratory, is the result of applying standard statistical regression methods to the available PCI fuel failure data and an analysis of the environmental and strain rate dependent stress-strain properties of the Zircaloy cladding

  14. Annual report 1993-1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    Established in 1952 as a Crown corporation, AECL reports to Parliament through the Ministry of Natural Resources. Its mandate is to undertake research into nuclear energy and prepare and develop its commercial applications. AECL`s mission is to secure the maximum economic benefit for Canada from CANDU technology and associated research and development - the CANDU business. AECL`s accomplishments include the development of products and services which, through diligent marketing efforts, are now in use worldwide. The corporation`s world-renowned flagship product, the CANDU reactor, currently satisfies 16% of Canada`s electricity requirements and is a key component of the energy programs in five other countries. AECL`s vision over the next 20 years is to: be a world-leading supplier of full-scope nuclear power capability; be a long-term business with at least a quarter share of the emerging global market for the next generation of nuclear power plants; have a comprehensive ongoing research program to: maintain at the highest levels the performance and safety of operating CANDU plants; advance the CANDU technology and the science that underlies it; develop knowledge on the health effects of radiation and on the safety and environmental impacts of nuclear reactor operation. AECL currently employees 4000 people. With headquarters in Ottawa, AECL operates two research laboratories, one in Ontario and one in Manitoba, and engineering and design offices in Ontario, Quebec, Saskatchewan, and New Brunswick, as well as offices abroad. AECL has a subsidiary, AECL Technologies Inc., situated in Washington, DC.

  15. Isotopic methods in hydrogeology and their application to the Underground Research Laboratory, Manitoba

    Energy Technology Data Exchange (ETDEWEB)

    Gascoyne, M [Atomic Energy of Canada Ltd., Pinawa, MB (Canada). Whiteshell Labs.; Kotzer, T

    1995-09-01

    This review examines isotopic methods used to determine groundwater sources, residence times and processes of geochemical evolution that have been published in the international literature, with specific reference to AECL`s experience in these methods and applications to groundwaters at the Underground Research Laboratory (URL), Manitoba. The program of groundwater sampling and analysis currently being planned for the URL area over the next several years will concentrate on specific isotopic measurements that may assist in understanding the groundwater flow system at the URL site. These results will add to the existing data for the URL area and indicate which isotopes are most useful when applied to the known groundwater flow system of the URL. This program of study is especially important because it not only uses standard geochemical and isotopic measurements (e.g., major ion, trace elements, {sup 2}H/{sup 18}O, {sup 14}C, {sup 34}S) of groundwaters, but will determine values of more exotic and unusual ratios, such as {sup 6}Li/{sup 7}Li, and B{sup 11}/B{sup 10}, whose potential for understanding groundwater geochemical evolution is largely unknown at present. In addition, the more established but equally complex methods of isotopic analysis, to determine {sup 3}He/{sup 4}He, {sup 36}Cl/Cl and {sup 129}I/I, will be used to assess their potential for adding to the hydrogeochemical understanding of flow paths in crystalline rock. (author). 182 refs., 11 tabs., 27 figs.

  16. Hydrogeological characterization, modelling and monitoring of the site of Canada's Underground Research Laboratory

    International Nuclear Information System (INIS)

    Davison, C.C.; Guvanasen, V.

    1985-01-01

    Atomic Energy of Canada Limited (AECL) is constructing an Underground Research Laboratory (URL) to a depth of 250 m in a previously undisturbed granitic pluton located near Lac du Bonnet, Manitoba, as one of the major research projects within the Canadian Nuclear Fuel Waste Management Program. This paper discusses the hydrogeological characterization of the URL site, the modelling approach used to represent this information, the hydrogeological monitoring system installed to monitor the actual drawdown conditions that develop in response to the excavation, and the procedures employed to calibrate the numerical model. Comparisons between the drawdown predictions made by the model prior to any excavation and the actual drawdowns that have been measured since shaft excavation began in May 1984 are also discussed

  17. Annual report 1994-1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    Established in 1952 as a Crown corporation, AECL reports to Parliament through the Ministry of Natural Resources. Its mandate is to undertake research into nuclear energy and prepare and develop its commercial applications. AECL`s objective is to secure the maximum economic benefit for Canada from CANDU technology and the associated research and development. AECL`s accomplishments include the development of products and services which are now in use worldwide. The corporation`s world-renowned flagship product, the CANDU reactor, supplies almost one-fifth of Canada`s electricity requirements and is an important component of the energy programs in five other countries. Building upon these achievements, AECL continues to consolidate its position as a world-leading supplies of full-scope nuclear power capabilities with expectations to capture a substantial share of the emerging global nuclear power market. The immediate goals are to meet the customers` requirements in the delivery of current projects, to ensure that operating CANDU stations continue to maintain a high level of performance, to secure further CANDU sales, to garner increased revenues from further commercialization of CANDU technology, and to serve the Government of Canada`s nuclear policy initiatives. AECL currently employs 3900 people in a variety of locations, including two major research laboratories located in Ontario and Manitoba, as well as business, engineering and design offices in Ottawa, Toronto, Montreal, Saskatoon and Fredericton. AECL has two subsidiaries, AECL Technologies Inc., in Washington, DC, and AECL Technologies B.V., in the Hague, Netherlands, and maintains a significant presence in South Korea, as well as several smaller offices in other countries.

  18. Retrofit of AECL CAN6 seals into the Pickering shutdown cooling pumps

    International Nuclear Information System (INIS)

    Rhodes, D.; Metcalfe, R.; Brown, G.

    1997-01-01

    The existing mechanical seals in the shutdown cooling (SDC) pumps at the eight-unit Pickering Nuclear Generating Station have caused as least seven forced outages in the last fifteen years. The SDC pumps were originally intended to run only during shutdowns, mostly at low pressure, except for short periods during routine testing of SDC isolation valves while the plant is operating at full pressure to verify that the emergency core injection system is available. Unfortunately, in practice, some SDC pumps must be run much more frequently than this to prevent overheating or freezing of components in the system while the plant is at power. This more severe service has decreased seal lifetime from about 8000 running hours to about 3000 running hours. Rather than tackling the difficult task of eliminating on-power running of the pumps, Pickering decided to install a more robust seal design that could withstand this. Through the process of competitive tender, AECL's CAN6 seal was chosen. This seal has a successful history in similarly demanding conditions in boiling water reactors in the USA. To supplement this and demonstrate there would be no 'surprises,' a 2000-hour test program was conducted. Testing consisted of simulating all the expected conditions, plus some special tests under abnormal conditions. This has given assurance that the seal will operate reliably in the Pickering shutdown cooling pumps. (author)

  19. Retrofit of AECL CAN6 seals into the Pickering shutdown cooling pumps

    International Nuclear Information System (INIS)

    Rhodes, D.; Metcalfe, R.; Brown, G.; Kiameh, P.; Burchett, P.

    1997-01-01

    The existing mechanical seals in the shutdown cooling (SDC) pumps at the eight-unit Pickering Nuclear Generating Station have caused at least seven forced outages in the last fifteen years. The SDC pumps were originally intended to run only during shutdowns, mostly at low pressure, except for short periods during routine testing of SDC isolation valves while the plant is operating at full pressure to verify that the emergency core injection system is available. Unfortunately, in practice, some SDC pumps must be run much more frequently than this to prevent overheating or freezing of components in the system while the plant is at power. This more severe service has decreased seal lifetime from about 8000 running hours to about 3000 running hours. Rather than tackling the difficult task of eliminating on-power running of the pumps, Pickering decided to install a more robust seal design that could withstand this. Through the process of competitive tender, AECL's CAN6 seal was chosen. This seal has a successful history in similarly demanding conditions in boiling water reactors in the USA. To supplement this and demonstrate there would be no 'surprises,' a 2000-hour test program was conducted. Testing consisted of simulating all the expected conditions, plus some special tests under abnormal conditions. This has given assurance that the seal will operate reliably in the Pickering shutdown cooling pumps. (author)

  20. Simulating thermal behavior of AECL's spent fuel dry storage system with CATHENA

    Energy Technology Data Exchange (ETDEWEB)

    Sabourin, G. [Atomic Energy of Canada Limited, Montreal, PQ (Canada)

    1998-07-01

    This paper documents the comparisons between CATHENA predictions and temperature measurements taken at the Gentilly-2 NPP spent fuel dry storage facility and in a mock--up of a storage basket placed inside a storage cylinder. It also presents CATHENA temperature predictions related to the storage of spent fuel in MACSTOR modules as planned for Ignalina NPP, Lithuania. CATHENA has been chosen because it can simulate many noncondensable gases including air and helium, and because of its great flexibility in the representation of the MACSTOR module geometry. The results of the simulations show good agreement with the experimental measurements. The two comparisons indicate that CATHENA can be used to simulate heat transfer from the fuel to the external air circuit of the spent fuel dry storage system. For the Ignalina MACSTOR module, containing RBMK fuel having higher heat release than typical CANDU fuel, CATHENA predicts that the maximum fuel temperature is expected to be around 240 deg C, giving an acceptable margin below the maximum allowed temperature of 300 deg C. In conclusion, this paper shows that the thermalhydraulic code CATHENA can accurately predict the thermal behavior AECL's air cooled spent fuel dry storage system. (author)

  1. Safety culture improvements in a nuclear laboratory setting

    International Nuclear Information System (INIS)

    Smith, K.L.; McKenna, J.

    2014-01-01

    In 2008, AECL performed a comprehensive safety culture assessment using recognized, industry-proven methodologies. Main observations were grouped into several key areas including standards, procedures, error-free work, and leadership fundamentals. Shortly thereafter, in 2009 May, the National Research Universal (NRU) reactor was shut down following discovery of a small leak of heavy water. Extensive repairs were required to return the reactor to service and a root cause investigation was conducted to determine the organizational and programmatic causes that led to the event. Taken together, these presented management with insights into common areas of weaknesses in performance and behaviours. A Corrective Action Plan (CAP) to address both the findings of the root cause analysis and safety culture assessment was captured in a comprehensive improvement plan issued in 2010 March, entitled the Voyageur Program Phase II (Voyageur II). The CAP addresses six key areas: Improve equipment reliability; Drive desired behaviours; Improve problem identification and resolution; Improve use of industry Operating Experience (OPEX) and reduce isolationism; Improve standards of operation; and, Improve management oversight. AECL's safety culture has been monitored regularly using quarterly surveys. A detailed safety culture assessment was executed in 2012 September. Compared with previous results, improvements for AECL were noted in the following areas: Use of Operating Experience, specifically in work planning, pre job briefs and training; Procedure quality; Availability of safety equipment; Control of temporary changes; and, Improved operational standards. (author)

  2. Safety culture improvements in a nuclear laboratory setting

    Energy Technology Data Exchange (ETDEWEB)

    Smith, K.L.; McKenna, J. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    In 2008, AECL performed a comprehensive safety culture assessment using recognized, industry-proven methodologies. Main observations were grouped into several key areas including standards, procedures, error-free work, and leadership fundamentals. Shortly thereafter, in 2009 May, the National Research Universal (NRU) reactor was shut down following discovery of a small leak of heavy water. Extensive repairs were required to return the reactor to service and a root cause investigation was conducted to determine the organizational and programmatic causes that led to the event. Taken together, these presented management with insights into common areas of weaknesses in performance and behaviours. A Corrective Action Plan (CAP) to address both the findings of the root cause analysis and safety culture assessment was captured in a comprehensive improvement plan issued in 2010 March, entitled the Voyageur Program Phase II (Voyageur II). The CAP addresses six key areas: Improve equipment reliability; Drive desired behaviours; Improve problem identification and resolution; Improve use of industry Operating Experience (OPEX) and reduce isolationism; Improve standards of operation; and, Improve management oversight. AECL's safety culture has been monitored regularly using quarterly surveys. A detailed safety culture assessment was executed in 2012 September. Compared with previous results, improvements for AECL were noted in the following areas: Use of Operating Experience, specifically in work planning, pre job briefs and training; Procedure quality; Availability of safety equipment; Control of temporary changes; and, Improved operational standards. (author)

  3. Research on radionuclide migration under subsurface geochemical conditions. JAERI/AECL Phase II Collaborative Program Year 1 (joint research)

    International Nuclear Information System (INIS)

    1998-11-01

    A radionuclide migration experiment program for fractured rocks was performed under the JAERI/AECL Phase-II Collaborative Program on research and development in radioactive waste management. The program started in the fiscal year 1993, as a five-year program consists of Quarried block radionuclide migration program, Speciation of long-lived radionuclides in groundwater, Isotopic hydrogeology and Groundwater flow model development. During the first year of the program (Program Year 1: March 18, 1994 - September 30, 1994), a plan was developed to take out granite blocks containing part of natural water-bearing fracture from the wall of the experimental gallery at the depth of 240 m, and literature reviews were done in the area of the speciation of long-lived radionuclides in groundwater, isotopic hydrogeology and the groundwater flow model development to proceed further work for the Program Year 2. (author)

  4. MOX fuel fabrication at AECL

    International Nuclear Information System (INIS)

    Dimayuga, F.C.; Jeffs, A.T.

    1995-01-01

    Atomic Energy of Canada Limited's mixed-oxide (MOX) fuel fabrication activities are conducted in the Recycle Fuel Fabrication Laboratories (RFFL) at the Chalk River Laboratories. The RFFL facility is designed to produce experimental quantities of CANDU MOX fuel for reactor physics tests or demonstration irradiations. From 1979 to 1987, several MOX fuel fabrication campaigns were run in the RFFL, producing various quantities of fuel with different compositions. About 150 bundles, containing over three tonnes of MOX, were fabricated in the RFFL before operations in the facility were suspended. In late 1987, the RFFL was placed in a state of active standby, a condition where no fuel fabrication activities are conducted, but the monitoring and ventilation systems in the facility are maintained. Currently, a project to rehabilitate the RFFL and resume MOX fuel fabrication is nearing completion. This project is funded by the CANDU Owners' Group (COG). The initial fabrication campaign will consist of the production of thirty-eight 37-element (U,Pu)O 2 bundles containing 0.2 wt% Pu in Heavy Element (H.E.) destined for physics tests in the zero-power ZED-2 reactor. An overview of the Rehabilitation Project will be given. (author)

  5. Verification and characterization of continuum behavior of fractured rock at AECL Underground Research Laboratory

    International Nuclear Information System (INIS)

    Long, J.C.S.

    1985-02-01

    The purposes of this study are to determine when a fracture system behaves as a porous medium and what the corresponding permeability tensor is. A two-dimensional fracture system model is developed with density, size, orientation, and location of fractures in an impermeable matrix as random variables. Simulated flow tests through the models measure directional permeability, K/sub g/. Polar coordinate plots of 1/√K/sub g/, which are ellipses for equivalent anistropic homogeneous porous media, are graphed and best fit ellipses are calculated. Fracture length and areal density were varied such that fracture frequency was held constant. The examples showed the permeability increased with fracture length. The modeling techniques were applied to data from the Atomic Energy of Canada Ltd.'s Underground Research Laboratory facility in Manitoba, Canada by assuming the fracture pattern at the surface persists at depth. Well test data were used to estimate the aperture distribution by both correlating and not correlating the aperture with fracture length. The permeability of models with uncorrelated length and aperture were smaller than those for correlated models. A Monte Carlo type study showed that analysis of steady state packer tests consistently underestimate the mean aperture. Finally, a three-dimensional model in which fractures are discs randomly located in space, interactions between the fractures are line segments, and the solution of the steady state flow equations is based on image theory was discussed

  6. The contribution of AECL CommercialProducts to nuclear medicine and radiation processing

    International Nuclear Information System (INIS)

    Beddoes, J.M.

    1980-02-01

    A review is given of the technology of the uses of radiation equipment and radioisotopes, in which field Canada has long been a world leader. AECL CommercialProducts has pioneered many of the most important applications. The development and sale of Co-60 radiation teletherapy units for cancer treatment is a familiar example of such an application, and CommercialProducts dominates the world market. Another such example is the marketing of Mo-99, which is produced in the reactors at Chalk River, and from which the short-lived daughter Tc-99 is eluted as required for use in in-vivo diagnosis. New products coming into use for this purpose include Tl-201, I-123, Ga-67 and In-111, all produced in the TRIUMF cyclotron in Vancouver, while I-125 continues to be in demand for in-vitro radioimmunoassays. Radioisotopes continue to play an important part in manufacturing, where their well-known uses include controlling thickness, contents, etc., in production, and industrial radiography. The application of large industrial irradiators for the sterilization of medical products is now a major world industry for which Commercial Products is the main manufacturer. Isotopes are also used in products such as smoke detectors. Isotopes continue to find extensive use as tracers, both in industrial applications and in animal and plant biology studies. Some more recent uses include pest control by the 'sterile male' technique and neutron activation and delayed neutron counting in uranium assay. (auth)

  7. Annual report 1993-1994

    International Nuclear Information System (INIS)

    1994-01-01

    Established in 1952 as a Crown corporation, AECL reports to Parliament through the Ministry of Natural Resources. Its mandate is to undertake research into nuclear energy and prepare and develop its commercial applications. AECL's mission is to secure the maximum economic benefit for Canada from CANDU technology and associated research and development - the CANDU business. AECL's accomplishments include the development of products and services which, through diligent marketing efforts, are now in use worldwide. The corporation's world-renowned flagship product, the CANDU reactor, currently satisfies 16% of Canada's electricity requirements and is a key component of the energy programs in five other countries. AECL's vision over the next 20 years is to: be a world-leading supplier of full-scope nuclear power capability; be a long-term business with at least a quarter share of the emerging global market for the next generation of nuclear power plants; have a comprehensive ongoing research program to: maintain at the highest levels the performance and safety of operating CANDU plants; advance the CANDU technology and the science that underlies it; develop knowledge on the health effects of radiation and on the safety and environmental impacts of nuclear reactor operation. AECL currently employees 4000 people. With headquarters in Ottawa, AECL operates two research laboratories, one in Ontario and one in Manitoba, and engineering and design offices in Ontario, Quebec, Saskatchewan, and New Brunswick, as well as offices abroad. AECL has a subsidiary, AECL Technologies Inc., situated in Washington, DC

  8. Comparison of MCNP and WIMS-AECL/RFSP calculations against critical heavy water experiments in ZED-2 with CANFLEX-LVRF and CANFLEX-LEU fuels

    International Nuclear Information System (INIS)

    Bromley, B. P.; Watts, D. G.; Pencer, J.; Zeller, M.; Dweiri, Y.

    2009-01-01

    This paper summarizes calculations of MCNP5 and WIMS-AECL/RFSP compared against measurements in coolant void substitution experiments in the ZED-2 critical facility with CANFLEX R-LEU/RU (Low Enriched Uranium, Recovered Uranium) reference fuels and CANFLEX-LVRF (Low Void Reactivity Fuel) test fuel, and H 2 O/air coolants. Both codes are tested for the prediction of the change in reactivity with complete voiding of all fuel channels, and that for a checkerboard voiding pattern. Understanding these phenomena is important for the ACR-1000 R reactor. Comparisons are also made for the prediction of the axial and radial neutron flux distributions, as measured by copper foil activation. The experimental data for these comparisons were obtained from critical mixed lattice / substitution experiments in AECL's ZED-2 critical facility using CANFLEX-LEU/RU and CANFLEX-LVRF fuel in a 24-cm square lattice pitch at 25 degrees C. Substitution analyses were performed to isolate the properties (buckling, bare critical lattice dimensions) of the CANFLEX-LVRF fuel. This data was then used to further test the lattice physics codes. These comparisons establish biases/uncertainties and errors in the calculation of k eff , coolant void reactivity, checkerboard coolant void reactivity, and flux distributions. Results show small to modest biases in void reactivity and very good agreement for flux distributions. The importance of boundary conditions and the modeling of un-moderated fuel in the critical experiments are demonstrated. This comparison study provides data that supports code validation and gives good confidence in the reactor physics tools used in the design and safety analysis of the ACR-1000 reactor. (authors)

  9. Study on construction method of concrete in the underground research laboratory

    International Nuclear Information System (INIS)

    Iriya, Keshiro; Mikami, Tetsuji; Yasuoka, Tetsuji; Uegaki, Yoshiaki

    2001-05-01

    Although there are several types in low alkalinity cements, highly fly ash contained silicafume cement (HFSC) has been studied in JNC. It is demonstrated that pH of pore water of the cement indicates below 10.5 as results of other TRU study. However although chemical properties and basic mechanical behavior are well understood, workability so on in constructing is little investigated. Since the underground research laboratory plays a important role in investigating constructing technology, HFSC will be adopted for supporting rock cavern so on. It is required that workability of low alkalinity cements should be assessed. Major performance of workability in tunnel construction in rock will be investigated and R and D planning will be done toward the laboratory construction. Conclusion obtained in this study is described as followings. 1) As results of laboratory test, HFSC and LHHPC developed by AECL fulfil the requirements of shotcrete using by hardening accelerator with calcium-salpho-aluminate. It is concluded that HFSC and LHHPC can be applied for shotcrete. 2) The experiment upon corrosion of re-bars by facing saline water at a offshore is planned. 3) It is noted that pH decreases significantly with rise of silicafume content and that silicafume should be used as much as OPC. 4) It is investigated where the low alkalinity cement should be applied in a actual radio waste repository and R and D program in the laboratory is planned. (author)

  10. Assessing inventories of past radioactive waste arisings at Chalk River Laboratories

    International Nuclear Information System (INIS)

    Csullog, G.W.; TerHuurne, M.A.; Miller, M.T.; Edwards, N.W.; Hulley, V.R.; McCann, D.J.

    1998-01-01

    Internationally, a great deal of progress has been made in improving the management of currently accumulating and anticipated future radioactive wastes. Progress includes improved waste collection, segregation, characterization and documentation in support of disposal facility licensing and operation. These improvements are not often very helpful for assessing the hazards of wastes collected prior to their implementation, since, internationally, historic radioactive wastes were not managed and documented according to today's methods. This paper provides an overview of Atomic Energy of Canada Limited's (AECL) unique approach to managing its currently accumulating, low-level radioactive wastes at Chalk River Laboratories (CRL) and it describes the novel method AECL-CRL has developed to assess its historic radioactive wastes. Instead of estimating the characteristics of current radioactive wastes on a package-by-package basis, process knowledge is used to infer the average characteristics of most wastes. This approach defers, and potentially avoids, the use of expensive analytical technologies to characterize wastes until a reasonable certainty is gained about their ultimate disposition (Canada does not yet have a licensed radioactive waste disposal facility). Once the ultimate disposition is decided, performance assessments determine if inference characterization is adequate or if additional characterization is required. This process should result in significant cost savings to AECL since expensive, resource-intensive, up-front characterization may not be required for low-impact wastes. In addition, as technological improvements take place, the unit cost of characterization usually declines, making it less expensive to perform any additional characterization for current radioactive wastes. The WIP-III data management system is used at CRL to 'warehouse' the average characteristics of current radioactive wastes. This paper describes how this 'warehouse of information

  11. Annual report 1994-1995

    International Nuclear Information System (INIS)

    1995-01-01

    Established in 1952 as a Crown corporation, AECL reports to Parliament through the Ministry of Natural Resources. Its mandate is to undertake research into nuclear energy and prepare and develop its commercial applications. AECL's objective is to secure the maximum economic benefit for Canada from CANDU technology and the associated research and development. AECL's accomplishments include the development of products and services which are now in use worldwide. The corporation's world-renowned flagship product, the CANDU reactor, supplies almost one-fifth of Canada's electricity requirements and is an important component of the energy programs in five other countries. Building upon these achievements, AECL continues to consolidate its position as a world-leading supplies of full-scope nuclear power capabilities with expectations to capture a substantial share of the emerging global nuclear power market. The immediate goals are to meet the customers' requirements in the delivery of current projects, to ensure that operating CANDU stations continue to maintain a high level of performance, to secure further CANDU sales, to garner increased revenues from further commercialization of CANDU technology, and to serve the Government of Canada's nuclear policy initiatives. AECL currently employs 3900 people in a variety of locations, including two major research laboratories located in Ontario and Manitoba, as well as business, engineering and design offices in Ottawa, Toronto, Montreal, Saskatoon and Fredericton. AECL has two subsidiaries, AECL Technologies Inc., in Washington, DC, and AECL Technologies B.V., in the Hague, Netherlands, and maintains a significant presence in South Korea, as well as several smaller offices in other countries

  12. Rock stability considerations for siting and constructing a KBS-3 repository. Based on experiences from Aespoe HRL, AECL's URL, tunnelling and mining

    Energy Technology Data Exchange (ETDEWEB)

    Martin, C.D. [Univ. of Alberta, Edmonton (Canada); Christiansson, Rolf [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Soederhaell, J. [VBB VIAK AB, Stockholm (Sweden)

    2001-12-01

    Over the past 25 years the international nuclear community has carried out extensive research into the deep geological disposal of nuclear waste in hard rocks. In two cases this research has resulted in the construction of dedicated underground research facilities: SKB's Aespoe Hard Rock Laboratory, Sweden and AECL's Underground Research Laboratory, Canada. Both laboratories are located in hard rocks considered representative of the Fennoscandian and Canadian Shields, respectively. This report is intended to synthesize the important rock mechanics findings from these research programs. In particular the application of these finding to assessing the stability of underground openings. As such the report draws heavily on the published results from the SKB's ZEDEX Experiment in Sweden and AECL's Mine- by Experiment in Canada. The objectives of this report are to: 1. Describe, using the current state of knowledge, the role rock engineering can play in siting and constructing a KBS-3 repository. 2. Define the key rock mechanics parameters that should be determined in order to facilitate repository siting and construction. 3. Discuss possible construction issues, linked to rock stability, that may arise during the excavation of the underground openings of a KBS-3 repository. 4. Form a reference document for the rock stability analysis that has to be carried out as a part of the design works parallel to the site investigations. While there is no unique or single rock mechanics property or condition that would render the performance of a nuclear waste repository unacceptable, certain conditions can be treated as negative factors. Outlined below are major rock mechanics issues that should be addressed during the siting, construction and closure of a nuclear waste repository in Sweden in hard crystalline rock. During the site investigations phase, rock mechanics information will be predominately gathered from examination and testing of the rock core and

  13. Rock stability considerations for siting and constructing a KBS-3 repository. Based on experiences from Aespoe HRL, AECL's URL, tunnelling and mining

    International Nuclear Information System (INIS)

    Martin, C.D.; Christiansson, Rolf; Soederhaell, J.

    2001-12-01

    Over the past 25 years the international nuclear community has carried out extensive research into the deep geological disposal of nuclear waste in hard rocks. In two cases this research has resulted in the construction of dedicated underground research facilities: SKB's Aespoe Hard Rock Laboratory, Sweden and AECL's Underground Research Laboratory, Canada. Both laboratories are located in hard rocks considered representative of the Fennoscandian and Canadian Shields, respectively. This report is intended to synthesize the important rock mechanics findings from these research programs. In particular the application of these finding to assessing the stability of underground openings. As such the report draws heavily on the published results from the SKB's ZEDEX Experiment in Sweden and AECL's Mine- by Experiment in Canada. The objectives of this report are to: 1. Describe, using the current state of knowledge, the role rock engineering can play in siting and constructing a KBS-3 repository. 2. Define the key rock mechanics parameters that should be determined in order to facilitate repository siting and construction. 3. Discuss possible construction issues, linked to rock stability, that may arise during the excavation of the underground openings of a KBS-3 repository. 4. Form a reference document for the rock stability analysis that has to be carried out as a part of the design works parallel to the site investigations. While there is no unique or single rock mechanics property or condition that would render the performance of a nuclear waste repository unacceptable, certain conditions can be treated as negative factors. Outlined below are major rock mechanics issues that should be addressed during the siting, construction and closure of a nuclear waste repository in Sweden in hard crystalline rock. During the site investigations phase, rock mechanics information will be predominately gathered from examination and testing of the rock core and mapping of the

  14. GOTHIC 3D applicability to fast hydrogen combustions

    International Nuclear Information System (INIS)

    Lee, Jung Jae; Park, Goon Cherl; Lee, Byung Chul; Yoo, Ho Jong; Kim, Hyeong Taek; Oh, Seung Jong

    2004-01-01

    Under severe accidents in nuclear power plant (NPP), the hydrogen can be generated by chemical reactions and may threaten the containment integrity via hydrogen combustion. For containment analyses, three-dimensional mechanistic code, GOTHIC had to be applied near source compartments in order to predict whether highly reactive gas mixture can be formed or not under hydrogen mitigation system (HMS) working. For its applicability, this paper presents numerical calculation results of GOTHIC 3D on some hydrogen combustion experiments, which are the FLAME (Sandia National Lab.) experiments, the LSVCTF (AECL Whiteshell Lab.) experiments and the SNU-2D (Seoul National Univ.) experiments. A technical basis for the modeling of the large- and small-scale facilities was developed through sensitivity studies on cell size and combustion modeling parameters. It was found that for large-scale facilities, there were no significant differences in the results with different turbulent burn options, while for small-scale facility, the option using the eddy dissipation concept showed the faster flame propagations. The flame velocity became larger with smaller burn parameters such as the flame thickness δ f and the burn temperature limit T lim . The best estimate modeling parameters found from this study would be applied to real plant simulation of GOTHIC 3D later

  15. Lysimeter literature review

    International Nuclear Information System (INIS)

    Rogers, R.D.; McConnell, J.W. Jr.

    1993-08-01

    Many reports have been published concerning the use of lysimeters to obtain data on the performance of buried radioactive waste. This document presents a review of some of those reports. This review includes lysimeter studies using radioactive waste forms at Savannah River Site, Hanford Site, Argonne National Laboratory, and Oak Ridge National Laboratory; radionuclide tracer studies at Whiteshell Nuclear Research Establishment and Los Alamos National Laboratory; and water movement studies at the Nuclear Regulatory Commission's Beltsville, Maryland site, at the Hanford Site, and at New Mexico State University. The tests, results, and conclusions of each report are summarized, and conclusions concerning lysimeter technology are presented from an overall analysis of the literature. 38 refs., 44 figs., 9 tabs

  16. The interaction of iodine with organic material in containment

    International Nuclear Information System (INIS)

    Wren, J.C.; Ball, J.M.; Glown, G.A.; Portmann, R.; Sanipelli, G.G.

    1996-01-01

    Organic impurities in containment water, originating from various painted structural surfaces and organic containment materials, could have a significant impact on iodine volatility following an accident. A research program at the Whiteshell Laboratories of AECL has been designed to determine the impact of organic impurities on iodine volatility under accident conditions. The program consists of experimental, literature and modelling studies on the radiolysis or organic compounds in the aqueous phase, thermal and radiolytic formation and decomposition of organic iodides, dissolution of organic solvents from various painted surfaces into the aqueous phase, and iodine deposition on painted surfaces. The experimental studies consist of bench-scale 'separate effects' tests as well as intermediate-scale 'integrated effects' in the Radioiodine Test facility. The studies have shown that organic impurities will be found in containment water, arising from the dissolution of organic compounds from various surface paints and that these compounds can potentially have a significant impact on iodine volatility following an accident. The main impact of surface paints will occur through aqueous-phase reactions of the organic compounds that they release to the aqueous phase. Under the radiation conditions expected during an accident, these compounds will react to reduce the pH and dissolved oxygen concentration, consequently increasing the formation of I 2 from I - that is present in the sump. It appears that the rates of these processes may be controlled by the dissolution kinetics of the organic compounds from the surface coatings. Moreover, the organic compounds may also react thermally and radiolytically with I 2 to form organic iodides in the aqueous phase. Our studies have shown that the formation of organic iodides from soluble organics such as ketones, alcohols and phenols may have more impact on the total iodine volatility than the formation of CH 3 I. (author) 13 figs., 2

  17. Validation test for carbon-14 migration and accumulation in a Canadian shield lake

    International Nuclear Information System (INIS)

    Bird, G.A.

    1996-09-01

    This particular BIOMOVS II Technical Report is concerned with modelling the transfer of C-14 through the aquatic food chain following release to a Canadian shield lake. Model performance has been tested against field data supplied by Atomic Energy of Canada Limited. Carbon-14 was added in 1978 to the epilimnion of a small Canadian Shield lake to investigate primary production and carbon dynamics. Data from this experiment were used within BIOMOVS II to provide a validation test, which involved modelling the fate of the C-14 added to the lake. The nature of the spike and the subsequent monitoring allowed the investigation of both short-term processes relevant to evaluation of the impacts of accidental releases as well as longer-term processes relevant to routine release and to solid waste disposal. Four models participated in the scenario: 1) a simple mass balance model of a lake (AECL, Whiteshell Laboratories, Canada); 2) a relatively complex deterministic dynamic compartment model (QuantiSci Ltd.,UK); 3) a complex deterministic model (Studsvik Model A) and a more complex probabilistic model (Studsvik Model B; Studsvik Eco and Safety AB, Sweden). Endpoints were C-14 concentrations in water, sediment and whitefish over a thirteen year period. Each model produced reasonable predictions when compared to the observed data and when uncertainty is taken into consideration. About 0.2 to 0.4% of the initial C-14 inventory to the lakes remained in the water at the end of the study, because of internal recycling of C-14 from sediments. The simple AECL model did not account for this internal recycling of C-14 and, in this respect, its predictions were not as realistic as those of the QuantiSci and Studsvik models for concentrations in water. However, the AECL model predictions for the C-14 inventory remaining in lake sediment were closest to the observed values. Overall, Studsvik Model B was the most accurate in simulating C-14 concentrations in water and in whitefish, but

  18. Validation test for carbon-14 migration and accumulation in a Canadian shield lake

    Energy Technology Data Exchange (ETDEWEB)

    Bird, G.A. [AECL, Pinawa, MB (Canada). Whiteshell Labs.] [and others

    1996-09-01

    This particular BIOMOVS II Technical Report is concerned with modelling the transfer of C-14 through the aquatic food chain following release to a Canadian shield lake. Model performance has been tested against field data supplied by Atomic Energy of Canada Limited. Carbon-14 was added in 1978 to the epilimnion of a small Canadian Shield lake to investigate primary production and carbon dynamics. Data from this experiment were used within BIOMOVS II to provide a validation test, which involved modelling the fate of the C-14 added to the lake. The nature of the spike and the subsequent monitoring allowed the investigation of both short-term processes relevant to evaluation of the impacts of accidental releases as well as longer-term processes relevant to routine release and to solid waste disposal. Four models participated in the scenario: (1) a simple mass balance model of a lake (AECL, Whiteshell Laboratories, Canada); (2) a relatively complex deterministic dynamic compartment model (QuantiSci Ltd.,UK); (3) a complex deterministic model (Studsvik Model A) and a more complex probabilistic model (Studsvik Model B; Studsvik Eco and Safety AB, Sweden). Endpoints were C-14 concentrations in water, sediment and whitefish over a thirteen year period. Each model produced reasonable predictions when compared to the observed data and when uncertainty is taken into consideration. About 0.2 to 0.4% of the initial C-14 inventory to the lakes remained in the water at the end of the study, because of internal recycling of C-14 from sediments. The simple AECL model did not account for this internal recycling of C-14 and, in this respect, its predictions were not as realistic as those of the QuantiSci and Studsvik models for concentrations in water. However, the AECL model predictions for the C-14 inventory remaining in lake sediment were closest to the observed values. Overall, Studsvik Model B was the most accurate in simulating C-14 concentrations in water and in whitefish, but

  19. Maintenance - a design perspective

    International Nuclear Information System (INIS)

    Hedges, K.R.

    1992-01-01

    The paper describes how the CANDU-3 has incorporated, at the design stage, maintenance requirements such as component accessibility, standardization, ease of replacement, reduction in the number of components, and simplified component design. AECL is also active in the planned rehabilitation of the four units at Ontario Hydro's Bruce A nuclear generating station. In addition to conceptual design and development, detailed design and analysis, procurement and site assistance, AECL's Sheridan Park Laboratory will provide important development and mockup facilities. An AECL research and development program on reactor maintenance includes the identification and characterization of aging and degrading mechanisms, the tailoring of developed products to plant requirements, and the identification of areas of international cooperation and information exchange. 3 tabs., 1 fig

  20. Building generation four: results of Canadian research program on generation IV energy technologies

    International Nuclear Information System (INIS)

    Anderson, T.; Leung, L.K.H.; Guzonas, D.; Brady, D.; Poupore, J.; Zheng, W.

    2014-01-01

    A collaborative grant program has been established between Natural Sciences and Engineering Research Council (NSERC) of Canada, Natural Resources Canada (NRCan), and Atomic Energy of Canada Limited (AECL) to support research and development (R&D) for the Canadian SuperCritical Water-cooled Reactor (SCWR) concept, which is one of six advanced nuclear reactor systems being studied under the Generation-IV International Forum (GIF). The financial support for this grant program is provided by NSERC and NRCan. The grant fund has supported university research investigating the neutronic, fuel, thermal-hydraulics, chemistry and material properties of the Canadian SCWR concept. Twenty-two universities have actively collaborated with experts from AECL Nuclear Laboratories and NRCan's CanmetMATERIALS (CMAT) Laboratory to advance the technologies, enhance their infrastructure, and train highly qualified personnel. Their R&D findings have been contributed to GIF fulfilling Canada's commitments. The unique collaborative structure and the contributions to Canada's nuclear science and technology of the NSERC/NRCan/AECL Generation IV Energy Technologies Program are presented. (author)

  1. Monitoring and information management system at the Underground Research Laboratory

    International Nuclear Information System (INIS)

    Strobel, G.S.; Chernis, P.J.; Bushman, A.T.; Spinney, M.H.; Backer, R.J.

