WorldWideScience

Sample records for aecl radiochemical slowpoke reactor

  1. SLOWPOKE

    International Nuclear Information System (INIS)

    Law, Charles.

    1979-01-01

    The SLOWPOKE (Safe Low Power Critical Experiment) reactor was developed by AECL at Whiteshell and Chalk River between 1968 and 1970. It is a neutron-producing reactor of low power with minimal fuel, shielding, and cooling requirements and intrinsic safety. Four Canadian universities and one German one have acquired SLOWPOKE reactors for neutron activation analyses and for student research in nuclear engineering and reactor physics. (LL)

  2. Homogeneous SLOWPOKE reactors for replacing SLOWPOKE-2 research reactors and the production of radioisotopes

    International Nuclear Information System (INIS)

    Bonin, H.W.; Hilborn, J.W.; Carlin, G.E.; Gagnon, R.; Busatta, P.

    2014-01-01

    Inspired from the inherently safe SLOWPOKE-2 research reactor, the Homogeneous SLOWPOKE reactor was conceived with a double goal: replacing the heterogeneous SLOWPOKE-2 reactors when they reach end-of-core life to continue their missions of neutron activation analysis and neutron radiography at universities, and to produce radioisotopes such as 99 Mo for medical applications. A homogeneous reactor core allows a much simpler extraction of radioisotopes (such as 99 Mo) for applications in industry and nuclear medicine. The 20 kW Homogeneous SLOWPOKE reactor was modelled using both the deterministic WIMS-AECL and the probabilistic MCNP 5 reactor simulation codes. The homogeneous fuel mixture was a dilute aqueous solution of Uranyl Sulfate (UO 2 SO 4 ) with 994.2 g of 235 U (enrichment at 20%) providing an excess reactivity at operating temperature (40 o C) of 3.8 mk for a molality determined as 1.46 mol kg -1 for a Zircaloy-2 reactor vessel. Because this reactor is intended to replace the core of SLOWPOKE-2 reactors, the Homogeneous SLOWPOKE reactor core had a height about twice its diameter. The reactor could be controlled by mechanical absorber rods in the beryllium reflector, chemical control in the core, or a combination of both. The safety of the Homogeneous SLOWPOKE reactor was analysed for both normal operation and transient conditions. Thermal-hydraulics calculations used COMSOL Multiphysics and the results showed that natural convection was sufficient to ensure adequate reactor cooling in all situations. The most severe transient simulated resulted from a 5.87 mk step positive reactivity insertion to the reactor in operation at critical and at steady state at 20 o C. Peak temperature and power were determined as 83 o C and 546 kW, respectively, reached 5.1 s after the reactivity insertion. However, the power fell rapidly to values below 20 kW some 35 s after the peak and remained below that value thereafter. Both the temperature and void coefficients are

  3. Homogeneous SLOWPOKE reactors for replacing SLOWPOKE-2 research reactors and the production of radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, H.W., E-mail: bonin-h@rmc.ca [Royal Military College of Canada, Kingston, Ontario (Canada); Hilborn, J.W. [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada); Carlin, G.E. [Ontario Power Generation, Toronto, Ontario (Canada); Gagnon, R.; Busatta, P. [Canadian Forces (Canada)

    2014-07-01

    Inspired from the inherently safe SLOWPOKE-2 research reactor, the Homogeneous SLOWPOKE reactor was conceived with a double goal: replacing the heterogeneous SLOWPOKE-2 reactors when they reach end-of-core life to continue their missions of neutron activation analysis and neutron radiography at universities, and to produce radioisotopes such as {sup 99}Mo for medical applications. A homogeneous reactor core allows a much simpler extraction of radioisotopes (such as {sup 99}Mo) for applications in industry and nuclear medicine. The 20 kW Homogeneous SLOWPOKE reactor was modelled using both the deterministic WIMS-AECL and the probabilistic MCNP 5 reactor simulation codes. The homogeneous fuel mixture was a dilute aqueous solution of Uranyl Sulfate (UO{sub 2}SO{sub 4}) with 994.2 g of {sup 235}U (enrichment at 20%) providing an excess reactivity at operating temperature (40 {sup o}C) of 3.8 mk for a molality determined as 1.46 mol kg{sup -1} for a Zircaloy-2 reactor vessel. Because this reactor is intended to replace the core of SLOWPOKE-2 reactors, the Homogeneous SLOWPOKE reactor core had a height about twice its diameter. The reactor could be controlled by mechanical absorber rods in the beryllium reflector, chemical control in the core, or a combination of both. The safety of the Homogeneous SLOWPOKE reactor was analysed for both normal operation and transient conditions. Thermal-hydraulics calculations used COMSOL Multiphysics and the results showed that natural convection was sufficient to ensure adequate reactor cooling in all situations. The most severe transient simulated resulted from a 5.87 mk step positive reactivity insertion to the reactor in operation at critical and at steady state at 20 {sup o}C. Peak temperature and power were determined as 83 {sup o}C and 546 kW, respectively, reached 5.1 s after the reactivity insertion. However, the power fell rapidly to values below 20 kW some 35 s after the peak and remained below that value thereafter. Both the

  4. Utilization of the SLOWPOKE-2 research reactor

    International Nuclear Information System (INIS)

    Lalor, G.C.

    2001-01-01

    SLOWPOKEs are typically low power research reactors that have a limited number of applications. However, a significant range of NAA can be performed with such reactors. This paper describes a SLOWPOKE-based NAA program that is performing a valuable series of studies in Jamaica, including geological mapping and pollution assessment. (author)

  5. SLOWPOKE: heating reactors in the urban environment

    International Nuclear Information System (INIS)

    Hilborn, J.W.; Lynch, G.F.

    1988-06-01

    Since global energy requirements are expected to double over the next 40 years, nuclear heating could become as important as nuclear electricity generation. To fill that need, AECL has designed a 10 MW nuclear heating plant for large buildings. Producing hot water at temperatures below 100 degrees Celsius, it incorporates a small pool-type reactor based on the successful SLOWPOKE Research Reactor. A 2 MW prototype is now being tested at the Whiteshell Nuclear Research Establishment in Manitoba, and the design of a 10 MW commercial unit is well advanced. With capital costs in the range $5 million to $7 million, unit energy costs could be as low as $0.02 per kWh, for a unit operating at 50% load factor over a 25-year period. By keeping the reactor power low and the water temperature below 100 degrees Celsius, much of the complexity of the large nuclear power plants can be avoided, thus allowing these small, safe, nuclear heating systems to be economically viable

  6. Dalhousie SLOWPOKE-2 reactor: A nuclear analytical chemistry facility

    International Nuclear Information System (INIS)

    Chatt, A.; Holzbecher, J.

    1990-01-01

    SLOWPOKE is an acronym for Safe Low POwer Kritical Experiment. The SOWPOKE-2 is a compact, inherently safe, swimming-pool-type reactor designed by the Atomic Energy of Canada Limited for neutron activation analysis (NAA) and isotope production. The Dalhousie University SLOWPOKE-2 reactor (DUSR) has been operating since 1976; a large beryllium reflector was added in 1986 to extend its lifetime by another 8 to 10 yr. The DUSR is generally operated at half-power with a maximum thermal flux of 1.1 x 10 12 n/cm 2 ·s in the inner pneumatic sites and that of 5.4 x 10 11 n/cm 2 ·s in the outer sites. Despite this comparatively low flux, SLOWPOKE-2 reactors have many beneficial features that are continuously being exploited at the DUSR facility for developing nuclear analytical methods for fundamental as well as applied studies. Although NAA is a well-established analytical technique, much of the activation analysis being performed in most facilities has been limited to methods using fairly long-lived nuclides. The approach at the DUSR facility has been to utilize the highly homogeneous, stable, and reproducible neutron flux to develop NAA methods based on short-lived nuclides. SLOWPOKE reactors have a fairly high epithermal neutron flux, which is being advantageously used for determining several trace elements in complex matrices. Radiochemical NAA (RNAA) methods using coprecipitation, distillation, and ion-exchange separations have been used for the determination of very low levels of several elements in biological materials

  7. Fission product release from SLOWPOKE-2 reactors

    Energy Technology Data Exchange (ETDEWEB)

    Harnden-Gillis, A M.C. [Queen` s Univ., Kingston, ON (Canada). Dept. of Physics

    1994-12-31

    Increasing radiation fields at several SLOWPOKE-2 reactors fuelled with highly enriched uranium aluminum alloy fuel have begun to interfere with the daily operation of these reactors. To investigate this phenomenon, samples of reactor container water and gas from the headspace were obtained at four SLOWPOKE-2 reactor facilities and examined by gamma ray spectroscopy methods. These radiation fields are due to the circulation of fission products within the reactor container vessel. The most likely source of the fission product release is an area of uranium-bearing material exposed to the coolant at the end weld line which originated at the time of fuel fabrication. The results of this study are compared with observations from an underwater visual examination of one core and the metallographic examination of archived fuel elements. 19 refs., 4 tabs., 8 figs.

  8. Homogeneous slowpoke reactor for the production of radio-isotope. A feasibility study

    International Nuclear Information System (INIS)

    Busatta, P.; Bonin, H.

    2005-01-01

    The purpose of this research is to study the feasibility of replacing the actual heterogeneous fuel core of the present SLOWPOKE-2 by a reservoir containing a homogeneous fuel for the production of Mo-99. The study looked at three items: by using the MCNP 5 simulation code, develop a series of parameters required for an homogeneous fuel and evaluate the uranyl sulfate concentration of the aqueous solution fuel in order to keep a similar excess reactivity; verify if the homogeneous reactor will retain its inherent safety attributes; and with the new dimensions and geometry of the fuel core, observe whether the natural convection will still effectively cool the reactor using the modeling software FEMLAB. The MCNP 5 simulation code was validated by using a simulation with WIMS-AECL code. It was found that it is indeed feasible to modify the SLOWPOKE-2 reactor for a homogeneous reactor using a solution of uranyl sulfate and water. (author)

  9. Homogeneous slowpoke reactor for the production of radio-isotope. A feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Busatta, P.; Bonin, H. [Royal Military College of Canada, Kingston, Ontario (Canada)]. E-mail: paul.busatta@rmc.ca; bonin-h@rmc.ca

    2005-07-01

    The purpose of this research is to study the feasibility of replacing the actual heterogeneous fuel core of the present SLOWPOKE-2 by a reservoir containing a homogeneous fuel for the production of Mo-99. The study looked at three items: by using the MCNP 5 simulation code, develop a series of parameters required for an homogeneous fuel and evaluate the uranyl sulfate concentration of the aqueous solution fuel in order to keep a similar excess reactivity; verify if the homogeneous reactor will retain its inherent safety attributes; and with the new dimensions and geometry of the fuel core, observe whether the natural convection will still effectively cool the reactor using the modeling software FEMLAB. The MCNP 5 simulation code was validated by using a simulation with WIMS-AECL code. It was found that it is indeed feasible to modify the SLOWPOKE-2 reactor for a homogeneous reactor using a solution of uranyl sulfate and water. (author)

  10. Iodine behaviour in the SLOWPOKE nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bekeris, P A; Evans, G J [Toronto Univ., ON (Canada). Dept. of Chemical Engineering and Applied Chemistry

    1994-12-31

    The purpose of this project is to measure and attempt to explain the presence and volatility of iodine isotopes present as fission products in the SLOWPOKE-2 reactor. Liquid sampling and extraction procedures developed indicated that approximately 40% of the reactor iodine is in the form of iodate (IO{sub 3}{sup -}), and 60% is in the form of iodide (I{sup -}). No appreciable amount in non-polar forms such as molecular iodine (I{sub 2}) or organic iodides (RI) were detected. This goes contrary to past expectations that all of the iodine in the liquid phase would be in the form of I{sup -}. In addition partition coefficients for I-131 were determined as 2-6x10{sup 6} at a neutral pH. Kr-88 is suspected as a possible interfering isotope in the measurement of I-131 in the liquid and gas phases. (author). 9 refs., 2 tabs., 2 figs.

  11. The AECL reactor development programme

    International Nuclear Information System (INIS)

    Menelely, D.A.

    1997-01-01

    The modem CANDU-PHWR power reactor is the result of more than 50 years of evolutionary design development in Canada. It is one of only three commercially successful designs in the world to this date. The basis for future development is the CANDU 6 and CANDU 9 models. Four of the first type are operating and four more will go an line before the end of this decade. The CANDU 9 is a modernized single-unit version of the twelve large multi-unit plants operated by Ontario Hydro. All of these plants use proven technology which resulted from research, development, design construction, and operating experience over the past 25 years. Looking forward another 25 years, AECL plans to retain all of the essential features that distinguish today's CANDU reactors (heavy water moderation, on-power fuelling simple bundle design, horizontal fuel channels, etc.). The end product of the planned 25-year development program is more than a specific design - it is a concept which embodies advanced features expected from ongoing R and D programs. To carry out the evolutionary work we have selected seven main areas for development: Safety Technology, Fuel and Fuel Cycles, Fuel Channels, Systems and Components, Heavy Water and Tritium Information Technology, and Construction. There are three strategic measures of success for each of these work areas: improved economics, advanced fuel cycle utilization, and enhanced safety/plant robustness. The paper describes these work programs and the overall goals of each of them. (author)

  12. Development Directions For CANDU and Slowpoke Reactors

    International Nuclear Information System (INIS)

    Brooks, Gordon L.

    1990-01-01

    This paper provides a broader-based discussion of overall development directions foreseen for CANDU reactors, particularly those which have further evolved sine the earlier paper. The paper then discusses development directions for the Slowpokes Energy System which is a small nuclear heat source intended to meet local heating needs for building complexes and municipal heating systems. In evolving a sound development direction, it is necessary, firstly, to address the question of requirements, viz., what are the requirements which future nuclear power plants must satisfy if they are to be successful? Today, some in the nuclear industry believe that the most important of such requirements relates to the need for 'safer' reactors. Indeed, some proponents of this view would seem to suggest that if only we could develop such 'safer' reactors, suddenly all of our problem s with public acceptance would disappear and utilities would form long lines waiting to purchase such marvellous machines. I do not share such a simplistic view nor, indeed, do many of my colleagues in the international nuclear power industry

  13. The SLOWPOKE-2 reactor with low enrichment uranium oxide fuel

    International Nuclear Information System (INIS)

    Townes, B.M.; Hilborn, J.W.

    1985-06-01

    A SLOWPOKE-2 reactor core contains less than 1 kg of highly enriched uranium (HEU) and the proliferation risk is very low. However, to overcome proliferation concerns a new low enrichment uranium (LEU) fuelled reactor core has been designed. This core contains approximately 180 fuel elements based on the Zircaloy-4 clad UOsub(2) CANDU fuel element, but with a smaller outside diameter. The physics characteristics of this new reactor core ensure the inherent safety of the reactor under all conceivable conditions and thus the basic SLOWPOKE safety philosophy which permits unattended operation is not affected

  14. Keeping research reactors relevant: A pro-active approach for SLOWPOKE-2

    International Nuclear Information System (INIS)

    Cosby, L.R.; Bennett, L.G.I.; Nielsen, K.; Weir, R.

    2010-01-01

    The SLOWPOKE is a small, inherently safe, pool-type research reactor that was engineered and marketed by Atomic Energy of Canada Limited (AECL) in the 1970s and 80s. The original reactor, SLOWPOKE-1, was moved from Chalk River to the University of Toronto in 1970 and was operated until upgraded to the SLOWPOKE-2 reactor in 1973. In all, eight reactors in the two versions were produced and five are still in operation today, three having been decommissioned. All of the remaining reactors are designated as SLOWPOKE-2 reactors. These research reactors are prone to two major issues: aging components and lack of relevance to a younger audience. In order to combat these problems, one SLOWPOKE -2 facility has embraced a strategy that involves modernizing their reactor in order to keep the reactor up to date and relevant. In 2001, this facility replaced its aging analogue reactor control system with a digital control system. The system was successfully commissioned and has provided a renewed platform for student learning and research. The digital control system provides a better interface and allows flexibility in data storage and retrieval that was never possible with the analogue control system. This facility has started work on another upgrade to the digital control and instrumentation system that will be installed in 2010. The upgrade includes new computer hardware, updated software and a web-based simulation and training system that will allow licensed operators, students and researchers to use an online simulation tool for training, education and research. The tool consists of: 1) A dynamic simulation for reactor kinetics (e.g., core flux, power, core temperatures, etc). This tool is useful for operator training and student education; 2) Dynamic mapping of the reactor and pool container gamma and neutron fluxes as well as the vertical neutron beam tube flux. This research planning tool is used for various researchers who wish to do irradiations (e.g., neutron

  15. Diffusion calculation's for the SLOWPOKE-2 reactor using DONJON

    International Nuclear Information System (INIS)

    Noceir, S.; El Hajjaji, O.; Varin, E.

    1997-01-01

    The SLOWPOKE reactor at Ecole Polytechnique will be refueled with a Low Enriched Uranium (LEU) fuel in place of a High Enriched Uranium (HEU) fuel used until now. The purpose of this study is to provide various models, using the reactor physics chain of codes DRAGON/DONJON, in order to predict the behavior of the new LEU Slowpoke. In particle, we will present some numerical results concerning the separate temperature effects of the main components of the core, the effect of a partial void appearing near the fuel pins and the axial and radial flux distributions. Finally the difference between the present HEU and the future LEU fuel power will be given. (author)

  16. Operation of the SLOWPOKE-2 reactor in Jamaica

    Energy Technology Data Exchange (ETDEWEB)

    Grant, C.N.; Lalor, G.C.; Vuchkov, M.K. [University of the West Indies, Kingston (Jamaica)

    2001-07-01

    Over the past sixteen years lCENS has operated a SLOWPOKE 2 nuclear reactor almost exclusively for the purpose of neutron activation analysis. During this period we have adopted a strategy of minimum irradiation times while optimizing our output in an effort to increase the lifetime of the reactor core and to maintaining fuel integrity. An inter-comparison study with results obtained with a much larger reactor at IPEN has validated this approach. The parameters routinely monitored at ICENS are also discussed and the method used to predict the next shim adjustment. (author)

  17. An overview of thermalhydraulics R and D for SLOWPOKE heating reactors

    International Nuclear Information System (INIS)

    Dimmick, G.R.

    1988-09-01

    AECL is currently demonstrating the use of pool-type reactors of up to 10 MW output to produce hot water at about 90 degrees Celsius. The initial focus for the development is the provision of a source of hot water for institutional and municipal heating networks. Ongoing developments are designed to broaden the applications to electricity generation and industrial processes such as desalination and agricultural needs. The reactor concept is based on the Slowpoke-2 research reactor, eight of which are successfully operating in Canada and abroad. The primary-circuit flow is driven by natural convection, with the heated water, produced by the reactor core near the bottom of the pool, being ducted to low-pressure-drop heat exchangers in the upper part of the pool. As the pool volume is relatively large, the fluid transit time around the circuit is long, ensuring that the reactor response to all normal transients is extremely slow. To investigate thermalhydraulics aspects of the reactor design, including its behaviour underextreme conditions, an electrically heated, natural-convection loop was designed and constructed. The core of the loop consists of a rod bundle that is a precise reproduction of one quarter of the core of the 2-MW SLOWPOKE Demonstration Reactor presently being tested at the Whiteshell Nuclear Research Establishment. With this loop, measurements of the distribution of pressure, temperature, velocity and subcooled void have been made in the simulated core, via a variety of intrusive and non-intrusive techniques. In addition, both the single- and two-phase behaviour of the system have been studied. This paper gives examples of the various in-core measurements made and also makes comparisons between the measured system behaviour and that predicted by the various steady-state and transient computer codes

  18. AECL's advanced CANDU reactor - the ACR

    International Nuclear Information System (INIS)

    Alizadeh, Ala; Allsop, Peter; Hedges, Ken; Hopwood, Jerry; Yu, Stephen

    2003-01-01

    The ACR, the next generation CANDU design, represents the next step in development of the CANDU family of designs. AECL has achieved significant incremental improvements to the mid-size CANDU 6 nuclear power plant through successive projects, both in design and in project delivery. Building on this knowledge base, AECL is continuing to adapt the CANDU design to develop the ACR. This paper summarizes the ACR design features, which include major improvements in economics, inherent safety characteristics, performance and construction methods. Aimed at producing electrical power at a capital cost significantly less than that of the current reactor designs, the ACR is an evolutionary design based on the very successful CANDU 6 reactor. The new ACR product is specifically designed to produce power at a cost competitive with other forms of power generation while achieving short construction times, improved safety, international licensability, high investor returns, and low investor risk. It achieves these targets by taking advantage of the latest advances in both pressure-tube and pressure-vessel reactor technologies and experience. The flexibility and development potential of the fuel channel approach also enables designs to be developed that address priorities identified in international long-term specification programs such as the US Department of Energy (DOE) sponsored Generation IV program and IAEA hosted INPRO program. ACR-700 can be built in 36 months with a 48 month project duration, and deliver a lifetime capacity factor in excess of 90%. Overall, the ACR design represents a balance of proven design basis and innovations to give step improvements in safety, reliability and economics. The ACR development program, now well into the detail design stage, includes parallel formal licensing in the USA and Canada. Based on the status of the ACR design and AECL's on-going experience delivering reactor projects on-time and on-budget, the first ACR could be in service by

  19. Neutronics comparative analysis between MNSR and slowpoke-II reactors

    International Nuclear Information System (INIS)

    Khamis, I.; Khattab, K.

    1999-01-01

    Neutronics analysis of both MNSR and Slowpoke reactors were made. Calculations including flux distribution, power estimation, excess and shutdown reactivity margins, flooding effects of irradiation sites, and initial investigation of fuel conversion from high to low enriched uranium were discussed. A neutronic 3-D model, dedicated mainly for the MNSR, has been developed to perform such neutronic calculations for both reactors. Well-known cell and core calculation codes such as WIMSD4 and CITATIONS have been used. It was found out that it is possible to lower the fuel enrichment of the Miniature Neutron Source Reactor (MNSR) to 20% using U O 2 as fuel instead of U Al 4 . The number of fuel elements required for the new core is 199. The use of double thickness of the bottom reflector in Slowpoke reactor made it possible to load the reactor with lower enriched fuel compared to MNSR. Values of reactivity flooding effects for single or combination of inner irradiation sites were obtained accurately. Results show good agreement with reported data for MNSR. (author)

  20. Dynamic simulation of the 2 MWt slowpoke heating reactor

    International Nuclear Information System (INIS)

    Tseng, C.M.; Lepp, R.M.

    1982-04-01

    A 2 MWt SLOWPOKE reactor, intended for commercial space heating, is being developed at the Chalk River Nuclear Laboratories. A small-signal dynamic simulation of this reactor, without closed-loop control, was developed. Basic equations were used to describe the physical phenomena in each kf the eight reactor subsystems. These equations were then linearized about the normal operation conditions and rearranged in a dimensionless form for implementation. The overall simulation is non-linear. Slow transient responses (minutes to days) of the simulation to both reactivity and temperature perturbations were measured at full power. In all cases the system reached a new steady state in times varying from 12 h to 250 h. These results illustrate the benefits of the inherent negative reactivity feedback of this reactor concept. The addition of closed-loop control using core outlet temperature as the controlled variable to move a beryllium reflector is also examined

  1. A bibliography of AECL publications on reactor safety

    International Nuclear Information System (INIS)

    Hawley, N.J.

    1979-12-01

    AECL Publications on Reactor Safety in CANDU Reactors are listed in this bibliography. The listing is chronological and the accompanying index is by subject. The bibliography will be brought up to date annually. (auth)

  2. Use of a SLOWPOKE-2 reactor for nuclear forensics applications

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, M.T.; Beames-Canivet, T.L.; Elliott, R.S.; Kelly, D.G.; Corcoran, E.C., E-mail: Emily.Corcoran@rmc.ca [Royal Military College of Canada, Kingston, Ontario (Canada)

    2014-07-01

    A low enriched uranium SLOWPOKE-2 reactor is used as a neutron interrogation source in support of the identification and characterization of Special Nuclear Materials (SNM) at the Royal Military College of Canada (RMCC). Small amounts of fissile uranium and plutonium are sent into a SLOWPOKE-2 irradiation site before their transport to RMCC’s delayed neutron and gamma counting (DNGC) system. The counting arrangement of the DNGC consists of an array of six {sup 3}He and a high purity germanium detector. These detectors record the delayed neutron and photon emissions as a function of count time, to verify MCNP6 simulations of delayed particle emissions, and to detect and quantify trace amounts of fissile content. This paper discusses MCNP analyses done in preparation for an upcoming nuclear forensics exercise in the fall of 2014. MCNP6 simulations of the DNGC system focussed on the identification of characteristic gamma lines from prominent fission products. The relative intensities of these gamma lines are dependent on the SNM content in the sample. Gamma line pairs useful for SNM identification in RMCC's DNGC system are presented. (author)

  3. Mathematical models in Slowpoke reactor internal irradiation site

    International Nuclear Information System (INIS)

    Raza, J.

    2007-01-01

    The main objective is to build representative mathematical models of neutron activation analysis in a Slowpoke internal irradiation site. Another significant objective is to correct various elements neutron activation analysis measured mass using these models. The neutron flux perturbation is responsible for the measured under-estimation of real masses. We supposed that neutron flux perturbation measurements taken during the Ecole Polytechnique de Montreal Slowpoke reactor first fuel loading were still valid after the second fuelling. .We also supposed that the thermal neutrons spatial and kinetic energies distributions as well as the absorption microscopic cross section dependence on the neutrons kinetic energies were important factors to satisfactorily represent neutron activation analysis results. In addition, we assumed that the neutron flux is isotropic in the laboratory system. We used experimental results from the Slowpoke reactor internal irradiation sites, in order to validate our mathematical models. Our models results are in close agreement with these experimental results..We established an accurate global mathematical correlation of the neutron flux perturbation in function of samples volumes and macroscopic neutron absorption cross sections. It is applicable to sample volumes ranging from 0,1 to 1,3 ml and macroscopic neutron absorption cross section up to 5 moles-b for seven (7) elements with atomic numbers (Z) ranging from 5 to 79. We first came up with a heuristic neutron transport mathematical semi-analytical model, in order to better understand neutrons behaviour in presence of one of several different nuclei samples volumes and mass. In order to well represent the neutron flux perturbation, we combined a neutron transport solution obtained from the spherical harmonics method of a finite cylinder and a mathematical expression combining two cylindrical harmonic functions..With the help of this model and the least squares method, we made extensive

  4. Research reactor fuel development at AECL

    International Nuclear Information System (INIS)

    Sears, D.F.; Wang, N.

    2000-09-01

    This paper reviews recent U 3 Si 2 and U-Mo dispersion fuel development activities at AECL. The scope of work includes fabrication development, irradiation testing, post-irradiation examination and performance qualification. U-Mo alloys with a variety of compositions, ranging from 6 to 10 wt % Mo, have been fabricated with high purity and homogeneity in the product. The alloys and powders were characterized using optical and scanning electron microscopy, chemical analysis, and X-ray diffraction and neutron diffraction analysis. U-Mo powder samples have been supplied to the Argonne National Laboratory for irradiation testing in the ATR reactor. Low-enriched uranium fuel elements containing U-7 wt % Mo and U-10 wt % Mo with loadings up to 4.5 gU/cm 3 have been fabricated at CRL for irradiation testing in the NRU reactor. The U-Mo fuel elements will be tested in NRU at linear powers up to 145 kW/m, and to 85 atom % 235 U burnup. (author)

  5. Research reactor fuel development at AECL

    International Nuclear Information System (INIS)

    Sears, D.F.; Wang, N.

    2000-01-01

    This paper reviews recent U 3 Si 2 and U-Mo dispersion fuel development activities at AECL. The scope of work includes fabrication development, irradiation testing, postirradiation examination and performance qualification. U-Mo alloys with a variety of compositions, ranging from 6 to 10 wt % Mo, have been fabricated with high purity and homogeneity in the product. The alloys and powders were characterized using optical and scanning electron microscopy, chemical analysis, and X-ray diffraction and neutron diffraction analysis. U-Mo powder samples have been supplied to the Argonne National Laboratory for irradiation testing in the ATR reactor. Low-enriched uranium fuel elements containing U-7 wt % Mo and U-10 wt % Mo with loadings up to 4.5 gU/cm 3 have been fabricated at CRL for irradiation testing in the NRU reactor. The U-Mo fuel elements will be tested in NRU at linear powers up to 145 kW/m, and to 85 atom % 235 U burnup. (author)

  6. Enhancements to the SLOWPOKE-2 nuclear research reactor at the Royal Military College of Canada

    Energy Technology Data Exchange (ETDEWEB)

    Hungler, P.C.; Andrews, M.T.; Weir, R.D.; Nielson, K.S.; Chan, P.K.; Bennett, L.G.I., E-mail: paul.hungler@rmc.ca [Royal Military College of Canada, Kingston, Ontario (Canada)

    2014-07-01

    In 1985 a Safe Low Power C(K)ritical Experiment (SLOWPOKE) nuclear research reactor was installed at the Royal Military College of Canada (RMCC). The reactor at nominally 20 kW thermal was named SLOWPOKE-2 and the core was designed to have a total of 198 fuel pins with Low Enriched Uranium (LEU) fuel (19.89% U-235). Installation of the reactor was intended to provide an education tool for members of the Canadian Armed Forces (CAF) and an affordable neutron source for the application of neutron activation analysis (NAA) and radioisotope production. Today, the SLOWPOKE-2 at RMCC continues to be a key education tool for undergraduate and post-graduate students and successfully conducts NAA and isotope production as per its original design intent. RMCC has significantly upgraded the facility and instruments to develop capabilities such as delayed neutron and gamma counting (DNGC) and neutron imaging, including 2D thermal neutron radiography and 3D thermal neutron tomography. These unique nuclear capabilities have been applied to relevant issues in the CAF. The analog control system originally installed in 1985 has been removed and replaced in 2001 by the SLOWPOKE Integrated Reactor Control and Instrumentation System (SIRCIS) which is a digital controller. This control system continues to evolve with SIRCIS V2 currently in operation. The continual enhancement of the facility, instruments and systems at the SLOWPOKE-2 at RMCC will be discussed, including an update on RMCC's refueling plan. (author)

  7. Enhancements to the SLOWPOKE-2 nuclear research reactor at the Royal Military College of Canada

    International Nuclear Information System (INIS)

    Hungler, P.C.; Andrews, M.T.; Weir, R.D.; Nielson, K.S.; Chan, P.K.; Bennett, L.G.I.

    2014-01-01

    In 1985 a Safe Low Power C(K)ritical Experiment (SLOWPOKE) nuclear research reactor was installed at the Royal Military College of Canada (RMCC). The reactor at nominally 20 kW thermal was named SLOWPOKE-2 and the core was designed to have a total of 198 fuel pins with Low Enriched Uranium (LEU) fuel (19.89% U-235). Installation of the reactor was intended to provide an education tool for members of the Canadian Armed Forces (CAF) and an affordable neutron source for the application of neutron activation analysis (NAA) and radioisotope production. Today, the SLOWPOKE-2 at RMCC continues to be a key education tool for undergraduate and post-graduate students and successfully conducts NAA and isotope production as per its original design intent. RMCC has significantly upgraded the facility and instruments to develop capabilities such as delayed neutron and gamma counting (DNGC) and neutron imaging, including 2D thermal neutron radiography and 3D thermal neutron tomography. These unique nuclear capabilities have been applied to relevant issues in the CAF. The analog control system originally installed in 1985 has been removed and replaced in 2001 by the SLOWPOKE Integrated Reactor Control and Instrumentation System (SIRCIS) which is a digital controller. This control system continues to evolve with SIRCIS V2 currently in operation. The continual enhancement of the facility, instruments and systems at the SLOWPOKE-2 at RMCC will be discussed, including an update on RMCC's refueling plan. (author)

  8. A novel approach to the production of medical radioisotopes: the homogeneous SLOWPOKE reactor

    International Nuclear Information System (INIS)

    Bonin, H.W.; Hilborn, J.W.; Carlin, G.E.; Gagnon, R.; Busatta, P.

    2015-01-01

    In 2009, the unexpected 15-month outage of the Canadian NRU nuclear reactor resulted in a sudden 30% world shortage, with higher shortages experienced in North America than in Europe. Commercial radioisotope production is from just eight nuclear reactors, most being aging systems near the end of their service life. This paper proposes a more efficient production and distribution model. Tc-99m unit doses would be distributed to regional hospitals from ten integrated 'industrial radiopharmacies', located at existing licensed nuclear reactor sites in North America. At each site, one or more 20 kW Homogeneous SLOWPOKE nuclear reactors would deliver 15 litres of irradiated aqueous uranyl sulfate fuel solution daily to industrial-scale hot cells, for extraction of Mo-99; and the low-enriched uranium would be recycled. Purified Mo-99 would be incorporated in large Mo-99/Tc-99m generators for extraction of Tc-99m five days a week; and each automated hot-cell facility would be designed to load up to 7,000 Tc-99m syringes daily for road delivery to all of the nuclear medicine hospitals within a 3-hour range. At the current price of $20 per unit dose, the annual gross income from 10 sites would be approximately $360 million. The Homogeneous SLOWPOKE reactor evolved from the inherently safe SLOWPOKE-2 research reactor, with a double goal: replacing the heterogeneous SLOWPOKE-2 reactors at the end-of-core life, enabling them to continue their primary missions of research and education, together with full time commercial radioisotope production. The Homogeneous SLOWPOKE reactor was modelled using both deterministic and probabilistic reactor simulation codes. The homogeneous fuel mixture is a dilute aqueous solution of low-enriched uranyl sulfate containing approximately 1 kg of U-235. The reactor is controlled by mechanical absorber rods in the beryllium reflector. Safety analysis was carried out for both normal operation and transient conditions. The most severe

  9. A novel approach to the production of medical radioisotopes: the homogeneous SLOWPOKE reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, H.W., E-mail: bonin-h@rmc.ca [Royal Military College of Canada, Kingston, Ontario (Canada); Hilborn, J.W. [retired, Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Carlin, G.E. [Ontario Power Generation, Toronto, Ontario (Canada); Gagnon, R.; Busatta, P. [Royal Canadian Navy, Ottawa, Ontario (Canada)

    2015-03-15

    In 2009, the unexpected 15-month outage of the Canadian NRU nuclear reactor resulted in a sudden 30% world shortage, with higher shortages experienced in North America than in Europe. Commercial radioisotope production is from just eight nuclear reactors, most being aging systems near the end of their service life. This paper proposes a more efficient production and distribution model. Tc-99m unit doses would be distributed to regional hospitals from ten integrated 'industrial radiopharmacies', located at existing licensed nuclear reactor sites in North America. At each site, one or more 20 kW Homogeneous SLOWPOKE nuclear reactors would deliver 15 litres of irradiated aqueous uranyl sulfate fuel solution daily to industrial-scale hot cells, for extraction of Mo-99; and the low-enriched uranium would be recycled. Purified Mo-99 would be incorporated in large Mo-99/Tc-99m generators for extraction of Tc-99m five days a week; and each automated hot-cell facility would be designed to load up to 7,000 Tc-99m syringes daily for road delivery to all of the nuclear medicine hospitals within a 3-hour range. At the current price of $20 per unit dose, the annual gross income from 10 sites would be approximately $360 million. The Homogeneous SLOWPOKE reactor evolved from the inherently safe SLOWPOKE-2 research reactor, with a double goal: replacing the heterogeneous SLOWPOKE-2 reactors at the end-of-core life, enabling them to continue their primary missions of research and education, together with full time commercial radioisotope production. The Homogeneous SLOWPOKE reactor was modelled using both deterministic and probabilistic reactor simulation codes. The homogeneous fuel mixture is a dilute aqueous solution of low-enriched uranyl sulfate containing approximately 1 kg of U-235. The reactor is controlled by mechanical absorber rods in the beryllium reflector. Safety analysis was carried out for both normal operation and transient conditions. The most severe

  10. An experimental investigation of fission product release in SLOWPOKE-2 reactors - Data report

    International Nuclear Information System (INIS)

    Harnden, A.M.C.

    1995-09-01

    The results of an investigation into the release of fission products from SLOWPOKE-2 reactors fuelled with a highly-enriched uranium alloy core are detailed in Volume 1. This data report (Volume 2) contains plots of the activity concentrations of the fission products observed in the reactor container at the University of Toronto, Ecole Polytechnique and the Kanata Isotope Production Facility. Release rates from the reactor container water to the gas headspace are also included. (author)

  11. Homogeneous SLOWPOKE reactor for the production of radio-isotope. A feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Busatta, P.; Bonin, H.W. [Royal Military College of Canada, Kingston, Ontario (Canada)]. E-mail: paul.busatta@rmc.ca; bonin-h@rmc.ca

    2006-07-01

    The purpose of this research is to study the feasibility of replacing the actual heterogeneous fuel core of the present SLOWPOKE-2 by a reservoir containing a homogeneous fuel for the production of Mo-99. The study looked at three items: by using the MCNP Monte Carlo reactor calculation code, develop a series of parameters required for an homogeneous fuel and evaluate the uranyl sulfate concentration of the aqueous solution fuel in order to keep a similar excess reactivity; verify if the homogeneous reactor will retain its inherent safety attributes; and with the new dimensions and geometry of the fuel core, observe whether natural convection can still effectively cool the reactor using the modeling software FEMLAB. It was found that it is indeed feasible to modify the SLOWPOKE-2 reactor for a homogeneous reactor using a solution of uranyl sulfate and water. (author)

  12. Homogeneous SLOWPOKE reactor for the production of radio-isotope. A feasibility study

    International Nuclear Information System (INIS)

    Busatta, P.; Bonin, H.W.

    2006-01-01

    The purpose of this research is to study the feasibility of replacing the actual heterogeneous fuel core of the present SLOWPOKE-2 by a reservoir containing a homogeneous fuel for the production of Mo-99. The study looked at three items: by using the MCNP Monte Carlo reactor calculation code, develop a series of parameters required for an homogeneous fuel and evaluate the uranyl sulfate concentration of the aqueous solution fuel in order to keep a similar excess reactivity; verify if the homogeneous reactor will retain its inherent safety attributes; and with the new dimensions and geometry of the fuel core, observe whether natural convection can still effectively cool the reactor using the modeling software FEMLAB. It was found that it is indeed feasible to modify the SLOWPOKE-2 reactor for a homogeneous reactor using a solution of uranyl sulfate and water. (author)

  13. Homogeneous Slowpoke reactor for the production of radio-isotope: a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Busetta, P.; Bonin, H.W. [Royal Military College of Canada, Kingston, Ontario (Canada)

    2006-09-15

    The purpose of this research is to study the feasibility of replacing the actual heterogeneous fuel core of the present SLOWPOKE-2 by a reservoir containing a homogeneous fuel for the production of Mo-99. The study looked at three items: by using the MCNP Monte Carlo reactor calculation code, develop a series of parameters required for an homogeneous fuel and evaluate the uranyl sulfate concentration of the aqueous solution fuel in order to keep a similar excess reactivity; verify if the homogeneous react will retain its inherent safety attributes; and with the new dimensions and geometry of the fuel core, observe whether natural convection can still effectively cool the reactor using the modeling software FEMLAB(r). It was found that it is needed feasible to modify the SLOWPOKE-2 reactor for a homogeneous reactor using a solution of uranyl sulfate and water. (author)

  14. Large-signal, dynamic simulation of the slowpoke-3 nuclear heating reactor

    International Nuclear Information System (INIS)

    Tseng, C.M.; Lepp, R.M.

    1983-07-01

    A 2 MWt nuclear reactor, called SLOWPOKE-3, is being developed at the Chalk River Nuclear Laboratories (CRNL). This reactor, which is cooled by natural circulation, is designed to produce hot water for commercial space heating and perhaps generate some electricity in remote locations where the costs of alternate forms of energy are high. A large-signal, dynamic simulation of this reactor, without closed-loop control, was developed and implemented on a hybrid computer, using the basic equations of conservation of mass, energy and momentum. The natural circulation of downcomer flow in the pool was simulated using a special filter, capable of modelling various flow conditions. The simulation was then used to study the intermediate and long-term transient response of SLOWPOKE-3 to large disturbances, such as loss of heat sink, loss of regulation, daily load following, and overcooling of the reactor coolant. Results of the simulation show that none of these disturbances produce hazardous transients

  15. Rationalization and future planning for AECL's research reactor capability

    International Nuclear Information System (INIS)

    Slater, J.B.

    1990-01-01

    AECL's research reactor capability has played a crucial role in the development of Canada's nuclear program. All essential concepts for the CANDU reactors were developed and tested in the NRX and NRU reactors, and in parallel, important contributions to basic physics were made. The technical feasibility of advanced fuel cycles and of the organic-cooled option for CANDU reactors were also demonstrated in the two reactors and the WR-1 reactor. In addition, an important and growing radio-isotope production industry was established and marketed on a world-wide basis. In 1984, however, it was recognized that a review and rationalization of the research reactor capability was required. The commercial success of the CANDU reactor system had reduced the scope and size of the required development program. Limited research and development funding and competition from other research facilities and programs, required that the scope be reduced to a support basis essential to maintain strategic capability. Currently, AECL, is part-way through this rationalization program and completion should be attained during 1992/93 when the MAPLE reactor is operational and decisions on NRX decommissioning will be made. A companion paper describes some of the unique operational and maintenance problems which have resulted from this program and the solutions which have been developed. Future planning must recognize the age of the NRU reactor (currently 32 years) and the need to plan for eventual replacement. Strategy is being developed and supporting studies include a full technical assessment of the NRU reactor and the required age-related upgrading program, evaluation of the performance characteristics and costs of potential future replacement reactors, particularly the advanced MAPLE concept, and opportunities for international co-operation in developing mutually supportive research programs

  16. DRAGON and SERPENT 2-D modelling of the SLOWPOKE-2 reactor at Ecole Polytechnique Montreal

    International Nuclear Information System (INIS)

    Raouafi, H.; Marleau, G.

    2012-01-01

    DRAGON is a deterministic code that can be used to perform lattice cell calculations based on numerical solutions of neutron transport equation. DRAGON can also be used for full core 2-D and 3-D simulations in transport. One alternative to the use of such a deterministic code consist in following the history of neutrons in the core based on statistical Monte Carlo simulation with codes like MCNP and SERPENT. This second calculation approach has been used successfully for SLOWPOKE-2 simulation in the past. Here we present a comparison between DRAGON and SERPENT calculations for the SLOWPOKE-2 reactor. We also compare the flux distribution obtained using both codes for a copper sample placed inside a small irradiation site. (author)

  17. Biomedical and health studies with the new Canadian SLOWPOKE reactor

    International Nuclear Information System (INIS)

    Jervis, R.E.; Hancock, R.G.V.; Isles, K.; Hill, D.E.

    1977-01-01

    Results are reported from studies on clinical patients who had malnutrition, cystic fibrosis and other related electrolyte disorders. A stable activable tracer technique has been developed to determine the extracellular fluid volume (ECV) of infants. A regulated dose of sodium bromide is injected into the patient and, following short-term equilibration and dilution of this sample, a small blood sample is taken, yielding 50 μl of plasma. The plasma bromide concentration is determined by 80 Br (T=18 m) activation. Some samples were cross-checked by a microdiffusion method. The technique has been applied to 230 patients and controls, and has proved to be simple, rapid, accurate and sensitive for determining ECV to +-6%. Patients with cystic fibrosis (C.F.) were studied with respect to their growth and their sodium and electrolyte balance. In related clinical studies, hair and nail clippings from 50 C.F. patients and control children of the same age groups were activated at SLOWPOKE and Cu, Ca, Br, Cl, K, Na and I determined for use in differentiating C.F., along with a number of other elements including Zn, Mn, Al, Ti and Ni which showed little difference. A fairly good correlation of hair and nail concentrations was found for a number of the elements determined, suggesting that either tissue may be used in future studies. (T.G.)

  18. Keeping research reactors relevant: a pro-active approach for SLOWPOKE-2 at RMC

    International Nuclear Information System (INIS)

    Cosby, L.; Nielsen, K.; Bennett, L.G.I.

    2011-01-01

    In 2001, the Royal Military College of Canada replaced its aging analogue SLOWPOKE-2 reactor control system with a digital control system. The system was successfully commissioned and has provided a renewed platform for student learning and research. An upgrade to the digital control and instrumentation system has been completed and will be installed in October 2010. The upgrade includes new computer hardware, updated software and a simulation and training system that will enhance training, education and research by licensed operators, students and researchers.

  19. A program for the a priori evaluation of detection limits in instrumental neutron activation analysis using a SLOWPOKE II reactor

    International Nuclear Information System (INIS)

    Galinier, J.L.; Zikovsky, L.

    1982-01-01

    A program that permits the a priori calculation of detection limits in monoelemental matrices, adapted to instrumental neutron activation analysis using a SLOWPOKE II reactor, is described. A simplified model of the gamma spectra is proposed. Products of (n,p) and (n,α) reactions induced by the fast components of the neutron flux that accompanies the thermal flux at the level of internal irradiation sites in the reactor have been included in the list of interfering radionuclides. The program calculates in a systematic way the detection limits of 66 elements in an equal number of matrices using 153 intermediary radionuclides. Experimental checks carried out with silicon (for short lifetimes) and aluminum and magnesium (for intermediate lifetimes) show satisfactory agreement with the calculations. These results show in particular the importance of the contribution of the (n,p) and (n,α) reactions in the a priori evaluation of detection limits with a SLOWPOKE type reactor [fr

  20. An experimental investigation of fission product release in SLOWPOKE-2 reactors

    International Nuclear Information System (INIS)

    Harnden, A.M.C.

    1995-09-01

    Increasing radiation fields due to a release of fission products in the reactor container of several SLOWPOKE-2 reactors fuelled with a highly-enriched uranium (HEU) alloy core have been observed. It is believed that these increases are associated with the fuel fabrication where a small amount of uranium-bearing material is exposed to the coolant at the end-welds of the fuel element. To investigate this phenomenon samples of reactor water and gas from the headspace above the water have been obtained and examined by gamma spectrometry methods for reactors of various burnups at the University of Toronto, Ecole Polytechnique and Kanata Isotope Production Facility. An underwater visual examination of the fuel core at Ecole Polytechnique has also provided information on the condition of the core. This report (Volume 1) summarizes the equipment, analysis techniques and results of tests conducted at the various reactor sites. The data report is published as Volume 2. (author). 30 refs., 9 tabs., 20 figs

  1. AECL present and future

    International Nuclear Information System (INIS)

    Foster, J.S.

    The history and present activities of the Crown corporation AECL are described. AECL owns limited interests in nuclear power plants and a Manitoba transmission system. AECL is the world's foremost producer of heavy water, and exports CANDU type reactors and radiation processing equipment. AECL backs up the Canadian nuclear power program wherever there is no conflict with private enterprise. (E.C.B.)

  2. Homogeneous SLOWPOKE reactors for Mo-99/Tc-99m production in North America

    Energy Technology Data Exchange (ETDEWEB)

    Hilborn, J.W., E-mail: hilbovanw@sympatico.ca [Deep River, Ontario (Canada); Bonin, H.W. [Royal Military College of Canada, Kingston, Ontario (Canada)

    2014-07-01

    The 15 month shutdown of NRU in 2009 - 2010 caused an overall isotope shortage of approximately 30%; and in North America, the annual Tc-99m demand decreased from an estimated 20 million unit doses to about 15 million unit doses. Mo-99/Tc-99m is produced from HEU targets, irradiated in NRU for 11 days, and after chemical removal of uranium it is shipped to Nordion in Kanata, Ontario. Nordion further purifies the material and sends it to Lantheus Medical Imaging in the USA for manufacture of Mo-99 generators, which are then distributed to hundreds of hospital radiopharmacies throughout North America. One other American company, Covidien, manufactures and distributes Mo-99 generators like Lantheus, but they import bulk Mo-99 from Europe or South Africa. At the hospitals, Tc-99m is chemically extracted daily from the Mo-99 generators and loaded into syringes for immediate clinical use. Fortuitously, the 66 hour half-life of Mo-99 allows the replenishment of Tc-99m in the generator over a growth period of about 20 hours; and a generator can be 'milked' daily for up to two weeks. A more efficient model is the direct production and distribution of Tc-99m unit doses to regional hospitals from 10 'industrial' radiopharmacies located at existing licensed reactor sites in North America. A 20 kW homogeneous SLOWPOKE reactor at each site would deliver 15 litres of irradiated uranyl sulphate fuel solution daily to industrial-scale hot cells for extraction of Mo-99, which would be incorporated in large Mo-99/Tc-99m generators for extraction of Tc-99m five days a week; and the Low Enriched Uranium (LEU) would be recycled. Each automated hot-cell facility would be designed to load up to 7,000 Tc-99m syringes daily, for courier delivery to all of the Nuclear Medicine hospitals within a 3 hour average range by road transport. Typically, the delivered doses would be in the range 10 to 30 mCi. Assuming an average unit dose of 25 mCi at the hospital and 5 x 52

  3. Planning a new research reactor for AECL: The MAPLE-MTR concept

    International Nuclear Information System (INIS)

    Lee, A.G.; Lidstone, R.F.; Donnelly, J.V.

    1992-01-01

    AECL Research is assessing its needs and options for future irradiation research facilities. A planning team has been assembled to identify the irradiation requirements for AECL's research programs and compile options for satisfying the irradiation requirements. The planning team is formulating a set of criteria to evaluate the options and will recommend a plan for developing an appropriate research facility. Developing the MAPLE Materials Test Reactor (MAPLE-MTR) concept to satisfy AECL's irradiation requirements is one option under consideration by the planning team. AECL is undertaking this planning phase because the NRU reactor is 35 years old and many components are nearing the end of their design life. This reactor has been a versatile facility for proof testing CANDU components and fuel designs because the CANDU irradiation environment was simulated quite well. However, the CANDU design has matured and the irradiation requirements have changed. Future research programs will emphasize testing CANDU components near or beyond their design limits. To provide these irradiation conditions, the NRU reactor needs to be upgraded. Upgrading and refurbishing the NRU reactor is being considered, but the potentially large costs and regulatory uncertainties make this option very challenging. AECL is also developing the MAPLE-MTR concept as a potential replacement for the NRU reactor. The MAPLE-MTR concept starts from the recent MAPLE-X10 design and licensing experience and adapts this technology to satisfy the primary irradiation requirements of AECL's research programs. This approach should enable AECL to minimize the need for major advances in nuclear technology (e.g., fuel design, heat transfer). The preliminary considerations for developing the MAPLE-MTR concept are presented in this report. A summary of AECL's research programs is presented along with their irradiation requirements. This is followed by a description of safety criteria that need to be taken into

  4. Medical isotope shortage 2009-2010 and future options NRU, SLOWPOKE and MAPLE

    Energy Technology Data Exchange (ETDEWEB)

    Hilborn, J. [Deep River, Ontario (Canada)

    2013-07-01

    The 15 month shutdown of NRU and the unexpected termination of the AECL/Nordion MAPLE project caused a world-wide shortage of medical isotopes. After the recent repair of NRU, AECL is confident that it could continue operating safely and reliably as a multi-purpose reactor until 2021 or longer. There is convincing evidence that the restoration of the MAPLE reactors is technically feasible, but it is highly improbable that a 10 MW MAPLE production reactor can ever be cost-effective. However, conversion of the present 10 MW reactors to 3 MW, without major changes to the structural hardware, warrants serious consideration. Finally, even the 20 kW SLOWPOKE reactor could produce useful quantities of Mo-99. If the present fuel rods were replaced with a small tank containing a solution of low-enriched uranyl sulphate in water, three of these liquid core reactors could supply all of Canada. (author)

  5. Medical isotope shortage 2009-2010 and future options NRU, SLOWPOKE and MAPLE

    International Nuclear Information System (INIS)

    Hilborn, J.

    2013-01-01

    The 15 month shutdown of NRU and the unexpected termination of the AECL/Nordion MAPLE project caused a world-wide shortage of medical isotopes. After the recent repair of NRU, AECL is confident that it could continue operating safely and reliably as a multi-purpose reactor until 2021 or longer. There is convincing evidence that the restoration of the MAPLE reactors is technically feasible, but it is highly improbable that a 10 MW MAPLE production reactor can ever be cost-effective. However, conversion of the present 10 MW reactors to 3 MW, without major changes to the structural hardware, warrants serious consideration. Finally, even the 20 kW SLOWPOKE reactor could produce useful quantities of Mo-99. If the present fuel rods were replaced with a small tank containing a solution of low-enriched uranyl sulphate in water, three of these liquid core reactors could supply all of Canada. (author)

  6. Safety re-assessment of AECL test and research reactors

    International Nuclear Information System (INIS)

    Winfield, D.J.

    1990-01-01

    Atomic Energy of Canada Limited currently has four operating engineering test/research reactors of various sizes and ages; a new isotope-production reactor Maple-X10, under construction at Chalk River Nuclear Laboratories (CRNL), and a heating demonstration reactor, SDR, undergoing high-power commissioning at Whiteshell Nuclear Research Establishment (WNRE). The company is also performing design studies of small reactors for hot water and electricity production. The older reactors are ZED-2, PTR, NRX, and NRU; these range in age from 42 years (NRX) to 29 years (ZED-2). Since 1984, limited-scope safety re-assessments have been underway on three of these reactors (ZED-2, NRX AND NRU). ZED-2 and PTR are operated by the Reactor Physics Branch; all other reactors are operated by the respective site Reactor Operations Branches. For the older reactors the original safety reports produced were entirely deterministic in nature and based on the design-basis accident concept. The limited scope safety re-assessments for these older reactors, carried out over the past 5 years, have comprised both quantitative probabilistic safety-assessment techniques, such as event tree and fault analysis, and/or qualitative techniques, such as failure mode and effect analysis. The technique used for an individual assessment was dependent upon the specific scope required. This paper discusses the types of analyses carried out, specific insights/recommendations resulting from the analysis, and the plan for future analysis. In addition, during the last four years safety assessments have been carried out on the new isotope-, heat-, and electricity-producing reactors, as part of the safety design review, commissioning and licensing activities

  7. Performance of small reactors at universities for teaching, research, training and service (TRTS): thirty five years' experience with the Dalhousie University SLOWPOKE-2 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chatt, A., E-mail: a.chatt@dal.ca [Dalhousie Univ., Trace Analysis Research Centre, Dept. of Chemistry, Halifax, Nova Scotia (Canada)

    2013-07-01

    The Dalhousie University SLOWPOKE-2 Reactor (DUSR) facility, operated during 1976-2011, was the only research reactor in Atlantic Canada as well as the only one associated with a chemistry department in a Canadian university. The most outstanding features of the facility included: a rapid (100 ms) cyclic pneumatic sample transfer system, a permanently installed Cd-site, and a Compton-suppression gamma-ray spectrometer. The usage encompassed fundamental as well as applied studies in various fields using neutron activation analysis (NAA). The facility was used for training undergraduate/graduate students, postdoctoral fellows, technicians, and visiting scientists, and for cooperative projects with other universities, research organizations and industries. (author)

  8. Low Enrichment Uranium (LEU)-fueled SLOWPOKE-2 nuclear reactor simulation with the Monte-Carlo based MCNP 4A code

    International Nuclear Information System (INIS)

    Pierre, J.R.M.

    1996-01-01

    Following the commissioning of the Low Enrichment Uranium (LEU) Fuelled SLOWPOKE-2 research reactor at the Royal Military College-College Militaire Royal (RMC-CMR), excess reactivity measurements were conducted over a range of temperature and power. The results showed a maximum excess reactivity of 3.37 mk at 33 o C. Several deterministic models using computer codes like WIMS-CRNL, CITATION, TRIVAC and DRAGON have been used to try to reproduce the excess reactivity and temperature trend of both the LEU and HEU SLOWPOKE-2 reactors. The best simulations had been obtained at Ecole Polytechnique de Montreal. They were able to reproduce the temperature trend of their HEU-fuelled reactor using TRIVAC calculations, but this model over-estimated the absolute value of the excess reactivity by 119 mk. Although calculations using DRAGON did not reproduce the temperature trend as well as TRIVAC, these calculations represented a significant improvement on the absolute value at 20 o C reducing the discrepancy to 13 mk. Given the advance in computer technology, a probabilistic approach was tried in this work, using the Monte-Carlo N-Particle Transport Code System MCNP 4A, to model the RMC-CMR SLOWPOKE-2 reactor.

  9. An Integrated Management System (IMS) for JM-1 SLOWPOKE-2 research reactor in Jamaica: experiences in documentation

    International Nuclear Information System (INIS)

    Warner, T.

    2014-01-01

    Since the first criticality in March 1984, the Jamaica SLOWPOKE-2 research reactor at the University of the West Indies, Mona located in the department of the International Centre for Environmental and Nuclear Sciences (ICENS) has operated for approximately 52% of the lifetime of the existing core configuration. The 20kW pool type research reactor has been primarily used for neutron activation analysis in environmental, agricultural, geochemical, health-related studies and mineral exploration in Jamaica. The involvement of the JM-1 reactor for research and teaching activities has segued into commercial applications which, coupled with the current core conversion programme from HEU to LEU, has demanded the implementation of management systems to satisfy regulatory requirements and assure compliance with internationally defined quality standards. At ICENS, documentation related to the Quality Management System aspect of an Integrated Management System (IMS) is well underway. The quality system will incorporate operational and nuclear safety, training, maintenance, design, utilization, occupational health and safety, quality service, and environmental management for its Nuclear Analytical Laboratory, NAL. The IMS is being designed to meet the requirements of the IAEA GS-R-3 with additional controls from international standards including: ISO/IEC 17025:2005, ISO 9001:2008, ISO 14001:2004 and OHSAS 18001:2007. This paper reports on the experiences of the documentation process in a low power reactor facility characterized by limited human resource, where innovative mechanisms of system automation and modeling are included to increase productivity and efficiency. (author)

  10. An Integrated Management System (IMS) for JM-1 SLOWPOKE-2 research reactor in Jamaica: experiences in documentation

    Energy Technology Data Exchange (ETDEWEB)

    Warner, T., E-mail: traceyann.warner02@uwimona.edu.jm [Univ. of West Indies, Mona (Jamaica)

    2014-07-01

    Since the first criticality in March 1984, the Jamaica SLOWPOKE-2 research reactor at the University of the West Indies, Mona located in the department of the International Centre for Environmental and Nuclear Sciences (ICENS) has operated for approximately 52% of the lifetime of the existing core configuration. The 20kW pool type research reactor has been primarily used for neutron activation analysis in environmental, agricultural, geochemical, health-related studies and mineral exploration in Jamaica. The involvement of the JM-1 reactor for research and teaching activities has segued into commercial applications which, coupled with the current core conversion programme from HEU to LEU, has demanded the implementation of management systems to satisfy regulatory requirements and assure compliance with internationally defined quality standards. At ICENS, documentation related to the Quality Management System aspect of an Integrated Management System (IMS) is well underway. The quality system will incorporate operational and nuclear safety, training, maintenance, design, utilization, occupational health and safety, quality service, and environmental management for its Nuclear Analytical Laboratory, NAL. The IMS is being designed to meet the requirements of the IAEA GS-R-3 with additional controls from international standards including: ISO/IEC 17025:2005, ISO 9001:2008, ISO 14001:2004 and OHSAS 18001:2007. This paper reports on the experiences of the documentation process in a low power reactor facility characterized by limited human resource, where innovative mechanisms of system automation and modeling are included to increase productivity and efficiency. (author)

  11. Radiochemicals

    International Nuclear Information System (INIS)

    1980-01-01

    In this catalogue those radioactive chemicals for research are listed which are produced by the Radiochemical Centre Amersham and our laboratories at Brunswick. The dates given for each product can understandably only be limited within the framework of such a catalogue. Additional dates and references to application technique can be obtained from us any time. Our programme is continually updated by new products. If a compound not listed in the catalogue should be required we ask for inquiry. Our working team for special syntheses will try to produce it according to our possibilities and our requirements. (orig.) [de

  12. Use of the Slowpoke-2 nuclear reactor at the Royal Military College of Canada for book conservation

    Energy Technology Data Exchange (ETDEWEB)

    Shaheen, K.; Welland, M.; Allen, F.; Corcoran, E.; Deschenes, M.; Bonin, H. [Royal Military College of Canada, Kingston, Ontario (Canada)

    2005-07-01

    The present project investigated the use of the mixed radiation field produced by the SLOWPOKE-2 reactor to prolong the life of biodeteriorated books. Research into past studies of radiation treatment indicated that the primary biodeteriorating agents, insects and moulds, can be reduced enough to return books to the 'natural' level of infestation with a dose of 2-3kGy where they will age in a manner consistent with a 'normal' book. Based on research of the potential negative effects of irradiation on paper, including depolymerization, loss of paper strength and durability, discoloration, and harm to ink, it was found that at doses below 8kGy, at a dose rate of 2.4kGy, there is no serious harm to the paper. Based on a desired dose range of 2 to 8kGy, and the dimensions and flux mapping of the radiation field in the reactor pool, a 60cm x 58cm x 43.5cm vacuum-sealed box, with a Cadmium foil neutron shield, is proposed. A preliminary feasibility study suggests that the capital and operating costs of this irradiation procedure would be approximately C$15000 and C$600, respectively. (author)

  13. Research reactor FR2 - 20 years chemical and radiochemical measurements

    International Nuclear Information System (INIS)

    Feuerstein, H.; Graebner, H.; Oschinski, J.; Hoffmann, W.; Beyer, J.