    1996-01-01

    Atomic Energy of Canada Limited (AECL) has developed a customer oriented monitoring and information management system at the Underground Research Laboratory (URL) near Lac du Bonnet, Manitoba. The system is used to monitor instruments and manage, process, and distribute data. It consists of signal conditioners and remote loggers, central schedule and control systems, computer aided design and drafting work centres, and the communications linking them. The monitoring and communications elements are designed to meet the harsh demands of underground conditions while providing accurate monitoring of sensitive instruments to rigorous quality assured specifications. These instruments are used for testing of the concept for the deep geological disposal of nuclear fuel waste as part of the Canadian Nuclear Fuel Waste Management Program. Many of the tests are done in situ and at full-scale. The monitoring and information management system services engineering, research, and support staff working to design, develop, and demonstrate and present the concept. Experience gained during development of the monitoring and information management system at the URL, can be directly applied at the final disposal site. (author)

  2. Monitoring and information management system at the Underground Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Strobel, G.S.; Chernis, P.J.; Bushman, A.T.; Spinney, M.H.; Backer, R.J. [Atomic Energy of Canada Limited, Pinawa, Manitoba (Canada)

    1996-07-01

    Atomic Energy of Canada Limited (AECL) has developed a customer oriented monitoring and information management system at the Underground Research Laboratory (URL) near Lac du Bonnet, Manitoba. The system is used to monitor instruments and manage, process, and distribute data. It consists of signal conditioners and remote loggers, central schedule and control systems, computer aided design and drafting work centres, and the communications linking them. The monitoring and communications elements are designed to meet the harsh demands of underground conditions while providing accurate monitoring of sensitive instruments to rigorous quality assured specifications. These instruments are used for testing of the concept for the deep geological disposal of nuclear fuel waste as part of the Canadian Nuclear Fuel Waste Management Program. Many of the tests are done in situ and at full-scale. The monitoring and information management system services engineering, research, and support staff working to design, develop, and demonstrate and present the concept. Experience gained during development of the monitoring and information management system at the URL, can be directly applied at the final disposal site. (author)

  3. AECL'S (Atomic Energy Canada Limited) R and D program in health and environmental sciences

    International Nuclear Information System (INIS)

    Osborne, R.V.

    1996-01-01

    Radiological protection is a fundamental requirement in any nuclear technology endeavour. It is also an area where public concerns are often expressed. If protection is inadequate, or is believed to be so, or if concerns are not addressed, the beneficial application of nuclear technologies is inhibited. Historically. AECL, as the driver of nuclear technology in Canada, has ensured that the growing Canadian nuclear industry and other users of the technology have a sound technical base to support, explain and confirm all aspects of radiological protection. Meeting this need has meant developing and maintaining R%D programs in environmental sciences, health physics, radiation biology, and radiological health matters in general. The programs undertaken encompass the links from sources of radiation exposure and radionuclides to potential impact on biota and on human health. The behaviours of radionuclides released to the atmosphere, surface waters, or ground waters are examined and described quantitatively to enable predictions to be made of the radiation doses received in different parts of the biosphere and by people. Radiation properties and human physiological and biokinetic processes are studied to provide quantitative links from exposure to radiation dose in tissues and organs. Biological processes involved in determining whether there are any consequences to health from small absorbed doses are identified at levels ranging from molecular level, to cells in tissue culture, and animals. Throughout the programs, required measurement technologies are developed. The results of the R%D have contributed to radiological protection programs being soundly based and, equally important, are being seen to be soundly based. (author)

  4. Survey of in situ testing at underground laboratories with application to geologic disposal of spent fuel waste in crystalline rock

    International Nuclear Information System (INIS)

    Hardin, E.

    1992-04-01

    This report is intended for use in designing testing programs, or as backup material for the review of 'R and D 92' which will be the next three-year plan for spent fuel repository siting and characterization activities in Sweden. There are eight major topics, each of which is addressed in a chapter of around 2000 to 10000 words. The major topics are defined to capture the reasons for testing, in a way that limits overlap between chapters. Other goals of this report are to provide current information on recent or ongoing tests in crystalline rock, and to describe insights which are important but not obvious from the literature. No data are presented, but the conclusions of testing programs are summarized. The principal sources were reports (in English) produced by the laboratory projects particularly the Stripa Project (SKB), the Underground Research Laboratory in Canada (AECL), and the Grimsel Test Site in Switzerland (Nagra). Articles from refereed journals have been used in lieu of project literature where possible and appropriate. (au)

  5. Nuclear science, technology and innovation in Canada - securing the future

    Energy Technology Data Exchange (ETDEWEB)

    Walker, R.S. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    As a Tier 1 Nuclear Nation, Canada has a rich and proud history of achievement in nuclear Science, Technology and Innovation (ST&I) -- from commercializing the CANDU power system around the world, advancing fuel technology and nuclear safety, to protecting human health through nuclear medicine and cancer therapy technology. Today, the nuclear industry in Canada is actively working to secure its promising, long-term place in the world and is embracing the change necessary to fulfill the enormous potential for good of nuclear technology. For its part, the Canadian Government is taking a bold new public policy approach to nuclear ST&I, by restructuring its large, multi-faceted AECL Nuclear Laboratories. Through the restructuring, AECL, as Canada's premier nuclear science and technology organization, will be better positioned for success via an incentivized 'Government-owned-Contractor-operated', private-sector management model. The aim of this new approach is to enhance and grow high-value nuclear innovation for the marketplace, strengthen the competitiveness of Canada's nuclear sector, and reduce costs to the Government of Canada with time. This approach will play a key role in ensuring a bright future for the Canadian Nuclear Industry domestically and globally as it launches its 25-year Vision and Action Plan, where one of the priority action areas is support for a strong, forward-looking, nuclear ST&I agenda. As the new model for the Nuclear Laboratories is moved forward by the Government, with the support of AECL and industry, Canada's nuclear expertise and knowledge continue to be expanded and deepened through the work of the Laboratories' ten Centres of Excellence, where AECL's fundamental approach is guided by the reality that ST&I is needed in all aspects of the nuclear cycle, including decommissioning, waste management and environmental protection. (author)

  6. Safety system upgrades to a research reactor: A regulatory perspective

    International Nuclear Information System (INIS)

    Lamarre, G.B.; Martin, W.G.

    2003-01-01

    The NRU (National Research Universal) reactor, located at the Chalk River Laboratories of Atomic Energy of Canada Limited (AECL), first achieved criticality November 3, 1957. AECL continues to operate NRU for research to support safety and reliability studies for CANDU reactors and as a major supplier of medical radioisotopes. Following a detailed systematic review and assessment of NRU's design and the condition of its primary systems, AECL formally notified the Canadian Nuclear Safety Commission's (CNSC) predecessor - the Atomic Energy Control Board - in 1992 of its intention to upgrade NRU's safety systems. AECL proposed seven major upgrades to provide improvements in shutdown capability, heat removal, confinement, and reactor monitoring, particularly during and after a seismic event. From a CNSC perspective, these upgrades were necessary to meet modern safety standards. From the start of the upgrades project, the CNSC provided regulatory oversight aimed at ensuring that AECL maintained a structured approach to the upgrades. The elements of the approach include, but are not limited to, the determination of project milestones and target dates; the formalization of the design process and project quality assurance requirements; the requirements for updated documentation, including safety reports, safety notes and commissioning reports; and the approval and authorization process. This paper details, from a regulatory perspective, the structured approach used in approving the design, construction, commissioning and subsequent operation of safety system upgrades for an existing and operating research reactor, including the many challenges faced when attempting to balance the requirements of the upgrades project with AECL's need to keep NRU operating to meet its important research and production objectives. (author)

  7. Element bow profiles from new and irradiated CANDU fuel bundles

    International Nuclear Information System (INIS)

    Dennier, D.; Manzer, A.M.; Ryz, M.A.

    1996-01-01

    Improved methods of measuring element profiles on new CANDU fuel bundles were developed at the Sheridan Park Engineering Laboratory, and have now been applied in the hot cells at Whiteshell Laboratories. For the first time, the outer element profiles have been compared between new, out-reactor tested, and irradiated fuel elements. The comparison shows that irradiated element deformation is similar to that observed on elements in out-reactor tested bundles. In addition to the restraints applied to the element via appendages, the element profile appears to be strongly influenced by gravity and the end loads applied by local deformation of the endplate. Irradiation creep in the direction of gravity also tends to be a dominant factor. (author)

  8. The use of borehole geophysical logs and hydrologic tests to characterize plutonic rock for nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    Davison, C.C.

    1984-05-01

    The selection of an igneous rock body for the disposal of nuclear fuel waste will likely require the drilling and testing of a number of deep investigative boreholes in the rock body. Although coring of at least one hole at each Research Area will be essential, methods for making in situ geophysical and hydrological measurements can substitute for widespread coring and result in significant savings in time and money. A number of borehole methods have been applied to the investigation of plutonic rocks at Whiteshell Nuclear Research Establishment and Chalk River Nuclear Laboratories in Canada

  9. The role of colloids and suspended particles in radionuclide transport in the Canadian concept for nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    Vilks, P.

    1994-02-01

    AECL Research is developing a concept for the permanent disposal of nuclear fuel waste in a deep engineered vault in plutonic rock of the Canadian Shield and is preparing an Environmental Impact Statement (EIS) to document its case for the acceptability of the disposal concept. This report, one in a series of supporting documents for the EIS, addresses the role of particles in radionuclide transport. It summarizes our studies of natural particles in groundwater and presents the arguments used to justify the omission of particle-facilitated transport in the geosphere model that is based on the Whiteshell Research Area (WRA) and used in the postclosure assessment study case. Because radiocolloids formed in the vault will not be able to migrate through the clay buffer, radiocolloid formation in the geosphere will be determined by the sorption of radionuclides onto particles in groundwater. These particles consist of typical fracture-lining minerals, such as clays, micas and quartz; precipitated particles, such as colloidal silica and Fe-Si oxyhydroxides; and organic particles. In groundwater from the WRA, the average concentrations of colloids and suspended particles are 0.34 and 1.4 mg/L respectively. Particle-facilitated transport is not included in the geosphere model because the concentrations of particles in groundwater from the WRA are too low to have a significant impact on radionuclide transport. (author). 92 refs., 11 tabs., 13 figs

  10. WIMS-AECL/RFSP code validation of reactivity calculations following a long shutdown using the simple-cell history-based method

    International Nuclear Information System (INIS)

    Ardeshiri, F.; Donnelly, J.V.; Arsenault, B.

    1998-01-01

    The purpose of this analysis is to validate the Reactor Fuelling Simulation Program (RFSP) using the simple-cell model (SCM) history-based method in a startup simulation following a reactor shutdown period. This study is part of the validation work for history-based calculations, using the WIMS-AECL code with the ENDF/B-V library, and the SCM linked to the RFSP code. In this work, the RFSP code with the SCM history-based method was used to track a 1-year period of the Point Lepreau reactor operating history, that included a 12-day reactor shutdown and subsequent startup. Measured boron and gadolinium concentrations were used in the RFSP simulations, and the predicted values of core reactivity were compared to the reference (pre-shutdown) value. The discrepancies in core reactivity are shown to be better than ±2 milli-k at any time, and better than about ±0.5 milli-k towards the end of the startup transient. The results of this analysis also show that the calculated maximum channel and bundle powers are within an acceptable range during both the core-follow and the reactor startup simulations. (author)

  11. The Maple reactor project

    International Nuclear Information System (INIS)

    Malkoske, G.R.; Labrie, J.-P.

    2003-01-01

    MDS Nordion supplies the majority of the world's reactor-produced medical isotopes. These isotopes are currently produced in the NRU reactor at AECL's Chalk River Laboratories (CRL). Medical isotopes and related technology are relied upon around the world to prevent, diagnose and treat disease. The NRU reactor, which has played a key role in supplying medical isotopes to date, has been in operation for over 40 years. Replacing this aging reactor has been a priority for MDS Nordion to assure the global nuclear medicine community that Canada will continue to be a dependable supplier of medical isotopes. MDS Nordion contracted AECL to construct two MAPLE reactors dedicated to the production of medical isotopes. The MDS Nordion Medical Isotope Reactor (MMIR) project started in September 1996. This paper describes the MAPLE reactors that AECL has built at its CRL site, and will operate for MDS Nordion. (author)

  12. The disposal of Canada's nuclear fuel waste: the geosphere model for postclosure assessment

    International Nuclear Information System (INIS)

    Davison, C.C.; Chan, T.; Brown, A.

    1994-01-01

    AECL is preparing an Environmental Impact Statement (EIS) of a concept for disposing of Canada's nuclear fuel waste. The disposal concept is that of a sealed vault constructed at a depth of 500 to 1 000 m in plutonic rock of the Canadian Shield. This report is one of nine primary references for the EIS. A probabilistic system variability analysis code (SYVAC3) has been used to perform a case study assessment of the long-term safety and environmental impacts for the EIS. This report describes the methodology for developing the SYVAC3-CC3 Geosphere Model (GEONET) which simulates the transport of contaminants from the vault through the geosphere to the biosphere. It also discusses the data used to construct the model, as well as assumptions and justifications for the data and model. The geosphere consists of the rock mass surrounding the vault, including the groundwater in the pores and cracks in the rock, the materials used to seal the shafts and exploratory boreholes at the site, and a domestic water well that is assumed to intersect the pathway of most rapid transport from the vault to the biosphere. GEONET simulates the movement of groundwater from the vault through the geosphere to discharge locations at the biosphere; the movement of contaminants in the groundwater by advection, hydrodynamic dispersion, and molecular diffusion; chemical sorption of contaminants onto minerals in the rock during transport; radioactive decay; and the rate of discharge of vault contaminants to the biosphere. Development of the Geosphere Model involves several steps. The initial step is to construct a conceptual model of the subsurface geological structure and ground water flow conditions using data from site investigations and laboratory tests. Once a conceptual model has been constructed, the coupled equations describing 3-D groundwater flow and heat transport are solved using the MOTIF finite-element code to calculate hydraulic head and groundwater velocity distributions. Next

  13. Processing of LLRW arising from AECL nuclear research centres

    International Nuclear Information System (INIS)

    Buckley, L.P.; Le, V.T.; Beamer, N.V.; Brown, W.P.; Helbrecht, R.A.

    1988-11-01

    Operation of nuclear research reactors and laboratories results in the generation of a wide variety of solid and liquid radioactive wastes. This paper describes practical experience with processing of low-level radioactive wastes at two major nuclear research centres in Canada

  14. List of publications 1986-1987

    International Nuclear Information System (INIS)

    1988-03-01

    This list includes all the scientific and technical publications of Atomic Energy of Canada Limited - reports, reprints of journal articles, and translations - issued from 1986 April to 1987 December. Together with the earlier cumulative lists (AECL-5000, AECL-5001, AECL-5002, AECL--5003, AECL--5004, AECL--5005), it provides a complete catalogue of publications in the AECL-series. In the future, lists will be produced at twelve month intervals. The titles and other bibliographic information are arranged in several categories, each devoted to a broad subject area. In addition, each document is identified with an AECL number (for example, AECL-12345) which should be used in ordering reports and making enquiries

  15. Phebus FPT-O. Exploratory containment iodine chemistry calculations

    International Nuclear Information System (INIS)

    Fermandjian, J.; Dickinson, S.; Edward, J.B.; Ewig, F.J.; Funke, F.; Hueber, C.; Rodriguez-Maroto, J.J.; Sims, H.E.

    1994-01-01

    The results of the exploratory containment iodine chemistry calculations related to the first Phebus-FP test (benchmark exercise for explaining the reasons for code inconsistencies and realistic calculation for test preparation) are reported. Calculations have been performed by CEA/IPSN/DRS/SEMAR-Cadarache (France), CIEMAT-Madrid (Spain), GRS-Koeln and SIEMENS/KWU, Erlangen (Germany), AEA-Harwell (UK), Ontario Hydro-Toronto, University of Toronto and AECL-Whiteshell (Canada). The code benchmark results show that mechanistic codes (INSPECT and LIRIC) are in agreement for molecular iodine concentration in the gaseous phase, whereas empirical codes (IODE and IMPAIR) are in disagreement because they model differently HOI disproportionation and use different radiolytic constant values (iodide/iodate radiolysis). Furthermore, the molecular iodine concentrations in the gaseous phase are 10 to 100 times higher at acid pH (pH - 5) than at neutral pH (pH - 7), and the presence of organic radicals in water does not change the concentrations of inorganic iodine species. Concerning the realistic calculation, the iodine mass distribution in the containment differ from one code to another, but all codes predict that the iodine concentration in the gaseous phase is high enough to be detected by foreseen instrumentation (as was verified during the test). FPT-0 test has been performed in December 1993. Analysis of experimental results is underway and result interpretation will be available at the beginning of 1995. (author). 11 refs., 1 tab., 5 figs

  16. Proposed Atomic Energy of Canada Ltd. 99Mo waste calcination process

    International Nuclear Information System (INIS)

    Ramey, D.W.; Haas, P.A.; Malkemus, D.W.; McGinnis, C.P.; Meyers, E.S.; Patton, B.D.; Birdwell, J.F.; Jubin, R.T.; Coltharp, K.A.

    1994-10-01

    Atomic Energy of Canada Limited (AECL), at its Chalk River Laboratory, generates from 3000 to 5000 L/year of high-level fissile waste solution from the production of 99 Mo. In this Mo process, highly enriched uranium (93 wt % 235 U, total uranium basis) contained in uranium-aluminum alloy target rods is irradiated to produce the 99 Mo product. The targets are removed from the reactor and dissolved in a mercury nitrate-catalyzed reaction with nitric acid. The 99 Mo product is then recovered by passing the solution through an alumina (Al 2 O 3 ) column. During discussions with personnel from the Oak Ridge National Laboratory (ORNL) on September 10, 1992, the ORNL-developed technology formerly applied to the solidification of aqueous uranium waste (Consolidated Edison Uranium Solidification Program or CEUSP) was judged potentially applicable to the AECL 99 Mo waste. Under a Work-for-Others contract (no. ERD-92-1132), which began May 24, 1993, ORNL was tasked to determine the feasibility of applying the CEUSP (or a similar) calcination process to solidify AECL's 99 Mo waste for > 30 years of safe dry storage. This study was to provide sufficient detailed information on the applicability of a CEUSP-type waste solidification process to allow AECL to select the process which best suited its needs. As with the CEUSP process, evaporation of the waste and a simultaneously partial destruction of acid by reaction with formaldehyde followed by in situ waste can thermal denitration waste was chosen as the best means of solidification. Unlike the CEUSP material, the 99 Mo waste has a considerable number of problem volatile and semivolatile constituents which must be recovered in the off-gas treatment system. Mercury removal before calcination was seen as the best option

  17. Integrated waste plan for Chalk River Laboratories

    International Nuclear Information System (INIS)

    McClelland, P.; Bainbridge, I.

    2011-01-01

    The core missions for Chalk River Laboratories (CRL) will involve a complex suite of activities for decades to come, many of these activities resulting in production of some amount of wastes. In order to support the business of the Nuclear Laboratories there is a requirement to responsibly manage the wastes arising from these activities. Capability to develop waste stream pathway scenarios and be able to make informed strategic decisions regarding the various options for waste processing, storage and long-term management (i.e. e nabling facilities ) is necessary to discharge this responsibility in the most cost effective and sustainable manner. A holistic waste management plan integrated with the decommissioning, environmental remediation and operations programs is the desired result such that: - Waste inputs and timings are identified; - Timing of key decisions regarding enabling facilities is clearly identified; and - A defensible decision-making framework for enabling facilities is established, thereby ensuring value for Canadians. The quantities of wastes that require managing as part of the Nuclear Legacy Liabilities Program and AECL operations activities is in the range of 200,000 to 300,000 m 3 , with a yearly increase of several thousand m 3 . This volume can be classified into over thirty distinct waste streams having differing life cycle waste management pathways from generation to disposition. The time phasing of the waste management activities required for these wastes spans several decades and involves a complex array of processes and facilities. Several factors typical of wastes from the development of nuclear technology further complicate the situation. For example, there is considerable variation in the level of detail and format of waste records generated over several decades. Also, wastes were put into storage over several decades without knowledge or consideration of what the final disposition path will be. Prior to proceeding with any major new

  18. Technical Advisory Committee on the nuclear fuel waste management program : thirteenth annual report

    International Nuclear Information System (INIS)

    Shemilt, L.W.

    1993-03-01

    Since the last reporting period by the Technical Advisory Committee (TAC) the emphasis of the work in the Canadian Nuclear Fuel Waste Management Program (CNFWMP) has been on the writing of the Environmental Impact Statement (EIS) and the associated set of nine primary reference documents as well as supporting documents. These are in preparation for submission to the Environmental Assessment Review Panel who will lead the national evaluation of the disposal concept under the auspices of the Federal Environmental Assessment Review Office (FEARO). The disposal concept developed over the last fourteen years by Atomic Energy of Canada Limited (AECL) and anticipated to be presented by means of the EIS in 1994, is based on a multiple system of natural and man-made barriers wherein nuclear waste is first enclosed in corrosion-resistant containers, designed to last at least 500 years, and then placed in a vault excavated 500 - 1000 m deep in granitic rocks of the Canadian Shield. After container emplacement either in or on the floor of the vault, and with a surrounding buffer material of a bentonite clay/sand mixture, the vault will be backfilled and sealed with crushed rock, buffer and sand, as will be the shafts and exploratory boreholes. The case study being presented by AECL to demonstrate the safety of this concept and the technology to implement it, relies on computer simulations of a hypothetical disposal site with geological characteristics similar to those at the Underground Research Laboratory (URL) in the Whiteshell Research Area (WRA) located in Manitoba. The preliminary simulation results suggest that safe containment can be achieved provided that the waste is surrounded by a sparsely-fractured zone of rock wherein movement of contaminants carried by groundwater is modelled as a diffusive as opposed to a advective process. The principal focus of work during the past year within the environmental and safety assessment has been to complete the Post

  19. Instrumentation, computer software and experimental techniques used in low-frequency internal friction studies at WNRE

    International Nuclear Information System (INIS)

    Sprugmann, K.W.; Ritchie, I.G.

    1980-04-01

    A detailed and comprehensive account of the equipment, computer programs and experimental methods developed at the Whiteshell Nuclear Research Estalbishment for the study of low-frequency internal friction is presented. Part 1 describes the mechanical apparatus, electronic instrumentation and computer software, while Part II describes in detail the laboratory techniques and various types of experiments performed together with data reduction and analysis. Experimental procedures for the study of internal friction as a function of temperature, strain amplitude or time are described. Computer control of these experiments using the free-decay technique is outlined. In addition, a pendulum constant-amplitude drive system is described. (auth)

  20. Underground Research Laboratory room 209 instrument array. Vol. 1,2

    International Nuclear Information System (INIS)

    Lang, P.A.; Kuzyk, G.W.; Babulic, P.J.; Bilinsky, D.M.; Everitt, R.A.; Spinney, M.H.; Kozak, E.T.; Davison, C.C.

    1991-06-01

    An in situ excavation response test was conducted at the 240 Level of the Underground Research Laboratory (URL). The test was carried out in conjunction with the drill-and-blast excavation of a near-circular tunnel (Room 209), about 3.5 m in diameter. The tunnel was excavated through a tunnel axis. Three modelling groups made predictions of the response of the rock mass and hydraulic behaviour of the water-bearing fracture to excavation. The tunnel was excavated in two stages, a pilot tunnel followed by a slash, providing two complete sets of response measurements. Careful excavation was carried out to ensure the excavation shape after each blast round agreed closely with the planned shape incorporated in the numerical models. Instrumentation installed before the tunnel was extended monitored the complete strain tensor at eight locations around the tunnel, radial displacements and piezometric pressures at nine locations in the fracture. As well, tunnel convergence, water flows from the fracture, and hydraulic conductivity of the fracture at nine locations, were measured after each excavation step. The final tunnel profiles were accurately surveyed, and the geology was mapped in detail. The results are presented in this report for comparison with the modellers' predictions (reported in AECL--9566-2). Some preliminary conclusions and recommendations regarding the field testing are presented

  1. Microbial analysis of the buffer/container experiment at AECL's Underground Research Laboratory

    International Nuclear Information System (INIS)

    Stroes-Gascoyne, S.; Hamon, C.J.; Haveman, S.A.; Delaney, T.L.

    1996-05-01

    The Buffer/Container experiment was carried out for 2.5 years to examine the in-situ performance of compacted buffer material in a single emplacement borehole under vault-relevant conditions. During decommissioning of this experiment, numerous samples were taken for microbial analysis to determine if the naturally present microbial population in buffer material survived to conditions and to determine which groups of microorganisms would be dominant in such a simulated vault environment. Microbial analyses were initiated within 24 hour of sampling for all types of samples taken. The culture results showed an almost universal disappearance of viable microorganisms in the samples taken from near the heater surface. The microbial activity measurements confirmed the lack of viable organisms with very weak or no activity measured in most of these samples. Generally, aerobic heterotrophic culture conditions gave the highest mean colony-forming units (CFU) values at both 25 and 50 C. Under anaerobic conditions, and especially at 50 C, lower mean CFU values were obtained. In all samples analyzed, numbers of sulfate reducing bacteria were less than 1000 CFU/g dry material. Methanogens were either not present or were found in very low numbers. Anaerobic sulfur oxidizing bacteria were found in higher numbers in most sample types with sufficient moisture. The statistical evaluation of the culture data demonstrated clearly that the water content was the variable limiting the viability of the bacteria present, and not the temperature. 68 refs, 35 figs, 37 tabs

  2. Characterization of natural colloids sampled from a fractured granite groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Baik, Min Hoon; Keum, Dong Kwon; Hahn, Pil Soo [Korea Atomic Energy Research Institute, Taejeon (Korea); Vilks, Peter [AECL Whiteshell Laboratories (Canada)

    2000-02-01

    This study was carried out as a part of international joint study of KAERI with AECL. The main purpose of this study is to analyze the physicochemical characteristics and sorption properties of natural colloids sampled from the deep fractured granite groundwater located in the Underground Research Laboratory (URL) of AECL. Physicochemical characteristics such as composition, size distribution, and concentrations of natural colloids was analyzed. This study will be basic data for the analysis of the effect of colloids on the radionuclide migration in a geological medium. This study may provide information for the evaluation of the roles and effects of colloids in the safety and performance assessment of a possible future radioactive waste repository. 20 refs., 8 figs., 8 tabs. (Author)

  3. Technical summary of AECL's Mine-by Experiment phase I: Excavation response

    International Nuclear Information System (INIS)

    Read, R.S.; Martin, C.D.

    1996-02-01

    The first phase of the Mine-by Experiment was conducted at the 420 Level of the Underground Research Laboratory (URL) to investigate the response induced in the rock mass by excavating a 3.5-m-diameter circular tunnel using a non-explosive technique. The main objective of the experiment was to study the processes involved in progressive failure and the development of excavation-induced damage around underground openings. To this end, state-of-the-art geomechanical and geophysical instrumentation was used to monitor the excavation of the 46-m-long Mine-by Experiment test tunnel. The results from the experiment show that progressive failure in compressive regions around the tunnel initiates at stresses about 50% of the rock strength measured in uniaxial compression tests in the laboratory. The difference between the laboratory and in situ behaviour is attributed to complex stress changes that occur during excavation of the tunnel, especially in the vicinity of the advancing face. These effects are not simulated in standard laboratory tests. Numerical modelling and in situ characterization studies were conducted to establish the extent and characteristics of the damaged zone around the test tunnel. As part of this study, in situ stresses and material properties were established through back analysis of measured displacements and strains. Using these boundary conditions, it was shown that the damaged zone was limited to within 1 m of the original tunnel perimeter. The characteristics of the damaged zone, however, were found to be highly variable around the tunnel, and were dependent on the nature of the stress concentrations, geology, stress magnitudes and orientations and, to a lesser extent, the excavation method and sequence. (author) 136 refs., 14 tabs., 103 figs

  4. Eddy current manual, volume 2

    International Nuclear Information System (INIS)

    Cecco, V.S.; Van Drunen, G.; Sharp, F.L.

    1984-09-01

    This report on eddy current testing is divided into three sections: (a) Demonstration of Basic Principles, (b) Practical (Laboratory) Tests and, (c) Typical Certification Questions. It is intended to be used as a supplement to ΣEddy Current Manual, Volume 1Σ (AECL-7523) during CSNDT Foundation Level II and III courses

  5. Quality assurance in management of geotechnical experiments for nuclear waste disposal

    International Nuclear Information System (INIS)

    Dormuth, K.W.; Simmons, G.R.

    1992-01-01

    Research and development (R and D) of technology for the disposal of nuclear fuel waste in plutonic rock is being undertaken in the Canadian Nuclear Fuel Waste Management Program, jointly funded by Atomic Energy of Canada Limited (AECL) Research and Ontario Hydro under the auspices of the CANDU Owner's Group. A major component of the R and D is geotechnical research to improve the understanding of the response of the host rock to a waste repository; investigate the interactions between the waste package, sealing systems, and rock; elucidate geotechnical factors affecting potential transport of waste elements from the repository; and establish and refine techniques and procedures for repository engineering. Nine major experimental activities are currently in various stages of planning and implementation at AECL's Underground Research Laboratory (URL). A general description of a quality assurance (QA) program developed at AECL for R and D on nuclear waste disposal has been published previously. This QA program is project-oriented and is designed specifically for and R and D environment. The full application of the QA program is being phased into the management of the operating phase experiments because some activities were under way prior to establishment of the QA program

  6. A nuclear reactor for district heating

    International Nuclear Information System (INIS)

    Bancroft, A.R.; Fenton, N.

    1989-07-01

    Global energy requirements are expected to double over the next 40 years. In the northern hemisphere, many countries consume in excess of 25 percent of their primary energy supply for building heating. Satisfying this need, within the constraints now being acknowledged for sustainable global development, provides an important opportunity for district heating. Fuel-use flexibility, energy and resource conservation, and reduced atmospheric pollution from acid gases and greenhouse gases, are important features offered by district heating systems. Among the major fuel options, only hydro-electricity and nuclear heat completely avoid emissions of combustion gases. To fill the need for an economical nuclear heat source, Atomic Energy of Canada Limited has designed a 10 MW plant that is suitable as a heat source within a network or as the main supply to large individual users. Producing hot water at temperatures below 100 degrees C, it incorporates a small pool-type reactor based on AECL's successful SLOWPOKE Research Reactor. A 2 MW prototype for the commercial unit is now being tested at the Whiteshell Nuclear Research Establishment in Manitoba. With capital costs of $7 million (Canadian), unit energy costs are projected to be $0.02/kWh for a 10 MW unit operating in a heating grid over a 30-year period. By keeping the reactor power low and the water temperature below 100 degrees C, much of the complexity of the large nuclear power plants can be avoided, thus allowing these small, safe nuclear heating systems to be economically viable

  7. Waste management program at Atomic Energy of Canada Limited

    Energy Technology Data Exchange (ETDEWEB)

    Wong, P.C.F.; Chan, N.; Hawrelluk, K. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2011-07-01

    The Atomic Energy of Canada Limited (AECL) Waste Management Program establishes requirements for waste management activities at AECL sites in Canada. It ensures that activities involving planning for, handling, processing, transporting, storage and long-term management of wastes are performed in a manner that protects the workers, the public, and the environment, and are in compliance with applicable regulatory and licence requirements. The program translates applicable legal requirements into program requirements appropriate for AECL, and assists AECL management in implementing those requirements. The Waste Management Program was formally established at AECL in 2007 as one of the nuclear programs. The activities conducted in the first two years (2007 - 09) were mainly focused on program development. Currently the program is executing the waste management improvement initiatives based on the Waste Management Program Improvement Plan. During the program implementation, close collaboration between the Waste Management Program and other departments resulted in improved waste management performance at Chalk River Laboratories (CRL). This included increased segregation of the waste at the source, reduction in waste generation, improved labeling and identification of waste packages, improved recyclables collection and initiating recycling of selected hazardous wastes. In accordance with pollution prevention, the quantities and degree of hazard of wastes requiring long-term management shall be minimized, following the principles of Prevent, Reduce, Reuse, and Recycle. The annual volume of solid waste generated is one of the key indicators for waste management performance. AECL has been successful in reduction of operational waste and diversion of materials for recycling at CRL. From 2007 to 2010, the annual volume of solid waste, including inactive and radioactive wastes, generated from routine operations at CRL decreased by 26%, and the annual amount of recyclables sent

  8. Waste management program at Atomic Energy of Canada Limited

    International Nuclear Information System (INIS)

    Wong, P.C.F.; Chan, N.; Hawrelluk, K.

    2011-01-01

    The Atomic Energy of Canada Limited (AECL) Waste Management Program establishes requirements for waste management activities at AECL sites in Canada. It ensures that activities involving planning for, handling, processing, transporting, storage and long-term management of wastes are performed in a manner that protects the workers, the public, and the environment, and are in compliance with applicable regulatory and licence requirements. The program translates applicable legal requirements into program requirements appropriate for AECL, and assists AECL management in implementing those requirements. The Waste Management Program was formally established at AECL in 2007 as one of the nuclear programs. The activities conducted in the first two years (2007 - 09) were mainly focused on program development. Currently the program is executing the waste management improvement initiatives based on the Waste Management Program Improvement Plan. During the program implementation, close collaboration between the Waste Management Program and other departments resulted in improved waste management performance at Chalk River Laboratories (CRL). This included increased segregation of the waste at the source, reduction in waste generation, improved labeling and identification of waste packages, improved recyclables collection and initiating recycling of selected hazardous wastes. In accordance with pollution prevention, the quantities and degree of hazard of wastes requiring long-term management shall be minimized, following the principles of Prevent, Reduce, Reuse, and Recycle. The annual volume of solid waste generated is one of the key indicators for waste management performance. AECL has been successful in reduction of operational waste and diversion of materials for recycling at CRL. From 2007 to 2010, the annual volume of solid waste, including inactive and radioactive wastes, generated from routine operations at CRL decreased by 26%, and the annual amount of recyclables sent

  9. Development and testing of hydrogen ignition devices

    International Nuclear Information System (INIS)

    Renfro, D.; Smith, L.; Thompson, L.; Clever, R.

    1982-01-01

    Controlled ignition systems for the mitigation of hydrogen produced during degraded core accidents have been installed recently in several light water reactor (LWR) containments. This paper relates the background of the thermal igniter approach and its application to LWR controlled ignition systems. The process used by the Tennessee Valley Authority (TVA) to select a hydrogen mitigation system in general and an igniter type in particular is described. Descriptions of both the Interim Distributed Ignition System and the Permanent Hydrogen Mitigation System installed by TVA are included as examples. Testing of igniter durability at TVA's Singleton Materials Engineering Laboratory and of igniter performance at Atomic Energy of Canada's Whiteshell Nuclear Research Establishment is presented

  10. Detection of defects in logs using computer assisted tomography (CAT) scanning

    International Nuclear Information System (INIS)

    Tonner, P.D.; Lupton, L.R.

    1985-01-01

    The Chalk River Nuclear Laboratories of AECL have performed a preliminary feasibility study on the applicability of computer assisted tomographic techniques to detect the internal structure of logs. Cross sections of three logs have been obtained using a medical CAT scanner. The results show that knots, rot and growth rings are easily recognized in both dry and wet logs

  11. AECL's excavation stability study - summary of observations

    International Nuclear Information System (INIS)

    Read, R.S.; Chandler, N.A.

    1996-05-01

    The Excavation Stability Study (ESS) was conducted at the 420 Level of the Underground Research Laboratory (URL) to evaluate stability and the extent of excavation damage in tunnels as a function of tunnel geometry and orientation, geology, and excavation method. A series of ovaloid and circular openings were used to achieve different boundary stress levels and near-field stress distributions to assess the effect of tunnel geometry on damage development. Several of these openings had sections in both granite and granodiorite lithology, providing a comparison of damage in rock types with different strength characteristics. Damage around circular tunnels (one excavated by drill-and-blast, the other by mechanical means) was also investigated. The study.showed that mechanically stable openings can be excavated in the most adverse stress conditions at the 420 Level of the URL. In addition, it was shown that tunnel stability is sensitive to tunnel shape, variations in geology, and to some extent, the excavation method. Findings of the study are relevant in developing design criteria, and in assessing the feasibility of constructing large ovaloid openings in adverse stress conditions. This report summarizes the preliminary observations related to tunnel stability and excavation damage. (author). 8 refs., 7 tabs., 23 figs

  12. Prospecting for success in the American market

    International Nuclear Information System (INIS)

    Thomas, Ron.

    1992-01-01

    AECL Technologies is a US subsidiary of AECL originally set up to obtain licensing of CANDU reactors in the US, as well as to market technology. AECL Technologies has been successful in marketing digital control technology and software development, and also design and consulting services. Dry storage of spent fuel represents a large future opportunity. AECL hopes to sell CANDU reactors in the USA after the turn of the century. AECL Technologies did about $4.2 million worth of business in 1991

  13. Isotopic methods in hydrogeology and their application to the Underground Research Laboratory, Manitoba

    International Nuclear Information System (INIS)

    Gascoyne, M.; Kotzer, T.

    1995-09-01

    This review examines isotopic methods used to determine groundwater sources, residence times and processes of geochemical evolution that have been published in the international literature, with specific reference to AECL's experience in these methods and applications to groundwaters at the Underground Research Laboratory (URL), Manitoba. The program of groundwater sampling and analysis currently being planned for the URL area over the next several years will concentrate on specific isotopic measurements that may assist in understanding the groundwater flow system at the URL site. These results will add to the existing data for the URL area and indicate which isotopes are most useful when applied to the known groundwater flow system of the URL. This program of study is especially important because it not only uses standard geochemical and isotopic measurements (e.g., major ion, trace elements, 2 H/ 18 O, 14 C, 34 S) of groundwaters, but will determine values of more exotic and unusual ratios, such as 6 Li/ 7 Li, and B 11 /B 10 , whose potential for understanding groundwater geochemical evolution is largely unknown at present. In addition, the more established but equally complex methods of isotopic analysis, to determine 3 He/ 4 He, 36 Cl/Cl and 129 I/I, will be used to assess their potential for adding to the hydrogeochemical understanding of flow paths in crystalline rock. (author). 182 refs., 11 tabs., 27 figs

  14. The disposal of Canada's nuclear fuel waste: postclosure assessment of a reference system

    International Nuclear Information System (INIS)

    Goodwin, B.W.; McConnell, D.B.; Andres, T.H.