    1986-09-01

    The FR2 has been a D 2 O cooled and moderated research reactor with a thermal output of 44 MW. It was in operation from 1961 to 1981. Because of the operating conditions of the reactor, only a small number of routine measurements were performed. For these however special techniques had to be developed. During the 20 years of operation a number of special events occured or have been observed, sometimes with very amazing results, e.g. the 'aceton effect'. This report describes the chemical and radiochemical conditions of the reactor systems, as well as the results of the surveilance work. Not described are measurements for the many experiments. The last chapter gives in a short form a description of the most unusual events and observations. (orig.) [de

  14. The SLOWPOKE licensing model

    Energy Technology Data Exchange (ETDEWEB)

    Snell, V. G.; Takats, F.; Szivos, K.

    1989-08-15

    The SLOWPOKE Energy System (SES-10) is a 10 MW heating reactor that has been developed in Canada. It will be capable of running without a licensed operator in continuous attendance, and will be sited in urban areas. It has forgiving safety characteristics, including transient time-scales of the order of hours. A process called `up-front` licensing has been evolved in Canada to identify, and resolve, regulatory concerns early in the process. Because of the potential market in Hungary for nuclear district heating, a licensing plan has been developed that incorporates Canadian licensing experience, identifies specific Hungarian requirements, and reduces the risk of licensing delays by seeking agreement of all parties at an early stage in the program.

  15. Slowpoke: the first decade and beyond

    International Nuclear Information System (INIS)

    Hilborn, J.W.; Burbidge, G.A.

    1983-10-01

    Since the startup of the first SLOWPOKE reactor at Chalk River Nuclear Laboratories in 1970, six SLOWPOKE-2 research reactors have been installed at other locations in Canada and a seventh is nearing completion in Jamaica. Designed mainly for neutron activation analysis, the 20 KW SLOWPOKE produces a thermal neutron flux of 10 12 n.cm -2 s -1 at five sample sites in a beryllium reflector surrounding the core. There are an additional five sites in the water reflector outside the beryllium. It has a high degree of inherent safety, arising from the negative temperature and void coefficients of the core, limited maximum excess reactivity, and restricted access to the core by users. As a result the reactor does not require an automatic shutdown system, neutron ionization chambers or low power startup instruments. Automatic control is exercised by a single motor-driven absorber rod responding to a self-powered neutron detector. Once operating, the reactor is licensed to be left unattended, but remotely monitored, for periods up to 24 hours. Because the reactor is so simple and safe, users of the facility can be licensed as operators without formal training in reactor technology. They must, of course, be fully qualified in radiation protection procedures. Reactor users do not have access to the core and are not permitted to store enriched uranium fuel at the reactor site. Present work at the Chalk River Nuclear Laboratories is directed toward the conversion of future SLOWPOKE reactors to low-enriched fuel, in support of an international effort to prevent the possible diversion and misuse of highly-enriched uranium. The feasibility of uprating SLOWPOKE to 2 MWt for heating buildings is also being studied

  16. Production of 165 Dy for radiation synovectomy, in a low-power (slowpoke) nuclear reactor

    International Nuclear Information System (INIS)

    Bridges, C.; Duke, M.J.M.; McQuarrie, S.A.; Wiebe, L.I.

    1998-01-01

    Full text: Severe, debilitating pain accompanies inflammation of the synovial membrane in rheumatoid arthritis. Under certain conditions, radiation synovectomy is an effective alternative to surgery for relief of these symptoms. Radionuclides which decay by the emission of beta particles, or beta plus low yields of gamma/x-rays are indicated for this medical application. Of the radionuclides with appropriate decay emissions, half-life and physical/chemical properties, 165 Dy is a suitable candidate for production in a low-power reactor. Literature methods for production of this radiopharmaceutical usually involve irradiating solid Dy(OH) 3 , which is dissolved in HCl to form DyCl 3 and then re-precipitated under controlled conditions using NaOH, to produce the desired particle size for medical use. A procedure in which most or all of this post-irradiation processing can be eliminated is particularly important when using low neutron flux reactors, in order to avoid reductions in the amount of deliverable radiopharmaceutical. Radiological safety considerations may also necessitate avoiding post-irradiation processing, since low-power reactor facilities usually have no appropriate hot cells for extensive manipulation of highly active samples. Appropriately-sized, pre-formed Dy(OH) 3 particles were produced under a variety of conditions in attempts to produce a stable, sodium-free product that would be suitable for irradiation and use without further processing. Sodium content could be reduced to about 165 Dy production yields and particle characteristics will be presented in support of this concept

  17. Radiochemical analysis of concrete samples for decommission of nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Zapata-Garcia, Daniel; Wershofen, Herbert [Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100 38116, Braunschweig (Germany); Larijani, Cyrus; Sobrino-Petrirena, Maitane; Garcia-Miranda, Maria; Jerome, Simon M. [National Physical Laboratory (NPL), Hampton Road, Teddington, Middlesex, TW11 0LW (United Kingdom)

    2014-07-01

    Decommissioning of the oldest nuclear power reactors are some of the most challenging technological legacy issues many countries will face in forthcoming years, as many power reactors reach the end of their design lives. Decommissioning of nuclear reactors generates large amounts of waste that need to be classified according to their radioactive content. Approximately 10 % of the contaminated material ends up in different repositories (depending on their level of contamination) while the rest is decontaminated, measured and released into the environment or sent for recycling. Such classification needs to be done accurately in order to ensure that both the personnel involved in decommissioning and the population at large are not needlessly exposed to radiation or radioactive material and to minimise the environmental impact of such work. However, too conservative classification strategies should not be applied, in order to make proper use of radioactive waste repositories since space is limited and the full process must be cost-effective. Implicit in decommissioning and classification of waste is the need to analyse large amounts of material which usually combine a complex matrix with a non-homogeneous distribution of the radionuclides. Because the costs involved are large, it is possible to make great savings by the adoption of best available practices, such as the use of validated methods for on-site measurements and simultaneous determination of more than one radionuclide whenever possible. The work we present deals with the development and the validation of a procedure for the simultaneous determination of {sup 241}Am, plutonium isotopes, uranium isotopes and {sup 90}Sr in concrete samples. Samples are firstly ground and fused with LiBO{sub 2} and Li{sub 2}B{sub 4}O{sub 7}. After dissolution of the fused sample, silicate and alkaline elements are removed followed by radiochemical separation of the target radionuclides using extraction chromatography. Measurement

  18. ZZ CANDULIB-AECL, Burnup-Dependent ORIGEN-S Cross-Section Libraries for Candu Reactor Fuels

    International Nuclear Information System (INIS)

    2002-01-01

    1 - Historical background and information: - 28-element fuel cross-section library: Format: Designed for use with the ORIGEN-S isotope generation and depletion code. Materials: Co, Ge, As, Se, Br, Kr, Rb, Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Te, I, Xe, Cs, Ba, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Lu, Ta, W, Re, Au, Th, Pa, U, Np, Pu, Am, Cm. Origin: ENDSF, ENDF/B-IV, -V and -VI Weighting spectrum: determined using WIMS-AECL transport code. - 37-element fuel cross-section library: Format: Designed for use with the ORIGEN-S isotope generation and depletion code. Materials: Co, Ge, As, Se, Br, Kr, Rb, Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Te, I, Xe, Cs, Ba, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Lu, Ta, W, Re, Au, Th, Pa, U, Np, Pu, Am, Cm. Origin: ENDSF, ENDF/B-IV, -V and -VI Weighting spectrum: determined using WIMS-AECL transport code. In 1995, updated ORIGEN-S cross-section libraries were created as part of a program to upgrade and standardize the computer codes and nuclear data employed for used fuel characterization. This effort was funded through collaboration between Atomic Energy of Canada Limited and the Canadian Nuclear Power Utilities, under the Candu Owners Group (COG). The updated cross sections were generated using the WIMS-AECL lattice code and ENDF/B-V and -VI based data to provide cross section consistency with reactor physics codes. 2 - Application of the data: The libraries in this data collection are designed for characterising used fuel from Candu pressurized heavy water reactors. Two libraries are provided: one for the standard 28-element fuel bundle design, the other for the 37-element fuel bundle design. The libraries were generated for typical reactor operating conditions. The libraries are designed for use with the ORIGEN-S isotope generation and depletion code. 3 - Source and scope of data: The Candu libraries are updated with cross sections from a variety of different sources. Capture

  19. Comparison of Wims-Aecl / Dragon / RFSP and MCNP results with Zed-2 measurements for control device worth and reactor kinetics - 037

    International Nuclear Information System (INIS)

    Pencer, J.; Choy Wong, F.; Bromley, B.P.; Atfield, J.; Zeller, M.

    2010-01-01

    This paper summarizes comparisons between MCNP5 and WIMS-AECL / DRAGON / RFSP calculations and experimental results obtained from the Zero Energy Deuterium (ZED-2) critical facility at AECL Chalk River Laboratories. MCNP5 and WIMS-AECL / DRAGON / RFSP were used to calculate reactivity worths for two reactivity devices, a mechanical zone controller (MZC) and shut-off rod (SOR) in a lattice similar to that of the ACR-1000 R . WIMS-AECL / DRAGON / RFSP was also used to obtain kinetics parameters for a transient based on a rod drop of a ZED-2 standby absorber rod (SAR). ZED-2 experiments were performed using 43-element ACR Low Enriched Uranium (ACR-LEU) fuel bundles with H 2 O- or air-cooled fuel bundles arranged in a 24-cm pitch square lattice. Calculations with MCNP5 gave biases in device worths that were within 0.2 mk of measured values, while WIMS-AECL / DRAGON / RFSP gave values that were within 0.3 mk of measured values. Transient analyses using the CERBERUS module within RFSP yielded a total delayed neutron fraction (β) that was within 4% of the value derived by point kinetics analysis of experimental data. The corresponding delayed photo-neutron fraction (β photo-neutron ) from CERBERUS was within 5% of that derived by point kinetics. This study has helped quantify the agreement between calculation and measurement for codes that are used in the safety analysis of the ACR-1000 reactor. Results demonstrate good agreement in code predictions. (authors)

  20. Radiochemical guidelines and process specifications for reactor shutdown: the EDF strategy

    International Nuclear Information System (INIS)

    Mole, D.; Wintergerst, M.; Meylogan, Th.; Rocher, A.; Sagot, M.J.; Bonelli, V.; Bonnefon, J.; Dupont, B.

    2012-09-01

    Changes to French nuclear regulations made in June 2006 [1.] have made it necessary for EDF to modify its ruling principles. These modifications required the restructuring of radiochemical guidelines to better reflect their impact on nuclear safety, the environment and radioprotection. In accordance with these aims, a new authoritative document has been produced. This ruling document identifies all parameters with a potential impact on nuclear safety, radiological releases to the environment and personnel dose rates. These diagnostic and control parameters have been identified for a reactor in production and for a reactor during shutdown. For parameters related to a reactor in production, some indicators are used to evaluate impacts on availability, radioprotection and the environment during shutdown and on outage and to anticipate mitigation ways. On the other side, several parameters related to the stages of shutdown were also directly evaluated in order to minimize the impacts. This paper describes the EDF methodology used to establish operational documents: radiochemical guidelines and process specifications, and includes the following: - description of monitored parameters and their associated areas of risk; - justification of target values, frequencies of inspection and the required actions for the monitored parameters. The sizing methodology is based on theoretical studies and on EDF operational experience analysis. By implementing in the operational and technical specifications requirements linked to nuclear safety, radioprotection and environment respect, EDF will benefit from an improved compromise between these areas as well as an increased focus. (authors)

  1. Various applications using the SLOWPOKE-2 facility at RMC

    International Nuclear Information System (INIS)

    Bennett, L.G.I.; Nielsen, K.S.

    2011-01-01

    History will record that the reactor pool at the SLOWPOKE-2 Facility at RMC was one of the first SLOWPOKE pools to be constructed (mid 1970s), even though the reactor itself was the last SLOWPOKE reactor to be installed and commissioned (1985). The unique and very useful feature of the reactor pool is that it is uncovered, allowing for applications in addition to the NAA and radioisotope production applications initially advertised. Because the installation of a tangential neutron beam tube (NBT) had been planned from the beginning, an outer irradiation site inside the reactor container was replaced by a thermal column. Next, a positioning system was added to accept large objects such as flight control surfaces from DND's CF-18 fighter aircraft. Imaging of these surfaces using film is being phased out with the introduction of digital imaging. Very recently a tomography stage was designed and built and is now integrated into the neutron imaging system. Also in the open pool are three pulley and rope 'elevators', two of which allow for large samples to be exposed to various kinds of radiation directly outside of the reactor container. The third elevator is located against the west pool wall, which allows for sample exposure to radiation without any neutron contribution. At the time of negotiating the purchase of the reactor, a teaching package consisting of an in-pool borated ion chamber and an outlet thermocouple was ordered. Automatic irradiation and counting systems in the form of cyclic, pseudo-cyclic, and long counting options were added to the original manual irradiation option. This past summer (2010), a delayed neutron counting system (DNCS) was built and installed in the SLOWPOKE-2 Facility at RMC. Examples will be given for the above-mentioned applications.

  2. Various applications using the SLOWPOKE-2 facility at RMC

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, L.G.I.; Nielsen, K.S. [Royal Military College of Canada, Kingston, ON (Canada)

    2011-07-01

    History will record that the reactor pool at the SLOWPOKE-2 Facility at RMC was one of the first SLOWPOKE pools to be constructed (mid 1970s), even though the reactor itself was the last SLOWPOKE reactor to be installed and commissioned (1985). The unique and very useful feature of the reactor pool is that it is uncovered, allowing for applications in addition to the NAA and radioisotope production applications initially advertised. Because the installation of a tangential neutron beam tube (NBT) had been planned from the beginning, an outer irradiation site inside the reactor container was replaced by a thermal column. Next, a positioning system was added to accept large objects such as flight control surfaces from DND's CF-18 fighter aircraft. Imaging of these surfaces using film is being phased out with the introduction of digital imaging. Very recently a tomography stage was designed and built and is now integrated into the neutron imaging system. Also in the open pool are three pulley and rope 'elevators', two of which allow for large samples to be exposed to various kinds of radiation directly outside of the reactor container. The third elevator is located against the west pool wall, which allows for sample exposure to radiation without any neutron contribution. At the time of negotiating the purchase of the reactor, a teaching package consisting of an in-pool borated ion chamber and an outlet thermocouple was ordered. Automatic irradiation and counting systems in the form of cyclic, pseudo-cyclic, and long counting options were added to the original manual irradiation option. This past summer (2010), a delayed neutron counting system (DNCS) was built and installed in the SLOWPOKE-2 Facility at RMC. Examples will be given for the above-mentioned applications.

  3. Continuous radiochemical analysis of fission products in a nuclear reactor water coolant

    International Nuclear Information System (INIS)

    Moskvin, L.N.; Zakharov, L.K.; Leont'ev, G.G.; Mel'nikov, V.A.; Orlenkov, I.S.; Slutskij, G.K.

    1975-01-01

    Method for continuous radiochemical analysis of I, Cs, Ba, Sr and Ce isotopes in a reactor water heat-transfer agent was developed. A continuous two-dimensional chromatographic process of complex mixtures separation of substances proved to be feasible on several parallel sorbent layers, which moved at constant velocities and separated by stationary intermediate collectors. Tests on model solutions containing I, Ce, Cs and Ba isotopes and on heat-carrier samples showed quantitative separation of elements. The results were indicative of a basic possibility of using multisorbent chromatographs for continuous control of multicomponent mixtures, particularly for control of radioactive fission product compositions in water heat-transfer agents in nuclear power plants. A diagram is shown for a two-dimensional chromatographic separation of a multicomponent mixture. Also shown is a flow chart of an installation for continuous control of iodine and cesium isotope activities

  4. Characterization of filter cartridges from the IEA-R1 reactor by radiochemical method

    International Nuclear Information System (INIS)

    Geraldo, Bianca; Vicente, Roberto; Ferreira, Robson J.; Goes, Marcos M.; Marumo, Julio T.

    2015-01-01

    The filter cartridges used in water purification system of research nuclear reactor IEA-R1 are considered radioactive wastes after their useful life. The characterization of these wastes is one of the stages of management, which aims to identify and quantify the radionuclides present, including those known as 'difficult to measure' (DTM) radionuclides. Establish a radiochemical analysis methodology for this type of waste is a difficult job, not only by the application of these techniques, but also by the amount of radionuclides that should be analyzed. In the waste produced in a nuclear reactor, the most important radionuclides are fission products, activation products and transuranic elements. Since these radionuclides emit gamma radiation not measurable in its decay process and consequently are difficult to measure, their concentrations can be estimated by indirect methods such as scale factors. This method is used to evaluate the DTM concentration, which is represented by alpha and beta nuclides using the correlation between them and the radionuclide key, a gamma emitter. The objective of this work is to describe a radiochemical analysis methodology for gamma emitter nuclides, present in the filter cartridges, evaluating the activity and concentrations by destructive assays. At the same time, two studies have been performed by non-destructive assays, the first one based on dose rates and the point kernel method to correlate the results and the second one based on calibration efficiency with Monte Carlo method. These studies belong to the radioactive waste characterization program that has been conducted at the Waste Management Laboratory of Nuclear and Energy Research Institute, IPEN-CNEN/SP. (author)

  5. Characterization of filter cartridges from the IEA-R1 reactor by radiochemical method

    Energy Technology Data Exchange (ETDEWEB)

    Geraldo, Bianca; Vicente, Roberto; Ferreira, Robson J.; Goes, Marcos M.; Marumo, Julio T., E-mail: bgeraldo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The filter cartridges used in water purification system of research nuclear reactor IEA-R1 are considered radioactive wastes after their useful life. The characterization of these wastes is one of the stages of management, which aims to identify and quantify the radionuclides present, including those known as 'difficult to measure' (DTM) radionuclides. Establish a radiochemical analysis methodology for this type of waste is a difficult job, not only by the application of these techniques, but also by the amount of radionuclides that should be analyzed. In the waste produced in a nuclear reactor, the most important radionuclides are fission products, activation products and transuranic elements. Since these radionuclides emit gamma radiation not measurable in its decay process and consequently are difficult to measure, their concentrations can be estimated by indirect methods such as scale factors. This method is used to evaluate the DTM concentration, which is represented by alpha and beta nuclides using the correlation between them and the radionuclide key, a gamma emitter. The objective of this work is to describe a radiochemical analysis methodology for gamma emitter nuclides, present in the filter cartridges, evaluating the activity and concentrations by destructive assays. At the same time, two studies have been performed by non-destructive assays, the first one based on dose rates and the point kernel method to correlate the results and the second one based on calibration efficiency with Monte Carlo method. These studies belong to the radioactive waste characterization program that has been conducted at the Waste Management Laboratory of Nuclear and Energy Research Institute, IPEN-CNEN/SP. (author)

  6. The multi-role nature of the SLOWPOKE-2 facility at the Royal Military College of Canada

    International Nuclear Information System (INIS)

    Bennett, L.G.I.; Beeley, P.A.

    1994-01-01

    After up to a decade of successful operation of seven SLOWPOKE-2 reactors within Canada and in Jamaica, an eighth SLOWPOKE-2 research reactor was installed at the Royal Military College of Canada in 1985. Its open pool was one factor that allowed the authors to develop a variety of research capabilities beyond those being established for NAA. A description of the research projects to date will serve to indicate the diversity of this facility. (author) 14 refs.; 4 figs.; 1 tab

  7. Hydrogen recombiner development at AECL

    International Nuclear Information System (INIS)

    Dewit, W.A.; Koroll, G.W.; Loesel Sitar, J.; Graham, W.R.C.

    1997-01-01

    Catalytic recombiners have been developed at AECL for the purpose of hydrogen removal in post-accident nuclear containment buildings. The recombiners are based on a particular catalyst designed by AECL which has extraordinary resistance to fouling from water and water vapour and a large thermodynamic range of operation. The catalysts were developed, originally, for the purpose of heavy water manufacturing by way of a catalytic exchange process. Application of these catalyst materials in recombiners for containment applications began in the late 1980's. The first application was a passive recombiner, qualified for use in control of radiolytic hydrogen in the headspace of a pool-type experimental reactor of AECL design in 1988. The passive, or natural convection recombiner concept has continued development to commercial stage for application in power reactor containments. This paper reviews the AECL recombiner development, describes the current model and shows results from tests of full-scale recombiners in the Large Scale Vented Combustion Test Facility at AECL-WL. The AECL recombiner is designed for compactness and ease of engineering into containment. The design is a simple, open-ended rectangular enclosure with catalyst elements arranged inside to promote optimum convective flow driven by heat of recombination at the catalyst surface. Self start, as evidenced by catalyst heating and initiation of flow, is achieved in less than 1% hydrogen, with available oxygen, at room temperature and 100% relative humidity. This low temperature start-up in condensing atmospheres is viewed as the most challenging condition for wet-proofing effectiveness. Cold start-up is a vital performance requirement in containments, such as CANDU, where engineered air-cooling systems are operating and where long-term hydrogen control is required, after containment atmospheres have cooled. Once started, the removal capacity scales linearly with the inlet cross-section area and the partial

  8. LEU-fueled SLOWPOKE-2 modelling with MCNP4A

    International Nuclear Information System (INIS)

    Pierre, J.R.M.; Bonin, H.W.J.

    1996-01-01

    Following the commissioning of the Low Enrichment Uranium (LEU) Fueled SLOWPOKE-2 research reactor at Royal Military College,excess reactivity measurements were conducted over a range of temperature and power. Given the advance in computer technology, the use of Monte Carlo N-Particle Transport Code System MCNP 4A appeared possible for the simulation of the LEU-fueled SLOWPOKE-2 reactor core, and this work demonstrates that this is indeed the case. MCNP 4A is a full three dimensional program allowing the user to enter a large amount of complexity. The limit on the geometry complexity is the computing time required to achieve a reasonable standard deviation. To this point several models of the SLOWPOKE-2 have been developed giving some insight on the sensitivity of the code. MCNP4A can use various cross section libraries. The aim of this work is to calculate accurately the reactivity of the core and reproduce The temperature trend of the reactivity. The model preserved as much as possible the details of the core and facility in order to allow further study in the flux mapping

  9. Decommissioning of AECL Whiteshell laboratories - 16311

    International Nuclear Information System (INIS)

    Koroll, Grant W.; Bilinsky, Dennis M.; Swartz, Randall S.; Harding, Jeff W.; Rhodes, Michael J.; Ridgway, Randall W.

    2009-01-01

    Whiteshell Laboratories (WL) is a Nuclear Research and Test Establishment near Winnipeg, Canada, operated by AECL since the early 1960's and now under decommissioning. WL occupies approximately 4400 hectares of land and employed more than 1000 staff up to the late-1990's, when the closure decision was made. Nuclear facilities at WL included a research reactor, hot cell facilities and radiochemical laboratories. Programs carried out at the WL site included high level nuclear fuel waste management research, reactor safety research, nuclear materials research, accelerator technology, biophysics, and industrial radiation applications. In preparation for decommissioning, a comprehensive environmental assessment was successfully completed [1] and the Canadian Nuclear Safety Commission issued a six-year decommissioning licence for WL starting in 2003 - the first decommissioning licence issued for a Nuclear Research and Test Establishment in Canada. This paper describes the progress in this first six-year licence period. A significant development in 2006 was the establishment of the Nuclear Legacy Liabilities Program (NLLP), by the Government of Canada, to safely and cost effectively reduce, and eventually eliminate the nuclear legacy liabilities and associated risks, using sound waste management and environmental principles. The NLLP endorsed an accelerated approach to WL Decommissioning, which meant advancing the full decommissioning of buildings and facilities that had originally been planned to be decontaminated and prepared for storage-with-surveillance. As well the NLLP endorsed the construction of enabling facilities - facilities that employ modern waste handling and storage technology on a scale needed for full decommissioning of the large radiochemical laboratories and other nuclear facilities. The decommissioning work and the design and construction of enabling facilities are fully underway. Several redundant non-nuclear buildings have been removed and redundant

  10. Royal Military College of Canada SLOWPOKE-2 facility. Integrated regulating and instrumentation system (SIRCIS) upgrade project

    International Nuclear Information System (INIS)

    Corcoran, W.P.; Nielsen, K.S.; Kelly, D.G.; Weir, R.D.

    2013-01-01

    The SLOWPOKE-2 Facility at the Royal Military College of Canada has operated the only digitally controlled SLOWPOKE reactor since 2001 (Version 1.0). The present work describes ongoing project development to provide a robust digital reactor control system that is consistent with Aging Management as summarized in the Facility's Life Cycle Management and Maintenance Plan. The project has transitioned from a post-graduate research activity to a comprehensively managed project supported by a team of RMCC professional and technical staff who have delivered an update of the V1.1 system software and hardware implementation that is consistent with best Canadian nuclear industry practice. The challenges associated with the implementation of Version 2.0 in February 2012, the lessons learned from this implementation, and the applications of these lessons to a redesign and rewrite of the RMCC SLOWPOKE-2 digital instrumentation and regulating system (Version 3) are discussed. (author)

  11. Contamination, decontamination and radiochemical safety analyses of the RA reactor (Report 1966)

    International Nuclear Information System (INIS)

    Maksimovic, Z.

    1966-12-01

    This contract is concerned with development of methods for detection of fission products i the heavy water and quantitative radiochemical analysis for detecting one fission product which enables reliable verification of heavy water contamination by fission products and estimation of contamination level. Qualitative and quantitative radiometry measurements of fission products in water are shown on page 4. Page 6 shows study of contamination and decontamination of water on the laboratory level. Experiments have shown that the majority of fission products was adsorbed on the uranium oxide and that the iodine isotopes are partly in water (non-adsorbed). Gamma spectrometry analyses showed 131 I moves to distillate with the initial quantities of distilled water. decontamination factors compared to the total activity of fission products in distillator and distillate are not higher than ∼10 3 . Decontamination of water contaminated by uranium oxide and fission products in the distillation device of the RA reactor is shown on page 8. Experiments demanded special preparation due to high activity of uranium (1.7 g of uranium irradiated in the reactor for 10 days at neutron flux 1.10 13 n.cm 2 /s. Prior preparations for transport and dissolution of irradiated metal uranium as well as sampling were needed. Distillation was done under lower pressure and temperature to avoid possible contamination of the environment bu fission products and iodine. Decontamination factors are shown in Table. Contamination and decontamination of stainless steel on the laboratory level are described on page 5. It was found that the deposition of activity on the stainless steel plates is inhomogeneous showing that the uranium oxide and fission products are deposited on the rough metal surfaces. According to literature data and our laboratory studies decontamination was done by nitric acid solution (2MHNO 3 ). Since the heavy water system of the RA reactor was made of stainless teel (except the

  12. AECL annual review 1991-1992

    International Nuclear Information System (INIS)

    1992-01-01

    Formed as a Crown Corporation in 1952, AECL consists of two main divisions: AECL CANDU, based in Missisauga and Montreal, responsible for the development, design, marketing and project management of CANDU nuclear power projects; and AECL Research, with its head office in Ottawa and laboratories in Chalk River, Ontario and Pinawa, Manitoba, which supports CANDU and performs the research, development, demonstration and marketing required to apply nuclear sciences and their associated technologies. A strategic plan is under development, which will address the issues of market identification, key partnerships, securing the CANDU technology base, export financing and optimum business structure. In 1991/92 operating income was $16.4 million, up from $7.8 million in 1990/91. Good progress was made on goals to revitalize and upgrade AECL employee's skills and productivity. Key goals for AECL CANDU were: launching the Wolsung 2 reactor project in south Korea; closing the timing and product options for Wolsong 3 and 4; securing new business for Cernavoda 1; and attaining an agreement with either Saskatchewan Power Corp. or the New Brunswick Electric Power Commission regarding the timing of their CANDU 3 projects. Some success was achieved in the first three goals; Saskatchewan has chosen not to proceed with its CANDU 3 plant, but negotiations are continuing in New Brunswick. Key goals for AECL Research were: securing an advanced CANDU research and development program outside the CANDU Owners Group; Disposing of remaining non-nuclear technologies by spin-off, licensing or close-out; rationalizing commercial operations to generate increased revenues; and obtaining the Atomic Energy Control Board's approval of the NRU reactor assessment basis document. Progress was made on all goals

  13. AECL's new environmental initiatives

    International Nuclear Information System (INIS)

    McDonnell, F.N.

    1993-01-01

    AECL's research and development expenditures in environmental sciences and waste management technology are about $50 M per year. The main focus of these programs is the Nuclear Fuel Waste Management Program. This research is supplemented by activities in support of laboratory, Environmental Authority and internal waste management requirements, as well as provision of non-nuclear services. AECL intends to become more involved in performing environmental research and development with broader application. The goal is to achieve a relationship with Canadian industry that would involve a substantial portion of AECL's environmental research capabilities. The research directions and priorities of the resulting partnership would be set by the private sector in accordance with their needs and requirements. It is expected that the activities associated with this new environmental initiative will start small and grow in response to perceived needs. AECL is now increasing its non-nuclear research efforts by targeting those markets that appear most attractive. The thrust can be divided into three broad categories: environmental research, environmental services, and environmental products. (Author)

  14. Radiochemical problems of radiation chemical synthesis in n, γ-field of nuclear reactor

    International Nuclear Information System (INIS)

    Mironov, V.P.; Frejdus, N.V.; Bugaenko, L.T.; Kalyazin, E.P.; Petryaev, E.P.

    1981-01-01

    A wide applicability of products of radiation chemical synthesis (RCS), using n, γ-irradiation, is limited by possible contamination of the latter with long-lived radioactive isotopes of chemical elements included in the composition of the reagent and compounds syntesized (chemically non-separable radionuclides - CNR). A technique of the determination of the limit accumulation CNR on the basis of radiation chemical parameters of the synthesis (radiation-chemical yield, the dose rate absorbed, singleness of purpose of RCS etc.) and radiochemical parameters of formation and accumulation of CNR (radiochemical yields of CNR in the products of radiolysis, neutron fluence, the reagent purity etc.) is suggested. The radiochemical evaluation of CNR accumulation (tritium and carbon-14), formed at the expense of activation with neutrons of chemical elements of water and organic substances, consisting of hydrogen, carbon and oxygen has shown that at relatively low yields of final products (> or approximately 3 molecules/100 eV) no accumulation of radionuclides in concentrations reaching the average admissible concentration takes place [ru

  15. Advancing CANDU technology AECL's Development program

    International Nuclear Information System (INIS)

    Torgerson, D.F.

    1997-01-01

    AECL has a comprehensive product development program that is advancing all aspects of CANDU technology including fuel and fuel cycles, fuel channels, heavy water and tritium technology, safety technology, components and systems, constructability, health and environment, and control and instrumentation. The technology arising from these programs is being incorporated into the CANDU design through an evolutionary process. This evolutionary process is focused on improving economics, enhancing safety and ensuring fuel cycle flexibility to secure fuel supply for the foreseeable future. This strategic thrusts are being used by CANDU designers and researchers to set priorities and goals for AECL's development activities. The goals are part of a 25-year development program that culminates in the 'CANDU X'. The 'CANDU X' is not a specific design - it is a concept that articulates our best extrapolation of what is achievable with the CANDU design over the next 25 years, and includes the advanced features arising from the R and D and engineering to be done over that time. AECL's current product, the 700 MWe class CANDU 6 and the 900 MWe class CANDU 9, both incorporate output from the development programs as the technology become available. A brief description of each development areas is given below. The paper ends with the conclusion that AECL has a clear vision of how CANDU technology and products will evolve over the next several years, and has structured a comprehensive development program to take full advantage of the inherent characteristics of heavy water reactors. (author)

  16. District heating with SLOWPOKE energy systems

    International Nuclear Information System (INIS)

    Lynch, G.F.

    1988-03-01

    The SLOWPOKE Energy System, a benign nuclear heat source designed to supply 10 thermal megawatts in the form of hot water for local heating systems in buildings and institutions, is at the forefront of these developments. A demonstration unit has been constructed in Canada and is currently undergoing an extensive test program. Because the nuclear heat source is small, operates at atmospheric pressure, and produces hot water below 100 degrees Celcius, intrinsic safety features will permit minimum operator attention and allow the heat source to be located close to the load and hence to people. In this way, a SLOWPOKE Energy System can be considered much like the oil- or coal-fired furnace it is designed to replace. The low capital investment requirements, coupled with a high degree of localization, even for the first unit, are seen as attractive features for the implementation of SLOWPOKE Energy Systems in many countries

  17. The AECL operator companion

    International Nuclear Information System (INIS)

    Lupton, L.R.; Anderson, L.L.; Basso, R.A.J.

    1989-11-01

    As CANDU plants become more complex, and are operated under tighter constraints and for longer periods between outages, plant operations staff will have to absorb more information to correctly and rapidly respond to upsets. A development program is underway at AECL to use expert systems and interactive media tools to assist operations staff of existing and future CANDU plants. The complete system for plant information access and display, on-line advice and diagnosis, and interactive operating procedures is called the Operator Companion. A prototype, consisting of operator consoles, expert systems and simulation modules in a distributed architecture, is currently being developed to demonstrate the concepts of the Operator Companion

  18. AECL's waste management and decommissioning program

    International Nuclear Information System (INIS)

    Kupferschmidt, W.C.H.

    2006-01-01

    Full text: Canada has developed significant expertise in radioactive waste management since the mid 1940s, when the Canadian nuclear program commenced activities at Chalk River Laboratories (CRL). Atomic Energy of Canada Limited (AECL), created as a Federal Crown Corporation in 1952, continues to manage wastes from these early days, as well as other radioactive wastes produced by Canadian hospitals, universities, industry, and operational wastes from AECL's current programs. AECL is also carrying out decommissioning of nuclear facilities and installations in Canada, predominantly at its own sites in Ontario (CRL, and the Douglas Point and Nuclear Power Demonstration prototype reactors), Manitoba (Whiteshell Laboratories) and Quebec (Gentilly-1 prototype reactor). At the CRL site, several major waste management enabling facilities are being developed to facilitate both the near- and long-term management of radioactive wastes. For example, the Liquid Waste Transfer and Storage Project is underway to recover and process highly radioactive liquid wastes, currently stored in underground tanks that, in some cases, date back to the initial operations of the site. This project will stabilize the wastes and place them in modern, monitored storage for subsequent solidification and disposal. Another initiative, the Fuel Packaging and Storage Project, has been initiated to recover and condition degraded used fuel that is currently stored in below-ground standpipes. The fuel will be then be stored in new facilities based on an adaptation of AECL's proven MACSTOR TM * dry storage system, originally designed for intermediate-term above-ground storage of used CANDU fuel bundles. Other commercial-based development work is underway to improve the storage density of the MACSTOR TM design, and to extend its application to interim storage of used LWR fuels as well as to the storage of intermediate-level radioactive waste arising from upcoming reactor refurbishment activities in Canada

  19. Slowpoke - a new Canadian heat source

    International Nuclear Information System (INIS)

    Bancroft, A.R.; Lynch, G.F.; Ohta, M.M.

    1987-07-01

    Atomic Energy of Canada Limited now has a new product, the SLOWPOKE Energy System, that provides low temperature heat suitable for building and process heating. The SLOWPOKE Energy System is sized to deliver up to 10 megawatts of hot water at up to 90 degrees C, appropriate for large buildings and industrial processes. It is designed for operation without the full-time attendance of dedicated staff and, because of its inherent safety, for siting close to users. At less than 2 cents/kWh, the heat is competitive with oil, gas and electricity in most regions of Canada and the world

  20. AECL's plant Information Technologies

    International Nuclear Information System (INIS)

    DeVerno, M.; Lupton, L.; Didsbury, R.; Judd, R.

    1998-01-01

    The competitiveness of the world-wide energy market is a continual driving force for improvements to CANDU performance and lower operating, maintenance, and administration costs. As in other industries, advanced Information Technologies (IT) are changing the way we work and conduct business. The nuclear industry is no different and there exists strong incentives to improve work processes and provide faster and more flexible access to the information needed to effectively manage and maintain nuclear plant assets. AECL has responded to these forces through the development of a vision of integrated IT systems addressing all phases of nuclear plant development and operations. This includes the initial engineering, design, and construction processes as well as support to the long-term operations and maintenance. Integral to the AECL vision is the need for cost-effective engineering and operational configuration management systems, proactive maintenance processes and systems, and advanced plant surveillance and diagnostics. This paper presents the vision and describes the integrated information systems needed to manage both the design basis and operating plant data systems to ensure the cost-effective, long-term viability of CANDU plants. (author)

  1. Measurements in support of a neutron radiography facility for the SLOWPOKE-2 at RMC

    International Nuclear Information System (INIS)

    Lewis, W.J.; Andrews, W.S.; Bennett, L.G.I.; Beeley, P.A.; Royal Military Coll. of Canada, Kingston, ON

    1990-01-01

    The feasibility of using the small (20 kWh) SLOWPOKE-2 research reactor for neutron radiography has been investigated. Although designed primarily for neutron activation analysis (NAA) and radioisotope production, the SLOWPOKE-2 at RMC was installed with a thermal column of heavy water in a sector of the water gap between the beryllium reflector and the reactor container. The thermal-neutron flux in the reactor pool, just beyond the reactor container, has been measured to be a factor of 2.7 higher than in similar locations remote from the thermal column. Placed in this location was a prototype neutron radiography facility, consisting of a beam tube (or collimator), vertically tangential to the reactor core, and a beam stop. Once the feasibility of using a SLOWPOKE-2 for neutron radiography was demonstrated, subsequent investigations were carried out to optimize the quality of the obtainable radiographs. Both neutron radiographic and thermal-neutron flux measurements were undertaken to determine the optimum placement and arrangement of the beam tube. A Category III (as defined by the ASTM Standard E545-86) neutron radiography facility was obtained, although Category I or II were indicated as feasible. Based on this prototype design and experimentation, a permanent neutron radiography facility will be installed. The design calculations have been finalized, construction blueprints have been prepared, and work is proceeding with the construction, installation and commissioning of the facility. (orig.)

  2. AECL experience in fuel channel inspection

    Energy Technology Data Exchange (ETDEWEB)

    Van Drunen, G. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Gunn, R. [Atomic Energy of Canada Limited, Mississauga, Ontario (Canada); Mayo, W.R. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Scott, D.A. [Atomic Energy of Canada Limited, Mississauga, Ontario (Canada)

    1999-06-01

    Inspection of CANDU fuel channels (FC) is performed to ensure safe and economic reactor operation. CANDU reactor FCs have features that make them a unique non-destructive testing (NDT) challenge. The thin, 4 mm pressure-tube wall means flaws down to about 0.1 mm deep must be reliably detected and characterized. This is one to two orders of magnitude smaller than is usually considered of significant concern for steel piping and pressure vessels. A second unique feature is that inspection sensors must operate in the reactor core--often within 20 cm of highly radioactive fuel. Work on inspection of CANDU reactor FCs at AECL dates back over three decades. In that time, AECL staff have provided equipment and conducted or supervised in-service inspections in about 250 FCs, in addition to over 8000 pre-service FCs. These inspections took place at every existing CANDU reactor except those in India and Romania. Early FC inspections focussed on measurement of changes in dimensions (gauging) resulting from exposure to a combination of neutrons, stress and elevated temperature. Expansion of inspection activities to include volumetric inspection (for flaws) started in the mid-1970s with the discovery of delayed hydride cracking in Pickering 3 and 4 rolled joints. Recognition of other types of flaw mechanisms in the 1980s led to further expansion in both pre-service and in-service inspections. These growing requirements, to meet regulatory as well as economic needs, led to the development of a wide spectrum of inspection technology that now includes tests for hydrogen concentration, structural integrity of core components, flaws, and dimensional change. This paper reviews current CANDU reactor FC inspection requirements. The equipment and techniques developed to satisfy these requirements are also described. The paper concludes with a discussion of work in progress in AECL aimed at providing state-of-the-art FC inspection services. (author)

  3. AECL's support to operating plants world wide

    International Nuclear Information System (INIS)

    Azeez, S.; Kakaria, B.K.; Hinchley, E.M.

    1998-01-01

    Through their operating records, CANDU reactors have established themselves as a successful and cost-effective source of electricity in Canada and abroad. They have proven to be safe, reliable and economical. A variety of factors have contributed to the enviable CANDU record, such as a sound design based on proven principles supported by effective development programs, along with dedicated plant owners committed to excellence in safely maintaining and operating their plants. Atomic Energy of Canada Limited (AECL), the CANDU designer, has continuously maintained a close relationship with owners/operators of the plants in Canada, Argentina, Romania and South Korea. AECL and the plant operators have all benefited from this strengthening relationship by sharing experience and information. CANDU plant operators have been required to respond decisively to the economic realities of downward cost pressures and deregulation. Operating, Maintenance and Administration (OM and A) costs are being given a new focus as plant owners review each cost element to improve the economic returns from their investments. Amongst the three main OM and A constituents, plant maintenance costs are the most variable and have the largest influence on effective plant operations. The correlation between effective plant maintenance and high capacity factors shows clearly the importance of proactive maintenance planning to reduce the frequency and duration of forced plant outages and their negative impacts on plant economics. This paper describes the management processes and organizational structures m AECL that support plant operations and maintenance in operating CANDU plants with cost effective products and services. (author)

  4. AECL research programs in chemistry

    International Nuclear Information System (INIS)

    Crocker, I.H.; Eastwood, T.A.; Smith, D.R.; Stewart, R.B.; Tomlinson, M.; Torgerson, D.F.

    1980-09-01

    Fundamental or underlying research in chemistry is being done in AECL laboratories to further the understanding of processes involved in current nuclear energy systems and maintain an awareness of progress at the frontiers of chemical research so that new advances can be turned to advantage in future AECL endeavours. The report introduces the current research topics and describes them briefly under the following headings: radiation chemistry, isotope separation, high temperature solution chemistry, fuel reprocessing chemistry, and analytical chemistry. (auth)

  5. AECL annual review 1992 - 1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    1992/93 was a pivotal year for AECL, with the redirection of its strategic plan, the refocussing of its corporate mission, a change in its structural organization to meet new challenges, the contract with South Korea for Wolsong Units 3 and 4 and the Memorandum of Understanding with Saskatchewan. AECL looks forward to the next 12 months as a time of opportunity, confident in the knowledge that they possess the means to succeed. ills.

  6. AECL annual review 1992 - 1993

    International Nuclear Information System (INIS)

    1993-01-01

    1992/93 was a pivotal year for AECL, with the redirection of its strategic plan, the refocussing of its corporate mission, a change in its structural organization to meet new challenges, the contract with South Korea for Wolsong Units 3 and 4 and the Memorandum of Understanding with Saskatchewan. AECL looks forward to the next 12 months as a time of opportunity, confident in the knowledge that they possess the means to succeed. ills

  7. Radiochemical procedures

    International Nuclear Information System (INIS)

    Lyon, W.S.

    1982-01-01

    The modern counting instrumentation has largely obviated the need for separation processes in the radiochemical analysis but problems in low-level radioactivity measurement, environmental-type analyses, and special situations caused in the last years a renaissance of the need for separation techniques. Most of the radiochemical procedures, based on the classic works of the Manhattan Project chemists of the 1940's, were published in the National Nuclear Energy Series (NNES). Improvements such as new solvent extraction and ion exchange separations have been added to these methods throughout the years. Recently the Los Alamos Group have reissued their collected Radiochemical Procedures containing a short summary and review of basic inorganic chemistry - 'Chemistry of the Elements on the Basis of Electronic Configuration'. (A.L.)

  8. AECL research programmes in materials science

    International Nuclear Information System (INIS)

    Cox, B.; Eastwood, T.A.; Mitchell, I.V.; Dutton, R.

    1980-10-01

    The high capacity factors achieved by CANDU nuclear power reactors can be attributed in part to the careful attention which has been paid in the concept and design phases to the selection of materials. Improved tolerance of these materials to the hostile conditions of a reactor core depends upon our understanding of such phenomena as radiation damage, corrosion and cracking. This report is an introduction to some of the fundamental and underlying research programmes that have evolved at the AECL laboratories in response to this need. The interactions of energetic atomic particles with solids on a microscopic scale are considered, first under the general heading of radiation effects, followed by sections on energy loss processes, ion channeling, and crystal lattice defects. The latter section leads into the important programmes on deformation processes (creep and growth) in zirconium. The final section discusses the extensive work on the oxidation and environmental cracking of zirconium alloys. (auth)

  9. Development of square and hexagonal lattice analysis capability in WIMS-AECL

    International Nuclear Information System (INIS)

    Donnelly, J.V.

    1990-11-01

    WIMS, originally developed by the UKAEA (Winfrith), is a widely used computer code for reactor physics analysis of lattice cells. WIMS-AECL (Atomic Energy of Canada Limited) has been developed from a version of the code received from Winfrith in the early 1970s and is generally used within AECL. The facilities existing in the original version of WIMS were very capable for the analysis of reactor designs normally encountered within AECL at that time, such as CANDU fuel lattices, but had limitations in the analysis of more general reactor geometries, such as square light-reactor assemblies. This paper discusses the development and testing of modifications to the two-dimensional collision-probability calculation module in WIMS-AECL to enable more rigorous analysis of lattice geometries based on square or hexagonal cells

  10. AECL's reliability and maintainability program

    International Nuclear Information System (INIS)

    Wolfe, W.A.; Nieuwhof, G.W.E.

    1976-05-01

    AECL's reliability and maintainability program for nuclear generating stations is described. How the various resources of the company are organized to design and construct stations that operate reliably and safely is shown. Reliability and maintainability includes not only special mathematically oriented techniques, but also the technical skills and organizational abilities of the company. (author)

  11. On the difference between DRAGON and WIMS-AECL calculations of the coolant void reactivity

    International Nuclear Information System (INIS)

    Altiparmakov, D.; Roubtsov, D.; Irish, J.D.

    2009-01-01

    A difference in the shape of the burnup dependence of the coolant void reactivity (CVR) has been observed between DRAGON and WIMS-AECL calculations. This paper discusses the root cause of the difference and assesses the impact on burnup and full-core reactor calculations. A Fortran procedure has been developed to run WIMS-AECL as necessary in order to mimic DRAGON burnup calculations with leakage effects included. The comparison of standard WIMS-AECL results and simulated DRAGON results demonstrated that the difference is due to different definitions of CVR. If the same CVR definition is used, then the results of both WIMS-AECL and DRAGON analyses are essentially indistinguishable. The discrepancies in the fuel composition and cell-averaged two-group cross sections that are due to differences in WIMS-AECL and DRAGON leakage treatments are insignificant. (author)

  12. AECL's progress in DUPIC fuel development

    International Nuclear Information System (INIS)

    Sullivan, J.D.; Ryz, M.A.; Lee, J.W.

    1997-01-01

    Previous papers described progress in choosing a fabrication route for the DUPIC (Direct Use of Spent PWR Fuel in CANDU) fuel cycle [1], details of the OREOX (Oxidation Reduction of Oxide fuel) process, and preliminary results of out-cell and small-scale in-cell experiments [2]. AECL's project to develop the DUPIC fuel cycle has now progressed to the stage of fabricating DUPIC fuel elements for irradiation testing in a research reactor. Because of the high radiation fields around the spent PWR fuel, all work is being done in hot cells. The equipment used for fabrication of the DUPIC fuel elements is described in this paper. The commissioning, in-cell installation and current status of the fabrication process are also described and plans for the completion of this phase of the DUPIC project are outlined. The goal of this phase of the project is demonstration of the technical feasibility of the DUPIC fuel cycle. (author)

  13. Radioactive waste management at AECL

    International Nuclear Information System (INIS)

    Gadsby, R.D.; Allan, C.J.

    2003-01-01

    AECL has maintained an active program in radioactive waste management since 1945, when the Canadian nuclear program commenced activities at the Chalk River Laboratories (CRL). Waste management activities have included operation of waste management storage and processing facilities at AECL's CRL and Whiteshell Laboratories (WL); operation of the Low Level Radioactive Waste Management Office on behalf of Natural Resources Canada to resolve historic radioactive waste problems (largely associated with radioactive ore recovery, transport and processing operations) that are the responsibility of the Federal Government; development of the concept and related technology for geological disposal of Canada's nuclear fuel waste; development of the Intrusion-Resistant Underground Structure (IRUS) disposal concept for low-level nuclear waste; development of dry storage technology for the interim storage of used fuel; and development and assessment of waste processing technology for application in CANDU nuclear power plants and at CRL and WL. Today these activities are continuing. In addition, AECL is: preparing to decommission the nuclear facilities at WL; carrying out a number of smaller decommissioning projects at CRL; putting in place projects to upgrade the low-level liquid waste processing capabilities of the CRL Waste Treatment Centre, recover and process highly active liquid wastes currently in storage, and recover, condition and improve the storage of selected fuel wastes currently stored in below-ground standpipes in the CRL waste management areas; and assessing options for additional remediation projects to improve the management of other wastes currently in storage and to address environmental contamination from past practices. (author)

  14. Annual report 1997--1998. AECL research number AECL-11964

    International Nuclear Information System (INIS)

    1998-01-01

    This is the Annual report of AECL, the legal name of Atomic Energy of Canada Limited. Its mandate is to undertake research into nuclear energy and to develop commercial applications for its developments. This annual report presents information on marketing and commercial operations, product development, CANDU research, waste management and nuclear sciences, environmental management and site refurbishment. A financial review is included, along with management responsibility, an Auditor's report, financial statements, a five-year financial summary, and a list of directors and locations

  15. Development of advanced ceramics at AECL

    International Nuclear Information System (INIS)

    Palmer, B.J.F.; MacEwen, S.R.; Sawicka, B.D.; Hayward, P.J.; Sridhar, S.

    1986-12-01

    Atomic Energy of Canada Limited (AECL) has a long history of developing ceramics for nuclear fission and fusion applications. AECL is now applying its multidisciplinary materials R and D capabilities, including unique capabilities in ceramic processing and nondestructive evaluation, to develop advanced ceramic materials for commercial and industrial applications. This report provides an overview of the facilities and programs associated with the development of advanced ceramics at AECL

  16. Radiochemical methods

    International Nuclear Information System (INIS)

    Geary, W.J.

    1986-01-01

    This little volume is one of an extended series of basic textbooks on analytical chemistry produced by the Analytical Chemistry by Open Learning project in the UK. Prefatory sections explain its mission, and how to use the Open Learning format. Seventeen specific sections organized into five chaptrs begin with a general discussion of nuclear properties, types, and laws of nuclear decay and proceeds to specific discussions of three published papers (reproduced in their entirety) giving examples of radiochemical methods which were discussed in the previous chapter. Each section begins with an overview, contains one or more practical problems (called self-assessment questions or SAQ's), and concludes with a summary and a list of objectives for the student. Following the main body are answers to the SAQ's, and several tables of physical constants, SI prefixes, etc. A periodic table graces the inside back cover

  17. Radiochemical determination of the neutron capture cross sections of {sup 241}Am irradiated in the JMTR reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shinohara, N.; Hatsukawa, Y.; Hata, K.; Kohno, N. [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    The thermal neutron capture cross section {sigma}{sub 0} and Resonance integral I{sub 0} of {sup 241}Am leading to the production of {sup 242m}Am and {sup 242g}Am were measured by radiochemical method. The cross sections obtained in this study are {sigma}{sub 0}=60.9 {+-} 2.6 barn, I{sub 0}=213 {+-} 13 barn for {sup 241}Am(n,{gamma}){sup 242m}Am and {sigma}{sub 0}=736 {+-} 31 barn, I{sub 0}=1684 {+-} 92 barn for {sup 241}Am(n,{gamma}){sup 242g}Am. (author)

  18. The status of HEU to LEU core conversion activities at the Jamaica SLOWPOKE

    Energy Technology Data Exchange (ETDEWEB)

    Preston, J.; Grant, C., E-mail: john.preston@uwimona.edu.jm [Univ. of the West Indies, Mona Campus, International Centre for Environmental and Nuclear Sciences, Mona (Jamaica)

    2012-12-15

    The SLOWPOKE reactor in Jamaica has been operated by the International Centre for Environmental and Nuclear Sciences, University of the West Indies since 1984, mainly for the purpose of Neutron Activation Analysis. The HEU core with current utilization has another 14 years of operation, before the addition of a large beryllium annulus would be required to further extend the life-time by 15 years. However, in keeping with the spirit of the Reduced Enrichment for Research and Test Reactors (RERTR) program, the decision was taken in 2003 to convert the core from HEU to LEU, in line with those at the Ecole Polytechnic and RMC SLOWPOKE facilities. This paper reports on the current status of the conversion activities, including key fuel manufacture and regulatory issues, which have seen substantial progress during the last year. A timetable for the complete process is given, and provided that the fuel fabrication can be completed in the estimated 18 months, the core conversion should be accomplished by the end of 2014. (author)

  19. The status of HEU and LEU core conversion activities at the Jamaica SLOWPOKE

    Energy Technology Data Exchange (ETDEWEB)

    Preston, J.; Grant, C., E-mail: john.preston@uwimona.edu.jm [Univ. of the West Indies, Mona Campus, International Centre for Environmental and Nuclear Sciences, Kingston (Jamaica)

    2013-07-01

    The SLOWPOKE reactor in Jamaica has been operated by the International Centre for Environmental and Nuclear Sciences, University of the West Indies since 1984, mainly for the purpose of Neutron Activation Analysis. The HEU core with current utilization has another 14 years of operation, before the addition of a large beryllium annulus would be required to further extend the life-time by 15 years. However, in keeping with the spirit of the Reduced Enrichment for Research and Test Reactors (RERTR) program, the decision was taken in 2003 to convert the core from HEU to LEU, inline with those at the Ecole Polytechnic and RMC SLOWPOKE facilities. This paper reports on the current status of the conversion activities, including key fuel manufacture and regulatory issues, which have seen substantial progress during the last year. A timetable for the complete process is given, and provided that the fuel fabrication can be completed in the estimated 18 months, the core conversion should be accomplished by the end of 2014. (author)

  20. Follow-up of AECL employees involved in the decontamination of NRU in 1958

    International Nuclear Information System (INIS)

    Werner, M.M.; Myers, D.K.; Morrison, D.P.

    1982-09-01

    In May 1958 the NRU reactor hall was badly contaminated by a damaged fuel rod that broke apart during its removal from the reactor. Radioactive fission products were spread around the reactor hall and into adjacent areas when a piece of the fuel rod fell into the maintenance pit and burned. AECL staff and others completed the decontamination in 2 1/2 months. This paper reports the results of a follow-up study of the AECL participants. No statistically significant increases in deaths from cancer or other diseases were found in this group

  1. Radiation protection aspects of AECL's retube/refurbishment projects

    International Nuclear Information System (INIS)

    Zhuang, Y.; Boss, C.R.; Pontikakis, N.

    2007-01-01

    In contrast to the construction of a new nuclear reactor, Retube/Refurbishment of nuclear reactors that have been in operation for many years will involve fabrication of a new core in a radiation environment. Careful planning of the radiation protection (RP) program is crucial to ensure the protection of workers and the environment, and the success of the projects. This paper describes the key RP activities currently underway in AECL's Retube/Refurbishment projects, covering RP during retubing tooling and system designs, retubing work planning, retubing operation, and waste transfer and management. The discussion will focus on RP initiatives from engineering design aspects of the projects. (author)

  2. AECL's mixed waste management program

    International Nuclear Information System (INIS)

    Peori, R.; Hulley, V.

    2006-01-01

    Every nuclear facility has it, they wish that they didn't but they have generated and do possess m ixed waste , and until now there has been no permanent disposition option; it has been for the most been simply maintained in interim storage. The nuclear industry has been responsibly developing permanent solutions for solid radioactive waste for over fifty years and for non-radioactive, chemically hazardous waste, for the last twenty years. Mixed waste (radioactive and chemically hazardous waste) however, because of its special, duo-hazard nature, has been a continuing challenge. The Hazardous Waste and Segregation Program (HW and SP) at AECL's CRL has, over the past ten years, been developing solutions to deal with their own in-house mixed waste and, as a result, have developed solutions that they would like to share with other generators within the nuclear industry. The main aim of this paper is to document and describe the early development of the solutions for both aqueous and organic liquid wastes and to advertise to other generators of this waste type how these solutions can be implemented to solve their mixed waste problems. Atomic Energy of Canada Limited (AECL) and in particular, CRL has been satisfactorily disposing of mixed waste for the last seven years. CRL has developed a program that not only disposes of mixed waste, but offers a full service mixed waste management program to customers within Canada (that could eventually include U.S. sites as well) that has developed the experience and expertise to evaluate and optimize current practices, dispose of legacy inventories, and set up an efficient segregation system to reduce and effectively manage, both the volumes and expense of, the ongoing generation of mixed waste for all generators of mixed waste. (author)

  3. A nuclear reactor for district heating

    International Nuclear Information System (INIS)

    Bancroft, A.R.; Fenton, N.

    1989-07-01

    Global energy requirements are expected to double over the next 40 years. In the northern hemisphere, many countries consume in excess of 25 percent of their primary energy supply for building heating. Satisfying this need, within the constraints now being acknowledged for sustainable global development, provides an important opportunity for district heating. Fuel-use flexibility, energy and resource conservation, and reduced atmospheric pollution from acid gases and greenhouse gases, are important features offered by district heating systems. Among the major fuel options, only hydro-electricity and nuclear heat completely avoid emissions of combustion gases. To fill the need for an economical nuclear heat source, Atomic Energy of Canada Limited has designed a 10 MW plant that is suitable as a heat source within a network or as the main supply to large individual users. Producing hot water at temperatures below 100 degrees C, it incorporates a small pool-type reactor based on AECL's successful SLOWPOKE Research Reactor. A 2 MW prototype for the commercial unit is now being tested at the Whiteshell Nuclear Research Establishment in Manitoba. With capital costs of $7 million (Canadian), unit energy costs are projected to be $0.02/kWh for a 10 MW unit operating in a heating grid over a 30-year period. By keeping the reactor power low and the water temperature below 100 degrees C, much of the complexity of the large nuclear power plants can be avoided, thus allowing these small, safe nuclear heating systems to be economically viable

  4. Final report of the AECL/SKB Cigar Lake analog study. AECL research No. AECL-10851

    Energy Technology Data Exchange (ETDEWEB)

    Cramer, J J; Smellie, J A.T. [eds.

    1994-07-15

    AECL has conducted natural analog studies on the Cigar Lake uranium deposit in northern Saskatchewan since 1984 as part of the Canadian Nuclear Fuel Waste Management Program. This report provides background information and summarizes the results of the study, emphasizing the analog aspects and the implications of modelling activities related to the performance assessment of disposal concepts for nuclear fuel wastes developed in both Canada and Sweden. The study was undertaken to obtain an understanding of the process involved in, and the effects of, steady-state water-rock interaction and trace-element migration in and around the deposit, including paleo-migration processes since the deposit was formed. To achieve these objectives, databases and models were produced to evaluate the equilibrium thermodynamic codes and databases; the role of colloids, organics, and microbes in transport processes for radionuclides; and the stability of UO2 and the influence of radiolysis on UO2 dissolution and radionuclide migration.

  5. DEMONSTRATION SOLIDIFICATION TESTS CONDUCTED ON RADIOACTIVELY CONTAMINATED ORGANIC LIQUIDS AT THE AECL WHITESHELL LABORATORIES

    International Nuclear Information System (INIS)

    Ryz, R. A.; Brunkow, W. G.; Govers, R.; Campbell, D.; Krause, D.