    1994-01-01

    The concept for disposal of Canada's nuclear fuel waste is based on a vault located deep in plutonic rock of the Canadian Shield. We document in this report a method to assess the long-term impacts of a disposal facility for nuclear fuel waste. The assessment integrates relevant information from engineering design studies, site investigations, laboratory studies, expert judgment and detailed mathematical analyses to evaluate system performance in terms of safety criteria, guidelines and standards. The method includes the use of quantitative tools such as the Systems Variability Analysis computer Code (SYVAC) to deal with parameter uncertainty and the use of reasoned arguments based on well-established scientific principles. We also document the utility of the method by describing its application to a hypothetical implementation of the concept called the reference disposal system. The reference disposal system generally conforms to the overall characteristics of the concept, except we have made some specific site and design choices so that the assessment would be more realistic. To make the reference system more representative of a real system, we have used the geological observations of the AECL's Whiteshell Research Area located near Lac du Bonnet, Manitoba, to define the characteristics of the geosphere and the groundwater flow system. This research area has been subject to more than a decade of geological and hydrological studies. The analysis of the reference disposal system provides estimates of radiological and chemical toxicity impacts on members of a critical group and estimates of possible impacts on the environment. The latter impacts include estimates of radiation dose to nonhuman organisms. Other quantitative analyses examine the use of derived constraints to improve the margin of safety, the effectiveness of engineered and natural barriers, and the sensitivity of the results to influential features, events, and processes of the reference disposal

  15. Removing fuelling transient using neutron absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Paquette, S.; Chan, P.K.; Bonin, H.W., E-mail: Stephane.Paquette@rmc.ca [Royal Military College of Canada, Chemistry and Chemical Engineering Dept., Kingston, Ontario (Canada); Pant, A. [Cameco Fuel Manufacturing, Port Hope, Ontario (Canada)

    2012-07-01

    Preliminary criticality and burnup calculation results indicate that by employing a small amount of neutron absorber the fuelling transient, currently occurring in a CANDU 37-element fuel bundle, can be significantly reduced. A parametric study using the Los Alamos National Laboratories' MCNP 5 code and Atomic Energy of Canada Limited's WIMS-AECL 3.1 is presented in this paper. (author)

  16. Canadian experience with spin-offs from nuclear technology

    International Nuclear Information System (INIS)

    Lennox, C.G.; Garvey, P.M.

    1989-01-01

    The innovation process introduced into AECL's research laboratories is described, with its achievements in increased commercial and spin-off businesses. In particular, the role of the champion or entrepreneur is emphasized in the manner in which he/she interacts within a dedicated team to pursue each opportunity. Examples are provided of several commercial and business development opportunities resulting from the background research programs

  17. CFFTP journal volume 8 no. 2

    International Nuclear Information System (INIS)

    Macphee, R.

    1991-12-01

    A short journal article from Canadian Fusion Fuels Technology Project (CFFTP) highlighting the AECL Tritium Laboratory expansion, the advanced tritium course and the fluid seminar for industry. The research and development news on breeder blanket design and compact toroid fuelling gun and educational program news on CFFTP fusion fellowship awards, fusion seminars at McMaster University and the CFFTP student awards program

  18. Nuclear platform research and development - 2008-09 highlights

    International Nuclear Information System (INIS)

    Sadhankar, R.R.

    2009-08-01

    The Nuclear Platform R and D Program has lead responsibility for the maintenance and further development of the CANDU intellectual property covering the safety, licensing and design basis for nuclear facilities. The Nuclear Platform R and D Program is part of the Research and Technology Operation (RTO) unit of AECL and is managed through the Research and Development division, which has responsibility for maintaining and enhancing the knowledge and technology base. The RTO is also responsible for managing AECL's nuclear facilities and infrastructure (including laboratories and R and D facilities), the nuclear waste management program and other legacy liabilities (e.g., decommissioning) to demonstrate and grow shareholder value. The Nuclear Platform also provides the technology base from which new products and services can be developed to meet customer needs (including ACR and commercial products and services). (author)

  19. Management of experimental and exotic fuels by Atomic Energy of Canada Ltd

    International Nuclear Information System (INIS)

    Doyle, J.R.

    1999-01-01

    Atomic Energy of Canada (AECL) has been engaged in nuclear research and development at its Chalk River Laboratories since the 1940's. During this time, a wide variety of irradiated research reactor and experimental fuels have been stored in a variety of storage facilities. Some of these fuels are of unique composition and configuration, and some fuels have been degraded as a result of research activities. In preparing decommissioning plans for these storage facilities, AECL has developed a strategy that identifies how each type of fuel will be dispositioned in the future. The goal of this strategy is to ensure that the fuels are maintained in a safe stable state until a repository for these fuels becomes available. This paper describes the current storage facilities, options considered for long-term fuel management, and the strategy selected to manage these fuels. (author)

  20. AECL's use of FMEA and OPEX for field service tooling and process development, implementation and improvement: a model for the future

    International Nuclear Information System (INIS)

    Cox, E.; Dam, R.F.; Wilson, E.

    2008-01-01

    Failure Modes and Effects Analysis (FMEA) is a systematic and rigorous process applied to new or complex systems to predict system failures and assist with the development of mitigating strategies. The process is especially beneficial when applied to higher-risk applications such as nuclear systems. FMEA may be used for design verification and maintenance program development. For field service tooling, FMEA is complimented well by operating experience (OPEX) and continuous improvement initiatives. FMEA is generally conducted while developing systems and processes to ensure safe and successful implementation, while OPEX is fed back into the system design and operation to improve those systems and processes for subsequent field applications. This paper will explore these techniques as they have been applied to AECL's CANDUclean system. The portable CANDUclean system is employed to mechanically clean the inside of steam generator (SG) tubes in CANDU nuclear power plants. During normal plant operation, the steam generator tubes in the heat transport system develop a build-up of magnetite on their internal diameter, which decreases heat transfer efficiency, impedes SG maintenance activities and increases the radiation fields in and around the boilers. As part of a regular plant aging management routine, the CANDUclean system is used to remove the magnetite layers. The nature of this work includes risks to personnel safety, however by continually applying FMEA and other improvement initiatives, safety and system effectiveness are maximized. This paper will provide an overview of the integrated continuous improvement approach applied to the CANDUclean system and consider the value of strategies when applied to field service tooling and CANDU systems. (author)

  1. Performance characterization of hydrogen isotope exchange and recombination catalysts for tritium processing

    International Nuclear Information System (INIS)

    Suppiah, S.; Ryland, D.; Marcinkowska, K.; Boniface, H.; Everatt, A.

    2010-01-01

    AECL's hydrogen isotope exchange catalyst and recombination catalysts have been successfully applied to a wide range of industrial tritium-removal applications. The catalysts are used for Liquid Phase Catalytic Exchange (LPCE) and for gas-phase and trickle-bed recombination of hydrogen isotopes and have led to process simplification, improved safety and operational advantages. Catalyst performance design equations derived from laboratory testing of these catalysts have been validated against performance under industrial conditions. In a Combined Electrolysis and Catalytic Exchange (CECE) demonstration plant analyses of LPCE and recombiner efficiency were carried out as a function of catalyst activity over a wide range of operation. A steady-state process simulation used to model and design the hydrogen-water isotopic exchange processes, such as the CECE detritiation plant, was validated using the results of this demonstration. Catalyst development for isotope-exchange and recombination applications has continued over the last decade. As a result, significant improvements in catalyst performance have been achieved for these applications. This paper outlines the uniqueness of AECL's specialized catalysts and process designs for these applications with examples from laboratory and industrial case studies.

  2. Experiments in ZED-2 to study the physics of low-void reactivity fuel in CANDU

    International Nuclear Information System (INIS)

    Zeller, M.B.; Celli, A.; McPhee, G.P.

    1994-01-01

    Prospective CANDU clients have indicated a desire for a zero or negative coolant void reactivity. In response to this market requirement AECL Research and AECL CANDU are jointly developing and testing a Low-Void Reactivity Fuel (LVRF) bundle, which will be retrofitable to the current generation of CANDU reactors. An important component of the LVRF program is the undertaking of reactor-physics experiments in the zero-energy ZED-2 lattice test facility at Chalk River Laboratories. Preliminary void-reactivity measurements have already been performed in ZED-2 using a limited amount of the prototype fuel. These experiments were to provide a proof-of-principle for the LVRF concept. A more comprehensive set of experiments are planned for later this year. Experiments to be performed include: measuring the critical buckling of CANDU-type lattices containing LVRF, with and without coolant in the channels; measuring the reactivity effect of heating the LVRF fuel and coolant in ZED-2 hot channels; and measuring detailed reaction rates and neutron density distributions across a LVRF bundle, in voided and D 2 O-cooled channels, by the foil activation method. This paper describes the experimental approach to be used for the study and presents calculations employing transport and diffusion theory to predict the results. The codes used for the simulations are the lattice code WIMS-AECL and the core code CONIFERS. Included in the paper are results from the preliminary measurement of void coefficient for LVRF in a ZED-2 lattice and a comparison of those results to predictions based on WIMS-AECL calculations. (author). 3 refs., 1 tab., 10 figs

  3. Parametric studies of radiolytic oxidation of iodide solutions with and without paint: comparison with code calculations

    Energy Technology Data Exchange (ETDEWEB)

    Poletiko, C; Hueber, C [Inst. de Protection et de Surete Nucleaire, C.E. Cadarache, St. Paul-lez-Durance (France); Fabre, B [CISI, C.E. Cadarache, St. Paul-lez-Durance (France)

    1996-12-01

    In case of severe nuclear accident, radioactive material may be released into the environment. Among the fission products involved, are the very volatile iodine isotopes. However, the chemical forms are not well known due to the presence of different species in the containment with which iodine may rapidly react to form aerosols, molecular iodine, hydroiodic acid and iodo-organics. Tentative explanations of different mechanisms were performed through benchscale tests. A series of tests has been performed at AEA Harwell (GB) to study parameters such as pH, dose rate, concentration, gas flow rate, temperature in relation to molecular iodine production, under dynamic conditions. Another set of tests has been performed in AECL Whiteshell (CA) to study the behaviour of painted coupons, standing in gas phase or liquid phase or both, with iodine compounds under radiation. The purpose of our paper is to synthesize the data and compare the results to the IODE code calculation. Some parameters of the code were studied to fit the experimental result the best. A law, concerning the reverse reaction of iodide radiolytic oxidation, has been proposed versus: pH, concentrations and gas flow-rate. This law does not apply for dose rate variations. For the study of painted coupons, it has been pointed out that molecular iodine tends to be adsorbed or chemically absorbed on the surface in gas phase, but the mechanism should be more sophisticated in the aqueous phase. The iodo-organics present in liquid phase tend to be partly or totally destroyed by oxidation under radiation (depending upon the dose delivered). These points are discussed. (author) 18 figs., 3 tabs., 15 refs.

  4. Nuclear research centres in the 21st century: An AECL perspective

    International Nuclear Information System (INIS)

    Fehrenbach, P.J.

    2001-01-01

    The nuclear energy programme of Canada started at Chalk River Laboratories with the setting up of Zero Energy Experimental Site in 1945. One of the early research reactors of Canada, the National Research Universal (NRU) continues to provide 70% of the world requirement of isotopes for medical and industrial applications. A CANDU prototype (208 MW(e)) came on line in 1967 and based on this concept, Canada has a large nuclear power programme. The role of nuclear research centres has evolved with time starting with strategic research in the initial phases through to implementation of technology, building and supporting industry, and carrying out advanced technology development. Most of these centres have important assets in terms of licensed sites, trained personnel, research reactors, shielded facilities and expertise for handling large quantities of radioactivity and high tech laboratories for advanced R and D. These centres would, therefore, continue to play an important role in emission free and economic energy generation, nuclear medicine, food irradiation and industrial applications. Nuclear research centres in different countries are at various stages of development and have many unique features. However, there are generic issues and much will be gained by developing a shared vision for the future and implementing programmes in a collaborative manner. (author)

  5. The disposal of Canada's nuclear fuel waste: site screening and site evaluation technology

    International Nuclear Information System (INIS)

    Davison, C.C.; Brown, A.; Everitt, R.A.; Gascoyne, M.; Kozak, E.T.; Lodha, G.S.; Martin, C.D.; Soonawala, N.M.; Stevenson, D.R.; Thorne, G.A.; Whitaker, S.H.

    1994-06-01

    carefully characterized to understand the groundwater flow conditions in the rock. This understanding would be used to situate the disposal vault in the rock so as to allow the flow and chemical characteristics of the groundwater to enhance the safety of the disposal system. The geoscience methods for characterizing the conditions within plutonic rocks of the Canadian Shield have been developed and tested by AECL at geologic research areas on the Shield. This report presents examples of the site characterization methods which are drawn from the studies at these research areas. The geoscience work performed at the Whiteshell Research Area (WRA) on the Shield in southeastern Manitoba comes closest to illustrating the spatial coverage of characterization that would be required for siting an actual nuclear fuel waste disposal vault in a candidate area of the Shield. The characterization work done at the site of the Underground Research Laboratory (URL) in the WRA demonstrates how to evaluate the geoscience conditions of the rock at a candidate disposal site, and illustrates how that information would be used to confirm the suitability of the site for disposal. This report presents evidence from case studies at the URL and the geologic research areas that the surface-based, borehole and underground site characterization methods developed by AECL are now sufficiently developed that they can be used to obtain the geoscience information needed for siting a disposal vault in plutonic rock of the Canadian Shield. We expect that these site characterization methods will continue to be improved and that new methods will be developed during the long time period required for implementation of the disposal project. Improvements and new developments are continuing through ongoing research at the site of the URL and at the other geologic research areas on the Shield. However the methods that are currently available are sufficiently well developed to allow siting to commence. (author)

  6. Combined electrolysis and catalytic exchange (CECE) technology - an economical alternative for heavy water upgraders using water distillation

    International Nuclear Information System (INIS)

    Ryland, D.K.; Sadhankar, R.R.

    2003-01-01

    Heavy water upgrading is a unique and crucial part of a CANDU power station. Water distillation (DW) systems are used for heavy water upgrading in all CANDU stations. The DW upgrader is designed to take advantage of the difference in relative volatility (a measure of separation of isotopes) between H 2 O and D 2 O. However, the low relative volatility of the H 2 O/D 2 O system requires large number of stages (long columns) and large reflux ratios (large reboiler loads) - thus resulting in significant capital and operating costs. Atomic Energy of Canada Limited (AECL) developed the Combined Electrolysis and Catalytic Exchange (CECE) technology as an economical alternative to the DW system. CECE-based upgraders have been demonstrated in pilot scale facilities at AECL Chalk River Laboratories and in Hamilton, Ontario. This design is based on catalytic hydrogen isotope exchange between water and hydrogen gas. (author)

  7. Radioactive waste repository study

    International Nuclear Information System (INIS)

    1978-11-01

    This is the third part of a report of a preliminary study for AECL. It summarizes the topics considered in reports AECL-6188-1 and AECL-6188-2 as requirements for an undergpound repository for disposal of wastes produced by the Canadian Nuclear Fuel Program. (author)

  8. A plan for the modification and assessment of TRAC-PF1/MOD2 for use in analyzing CANDU 3 transient thermal-hydraulic phenomena

    International Nuclear Information System (INIS)

    Siebe, D.A.; Boyack, B.E.; Giguere, P.T.

    1994-11-01

    This report presents the results of the review and planning done for the United States Nuclear Regulatory Commission to identify the thermal-hydraulic phenomena that could occur in the CANDU 3 reactor design during transient conditions, plan modifications to the TRAC-PF1/MOD2 (TRAC) computer code needed to adequately predict CANDU 3 transient thermal-hydraulic phenomena, and identify an assessment program to verify the ability of TRAC, when modified, to predict these phenomena. This work builds on analyses and recommendations produced by the Idaho National Engineering Laboratory (INEL). To identify the thermal-hydraulic phenomena, a large-break loss-of-coolant accident simulation, performed as part of earlier work by INEL with an Atomic Energy of Canada, Limited (AECL) thermal-hydraulic computer code (CATHENA), was analyzed in detail. Other accident scenarios were examined for additional phenomena. A group of Los Alamos National Laboratory reactor thermal-hydraulics experts ranked the phenomena to produce a preliminary phenomena identification and ranking table (PIRT). The preliminary nature of the PIRT was a result of a lack of direct expertise with the unique processes and phenomena of the CANDU 3. Nonetheless, this PIRT provided an adequate foundation for planning a program of code modifications. We believe that this PIRT captured the most important phenomena and that refinements to the PIRT will mainly produce clarification of the relative importance (ranking) of phenomena. A plan for code modifications was developed based on this PIRT and on information about the modeling methodologies for CANDU-specific phenomena used in AECL codes. AECL thermal-hydraulic test facilities and programs were reviewed and the information used in developing an assessment plan to ensure that TRAC-PF1/MOD2, when modified, will adequately predict CANDU 3 phenomena

  9. Waste minimization at Chalk River Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Kranz, P.; Wong, P.C.F. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2011-07-01

    Waste minimization supports Atomic Energy of Canada Limited (AECL) Environment Policy with regard to pollution prevention and has positive impacts on the environment, human health and safety, and economy. In accordance with the principle of pollution prevention, the quantities and degree of hazard of wastes requiring storage or disposition at facilities within or external to AECL sites shall be minimized, following the principles of Prevent, Reduce, Reuse, and Recycle, to the extent practical. Waste minimization is an important element in the Waste Management Program. The Waste Management Program has implemented various initiatives for waste minimization since 2007. The key initiatives have focused on waste reduction, segregation and recycling, and included: 1) developed waste minimization requirements and recycling procedure to establish the framework for applying the Waste Minimization Hierarchy; 2) performed waste minimization assessments for the facilities, which generate significant amounts of waste, to identify the opportunities for waste reduction and assist the waste generators to develop waste reduction targets and action plans to achieve the targets; 3) implemented the colour-coded, standardized waste and recycling containers to enhance waste segregation; 4) established partnership with external agents for recycling; 5) extended the likely clean waste and recyclables collection to selected active areas; 6) provided on-going communications to promote waste reduction and increase awareness for recycling; and 7) continually monitored performance, with respect to waste minimization, to identify opportunities for improvement and to communicate these improvements. After implementation of waste minimization initiatives at CRL, the solid waste volume generated from routine operations at CRL has significantly decreased, while the amount of recyclables diverted from the onsite landfill has significantly increased since 2007. The overall refuse volume generated at

  10. Waste minimization at Chalk River Laboratories

    International Nuclear Information System (INIS)

    Kranz, P.; Wong, P.C.F.

    2011-01-01

    Waste minimization supports Atomic Energy of Canada Limited (AECL) Environment Policy with regard to pollution prevention and has positive impacts on the environment, human health and safety, and economy. In accordance with the principle of pollution prevention, the quantities and degree of hazard of wastes requiring storage or disposition at facilities within or external to AECL sites shall be minimized, following the principles of Prevent, Reduce, Reuse, and Recycle, to the extent practical. Waste minimization is an important element in the Waste Management Program. The Waste Management Program has implemented various initiatives for waste minimization since 2007. The key initiatives have focused on waste reduction, segregation and recycling, and included: 1) developed waste minimization requirements and recycling procedure to establish the framework for applying the Waste Minimization Hierarchy; 2) performed waste minimization assessments for the facilities, which generate significant amounts of waste, to identify the opportunities for waste reduction and assist the waste generators to develop waste reduction targets and action plans to achieve the targets; 3) implemented the colour-coded, standardized waste and recycling containers to enhance waste segregation; 4) established partnership with external agents for recycling; 5) extended the likely clean waste and recyclables collection to selected active areas; 6) provided on-going communications to promote waste reduction and increase awareness for recycling; and 7) continually monitored performance, with respect to waste minimization, to identify opportunities for improvement and to communicate these improvements. After implementation of waste minimization initiatives at CRL, the solid waste volume generated from routine operations at CRL has significantly decreased, while the amount of recyclables diverted from the onsite landfill has significantly increased since 2007. The overall refuse volume generated at

  11. Assessment of Siemens plessey electronic personal dosimeter

    International Nuclear Information System (INIS)

    Hirning, C.R.; Lopez, S.; Yuen, P.S.

    1994-01-01

    This report presents the results of a laboratory assessment of the performance of a new type of personal dosimeter. The Electronic Personal Dosimeter, or EPD, was developed jointly by the National Radiological Protection Board and Siemens Plessey Controls Limited, both of the United Kingdom. Twenty pre-production units of the EPD and a reader were purchased by Ontario Hydro for the assessment. The tests were conducted jointly by Ontario Hydro's Health and Safety Division and AECL Research's Chalk River Laboratories (CRL), with funding from the Candu Owner's Group. A total of 26 tests were conducted, divided between Ontario Hydro and AECL. The test results were compared with the relevant requirements of three standards. In general, the performance of the EPD was found to be quite acceptable. It met most of the relevant requirements of the three standards and most of the design specifications. However, the following deficiencies were found: slow response time; sensitivity to high-frequency EMF; poor resistance to dropping; and an alarm that is not loud enough. In addition, the response of the EPD to low-energy beta rays may be too low for some applications. There were serious problems with the reliability of operation of the pre production EPDs used in these tests. 9 refs., 34 tabs., 20 figs

  12. Assessment of Siemens plessey electronic personal dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Hirning, C R; Lopez, S [Ontario Hydro, Toronto, ON (Canada); Yuen, P S [Atomic Energy of Canada Ltd., Chalk River, ON (Canada). Chalk River Nuclear Labs.

    1994-01-01

    This report presents the results of a laboratory assessment of the performance of a new type of personal dosimeter. The Electronic Personal Dosimeter, or EPD, was developed jointly by the National Radiological Protection Board and Siemens Plessey Controls Limited, both of the United Kingdom. Twenty pre-production units of the EPD and a reader were purchased by Ontario Hydro for the assessment. The tests were conducted jointly by Ontario Hydro`s Health and Safety Division and AECL Research`s Chalk River Laboratories (CRL), with funding from the Candu Owner`s Group. A total of 26 tests were conducted, divided between Ontario Hydro and AECL. The test results were compared with the relevant requirements of three standards. In general, the performance of the EPD was found to be quite acceptable. It met most of the relevant requirements of the three standards and most of the design specifications. However, the following deficiencies were found: slow response time; sensitivity to high-frequency EMF; poor resistance to dropping; and an alarm that is not loud enough. In addition, the response of the EPD to low-energy beta rays may be too low for some applications. There were serious problems with the reliability of operation of the pre production EPDs used in these tests. 9 refs., 34 tabs., 20 figs.

  13. Radar sounding of bedrock and water table at Chalk River

    International Nuclear Information System (INIS)

    Annan, A.P.; Davis, J.L.

    1979-01-01

    When a spill of radioactive waste occurs, one of the main concerns is the flow pattern of ground water in the area of the spill. Ground probing radar is a relatively new geophysical technique which can provide high resolution data on the surficial geology and water distribution. The results of some preliminary radar experiments conducted at Chalk River Nuclear Laboratories (CRNL) of the Atomic Energy of Canada Limited (AECL), Chalk River, Ontario are presented. (auth)

  14. The effect of proposed crush tests on transport containers

    International Nuclear Information System (INIS)

    1984-09-01

    Crush tests were performed on two AECL F112 packaging specimens, two simulated AECL-CRNL 4H packaging specimens, and on empty steel drums. The 9 m drop test was carried out on two simulated AECL-CRNL 4H packaging specimens for comparison with the effects of the crush test. The tests were filmed using high speed photography and 35mm still photographs

  15. Prototype scale demonstration of CECE detritiation

    International Nuclear Information System (INIS)

    Sadhankar Ramesh; Cobanoglu, Macit

    2004-01-01

    AECL has developed and demonstrated the Combined Electrolysis and Catalytic Exchange (CECE) Process for detritiation of heavy water. Although CECE has been the subject of pilot-scale demonstrations by various organizations, AECL is the first to demonstrate this technology in an industrial prototype plant. AECL designed, built and operated a CECE demonstration facility under CAN/CSA N286 Quality Assurance Program. The facility was licensed by the Canadian nuclear regulator. This was a two-fold demonstration of the CECE technology - for upgrading (removal of light water) and for detritiation of heavy water. In 1998 June, AECL began operating the facility in upgrading mode. The design feed rate ranged up to 25 Mg/a for 95 mol% D 2 O feed water. After 18 months of operation in upgrading mode, the facility was reconfigured and operated for an additional 9 months from 2000 August in detritiation mode. Design capacity for detritiation was 5 Mg/a with a detritiation factor (DF) of 100. However, significantly higher DFs, up to 56 000, were demonstrated. Highlights of the detritiation demonstration were: Proven robustness of AECL's proprietary wetproofed catalyst for Liquid Phase Catalytic Exchange; Demonstration of a trickle-bed-recombiner for stoichiometric combination of deuterium and oxygen; Demonstration of electrolysis of highly tritiated heavy water; High process availability and controllability was demonstrated by a long interrupted run; Low emissions; Demonstration of high DF - up to 56 000 - a significant advantage of the CECE process over other approaches to detritiation; Validation of AECL's simulation code for the CECE process over a range of DFs from 100 to 50 000. Apart from the technology, AECL has expertise in all aspects of setting up a new detritiation facility including design, engineering, safety assessment, licensing support, project management and training. AECL is also the engineering and design contractor for a tritium removal facility that is under

  16. An overview of thermalhydraulics R and D for SLOWPOKE heating reactors

    International Nuclear Information System (INIS)

    Dimmick, G.R.

    1988-09-01

    AECL is currently demonstrating the use of pool-type reactors of up to 10 MW output to produce hot water at about 90 degrees Celsius. The initial focus for the development is the provision of a source of hot water for institutional and municipal heating networks. Ongoing developments are designed to broaden the applications to electricity generation and industrial processes such as desalination and agricultural needs. The reactor concept is based on the Slowpoke-2 research reactor, eight of which are successfully operating in Canada and abroad. The primary-circuit flow is driven by natural convection, with the heated water, produced by the reactor core near the bottom of the pool, being ducted to low-pressure-drop heat exchangers in the upper part of the pool. As the pool volume is relatively large, the fluid transit time around the circuit is long, ensuring that the reactor response to all normal transients is extremely slow. To investigate thermalhydraulics aspects of the reactor design, including its behaviour underextreme conditions, an electrically heated, natural-convection loop was designed and constructed. The core of the loop consists of a rod bundle that is a precise reproduction of one quarter of the core of the 2-MW SLOWPOKE Demonstration Reactor presently being tested at the Whiteshell Nuclear Research Establishment. With this loop, measurements of the distribution of pressure, temperature, velocity and subcooled void have been made in the simulated core, via a variety of intrusive and non-intrusive techniques. In addition, both the single- and two-phase behaviour of the system have been studied. This paper gives examples of the various in-core measurements made and also makes comparisons between the measured system behaviour and that predicted by the various steady-state and transient computer codes

  17. Off-gas control project

    International Nuclear Information System (INIS)

    Torgerson, D.F.; Smith, I.M.

    1978-06-01

    A program to develop and study off-gas abatement techniques has recently been initiated at Whiteshell Nuclear Research Establishment (WNRE). This report provides information on the properties and expected behaviour of reprocessing plant off-gases, and outlines the experimental program to be undertaken. (author)

  18. Validation of the COBRA code for dry out power calculation in CANDU type advanced fuels

    International Nuclear Information System (INIS)

    Daverio, Hernando J.

    2003-01-01

    Stern Laboratories perform a full scale CHF testing of the CANFLEX bundle under AECL request. This experiment is modeled with the COBRA IV HW code to verify it's capacity for the dry out power calculation . Good results were obtained: errors below 10 % with respect to all data measured and 1 % for standard operating conditions in CANDU reactors range . This calculations were repeated for the CNEA advanced fuel CARA obtaining the same performance as the CANFLEX fuel. (author)

  19. Design verification of the CANFLEX fuel bundle - quality assurance requirements for mechanical flow testing

    International Nuclear Information System (INIS)

    Alavi, P.; Oldaker, I.E.; Chung, C.H.; Suk, H.C.

    1997-01-01

    As part of the design verification program for the new fuel bundle, a series of out-reactor tests was conducted on the CANFLEX 43-element fuel bundle design. These tests simulated current CANDU 6 reactor normal operating conditions of flow, temperature and pressure. This paper describes the Quality Assurance (QA) Program implemented for the tests that were run at the testing laboratories of Atomic Energy of Canada Limited (AECL) and Korea Atomic energy Research Institute (KAERI). (author)

  20. Atomic Energy of Canada Limited annual report 1989-1990

    International Nuclear Information System (INIS)

    1990-01-01

    In 1990, after a comprehensive industry review, the Canadian government announced that steps would be taken to revitalize the nuclear industry. Canada's nuclear utilities made a commitment to bear a large share of the cost of nuclear research and development. Atomic Energy of Canada Limited (AECL) reported its first financial loss in twelve years, as anticipated at the start of the year. Four of the 20 CANDU reactors operating worldwide were in the top ten based on lifetime performance. By year-end one foreign and two domestic utilities had announced their intention to build more CANDU units. The federal government has agreed to stabilize AECL's research funding at 1989-90 levels ($31.5 million above levels planned in 1985), has authorized AECL to negotiate with New Brunswick to build Point Lepreau-2 as the prototype for the CANDU-3 reactor, and has allowed the restructuring of AECL so utility and private sector investors can become equity partners in AECL CANDU

  1. Annual report 1997-1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    Atomic Energy of Canada Limited (AECL) was established in 1952 as a Crown Corporation and reports to parliament through the Minister of Natural Resources. As an annual report, financial statements are an integral element, financial analysis and review are also ongoing. AECL is very active in marketing the science culture which is key to public understanding and acceptance of the nuclear industry. In commercial operations, the CANDU is still the flagship to be marketed in many countries. AECL is the main producer of medical isotopes for the global market. AECL and MDS Nordion signed agreements to secure the ongoing supply of isotopes and to build and operate two MAPLE reactors at the Chalk River site. Activities at AECL are focused on improved economics, further enhanced safety systems and fuel cycle flexibility in the research and product development programs. Waste management and nuclear sciences i e. health and environmental sciences are ongoing studies. Site refurbishment focuses on replacing and refurbishing major facilities to meet business needs.

  2. Annual report 1997-1998

    International Nuclear Information System (INIS)

    1998-01-01

    Atomic Energy of Canada Limited (AECL) was established in 1952 as a Crown Corporation and reports to parliament through the Minister of Natural Resources. As an annual report, financial statements are an integral element, financial analysis and review are also ongoing. AECL is very active in marketing the science culture which is key to public understanding and acceptance of the nuclear industry. In commercial operations, the CANDU is still the flagship to be marketed in many countries. AECL is the main producer of medical isotopes for the global market. AECL and MDS Nordion signed agreements to secure the ongoing supply of isotopes and to build and operate two MAPLE reactors at the Chalk River site. Activities at AECL are focused on improved economics, further enhanced safety systems and fuel cycle flexibility in the research and product development programs. Waste management and nuclear sciences i e. health and environmental sciences are ongoing studies. Site refurbishment focuses on replacing and refurbishing major facilities to meet business needs

  3. List of publications: April 1982 to March 1983

    International Nuclear Information System (INIS)

    1983-06-01

    All scientific and technical publications of Atomic Energy of Canada Ltd. issued from April 1982 to March 1983 are listed in ten broad categories. Each entry includes the AECL report series number, author(s), title, journal citation (if a reprint), pagination, issue date, and price. There are indexes by AECL and other report numbers, and authors. Directions for ordering AECL reports and a list of depository libraries are appended

  4. History repeats: a personal reminiscence

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, J.T. [AECL Board of Directors, R and D Advisory Panel (Canada); Carleton Univ., Dept. of Mechanical and Aerospace Engineering, Ottawa, Ontario (Canada)

    2011-09-15

    The decision of the federal government to split Atomic Energy of Canada Ltd. into a privately owned CANDU technology company and a publicly owned Nuclear Laboratory has resulted in the purchase by SNC-Lavalin of the AECL's Sheridan Park operations, now called Candu Energy, and the reorganization of Chalk River operations as a national Nuclear Laboratory. This is the third time in my experience in the nuclear field in Canada that a successful nuclear organization with which I have been associated has been significantly disrupted by forces or circumstances outside its control. The other two experiences are briefly described in the article. (author)

  5. A practical process for light-water detritiation at large scales

    Energy Technology Data Exchange (ETDEWEB)

    Boniface, H.A. [Atomic Energy of Canada Limited, Chalk River, ON (Canada); Robinson, J., E-mail: jr@tyne-engineering.com [Tyne Engineering, Burlington, ON (Canada); Gnanapragasam, N.V.; Castillo, I.; Suppiah, S. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    AECL and Tyne Engineering have recently completed a preliminary engineering design for a modest-scale tritium removal plant for light water, intended for installation at AECL's Chalk River Laboratories (CRL). This plant design was based on the Combined Electrolysis and Catalytic Exchange (CECE) technology developed at CRL over many years and demonstrated there and elsewhere. The general features and capabilities of this design have been reported as well as the versatility of the design for separating any pair of the three hydrogen isotopes. The same CECE technology could be applied directly to very large-scale wastewater detritiation, such as the case at Fukushima Daiichi Nuclear Power Station. However, since the CECE process scales linearly with throughput, the required capital and operating costs are substantial for such large-scale applications. This paper discusses some options for reducing the costs of very large-scale detritiation. Options include: Reducing tritium removal effectiveness; Energy recovery; Improving the tolerance of impurities; Use of less expensive or more efficient equipment. A brief comparison with alternative processes is also presented. (author)

  6. The geochemical environment of nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    Gascoyne, M.

    1995-01-01

    The concept for disposal of Canada's nuclear fuel waste in a geologic environment on the Canadian Shield has recently been presented by Atomic Energy of Canada Limited (AECL) to governments, scientists, and the public, for review. An important part of this concept concerns the geochemical environment of a disposal vault and includes consideration of rock and groundwater compositions, geochemical interactions between rocks, groundwaters, and emplaced vault materials, and the influences and significance of anthropogenic and microbiological effects following closure of the vault. This paper summarizes the disposal concept and examines aspects of the geochemical environment. The presence of saline groundwaters and reducing conditions at proposed vault depths (500-1000 m) in the Canadian Shield has an important bearing on the stability of the used nuclear fuel, its container, and buffer and backfill materials. The potential for introduction of anthropogenic contaminants and microbes during site investigations and vault excavation, operation, and sealing is described with examples from AECL's research areas on the Shield and in their underground research laboratory in southeastern Manitoba. (author)

  7. Attenuation of contaminant plumes in homogeneous aquifers: Sensitivity to source function at moderate to large peclet numbers

    International Nuclear Information System (INIS)

    Selander, W.N.; Lane, F.E.; Rowat, J.H.

    1995-05-01

    A groundwater mass transfer calculation is an essential part of the performance assessment for radioactive waste disposal facilities. AECL's IRUS (Intrusion Resistant Underground Structure) facility, which is designed for the near-surface disposal of low-level radioactive waste (LLRW), is to be situated in the sandy overburden at AECL's Chalk River Laboratories. Flow in the sandy aquifers at the proposed IRUS site is relatively homogeneous and advection-dominated (large Peclet numbers). Mass transfer along the mean direction of flow from the IRUS site may be described using the one-dimensional advection-dispersion equation, for which a Green's function representation of downstream radionuclide flux is convenient. This report shows that in advection-dominated aquifers, dispersive attenuation of initial contaminant releases depends principally on two time scales: the source duration and the pulse breakthrough time. Numerical investigation shows further that the maximum downstream flux or concentration depends on these time scales in a simple characteristic way that is minimally sensitive to the shape of the initial source pulse. (author). 11 refs., 2 tabs., 3 figs

  8. Introduction of microbial nutrients in a nuclear fuel waste disposal vault as a result of excavation and operation activities

    Energy Technology Data Exchange (ETDEWEB)

    Stroes-Gascoyne, S; Gascoyne, M; Onagi, D; Thomas, D A; Hamon, C J; Watson, R; Porth, R J

    1996-08-01

    A nuclear fuel waste disposal vault would not likely be a sterile environment. Bacterial activity would be expected in those areas of the vault conducive to bacterial life, i.e., where effects of heat, moisture content, radiation and compaction would not prevent or severely restrict bacterial life and where suitable and sufficient nutrients would be present. An inventory of bacterial nutrients that would be emplaced `intentionally` with vault materials (fuel waste, waste containers, buffer and backfill materials) has been made previously. This report assesses bacterial nutrients that would be added `inadvertently` to a vault in the form of residues of materials used to excavate and operate a vault. Measurements of blasting material residues in the various water supplies, excavated broken rock (muck) and in cores drilled in old and new tunnel walls were made at AECL`s Underground Research Laboratory. Results show that the largest potential nutrient addition (both carbon and nitrogen) to a vault would result from using untreated excavated broken rock as part of the backfill. (author). 16 refs., 4 tabs., 10 figs.

  9. Radionuclide migration in groundwater at a low-level waste disposal site: a comparison of predictive performance modeling versus field observations

    International Nuclear Information System (INIS)

    Robertson, D.E.; Myers, D.A.; Abel, K.H.; Bergeron, M.P.; Champ, D.R.; Killey, R.W.D.; Moltyaner, G.L.; Young, J.L.