    2002-01-01

    The AECL, Whiteshell Laboratory (WL) near Pinawa Manitoba, Canada, was established in the early 1960's to carry out AECL research and development activities for higher temperature versions of the CANDU(reg s ign) reactor. The initial focus of the research program was the Whiteshell Reactor-1 (WR-1) Organic Cooled Reactor (OCR) that began operation in 1965. The OCR program was discontinued in the early 1970's in favor of the successful heavy-water-cooled CANDU system. WR-1 continued to operate until 1985 in support of AECL nuclear research programs. A consequence of the Federal government's recent program review process was AECL's business decision to discontinue research programs and operations at the Whiteshell Laboratories and to consolidate its' activities at the Chalk River Laboratories. As a result, AECL received government concurrence in 1998 to proceed to plan actions to achieve closure of WL. The planning actions now in progress address the need to safely and effectively transition the WL site from an operational state, in support of AECL's business, to a shutdown and decommissioned state that meets the regulatory requirements for a licensed nuclear site. The decommissioning program that will be required at WL is unique within AECL and Canada since it will need to address the entire research site rather than individual facilities declared redundant. Accordingly, the site nuclear facilities are being systematically placed in a safe shutdown state and planning for the decommissioning work to place the facilities in a secure monitoring and surveillance state is in progress. One aspect of the shutdown activities is to deal with the legacy of radioactively contaminated organic liquid wastes. Use of a polymer powder to solidify these organic wastes was identified as one possibility for improved interim storage of this material pending final disposition

  6. Radiochemical analysis of the first plateout probe from the Fort St. Vrain high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Burnette, R.D.

    1982-06-01

    This report presents the analysis of radioactive elements on the first plateout probe from the Fort St. Vrain high-temperature gas-cooled reactor. The plateout probe is a device which samples the primary coolant for condensible fission products. Circuit inventories of individual radionuclides are estimated from the probe analysis. The analysis shows that the radioactive contamination in the primary circuit is remarkable low, with activation product concentrations much greater than that of fission products. The analysis demonstrates that the concentrations of the key fission products I-131 and Sr-90 are far below the limits allowed by the technical specification

  7. Validation of MCNP and WIMS-AECL/DRAGON/RFSP for ACR-1000 applications

    International Nuclear Information System (INIS)

    Bromley, Blair P.; Adams, Fred P.; Zeller, Michael B.; Watts, David G.; Shukhman, Boris V.; Pencer, Jeremy

    2008-01-01

    This paper gives a summary of the validation of the reactor physics codes WIMS-AECL, DRAGON, RFSP and MCNP5, which are being used in the design, operation, and safety analysis of the ACR-1000 R . The standards and guidelines being followed for code validation of the suite are established in CSA Standard N286.7-99 and ANS Standard ANS-19.3-2005. These codes are being validated for the calculation of key output parameters associated with various reactor physics phenomena of importance during normal operations and postulated accident conditions in an ACR-1000 reactor. Experimental data from a variety of sources are being used for validation. The bulk of the validation data is from critical experiments in the ZED-2 research reactor with ACR-type lattices. To supplement and complement ZED-2 data, qualified and applicable data are being taken from other power and research reactors, such as existing CANDU R units, FUGEN, NRU and SPERT research reactors, and the DCA critical facility. MCNP simulations of the ACR-1000 are also being used for validating WIMS-AECL/ DRAGON/RFSP, which involves extending the validation results for MCNP through the assistance of TSUNAMI analyses. Code validation against commissioning data in the first-build ACR-1000 will be confirmatory. The code validation is establishing the biases and uncertainties in the calculations of the WIMS-AECL/DRAGON/RFSP suite for the evaluation of various key parameters of importance in the reactor physics analysis of the ACR-1000. (authors)

  8. Some highlights of research and development at AECL

    International Nuclear Information System (INIS)

    Langford, W.J.; Rae, H.K.

    1980-06-01

    The research and development programs of AECL have as their goal the strengthening of the knowledge and ability necessary to achieve national objectives in the field of nuclear energy. These objectives include a nuclear reactor system appropriate to Canada's industrial capabilities, now realized, and the extension of that system, through scientific and technological development, to serve the nation's needs for the forseeable future. The Company's programs are carefully integrated and focused to use the available funding to maximum advantage. The research facilities on which the program depends are among the best in the world, and support a full spectrum of research from fundamental nuclear physics to full-scale power reactor component irradiation and testing. In this report it has only been possible to high-light some important facets of the programs in each of the principal areas currently employing our energies. (auth)

  9. AECL annual report 1996-1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The 1996/1997 Annual Report of Atomic Energy of Canada Ltd. (AECL) is published and submitted to the Honourable member of parliament, Minister of Natural Resources. Included in this report are messages from marketing, commercial operations, product development, CANDU research, waste management, environmental management, financial review and copies of financial statements.

  10. AECL annual report 1996-1997

    International Nuclear Information System (INIS)

    1997-01-01

    The 1996/1997 Annual Report of Atomic Energy of Canada Ltd. (AECL) is published and submitted to the Honourable member of parliament, Minister of Natural Resources. Included in this report are messages from marketing, commercial operations, product development, CANDU research, waste management, environmental management, financial review and copies of financial statements

  11. MOX fuel fabrication at AECL

    International Nuclear Information System (INIS)

    Dimayuga, F.C.; Jeffs, A.T.

    1995-01-01

    Atomic Energy of Canada Limited's mixed-oxide (MOX) fuel fabrication activities are conducted in the Recycle Fuel Fabrication Laboratories (RFFL) at the Chalk River Laboratories. The RFFL facility is designed to produce experimental quantities of CANDU MOX fuel for reactor physics tests or demonstration irradiations. From 1979 to 1987, several MOX fuel fabrication campaigns were run in the RFFL, producing various quantities of fuel with different compositions. About 150 bundles, containing over three tonnes of MOX, were fabricated in the RFFL before operations in the facility were suspended. In late 1987, the RFFL was placed in a state of active standby, a condition where no fuel fabrication activities are conducted, but the monitoring and ventilation systems in the facility are maintained. Currently, a project to rehabilitate the RFFL and resume MOX fuel fabrication is nearing completion. This project is funded by the CANDU Owners' Group (COG). The initial fabrication campaign will consist of the production of thirty-eight 37-element (U,Pu)O 2 bundles containing 0.2 wt% Pu in Heavy Element (H.E.) destined for physics tests in the zero-power ZED-2 reactor. An overview of the Rehabilitation Project will be given. (author)

  12. Compendium of the data used with the SYVAC3-CC3 system model. AECL research No. AECL-11013

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    AECL is evaluating a concept for disposing of nuclear fuel waste from CANDU reactors deep in plutonic rock of the Canadian Shield. As part of this evaluation, models of the physical, chemical, geological, and biological processes that could occur in a sealed disposal vault designed to limit transport of contaminants to the accessible environment were developed. The mathematical models of the transport of radionuclides and toxic chemicals from nuclear fuel waste are incorporated into a computer model named the Systems Variability Analysis Code, Generation 3, and Canadian Concept Model, Generation 3 (SYVAC3-CC3). The report presents the data in the master database used by SYVAC3-CC3 for the postclosure assessment of deep geological disposal, derived from a major program of laboratory and field studies conducted by AECL Research over the past 15 years. The data represents characteristics of a hypothetical vault, certain geologic characteristics of the Whiteshell Research Area, and a general surface environment with a human population living a rural lifestyle on a portion of the Canadian Shield in central Canada.

  13. AECL hot-cell facilities and post-irradiation examination services

    International Nuclear Information System (INIS)

    Schankula, M.H.; Plaice, E.L.; Woodworth, L.G.

    1995-01-01

    This paper presents an overview of the post-irradiation examination (PIE) services available at AECL's hot-cell facilities (HCF). The HCFs are used primarily to provide PIE support for operating CANDU power reactors in Canada and abroad, and for the examination of experimental fuel bundles and core components irradiated in research reactors at the Chalk River Laboratories (CRL) and off-shore. A variety of examinations and analysis are performed ranging from non-destructive visual and dimensional inspections to detailed optical and scanning electron microscopic examinations. Several hot cells are dedicated to mechanical property testing of structural materials and to determine the fitness-for-service of reactor core components. Facility upgrades and the development of innovative examination techniques continue to improve AECL's PIE capabilities. (author)

  14. AECL hot-cell facilities and post-irradiation examination services

    International Nuclear Information System (INIS)

    Schankula, M.H.; Plaice, E.L.; Woodworth, L.G.

    1998-04-01

    This paper presents an overview of the post-irradiation examination (PIE) services available at AECL's hot-cell facilities (HCF). The HCFs are used primarily to provide PIE support for operating CANDU power reactors in Canada and abroad, and for the examination of experimental fuel bundles and core components irradiated in research reactors at the Chalk River Laboratories (CRL) and off-shore. A variety of examinations and analyses are performed ranging from non-destructive visual and dimensional inspections to detailed optical and scanning electron microscopic examinations. Several hot cells are dedicated to mechanical property testing of structural materials and to determine the fitness-for-service of reactor core components. Facility upgrades and the development of innovative examination techniques continue to improve AECL's PIE capabilities. (author)

  15. Slowpoke: a role for nuclear technology in district heating

    International Nuclear Information System (INIS)

    Lynch, G.F.

    1987-08-01

    The successful application of the SLOWPOKE concept to satisfy the heating needs of institutions and building complexes is described. Although the load factor for heating in Japan may not be as high as those experienced in other countries of the northern hemipshere, this particular application clearly demonstrates that small, special purpose, ultra-safe nuclear energy sources are technically and economically viable. They can be designed for easy operation and maintenance, to be located in urban areas and remote communities, thereby satsifying a broad spectrum of energy needs that cannot be served by central nuclear electrical generators

  16. AECL's strategy for decommissioning Canadian nuclear facilities

    International Nuclear Information System (INIS)

    Joubert, W.M.; Pare, F.E.; Pratapagiri, G.

    1992-01-01

    The Canadian policy on decommissioning of nuclear facilities as defined in the Atomic Energy Control Act and Regulations is administered by the Atomic Energy Control Board (AECB), a Federal Government agency. It requires that these facilities be decommissioned according to approved plans which are to be developed by the owner of the nuclear facility during its early stages of design and to be refined during its operating life. In this regulatory environment, Atomic Energy of Canada (AECL) has developed a decommissioning strategy for power stations which consists of three distinctive phases. After presenting AECL's decommissioning philosophy, its foundations are explained and it is described how it has and soon will be applied to various facilities. A brief summary is provided of the experience gained up to date on the implementation of this strategy. (author) 3 figs.; 1 tab

  17. Feasibility study on application of WIMS-AECL to Wolsong-1 refueling simulation

    International Nuclear Information System (INIS)

    Kim, Y.; Lee, S.

    2005-01-01

    'Full text:' At present, in Wolsong nuclear power plant, all of the reactor physics calculations are based on the cell code POWDERPUFS-V (PPV). PPV code use semi-empirical approximation rather than direct solving of transport equation with robust methodology. Switch from PPV to more robust transport solver is world-wide trend in addition to GAI issued from Canadian regulatory body (CNSC). In this paper, feasibility study on the replacement of cell code POWDERPUFS-V (PPV) with WIMS-AECL was performed for Wolsong-1 NPP. The impact of the cell code replacement on physics design parameters and refueling simulation was assessed. First, fuel isotopic composition affecting core reactivity is compared between PPV and WIMS-AECL. Generally it was shown that WIMS-AECL predicts higher uranium fissile concentration while less plutonium concentration as fuel burnup increases compared with prediction of PPV. Infinite multiplication factor of WIMS-AECL is slightly less predicted than that of PPV. Also core reactivity change from operating condition change such as moderator temperature, coolant temperature, fuel temperature and coolant density were compared for both fresh fuel and equilibrium fuel. Specially the analysis of void reactivity which is current hot issue for positive reactivity insertion in LOCA was also performed. As a result of this study, all of WIMS-AECL results were similar to PPV based calculation in the fresh fuel. However, there is a tendency that the deviation between the two codes increases as the fuel burn-up increases. This is because PPV code was made from the laboratory condition with fresh fuel and low fuel temperature. Second, refueling simulation with WIMS-AECL based RFSP was tried to compare with current PPV based RFSP simulation for about 20 months (5775FPD ∼ 6324FPD). To cover wide range of operating parameter condition such as purity of moderator and coolant and boron concentration, tremendous amount of computation time is needed with WIMS-AECL

  18. Radiochemical Processing Laboratory (RPL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Radiochemical Processing Laboratory (RPL)�is a scientific facility funded by DOE to create and implement innovative processes for environmental clean-up and...

  19. Radiochemical procedures and techniques

    International Nuclear Information System (INIS)

    Flynn, K.

    1975-04-01

    A summary is presented of the radiochemical procedures and techniques currently in use by the Chemistry Division Nuclear Chemistry Group at Argonne National Laboratory for the analysis of radioactive samples. (U.S.)

  20. Thermalhydraulic analyses of AECL`s spent fuel dry storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Moffett, R; Sabourin, G [Atomic Energy of Canada Ltd., Montreal, PQ (Canada). CANDU Operations; Banas, A O [Atomic Energy of Canada Ltd., Chalk River, ON (Canada)

    1996-12-31

    This paper presents the validation of one- and three-dimensional thermalhydraulic models to be used to evaluate the thermal performance of AECL`s MACSTOR and CANSTOR spent fuel dry storage modules. For this purpose, we compared analytical results to results of experiments conducted at AECL`s Whiteshell Laboratories where mockups of the MACSTOR module and of a CANDU fuel storage basket were tested. The paper shows improvements to a simple one-dimensional model of the MACSTOR mock-up used previously. The replacement of constant heat transfer coefficients by free convection correlations, the addition of a storage cylinder model, and the addition of a radiation heat transfer model improved the predictions of concrete and storage cylinder temperatures. The paper also presents a new three-dimensional model for flow and heat transfer in the MACSTOR mock-up developed using CFDS-FLOW3D and -RAD3D computer programs. CFDS-FLOW3D code can estimate loss coefficients in complex geometry to an accuracy better than standard engineering correlations. The flow and temperature fields predicted using CFDS-FLOW3D are consistent with the measurements made during MACSTOR mock-up experiments (author). 5 refs., 4 tabs., 9 figs.

  1. Description of the resonance treatment in WIMS-AECL

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, J V

    1993-05-01

    The Stamm`ler resonance treatment as applied within the WIMS-AECL lattice cell code is described. The validation work demonstrating the accuracy of the resonance treatment is reviewed and indicates that the methods used will be accurate for the current range of application within AECL. (author). 22 refs., 6 tabs.

  2. Decommissioning of AECL Whiteshell Laboratories: progress from first five years of legacy funding

    International Nuclear Information System (INIS)

    Swartz, R.S.; Bilinsky, D.M.; Harding, J.W.; Ridgway, W.R.

    2011-01-01

    In 2006, the Government of Canada adopted a new long-term strategy to deal with the nuclear legacy liabilities and initiated a five-year start-up phase. The objective is to safely and cost-effectively reduce these liabilities, and associated risks, based on sound waste management and environmental principles in the best interests of Canadians. AECL's Whiteshell Laboratories is part of the long-term strategy and decommissioning activities are underway. Several redundant non-nuclear buildings have been removed/decommissioned, and redundant nuclear facilities (hot cell facilities, radiochemical laboratories) are being decontaminated and prepared for demolition. This paper describes the progress in the first five-year funding period (2006 April to 2011 March). (author)

  3. The keys to success in marketing small heating reactors

    International Nuclear Information System (INIS)

    McDougall, D.S.; Lynch, G.F.

    1988-01-01

    The success of the SLOWPOKE Energy System requires acceptance of the SLOWPOKE reactor within the community where the reactor's energy is to be used. Public acceptance will be obtained once the public is convinced that this nuclear heat source is needed, safe and of economic benefit to the community. The need for a new application of nuclear energy is described and the ability of small reactors used for district heating to play that role is shown. The safety of the reactor is being demonstrated with the establishment of the SLOWPOKE Demonstration Reactor by Atomic Energy of Canada Limited and with open, candid discussion with the involved community. Economic arguments are reviewed and include discussion of quantitative and qualitative issues. (orig.)

  4. Validation of WIMS-AECL/(MULTICELL)/RFSP system by the results of phase-B test at Wolsung-II unit

    Energy Technology Data Exchange (ETDEWEB)

    Hong, In Seob; Min, Byung Joo; Suk, Ho Chun [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-03-01

    The object of this study is the validation of WIMS-AECL lattice code which has been proposed for the substitution of POWDERPUFS-V(PPV) code. For the validation of this code, WIMS-AECL/(MULTICELL)/RFSP (lattice calculation/(incremental cross section calculation)/core calculation) code system has been used for the Post-Simulation of Phase-B physics Test at Wolsung-II unit. This code system had been used for the Wolsong-I and Point Lepraeu reactors, but after a few modifications of WIMS-AECL input values for Wolsong-II, the results of WIMS-AECL/RFSP code calculations are much improved to those of the old ones. Most of the results show good estimation except moderator temperature coefficient test. And the verification of this result must be done, which is one of the further work. 6 figs., 15 tabs. (Author)

  5. AECL's advanced code program

    Energy Technology Data Exchange (ETDEWEB)

    McGee, G.; Ball, J. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2012-07-01

    This paper discusses the advanced code project at AECL.Current suite of Analytical, Scientific and Design (ASD) computer codes in use by Canadian Nuclear Power Industry is mostly developed 20 or more years ago. It is increasingly difficult to develop and maintain. It consist of many independent tools and integrated analysis is difficult, time consuming and error-prone. The objectives of this project is to demonstrate that nuclear facility systems, structures and components meet their design objectives in terms of function, cost, and safety; demonstrate that the nuclear facility meets licensing requirements in terms of consequences of off-normal events; dose to public, workers, impact on environment and demonstrate that the nuclear facility meets operational requirements with respect to on-power fuelling and outage management.

  6. Radiochemical solar neutrino experiments

    International Nuclear Information System (INIS)

    Rich, R.; Spiro, M.

    1993-01-01

    This review covers the three presently running radiochemical solar neutrino experiments, namely the Chlorine, SAGE, and GALLEX experiments. The focus of the review is on a discussion of statistical consistency checks of the available data. The chlorine radiochemical experiment is conceptually simple and shows no strong indication of any statistical anomalies. It still forms the basis of the solar neutrino problem. Each of the two gallium experiments show internal statistical consistency. SAGE's recent preliminary results are consistent with the published GALLEX results. If this convergence is confirmed by a more definitive analysis, this would suggest that the combined result of the two gallium experiments, SAGE and GALLEX, be used for comparisons with theoretical expectations. 5 refs., 15 figs

  7. Development, irradiation testing and PIE of UMo fuel at AECL

    International Nuclear Information System (INIS)

    Sears, D.F.

    2005-01-01

    This paper reviews recent U-Mo dispersion fuel development, irradiation testing and postirradiation examination (PIE) activities at AECL. Low-enriched uranium fuel alloys and powders have been fabricated at Chalk River Labs, with compositions ranging from U-7Mo to U-10Mo. The bulk alloys and powders were characterized using optical and scanning electron microscopy, chemical analysis, X-ray diffraction and neutron diffraction analysis. The analyses confirmed that the powders were of high quality, and in the desired gamma phase. Subsequently, kilogram quantities of DU-Mo and LEU-Mo powder have been manufactured for commercial customers. Mini-elements have been fabricated with LEU-7Mo and LEU-10Mo dispersed in aluminum, with a nominal loading of 4.5 gU/cm 3 . These have been irradiated in the NRU reactor at linear powers up to 100 kW/m. The mini-elements achieved 60 atom% 235 U burnup in 2004 March, and the irradiation is continuing to a planned discharge burnup of 80 atom% 235 U. Interim PIE has been conducted on mini-elements that were removed after 20 atom% 235 U burnup. The PIE results are presented in this paper. (author)

  8. A bibliography of AECL publications on environmental research

    International Nuclear Information System (INIS)

    Hawley, N.J.

    1978-12-01

    Publications in the open literature on environmental research performed by AECL personnel are listed chronologically with the first entry dated 1951. It is intended that the bibliography should be brought up to date yearly. (author)

  9. Radiochemicals in biomedical research

    International Nuclear Information System (INIS)

    Evans, E.A.; Oldham, K.G.

    1988-01-01

    This volume describes the role of radiochemicals in biomedical research, as tracers in the development of new drugs, their interaction and function with receptor proteins, with the kinetics of binding of hormone - receptor interactions, and their use in cancer research and clinical oncology. The book also aims to identify future trends in this research, the main objective of which is to provide information leading to improvements in the quality of life, and to give readers a basic understanding of the development of new drugs, how they function in relation to receptor proteins and lead to a better understanding of the diagnosis and treatment of cancers. (author)

  10. AECL IMPELA electron beam industrial irradiators

    International Nuclear Information System (INIS)

    Labrie, J.P.; Drewell, N.H.; Ebrahim, N.A.; Lawrence, C.B.; Mason, V.A.; Ungrin, J.; White, B.F.

    1989-01-01

    A family of industrial irradiators is being developed by AECL to cover an electron-beam energy range from 5 to 18 MeV at beam powers between 20 and 250 kW. The IMPELA family of irradiators is designed for push button, reliable operation. The major irradiator components are modular, allowing for later upgrades to meet increased demands in either electron or X-ray mode. Interface between the control system, irradiator availability and dose quality assurance is in conformance with the most demanding specifications. The IMPELA irradiators use a klystron-driven, standing-wave, L-band accelerator structure with direct injection from a rugged, triode electron gun. Direct control of the accelerating field during the beam pulse ensures constant output beam energy, independent of beam power. The first member of the family, the IMPELA 10/50 (10 MeV, 50 kW), is in the final stages of assembly at Chalk River Nuclear Laboratories. The IMPELA 10/50 is constructed around a 3.25 m long, high-power-capacity accelerator structure operated at a duty factor of 5%. Beam loading exceeds 60%. The rf power is provided by a 2 MW/150 kW modulated-anode klystron protected from load mismatches by a circulator. This prototype will be used to demonstrate the reliability and dose uniformity targets of the IMPELA family. Full beam operation of the IMPELA 10/50 is scheduled for early 1989. (orig.)

  11. Radiochemical analysis of chlorine-36

    International Nuclear Information System (INIS)

    Rodriguez, M.; Pina, G.; Lara, E.

    2006-01-01

    The radioactive chlorine isotope, 36 Cl, decays with a half-life of 3x10 5 years by emitting a beta particle (98 %) and by electron capture. The aim of this paper is to propose a radiochemical separation method of 36 Cl from the other beta-gamma emitters present in low and medium radioactive wastes such as spent ion exchange resins and evaporator concentrates, that arise from Nuclear Power Plants and particularly in the wastes that come from decommissioning activities of graphite reactors, in order to provide data for 36 Cl inventory calculations. The separation method proposed is based on an oxidation technique where chlorine is trapped by NaOH. 36 Cl beta emissions are measured by liquid scintillation counting by the dual label technique in order to avoid the contamination produced by 14 C which is also trapped by NaOH and which is the main contaminant present in graphite samples. The sensitivity of this method is sufficient to achieve the needed thresholds for the radiological characterization of the radioactive materials to which this method can be applied. (author)

  12. The Maple reactor project

    International Nuclear Information System (INIS)

    Malkoske, G.R.; Labrie, J.-P.

    2003-01-01

    MDS Nordion supplies the majority of the world's reactor-produced medical isotopes. These isotopes are currently produced in the NRU reactor at AECL's Chalk River Laboratories (CRL). Medical isotopes and related technology are relied upon around the world to prevent, diagnose and treat disease. The NRU reactor, which has played a key role in supplying medical isotopes to date, has been in operation for over 40 years. Replacing this aging reactor has been a priority for MDS Nordion to assure the global nuclear medicine community that Canada will continue to be a dependable supplier of medical isotopes. MDS Nordion contracted AECL to construct two MAPLE reactors dedicated to the production of medical isotopes. The MDS Nordion Medical Isotope Reactor (MMIR) project started in September 1996. This paper describes the MAPLE reactors that AECL has built at its CRL site, and will operate for MDS Nordion. (author)

  13. 11th radiochemical conference

    International Nuclear Information System (INIS)

    Prasil, Z.

    1987-01-01

    The conference met in four sesions which discussed: Separation methods, Radioanalytical methods, Labelled compounds and Miscellaneous. The first session discussed extraction methods, ion exchange and chromatographic separation of radioisotopes. The second session heard papers on the application of these methods, e.g., in geochemistry, on the use of radioactive tracers in radiochemical analysis and the use of activation analysis in the determination of trace elements. The third session heard papers on the preparation of labelled organic compounds with isotopes 3 H, 14 C, radioiodine and 32 P, on the preparation of RIA kits and on the chemistry and radiopharmacology of technetium compounds. The other contributions which could not be heard in any of the three sessions discussed, e.g., the preparation of elements on the cyclotron and microtron, the production of a new 99m Tc-generator, the participation of the IAEA in processing low- and medium-level radioactive wastes, etc. (E.S.)

  14. Radiochemical synthesis of etomoxir

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Hafiz G. [Institute of Nuclear Medicine and Oncology (INMOL), New Campus Road, Lahore (Pakistan); Yunus, M. [University of the Punjab, New Campus Road, Lahore (Pakistan); Feinendegen, Ludwig E., E-mail: feinendegen@gmx.ne [Department of Nuclear Medicine, Heinrich-Heine University Duesseldorf, Wannental 45, 88131 Lindau (Germany)

    2011-02-15

    Sodium 2-{l_brace}6-(4-chlorophenoxy)hexyl{r_brace}oxirane-2-carboxylate (Etomoxir) inhibits transport of fatty acids via the carnitine shuttle into mitochondria of muscle cells and prevents long chain fatty acids from providing energy through {beta}-oxidation especially for muscle contraction. The objective of this synthesis is to develop a method for radioiodination of Etomoxir in order to explore its potential in diagnostic metabolic studies and molecular imaging. Thus, a method is described for the radiochemical synthesis and purification of ethyl 2-{l_brace}6-(4-[{sup 131}I]iodophenoxy)hexyl{r_brace}oxirane-2-carboxylate (3) and 2-{l_brace}6-(4-[{sup 131}I]iodo-phenoxy)hexyl{r_brace}oxirane-2-carboxylic acid (4). For the synthesis of these new agents, ethyl 2-{l_brace}6-(4-bromophenoxy)hexyl{r_brace}oxirane-2-carboxylate (1) and 2-{l_brace}6-(4-bromophenoxy)hexyl{r_brace}oxirane-2-carboxylic acid (2) were refluxed with [{sup 131}I]NaI in the presence of anhydrous acetone at a temperature of 80 {sup o}C and 90 {sup o}C for a period of 3-4 hours, respectively. The method of radiolabeling, based on the nucleophilic exchange reaction, resulted in a radiochemical yield of 43% and 67% for compounds 3 and 4, respectively. This paper reports on the labeling of etomoxir with radioiodine as {sup 124}I labeled etomoxir may be of great importance in molecular imaging.

  15. Chemical and Radiochemical Constituents in Water from Wells in the Vicinity of the Naval Reactors Facility, Idaho National Engineering and Environmental Laboratory, Idaho, 1997-98

    Energy Technology Data Exchange (ETDEWEB)

    R. C. Bartholomay; L. L. Knobel; B. J. Tucker; B. V. Twining (USGS)

    2000-06-01

    The US Geological Survey, in response to a request from the U.S Department of Energy's Pittsburgh Naval Reactors Office, Idaho Branch Office, sampled water from 13 wells during 1997-98 as part of a long-term project to monitor water quality of the Snake River Plain aquifer in the vicinity of the Naval Reactors Facility, Idaho National Engineering and Environmental Laboratory, Idaho. Water samples were analyzed for naturally occurring constituents and man-made contaminants. A total of 91 samples were collected from the 13 monitoring wells. The routine samples contained detectable concentrations of total cations and dissolved anions, and nitrite plus nitrate as nitrogen. Most of the samples also had detectable concentrations of gross alpha- and gross beta-particle radioactivity and tritium. Fourteen quality-assurance samples were also collected and analyzed; seven were field-blank samples, and seven were replicate samples. Most of the field blank samples contained less than detectable concentrations of target constituents; however some blank samples did contain detectable concentrations of calcium, magnesium, barium, copper, manganese, nickel, zinc, nitrite plus nitrate, total organic halogens, tritium, and selected volatile organic compounds.

  16. The AECL study for an intense neutron - generator (technical details)

    Energy Technology Data Exchange (ETDEWEB)

    Bartholomew, G A; Tunnicliffe, P R

    1966-07-01

    The AECL study for an intense neutron-generator has been in progress for two years. Recently the scientific and technical details and the conceptual designs were compiled in a report supporting proposals addressed to AECL's Board of Directors for further work. The compilation is being issued in this form to permit further discussion of the technical aspects. However readers are asked to appreciate that it was written primarily for an AECL audience, and specifically that those chapters giving tentative information about costs, the rate of investment and similar items have been omitted or modified, many references have been made to interim internal reports in order to complete the local documentation, but these references do not imply that the reports themselves can be made generally available. (author)

  17. The AECL study for an intense neutron - generator (technical details)

    Energy Technology Data Exchange (ETDEWEB)

    Bartholomew, G.A.; Tunnicliffe, P.R

    1966-07-01

    The AECL study for an intense neutron-generator has been in progress for two years. Recently the scientific and technical details and the conceptual designs were compiled in a report supporting proposals addressed to AECL's Board of Directors for further work. The compilation is being issued in this form to permit further discussion of the technical aspects. However readers are asked to appreciate that it was written primarily for an AECL audience, and specifically that those chapters giving tentative information about costs, the rate of investment and similar items have been omitted or modified, many references have been made to interim internal reports in order to complete the local documentation, but these references do not imply that the reports themselves can be made generally available. (author)

  18. The AECL study for an intense neutron - generator (technical details)

    International Nuclear Information System (INIS)

    Bartholomew, G.A.; Tunnicliffe, P.R.

    1966-01-01

    The AECL study for an intense neutron-generator has been in progress for two years. Recently the scientific and technical details and the conceptual designs were compiled in a report supporting proposals addressed to AECL's Board of Directors for further work. The compilation is being issued in this form to permit further discussion of the technical aspects. However readers are asked to appreciate that it was written primarily for an AECL audience, and specifically that those chapters giving tentative information about costs, the rate of investment and similar items have been omitted or modified, many references have been made to interim internal reports in order to complete the local documentation, but these references do not imply that the reports themselves can be made generally available. (author)

  19. Radiochemical studies on fission

    Energy Technology Data Exchange (ETDEWEB)

    None

    1973-07-01

    Research progress is reported on nuclear chemistry; topics considered include: recoil range and kinetic energy distribution in the thermal neutron ftssion of /sup 245/Cm; mass distribution and recoil range measurements in the reactor neutron-induced fission of /sup 232/U; fission yields in the thermal neutron fission of /sup 241/PU highly asymmetric binary fission of uranium induced by reactor neutrons; and nuclear charge distribution in low energy fission. ( DHM)

  20. Evaluation of radiochemical data usability

    International Nuclear Information System (INIS)

    Paar, J.G.; Porterfield, D.R.

    1997-04-01

    This procedure provides a framework for implementation of radiochemical data verification and validation for environmental remediation activities. It has been developed through participation of many individuals currently involved in analytical radiochemistry, radiochemical validation, and validation program development throughout the DOE complex. It should be regarded as a guidance to use in developing an implementable radiochemical validation strategy. This procedure provides specifications for developing and implementing a radiochemical validation methodology flexible enough to allow evaluation of data useability for project-specific Data Quality Objectives (DQO). Data produced by analytical methods for which this procedure provides limited guidance are classified as open-quotes non-routineclose quotes radionuclides and methods, and analyses by these methods may necessitate adoption of modified criteria from this procedure

  1. AECL programs in basic physics research

    International Nuclear Information System (INIS)

    Bartholomew, G.A.; Dolling, G.; Harvey, M.; Milton, J.C.D.

    1982-02-01

    This report describes the CRNL program of research into the basic properties of atomic nuclei and condensed matter (liquids and solids). Brief descriptions are given of some of the current experimental programs done principally at the NRU reactor and MP tandem accelerator, the associated theoretical studies, and some highlights of past achievements

  2. AECL research programs in systems chemistry

    International Nuclear Information System (INIS)

    Lister, D.H.; Pathania, R.S.

    1984-05-01

    Research programs in Systems Chemistry are aimed at preserving the integrity of the many working systems in CANDU reactors and at minimizing chemistry-induced problems such as radiation field growth or fouling of surfaces. The topics of main concern are the chemistry and corrosion of steam generators, for it is in this general area that the potential for serious problems is very real

  3. Expert panel on hydrogeology; report to AECL Research (1992)

    International Nuclear Information System (INIS)

    Domenico, P.A.; Grisak, G.E.; Schwartz, F.W.

    1995-02-01

    In 1992 AECL Research convened a panel of external hydrogeological experts consisting of P.A. Domenico, G.E. Grisak, and F.W. Schwartz, to review AECL's proposed approach to siting a geological repository in the rocks of the Canadian Shield for the safe disposal of Canada's nuclear fuel wastes. In particular the panel was asked to provide its opinion on 1) the soundness of the technical approach developed to characterize the groundwater flow systems for the purpose of selecting a location for a disposal vault, 2) the validity and effectiveness of the geological case study used to demonstrate the performance assessment methodology based on the hydrogeological conditions observed at the Whiteshell Research Area, and 3) the adequacy of the hydrogeological information that AECL proposes to use in its Environmental Impact Statement (EIS) of the disposal concept. This report presents the findings, conclusions and recommendations of the hydrogeology review panel. The report was submitted to AECL Research in 1992 December. (author). 24 refs., 2 tabs., 4 figs

  4. The year 2000 (Y2k) Programme at AECL

    International Nuclear Information System (INIS)

    Pauksens, J.; Jung, D.

    1998-01-01

    In the nuclear industry we make, in total, very extensive use of digital computers and equipment. While use of dates in our application may not be quite so extensive as in other businesses such as banking or insurance, dates are nonetheless employed, and are important in a variety of applications. Furthermore, date-related problems can sometimes propagate into overall system failures or computer crashes. Digital system or digital infrastructure failure can have serious potential consequences in a power plant, utility, or engineering design office. This in turn can have potential impact on public safety or the reliability of power production and delivery of electrical power to the public. A concerted effort is needed, and is underway by nuclear design organizations, and the nuclear utilities in order to identify and fix or avoid the problems in the short time that remains between now and the Year 2000. AECL have a substantial Year 2000 programme underway, addressing both the infrastructure systems at AECL, and AECL's products and services. High priority is placed, in the programme, on assisting AECL's customers with the Year 2000 issue. The programme, and some of the lesson learned to date, are described in this paper. The relationship to equipment vendors' and customers' Year 2000 programs is explained, and the importance of Year 2000 programmes conducted by the customers, to address systems and equipment which are under their control, is highlighted. (authors)

  5. Fifty years of radiochemical tracers

    International Nuclear Information System (INIS)

    Evans, E.A.

    1992-01-01

    During the past 50 years radiochemical tracers, usually in the form of isotopically labelled organic compounds, have been essential tools to further advance our knowledge at the frontiers of a great variety of scientific developments in the life sciences. This plenary lecture reviews necessarily selected highlights in the synthesis and applications of such radiochemical tracers. Included are examples where important advances, made possible by using radiochemicals, have contributed to improving the quality of life on this planet. The principal radioisotopes involved, 14 C, 3 H, 35 S, 32 P, 125 I, are all relatively safe to handle and are commercially available at maximum theoretical specific activity (carrier free). The compounds labeled with these radioisotopes are used in many fields of research which include biosynthesis and biotechnology studies, cell biology, drug metabolism, clinical research and environmental applications, and are briefly reviewed. (author). 55 refs

  6. Determination of radiochemical purity using gas chromatography

    International Nuclear Information System (INIS)

    1975-01-01

    The concepts of chromatography, gas chromatography, activity, radiochemical impurity are defined; the procedure of the application of gas chromatography for detecting radiochemical purity of substances is standardized. (E.F.)

  7. Controlled drill ampersand blast excavation at AECL's Underground Research Laboratory

    International Nuclear Information System (INIS)

    Kuzyk, G.W.; Onagi, D.P.; Thompson, P.M.

    1996-01-01

    A controlled drill and blast method has been developed and used to excavate the Underground Research Laboratory, a geotechnical facility constructed by Atomic Energy of Canada Limited (AECL) in crystalline rock. It has been demonstrated that the method can effectively reduce the excavation disturbed zone (EDZ) and is suitable for the construction of a used fuel disposal vault in the plutonic rock of the Canadian Shield

  8. Radiochemical separation of cadmium-109

    International Nuclear Information System (INIS)

    Egamediev, S.; Mukhtarov, A.; Nurbaeva, D.; Rakhmanov, A.

    2006-01-01

    Full text: Cadmium-109 has a half-life of 461.9 days and decays by electron capture to 109 Ag with the emission of 88 keV γ-ray (3.79%) along with the characteristic X-ray from the K level of Ag, with energy of 22.5 keV. This radionuclide has found widespread use as a photon source in x-ray fluorescence analysis devices employed in industry for numerous applications such as the direct determination of gold in ores, the analysis of metals and identification of steels. Other applications range from its use as an electron source for measurement of densities of air-pollution samples, to tracer studies in mushrooms and mice and rats. In the nuclear medicine field there is growing interest in employing 109 Cd in a 109 Cd/ 109mA g generator, as an alternative to other biomedical generators of ultra short-lived gamma emitters. There are several methods for the production of 109 Cd in literature: 1. Bombardment of silver cyclotron target via 109 Ag(d,2n) 109 Cd reaction with 16 MeV deuterons. 2. Bombardment of natural silver target via 109 Ag(p,n) 109 Cd reaction with 14 MeV protons. 3. Proton bombardment of natural indium target with 96 MeV protons. 4. Irradiation of enriched 107 Ag target in high-flux nuclear reactor at neutron flux 2x10 15 n·cm -2 ·s -1 via 107 Ag(n,γ) 108 Ag → 108 Cd (n,γ) 109 Cd reaction. 5. Irradiation of enriched 108 Cd target in nuclear reactor at neutron flux 1x10 14 n·cm -2 ·s -1 via 108 Cd (n,γ) 109 Cd reaction. The production of 109 Cd with proton beam via 109 Ag(p,n) 109 Cd reaction is ideal for the cyclotron U-150, since it is not required the change of the regime for the machine functioning. Because of its relatively long half-life the time required for separation is also not an important factor, but its use as an X-ray source requires a very high radiochemical purity. In the present work we studied two methods for separation of 109 Cd from model solution of silver targets. First method is based on precipitation of silver as

  9. The gentle giants of healing

    International Nuclear Information System (INIS)

    Legault, B.

    1989-01-01

    Nuclear medicine, radiation therapy, and medical radioisotope production are explained at a popular level, for the non-specialist. Nuclear medicine in Canada uses either Positron emission tomography (PET), or single photon emission computerized tomography (SPECT). PET is used at the Montreal Neurological Institute to study epilepsy, brain tumours, stroke, or arterio-venous malformations. The much cheaper SPECT technique does many of the things that PET will do, and may eventually replace it to a considerable extent. This article features the manufacture of radioisotopes by Nordion Ltd., formerly known as AECL Radiochemical Co. Nordion supplies more than 20 isotopes, including about 80% of the world demand for 60 Co, and 70% of all reactor isotopes, including the medically important 99 Tc(m), 125 I and 201 Tl. Also featured is the intended acquisition (now cancelled) by Sherbrooke University of a 10-MW Slowpoke heating and isotope production reactor

  10. Radiochemical surveillance of KNK primary sodium

    International Nuclear Information System (INIS)

    Stamm, H.-H.; Stade, K.Ch.

    1987-05-01

    Radiochemical surveillance of the KNK primary sodium has been performed now for 15 years with 953 effective full-power days. The overflow method used for sodium sampling proved to be reliable. Different crucible materials have been used for different analytical tasks. The amount of radionuclides in the primary system has not given restrictions to plant operation at any time. On-line gamma spectroscopy on pipings and components of the primary circuits was accomplished in reactor downtimes. Activity depositions on the walls were dominated by Ta-182 after KNK I operation. Main deposited activities at KNK II were Mn-54 (fresh core) and after operation with failed fuel Cs-137, in cover gas areas together with Zn-65. Efficient experimental radionuclide traps for the removal of Mn-54, Zn-65 and Cs-137 from the primary coolant were tested successfully. The dose rates on primary pipes and components of KNK I and KNK II were lower by an order of magnitude compared to water-cooled reactors. This is in good agreement with experiences from LMFBR's in other countries. The resulting average yearly accumulated personal dose rate was 0.21 man-Sv at KNK, compared to 3.9 man-Sv at German light-water-cooled power reactors

  11. Radiochemical stability of radiopharmaceutical preparations

    International Nuclear Information System (INIS)

    Martins, Patricia de A.; Silva, Jose L. da; Ramos, Marcelo P.S.; Oliveira, Ideli M. de; Felgueiras, Carlos F.; Herrerias, Rosana; Zapparoli Junior, Carlos L.; Mengatti, Jair; Fukumori, Neuza T.O.; Matsuda, Margareth M.N.

    2011-01-01

    The 'in vitro' stability studies of the radiopharmaceutical preparations are an essential requirement for routine practice in nuclear medicine and are an important parameter for evaluating the quality, safety and efficacy required for the sanitary registration of pharmaceutical products. Several countries have published guidelines for the evaluation of pharmaceutical stability. In Brazil, the stability studies should be conducted according to the Guide for Conducting Stability Studies published in the Resolution-RE n. 1, of 29th July 2005. There are also for radiopharmaceutical products, two specific resolutions: RDC-63 regulates the Good Manufacturing Practices for Radiopharmaceuticals and RDC-64 provides the Registration of Radiopharmaceuticals, both published on the 18th December 2009. The radiopharmaceutical stability is defined as the time during which the radioisotope can be safely used for the intended purpose. The radiochemical stability can be affected by a variety of factors, including storage temperature, amount of radioactivity, radioactive concentration, presence or absence of antioxidants or other stabilizing agents. The radiochemical stability studies must be established under controlled conditions determined by the effective use of the product. The aim of this work was to evaluate the radiochemical stability of labeled molecules with 131 I, 123 I, 153 Sm, 18 F, 51 Cr, 177 Lu and 111 In as well as 67 Ga and 201 Tl radiopharmaceuticals. Radiochemical purity was evaluated after production and in the validity period, with the maximum activity and in the recommended storage conditions. The analyses were carried out by thin-layer silica gel plate, paper chromatography and gel chromatography. The experimental results showed to be in accordance with the specified limits for all the analysed products. (author)

  12. Radiochemistry Lab Decommissioning and Dismantlement. AECL, Chalk River Labs, Ontario, Canada

    International Nuclear Information System (INIS)

    Kenny, Stephen

    2008-01-01

    Atomic Energy of Canada (AECL) was originally founded in the mid 1940's to perform research in radiation and nuclear areas under the Canadian Defense Department. In the mid 50's The Canadian government embarked on several research and development programs for the development of the Candu Reactor. AECL was initially built as a temporary site and is now faced with many redundant buildings. Prior to 2004 small amounts of Decommissioning work was in progress. Many reasons for deferring decommissioning activities were used with the predominant ones being: 1. Reduction in radiation doses to workers during the final dismantlement, 2. Development of a long-term solution for the management of radioactive wastes in Canada, 3. Financial constraints presented by the number of facilities shutdown that would require decommissioning funds and the absence of an approved funding strategy. This has led to the development of a comprehensive decommissioning plan that is all inclusive of AECL's current and legacy liabilities. Canada does not have a long-term disposal site; therefore waste minimization becomes the driving factor behind decontamination for decommissioning before and during dismantlement. This decommissioning job was a great learning experience for decommissioning and the associated contractors who worked on this project. Throughout the life of the project there was a constant focus on waste minimization. This focus was constantly in conflict with regulatory compliance primarily with respect to fire regulations and protecting the facility along with adjacent facilities during the decommissioning activities. Discrepancies in historical documents forced the project to treat every space as a contaminated space until proven differently. Decommissioning and dismantlement within an operating site adds to the complexity of the tasks especially when it is being conducted in the heart of the plant. This project was very successful with no lost time accidents in over one hundred

  13. The Atomic Energy of Canada Limited (AECL) employee health study

    International Nuclear Information System (INIS)

    Myers, D.K.; Werner, M.M.

    1985-01-01

    A preliminary examination of records relating to past Chalk River employees provides some reassurance that large numbers of cancer deaths that might be related to occupational radiation exposure do not exist in the groups of employees studied to the end of 1982. The lack of reliable information on deaths of ex-employees who left AECL for other employment prevented the inclusion of this group in this preliminary study. This information will presumably be obtained during the course of the more comprehensive Atomic Energy of Canada Ltd. employee health study. 6 refs

  14. Thermalhydraulic analyses of AECL's spent fuel dry storage systems

    International Nuclear Information System (INIS)

    Moffett, R.; Sabourin, G.

    1995-01-01

    This paper presents the validation of one- and three-dimensional thermalhydraulic models to be used to evaluate the thermal performance of AECL's MACSTOR and CANSTOR spent fuel dry storage modules. For this purpose, we compared analytical results to results of experiments conducted at AECL's Whiteshell Laboratories where mockups of the MACSTOR module and of a CANDU fuel storage basket were tested. The paper shows improvements to a simple one-dimensional model of the MACSTOR mock-up used previously. The replacement of constant heat transfer coefficients by free convection correlations, the addition of a storage cylinder model, and the addition of a radiation heat transfer model improved the predictions of concrete and storage cylinder temperatures. The paper also presents a new three-dimensional model for flow and heat transfer in the MACSTOR mock-up developed using CFDS-FLOW3D and -RAD3D computer programs. CFDS-FLOW3D code can estimate loss coefficients in complex geometry to an accuracy better than standard engineering correlations. The flow and temperature fields predicted using CFDS-FLOW3D are consistent with the measurements made during MACSTOR mock-up experiments (author). 5 refs., 4 tabs., 9 figs

  15. Co-operation between Canada and Hungary on the application of the SLOWPOKE energy system to district heating in eastern Europe

    Energy Technology Data Exchange (ETDEWEB)

    Kay, R. E.; Halzl, J.; Sigmond, G.; Takats, F.; Bakacs, I.

    1989-06-15

    The SLOWPOKE Energy System is a nuclear energy source designed to provide up to 10 MWt of heat energy in the form of hot water to medium- and large- size district heating systems. An appropriate grouping of Canadian and Hungarian companies with the support of the Hungarian Ministry of Industry is studying the technical, economic, commercial, and nuclear licensability aspects of the application of the SLOWPOKE Energy System to district heating in Hungary. Results of these studies indicate that there is a significant potential market for SLOWPOKE Energy Systems in existing district heating systems, that the SLOWPOKE Energy System can be readily integrated into such systems, that high capacity factors can be achieved, and that it will be relatively easy to localize the supply of most components and systems.

  16. Co-operation between Canada and Hungary on the application of the SLOWPOKE energy system to district heating in eastern Europe

    International Nuclear Information System (INIS)

    Kay, R.E.; Halzl, J.; Sigmond, G.; Takats, F.; Bakacs, I.

    1989-06-01

    The SLOWPOKE Energy System is a nuclear energy source designed to provide up to 10 MWt of heat energy in the form of hot water to medium- and large- size district heating systems. An appropriate grouping of Canadian and Hungarian companies with the support of the Hungarian Ministry of Industry is studying the technical, economic, commercial, and nuclear licensability aspects of the application of the SLOWPOKE Energy System to district heating in Hungary. Results of these studies indicate that there is a significant potential market for SLOWPOKE Energy Systems in existing district heating systems, that the SLOWPOKE Energy System can be readily integrated into such systems, that high capacity factors can be achieved, and that it will be relatively easy to localize the supply of most components and systems

  17. Proceedings of the Tripartite Seminar on Nuclear Material Accounting and Control at Radiochemical Plants

    International Nuclear Information System (INIS)

    1999-01-01

    The problems of creation and operation of nuclear materials (NM) control and accounting systems and their components at radiochemical plants were discussed in seminar during November 2-6 of 1998. There were 63 Russian and 25 foreign participants in seminar. The seminar programme includes following sessions and articles: the aspects of State NM control and accountancy; NM control and accounting in radiochemical plants and at separate stages of reprocessing of spent nuclear fuel and irradiated fuel elements of commercial reactors; NM control and accountancy in storage facilities of radiochemical plants; NM control and accounting computerization, material balance assessment, preparation of reports; qualitative and quantitative measurements in NM control and accounting at radiochemical plants destructive analysis techniques [ru

  18. New capabilities of the lattice code WIMS-AECL

    International Nuclear Information System (INIS)

    Altiparmakov, Dimitar

    2008-01-01

    The lattice code WIMS-AECL has been restructured and rewritten in Fortran 95 in order to increase the accuracy of its responses and extend its capabilities. Significant changes of computing algorithms have been made in the following two areas: geometric calculations and resonance self-shielding. Among various geometry enhancements, the code is no longer restricted to deal with single lattice cell problems. The multi-cell capability allows modelling of various lattice structures such as checkerboard lattices, a de-fuelled channel, and core-reflector interface problems. The new resonance method performs distributed resonance self-shielding including the skin effect. This paper describes the main code changes and presents selected code verification results. (authors)

  19. AECL's research and development program in environmental science and technology

    International Nuclear Information System (INIS)

    Cornett, R.J.

    1998-07-01

    AECL's radiological research and development (R and D) program encompasses work on sources of radiation exposure, radionuclide transport through the environment and potential impacts on biota and on human health. The application of the radiation protection knowledge and technology developed in this program provides cradle-to-grave management for CANDU and related nuclear technologies. This document provides an overview of the Environmental Science and Technology (ES and T) program which is one of the technical areas of R and D within the radiological R and D program. The ES and T program uses science from three main areas: radiochemistry, mathematical modelling and environmental assessment. In addition to providing an overview of the program, this summary also gives specific examples of recent technical work in each of the three areas. These technical examples illustrate the applied nature of the ES and T program and the close coupling of the program to CANDU customer requirements. (author)

  20. Radiochemical measurement of mass transport in sodium

    International Nuclear Information System (INIS)

    Cooper, M.H.; Chiang, S.H.

    1976-01-01

    Mass transport processes in the sodium coolant of Liquid Metal Fast Breeder Reactors (LMFBRs) are significant in determining rates of corrosion and deposition of radioactive nuclides from the fuel cladding, deposition and cold trapping of fission products from defect or failed fuel, carbon and nitrogen redistribution in the containment materials, and removal of impurities by cold trapping or hot trapping. Mass transport between rotating, concentric cylinders in molten sodium has been investigated using a unique radiochemical method. Long-lived (33 year) cesium-137, dissolved in the sodium, decays radioactively emitting a beta to barium-137m, which decays with a short half-life (2.6 minutes) emitting a gamma. Cesium is weakly adsorbed and remains in solution, while the barium is strongly adsorbed on the stainless steel surfaces. Hence, by measuring the barium-137m activity on movable stainless steel surfaces, one can calculate the mass transport to that surface. Mass transfer coefficients in sodium measured by this method are in agreement with published heat transfer correlations when the effect of the volumetric mass source is taken into account. Hence, heat transfer correlations can be confidently utilized by analogy in estimating mass transfer in liquid-metal systems

  1. AECL experience with low-level radioactive waste technologies

    International Nuclear Information System (INIS)

    Buckley, L.P.; Charlesworth, D.H.

    1988-08-01

    Atomic Energy of Canada Limited (AECL), as the Canadian government agency responsible for research and development of peaceful uses of nuclear energy, has had experience in handling a wide variety of radioactive wastes for over 40 years. Low-level radioactive waste (LLRW) is generated in Canada from nuclear fuel manufacturers and nuclear power facilities, from medical and industrial uses of radioisotopes and from research facilities. The technologies with which AECL has strength lie in the areas of processing, storage, disposal and safety assessment of LLRW. While compaction and incineration are the predominant methods practised for solid wastes, purification techniques and volume reduction methods are used for liquid wastes. The methods for processing continue to be developed to improve and increase the efficiency of operation and to accommodate the transition from storage of the waste to disposal. Site-specific studies and planning for a LLRW disposal repository to replace current storage facilities are well underway with in-service operation to begin in 1991. The waste will be disposed of in an intrusion-resistant underground structure designed to have a service life of over 500 years. Beyond this period of time the radioactivity in the waste will have decayed to innocuous levels. Safety assessments of LLRW disposal are performed with the aid of a series of interconnected mathematical models developed at Chalk River specifically to predict the movement of radionuclides through and away from the repository after its closure and the subsequent health effects of the released radionuclides on the public. The various technologies for dealing with radioactive wastes from their creation to disposal will be discussed. 14 refs

  2. A study of the mortality of AECL employees. V

    International Nuclear Information System (INIS)

    Gribbin, M.A.; Howe, G.R.; Weeks, J.L.

    1992-09-01

    A study has been underway since 1980 on the mortality of past and present AECL employees. The study population consists of 13,491 persons, 9997 males and 3494 females, for a total of 262,403.5 person-years at risk. During the period 1950-1985, 1299 deaths occurred in this population. The number of female deaths (121) is too few for detailed analysis, but the 1178 deaths in the male population represent a useful basis for this study. The present report examines mortality patterns in the AECL cohort between 1950 and 1985 by comparing the observed mortality with that expected in the general population for three groups of workers: those with no exposure, those with up to 50 mSv, and those with more than 50 mSv. Comparisons among the three groups of employees are discussed. The number of deaths is fewer than would be expected on the basis of general population statistics for both males who were exposed to ionizing radiation and those who were not exposed. The findings were similar for the 'all cancer' and 'all other deaths' groupings. In the group of exposed males, elevated Standardized Mortality Ratios (SMRs) are seen for non-Hodgkin's lymphoma and for buccal cavity, rectum and rectosigmoid junction, and prostate cancers. There are elevated SMRs for lymphatic and myeloid leukemias and for large intestine, prostate, brain and biliary system cancers in the 'unexposed' male group. The number of cases identified in all of these cancers is small and the confidence intervals are wide, such that none of the elevated SMRs is statistically significant. The report compares the findings of this study with those of similar studies published in the past decade. (Author) (28 tabs., 33 refs., 2 figs.)

  3. Small reactor operating mode

    International Nuclear Information System (INIS)

    Snell, V.G.

    1997-01-01

    There is a potential need for small reactors in the future for applications such as district heating, electricity production at remote sites, and desalination. Nuclear power can provide these at low cost and with insignificant pollution. The economies required by the small scale application, and/or the remote location, require a review of the size and location of the operating staff. Current concepts range all the way from reactors which are fully automatic, and need no local attention for days or weeks, to those with reduced local staff. In general the less dependent a reactor is on local human intervention, the greater its dependence on intrinsic safety features such as passive decay heat removal, low-stored energy and limited reactivity speed and depth in the control systems. A case study of the design and licensing of the SLOWPOKE Energy System heating reactor is presented. (author)

  4. Fuels for Canadian research reactors

    International Nuclear Information System (INIS)

    Feraday, M.A.

    1993-01-01

    This paper includes some statements and remarks concerning the uranium silicide fuels for which there is significant fabrication in AECL, irradiation and defect performance experience; description of two Canadian high flux research reactors which use high enrichment uranium (HEU) and the fuels currently used in these reactors; limited fabrication work done on Al-U alloys to uranium contents as high as 40 wt%. The latter concerns work aimed at AECL fast neutron program. This experience in general terms is applied to the NRX and NRU designs of fuel

  5. Reactors set for mini market

    International Nuclear Information System (INIS)

    Knox, Richard.

    1988-01-01

    Commercial nuclear power generation on a large-scale has an uncertain future. However, it is hoped that a small nuclear reactor could form the basis for providing heating, cooling or electricity in large buildings. Based on the Slowpoke research reactor, the Slowpoke energy system concept is simple. The concept and the way in which the small-scale reactor would work are discussed. The system consists of a stainless steel tank surrounded by reinforced concrete and let into the ground. The tank is full of light water which is heated to about 90 deg C by a central core of 2.4 percent enriched uranium fuel. The resulting natural circulation causes the water to pass through a heat exchanger. The water from the heat exchanger can be used for building or district heating, to operate air-conditioners or to generate small quantities of electricity. It is hoped to automate the operation of the reactor so that continuous supervision by a team of engineers would be unnecessary. A single operator on call in the building would be able to take control actions if the reactor's safety system failed. (UK)

  6. Retrofit of AECL CAN6 seals into the Pickering shutdown cooling pumps

    International Nuclear Information System (INIS)

    Rhodes, D.; Metcalfe, R.; Brown, G.

    1997-01-01

    The existing mechanical seals in the shutdown cooling (SDC) pumps at the eight-unit Pickering Nuclear Generating Station have caused as least seven forced outages in the last fifteen years. The SDC pumps were originally intended to run only during shutdowns, mostly at low pressure, except for short periods during routine testing of SDC isolation valves while the plant is operating at full pressure to verify that the emergency core injection system is available. Unfortunately, in practice, some SDC pumps must be run much more frequently than this to prevent overheating or freezing of components in the system while the plant is at power. This more severe service has decreased seal lifetime from about 8000 running hours to about 3000 running hours. Rather than tackling the difficult task of eliminating on-power running of the pumps, Pickering decided to install a more robust seal design that could withstand this. Through the process of competitive tender, AECL's CAN6 seal was chosen. This seal has a successful history in similarly demanding conditions in boiling water reactors in the USA. To supplement this and demonstrate there would be no 'surprises,' a 2000-hour test program was conducted. Testing consisted of simulating all the expected conditions, plus some special tests under abnormal conditions. This has given assurance that the seal will operate reliably in the Pickering shutdown cooling pumps. (author)

  7. The contribution of AECL CommercialProducts to nuclear medicine and radiation processing

    International Nuclear Information System (INIS)

    Beddoes, J.M.

    1980-02-01

    A review is given of the technology of the uses of radiation equipment and radioisotopes, in which field Canada has long been a world leader. AECL CommercialProducts has pioneered many of the most important applications. The development and sale of Co-60 radiation teletherapy units for cancer treatment is a familiar example of such an application, and CommercialProducts dominates the world market. Another such example is the marketing of Mo-99, which is produced in the reactors at Chalk River, and from which the short-lived daughter Tc-99 is eluted as required for use in in-vivo diagnosis. New products coming into use for this purpose include Tl-201, I-123, Ga-67 and In-111, all produced in the TRIUMF cyclotron in Vancouver, while I-125 continues to be in demand for in-vitro radioimmunoassays. Radioisotopes continue to play an important part in manufacturing, where their well-known uses include controlling thickness, contents, etc., in production, and industrial radiography. The application of large industrial irradiators for the sterilization of medical products is now a major world industry for which Commercial Products is the main manufacturer. Isotopes are also used in products such as smoke detectors. Isotopes continue to find extensive use as tracers, both in industrial applications and in animal and plant biology studies. Some more recent uses include pest control by the 'sterile male' technique and neutron activation and delayed neutron counting in uranium assay. (auth)

  8. Retrofit of AECL CAN6 seals into the Pickering shutdown cooling pumps

    International Nuclear Information System (INIS)

    Rhodes, D.; Metcalfe, R.; Brown, G.; Kiameh, P.; Burchett, P.

    1997-01-01

    The existing mechanical seals in the shutdown cooling (SDC) pumps at the eight-unit Pickering Nuclear Generating Station have caused at least seven forced outages in the last fifteen years. The SDC pumps were originally intended to run only during shutdowns, mostly at low pressure, except for short periods during routine testing of SDC isolation valves while the plant is operating at full pressure to verify that the emergency core injection system is available. Unfortunately, in practice, some SDC pumps must be run much more frequently than this to prevent overheating or freezing of components in the system while the plant is at power. This more severe service has decreased seal lifetime from about 8000 running hours to about 3000 running hours. Rather than tackling the difficult task of eliminating on-power running of the pumps, Pickering decided to install a more robust seal design that could withstand this. Through the process of competitive tender, AECL's CAN6 seal was chosen. This seal has a successful history in similarly demanding conditions in boiling water reactors in the USA. To supplement this and demonstrate there would be no 'surprises,' a 2000-hour test program was conducted. Testing consisted of simulating all the expected conditions, plus some special tests under abnormal conditions. This has given assurance that the seal will operate reliably in the Pickering shutdown cooling pumps. (author)

  9. Improving the beam quality of the neutron radiography facility using the SLOWPOKE-2 at the Royal Military College of Canada

    International Nuclear Information System (INIS)

    Lewis, W.J.; Bennett, L.G.I.; Teshima, P.

    1996-01-01

    At the SLOWPOKE-2 Facility at the Royal Military College of Canada, a neutron radiography facility has been designed and installed, and the beam quality has been improved by performing a series of radiographs using American standard for testing and materials (ASTM) E 545 indicators. Other means of determining the progress such as bubble detectors and activation foils were used. Modifications to the nosepiece of the beam tube including shielding and linings for fast neutron and gamma radiation were made. (orig.)

  10. Collected radiochemical and geochemical procedures

    Energy Technology Data Exchange (ETDEWEB)

    Kleinberg, J [comp.

    1990-05-01

    This revision of LA-1721, 4th Ed., Collected Radiochemical Procedures, reflects the activities of two groups in the Isotope and Nuclear Chemistry Division of the Los Alamos National Laboratory: INC-11, Nuclear and radiochemistry; and INC-7, Isotope Geochemistry. The procedures fall into five categories: I. Separation of Radionuclides from Uranium, Fission-Product Solutions, and Nuclear Debris; II. Separation of Products from Irradiated Targets; III. Preparation of Samples for Mass Spectrometric Analysis; IV. Dissolution Procedures; and V. Geochemical Procedures. With one exception, the first category of procedures is ordered by the positions of the elements in the Periodic Table, with separate parts on the Representative Elements (the A groups); the d-Transition Elements (the B groups and the Transition Triads); and the Lanthanides (Rare Earths) and Actinides (the 4f- and 5f-Transition Elements). The members of Group IIIB-- scandium, yttrium, and lanthanum--are included with the lanthanides, elements they resemble closely in chemistry and with which they occur in nature. The procedures dealing with the isolation of products from irradiated targets are arranged by target element.

  11. Radiochemical purity determination by paper chromatography 2

    International Nuclear Information System (INIS)

    1975-01-01

    The standard relates to the determination of radiochemical impurities in labelled compounds using paper chromatography. The basic terms are given as is the description of procedure and evaluation of chromatograms. (E.S.)

  12. Radiochemistry and radiochemical separations. A current bibliography

    International Nuclear Information System (INIS)

    Bujdoso, E.

    1999-01-01

    A current bibliography for years 1993-1996 with 159 references was compiled on radiochemistry and radiochemical separations based on the INIS Atomindex. The references are arranged in alphabetical order of first authors. (N.T.)

  13. Reorganization of AECL and the future marketing program

    International Nuclear Information System (INIS)

    Donnelly, James

    Atomic Energy of Canada Ltd. Engineering Co. has been reorganized to support the new emphasis on foreign sales of CANDU reactors. Much has been learned from reactor sales to Argentina, Korea, and Romania, but Canada needs to sell one 600 MWe reactor a year in order to avoid a decline in its nuclear industry. (LL)

  14. AECL's underground research laboratory: technical achievements and lessons learned

    International Nuclear Information System (INIS)

    Ohta, M.M.; Chandler, N.A.

    1997-03-01

    During the development of the research program for the Canadian Nuclear Fuel Waste Management Program in the 1970's, the need for an underground facility was recognized. AECL constructed an Underground Research Laboratory (URL) for large-scale testing and in situ engineering and performance-assessment-related experiments on key aspects of deep geological disposal in a representative geological environment. Ale URL is a unique geotechnical research and development facility because it was constructed in a previously undisturbed portion of a granitic pluton that was well characterized before construction began, and because most of the shaft and experimental areas are below the water table. The specific areas of research, development and demonstration include surface and underground characterization; groundwater and solute transport; in situ rock stress conditions; temperature and time-dependent deformation and failure characteristics of rock; excavation techniques to minimize damage to surrounding rock and to ensure safe working conditions; and the performance of seals and backfills. This report traces the evolution of the URL and summarizes the technical achievements and lessons learned during its siting, design and construction, and operating phases over the last 18 years. (author)

  15. Evaluation of AECL catalysts for hydrogen fuel-cell applications. Paper no. IGEC-1-073

    International Nuclear Information System (INIS)

    Li, J.; Suppiah, S.; Li, H.; Kutchcoskie, K.J.; Strikwerda, S.

    2005-01-01

    AECL has been engaged in the promotion of the nuclear-hydrogen economy, which envisions that hydrogen fuel cells will generate power using hydrogen as fuel produced by nuclear energy. Since AECL's catalysts developed for the production, upgrading and detritiation of heavy water are very similar to commercial fuel-cell catalysts, a program was initiated to evaluate AECL catalysts for fuel-cell applications. As a first step in this effort, a half-cell test facility was set up to characterize the performance of catalysts for hydrogen fuel cells. This paper outlines the results obtained from cathodic reduction of oxygen in a 0.5 M sulphuric acid solution on a rotating disc electrode at 65 o C. The performance of the catalysts was characterized using standard electrochemical methods including cyclic voltammetry, Voltammogram/Tafel plots and short-term stability plots. Several monometallic Pt and Pt-based bimetallic catalysts were tested and compared with a commercially available catalyst for fuel-cell applications. AECL's monometallic Pt catalysts showed comparable or better activities than commercial catalysts with similar Pt loading. An AECL Pt-based bimetallic catalyst has shown superior performance to a monometallic Pt catalyst with similar Pt loading. Evaluation of various catalyst formulations is ongoing on the half-cell facility at AECL. Further investigation of promising catalysts identified from half-cell test is also being carried out in single fuel cell on test stations under normal fuel-cell operating conditions. (author)

  16. Radiochemical schemes of obtaining 89Sr and 90Y radionuclides

    International Nuclear Information System (INIS)

    Usarov, Z. O.

    2010-03-01

    Key words: strontium-89, yttrium-90, extraction and extraction-chromatographic purification of radionuclides, radiopharmaceuticals. Subjects of research: strontium-89 and yttrium-90 radionuclides and their chloride forms. Purpose of work is developing of radiochemical technologies on obtaining of 89 Sr and 90 Y on the WWR-SM reactor with high radionuclide purity. Methods of research: extraction and extraction-chromatographic methods of radionuclides separation, beta- and gamma-spectrometric methods of activity measuring. The results obtained and their novelty: Were determined the conformity to laws of Y and Sr distribution in two-phase systems TBP-HNO 3 , TBP-NH 4 NO 3 , TBP-HCI, HDEHP-NO 3 , HDEHP-NH 4 NO 3 and HDEHP-HCI. Were determined the conformity to laws of Y and Sr distribution in systems with craun ethers DB-18K-6 and DTBDB-18K-6 from water solutions of HNO 3 . Radiochemical technologies on obtaining of 89 Sr and 90 Y radionuclides including radiochemical process of yttrium target with using the systems TBP-HNO 3 and HDEHP/Teflone were developed. Practical value: the radiochemical technology of obtaining 89 Sr with high radionuclide purity was developed. The method of preparation a chloride compound of 89 SrCl 2 which is used as a drug form for preparation of 89 Sr- 'Metastron' was developed. The relatively simple method of on the way obtaining 90 Y in the reactor with high radionuclidic purity that is useful for follow using in medical practice was offered. Degree of embed and economic effectivity: the developed technologies have approbation in manufacturing conditions in Radiopreparat Enterprise of INP AS RU and were offered for receiving of domestic preparations against of import foreign analogues. The statement about using the invention by obtained patent is attached to dissertation. Field of application: the received results will be introduced in manufacture at Radiopreparat Enterprise of INP AS RU for receiving of domestic preparations

  17. Self-sustainability of a research reactor facility with neutron activation analysis

    International Nuclear Information System (INIS)

    Chilian, C.; Kennedy, G.

    2010-01-01

    Long-term self-sustainability of a small reactor facility is possible because there is a large demand for non-destructive chemical analysis of bulk materials that can only be achieved with neutron activation analysis (NAA). The Ecole Polytechnique Montreal SLOWPOKE Reactor Facility has achieved self-sustainability for over twenty years, benefiting from the extreme reliability, ease of use and stable neutron flux of the SLOWPOKE reactor. The industrial clientele developed slowly over the years, mainly because of research users of the facility. A reliable NAA service with flexibility, high accuracy and fast turn-around time was achieved by developing an efficient NAA system, using a combination of the relative and k0 standardisation methods. The techniques were optimized to meet the specific needs of the client, such as low detection limit or high accuracy at high concentration. New marketing strategies are presented, which aim at a more rapid expansion. (author)

  18. Safety assessment for TA-48 radiochemical operations

    International Nuclear Information System (INIS)

    1994-08-01

    The purpose of this report is to document an assessment performed to evaluate the safety of the radiochemical operations conducted at the Los Alamos National Laboratory operations area designated as TA-48. This Safety Assessment for the TA-48 radiochemical operations was prepared to fulfill the requirements of US Department of Energy (DOE) Order 5481.1B, ''Safety Analysis and Review System.'' The area designated as TA-48 is operated by the Chemical Science and Technology (CST) Division and is involved with radiochemical operations associated with nuclear weapons testing, evaluation of samples collected from a variety of environmental sources, and nuclear medicine activities. This report documents a systematic evaluation of the hazards associated with the radiochemical operations that are conducted at TA-48. The accident analyses are limited to evaluation of the expected consequences associated with a few bounding accident scenarios that are selected as part of the hazard analysis. Section 2 of this report presents an executive summary and conclusions, Section 3 presents pertinent information concerning the TA-48 site and surrounding area, Section 4 presents a description of the TA-48 radiochemical operations, and Section 5 presents a description of the individual facilities. Section 6 of the report presents an evaluation of the hazards that are associated with the TA-48 operations and Section 7 presents a detailed analysis of selected accident scenarios

  19. AECL's progress in developing the DUPIC fuel fabrication process

    International Nuclear Information System (INIS)

    Sullivan, J.D.; Cox, D.S.

    1995-01-01

    Spent Pressurized Water Reactor (PWR) fuel can be used directly in CANDU reactors without the need for wet chemical reprocessing or reenrichment. Considerable experimental progress has been made in verifying the practicality of this fuel cycle, including hot-cell experiments using spent PWR fuels and out-cell trials using surrogate fuels. This paper describes the current status of these experiments. (author)

  20. Advanced CANDU reactors

    International Nuclear Information System (INIS)

    Dunn, J.T.; Finlay, R.B.; Olmstead, R.A.

    1988-12-01

    AECL has undertaken the design and development of a series of advanced CANDU reactors in the 700-1150 MW(e) size range. These advanced reactor designs are the product of ongoing generic research and development programs on CANDU technology and design studies for advanced CANDU reactors. The prime objective is to create a series of advanced CANDU reactors which are cost competitive with coal-fired plants in the market for large electricity generating stations. Specific plant designs in the advanced CANDU series will be ready for project commitment in the early 1990s and will be capable of further development to remain competitive well into the next century

  1. Current status of the waste identification program at AECL's Chalk River Laboratories

    International Nuclear Information System (INIS)

    Csullog, G.W.; Edwards, N.W.; TerHuurne, M.A.

    1998-01-01

    The management of routine operating waste by Waste Management and Decommissioning (WM and D) at Atomic Energy of Canada Limited's (AECL) Chalk River Laboratories (CRL) is supported by the Waste Identification (WI) Program. The principal purpose of the WI Program is to minimize the cost and the effort associated with waste characterization and waste tracking, which are needed to optimize waste handling, storage and disposal. The major steps in the WI Program are: (1) identify and characterize the processes that generate the routine radioactive wastes accepted by WM and D - radioisotope production, radioisotope use, reactor operation, fuel fabrication, et cetera (2) identify and characterize the routine blocks of waste generated by each process or activity - the initial characterization is based on inference (process knowledge) (3) prepare customized, template data sheets for each routine waste block - templates contain information such as package type, waste material, waste type, solidifying agent, the average non-radiological contaminant inventory, the average radiological contaminant inventory, and the waste class (4) ensure generators 'use the right piece of paper with the right waste' when they transfer waste to WM and D - that is they use the correct template data sheets to transfer routine wastes, by: identifying and marking waste collection points in the generator's facility; ensuring that generators implement effective waste collection/segregation procedures; implementing standard procedures to transfer waste to WM and D; and, auditing waste collection and segregation within a generator's facility (5) determine any additional waste block characterization requirements (is anything needed beyond the original characterization by process knowledge?) This paper describes the WI Program, it provides an example of its implementation, and it summarizes the current status of its implementation for both CRL and non-CRL waste generators. (author)

  2. Radiochemical analyses of several spent fuel Approved Testing Materials

    International Nuclear Information System (INIS)

    Guenther, R.J.; Blahnik, D.E.; Wildung, N.J.

    1994-09-01

    Radiochemical characterization data are described for UO 2 and UO 2 plus 3 wt% Gd 2 O 3 commercial spent nuclear fuel taken from a series of Approved Testing Materials (ATMs). These full-length nuclear fuel rods include MLA091 of ATM-103, MKP070 of ATM-104, NBD095 and NBD131 of ATM-106, and ADN0206 of ATM-108. ATMs 103, 104, and 106 were all irradiated in the Calvert Cliffs Nuclear Power Plant (Reactor No.1), a pressurized-water reactor that used fuel fabricated by Combustion Engineering. ATM-108 was part of the same fuel bundle designed as ATM-105 and came from boiling-water reactor fuel fabricated by General Electric and irradiated in the Cooper Nuclear Power Plant. Rod average burnups and expected fission gas releases ranged from 2,400 to 3,700 GJ/kgM. (25 to 40 Mwd/kgM) and from less than 1% to greater than 10%, respectively, depending on the specific ATM. The radiochemical analyses included uranium and plutonium isotopes in the fuel, selected fission products in the fuel, fuel burnup, cesium and iodine on the inner surfaces of the cladding, 14 C in the fuel and cladding, and analyses of the gases released to the rod plenum. Supporting examinations such as fuel rod design and material descriptions, power histories, and gamma scans used for sectioning diagrams are also included. These ATMs were examined as part of the Materials Characterization Center Program conducted at Pacific Northwest Laboratory provide a source of well-characterized spent fuel for testing in support of the US Department of Energy Office of Civilian Radioactive Waste Management Program

  3. Methods for training radiochemical technicians at ORNL

    International Nuclear Information System (INIS)

    Parrott, J.R.; Nicol, R.G.

    The training of personnel to carry out radiochemical operations at ORNL is a formidable and recurrent task since programs are constantly shifting. It is essential that provisions be made for the routine retraining of these personnel if they are to make effective contributions on a continuing basis. Training methods are described that have emerged as a result of thirty years experience in a variety of radiochemical pilot-plant programs. Emphasis is placed on training programs for technicians for the 233 U Processing Facility since essentially all aspects of radiochemical operations are encountered in this facility. These programs have included operations performed in glove boxes, hot-cell manipulator work handling high-neutron-emitting isotopes, and the entire spectrum of remote solvent extraction operations. (U.S.)

  4. MAPLE research reactor beam-tube performance

    International Nuclear Information System (INIS)

    Lee, A.G.; Lidstone, R.F.; Gillespie, G.E.

    1989-05-01

    Atomic Energy of Canada Limited (AECL) has been developing the MAPLE (Multipurpose Applied Physics Lattice Experimental) reactor concept as a medium-flux neutron source to meet contemporary research reactor applications. This paper gives a brief description of the MAPLE reactor and presents some results of computer simulations used to analyze the neutronic performance. The computer simulations were performed to identify how the MAPLE reactor may be adapted to beam-tube applications such as neutron radiography

  5. Radiochemical analysis of phosphorus in milk samples

    International Nuclear Information System (INIS)

    Oliveira, R.M. de; Cunha, I.I.L.

    1991-01-01

    The determination of phosphorus in milk samples by thermal neutron activation analysis employing radiochemical separation is described. The radiochemical separation consists of the simultaneous irradiation of samples and standards, dissolution of the milk samples in a perchloric acid and nitric acid mixture, addition of zinc hold-back carrier, precipitation of phosphorus as ammonium phospho molybdate (A.M.P.) and sample counting in a Geiger-Mueller detector. The analysis sources of error were studied and the established method was applied to phosphorus analyses in commercial milk samples. (author)

  6. The Y2K program for scientific-analysis computer programs at AECL

    International Nuclear Information System (INIS)

    Popovic, J.; Gaver, C.; Chapman, D.

    1999-01-01

    The evaluation of scientific-analysis computer programs for year-2000 compliance is part of AECL' s year-2000 (Y2K) initiative, which addresses both the infrastructure systems at AECL and AECL's products and services. This paper describes the Y2K-compliance program for scientific-analysis computer codes. This program involves the integrated evaluation of the computer hardware, middleware, and third-party software in addition to the scientific codes developed in-house. The project involves several steps: the assessment of the scientific computer programs for Y2K compliance, performing any required corrective actions, porting the programs to Y2K-compliant platforms, and verification of the programs after porting. Some programs or program versions, deemed no longer required in the year 2000 and beyond, will be retired and archived. (author)

  7. The Y2K program for scientific-analysis computer programs at AECL

    International Nuclear Information System (INIS)

    Popovic, J.; Gaver, C.; Chapman, D.

    1999-01-01

    The evaluation of scientific analysis computer programs for year-2000 compliance is part of AECL's year-2000 (Y2K) initiative, which addresses both the infrastructure systems at AECL and AECL's products and services. This paper describes the Y2K-compliance program for scientific-analysis computer codes. This program involves the integrated evaluation of the computer hardware, middleware, and third-party software in addition to the scientific codes developed in-house. The project involves several steps: the assessment of the scientific computer programs for Y2K compliance, performing any required corrective actions, porting the programs to Y2K-compliant platforms, and verification of the programs after porting. Some programs or program versions, deemed no longer required in the year 2000 and beyond, will be retired and archived. (author)

  8. AECL's concept for the disposal of nuclear fuel waste and the importance of its implementation

    International Nuclear Information System (INIS)

    Allan, C.J.

    1993-07-01

    Since 1978, Canada has been investigating a concept for permanently dealing with the nuclear fuel waste from Canadian CANDU (Canada Deuterium Uranium) nuclear generating stations. The concept is based on disposing of the waste in a vault excavated 500 to 1000 m deep in intrusive igneous rock of the Canadian Shield. AECL Research will soon be submitting an environmental impact statement (EIS) on the concept for review by a Panel through the federal environmental assessment and review process (EARP). In accordance with AECL Research's mandate and in keeping with the detailed requirements of the review Panel, AECL Research has conducted extensive studies on a wide variety of technical and socio-economic issues associated with the concept. If the concept is accepted, we can and should continue our responsible approach and take the next steps towards constructing a disposal facility for Canada's used nuclear fuel waste

  9. AECL's participation in the commissioning of Point Lepreau generating station unit 1

    International Nuclear Information System (INIS)

    Chawla, S.; Singh, K.; Yerramilli, S.

    1983-05-01

    Support from Atomic Energy of Canada Ltd. (AECL) to Point Lepreau during the commissioning program has been in the form of: seconded staff for commissioning program management, preparation of commissioning procedures, and hands-on commissioning of several systems; analysis of test results; engineering service for problem solving and modifications; design engineering for changes and additions; procurement of urgently-needed parts and materials; technological advice; review of operational limits; interpretation of design manuals and assistance with and preparation of submissions to regulatory authorities; and development of equipment and procedures for inspection and repairs. This, together with AECL's experience in the commissioning of other 600 MWe stations, Douglas Point and Ontario Hydro stations, provides AECL with a wide range of expertise for providing operating station support services for CANDU stations

  10. CANDU technology for generation III + AND IV reactors

    International Nuclear Information System (INIS)

    Torgerson, D.F.

    2005-01-01

    Atomic Energy of Canada Limited (AECL) is the original developer of the CANDU?reactor, one of the three major commercial power reactor designs now used throughout the world. For over 60 years, AECL has continued to evolve the CANDU design from the CANDU prototypes in the 1950s and 1960s through to the second generation reactors now in operation, including the Generation II+ CANDU 6. The next phase of this evolution, the Generation III+ Advanced CANDU ReactorTM (ACRTM), continues the strategy of basing next generation technology on existing CANDU reactors. Beyond the ACR, AECL is developing the Generation IV CANDU Super Critical Water Reactor. Owing to the evolutionary nature of these advanced reactors, advanced technology from the development programs is also being applied to operating CANDU plants, for both refurbishments and upgrading of existing systems and components. In addition, AECL is developing advanced technology that covers the entire life cycle of the CANDU plant, including waste management and decommissioning. Thus, AECL maintains state-of-the-art expertise and technology to support both operating and future CANDU plants. This paper outlines the scale of the current core knowledge base that is the foundation for advancement and support of CANDU technology. The knowledge base includes advancements in materials, fuel, safety, plant operations, components and systems, environmental technology, waste management, and construction. Our approach in each of these areas is to develop the underlying science, carry out integrated engineering scale tests, and perform large-scale demonstration testing. AECL has comprehensive R and D and engineering development programs to cover all of these elements. The paper will show how the ongoing expansion of the CANDU knowledge base has led to the development of the Advanced CANDU Reactor. The ACR is a Generation III+ reactor with substantially reduced costs, faster construction, and enhanced passive safety and operating

  11. Radiochemical Solar Neutrino Experiments - Successful and Otherwise

    International Nuclear Information System (INIS)

    Hahn, R.L.

    2008-01-01

    Over the years, several different radiochemical systems have been proposed as solar neutrino detectors. Of these, two achieved operating status and obtained important results that helped to define the current field of neutrino physics: the first solar-neutrino experiment, the Chlorine Detector ( 37 Cl) that was developed by chemist Raymond Davis and colleagues at the Homestake Mine, and the subsequent Gallium ( 71 Ga) Detectors that were operated by (a) the SAGE collaboration at the Baksan Laboratory and (b) the GALLEX/GNO collaborations at the Gran Sasso National Laboratory. These experiments have been extensively discussed in the literature and in many previous International Neutrino Conferences. In this paper, I present important updates to the results from SAGE and GALLEX/GNO. I also review the principles of the radiochemical detectors and briefly describe several different detectors that have been proposed. In light of the well-known successes that have been subsequently obtained by real-time neutrino detectors such as Kamiokande, Super-Kamiokande, SNO, and KamLAND, I do not anticipate that any new radiochemical neutrino detectors will be built. At present, only SAGE is still operating; the Chlorine and GNO radiochemical detectors have been decommissioned and dismantled

  12. Radiochemical solar neutrino experiments, 'successful and otherwise'

    International Nuclear Information System (INIS)

    Hahn, Richard L

    2008-01-01

    Over the years, several different radiochemical systems have been proposed as solar neutrino detectors. Of these, two achieved operating status and obtained important results that helped to define the current field of neutrino physics: the first solar-neutrino experiment, the Chlorine Detector ( 37 Cl) that was developed by chemist Raymond Davis and colleagues at the Homestake Mine, and the subsequent Gallium ( 71 Ga) Detectors that were operated by (a) the SAGE collaboration at the Baksan Laboratory and (b) the GALLEX/GNO collaborations at the Gran Sasso National Laboratory. These experiments have been extensively discussed in the literature and in many previous International Neutrino Conferences. In this paper, I present important updates to the results from SAGE and GALLEX/GNO. I also review the principles of the radiochemical detectors and briefly describe several different detectors that have been proposed. In light of the well-known successes that have been subsequently obtained by real-time neutrino detectors such as Kamiokande, Super-Kamiokande, SNO, and KamLAND, I do not anticipate that any new radiochemical neutrino detectors will be built. At present, only SAGE is still operating; the Chlorine and GNO radiochemical detectors have been decommissioned and dismantled.

  13. Radiochemical studies on nuclear fission at Trombay

    Indian Academy of Sciences (India)

    227Ac to 245Cm were determined by radiochemical methods which involved ... foil, followed by direct γ counting using high resolution Ge(Li) detector was also ... the stiffness to mass asymmetric distortion decreases on either side of lead.Also ...

  14. dyschronic, a Drosophila homolog of a deaf-blindness gene, regulates circadian output and Slowpoke channels.

    Directory of Open Access Journals (Sweden)

    James E C Jepson

    Full Text Available Many aspects of behavior and physiology are under circadian control. In Drosophila, the molecular clock that regulates rhythmic patterns of behavior has been extensively characterized. In contrast, genetic loci involved in linking the clock to alterations in motor activity have remained elusive. In a forward-genetic screen, we uncovered a new component of the circadian output pathway, which we have termed dyschronic (dysc. dysc mutants exhibit arrhythmic locomotor behavior, yet their eclosion rhythms are normal and clock protein cycling remains intact. Intriguingly, dysc is the closest Drosophila homolog of whirlin, a gene linked to type II Usher syndrome, the leading cause of deaf-blindness in humans. Whirlin and other Usher proteins are expressed in the mammalian central nervous system, yet their function in the CNS has not been investigated. We show that DYSC is expressed in major neuronal tracts and regulates expression of the calcium-activated potassium channel SLOWPOKE (SLO, an ion channel also required in the circadian output pathway. SLO and DYSC are co-localized in the brain and control each other's expression post-transcriptionally. Co-immunoprecipitation experiments demonstrate they form a complex, suggesting they regulate each other through protein-protein interaction. Furthermore, electrophysiological recordings of neurons in the adult brain show that SLO-dependent currents are greatly reduced in dysc mutants. Our work identifies a Drosophila homolog of a deaf-blindness gene as a new component of the circadian output pathway and an important regulator of ion channel expression, and suggests novel roles for Usher proteins in the mammalian nervous system.

  15. The development, qualification and availability of AECL analytical, scientific and design codes

    International Nuclear Information System (INIS)

    Kupferschmidt, W.C.H.; Fehrenbach, P.J.; Wolgemuth, G.A.; McDonald, B.H.; Snell, V.G.

    2001-01-01

    Over the past several years, AECL has embarked on a comprehensive program to develop, qualify and support its key safety and licensing codes, and to make executable versions of these codes available to the international nuclear community. To this end, we have instituted a company-wide Software Quality Assurance (SQA) Program for Analytical, Scientific and Design Computer Programs to ensure that the design, development, maintenance, modification, procurement and use of computer codes within AECL is consistent with today's quality assurance standards. In addition, we have established a comprehensive Code Validation Project (CVP) with the goal of qualifying AECL's 'front-line' safety and licensing codes by 2001 December. The outcome of this initiative will be qualified codes, which are properly verified and validated for the expected range of applications, with associated statements of accuracy and uncertainty for each application. The code qualification program, based on the CSA N286.7 standard, is intended to ensure (1) that errors are not introduced into safety analyses because of deficiencies in the software, (2) that an auditable documentation base is assembled that demonstrates to the regulator that the codes are of acceptable quality, and (3) that these codes are formally qualified for their intended applications. Because AECL and the Canadian nuclear utilities (i.e., Ontario Power Generation, Bruce Power, Hydro Quebec and New Brunswick Power) generally use the same safety and licensing codes, the nuclear industry in Canada has agreed to work cooperatively together towards the development, qualification and maintenance of a common set of analysis tools, referred to as the Industry Standard Toolset (IST). This paper provides an overview of the AECL Software Quality Assurance Program and the Code Validation Project, and their associated linkages to the Canadian nuclear community's Industry Standard Toolset initiative to cooperatively qualify and support commonly

  16. Interface code between WIMS-AECL and RFSP-IST for coupling computing

    International Nuclear Information System (INIS)

    Xu Liangwang; Liu Yu; Jia Baoshan

    2007-01-01

    A code based on the protocols of Telnet and FTP is developed with C++ for coupling computing between WIMS-AECL and RFSP-IST. the input document of WIMS-AECL and RFSP-ISP cna be generated automatically and be submitted to server, the output document will be downloaded by the end of computing. the function of analyzing standard output document is also included in this code. After simple updating, this code can meet the requirement of other code using input document, e.g. CATHENA. A pilot study of the relation between void fraction and reactivity in TACR, some valuable conclusions has been achieved. (authors)

  17. Radiochemical analysis in the nuclear research establishment (KFA) Juelich, FRG

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    KFA Juelich is one of the two great nuclear research centres of the Federal Republic of Germany. About 3700 employees including about 700 scientists are engaged in a great number of programs and projects belonging to six main fields of research and development: high temperature reactor and energy techniques; nuclear fusion; properties of materials; materials research; life and environment; methods. In the article the radiochemical analysis work of the former Central Institute of Analytical Chemistry and its two successors is described: activation analysis, application of tracer techniques, fission product analysis. Further on the irradiation facilities are described, a short survey is given on the instrumentation, and the future work is outlined. (T.G.)

  18. REFINED METALLICITY INDICES FOR M DWARFS USING THE SLoWPoKES CATALOG OF WIDE, LOW-MASS BINARIES

    International Nuclear Information System (INIS)

    Dhital, Saurav; Stassun, Keivan G.; Bastien, Fabienne A.; West, Andrew A.; Massey, Angela P.; Bochanski, John J.

    2012-01-01

    We report the results from spectroscopic observations of 113 ultra-wide, low-mass binary systems, largely composed of M0-M3 dwarfs, from the SLoWPoKES catalog of common proper motion pairs identified in the Sloan Digital Sky Survey. Radial velocities of each binary member were used to confirm that they are comoving and, consequently, to further validate the high fidelity of the SLoWPoKES catalog. Ten stars appear to be spectroscopic binaries based on broad or split spectral features, supporting previous findings that wide binaries are likely to be hierarchical systems. We measured the Hα equivalent width of the stars in our sample and found that components of 81% of the observed pairs have similar Hα levels. The difference in Hα equivalent width among components with similar masses was smaller than the range of Hα variability for individual objects. We confirm that the Lépine et al. ζ-index traces iso-metallicity loci for most of our sample of M dwarfs. However, we find a small systematic bias in ζ, especially in the early-type M dwarfs. We use our sample to recalibrate the definition of ζ. While representing a small change in the definition, the new ζ is a significantly better predictor of iso-metallicity for the higher-mass M dwarfs.

  19. Infralevel radiochemical applications-II

    International Nuclear Information System (INIS)

    Schachter, M.M.

    1989-01-01

    This paper discusses several practical applications of low level nuclear radiation from natural sources, and even from a man-made source-spent nuclear fuel elements from dismantled nuclear power plant reactors. The natural sources are the ubiquitous potassium 40 in the Earth's crust and the non-weapon isotope of uranium-238. Additionally, in this research it is appropriate to include the non-nuclear processes as the various forms of luminescences and the quasi-nuclear Cerenkov luminescence, since fluorescence can be induced by nuclear radiation, as is Cerenkov radiation; chemiluminescence can be initiated by nuclear radiation, and the secondary processes of nuclear radiation caused by the Compton effect, the (Irene) Curie effect, and the unusual and unique effect of a 3 He alpha-particle reacting oppositely from the beta-ray decay of 3 H, can influence and produce all the known luminescences. The conclusions from the small amount of research carried out are predominantly tentative and even conjectural. The device described is being called a nuclear electrophorus since its functional properties are the same as the static electricity-producing electrophorus of the late 19th Century

  20. Radiochemical education in Iasi, Romania

    International Nuclear Information System (INIS)

    Popa, Karin

    2009-01-01

    The teaching and research in radiochemistry is disregarded by most universities (mainly due to the cost and legal requirements for maintaining a nuclear unit of first or second class), although the interest in new generation nuclear reactors is increasing worldwide. The historical background and the educational and the research activities conducted in the Laboratory of Radiochemistry of the Al.I. Cuza University of Iasi as of one of the last bastions of radiochemistry in Romania are presented here. This unit remains one of the last Romanian educational structures which allow the next generation of radio chemists to gain hands on experience as a part of their training: an impressive number of former students are currently employed by nuclear research centres and nuclear energy production facilities not only in Romania but all around Europe. Unfortunately, without a stronger involvement of the authorities, the laboratory risks to be closed by 2011, despite of the effort of a few people (as most of other similar structures in Romania. (author)

  1. Comparison of MCNP and WIMS-AECL/RFSP calculations with high temperature substitution experiments in ZED-2 using CANFLEX-L VRF

    International Nuclear Information System (INIS)

    Pencer, J.; Bromley, B.P.; Watts, D.G.; Carlson, P.; Rauket, A.; Zeller, M.

    2009-01-01

    This paper summarizes comparisons of calculation results from MCNP5 and WIMS-AECL / RFSP with experimental results obtained from the Zero Energy Deuterium (ZED-2) critical facility, examining CANFLEX Low Void Reactivity Fuel (CANFLEX-LVRF) in heated channels, substituted into a reference lattice and cooled under ACR-like coolant conditions, with H 2 O, air, or CO 2 as an air substitute. CANFLEX-LVRF shares features in common with the ACR-1000 fuel, notably an increase in enrichment (over natural uranium) in the outer elements of the fuel bundle, and presence of a neutron absorber in the central element. The reference and substituted fuel channels were arranged in a 24.5-cm hexagonal lattice in order to provide neutron similarity to the 24-cm square lattice pitch of the ACR-1000. These results therefore provide useful data for validation of the reactor physics toolset for use in ACR-1000 applications. For the mixed lattices, results for both MCNP5 and WIMS-AECL / RFSP show small biases in k eff , ranging from -7 mk to -5 mk, small biases in coolant void reactivity, ranging from -1 mk to +0.5 mk, and good agreement for copper activation rate distributions (based on calculated neutron flux). Bare core MCNP and WIMS-AECL stand-alone results, based on substitution analysis, also show small biases in k eff , ranging from -6 mk to -0.4 mk, and small biases in coolant void reactivity, ranging from -0.3 mk to +3.7 mk. This validation exercise thus gives good agreement between measurement and calculation and provides confidence in the accuracy of the physics toolset. (author)

  2. Processing of LLRW arising from AECL nuclear research centres

    International Nuclear Information System (INIS)

    Buckley, L.P.; Le, V.T.; Beamer, N.V.; Brown, W.P.; Helbrecht, R.A.

    1988-11-01

    Operation of nuclear research reactors and laboratories results in the generation of a wide variety of solid and liquid radioactive wastes. This paper describes practical experience with processing of low-level radioactive wastes at two major nuclear research centres in Canada

  3. Developing the MAPLE materials test reactor concept

    International Nuclear Information System (INIS)

    Lee, A.G.; Lidstone, R.F.; Donnelly, J.V.

    1992-05-01

    MAPLE-MTR is a new multipurpose research facility being planned by AECL Research as a possible replacement for the 35-year-old NRU reactor. In developing the MAPLE-MTR concept, AECL is starting from the recent design and licensing experience with the MAPLE-X10 reactor. By starting from technology developed to support the MAPLE-X10 design and adapting it to produce a concept that satisfies the requirements of fuel channel materials testing and fuel irradiation programs, AECL expects to minimize the need for major advances in nuclear technology (e.g., fuel, heat transfer). Formulation of the MAPLE-MTR concept is at an early stage. This report describes the irradiation requirements of the research areas, how these needs are translated into design criteria for the project and elements of the preliminary design concept

  4. Thermal-hydraulic interfacing code modules for CANDU reactors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W.S.; Gold, M.; Sills, H. [Ontario Hydro Nuclear, Toronto (Canada)] [and others

    1997-07-01

    The approach for CANDU reactor safety analysis in Ontario Hydro Nuclear (OHN) and Atomic Energy of Canada Limited (AECL) is presented. Reflecting the unique characteristics of CANDU reactors, the procedure of coupling the thermal-hydraulics, reactor physics and fuel channel/element codes in the safety analysis is described. The experience generated in the Canadian nuclear industry may be useful to other types of reactors in the areas of reactor safety analysis.

  5. Thermal-hydraulic interfacing code modules for CANDU reactors

    International Nuclear Information System (INIS)

    Liu, W.S.; Gold, M.; Sills, H.

    1997-01-01

    The approach for CANDU reactor safety analysis in Ontario Hydro Nuclear (OHN) and Atomic Energy of Canada Limited (AECL) is presented. Reflecting the unique characteristics of CANDU reactors, the procedure of coupling the thermal-hydraulics, reactor physics and fuel channel/element codes in the safety analysis is described. The experience generated in the Canadian nuclear industry may be useful to other types of reactors in the areas of reactor safety analysis

  6. Safety decommissioning regulations of radiochemical objects - the problem, requires urgent decision

    International Nuclear Information System (INIS)

    Rovnyj, S.I.; Arsent'eva, N.V.; Emel'yanov, N.M.; Kolesnikov, V.N.

    2001-01-01

    The necessity of planning and pursuance of the measures on decommissioning of radiochemical industry is discussed. Technological processes were stopped more than in 30 buildings and constructions of the PO Mayak. The characteristics of the technological buildings to be decommissioned were treated in the context of building peculiarities, function, character and level of contamination. An acceptable variant for reactor decommissioning invites development of the standard-legal aspects [ru

  7. Status and Plans for work on pressure tube creep at AECL

    International Nuclear Information System (INIS)

    Bickel, Grant A.

    2013-01-01

    AECL research goals: • Develop empirical models to: – regress out operating conditions/extrinsic factors – rank relative strain behavior of measured in-service pressure tubes; • Correlate the ranked strains to manufacturing variables and the microstructure to: – Develop mechanistic insights – Optimize manufacturing/microstructure for improved pressure tube performance

  8. Advanced fuel development at AECL: What does the future hold for CANDU fuels/fuel cycles?

    Energy Technology Data Exchange (ETDEWEB)

    Kupferschmidt, W.C.H. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2013-07-01

    This paper outlines advanced fuel development at AECL. It discusses expanding the limits of fuel utilization, deploy alternate fuel cycles, increase fuel flexibility, employ recycled fuels; increase safety and reliability, decrease environmental impact and develop proliferation resistant fuel and fuel cycle.

  9. Methods for training radiochemical technicians at ORNL

    International Nuclear Information System (INIS)

    Parrott, J.R.; Nicol, R.G.

    1975-01-01

    The training of personnel to carry out radiochemical operations at ORNL is a formidable and recurrent task since repetitive, production-type operations are not involved, and programs are constantly shifting. It is essential that provisions be made for the routine retraining of personnel if they are to make effective contributions on a continuing basis. The present training methods have emerged as a result of thirty years experience in a variety of radiochemical pilot-plant programs. These programs have included operations performed in glove boxes, hot-cell manipulator work handling high-neutron-emitting isotopes, and the entire spectrum of remote solvent extraction operations. Present methods of training and the results obtained are summarized

  10. Automated radiochemical processing for clinical PET

    International Nuclear Information System (INIS)

    Padgett, H.C.; Schmidt, D.G.; Bida, G.T.; Wieland, B.W.; Pekrul, E.; Kingsbury, W.G.

    1991-01-01

    With the recent emergence of positron emission tomography (PET) as a viable clinical tool, there is a need for a convenient, cost-effective source of the positron emitter-labeled radiotracers labeled with carbon-11, nitrogen-13, oxygen-15, and fluorine-18. These short-lived radioisotopes are accelerator produced and thus, require a cyclotron and radiochemistry processing instrumentation that can be operated 3 in a clinical environment by competant technicians. The basic goal is to ensure safety and reliability while setting new standards for economy and ease of operation. The Siemens Radioisotope Delivery System (RDS 112) is a fully automated system dedicated to the production and delivery of positron-emitter labeled precursors and radiochemicals required to support a clinical PET imaging program. Thus, the entire RDS can be thought of as an automated radiochemical processing apparatus

  11. Radiochemical Means of Investigating Delayed Neutron Precursors

    International Nuclear Information System (INIS)

    Marmol, P. del

    1968-01-01

    Fast radiochemical methods used now for the determination of delayed neutron precursors are classified and reviewed: precipitations, solvent extractions, range experiments, milking, gas sweeping, isotopic and ion exchange, hot atom reactions and diffusion loss. Advantages and limitations of irradiation systems with respect to fast separations are discussed: external beams which allow faster separations only have low neutron fluxes, internal beams which are mostly fit for gaseous reactions; and rabbits for solution irradiations. Future prospects of radiochemical procedures are presented; among these, studies should be mostly oriented towards gaseous reactions which offer possibilities of isolating very short-lived delayed neutron precursors. Chemical procedures for delayed neutron precursor detection are compared with mass spectrometric and isotope separator techniques; it is concluded that the methods are complementary. (author)

  12. Radiochemical Means of Investigating Delayed Neutron Precursors

    International Nuclear Information System (INIS)

    Marmol, P. del

    1968-01-01

    Fast radiochemical methods used now for the determination of delayed neutron precursors are classified and reviewed: precipitations, solvent extractions, range experiments, milking, gas sweeping, isotopic and ion exchange, hot-atom reactions and diffusion loss. Advantages and limitations of irradiation systems with respect to fast separations are discussed: external beams which allow faster separations only have low neutron fluxes, internal beams which are mostly fit for gaseous reactions; and rabbits for solution irradiations. Future prospects of radiochemical procedures are presented; among these, studies should be mostly oriented towards gaseous reactions which offer possibilities of isolating very short-lived delayed neutron precursors. Chemical procedures for delayed neutron precursor detection are compared with mass spectrometric and isotope-separator techniques; it is concluded that the methods are complementary. (author)

  13. Radiochemical analysis of the Bikini ashes

    Energy Technology Data Exchange (ETDEWEB)

    Ishibashi, M; Shigematsu, T; Ishida, T

    1954-01-01

    The following nuclides were detected in the Bikini ashes by radiochemical procedures: /sup 45/Ca, /sup 89/Sr, /sup 91/Y, /sup 95/Zr, /sup 103/Ru, /sup 144/Pr, and /sup 237/U. The ion-exchange method was used for analysis of contaminated rain water which fell on the Kyoto area on May 16, 1954 from which the presence of /sup 89/Sr, /sup 95/Zr, and /sup 140/Ba, was detected. Rare earths seemed also to be present.

  14. Imaging Scanner Usage in Radiochemical Purity Test

    International Nuclear Information System (INIS)

    Norhafizah Othman; Yahaya Talib; Wan Hamirul Bahrin Wan Kamal

    2011-01-01

    Imaging Scanner model BIOSCAN AR-2000 has been used in the radiochemical purity test for the product of Mo-99/ Tc-99m generator. Result from this test was produced directly where the percentage of pertechnetate was calculated based on width peak area by thin layer chromatography. This paperwork will explain the function, procedure, calibration of the instrument and discussed the advantages compared to the previous method. (author)

  15. Radiochemical analysis of military nuclear facilities

    International Nuclear Information System (INIS)

    Bayramov, A.A.; Bayramova, S.M.

    2012-01-01

    Full text : Radiochemical Analysis is a branch of analytical chemistry comprising an aggregate of methods for qualitatively determining the composition and content of radioisotopes in the products of transformations. Safety and minimization of radiation impact on human and environment are important demand of operation of Military Nuclear Facilities (MNF). In accordance of recommendations of International Commission on Radiological Protection there are next objects of radiochemical analysis: 1) potential sources of radiochemical pollution; 2) environment (objects of environment, human environment including buildings, agricultural production, water, air et al.); 3) human himself (determination of dose from external and internal radiation, chemical poisoning). The chemical analysis can be carried out using, for example, the Gas Chromatography instrument whish separates chemical mixtures and identifies the components at a molecular level. It is one of the most accurate tools for analyzing environmental samples. The Gas Chromatography works on the principle that a mixture will separate into individual substances when heated. The heated gases are carried through a column with an inert gas (such as helium). As the separated substances emerge from the column opening, they flow into the Mass Spectrometry. Mass spectrometry identifies compounds by the mass of the analyte molecule. Newly developed portable Gas Chromatography and Mass Spectrometry are techniques that can be used to separate volatile organic compounds and pesticides. Other uses of Gas Chromatography, combined with other separation and analytical techniques, have been developed for radionuclides, explosive compounds such as royal demolition explosive and trinitrotoluene, and metals. So, based on the many years experience of operation of dangerous MNF, in concordance with norms of radiation and chemical safety it was considered that the tasks of the radiochemical analysis of Military Nuclear Facilities include

  16. 14th radiochemical conference. Booklet of abstracts

    International Nuclear Information System (INIS)

    2002-03-01

    The contributions dealt with the following topics: Radionuclides in the environment, radioecology; Nuclear analytical methods; Chemistry of actinide and trans-actinide elements; Ionizing radiation in science, technology, and arts and cultural heritage preservation; Production and application of radionuclides; Separation methods, speciation; Chemistry of nuclear fuel cycle, radiochemical problems in nuclear waste management; and Nuclear methods in medicine, radiopharmaceuticals, and radiodiagnostics, labelled compounds. Of the verbal and poster presentation, 192 have been input to INIS. (P.A.)

  17. Rapid Radiochemical Methods for Asphalt Paving Material ...

    Science.gov (United States)

    Technical Brief Validated rapid radiochemical methods for alpha and beta emitters in solid matrices that are commonly encountered in urban environments were previously unavailable for public use by responding laboratories. A lack of tested rapid methods would delay the quick determination of contamination levels and the assessment of acceptable site-specific exposure levels. Of special concern are matrices with rough and porous surfaces, which allow the movement of radioactive material deep into the building material making it difficult to detect. This research focuses on methods that address preparation, radiochemical separation, and analysis of asphalt paving materials and asphalt roofing shingles. These matrices, common to outdoor environments, challenge the capability and capacity of very experienced radiochemistry laboratories. Generally, routine sample preparation and dissolution techniques produce liquid samples (representative of the original sample material) that can be processed using available radiochemical methods. The asphalt materials are especially difficult because they do not readily lend themselves to these routine sample preparation and dissolution techniques. The HSRP and ORIA coordinate radiological reference laboratory priorities and activities in conjunction with HSRP’s Partner Process. As part of the collaboration, the HSRP worked with ORIA to publish rapid radioanalytical methods for selected radionuclides in building material matrice

  18. Systems dynamics (SD) strategy for Small Modular Reactor (SMR) marketing - Conquest at the MIT Energy Laboratory (Pres. MIT Energy Initiative)

    Energy Technology Data Exchange (ETDEWEB)

    Woo, T. H. [Yonsei University, Wonju (Korea, Republic of)

    2016-10-15

    This reactor has the specification as the power is 330 MWt pressurized water reactor (PWR) with integral steam generators and advanced safety features. In the plant design, it is planned for electricity generation of 100 MWe and thermal applications of seawater desalination where the life span is a 60-year operation design and three-year refueling cycle. Regarding of the licensing, the standard design was approved from the Korean regulator in mid-2012 and the Korea Atomic Energy Research Institute (KAERI) has a plan to build a demonstration plant to operate from 2017. According to the previous study of the marketing strategy of the Canadian small reactor, Safe LOW-POwer Kritical Experiment (SLOWPOKE) reactor had been investigated in 1988. Therefore, it is interesting to compare SMART and SLOWPOKE. In this work, it is to find out the strategy of the successful marketing of SMART and suggest continuous marketing prospects. There are specifications and parameters of SMART in Tables 1 and 2. The public acceptance (PA) had been studies as safety-public interpretation, SLOWPOKE safety-experience and process, and economics in the previous paper of the SLOWPOKE, which was about the marketing strategy for the commercial nuclear reactor. The highly cognitive networking based dynamical modeling was discussed where the system is treated by a complex and non-linear way. The linear networking of the interested issue was changed by the SD algorithm where the feedback and multiple connections are added to the original networking theory. The non-linear method has shown the complexity of the marketing strategy, especially for the NPP which is the very expensive and safety focused facility.

  19. Systems dynamics (SD) strategy for Small Modular Reactor (SMR) marketing - Conquest at the MIT Energy Laboratory (Pres. MIT Energy Initiative)

    International Nuclear Information System (INIS)

    Woo, T. H.

    2016-01-01

    This reactor has the specification as the power is 330 MWt pressurized water reactor (PWR) with integral steam generators and advanced safety features. In the plant design, it is planned for electricity generation of 100 MWe and thermal applications of seawater desalination where the life span is a 60-year operation design and three-year refueling cycle. Regarding of the licensing, the standard design was approved from the Korean regulator in mid-2012 and the Korea Atomic Energy Research Institute (KAERI) has a plan to build a demonstration plant to operate from 2017. According to the previous study of the marketing strategy of the Canadian small reactor, Safe LOW-POwer Kritical Experiment (SLOWPOKE) reactor had been investigated in 1988. Therefore, it is interesting to compare SMART and SLOWPOKE. In this work, it is to find out the strategy of the successful marketing of SMART and suggest continuous marketing prospects. There are specifications and parameters of SMART in Tables 1 and 2. The public acceptance (PA) had been studies as safety-public interpretation, SLOWPOKE safety-experience and process, and economics in the previous paper of the SLOWPOKE, which was about the marketing strategy for the commercial nuclear reactor. The highly cognitive networking based dynamical modeling was discussed where the system is treated by a complex and non-linear way. The linear networking of the interested issue was changed by the SD algorithm where the feedback and multiple connections are added to the original networking theory. The non-linear method has shown the complexity of the marketing strategy, especially for the NPP which is the very expensive and safety focused facility

  20. An approach to neutronics analysis of candu reactors

    International Nuclear Information System (INIS)

    Gul, S.; Arshad, M.

    1982-12-01

    An attempt is made to tackle the problem of neutronics analysis of CANDU reactors. Until now CANDU reactors have been analysed by the methods developed at AECL and CGE using mainly receipe methods. Relying on multigroup transport codes GAM-GATHER in combination with diffusion code CITATION a package of codes is established to use it for survey as well as production purposes. (authors)

  1. Comparison of MCNP and WIMS-AECL/RFSP calculations against critical heavy water experiments in ZED-2 with CANFLEX-LVRF and CANFLEX-LEU fuels

    International Nuclear Information System (INIS)

    Bromley, B. P.; Watts, D. G.; Pencer, J.; Zeller, M.; Dweiri, Y.

    2009-01-01

    This paper summarizes calculations of MCNP5 and WIMS-AECL/RFSP compared against measurements in coolant void substitution experiments in the ZED-2 critical facility with CANFLEX R-LEU/RU (Low Enriched Uranium, Recovered Uranium) reference fuels and CANFLEX-LVRF (Low Void Reactivity Fuel) test fuel, and H 2 O/air coolants. Both codes are tested for the prediction of the change in reactivity with complete voiding of all fuel channels, and that for a checkerboard voiding pattern. Understanding these phenomena is important for the ACR-1000 R reactor. Comparisons are also made for the prediction of the axial and radial neutron flux distributions, as measured by copper foil activation. The experimental data for these comparisons were obtained from critical mixed lattice / substitution experiments in AECL's ZED-2 critical facility using CANFLEX-LEU/RU and CANFLEX-LVRF fuel in a 24-cm square lattice pitch at 25 degrees C. Substitution analyses were performed to isolate the properties (buckling, bare critical lattice dimensions) of the CANFLEX-LVRF fuel. This data was then used to further test the lattice physics codes. These comparisons establish biases/uncertainties and errors in the calculation of k eff , coolant void reactivity, checkerboard coolant void reactivity, and flux distributions. Results show small to modest biases in void reactivity and very good agreement for flux distributions. The importance of boundary conditions and the modeling of un-moderated fuel in the critical experiments are demonstrated. This comparison study provides data that supports code validation and gives good confidence in the reactor physics tools used in the design and safety analysis of the ACR-1000 reactor. (authors)

  2. WIMS-AECL/RFSP code validation of reactivity calculations following a long shutdown using the simple-cell history-based method

    International Nuclear Information System (INIS)

    Ardeshiri, F.; Donnelly, J.V.; Arsenault, B.

    1998-01-01

    The purpose of this analysis is to validate the Reactor Fuelling Simulation Program (RFSP) using the simple-cell model (SCM) history-based method in a startup simulation following a reactor shutdown period. This study is part of the validation work for history-based calculations, using the WIMS-AECL code with the ENDF/B-V library, and the SCM linked to the RFSP code. In this work, the RFSP code with the SCM history-based method was used to track a 1-year period of the Point Lepreau reactor operating history, that included a 12-day reactor shutdown and subsequent startup. Measured boron and gadolinium concentrations were used in the RFSP simulations, and the predicted values of core reactivity were compared to the reference (pre-shutdown) value. The discrepancies in core reactivity are shown to be better than ±2 milli-k at any time, and better than about ±0.5 milli-k towards the end of the startup transient. The results of this analysis also show that the calculated maximum channel and bundle powers are within an acceptable range during both the core-follow and the reactor startup simulations. (author)

  3. Reactor

    International Nuclear Information System (INIS)

    Toyama, Masahiro; Kasai, Shigeo.

    1978-01-01

    Purpose: To provide a lmfbr type reactor wherein effusion of coolants through a loop contact portion is reduced even when fuel assemblies float up, and misloading of reactor core constituting elements is prevented thereby improving the reactor safety. Constitution: The reactor core constituents are secured in the reactor by utilizing the differential pressure between the high-pressure cooling chamber and low-pressure cooling chamber. A resistance port is formed at the upper part of a connecting pipe, and which is connect the low-pressure cooling chamber and the lower surface of the reactor core constituent. This resistance part is formed such that the internal sectional area of the connecting pipe is made larger stepwise toward the upper part, and the cylinder is formed larger so that it profiles the inner surface of the connecting pipe. (Aizawa, K.)

  4. Reactor

    International Nuclear Information System (INIS)

    Ikeda, Masaomi; Kashimura, Kazuo; Inoue, Kazuyuki; Nishioka, Kazuya.

    1979-01-01

    Purpose: To facilitate the construction of a reactor containment building, whereby the inspections of the outer wall of a reactor container after the completion of the construction of the reactor building can be easily carried out. Constitution: In a reactor accommodated in a container encircled by a building wall, a space is provided between the container and the building wall encircling the container, and a metal wall is provided in the space so that it is fitted in the building wall in an attachable or detatchable manner. (Aizawa, K.)

  5. Trace analysis measurements in high-purity aluminium by means of radiochemical neutron and proton activation analysis

    International Nuclear Information System (INIS)

    Egger, K.P.

    1987-01-01

    The aim of the study consisted in the development of efficient radiochemical composite processes and activation methods for the multi-element determination of traces within the lower ng range in high-purity aluminium. More than 50 elements were determined with the help of activation with reactor neutrons; the selective separation of matrix activity (adsorption with hydrated antimony pentoxide) led to a noticeable improvement of detectability, as compared with instrumental neutron activation analysis. Further improvements were achieved with the help of radiochemical group separations in ion exchangers or with the help of the selective separation of the pure beta-emitting elements. Over 20 elements up to high atomic numbers were determined by means of activating 13 MeV protons and 23 Me protons. In this connection, improvements of the detection limit by as a factor of 10 were achieved with radiochemical separation techniques, as compared with pure instrumental proton activation analysis. (RB) [de

  6. Diaphragms obtained by radiochemical grafting in PTFE

    International Nuclear Information System (INIS)

    Nenner, T.; Fahrasmane, A.

    1984-01-01

    Diaphragms for alkaline water electrolysis are prepared by radiochemical grafting of PTFE fabric with styrene, which is later on sulfonated, or with acrylic acid. The diaphragms obtained are mechanically resistant to potash at temperatures up to 200 0 C, but show some degrafting, which limits the lifetime. The sulfonated styrene group has been found to be more stable in electrolysis than the acrylic acid. In both cases, the incorporation of a cross-linking agent like divinyl benzene improves the lifetime of the diaphragms. Electrolysis during 500 hours at 120 0 C and 10 kAm 2 could be performed. (author)

  7. 13th Radiochemical Conference. Booklet of Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    The Conference included the following sessions: (i) Opening plenary presentations (6 contributions); (ii) Chemistry of natural radionuclides, discovery of radium and polonium (6 verbal presentations + 5 poster presentations); (iii) Radionuclides in the environment, radioecology (29 + 48); (iv) Activation analysis and other radioanalytical methods (36 + 49); (v) Ionizing radiation in science and technology (12 + 12); (vi) Chemistry of actinide and trans-actinide elements (11 + 14); (vii) Separation methods, speciation (18 + 41); (viii) Production and application of radionuclides (14 + 29); and (ix) Radiochemical problems in nuclear waste management (12 + 22). The majority of verbal presentations has been input to INIS, mostly in the form of the full authors` abstracts. (P.A.)

  8. 13th Radiochemical Conference. Booklet of Abstracts

    International Nuclear Information System (INIS)

    1998-04-01

    The Conference included the following sessions: (i) Opening plenary presentations (6 contributions); (ii) Chemistry of natural radionuclides, discovery of radium and polonium (6 verbal presentations + 5 poster presentations); (iii) Radionuclides in the environment, radioecology (29 + 48); (iv) Activation analysis and other radioanalytical methods (36 + 49); (v) Ionizing radiation in science and technology (12 + 12); (vi) Chemistry of actinide and trans-actinide elements (11 + 14); (vii) Separation methods, speciation (18 + 41); (viii) Production and application of radionuclides (14 + 29); and (ix) Radiochemical problems in nuclear waste management (12 + 22). The majority of verbal presentations has been input to INIS, mostly in the form of the full authors' abstracts. (P.A.)

  9. Hanford radiochemical site decommissioning demonstration program

    International Nuclear Information System (INIS)

    Nelson, D.C.

    1971-01-01

    A program is proposed for the innovation, development, and demonstration of technologies necessary to decommission the Hanford radiochemical plant area to the extent that the sites can have unrestricted public access. The five tasks selected for development and demonstration of restoration techniques were restoration of a burial ground, decommissioning of a separations plant, restoration of a separations plant waste interim storage tank farm, restoration of a liquid disposal area, and disposal of large contaminated equipment. Process development requirements are tabulated and discussed. A proposed schedule and estimated costs are given

  10. Co-operative projects with AECL in the fields of hydrogeology and geochemistry

    International Nuclear Information System (INIS)

    1985-01-01

    The report covers collaborative study with Atomic Energy of Canada Limited on geological aspects of waste disposal in crystalline rocks. A field test of the sinusoidal hydraulic pressure pulse method was carried out at the URL site to try to define hydraulic properties of major horizontal fractures. The trials were generally successful and observable sine and square wave signals were transmitted. Owing to the limited scale of the programme, and some equipment problems, the results proved difficult to interpret, although the speed and flexibility of the method was demonstrated. A second aspect of collaboration was to be the field comparison of the AECL and NERC/BGS borehole geochemical probes. In the event, the AECL probe development programme was curtailed and a Swedish design selected for purchase. Effort thus switched to technical comparison of the SGAB probe with the NERC/BGS design. Since both are still at various development points the collaboration was limited to technical exchange. The results are presented. (author)

  11. Microbial analysis of the buffer/container experiment at AECL's underground research laboratory

    International Nuclear Information System (INIS)

    Stroes-Gascoyne, S.

    1996-07-01

    The Buffer/Container Experiment (BCE) was carried out at AECL's Underground Research Laboratory (URL) for 2.5 years to examine the in situ performance of compacted buffer material in a single emplacement borehole under vault-relevant conditions. During decommissioning of this experiment, numerous samples were taken for microbial analysis to determine if the naturally present microbial population in buffer material survived the conditions (i.e., compaction, heat and desiccation) in the BCE and to determine which group(s) of microorganisms would be dominant in such a simulated vault environment. Such knowledge will be very useful in assessing the potential effects of microbial activity on the concept for deep disposal of Canada's nuclear fuel waste, proposed by AECL. 46 refs., 31 tabs., 35 figs

  12. Leakage evaluation in the PCV (Primary Containment Vessel) using chemical and radiochemical data

    International Nuclear Information System (INIS)

    Maeda, Katsuji; Nagasawa, Katsumi

    1998-01-01

    Keeping the reliability of nuclear power plant operation, the primary coolant leakage in the PCV is strictly restricted by the Technical Specifications. It is very important to detect an indication of leakage and estimate the source of leakage to provide countermeasures. Usually the indication of leakage will be detected by increase of drain flow in the PCV sump. There are some possibilities of leakage sources in the PCV, such as reactor water, main steam, condensate, feedwater and closed cooling water. The leakage source contain different chemical and radiochemical species. This means that the leakage source can be presumed and detected by using chemical information from the PCV atmosphere and sump water. To detect the leakage indication and the source quickly and exactly, the PCV Leakage Detection Expert System has been developed. This paper describes how to evaluate the leakage indication and source in the PCV by using chemical and radiochemical data. (author)

  13. Antibiotics from bacillus subtilis AECL90 - effect of trace elements and carbohydrates on antibiotic production

    International Nuclear Information System (INIS)

    Malik, M.A.; Shaukat, G.A.; Ahmed, M.S.

    1990-01-01

    Three types of antibiotics S, X and F characteristically bioactive against staphylococcic, xanthomonas and fungi are elaborated by Bacillus Subtilis AECL 69 when grown in molasses peptone malt extract sucrose. No antibiotic production was observed when molasses was omitted from the growth medium. A mineral salt mixture was devised that could replace molasses and restore the production of antibiotics. Influence of various carbohydrates on the production of antibiotics was also studied. Mannose and mannitol had inhibitory effect on the antibiotic production. (author)

  14. Proceedings of the Tripartite Seminar on Nuclear Material Accounting and Control at Radiochemical Plants; Trudy trekhstoronnego seminara Uchet i kontrol' yadernykh materialov na radiokhimicheskikh ustanovkakh

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The problems of creation and operation of nuclear materials (NM) control and accounting systems and their components at radiochemical plants were discussed in seminar during November 2-6 of 1998. There were 63 Russian and 25 foreign participants in seminar. The seminar programme includes following sessions and articles: the aspects of State NM control and accountancy; NM control and accounting in radiochemical plants and at separate stages of reprocessing of spent nuclear fuel and irradiated fuel elements of commercial reactors; NM control and accountancy in storage facilities of radiochemical plants; NM control and accounting computerization, material balance assessment, preparation of reports; qualitative and quantitative measurements in NM control and accounting at radiochemical plants destructive analysis techniques.