    1986-01-01

    This paper describes a project which is structured to test the concept of modeling a shallow land low-level waste burial site. The project involves a comparison of the actual observed radionuclide migration in groundwaters at a 30-year old well-monitored field site with the results of predictive transport modeling. The comparison is being conducted as a cooperative program with the Atomic Energy of Canada Ltd. (AECL) at the low-level waste management area at the Chalk River Nuclear Laboratories, Ontario, Canada. A joint PNL-AECL field investigation was conducted in 1983 and 1984 to compliment the existing extensive data base on actual radionuclide migration. Predictive transport modeling is currently being conducted for this site; first, as if it were a new location being considered for a low-level waste shallow-land burial site and only minimal information about the site were available, and second, utilizing the extensive data base available for the site. The modeling results will then be compared with the level of effort needed to reasonably predict the spacial and temporal movement of radionuclides in the groundwater environment

  10. NRU licence extension via integrated safety review

    Energy Technology Data Exchange (ETDEWEB)

    Mantifel, N. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    The National Research Reactor, NRU at AECL Chalk River Laboratories achieved first criticality in November 1957. The completion of an Integrated Safety Review (ISR) in 2011, and subsequent Global Assessment Report (GAR), and Integrated Implementation Plan (IIP) has given confidence in the safe and reliable operation of NRU, therefore extending the licensing case to safely and reliably operate NRU until 2021 and beyond (64+ years of operation). The key vehicle to achieve this confidence is the IIP, that resulted from the ISR. NRU's IIP is a 10 year plan that addresses the gaps identified in the ISR between modern codes and standards in a prioritized approach. AECL is currently in year 3 of the IIP execution, is on or ahead of schedule to complete the identified improvements. The IIP in conjunction with a License Condition Handbook has replaced the licensing protocol with the Canadian Nuclear Safety Commission, (CNSC). Execution of the IIP to plan supports the continued safe operation of NRU. The ISR was carried out with the recognition that the NRU reactor is a research and isotope producing reactor approaching license renewal and not a power reactor undergoing refurbishment and life extension. Therefore, the IIP is being executed while NRU continues to deliver on its three missions: production of medical isotopes, support for fuels and materials research, and serving as a high flux neutron source in support of research relying on neutron scattering. The IIP is grouped into 5 Global Issue Groups, (GIGs) to support focused execution. The activities and tasks within the five GIGs are being executed via a matrix organization through the use of the Chalk River Laboratories Corrective Action Program to ensure the assignment of actions, completion and evidence to support closure is documented and retained. This paper discusses the approach taken by AECL to license and ensure safe, reliable operation of NRU until 2021 and beyond. (author)

  11. Busted Butte report on laboratory radionuclide migration experiments in non-welded tuff under unsaturated conditions

    Energy Technology Data Exchange (ETDEWEB)

    Vandergraaf, T.T.; Drew, D.J.; Ticknor, K.V

    2002-11-01

    Three blocks of non-welded tuff, one nominally one cubic foot (trial block) and the other two, nominally one cubic metre (1 m{sup 3}), were excavated from the Busted Butte Test Facility on the Nevada Test Site and transported to the Atomic Energy of Canada Limited Whiteshell Laboratories in Pinawa, Manitoba. The trial block and one of the 1-m{sup 3} blocks were used for unsaturated flow experiments. The remaining 1-m{sup 3} block is being used for saturated flow experiments and will be reported on separately. After a vertical flow of synthetic transport solution was set up under unsaturated conditions, a suite of conservative and chemically reactive radionuclide tracers was injected at volumetric flow rates of 20 mL/hr in the trial block, and 10 mL/hr in the 1-m{sup 3} block. The duration of the migration experiment in the trial block was 87 days, while the migration experiment in the 1-m{sup 3} block was continuing after 600 days. Results obtained from the migration experiment in the trial block showed that transport of {sup 95m+99}Tc, injected as the pertechnetate (an)ion, was slightly faster than that of the transport solution, using tritiated water ({sup 3}H{sub 2}O) as a flow indicator. Retardation of {sup 237}Np was consistent with that predicted from results obtained in supporting static batch sorption studies. Post-migration analysis of the flow field in the trial block showed that the front of the {sup 22}Na had migrated about half the distance through the block, and that {sup 60}Co and {sup 137}Cs had been retained near the inlet. This observation agrees qualitatively with that predicted from the results from static batch sorption studies. In the larger scale experiment, the transport behavior of Tc is very similar to that of the transport solution at this point in time. None of the other radionuclide tracers have been detected in water collected from this block. This observation is consistent with the observations for the smaller block. (author)

  12. Comments on nuclear reactor safety in Ontario

    International Nuclear Information System (INIS)

    1987-08-01

    The Chalk River Technicians and Technologists Union representing 500 technical employees at the Chalk River Nuclear Laboratories of AECL submit comments on nuclear reactor safety to the Ontario Nuclear Safety Review. Issues identified by the Review Commissioner are addressed from the perspective of both a labour organization and experience in the nuclear R and D field. In general, Local 1568 believes Ontario's CANDU nuclear reactors are not only safe but also essential to the continued economic prosperity of the province

  13. Radiation applications research and facilities in AECL Research Company

    International Nuclear Information System (INIS)

    Iverson, S.L.

    1988-01-01

    In the 60's and 70's Atomic Energy of Canada had a very active R and D program to discover and develop applications of ionizing radiation. Widespread interest in the use of radiation for food processing and the possibility of developing reliable and competitive machine sources of radiation hold out the promise of a major increase in industrial use of radiation. In March 1985 a new branch, Radiation Applications Research, began operations with the objective of working closely with industry to develop and assist the introduction of new uses of ionizing radiation. The Branch is equipped with appropriate analytical equipment including HPLC (high performance liquid chromatograph) and GC/MS (gas chromatograph/mass spectrometer) as well as a Gammacell 220 and an I-10/1, one kilowatt 10 MeV electron accelerator. The accelerator is located in a specially designed facility equipped for experimental irradiation of the test quantities of packaged products as well as solids, liquids and gases in various configurations. A conveyor system moves the packaged products from the receiving area, through a maze, past the electron beam at a controlled rate and finally to the shipping area. Other necessary capabilities, such as gamma and electron dosimetry and a microbiology laboratory, have also been developed. Initial projects in areas ranging from food through environmental and industrial applications have been assessed and the most promising have been selected for further work. As an example, the use of charcoal absorbent beds to concentrate the components of gas or liquid waste streams requiring treatment is showing promise as a method of significantly reducing the cost of radiation treatment for some effluents. A number of other projects are described. (author)

  14. In situ stress determination research study

    International Nuclear Information System (INIS)

    Austin, W.G.; Thompson, P.M.

    1994-01-01

    The objectives of this study are to evaluate and implement rock stress determination instruments and techniques developed by Atomic Energy of Canada Limited (AECL) at its Underground Research Laboratory (URL) for use in jointed rock and to continue the development of analytical and interpretation methods for stress determination results including effects of scale, structure and anisotropy. Testing and evaluation of the instruments and methods developed at URL need to be done in a similar rock type prior to underground access at the Yucca Mountain Site Characterization Project

  15. Specifics of forced-convective heat transfer in supercritical carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Saltanov, A.E.; Mann, B.D.; Harvel, C.G.; Pioro, D.I., E-mail: Eugene.saltanov@hotmail.com [University of Ontario Institute of Technology, Oshawa, ON (Canada)

    2015-07-01

    The appropriate description of heat-transfer to coolants at supercritical state is one of the main challenges in development of supercritical-fluids applications for the Generation-IV reactors. In this paper the basis for comparison of relatively recent experimental data on supercritical carbon dioxide (CO{sub 2}) obtained at facilities of the Korea Atomic Energy Research Institute (KAERI) and Chalk River Laboratories (CRL) of Atomic Energy of Canada Limited (AECL) is discussed, and a preliminary heat-transfer correlation for joint CRL and KAERI datasets is presented. (author)

  16. Value added services to CANDU plants

    International Nuclear Information System (INIS)

    Kakaria, B.K.

    2003-01-01

    Over the last decade or so, nuclear power plants, just like other types of electricity generating plants, have been facing a number of challenges. Depending on the operating environment of the utility, these challenges are forcing plant owners to examine all facets of the operating costs. Privatization, deregulation and economics of alternative electricity generation methods are exerting enormous pressure on nuclear power plants to streamline costs and improve their operational performance. CANDU reactors are no exception to these forces and face similar pressures. In particular, operating plants that are contemplating plant life extensions are being required to clearly demonstrate the economics of continued operation over other forms of power generation available to the utility. Improvement of capacity factors has the effect of increasing the revenues from the plant and as these revenues increase, the fixed portion of the plant costs including OM and A costs become a smaller percentage of the total revenues. Similar results can be achieved by aiming to reduce the plant OM and A costs. In reality, most well-planned intervention schemes directed at reducing OM and A costs tend to also increase the plant availability. Following plant turnover after commissioning, AECL has been supporting the CANDU owners and utilities with an assortment of products and services dealing with plant operations and outage management issues. AECL has taken the lead in arranging specialized resources, products and services by teaming with other complementary organizations to provide a complete suite of services. Recent examples of such support to operating CANDU plants will be described in the paper. AECL is responding to this changing business environment in two important ways. First, AECL is changing from simply providing a service to its clients towards providing value, something much more important. To this end, AECL is looking to other organizations to form alliances, partnerships and

  17. Progress reports on SCWR-related development projects from Chinese universities for FY2008-2009

    International Nuclear Information System (INIS)

    Leung, L.K.H.

    2010-02-01

    Canada is participating in the international cooperative forum on system research for two designs (supercritical water-cooled reactor, SCWR, and Very High Temperature Reactor, VHTR) of the Gen-IV nuclear reactor. The forum is referred to as the Generation-IV International Forum (or GIF). The Canadian effort focuses mainly on the SCWR. Among various GIF participants, Canada is the leader of this design and has interest mainly on the pressure-tube type reactor, which is a natural extension of the existing CANDU reactor. Several critical research areas (such as material, chemistry, thermalhydraulics, instability, critical flow, etc.) have been identified in the system-research plan for supporting the SCWR design. Collaborative projects have been established between AECL and universities in China to expedite the CANDU SCWR design. These projects focus on research areas beyond the current scope of the AECL and the NSERC/NRCan/AECL collaborative research and development (CRD) project. AECL supports these projects directly and is contributing (in-kind) the results and findings to the Canadian national program. The collaboration between AECL and Chinese universities began in 2007 July. Most projects cover the duration of three years. The Chinese universities submit their annual progress reports each year prior to the project renewal. The objective of this report is to summarize the progress on collaborative projects between AECL and Chinese universities (namely the Tsinghua University, Shanghai Jiaotong University, and Xi'an Jiaotong University) over the duration of 2008 July to 2009 June. (author)

  18. A study on the health of the employees of Atomic Energy of Canada Limited. III

    International Nuclear Information System (INIS)

    Johnston, L.H.; Werner, M.M.

    1987-01-01

    The Atomic Energy of Canada Ltd (AECL) Employee Health Study commenced in 1980 July following the issue of a Company-Wide General Notice of 1980 April by the President of Atomic Energy of Canada Limited, Mr. James Donnelly. The study was set up to determine the causes of death of the AECL study population as compared to a similar group in the general population and to determine if there is a relationship between cause of death and occupational exposure to ionising radiation. Previous AECL reports have outlined how the study has been set up and implemented. The purpose of this report is to describe the reasons for and the methods of upgrading the data base for the AECL Employee Health Study. Some description of procedures used during the first linkage and recommendations for future linkages are included

  19. Computer simulation of ultrasonic waves in solids

    International Nuclear Information System (INIS)

    Thibault, G.A.; Chaplin, K.

    1992-01-01

    A computer model that simulates the propagation of ultrasonic waves has been developed at AECL Research, Chalk River Laboratories. This program is called EWE, short for Elastic Wave Equations, the mathematics governing the propagation of ultrasonic waves. This report contains a brief summary of the use of ultrasonic waves in non-destructive testing techniques, a discussion of the EWE simulation code explaining the implementation of the equations and the types of output received from the model, and an example simulation showing the abilities of the model. (author). 2 refs., 2 figs

  20. Simulation of buoyancy induced gas mixing tests performed in a large scale containment facility using GOTHIC code

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Z.; Chin, Y.S. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    This paper compares containment thermal-hydraulics simulations performed using GOTHIC against a past test set of large scale buoyancy induced helium-air-steam mixing experiments that had been performed at the AECL's Chalk River Laboratories. A number of typical post-accident containment phenomena, including thermal/gas stratification, natural convection, cool air entrainment, steam condensation on concrete walls and active local air cooler, were covered. The results provide useful insights into hydrogen gas mixing behaviour following a loss-of-coolant accident and demonstrate GOTHIC's capability in simulating these phenomena. (author)

  1. Simulation of buoyancy induced gas mixing tests performed in a large scale containment facility using GOTHIC code

    International Nuclear Information System (INIS)

    Liang, Z.; Chin, Y.S.

    2014-01-01

    This paper compares containment thermal-hydraulics simulations performed using GOTHIC against a past test set of large scale buoyancy induced helium-air-steam mixing experiments that had been performed at the AECL's Chalk River Laboratories. A number of typical post-accident containment phenomena, including thermal/gas stratification, natural convection, cool air entrainment, steam condensation on concrete walls and active local air cooler, were covered. The results provide useful insights into hydrogen gas mixing behaviour following a loss-of-coolant accident and demonstrate GOTHIC's capability in simulating these phenomena. (author)

  2. The nuclear design of the MAPLE-X10 reactor

    International Nuclear Information System (INIS)

    Heeds, W.; Lebenhaft, J.R.; Lee, A.G.; Carlson, P.A.; McIlvain, H.; Lidstone, R.F.

    1995-01-01

    AECL is currently building the 10-MW MAPLE-X10 reactor at the Chalk River Laboratories to operate as a dedicated producer of commercial-scale quantities of key medical and industrial radioisotopes and as a demonstration of the MAPLE reactor design. In support of the safety and licensing analyses, static physics calculations have been performed to determine the neutronic performance and safety characteristics of the MAPLE-X10 reactor. This report summarizes results from the static physics calculations for several core conditions prior to commencing radioisotope production. (author)

  3. Radiation applications research and facilities in AECL research company

    Science.gov (United States)

    Iverson, S. L.

    In the 60's and 70's Atomic Energy of Canada had a very active R&D program to discover and develop applications of ionizing radiation. Out of this grew the technology underlying the company's current product line of industrial irradiators. With the commercial success of that product line the company turned its R&D attention to other activities. Presently, widespread interest in the use of radiation for food processing and the possibility of developing reliable and competitive machine sources of radiation hold out the promise of a major increase in industrial use of radiation. While many of the applications being considered are straightforward applications of existing knowledge, others depend on more subtle effects including combined effects of two or more agents. Further research is required in these areas. In March 1985 a new branch, Radiation Applications Research, began operations with the objective of working closely with industry to develop and assist the introduction of new uses of ionizing radiation. The Branch is equipped with appropriate analytical equipment including HPLC (high performance liquid chromatograph) and GC/MS (gas chromatograph/mass spectrometer) as well as a Gammacell 220 and an I-10/1, one kilowatt 10 MeV electron accelerator. The accelerator is located in a specially designed facility equipped for experimental irradiation of test quantities of packaged products as well as solids, liquids and gases in various configurations. A conveyor system moves the packaged products from the receiving area, through a maze, past the electron beam at a controlled rate and finally to the shipping area. Other necessary capabilities, such as gamma and electron dosimetry and a microbiology laboratory, have also been developed. Initial projects in areas ranging from food through environmental and industrial applications have been assessed and the most promising have been selected for further work. As an example, the use of charcoal adsorbent beds to concentrate

  4. Final argument relating to the Canadian nuclear power program

    International Nuclear Information System (INIS)

    Robertson, J.A.L.

    1978-05-01

    This report is the second brief, and one of a number of documents, submitted by Atomic Energy of Canada Limited (AECL) to the Ontario Royal Commission on Electric Power Planning. It is intended to update the original brief (AECL--5800) with respect to those matters that emerged during the course of the hearings and which had not been fully anticipated in that brief, as well as to summarize the AECL position on the various issues. To enable it to qualify as a ''final argument'' it contains only evidence or material that has been presented to the Royal Commission and is provided with marginal notations identifying the source of each section. It is AECL's position that the Canadian nuclear power program provides a safe, proven and efficient means of making a needed contribution to electricity supply, while strengthening the economy through the deployment of indigenous technology and resources. (author)

  5. Integrated plant information technology design support functionality

    International Nuclear Information System (INIS)

    Kim, Yeon Seung; Kim, Dae Jin; Barber, P. W.; Goland, D.

    1996-06-01

    This technical report was written as a result of Integrated Plant Information System (IPIS) feasibility study on CANDU 9 project which had been carried out from January, 1994 to March, 1994 at AECL (Atomic Energy Canada Limited) in Canada. From 1987, AECL had done endeavour to change engineering work process from paper based work process to computer based work process through CANDU 3 project. Even though AECL had a lot of good results form computerizing the Process Engineering, Instrumentation Control and Electrical Engineering, Mechanical Engineering, Computer Aided Design and Drafting, and Document Management System, but there remains the problem of information isolation and integration. On this feasibility study, IPIS design support functionality guideline was suggested by evaluating current AECL CAE tools, analyzing computer aided engineering task and work flow, investigating request for implementing integrated computer aided engineering and describing Korean request for future CANDU design including CANDU 9. 6 figs. (Author)

  6. Integrated plant information technology design support functionality

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Seung; Kim, Dae Jin [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Barber, P W; Goland, D [Atomic Energy Canada Ltd., (Canada)

    1996-06-01

    This technical report was written as a result of Integrated Plant Information System (IPIS) feasibility study on CANDU 9 project which had been carried out from January, 1994 to March, 1994 at AECL (Atomic Energy Canada Limited) in Canada. From 1987, AECL had done endeavour to change engineering work process from paper based work process to computer based work process through CANDU 3 project. Even though AECL had a lot of good results form computerizing the Process Engineering, Instrumentation Control and Electrical Engineering, Mechanical Engineering, Computer Aided Design and Drafting, and Document Management System, but there remains the problem of information isolation and integration. On this feasibility study, IPIS design support functionality guideline was suggested by evaluating current AECL CAE tools, analyzing computer aided engineering task and work flow, investigating request for implementing integrated computer aided engineering and describing Korean request for future CANDU design including CANDU 9. 6 figs. (Author).

  7. AECL present and future

    International Nuclear Information System (INIS)

    Foster, J.S.

    1975-08-01

    This is a history of Atomic Energy of Canada Limited with forecasts of its role in enabling Canada to meet a rapidly increasing share of her energy requirements from nuclear power. Its main activities will be research and development in support of contemporary and advanced CANDU (Canada Deuterium Uranium) nuclear power systems; research into other ways to provide energy and fissile materials; and investigation into applications for nuclear energy beyond the generation of electrical power. (Author)

  8. Evaluation of spiral wound reverse osmosis for four radioactive waste processing applications

    International Nuclear Information System (INIS)

    Sen Gupta, S.K.

    1997-01-01

    A pilot-scale spiral wound reverse osmosis rig was used to treat four significantly different radioactive waste streams, three of which were generated at the Chalk River Laboratories at AECL. These streams included: 1. A chemical decontamination (CD/DC) waste stream which is routinely treated by the plant-scale membrane system at CRL; 2. Reactor waste which is a dilute radioactive waste stream (containing primarily tritium and organic acids), and it an effluent from the operating reactors at AECL; 3. An ion exchange regenerant waste stream which contains a mixture of stream (1) (CD/DC), blended with secondary waste from ion exchange regeneration; 4. Boric acid simulated waste which is a by-product waste of the PWR reactors. This was the only stream treated that was not generated as a waste liquid at AECL. For the first three streams specified above, reverse osmosis was used to remove chemical and radiochemical impurities from the water with efficiencies usually exceeding 99%. In these three cases the 'permeate' or clean water was the product of the process. In the case of stream 4, reverse osmosis was used in a recovery application for the purpose of recycling boric acid back to the reactor, with the concentrate being the 'product'. Reverse osmosis technology was successfully demonstrated for the treatment of all four streams. Prefiltration and oxidation (with photocatalytic continuous oxidation technology) were evaluated as pretreatment alternatives for streams 1, 2, and 3. The results indicated that the effective crossflow velocity through and membrane vessel was more important in determining the extent of membrane fouling than the specific pretreatment strategy employed. (author)

  9. Using geographical information systems in planning NLLP decommissioning and environmental restoration activities

    International Nuclear Information System (INIS)

    McGregor, R.; Turner, W.

    2011-01-01

    The Nuclear Legacy Liabilities Program (NLLP) manages Canada's nuclear legacy liabilities at Atomic Energy of Canada Limited (AECL) sites and is funded by the Government of Canada through Natural Resources Canada (NRCan). Through the first five years of the Program these two organizations have worked collaboratively to bring numerous projects to completion. In addition to the diversity of facilities and waste dealt with under the NLLP, the Program involves seven sites in three different provinces. The breadth of the Program encompasses over 20 different projects at AECL's Chalk River Laboratories (CRL) site alone, with new projects evolving as work continues. Nuclear legacy liabilities are the result of over 60 years of nuclear research and development conducted by the National Research Council of Canada (1944 to 1952) and AECL (1952 to 2006) on behalf of the Government of Canada. The liabilities consist of outdated and unused research facilities and buildings, a wide variety of buried and stored radioactive waste, and affected lands. Since 1952, AECL has safely and cost effectively managed Canada's nuclear research facilities and the waste generated by their operation. During this time AECL improved waste management technologies and developed expertise in best practices. All projects undertaken by the NLLP contain a spatial, or geographically referenced, component that can be captured in a geographic information system (GIS). From the decommissioning of a single building within the plant itself (e.g. the building location itself or spaces within the building) to the process of locating a new facility within the CRL site (e.g. location within the CRL property in three dimensions and adjacency to other communities) all these projects contain spatially referenced information. This spatial information can be captured, organized and used by the GIS software to analyze and model any number of questions. The paper will discuss projects that address a

  10. Nuclear energy. Unmasking the mystery

    International Nuclear Information System (INIS)

    1988-08-01

    The Standing Committee on Energy, Mines and Resources of the House of Commons of Canada undertook a study of the economics of nuclear power in Canada. This is its report on the evidence it heard. It found that maintaining the nuclear power option is vital to Canada's interests. The Committee recommended that: the schedule for establishing a commercial high-level radioactive waste repository be advanced; the basic insurance coverage on nuclear facilities be raised; the federal government increase its financial support of Atomic Energy of Canada Ltd. (AECL); AECL expand its research and development activities, including non-nuclear R and D; AECL be allowed to hold a minority interest in any component of AECL that is privatized; any new entity created by privatization from AECL be required to remain under Canadian control; the Atomic Energy Control Act be altered to allow the Atomic Energy Control Board (AECB) to recover costs through licensing fees and user charges, while the AECB's parliamentary appropriation is increased to offset remaining costs of operations; membership on the AECB be increased from one to five full-time members, retaining the present four part-time members; the AECB hold its hearings in public; the name of the AECB be changed so it is more readily distinguishable from AECL; the AECB establish an office of public information; and that federal and provincial governments cooperate more closely to identify opportunities where more efficient use of electricity could be achieved and to promote those measures that can attain the greatest economic efficiency

  11. Mechanical response of jointed granite during shaft sinking at the Canadian Underground Research Laboratory

    International Nuclear Information System (INIS)

    Chan, T.; Lang, P.A.; Thompson, P.M.

    1985-01-01

    As part of the geoscience research within the Canadian Nuclear Fuel Waste Management Program, Atomic Energy of Canada Limited (AECL) is constructing an underground research laboratory (URL) in a previously undisturbed portion of a granitic intrusive, the Lac du Bonnet batholith, approximately 100 km northeast of Winnipeg, Manitoba. The overall geotechnical objectives of the URL are to assess and improve our ability to interpret and predict the geological, geophysical, geochemical, geomechanical and hydrogeological conditions of large bodies of plutonic rock, as well as to assess the accuracy of mathematical models used to predict the near-field mechanical and hydrogeological responses of the rock mass to excavation and thermal loading. Construction will be completed in July, 1986. Large-scale testing will commence soon afterwards and will last until the facility is decommissioned in the year 2000. A rectangular access shaft, 255 m deep x 2.8 m x 4.8 m, was sunk during the period May 1984 to March 1985. Rock displacements and stress changes were monitored as the excavation face (bottom) of the shaft advanced. The major objectives of this monitoring were (a) to evaluate and improve the ability of numerical models in predicting the mechanical response of the rock mass, (b) to back-calculate the rock-mass deformation modulus as a function of depth, (c) to assess the influence of natural fractures on the mechanical response of the granitic rock mass, and (d) to evaluate the quality of the geomechanical instrumentation, to determine instrumentation needs for future field experiments. Analysis of the data from this monitoring will aid the design and modelling of further experiments in the URL. In this paper, the rock displacements measured by an array of extensometers at 15 m below ground surface are presented and compared with predictions by a three-dimensional elastic continuum finite-element model

  12. Post-irradiation examination of prototype Al-64 wt% U{sub 3}Si{sub 2} fuel rods from NRU

    Energy Technology Data Exchange (ETDEWEB)

    Sears, D.F.; Primeau, M.F.; Buchanan, C.; Rose, D. [Chalk River Labs., Ontario (Canada)

    1997-08-01

    Three prototype fuel rods containing Al-64 wt% U{sub 3}Si{sub 2} (3.15 gU/cm{sup 3}) have been irradiated to their design burnup in the NRU reactor without incident. The fuel was fabricated using production-scale equipment and processes previously developed for Al-U{sub 3}Si fuel fabrication at Chalk River Laboratories, and special equipment developed for U{sub 3}Si{sub 2} powder production and handling. The rods were irradiated in NRU up to 87 at% U-235 burnup under typical driver fuel conditions; i.e., nominal coolant inlet temperature 37{degrees}C, inlet pressure 654 kPa, mass flow 12.4 L/s, and element linear power ratings up to 73 kW/m. Post-irradiation examinations showed that the fuel elements survived the irradiation without defects. Fuel core diametral increases and volumetric swelling were significantly lower than that of Al-61 wt% U{sub 3}Si fuel irradiated under similar conditions. This irradiation demonstrated that the fabrication techniques are adequate for full-scale fuel manufacture, and qualified the fuel for use in AECL`s research reactors.

  13. Radionuclide migration in groundwater at a low-level waste disposal site: a comparison of predictive performance modeling versus field observations

    International Nuclear Information System (INIS)

    Robertson, D.E.; Myers, D.A.; Bergeron, M.P.; Champ, D.R.; Killey, R.W.D.; Moltyaner, G.L.; Young, J.L.

    1985-08-01

    This paper describes a project which is structured to test the concept of modeling a shallow land low-level waste burial site. The project involves a comparison of the actual observed radionuclide migration in groundwaters at a 30-year-old well-monitored field site with the results of predictive transport modeling. The comparison is being conducted as a cooperative program with the Atomic Energy of Canada Ltd. (AECL) at the low-level waste management area at the Chalk River Nuclear Laboratories, Ontario, Canada. A joint PNL-AECL field inviestigation was conducted in 1983 and 1984 to complement the existing extensive data base on actual radionuclide migration. Predictive transport modeling is currently being conducted for this site; first, as if it were a new location being considered for a low-level waste shallow-land burial site and only minimal information about the site were available, and second, utilizing the extensive data base available for the site. The modeling results will then be compared with the empirical observations to provide insight into the level of effort needed to reasonably predict the spacial and temporal movement of radionuclides in the groundwater enviroment. 8 refs., 5 figs.,

  14. Nuclear fuel waste disposal in Canada

    International Nuclear Information System (INIS)

    Dormuth, K.W.; Gillespie, P.A.

    1990-05-01

    Atomic Energy of Canada Limited (AECL) has developed a concept for disposing of Canada's nuclear fuel waste and is submitting it for review under Federal Environmental Assessment and Review Process. During this review, AECL intends to show that careful, controlled burial 500 to 1000 metres deep in plutonic rock of the Canadian Precambrian Shield is a safe and feasible way to dispose of Canada's nuclear fuel waste. The concept has been assessed without identifying or evaluating any particular site for disposal. AECL is now preparing a comprehensive report based on more than 10 years of research and development

  15. Progress in developing the concept for the irradiation research facility

    International Nuclear Information System (INIS)

    Lee, A.G.; Bishop, W.E.; Gillespie, G.E.; Zeng, Y.

    1996-04-01

    At the 16th annual Canadian Nuclear Society conference, AECL presented the case for replacing the NRU reactor with an Irradiation Research Facility (IRF) to test CANDU fuels and materials and to perform advanced materials research using neutrons. AECL developed a cost estimate of $500 million for the reference IRF concept, and estimated that it would require 87 months to complete. AECL has initiated a pre-project program to develop the IRF concept and to minimize uncertainties related to feasibility and licensability, and to examine options for reducing the overall project cost before project implementation begins. (author) 10 refs., 2 figs

  16. Radioactive waste management in Canada

    International Nuclear Information System (INIS)

    1990-11-01

    This bibliography is a review of the Canadian literature on radioactive waste management from 1953 to the present. It incorporates the references from the previous AECL--6186 revisions, and adds the current data and some of the references that had been omitted. Publications from outside organizations of concern to the Canadian Nuclear Fuel Waste Program are included in addition to AECL Research reports and papers. This report is intended as an aid in the preparation of the Concept Assessment Document and is complementary to AECL Research's internal document-ready references on the MASS-11 word processing systems

  17. Nuclear fuel waste disposal in Canada

    International Nuclear Information System (INIS)

    Dormuth, K.W.; Gillespie, P.A.

    1990-05-01

    Atomic Energy of Canada Limited (AECL) has developed a concept for disposing of Canada's nuclear fuel waste and is submitting it for review under the Federal Environmental Assessment and Review Process. During this review, AECL intends to show that careful, controlled burial 500 to 1000 metres deep in plutonic rock of the Canadian Precambrian Shield is a safe and feasible way to dispose of Canada's nuclear fuel waste. The concept has been assessed without identifying or evaluating any particular site for disposal. AECL is now preparing a comprehensive report based on more than 10 years of research and development

  18. Analysis of DCA experimental data

    International Nuclear Information System (INIS)

    Min, B. J.; Kim, S. Y.; Ryu, S. J.; Seok, H. C.

    2000-01-01

    The lattice characteristics of DCA are calculated with WIMS-ATR code to validate WIMS-AECL code for the lattice analysis of CANDU core by using experimental data of DCA at JNC. Analytical studies of some critical experiments had been performed to analyze the effects of fuel composition. Different items of reactor physics such as local power peaking factor (LPF), effective multiplication factor (Keff) and coolant void reactivity were calculated for two coolant void fractions (0% and 100%). LPFs calculated by WIMS-ATR code are in close agreement with the experimental results. LPFs calculated by WIMS-AECL code with WINFRITH and ENDF/B-V libraries have similar values for both libraries but the differences between experimental data and calculated results by WIMS-AECL code are larger than those of WIMS-ATR code. The maximum difference between the values calculated by WIMS-ATR and experimental values of LPFs are within 1.3%. The coupled code systems WIMS-ATR and CITATION used in this analysis predict Keff within 1% ΔK and coolant void reactivity within 4 % ΔK/K in all cases. The coolant void reactivity of uranium fuel is found to be positive. To validate WIMS-AECL code, the core characteristics of DCA shall be calculated by WIMS-AECL and CITATION codes in the future

  19. SYSTMS: Systematic approach for the development of strategies for maintenance and surveillance

    International Nuclear Information System (INIS)

    Yang, J.X.; McCrea, L.; Dam, R.F.; Nickerson, J.H.

    2004-01-01

    As part of AECL's Integrated PLiM program, the SYSTMS TM tool has been developed to assist in applying the Systematic Assessment of Maintenance (SAM) technology. SYSTMS builds upon AECL's experience in this area, capturing lessons learned to result in an efficient and effective assessment of system maintenance in NPPs. An important feature of SYSTMS is that it provides analysts with needed information that is easy to review and select for inclusion in the system maintenance assessment. This is accomplished through the use of maintenance templates which can be built and tracked using SYSTMS or imported from AECL's own Maintenance Template Database. This database was developed originally to capture information gathered in SAM studies for use in future studies. It has grown to become a central tool for organizing and integrating aging related knowledge from both within AECL and from outside resources. The SYSTMS tool and the Maintenance Template Database work together to provide an effective tool for performing SAM assessments. This combination also becomes an integral part of the Asset Management program development and System based Adaptive Maintenance Program applications. This paper looks at the features of the SYSTMS tool and Maintenance Database, and discusses how these tools are an important part of the AECL Integrated PLiM products and services. (author)

  20. U–Pb, Rb–Sr, and U-series isotope geochemistry of rocks and fracture minerals from the Chalk River Laboratories site, Grenville Province, Ontario, Canada

    International Nuclear Information System (INIS)

    Neymark, L.A.; Peterman, Z.E.; Moscati, R.J.; Thivierge, R.H.

    2013-01-01

    Highlights: • AECL evaluates Chalk River Laboratories site as potential nuclear waste repository. • Isotope-geochemical data for rocks and fracture minerals at CRL site are reported. • Zircons from gneiss and granite yielded U–Pb ages of 1472 ± 14 and 1045 ± 6 Ma. • WR Rb–Sr and Pb–Pb systems do not show substantial large-scale isotopic mobility. • U-series and REE data do not support oxidizing conditions at depth in the past 1 Ma. - Abstract: As part of the Geologic Waste Management Facility feasibility study, Atomic Energy of Canada Ltd. (AECL) is evaluating the suitability of the Chalk River Laboratories (CRL) site in Ontario, situated in crystalline rock of the southwestern Grenville Province, for the possible development of an underground repository for low- and intermediate-level nuclear waste. This paper presents petrographic and trace element analyses, U–Pb zircon dating results, and Rb–Sr, U–Pb and U-series isotopic analyses of gneissic drill core samples from the deep CRG-series characterization boreholes at the CRL site. The main rock types intersected in the boreholes include hornblende–biotite (±pyroxene) gneisses of granitic to granodioritic composition, leucocratic granitic gneisses with sparse mafic minerals, and garnet-bearing gneisses with variable amounts of biotite and/or hornblende. The trace element data for whole-rock samples plot in the fields of within-plate, syn-collision, and volcanic arc-type granites in discrimination diagrams used for the tectonic interpretation of granitic rocks. Zircons separated from biotite gneiss and metagranite samples yielded SHRIMP-RG U–Pb ages of 1472 ± 14 (2σ) and 1045 ± 6 Ma, respectively, in very good agreement with widespread Early Mesoproterozoic plutonic ages and Ottawan orogeny ages in the Central Gneiss Belt. The Rb–Sr, U–Pb, and Pb–Pb whole-rock errorchron apparent ages of most of the CRL gneiss samples are consistent with zircon U–Pb age and do not indicate

  1. The Canadian R and D program targeted at CANDU reactors

    International Nuclear Information System (INIS)

    Moeck, E.O.

    1988-01-01

    CANDU reactors produce electricity cheaply and reliably, with miniscule risk to the population and minimal impact on the environment. About half of Ontario's electricity and a third of New Brunswick's are generated by CANDU power plants. Hydro Quebec and utilities in Argentina, India, Pakistan, and the Republic of Korea also successfully operate CANDU reactors. Romania will soon join their ranks. The proven record of excellent performance of CANDUs is due in part to the first objective of the vigorous R and D program: namely, to sustain and improve existing CANDU power-plant technology. The second objective is to develop improved nuclear power plants that will remain competitive compared with alternative energy supplies. The third objective is to continue to improve our understanding of the processes underlying reactor safety and develop improved technology to mitigate the consequences of upset conditions. These three objectives are addressed by individual R and D programs in the areas of CANDU fuel channels, reduced operating costs, reduced capital costs, reactor safety research, and IAEA safeguards. The work is carried out mainly at three centres of Atomic Energy of Canada Limited--the Chalk River Nuclear Laboratories, the Whiteshell Nuclear Research Establishment, and the Sheridan Park Engineering Laboratories--and at Ontario Hydro's Research Laboratories. Canadian universities, consultants, manufacturers, and suppliers also provide expertise in their areas of specialization

  2. The nuclear industry in Canada

    International Nuclear Information System (INIS)

    Anderson, D.; Broughton, W.

    1992-01-01

    The nuclear industry in Canada comprises three identifiable groups: (1) Atomic Energy of Canada Limited (AECL), (2) electrical utilities that use nuclear power plants, (3) private engineering and manufacturing companies. At the end of World War II, AECL was charged with investigating and developing peaceful uses of atomic power. Included in the results is the Canada deuterium uranium (CANDU) reactor, a peculiarly Canadian design. The AECL maintains research capability and operates as the prime nuclear steam supply system supplier. Utilities in three Canadian provinces operate nuclear power plants, New Brunswick, Quebec, and Ontario, with the majority in Ontario. From the beginning of the nuclear program in Canada, private industry has been an important partner to AECL and the utilities, filling roles as manufacturing subcontractors and as component designers. The prime objective of this paper is to illuminate the role of private industry in developing and maintaining a competitive world-class nuclear industry

  3. The main outcomes of the OECD Behaviour of Iodine (BIP) Project

    International Nuclear Information System (INIS)

    Glowa, Glenn A.; Moore, Chris J.; Ball, Joanne M.

    2013-01-01

    (FP) tests. In this paper, the main outcomes of the BIP project will be outlined, and their relevance to the Phébus FP project will be examined. In addition to the new experiments performed on adsorption of iodine onto paint, and production of organic iodides from iodine adsorbed on paint, Atomic Energy of Canada Limited (AECL) provided the results from five Radioiodine Test Facility (RTF) experiments. The RTF was an intermediate-scale test facility that operated at AECL’s Whiteshell laboratories in the 1990s. It is expected that BIP members will use this data for code development and verification

  4. Characterizing fractured plutonic rocks of the Canadian shield for deep geological disposal of Canada's radioactive wastes

    International Nuclear Information System (INIS)

    Lodha, G.S.; Davison, C.C.; Gascoyne, M.

    1998-01-01

    Since 1978 AECL has been investigating plutonic rocks of the Canadian Shield as a potential medium for the disposal of Canada's nuclear fuel waste. During the last two years this study has been continued as part of Ontario Hydro's used fuel disposal program. Methods have been developed for characterizing the geotechnical conditions at the regional scale of the Canadian Shield as well as for characterizing conditions at the site scale and the very near-field scale needed for locating and designing disposal vault rooms and waste emplacement areas. The Whiteshell Research Area (WRA) and the Underground Research Laboratory (URL) in southeastern Manitoba have been extensively used to develop and demonstrate the different scales of characterization methods. At the regional scale, airborne magnetic and electromagnetic surveys combined with LANDSAT 5 and surface gravity survey data have been helpful in identifying boundaries of the plutonic rocks , overburden thicknesses, major lineaments that might be geological structures, lithological contacts and depths of the batholiths. Surface geological mapping of exposed rock outcrops, combined with surface VLF/EM, radar and seismic reflection surveys were useful in identifying the orientation and depth continuity of low-dipping fracture zones beneath rock outcrops to a depth of 500 to 1000 m. The surface time-domain EM method has provided encouraging results for identifying the depth of highly saline pore waters. The regional site scale investigations at the WRA included the drilling of twenty deep boreholes (> 500 m) at seven separate study areas. Geological core logging combined with borehole geophysical logging, TV/ATV logging, flowmeter logging and full waveform sonic logging in these boreholes helped to confirm the location of hydro geologically important fractures, orient cores and infer the relative permeability of some fracture zones. Single-hole radar and crosshole seismic tomography surveys were useful to establish the

  5. Learning from experience. Feedback to design

    International Nuclear Information System (INIS)

    Hopwood, J.M.; Shalaby, B.A.; Keil, H.

    1997-01-01

    AECL has been the designer of 25 commercial scale CANDU reactors now in operation, with more under construction. AECL has taken the evolutionary approach in developing its current designs, the CANDU 6 and CANDU 9 Nuclear Power Plants. An integral part of this approach is to emphasize feedback of experience to the designers, in a continuous improvement process. AECL has implemented a formal process of gathering and responding to feedback from: NPP operation, construction and commissioning; regulatory input; R and D results: as well as paying close attention to market input. A number of recent examples of design improvement via this feedback process are described

  6. Remote Decontamination Facility and Repair Station for hot-cell manipulators

    International Nuclear Information System (INIS)

    Ryz, M.A.