  15. Statistical processing of technological and radiochemical data

    International Nuclear Information System (INIS)

    Lahodova, Zdena; Vonkova, Kateřina

    2011-01-01

    The project described in this article had two goals. The main goal was to compare technological and radiochemical data from two units of nuclear power plant. The other goal was to check the collection, organization and interpretation of routinely measured data. Monitoring of analytical and radiochemical data is a very valuable source of knowledge for some processes in the primary circuit. Exploratory analysis of one-dimensional data was performed to estimate location and variability and to find extreme values, data trends, distribution, autocorrelation etc. This process allowed for the cleaning and completion of raw data. Then multiple analyses such as multiple comparisons, multiple correlation, variance analysis, and so on were performed. Measured data was organized into a data matrix. The results and graphs such as Box plots, Mahalanobis distance, Biplot, Correlation, and Trend graphs are presented in this article as statistical analysis tools. Tables of data were replaced with graphs because graphs condense large amounts of information into easy-to-understand formats. The significant conclusion of this work is that the collection and comprehension of data is a very substantial part of statistical processing. With well-prepared and well-understood data, its accurate evaluation is possible. Cooperation between the technicians who collect data and the statistician who processes it is also very important. (author)

  16. AECL strategy for surface-based investigations of potential disposal sites and the development of a geosphere model for a site

    Energy Technology Data Exchange (ETDEWEB)

    Whitaker, S H; Brown, A; Davison, C C; Gascoyne, M; Lodha, G S; Stevenson, D R; Thorne, G A; Tomsons, D [AECL Research, Whiteshell Labs., Pinawa, MB (Canada)

    1994-05-01

    The objective of this report is to summarize AECL`s strategy for surface-based geotechnical site investigations used in screening and evaluating candidate areas and candidate sites for a nuclear fuel waste repository and for the development of geosphere models of sites. The report is one of several prepared by national nuclear fuel waste management programs for the Swedish Nuclear Fuel and Waste Management Co. (SKB) to provide international background on site investigations for SKB`s R and D programme on siting.The scope of the report is limited to surface-based investigations of the geosphere, those done at surface or in boreholes drilled from surface. The report discusses AECL`s investigation strategy and the methods proposed for use in surface-based reconnaissance and detailed site investigations at potential repository sites. Site investigations done for AECL`s Underground Research Laboratory are used to illustrate the approach. The report also discusses AECL`s strategy for developing conceptual and mathematical models of geological conditions at sites and the use of these models in developing a model (Geosphere Model) for use in assessing the performance of the disposal system after a repository is closed. Models based on the site data obtained at the URL are used to illustrate the approach. Finally, the report summarizes the lessons learned from AECL`s R and D program on site investigations and mentions some recent developments in the R and D program. 120 refs, 33 figs, 7 tabs.

  17. Reactor coolant pump seals: improving their performance

    International Nuclear Information System (INIS)

    Pothier, N.E.; Metcalfe, R.

    1986-06-01

    Large CANDU plants are benefitting from transient-resistant four-year reliable reactor coolant pump seal lifetimes, a direct result of AECL's 20-year comprehensive seal improvement program involving R and D staff, manufacturers, and plant designers and operators. An overview of this program is presented, which covers seal modification design, testing, post-service examination, specialized maintenance and quality control. The relevancy of this technology to Light Water Reactor Coolant Pump Seals is also discussed

  18. Comments on nuclear reactor safety in Ontario

    International Nuclear Information System (INIS)

    1987-08-01

    The Chalk River Technicians and Technologists Union representing 500 technical employees at the Chalk River Nuclear Laboratories of AECL submit comments on nuclear reactor safety to the Ontario Nuclear Safety Review. Issues identified by the Review Commissioner are addressed from the perspective of both a labour organization and experience in the nuclear R and D field. In general, Local 1568 believes Ontario's CANDU nuclear reactors are not only safe but also essential to the continued economic prosperity of the province

  19. Planning for maintenance in radiochemical facilities [Paper No.: VB-2

    International Nuclear Information System (INIS)

    Balasubramanian, G.R.

    1981-01-01

    Reprocessing facilities in the earlier stages of development were planned mainly based on the concept of direct maintenance in view of the inherent advantage of man-machine interface and initial savings in the investment costs. With the mechanical processes finding a firm place in head-end operation and increase in down time necessary for elaborate decontamination efforts even for a minor modification has led to the review of the concept. For the same reason, the recent plants are based on the concept of harmonious blend of both direct and remote maintenance. The paper describes the planning needed from consideration of various aspects related to such concepts of maintenance during different phases of such type of facilities, highlighting some of the tools and special equipments to be developed for this purpose. A brief description of recent development in the field of remote maintenance is also given. Though the basic hot facility of reference is the one of reprocessing fast reactor fuels, the concepts and systems discussed are equally applicable to other radiochemical and radiometallurgical facilities also. (author)

  20. The use of HANDIDET{reg_sign} non-electric detonator assemblies to reduce blast-induced overpressure at AECL`s Underground Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Onagi, D.P.; Keith, S.G.; Kuzyk, G.W. [AECL, Pinawa, Manitoba (Canada). Underground Research Lab.; Proudfoot, D.F. [ICI Explosives Canada, North Delta, British Columbia (Canada)

    1996-12-01

    A number of aspects of the Canadian concept for nuclear fuel waste disposal are being assessed by Atomic Energy of Canada Limited (AECL) in a series of experiments at its Underground Research Laboratory (URL) near Lac du Bonnet, Manitoba, Canada. One of the major objectives of the work being carried out at the URL is to develop and evaluate the methods and technology to ensure safe, permanent disposal of Canada`s nuclear fuel waste. In 1994, AECL excavated access tunnels and a laboratory room for the Quarried Block Fracture Migration Experiment (QBFME) at the 240 Level of the URL. This facility will be used to study the transport of radionuclides in natural fractures in quarried blocks of granite under in-situ groundwater conditions. The experiment is being carried out under a cooperative agreement with the Japan Atomic Energy Research Institute. The excavation of the QBFME access tunnels and laboratory was carried out using controlled blasting techniques that minimized blast-induced overpressure which could have damaged or interrupted other ongoing experiments in the vicinity. The majority of the blasts used conventional long delay non-electric detonators but a number of blasts were carried out using HANDIDET 250/6000 non-electric long delay detonator assemblies and HTD{reg_sign} non-electric short delay trunkline detonator assemblies. The tunnel and laboratory excavation was monitored to determine the levels of blast-induced overpressure. This paper describes the blasting and monitoring results of the blasts using HANDIDET non-electric detonator assemblies and the effectiveness of these detonators in reducing blast-induced overpressure.

  1. Cleanout and decontamination of radiochemical hot cells

    International Nuclear Information System (INIS)

    Surma, J.E.; Holton, L.K. Jr.; Katayama, Y.B.; Gose, J.E.; Haun, F.E.; Dierks, R.D.

    1990-01-01

    The Pacific Northwest Laboratory is developing and employing advanced remote and contact technologies in cleaning out and decontaminating six radiochemical hot cells at Hanford under the Department of Energy's Surplus Facilities Management Program. The program is using a series of remote and contact decontamination techniques to reduce costs and to significantly lower radiation doses to workers. Refurbishment of the cover blocks above the air lock trench reduced radiation exposure in the air lock and cleanout and decontamination of an analytical cell achieved a reduction in radioactive contamination. Nuclear Regulatory Commission-approved Type B burial boxes are also being used to reduce waste disposal costs and radiation doses. PNL is currently decommissioning its pilot-scale radioactive liquid-fed ceramic melter. Special tools have been developed and are being used to accomplish the world's first such effort. 4 refs., 5 figs

  2. Mixing and sampling tests for Radiochemical Plant

    International Nuclear Information System (INIS)

    Ehinger, M.N.; Marfin, H.R.; Hunt, B.

    1999-01-01

    The paper describes results and test procedures used to evaluate uncertainly and basis effects introduced by the sampler systems of a radiochemical plant, and similar parameters associated with mixing. This report will concentrate on experiences at the Barnwell Nuclear Fuels Plant. Mixing and sampling tests can be conducted to establish the statistical parameters for those activities related to overall measurement uncertainties. Density measurements by state-of-the art, commercially availability equipment is the key to conducting those tests. Experience in the U.S. suggests the statistical contribution of mixing and sampling can be controlled to less than 0.01 % and with new equipment and new tests in operating facilities might be controlled to better accuracy [ru

  3. Radiochemical Analysis Methodology for uranium Depletion Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Scatena-Wachel DE

    2007-01-09

    This report provides sufficient material for a test sponsor with little or no radiochemistry background to understand and follow physics irradiation test program execution. Most irradiation test programs employ similar techniques and the general details provided here can be applied to the analysis of other irradiated sample types. Aspects of program management directly affecting analysis quality are also provided. This report is not an in-depth treatise on the vast field of radiochemical analysis techniques and related topics such as quality control. Instrumental technology is a very fast growing field and dramatic improvements are made each year, thus the instrumentation described in this report is no longer cutting edge technology. Much of the background material is still applicable and useful for the analysis of older experiments and also for subcontractors who still retain the older instrumentation.

  4. Standardization of equations for radiochemical calculations

    International Nuclear Information System (INIS)

    Danahy, R.J.; Dugan, T.A.; Tomlinson, F.K.; Jones, H.W.

    1994-01-01

    In mid 1993, the Fernald Environmental Restoration Management Corporation (FERMCO), with USEPA approval implemented a project quality assurance plan containing performance-based specifications for radiochemical sample analyses conducted in support of the Fernald site remediation activities. FERMCO's initial approach to acquiring performance-based radioanalytical services was to provide limited guidance regarding equations for computation of the quantities required in each analysis report. It became evident that there was a significant divergence of opinion on how to compute some very basic radiochemical quantities. The use of a standardized set of equations was needed in order to ensure comparability of data from different laboratories. In a remediation project of this magnitude, use of multiple laboratories is a virtual necessity. Consequently comparability of data becomes an extremely important issue. A critical issue in the Remedial Investigation/Feasibility Study (RI/FS) phase of the dean up project is to avoid the occurrence of excessive false positive sample results. Such results could lead to unnecessary clean up and significant additional cost. This paper describes the specific formulas FERMCO is currently using to define such quantities as net sample count rate, sample radionuclide concentration, radiometric tracer and gravimetric carrier recovery. Equations have also been produced to define the uncertainty in each of the above quantities. Equations for the Total Propagated Uncertainty (TPU) and for a sample-specific Minimum Detectable Concentration (MDC) have also been specified. Generalized equations have been reformulated to address the specific conditions which apply to the analysis of FERMCO samples. In particular, FERMCO requires results which have been corrected for the radioactivity in the blank while in other instances, sample results without blank correction are required

  5. OPERATIONAL EXPERIENCE: UPGRADED MPC AND A SYSTEMS FOR THE RADIOCHEMICAL PLANT OF THE SIBERIAN CHEMICAL COMBINE

    International Nuclear Information System (INIS)

    RODRIGUEZ, C.; GOLOSKOKOV, I.; FISHBONE, L.; GOODEY, K.; LOOMIS, M.; CRAIN, B. JR.; LARSEN, R.

    2003-01-01

    The success of reducing the risk of nuclear proliferation through physical protection and material control/accounting systems depends upon the development of an effective design that includes consideration of the objectives of the systems and the resources available to implement the design. Included among the objectives of the design are facility characterization, definition of threat, and identification of targets. When considering resources, the designer must consider funds available, rapid low-cost elements, technology elements, human resources, and the availability of resources to sustain operation of the end system. The Siberian Chemical Combine (SCC) is a multi-function nuclear facility located in the Tomsk region of Siberia, Russia. Beginning in 1996, SCC joined with the United States Department of Energy (US/DOE) Material Protection, Control, and Accounting (MPC and A) Program to develop and implement MPC and A upgrades for the Radiochemical, Chemical Metallurgical, Conversion, Uranium Enrichment, and Reactor Plants of the SCC. At the Radiochemical Plant the MPC and A design and implementation process has been largely completed for the Plutonium Storage Facility and related areas of the Radiochemical Plant. Design and implementation of upgrades for the Radiochemical Plant include rapid physical protection upgrades such as bricking up of doors and windows, and installation of security-hardened doors. Rapid material control and accounting upgrades include installation of modern balances and bar code equipment. Comprehensive MPC and A upgrades include the installation of access controls to sensitive areas of the Plant, alarm communication and display (AC and D) systems to detect and annunciate alarm conditions, closed circuit (CCTV) systems to assess alarm conditions, central and secondary alarm station upgrades that enable security forces to assess and respond to alarm conditions, material control and accounting upgrades that include upgraded physical

  6. Radiochemical determination of zirconium by inductively coupled plasma mass spectrometry (ICPMS)

    International Nuclear Information System (INIS)

    Oliveira, Thiago C.; Oliveira, Arno Heeren de

    2013-01-01

    The zirconium isotope 93 Zr is a long-lived pure β-particle-emitting radionuclide thus occurring as one of the radionuclides found in nuclear reactors. It's produced from 235 U fission and from 92 Zr neutron activation. Due to its long half-life, 93 Zr is one of the interest radionuclides for assessment studies performance of waste storage or disposal. Measurement of 93 Zr is difficult owing to its trace level concentration and its low activity in nuclear wastes and further because its certified standards are not frequently available. The aim of this work was to apply a selective radiochemical separation methodology for 93 Zr determination in nuclear waste and analyze it by Inductively Coupled Plasma Mass Spectrometry (ICPMS). To set up the zirconium radiochemical separation procedure, a zirconium tracer solution was used in order to follow the zirconium behavior during the radiochemical separation. A tracer solution containing the main interferences, Ba, Co, Eu, Fe, Mn, Nb, Ni, Sr, and Y was used in order to verify the decontamination factor during separation process. The limit of detection of 0,039 ppb was obtained for zirconium standard solutions by ICPMS. Then, the protocol will be applied to low level waste (LLW) and intermediate level waste (ILW) from nuclear power plants. (author)

  7. Safety system upgrades to a research reactor: A regulatory perspective

    International Nuclear Information System (INIS)

    Lamarre, G.B.; Martin, W.G.

    2003-01-01

    The NRU (National Research Universal) reactor, located at the Chalk River Laboratories of Atomic Energy of Canada Limited (AECL), first achieved criticality November 3, 1957. AECL continues to operate NRU for research to support safety and reliability studies for CANDU reactors and as a major supplier of medical radioisotopes. Following a detailed systematic review and assessment of NRU's design and the condition of its primary systems, AECL formally notified the Canadian Nuclear Safety Commission's (CNSC) predecessor - the Atomic Energy Control Board - in 1992 of its intention to upgrade NRU's safety systems. AECL proposed seven major upgrades to provide improvements in shutdown capability, heat removal, confinement, and reactor monitoring, particularly during and after a seismic event. From a CNSC perspective, these upgrades were necessary to meet modern safety standards. From the start of the upgrades project, the CNSC provided regulatory oversight aimed at ensuring that AECL maintained a structured approach to the upgrades. The elements of the approach include, but are not limited to, the determination of project milestones and target dates; the formalization of the design process and project quality assurance requirements; the requirements for updated documentation, including safety reports, safety notes and commissioning reports; and the approval and authorization process. This paper details, from a regulatory perspective, the structured approach used in approving the design, construction, commissioning and subsequent operation of safety system upgrades for an existing and operating research reactor, including the many challenges faced when attempting to balance the requirements of the upgrades project with AECL's need to keep NRU operating to meet its important research and production objectives. (author)

  8. Methods for nuclear material control used in the basic production of a typical radiochemical plant

    International Nuclear Information System (INIS)

    Kositsyn, V.F.; Mukhortov, N.F.; Korovin, Yu.I.; Rudenko, V.S.; Petrov, A.M.

    1999-01-01

    Techniques for destructive and non-destructive assay of the component and isotopic composition of nuclear materials are described, namely gravimetric, titrimetric, coulometric, mass spectrometry, as well as those based on registration of neutron and γ radiations. Their metrologic characteristics are described. The techniques described are suggested to be used for nuclear material (NM) control and accounting purposes at the model radiochemical plant for processing irradiated fuel subassemblies from power reactors. The measurement control program is also described. This program is intended for the measurement quality assurance in the framework of NM control and accountancy system [ru

  9. Sensitivity analysis on various parameters for lattice analysis of DUPIC fuel with WIMS-AECL code

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Gyu Hong; Choi, Hang Bok; Park, Jee Won [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    The code WIMS-AECL has been used for the lattice analysis of DUPIC fuel. The lattice parameters calculated by the code is sensitive to the choice of number of parameters, such as the number of tracking lines, number of condensed groups, mesh spacing in the moderator region, other parameters vital to the calculation of probabilities and burnup analysis. We have studied this sensitivity with respect to these parameters and recommend their proper values which are necessary for carrying out the lattice analysis of DUPIC fuel.

  10. Sensitivity analysis on various parameters for lattice analysis of DUPIC fuel with WIMS-AECL code

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Gyu Hong; Choi, Hang Bok; Park, Jee Won [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    The code WIMS-AECL has been used for the lattice analysis of DUPIC fuel. The lattice parameters calculated by the code is sensitive to the choice of number of parameters, such as the number of tracking lines, number of condensed groups, mesh spacing in the moderator region, other parameters vital to the calculation of probabilities and burnup analysis. We have studied this sensitivity with respect to these parameters and recommend their proper values which are necessary for carrying out the lattice analysis of DUPIC fuel.

  11. Sensitivity of 238U resonance absorption to library multigroup structure as calculated by WIMS-AECL

    International Nuclear Information System (INIS)

    Laughton, P.J.; Donnelly, J.V.

    1995-01-01

    In simulations of the TRX-1 experimental lattice, WIMS-AECL overpredicts, relative to MCNP, resonance absorption in neutron-energy groups containing the three large, low-lying resonances of 238 U when a standard ENDF/B-V-based library is used. A total excess in these groups of 4.0 neutron captures by 238 U per thousand fission neutrons has been observed. Similar comparisons are made in this work for the MIT-4 experimental lattice and simplified CANDU lattice cells containing 37-element fuel, with and without heavy-water coolant. Eleven different 89-group cross-section libraries were constructed for WIMS-AECL from ENDF/B-V data: only the neutron-energy-group boundaries used in generating multigroup cross sections and the Goldstein-Cohen correction factors differ from one library to the next. The first library uses the original 89-group structure, and the other ten involve energy groups of varying widths centred on the three large, low-lying resonances of 238 U. For TRX-1, some reduction in total discrepancy in 238 U capture can be achieved by using a new structure, although the improvement is small. The discrepancies in 238 U capture are of the same order for the MIT-4 case as those observed for TRX-1 for both the original group structure and the ten new structures. The WIMS-AECL calculation of 238 U resonance absorption in the same ranges of energy for the simplified CANDU 37-element lattice are in better agreement with MCNP than they are for TRX-1 and MIT-4: when the original structure is used, WIMS-AECL underpredicts total capture rate by 238 U in the energy range of interest by only 0.56 per thousand fission neutrons (coolant present) and 0.88 per thousand fission neutrons (voided coolant channel). The discrepancies are reduced when some of the new structures are used. For almost all of the cases considered here-TRX-1, MIT-4 and CANDU with coolant-better group-by-group agreement of 238 U capture around the 6.67-eV resonance is achieved by using a new library

  12. The development of a small inherently safe homogeneous reactor for the production of medical isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Carlin, G.E.; Bonin, H.W., E-mail: george.carlin@rmc.ca [Royal Military College of Canada, Kingston, Ontario (Canada)

    2013-07-01

    The use of radioisotopes for various procedures in the health care industry has become one of the most important practices in medicine. New interest has been found in the use of liquid fueled nuclear reactors to produce these isotopes due to the ease of fuel processing and ability to efficiently use LEU as the fuel source. A version of this reactor is being developed at the Royal Military College of Canada to act as a successor to the SLOWPOKE-2 platform. The thermal hydraulic and transient characteristics of a 20 kWt version are being studied to verify inherent safety abilities. (author)

  13. The analysis and attribution of the time-dependent neutron background resultant from sample irradiation in a SLOWPOKE-2 reactor

    International Nuclear Information System (INIS)

    Sellers, M.T.; Corcoran, E.C.; Kelly, D.G.

    2013-01-01

    The Royal Military College of Canada (RMCC) has commissioned a Delayed Neutron Counting (DNC) system for the analysis of special nuclear materials. A significant, time-dependent neutron background with an initial maximum count rate, more than 50 times that of the time-independent background, was characterised during the validation of this system. This time-dependent background was found to be dependent on the presence of the polyethylene (PE) vials used to transport the fissile samples, yet was not an activation product of vial impurities. The magnitude of the time-dependent background was found to be irradiation site specific and independent of the mass of PE. The capability of RMCC's DNC system to analyze the neutron count rates in time intervals 235 U contamination was present on each irradiated vial. However, Inductively Coupled Plasma-Mass Spectroscopy measurements of material leached from the outer vial surfaces after their irradiations found only trace amounts of uranium, 0.118 ± 0.048 ng of 235 U derived from natural uranium. These quantities are insufficient to account for the time-independent background, and in fact could not be discriminated from the noise associated with time-independent background. It is suggested that delayed neutron emitters are deposited in the vial surface following fission recoil, leaving the main body of uranium within the irradiation site. This hypothesis is supported by the physical cleaning of the site with materials soaked in distilled water and HNO 3 , which lowered the background from a nominal 235 U mass equivalent of 120 to 50 ng per vial. (author)

  14. Reactors

    DEFF Research Database (Denmark)

    Shah, Vivek; Vaz Salles, Marcos António

    2018-01-01

    The requirements for OLTP database systems are becoming ever more demanding. Domains such as finance and computer games increasingly mandate that developers be able to encode complex application logic and control transaction latencies in in-memory databases. At the same time, infrastructure...... engineers in these domains need to experiment with and deploy OLTP database architectures that ensure application scalability and maximize resource utilization in modern machines. In this paper, we propose a relational actor programming model for in-memory databases as a novel, holistic approach towards......-level function calls. In contrast to classic transactional models, however, reactors allow developers to take advantage of intra-transaction parallelism and state encapsulation in their applications to reduce latency and improve locality. Moreover, reactors enable a new degree of flexibility in database...

  15. Challenges for remote monitoring and control of small reactors

    Energy Technology Data Exchange (ETDEWEB)

    Trask, D., E-mail: traskd@aecl.ca [Atomic Energy of Canada Limited, Fredericton, New Brunswick (Canada)

    2013-07-01

    This paper considers a model for small, unmanned, remotely located reactors and discusses the ensuing cyber security and operational challenges for monitoring and control and how these challenges might be overcome through some of AECL's research initiatives and experience. (author)

  16. Implementing the AECL decommissioning quality assurance program at the Chalk River and Whiteshell Laboratories

    International Nuclear Information System (INIS)

    Colotelo, C.A.; Attas, E.M.; Stephens, M.E.

    2006-01-01

    This paper describes the approach and progress in developing, implementing and maintaining a quality assurance (QA) program for decommissioning at the nuclear facilities managed by Atomic Energy of Canada Limited (AECL). Decommissioning activities conducted by AECL are varied in nature, so the QA program must provide adequate flexibility, while maintaining consistency with accepted quality standards. Well-written documentation adhering to the applicable decommissioning standards is a key factor. Manager commitment and input during the writing of the documentation are also important to ensure relevance of the QA program and effectiveness of implementation. Training in the use of the quality assurance plan and procedures is vital to the understanding of the QA program. Beyond the training aspect there is a need for the quality assurance program to be supported by a QA subject expert who is able to advise the group in implementing the Quality Program with consistency over the range of decommissioning work activities and to provide continual assessment of the quality assurance program for efficiency and effectiveness, with a concomitant continuous improvement process. (author)

  17. Radiochemical studies on amorphous zirconium phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, A; Moores, G E [Salford Univ. (UK). Dept. of Chemistry and Applied Chemistry

    1981-01-01

    Amorphous zirconium phosphate (ZrP) is used in some hemodialysis machines for the regeneration of dialysate. Its function is to adsorb ammonium ions formed by the pretreatment of urea by urease. It also adsorbs Ca, Mg and K ions but leaches phosphate ions which are then removed (along with F/sup -/ ions) by a bed of hydrous zirconium oxide. The sodium form of ZrP is used although other forms have been suggested for use. The work reported here describes some preliminary radiochemical studies on the mechanism of release of phosphate ions and its possible relationship to sodium ion-exchange. /sup 32/P labelled material (HHZrP) was used for elution experiments with deionized water and buffer solutions having the pH's 4.2, 7.0 and 9.2. Buffer solutions used were as supplied by BDH. Elution was at four different temperatures in the range 293 to 363/sup 0/C. In the second series of experiments HHZrP was suspended in a NaCl solution labelled with /sup 22/Na. From this, /sup 22/Na labelled ZrP (NaHZrP) was prepared and eluted in the same way as the HHZrP. Results are given and discussed.

  18. Advanced CANDU reactor pre-licensing progress

    International Nuclear Information System (INIS)

    Popov, N.K.; West, J.; Snell, V.G.; Ion, R.; Archinoff, G.; Xu, C.

    2005-01-01

    The Advanced CANDU Reactor (ACR) is an evolutionary advancement of the current CANDU 6 reactor, aimed at producing electrical power for a capital cost and at a unit-energy cost significantly less than that of the current reactor designs. The Canadian Nuclear Safety Commission (CNSC) staff are currently reviewing the ACR design to determine whether, in their opinion, there are any fundamental barriers that would prevent the licensing of the design in Canada. This CNSC licensability review will not constitute a licence, but is expected to reduce regulatory risk. The CNSC pre-licensing review started in September 2003, and was focused on identifying topics and issues for ACR-700 that will require a more detailed review. CNSC staff reviewed about 120 reports, and issued to AECL 65 packages of questions and comments. Currently CNSC staff is reviewing AECL responses to all packages of comments. AECL has recently refocused the design efforts to the ACR-1000, which is a larger version of the ACR design. During the remainder of the pre-licensing review, the CNSC review will be focused on the ACR-1000. AECL Technologies Inc. (AECLT), a wholly-owned US subsidiary of AECL, is engaged in a pre-application process for the ACR-700 with the US Nuclear Regulatory Commission (USNRC) to identify and resolve major issues prior to entering a formal process to obtain standard design certification. To date, the USNRC has produced a Pre-Application Safety Assessment Report (PASAR), which contains their reviews of key focus topics. During the remainder of the pre-application phase, AECLT will address the issues identified in the PASAR. Pursuant to the bilateral agreement between AECL and the Chinese nuclear regulator, the National Nuclear Safety Administration (NNSA) and its Nuclear Safety Center (NSC), NNSA/NSC are reviewing the ACR in seven focus areas. The review started in September 2004, and will take three years. The main objective of the review is to determine how the ACR complies

  19. CANDU nuclear reactor technology

    International Nuclear Information System (INIS)

    Kakaria, B. K.

    1994-01-01

    AECL has over 40 years of experience in the nuclear field. Over the past 20 years, this unique Canadian nuclear technology has made a worldwide presence, In addition to 22 CANDU reactors in Canada, there are also two in India, one in Pakistan, one in Argentina, four in Korea and five in Romania. CANDU advancements are based on evolutionary plant improvements. They consist of system performance improvements, design technology improvements and research and development in support of advanced nuclear power. Given the good performance of CANOU plants, it is important that this CANDU operating experience be incorporated into new and repeat designs

  20. Gaia Assorted Mass Binaries Long Excluded from SLoWPoKES (GAMBLES): Identifying Ultra-wide Binary Pairs with Components of Diverse Mass

    Energy Technology Data Exchange (ETDEWEB)

    Oelkers, Ryan J.; Stassun, Keivan G.; Dhital, Saurav, E-mail: ryan.j.oelkers@vanderbilt.edu [Vanderbilt University, Department of Physics and Astronomy, Nashville, TN 37235 (United States)

    2017-06-01

    The formation and evolution of binary star systems are some of the remaining key questions in modern astronomy. Wide binary pairs (separations >10{sup 3} au) are particularly intriguing because their low binding energies make it difficult for the stars to stay gravitationally bound over extended timescales, and thus to probe the dynamics of binary formation and dissolution. Our previous SLoWPoKES catalogs, I and II, provided the largest and most complete sample of wide-binary pairs of low masses. Here we present an extension of these catalogs to a broad range of stellar masses: the Gaia Assorted Mass Binaries Long Excluded from SloWPoKES (GAMBLES), comprising 8660 statistically significant wide pairs that we make available in a living online database. Within this catalog we identify a subset of 543 long-lived (dissipation timescale >1.5 Gyr) candidate binary pairs, of assorted mass, with typical separations between 10{sup 3} and 10{sup 5.5} au (0.002–1.5 pc), using the published distances and proper motions from the Tycho -Gaia Astrometric Solution and Sloan Digital Sky Survey photometry. Each pair has at most a false positive probability of 0.05; the total expectation is 2.44 false binaries in our sample. Among these, we find 22 systems with 3 components, 1 system with 4 components, and 15 pairs consisting of at least 1 possible red giant. We find the largest long-lived binary separation to be nearly 3.2 pc; even so, >76% of GAMBLES long-lived binaries have large binding energies and dissipation lifetimes longer than 1.5 Gyr. Finally, we find that the distribution of binary separations is clearly bimodal, corroborating the findings from SloWPoKES and suggesting multiple pathways for the formation and dissipation of the widest binaries in the Galaxy.

  1. Gaia Assorted Mass Binaries Long Excluded from SLoWPoKES (GAMBLES): Identifying Ultra-wide Binary Pairs with Components of Diverse Mass

    International Nuclear Information System (INIS)

    Oelkers, Ryan J.; Stassun, Keivan G.; Dhital, Saurav

    2017-01-01

    The formation and evolution of binary star systems are some of the remaining key questions in modern astronomy. Wide binary pairs (separations >10 3 au) are particularly intriguing because their low binding energies make it difficult for the stars to stay gravitationally bound over extended timescales, and thus to probe the dynamics of binary formation and dissolution. Our previous SLoWPoKES catalogs, I and II, provided the largest and most complete sample of wide-binary pairs of low masses. Here we present an extension of these catalogs to a broad range of stellar masses: the Gaia Assorted Mass Binaries Long Excluded from SloWPoKES (GAMBLES), comprising 8660 statistically significant wide pairs that we make available in a living online database. Within this catalog we identify a subset of 543 long-lived (dissipation timescale >1.5 Gyr) candidate binary pairs, of assorted mass, with typical separations between 10 3 and 10 5.5 au (0.002–1.5 pc), using the published distances and proper motions from the Tycho -Gaia Astrometric Solution and Sloan Digital Sky Survey photometry. Each pair has at most a false positive probability of 0.05; the total expectation is 2.44 false binaries in our sample. Among these, we find 22 systems with 3 components, 1 system with 4 components, and 15 pairs consisting of at least 1 possible red giant. We find the largest long-lived binary separation to be nearly 3.2 pc; even so, >76% of GAMBLES long-lived binaries have large binding energies and dissipation lifetimes longer than 1.5 Gyr. Finally, we find that the distribution of binary separations is clearly bimodal, corroborating the findings from SloWPoKES and suggesting multiple pathways for the formation and dissipation of the widest binaries in the Galaxy.

  2. The use of robots for automation in the radiochemical laboratory

    International Nuclear Information System (INIS)

    Huddleston, J.

    1988-01-01

    The use of robotic systems for automated processes such as overnight operations, procedures involving radiation hazards in radiochemical laboratories is discussed. Particular reference is made to their use in analytical problems. Their flexibility is emphasised. (U.K.)

  3. A radiochemical assay for biotin in biological materials

    International Nuclear Information System (INIS)

    Hood, R.L.

    1975-01-01

    A radiochemical assay for biotin is described. The assay was sensitive to one nanogram and simple enough for routine biotin analyses. The assay yielded results which were comparable to those obtained from a microbiological assay using Lactobacillus plantarum. (author)

  4. The publication lapse of papers in Radiochemical and Radioanalytical Letters

    International Nuclear Information System (INIS)

    Braun, T.; Nagydiosi-Kocsis, Gy.

    1982-01-01

    The time needed for passing through journal editorial and publication processing has been examined for the papers published in Radiochemical and Radioanalytical Letters for the years 1969-1981. (author)

  5. Safety and Waste Management for SAM Radiochemical Methods

    Science.gov (United States)

    The General Safety and Waste Management page offers section-specific safety and waste management details for the radiochemical analytes included in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  6. Radiochemical and instrumental neutron activation analysis - recent trends

    International Nuclear Information System (INIS)

    Dams, R.

    1990-01-01

    Recent trends of radiochemical and instrumental neutron activation analysis are discussed. Novel developments include the application of cyclic and pulsed activation, better energy resolution with hyperpure germanium detectors, and use of pulse processing systems allowing extremely high count rates of very short-lived isotopes. Further development is anticipated in the field of speciation in biological and environmental studies. Radiochemical methods have led to accurate determinations at the ng/g level. A promising future is expected for neutron activation techniques. (orig.)

  7. The advanced MAPLE reactor concept

    International Nuclear Information System (INIS)

    Lidstone, R.F.; Lee, A.G.; Gillespie, G.E.; Smith, H.J.

    1989-01-01

    During the past several years, Atomic Energy of Canada Limited (AECL) has been developing the new MAPLE multipurpose reactor concept, which is capable of generating peak thermal neutron fluxes of up to 3 x 10 18 n/m 2 s in its heavy water reflector at a nominal thermal power level of 15MW. An assessment of the MAPLE-D 2 O reactor has shown that it could also be used as a high-flux neutron source. it could be developed to be used for several applications if a 12-site annular core is used. Thermal fluxes several times greater than in existing facilities would be available (author)

  8. Use of 236Pu and 242Pu as a radiochemical tracer for estimation of Pu in bioassay samples by fission track analysis

    International Nuclear Information System (INIS)

    Sawant, Pramilla D.; Prabhu, Supreetha P.; Kalsi, P.C.

    2008-01-01

    236 Pu and 242 Pu are routinely used as radiochemical yield monitors in India for bioassay monitoring of occupational workers by alpha spectrometry. Fission Track Analysis (FTA) is also being standardized for trace level determination of Pu in bioassay samples. The present study, reports the utility of 236 Pu and 242 Pu as radiochemical tracers in estimation of Pu in bioassay samples by FTA technique. The advantages of using 236 Pu tracer in FTA over 242 Pu as well as the interference caused due to presence of 241 Pu in the bioassay samples of occupational workers handling power reactor grade Pu is discussed. (author)

  9. Reactor

    International Nuclear Information System (INIS)

    Fujibayashi, Toru.

    1976-01-01

    Object: To provide a boiling water reactor which can enhance a quake resisting strength and flatten power distribution. Structure: At least more than four fuel bundles, in which a plurality of fuel rods are arranged in lattice fashion which upper and lower portions are supported by tie-plates, are bundled and then covered by a square channel box. The control rod is movably arranged within a space formed by adjoining channel boxes. A spacer of trapezoidal section is disposed in the central portion on the side of the channel box over substantially full length in height direction, and a neutron instrumented tube is disposed in the central portion inside the channel box. Thus, where a horizontal load is exerted due to earthquake or the like, the spacers come into contact with each other to support the channel box and prevent it from abnormal vibrations. (Furukawa, Y.)

  10. New opportunities from nuclear R and D

    International Nuclear Information System (INIS)

    Hart, R.G.

    1984-01-01

    The author presents a new initiative within Atomic Energy of Canada Ltd. (AECL), the intention to look for spin-off business opportunities from main-line research and development. In 1982 AECL began encouraging ideas for spin-off applications. Some problems were encountered: the reluctance of staff to divert attention from the CANDU program; resource allocation; difficulties in getting market input; and difficulties in deciding what to license and what to retain as an in-house business opportunity. Successes have come in the areas of using CANDU technology in LWRs, SLOWPOKE reactors, industrial accelerators, stable isotope production, intelligent sensing systems, and deuterated lucite for fibre optics. (L.L.)

  11. Documentation Experiences for Jamaican SLOWPOKE-2 Conversion from HEU to LEU

    International Nuclear Information System (INIS)

    Warner, T.-A.; Dennis, H.; Antoine, J.

    2015-01-01

    The Jamaican SLOWPOKE–2 (JM–1) is a 20 kW research reactor manufactured by Atomic Energy of Canada Limited and has been operating since March 1984, in the department of the International Centre for Environmental and Nuclear Sciences (ICENS), at the University of the West Indies, Mona Campus in Kingston, Jamaica. The pool type reactor has been primarily used for Neutron Activation Analysis in environmental, agricultural, geochemical, health-related studies and mineral exploration. The University, assisted by the IAEA under the GTRI/RERTR program, is currently in the process of converting from HEU to LEU. Extensive documentation on policies, general requirements, elements of the conversion quality assurance (QA) system and conversion QA administrative procedures is required for the conversion. The core conversion activities are being carried out in accordance with current international standards and regulatory guidelines of the newly established Jamaican Radiation Safety Authority (RSA) with agreement between the RSA and IAEA or DOE related to Nuclear Safety and Control. The documentation structure has taken into consideration nuclear safety and licensing, LEU fuel design and conversion analysis, LEU fuel procurement and fabrication, removal of HEU fuel and reactor maintenance and conversion and commissioning, with the conversion QA manual at the apex of the structure. To a large extent, the documentation format will adhere to that of the IAEA applicable regulatory standards and guidance documents. The major challenge of the conversion activities, it is envisioned, will come from the absence of any previous regulatory framework in Jamaica; however, a timeline for the process, which includes training and equipping of regulators, will guide operation. (author)

  12. AECL R and D's role in promoting nuclear research and education

    International Nuclear Information System (INIS)

    Sadhankar, R.

    2009-01-01

    Nuclear renaissance has created new opportunities for new technology development and has also brought along the challenge of meeting the growing demand of trained personnel in the nuclear science and engineering. Towards meeting this challenge, AECL R and D organization is actively promoting and supporting the creation of nuclear research capabilities at the universities and also effectively leveraging the R and D at the universities. It has also put in place several new initiatives to attract and develop the talented young people for careers in nuclear science and engineering. This paper describes various interactions and collaborations with the universities that supports the nuclear R and D at the universities and develop highly qualified personnel for the future nuclear R and D needs. (author)

  13. Fretting wear of steam generator tubes: high-temperature tests on AECL rig

    International Nuclear Information System (INIS)

    Guerout, F.; Zbinden, M.

    1993-07-01

    The R and DD has undertaken the study of fretting-wear of Alloy 600 S.G. tubes which occurs by contact with migrating items. The test series was performed in Canada at AECL Research (Atomic Energy of Canada Limited) as part of an exchange program. Four types of configuration were envisaged: a tube-to-drilled hole support contact which provides reference results and three types of tube-to-support contacts which simulate the tube fretting-wear induced by a welding rod, a threaded rod and a knife-edge rod support. This programme is completed by the study of the contact between a S.G. tube and a neighbouring S.G. tube which has been broken after plugging. (authors). 1 tab., 3 refs

  14. Final report of the AECL/SKB Cigar Lake analog study

    International Nuclear Information System (INIS)

    Cramer, J.

    1994-05-01

    The Cigar Lake uranium deposit is located in northern Saskatchewan, Canada. The 1.3-billion-year-old deposit is located at a depth of about 450 m below surface in a water-saturated sandstone at the unconformity contact with the high-grade metamorphic rocks of the Canadian Shield. The Cigar Lake deposit has many features that parallel those being considered within the Canadian concept for disposal of nuclear fuel waste. The study of these natural structures and processes provides valuable insight toward the eventual design and site selection of a nuclear fuel waste repository. The main feature of this analog is the absence of any indication on the surface of the rich uranium ore 450 m below. This indicates that the combination of natural barriers has been effective in isolating the uranium ore from the surface environment. More specifically, the deposit provides analog information relevant to the stability of UO 2 fuel waste, the performance of clay-based barriers, radionuclide migration, colloid formation, radiolysis, fission-product geochemistry and general aspects of water-rock interaction. The main geochemical studies on this deposit focus on the evolution of groundwater compositions in the deposit and on their redox chemistry with respect to the uranium, iron and sulphide systems. Since 1984, through cooperation from the owners of the Cigar Lake deposit, analog studies have been conducted. AECL, with support from Ontario Hydro under the auspices of the CANDU Owners Group, initiated international participation in 1989 through collaboration with the Swedish Nuclear Fuel and Waste Management Company (SKB) and, more recently, with the Los Alamos National Laboratory (LANL). This report gives the results of the various studies carried out during the 3-year collaboration between AECL and SKB, as well as a summery of the LANL study. It provides detailed information on the generated databases and models, and integrates this information into conclusions for use in safety

  15. Final report of the AECL/SKB Cigar Lake analog study

    International Nuclear Information System (INIS)

    Cramer, J.J.

    1994-07-01

    The Cigar Lake uranium deposit is located in northern Saskatchewan, Canada. The 1.3-billion-year-old deposit is located at a depth of about 450 m below surface in a water-saturated sandstone at the unconformity contact with the high-grade metamorphic rocks of the Canadian Shield. The uranium mineralization, consisting primarily of uraninite (UO 2 ), is surrounded by a clay-rich halo in both sandstone and basement rocks, and remains extremely well preserved and intact. The average grade of the mineralization is ∼ 8 wt.% U; locally grades are as high as ∼ 55 wt.%U. The Cigar lake deposit has many features that parallel those being considered within the Canadian concept for disposal of nuclear fuel waste. Specifically, the deposit provides analog information relevant to the stability of UO 2 fuel waste, the performance of clay-based barriers, radionuclide migration, colloid formation, radiolysis, fission-product geochemistry and general aspects of water-rock interaction. The main geochemical studies on this deposit focus on the evolution of groundwater compositions in the deposit and on their redox chemistry with respect to the uranium, iron and sulphide systems. Since 1984, through cooperation from the owners of the Cigar lake deposit, analog studies have been conducted. AECL, with support from Ontario Hydro under the auspices of the CANDU Owners Group, initiated international participation in 1989 through collaboration with the Swedish Nuclear Fuel and Waste Management Company (SKB) and, more recently, with the Los Alamos National Laboratory (LANL). This report gives the results of the various studies carried out during the 3-year collaboration between AECL and SKB, as well as a summary of the LANL study. It provides detailed information on the generated databases and models, and integrates this information into conclusions for use in safety assessment of the Canadian, Swedish and United States disposal concepts. 15 refs., 25 figs., 55 tabs

  16. Validity limits of fuel rod performance calculations from radiochemical data at operating LWRs

    International Nuclear Information System (INIS)

    Zaenker, H.; Nebel, D.

    1986-01-01

    There are various calculational models for the assessment of the fuel rod performance on the basis of the activities of gaseous and volatile fission products in the reactor coolant. The most important condition for the applicability of the calculational models is that a steady state release of the fission products into the reactor coolant takes place. It is well known that the models are not applicable during or shortly after reactor transients. The fact that 'unsteady states' caused by the fuel defection processes themselves can also occur in rare cases at steady reactor operation has not been taken into account so far. A test of validity is suggested with the aid of which the applicability of the calculational models can be checked in any concrete case, and the misleading of the reactor operators by gross misinterpretation of the radiochemical data can be avoided. The criteria of applicability are the fission product total activity, the slope tan α in the relationship lg (R/sub i//B/sub i/) proportional to lg lambda/sub i/ for the gaseous and volatile fission products, and the activity of the nonvolatile isotope 239 Np. (author)

  17. The advanced MAPLE reactor concept

    International Nuclear Information System (INIS)

    Lidstone, R.F.; Lee, A.G.; Gillespie, G.E.; Smith, H.J.

    1989-01-01

    In Canada the need for advanced neutron sources has long been recognized. During the past several years Atomic Energy of Canada Limited (AECL) has been developing the new MAPLE multipurpose reactor concept. To date, the MAPLE program has focused on the development of a modest-cost multipurpose medium-flux neutron source to meet contemporary requirements for applied and basic research using neutron beams, for small-scale materials testing and analysis and for radioisotope production. The basic MAPLE concept incorporates a compact light-water cooled and moderated core within a heavy water primary reflector to generate strong neutron flux levels in a variety of irradiation facilities. In view of renewed Canadian interest in a high-flux neutron source, the MAPLE group has begun to explore advanced concepts based on AECL's experience with heavy water reactors. The overall objective is to define a high-flux facility that will support materials testing for advanced power reactors, new developments in extracted neutron-beam applications, and/or production of radioisotopes. The design target is to attain performance levels of HFR-Grenoble, HFBR, HFIR in a new heavy water-cooled, -moderated,-reflected reactor based on rodded LEU fuel. Physics, shielding, and thermohydraulic studies have been performed for the MAPLE heavy water reactor. 14 refs., 4 figs., 1 tab

  18. Chemical and radiochemical specifications - PWR power plants

    International Nuclear Information System (INIS)

    Stutzmann, A.

    1997-01-01

    Published by EDF this document gives the chemical specifications of the PWR (Pressurized Water Reactor) nuclear power plants. Among the chemical parameters, some have to be respected for the safety. These parameters are listed in the STE (Technical Specifications of Exploitation). The values to respect, the analysis frequencies and the time states of possible drops are noticed in this document with the motion STE under the concerned parameter. (A.L.B.)

  19. Radiochemical verification and validation in the environmental data collection process

    International Nuclear Information System (INIS)

    Rosano-Reece, D.; Bottrell, D.; Bath, R.J.

    1994-01-01

    A credible and cost effective environmental data collection process should produce analytical data which meets regulatory and program specific requirements. Analytical data, which support the sampling and analysis activities at hazardous waste sites, undergo verification and independent validation before the data are submitted to regulators. Understanding the difference between verification and validation and their respective roles in the sampling and analysis process is critical to the effectiveness of a program. Verification is deciding whether the measurement data obtained are what was requested. The verification process determines whether all the requirements were met. Validation is more complicated than verification. It attempts to assess the impacts on data use, especially when requirements are not met. Validation becomes part of the decision-making process. Radiochemical data consists of a sample result with an associated error. Therefore, radiochemical validation is different and more quantitative than is currently possible for the validation of hazardous chemical data. Radiochemical data include both results and uncertainty that can be statistically compared to identify significance of differences in a more technically defensible manner. Radiochemical validation makes decisions about analyte identification, detection, and uncertainty for a batch of data. The process focuses on the variability of the data in the context of the decision to be made. The objectives of this paper are to present radiochemical verification and validation for environmental data and to distinguish the differences between the two operations

  20. Radiochemical studies on environmental radioactivity in Sudan

    Energy Technology Data Exchange (ETDEWEB)

    Sam, Adam Khatir [Sudan Atomic Energy Commission, Khartoum (Sudan)

    1998-09-01

    Measurements of uranium and thorium isotopes, {sup 226} Ra, {sup 210} Po, {sup 228} Ra, {sup 40} K and fallout radionuclide {sup 137} Cs in soil samples collected from different districts in Sudan, rock phosphate samples collected from the uro and kurun rock phosphate deposits in the eastern part of the Nuba mountains in Western Sudan, and surface marine sediments and marine organisms collected from the sudanese coastal waters of the Red Sea have been made using a high resolution gamma-spectrometry, radiochemical separation and {alpha} spectrometry. The external exposure due to {gamma} radiation from the ground has been calculated. The average exposure was found to be 45.4 {+-} 21.3 nGy/h, corresponding to the annual dose equivalent of 278 {mu}Sv/y. With the exception of some areas, the calculated exposure falls within the global wide range of outdoor radiation exposure given in the UNSCEAR publications. The nation-wide average concentrations of {sup 226} Ra, {sup 238} U, {sup 232} Th, {sup 40} K and {sup 137} Cs determined were 31.6 {+-} 27, 20.1 {+-} 16.4, 19.1 {+-} 8.1, 280.3 {+-} 137.6 and 4.1 {+-} 4.3 Bq/Kg, respectively. This shows that there is little contamination due to fallout radioactivity at survey sites. The exchangeable radium fraction constitutes 19-24% of the total radium content. The data show that {sup 238} U and its decay products are the principal contributors of radioactivity in both phosphate deposits at Uro and Kurun. The equivalent mass concentrations of uranium in the Uro rock phosphate fall within the range that could be economically recovered as the by-product of fertilizer industry. The mean activity concentrations weighted by average agricultural consumption of 300 kg/ha of untreated ground rock fertilizer resulted in an annual distribution of 120.63 Bq Ra/m{sup 2} with Uro rock and 12.97, 0.21 and 4.24 Bq/m{sup 2} respectively, with Kurun rock fertilizer. The external radiation exposure over agricultural areas was estimated 23.41 x 10

  1. Radiochemical studies on environmental radioactivity in Sudan

    International Nuclear Information System (INIS)

    Sam, Adam Khatir

    1998-01-01

    Measurements of uranium and thorium isotopes, 226 Ra, 210 Po, 228 Ra, 40 K and fallout radionuclide 137 Cs in soil samples collected from different districts in Sudan, rock phosphate samples collected from the uro and kurun rock phosphate deposits in the eastern part of the Nuba mountains in Western Sudan, and surface marine sediments and marine organisms collected from the sudanese coastal waters of the Red Sea have been made using a high resolution gamma-spectrometry, radiochemical separation and α spectrometry. The external exposure due to γ radiation from the ground has been calculated. The average exposure was found to be 45.4 ± 21.3 nGy/h, corresponding to the annual dose equivalent of 278 μSv/y. With the exception of some areas, the calculated exposure falls within the global wide range of outdoor radiation exposure given in the UNSCEAR publications. The nation-wide average concentrations of 226 Ra, 238 U, 232 Th, 40 K and 137 Cs determined were 31.6 ± 27, 20.1 ± 16.4, 19.1 ± 8.1, 280.3 ± 137.6 and 4.1 ± 4.3 Bq/Kg, respectively. This shows that there is little contamination due to fallout radioactivity at survey sites. The exchangeable radium fraction constitutes 19-24% of the total radium content. The data show that 238 U and its decay products are the principal contributors of radioactivity in both phosphate deposits at Uro and Kurun. The equivalent mass concentrations of uranium in the Uro rock phosphate fall within the range that could be economically recovered as the by-product of fertilizer industry. The mean activity concentrations weighted by average agricultural consumption of 300 kg/ha of untreated ground rock fertilizer resulted in an annual distribution of 120.63 Bq Ra/m 2 with Uro rock and 12.97, 0.21 and 4.24 Bq/m 2 respectively, with Kurun rock fertilizer. The external radiation exposure over agricultural areas was estimated 23.41 x 10 -9 Gy/h and 2.59 x 10 -9 Gy/h at 1 m above ground level for Uro and Kurun rock phosphate fertilizers

  2. Radiochemical methods to enhance efficiency of α-spectral measurements

    International Nuclear Information System (INIS)

    Silkina, G.P.; Artem'ev, O.I.

    2001-01-01

    The paper describes possible ways to improve a plutonium radiochemical separation technique developed in the Khlopin Radium Institute and modify it to account for the site-specific features of samples from the former Semipalatinsk test site (STS) and enhance the alpha spectrometry efficiency.The paper describes possible ways to improve a plutonium radiochemical separation technique developed in the Khlopin Radium Institute and modify it to account for the site-specific features of samples from the former Semipalatinsk test site (STS) and enhance the alpha spectrometry efficiency. (author)

  3. Radiochemical studies of some preparation methods for phosphorus

    International Nuclear Information System (INIS)

    Loos-Neskovic, C.; Fedoroff, M.

    1983-01-01

    Various methods of radiochemical separation were tested for the determination of phosphorus in metals and alloys by neutron activation analysis. Classical methods of separation revealed some defects when they were applied to this problem. Methods using liquid extraction gave low yields and were not reproducible. Methods based on precipitation gave better results, but were not selective enough in most cases. Retention on alumina was not possible without preliminary separations. Authors studied a new radiochemical separation based on the extraction of elemental phosphorus in the gaseous phase after reduction at high temperature with carbon. Measurements with radioactive phosphorus showed that the extraction yield is better than 99%. (author)

  4. Radiochemical analysis for nuclear waste management in decommissioning

    International Nuclear Information System (INIS)

    Hou, X.

    2010-07-01

    The NKS-B RadWaste project was launched from June 2009. The on-going decommissioning activities in Nordic countries and current requirements and problems on the radiochemical analysis of decommissioning waste were discussed and overviewed. The radiochemical analytical methods used for determination of various radionuclides in nuclear waste are reviewed, a book was written by the project partners Jukka Lehto and Xiaolin Hou on the chemistry and analysis of radionuclide to be published in 2010. A summary of the methods developed in Nordic laboratories is described in this report. The progresses on the development and optimization of analytical method in the Nordic labs under this project are presented. (author)

  5. Radiochemical analysis for nuclear waste management in decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Hou, X. (Technical Univ. of Denmark, Risoe National Lab. for Sustainable Energy. Radiation Research Div., Roskilde (Denmark))

    2010-07-15

    The NKS-B RadWaste project was launched from June 2009. The on-going decommissioning activities in Nordic countries and current requirements and problems on the radiochemical analysis of decommissioning waste were discussed and overviewed. The radiochemical analytical methods used for determination of various radionuclides in nuclear waste are reviewed, a book was written by the project partners Jukka Lehto and Xiaolin Hou on the chemistry and analysis of radionuclide to be published in 2010. A summary of the methods developed in Nordic laboratories is described in this report. The progresses on the development and optimization of analytical method in the Nordic labs under this project are presented. (author)

  6. ZZ HATCHES-18, Database for radiochemical modelling

    International Nuclear Information System (INIS)

    Heath, T.G.

    2008-01-01

    1 - Description of program or function: HATCHES is a referenced, quality assured, thermodynamic database, developed by Serco Assurance for Nirex. Although originally compiled for use in radiochemical modelling work, HATCHES also includes data suitable for many other applications e.g. toxic waste disposal, effluent treatment and chemical processing. It is used in conjunction with chemical and geochemical computer programs, to simulate a wide variety of reactions in aqueous environments. The database includes thermodynamic data (the log formation constant and the enthalpy of formation for the chemical species) for the actinides, fission products and decay products. The datasets for Ni, Tc, U, Np, Pu and Am are based on the NEA reviews of the chemical thermodynamics of these elements. The data sets for these elements with oxalate, citrate and EDTA are based on the NEA-selected values. For iso-saccharinic acid, additional data (non-selected values) have been included from the NEA review as well as data derived from other sources. HATCHES also includes data for many toxic metals and for elements commonly found in groundwaters or geological materials. HARPHRQ operates by reference to the PHREEQE master species list. Thus the thermodynamic information supplied is: a) the log equilibrium constant for the formation reaction of the requested species from the PHREEQE master species for the corresponding elements; b) the enthalpy of reaction for the formation reaction of the requested species from the PHREEQE master species for the corresponding elements. This version of HATCHES has been updated since the previous release to provide consistency with the selected data from two recent publications in the OECD Nuclear Energy Agency series on chemical thermodynamics: Chemical Thermodynamics Series Volume 7 (2005): Chemical Thermodynamics of Selenium by Aeke Olin (Chairman), Bengt Nolaeng, Lars-Olof Oehman, Evgeniy Osadchii and Erik Rosen and Chemical Thermodynamics Series Volume 8

  7. Minicomputer system for radiochemical analysis by coincidence spectrometry

    International Nuclear Information System (INIS)

    Brauer, F.P.; Fager, J.E.

    1979-01-01

    Minicomputer-based coincidence analysis methods have been developed for use in performing radiochemical analysis by high-resolution x- and gamma-ray coincidence spectrometry. This paper describes the data-acquisition and analysis methods develolped for qualitative and quantitative analyses of coincidence spectrometric data. Data-acquisition capabilities include both direct multiparameter pulse-height analysis and buffered list-mode acquisition

  8. Instrumentation for chemical and radiochemical monitoring in nuclear power plants

    International Nuclear Information System (INIS)

    Nordmann, F.; Ballard, G.

    2009-01-01

    This article details the instrumentation implemented in French nuclear power plants for the monitoring of chemical and radiochemical effluents with the aim of limiting their environmental impact. It describes the controls performed with chemical automata for the search for drifts, anomalies or pollution in a given circuit. The operation principles of the different types of chemical automata are explained as well as the manual controls performed on samples manually collected. Content: 1 - general considerations; 2 - objectives of the chemical monitoring: usefulness of continuous monitoring with automata, transmission to control rooms and related actions, redundancy of automata; 3 - instrumentation and explanations for the main circuits: principle of chemical automata monitoring, instrumentation of the main primary circuit, instrumentation of the main secondary circuit, instrumentation of the tertiary circuit, preparation of water makeup (demineralized water), other loops, instrumentation for effluents and environment monitoring, measurement principles of chemical automata, control and maintenance of chemical automata; 4 - manual controls after sampling; 5 - radiochemical monitoring: automatized radiochemical measurements, manual radiochemical measurements; 6 - conclusion

  9. Thorium base fuels reprocessing at the L.P.R. (Radiochemical Processes Laboratory) experimental plant

    International Nuclear Information System (INIS)

    Almagro, J.C.; Dupetit, G.A.; Deandreis, R.A.

    1987-01-01

    The availability of the LPR (Radiochemical Processes Laboratory) plant offers the possibility to demonstrate and create the necessary technological basis for thorium fuels reprocessing. To this purpose, the solvents extraction technique is used, employing TBP (at 30%) as solvent. The process is named THOREX, a one-cycle acid, which permits an adequate separation of Th 232 and U 233 components and fission products. For thorium oxide elements dissolution, the 'chopp-leach' process (installed at LPR) is used, employing a NO 3 H 13N, 0.05M FH and 0.1M Al (NO 3 ) 3 , as solvent. To adapt the pilot plant to the flow-sheet requirements proposed, minor modifications must be carried out in the interconnection of the existing decanting mixers. The input of the plant has been calculated by Origin Code modified for irradiations in reactors of the HWR type. (Author)

  10. Studies on groundwater flow and radionuclide migration at underground environments. Final report of collaboration research between JAERI and AECL

    International Nuclear Information System (INIS)

    Ogawa, Hiromichi; Nagao, Seiya; Yamaguchi, Tetsuji

    2001-01-01

    The Japan Atomic Energy Research Institute (JAERI) conducted a collaboration program Phase II with the Atomic Energy of Canada Limited (AECL) from 1994 to 1998. The program was started to contribute the establishment of safety assessment methodology for the geological disposal of high-level radioactive wastes on the basis of the results from the Phase I program (1987-1993). The Phase II program consisted of following experimental items: (1) radionuclide migration experiments for quarried blocks (1m x 1m x 1m) of granite with natural fracture under in-situ geochemical conditions at 240 m level of Underground Research Laboratory of AECL; (2) study on the effects of dissolved organic materials extracted from natural groundwaters on radionuclide migration; (3) study on groundwater flow using environmental isotopes at two different geologic environments; (4) development of groundwater flow and radionuclide transport model for heterogeneous geological media. The mobility of radionuclides was retarded in the fracture by the deep geological conditions and the fracture paths. The groundwater humic substances with high molecular size were enhanced for the mobility of radionuclides in the sand and granitic media due to the complexation. The application of 36 Cl and 129 I for the analysis on the long-term groundwater flow can be validated on the basis of investigation at the URL site. Moreover, the geostatistical model for the analysis on groundwater flow and radionuclide migration was developed, and was able to describe the groundwater flow and the migration of environmental tracers at AECL sites. This report summaries the results of the Phase II program between JAERI and AECL. (author)

  11. Studies on groundwater flow and radionuclide migration at underground environments. Final report of collaboration research between JAERI and AECL

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Hiromichi; Nagao, Seiya; Yamaguchi, Tetsuji [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    2001-01-01

    The Japan Atomic Energy Research Institute (JAERI) conducted a collaboration program Phase II with the Atomic Energy of Canada Limited (AECL) from 1994 to 1998. The program was started to contribute the establishment of safety assessment methodology for the geological disposal of high-level radioactive wastes on the basis of the results from the Phase I program (1987-1993). The Phase II program consisted of following experimental items: (1) radionuclide migration experiments for quarried blocks (1m x 1m x 1m) of granite with natural fracture under in-situ geochemical conditions at 240 m level of Underground Research Laboratory of AECL; (2) study on the effects of dissolved organic materials extracted from natural groundwaters on radionuclide migration; (3) study on groundwater flow using environmental isotopes at two different geologic environments; (4) development of groundwater flow and radionuclide transport model for heterogeneous geological media. The mobility of radionuclides was retarded in the fracture by the deep geological conditions and the fracture paths. The groundwater humic substances with high molecular size were enhanced for the mobility of radionuclides in the sand and granitic media due to the complexation. The application of {sup 36}Cl and {sup 129}I for the analysis on the long-term groundwater flow can be validated on the basis of investigation at the URL site. Moreover, the geostatistical model for the analysis on groundwater flow and radionuclide migration was developed, and was able to describe the groundwater flow and the migration of environmental tracers at AECL sites. This report summaries the results of the Phase II program between JAERI and AECL. (author)

  12. AECL'S approach to managing long term liabilities at Chalk River Laboratories. Annex II

    International Nuclear Information System (INIS)

    Audet, M.C.

    2006-01-01

    Chalk River Laboratories (CRL) is a large nuclear research and development/ industrial site operated by Atomic Energy of Canada Limited (AECL). Construction of the site started in 1944, and it now includes over 100 buildings/facilities operating in various nuclear fields. A well developed decommissioning programme exists at CRL, with progress being made on decommissioning older redundant buildings, in parallel with ongoing site operations and development. The decommissioning programme is predicated on the assumption that the current nuclear operations will continue over a 100 year operating period, but with a decline towards the end of the period. Although decommissioning and remediation work will be carried out throughout the operational period, residual levels of activity remaining in a few areas will require institutional control (IC) for an assumed period of 300 years. The intention is to complete all necessary active remediation work before the start of the IC period and thereafter rely only on passive means to reduce residual contamination to levels that do not require IC measures. The latter include environmental monitoring, active and passive controls to prevent intrusion, and management controls to prohibit access or development. A formal information and records management programme at CRL has been initiated. (author)

  13. Simulating thermal behavior of AECL's spent fuel dry storage system with CATHENA

    International Nuclear Information System (INIS)

    Sabourin, G.

    1998-01-01

    This paper documents the comparisons between CATHENA predictions and temperature measurements taken at the Gentilly-2 NPP spent fuel dry storage facility and in a mock--up of a storage basket placed inside a storage cylinder. It also presents CATHENA temperature predictions related to the storage of spent fuel in MACSTOR modules as planned for Ignalina NPP, Lithuania. CATHENA has been chosen because it can simulate many noncondensable gases including air and helium, and because of its great flexibility in the representation of the MACSTOR module geometry. The results of the simulations show good agreement with the experimental measurements. The two comparisons indicate that CATHENA can be used to simulate heat transfer from the fuel to the external air circuit of the spent fuel dry storage system. For the Ignalina MACSTOR module, containing RBMK fuel having higher heat release than typical CANDU fuel, CATHENA predicts that the maximum fuel temperature is expected to be around 240 deg C, giving an acceptable margin below the maximum allowed temperature of 300 deg C. In conclusion, this paper shows that the thermalhydraulic code CATHENA can accurately predict the thermal behavior AECL's air cooled spent fuel dry storage system. (author)

  14. Simulating thermal behavior of AECL's spent fuel dry storage system with CATHENA

    Energy Technology Data Exchange (ETDEWEB)

    Sabourin, G. [Atomic Energy of Canada Limited, Montreal, PQ (Canada)

    1998-07-01

    This paper documents the comparisons between CATHENA predictions and temperature measurements taken at the Gentilly-2 NPP spent fuel dry storage facility and in a mock--up of a storage basket placed inside a storage cylinder. It also presents CATHENA temperature predictions related to the storage of spent fuel in MACSTOR modules as planned for Ignalina NPP, Lithuania. CATHENA has been chosen because it can simulate many noncondensable gases including air and helium, and because of its great flexibility in the representation of the MACSTOR module geometry. The results of the simulations show good agreement with the experimental measurements. The two comparisons indicate that CATHENA can be used to simulate heat transfer from the fuel to the external air circuit of the spent fuel dry storage system. For the Ignalina MACSTOR module, containing RBMK fuel having higher heat release than typical CANDU fuel, CATHENA predicts that the maximum fuel temperature is expected to be around 240 deg C, giving an acceptable margin below the maximum allowed temperature of 300 deg C. In conclusion, this paper shows that the thermalhydraulic code CATHENA can accurately predict the thermal behavior AECL's air cooled spent fuel dry storage system. (author)

  15. Experience with remediating radiostrontium-contaminated ground water and surface water with versions of AECL's CHEMIC process

    International Nuclear Information System (INIS)

    Vijayan, S.

    2006-01-01

    Numerous approaches have been developed for the remediation of radiostrontium ( 90 Sr) contaminated ground water and surface water. Several strontium-removal technologies have been assessed and applied at AECL's (Atomic Energy of Canada Limited) Chalk River Laboratories. These include simple ion exchange (based on non-selective natural zeolites or selective synthetic inorganic media), and precipitation and filtration with or without ion exchange as a final polishing step. AECL's CHEMIC process is based on precipitation-microfiltration and ion-exchange steps. This paper presents data related to radiostrontium removal performance and other operational experiences including troubleshooting with two round-the-clock, pilot-scale water remediation plants based on AECL's CHEMIC process at the Chalk River Laboratories site. These plants began operation in the early 1990s. Through optimization of process chemistry and operation, high values for system capability and system availability factors, and low concentrations of 90 Sr in the discharge water approaching drinking water standard can be achieved. (author)

  16. Application of heat pipes in nuclear reactors for passive heat removal

    Energy Technology Data Exchange (ETDEWEB)

    Haque, Z.; Yetisir, M., E-mail: haquez@aecl.ca [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2013-07-01

    This paper introduces a number of potential heat pipe applications in passive (i.e., not requiring external power) nuclear reactor heat removal. Heat pipes are particularly suitable for small reactors as the demand for heat removal is significantly less than commercial nuclear power plants, and passive and reliable heat removal is required. The use of heat pipes has been proposed in many small reactor designs for passive heat removal from the reactor core. This paper presents the application of heat pipes in AECL's Nuclear Battery design, a small reactor concept developed by AECL. Other potential applications of heat pipes include transferring excess heat from containment to the atmosphere by integrating low-temperature heat pipes into the containment building (to ensure long-term cooling following a station blackout), and passively cooling spent fuel bays. (author)

  17. Present status and perspective of radiochemical analysis of radionuclides in Nordic countries

    DEFF Research Database (Denmark)

    Hou, Xiaolin; Olsson, Mattias; Togneri, Laura

    2016-01-01

    Radiochemical analysis plays a critical role in the determination of pure beta and alpha emitting radionuclides for environmental monitoring, radioecology, decommissioning, nuclear forensics and geological dating. A remarkable development on radiochemical analysis has been achieved in the past...... of radionuclides, especially in Nordic countries; some requirements from nuclear industries and research organizations, as well as perspectives on the development of radiochemical analysis are discussed....

  18. Radiochemical surveillance of KNK primary sodium

    International Nuclear Information System (INIS)

    Stamm, H.H.

    1987-01-01

    After 400 effective full power days (EFPD) and a maximum fuel burnup of 100000 MWd/t the reactor was shutdown in August 1982. After replacing the total KNK II/1 core by the second fast core KNK II/2, the plant went into operation again in August 1983. In August 1986 nearly 400 EFPD were achieved with the second core KNK II/2. It is foreseen to exent the operation up to 720 EFPD with the core KNK II/2. KNK II is widely used as is governed by the experimental program rather than by energy production. Radionuclides and other impurities in the primary sodium were determined for plant surveillance as well as for an extensive radiochemistry program. This experimental radiochemistry program includes investigations of radionuclide deposition on pretreated surfaces under flowing sodium and development of new methods for trapping of radionuclides from primary sodium. Aim of this work is to minimize the radiation exposure associated with maintenance and repair work. (orig./HP)

  19. Build your own Candu reactor

    International Nuclear Information System (INIS)

    Carruthers, J.

    1979-01-01

    The author discusses the marketing of Candu reactors, particularly the export trade. Future sales will probably be of the nuclear side of a station only, thus striking a compromise between licensing and 'turnkey' sales. It is suggested that AECL might have made more money in the past had it not given the right to manufacture Candu fuel away to Canadian industry. Future sales to certain potential customers may be limited by the requirement of strict safeguards, which will almost certainly never be relaxed. (N.D.H.)

  20. CANDU reactor - supporting the nuclear renaissance

    International Nuclear Information System (INIS)

    Oberth, R.

    2010-01-01

    'Full text:' The CANDU reactor has proven to be a strong performer in both the Canada, with 22 units constructed in Ontario, New Brunswick and Quebec, as well as in Argentina, Korea, Romania and China where a further nine units are operating and two in the planning stage. The average lifetime capacity factor of the CANDU reactor fleet is 89%. The last seven CANDU projects in Korea, China, and Romania have been completed on budget and on schedule. CANDU reactors have the highest uranium utilization efficiency measures as electricity output per ton of uranium mined. The CANDU fuel channel design using on-power fuelling and a heavy water moderator enables flexible fueling options - from the current natural uranium option to burning uranium recovered from used LWR reactor fuel and even a thorium-based fuel. AECL and the CANDU reactor are poised to participate in the worldwide construction at least 250 new reactors over the next 20 years. (author)

  1. Safety upgrades to the NRU research reactor

    International Nuclear Information System (INIS)

    DeAbreu, B.; Mark, J.M.; Mutterback, E.J.

    1998-01-01

    The NRU (National Research Universal) Reactor is a 135 MW thermal research facility located at Chalk River Laboratories, and is owned and operated by Atomic Energy of Canada Limited. One of the largest and most versatile research reactors in the world, it serves as the R and D workhorse for Canada's CANDU business while at the same time filling the role as one of the world's major producers of medical radioisotopes. AECL plans to extend operation of the NRU reactor to approximately the year 2005 when a new replacement, the Irradiation Research Facility (IRF) will be available. To achieve this, AECL has undertaken a program of safety reassessment and upgrades to enhance the level of safety consistent with modem requirements. An engineering assessment/inspection of critical systems, equipment and components was completed and seven major safety upgrades are being designed and installed. These upgrades will significantly reduce the reactor's vulnerability to common mode failures and external hazards, with particular emphasis on seismic protection. The scheduled completion date for the project is 1999 December at a cost approximately twice the annual operating cost. All work on the NRU upgrade project is planned and integrated into the regular operating cycles of the reactor; no major outages are anticipated. This paper describes the safety upgrades and discusses the technical and managerial challenges involved in extending the operating life of the NRU reactor. (author)

  2. Digital control for the Penn State Breazeale reactor

    International Nuclear Information System (INIS)

    Raiskums, G.A.

    1991-01-01

    Digital control has been an integral part of Canada deuterium uranium (CANDU) nuclear power reactor technology since the 1960s. Much of the high CANDU production reliability can be attributed to the fault-tolerant and flexible control algorithms achievable with digital control. Atomic Energy of Canada Limited (AECL) has now transported this technology to research reactors, using industrial-grade microcomputers to solve equipment aging and spares obsolescence problems so prevalent at older installations. The open architecture of the Intel 8086-based computers provides for wide availability and reasonably priced, quality hardware from numerous sources. AECL recently supplied the Pennsylvania State University Breazeale Reactor (PSBR) with a new console containing a digital control and monitoring system. The reactor safety system (RSS) was also replaced with hardwired relay logic and truly analog state-of-the-art wide range nuclear instrumentation supplied by AECL's subcontractor, Gamma-Metrics. Retaining analog hardware for the mandated RSS functions was key to minimizing licensing efforts and the extensive verification and validation that would be required for safety system software. This paper elaborates on the digital control and monitoring portion of the PSBR console replacement, with emphasis on the key system objectives

  3. AECL'S (Atomic Energy Canada Limited) R and D program in health and environmental sciences

    International Nuclear Information System (INIS)

    Osborne, R.V.

    1996-01-01

    Radiological protection is a fundamental requirement in any nuclear technology endeavour. It is also an area where public concerns are often expressed. If protection is inadequate, or is believed to be so, or if concerns are not addressed, the beneficial application of nuclear technologies is inhibited. Historically. AECL, as the driver of nuclear technology in Canada, has ensured that the growing Canadian nuclear industry and other users of the technology have a sound technical base to support, explain and confirm all aspects of radiological protection. Meeting this need has meant developing and maintaining R%D programs in environmental sciences, health physics, radiation biology, and radiological health matters in general. The programs undertaken encompass the links from sources of radiation exposure and radionuclides to potential impact on biota and on human health. The behaviours of radionuclides released to the atmosphere, surface waters, or ground waters are examined and described quantitatively to enable predictions to be made of the radiation doses received in different parts of the biosphere and by people. Radiation properties and human physiological and biokinetic processes are studied to provide quantitative links from exposure to radiation dose in tissues and organs. Biological processes involved in determining whether there are any consequences to health from small absorbed doses are identified at levels ranging from molecular level, to cells in tissue culture, and animals. Throughout the programs, required measurement technologies are developed. The results of the R%D have contributed to radiological protection programs being soundly based and, equally important, are being seen to be soundly based. (author)

  4. Miniaturized chromatographic radiochemical procedure for 131I - MIBG

    International Nuclear Information System (INIS)

    Barboza, M.F. de; Pereira, N.S. de; Colturato, M.T.; Silva, C.P.G. da.

    1989-12-01

    Different solvents were used in paper chromatographic methods to obtain the best system in routine radiochemical control for 131 I-MIBG produced at IPEN-CNEN/SP. The dates were compared with those obtained with eletrophoresis method in buffer acetate, pH=4.5, 350V, during 40 minutes. The stability of the labeled compound store under 4 0 C was studied during 15 days. Miniaturized chromatographic procedures were established using Whatman 3MM (8x1cm) and n-butanol-:acetic acid: water (S:2:1) as a solvent. the Rf values were: 0.3 (I - ) and 1.0 (MIBG). The radiochemical purity was 99.3 and 99.2% (first day) obtained with eletrophoresis and miniaturized chromatographic procedures, respectively and, 84.7% after 15 days of its preparation. It is a rapid, practical and reproductive method. (author) [pt

  5. Rapid radiochemical separation of zirconium-95 and niobium-95

    International Nuclear Information System (INIS)

    Downey, D.M.; McLaughlin, C.L.

    1983-01-01

    A rapid method for the quantitative separation of 95 Zr and 95 Nb has been developed. The method is based on the ion flotation of cationic zirconium complex ions with sodium lauryl sulfate (NaLS) from niobium which is masked with hydrogen peroxide. The separation was applied to mixtures of 95 Zr and 95 Nb initially in oxalic acid solution and quantitative recoveries of the radiochemically pure radioisotopes were obtained. (orig.)

  6. Rapid radiochemical separation of zirconium-95 and niobium-95

    Energy Technology Data Exchange (ETDEWEB)

    Downey, D.M.; McLaughlin, C.L.

    1983-01-01

    A rapid method for the quantitative separation of /sup 95/Zr and /sup 95/Nb has been developed. The method is based on the ion flotation of cationic zirconium complex ions with sodium lauryl sulfate (NaLS) from niobium which is masked with hydrogen peroxide. The separation was applied to mixtures of /sup 95/Zr and /sup 95/Nb initially in oxalic acid solution and quantitative recoveries of the radiochemically pure radioisotopes were obtained.

  7. Radiochemical regularities of migration mobility of Chernobyl' discharge radionuclides

    International Nuclear Information System (INIS)

    Skorobogat'ko, E.P.; Rybalko, S.I.

    1992-01-01

    Data on the radionuclude (RN) migration in environment later the Chernobyl' accident are generalized. Introduction of fallout of the radioactive discharge into environment causes necessity to account and to study different factors of geochemical and physicochemical character determining further RN behaviour in the medium. For a well-founded forecast of the behaviour it is necessity to use a complex of radiochemical and physicochemical research, lying in the base of radiation monitoring of environment. 1 refs

  8. An overview of the status of radiochemical analysis in Hungary

    International Nuclear Information System (INIS)

    Solymosi, J.; Toth, G.

    1994-01-01

    This overview covers the following activities at radioanalytical laboratories in Hungary: tracer techniques and their applications; some important new results; radioimmunoassay; x-ray emission analysis and x-ray fluorescence analysis, Moessbauer-spectroscopy and their applications in various fields of science and technology; neutron activation analysis; radiochemical analysis for nuclear power plant applications activities in various laboratories; nuclear environmental analysis (radioanalytical methods for the investigation of contamination by nuclear facilities). (N.T.) 1 fig.; 7 tabs

  9. Electrochemistry as a basis for radiochemical generator systems

    International Nuclear Information System (INIS)

    Bentley, G.E.; Steinkruger, F.J.; Wanek, P.M.

    1984-01-01

    Ion exchange and solvent extraction techniques have been used extensively as the basis for radiochemical generators exploiting the differences in absorption behavior between the parent nuclide and its useful daughter nuclide. Many parent/daughter pairs of nuclides have sufficiently different polarographic half wave potentials so that their electrochemical behavior may be exploited for rapid separation of the daughter from the parent with minimal contamination of the product with the parent isotope

  10. Decontamination and decommission of a radiochemical laboratory building complex

    International Nuclear Information System (INIS)

    Zoubek, Norbert

    2008-01-01

    Full text: Handling of unsealed radioactive substances for research and development purposes in chemical or pharmaceutical industries or research centres as well as production of radioactive substances (e.g. for applications in nuclear medicine or industry) requires operation of special radiochemical laboratories. In general, operation of radiochemical laboratories is strongly regulated by the government and national authorities. The operator needs a permit related to radiological protection. In general, technical requirements for such facilities are very high. To ensure high safety standards with respect to the employees and the environment, several radiological protection measures have to be taken. These measures (for example special shielding or ventilation and waste water systems) depend on various factors, e.g. activity in use, kind of nuclides, chemical properties and volatility of substances. In order to close-down such radiochemical laboratories some radiological protection measures have to be maintained to ensure protection of both humans and the environment induced by possible residual contaminations within the facility including technical inventory. However, a later reuse of the facility as a non-radioactive facility requires removal of all radioactive contamination with respect to national regulation. Resulting radioactive wastes have to be disposed of under control of competent authorities. Based on the experience of a decontamination and decommission project for a former radiochemical laboratory complex, the main steps necessary to release such a facility are discussed. Analytical aspects of initial conditions, necessary organisational structures within the project, resources needed estimation and exploration of the radiological situation in the laboratory, elaboration of a measuring strategy and decontamination methods as well as different waste disposal routes in relation to different waste types are reported. (author)

  11. Present status of radiochemical double β decay study (238U)

    International Nuclear Information System (INIS)

    Chevallier, A.; Chevallier, J.; Escoubes, B.; Schulz, N.; Sens, J.C.; Madic, C.; Maillard, C.

    1989-01-01

    The reasons for which the 238 U is a suitable candidate for the β β decay processes are explained. The strategy adopted for the radiochemical separation of the 234 U is given. A chemical system based on extraction chromatography is applied. The Pu IV breakthrough curves obtained at 40C during 238 Pu/ 238 U separation cycles are presented. A short description of the chromatographic facility is given. The solution adopted for the low background α spectrometer is explained

  12. Radiochemical separation and their application to neutron activation analysis technique

    International Nuclear Information System (INIS)

    Turel, Z.R.

    2013-01-01

    The present paper discusses the development of some new, rapid and selective method for the radiochemical separation and estimation of elements such as, Co(II) 2-3 , Ir(III) 4 , Au(III) 5 , Pt(IV), Pd(II), Os(IV) 6 , Cu(II), Ag(I), Mo(VI), Ni(II), Zn(II), Cd(II), Hg(II), Cs(I), Sb(III), La(III), Sc(III) etc. using various reagents. Various parameters such as pH, time of equilibrium, effect of anions and cations, effect of reagent etc. has been determined employing tracers of the elements under consideration and will be discussed. The method is made highly selective by the use of appropriate masking agent. The stoichiometry of metal reagent is determined by the substoichiometric method. Some examples of multielemental radiochemical separation methods thus developed which have been applied in determining the elements by radiochemical thermal neutron activation analysis will be presented and discussed. The implications of the results on the reference system will also be accounted. Statistical evaluation with reference to accuracy, precision and sensitivity will also be presented

  13. Fully integrated analysis of reactor kinetics, thermalhydraulics and the reactor control system in the MAPLE-X10 research reactor

    International Nuclear Information System (INIS)

    Shim, S.Y.; Carlson, P.A.; Baxter, D.K.

    1992-01-01

    A prototype research reactor, designated MAPLE-X10 (Multipurpose Applied Physics Lattice Experimental - X 10MW), is currently being built at AECL's Chalk River Laboratories. The CATHENA (Canadian Algorithm for Thermalhydraulic Network Analysis) two-fluid code was used in the safety analysis of the reactor to determine the adequacy of core cooling during postulated reactivity and loss-of-forced-flow transients. The system responses to a postulated transient are predicted including the feedback between reactor kinetics, thermalhydrauilcs and the reactor control systems. This paper describes the MAPLE-X10 reactor and the modelling methodology used. Sample simulations of postulated loss-of-heat-sink and loss-of-regulation transients are presented. (author)

  14. Radiochemical neutron activation analysis of zirconium and zirconium-niobium alloys

    International Nuclear Information System (INIS)

    Tashimova, F.A.; Sadikov, I.I.; Salimov, M.

    2004-01-01

    Full text: Zirconium and zirconium-niobium alloys are used on nuclear technology, as fuel cladding of nuclear reactors. Their nuclear-physical, mechanical and thermophysical properties are influenced them matrix and impurity composition, therefore determination of matrix and impurity content of these materials is a very important task. Neutron activation analysis is one from multielemental and high sensible techniques that are widely applied in analysis of high purity materials. Investigation of nuclear-physical characteristics of zirconium has shown that instrumental variant NAA is unusable for analysis due to high radioactivity of a matrix. Therefore it is necessary carrying out radiochemical separation of impurity radionuclides from matrix. Study of the literature datum have shown, that zirconium and niobium are very well extracted from muriatic solution with 5% tributyl phosphineoxide (TBPO) solution in toluene and 0,75 M solution of di-2-ethyl hexyl phosphoric acid (HDEHP) in cyclohexanone. Investigation of these elements extraction in these systems has shown that more effective and selective separation of matrix radionuclides is achieved in HDEHP-3M HCI system. This system is also extracted and hafnium, witch is an accompanying element of zirconium and its high content prevented determination of other impurity elements in sample. Therefore we used extraction system HDEHP-3M HCl for analysis of zirconium and zirconium-niobium alloys in chromatographic variant. By measurement of distribution profile of a matrix and of elution curve of determined elements is established, that for effective separation of impurity and matrix radionuclides there is enough chromatographic column with diameter 1 cm and height of a sorbent layer 7 cm, thus volume of elute, necessary for complete elution of determinate elements is 35-40 ml. On the basis of the carried out researches the technique of radiochemical NAA of high purity zirconium and zirconium-niobium alloy, which allows to

  15. CADDS [Computer-aided Drafting and Design System] brings quality and precision to the Canadian Maple [research reactor

    International Nuclear Information System (INIS)

    Goland, D.

    1989-01-01

    Atomic Energy of Canada Ltd (AECL) has found that using the ''intelligent'' Computer-Aided Drafting and Design System (CADDS) helped address design problems at an early stage and led to productivity gains of around 50 per cent. Other bonuses were the quality and precision of the designs and documents produced. Its application to the MAPLE research reactor project is described. (author)

  16. AECL strategy for surface-based investigations of potential disposal sites and the development of a geosphere model for a site

    International Nuclear Information System (INIS)

    Whitaker, S.H.; Brown, A.; Davison, C.C.; Gascoyne, M.; Lodha, G.S.; Stevenson, D.R.; Thorne, G.A.; Tomsons, D.

    1994-05-01

    The objective of this report is to summarize AECL's strategy for surface-based geotechnical site investigations used in screening and evaluating candidate areas and candidate sites for a nuclear fuel waste repository and for the development of geosphere models of sites. The report is one of several prepared by national nuclear fuel waste management programs for the Swedish Nuclear Fuel and Waste Management Co. (SKB) to provide international background on site investigations for SKB's R and D programme on siting.The scope of the report is limited to surface-based investigations of the geosphere, those done at surface or in boreholes drilled from surface. The report discusses AECL's investigation strategy and the methods proposed for use in surface-based reconnaissance and detailed site investigations at potential repository sites. Site investigations done for AECL's Underground Research Laboratory are used to illustrate the approach. The report also discusses AECL's strategy for developing conceptual and mathematical models of geological conditions at sites and the use of these models in developing a model (Geosphere Model) for use in assessing the performance of the disposal system after a repository is closed. Models based on the site data obtained at the URL are used to illustrate the approach. Finally, the report summarizes the lessons learned from AECL's R and D program on site investigations and mentions some recent developments in the R and D program. 120 refs, 33 figs, 7 tabs

  17. The nuclear design of the MAPLE-X10 reactor

    International Nuclear Information System (INIS)

    Heeds, W.; Lebenhaft, J.R.; Lee, A.G.; Carlson, P.A.; McIlvain, H.; Lidstone, R.F.

    1995-01-01

    AECL is currently building the 10-MW MAPLE-X10 reactor at the Chalk River Laboratories to operate as a dedicated producer of commercial-scale quantities of key medical and industrial radioisotopes and as a demonstration of the MAPLE reactor design. In support of the safety and licensing analyses, static physics calculations have been performed to determine the neutronic performance and safety characteristics of the MAPLE-X10 reactor. This report summarizes results from the static physics calculations for several core conditions prior to commencing radioisotope production. (author)

  18. Antibiotics from bacillus subtilis AECL69 8. isolation and purification of a complex of antibacterial antibiotics x

    International Nuclear Information System (INIS)

    Ahmad, M.S.; Malik, M.A.; Shaukat, G.A.

    1996-01-01

    A bacterial strain bacillus subtilis AECL69 produces two anti bacterial antibiotics in a specified complex or synthetic medium. One of the antibiotics is characteristically active against Xanthomonas citri. Procedures have been described to isolate and purify a complex of xanthmonas antibiotics from the fermented complex broths, and from the fermented synthetic medium as well. Paper chromatography coupled with bioautography has shown that the complex of xanthomonas antibiotics has at least three components. The three components were indicated irrespective of the fact whether it was isolated from the fermented complex or synthetic broth. (author)

  19. LWR spent-fuel radiochemical measurements and comparison with ORIGEN2 predictions

    International Nuclear Information System (INIS)

    Blahnik, D.E.; Jenquin, U.P.; Guenther, R.J.

    1988-01-01

    The Materials Characterization Center (MCC) at Pacific Northwest Laboratory is responsible for providing characterized spent fuel, designated approved testing material (ATMs) for subsequent use in the investigation of nuclear waste disposal forms by the US Department of Energy geologic repository project. The ATMs are selected to assure that test material is available that has a representative range of characteristics important to spent-fuel behavior in a geologic repository. Burnup and fission gas release were the primary criteria for selecting the ATMs. The five spent-fuel ATMs (ATM-101, -103, -104, -105, and -106) currently being characterized by the MCC have rod average burnups ranging from 20 to 43 MWd/kg M, fission gas releases ranging from 0.2 to 11.2%, and are from both boiling water reactors and pressurized water reactors. Radiochemical analyses of the fuel included measurements of 148 Nd (for fuel burnup), the isotopes of uranium and plutonium, and nuclides of importance to repository performance. Cladding samples were analyzed for 14 C. The measured values of selected nuclides were compared with values obtained from calculations with the ORIGEN2 code that was used to predict isotopic quantities for all of the ATMS. Ratios of the ORIGEN2 calculated values to the measured values for ATM-103 and ATM-106 fuel are given

  20. Rapid Radiochemical Analyses in Support of Fukushima Nuclear Accident - 13196

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, Sherrod L.; Culligan, Brian K.; Hutchison, Jay B. [Savannah River National Laboratory, Building 735-B, Aiken, SC 29808 (United States)

    2013-07-01

    discussed. Air filter samples were reported within twenty-four (24) hours of receipt using rapid techniques published previously. [11] The rapid reporting of high quality analytical data arranged through the U.S. Department of Energy Consequence Management Home Team was critical to allow the government of Japan to readily evaluate radiological impacts from the nuclear reactor incident to both personnel and the environment. SRNL employed unique rapid methods capability for radionuclides to support Japan that can also be applied to environmental, bioassay and waste management samples. New rapid radiochemical techniques for radionuclides in soil and other environmental matrices as well as some of the unique challenges associated with this work will be presented that can be used for application to environmental monitoring, environmental remediation, decommissioning and decontamination activities. (authors)

  1. Evolution and applications of radiochemical procedures. From Marie Curie to Darleane Hoffman

    International Nuclear Information System (INIS)

    Contis, E. T.; Rengan, K.

    1996-01-01

    Marie Curie carried out the first radiochemical separations which eventually lead to the discovery of polonium and radium, two new elements. Nearly a century later Darleane Hoffman and her collaborators are devising new radiochemical separation procedures for studying the chemical properties of newly discovered transactinide elements. Safety requirements as well as changes necessitated by fast decaying radionuclides have transformed the nature of radiochemical separations. Further, applications in a wide variety of areas such as analysis of trace elements in food to radioimmunoassay have broadened the use of radiochemical separations. Examples of some early, historically important, radiochemical separations are described in this article. In addition, recent trends in the use of radiochemical separations in neutron activation analysis, in dating applications, in fission product studies and in the study of transactinide elements are briefly described with specific examples. (author). 52 refs

  2. Analysis of the results for the AECL cohort in the IARC study on the radiogenic cancer risk among nuclear industry workers in fifteen countries

    International Nuclear Information System (INIS)

    Ashmore, J.P.; Gentner, N.E.; Osborne, R.V.

    2007-01-01

    Over the last two decades there have been attempts to estimate the risks from occupational exposure in the nuclear industry by epidemiological assessments on cohorts of workers. However, generally low doses and relatively small worker populations have limited the precision of such studies. In 1995 the International Agency for Research on Cancer (IARC) completed a study that involved workers from facilities in the USA, UK and AECL. In 2005, IARC completed a further study involving nuclear workers from 15 countries including Canada. Surprisingly, the risk ascribed to the Canadian cohort for all cancers excluding leukaemia, driven by the AECL component, was significantly higher than the cohort as a whole. The work described in this report is an attempt to unravel what might have accounted for the divergence between the results for the AECL cohort and the others

  3. Analysis of the results for the AECL cohort in the IARC study on the radiogenic cancer risk among nuclear industry workers in fifteen countries

    Energy Technology Data Exchange (ETDEWEB)

    Ashmore, J.P. [Ponsonby and Associates, Manotick, Ontario (Canada); Gentner, N.E. [Consultant, Petawawa, Ontario (Canada); Osborne, R.V. [Ranasara Consultants Inc., Deep River, Ontario (Canada)

    2007-03-31

    Over the last two decades there have been attempts to estimate the risks from occupational exposure in the nuclear industry by epidemiological assessments on cohorts of workers. However, generally low doses and relatively small worker populations have limited the precision of such studies. In 1995 the International Agency for Research on Cancer (IARC) completed a study that involved workers from facilities in the USA, UK and AECL. In 2005, IARC completed a further study involving nuclear workers from 15 countries including Canada. Surprisingly, the risk ascribed to the Canadian cohort for all cancers excluding leukaemia, driven by the AECL component, was significantly higher than the cohort as a whole. The work described in this report is an attempt to unravel what might have accounted for the divergence between the results for the AECL cohort and the others.

  4. Reactor physics of CANFLEX

    International Nuclear Information System (INIS)

    Sim, K. S.; Min, Byung Joo.

    1997-07-01

    Characteristic of reactor physics for CANFLEX-NU fuel core were calculated using final fuel design data. The results of analysis showed that there was no impact on reactor operations and safety. The above results of calculations and analysis were described in the physics design for CANFLEX-NU core. Various fuel models were evaluated for selecting high burnup fuel using recovered uranium. It is judged to be worse effects for reactor safety. Hence, the use of graphite within fuel was proposed and its results showed to be better. The analysis system of reactor physics for design and analysis of high burnup fuel was evaluated. Lattice codes and core code were reviewed. From the results, the probability of WIMS-AECL and HELIOS is known to be high for analysis of high burnup fuel. For the core code, RFSP, it was evaluated that the simplified 2 group equation should be replaced by explicit 2 group equation. This report also describes about the status of critical assemblies in other countries. (author). 58 refs., 41 tabs., 126 figs

  5. Candu reactors with thorium fuel cycles

    International Nuclear Information System (INIS)

    Hopwood, J.M.; Fehrenbach, P.; Duffey, R.; Kuran, S.; Ivanco, M.; Dyck, G.R.; Chan, P.S.W.; Tyagi, A.K.; Mancuso, C.

    2006-01-01

    Over the last decade and a half AECL has established a strong record of delivering CANDU 6 nuclear power plants on time and at budget. Inherently flexible features of the CANDU type reactors, such as on-power fuelling, high neutron economy, fuel channel based heat transport system, simple fuel bundle configuration, two independent shut down systems, a cool moderator and a defence-in-depth based safety philosophy provides an evolutionary path to further improvements in design. The immediate milestone on this path is the Advanced CANDU ReactorTM** (ACRTM**), in the form of the ACR-1000TM**. This effort is being followed by the Super Critical Water Reactor (SCWR) design that will allow water-cooled reactors to attain high efficiencies by increasing the coolant temperature above 550 0 C. Adaptability of the CANDU design to different fuel cycles is another technology advantage that offers an additional avenue for design evolution. Thorium is one of the potential fuels for future reactors due to relative abundance, neutronics advantage as a fertile material in thermal reactors and proliferation resistance. The Thorium fuel cycle is also of interest to China, India, and Turkey due to local abundance that can ensure sustainable energy independence over the long term. AECL has performed an assessment of both CANDU 6 and ACR-1000 designs to identify systems, components, safety features and operational processes that may need to be modified to replace the NU or SEU fuel cycles with one based on Thorium. The paper reviews some of these requirements and the associated practical design solutions. These modifications can either be incorporated into the design prior to construction or, for currently operational reactors, during a refurbishment outage. In parallel with reactor modifications, various Thorium fuel cycles, either based on mixed bundles (homogeneous) or mixed channels (heterogeneous) have been assessed for technical and economic viability. Potential applications of a

  6. Self-decomposition of radiochemicals. Principles, control, observations and effects

    International Nuclear Information System (INIS)

    Evans, E.A.

    1976-01-01

    The aim of the booklet is to remind the established user of radiochemicals of the problems of self-decomposition and to inform those investigators who are new to the applications of radiotracers. The section headings are: introduction; radionuclides; mechanisms of decomposition; effects of temperature; control of decomposition; observations of self-decomposition (sections for compounds labelled with (a) carbon-14, (b) tritium, (c) phosphorus-32, (d) sulphur-35, (e) gamma- or X-ray emitting radionuclides, decomposition of labelled macromolecules); effects of impurities in radiotracer investigations; stability of labelled compounds during radiotracer studies. (U.K.)

  7. Mercury determination in geological samples using radiochemical separation

    International Nuclear Information System (INIS)

    Goncalves, Cristina; Favaro, Deborah I.T.

    1997-01-01

    In this work, a radiochemical procedure is presented to increase the neutron activation analysis sensitivity. After irradiation, geological reference materials - Buffalo River Sediment (BRS- - NIST SRM 2704), Lake Sediment (BCR - CRM 280) and GXR-5 (USGS - AEG) - were leached with aqua regia in a Parr bomb placed in a domestic microwave oven and then bismuth diethyl dithiocarbamate was used to pre concentrate mercury by solvent extraction. This procedure eliminates the interference from 279 keV Se-75 photopeak and background radiation from 511 keV Cu-64 photopeak. (author). 15 refs., 2 figs., 1 tab

  8. International intercalibration as a method for control of radiochemical analyses

    International Nuclear Information System (INIS)

    Angelova, A.; Totseva, R.; Karaivanova, R.; Dandulova, Z.; Botsova, L.

    1994-01-01

    The participation of the Radioecology Section at the National Centre for Radiology and Radiation Protection (NCRRP) in the International Interlaboratory Comparison of radiochemical analyses organized by WHO is reported. The method of evaluating accuracy of the results from inter calibrations concerning radionuclide determination of environmental samples is outlined. The data from analysis of cesium 137, strontium 90 and radium 226 in milk, sediments, soil and seaweed made by 21 laboratories are presented. They show a good accuracy values of the results from NCRRP. 1 tab. 2 figs., 6 refs

  9. Low temperature radio-chemical energy conversion processes

    International Nuclear Information System (INIS)

    Gomberg, H.J.

    1986-01-01

    This patent describes a radio-chemical method of converting radiated energy into chemical energy form comprising the steps of: (a) establishing a starting chemical compound in the liquid phase that chemically reacts endothermically to radiation and heat energy to produce a gaseous and a solid constituent of the compound, (b) irradiating the compound in its liquid phase free of solvents to chemically release therefrom in response to the radiation the gaseous and solid constituents, (c) physically separating the solid and gaseous phase constituents from the liquid, and (d) chemically processing the constituents to recover therefrom energy stored therein by the irradiation step (b)

  10. Rapid, radiochemical-ligand binding assay for methotrexate

    International Nuclear Information System (INIS)

    Caston, J.D.

    1976-01-01

    A radiochemical ligand binding assay for methotrexate is provided. A binder factor comprising a partially purified dihydrofolic acid reductase preparation is employed. The binder factor is conveniently prepared by homogenizing a factor containing animal organ such as liver, and extracting with isotonic saline and ammonium sulfate. A binder cofactor, NADPH 2 , is also employed in the binding reaction. The procedure contemplates both direct and sequential assay techniques, and it is not interfered with by vast excesses of many natural folate derivatives. 12 claims, 6 drawing figures

  11. Guiding Principles for Sustainable Existing Buildings: Radiochemical Processing Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Pope, Jason E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-11-11

    In 2006, the United States (U.S.) Department of Energy (DOE) signed the Federal Leadership in High Performance and Sustainable Buildings Memorandum of Understanding (MOU), along with 21 other agencies. Pacific Northwest National Laboratory (PNNL) is exceeding this requirement and, currently, about 25 percent of its buildings are High Performance and Sustainable Buildings. The pages that follow document the Guiding Principles conformance effort for the Radiochemical Processing Laboratory (RPL) at PNNL. The RPL effort is part of continued progress toward a building inventory that is 100 percent compliant with the Guiding Principles.

  12. Preparation of proton rich radionuclides in support of radiochemical analysis

    International Nuclear Information System (INIS)

    Jerome, Simon; Larijani, Cyrus; Parker, David

    2012-01-01

    The production of proton rich radionuclides supports a wide range of radiochemical analyses via radioactive yield tracers ( 95m Tc and 236 Pu). In recent years, NPL and the University of Birmingham cyclotron have collaborated to produce these, and other, radionuclides. - Highlights: ► In this paper we options for the production of Tc and Pu tracers. ► The irradiation and measurement of targets producing Tc-95 m and Pu-236 are described. ► Options for production are discussed. ► The results of this study and future work needed are described.

  13. Studies on some Indian paints for radiochemical plants

    International Nuclear Information System (INIS)

    Mahesh Kumar, V.V.; Srinivasan, R.; Natarajan, R.

    1996-01-01

    The choice of paints in areas subjected to contamination and radiation in nuclear installation need special attention. The types of generic coatings are examined with reference to these requirements. Among those examined, certain types of epoxy paints are found to be attractive for these applications. Samples of epoxy paints obtained from some Indian manufacturers are tested for their suitability. Decontaminability and radiation resistance properties are also evaluated with special reference to radiochemical plants. Important specifications for such applications are listed. This report summarizes the results of these studies. (author)

  14. MAPLE: a Canadian multipurpose reactor concept for national nuclear development

    International Nuclear Information System (INIS)

    Lidstone, R.F.

    1984-06-01

    Atomic Energy of Canada Limited, following an investigation of Canadian and international needs and world-market prospects for research reactors, has developed a new multipurpose concept, called MAPLE (Multipurpose Applied Physics Lattice Experimental). The MAPLE concept combines H 2 O- and D 2 O-moderated lattices within a D 2 O calandria tank in order to achieve the flux advantages of a basic H 2 O-cooled and moderated core along with the flexibility and space of a D 2 O-moderated core. The SUGAR (Slowpoke Uprated for General Applied Research) MAPLE version of the conept provides a range of utilization that is well suited to the needs of countries with nuclear programs at an early stage. The higher power MAPLE version furnishes high neutron flux levels and the variety of irradiation facilities that are appropriate for more advanced nuclear programs

  15. Facility Effluent Monitoring Plan for the 325 Radiochemical Processing Laboratory

    International Nuclear Information System (INIS)

    Shields, K.D.; Ballinger, M.Y.

    1999-03-01

    This Facility Effluent Monitoring Plan (FEMP) has been prepared for the 325 Building Radiochemical Processing Laboratory (RPL) at the Pacific Northwest National Laboratory (PNNL) to meet the requirements in DOE Order 5400.1, ''General Environmental Protection Programs.'' This FEMP has been prepared for the RPL primarily because it has a ''major'' (potential to emit >0.1 mrem/yr) emission point for radionuclide air emissions according to the annual National Emission Standards for Hazardous Air Pollutants (NESHAP) assessment performed. This section summarizes the airborne and liquid effluents and the inventory based NESHAP assessment for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements. The RPL at PNNL houses radiochemistry research, radioanalytical service, radiochemical process development, and hazardous and radioactive mixed waste treatment activities. The laboratories and specialized facilities enable work ranging from that with nonradioactive materials to work with picogram to kilogram quantities of fissionable materials and up to megacurie quantities of other radionuclides. The special facilities within the building include two shielded hot-cell areas that provide for process development or analytical chemistry work with highly radioactive materials and a waste treatment facility for processing hazardous, mixed radioactive, low-level radioactive, and transuranic wastes generated by PNNL activities

  16. A radiochemical analyses of metastudtite and leachates from spent fuel

    International Nuclear Information System (INIS)

    McNamara, Bruce K.; Hanson, Brady D.; Buck, Edgar C.; Soderquist, Chuck Z.

    2004-01-01

    Immersion of commercial spent nuclear fuel (CSNF) in deionized water produced two novel corrosion products after a two-year contact period. Another unexpected result was that suspensions of aggregates were observed to form at the air-water interface for each of five samples. These solids were characterized, by SEM and XRD to be nearly pure metastudtite (UO4-2H2O); while the corrosion present on the surface of the fuel itself was determined to be studtite (UO4-2H2O). The occurrence of the floating phase prompted a radiochemical analysis of these solids. This chemical analysis was a unique opportunity to study the relatively pure corrosion phase for incorporation of radionuclides. The analysis indicated that high concentration of 90Sr, 137Cs, 99Tc, and that lower concentrations 237Np, 238, 239Pu and 243, 244Cm had partitioned with the air-water interface aggregates. The concentrations of 241Am were two orders of magnitude lower than the expected inventory in the suspended solids. The radiochemical analyses of the several leachate samples provide preliminary solubility data for the hydrogen peroxide leaching of CSNF and these data are compared to leaching of the same fuel in J-13 and deionized waters. The extent of fuel dissolution in these media are discussed

  17. Facility Effluent Monitoring Plan for the 325 Radiochemical Processing Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Shields, K.D.; Ballinger, M.Y.

    1999-04-02

    This Facility Effluent Monitoring Plan (FEMP) has been prepared for the 325 Building Radiochemical Processing Laboratory (RPL) at the Pacific Northwest National Laboratory (PNNL) to meet the requirements in DOE Order 5400.1, ''General Environmental Protection Programs.'' This FEMP has been prepared for the RPL primarily because it has a ''major'' (potential to emit >0.1 mrem/yr) emission point for radionuclide air emissions according to the annual National Emission Standards for Hazardous Air Pollutants (NESHAP) assessment performed. This section summarizes the airborne and liquid effluents and the inventory based NESHAP assessment for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements. The RPL at PNNL houses radiochemistry research, radioanalytical service, radiochemical process development, and hazardous and radioactive mixed waste treatment activities. The laboratories and specialized facilities enable work ranging from that with nonradioactive materials to work with picogram to kilogram quantities of fissionable materials and up to megacurie quantities of other radionuclides. The special facilities within the building include two shielded hot-cell areas that provide for process development or analytical chemistry work with highly radioactive materials and a waste treatment facility for processing hazardous, mixed radioactive, low-level radioactive, and transuranic wastes generated by PNNL activities.

  18. RADIOCHEMICAL YIELDS OF GRAFT POLYMERIZATION REACTIONS OF CELLULOSE

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, Jr, J C; Blouin, F A

    1963-12-15

    The preparation of radioinduced graft polymers of cotton cellulose, while retaining the fibrous nature and high molecular weight of the cellulose, depended primarily on the radiochemical yields of cellulose reactions and of graft polymerization reactions. Yields of the initial major molecular changes in cellulosic polymer indicated that, in the case of scission of the molecule and carboxyl group formation, chain reactions were not initiated by radiation; however, in the case of carbonyl group formation chain reactions were initiated but quickly terminated. Generally, experimental procedures, used in graft polymerization reactions, were: simultaneous irradiation reactions, that is, application of monomers or solutions of monomers to cellulose or chemically modified celluloses, then irradiation; and post-irradiation reactions, that is, irradiation of cellulose or chemically modified celluloses, then after removal from the field of radiation, contacting the irradiated cellulose with monomer. Some of the most important factors influencing the radiochemical yields of graft polymerization reactions, of styrene and acrylonitrile onto cellulose were: concentration of monomer in treating solution; solvent; ratio of monomer solution to cellulose; prior chemical modification of cellulose; and absence of oxygen, particularly in post-irradiation reactions. Experimental data are presented, and the direct and indirect effects of Co/sup 60/ gamma radiation on these reactions are discussed. (auth)

  19. Burnup calculation of a CANDU6 reactor using the Serpent and MCNP6 codes

    Energy Technology Data Exchange (ETDEWEB)

    Hussein, M.S.; Bonin, H.W., E-mail: mohamed.hussein@rmc.ca, E-mail: bonin-h@rmc.ca [Royal Military College of Canada, Dept. of Chemistry and Chemical Engineering, Kingston, ON (Canada); Lewis, B.J., E-mail: Brent.Lewis@uoit.ca [Univ. of Ontario Inst. of Tech., Faculty of Energy Systems and Nuclear Science, Oshawa, ON (Canada)

    2014-07-01

    A study of fuel burnup for the CANDU6 reactor is carried out to validate the most recent versions of the probabilistic transport code (MCNP6) and the continuous energy burnup calculation code (Serpent). These two codes allow for 3-D geometry calculation accounting for a detailed analysis without unit-cell homogenization. On the other hand, the WIMS-AECL computer program is used to model neutron transport in nuclear-reactor lattices for design, safety analysis, and operation. It works with two-dimensional regions and can perform collision probability calculations for a periodic structure of the lattice cell. In the present work, the multiplication factor, the total flux and fuel burnup could be calculated for a CANDU6 nuclear reactor based on the GENTILLY-2 core design. The MCNP6 and Serpent codes provide a calculation of the track length estimated flux per neutron source. This estimated flux is then scaled with normalization to the reactor power in order to provide a flux in unit of n/cm{sup 2}s. Good agreement is observed between the actual total flux calculated by MCNP6, Serpent and WIMS-AECL. The effective multiplication factors of the whole core CANDU6 reactor are further calculated as a function of burnup and further compared to those calculated by WIMS-AECL where excellent agreement is also obtained. (author)

  20. Burnup calculation of a CANDU6 reactor using the Serpent and MCNP6 codes

    International Nuclear Information System (INIS)

    Hussein, M.S.; Bonin, H.W.; Lewis, B.J.

    2014-01-01

    A study of fuel burnup for the CANDU6 reactor is carried out to validate the most recent versions of the probabilistic transport code (MCNP6) and the continuous energy burnup calculation code (Serpent). These two codes allow for 3-D geometry calculation accounting for a detailed analysis without unit-cell homogenization. On the other hand, the WIMS-AECL computer program is used to model neutron transport in nuclear-reactor lattices for design, safety analysis, and operation. It works with two-dimensional regions and can perform collision probability calculations for a periodic structure of the lattice cell. In the present work, the multiplication factor, the total flux and fuel burnup could be calculated for a CANDU6 nuclear reactor based on the GENTILLY-2 core design. The MCNP6 and Serpent codes provide a calculation of the track length estimated flux per neutron source. This estimated flux is then scaled with normalization to the reactor power in order to provide a flux in unit of n/cm 2 s. Good agreement is observed between the actual total flux calculated by MCNP6, Serpent and WIMS-AECL. The effective multiplication factors of the whole core CANDU6 reactor are further calculated as a function of burnup and further compared to those calculated by WIMS-AECL where excellent agreement is also obtained. (author)

  1. The application of transition metal ion chromatography to the determination of elemental and radiochemical species in PWR primary coolant

    International Nuclear Information System (INIS)

    Bridle, D.A.; Brown, G.R.; Johnson, P.A.V.

    1992-01-01

    The accurate determination of both elemental and radiochemical transition metal corrosion products, particularly cobalt and nickel, in PWR coolants is necessary if the transport mechanisms and their role in the development of out-of-core radiation fields are to be fully understood. AEA Technology, Winfrith, has collaborated for several years with a number of PWR utilities in Europe, developing advanced sampling and analytical techniques for the determination of both soluble and insoluble corrosion products in primary coolant. The design and installation of continuously flowing isokinetic capillary modifications to the existing sampling systems has been shown to be an effective method of providing a low, but representative, sample flow from high pressure systems for on-line determination of corrosion product species. Transition metal ion chromatography coupled with gamma-spectrometry has been used to determine both insoluble and soluble elemental and radiochemical species in reactor coolant, with particular attention being given to the determination of soluble elemental cobalt at levels as low as 1 ng per kg. Soluble species were determined directly following their concentration from up to 1 litre of coolant. Insoluble species collected on 0.45 micron filter membranes, following filtration of up to 1500 litres of coolant, were solubilised by fusion with potassium hydrogen sulphate before the application of ion chromatography. In each case the eluant from the chromatographic column was collected and the radionuclides determined by gamma-spectrometry

  2. Fuel rod bundles proposed for advanced pressure tube nuclear reactors

    International Nuclear Information System (INIS)

    Prodea, Iosif; Catana, Alexandru

    2010-01-01

    The paper aims to be a general presentation for fuel bundles to be used in Advanced Pressure Tube Nuclear Reactors (APTNR). The characteristics of such a nuclear reactor resemble those of known advanced pressure tube nuclear reactors like: Advanced CANDU Reactor (ACR TM -1000, pertaining to AECL) and Indian Advanced Heavy Water Reactor (AHWR). We have also developed a fuel bundle proposal which will be referred as ASEU-43 (Advanced Slightly Enriched Uranium with 43 rods). The ASEU-43 main design along with a few neutronic and thermalhydraulic characteristics are presented in the paper versus similar ones from INR Pitesti SEU-43 and CANDU-37 standard fuel bundles. General remarks regarding the advantages of each fuel bundle and their suitability to be burned in an APTNR reactor are also revealed. (authors)

  3. The analytical of radiochemical purity of tumor receptor imaging agent 99Tcm-octreotide

    International Nuclear Information System (INIS)

    Wang Xufu; Zuo Shuyao; Shao Wenbo; Wang Guoming; Sun Jianwen; Zhang Qin

    2003-01-01

    The radiochemical purity of tumor receptor imaging agent 99 Tc m -octreotide is measured by High Pressure Liquid Chromatography (HPLC) and two systems of chromatography combining method of silver stain. The results show that the radiochemical purity of 98 Tc m -octreotide measured by both methods are effective and correct. It can separate 99 Tc m -octreotide from other radioactive compositions correctly and effectively

  4. General areas needing chemical competence to support reactor operation

    International Nuclear Information System (INIS)

    Proksch, E.; Bildstein, H.

    1963-01-01

    Chemical competence is needed not only for the development of new types of reactors but also for the start-up and safe operation of reactors. The activities of chemistry and chemical engineering cover a number of fields, namely chemical analysis, radiochemical analysis, corrosion research, radiolysis of water and water purification. The author reviews fields in reactor operation and maintenance in which chemical competence is needed. (author). 9 refs

  5. Research on radionuclide migration under subsurface geochemical conditions. JAERI/AECL Phase II Collaborative Program Year 1 (joint research)

    International Nuclear Information System (INIS)

    1998-11-01

    A radionuclide migration experiment program for fractured rocks was performed under the JAERI/AECL Phase-II Collaborative Program on research and development in radioactive waste management. The program started in the fiscal year 1993, as a five-year program consists of Quarried block radionuclide migration program, Speciation of long-lived radionuclides in groundwater, Isotopic hydrogeology and Groundwater flow model development. During the first year of the program (Program Year 1: March 18, 1994 - September 30, 1994), a plan was developed to take out granite blocks containing part of natural water-bearing fracture from the wall of the experimental gallery at the depth of 240 m, and literature reviews were done in the area of the speciation of long-lived radionuclides in groundwater, isotopic hydrogeology and the groundwater flow model development to proceed further work for the Program Year 2. (author)

  6. Paleomagnetism and radiochemical age estimates for Late Brunhes polarity episodes

    International Nuclear Information System (INIS)

    Denham, C.R.; Anderson, R.F.; Bacon, M.P.

    1977-01-01

    Several reversed polarity magnetozones occur within deep-sea sediment core CH57-8 from the Greater Antilles Outer Ridge, within sediment of latest Pleistocene/Late Brunhes age. The uppermost reversed interval spanning 31 data points coincides with the X faunal zone of the Last Interglacial Period. Radiochemical dating of cores CH57-8 and KN25-4 has shown that all the reversed polarity magnetozones are significantly younger than the Brunhes/Matuyama boundary at 0.7 m.y.B.P. A variation of the excess 230 Th method was used, in which 210 Po and 238 U were the actual radionuclides measured. In a third core from the Mid-Atlantic Ridge, the 210 Po results were similar to those which others obtained earlier by direct 230 Th measurements. (Auth.)

  7. Development of robotic plasma radiochemical assays for positron emission tomography

    International Nuclear Information System (INIS)

    Alexoff, D.L.; Shea, C.; Fowler, J.S.; Gatley, S.J.; Schlyer, D.J.

    1995-01-01

    A commercial laboratory robot system (Zymate PyTechnology II Laboratory Automation System; Zymark Corporation, Hopkinton, MA) was interfaced to standard and custom laboratory equipment and programmed to perform rapid radiochemical analyses for quantitative PET studies. A Zymark XP robot arm was used to carry out the determination of unchanged (parent) radiotracer in plasma using only solid phase extraction methods. Robotic throughput for the assay of parent radiotracer in plasma is 4--6 samples/hour depending on the radiotracer. Robotic assays of parent compound in plasma were validated for the radiotracers [ 11 C]Benztropine, [ 11 C]cocaine, [ 11 C]clorgyline, [ 11 C]deprenyl, [ 11 C]methadone, [ 11 C]methylphenidate, [ 11 C]raclorpride, and [ 11 C]SR46349B. A simple robot-assisted methods development strategy has been implemented to facilitate the automation of plasma assays of new radiotracers

  8. Quantitative radio-chemical separation of calcium, strontium and barium

    International Nuclear Information System (INIS)

    Dupuis, M.C.; Dupuis, M.; Le Nagard, M.; Michot, H.

    1965-01-01

    A method for separation of Ca 45 , Sr 89 and Ba 140 has been developed for the radiochemical determination of these isotopes in a solution of fission with a large concentration of mineral salts. After removal of most fission products by solvent extraction (TTA-MIBK) at different pH, the alkaline earths are extracted from the aqueous phase at pH 9. After recovery with diluted hydrochloric acid, the three elements are adsorbed on cationic resin Dowex 50 and eluted sequentially with ammonium α - Hydroxy iso-butyrate using gradient concentration and pH. Ca 45 and Sr 89 are measured by β - counting and Ba 140 by γ spectrometry. The chemical yield approximates 80 per cent for calcium, and 70 per cent for strontium and barium. The decontamination factor is 10 5 for most fission products. Four separations can be performed in twenty hours. (authors) [fr

  9. Handling of Ammonium Nitrate Mother-Liquid Radiochemical Production - 13089

    International Nuclear Information System (INIS)

    Zherebtsov, Alexander; Dvoeglazov, Konstantine; Volk, Vladimir; Zagumenov, Vladimir; Zverev, Dmitriy; Tinin, Vasiliy; Kozyrev, Anatoly; Shamin, Dladimir; Tvilenev, Konstantin

    2013-01-01

    The aim of the work is to develop a basic technology of decomposition of ammonium nitrate stock solutions produced in radiochemical enterprises engaged in the reprocessing of irradiated nuclear fuel and fabrication of fresh fuel. It was necessary to work out how to conduct a one-step thermal decomposition of ammonium nitrate, select and test the catalysts for this process and to prepare proposals for recycling condensation. Necessary accessories were added to a laboratory equipment installation decomposition of ammonium nitrate. It is tested several types of reducing agents and two types of catalyst to neutralize the nitrogen oxides. It is conducted testing of modes of the process to produce condensation, suitable for use in the conversion of a new technological scheme of production. It is studied the structure of the catalysts before and after their use in a laboratory setting. It is tested the selected catalyst in the optimal range for 48 hours of continuous operation. (authors)

  10. Computer aided design of piping for a radiochemical plant

    Energy Technology Data Exchange (ETDEWEB)

    Selvaraj, P G; Chandrasekhar, A; Chandrasekar, A V [Reprocessing Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Raju, R P; Mahudeeswaran, K V; Kumar, S V [Reprocessing Group, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    In a radiochemical plant such as reprocessing plants, process equipment, storage tanks, liquid transfer systems and the associated pipe lines etc. are housed in series of concrete cells. Availability of limited cell space/volume, provision of various modes of liquid transfers with associated redundancies and instrumentation lines with standby alternatives increase the overall piping density. Designing such high density piping layout without interference is quite complex and needs lot of human efforts. This paper briefly describes development of computer codes for the entire scheme of design, drafting and fabrication of piping for nuclear fuel reprocessing plant. The general organisation of various programs, their functions, the complete sequence of the scheme and the flow of data are presented. High degree of reliability of each routine, considerable error checking facilities, marking legends on the drawings, provision for scaling in drafting and accuracy to the extent of one mm in layout design are some of the important features of this scheme. (author). 1 fig.

  11. 15th radiochemical conference: Booklet of abstracts and conference programme

    International Nuclear Information System (INIS)

    John, J.; Benes, P.; Kucera, J.; Havela, L.; Bartonicek, B.; Vobecky, M.; Krizova, V.; Kopicka, K.; Prasil, Z.

    2006-04-01

    The conference was structured as follows: Opening plenary lectures (6 lectures); Topic 1 - radionuclides in the environment, radioecology (22 verbal presentations (VPs), 23 poster presentations (PPs)); Topic 2 - nuclear analytical methods (22 VPs, 32 PPs); Topic 3 - chemistry of actinide and transactinide elements (8 VPs, 10 PPs); Topic 4 - radiation chemistry (9 VPs, 5 PPs); Topic 5 - production and application of radionuclides (17 VPs, 6 PPs); Topic 6 - separation methods, speciation (21 VPs, 23 PPs); Topic 7 - chemistry of nuclear fuel cycle, radiochemical problems in nuclear waste management (20 VPs, 16 PPs); Topic 8 - nuclear methods in medicine, radiopharmaceuticals, and radiodiagnostics, labelled compounds (8 VPs, 7 PPs); and Panels (2 introductions). (P.A.)

  12. The design of a new radiochemical laboratory complex

    International Nuclear Information System (INIS)

    Lewis, A.G.

    1984-01-01

    A brief account is given of the history and scope of Amersham International plc in the manufacture of radiopharmaceuticals and other labelled organic compounds, and radioactive sources. Extra facilities were needed and a new site was found, and contracts placed for new radiochemical laboratories. The two new laboratories, which are described in some detail, are intended as follows: (a) a Medical Products building for the production of a range of diagnostic kits for use in the treatment of thyroid and other disorders, the main isotope used being iodine-125; and (b) the Chemical Products building, for the development and manufacture of a wide range of organic compounds, which are labelled with either tritium or carbon-14. Particular emphasis is given to the description of the air conditioning and ventilation systems, the open work benches, and the special ventilated enclosures, and the drainage system. Planning for maximum flexibility is also stressed. (U.K.)

  13. Fast analysis procedure of radiochemical coordinat uptake for methotrexate

    International Nuclear Information System (INIS)

    Caston, J.D.; Kamen, B.A.

    1976-01-01

    Under this invention, a radio-chemical analysis is submitted to determine the concentration of methotrexate or its equivalents in analysis in a biological medium. The amounts taken up of the labelled compound and the known concentrations of the unlabelled compound to be determined are radio-isotopically related to a first system containing a pre-determined amount of the labelled compound and a pre-determined amount of the unlabelled compound. In a second system, identical to the first, save that the sample of the biological medium to be analyzed takes the place of the unlabelled compound, the amount of labelled compound taken up is determined radio-isotopically. The concentration of the compound in the sample is then determined by correlation of the labelled compound uptake determined in the second system with the relation determined in the first system. The radio-isotopic relations and determinations may be made by direct and sequential analytical techniques [fr

  14. Radiochemical neutron activation analysis of gold in geochemical samples

    International Nuclear Information System (INIS)

    Zilliacus, R.