    1977-01-01

    Increasingly high radiation levels on manipulators at the Whiteshell Nuclear Research Establishment, Pinawa, Manitoba, Canada, necessitated design and construction of a Remote Decontamination Facility and Repair Station. This facility reduces radiation levels on manipulators by an order of magnitude over previous hand decontamination techniques. The reduced radiation levels have allowed superior manipulator repair and maintenance, resulting in 50% fewer manipulator breakdowns

  7. Research at WNRE

    International Nuclear Information System (INIS)

    Johnson, H.M.

    1986-01-01

    A broad overview of the structure and research of Whiteshell Nuclear Research Establishment (WNRE) is presented. The research programs are divided amongst four divisions and a new business project: Waste Management Division, Applied Science Division, Chemistry and Materials Science Division, Mini-Reactor Business, and the Health and Safety Division. All divisions are briefly described. Emphasis is placed upon the Health and Safety division

  8. Annual report 1993-94 (Atomic Energy of Canada Ltd., Ottawa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    Annual report of AECL, the legal name of Atomic Energy of Canada Limited. This annual report presents information on research, CANDU, and AECL around the world. A financial review is included, along with management responsibility, an Auditor`s report, financial statements, a five-year financial summary, and a list of directors and locations.

  9. Heavy water GS process R and D achievements

    International Nuclear Information System (INIS)

    Bancroft, A.R.

    1978-10-01

    R and D support of Canadian heavy water production plants during the past five years has involved mainly AECL and Ontario Hydro, and their contractors. Testing has been done in the production plants, in two pilot plants and in research laboratories on topics that include sieve tray design, in-plant behaviour of oil and sulfur and choice of antifoam agent to control excessive foaming. The benefits are increased production through higher plant flows and higher extraction of deuterium from the feed, less down time because of process problems and lower cost for materials used to control water chemistry. (author)

  10. BEATRIX-II Program, January 1989--December 1989: ANNEX-III to IEA implementing agreement for a programme of research and development on radiation damage in fusion materials

    International Nuclear Information System (INIS)

    Slagle, O.D.; Hollenberg, G.W.

    1990-10-01

    BEATRIX-II is an International Energy Agency (IEA) sponsored collaborative experiment among Japan, Canada, and the United States. The purpose of the experiment is to evaluate the performance of ceramic solid breeder materials in a fast neutron environment. To do this, an in-situ tritium recovery experiment is being conducted in the Fast Flux Test Facility (FFTF), located on the Hanford site near Richland, Washington, and operated by Westinghouse Hanford Company (WHC). The Pacific Northwest Laboratory (PNL), Richland, Washington, together with the Japan Atomic Energy Research Institute (JAERI) and Atomic Energy of Canada Limited (AECL) are responsible for conducting the experiment

  11. Muon tomography with momentum measurements for fast detection of nuclear materials at ports of entry

    Energy Technology Data Exchange (ETDEWEB)

    Erlandson, A.; Anghel, V. [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada); Armitage, J. [Carleton Univ., Physics Dept., Ottawa, Ontario (Canada); and others

    2015-03-15

    Muon tomography uses naturally occurring high energy cosmic ray particles called muons to statistically reconstruct 3D images of targets analogously to techniques widely used in medical physics. The Cosmic Ray Inspection and Passive Tomography (CRIPT) detector is a Canadian initiative that has demonstrated that the concept of tomography can be applied to cargo using cosmic ray muons. The unique aspect of the CRIPT detector is its use of muon momentum information which decreases the scanning time required to reconstruct an image. The CRIPT detector is currently operating at Atomic Energy of Canada Limited's (AECL) Chalk River Laboratories. (author)

  12. Muon tomography with momentum measurements for fast detection of nuclear materials at ports of entry

    International Nuclear Information System (INIS)

    Erlandson, A.; Anghel, V.; Armitage, J.

    2015-01-01

    Muon tomography uses naturally occurring high energy cosmic ray particles called muons to statistically reconstruct 3D images of targets analogously to techniques widely used in medical physics. The Cosmic Ray Inspection and Passive Tomography (CRIPT) detector is a Canadian initiative that has demonstrated that the concept of tomography can be applied to cargo using cosmic ray muons. The unique aspect of the CRIPT detector is its use of muon momentum information which decreases the scanning time required to reconstruct an image. The CRIPT detector is currently operating at Atomic Energy of Canada Limited's (AECL) Chalk River Laboratories. (author)

  13. Muon tomography with momentum measurements for fast detection of nuclear materials at ports of entry

    International Nuclear Information System (INIS)

    Erlandson, A.; Anghel, V.; Armitage, J.

    2014-01-01

    Muon tomography uses naturally occurring high energy cosmic ray particles called muons to statistically reconstruct 3D images of targets analogously to techniques widely used in medical physics. The Cosmic Ray Inspection and Passive Tomography (CRIPT) detector is a Canadian initiative that has demonstrated that the concept of tomography can be applied to cargo using cosmic ray muons. The unique aspect of the CRIPT detector is its use of muon momentum information which decreases the scanning time required to reconstruct an image. The CRIPT detector is currently operating at Atomic Energy of Canada Limited's (AECL) Chalk River Laboratories. (author)

  14. Muon tomography with momentum measurements for fast detection of nuclear materials at ports of entry

    Energy Technology Data Exchange (ETDEWEB)

    Erlandson, A.; Anghel, V. [Atomic Energy of Canada Limited, Chalk River, ON (Canada); Armitage, J. [Carleton Univ., Physics Dept., Ottawa, ON (Canada); and others

    2014-07-01

    Muon tomography uses naturally occurring high energy cosmic ray particles called muons to statistically reconstruct 3D images of targets analogously to techniques widely used in medical physics. The Cosmic Ray Inspection and Passive Tomography (CRIPT) detector is a Canadian initiative that has demonstrated that the concept of tomography can be applied to cargo using cosmic ray muons. The unique aspect of the CRIPT detector is its use of muon momentum information which decreases the scanning time required to reconstruct an image. The CRIPT detector is currently operating at Atomic Energy of Canada Limited's (AECL) Chalk River Laboratories. (author)

  15. Radioactive waste management in Canada

    International Nuclear Information System (INIS)

    Hawley, N.J.

    1986-09-01

    This bibliography is an up-date to AECL-6186(Rev 3), 1952-1982, 'Radioactive Waste Management in Canada AECL Publications and Other Literature' compiled by Dianne Wallace. Canadian publications from outside contractors concerning the Canadian Nuclear Fuel Waste Management Program are included in addition to Atomic Energy of Canada Limited reports and papers. 252 refs

  16. Qualification of FEAST 3.0 and FEAT 4.0 computer codes

    International Nuclear Information System (INIS)

    Xu, Z.; Lai, L.; Sim, K.-S.; Huang, F.; Wong, B.

    2005-01-01

    FEAST (Finite Element Analysis for Stresses) is an AECL computer code used to assess the structural integrity of the CANDU fuel element. FEAST models the thermo-elastic, thermo-elasto-plastic and creep deformations in CANDU fuel. FEAT (Finite Element Analysis for Temperature) is another AECL computer code and is used to assess the thermal integrity of fuel elements. FEAT models the steady-state and transient heat flows in CANDU fuel, under conditions such as flux depression, end flux peaking, temperature-dependent thermal conductivity, and non-uniform time-dependent boundary conditions. Both computer programs are used in design and qualification analyses of CANDU fuel. Formal qualifications (including coding verification and validation) of both codes were performed, in accordance with AECL software quality assurance (SQA) manual and procedures that are consistent with CSA N286.7-99. Validation of FEAST 3.0 shows very good agreement with independent analytical solutions or measurements. Validation of FEAT 4.0 also shows very good agreement with independent WIMS-AECL calculations, analytical solutions, ANSYS calculations and measurement. (author)

  17. Qualification of FEAST 3.0 and FEAT 4.0 computer codes

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Z.; Lai, L.; Sim, K.-S.; Huang, F.; Wong, B. [Atomic Energy of Canada Limited, Mississauga, Ontario (Canada)

    2005-07-01

    FEAST (Finite Element Analysis for Stresses) is an AECL computer code used to assess the structural integrity of the CANDU fuel element. FEAST models the thermo-elastic, thermo-elasto-plastic and creep deformations in CANDU fuel. FEAT (Finite Element Analysis for Temperature) is another AECL computer code and is used to assess the thermal integrity of fuel elements. FEAT models the steady-state and transient heat flows in CANDU fuel, under conditions such as flux depression, end flux peaking, temperature-dependent thermal conductivity, and non-uniform time-dependent boundary conditions. Both computer programs are used in design and qualification analyses of CANDU fuel. Formal qualifications (including coding verification and validation) of both codes were performed, in accordance with AECL software quality assurance (SQA) manual and procedures that are consistent with CSA N286.7-99. Validation of FEAST 3.0 shows very good agreement with independent analytical solutions or measurements. Validation of FEAT 4.0 also shows very good agreement with independent WIMS-AECL calculations, analytical solutions, ANSYS calculations and measurement. (author)

  18. List of publications 1994 January - 1995 December

    Energy Technology Data Exchange (ETDEWEB)

    Lim, M J; Dament, M; Barrie, B

    1996-07-01

    AECL`s mandate is to undertake research into nuclear energy and from that develop commercial applications. Its objective is to secure the maximum economic benefit for Canada from CANDU technology and the associated research and development. Among our most important products are scientific reports, publications and conference presentations. This document fists our publications for 1994-95. (author).

  19. Technologies in support of CANDU development

    International Nuclear Information System (INIS)

    Turner, C.; Tapping, B.

    2005-01-01

    Atomic Energy of Canada, Ltd. (AECL) has significant research and development (R and D) programs designed to meet the needs of both existing CANDU reactors and new and evolving CANDU plant designs. These R and D programs cover a wide range of technology, from chemistry and materials support through to inspection and life management tools. Emphasis is placed on effective technology development programs for fuel channels, feeders and steam generators to ensure their operation through design life, and beyond. This paper specifically addresses how the R and D has been applied in the production of longer-lived pressure tubes for the most recent CANDU 6 reactors, and how this technology forms the basis for the pressure tubes of the Advanced CANDU Reactor (ACR). Similarly, AECL has developed solutions for other critical components such as calandria tubes, feeder pipe and steam generators. The paper also discusses how the R and D knowledge has been integrated into aging management databases and health monitoring tools. Since 1997, AECL has been working with CANDU utilities on comprehensive and integrated CANDU Plant Life Management (PLiM) programs for successful and reliable plant operation through design life and beyond. AECL has developed and implemented an advanced chemistry monitoring and diagnostic system, called ChemAND which allows on-line access by the operators to current and past chemistry conditions enabling appropriate responses and facilitating planning of shutdown maintenance actions. An equivalent tool for monitoring, trending and diagnosing thermal and mechanical data has also been developed; this tool is called ThermAND. AECL is developing the Maintenance Information, Monitoring, and Control (MIMC) system, which provide information to the user for condition-based decision-making in maintenance. To enable more effective inspections, surveillance and data collection, AECL has developed unique one-off tooling to carry out unanticipated inspection and repair

  20. The use of flow cytometry in radiation biology

    International Nuclear Information System (INIS)

    Szekely, J.G.; Raaphorst, G.P.; Lobreau, A.U.; Einspenner, M.; Sargent, M.; Azzam, E.I.

    1989-09-01

    The flow cytometer has been used in a number of projects at the Whiteshell Nuclear Research Establishment, Pinawa, Manitoba, Canada. In this report we have summarized the methods and results obtained in the cellular radiobiology program. The techniques used in the program included live/dead analysis in lymphocytes, identification of bone-marrow subsets, chromosome analysis, cell-cycle analysis, cell sorting and the quantification of surface antigens

  1. Bioassay Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Bioassay Laboratory is an accredited laboratory capable of conducting standardized and innovative environmental testing in the area of aquatic ecotoxicology. The...

  2. HYDROMECHANICS LABORATORY

    Data.gov (United States)

    Federal Laboratory Consortium — Naval Academy Hydromechanics LaboratoryThe Naval Academy Hydromechanics Laboratory (NAHL) began operations in Rickover Hall in September 1976. The primary purpose of...

  3. Laboratory quality assurance

    International Nuclear Information System (INIS)

    Delvin, W.L.

    1977-01-01

    The elements (principles) of quality assurance can be applied to the operation of the analytical chemistry laboratory to provide an effective tool for indicating the competence of the laboratory and for helping to upgrade competence if necessary. When used, those elements establish the planned and systematic actions necessary to provide adequate confidence in each analytical result reported by the laboratory (the definition of laboratory quality assurance). The elements, as used at the Hanford Engineering Development Laboratory (HEDL), are discussed and they are qualification of analysts, written methods, sample receiving and storage, quality control, audit, and documentation. To establish a laboratory quality assurance program, a laboratory QA program plan is prepared to specify how the elements are to be implemented into laboratory operation. Benefits that can be obtained from using laboratory quality assurance are given. Experience at HEDL has shown that laboratory quality assurance is not a burden, but it is a useful and valuable tool for the analytical chemistry laboratory

  4. Qualification plan for the Genmod-PC computer program

    International Nuclear Information System (INIS)

    Richardson, R.B.; Wright, G.M.; Dunford, D.W.; Linauskas, S.H.

    2002-07-01

    Genmod-PC is an internal dosimetry code that uses Microsoft Windows operating system, and that currently calculates radionuclide doses and intakes for an adult male. This report provides a plan for specifying the quality assurance measures that conform to the recommendations of the Canadian Standards Association, as well as AECL procedural requirements for a legacy computer program developed at AECL. (author)

  5. Development of an Integrated Waste Plan for Chalk River Laboratories - 13376

    International Nuclear Information System (INIS)

    Jones, L.

    2013-01-01

    To further its Strategic Planning, the Atomic Energy of Canada Limited (AECL) required an effective approach to developing a fully integrated waste plan for its Chalk River Laboratories (CRL) site. Production of the first Integrated Waste Plan (IWP) for Chalk River was a substantial task involving representatives from each of the major internal stakeholders. Since then, a second revision has been produced and a third is underway. The IWP remains an Interim IWP until all gaps have been resolved and all pathways are at an acceptable level of detail. Full completion will involve a number of iterations, typically annually for up to six years. The end result of completing this process is a comprehensive document and supporting information that includes: - An Integrated Waste Plan document summarizing the entire waste management picture in one place; - Details of all the wastes required to be managed, including volume and timings by waste stream; - Detailed waste stream pathway maps for the whole life-cycle for each waste stream to be managed from pre-generation planning through to final disposition; and - Critical decision points, i.e. decisions that need to be made and timings by when they need to be made. A waste inventory has been constructed that serves as the master reference inventory of all waste that has been or is committed to be managed at CRL. In the past, only the waste that is in storage has been effectively captured, and future predictions of wastes requiring to be managed were not available in one place. The IWP has also provided a detailed baseline plan at the current level of refinement. Waste flow maps for all identified waste streams, for the full waste life cycle complete to disposition have been constructed. The maps identify areas requiring further development, and show the complexities and inter-relationships between waste streams. Knowledge of these inter-dependencies is necessary in order to perform effective options studies for enabling

  6. Canadian development program for off-gas management in nuclear facilities

    International Nuclear Information System (INIS)

    Sridhar, T.S.

    1983-01-01

    The Canadian program for the development and evaluation of processes and technology for the separation and containment of radioactive species in off-gases is directed towards the following specific aspects: 1) assessment of available treatment technology and evaluation of future clean-up requirements; 2) development and engineering evaluation, under realistic conditions, of promising new processes that would be inherently simpler and safer; and 3) specification of off-gas emission control systems for future nuclear facilities based on the most favourable technology. The program is being carried out by Atomic Energy of Canada Limited in collaboration with the electrical utility, Ontario Hydro, and selected Canadian universities. A brief description is presented of methods for removing tritium and carbon-14 from the moderator systems of CANDU power reactors, methods for removing iodine from the off-gases of a molybdenum-99 production facility at the Chalk River Nuclear Laboratories, and procedures for monitoring the off-gas effluent composition in the Thorium Fuel Reprocessing Experiment (TFRE) facility at the Whiteshell Nuclear Research Establishment

  7. 75 FR 80011 - Good Laboratory Practice for Nonclinical Laboratory Studies

    Science.gov (United States)

    2010-12-21

    .... FDA-2010-N-0548] Good Laboratory Practice for Nonclinical Laboratory Studies AGENCY: Food and Drug... (FDA) is seeking comment on whether to amend the regulations governing good laboratory practices (GLPs..., 1978 (43 FR 60013). As stated in its scope (Sec. 58.1), this regulation prescribes good laboratory...

  8. Laboratory-acquired brucellosis

    DEFF Research Database (Denmark)

    Fabiansen, C.; Knudsen, J.D.; Lebech, A.M.

    2008-01-01

    Brucellosis is a rare disease in Denmark. We describe one case of laboratory-acquired brucellosis from an index patient to a laboratory technician following exposure to an infected blood culture in a clinical microbiology laboratory Udgivelsesdato: 2008/6/9......Brucellosis is a rare disease in Denmark. We describe one case of laboratory-acquired brucellosis from an index patient to a laboratory technician following exposure to an infected blood culture in a clinical microbiology laboratory Udgivelsesdato: 2008/6/9...

  9. Errors in clinical laboratories or errors in laboratory medicine?

    Science.gov (United States)

    Plebani, Mario

    2006-01-01

    Laboratory testing is a highly complex process and, although laboratory services are relatively safe, they are not as safe as they could or should be. Clinical laboratories have long focused their attention on quality control methods and quality assessment programs dealing with analytical aspects of testing. However, a growing body of evidence accumulated in recent decades demonstrates that quality in clinical laboratories cannot be assured by merely focusing on purely analytical aspects. The more recent surveys on errors in laboratory medicine conclude that in the delivery of laboratory testing, mistakes occur more frequently before (pre-analytical) and after (post-analytical) the test has been performed. Most errors are due to pre-analytical factors (46-68.2% of total errors), while a high error rate (18.5-47% of total errors) has also been found in the post-analytical phase. Errors due to analytical problems have been significantly reduced over time, but there is evidence that, particularly for immunoassays, interference may have a serious impact on patients. A description of the most frequent and risky pre-, intra- and post-analytical errors and advice on practical steps for measuring and reducing the risk of errors is therefore given in the present paper. Many mistakes in the Total Testing Process are called "laboratory errors", although these may be due to poor communication, action taken by others involved in the testing process (e.g., physicians, nurses and phlebotomists), or poorly designed processes, all of which are beyond the laboratory's control. Likewise, there is evidence that laboratory information is only partially utilized. A recent document from the International Organization for Standardization (ISO) recommends a new, broader definition of the term "laboratory error" and a classification of errors according to different criteria. In a modern approach to total quality, centered on patients' needs and satisfaction, the risk of errors and mistakes

  10. CANDU technology for generation III + AND IV reactors

    International Nuclear Information System (INIS)

    Torgerson, D.F.

    2005-01-01

    Atomic Energy of Canada Limited (AECL) is the original developer of the CANDU?reactor, one of the three major commercial power reactor designs now used throughout the world. For over 60 years, AECL has continued to evolve the CANDU design from the CANDU prototypes in the 1950s and 1960s through to the second generation reactors now in operation, including the Generation II+ CANDU 6. The next phase of this evolution, the Generation III+ Advanced CANDU ReactorTM (ACRTM), continues the strategy of basing next generation technology on existing CANDU reactors. Beyond the ACR, AECL is developing the Generation IV CANDU Super Critical Water Reactor. Owing to the evolutionary nature of these advanced reactors, advanced technology from the development programs is also being applied to operating CANDU plants, for both refurbishments and upgrading of existing systems and components. In addition, AECL is developing advanced technology that covers the entire life cycle of the CANDU plant, including waste management and decommissioning. Thus, AECL maintains state-of-the-art expertise and technology to support both operating and future CANDU plants. This paper outlines the scale of the current core knowledge base that is the foundation for advancement and support of CANDU technology. The knowledge base includes advancements in materials, fuel, safety, plant operations, components and systems, environmental technology, waste management, and construction. Our approach in each of these areas is to develop the underlying science, carry out integrated engineering scale tests, and perform large-scale demonstration testing. AECL has comprehensive R and D and engineering development programs to cover all of these elements. The paper will show how the ongoing expansion of the CANDU knowledge base has led to the development of the Advanced CANDU Reactor. The ACR is a Generation III+ reactor with substantially reduced costs, faster construction, and enhanced passive safety and operating

  11. Advanced CANDU reactor pre-licensing progress

    International Nuclear Information System (INIS)

    Popov, N.K.; West, J.; Snell, V.G.; Ion, R.; Archinoff, G.; Xu, C.

    2005-01-01

    The Advanced CANDU Reactor (ACR) is an evolutionary advancement of the current CANDU 6 reactor, aimed at producing electrical power for a capital cost and at a unit-energy cost significantly less than that of the current reactor designs. The Canadian Nuclear Safety Commission (CNSC) staff are currently reviewing the ACR design to determine whether, in their opinion, there are any fundamental barriers that would prevent the licensing of the design in Canada. This CNSC licensability review will not constitute a licence, but is expected to reduce regulatory risk. The CNSC pre-licensing review started in September 2003, and was focused on identifying topics and issues for ACR-700 that will require a more detailed review. CNSC staff reviewed about 120 reports, and issued to AECL 65 packages of questions and comments. Currently CNSC staff is reviewing AECL responses to all packages of comments. AECL has recently refocused the design efforts to the ACR-1000, which is a larger version of the ACR design. During the remainder of the pre-licensing review, the CNSC review will be focused on the ACR-1000. AECL Technologies Inc. (AECLT), a wholly-owned US subsidiary of AECL, is engaged in a pre-application process for the ACR-700 with the US Nuclear Regulatory Commission (USNRC) to identify and resolve major issues prior to entering a formal process to obtain standard design certification. To date, the USNRC has produced a Pre-Application Safety Assessment Report (PASAR), which contains their reviews of key focus topics. During the remainder of the pre-application phase, AECLT will address the issues identified in the PASAR. Pursuant to the bilateral agreement between AECL and the Chinese nuclear regulator, the National Nuclear Safety Administration (NNSA) and its Nuclear Safety Center (NSC), NNSA/NSC are reviewing the ACR in seven focus areas. The review started in September 2004, and will take three years. The main objective of the review is to determine how the ACR complies

  12. Review of the nuclear fuel waste management program

    International Nuclear Information System (INIS)

    Hatcher, S.R.

    1980-06-01

    Progress over the previous year in the nuclear fuel waste management program is reviewed. Universities, industry and consultants have become increasingly involved, and the work is being overseen by a Technical Advisory Committee. The program has also been investigated by Ontario's Porter Commission and Select Committe on Ontario Hydro Affairs. A public information program has been extended to cover most of the Canadian Shield region of Ontario. Ontario Hydro is studying spent fuel storage and transportation, while AECL is covering immobilization of spent fuel or processing wastes, geotechnical and geochemical research in the laboratory and in the field, design of disposal facilities, and environmental and safety assessments. (L.L.)

  13. Fully integrated analysis of reactor kinetics, thermalhydraulics and the reactor control system in the MAPLE-X10 research reactor

    International Nuclear Information System (INIS)

    Shim, S.Y.; Carlson, P.A.; Baxter, D.K.

    1992-01-01

    A prototype research reactor, designated MAPLE-X10 (Multipurpose Applied Physics Lattice Experimental - X 10MW), is currently being built at AECL's Chalk River Laboratories. The CATHENA (Canadian Algorithm for Thermalhydraulic Network Analysis) two-fluid code was used in the safety analysis of the reactor to determine the adequacy of core cooling during postulated reactivity and loss-of-forced-flow transients. The system responses to a postulated transient are predicted including the feedback between reactor kinetics, thermalhydrauilcs and the reactor control systems. This paper describes the MAPLE-X10 reactor and the modelling methodology used. Sample simulations of postulated loss-of-heat-sink and loss-of-regulation transients are presented. (author)

  14. Follow-up of CRNL employees involved in the NRX reactor clean-up

    International Nuclear Information System (INIS)

    Werner, M.M.; Myers, D.K.; Morrison, D.P.

    1982-07-01

    Data available to date on the mortality of continuing and retired employees of the Chalk River Nuclear Laboratories are consistent with the Σhealthy workerΣ effect that has been observed in similar studies at other nuclear facilities. Because of an accident at the NRX research reactor in December 1952, the reactor was largely dismantled and rebuilt in 1953-54. These operations involved appreciable radiation exposures to a number of employees. The follow-up of the 850 on-site AECL staff involved in the clean-up has indicated that there were no unusual patterns in the mortality of this group when compared with those of the general population of Ontario

  15. Chemical controls on subsurface radionuclide transport

    International Nuclear Information System (INIS)

    King, K.J.; Killey, R.W.D.

    1990-01-01

    Chemical and biochemical processes can affect the movement of contaminants in groundwater. Materials can be almost completely removed from circulation by processes such as precipitation and coprecipitation. Organic compounds or contaminants that are hazardous may be degraded or formed during groundwater transport. Studies at the Chalk River Laboratories of AECL have focused on radionuclide transport, although other contaminants have been and are being investigated. This paper summarizes findings from research that extends back more than 30 years. Much of the work on reactive contaminant transport has centered on 90 Sr; other contaminants have also been considered, however, and features of their behaviour are also reviewed. (25 refs., 5 figs., 4 tabs.)

  16. Canadian Food Irradiation Facilities; Installations Canadiennes d'Irradiation des Aliments; Kanadskie ustanovki dlya oblucheniya pishchevykh produktov; Instalaciones de Irradiacion de Alimentos en el Canada

    Energy Technology Data Exchange (ETDEWEB)

    Warland, H. M.F.; MacQueen, K. F. [Atomic Energy of Canada Ltd., Commercial Products, Ottawa (Canada)

    1966-11-15

    Atomic Energy of Canada Limited (AECL) began work on the irradiation of potatoes in 1956, using spent fuel rods as the radiation source. In 1958 the first Gammacell 220, a self-contained irradiator, was designed and manufactured by AECL, and cobalt-60 was then used exclusively in the food irradiation programme. In 1960 the first food and drug clearance was obtained for potatoes. The next stage was to demonstrate to the potato industry that cobalt-60 was a safe, simple and reliable tool, and that irradiation would inhibit sprouting under field conditions. A mobile irradiator was designed and produced by AECL in 1961 to carry out this pilot-plant programme. The irradiator was mounted on a fully-equipped road trailer and spent the 1961/1962 season irradiating one million pounds of potatoes at various points in Eastern Canada. In 1965 the first commercial food irradiator was designed and built by AECL for Newfield Products, Ltd. Whilst the potato programme was under way, AECL initiated co-operative programmes with Canadian food research laboratories, using additional Gammacells. In 1960, AECL constructed an irradiation facility in a shielded room at its own plant in Ottawa for the irradiation of larger objects, such as sides of pork and stems of bananas. During 1963 the mobile irradiator, already a most useful tool, was made more versatile when its source strength was increased and it was equipped with a product cooling system and van air conditioning. Following these modifications, the unit was employed in California for the irradiation of a wide spectrum of fruits at the United States Department of Agriculture Station in Fresno. The Gammacell, mobile irradiator, shielded-room facility, the commercial food irradiator and some of the main food programmes are described in detail. There is an increasing amount of interest in irradiation by the food industry, and prospects are encouraging for future installations. (author) [French] L'Atomic Energy of Canada Limited'(AECL

  17. Secondary standards laboratories for ionizing radiation calibrations: the national laboratory interests

    International Nuclear Information System (INIS)

    Roberson, P.L.; Campbell, G.W.

    1984-11-01

    The national laboratories are probable candidates to serve as secondary standards laboratories for the federal sector. Representatives of the major Department of Energy laboratories were polled concerning attitudes toward a secondary laboratory structure. Generally, the need for secondary laboratories was recognized and the development of such a program was encouraged. The secondary laboratories should be reviewed and inspected by the National Bureau of Standards. They should offer all of the essential, and preferably additional, calibration services in the field of radiological health protection. The selection of secondary laboratories should be based on economic and geographic criteria and/or be voluntary. 1 ref., 2 tabs

  18. Epp names new interim execs to head Atomic Energy Canada

    International Nuclear Information System (INIS)

    1992-01-01

    Federal Energy Minister Jake Epp has named Mrs. Marnie Paiken as acting chairman and Bruce Howe as acting president of AECL (formerly Atomic Energy Canada Ltd.), the federal Crown corporation charged with the development and utilization of nuclear energy. Both appointments were made necessary by the resignations of Robert Ferchat as chairman and Stanley Hatcher as president, each citing deep differences in their respective approaches to the management of the corporation. Mrs. Paiken has been a member of AECL's board since 1985, and previously served as acting chairman from March 1989 to July 1990. Howe has been deputy minister of the federal energy department since 1988, a position he will retain while carrying out his duties as president of AECL. A search has begun to find permanent replacements

  19. Developing the MAPLE materials test reactor concept

    International Nuclear Information System (INIS)

    Lee, A.G.; Lidstone, R.F.; Donnelly, J.V.

    1992-05-01

    MAPLE-MTR is a new multipurpose research facility being planned by AECL Research as a possible replacement for the 35-year-old NRU reactor. In developing the MAPLE-MTR concept, AECL is starting from the recent design and licensing experience with the MAPLE-X10 reactor. By starting from technology developed to support the MAPLE-X10 design and adapting it to produce a concept that satisfies the requirements of fuel channel materials testing and fuel irradiation programs, AECL expects to minimize the need for major advances in nuclear technology (e.g., fuel, heat transfer). Formulation of the MAPLE-MTR concept is at an early stage. This report describes the irradiation requirements of the research areas, how these needs are translated into design criteria for the project and elements of the preliminary design concept

  20. Mobile spectrometric laboratory

    International Nuclear Information System (INIS)

    Isajenko, K.A.; Lipinski, P.

    2002-01-01

    The article presents the Mobile Spectrometric Laboratory used by Central Laboratory for Radiological Protection since year 2000. The equipment installed in the Mobile Laboratory and its uses is described. The results of international exercises and intercalibrations, in which the Laboratory participated are presented. (author)

  1. Research programs at the Department of Energy National Laboratories. Volume 2: Laboratory matrix

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    For nearly fifty years, the US national laboratories, under the direction of the Department of Energy, have maintained a tradition of outstanding scientific research and innovative technological development. With the end of the Cold War, their roles have undergone profound changes. Although many of their original priorities remain--stewardship of the nation`s nuclear stockpile, for example--pressing budget constraints and new federal mandates have altered their focus. Promotion of energy efficiency, environmental restoration, human health, and technology partnerships with the goal of enhancing US economic and technological competitiveness are key new priorities. The multiprogram national laboratories offer unparalleled expertise in meeting the challenge of changing priorities. This volume aims to demonstrate each laboratory`s uniqueness in applying this expertise. It describes the laboratories` activities in eleven broad areas of research that most or all share in common. Each section of this volume is devoted to a single laboratory. Those included are: Argonne National Laboratory; Brookhaven National Laboratory; Idaho National Engineering Laboratory; Lawrence Berkeley Laboratory; Lawrence Livermore National Laboratory; Los Alamos National Laboratory; National Renewable Energy Laboratory; Oak Ridge National Laboratory; Pacific Northwest Laboratory; and Sandia National Laboratories. The information in this volume was provided by the multiprogram national laboratories and compiled at Lawrence Berkeley Laboratory.

  2. Nanotechnology Characterization Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Nanotechnology Characterization Laboratory (NCL) at the Frederick National Laboratory for Cancer Research performs preclinical characterization of nanomaterials...

  3. Semiconductor Electrical Measurements Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Semiconductor Electrical Measurements Laboratory is a research laboratory which complements the Optical Measurements Laboratory. The laboratory provides for Hall...

  4. POLLUTION PREVENTION OPPORTUNITY ASSESSMENT - GEOCHEMISTRY LABORATORY AT SANDIA NATIONAL LABORATORIES

    Science.gov (United States)

    These reports summarize pollution prevention opportunity assessments conducted jointly by EPA and DOE at the Geochemistry Laboratory and the Manufacturing and Fabrication Repair Laboratory at the Department of Energy's Sandia National Laboratories facility in Albuquerque, New Mex...

  5. Bio Engineering Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Description/History: Chemistry and biology laboratoriesThe Bio Engineering Laboratory (BeL) is theonly full spectrum biotechnology capability within the Department...

  6. Epidemiological studies of some populations exposed to ionizing radiation

    International Nuclear Information System (INIS)

    Weeks, J.L.

    1985-08-01

    During 1984 September 19 and 20, a meeting was held at the Whiteshell Nuclear Research Establishment, Pinawa, Manitoba to discuss current epidemiological studies of populations exposed to low levels of ionizing radiation. Twelve representatives from three countries attended the meeting and eleven papers were extensively discussed. The majority of these papers described studies of populations occupationally exposed to radiation. The report contains summaries of the papers presented and of the discussions that took place

  7. Advanced Chemistry Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Description/History: Chemistry laboratoryThe Advanced Chemistry Laboratory (ACL) is a unique facility designed for working with the most super toxic compounds known...

  8. FOOTWEAR PERFORMANCE LABORATORY

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory provides biomechanical and physical analyses for both military and commercial footwear. The laboratory contains equipment that is integral to the us...

  9. Lincoln Laboratory Grid

    Data.gov (United States)

    Federal Laboratory Consortium — The Lincoln Laboratory Grid (LLGrid) is an interactive, on-demand parallel computing system that uses a large computing cluster to enable Laboratory researchers to...

  10. Photometrics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose:The Photometrics Laboratory provides the capability to measure, analyze and characterize radiometric and photometric properties of light sources and filters,...

  11. Blackroom Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Enables evaluation and characterization of materials ranging from the ultraviolet to the longwave infrared (LWIR).DESCRIPTION: The Blackroom Laboratory is...

  12. Public opinion research in Canada: Incorporating the messages

    International Nuclear Information System (INIS)

    David Lisle

    2001-01-01

    The development and use of nuclear technology in Canada, similar to other countries, has been influenced by public perceptions that are often based on limited information. Most individuals find it challenging to decide among the apparent conflicting claims and allegations related to nuclear power. To meet the challenges of public acceptance, AECL develops and implements strategies designed to increase awareness and understanding of the issues associated with nuclear technology. AECL's public communication programs have evolved over several decades. This reflects the changing nature of public concerns related to nuclear energy. With ever increasing requirements for public involvement in the decision-making process, AECL has designed and successfully implemented effective communication and consultation processes to build and maintain public support for nuclear projects. Public communication programs have also been developed and implemented by the provincial utilities that own and operate CANDU reactors, by the Canadian Nuclear Association and by the Canadian Nuclear Society. Often public education and information programs have been a collaborative effort involving a number of the key stakeholders in Canada's nuclear industry. AECL's public communication initiatives are designed to address the fears and myths surrounding the nuclear industry. The company is committed to providing information on its programs and it responds in a timely fashion to requests from the public. Due to the highly competitive nature of the nuclear industry, there is some proprietary information that is restricted and cannot be released. Consultations with the shareholder and with other key stakeholders on communication plans are an integral component of the design and implementation process. AECL public affairs staff provides advice and assistance to various government and industry communication committees. (author)

  13. Laboratory Building

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, Joshua M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    This report is an analysis of the means of egress and life safety requirements for the laboratory building. The building is located at Sandia National Laboratories (SNL) in Albuquerque, NM. The report includes a prescriptive-based analysis as well as a performance-based analysis. Following the analysis are appendices which contain maps of the laboratory building used throughout the analysis. The top of all the maps is assumed to be north.

  14. Knowledge and practices of pharmaceutical laboratory workers on laboratory safety

    Directory of Open Access Journals (Sweden)

    Esra Emerce

    2017-09-01

    Full Text Available Laboratories are classified as very hazardous workplaces. Objective: The aim of this descriptive study was to determine the knowledge and practice of laboratory safety by analysts and technicians in the laboratories of the Turkish Medicine and Medical Devices Agency. Methods:  85.0% (n=93 of the workers (n=109 was reached. A pre-tested, laboratory safety oriented, self-administered questionnaire was completed under observation. Results: Participants were mostly female (66,7%, had 12.8±8.2 years of laboratory experience and worked 24.6±10.3 hours per week. 53.8% of the employees generally worked with flammable and explosive substances, 29.0% with acute toxic or carcinogenic chemicals and 30.1% with physical dangers. Of all surveyed, 14.0% had never received formal training on laboratory safety. The proportion of ‘always use’ of laboratory coats, gloves, and goggles were 84.9%, 66.7%, and 6.5% respectively. 11.9% of the participants had at least one serious injury throughout their working lives and 24.7% had at least one small injury within the last 6 months. Among these injuries, incisions, bites and tears requiring no stiches (21.0% and the inhalation of chemical vapors (16.1% took first place. The mean value for the number of correct responses to questions on basic safety knowledge was 65.4±26.5, out of a possible 100. Conclusion: Overall, the participants have failed in some safety practices and have been eager to get regular education on laboratory safety.  From this point onwards, it would be appropriate for the employers to organize periodic trainings on laboratory safety.Keywords: Health personnel, laboratory personnel, occupational health, occupational safety, pharmacy

  15. Advanced pressure tube sampling tools

    International Nuclear Information System (INIS)

    Wittich, K.C.; King, J.M.

    2002-01-01

    Deuterium concentration is an important parameter that must be assessed to evaluate the Fitness for service of CANDU pressure tubes. In-reactor pressure tube sampling allows accurate deuterium concentration assessment to be made without the expenses associated with fuel channel removal. This technology, which AECL has developed over the past fifteen years, has become the standard method for deuterium concentration assessment. AECL is developing a multi-head tool that would reduce in-reactor handling overhead by allowing one tool to sequentially sample at all four axial pressure tube locations before removal from the reactor. Four sets of independent cutting heads, like those on the existing sampling tools, facilitate this incorporating proven technology demonstrated in over 1400 in-reactor samples taken to date. The multi-head tool is delivered by AECL's Advanced Delivery Machine or other similar delivery machines. Further, AECL has developed an automated sample handling system that receives and processes the tool once out of the reactor. This system retrieves samples from the tool, dries, weighs and places them in labelled vials which are then directed into shielded shipping flasks. The multi-head wet sampling tool and the automated sample handling system are based on proven technology and offer continued savings and dose reduction to utilities in a competitive electricity market. (author)

  16. Operating experience with gamma ray irradiators

    International Nuclear Information System (INIS)

    Fraser, F.M.; Ouwerkerk, T.

    1980-01-01

    The experience of Atomic Energy of Canada, Limited (AECL) with radioisotopes dates back to the mid-1940s when radium was marketed for medical purposes. Cobalt-60 came on the scene in 1949 and within a few years a thriving business in cancer teletherapy machines and research irradiators was developed. AECL's first full-scale cobalt-60 gamma ray sterilizer for medical products was installed in 1964. AECL now has over 50 plants and 30 million curies in service around the world. Sixteen years of design experience in cobalt-60 sources, radiation shielding, safety interlock systems, and source pass mechanisms have made gamma irradiators safe, reliable, and easy to operate. This proven technology is being applied in promising new fields such as sludge treatment and food preservation. Cesium-137 is expected to be extensively utilized as the gamma radiation source for these applications

  17. The Cost-Effective Laboratory: Implementation of Economic Evaluation of Laboratory Testing

    Directory of Open Access Journals (Sweden)

    Bogavac-Stanojevic Natasa

    2017-09-01

    Full Text Available Laboratory testing as a part of laboratory in vitro diagnostic (IVD has become required tool in clinical practice for diagnosing, monitoring and prognosis of diseases, as well as for prediction of treatment response. The number of IVD tests available in laboratory practice has increased over the past decades and is likely to further increase in the future. Consequently, there is growing concern about the overutilization of laboratory tests and rising costs for laboratory testing. It is estimated that IVD accounts for between 1.4 and 2.3% of total healthcare expenditure and less than 5% of total hospital cost (Lewin Group report. These costs are rather low when compared to pharmaceuticals and medical aids which account for 15 and 5%, respectively. On the other hand, IVD tests play an important role in clinical practice, as they influence from 60% to 70% of clinical decision-making. Unfortunately, constant increases in healthcare spending are not directly related to healthcare benefit. Since healthcare resources are limited, health payers are interested whether the benefits of IVD tests are actually worth their cost. Many articles have introduced frameworks to assess the economic value of IVD tests. The most appropriate tool for quantitative assessment of their economic value is cost-effectiveness (CEA and cost-utility (CUA analysis. The both analysis determine cost in terms of effectiveness or utilities (combine quantity and quality of life of new laboratory test against its alternative. On the other hand, some investigators recommended calculation of laboratory test value as product of two ratios: Laboratory test value = (Technical accuracy/Turnaround time × (Utility/Costs. Recently, some researches used multicriteria decision analysis which allows comparison of diagnostic strategies in terms of benefits, opportunities, costs and risks. All analyses are constructed to identify laboratory test that produce the greatest healthcare benefit with

  18. Virtual Laboratory "vs." Traditional Laboratory: Which Is More Effective for Teaching Electrochemistry?

    Science.gov (United States)

    Hawkins, Ian; Phelps, Amy J.

    2013-01-01

    The use of virtual laboratories has become an increasing issue regarding science laboratories due to the increasing cost of hands-on laboratories, and the increase in distance education. Recent studies have looked at the use of virtual tools for laboratory to be used as supplements to the regular hands-on laboratories but many virtual tools have…

  19. Annual report, 1981-82

    International Nuclear Information System (INIS)

    1982-01-01

    Recent operational restructuring implemented grouped the Engineering, Chemical, and International Companies under CANDU Operations. The Research Company was charged with finding products and markets to bridge the gap in new orders for reactors apparent for the next few years. Net income rose 46 percent to $19.7 million. Economic slowdown in Canada and elsewhere had little effect as AECL continued to fufill obligations on previously negotiated multi-year contracts. Over 60 percent of commercial revenue came from outside Canada, and at $234 million was marginally higher than 1980-81. Development of the superconducting cyclotron continued at Chalk River, with successful testing of magnetic field and radiofrequency systems. The nuclear fuel waste management program continued, with selection of a site for an underground research laboratory near Pinawa, Manitoba. The Therac-25 high energy accelerator for cancer therapy neared completion of its development and manufacturing program. There are more than 10 orders already booked. A record 15.2 million curies of cobalt 60 were shipped, an increase of 25 percent in orders for gamma irradiation processing. The prototype Douglas Point generating station was returned to full power and reached its highest annual capacity factor since 1975. Conceptual design of the new standardized two 950MW-unit CANDU PHWR generating station was completed. AECL responded to a request for quotations from the Mexican government for its nuclear power program

  20. Discussing spent nuclear fuel in high school classrooms: addressing public fears through early education

    International Nuclear Information System (INIS)

    Winkel, S.; Sullivan, J.; Jones, S.; Sullivan, K.; Hyland, B.; Pencer, J.; Colton, A.

    2013-01-01

    The Inreach program combines the Deep River Science Academy (DRSA) 'learning through research' approach with state of the art communication technology to bring scientific research to high school classrooms. The Inreach program follows the DRSA teaching model where a university student tutor works on a research project with scientific staff at AECL's Chalk River Laboratories. Participating high school classes are located across Canada. The high school students learn about the ongoing research activities via weekly web conferences. In order to engage the students and encourage participation in the conferences, themed exercises linked to the research project are provided to the students. The DRSA's Inreach program uses a cost-effective internet technology to reach a wide audience, in an interactive setting, without anyone leaving their desks or offices. An example Inreach research project is presented here: an investigation of the potential of the Canadian supercritical water cooled reactor (SCWR) concept to burn transuranic elements (Np, Pu, Am, Cm) to reduce the impact of used nuclear fuel. During this project a university student worked with AECL (Atomic Energy of Canada Limited) researchers on technical aspects of the project, and high school students followed their progress and learned about the composition, hazards, and disposition options for used nuclear fuel. Previous projects included the effects of tritium on cellular viability and neutron diffraction measurement of residual stresses in automobile engines

  1. Safety upgrades to the NRU research reactor

    International Nuclear Information System (INIS)

    DeAbreu, B.; Mark, J.M.; Mutterback, E.J.

    1998-01-01

    The NRU (National Research Universal) Reactor is a 135 MW thermal research facility located at Chalk River Laboratories, and is owned and operated by Atomic Energy of Canada Limited. One of the largest and most versatile research reactors in the world, it serves as the R and D workhorse for Canada's CANDU business while at the same time filling the role as one of the world's major producers of medical radioisotopes. AECL plans to extend operation of the NRU reactor to approximately the year 2005 when a new replacement, the Irradiation Research Facility (IRF) will be available. To achieve this, AECL has undertaken a program of safety reassessment and upgrades to enhance the level of safety consistent with modem requirements. An engineering assessment/inspection of critical systems, equipment and components was completed and seven major safety upgrades are being designed and installed. These upgrades will significantly reduce the reactor's vulnerability to common mode failures and external hazards, with particular emphasis on seismic protection. The scheduled completion date for the project is 1999 December at a cost approximately twice the annual operating cost. All work on the NRU upgrade project is planned and integrated into the regular operating cycles of the reactor; no major outages are anticipated. This paper describes the safety upgrades and discusses the technical and managerial challenges involved in extending the operating life of the NRU reactor. (author)

  2. Calgary Laboratory Services

    Directory of Open Access Journals (Sweden)

    James R. Wright MD, PhD

    2015-12-01

    Full Text Available Calgary Laboratory Services provides global hospital and community laboratory services for Calgary and surrounding areas (population 1.4 million and global academic support for the University of Calgary Cumming School of Medicine. It developed rapidly after the Alberta Provincial Government implemented an austerity program to address rising health care costs and to address Alberta’s debt and deficit in 1994. Over roughly the next year, all hospital and community laboratory test funding within the province was put into a single budget, fee codes for fee-for-service test billing were closed, roughly 40% of the provincial laboratory budget was cut, and roughly 40% of the pathologists left the province of Alberta. In Calgary, in the face of these abrupt changes in the laboratory environment, private laboratories, publicly funded hospital laboratories and the medical school department precipitously and reluctantly merged in 1996. The origin of Calgary Laboratory Services was likened to an “unhappy shotgun marriage” by all parties. Although such a structure could save money by eliminating duplicated services and excess capacity and could provide excellent city-wide clinical service by increasing standardization, it was less clear whether it could provide strong academic support for a medical school. Over the past decade, iterations of the Calgary Laboratory Services model have been implemented or are being considered in other Canadian jurisdictions. This case study analyzes the evolution of Calgary Laboratory Services, provides a metric-based review of academic performance over time, and demonstrates that this model, essentially arising as an unplanned experiment, has merit within a Canadian health care context.

  3. Gun Dynamics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Gun Dynamics Laboratory is a research multi-task facility, which includes two firing bays, a high bay area and a second floor laboratory space. The high bay area...

  4. Computational Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory contains a number of commercial off-the-shelf and in-house software packages allowing for both statistical analysis as well as mathematical modeling...

  5. Laboratory hemostasis: milestones in Clinical Chemistry and Laboratory Medicine.

    Science.gov (United States)

    Lippi, Giuseppe; Favaloro, Emmanuel J

    2013-01-01

    Hemostasis is a delicate, dynamic and intricate system, in which pro- and anti-coagulant forces cooperate for either maintaining blood fluidity under normal conditions, or else will prompt blood clot generation to limit the bleeding when the integrity of blood vessels is jeopardized. Excessive prevalence of anticoagulant forces leads to hemorrhage, whereas excessive activation of procoagulant forces triggers excessive coagulation and thrombosis. The hemostasis laboratory performs a variety of first, second and third line tests, and plays a pivotal role in diagnostic and monitoring of most hemostasis disturbances. Since the leading targets of Clinical Chemistry and Laboratory Medicine include promotion of progress in fundamental and applied research, along with publication of guidelines and recommendations in laboratory diagnostics, this journal is an ideal source of information on current developments in the laboratory technology of hemostasis, and this article is aimed to celebrate some of the most important and popular articles ever published by the journal in the filed of laboratory hemostasis.

  6. Geomechanics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Geomechanics Laboratory allows its users to measure rock properties under a wide range of simulated service conditions up to very high pressures and complex load...

  7. An assessment of prediction methods of CHF in tubes with a large experimental data bank

    International Nuclear Information System (INIS)

    Leung, L.K.H.; Groeneveld, D.C.

    1993-01-01

    An assessment of prediction methods of CHF in tubes has been carried out using an expanded CHF data bank at Chalk River Laboratories (CRL). It includes eight different CHF look-up tables (two AECL versions and six USSR (or Russian) versions) and three empirical correlations. These prediction methods were developed from relatively large data bases and therefore have a wide range of application. Some limitations, however, were imposed in this study, to avoid any invalid predictions due to extrapolation of these methods. Therefore, these comparisons are limited to the specific data base that is tailored to suit the range of an individual method. This has resulted in a different number of data used in each case. The comparison of predictions against the experimental data is based on the constant inlet-condition approach (i.e., the pressure, mass flux, inlet fluid temperature and tube geometry are the primary parameters). Overall, the AECL tables have the widest range of application. They are assessed with 21 771 data points and the root-mean-square error is only 8.3%. About 60% of these data were used in the development of the AECL tables. The best version of the USSR/Russian CHF table is valid for 13 300 data points with a root-mean-square error of 8.8%. The USSR/Russian table that has the widest range of application covers a total of 18 800 data points, but the error increases to 9.3%. The range of application for empirical correlations, however, are generally much narrower than those covered by the CHF tables. The number of data used to assess these correlations is therefore further limited. Among the tested correlations, the Becker and Persson correlation covers the least amount of data (only 7 499 data points), but has the best accuracy (with a root-mean-square error of 9.71%). 33 refs., 2 figs., 3 tabs

  8. Report on a visit to Canada to discuss tritium instrumentation and radiological protection

    International Nuclear Information System (INIS)

    Gibson, J.A.B.

    1984-10-01

    A report is presented of a visit to Canada on behalf of the CEC DG II/Fusion between the 8th to 13th April 1984. Discussions were arranged by the Canadian Fusion-Fuels Technology Project near Toronto and covered all aspects of tritium technology but especially radiological protection. Visits included the CFFTP Centre, Pickering Nuclear Generating Section, Ontario Hydro's Head Office, Safety Services Department and Research Division, Scintrex Ltd (tritium instrument manufacturers) and the Atomic Energy of Canada (AECL) Chalk River Nuclear laboratories (CRNL). There are clearly many areas for the use of Canadian Technology in Europe, particularly with CRNL and Scintrex on the development of 3 H 2 / 3 H 2 O discriminating monitors. There is some doubt whether these development will be in time for applications at the JET laboratory and the JRC at ISPRA but this collaboration will be pursued. (author)

  9. Spatial analysis of Carbon-14 dynamics in a wetland ecosystem (Duke Swamp, Chalk River Laboratories, Canada)

    International Nuclear Information System (INIS)

    Yankovich, T.L.; King-Sharp, K.J.; Carr, J.; Robertson, E.; Killey, R.W.D.; Beresford, N.A.; Wood, M.D.

    2014-01-01

    A detailed survey was conducted to quantify the spatial distribution of 14 C in Sphagnum moss and underlying soil collected in Duke Swamp. This wetland environment receives 14 C via groundwater pathways from a historic radioactive Waste Management Area (WMA) on Atomic Energy Canada Limited (AECL)'s Chalk River Laboratories (CRL) site. Trends in 14 C specific activities were evaluated with distance from the sampling location with the maximum 14 C specific activity (DSS-35), which was situated adjacent to the WMA and close to an area of groundwater discharge. Based on a spatial evaluation of the data, an east-to-west 14 C gradient was found, due to the influence of the WMA on 14 C specific activities in the swamp. In addition, it was possible to identify two groups of sites, each showing significant exponential declines with distance from the groundwater source area. One of the groups showed relatively more elevated 14 C specific activities at a given distance from source, likely due to their proximity to the WMA, the location of the sub-surface plume originating from the WMA, the presence of marsh and swamp habitat types, which facilitated 14 C transport to the atmosphere, and possibly, 14 C air dispersion patterns along the eastern edge of the swamp. The other group, which had lower 14 C specific activities at a given distance from the groundwater source area, included locations that were more distant from the WMA and the sub-surface plume, and contained fen habitat, which is known to act as barrier to groundwater flow. The findings suggest that proximity to source, groundwater flow patterns and habitat physical characteristics can play an important role in the dynamics of 14 C being carried by discharging groundwater into terrestrial and wetland environments. - Highlights: • Groundwater represents an important source of volatile radionuclides to wetlands. • Habitat type influenced 14 C transport from sub-surface to surface environments. • C-14 specific

  10. Saxton Transportation Operations Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Saxton Transportation Operations Laboratory (Saxton Laboratory) is a state-of-the-art facility for conducting transportation operations research. The laboratory...

  11. [Future roles of clinical laboratories and clinical laboratory technologists in university hospitals].

    Science.gov (United States)

    Yokota, Hiromitsu; Yatomi, Yutaka

    2013-08-01

    Clinical laboratories in university hospitals should be operated with a good balance of medical practice, education, research, and management. The role of a clinical laboratory is to promptly provide highly reliable laboratory data to satisfy the needs of clinicians involved in medical practice and health maintenance of patients. Improvement and maintenance of the quality of the laboratory staff and environment are essential to achieve this goal. In order to implement these requirements efficiently, an appropriate quality management system should be introduced and established, and evaluated objectively by a third party (e.g. by obtaining ISO 15189 certification). ISO 15189 is an international standard regarding the quality and competence of clinical laboratories, and specifies a review of the efficient operational system and technical requirements such as competence in implementing practical tests and calibration. This means the results of laboratory tests reported by accredited laboratories withstand any international evaluation, which is very important to assure the future importance of the existence and management of clinical laboratories as well as internationalization of medical practice. "Education" and "research" have important implications in addition to "medical practice" and "management", as the roles that clinical laboratories should play in university hospitals. University hospital laboratories should be operated by keeping these four factors in good balance. Why are "education" and "research" required in addition to "medical practice" services? If individual clinical laboratory technologists can provide an appropriate response to this question, the importance of the existence of clinical laboratories would be reinforced, without being compromised.

  12. Field-scale colloid migration experiments in a granite fracture

    International Nuclear Information System (INIS)

    Vilks, P.; Frost, L.H.; Bachinski, D.B.

    1997-01-01

    An understanding of particle migration in fractured rock, required to assess the potential for colloid-facilitated transport of radionuclides, can best be evaluated when the results of laboratory experiments are demonstrated in the field. Field-scale migration experiments with silica colloids were carried out at AECL's Underground Research Laboratory (URL), located in southern Manitoba, to develop the methodology for large-scale migration experiments and to determine whether colloid transport is possible over distances up to 17 m. In addition, these experiments were designed to evaluate the effects of flow rate and flow path geometry, and to determine whether colloid tracers could be used to provide additional information on subsurface transport to that provided by conservative tracers alone. The colloid migration studies were carried out as part of AECL's Transport Properties in Highly Fractured Rock Experiment, the objective of which was to develop and demonstrate methods for evaluating the solute transport characteristics of zones of highly fractured rock. The experiments were carried out within fracture zone 2 as two-well recirculating, two-well non-recirculating, and convergent flow tests, using injection rates of 5 and 101 min -1 . Silica colloids with a 20 nm size were used because they are potentially mobile due to their stability, small size and negative surface charge. The shapes of elution profiles for colloids and conservative tracers were similar, demonstrating that colloids can migrate over distances of 17 m. The local region of drawdown towards the URL shaft affected colloid migration and, to a lesser extent, conservative tracer migration within the flow field established by the two-well tracer tests. These results indicate that stable colloids, with sizes as small as 20 nm, have different migration properties from dissolved conservative tracers. (author)

  13. Safety in laboratories: Indian scenario.

    Science.gov (United States)

    Mustafa, Ajaz; Farooq, A Jan; Qadri, Gj; S A, Tabish

    2008-07-01

    Health and safety in clinical laboratories is becoming an increasingly important subject as a result of emergence of highly infectious diseases such as Hepatitis and HIV. A cross sectional study was carried out to study the safety measures being adopted in clinical laboratories of India. Heads of laboratories of teaching hospitals of India were subjected to a standardized, pretested questionnaire. Response rate was 44.8%. only 60% of laboratories had person in-charge of safety in laboratory. Seventy three percent of laboratories had safety education program regarding hazards. In 91% of laboratories staff is using protective clothing while working in laboratories. Hazardous material regulations are followed in 78% of laboratories. Regular health check ups are carried among laboratory staff in 43.4% of laboratories.Safety manual is available in 56.5% of laboratories. 73.9% of laboratories are equipped with fire extinguishers. Fume cupboards are provided in 34.7% of laboratories and they are regularly checked in 87.5% of these laboratories. In 78.26% of laboratories suitable measures are taken to minimize formation of aerosols.In 95.6% of laboratories waste is disposed off as per bio-medical waste management handling rules. Laboratory of one private medical college was accredited with NABL and safety parameters were better in that laboratory. Installing safety engineered devices apparently contributes to significant decrease in injuries in laboratories; laboratory safety has to be a part of overall quality assurance programme in hospitals. Accreditation has to be made necessary for all laboratories.

  14. National laboratories

    International Nuclear Information System (INIS)

    Moscati, G.

    1983-01-01

    The foundation of a 'National Laboratory' which would support a Research center in synchrotron radiation applications is proposed. The essential features of such a laboratory differing of others centers in Brazil are presented. (L.C.) [pt

  15. Lessons learned in planning the Canadian Nuclear Legacy Liabilities Program

    International Nuclear Information System (INIS)

    Stephens, Michael E.; Brooks, Sheila M.; Miller, Joan M.; Mason, Robert A.

    2011-01-01

    In 2006, Atomic Energy of Canada Limited (AECL) and Natural Resources Canada (NRCan) began implementing a $7B CDN, 70-year Nuclear Legacy Liabilities Program (NLLP) to deal with legacy decommissioning and environmental issues at AECL nuclear sites. The objective of the NLLP is to safely and cost-effectively reduce the nuclear legacy liabilities and associated risks based on sound waste management and environmental principles in the best interest of Canadians. The liabilities include shutdown research and prototype power reactors, fuel handling facilities, radiochemical laboratories, support buildings, radioactive waste storage facilities, and contaminated lands at several sites located across eastern Canada from Quebec to Manitoba. The largest site, Chalk River Laboratories (CRL) in Ontario, will continue as an operational nuclear site for the foreseeable future. Planning and delivery of the Program is managed by the Liability Management Unit (LMU), a group that was formed within AECL for the purpose. The composition and progress of the NLLP has been reported in recent conferences. The NLLP comprises a number of interlinked decommissioning, waste management and environmental restoration activities that are being executed at different sites, and by various technical groups as suppliers to the LMU. Many lessons about planning and executing such a large, diverse Program have been learned in planning the initial five-year 'start-up' phase (which will conclude 2011 March), in planning the five-year second phase (which is currently being finalized), and in planning individual and interacting activities within the Program. The activities to be undertaken in the start-up phase were planned by a small group of AECL technical experts using the currently available information on the liabilities. Progress in executing the Program was slower than anticipated due to less than ideal alignment between some planned technical solutions and the actual requirements, as well as the

  16. Personalized laboratory medicine

    DEFF Research Database (Denmark)

    Pazzagli, M.; Malentacchi, F.; Mancini, I.

    2015-01-01

    diagnostic tools and expertise and commands proper state-of-the-art knowledge about Personalized Medicine and Laboratory Medicine in Europe, the joint Working Group "Personalized Laboratory Medicine" of the EFLM and ESPT societies compiled and conducted the Questionnaire "Is Laboratory Medicine ready...... in "omics"; 2. Additional training for the current personnel focused on the new methodologies; 3. Incorporation in the Laboratory of new competencies in data interpretation and counselling; 4. Improving cooperation and collaboration between professionals of different disciplines to integrate information...

  17. New applications of radioisotopes

    International Nuclear Information System (INIS)

    Beddoes, J.M.

    1982-06-01

    The Radiochemical Company of Atomic Energy of Canada Ltd. is developing new uses for radioisotpes. This paper discusses three of them. The first is positron emission tomography. AECL, together with the Montreal Neurological Institute, has developed a new PET scanner, the Therascan 3128. A second area of interest is radiopharmaceuticals, which AECL is beginning to produce in patient-ready form. Finally, investigations are being carried out into the use of cobalt 60 gamma sources as food and waste irradiators

  18. Cernovoda construction on target for Unit 1 startup in 1994

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    AECL and the Italian company Ansaldo have formed a joint venture to complete the first unit of the five-unit station at Cernovoda, with AECL assuming overall project management. Financing of the project is being provided jointly, with $315 million form the Canadian Export Development Corp. and $175 million from the Italian government. First criticality is scheduled for October 1994, and connection to the grid in December 1994. When complete, Cernovoda will supply 30% of Romania's electricity

  19. A reanalysis of cancer mortality in Canadian nuclear workers (1956–1994) based on revised exposure and cohort data

    Science.gov (United States)

    Zablotska, L B; Lane, R S D; Thompson, P A

    2014-01-01

    Background: A 15-country study of nuclear workers reported significantly increased radiation-related risks of all cancers excluding leukaemia, with Canadian data a major factor behind the pooled results. We analysed mortality (1956–1994) in the updated Canadian cohort and provided revised risk estimates. Methods: Employment records were searched to verify and revise exposure data and to restore missing socioeconomic status. Excess relative risks per sievert (ERR/Sv) of recorded radiation dose and 95% confidence intervals (CIs) were estimated using Poisson regression. Results: A significant heterogeneity of the dose–response for solid cancer was identified (P=0.02), with 3088 early (1956–1964) Atomic Energy of Canada Limited (AECL) workers having a significant increase (ERR/Sv=7.87, 95% CI: 1.88, 19.5), and no evidence of radiation risk for 42 228 workers employed by three nuclear power plant companies and post-1964 AECL (ERR/Sv=−1.20, 95% CI: workers and non-significantly increased in other workers. In analyses with separate terms for tritium and gamma doses, there was no evidence of increased risk from tritium exposure. All workers had mortality lower than the general population. Conclusion: Significantly increased risks for early AECL workers are most likely due to incomplete transfer of AECL dose records to the National Dose Registry. Analyses of the remainder of the Canadian nuclear workers (93.2%) provided no evidence of increased risk, but the risk estimate was compatible with estimates that form the basis of radiation protection standards. Study findings suggest that the revised Canadian cohort, with the exclusion of early AECL workers, would likely have an important effect on the 15-country pooled risk estimate of radiation-related risks of all cancer excluding leukaemia by substantially reducing the size of the point estimate and its significance. PMID:24231946

  20. Simulated maintenance a virtual reality

    International Nuclear Information System (INIS)

    Lirvall, P.

    1995-01-01

    The article describes potential applications of personal computer-based virtual reality software. The applications are being investigated by Atomic Energy of Canada Limited's (AECL) Chalk River Laboratories for the Canadian deuterium-uranium (Candu) reactor. Objectives include: (1) reduction of outage duration and improved safety, (2) cost-effective and safe maintenance of equipment, (3) reduction of exposure times and identification of overexposure situations, (4) cost-effective training in a virtual control room simulator, (5) human factors evaluation of design interface, and (6) visualization of conceptual and detailed designs of critical nuclear field environments. A demonstration model of a typical reactor control room, the use of virtual reality in outage planning, and safety issues are outlined

  1. Results of a survey on accident and safety analysis codes, benchmarks, verification and validation methods

    International Nuclear Information System (INIS)

    Lee, A.G.; Wilkin, G.B.

    1996-03-01

    During the 'Workshop on R and D needs' at the 3rd Meeting of the International Group on Research Reactors (IGORR-III), the participants agreed that it would be useful to compile a survey of the computer codes and nuclear data libraries used in accident and safety analyses for research reactors and the methods various organizations use to verify and validate their codes and libraries. Five organizations, Atomic Energy of Canada Limited (AECL, Canada), China Institute of Atomic Energy (CIAE, People's Republic of China), Japan Atomic Energy Research Institute (JAERI, Japan), Oak Ridge National Laboratories (ORNL, USA), and Siemens (Germany) responded to the survey. The results of the survey are compiled in this report. (author) 36 refs., 3 tabs

  2. A professional development model for medical laboratory scientists working in the microbiology laboratory.

    Science.gov (United States)

    Amerson, Megan H; Pulido, Lila; Garza, Melinda N; Ali, Faheem A; Greenhill, Brandy; Einspahr, Christopher L; Yarsa, Joseph; Sood, Pramilla K; Hu, Peter C

    2012-01-01

    The University of Texas M.D. Anderson Cancer Center, Division of Pathology and Laboratory Medicine is committed to providing the best pathology and medicine through: state-of-the art techniques, progressive ground-breaking research, education and training for the clinical diagnosis and research of cancer and related diseases. After surveying the laboratory staff and other hospital professionals, the Department administrators and Human Resource generalists developed a professional development model for Microbiology to support laboratory skills, behavior, certification, and continual education within its staff. This model sets high standards for the laboratory professionals to allow the labs to work at their fullest potential; it provides organization to training technologists based on complete laboratory needs instead of training technologists in individual areas in which more training is required if the laboratory needs them to work in other areas. This model is a working example for all microbiology based laboratories who want to set high standards and want their staff to be acknowledged for demonstrated excellence and professional development in the laboratory. The PDM model is designed to focus on the needs of the laboratory as well as the laboratory professionals.

  3. Realizing the benefits of improved plant monitoring in DCC upgrade applications

    International Nuclear Information System (INIS)

    Stephens, K.L.

    2001-01-01

    The basic design of current CANDU control centres was established in the early 1970's and plants constructed since then have maintained the same basic design. Over the ensuing years AECL and utility owners have implemented an evolutionary approach to ensuing years AECL and utility owners have implemented an evolutionary approach to control centre improvements. This continues to be the approach as refurbishment and retrofits are being considered for aging CANDU plants. The Advanced Control Centre information System (ACCIS), AECL's plant display system product, can be applied in an evolutionary manner within the control centre. ACCIS provides users with the advanced information necessary to meet the key operational goals of safety and production. AECL is presently deploying ACCIS in the Qinshan Unit l and 2 Control Centres and the Training Simulator. In this installation ACCIS provides supplemental display capabilities together with an integrated DCC/ACCIS annunciation function. This solution provides a working example of how ACCIS could be applied in a retrofit situation and provides useful information on its utilization in future retrofits. This paper describes ACCIS functionality, particularly focusing on features and functions critical to providing improved monitoring. The applications of these functions are described within the context of the Qinshan Plant Display System (QPDS) installation. This information is then extended to its application within future retrofits. (author)

  4. Natural colloids in groundwater from granite and their potential impact on radionuclide transport

    International Nuclear Information System (INIS)

    Vilks, P.; Bachinski, D.B.

    1997-03-01

    AECL has submitted an Environmental Impact Statement (EIS) to evaluate the concept of nuclear fuel disposal at depth in crystalline rock of the Canadian Shield. As part of geochemical studies carried out in support of the EIS, the role of natural groundwater colloids (0.001 to 0.45 μm) and suspended particles (>0.45 μm) in radionuclide transport in granite rock has been investigated. This report summarizes the results of investigations carried out in groundwaters from the Whiteshell Research Area (WRA) of southern Manitoba and the Atikokan Research Area (ARA) of northwestern Ontario to determine the concentrations, size distributions, and compositions of natural particles in groundwaters from the Canadian Shield. Particles from groundwater were isolated by ultrafiltration under a nitrogen atmosphere and particle concentrations and size distributions were determined by filtration, and by laser-based particle counting and size analysis. Groundwaters from Canadian Shield granites contain particles in a broad range of sizes, with no one particular size being dominant. Particle compositions include aluminosilicates, Fe oxides, carbonate and organics. Suspended particles are most likely generated by the mobilization of fracture-lining minerals by groundwater flow, while colloids are formed by a combination of precipitation and mobilization of colloidal material from fracture surfaces. The average concentration of 0.01 to 0.45 μm colloids in WRA groundwaters was 1.05 ± 0.14 mg/L. Average colloid concentrations were slightly higher in the more highly fractured ARA, although the highest observed colloid concentration in the ARA was below the 7 mg/L maximum observed in a sample from the WRA. The existence of colloids in the 0.001 to 0.01 μm size range was demonstrated using the results of chemical analysis of particle concentrates and data obtained with the laser-based Ultrafine Particle Size Analyzer (UPA). The WRA groundwaters contain on average about 2.7 mg/L of 0

  5. Characterizing the Laboratory Market

    Energy Technology Data Exchange (ETDEWEB)

    Shehabi, Arman [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ganeshalingam, Mohan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); DeMates, Lauren [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mathew, Paul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sartor, Dale [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-04-11

    Laboratories are estimated to be 3-5 times more energy intensive than typical office buildings and offer significant opportunities for energy use reductions. Although energy intensity varies widely, laboratories are generally energy intensive due to ventilation requirements, the research instruments used, and other health and safety concerns. Because the requirements of laboratory facilities differ so dramatically from those of other buildings, a clear need exists for an initiative exclusively targeting these facilities. The building stock of laboratories in the United States span different economic sectors, include governmental and academic institution, and are often defined differently by different groups. Information on laboratory buildings is often limited to a small subsection of the total building stock making aggregate estimates of the total U.S. laboratories and their energy use challenging. Previous estimates of U.S. laboratory space vary widely owing to differences in how laboratories are defined and categorized. A 2006 report on fume hoods provided an estimate of 150,000 laboratories populating the U.S. based in part on interviews of industry experts, however, a 2009 analysis of the 2003 Commercial Buildings Energy Consumption Survey (CBECS) generated an estimate of only 9,000 laboratory buildings. This report draws on multiple data sources that have been evaluated to construct an understanding of U.S. laboratories across different sizes and markets segments. This 2016 analysis is an update to draft reports released in October and December 2016.

  6. Sandia National Laboratories

    Science.gov (United States)

    Gilliom, Laura R.

    1992-01-01

    Sandia National Laboratories has identified technology transfer to U.S. industry as a laboratory mission which complements our national security mission and as a key component of the Laboratory's future. A number of technology transfer mechanisms - such as CRADA's, licenses, work-for-others, and consortia - are identified and specific examples are given. Sandia's experience with the Specialty Metals Processing Consortium is highlighted with a focus on the elements which have made it successful. A brief discussion of Sandia's potential interactions with NASA under the Space Exploration Initiative was included as an example of laboratory-to-NASA technology transfer. Viewgraphs are provided.

  7. Econometric analysis and energy substitution

    International Nuclear Information System (INIS)

    Phillips, G.J.

    1981-09-01

    As part of its long-term assessment of new applications for nuclear energy, AECL is becoming acquainted with the techniques of mathematical modelling as used in the areas of energy and economics. Early in 1980, a contract was arranged with DataMetrics Limited of Calgary to prepare an econometric model of the manufacturing sector for Ontario, and to provide AECL with all the information necessary to understand the theory, derivation, and use of the model. This report summarizes the results of this exercise

  8. Physical Sciences Laboratory (PSL)

    Data.gov (United States)

    Federal Laboratory Consortium — PNNL's Physical Sciences Laboratory (PSL) houses 22 research laboratories for conducting a wide-range of research including catalyst formulation, chemical analysis,...

  9. Distributed Energy Technology Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Distributed Energy Technologies Laboratory (DETL) is an extension of the power electronics testing capabilities of the Photovoltaic System Evaluation Laboratory...

  10. Optics/Optical Diagnostics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Optics/Optical Diagnostics Laboratory supports graduate instruction in optics, optical and laser diagnostics and electro-optics. The optics laboratory provides...

  11. Denver District Laboratory (DEN)

    Data.gov (United States)

    Federal Laboratory Consortium — Program CapabilitiesDEN-DO Laboratory is a multi-functional laboratory capable of analyzing most chemical analytes and pathogenic/non-pathogenic microorganisms found...

  12. COMMERCIALLY ORIENTED CLINICAL LABORATORIES

    Science.gov (United States)

    Chapman, W. Max

    1964-01-01

    Out-of-state flat-rate mail order contract laboratories operating from states which have little or no legal control over them can do business in California without obedience to regulations that govern laboratories located within the state. The flat-rate contract principle under which some out-of-state laboratories operate is illegal in California. The use of such laboratories increases physician liability. Legislation for the control of these laboratories is difficult to construct, and laws which might result would be awkward to administer. The best remedy is for California physicians not to use an out-of-state laboratory offering contracts or conditions that it could not legally offer if it were located in California. PMID:14165875

  13. [Accreditation of medical laboratories].

    Science.gov (United States)

    Horváth, Andrea Rita; Ring, Rózsa; Fehér, Miklós; Mikó, Tivadar

    2003-07-27

    In Hungary, the National Accreditation Body was established by government in 1995 as an independent, non-profit organization, and has exclusive rights to accredit, amongst others, medical laboratories. The National Accreditation Body has two Specialist Advisory Committees in the health care sector. One is the Health Care Specialist Advisory Committee that accredits certifying bodies, which deal with certification of hospitals. The other Specialist Advisory Committee for Medical Laboratories is directly involved in accrediting medical laboratory services of health care institutions. The Specialist Advisory Committee for Medical Laboratories is a multidisciplinary peer review group of experts from all disciplines of in vitro diagnostics, i.e. laboratory medicine, microbiology, histopathology and blood banking. At present, the only published International Standard applicable to laboratories is ISO/IEC 17025:1999. Work has been in progress on the official approval of the new ISO 15189 standard, specific to medical laboratories. Until the official approval of the International Standard ISO 15189, as accreditation standard, the Hungarian National Accreditation Body has decided to progress with accreditation by formulating explanatory notes to the ISO/IEC 17025:1999 document, using ISO/FDIS 15189:2000, the European EC4 criteria and CPA (UK) Ltd accreditation standards as guidelines. This harmonized guideline provides 'explanations' that facilitate the application of ISO/IEC 17025:1999 to medical laboratories, and can be used as a checklist for the verification of compliance during the onsite assessment of the laboratory. The harmonized guideline adapted the process model of ISO 9001:2000 to rearrange the main clauses of ISO/IEC 17025:1999. This rearrangement does not only make the guideline compliant with ISO 9001:2000 but also improves understanding for those working in medical laboratories, and facilitates the training and education of laboratory staff. With the

  14. Tritium handling experience at Atomic Energy of Canada Limited

    Energy Technology Data Exchange (ETDEWEB)

    Suppiah, S.; McCrimmon, K.; Lalonde, S.; Ryland, D.; Boniface, H.; Muirhead, C.; Castillo, I. [Atomic Energy of Canad Limited - AECL, Chalk River Laboratories, Chalk River, ON (Canada)

    2015-03-15

    Canada has been a leader in tritium handling technologies as a result of the successful CANDU reactor technology used for power production. Over the last 50 to 60 years, capabilities have been established in tritium handling and tritium management in CANDU stations, tritium removal processes for heavy and light water, tritium measurement and monitoring, and understanding the effects of tritium on the environment. This paper outlines details of tritium-related work currently being carried out at Atomic Energy of Canada Limited (AECL). It concerns the CECE (Combined Electrolysis and Catalytic Exchange) process for detritiation, tritium-compatible electrolysers, tritium permeation studies, and tritium powered batteries. It is worth noting that AECL offers a Tritium Safe-Handling Course to national and international participants, the course is a mixture of classroom sessions and hands-on practical exercises. The expertise and facilities available at AECL is ready to address technological needs of nuclear fusion and next-generation nuclear fission reactors related to tritium handling and related issues.

  15. Electron processing of fibre-reinforced advanced composites

    Energy Technology Data Exchange (ETDEWEB)

    Singh, A.; Saunders, C.B.; Barnard, J.W.; Lopata, V.J.; Kremers, W.; McDougall, T.E.; Chung, M.; Tateishi, Miyoko [Atomic Energy of Canada Ltd., Pinawa, MB (Canada). Whiteshell Labs.

    1996-08-01

    Advanced composites, such as carbon-fibre-reinforced epoxies, are used in the aircraft, aerospace, sporting goods, and transportation industries. Though thermal curing is the dominant industrial process for advanced composites, electron curing of similar composites containing acrylated epoxy matrices has been demonstrated by our work. The main attraction of electron processing technology over thermal technology is the advantages it offers which include ambient temperature curing, reduced curing times, reduced volatile emissions, better material handling, and reduced costs. Electron curing technology allows for the curing of many types of products, such as complex shaped, those containing different types of fibres and up to 15 cm thick. Our work has been done principally with the AECL`s 10 MeV, 1 kW electron accelerator; we have also done some comparative work with an AECL Gammacell 220. In this paper we briefly review our work on the various aspects of electron curing of advanced composites and their properties. (Author).

  16. Nuclear medicine tomorrow

    International Nuclear Information System (INIS)

    Marko, A.M.