    1983-01-01

    A fast method for the radiochemical neutron activation analysis of gold in geochemical samples is described. The method is intended for samples having background concentrations of gold. The method is based on the dissolution of samples with hydrofluoric acid and aqua regia followed by the dissolution of the fluorides with boric acid and hydrochloric acid. Gold is then adsorbed on activated carbon by filtrating the solution through a thin carbon layer. The activity measurements are carried out using a Ge(Li)-detector and a multichannel analyzer. The chemical yields of the separation determined by reirradiation vary between 60 and 90%. The detection limit of the method is 0.2 ng/g gold in rock samples. USGS standard rocks and exploration reference materials are analyzed and the results are presented and compared with literature data. (author)

  15. Radiochemical methods for studying lipase-catalyzed interesterification of lipids

    International Nuclear Information System (INIS)

    Schuch, R.; Mukherjee, K.D.

    1987-01-01

    Reactions involving lipase-catalyzed interesterification of lipids, which are of commendable interest in biotechnology, have been monitored and assayed by radiochemical methods using 14 C-labeled substrates. Medium chain (C 12 plus C 14 ) triacylglycerols were reacted in the presence of an immobilized lipase from Mucor miehei and hexane at 45 0 C with methyl [1- 14 C]oleate, [1- 14 C]oleic acid, [carboxyl- 14 C]trioleoylglycerol, [1- 14 C]octadecenyl alcohol, and [U- 14 C]glycerol, each of known specific activity. The reactions were monitored and the rate of interesterification determined by radio thin layer chromatography from the incorporation of radioactivity into acyl moieties of triacylglycerols (from methyl oleate, oleic acid, and trioleoylglycerol), alkyl moieties of wax esters (from octadecenyl alcohol), and into glycerol backbone of monoacylglycerols and diacylglycerols (from glycerol). (orig.)

  16. Radiochemical plasma salicylamide assay using ring-labeled tritiated salicylamide

    Energy Technology Data Exchange (ETDEWEB)

    Stella, V J; Varia, S A; Riedy, M

    1979-05-01

    A rat plasma salicylamide assay was developed using ring-labeled tritiated salicylamide, synthesized by reacting salicylamide with tritium oxide in the presence of heptafluorobutyric acid. The reaction yielded /sup 3/H-salicylamide of specific activity up to 8.41 mCi/mmole, 60% yield. Plasma containing /sup 3/H-salicylamide and its metabolites was extracted with a toluene-based scintillation fluid, which was subsequently counted. Specificity for free salicylamide was demonstrated by radiochemical and standard fluorescence plasma salicylamide level-time curves. Specificity resulted from nonextraction of the salicylamide sulfate and glucuronide metabolites. Sulfatase and beta-glucuronidase treatment allowed the analysis of plasma sulfate and glucuronide conjugates as free salicylamide. This procedure should be effective for the analysis of salicylamide and its metabolites in the presence of similar phenolic compounds.

  17. Radiochemical investigations on the solubility of molybdatophosphate in phosphate determination

    International Nuclear Information System (INIS)

    Noack, S.

    1975-01-01

    The solubility of various molybdatophosphates was determined under the conditions of a gravimetric phosphate determination by radiochemical means by labelling PO 4 3- with P-32. Starting with various conditions for phosphate determination via the molybdatophosphate of quinoline, 8-hydroxyquinoline, dimorpholino ethane, N,N,N',N'-tetrakis-β-hydroxypropyl ethylene diamine and N,N,N',N'-tetrakis-β-hydroxybutyl ethylene diamine, a general working rule was developed to determine the solubility. Taking the example of quinoline molybdatophosphates, a series of influencing factors - work, concentration and measuring parameters - were investigated in order to be able to limit the reliability region of the gravimetric phosphate determination. Depending on the conditions, the measured solubilities were between 10 -10 and 10 -6 Mol/l, the corresponding degrees of precipitation between 99.0 and 99.9999%. Apparent solubility products were calculated for the different molybdatophosphates using computer programmes especially developed for this purpose. (orig./RB) [de

  18. A rapid, simple method for obtaining radiochemically pure hepatic heme

    International Nuclear Information System (INIS)

    Bonkowski, H.L.; Bement, W.J.; Erny, R.

    1978-01-01

    Radioactively-labelled heme has usually been isolated from liver to which unlabelled carrier has been added by long, laborious techniques involving organic solvent extraction followed by crystallization. A simpler, rapid method is devised for obtaining radiochemically-pure heme synthesized in vivo in rat liver from delta-amino[4- 14 C]levulinate. This method, in which the heme is extracted into ethyl acetate/glacial acetic acid and in which porphyrins are removed from the heme-containing organic phase with HCl washes, does not require addition of carrier heme. The new method gives better heme recoveries than and heme specific activities identical to, those obtained using the crystallization method. In this new method heme must be synthesized from delta-amino[4- 14 C]levulinate; it is not satisfactory to use [2- 14 C]glycine substrate because non-heme counts are isolated in the heme fraction. (Auth.)

  19. PLM and the single reactor utility - or how a single reactor utility can face the PLM issues

    International Nuclear Information System (INIS)

    Ross, M.H.

    1994-01-01

    Although Gentilly-2 reactor was planned to last for 30 years, its life could be significantly shorter if nothing were done, whereas retubing and refurbishment after, say, 25 years should result in an extension of service life to 45-50 years. In the long run, dimensional changes rather than hydriding may prove to be the pressure tubes' life limiting factor. Hydro Quebec, New Brunswick Power and AECL have an agreement to cooperate in developing a life management program for CANDU-6 reactors. The author expresses the opinion that cost-benefit criteria should be introduced in regulatory decision making. 6 refs., 9 figs

  20. Radiochemical neutron activation analysis of high pure palladium and platinum by ion exchange chromatography

    International Nuclear Information System (INIS)

    Sadikov, I.I.; Zinov'ev, V.G.; Sadikova, Z.O.; Salimov, M.I.

    2006-01-01

    Full text: The palladium and platinum are widely used for jewel manufacture because of their beautiful white color. However the most part of these metals are widely adopted in the world as catalysts. Many works on analytical chemistry of platinum group elements published during last years are devoted to determination of platinum and palladium in other materials. There are no articles on analysis technique of the palladium and platinum purity published during last 20 years. Available publications are very old and are published till 70th of the last century, and implement chemical and spectral methods. At the same time, the palladium and platinum are very suitable for NAA. Therefore the purpose of our research was development of high-sensitivity and multielement techniques of radiochemical neutron activation analysis of a high pure palladium and platinum. Research of nuclear characteristics of palladium and platinum has shown that radioactive nuclides with different yields are formed under the reactor neutrons. 109 , 111 , 111m Pd, 109m , 111 Ag, 191 , 197 , 199 Pt, 199 Au are the most important among them. 109Pd separation factor is equal to 1*10 5 at palladium analysis, whereas 197 Pt and 199 Au separation factor is equal to 1*10 4 at the platinum analysis every other day after irradiation. Palladium and platinum can be separated by precipitation, extraction and ion exchange methods. For separation of radioactive nuclide of the matrix elements from the impurity elements we used ion exchange chromatography system Dowex-1x8 - 1 M HNO 3 for palladium and Dowex-1x8 - 0.1 M HNO 3 for platinum. At the HNO 3 acid concentrations variation from 0,1 M to 1 M more then 25 elements have distribution factors less than 1 and 10 elements have distribution factors 5 while matrix elements have distribution factors higher than 100. It allows an effective separation of these elements from palladium and platinum. Optimum sizes of the chromatographic column and the column effluent

  1. Nuclear research centres in the 21st century: An AECL perspective

    International Nuclear Information System (INIS)

    Fehrenbach, P.J.

    2001-01-01

    The nuclear energy programme of Canada started at Chalk River Laboratories with the setting up of Zero Energy Experimental Site in 1945. One of the early research reactors of Canada, the National Research Universal (NRU) continues to provide 70% of the world requirement of isotopes for medical and industrial applications. A CANDU prototype (208 MW(e)) came on line in 1967 and based on this concept, Canada has a large nuclear power programme. The role of nuclear research centres has evolved with time starting with strategic research in the initial phases through to implementation of technology, building and supporting industry, and carrying out advanced technology development. Most of these centres have important assets in terms of licensed sites, trained personnel, research reactors, shielded facilities and expertise for handling large quantities of radioactivity and high tech laboratories for advanced R and D. These centres would, therefore, continue to play an important role in emission free and economic energy generation, nuclear medicine, food irradiation and industrial applications. Nuclear research centres in different countries are at various stages of development and have many unique features. However, there are generic issues and much will be gained by developing a shared vision for the future and implementing programmes in a collaborative manner. (author)

  2. Radioactive preparations. Determination of radiochemical purity by thin-layer chromatography

    International Nuclear Information System (INIS)

    1986-01-01

    The standard sets the data which must be attached to every sample, and the equipment, chemicals and auxiliary substances used in the determination of radiochemical purity of substances by chromatography. Described are preparation of the sample, the procedure of sample deposition, the development, drying and detection of the radioactive preparation. The qualitative and quantitative assessment of the radiochromatogram is described as are the calculation of radiochemical purity and the determination of the reproducibility of measurement of radiochemical purity of radioactive preparations. (E.S.)

  3. Livermore pool-type reactor

    International Nuclear Information System (INIS)

    Mann, L.G.

    1977-01-01

    The Livermore Pool-Type Reactor (LPTR) has served a dual purpose since 1958--as an instrument for fundamental research and as a tool for measurement and calibration. Our early efforts centered on neutron-diffraction, fission, and capture gamma-ray studies. During the 1960's it was used for extensive calibration work associated with radiochemical and physical measurements on nuclear-explosive tests. Since 1970 the principal applications have been for trace-element measurements and radiation-damage studies. Today's research program is dominated by radiochemical studies of the shorter-lived fission products and by research on the mechanisms of radiation damage. Trace-element measurement for the National Uranium Resource Evaluation (NURE) program is the major measurement application today

  4. Canada's reactor exports

    International Nuclear Information System (INIS)

    Morrison, R.W.

    1981-01-01

    A brief sketch of the development of Canada's nuclear exports is presented and some of the factors which influence the ability to export reactors have been identified. The potential market for CANDUs is small and will develop slowly. The competition will be tough. There are few good prospects for immediate export orders in the next two or three years. Nonetheless there are reasonable opportunities for CANDU exports, especially in the mid-to-late 1980s. Such sales could be of great benefit to Canada and could do much to sustain the domestic nuclear industry. Apart from its excellent economic and technical performance, the main attraction of the CANDU seems to be the autonomy it confers on purchasing countries, the effectiveness with which the associated technology can be transferred, and the diversification it offers to countries which wish to reduce their dependence on the major industrial suppliers. Each sales opportunity is unique, and marketing strategy will have to be tailored to the customer's needs. Over the next decade, the factors susceptible to Canadian government action which are most likely to influence CANDU exports will be the political commitment of the government to those reactor exports, the performance established by the four 600 MWe CANDUs now nearing completion, the continuing successful operation of the nuclear program in Ontario, and the co-ordination of the different components of Canada's nuclear program (AECL, nuclear industry, utilities, and government) in putting forth a coherent marketing effort and following through with effective project management

  5. Optimization of the fuel assembly for the Canadian Supercritical Water-cooled Reactor (SCWR)

    Energy Technology Data Exchange (ETDEWEB)

    French, C.; Bonin, H.; Chan, P., E-mail: Corey.French@rmc.ca [Royal Military College of Canada, Dept. of Chemistry and Chemical Engineering, Kingston, Ontario (Canada)

    2013-07-01

    A parametric optimization of the Canadian Supercritical Water-cooled Reactor (SCWR) lattice geometry and fresh fuel content is performed in this work. With the potential to improve core physics and performance, significant gains to operating and safety margins could be achieved through slight progressions. The fuel performance codes WIMS-AECL and SERPENT are used to calculate performance factors, and use them as inputs to an optimization algorithm. (author)

  6. Homogeneous Thorium Fuel Cycles in Candu Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hyland, B.; Dyck, G.R.; Edwards, G.W.R.; Magill, M. [Chalk River Laboratories, Atomic Energy of Canada Limited (Canada)

    2009-06-15

    The CANDU{sup R} reactor has an unsurpassed degree of fuel-cycle flexibility, as a consequence of its fuel-channel design, excellent neutron economy, on-power refueling, and simple fuel bundle [1]. These features facilitate the introduction and full exploitation of thorium fuel cycles in Candu reactors in an evolutionary fashion. Because thorium itself does not contain a fissile isotope, neutrons must be provided by adding a fissile material, either within or outside of the thorium-based fuel. Those same Candu features that provide fuel-cycle flexibility also make possible many thorium fuel-cycle options. Various thorium fuel cycles can be categorized by the type and geometry of the added fissile material. The simplest of these fuel cycles are based on homogeneous thorium fuel designs, where the fissile material is mixed uniformly with the fertile thorium. These fuel cycles can be competitive in resource utilization with the best uranium-based fuel cycles, while building up a 'mine' of U-233 in the spent fuel, for possible recycle in thermal reactors. When U-233 is recycled from the spent fuel, thorium-based fuel cycles in Candu reactors can provide substantial improvements in the efficiency of energy production from existing fissile resources. The fissile component driving the initial fuel could be enriched uranium, plutonium, or uranium-233. Many different thorium fuel cycle options have been studied at AECL [2,3]. This paper presents the results of recent homogeneous thorium fuel cycle calculations using plutonium and enriched uranium as driver fuels, with and without U-233 recycle. High and low burnup cases have been investigated for both the once-through and U-233 recycle cases. CANDU{sup R} is a registered trademark of Atomic Energy of Canada Limited (AECL). 1. Boczar, P.G. 'Candu Fuel-Cycle Vision', Presented at IAEA Technical Committee Meeting on 'Fuel Cycle Options for LWRs and HWRs', 1998 April 28 - May 01, also Atomic Energy

  7. Validation of computer codes used in the safety analysis of Canadian research reactors

    International Nuclear Information System (INIS)

    Bishop, W.E.; Lee, A.G.

    1998-01-01

    AECL has embarked on a validation program for the suite of computer codes that it uses in performing the safety analyses for its research reactors. Current focus is on codes used for the analysis of the two MAPLE reactors under construction at Chalk River but the program will be extended to include additional codes that will be used for the Irradiation Research Facility. The program structure is similar to that used for the validation of codes used in the safety analyses for CANDU power reactors. (author)

  8. Monte Carlo applications to core-following of the National Research Universal reactor (NRU)

    International Nuclear Information System (INIS)

    Nguyen, T.S.; Wang, X.; Leung, T.

    2014-01-01

    Reactor code TRIAD, relying on a two-group neutron diffusion model, is currently used for core-following of NRU - to track reactor assembly locations and burnups. The Monte Carlo (MCNP or SERPENT) full-reactor models of NRU can be used to provide the core power distribution for calculating fuel burnups, with WIMS-AECL providing fuel depletion calculations. The MCNP/WIMS core-following results were in good agreement with the measured data, within the expected biases. The Monte Carlo methods, still very time-consuming, need to be able to run faster before they can replace TRIAD for timely support of NRU operations. (author)

  9. Validation of Non-Invasive Waste Assay System (Gamma Box Counter) Performance at AECL Whiteshell Laboratories - 13136

    International Nuclear Information System (INIS)

    Attas, E.M.; Bialas, E.; Rhodes, M.J.

    2013-01-01

    Low-level radioactive waste (LLW) in solid form, resulting from decommissioning and operations activities at AECL's Whiteshell Laboratories (WL), is packaged in B-25 and B-1000 standard waste containers and characterized before it is shipped to an on-site interim storage facility, pending AECL decisions on long term management of its LLW. Assay of the waste packages before shipment contributes to an inventory of the interim storage facility and provides data to support acceptance at a future repository. A key characterization step is a gamma spectrometric measurement carried out under standard conditions using an automated, multi-detector Waste Assay System (WAS), purchased from Antech Corporation. A combination of ORTEC gamma acquisition software and custom software is used in this system to incorporate multiple measurements from two collimated high-resolution detectors. The software corrects the intensities of the gamma spectral lines for geometry and attenuation, and generates a table of calculated activities or limits of detection for a user-defined list of radioisotopes that may potentially be present. Validation of WAS performance was a prerequisite to routine operation. Documentation of the validation process provides assurance of the quality of the results produced, which may be needed one or two decades after they were generated. Aspects of the validation included setting up a quality control routine, measurements of standard point sources in reproducible positions, study of the gamma background, optimization of user-selectable software parameters, investigation of the effect of non-uniform distribution of materials and radionuclides, and comparison of results with measurements made using other gamma detector systems designed to assay bulk materials. The following key components of the validation process have been established. A daily quality control routine has been instituted, to verify stability of the gamma detector operation and the background levels

  10. Enhanced candu 6 reactor: status

    International Nuclear Information System (INIS)

    Azeez, S.; Girouard, P.

    2006-01-01

    The CANDU 6 power reactor is visionary in its approach, renowned for its on-power refuelling capability and proven over years of safe, economical and reliable power production. Developed by Atomic Energy of Canada Limited (AECL), the CANDU 6 design offers excellent performance utilizing state-of-the-art technology. The first CANDU 6 plants went into service in the early 1980s as leading edge technology and the design has been continuously advanced to maintain superior performance with an outstanding safety record. The first set of CANDU 6 plants - Gentilly 2 and Point Lepreau in Canada, Embalse in Argentina and Wolsong- Unit 1 in Korea - have been in service for more than 22 years and are still producing electricity at peak performance; to the end of 2004, their average Lifetime Capacity Factor was 83.2%. The newer CANDU 6 units in Romania (Cernavoda 1), Korea (Wolsong-Units 2, 3 and 4) and Qinshan (Phase III- Units 1 and 2) have also been performing at outstanding levels. The average lifetime Capacity Factor of the 10 CANDU 6 operating units around the world has been 87% to the end of 2004. Building on these successes, AECL is committed to the further development of this highly successful design, now focussing on meeting customers' needs for reduced costs, further improvements to plant operation and performance, enhanced safety and incorporating up-to-date technology, as warranted. This has resulted in AECL embarking on improving the CANDU 6 design through an upgraded product termed the ''Enhanced CANDU 6'' (EC6), which incorporates several attractive but proven features that make the CANDU 6 reactor even more economical, safer and easier to operate. Some of the key features that are being incorporated into the EC6 include increasing the plant's power output, shortening the overall project schedule, decreasing the capital cost, dealing with obsolescence issues, optimizing maintenance outages and incorporating lessons learnt through feedback obtained from the

  11. Radiochemical search for neutron-rich isotopes of element 107

    International Nuclear Information System (INIS)

    Schaedel, M.

    1987-01-01

    Recent mass calculations have indicated that there is a region of deformed nuclei around neutron number N=162 that is especially stable against spontaneous fission. Barrier heights of about 5 MeV for Z = 107 nuclides can be extrapolated. To search for new, neutron-rich isotopes of element 107 in radiochemical experiments with 254 Es as a target an on-line chemical separation of element 107 (EKA-Rhenium), especially from the actinide elements is needed. An on-line gas-phase chemistry was developed with the homolog Re based on the volatility of the oxide which is transported in an O 2 containing atmosphere along a temperature gradient in a quartz tube and is condensed onto a thin Ta coated Ni-foil. The authors applied this technique in two series of experiments with their rotating wheel on-line gas-phase chemistry apparatus at the 88-inch cyclotron where they irradiated 254 Es as a target with 93 MeV and 96 MeV 16 O ions to search for 266 107. The assignment of the observed alpha events between 8 and 9 MeV to possibly (1) non actinide contaminants like 212 Po, (2) known isotopes of heavy elements like 261 105, or (3) a new isotope will be discussed

  12. Development of a radiochemical sensor. Part I: Feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Tarancon, A. [Departament de Quimica Analitica, Facultat de Quimica, Universitat de Barcelona, C/ Marti Franques 1, 08028 Barcelona (Spain); Garcia, J.F. [Departament de Pintura, Facultat de Belles Arts, Universitat de Barcelona, C/ Pau Gargallo 4, 08028 Barcelona (Spain)]. E-mail: jfgarcia@apolo.qui.ub.es; Rauret, G. [Departament de Quimica Analitica, Facultat de Quimica, Universitat de Barcelona, C/ Marti Franques 1, 08028 Barcelona (Spain)

    2005-05-04

    The evolution of nuclear activities and criteria for radiation protection have led to a continuous increase in measures to monitor and control the environment and therefore in the number of determinations required for such purposes. Classical analytical procedures are time-consuming, labor-intense and generate a large amount of waste. The alternative use of sensors for such determinations has seen very limited development. The present study focuses on the evaluation of the behavior of a prototype radiochemical sensor for liquid effluents. The sensor is based on a receptor made of a plastic scintillator and is capable of continuous, on-time and accurate remote quantification of the activity of alpha, beta and beta-gamma emitters. Low-level active solutions of {sup 90}Sr/{sup 90}Y, {sup 238}Pu, {sup 134}Cs and {sup 60}Co in matrices of groundwater, seawater and drinking water were quantified with prediction errors lower than 10% in most cases. The study also yields information about light generation and transmission and transductor configuration that will be useful in the design of future versions of this sensor.

  13. Waste treatment at the Radiochemical Engineering Development Center

    International Nuclear Information System (INIS)

    Brunson, R.R.; Bond, W.D.; Chattin, F.R.; Collins, R.T.; Sullivan, G.R.; Wiles, R.H.

    1997-01-01

    At the Radiochemical Engineering Development Center (REDC) irradiated targets are processed for the recovery of valuable radioisotopes, principally transuranium nuclides. A system was recently installed for treating the various liquid alkaline waste streams for removal of excess radioactive contaminants at the REDC. Radionuclides that are removed will be stored as solids and thus the future discharge of radionuclides to liquid low level waste tank storage will be greatly reduced. The treatment system is of modular design and is installed in a hot cell (Cubicle 7) in Building 7920 at the REDC where preliminary testing is in progress. The module incorporates the following: (1) a resorcinol-formaldehyde resin column for Cs removal, (2) a cross flow filtration unit for removal of rare earths and actinides as hydroxide, and (3) a waste solidification unit. Process flowsheets for operation of the module, key features of the module design, and its computer-assisted control system are presented. Good operability of the cross flow filter system is mandatory to the successful treatment of REDC wastes. Results of tests to date on the operation of the filter in its slurry collection mode and its slurry washing mode are presented. These tests include the effects of entrained organic solvent in the waste stream feed to the filter

  14. Remote sampling of process fluids in radiochemical plants

    International Nuclear Information System (INIS)

    Sengar, P.B.; Bhattacharya, R.; Ozarde, P. D.; Rana, D.S.

    1990-01-01

    Sampling of process fluids, continuous or periodic, is an essential requirement in any chemical process plant, so as to keep a control on process variables. In a radiochemical plant the task of taking and conveying the samples is a very tricky affair. This is due to the fact that neither the vessels/equipment containing radioactive effluents can be approached for manual sampling nor sampled fluids can be handled directly. The problems become more accute with higher levels of radioactivity. As such, inovative systems have to be devised to obtain and handle the raioactive samples employing remote operations. The remote sampling system developed in this Division has some of the unique features such as taking only requisite amount of samples in microlitre range, practically maintenance free design, avoidence of excess radioactive fluids coming out of process systems, etc. The paper describes in detail the design of remote sampling system and compares the same with existing systems. The design efforts are towards simplicity in operation, obtaining homogenised representative samples and highly economical on man-rem expenditure. The performance of a prototype system has also been evaluated. (author). 3 refs

  15. Automated radiochemical synthesis and biodistribution of [11C]l-α-acetylmethadol ([11C]LAAM)

    International Nuclear Information System (INIS)

    Sai, Kiran Kumar Solingapuram; Fan, Jinda; Tu, Zhude; Zerkel, Patrick; Mach, Robert H.; Kharasch, Evan D.

    2014-01-01

    Long-acting opioid agonists methadone and l-α-acetylmethadol (LAAM) prevent withdrawal in opioid-dependent persons. Attempts to synthesize [ 11 C]-methadone for PET evaluation of brain disposition were unsuccessful. Owing, however, to structural and pharmacologic similarities, we aimed to develop [ 11 C]LAAM as a PET ligand to probe the brain exposure of long-lasting opioids in humans. This manuscript describes [ 11 C]LAAM synthesis and its biodistribution in mice. The radiochemical synthetic strategy afforded high radiochemical yield, purity and specific activity, thereby making the synthesis adaptable to automated modules. - Highlights: • Radiochemical synthesis of opioid [ 11 C]l-α-acetylmethadol (LAAM) described for the first time. • High radiochemical yield, purity and specific activity. • Easily reproducible and adaptable synthesis to any C-11 automated modules. • [ 11 C]LAAM utility as a PET radiopharmaceutical for assessing brain penetration

  16. Investigations of radiochemical methods for the platinum group metals for NAA

    International Nuclear Information System (INIS)

    Tredoux, M.

    A radiochemical procedure for the determination of the platinum group metals and gold is outlined in this report. The sample is irradiated, treated with acids and passed through anion-exchange columns before being determined by gamma spectrometry

  17. Radiochemical and biological control of metaiodobenzyl-guanidine (MIBG) labeled with 131I

    International Nuclear Information System (INIS)

    Barboza, M.R.F.F. de; Muramoto, E.; Colturato, M.T.; Silva Valente Goncalves, R. da; Pereira, N.P.S. de; Almeida, M.A.T.M. de; Silva, C.P.G. da.

    1988-07-01

    This study shows the standardization of the radiochemical control of MIBG - 131 I in eletrophoretic system and also the biological control in Wistar rat for a period of time, not longer than 60 minutes after tracer administration. (author) [pt

  18. The use of radiochemical analysis for detecting biotracers of food radioactive contamination in Cherkasy Region

    International Nuclear Information System (INIS)

    Matvyijenko, D.G.

    2003-01-01

    Stable biotracers of radioactive contamination according to the findings of analytical control of the foodstuffs was determined. The use of radiochemical analysis for determining the activity of the foodstuffs and water (Sr-90, Cs-137) was evaluated

  19. Determination of thorium in native gold by radiochemical neutron activation analysis

    International Nuclear Information System (INIS)

    Liu, Y.; Kraehenbuehl, U.

    1995-01-01

    Thorium concentrations in 11 native gold samples from different sources, e.g. placer gold, vein and lode gold were determined. Thorium was determined by radiochemical separation and measurement of protactinium from irradiated native gold samples. The chemical yield of the separation procedures is 90%. Other elements were measured by gamma-ray spectroscopy. The radiochemical separation procedures described in this work make accurate determination of Th concentrations in native gold at picogram concentrations possible. (orig.)

  20. ESOL facility for the generation and radiochemical separation of short half-life fission products

    International Nuclear Information System (INIS)

    Gehrke, R.J.; Meikrantz, D.H.; Baker, J.D.; Anderl, R.A.; Novick, V.J.; Greenwood, R.C.

    1988-01-01

    A facility has been developed at the Idaho National Engineering Laboratory (INEL) for the generation and rapid radiochemical separation of short half-life mixed fission products. This facility, referred to as the Idaho Elemental Separation On Line (ESOL), consists of electro-plated sources of spontaneously fissioning 252 Cf with a helium jet transport arrangement to continuously deliver short half-life, mixed fission products to the radiochemistry laboratory for rapid, computer controlled, radiochemical separations. 18 refs., 13 figs

  1. Current studies of biological materials using instrumental and radiochemical neutron activation analysis

    International Nuclear Information System (INIS)

    Fardy, J.J.; McOrist, G.D.; Farrar, Y.J.

    1985-01-01

    Instrumental neutron activation analysis still remains the preferred option when analysing the trace element distribution in a wide rage of materials by neutron activation analysis. However, when lower limits of detection are required or major interferences reduce the effectiveness of this technique, radiochemical neutron activation analysis is applied. This paper examines the current use of both methods and the development of rapid radiochemical techniques for analysis of the biological materials, hair, cow's milk, human's milk, milk powder, blood and blood serum

  2. A comparison of the radiochemical stability of different iodine-131 labelled metaiodobenzylguanidine formulations for therapeutic use

    International Nuclear Information System (INIS)

    Wafelman, A.R.; Beijnen, J.H.; Hoefnagel, C.A.; Maes, R.A.A.

    1994-01-01

    The results of a stability study of three commercially available formulations of [ 131 I]MIBG for therapeutic use and an unstabilized formulation, stored under various conditions, are presented. The stability was followed for 20 days. In all formulations tested, free [ 131 I]iodide, formed by radiolysis, was the most important radiochemical impurity. The pharmaceutical formulation with the largest amount of stabilizer was radiochemically - but not chemically -most stable. (author)

  3. Enhanced CANDU 6 Reactor

    International Nuclear Information System (INIS)

    Azeez, S.; Alizadeh, A.; Girouard, P.

    2005-01-01

    Full text: The CANDU 6 power reactor is visionary in its approach, remarkable for its on-power refuelling capability and proven over years of safe, economical and reliable power production. Developed by Atomic Energy of Canada Ltd, the CANDU 6 design offers excellent performance utilizing state-of-the-art technology. The first CANDU 6 plants went into service in the early 1980's as leading edge technology and the design has been continuously advanced to maintain superior performance with an outstanding safety record. The first CANDU 6 plants- Gentilly 2 and Point Lepreau in Canada, Embalse in Argentina and Wolsong- Unit 1 in Korea have been in service for more than 21 years and are still producing electricity at peak performance and to the end of 2004, their average lifetime Capacity Factor was 83.2%. The newer CANDU 6 units in Romania (Cernavoda 1), Korea (Wolsong-Units 2, 3 and 4) and Qinshan (Phase III- Units 1 and 2) have also been performing at outstanding levels. The average lifetime Capacity Factor of the 10 CANDU 6 operating units around the world has been 87% to the end of 2004. Building on these successes, AECL is committed to the further development of this highly successful design, now focussing on meeting customer's needs for reduced costs, further improvements to plant operation and performance, enhanced safety and incorporating up-to-date technology as warranted. This has resulted in AECL embarking on improving the CANDU 6 design through an upgraded product termed as the 'Enhanced CANDU 6' (EC6)- which incorporates several attractive but proven features that will make the CANDU 6 reactor even more economical, safer and easier to operate. Some of the key features that will be incorporated in the EC6 include increasing the plant's power output, shortening the overall project schedule, decreasing the capital cost, dealing with obsolescence issues, optimizing maintenance outages and incorporating lessons learnt through feedback obtained from the

  4. Variations in the response of AECL random coil seals as a function of the angular position of the probe

    International Nuclear Information System (INIS)

    Silk, M.G.

    1986-04-01

    The AECL random coil seal is to be used as a Nuclear Safeguards seal to deter and detect tampering with nuclear material in store. To be effective the ultrasonic signature from the seal must remain constant and be different from that of other seals. Angular variations in the ultrasonic response from certain seals have, however, been observed and the programme of study reported here has been carried out in order to clarify the source of this variation. It is shown that the variation observed may most probably be attributed to the ultrasonic probes used in the investigation and, in particular, to deviation of the probe beam from circularity. However it is probable that the angle of the beam with respect to the probe case (squint) is also a contributory factor. In addition, to reduce the degree of angular variation it is important to exclude air bubbles and to ensure that the coil is placed as centrally in the beam as possible. It is anticipated that the exclusion of air bubbles will be easier in the field than in the laboratory studies. The need to place the seal reasonably centrally with respect to the beam places some minor limits on the coil design and also makes it essential that the probe fits closely into its holder in the seal as any slackness may give rise to signature variations. (author)

  5. Validation of DRAGON code in connection with WIMS-AECL/RFSP code system based on ENDF/B-VI library and two group model

    International Nuclear Information System (INIS)

    Hong, In Seob; Suk, Ho Chun; Kim, Soon Young; Jo, Chang Keun

    2002-06-01

    The major objective of this research is to validate the incremental cross section property of DRAGON code in connection with WIMS-AECL/DRAGON/RFSP code system with ENDF/B-VI library and full 2G calculation model. The direct comparison between the incremental cross section results calculated by DRAGON with ENDF/B-VI and ENDF/B-V and MULTICELL with ENDF/B-V indicate that there are not much differences between the incremental cross sections of DRAGON with ENDF/B-V and ENDF/B-VI, but there exists large discrepancies between the results of DRAGON and those of MULTICELL. In the analysis of the difference between calculated and measured reactivity worths of various types of control devices during Phase-B Post-Simulation of Wolsong Units 2, 3 and 4, WIMS-AECL/DRAGON/RFSP analysis well agrees with those of previous WIMS-AECL /MULTICELL/RFSP analysis within very small differences. From those results, we can conclude that DRAGON code can be used as a general purpose incremental cross section generation tool for not only the natural uranium fuel but also slightly enriched fuel such as RU or SEU, to cover the shortcomings of natural uranium based MULTICELL code

  6. AECL international standard problem ISP-41 FU/1 follow-up exercise (Phase 1): Containment Iodine Computer Code Exercise: Parametric Studies

    International Nuclear Information System (INIS)

    Ball, J.; Glowa, G.; Wren, J.; Ewig, F.; Dickenson, S.; Billarand, Y.; Cantrel, L.; Rydl, A.; Royen, J.

    2001-06-01

    This report describes the results of the second phase of International Standard Problem (ISP) 41, an iodine behaviour code comparison exercise. The first phase of the study, which was based on a simple Radioiodine Test Facility (RTF) experiment, demonstrated that all of the iodine behaviour codes had the capability to reproduce iodine behaviour for a narrow range of conditions (single temperature, no organic impurities, controlled pH steps). The current phase, a parametric study, was designed to evaluate the sensitivity of iodine behaviour codes to boundary conditions such as pH, dose rate, temperature and initial I- concentration. The codes used in this exercise were IODE (IPSN), IODE (NRIR), IMPAIR (GRS), INSPECT (AEAT), IMOD (AECL) and LIRIC (AECL). The parametric study described in this report identified several areas of discrepancy between the various codes. In general, the codes agree regarding qualitative trends, but their predictions regarding the actual amount of volatile iodine varied considerably. The largest source of the discrepancies between code predictions appears to be their different approaches to modelling the formation and destruction of organic iodides. A recommendation arising from this exercise is that an additional code comparison exercise be performed on organic iodide formation, against data obtained from intermediate-scale studies (two RTF (AECL, Canada) and two CAIMAN facility (IPSN, France) experiments have been chosen). This comparison will allow each of the code users to realistically evaluate and improve the organic iodide behaviour sub-models within their codes. (authors)

  7. Phenolsulphotransferase in human tissue: radiochemical enzymatic assay and biochemical properties

    International Nuclear Information System (INIS)

    Anderson, R.J.; Weinshilboum, R.M.

    1980-01-01

    Phenolsulphotransferase (EC 2.8.2.1) (PST) is an important catecholamine and drug metabolizing enzyme. Optimal conditions have been determined for the accurate measurement of PST activity in the human platelet, human renal cortex, and human jejunum with a radiochemical microassay. 3-Methoxy-4-hydroxyphenylglycol (MHPG) and 35 S-3'-phosphoadenosine-5'-phosphosulfate ( 35 S-PAPS) were the substrates for the reaction. The apparent Michaelis-Menten (Ksub(m)) values for MHPG with platelet, renal cortex, and jejunum were 1.09, 0.46 and 1.16 mmol/l, respectively. Apparent Ksub(m) values for PAPS in the same tissues were 0.14, 0.13 and 0.21 μmol/l. The pH optimum of the reacton in all three tissues was approximately 6.2-6.8 with three different buffer systems. The coefficients of variation for the assay of platelet, renal cortex, and jejunal activities were 6.2%, 3.4% and 4.4%, respectively. Mean platelet PST activity in blood samples from 75 randomly selected adult subjects was 5.0 +- 1.72 mmol of MHPG sulfate formed per hour per mg of platelet protein (8.3 X 10 -5 +- 2.9 X 10 -5 μmol min -1 mg -1 , mean +- S.D.). There was a 5-fold intersubject variation in platelet PST activity within two standard deviations of the mean value. Experiments in which partially purified human erythrocyte PST was added to platelet, kidney and gut homogenates under these assay conditions provided evidence that endogenous PST inhibitors did not affect the observed enzyme activity. (Auth.)

  8. Design of a multipurpose research reactor

    International Nuclear Information System (INIS)

    Sanchez Rios, A.A.

    1990-01-01

    The availability of a research reactor is essential in any endeavor to improve the execution of a nuclear programme, since it is a very versatile tool which can make a decisive contribution to a country's scientific and technological development. Because of their design, however, many existing research reactors are poorly adapted to certain uses. In some nuclear research centres, especially in the advanced countries, changes have been made in the original designs or new research prototypes have been designed for specific purposes. These modifications have proven very costly and therefore beyond the reach of developing countries. For this reason, what the research institutes in such countries need is a single sufficiently versatile nuclear plant capable of meeting the requirements of a nuclear research programme at a reasonable cost. This is precisely what a multipurpose reactor does. The Mexican National Nuclear Research Institute (ININ) plans to design and build a multipurpose research reactor capable at the same time of being used for the development of reactor design skills and for testing nuclear materials and fuels, for radioisotopes production, for nuclear power studies and basic scientific research, for specialized training, and so on. For this design work on the ININ Multipurpose Research Reactor, collaborative relations have been established with various international organizations possessing experience in nuclear reactor design: Atomehnergoeksport of the USSR: Atomic Energy of Canada Limited (AECL); General Atomics (GA) of the USA; and Japan Atomic Energy Research Institute

  9. Cobalt-60 production in CANDU power reactors

    International Nuclear Information System (INIS)

    Malkoske, G.R.; Norton, J.L.; Slack, J.

    2002-01-01

    MDS Nordion has been supplying cobalt-60 sources to industry for industrial and medical purposes since 1946. These cobalt-60 sources are used in many market and product segments, but are primarily used to sterilize single-use medical products including; surgical kits, gloves, gowns, drapes, and cotton swabs. Other applications include sanitization of cosmetics, microbial reduction of pharmaceutical raw materials, and food irradiation. The technology for producing the cobalt-60 isotope was developed by MDS Nordion and Atomic Energy of Canada Limited (AECL) almost 55 years ago using research reactors at the AECL Chalk River Laboratories in Ontario, Canada. The first cobalt-60 source produced for medical applications was manufactured by MDS Nordion and used in cancer therapy. The benefits of cobalt-60 as applied to medical product manufacturing, were quickly realized and the demand for this radioisotope quickly grew. The same technology for producing cobalt-60 in research reactors was then designed and packaged such that it could be conveniently transferred to a utility/power reactor. In the early 1970's, in co-operation with Ontario Power Generation (formerly Ontario Hydro), bulk cobalt-60 production for industrial irradiation applications was initiated in the four Pickering A CANDU reactors. As the demand and acceptance of sterilization of medical products grew, MDS Nordion expanded its bulk supply by installing the proprietary Canadian technology for producing cobalt-60 in additional CANDU reactors. CANDU is unique among the power reactors of the world, being heavy water moderated and fuelled with natural uranium. They are also designed and supplied with stainless steel adjusters, the primary function of which is to shape the neutron flux to optimize reactor power and fuel bum-up, and to provide excess reactivity needed to overcome xenon-135 poisoning following a reduction of power. The reactor is designed to develop full power output with all of the adjuster

  10. Mo-99 production on a LEU solution reactor

    International Nuclear Information System (INIS)

    Brown, R.W.; Thome, L.A.; Khvostionov, V.Y.

    2005-01-01

    A pilot homogenous reactor utilizing LEU has been developed by the Kurchatov Institute in Moscow along with their commercial partner TCI Medical. This solution reactor operates at levels up to 50 kilowatts and has successfully produced high quality Mo-99 and Sr-89. Radiochemical extraction of medical radionuclides from the reactor solution is performed by passing the solution across a series of inorganic sorbents. This reactor has commercial potential for medical radionuclide production using LEU UO 2 SO 4 fuel. Additional development work is needed to optimize multiple 50 kilowatt cores while at the same time, optimizing production efficiency and capital expenditure. (author)

  11. Evaluation of nuclear reactor based activation analysis techniques

    International Nuclear Information System (INIS)

    Obrusnik, I.; Kucera, J.

    1977-09-01

    A survey is presented of the basic types of activation analysis applied in environmental control. Reactor neutron activation analysis is described (including the reactor as a neutron source, sample activation in the reactor, methodology of neutron activation analysis, sample transport into the reactor and sample packaging after irradiation, instrumental activation analysis with radiochemical separation, data measurement and evaluation, sampling and sample preparation). Sources of environmental contamination with trace elements, sampling and sample analysis by neutron activation are described. The analysis is described of soils, waters and biological materials. Methods are shown of evaluating neutron activation analysis results and of their interpretation for purposes of environmental control. (J.B.)

  12. Comparison of different thin layer detection techniques to determine the radiochemical purity of radiopharmaceuticals

    International Nuclear Information System (INIS)

    Hammermaier, A.; Reich, E.; Boegl, W.

    1985-01-01

    Ten radiopharmaceuticals frequently used in clinical treatment were examined as to their radiochemical purity by paper and thin layer chromatography or electrophoresis, respectively. It is known that radiochemical impurities may result in an unnecessary exposure of the patients to be examined. Other than determining the radiochemical purity of several radiopharmaceuticals, a comparison of the different measuring methods of distributing activity on radiochromatograms or electropherograms is intended by this study. For this, the activity distribution in the developed radiochromatograms was assessed by four different measuring methods (TLC-linear analyzer, TLC-scanner with NaI(Tl) detector, TLC-scanner with gas flow counter and NaI(Tl) well-typ counter). As shown by the above analysis, only the TLC-linear analyzer and the NaI(Tl) well-typ counter (measurement of chromatograms or electropherograms cut into strips) are generally suitable methods for determining the radiochemical purity of radiochemicals, the TLC-scanner with gas flow counter is usable in most cases, while TLC-scanner with NaI(Tl) detector is yielding unsatisfactory results. (orig.) [de

  13. Luncheon address: Development of the CANDU reactor

    International Nuclear Information System (INIS)

    Bain, A.S.

    1997-01-01

    The paper is a highlight of the some of the achievements in the development of the CANDU Reactor, taken from the book C anada Enters the Nuclear Age . The CANDU reactor is one of Canada's greatest scientific/engineering achievements, that started in the 1940's and bore fruit with the reactors of the 60's, 70's, and 80's. The Government decided in the 1950's to proceed with a demonstration nuclear power reactor (NPD), AECL invited 7 Canadian corporations to bid on a contract to design and construct the NPD plant. General Electric was selected. A utility was also essential for participation and Ontario Hydro was chosen. In May 1957 it was concluded that the minimum commercial size would be about 200MWe and it should use horizontal pressure tubes to contain the fuel and pressurized heavy water coolant. The book also talks of standard out-reactor components such as pumps, valves, steam generators and piping. A major in-reactor component of interest was the fuel, fuel channels and pressure tubes. A very high level of cooperation was required for the success of the CANDU program

  14. Large-scale hydrogen production using nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ryland, D.; Stolberg, L.; Kettner, A.; Gnanapragasam, N.; Suppiah, S. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    For many years, Atomic Energy of Canada Limited (AECL) has been studying the feasibility of using nuclear reactors, such as the Supercritical Water-cooled Reactor, as an energy source for large scale hydrogen production processes such as High Temperature Steam Electrolysis and the Copper-Chlorine thermochemical cycle. Recent progress includes the augmentation of AECL's experimental capabilities by the construction of experimental systems to test high temperature steam electrolysis button cells at ambient pressure and temperatures up to 850{sup o}C and CuCl/HCl electrolysis cells at pressures up to 7 bar and temperatures up to 100{sup o}C. In parallel, detailed models of solid oxide electrolysis cells and the CuCl/HCl electrolysis cell are being refined and validated using experimental data. Process models are also under development to assess options for economic integration of these hydrogen production processes with nuclear reactors. Options for large-scale energy storage, including hydrogen storage, are also under study. (author)

  15. R and D directions for the development of CANDU reactors

    International Nuclear Information System (INIS)

    Torgerson, D.F.

    1998-01-01

    Full text: AECL is carrying out a comprehensive R and D programme to advance all aspects of CANDU reactor technology. These programs are focusing on three main strategic directions: improved economics, enhanced safety, and fuel cycle flexibility. R and D areas include fuel cycle development, heavy water technology, fuel channel development, safety technology, control and instrumentation, reactor chemistry, systems and components, and health and environment. In each case, the R and D programs have short, medium, and long-term goals to achieve the overall strategic directions. Most of the programs seek to further develop and exploit some of the unique characteristics of pressurized heavy water reactors. Examples of this include high neutron economy and on-power fueling which allow several different fuel cycles, the presence of large water heat sinks for enhanced safety, and modular components that can be easily replaced for plant life extension. This presentation reviews AECL's product development directions and the R and D programs that have been begun for their development

  16. The low power miniature neutron source reactors: Design, safety and applications

    International Nuclear Information System (INIS)

    Ahmed, Y.A.; Ewa, I.O.B.; Umar, M.; Bezboruah, T.; Johri, M.; Akaho, E.H.K.

    2006-04-01

    The Chinese Miniature Neutron Source Reactor (MNSR) is a low power research reactor with maximum thermal neutron flux of 1 x 10 12 n.cm -2 .s -1 in one of its inner irradiation channels and thermal power of approximately 30kW. The MNSR is designed based on the Canadian SLOWPOKE reactor and is one of the smallest commercial research reactors presently available in the world. Its commercial versions currently in operation in China, Ghana, Iran, Nigeria, Pakistan and Syria, is considered as an excellent tool for Neutron Activation Analysis (NAA), training of Scientist, and Engineers in nuclear science and technology and small scale radioisotope production. The paper highlights the basic design and theory of the commercial MNSR, its safety features, applications and advantages over the Chinese Prototype. The experimental flux characteristics determined in this work and in similar studies by other authors reveal that the commercial MNSR has more flux stability, longer life span, higher negative temperature coefficient of reactivity and low under-moderation compared to its prototype in China. The result shows that the facility is safe for reactor physics experiments, teaching and training of students and also ideal for application of NAA for the determination of elemental composition of biological and environmental samples. It can also be a useful tool for geochemical and soil fertility mapping. (author)

  17. An integrated approach to selecting materials for fuel cladding in advanced high-temperature reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rangacharyulu, C., E-mail: chary.r@usask.ca [Univ. of Saskatchewan, Saskatoon, SK (Canada); Guzonas, D.A.; Pencer, J.; Nava-Dominguez, A.; Leung, L.K.H. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    An integrated approach has been developed for selection of fuel cladding materials for advanced high-temperature reactors. Reactor physics, thermalhydraulic and material analyses are being integrated in a systematic study comparing various candidate fuel-cladding alloys. The analyses established the axial and radial neutron fluxes, power distributions, axial and radial temperature distributions, rates of defect formation and helium production using AECL analytical toolsets and experimentally measured corrosion rates to optimize the material composition for fuel cladding. The project has just been initiated at University of Saskatchewan. Some preliminary results of the analyses are presented together with the path forward for the project. (author)

  18. Method of determination of radiochemical purity of gallium-67 citrate injection

    International Nuclear Information System (INIS)

    Wang Quanji

    1985-01-01

    A simple method is used to compare the effect of five developing agents on the radiochemical purity of neutral products of 67 GaCit and on Rsub(f) values. Two preferable developing agents are recommended as suitable for the identification of 67 GaCit injection in its production. The effect of six pH values of different developing agents on radiochemical purity, Rsub(f) and chromatogram are compared for the neutral products. The results of the experiments show that the ascending paper chromatography with 1:2:4 pyridine/ethanol/water and 85:15 methanol/water is preferable for the determination of the radiochemical purity of 67 GaCit. The other developing agents also can be used if there are not any impurities except gallium radioisotopes

  19. Northern Marshall Islands Radiological Survey: a quality-control program for a radiochemical analyses

    International Nuclear Information System (INIS)

    Jennings, C.D.; Mount, M.E.

    1983-08-01

    More than 16,000 radiochemical analyses were performed on about 5400 samples of soils, vegetation, animals, fish, invertebrates, and water to establish amounts of 90 Sr, 137 Cs, 241 Am, and plutonium isotopes in the Northern Marshall Islands. Three laboratories were contracted by Lawrence Livermore National Laboratory to perform the radiochemical analyses: Environmental Analysis Laboratory (EAL), Richmond, California; Eberline Instrument Corporation (EIC), Albuquerque, New Mexico; and Laboratory of Radiation Ecology (LRE), University of Washington, Seattle, Washington. The analytical precision and accuracy were monitored by regularly including duplicate samples and natural matrix standards in each group of about 100 samples analyzed. Based on the duplicates and standards, over 83% of the radiochemical analyses in this survey were acceptable - 97% of the analyses by EAL, 45% of the analyses by EIC, and 98% of the analyses by LRE

  20. Radiolabeling, quality control and radiochemical purity assessment of 99mTc-HYNIC-TOC

    International Nuclear Information System (INIS)

    Melero, Laura T.U.H.; Araujo, Elaine B.; Mengatti, Jair

    2009-01-01

    Somatostatine receptors are widely expressed by several tumors, especially of the neuroendocrine origin. In vivo images of these tumors using radiolabeled somatostatine analogues became a useful clinical tool in oncology. The aim of this work was the radiolabeling of the somatostatine analogue HYNIC-TOC with 99mTc as well as the evaluation of the radiochemical stability and quality control of labeled complex. 99mTc-HYNIC-TOC was produced by labeling conditions using 20 μg of peptide, 20 mg of tricine and 10 mg of EDDA as coligands, 1110 MBq of 99mTc (99Mo-99mTc IPEN-TEC generator) and 15 μg of SnCl 2 .2H 2 O. The reaction proceeds for 10 minutes at boiling water bath. Radiochemical purity of labeled preparation was evaluated by different chromatographic systems: ITLC-SG in methanol:ammonium acetate (1:1); TLC-SG in sodium citrate buffer 0.1 N pH 5.0 and methylethylketone, and HPLC employing column C-18, 5 μm, 4.6 mm x 250 mm, UV (220 nm), radioactivity detectors, 1 mL/minute flow of acetonitrile and trifluoroacetic acid solution 0.1 %. Labeled compound has been found radiochemically stable for 5 hours and radiochemical purity was higher than 90 %. The thin layer chromatographic systems enabled the separation of radiochemical species presented in the labeled mixture as well as HPLC system. The labeling procedure studied resulted in high radiochemical yield and easy preparation. Future works include the preparation of a lyophilized reagent to make feasible the preparation of 99mTc-HYNIC-TOC at nuclear medicine services in order to study the clinical potential of the radiopharmaceutical in diagnostic and staging of neuroendocrine tumors. (author)

  1. Radiolabeling, quality control and radiochemical purity assessment of {sup 99m}Tc-HYNIC-TOC

    Energy Technology Data Exchange (ETDEWEB)

    Melero, Laura T.U.H.; Araujo, Elaine B.; Mengatti, Jair [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2009-07-01

    Somatostatine receptors are widely expressed by several tumors, especially of the neuroendocrine origin. In vivo images of these tumors using radiolabeled somatostatine analogues became a useful clinical tool in oncology. The aim of this work was the radiolabeling of the somatostatine analogue HYNIC-TOC with 99mTc as well as the evaluation of the radiochemical stability and quality control of labeled complex. 99mTc-HYNIC-TOC was produced by labeling conditions using 20 {mu}g of peptide, 20 mg of tricine and 10 mg of EDDA as coligands, 1110 MBq of 99mTc (99Mo-99mTc IPEN-TEC generator) and 15 {mu}g of SnCl{sub 2}.2H{sub 2}O. The reaction proceeds for 10 minutes at boiling water bath. Radiochemical purity of labeled preparation was evaluated by different chromatographic systems: ITLC-SG in methanol:ammonium acetate (1:1); TLC-SG in sodium citrate buffer 0.1 N pH 5.0 and methylethylketone, and HPLC employing column C-18, 5 {mu}m, 4.6 mm x 250 mm, UV (220 nm), radioactivity detectors, 1 mL/minute flow of acetonitrile and trifluoroacetic acid solution 0.1 %. Labeled compound has been found radiochemically stable for 5 hours and radiochemical purity was higher than 90 %. The thin layer chromatographic systems enabled the separation of radiochemical species presented in the labeled mixture as well as HPLC system. The labeling procedure studied resulted in high radiochemical yield and easy preparation. Future works include the preparation of a lyophilized reagent to make feasible the preparation of 99mTc-HYNIC-TOC at nuclear medicine services in order to study the clinical potential of the radiopharmaceutical in diagnostic and staging of neuroendocrine tumors. (author)

  2. Use of reference materials for quality control of elemental analysis by neutron activation with radiochemical separation

    International Nuclear Information System (INIS)

    Woittiez, J.R.W.

    1990-01-01

    This paper describes the use of certified reference materials to monitor the long-term quality of radiochemical separations. The practical limitations which determine the actual design of the quality control are discussed. The hypothesis that the high yield of the radiochemical separation will be constant with time has been checked and validated for the elements Zn, Fe, Co, Cd, Mo and to a lesser extent for W and Th using NBS SRM 1577A, BCR CRM 274 and IAEA RM A-11. This validation could not be made for the elements Cr, Au, and Ag. Especially for Cr there is a serious lack of appropiate certified reference materials. (orig.)

  3. Radiochemical procedures for determination of selected members of the uranium and thorium series

    International Nuclear Information System (INIS)

    Smithson, G.L.

    1979-01-01

    The radiochemical procedures contained in this manual are adaptations of those developed and published by many radiochemists. In many cases the identity of the originator is not clear and usually modifications in the original procedure have been made by subsequent workers. Nearly all of the basic radiochemical techniques and separations in use today were developed during the Manhattan Project and can be found in U.S.A.E.C. reports published from 1945 to 1953. This manual contains methods for the determination of Pb-210, Po-210; Ra-226, Ra-228, Th-228, Th-230 and Th-232. (auth)

  4. Critical evaluation of the determination of zirconium and hafnium by instrumental and radiochemical neutron activation analysis

    International Nuclear Information System (INIS)

    Burger, Mario; Kraehenbuehl, Urs

    1991-01-01

    Neutron activation analysis (instrument or radiochemical) is suitable for the determination of zirconium and hafnium in samples of geochemical origin only when sufficient attention is paid to inter-fering nuclides. The size of the necessary correction for INAA depends on the composition of the sample; this problem is discussed. The radio-chemical technique which is recommended involves separation of the samples, precipitations and anion-exchange separation. Results are given for various standard reference materials and for meteorites. (author). 12 refs.; 1 fig.; 9 tabs

  5. On the methodology of radiochemical neutron activation analysis of noble metals

    International Nuclear Information System (INIS)

    Chai, C.F.; Ma, S.L.; Mao, X.Y.; Liao, K.N.; Liu, W.C.

    1986-01-01

    Two different radiochemical procedures were developed: chelate ion resin exchange and amine solvent extraction. Two kinds of new Chinese chelate resins (NANKAI-3926 and BEI-5) and a new long-chain primary amine N 1923 were compared with Srafion NMRR and the tertiary amine N 235 in absorption performance of noble metals, respectively. Influences of various experimental conditions, e.g. sample digestion, acidity, equilibrium time, as well as elution of noble metals, on analytical sensitivity and chemical yield were discussed. Combining with neutron activation, the radiochemical separation procedures developed were used to determine the noble metal contents in the geological samples from Permina/Triassic boundary in South China. (author)

  6. Abyssal sediment erosion from the Central Indian Basin: Evidence from radiochemical and radiolarian studies

    Digital Repository Service at National Institute of Oceanography (India)

    Banakar, V.K.; Gupta, S.M.; Padmavati, V.K.

    ) 167-173 167 Elsevier Science Publishers B.V., Amsterdam Letter Section Abyssal sediment erosion in the Central Indian Basin: Evidence from radiochemical and radiolarian studies V.K. Banakar, S.M. Gupta and V.K. Padmavathi National Institute... of Oceanography, Dona-Paula, Goa-403 004, India (Revision accepted September 17, 1990) ABSTRACT Banakar, V.K., Gupta, S.M. and Padmavathi, V.K., 1991. Abyssal sediment erosion from the Central Indian Basin: Evi- dence from radiochemical and radiolarian studies...

  7. Use of ethyl-α-isonitrosoacetoacetate in the rapid estimation and radiochemical separation of gold

    International Nuclear Information System (INIS)

    Sawant, A.D.; Haldar, B.C.

    1978-01-01

    The use of ethyl-α-isonitrosoacetoacetate in the rapid estimation and radiochemical separation of gold is reported. As low as 5.00 mg of Au can be estimated with an accuracy better than 1%. Decontamination values against platinum metals and other metals usually associated with Au are greater than 10 5 . Isotopes and results are tabulated. The time required for radiochemical separation is around 20 min and the recovery of Au is better than 80%. γ-activities were measured with a single channel analyser and NaI(Tl) detector. β-activities were counted on a thin end-window type GM counter. (T.I.)

  8. Kit preparation of 153Sm-EDTMP and factors affecting radiochemical purity and stability

    International Nuclear Information System (INIS)

    Ferro-Flores, G.; Tendilla, J.I.; Lopez-Gomez, M.A.; Aguilar-Hernandez, F.; Gonzalez-Zavala, M.A.; Parades-Gutierrez, L.; Avila-Ramirez, E.

    1996-01-01

    A fast kit method was developed for the production of 153 Sm-EDTMP in two steps avoiding the use of nitric acid, evaporation and sterilization of the final solution by autoclave. Methods of analysis for the determination of chemical and radiochemical purity in the radiopharmaceutical solution were established. Factors affecting radiochemical purity and stability of the complex as the molar ratio of EDTMP/Sm, concentration of phosphate buffer and neutralization of EDTMP prior kit preparation were also analyzed. The use of this radiopharmaceutical in rabbits and patients showed selective skeletal uptake. (author). 5 refs., 4 figs., 3 tabs

  9. The role of high performance liquid chromatography in radiochemical/radiopharmaceutical synthesis and quality assurance

    International Nuclear Information System (INIS)

    Boothe, T.E.; Emran, A.M.

    1990-01-01

    The usefulness of HPLC in all areas of radiopharmaceutics has been demonstrated in numerous laboratories, particularly in the development of in-house radiopharmaceuticals for SPECT and PET. HPLC continues to be a powerful tool in preparation and quality assurance (QA) as illustrated in such areas as chemical and radiochemical identification; product separation and isolation; preparative scale purification; and specific activity determination. A review of established HPLC techniques in radiopharmaceutics will be presented. Examples from the literature as well as newer applications will be used in an attempt to assess and define the present-day role of HPLC in the preparation of radiochemicals and radiopharmaceuticals with emphasis on QA

  10. Radiochemical methodologies applied to analytical characterization of low and intermediate level wastes from nuclear power plants

    International Nuclear Information System (INIS)

    Monteiro, Roberto Pellacani G.; Júnior, Aluísio Souza R.; Kastner, Geraldo F.; Temba, Eliane S.C.; Oliveira, Thiago C. de; Amaral, Ângela M.; Franco, Milton B.

    2017-01-01

    The aim of this work is to present radiochemical methodologies developed at CDTN/CNEN in order to answer a program for isotopic inventory of radioactive wastes from Brazilian Nuclear Power Plants. In this program some radionuclides, 3 H, 14 C, 55 Fe, 59 Ni, 63 Ni, 90 Sr, 93 Zr, 94 Nb, 99 Tc, 129 I, 235 U, 238 U, 238 Pu, 239 + 240 Pu, 241 Pu, 242 Pu, 241 Am, 242 Cm e 243 + 244 Cm, were determined in Low Level Wastes (LLW) and Intermediate Level Wastes (ILW) and a protocol of analytical methodologies based on radiochemical separation steps and spectrometric and nuclear techniques was established. (author)

  11. Radiostrontium accumulation in animal bones: development of a radiochemical method by ultra low-level liquid scintillation counting for its quantification.

    Science.gov (United States)

    Iammarino, Marco; Dell'Oro, Daniela; Bortone, Nicola; Mangiacotti, Michele; Chiaravalle, Antonio Eugenio

    2018-03-31

    Strontium-90 (90Sr) is a fission product, resulting from the use of uranium and plutonium in nuclear reactors and weapons. Consequently, it may be found in the environment as a consequence of nuclear fallouts, nuclear weapon testing, and not correct waste management. When present in the environment, strontium-90 may be taken into animal body by drinking water, eating food, or breathing air. The primary health effects are bone tumors and tumors of the blood-cell forming organs, due to beta particles emitted by both 90Sr and yttrium-90 (90Y). Moreover, another health concern is represented by inhibition of calcification and bone deformities in animals. Actually, radiometric methods for the determination of 90Sr in animal bones are lacking. This article describers a radiochemical method for the determination of 90Sr in animal bones, by ultra low-level liquid scintillation counting. The method precision and trueness have been demonstrated through validation tests (CV% = 12.4%; mean recovery = 98.4%). Detection limit and decision threshold corresponding to 8 and 3 mBecquerel (Bq) kg-1, respectively, represent another strong point of this analytical procedure. This new radiochemical method permits the selective extraction of 90Sr, without interferences, and it is suitable for radiocontamination surveillance programs, and it is also an improvement with respect to food safety controls.