    1986-04-01

    The purpose of this Workshop was to discuss and promote future nuclear medicine applications. Atomic Energy of Canada Limited (AECL) is determined to assist in this role. A major aim of this gathering was to form an interface that was meaningful, representative of the two entities, and above all, on-going. In the opening address, given by Mr. J. Donnelly, President of AECL, this strong commitment was emphasized. In the individual sessions, AECL participants outlined R and D programs and unique expertise that promised to be of interest to members of the nuclear medicine community. The latter group, in turn, described what they saw as some problems and needs of nuclear medicine, especially in the near future. These Proceedings comprise the record of the formal presentations. Additionally, a system of reporting by rapporteurs insured a summary of informal discussions at the sessions and brought to focus pertinent conclusions of the workshop attendees

  17. The contract for the completion and commissioning of Cernavoda NPP - Unit

    International Nuclear Information System (INIS)

    2001-01-01

    On May 18, 2001 the commercial contract for the completion and commissioning of the Cernavoda NPP Unit 2 has been signed by Nuclearelectrica National Company (SNN SA) and its partners, AECL-Canada and ANSALDO-Italy. This contract represents a continuation of the cooperation with AECL-Canada (the owner of the licence and the designer of the nuclear part of Cernavoda NPP Unit1) and ANSALDO-Italy (the designer of the conventional part of Cernavoda NPP Unit1). The completion is scheduled to last for 54 months (4.5 years) since the date the contract takes effect and the nuclear reactor start-up (the first criticality) is scheduled for the 49 th month. The total negotiated cost for the completion was estimated to amount to 689 million dollars, against the 750 million dollars initially estimated. The works at the site will be managed by an integrated staff team of specialized personnel form AECL-Canada (111 positions), ANSALDO-Italy (72 positions) and Romania (1200 positions)

  18. Types and properties of elastomer materials used in CANDU reactor

    Energy Technology Data Exchange (ETDEWEB)

    You, Ho Sik; Jeong, Jin Kon [Korea Atomic Energy Research Institute, Daeduk (Korea, Republic of)

    1996-05-01

    Properties and kinds of elastomer materials used in a CANDU power plant have been described. The elastomer materials have been used as a sealing material in the components f nuclear power plant since they have many excellent properties that can not be seen in other materials. It is very important to select proper elastomer materials used in the nuclear power plant are required to have resistance to temperature as well as radiation. According to the experimental results performed at some laboratories including the Chalk River Laboratory of AECL, elastomer materials with high resistance to temperature and radiation are Nitrile, Ethylene, Propylene and Butyl. These materials have been used in a lot of components of Wolsong unit 1 and Wolsong 2, 3 and 4 which are under elastomer material. Therefore, the studies on the standardization are currently under way to limit about 10 different kinds of elastomer materials to be used in the plant. 16 tabs., 1 fig., 12 refs. (Author) .new.

  19. The impact of laboratory quality assurance standards on laboratory operational performance

    Directory of Open Access Journals (Sweden)

    E Ratseou

    2014-01-01

    Full Text Available It has become a trend for companies to implement and be certified to various quality management systems so as to improve consistency, reliability, and quality of product delivery to customers. The most common quality management systems adopted are the ISO 9000 series of standards for manufacturing and services related organisations, with ISO 17025 and Good Laboratory Practices (GLP standards adopted specifically by laboratories as quality assurance initiatives. There are various reports on the impact of the ISO 9000 series on organisational performance but no studies or reports have been done on the performance of laboratory standards. Therefore this article reports on a study conducted to investigate the impact of ISO 17025 and GLP on the operational performance of both commercial and non-commercial laboratories. A qualitative research study was conducted to examine the impact standards on the aspects of health and safety, supplier selection and performance, human resources, customer satisfaction and profitability of the laboratory. The data collected suggest that there is no difference in laboratory operational performance with or without the standards. In other words it appears that the basic fundamental requirements inherent with laboratories are sufficient to perform both operationally and optimally. This leads to the view that standards are implemented as a customer requirement and not as an operational requirement.

  20. Laboratory quality assurance and its role in the safeguards analytical laboratory evaluation (SALE) program

    International Nuclear Information System (INIS)

    Delvin, W.L.; Pietri, C.E.

    1981-07-01

    Since the late 1960's, strong emphasis has been given to quality assurance in the nuclear industry, particularly to that part involved in nuclear reactors. This emphasis has had impact on the analytical chemistry laboratory because of the importance of analytical measurements in the certification and acceptance of materials used in the fabrication and construction of reactor components. Laboratory quality assurance, in which the principles of quality assurance are applied to laboratory operations, has a significant role to play in processing, fabrication, and construction programs of the nuclear industry. That role impacts not only process control and material certification, but also safeguards and nuclear materials accountability. The implementation of laboratory quality assurance is done through a program plan that specifies how the principles of quality assurance are to be applied. Laboratory quality assurance identifies weaknesses and deficiencies in laboratory operations and provides confidence in the reliability of laboratory results. Such confidence in laboratory measurements is essential to the proper evaluation of laboratories participating in the Safeguards Analytical Laboratory Evaluation (SALE) Program

  1. Safety in the Chemical Laboratory: Safety in the Chemistry Laboratories: A Specific Program.

    Science.gov (United States)

    Corkern, Walter H.; Munchausen, Linda L.

    1983-01-01

    Describes a safety program adopted by Southeastern Louisiana University. Students are given detailed instructions on laboratory safety during the first laboratory period and a test which must be completely correct before they are allowed to return to the laboratory. Test questions, list of safety rules, and a laboratory accident report form are…

  2. Vehicle Development Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Supports the development of prototype deployment platform vehicles for offboard countermeasure systems.DESCRIPTION: The Vehicle Development Laboratory is...

  3. NASA Space Radiation Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory is a NASA funded facility, delivering heavy ion beams to a target area where scientists...

  4. Intelligent Optics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Intelligent Optics Laboratory supports sophisticated investigations on adaptive and nonlinear optics; advancedimaging and image processing; ground-to-ground and...

  5. Soil/Rock Properties Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Soil/Rock Properties LaboratoryLocation: Spokane SiteThe Soil/Rock Properties Laboratory is contained in the soils bay, a 4,700 sq. ft. facility that provides space...

  6. The AECL research and development program

    International Nuclear Information System (INIS)

    Hart, R.G.; Woods, A.D.B.

    1980-02-01

    The research and development program of the Atomic Energy of Canada Research Company is briefly described. Goals and objectives are emphasized, some recent highlights are given and the importance of technology transfer is discussed. A short representative bibliography is included. (auth)

  7. Materials research in AECL, Spring 1970

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1970-05-15

    This report gives a summary of materials research at Atomic Energy of Canada Limited. The topics covered in this report include engineering design with brittle materials, texture and mechanical properties of zirconium alloy tubing, structural damage by ion bombardment, research on silicon carbide, shallow phosphorus diffusion in p-type silicon and scanning electron microscopy. CRNL facilities for the examination of irradiated materials is also discussed.

  8. Materials research in AECL, Spring 1970

    International Nuclear Information System (INIS)

    1970-05-01

    This report gives a summary of materials research at Atomic Energy of Canada Limited. The topics covered in this report include engineering design with brittle materials, texture and mechanical properties of zirconium alloy tubing, structural damage by ion bombardment, research on silicon carbide, shallow phosphorus diffusion in p-type silicon and scanning electron microscopy. CRNL facilities for the examination of irradiated materials is also discussed

  9. AECL programs in basic physics research

    International Nuclear Information System (INIS)

    Bartholomew, G.A.; Dolling, G.; Harvey, M.; Milton, J.C.D.

    1982-02-01

    This report describes the CRNL program of research into the basic properties of atomic nuclei and condensed matter (liquids and solids). Brief descriptions are given of some of the current experimental programs done principally at the NRU reactor and MP tandem accelerator, the associated theoretical studies, and some highlights of past achievements

  10. AECL research programs in systems chemistry

    International Nuclear Information System (INIS)

    Lister, D.H.; Pathania, R.S.

    1984-05-01

    Research programs in Systems Chemistry are aimed at preserving the integrity of the many working systems in CANDU reactors and at minimizing chemistry-induced problems such as radiation field growth or fouling of surfaces. The topics of main concern are the chemistry and corrosion of steam generators, for it is in this general area that the potential for serious problems is very real

  11. ANALYTICAL MICROBIOLOGY LABORATORY

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory contains equipment that performs a broad array of microbiological analyses for pathogenic and spoilage microorganisms. It performs challenge studies...

  12. COGNITIVE PERFORMANCE LABORATORY

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory conducts basic and applied human research studies to characterize cognitive performance as influenced by militarily-relevant contextual and physical...

  13. [View of a Laboratory Physician on the Present and Future of Clinical Laboratories].

    Science.gov (United States)

    Matsuo, Shuji

    2014-10-01

    It is meaningful to discuss the "present and future of laboratories" for the development of laboratories and education of medical technologists. Laboratory staff must be able to perform urgent high-quality tests and take part in so-called team-based medicine and should be proud of devising systems that efficiently provide laboratory data for all medical staff. On the other hand, there may be staff with a poor sense of professionalism who work no more than is expected and too readily ask firms and commercial laboratories to solve problems. Overwork caused by providing team-based medicine and a decrease in numbers of clinical chemists are concerns. The following are hoped for in the future. Firstly, laboratory staff will become conscious of their own high-level abilities and expand their areas of work, for example, bioscience, proteomics, and reproductive medicine. Secondly, a consultation system for medical staff and patients will be established. Thirdly, clinical research will be advanced, such as investigating unknown pathophysiologies using laboratory data and samples, and developing new methods of measurement. Lastly, it is of overriding importance that staff of laboratory and educational facilities will cooperate with each other to train the next generation. In conclusion, each laboratory should be appreciated, attractive, positive regarding its contribution to society, and show individuality.

  14. Laboratory safety handbook

    Science.gov (United States)

    Skinner, E.L.; Watterson, C.A.; Chemerys, J.C.

    1983-01-01

    Safety, defined as 'freedom from danger, risk, or injury,' is difficult to achieve in a laboratory environment. Inherent dangers, associated with water analysis and research laboratories where hazardous samples, materials, and equipment are used, must be minimized to protect workers, buildings, and equipment. Managers, supervisors, analysts, and laboratory support personnel each have specific responsibilities to reduce hazards by maintaining a safe work environment. General rules of conduct and safety practices that involve personal protection, laboratory practices, chemical handling, compressed gases handling, use of equipment, and overall security must be practiced by everyone at all levels. Routine and extensive inspections of all laboratories must be made regularly by qualified people. Personnel should be trained thoroughly and repetitively. Special hazards that may involve exposure to carcinogens, cryogenics, or radiation must be given special attention, and specific rules and operational procedures must be established to deal with them. Safety data, reference materials, and texts must be kept available if prudent safety is to be practiced and accidents prevented or minimized.

  15. National survey on intra-laboratory turnaround time for some most common routine and stat laboratory analyses in 479 laboratories in China.

    Science.gov (United States)

    Fei, Yang; Zeng, Rong; Wang, Wei; He, Falin; Zhong, Kun; Wang, Zhiguo

    2015-01-01

    To investigate the state of the art of intra-laboratory turnaround time (intra-TAT), provide suggestions and find out whether laboratories accredited by International Organization for Standardization (ISO) 15189 or College of American Pathologists (CAP) will show better performance on intra-TAT than non-accredited ones. 479 Chinese clinical laboratories participating in the external quality assessment programs of chemistry, blood gas, and haematology tests organized by the National Centre for Clinical Laboratories in China were included in our study. General information and the median of intra-TAT of routine and stat tests in last one week were asked in the questionnaires. The response rate of clinical biochemistry, blood gas, and haematology testing were 36% (479/1307), 38% (228/598), and 36% (449/1250), respectively. More than 50% of laboratories indicated that they had set up intra-TAT median goals and almost 60% of laboratories declared they had monitored intra-TAT generally for every analyte they performed. Among all analytes we investigated, the intra-TAT of haematology analytes was shorter than biochemistry while the intra-TAT of blood gas analytes was the shortest. There were significant differences between median intra-TAT on different days of the week for routine tests. However, there were no significant differences in median intra-TAT reported by accredited laboratories and non-accredited laboratories. Many laboratories in China are aware of intra-TAT control and are making effort to reach the target. There is still space for improvement. Accredited laboratories have better status on intra-TAT monitoring and target setting than the non-accredited, but there are no significant differences in median intra-TAT reported by them.

  16. Central Laboratories Services

    Data.gov (United States)

    Federal Laboratory Consortium — The TVA Central Laboratories Services is a comprehensive technical support center, offering you a complete range of scientific, engineering, and technical services....

  17. Embedded Processor Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Embedded Processor Laboratory provides the means to design, develop, fabricate, and test embedded computers for missile guidance electronics systems in support...

  18. Geospatial Services Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: To process, store, and disseminate geospatial data to the Department of Defense and other Federal agencies.DESCRIPTION: The Geospatial Services Laboratory...

  19. [Theme: Using Laboratories.

    Science.gov (United States)

    Pritchard, Jack; Braker, Clifton

    1982-01-01

    Pritchard discusses the opportunities for applied learning afforded by laboratories. Braker describes the evaluation of cognitive, affective, and psychomotor skills in the agricultural mechanics laboratory. (SK)

  20. Environmental Microbiology Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Environmental Microbiology Laboratory, located in Bldg. 644 provides a dual-gas respirometer for measurement of oxygen consumption and carbon dioxide evolution...

  1. Modern clinical laboratory diagnostics

    International Nuclear Information System (INIS)

    Balakhovskij, I.S.

    1986-01-01

    Laboratory diagnosis is auxillary medical discipline studying specific laboratory symptoms of diseases, revealed by investigations of materials taken from patients. The structure of laboratory servie in our country and abroad, items of laboratory investigations, organizational principles are described. Attention is being given to the cost of analyses, the amount of conducted investigations, methods of result presentation, problems of accuracy, quality control and information content

  2. Tendências em medicina laboratorial Trends in laboratory medicine

    Directory of Open Access Journals (Sweden)

    Gustavo Aguiar Campana

    2011-08-01

    Full Text Available A patologia clínica/medicina laboratorial é uma especialidade direcionada à realização de exames complementares no auxílio ao diagnóstico, com impacto nos diferentes estágios da cadeia de saúde: prevenção, diagnóstico, prognóstico e acompanhamento terapêutico. Diversos elementos apontam para maior utilização da medicina diagnóstica no futuro. Para discutirmos as principais tendências na medicina laboratorial, descrevemos os fatores que colaboram e são fundamentais para o crescimento desse mercado denominados, neste estudo, drivers de crescimento. As principais tendências que terão forte impacto na medicina laboratorial, e que serão descritas neste artigo, são: ferramentas de gestão, inserção de novos testes no mercado e rol de procedimentos, qualidade dos serviços em medicina diagnóstica, modelos de operação, automação, consolidação e integração, tecnologia da informação, medicina personalizada e genética. Sabemos que a medicina diagnóstica demonstra sua importância ao participar de 70% das decisões clínicas, absorvendo uma pequena parte dos custos em saúde (cerca de 10%. Todas as tendências analisadas neste trabalho apontam para um crescimento na utilização dos exames laboratoriais e também para sua importância na cadeia de saúde. Esse novo posicionamento, somado às novas expectativas de alta resolubilidade, pressiona o mercado e as companhias que o compõem a buscar mudanças e novas estratégias de atuação.Clinical pathology/laboratory medicine, a specialty focused on performing complementary tests to aid diagnosis, has impact upon several stages of health care: prevention, diagnosis, prognosis, and therapeutic management. There are several factors that will foster the use of laboratory medicine in the future. In order to discuss the main trends in laboratory medicine, this article describes the major factors that have promoted growth in this market, which herein are referred to as growth

  3. Acoustic Technology Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory contains an electro-magnetic worldwide data collection and field measurement capability in the area of acoustic technology. Outfitted by NASA Langley...

  4. Wireless Emulation Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Wireless Emulation Laboratory (WEL) is a researchtest bed used to investigate fundamental issues in networkscience. It is a research infrastructure that emulates...

  5. Sandia National Laboratories

    Data.gov (United States)

    Federal Laboratory Consortium — For more than 60 years, Sandia has delivered essential science and technology to resolve the nation's most challenging security issues.Sandia National Laboratories...

  6. Photovoltaic Characterization Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — NIST's PV characterization laboratory is used to measure the electrical performance and opto-electronic properties of solar cells and modules. This facility consists...

  7. Electro-Deposition Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The electro-deposition laboratory can electro-deposit various coatings onto small test samples and bench level prototypes. This facility provides the foundation for...

  8. Fuels Processing Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — NETL’s Fuels Processing Laboratory in Morgantown, WV, provides researchers with the equipment they need to thoroughly explore the catalytic issues associated with...

  9. Composites Characterization Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The purpose of the Composites Characterization Laboratory is to investigate new and/or modified matrix materials and fibers for advanced composite applications both...

  10. Space Weather Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Space Weather Computational Laboratory is a Unix and PC based modeling and simulation facility devoted to research analysis of naturally occurring electrically...

  11. Thermogravimetric Analysis Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — At NETL’s Thermogravimetric Analysis Laboratory in Morgantown, WV, researchers study how chemical looping combustion (CLC) can be applied to fossil energy systems....

  12. Oil water laboratory

    International Nuclear Information System (INIS)

    P Junior, Oswaldo A.; Verli, Fernando; Lopes, Humberto E.

    2000-01-01

    Usually, the oily water effluent from petroleum processes needs to be treated prior to its environment discard and/or reuse. The synthesis of such water effluent residues in an Oily Water Laboratory - equipped with Water Treatment Pilot Scale Units - is fundamental to the study and effectiveness comparison among the typical industrial water treatment processes. The Oily Water Laboratory will allow the reproduction - in a small scale - of any oily water effluent produced in the industrial PETROBRAS units - such reproduction can be obtained by using the same fluids, oily concentration, salinity, process temperature, particle size distribution etc. Such Laboratory also allows the performance analysis of typical industrial equipment used throughout the water treatment schemes (e.g., hydro-cyclones), resulting in design and/or operational guidelines for these industrial scale schemes. In the particular niche of very small diameter oil droplet removal, more efficient and non-conventional schemes - such as centrifuges and/or membrane filtration - will be also studied in the Laboratory. In addition, the Laboratory shall be used in the certification of in-line oily water analyzers (e.g., TOC - Total Organic Carbon and OWC - Oil Wax Content). This paper describes the characteristics of such Laboratory and its main operational philosophy. (author)

  13. Rapid Prototyping Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The ARDEC Rapid Prototyping (RP) Laboratory was established in December 1992 to provide low cost RP capabilities to the ARDEC engineering community. The Stratasys,...

  14. Geological Services Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Researchers use computed tomography (CT) scanners at NETL’s Geological Services Laboratory in Morgantown, WV, to peer into geologic core samples to determine how...

  15. Advanced Manufacturing Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Manufacturing Laboratory at the University of Maryland provides the state of the art facilities for realizing next generation products and educating the...

  16. Combustion Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Combustion Research Laboratory facilitates the development of new combustion systems or improves the operation of existing systems to meet the Army's mission for...

  17. Neural Systems Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — As part of the Electrical and Computer Engineering Department and The Institute for System Research, the Neural Systems Laboratory studies the functionality of the...

  18. Investigating Student Perceptions of the Chemistry Laboratory and Their Approaches to Learning in the Laboratory

    Science.gov (United States)

    Berger, Spencer Granett

    This dissertation explores student perceptions of the instructional chemistry laboratory and the approaches students take when learning in the laboratory environment. To measure student perceptions of the chemistry laboratory, a survey instrument was developed. 413 students responded to the survey during the Fall 2011 semester. Students' perception of the usefulness of the laboratory in helping them learn chemistry in high school was related to several factors regarding their experiences in high school chemistry. Students' perception of the usefulness of the laboratory in helping them learn chemistry in college was also measured. Reasons students provided for the usefulness of the laboratory were categorized. To characterize approaches to learning in the laboratory, students were interviewed midway through semester (N=18). The interviews were used to create a framework describing learning approaches that students use in the laboratory environment. Students were categorized into three levels: students who view the laboratory as a requirement, students who believe that the laboratory augments their understanding, and students who view the laboratory as an important part of science. These categories describe the types of strategies students used when conducting experiments. To further explore the relationship between students' perception of the laboratory and their approaches to learning, two case studies are described. These case studies involve interviews in the beginning and end of the semester. In the interviews, students reflect on what they have learned in the laboratory and describe their perceptions of the laboratory environment. In order to encourage students to adopt higher-level approaches to learning in the laboratory, a metacognitive intervention was created. The intervention involved supplementary questions that students would answer while completing laboratory experiments. The questions were designed to encourage students to think critically about the

  19. Prototype prosperity-diversity game for the Laboratory Development Division of Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    VanDevender, P.; Berman, M.; Savage, K.

    1996-02-01

    The Prosperity Game conducted for the Laboratory Development Division of National Laboratories on May 24--25, 1995, focused on the individual and organizational autonomy plaguing the Department of Energy (DOE)-Congress-Laboratories` ability to manage the wrenching change of declining budgets. Prosperity Games are an outgrowth and adaptation of move/countermove and seminar War Games. Each Prosperity Game is unique in that both the game format and the player contributions vary from game to game. This particular Prosperity Game was played by volunteers from Sandia National Laboratories, Eastman Kodak, IBM, and AT&T. Since the participants fully control the content of the games, the specific outcomes will be different when the team for each laboratory, Congress, DOE, and the Laboratory Operating Board (now Laboratory Operations Board) is composed of executives from those respective organizations. Nevertheless, the strategies and implementing agreements suggest that the Prosperity Games stimulate cooperative behaviors and may permit the executives of the institutions to safely explore the consequences of a family of DOE concert.

  20. [How do hospital clinical laboratories and laboratory testing companies cooperate and build reciprocal relations?].

    Science.gov (United States)

    Kawano, Seiji

    2014-12-01

    As the 2nd Joint Symposium of the Japanese Society of Laboratory Medicine and the Japanese Association of Laboratory Pathologists, the symposium on clinical test out-sourcing and branch laboratories was held at the 60th General Meeting of the Japanese Society of Laboratory Medicine on November 2nd, 2013 in Kobe. For the symposium, we conducted a questionnaire survey on the usage of clinical test out-sourcing and the introduction of branch laboratories to clinical laboratories of Japanese university hospitals, both private and public, between July 25th and August 20th, 2013. Seventy-two hospitals responded to the questionnaire survey, consisting of 41 public medical school hospitals and 31 private ones. According to the survey, the selection of each clinical test for out-sourcing was mainly determined by the capacities of hospital clinical laboratories and their equipment, as well as the profitability of each test. The main concerns of clinical laboratory members of university hospitals involved the continuity of measurement principles, traceability, and standardization of reference values for each test. They strongly requested the interchangeability and computerization of test data between laboratory testing companies. A branch laboratory was introduced to six hospitals, all of which were private medical college hospitals, out of 72 university hospitals, and eight of the other hospitals were open to its introduction. The merits and demerits of introducing a branch laboratory were also discussed. (Review).

  1. Energy Materials Research Laboratory (EMRL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Energy Materials Research Laboratory at the Savannah River National Laboratory (SRNL) creates a cross-disciplinary laboratory facility that lends itself to the...

  2. Multi-purpose hydrogen isotopes separation plant design

    Energy Technology Data Exchange (ETDEWEB)

    Boniface, H.A.; Gnanapragasam, N.V.; Ryland, D.K.; Suppiah, S.; Castillo, I. [Atomic Energy of Canada Limited - AECL, Chalk River, ON (Canada)

    2015-03-15

    There is a potential interest at AECL's Chalk River Laboratories to remove tritium from moderately tritiated light water and to reclaim tritiated, downgraded heavy water. With only a few limitations, a single CECE (Combined Electrolysis and Catalytic Exchange) process configuration can be designed to remove tritium from heavy water or light water and upgrade heavy water. Such a design would have some restrictions on the nature of the feed-stock and tritium product, but could produce essentially tritium-free light or heavy water that is chemically pure. The extracted tritium is produced as a small quantity of tritiated heavy water. The overall plant capacity is fixed by the total amount of electrolysis and volume of catalyst. In this proposal, with 60 kA of electrolysis a throughput of 15 kg*h{sup -1} light water for detritiation, about 4 kg*h{sup -1} of heavy water for detritiation and about 27 kg*h{sup -1} of 98% heavy water for upgrading can be processed. Such a plant requires about 1,000 liters of AECL isotope exchange catalyst. The general design features and details of this multi-purpose CECE process are described in this paper, based on some practical choices of design criteria. In addition, we outline the small differences that must be accommodated and some compromises that must be made to make the plant capable of such flexible operation. (authors)

  3. Waste Management Improvement Initiatives at Atomic Energy of Canada Limited - 13091

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Nicholas; Adams, Lynne; Wong, Pierre [Atomic Energy of Canada Limited, Chalk River Laboratories, Chalk River, Ontario, K0J 1J0 (Canada)

    2013-07-01

    Atomic Energy of Canada Limited's (AECL) Chalk River Laboratories (CRL) has been in operation for over 60 years. Radioactive, mixed, hazardous and non-hazardous wastes have been and continue to be generated at CRL as a result of research and development, radioisotope production, reactor operation and facility decommissioning activities. AECL has implemented several improvement initiatives at CRL to simplify the interface between waste generators and waste receivers: - Introduction of trained Waste Officers representing their facilities or activities at CRL; - Establishment of a Waste Management Customer Support Service as a Single-Point of Contact to provide guidance to waste generators for all waste management processes; and - Implementation of a streamlined approach for waste identification with emphasis on early identification of waste types and potential disposition paths. As a result of implementing these improvement initiatives, improvements in waste management and waste transfer efficiencies have been realized at CRL. These included: 1) waste generators contacting the Customer Support Service for information or guidance instead of various waste receivers; 2) more clear and consistent guidance provided to waste generators for waste management through the Customer Support Service; 3) more consistent and correct waste information provided to waste receivers through Waste Officers, resulting in reduced time and resources required for waste management (i.e., overall cost); 4) improved waste minimization and segregation approaches, as identified by in-house Waste Officers; and 5) enhanced communication between waste generators and waste management groups. (authors)

  4. Discussing spent nuclear fuel in high school classrooms: addressing public fears through early education

    Energy Technology Data Exchange (ETDEWEB)

    Winkel, S. [Deep River Science Academy, 20 Forest Ave. P.O. Box 600, Deep River, Ontario K0J 1P0 (Canada); Atomic Energy of Canada Limited, Chalk River Laboratories, Chalk River, Ontario, K0J 1J0 (Canada); Sullivan, J.; Jones, S.; Sullivan, K. [Deep River Science Academy, 20 Forest Ave. P.O. Box 600, Deep River, Ontario K0J 1P0 (Canada); Hyland, B.; Pencer, J.; Colton, A. [Atomic Energy of Canada Limited, Chalk River Laboratories, Chalk River, Ontario, K0J 1J0 (Canada)

    2013-07-01

    The Inreach program combines the Deep River Science Academy (DRSA) 'learning through research' approach with state of the art communication technology to bring scientific research to high school classrooms. The Inreach program follows the DRSA teaching model where a university student tutor works on a research project with scientific staff at AECL's Chalk River Laboratories. Participating high school classes are located across Canada. The high school students learn about the ongoing research activities via weekly web conferences. In order to engage the students and encourage participation in the conferences, themed exercises linked to the research project are provided to the students. The DRSA's Inreach program uses a cost-effective internet technology to reach a wide audience, in an interactive setting, without anyone leaving their desks or offices. An example Inreach research project is presented here: an investigation of the potential of the Canadian supercritical water cooled reactor (SCWR) concept to burn transuranic elements (Np, Pu, Am, Cm) to reduce the impact of used nuclear fuel. During this project a university student worked with AECL (Atomic Energy of Canada Limited) researchers on technical aspects of the project, and high school students followed their progress and learned about the composition, hazards, and disposition options for used nuclear fuel. Previous projects included the effects of tritium on cellular viability and neutron diffraction measurement of residual stresses in automobile engines.

  5. Laboratory and software applications for clinical trials: the global laboratory environment.

    Science.gov (United States)

    Briscoe, Chad

    2011-11-01

    The Applied Pharmaceutical Software Meeting is held annually. It is sponsored by The Boston Society, a not-for-profit organization that coordinates a series of meetings within the global pharmaceutical industry. The meeting generally focuses on laboratory applications, but in recent years has expanded to include some software applications for clinical trials. The 2011 meeting emphasized the global laboratory environment. Global clinical trials generate massive amounts of data in many locations that must be centralized and processed for efficient analysis. Thus, the meeting had a strong focus on establishing networks and systems for dealing with the computer infrastructure to support such environments. In addition to the globally installed laboratory information management system, electronic laboratory notebook and other traditional laboratory applications, cloud computing is quickly becoming the answer to provide efficient, inexpensive options for managing the large volumes of data and computing power, and thus it served as a central theme for the meeting.

  6. Product Evaluation Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory offers the services of highly trained and experienced specialists that have a full complement of measuring equipment. It is equipped with two optical...

  7. High Bay Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory is a specially constructed facility with elevated (37 feet) ceilings and an overhead catwalk, and which is dedicated to research efforts in reducing...

  8. Energetics Laboratory Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — These energetic materials laboratories are equipped with explosion proof hoods with blow out walls for added safety, that are certified for safe handling of primary...

  9. National Laboratory Planning: Developing Sustainable Biocontainment Laboratories in Limited Resource Areas

    OpenAIRE

    Yeh, Kenneth B.; Adams, Martin; Stamper, Paul D.; Dasgupta, Debanjana; Hewson, Roger; Buck, Charles D.; Richards, Allen L.; Hay, John

    2016-01-01

    Strategic laboratory planning in limited resource areas is essential for addressing global health security issues. Establishing a national reference laboratory, especially one with BSL-3 or -4 biocontainment facilities, requires a heavy investment of resources, a multisectoral approach, and commitments from multiple stakeholders. We make the case for donor organizations and recipient partners to develop a comprehensive laboratory operations roadmap that addresses factors such as mission and r...

  10. Geometric Design Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The mission of the Geometric Design Laboratory (GDL) is to support the Office of Safety Research and Development in research related to the geometric design...

  11. The Virtual Robotics Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kress, R.L.; Love, L.J.

    1999-09-01

    The growth of the Internet has provided a unique opportunity to expand research collaborations between industry, universities, and the national laboratories. The Virtual Robotics Laboratory (VRL) is an innovative program at Oak Ridge National Laboratory (ORNL) that is focusing on the issues related to collaborative research through controlled access of laboratory equipment using the World Wide Web. The VRL will provide different levels of access to selected ORNL laboratory secondary education programs. In the past, the ORNL Robotics and Process Systems Division has developed state-of-the-art robotic systems for the Army, NASA, Department of Energy, Department of Defense, as well as many other clients. After proof of concept, many of these systems sit dormant in the laboratories. This is not out of completion of all possible research topics. but from completion of contracts and generation of new programs. In the past, a number of visiting professors have used this equipment for their own research. However, this requires that the professor, and possibly his/her students, spend extended periods at the laboratory facility. In addition, only a very exclusive group of faculty can gain access to the laboratory and hardware. The VRL is a tool that enables extended collaborative efforts without regard to geographic limitations.

  12. The Virtual Robotics Laboratory

    International Nuclear Information System (INIS)

    Kress, R.L.; Love, L.J.

    1997-01-01

    The growth of the Internet has provided a unique opportunity to expand research collaborations between industry, universities, and the national laboratories. The Virtual Robotics Laboratory (VRL) is an innovative program at Oak Ridge National Laboratory (ORNL) that is focusing on the issues related to collaborative research through controlled access of laboratory equipment using the World Wide Web. The VRL will provide different levels of access to selected ORNL laboratory equipment to outside universities, industrial researchers, and elementary and secondary education programs. In the past, the ORNL Robotics and Process Systems Division (RPSD) has developed state-of-the-art robotic systems for the Army, NASA, Department of Energy, Department of Defense, as well as many other clients. After proof of concept, many of these systems sit dormant in the laboratories. This is not out of completion of all possible research topics, but from completion of contracts and generation of new programs. In the past, a number of visiting professors have used this equipment for their own research. However, this requires that the professor, and possibly his students, spend extended periods at the laboratory facility. In addition, only a very exclusive group of faculty can gain access to the laboratory and hardware. The VRL is a tool that enables extended collaborative efforts without regard to geographic limitations

  13. Satellite Control Laboratory

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Bak, Thomas

    2001-01-01

    The Satellite Laboratory at the Department of Control Engineering of Aalborg University (SatLab) is a dynamic motion facility designed for analysis and test of micro spacecraft. A unique feature of the laboratory is that it provides a completely gravity-free environment. A test spacecraft...... of the laboratory is to conduct dynamic tests of the control and attitude determination algorithms during nominal operation and in abnormal conditions. Further it is intended to use SatLab for validation of various algorithms for fault detection, accommodation and supervisory control. Different mission objectives...... can be implemented in the laboratory, e.g. three-axis attitude control, slew manoeuvres, spins stabilization using magnetic actuation and/or reaction wheels. The spacecraft attitude can be determined applying magnetometer measurements...

  14. Human Factors Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The purpose of the Human Factors Laboratory is to further the understanding of highway user needs so that those needs can be incorporated in roadway design,...

  15. Physics laboratory 2

    International Nuclear Information System (INIS)

    1980-01-01

    The report covers the research activities of the Physics laboratory of H.C. Oersted Institute, University of Copenhagen in the period January 1, 1976 - January 1, 1979. It gives also an idea about the teaching carried out by yhe laboratory. The research - broadly speaking - deals mainly with the interaction of particles (ions, electrons and neutrons) and electromagnetic radiation (X-rays) with matter. Use is made in studies of: atomic physics, radiation effects, surface physics, the electronic and crystallographic structure of matter and some biological problems. The research is carried out partly in the laboratory itself and partly at and in collaboration with other institutes in this country (H.C. Oersted Institute, Chemical Laboratories, Denmark's Technical University, Aarhus University, Institute of Physics and Risoe National Laboratory) and abroad (Federal Republic of Germany, France, India, Sweden, U.K., U.S.A. and U.S.S.R.). All these institutes are listed in the abstract titles. Bibliography comprehends 94 publications. A substantial part of the research is supported by the Danish Natural Sciences Research Council. (author)

  16. The laboratory activities of the IAEA laboratories, Vienna. Annual report - 1978

    International Nuclear Information System (INIS)

    1980-02-01

    The report presents in ten sections the work done during 1978 by the laboratory of the International Atomic Energy Agency located in Seibersdorf in the province of Lower Austria. The ten sections are: 1) metrology, 2) dosimetry, 3) chemistry, 4) safeguards analytical laboratory, 5) isotope hydrology, 6) medical applications, 7) agriculture - soils, 8) entomology, 9) plant breeding, 10) electronics and workshop. Lists of publications of the staff of the laboratory are appended

  17. Darlington up and running

    International Nuclear Information System (INIS)

    Show, Don

    1993-01-01

    We've built some of the largest and most successful generating stations in the world. Nonetheless, we cannot take our knowledge and understanding of the technology for granted. Although, I do believe that we are getting better, building safer, more efficient plants, and introducing significant improvements to our existing stations. Ontario Hydro is a large and technically rich organization. Even so, we realize that partnerships with others in the industry are absolutely vital. I am thinking particularly of Atomic Energy of Canada Limited. We enjoy a very close relationship with Aecl, and their support was never more important than during the N/A Investigations. In recent years, we've strengthened our relationship with Aecl considerably. For example, we recently signed an agreement with Aecl, making available all of the Darlington 900 MW e design. Much of the cooperation between Ontario Hydro and Aecl occurs through the CANDU Engineering Authority and the CANDU Owners Group (CO G). These organizations are helping both of US to greatly improve cooperation and efficiency, and they are helping ensure we get the biggest return on our CANDU investments. CO G also provides an important information network which links CANDU operators in Canada, here in Korea, Argentina, India, Pakistan and Romania. In many respects, it is helping to develop the strong partnerships to support CANDU technology worldwide. We all benefit in the long run form sharing information and resources

  18. Disposal of Canada's nuclear fuel waste

    International Nuclear Information System (INIS)

    Dormuth, K.W.; Nuttall, K.

    1994-01-01

    In 1978, the governments of Canada and Ontario established the Nuclear Fuel Waste Management program. As of the time of the conference, the research performed by AECL was jointly funded by AECL and Ontario Hydro through the CANDU owners' group. Ontario Hydro have also done some of the research on disposal containers and vault seals. From 1978 to 1992, AECL's research and development on disposal cost about C$413 million, of which C$305 was from funds provided to AECL by the federal government, and C$77 million was from Ontario Hydro. The concept involves the construction of a waste vault 500 to 1000 metres deep in plutonic rock of the Canadian Precambrian Shield. Used fuel (or possibly solidified reprocessing waste) would be sealed into containers (of copper, titanium or special steel) and emplaced (probably in boreholes) in the vault floor, surrounded by sealing material (buffer). Disposal rooms might be excavated on more than one level. Eventually all excavated openings in the rock would be backfilled and sealed. Research is organized under the following headings: disposal container, waste form, vault seals, geosphere, surface environment, total system, assessment of environmental effects. A federal Environmental Assessment Panel is assessing the concept (holding public hearings for the purpose) and will eventually make recommendations to assist the governments of Canada and Ontario in deciding whether to accept the concept, and how to manage nuclear fuel waste. 16 refs., 1 tab., 3 figs

  19. POLLUTION PREVENTION OPPORTUNITY ASSESSMENT - MANUFACTURING AND FABRICATION REPAIR LABORATORY AT SANDIA NATIONAL LABORATORIES

    Science.gov (United States)

    These reports summarize pollution prevention opportunity assessments conducted jointly by EPA and DOE at the Geochemistry Laboratory and the Manufacturing and Fabrication Repair Laboratory at the Department of Energy's Sandia National Laboratories facility in Albuquerque, New Mex...

  20. Protective Systems Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory is a 40 by 28 by 9 foot facility that is equipped with tools for the development of various items of control technology related to the transmission...

  1. [Laboratory accreditation and proficiency testing].

    Science.gov (United States)

    Kuwa, Katsuhiko

    2003-05-01

    ISO/TC 212 covering clinical laboratory testing and in vitro diagnostic test systems will issue the international standard for medical laboratory quality and competence requirements, ISO 15189. This standard is based on the ISO/IEC 17025, general requirements for competence of testing and calibration laboratories and ISO 9001, quality management systems-requirements. Clinical laboratory services are essential to patient care and therefore should be available to meet the needs of all patients and clinical personnel responsible for human health care. If a laboratory seeks accreditation, it should select an accreditation body that operates according to this international standard and in a manner which takes into account the particular requirements of clinical laboratories. Proficiency testing should be available to evaluate the calibration laboratories and reference measurement laboratories in clinical medicine. Reference measurement procedures should be of precise and the analytical principle of measurement applied should ensure reliability. We should be prepared to establish a quality management system and proficiency testing in clinical laboratories.

  2. The ideal laboratory information system.

    Science.gov (United States)

    Sepulveda, Jorge L; Young, Donald S

    2013-08-01

    Laboratory information systems (LIS) are critical components of the operation of clinical laboratories. However, the functionalities of LIS have lagged significantly behind the capacities of current hardware and software technologies, while the complexity of the information produced by clinical laboratories has been increasing over time and will soon undergo rapid expansion with the use of new, high-throughput and high-dimensionality laboratory tests. In the broadest sense, LIS are essential to manage the flow of information between health care providers, patients, and laboratories and should be designed to optimize not only laboratory operations but also personalized clinical care. To list suggestions for designing LIS with the goal of optimizing the operation of clinical laboratories while improving clinical care by intelligent management of laboratory information. Literature review, interviews with laboratory users, and personal experience and opinion. Laboratory information systems can improve laboratory operations and improve patient care. Specific suggestions for improving the function of LIS are listed under the following sections: (1) Information Security, (2) Test Ordering, (3) Specimen Collection, Accessioning, and Processing, (4) Analytic Phase, (5) Result Entry and Validation, (6) Result Reporting, (7) Notification Management, (8) Data Mining and Cross-sectional Reports, (9) Method Validation, (10) Quality Management, (11) Administrative and Financial Issues, and (12) Other Operational Issues.

  3. Plasma creatinine in dogs: intra- and inter-laboratory variation in 10 European veterinary laboratories

    Directory of Open Access Journals (Sweden)

    Ulleberg Thomas

    2011-04-01

    Full Text Available Abstract Background There is substantial variation in reported reference intervals for canine plasma creatinine among veterinary laboratories, thereby influencing the clinical assessment of analytical results. The aims of the study was to determine the inter- and intra-laboratory variation in plasma creatinine among 10 veterinary laboratories, and to compare results from each laboratory with the upper limit of its reference interval. Methods Samples were collected from 10 healthy dogs, 10 dogs with expected intermediate plasma creatinine concentrations, and 10 dogs with azotemia. Overlap was observed for the first two groups. The 30 samples were divided into 3 batches and shipped in random order by postal delivery for plasma creatinine determination. Statistical testing was performed in accordance with ISO standard methodology. Results Inter- and intra-laboratory variation was clinically acceptable as plasma creatinine values for most samples were usually of the same magnitude. A few extreme outliers caused three laboratories to fail statistical testing for consistency. Laboratory sample means above or below the overall sample mean, did not unequivocally reflect high or low reference intervals in that laboratory. Conclusions In spite of close analytical results, further standardization among laboratories is warranted. The discrepant reference intervals seem to largely reflect different populations used in establishing the reference intervals, rather than analytical variation due to different laboratory methods.

  4. Proceedings of the workshop on applied mathematics

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H C; Couture, M; Douglas, S; Leivo, H P

    1992-10-01

    The Workshop on Applied Mathematics was held at the Cockcroft Centre, Deep River, Ontario, 1992 February 7-8. The purpose of the workshop was to provide a forum for applied mathematicians to survey the use and to discuss the future of applied mathematics at AECL Research. There were 57 participants at the workshop A total of eight 30-minute and 25 15-minute talks were presented describing mathematical techniques used in the whole range of activities at AECL Research, from numerical simulation of fluid flow through eddy current testing to quantum algebra and accelerator physics.

  5. Proceedings of the workshop on applied mathematics

    International Nuclear Information System (INIS)

    Lee, H.C.; Couture, M.; Douglas, S.; Leivo, H.P.

    1992-10-01

    The Workshop on Applied Mathematics was held at the Cockcroft Centre, Deep River, Ontario, 1992 February 7-8. The purpose of the workshop was to provide a forum for applied mathematicians to survey the use and to discuss the future of applied mathematics at AECL Research. There were 57 participants at the workshop A total of eight 30-minute and 25 15-minute talks were presented describing mathematical techniques used in the whole range of activities at AECL Research, from numerical simulation of fluid flow through eddy current testing to quantum algebra and accelerator physics

  6. A study of the health of the employees of Atomic Energy of Canada Limited

    International Nuclear Information System (INIS)

    Weeks, J.L.; Johnston, L.H.

    1984-09-01

    The Atomic Energy of Canada Limited Employee Health Study is a program that was established in 1980 to determine, over the long term, the causes of death in a population consisting of some 14 000 AECL employees and past employees. In a previous report (AECL-6813) the steps taken to set up the study were described. The present report is a description of the way in which the study was implemented, and includes discussion of some recent developments that have had a bearing on epidemiological studies of the health of radiation workers

  7. Fuels for Canadian research reactors

    International Nuclear Information System (INIS)

    Feraday, M.A.

    1993-01-01

    This paper includes some statements and remarks concerning the uranium silicide fuels for which there is significant fabrication in AECL, irradiation and defect performance experience; description of two Canadian high flux research reactors which use high enrichment uranium (HEU) and the fuels currently used in these reactors; limited fabrication work done on Al-U alloys to uranium contents as high as 40 wt%. The latter concerns work aimed at AECL fast neutron program. This experience in general terms is applied to the NRX and NRU designs of fuel

  8. EPA Environmental Chemistry Laboratory

    Science.gov (United States)

    1993-01-01

    The Environmental Protection Agency's (EPA) Chemistry Laboratory (ECL) is a national program laboratory specializing in residue chemistry analysis under the jurisdiction of the EPA's Office of Pesticide Programs in Washington, D.C. At Stennis Space Center, the laboratory's work supports many federal anti-pollution laws. The laboratory analyzes environmental and human samples to determine the presence and amount of agricultural chemicals and related substances. Pictured, ECL chemists analyze environmental and human samples for the presence of pesticides and other pollutants.

  9. Transient fission-product release during reactor shutdown and startup

    International Nuclear Information System (INIS)

    Hunt, C.E.L.; Lewis, B.J.; Dickson, L.W.

    1997-12-01

    Sweep-gas experiments performed at AECL's Chalk River Laboratories from 1979 to 1985 have been further analysed to determine the fraction of the gaseous fission-product inventory that is released on reactor shutdown and startup. Empirical equations were derived and applied to calculate the stable xenon release from companion fuel elements and from a well-documented experimental fuel bundle irradiated in the NRU reactor. The calculated gas release could be matched to the measured values within about a factor of two for an experimental irradiation with a burnup of 217 MWh/kgU. There was also limited information on the fraction of the radioactive iodine that was exposed, but not released, on reactor shutdown. An empirical equation is proposed for calculating this fraction. (author)

  10. Procedures of Exercise Physiology Laboratories

    Science.gov (United States)

    Bishop, Phillip A.; Fortney, Suzanne; Greenisen, Michael; Siconolfi, Steven F.; Bamman, Marcas M.; Moore, Alan D., Jr.; Squires, William

    1998-01-01

    This manual describes the laboratory methods used to collect flight crew physiological performance data at the Johnson Space Center. The Exercise Countermeasures Project Laboratory is a standard physiology laboratory; only the application to the study of human physiological adaptations to spaceflight is unique. In the absence of any other recently published laboratory manual, this manual should be a useful document staffs and students of other laboratories.

  11. Medical laboratory scientist

    DEFF Research Database (Denmark)

    Smith, Julie; Qvist, Camilla Christine; Jacobsen, Katja Kemp

    2017-01-01

    Previously, biomarker research and development was performed by laboratory technicians working as craftsmen in laboratories under the guidance of medical doctors. This hierarchical structure based on professional boundaries appears to be outdated if we want to keep up with the high performance...... of our healthcare system, and take advantage of the vast potential of future biomarkers and personalized medicine. We ask the question; does our healthcare system benefit from giving the modern medical laboratory scientist (MLS) a stronger academic training in biomarker research, development...

  12. Simula Research Laboratory

    CERN Document Server

    Tveito, Aslak

    2010-01-01

    The Simula Research Laboratory, located just outside Oslo in Norway, is rightly famed as a highly successful research facility, despite being, at only eight years old, a very young institution. This fascinating book tells the history of Simula, detailing the culture and values that have been the guiding principles of the laboratory throughout its existence. Dedicated to tackling scientific challenges of genuine social importance, the laboratory undertakes important research with long-term implications in networks, computing and software engineering, including specialist work in biomedical comp

  13. [ISO 15189 accreditation in clinical microbiology laboratory: general concepts and the status in our laboratory].

    Science.gov (United States)

    Akyar, Işin

    2009-10-01

    One important trend in the laboratory profession and quality management is the global convergence of laboratory operations. The goal of an accredited medical laboratory is to continue "offering useful laboratory service for diagnosis and treatment of the patients and also aid to the health of the nation". An accredited clinical laboratory is managed by a quality control system, it is competent technically and the laboratory service meets the needs of all its patients and physicians by taking the responsibility of all the medical tests and therapies. For this purpose, ISO 15189 international standard has been prepared by 2003. ISO 15189 standard is originated from the arrangement of ISO 17025 and ISO 9001:2000 standards. Many countries such as England, Germany, France, Canada and Australia have preferred ISO 15189 as their own laboratory accreditation programme, meeting all the requirements of their medical laboratories. The accreditation performance of a clinical microbiology laboratory is mainly based on five essential points; preanalytical, analytical, postanalytical, quality control programmes (internal, external, interlaboratory) and audits (internal, external). In this review article, general concepts on ISO 15189 accreditation standards for the clinical microbiology laboratories have been summarized and the status of a private laboratory (Acibadem LabMed, Istanbul) in Turkey has been discussed.

  14. Inter-Laboratory Comparison for Calibration of Relative Humidity Devices Among Accredited Laboratories in Malaysia

    Science.gov (United States)

    Hussain, F.; Khairuddin, S.; Othman, H.

    2017-01-01

    An inter-laboratory comparison in relative humidity measurements among accredited laboratories has been coordinated by the National Metrology Institute of Malaysia. It was carried out to determine the performance of the participating laboratories. The objective of the comparison was to acknowledge the participating laboratories competencies and to verify the level of accuracies declared in their scope of accreditation, in accordance with the MS ISO/IEC 17025 accreditation. The measurement parameter involved was relative humidity for the range of 30-90 %rh at a nominal temperature of 50°C. Eight accredited laboratories participated in the inter-laboratory comparison. Two units of artifacts have been circulated among the participants as the transfer standards.

  15. An inter-laboratory comparison of urinary 3-hydroxypropylmercapturic acid measurement demonstrates good reproducibility between laboratories

    Directory of Open Access Journals (Sweden)

    Bailey Brian

    2011-10-01

    Full Text Available Abstract Background Biomarkers have been used extensively in clinical studies to assess toxicant exposure in smokers and non-smokers and have recently been used in the evaluation of novel tobacco products. The urinary metabolite 3-HPMA, a metabolite of the major tobacco smoke toxicity contributor acrolein, is one example of a biomarker used to measure exposure to tobacco smoke. A number of laboratories have developed liquid chromatography with tandem mass spectrometry (LC-MS/MS based methods to measure urinary 3-HPMA; however, it is unclear to what extent the data obtained by these different laboratories are comparable. Findings This report describes an inter-laboratory comparison carried out to evaluate the comparability of 3-HPMA measurement between four laboratories. A common set of spiked and authentic smoker and non-smoker urine samples were used. Each laboratory used their in-house LC-MS/MS method and a common internal standard. A comparison of the repeatability ('r', reproducibility ('R', and coefficient of variation for 3-HPMA demonstrated that within-laboratory variation was consistently lower than between-laboratory variation. The average inter-laboratory coefficient of variation was 7% for fortified urine samples and 16.2% for authentic urine samples. Together, this represents an inter-laboratory variation of 12.2%. Conclusion The results from this first inter-laboratory comparison for the measurement of 3-HPMA in urine demonstrate a reasonably good consensus between laboratories. However, some consistent measurement biases were still observed between laboratories, suggesting that additional work may be required to further reduce the inter-laboratory coefficient of variation.

  16. Reliability on intra-laboratory and inter-laboratory data of hair mineral analysis comparing with blood analysis.

    Science.gov (United States)

    Namkoong, Sun; Hong, Seung Phil; Kim, Myung Hwa; Park, Byung Cheol

    2013-02-01

    Nowadays, although its clinical value remains controversial institutions utilize hair mineral analysis. Arguments about the reliability of hair mineral analysis persist, and there have been evaluations of commercial laboratories performing hair mineral analysis. The objective of this study was to assess the reliability of intra-laboratory and inter-laboratory data at three commercial laboratories conducting hair mineral analysis, compared to serum mineral analysis. Two divided hair samples taken from near the scalp were submitted for analysis at the same time, to all laboratories, from one healthy volunteer. Each laboratory sent a report consisting of quantitative results and their interpretation of health implications. Differences among intra-laboratory and interlaboratory data were analyzed using SPSS version 12.0 (SPSS Inc., USA). All the laboratories used identical methods for quantitative analysis, and they generated consistent numerical results according to Friedman analysis of variance. However, the normal reference ranges of each laboratory varied. As such, each laboratory interpreted the patient's health differently. On intra-laboratory data, Wilcoxon analysis suggested they generated relatively coherent data, but laboratory B could not in one element, so its reliability was doubtful. In comparison with the blood test, laboratory C generated identical results, but not laboratory A and B. Hair mineral analysis has its limitations, considering the reliability of inter and intra laboratory analysis comparing with blood analysis. As such, clinicians should be cautious when applying hair mineral analysis as an ancillary tool. Each laboratory included in this study requires continuous refinement from now on for inducing standardized normal reference levels.

  17. [ISO 15189 medical laboratory accreditation].

    Science.gov (United States)

    Aoyagi, Tsutomu

    2004-10-01

    This International Standard, based upon ISO/IEC 17025 and ISO 9001, provides requirements for competence and quality that are particular to medical laboratories. While this International Standard is intended for use throughout the currently recognized disciplines of medical laboratory services, those working in other services and disciplines will also find it useful and appropriate. In addition, bodies engaged in the recognition of the competence of medical laboratories will be able to use this International Standard as the basis for their activities. The Japan Accreditation Board for Conformity Assessment (AB) and the Japanese Committee for Clinical Laboratory Standards (CCLS) are jointly developing the program of accreditation of medical laboratories. ISO 15189 requirements consist of two parts, one is management requirements and the other is technical requirements. The former includes the requirements of all parts of ISO 9001, moreover it includes the requirement of conformity assessment body, for example, impartiality and independence from any other party. The latter includes the requirements of laboratory competence (e.g. personnel, facility, instrument, and examination methods), moreover it requires that laboratories shall participate proficiency testing(s) and laboratories' examination results shall have traceability of measurements and implement uncertainty of measurement. Implementation of ISO 15189 will result in a significant improvement in medical laboratories management system and their technical competence. The accreditation of medical laboratory will improve medical laboratory service and be useful for patients.

  18. Romanian-Canadian joint program for qualification of FCN as a CANDU fuel supplier

    International Nuclear Information System (INIS)

    Galeriu, C.A.; Andrei, G.; Bailescu, A.

    1995-01-01

    RENEL (Romania Power Authority), the co-ordinator of Romanian Nuclear Program, have decided to improve, starting 1990 the existing capability to produce CANDU nuclear fuel at FCN Pitesti. The objective of the program was defined with AAC (AECL - ANSALDO Consortium) for the qualification of FCN fuel plant according to Canadian Z299.2 standard. The Qualification Program was performed under AAC Work Order C-003. The co-ordination was assumed by AECL, as overall Design Authority. ZPI (Zircatec Precision Industries Inc., Canada), were designated to supply technical assistance, equipments and know how where necessary. After a preliminary verification of the FCN fuel plant, including the processes and system investigation, performed under AECL and ZPI assistance, the Qualification Program was defined in all details. The upgrading of documentation on all aspects required by Z299.2 was performed. Few processes needed to be reconsidered and equipment was delivered by ZPI or other suppliers. This includes mainly welding equipments and special inspection equipments. Health Physics was practically fully reconsidered. New equipment and practice were adapted to provide adequate control on health conditions. Every manufacturing and inspection process was checked to determine their performance during a Qualification Run based on acceptance criteria which have been established in the Qualification Plan. Manufacturing Demonstration Run was an important step to prove that all plant functions have been accomplished during the fabrication of 200 fuel bundles. These bundles have been fully accepted and 66 of them have been loaded in the first charge of Unit 1 Cemavoda NPS. The surveillance and audit actions made by AECL and ZPI during this period confirmed the FCN capability to operate an adequate system meeting the to required quality assurance standard. The very open attitude of AECL, Zircatec and FCN staff have stimulated the progress of the project and a successful achievement of the

  19. Good Laboratory Practice. Part 3. Implementing Good Laboratory Practice in the Analytical Lab

    Science.gov (United States)

    Wedlich, Richard C.; Pires, Amanda; Fazzino, Lisa; Fransen, Joseph M.

    2013-01-01

    Laboratories submitting experimental results to the Food and Drug Administration (FDA) or the Environmental Protection Agency (EPA) in support of Good Laboratory Practice (GLP) nonclinical laboratory studies must conduct such work in compliance with the GLP regulations. To consistently meet these requirements, lab managers employ a "divide…

  20. Interactive virtual optical laboratories

    Science.gov (United States)

    Liu, Xuan; Yang, Yi

    2017-08-01

    Laboratory experiences are essential for optics education. However, college students have limited access to advanced optical equipment that is generally expensive and complicated. Hence there is a need for innovative solutions to expose students to advanced optics laboratories. Here we describe a novel approach, interactive virtual optical laboratory (IVOL) that allows unlimited number of students to participate the lab session remotely through internet, to improve laboratory education in photonics. Although students are not physically conducting the experiment, IVOL is designed to engage students, by actively involving students in the decision making process throughout the experiment.

  1. Target laboratory

    International Nuclear Information System (INIS)

    Ephraim, D.C.; Pednekar, A.R.

    1993-01-01

    A target laboratory to make stripper foils for the accelerator and various targets for use in the experiments is set up in the pelletron accelerator facility. The facilities available in the laboratory are: (1) D.C. glow discharge setup, (2) carbon arc set up, and (3) vacuum evaporation set up (resistance heating), electron beam source, rolling mill - all for target preparation. They are described. Centrifugal deposition technique is used for target preparation. (author). 3 figs

  2. Laboratory assessment of novel oral anticoagulants: method suitability and variability between coagulation laboratories.

    Science.gov (United States)

    Helin, Tuukka A; Pakkanen, Anja; Lassila, Riitta; Joutsi-Korhonen, Lotta

    2013-05-01

    Laboratory tests to assess novel oral anticoagulants (NOACs) are under evaluation. Routine monitoring is unnecessary, but under special circumstances bioactivity assessment becomes crucial. We analyzed the effects of NOACs on coagulation tests and the availability of specific assays at different laboratories. Plasma samples spiked with dabigatran (Dabi; 120 and 300 μg/L) or rivaroxaban (Riva; 60, 146, and 305 μg/L) were sent to 115 and 38 European laboratories, respectively. International normalized ratio (INR) and activated partial thromboplastin time (APTT) were analyzed for all samples; thrombin time (TT) was analyzed specifically for Dabi and calibrated anti-activated factor X (anti-Xa) activity for Riva. We compared the results with patient samples. Results of Dabi samples were reported by 73 laboratories (13 INR and 9 APTT reagents) and Riva samples by 22 laboratories (5 INR and 4 APTT reagents). Both NOACs increased INR values; the increase was modest, albeit larger, for Dabi, with higher CV, especially with Quick (vs Owren) methods. Both NOACs dose-dependently prolonged the APTT. Again, the prolongation and CVs were larger for Dabi. The INR and APTT results varied reagent-dependently (P laboratories, respectively. The screening tests INR and APTT are suboptimal in assessing NOACs, having high reagent dependence and low sensitivity and specificity. They may provide information, if laboratories recognize their limitations. The variation will likely increase and the sensitivity differ in clinical samples. Specific assays measure NOACs accurately; however, few laboratories applied them. © 2013 American Association for Clinical Chemistry.

  3. Laboratory Waste Management. A Guidebook.

    Science.gov (United States)

    American Chemical Society, Washington, DC.

    A primary goal of the American Chemical Society Task Force on Laboratory Waste Management is to provide laboratories with the information necessary to develop effective strategies and training programs for managing laboratory wastes. This book is intended to present a fresh look at waste management from the laboratory perspective, considering both…

  4. The Canfranc Underground Laboratory

    International Nuclear Information System (INIS)

    Amare, J.; Beltran, B.; Carmona, J.M.; Cebrian, S.; Garcia, E.; Irastorza, I.G.; Gomez, H.; Luzon, G.; Martinez, M.; Morales, J.; Ortiz de Solorzano, A.; Pobes, C.; Puimedon, J.; Rodriguez, A.; Ruz, J.; Sarsa, M.L.; Torres, L.; Villar, J.A.

    2005-01-01

    This paper describes the forthcoming enlargement of the Canfranc Underground Laboratory (LSC) which will allow to host new international Astroparticle Physics experiments and therefore to broaden the European underground research area. The new Canfranc Underground Laboratory will operate in coordination (through the ILIAS Project) with the Gran Sasso (Italy), Modane (France) and Boulby (UK) underground laboratories

  5. Online general pre-laboratory training course for facilitating first year chemical laboratory use

    Directory of Open Access Journals (Sweden)

    Maria Limniou

    2010-03-01

    Full Text Available In Chemistry, practical work is a highly demanding process in which students should be well-prepared before and alert during,laboratory sessions. Various general difficulties such as the limited laboratory time and the lack of connections between theoryand practicals often do not allow students to actively participate in the learning process. The aim of this investigation is to studyhow an online general pre-laboratory training course inspired by cognitive load theory influenced the teaching of first yearchemistry students engaged in laboratory work. Two different groups of chemistry students (experimental group (EG andcontrol group (CG from the University of Manchester participated in this investigation. The EG group participated in the onlinepre-laboratory course before entering the laboratory, while the CG group performed the experiments following the traditionalteaching procedure. The comparison of students’ responses to the same assessments of fundamental chemical and basiclaboratory knowledge showed that overall the performance of the EG group of students was higher than that of the CGstudents. Overall, the EG students valued the opportunity to have an online training course. By creating a flexible learningenvironment which included animations, simulations and self-assessments, the general laboratory difficulties were overcome.These interactive learning features gave students the opportunity to engage in independent study, by which restrictions of timeand place were overcome.

  6. Emergency core cooling strainers-the Candu experience

    International Nuclear Information System (INIS)

    Eyvindson, A.; Rhodes, D.; Carson, P.; Makdessi, G.

    2004-01-01

    The Canadian nuclear industry, including Atomic Energy of Canada Limited (AECL) and the four nuclear utilities (New Brunswick Power, Hydro-Quebec, Ontario Power Generation and Bruce Power) have been heavily involved in strainer clogging issues since the late 1990's. A substantial knowledge base has been obtained with support from various organisations, including the CANDU Owners Group (COG), AECL and the CANDU utilities. Work has included debris assessments at specific stations, debris characterisation, transport, head loss measurements across strainers, head loss models and investigations into paints and coatings. Much of this work was performed at AECL's Chalk River Laboratories and has been used to customize strainer solutions for several CANDU (PWR-type) stations. This paper summarises the CANDU experience, describing problems encountered and lessons learned from strainer implementation at stations. Between 1999 and 2003, AECL supplied strainers to six different CANDU stations, representing 12 units with a total power output of approximately 8.2 GWe. Each station had unique needs with respect to layout, effective area, allowable head loss and installation schedule. Challenges at various sites included installation in a covered trench with single-point access, allowing for field adjustments to accommodate large variations in floor level and pump suction location, on-power installation, very high levels of particulate relative to fibrous debris, and relatively low allowable head loss. The following are key points to consider during any station assessment or strainer implementation: - a realistic testing model and method is essential for accurate predictions of head loss, and the limits of the model must be understood; - assessment of station debris must be sufficiently conservative to overcome uncertainties in debris generation and transport models; - appropriate and reliable data (e.g. flow rate, layout, size of test model, method of debris generation and

  7. Comparison between Canadian probabilistic safety assessment methods formulated by Atomic Energy of Canada limited and probabilistic risk assessment methods

    International Nuclear Information System (INIS)

    Shapiro, H.S.; Smith, J.E.

    1989-01-01

    The procedures used by Atomic Energy of Canada Limited (AECL) to perform probabilistic safety assessments (PRAs) differ somewhat from conventionally accepted probabilistic risk assessment (PRA) procedures used elsewhere. In Canada, PSA is used by AECL as an audit tool for an evolving design. The purpose is to assess the safety of the plant in engineering terms. Thus, the PSA procedures are geared toward providing engineering feedback so that necessary changes can be made to the design at an early stage, input can be made to operating procedures, and test and maintenance programs can be optimized in terms of costs. Most PRAs, by contrast, are performed in plants that are already built. Their main purpose is to establish the core melt frequency and the risk to the public due to core melt. Also, any design modification is very expensive. The differences in purpose and timing between PSA and PRA have resulted in differences in methodology and scope. The PSA procedures are used on all plants being designed by AECL

  8. The development of maple technology for materials testing, isotope production, and neutron-beam applications

    International Nuclear Information System (INIS)

    Lidstone, R.F.; Gillespie, G.E.; Lee, A.G.; Bishop, W.E.

    1996-01-01

    AECL has been developing MAPLE technology to meet Canadian and international requirements for high-performance research reactors. MAPLE refers to a family of open-tank-in-pool reactors that employ compact H 2 O-cooled cores within D 2 O vessels to efficiently furnish neutrons to various types of irradiation facilities. The initial focus was on a 10-MW t Canadian facility for radioisotope production, the HANARO multipurpose-reactor project, and an associated R and D program. Recently, AECL began to develop the concept for a new Canadian Irradiation Research Facility (IRF) which will support the continued evolution of CANDU (CANadian Deuterium Uranium) technology and generate neutrons for basic and applied materials science. Additionally, AECL is currently developing a standardized MAPLE research-centre design with integrated neutron-application facilities; various reactor-core options have been optimized for different combinations of utilization: a 19-site core for neutron-beam applications and ancillary isotope production, a 31-site core for multipurpose materials testing and neutron-beam applications, and twin 18-site cores for high-flux neutron-beam applications. (author)

  9. Atomic Energy of Canada study says nuclear cheaper power for oilsands

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2003-07-01

    The Canadian Energy Research Institute, an independent research organization, reports in a study sponsored by AECL, a federal Crown corporation, that nuclear power is cheaper than gas in creating steam if prices for natural gas remain above $US 3.50 per million BTU. Oil sands producers use natural gas to create steam, which is injected into the ground to melt the bitumen; gas is also used in parts of the oilsands upgrading process. According to reliable estimates some $50 billion of future oilsands investment is now on the drawing board; all of that could be jeopardized by high gas prices. AECL, which has sold only three nuclear reactors since 1996, hopes that the prospect of a continuing high price of natural gas will put it in a favorable position to displace natural gas with nuclear energy as the energy source for creating steam. Environmentalists consider AECL's suggestion of building a nuclear reactor for generating steam for oilsands production as unrealistic, and one that is based on 'nothing but a hope and a prayer'.

  10. Rethinking Laboratory Notebooks

    DEFF Research Database (Denmark)

    Klokmose, Clemens Nylandsted; Zander, Pär-Ola

    2010-01-01

    We take digitalization of laboratory work practice as a challenging design domain to explore. There are obvious drawbacks with the use of paper instead of ICT in the collaborative writing that takes place in laboratory notebooks; yet paper persist in being the most common solution. The ultimate aim...... with our study is to produce design relevant knowledge that can envisage an ICT solution that keeps as many advantages of paper as possible, but with the strength of electronic laboratory notebooks as well. Rather than assuming that users are technophobic and unable to appropriate state of the art software...

  11. The Case for Laboratory Developed Procedures

    Directory of Open Access Journals (Sweden)

    Karen L. Kaul MD, PhD

    2017-07-01

    Full Text Available An explosion of knowledge and technology is revolutionizing medicine and patient care. Novel testing must be brought to the clinic with safety and accuracy, but also in a timely and cost-effective manner, so that patients can benefit and laboratories can offer testing consistent with current guidelines. Under the oversight provided by the Clinical Laboratory Improvement Amendments, laboratories have been able to develop and optimize laboratory procedures for use in-house. Quality improvement programs, interlaboratory comparisons, and the ability of laboratories to adjust assays as needed to improve results, utilize new sample types, or incorporate new mutations, information, or technologies are positive aspects of Clinical Laboratory Improvement Amendments oversight of laboratory-developed procedures. Laboratories have a long history of successful service to patients operating under Clinical Laboratory Improvement Amendments. A series of detailed clinical examples illustrating the quality and positive impact of laboratory-developed procedures on patient care is provided. These examples also demonstrate how Clinical Laboratory Improvement Amendments oversight ensures accurate, reliable, and reproducible testing in clinical laboratories.

  12. Heat Flux Instrumentation Laboratory (HFIL)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: The Heat Flux Instrumentation Laboratory is used to develop advanced, flexible, thin film gauge instrumentation for the Air Force Research Laboratory....

  13. Zero-gravity cloud physics laboratory: Experiment program definition and preliminary laboratory concept studies

    Science.gov (United States)

    Eaton, L. R.; Greco, E. V.

    1973-01-01

    The experiment program definition and preliminary laboratory concept studies on the zero G cloud physics laboratory are reported. This program involves the definition and development of an atmospheric cloud physics laboratory and the selection and delineations of a set of candidate experiments that must utilize the unique environment of zero gravity or near zero gravity.

  14. ISO 15189 accreditation: Requirements for quality and competence of medical laboratories, experience of a laboratory I.

    Science.gov (United States)

    Guzel, Omer; Guner, Ebru Ilhan

    2009-03-01

    Medical laboratories are the key partners in patient safety. Laboratory results influence 70% of medical diagnoses. Quality of laboratory service is the major factor which directly affects the quality of health care. The clinical laboratory as a whole has to provide the best patient care promoting excellence. International Standard ISO 15189, based upon ISO 17025 and ISO 9001 standards, provides requirements for competence and quality of medical laboratories. Accredited medical laboratories enhance credibility and competency of their testing services. Our group of laboratories, one of the leading institutions in the area, had previous experience with ISO 9001 and ISO 17025 Accreditation at non-medical sections. We started to prepared for ISO 15189 Accreditation at the beginning of 2006 and were certified in March, 2007. We spent more than a year to prepare for accreditation. Accreditation scopes of our laboratory were as follows: clinical chemistry, hematology, immunology, allergology, microbiology, parasitology, molecular biology of infection serology and transfusion medicine. The total number of accredited tests is 531. We participate in five different PT programs. Inter Laboratory Comparison (ILC) protocols are performed with reputable laboratories. 82 different PT Program modules, 277 cycles per year for 451 tests and 72 ILC program organizations for remaining tests have been performed. Our laboratory also organizes a PT program for flow cytometry. 22 laboratories participate in this program, 2 cycles per year. Our laboratory has had its own custom made WEB based LIS system since 2001. We serve more than 500 customers on a real time basis. Our quality management system is also documented and processed electronically, Document Management System (DMS), via our intranet. Preparatory phase for accreditation, data management, external quality control programs, personnel related issues before, during and after accreditation process are presented. Every laboratory has

  15. Going paperless: implementing an electronic laboratory notebook in a bioanalytical laboratory.

    Science.gov (United States)

    Beato, Brian; Pisek, April; White, Jessica; Grever, Timothy; Engel, Brian; Pugh, Michael; Schneider, Michael; Carel, Barbara; Branstrator, Laurel; Shoup, Ronald

    2011-07-01

    AIT Bioscience, a bioanalytical CRO, implemented a highly configurable, Oracle-based electronic laboratory notebook (ELN) from IDBS called E-WorkBook Suite (EWBS). This ELN provides a high degree of connectivity with other databases, including Watson LIMS. Significant planning and training, along with considerable design effort and template validation for dozens of laboratory workflows were required prior to EWBS being viable for either R&D or regulated work. Once implemented, EWBS greatly reduced the need for traditional quality review upon experiment completion. Numerous real-time error checks occur automatically when conducting EWBS experiments, preventing the majority of laboratory errors by pointing them out while there is still time to correct any issues. Auditing and reviewing EWBS data are very efficient, because all data are forever securely (and even remotely) accessible, provided a reviewer has appropriate credentials. Use of EWBS significantly increases both data quality and laboratory efficiency.

  16. Laboratory accreditation in developing economies

    International Nuclear Information System (INIS)

    Loesener, O.

    2004-01-01

    Full text: Accreditation of laboratories has been practiced for well over one hundred years with the primary objective of seeking a formal recognition for the competence of a laboratory to perform specified tests or measurements. While first accreditation schemes intended initially to serve only the immediate needs of the body making the evaluation with the purpose of minimizing testing and inspection to be conducted by laboratories, third-party accreditation enables a laboratory to demonstrate its capability as well as availability of all necessary resources to undertake particular tests correctly and that is managed in such a way that it is likely to do this consistently, taking into consideration standards developed by national and international standards-setting bodies. The international standard ISO/IEC 17025 and laboratory accreditation are concerned with competence and quality management of laboratories only, thus requiring a single common set of criteria applicable to them. Quality assurance is therefore fully relevant to laboratories in general and analytical laboratories in particular; it should not be confused with the certification approach according to ISO/IEC 9000 family of standards, that is concerned with quality management applicable to any organization as a whole. The role of laboratory accreditation can be manifold, but in all cases the recipient of the test report needs to have confidence that the data in it is reliable, particularly if the test data is important in a decision-making process. As such, it offers a comprehensive way to ensure: - the availability of managerial and technical staff with the authority and resources needed; - the effectiveness of equipment management, traceability of measurement and safety procedures; - the performance of tests, taking into consideration laboratory accommodation and facilities as well as laboratory practices. The presentation will include also some practical aspects of quality management system

  17. National Laboratory Planning: Developing Sustainable Biocontainment Laboratories in Limited Resource Areas.

    Science.gov (United States)

    Yeh, Kenneth B; Adams, Martin; Stamper, Paul D; Dasgupta, Debanjana; Hewson, Roger; Buck, Charles D; Richards, Allen L; Hay, John

    2016-01-01

    Strategic laboratory planning in limited resource areas is essential for addressing global health security issues. Establishing a national reference laboratory, especially one with BSL-3 or -4 biocontainment facilities, requires a heavy investment of resources, a multisectoral approach, and commitments from multiple stakeholders. We make the case for donor organizations and recipient partners to develop a comprehensive laboratory operations roadmap that addresses factors such as mission and roles, engaging national and political support, securing financial support, defining stakeholder involvement, fostering partnerships, and building trust. Successful development occurred with projects in African countries and in Azerbaijan, where strong leadership and a clear management framework have been key to success. A clearly identified and agreed management framework facilitate identifying the responsibility for developing laboratory capabilities and support services, including biosafety and biosecurity, quality assurance, equipment maintenance, supply chain establishment, staff certification and training, retention of human resources, and sustainable operating revenue. These capabilities and support services pose rate-limiting yet necessary challenges. Laboratory capabilities depend on mission and role, as determined by all stakeholders, and demonstrate the need for relevant metrics to monitor the success of the laboratory, including support for internal and external audits. Our analysis concludes that alternative frameworks for success exist for developing and implementing capabilities at regional and national levels in limited resource areas. Thus, achieving a balance for standardizing practices between local procedures and accepted international standards is a prerequisite for integrating new facilities into a country's existing public health infrastructure and into the overall international scientific community.

  18. [Quality use of commercial laboratory for clinical testing services - considering laboratory's role].

    Science.gov (United States)

    Ogawa, Shinji

    2014-12-01

    The number of commercial laboratories for clinical testing in Japan run privately has decreased to about 30 companies, and their business is getting tougher. Branch Lab. and FMS businesses have not expanded recently due to the new reimbursement system which adds an additional sample management fee, becoming effective in 2010. This presentation gives an outline of each role for hospital and commercial laboratories, and their pros & cons considering the current medical situation. Commercial laboratories have investigated how to utilize ICT systems for sharing test information between hospitals and our facilities. It would be very helpful to clarify issues for each hospital. We will develop and create new values for clinical laboratory testing services and forge mutually beneficial relationships with medical institutions. (Review).

  19. ABACC's laboratory intercomparison program

    International Nuclear Information System (INIS)

    Almeida, Gevaldo L. de; Esteban, Adolfo; Almeida, Silvio G. de; Araujo, Radier M. de; Rocha, Zildete

    1996-01-01

    A Laboratory Intercomparison Program involving Brazilian and Argentine laboratories, with the special participation of New Brunswick Laboratory - DOE and IAEA Seibersdorf Safeguards Laboratory, was implanted by ABACC having as main purpose to qualify a network to provide analytical services to this Agency on its role as administrator of the Common System of Accountability and Control of Nuclear Materials. For the first round robin of this Program, 15 laboratories were invited to perform elemental analysis on UO 2 samples, by using any desired method. Thirteen confirmed the participation and 10 reported the results. After an evaluation of the results by using a Two-Way Variance Analysis applied to a nested error model, it was found that 5 of them deviate less than 0.1% from the reference value established for the UO 2 uranium contents, being thus situated within the limits adopted for the target values, while the remaining ones reach a maximal deviation of 0.44%. The outcome of this evaluation, was sent to the laboratories, providing them with a feedback to improve their performance by applying corrective actions to the detected sources of errors or bias related to the methods techniques and procedures. (author)

  20. The radiological services laboratory

    International Nuclear Information System (INIS)

    Hardt, T.L.; Schutt, S.M.; Doran, K.S.; Dihel, D.L.; Lucas, R.O. II; Eifert, T.K.

    1992-01-01

    A new state of the art radiochemistry laboratory incorporating advanced design and environmental control elements has been constructed in Atlanta, Georgia. The design of the facility is oriented to the efficient production of analytical sample results which meet regulatory requirements while at the same time provides an atmosphere that is pleasurable for analysts and visitors alike. The laboratory building contains two separate and distinct laboratories under one roof. This allows the facility to handle samples with low levels of radioactivity on one side of the lab without fear of contamination of environmental work on the other side. Unlike most laboratories, this facility utilizes a scrubber system and liquid waste holdup system to prevent accidental releases to the environment. The potential spread of radioactive contamination is controlled through the use of negative pressure ventillation zones. Construction techniques, laboratory systems, instrumentation and ergonomic considerations will also be discussed. (author) 1 fig