  12. Rock fracture dynamics research at AECL's Underground Research Laboratory: applications to geological disposal of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Young, R.P. [Univ. of Toronto, Toronto, ON (Canada); Haycox, J.R. [Applied Seismology Consultants Limited, Shrewsbury, Shropshire (United Kingdom); Martino, J. [Atomic Energy of Canada Limited, Pinawa, MB (Canada)

    2011-07-01

    Studies of rock fracture dynamics at AECL's Underground Research Laboratory (URL) have helped to provide a fundamental understanding of how crystalline rock responds to stresses induced from excavation, pressurization and temperature changes. The data acquired continue to provide insights into how a facility for the future geological disposal of radioactive waste could be engineered. Research into microseismic (MS), acoustic emission (AE), and ultrasonic velocity measurements has been performed on the full-scale sealed, pressurized, and heated horizontal elliptical tunnel at the Tunnel Sealing Experiment (TSX). The continuous monitoring of the experiment for 8 years provides a unique dataset for the understanding of the medium-term performance of an engineered disposal facility. This paper summarizes the results, interpretations and key findings of the experiment paying particular focus to the heating and cooling/depressurization of the chamber. Initial drilling of the tunnel and bulkheads causes microfracturing around the tunnel, mapped by MS and AEs, and is used as a benchmark for fracturing representing the excavated damaged zone (EDZ). There is no further extension to the volume during pressurization or heating of the tunnel suggesting an increase in crack density and coalescence of cracks rather than extension into unfractured rock. The dominant structure within the seismic cloud has been investigated using a statistical approach applying the three-point method. MS events in the roof exhibit a dominant pattern of sub-horizontal and shallow-dipping well defined planar features, but during cooling and depressurization a 45 degree dip normal to the tunnel axis is observed, which may be caused by movement in the rock-concrete interface due to differential cooling of the bulkhead and host rock. Cooling and depressurization of the TSX have not led to a significant increase in the number of MS or AE events. Ultrasonic results suggest the rock gets even stiffer

  13. Factors controlling the population size of microbes in groundwater from AECL's Underground Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Stroes-Gascoyne, S.; Hamon, C. [Atomic Energy of Canada Limited, Whiteshell Labs., Pinawa, Manitoba (Canada); Mills, K. [University of Saskatoon, Saskatoon, SK (Canada); Rana, S.; Vaidyanathan, S. [Deep River Science Academy, Whiteshell Campus Summer 1997, Pinawa, Manitoba (Canada)

    2001-01-01

    Microbial populations in groundwaters from AECL's Underground Research Laboratory (URL) range from 10{sup 3} to 10{sup 5} cells/mL. Based on the total dissolved organic carbon (DOC), nitrate and phosphate content of these waters, populations of about 10{sup 5} to 10{sup 7} cells/mL should be possible. Upon storage of groundwater samples, total cell counts generally increase and viable cell counts always increase. A study was undertaken to determine what controls the in situ microbial population size in groundwater and what causes this population to grow upon sampling. Fresh URL groundwater was filter-sterilized, inoculated with small quantities of the unaltered water and incubated in the absence and presence of added nutrients (nitrate, phosphate and glucose). Unfiltered groundwater and R2A growth medium inoculated with unaltered groundwater, were also incubated. Microbial changes over time were followed by total and viable (on R2A medium) cell counts. Results showed that in the absence of any nutrient addition, populations grew to between 5 x 10{sup 5} to 4 x 10{sup 6} cells/mL, regardless of the initial size of the population ({approx}10{sup 1} to 10{sup 4} cells/mL), suggesting that nutrients for growth were available in the unamended groundwater. It was hypothesized that the original groundwater population was in 'equilibrium' with the underground environment, which likely included a large population of sessile cells in biofilms on fracture surfaces. Sampling of the groundwater removed the large demand on nutrient supplies by the sessile population which subsequently allowed the planktonic population to grow to a new 'equilibrium' with the available nutrients in the sample bottles. Addition of single nutrients (C, N or P) did not increase cell numbers, suggesting that more than one nutrient is limiting growth. Glucose was used very efficiently aerobically in the presence of both added N and P, but somewhat less under anaerobic

  14. Cadmium determination in biological samples using neutron activation analysis with radiochemical separations

    International Nuclear Information System (INIS)

    Munoz A, Luis; Gras R, Nuri

    2005-01-01

    Chile has 7500 km of coastline on the Southern Pacific ocean,with about 4500 km of continental coastline that contains a variety of different geographical zones.This variety means that there is a great diversity of marine resources such as fish, shellfish and seaweeds. The utilization of these resources has been increasing in recent years making this sector an economically important one. The catch as of May 2002 came to 1.9 million tons and exports of the different species amounted to US$611.5 million as of April.But this important economic resource is being threatened by the technical demands imposed by importing countries, mainly the specific requirements for sanitary certification for fishery export products, depending on the markets of destination. The chemical element cadmium is one of the most strictly controlled elements due some shellfish accumulate a large amount of this element and to its high toxicity. The Chilean standard's analytical procedures for cadmium determination in hydro biological products, which must be met by laboratories that certify and control these products for export, are now being evaluated. Through its Chemical Metrology Unit, the Chilean Nuclear Energy Commission is strongly supporting this sector by preparing the secondary reference or control materials, and it has developed and implemented nuclear analytical methods for the certification of these materials, which will be used mostly in collaborative studies. This work describes the methodology developed for the determination of cadmium in biological samples, particularly in shellfish and fish. The method is based on neutron activation analysis with radiochemical separations, using the radioisotopes 115 Cd and 115m In, generated in the samples by bombarding with neutrons in a nuclear reactor. The samples were digested at 110 o C with H 2 SO 4 and H 2 O 2 and then the radioactive cadmium element was separated from the other elements present in the samples using a Bio Rad AG 2-X8

  15. Transient fission-product release during reactor shutdown and startup

    International Nuclear Information System (INIS)

    Hunt, C.E.L.; Lewis, B.J.; Dickson, L.W.

    1997-12-01

    Sweep-gas experiments performed at AECL's Chalk River Laboratories from 1979 to 1985 have been further analysed to determine the fraction of the gaseous fission-product inventory that is released on reactor shutdown and startup. Empirical equations were derived and applied to calculate the stable xenon release from companion fuel elements and from a well-documented experimental fuel bundle irradiated in the NRU reactor. The calculated gas release could be matched to the measured values within about a factor of two for an experimental irradiation with a burnup of 217 MWh/kgU. There was also limited information on the fraction of the radioactive iodine that was exposed, but not released, on reactor shutdown. An empirical equation is proposed for calculating this fraction. (author)

  16. AECL present and future

    International Nuclear Information System (INIS)

    Foster, J.S.

    1975-08-01

    This is a history of Atomic Energy of Canada Limited with forecasts of its role in enabling Canada to meet a rapidly increasing share of her energy requirements from nuclear power. Its main activities will be research and development in support of contemporary and advanced CANDU (Canada Deuterium Uranium) nuclear power systems; research into other ways to provide energy and fissile materials; and investigation into applications for nuclear energy beyond the generation of electrical power. (Author)

  17. Management of research reactor; dynamic characteristics analysis for reactor structures related with vibration of HANARO fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Chang Kee; Shim, Joo Sup [Shinwa Technology Information, Seoul (Korea)

    2001-04-01

    The objective of this study is to deduce the dynamic correlation between the fuel assembly and the reactor structure. Dynamic characteristics analyses for reactor structure related with vibration of HANARO fuel assembly have been performed For the dynamic characteristic analysis, the in-air models of the round and hexagonal flow tubes, 18-element and 36-element fuel assemblies, and reactor structure were developed. By calculating the hydrodynamic mass and distributing it on the in-air models, the in-water models of the flow tubes, the fuel assemblies, and the reactor structure were developed. Then, modal analyses for developed in-air and in-water models have been performed. Especially, two 18-element fuel assemblies and three 36-element fuel assemblies were included in the in-water reactor models. For the verification of the modal analysis results, the natural frequencies and the mode shapes of the fuel assembly were compared with those obtained from the experiment. Finally the analysis results of the reactor structure were compared with them performed by AECL Based on the reactor model without PCS piping, the in-water reactor model including the fuel assemblies was developed, and its modal analysis was performed. The analysis results demonstrate that there are no resonance between the fuel assembly and the reactor structures. 26 refs., 419 figs., 85 tabs. (Author)

  18. Radiochemical studies on corrosion products of oral biomaterials

    International Nuclear Information System (INIS)

    Madbouly, H.A.Abdallah

    1998-01-01

    The work given in this thesis deals with a radioactive tracer study of the sorption of the corrosion products of dental amalgams and antimony on human teeth, porcelain and acrylic materials, used as dental restorative material. Sorption was investigated in presence of water and liquids commonly intaken by man; namely tea with or without sugar, soluble coffee ( Nescaffee) with or without sugar and/or milk, red tea (karkadeh or hibiscus) with or without sugar and chicken soup. The radioactive isotopes of Ag, Sn, Zn (amalgam components) and antimony were prepared by their irradiation in the nuclear reactor; 110m Ag, 113 Sn, 65 Zn and 124 Sb were thereby produced. The percent uptake of each studied element was evaluated from the depletion of radioactivity of the corresponding radioactive tracer in the given medium containing a tooth (human or artificial)

  19. Improved monitoring procedure for Iodine -131 in radiochemical process laboratory

    International Nuclear Information System (INIS)

    Singh, Pratap; Yadav, R.K.B.; Anilkumar, S.; Gopalakrishnan, R.K.; Chakraborty, S.

    2016-01-01

    Radiation Hazard Control Unit at Isotope wing provides radiological safety support and advises for safe processing and production of radiopharmaceuticals. Tellurium Oxide (TeO 2 ), irradiated in a nuclear reactor, is processed in a process laboratory for separating 131 I using dry distillation technique. The workplace environment is being assessed for airborne radioactivity using installed Static Air Samplers (SASs). SASs contains two filter media (glass fibre and charcoal impregnated paper) to collect airborne 131 I radioactivity and laboratory air sampled at 50 litres per minutes (lpm). Personal Air Sampler (PAS) consists of three types of filters viz. a glass fibre, charcoal impregnated paper and cartridges containing activated charcoal granules. Three combinations were studied at a sampling rate of 5 lpm

  20. The chemical monitoring and control during temporary turbine trip or reactor scram of nuclear power plant

    International Nuclear Information System (INIS)

    Liu Heng

    2012-01-01

    During normal operation, a malfunction of equipment or improper operation sometimes results in a turbine trip or reactor scram or even cold shutdown. Because present chemical control strategy and programs aimed at the situation of normal operation and planed refueling outage, no integrate emergency program of radiochemical and chemical control had been developed to focus on this urgent and unexpected situation. After many years of practice and experience feedback, chemists have created an emergency collaborative program of radiochemical and chemical control which aims at these unexpected situations such as unplanned unit down power, turbine trip, or reactor scram. The program defines different radiochemical and chemical control measures and steps during different status to monitor primary loop dose rate variation, fuel assembly integrity and water chemical excursion to prevent components from corrosion. (author)

  1. Past and future fracturing in AECL Research areas in the superior province of the Canadian Precambrian Shield, with emphasis on the Lac du Bonnet Batholith

    Energy Technology Data Exchange (ETDEWEB)

    Brown, A; Everitt, R A; Martin, C D; Davison, C C [Atomic Energy of Canada Ltd., Pinawa, MB (Canada). Whiteshell Labs.

    1995-10-01

    The likelihood that future fracturing, arising from geologic causes, could occur in the vicinity of a nuclear fuel waste repository in plutonic rock of the Canadian Precambrian Shield, is examined. The report discusses the possible causes of fracturing (both past and future) in Shield rocks. The report then examines case histories of fracture formation in Precambrian plutonic rocks in AECL`s Research Areas, especially the history of the Lac du Bonnet Batholith, in the Whiteshell Area, Manitoba. Initially, fractures can be introduced into intrusive plutonic rocks during crystallization and cooling of an intrusive magma. These fractures are found at all size scales; as late residual magma dyking, hydraulic fracturing by retrograde boiling off of hydrothermal fluids, and, in some cases, through local differential cooling. Subsequent fracturing is largely caused by changes in environmental temperature and stress field, rather than by alteration of the material behaviour of the rock. Pluton emplacement during orogeny is commonly accompanied by uplift and erosional exhumation, altering both the tectonic and the lithostatic stresses, the rock temperature gradient and the pore fluid characteristics.

  2. On the radiochemical purity of elementary 35S with high specific activity

    International Nuclear Information System (INIS)

    Todorovsky, D.S.; Kostadinov, K.N.; Efremova, Yu.N.

    1979-01-01

    Radiochemical composition and chemical changes with increasing storage time of benzene solutions and of solid species of elementary 35 S with high specific activity are studied. The dependence of the stability on the specific activity and the radioactive concentration is shown and some tentative limits are given for permissible storage periods. (author)

  3. Determination of the radiochemical purity of phosphorus-32 and tritium-labeled diisopropylphosphorofluoridate (DFP)

    International Nuclear Information System (INIS)

    Christopher, R.E.; Sheppard, G.

    1975-01-01

    A method is described for the determination of the radiochemical purity of labeled diisopropylphosphorofluoridate (DFP), based on the irreversible inhibition reaction with the enzyme α-chymotrypsin. The nature of the impurities in commercially available 32 P- and 3 H-labeled DFP is discussed

  4. Radiochemical assay for determination of dihydropyrimidinase activity using reversed-phase high-performance liquid chromatography

    NARCIS (Netherlands)

    van Kuilenburg, A. B.; van Lenthe, H.; van Gennip, A. H.

    1999-01-01

    A radiochemical assay was developed to measure the activity of dihydropyrimidinase (DHP) in human liver homogenates. The method is based on the separation of radiolabeled dihydrouracil from N-carbamyl-beta-alanine by HPLC with on-line detection of radioactivity combined with detection of 14CO2 by

  5. Rapid and sensitive enzymatic-radiochemical assay for the determination of triglycerides

    International Nuclear Information System (INIS)

    Khoo, J.C.; Miller, E.; Goldberg, D.I.

    1987-01-01

    An enzymatic-radiochemical method suitable for the determination of triglyceride levels of cells in culture is described. The method is based on the enzymatic hydrolysis of triglycerides to free fatty acids which then complex with 63 Ni. The method is rapid, accurate, and inexpensive. The procedure extends the sensitivity of triglyceride measurement to as low as 0.25 nanomoles

  6. Triphenyl phosphine oxide as a substoichiometric radiochemical reagent: Determination of thallium

    International Nuclear Information System (INIS)

    Reddy, P.C.; Polaiah, B.; Rangamannar, B.

    1991-01-01

    A rapid radiochemical method has been developed for the determination of microgram amounts of thallium based on the substoichiometric extraction of its ocmplex with triphenylphosphine oxide into benzene from 6 M sulphuric acid. 10-90 μg of thallium was determined with an average error of 2.06%. The effect of diverse metal ions on the extraction was studied. (orig.)

  7. Computer aided piping layout design in radiochemical plants- an improved software package

    International Nuclear Information System (INIS)

    Raju, R.P.; Siddiqui, H.R.

    1995-01-01

    A software package was developed and it was successfully implemented for the piping layout design of the four process cells of the Kalpakkam Reprocessing Project. This paper discusses in detail all the improvements and modifications that are being carried out in the package so that it becomes more meaningful and useful for implementation for the forthcoming radiochemical plants

  8. Evaluation of radiochemical purities of some radiopharmaceuticals in Shiraz Namazi teaching hospital

    Directory of Open Access Journals (Sweden)

    Hossein Sadeghpour

    2015-03-01

    Full Text Available Many radiopharmaceuticals, as a special group of drugs, are eventually prepared at the nuclear medicine departments of the hospitals. Therefore, their quality control procedures such as sterility tests, radionuclide, radiochemical and chemical purity should be carried out in the hospitals. In this study, radiochemical purity for more than 300 preparations of three different radiopharmaceutical formulations from commercial kits were tested using instant thin layer chromatography. The formulations 99mTc-DTPA, 99mTc-MDP and 99mTc-MIBI were obtained from Pars Isotope Co. Several paper chromatographic systems including standard and factory recommended thin layer chromatography systems were used in this study. In addition different equipments for detection of radioactivity in paper chromatography like gamma camera and dose calibrator were used. The results showed that the most observed impurities were hydrolyzed reduced technetium (HR-Tc. There were no significant differences between calculated 99mTc-MIBI radiochemical purities when the radioactive detection device was gamma camera instead of dose calibrator. In case of 99mTc-DTPA and 99mTc-MDP, there were significant differences in detection of HR-Tc. On the contrary, no significant differences in free pertechnetate were observed when package insert procedures for quality control were used instead of those recommended in the references. Finally, we observed that the package insert procedures for quality control can offer higher radiochemical purities.

  9. Radiochemical separation and alpha-spectrometric determination of Americium in different matrixes

    International Nuclear Information System (INIS)

    Radenkovic, M.; Joksic, J.; Paligoric, D.

    2009-01-01

    A method of separation and alpha-spectrometric determination of americium, developed in VINCA Institute of Nuclear Sciences is described in the paper. The procedure is convenient to be used for 241 Am determination in environmental matrixes as well as samples of human origin if a very small concentrations are expected, using 243 Am as a tracer for radiochemical yield recovery. (author) [sr

  10. Application of radiochemical determination methods in cleanability research of building materials

    International Nuclear Information System (INIS)

    Maeaettae, Jenni; Kymaelaeinen, Hanna-Riitta; Sjoeberg, Anna-Maija

    2011-01-01

    During recent years increasing effort has been made to modify surface properties with easy-to-clean or self-cleaning characteristics, and concomitantly there is a need to be able to quantify cleanability. Methodology is a complex issue, including aspects of selection and characterization of the surface materials, the soiling materials (contaminants), soiling and cleaning methods, and the detection methods. Different biological, chemical, physical and visual methods have been included in studies of surface cleanability. One challenge has been to obtain quantitative information about soiling. The radiochemical methods, gamma spectrometry (NaI(Tl)-crystal) and liquid scintillation counting, have been shown to be suitable for evaluating cleanability of different surface materials and different soiling material types, providing quantitative information about the amount of soiling material both on and beneath the surface. Due to the different labelled soiling components, the interaction of the surface with different soiling material types can be evaluated. Radiochemical methods have unique benefits particularly for examining porous materials and surfaces. However, they are suitable only for highly controlled studies because of the hazards. Different features and details of radiochemical methods are discussed with the view to aid planning of future cleanability studies. - Highlights: → Radiochemical methods can be used for cleanability studies. → These methods give quantitative information about the amount of soiling material. → These methods are suitable particularly for examining porous materials. → These methods are suitable for highly controlled studies because of the hazards.

  11. The radiochemical purity of radiotracers as the criterion of their usefulness in investigations of hydrocarbons distillation

    International Nuclear Information System (INIS)

    Kolaczkowski, M.

    1976-01-01

    Among numerous analytic techniques of separation and analysis of radioactive products gas radiochromatography has proved to be particularly suitable. Organic bromides labelled with 82 Br-radionuclide are investigated. The analytic gas chromatographs equipped with appropriately constructed radiochromatographic attachments are used. The results of radiochemical purity determination of radiotracers are compared for various techniques. (author)

  12. Analytical and radiochemical methods in the stability study of the MIBI-Sm

    International Nuclear Information System (INIS)

    Isaac, M.; Leyva, R.; Gamboa, R.; Turino, D.

    1997-01-01

    99mT c-MIBI is a radiopharmaceutical imaging agent useful for assessing myocardial perfusion. This paper presents the stability results obtained in the radiochemical purity and others parameters in the quality control of 5 batch during more than 2 years

  13. Protein binding studies with radiolabeled compounds containing radiochemical impurities. Equilibrium dialysis versus dialysis rate determination

    DEFF Research Database (Denmark)

    Honoré, B

    1987-01-01

    The influence of radiochemical impurities in dialysis experiments with high-affinity ligands is investigated. Albumin binding of labeled decanoate (97% pure) is studied by two dialysis techniques. It is shown that equilibrium dialysis is very sensitive to the presence of impurities resulting...

  14. Public acceptance of small reactors

    International Nuclear Information System (INIS)

    McDougall, D.S.

    1997-01-01

    The success of any nuclear program requires acceptance by the local public and all levels of government involved in the decision to initiate a reactor program. Public acceptance of a nuclear energy source is a major challenge in successful initiation of a small reactor program. In AECL's experience, public acceptance will not be obtained until the public is convinced that the specific nuclear program is needed, safe and economic and environmental benefit to the community. The title of public acceptance is misleading. The objective of the program is a fully informed public. The program proponent cannot force public acceptance, which is beyond his control. He can, however, ensure that the public is informed. Once information has begun to flow to the public by various means as will be explained later, the proponent is responsible to ensure that the information that is provided by him and by others is accurate. Most importantly, and perhaps most difficult to accomplish, the proponent must develop a consultative process that allows the proponent and the public to agree on actions that are acceptable to the proponent and the community

  15. Fuels for Canadian research reactors

    International Nuclear Information System (INIS)

    Feraday, M.A.

    1993-01-01

    For a period of about 10 years AECL had a significant program looking into the possibility of developing U 3 Si as a high density replacement for the UO 2 pellet fuel in use in CANDU power reactors. The element design consisted of a Zircaloy-clad U 3 Si rod containing suitable voidage to accommodate swelling. We found that the binary U 3 Si could not meet the defect criterion for our power reactors, i.e., one month in 300 degree C water with a defect in the sheath and no significant damage to the element. Since U 3 Si could not do the job, a new corrosion resistant ternary U-Si-Al alloy was developed and patented. Fuel elements containing this alloy came close to meeting the defect criterion and showed slightly better irradiation stability than U 3 Si. Shortly after this, the program was terminated for other reasons. We have made much of this experience available to the Low Enrichment Fuel Development Program and will be glad to supply further data to assist this program

  16. Chances dim for Sask. reactor

    International Nuclear Information System (INIS)

    1992-01-01

    It now appears quite unlikely that a new-generation CANDU 3 reactor will be build in Saskatchewan, as the minister responsible for such matters in the province backed away from Sask. Power's participation in a $50 million joint venture with Atomic Energy of Canada Ltd. Dwain Lingenfelter, Saskatchewan's economic diversification minister and the minister responsible for Sask. Power, said last week his government has a number of reservations about going ahead with the joint venture agreement, which flowed from a 1991 memorandum of understanding between then premier Grant Devine and federal Energy Ministry Jake Epp which would see Ottawa and Regina each spend $25 million to research various energy alternatives for the province. But, Lingenfelter said last week, the deal apparently hinged on Saskatchewan agreeing to provide a site for AECL CANDU's new CANDU 3 reactor and developing storage facilities for nuclear waste. 'It looks like we are putting $25 million into an agreement on nuclear well in advance of a decision by the government that this is the right way to be going.,' he said. 'We are spending the money on nuclear, and then saying we are going to study the options.'

  17. Safety requirements in the design of research reactors: A Canadian perspective

    International Nuclear Information System (INIS)

    Lee, A.G.; Langman, V.J.

    2000-01-01

    In Canada, the formal development of safety requirements for the design of research reactors in general began under an inter-organizational Small Reactor Criteria Committee. This committee developed safety and licensing criteria for use by several small reactor projects in their licensing discussions with the Atomic Energy Control Board. The small reactor projects or facilities represented included the MAPLE-X10 reactor, the proposed SES-10 heating reactor and its prototype, the SDR reactor at the Whiteshell Laboratories, the Korea Multipurpose Research Reactor (a.k.a., HANARO) in Korea, the SCORE project, and the McMaster University Nuclear Reactor. The top level set of criteria which form a safety philosophy and serve as a framework for more detailed developments was presented at an IAEA Conference in 1989. AECL continued this work to develop safety principles and design criteria for new small reactors. The first major application of this work has been to the design, safety analysis and licensing of the MAPLE 1 and 2 reactors for the MDS Nordion Medical Isotope Reactor Project. This paper provides an overview of the safety principles and design criteria. Examples of an implementation of these safety principles and design criteria are drawn from the work to design the MAPLE 1 and 2 reactors. (author)

  18. Some possibilities of utilisation of TRIGA reactors in the future

    International Nuclear Information System (INIS)

    Stegnar, Peter; Byrne, Anthony R.

    2008-01-01

    Full text. In this presentation, some possibilities for the future use of TRIGA reactors are discussed. The use and practical applications of neutron activation analysis, both in instrumental and radiochemical analysis, is presented based on the experience of the Institute's TRIGA Mark II Reactor in Ljubljana. The limited use of isotope production for medicine and industry is also discussed as well as some other potential applications, i.e. prompt gamma neutron activation analysis and an approach to BNCT (Boron Neutron Capture Therapy). The possibility of using TRIGA reactors for training in nuclear safety, radiological protection and other relevant fields of science and technology is also addressed in the presentation

  19. The Northern Marshall Islands radiological survey: A quality control program for radiochemical and gamma spectroscopy analysis

    International Nuclear Information System (INIS)

    Kehl, S.R.; Mount, M.E.; Robison, W.L.

    1995-09-01

    From 1979 to 1989, approximately 25,000 Post Northern Marshall Islands Radiological Survey (PNMIRS) samples were collected, and over 71,400 radiochemical and gamma spectroscopy analyses were performed to establish the concentration of 90 Sr, 137 Cs, 241 Am, and plutonium isotopes in soil, vegetation, fish, and animals in the Northern Marshall Islands. While the Low Level Gamma Counting Facility (B379) in the Health and Ecological Assessment (HEA) division accounted for over 80% of all gamma spectroscopy analyses, approximately 4889 radiochemical and 5437 gamma spectroscopy analyses were performed on 4784 samples of soil, vegetation, terrestrial animal, and marine organisms by outside laboratories. Four laboratories were used by Lawrence Livermore National Laboratory (LLNL) to perform the radiochemical analyses: Thermo Analytical Norcal, Richmond, California (TMA); Nuclear Energy Services, North Carolina State University (NCSU); Laboratory of Radiation Ecology, University of Washington (LRE); and Health and Ecological Assessment (HEA) division, LLNL, Livermore, California. Additionally, LRE and NCSU were used to perform gamma spectroscopy analyses. The analytical precision and accuracy were monitored by including blind duplicates and natural matrix standards in each group of samples analyzed. On the basis of reported analytical values for duplicates and standards, 88% of the gamma and 87% of the radiochemical analyses in this survey were accepted. By laboratory, 93% of the radiochemical analyses by TMA; 88% of the gamma-ray spectrometry and 100% of the radiochemistry analyses by NCSU; 89% of the gamma spectroscopy and 87% of the radiochemistry analyses by LRE; and 90% of the radiochemistry analyses performed by HEA's radiochemistry department were accepted

  20. Licensing of MAPLE reactors in Canada

    International Nuclear Information System (INIS)

    Lee, A.G.; Labrie, J.P.; Langman, V.J.

    1999-01-01

    Full text: The Operating Licence for a MAPLE reactor (i.e., a 10 MW(th), pool-type reactor), has been approved by the Atomic Energy Control Board (AECB) on August 16th, 1999. This Operating Licence has been obtained within three years of the initiation of the MDS Nordion Medical Isotopes Reactor (MMIR) project, which entails the design, construction and commissioning of two 10 MW MAPLE reactors at AECL's Chalk River Laboratories. The scope and nature of the information required by the AECB, the licensing process and highlights of the events which led to successfully obtaining the Operating Licence for the MAPLE reactor are discussed. These discussions address all phases of the licensing process (i.e., the environmental assessment in support of siting, the Preliminary Safety Analysis Report, PSAR, in support of design, procurement and construction, the Final Safety Analysis Report, FSAR, in support of commissioning and operations, and the development of suitable quality assurance subprograms for each phase). An overview of some of the unique technical aspects associated with the MAPLE reactors, and how they have been addressed during the licensing process are also provided (e.g., applying CSA N285.0, General Requirements for Pressure-Retaining Systems and Components in CANDU Nuclear Power Plants, to a small, low pressure, low temperature research reactor, confirmation of the performance of the driver fuel via laboratory and/or in-reactor testing, validation of the computer codes used to perform the safety analyses, critical parameter uncertainty assessment, full scale hydraulic testing of the performance of the design, fuel handling, human factors validation, operator training and certification). (author)

  1. Cadmium-emitter self-powered thermal neutron detector performance characterization & reactor power tracking capability experiments performed in ZED-2

    Energy Technology Data Exchange (ETDEWEB)

    LaFontaine, M.W., E-mail: physics@execulink.com [LaFontaine Consulting, Kitchener, Ontario (Canada); Zeller, M.B. [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada); Nielsen, K. [Royal Military College of Canada, SLOWPOKE-2 Reactor, Kingston, Ontario (Canada)

    2014-07-01

    Cadmium-emitter self-powered thermal neutron flux detectors (SPDs), are typically used for flux monitoring and control applications in low temperature, test reactors such as the SLOWPOKE-2. A collaborative program between Atomic Energy of Canada, academia (Royal Military College of Canada (RMCC)) and industry (LaFontaine Consulting) was initiated to characterize the incore performance of a typical Cd-emitter SPD; and to obtain a definitive measure of the capability of the detector to track changes in reactor power in real time. Prior to starting the experiment proper, Chalk River Laboratories' ZED-2 was operated at low power (5 watts nominal) to verify the predicted moderator critical height. Test measurements were then performed with the vertical center of the SPD emitter positioned at the vertical mid-plane of the ZED-2 reactor core. Measurements were taken with the SPD located at lattice position L0 (near center), and repeated at lattice position P0 (in D{sub 2}O reflector). An ionization chamber (part of the ZED-2 control instrumentation) monitored reactor power at a position located on the south side of the outside wall of the reactor's calandria. These experiments facilitated measurement of the absolute thermal neutron sensitivity of the subject Cd-emitter SPD, and validated the power tracking capability of said SPD. Procedural details of the experiments, data, calculations and associated graphs, are presented and discussed. (author)

  2. Implementation of advanced electrochemical oxidation for radiochemical concentrate treatment

    International Nuclear Information System (INIS)

    Velin, Anna; Bengtsson, Bernt; Lundblad, Magnus

    2012-09-01

    Water treatments in Nuclear Power Plants include ion exchange, evaporation and mechanical filtration techniques. These technologies are used to control the chemical release and to treat coolant in light water reactor types from chemicals and most importantly, from radioactive nuclides. Most of the conventional methods are efficient, but at the same time producing aqueous concentrates with high organic load. Before final storage, the level of organic content of those concentrates must be reduced. Advanced electrochemical oxidation with Boron Doped Diamond (BDD) electrodes are being investigated in laboratory- and pilot scale for treatment of dilute and concentrated aqueous waste streams at Vattenfall-Ringhals NPP. BDD anodes and cathodes are having high over potential against water electrolysis, and therefore well suitable for oxidation of organics. Dilute wastewater, such as laundry water, which has an initial COD level of around 500 mg/l, was reduced to a level of < 20 mg/l in the laboratory. Evaporator concentrates, with a TS content of 3% and pH of 7-8, were treated in pilot scale of 800 liters, working in batch operation mode, at temperatures between 25-50 deg. C. Initial COD levels between 2500 and 8000 mg/l in concentrate was reduced to < 100 mg/l at the first tests and later to < 300 mg/l. The advanced electrochemical oxidation is proven to be a promising technique for radioactive concentrate treatment. Long-term operation is still ongoing to evaluate the performance of the electrodes, cell components and overall process efficiency. (authors)

  3. Transmutation of Americium in Light and Heavy Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hyland, B.; Dyck, G.R.; Edwards, G.W.R. [Chalk River Laboratories, Atomic Energy of Canada Limited (Canada); Ellis, R.J.; Gehin, J.C. [Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee (United States); Maldonado, G.I. [University of Tennessee (Knoxville)/ORNL, Tennessee (United States)

    2009-06-15

    There is interest worldwide in reducing the burden on geological nuclear fuel disposal sites. In most disposal scenarios the decay heat loading of the surrounding rock limits the capacity of these sites. On the long term, this decay heat is generated primarily by actinides, and a major contributor 100 to 1000 years after discharge from the reactor is {sup 241}Am. One possible approach to reducing the decay-heat burden is to reprocess spent reactor fuel and use thermal spectrum reactors to 'burn' the Am nuclides. The viability of this approach is dependent upon the detailed changes in chemical and isotopic composition of actinide-bearing fuels after irradiation in thermal reactor spectra. The currently available thermal spectrum reactor options include light water-reactors (LWRs) and heavy-water reactors (HWRs) such as the CANDU{sup R} designs. In addition, as a result of the recycle of spent LWR fuel, there would be a considerable amount of potential recycled uranium (RU). One proposed solution for the recycled uranium is to use it as fuel in Candu reactors. This paper investigates the possibilities of transmuting americium in 'spiked' bundles in pressurized water reactors (PWRs) and in boiling water reactors (BWRs). Transmutation of Am in Candu reactors is also examined. One scenario studies a full core fuelled with homogeneous bundles of Am mixed with recycled uranium, while a second scenario places Am in an inert matrix in target channels in a Candu reactor, with the rest of the reactor fuelled with RU. A comparison of the transmutation in LWRs and HWRs is made, in terms of the fraction of Am that is transmuted and the impact on the decay heat of the spent nuclear fuel. CANDU{sup R} is a registered trademark of Atomic Energy of Canada Limited (AECL). (authors)

  4. Scientific and technical conference. Problems and horizons of development of chemical and radiochemical control in nuclear energetics. Collection of summaries of reports

    International Nuclear Information System (INIS)

    2001-01-01

    During scientific and technical conference on problems of development of chemical and radiochemical control in nuclear energetics following themes were considered: the problems of methodological and instrumental assurance of chemical and radiochemical control at working nuclear power plants and nuclear energetic units; modern conceptions of automation systems construction of chemical and radiochemical control on the basis of intellectual measuring channels; the ways of decision of generally system problems of organization and management of chemical and radiochemical control using computed technologies; the problems of certification of chemical and radiochemical methods of measuring in nuclear energetics [ru

  5. A description of the Canadian irradiation-research facility proposed to replace the NRU reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, A G; Lidstone, R F; Bishop, W E; Talbot, E F; McIlwain, H [Atomic Energy of Canada Ltd., Pinawa, MB (Canada). Whiteshell Labs.

    1996-12-31

    To replace the aging NRU reactor, AECL has developed the concept for a dual-purpose national Irradiation Research Facility (IRF) that tests fuel and materials for CANDU (CANada Deuterium Uranium) reactors and performs materials research using extracted neutron beams. The IRF includes a MAPLE reactor in a containment building, experimental facilities, and support facilities. At a nominal reactor power of 40 MW{sub t}, the IRF will generate powers up to 1 MW in natural-uranium CANDU bundles, fast-neutron fluxes up to 1.4 x 10{sup 18} n{center_dot}m{sup -2}{center_dot}s{sup -1} in Zr-alloy specimens, and thermal-neutron fluxes matching those available to the NRU beam tubes. (author). 9 refs., 5 tabs., 2 figs.

  6. Production of 48V in a nuclear reactor via secondary tritons

    International Nuclear Information System (INIS)

    Siri, S.; Cohen, I.M.

    2009-01-01

    The production of 48 V in a nuclear reactor, induced on titanium by tritons generated from the 6 Li(n, t) 4 He reaction, and eventually 7 Li(n, n't) 4 He, is described. Samples of lithium titanate were irradiated for an irradiation cycle (120 h) in the RA-3 reactor, belonging to Ezeiza Atomic Centre. After a radiochemical separation, the characteristic radiations from 48 V were identified in the gamma ray spectra of the vanadium fractions. (orig.)

  7. Trace determination of uranium and thorium in biological samples by radiochemical neutron activation analysis

    International Nuclear Information System (INIS)

    Benedik, Ljudmila; Repinc, Urska; Byrne, Anthony R.; Stegnar, Peter

    2002-01-01

    Radiochemical neutron activation analysis (RNAA) is an excellent method for determining uranium and thorium; it offers unique possibilities for their ultratrace analysis using selective radiochemical separations. Regarding the favourably sensitive nuclear characteristics of uranium and of thorium with respect to RNAA, but the different half-lives of their induced nuclides, two different approaches were used. In the first approach uranium and thorium were determined separately via 239 U, 239 Np and 233 Pa. In the second approach these elements were 239 239 233 determined simultaneously in a single sample using U and/or Np and Pa. Isolation of induced nuclides was based on separation by extraction and/or anion exchange chromatography. Chemical yields were measured in each sample aliquot using added 235 U, 238 Np and 231 Pa radioisotopic tracers. (author)

  8. Slifers revisited: a method for determining yields independent of radiochemical measurements

    International Nuclear Information System (INIS)

    Rambo, J.T.

    1976-01-01

    It would be very desirable if an independent method other than radiochemical measurement were available to determine the yields of low-yield events in the alluviums and tuffs of areas 2, 9, and 10 at the Nevada Test Site. The successful application of slifers to the measurement of yields from high-yield events suggests that under some conditions they may also be usable with low-yield events. This view is supported by the evidence discussed here, which is based on direct experience with slifer yield measurements for low-yield events in porous media. Suggested methods for improving slifer yield determinations and a method for determining yields independent of radiochemical measurements are offered

  9. Radiochemical methodologies applied to analytical characterization of low and intermediate level wastes from nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, Roberto Pellacani G.; Júnior, Aluísio Souza R.; Kastner, Geraldo F.; Temba, Eliane S.C.; Oliveira, Thiago C. de; Amaral, Ângela M.; Franco, Milton B., E-mail: rpgm@cdtn.br, E-mail: reisas@cdtn.br, E-mail: gfk@cdtn.br, E-mail: esct@cdtn.br, E-mail: tco@cdtn.br, E-mail: ama@cdtn.br, E-mail: francom@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    The aim of this work is to present radiochemical methodologies developed at CDTN/CNEN in order to answer a program for isotopic inventory of radioactive wastes from Brazilian Nuclear Power Plants. In this program some radionuclides, {sup 3}H, {sup 14}C, {sup 55}Fe, {sup 59}Ni, {sup 63}Ni, {sup 90}Sr, {sup 93}Zr, {sup 94}Nb, {sup 99}Tc, {sup 129}I, {sup 235}U, {sup 238}U, {sup 238}Pu, {sup 239}+{sup 240}Pu, {sup 241}Pu, {sup 242}Pu, {sup 241}Am, {sup 242}Cm e {sup 243}+{sup 244}Cm, were determined in Low Level Wastes (LLW) and Intermediate Level Wastes (ILW) and a protocol of analytical methodologies based on radiochemical separation steps and spectrometric and nuclear techniques was established. (author)

  10. Requirement of radiochemical recovery determination for gross alpha and gross beta estimation in drinking water

    International Nuclear Information System (INIS)

    Raveendran, Nanda; Rao, D.D.; Hegde, A.G.

    2010-01-01

    Presence of radionuclides in drinking water which emits Alpha and Beta particles are the potential sources of internal exposure in drinking water. Gross alpha and gross beta determination in drinking water and packaged drinking water (PDW) as per BIS (Bureau of Indian standards) standards is discussed here. The methods have been tested to account for losses in the radiochemical procedures using radionuclides such as 137 Cs, 90 Sr, 226 Ra, 239 Pu, 243 Am, 232 U. The methods have also been validated in an IAEA proficiency test conducted during 2009. Monitoring of gross alpha and gross beta activity observed in drinking water/packaged drinking water from various states of India were within the limits set by BIS. Average radiochemical recoveries of 84% and 63% were obtained for gross α and gross β respectively. (author)

  11. Procedural and developmental aspects of a multielement automatic radiochemical machine, applied to neutron irradiated biomedical samples

    International Nuclear Information System (INIS)

    Iyengar, G.V.

    1976-06-01

    This report is intended to serve as a practical guide, elaborately describing the working details and some developmental work connected with an automatic multielement radiochemical machine based on thermal neutron activation analysis using ion exchange and partition chromatography. Some of the practical aspects and personal observations after much experience with this versatile multielement method, applied to investigate the elemental composition of different biomedical matrices, are summarized. Standard reference materials are analyzed, and the data are presented with a set of gamma-spectra obtained before and after chemical separation into convenient groups suitable for gamma spectroscopy. The samples analyzed included various human and animal tissues, body fluids, IAEA biological standard reference materials, and samples from the WHO/IAEA project on 'Trace elements in relation to cardiovascular diseases'. Simplified modifications of the radiochemical processing, suitable for fast and routine analysis of clinical samples have also been discussed. (orig.) [de

  12. Ultratrace determination of platinum in biological materials via neutron activation and radiochemical separation

    International Nuclear Information System (INIS)

    Zeisler, R.; Greenberg, R.R.

    1982-01-01

    A neutron activation analysis scheme based upon a radiochemical separation of the activation products has been developed. The method utilizes the inherent sensitivity of the activation reaction 198 Pt(n,ν) 199 Pt and counting of the daughter nuclide 199 Au. This nuclide is radiochemically separated from interfering activities by homogeneous precipitation as elemental gold. The remaining interference of the secondary reaction 197 Au(n,ν) 198 Au(n,ν) 199 Au from gold in the samples is quantitatively assessed and corrected. During this process accurate gold concentrations in the samples are obtained at ultratrace levels. The analysis scheme is applied to gold and platinum determinations in biological Standard Reference Materials and human liver specimens. Gold and platinum are determined at concentrations of 5x10 - 11 g/g, and at higher levels. (author)

  13. Radiochemical syntheses further radiopharmaceuticals for positron emission tomography and new strategies for their production

    CERN Document Server

    Kilbourn, Michael R; Kilbourn, Michael R

    2015-01-01

    This book describes methods and procedures for preparing PET radiopharmaceuticals, and highlights new methods for conducting radiochemical reactions with carbon-11 (C11) and fluorine-18 (F18), which are two of the most commonly used radionuclides in positron emission tomography (PET) imaging.     Provides reliable methods for radiochemical syntheses and reactions, including all essential information to duplicate the procedure     Eliminates the time-consuming process of searching journal articles and extracting pertinent details from lengthy experimental sections or supporting information     Focuses on an emerging and important area for pharmaceutical and medical applications     Encompasses technical, regulatory, and application aspects     Includes solid-phase radiochemistry, transition-metal catalyzed radiochemistry, microfluidics, click chemistry, green radiochemistry and new strategies for radiopharmaceutical quality control.

  14. Radiochemical neutron activation analysis for trace elements of basic ingredients of pan

    International Nuclear Information System (INIS)

    Zaidi, J.H.; Arif, M.; Fatima, I; Qureshi, I.H.

    2002-01-01

    Extensive use of pan, by one-tenth of world's population, entails the evaluation of trace element contents in its ingredients. Radiochemical neutron activation analysis (RNAA) was developed and successfully employed to determine the concentration of 36 trace elements (essential, toxic and nonessential) in its four basic ingredients, leaf of betel pepper, betel nut, catechu and lime. The radiochemical separation methodology has significantly improved the detection limits of most of these elements due to suppression of Compton background. Base-line values of certain toxic and essential elements in these ingredients is provided. The daily intake of essential and toxic elements through pan was estimated and compared with the recommended values. The cumulative intake of Mn is four times higher than the recommended value and that of toxic elements is well below the tolerance limits. (author)

  15. RADCHEM - Radiochemical procedures for the determination of Sr, U, Pu, Am and Cm

    Energy Technology Data Exchange (ETDEWEB)

    Sidhu, R. [Inst. for Energy Technology (Norway)

    2006-04-15

    An accurate determination of radionuclides from various sources in the environment is essential for assessment of the potential hazards and suitable countermeasures both in case of accidents, authorised release and routine surveillance. Reliable radiochemical separation and detection techniques are needed for accurate determination of alpha and beta emitters. Rapid analytical methods are needed in case of an accident for early decision-making. The objective of this project has been to compare and evaluate radiochemical procedures used at Nordic laboratories for the determination of strontium, uranium, plutonium, americium and curium. To gather detailed information on the procedures in use, a questionnaire regarding various aspects of radionuclide determination was developed and distributed to all (sixteen) relevant laboratories in the Nordic countries. The response and the procedures used by each laboratory were then discussed between those who answered the questionnaire. This report summaries the findings and gives recommendation on suitable practice. (au)

  16. RADCHEM - Radiochemical procedures for the determination of Sr, U, Pu, Am and Cm

    International Nuclear Information System (INIS)

    Sidhu, R.

    2006-04-01

    An accurate determination of radionuclides from various sources in the environment is essential for assessment of the potential hazards and suitable countermeasures both in case of accidents, authorised release and routine surveillance. Reliable radiochemical separation and detection techniques are needed for accurate determination of alpha and beta emitters. Rapid analytical methods are needed in case of an accident for early decision-making. The objective of this project has been to compare and evaluate radiochemical procedures used at Nordic laboratories for the determination of strontium, uranium, plutonium, americium and curium. To gather detailed information on the procedures in use, a questionnaire regarding various aspects of radionuclide determination was developed and distributed to all (sixteen) relevant laboratories in the Nordic countries. The response and the procedures used by each laboratory were then discussed between those who answered the questionnaire. This report summaries the findings and gives recommendation on suitable practice. (au)

  17. Rapid radiochemical methods for preparation of sup(99m)Tc labelled compounds

    International Nuclear Information System (INIS)

    Narasimhan, D.V.S.; Banodkar, S.M.; Kothari, K.; Mani, R.S.

    1981-01-01

    Several inorganic and organic compounds incorporating sup( 99 m)Tc are being extensively used for imaging various body organs. The preparation of these sup( 99 m)Tc compounds with the necessary purity requirements is carried out by controlled reduction of sup( 99 m)Tc-pertechnetate using Sn(II) ions as the reducing agent followed by complexation with various active ingredients. The authors here present procedures developed at Radiopharmaceuticals Section of BARC for preparing sup( 99 m)Tc-diphosphonate, sup( 99 m)Tc-glucoheptonate, sup( 99 m)Tc-albumin microspheres and sup( 99 m)Tc-phytate with high radiochemical purity. The paper also describes procedures for the preparation of freeze-dried kits for single step preparation of these compounds. The paper also describes the authors' experience with various analytical procedures for the determination of radiochemical purity of these preparations. (author)

  18. Rapid radiochemical separation of short-lived radionuclides in neutron-activated samples

    International Nuclear Information System (INIS)

    Fardy, J.

    1985-11-01

    Radiochemical separation procedures based on the removal of metal ions by columns of C 18 -bonded silica gel after selective complexation are examined and the simplicity of the method demonstrated by its application to determination of Mn, Cu and Zn in neutron-activated biological material from the following solutions (pH 0-10, sulphate concentration 0,18M and 1,44M SO 4 ): 8-hydroxyquinoline (oxine), ammonium pyrrolidinedithiocarbamate (APDC), cupferron (CUP), 1-(2-pyridylazo)-2-naphthol (PAN), 1-(2'-thiazolylazo)-2-naphthol (TAN), 4-(2-pyridylazo) resorcinol (PAR), diethylammonium diethyldithiocarbamate (DDC), potassium ethyl xanthate (PEX), acetylacetone (AcAc) or thenoyltrifluoracetone (TTA). The method is rapid and reliable and readily adaptable in all radiochemical laboratories

  19. Some problems concenrning the use of automated radiochemical separation systems in destructive neutron activation analysis

    International Nuclear Information System (INIS)

    Nagy, L.G.; Toeroek, G.

    1977-01-01

    The present state of a long term program is reviewed. It was started to elaborate a remote controlled automated radiochemical processing system for the neutron activation analysis of biological materials. The system is based on wet ashing of the sample followed by reactive desorption of some volatile components. The distillation residue is passed through a series of columns filled with selective ion screening materials to remove the matrix activity. The solution is thus ''stripped'' from the interfering radioions, and it is processed to single-elements through group separations using ion-exchange chromatographic techniques. Some special problems concerning this system are treated. (a) General aspects of the construction of a (semi)automated radiochemical processing system are discussed. (b) Comparison is made between various technical realizations of the same basic concept. (c) Some problems concerning the ''reconstruction'' of an already published processing system are outlined. (T.G.)

  20. The use of HANDIDET reg-sign non-electric detonator assemblies to reduce blast-induced overpressure at AECL's Underground Research Laboratory

    International Nuclear Information System (INIS)

    Onagi, D.P.; Keith, S.G.; Kuzyk, G.W.

    1996-01-01

    A number of aspects of the Canadian concept for nuclear fuel waste disposal are being assessed by Atomic Energy of Canada Limited (AECL) in a series of experiments at its Underground Research Laboratory (URL) near Lac du Bonnet, Manitoba, Canada. One of the major objectives of the work being carried out at the URL is to develop and evaluate the methods and technology to ensure safe, permanent disposal of Canada's nuclear fuel waste. In 1994, AECL excavated access tunnels and a laboratory room for the Quarried Block Fracture Migration Experiment (QBFME) at the 240 Level of the URL. This facility will be used to study the transport of radionuclides in natural fractures in quarried blocks of granite under in-situ groundwater conditions. The experiment is being carried out under a cooperative agreement with the Japan Atomic Energy Research Institute. The excavation of the QBFME access tunnels and laboratory was carried out using controlled blasting techniques that minimized blast-induced overpressure which could have damaged or interrupted other ongoing experiments in the vicinity. The majority of the blasts used conventional long delay non-electric detonators but a number of blasts were carried out using HANDIDET 250/6000 non-electric long delay detonator assemblies and HTD reg-sign non-electric short delay trunkline detonator assemblies. The tunnel and laboratory excavation was monitored to determine the levels of blast-induced overpressure. This paper describes the blasting and monitoring results of the blasts using HANDIDET non-electric detonator assemblies and the effectiveness of these detonators in reducing blast-induced overpressure

  1. Radiochemical separation of actinides for their determination in environmental samples and waste products

    Energy Technology Data Exchange (ETDEWEB)

    Gleisberg, B [Nuclear Engineering and Analytics Rossendorf, Inc. (VKTA), Dresden (Germany)

    1997-03-01

    The determination of low level activities of actinides in environmental samples and waste products makes high demands on radiochemical separation methods. Artificial and natural actinides were analyzed in samples form the surrounding areas of NPP and of uranium mines, incorporation samples, solutions containing radioactive fuel, solutions and solids resutling from the process, and in wastes. The activities are measured by {alpha}-spectrometry and {gamma}-spectrometry. (DG)

  2. Study of performance characteristics of a radiochemical method to determine uranium in biological samples

    International Nuclear Information System (INIS)

    Puga, Maria J.; Cerchietti, Maria L.R.; Prudenzo, J.E.; Arguelles, Maria G.

    2005-01-01

    In this paper is described a methodology to calculate detection limit (Ld), quantification level (Lq) and minimum detectable activity (MDA) in a radiochemical method for determination of uranium in urine samples. The concentration is measured by fluorimetry and alpha gross activity using liquid scintillation counting (LSC). The calculation of total propagated uncertainty on a spike sample is presented. Furthermore, the major sources of uncertainty and percentage contribution in both measurements are assessed. (author)

  3. New radiochemical methods for determination of 237Np a 241Pu using extraction chromatography (Presentation)

    International Nuclear Information System (INIS)

    Strisovska, J.

    2013-01-01

    Thesis was focused on the development of a new methodology for the separation of anthropogenic transuranium radionuclides 237 Np a 241 Pu from different kinds of matrices. The analytical methods used in this study were based on extraction chromatography and were optimized according to the sample type. The proposed radiochemical procedure is a combination of two algorithms, which represent the separation of radionuclides by using extraction chromatographic sorbents TEVA resin and TRU resin supplied by Eichrom Technologies LLC. 239 Np a 237 Np were selectively captured on sorbent TEVA resin in oxidation state 4+. TRU resin was used for purification of plutonium fraction from interfering americium radionuclide. 242 Pu and 239 Np radionuclides as tracers have been used to monitor the radiochemical yields of separation. Before every radiochemical separation tracer radionuclide 239 Np was obtained by separation from the parent radionuclide 2 43 Am, which is in radioactive equilibrium to 239 Np. The average yield of chemical separation was 69,3% for 239 Np at 277 keV energy line and 65,9% at 228 keV energy line. The NPL AH-B08069 (2008) samples which consist of the mixture of alpha-radionuclides were used for the modification and optimization of separation method used for separation of Np and Pu in model samples. This method provided high radiochemical yields of 239,240 Pu (95,0 ± 3,5)% and 237 Np (87,9 ± 3,0)%.. Reliability of the method was verified by applying our modified separation procedures on reference materials IAEA-375 and IAEA-414 supplied by International Atomic Energy Agency. A good agreement between the results is obtained by this procedure and the certified values were found. Samples of contaminated soils from the area of Nuclear power plant A-1 Jaslovske Bohunice which is stored temporarily before disposal were analyzed using developed separation procedure. Specific activity of investigated radionuclides was determined in these samples. (author)

  4. A radiochemical technique for the determination of mercury in drinking water

    International Nuclear Information System (INIS)

    Ahmad, S.; Chaudhri, M.S.; Qureshi, I.H.

    1982-01-01

    A radiochemical method for the separation and determination of mercury in drinking water has been developed. The radionuclides of mercury formed after neutron irradiation of the sample were separated by liquid/liquid extraction using PAN and TBA mixture in chloroform from aqueous nitric acid medium. Quantitative extraction of mercury was achieved in a single step and the equilibrium was attained within five minutes. (orig.)

  5. Determination of mercury in biologycal samples by radiochemical neutron activation analysis

    International Nuclear Information System (INIS)

    Suc, N.V.

    1989-01-01

    The radiochemical neutron activation analysis was applied to determine contents of mercury in biological samples. Samples were digested in mixing of H 2 SO 4 and HNO 3 acid. After extraction of mercury by Ni-Ditiodietylphosphoric acid in carbontetrachloride, mercury was back extracted by 5% KI solution. Contents of mercury from five samples of fish was determined by this method. The accuracy of the method was checked by comparing it with NBS standard samples and results are good agreement

  6. Radiochemical determination and separation or total radium, 226Ra and 224Ra

    International Nuclear Information System (INIS)

    Suarez, J. A.; Gonzalez, J. A.; Pablo, M. A. de

    1987-01-01

    Radiochemical purification and separation of radium has been carried out and the determination of total radium solubilized in aqueous samples has been studied assuming that all the alpha emitters of the sample have their origin in the 226Ra and elements of its desintegration chain. Also, the activities of 22Ra and 226 Ra have been evaluated separately doing a measurement after the chemical separation of the radium and another one 10 days after. (Author) 9 refs

  7. Statistical analysis of radiochemical measurements of TRU radionuclides in REDC waste

    International Nuclear Information System (INIS)

    Beauchamp, J.; Downing, D.; Chapman, J.; Fedorov, V.; Nguyen, L.; Parks, C.; Schultz, F.; Yong, L.

    1996-10-01

    This report summarizes results of the study on the isotopic ratios of transuranium elements in waste from the Radiochemical Engineering Development Center actinide-processing streams. The knowledge of the isotopic ratios when combined with results of nondestructive assays, in particular with results of Active-Passive Neutron Examination Assay and Gamma Active Segmented Passive Assay, may lead to significant increase in precision of the determination of TRU elements contained in ORNL generated waste streams

  8. Analysis of the radiochemical purity of 18F-FDG by HPLC

    International Nuclear Information System (INIS)

    Chen Liguang; Tang Anwu; He Shanzhen; Chen Yulong

    2001-01-01

    The radiochemical purity (RCP) of 18 F-FDG is analyzed by HPLC. Eighty-five percent acetonitrile is used as the eluting solution. Carbon hydrate column is used as separation column. The t R of 18 F - is 6.50 min and 18 F-FDG is 9.00 min. HPLC take less time and has higher sensitivity than TLC for the same sample at the same time. So HPLC excels TLC in analyzing RCP of 18 F-FDG

  9. Synthesis of N-[methyl-11C]hydromorphone by using multivariate strategies for optimization of radiochemical yields

    International Nuclear Information System (INIS)

    Rimland, Annika; Bergson, Goeran; Obenius, Ulf; Sjoeberg, Stefan; Langstroem, Bengt

    1987-01-01

    The synthesis of N-[methyl- 11 C]hydromorphone has been performed by using [ 11 C]methyl iodide and desmethyl hydromorphone in a mixture of dimethylsulphoxide and dimethylformamide as solvent. Optimization of the radiochemical yield by varying the reaction conditions was performed by using multivariate strategies. The labelled hydromorphone was obtained in 72% radiochemical yield in the alkylation reaction with [ 11 C]-methyl iodide, counted from the end of the [ 11 C]methyl iodide synthesis. N-[Methyl- 11 C]hydromorphone was obtained as a ready injectable pharmaceutical solution with a total synthesis time of 40 min and in a 10% total radiochemical yield, with a radiochemical purity > 99.5%, according to HPLC analysis. (author)

  10. Radiochemical aging of an epoxy network; Vieillissement radiochimique d'un reseau epoxyde

    Energy Technology Data Exchange (ETDEWEB)

    Devanne, Th

    2003-05-01

    This thesis is to give a better understanding of the radiochemical aging of a thermoset resin under gamma irradiation. The conditions of aging are gamma irradiation under air with a dose rate of 2 kGy/h at 120 C. The requested lifetime is four years, it means a dose of 70 MGy. The first step of this work was the choice of a resistive epoxy resin. This choice was made thanks to the literature data. The high glass transition temperature and the high amount of aromatic groups were the main criteria of the final choice. After this choice, thermal and mechanical properties were followed under thermal and radiochemical aging: i) under thermal aging, after 600 hours at 220 C, the glass transition temperature remained unchanged. But, from a mechanical point of view, properties at break dramatically decreased. This embrittlement was assigned to a critical oxidized layer. The thickness of this layer was estimated about 30 {mu}m. ii) the same kind of embrittlement was observed under radiochemical aging. Moreover, it appeared a decrease of the glass transition temperature when increasing the dose of irradiation. This indicates that the main degradation mechanism is chain scission under anaerobic atmosphere. We, then, proposed a mechanistic model associated with a kinetic model to predict the evolution of the glass transition temperature depending on the irradiation conditions. Parameters of the kinetic model were determined by solid NMR and ESR experiments. Comparison between experimental and calculated values at 120 C is satisfactory, a global good agreement was found. (author)

  11. Influence of Storage Temperature on Radiochemical Purity of 99mTc-Radiopharmaceuticals.

    Science.gov (United States)

    Uccelli, Licia; Boschi, Alessandra; Martini, Petra; Cittanti, Corrado; Bertelli, Stefania; Bortolotti, Doretta; Govoni, Elena; Lodi, Luca; Romani, Simona; Zaccaria, Samanta; Zappaterra, Elisa; Farina, Donatella; Rizzo, Carlotta; Giganti, Melchiore; Bartolomei, Mirco

    2018-03-15

    The influence of effective room temperature on the radiochemical purity of 99m Tc-radiopharmaceuticals was reported. This study was born from the observation that in the isolators used for the preparation of the 99m Tc-radiopharmaceuticals the temperatures can be higher than those reported in the commercial illustrative leaflets of the kits. This is due, in particular, to the small size of the work area, the presence of instruments for heating, the continuous activation of air filtration, in addition to the fact that the environment of the isolator used for the 99m Tc-radiopharmaceuticals preparation and storage is completely isolated and not conditioned. A total of 244 99m Tc-radiopharmaceutical preparations (seven different types) have been tested and the radiochemical purity was checked at the end of preparation and until the expiry time. Moreover, we found that the mean temperature into the isolator was significantly higher than 25 °C, the temperature, in general, required for the preparation and storage of 99m Tc-radiopharmaceuticals. Results confirmed the radiochemical stability of radiopharmaceutical products. However, as required in the field of quality assurance, the impact that different conditions than those required by the manufacturer on the radiopharmaceuticals quality have to be verified before human administration.

  12. Investigation of quantitative separation of thorium, uranium, neptunium and plutonium from complex radiochemical mixtures

    International Nuclear Information System (INIS)

    Ushatskij, V.N.; Preobrazhenskaya, L.D.; Kolychev, V.B.; Gugel', E.S.

    1979-01-01

    Quantitative separation of actinides and their radiochemical purification with the aid of TBP with subsequent separation of thorium and quantitative separation of U, Np and Pu with the aid of D2EHPA have been studied. The method has been developed for quantitative extraction-chromatographic separation and radiochemical purification of nanogram amounts of U, Pu and microgram amounts of Th and Np from complex radiochemical mixtures containing both fragment radioisotopes and non-radioactive macrocomponents ( Fe,Al,Mg,Mn, Na and others). The method calls for application of one-extraction-chromatographic column with TBP and one column with D2EHPA. Thorium is separated at the first stage since it does not form complexes in a chloride solution during washing of the sorption column with 6. OM HCl. Npsup((4)) and Pusup((3)) required for separation are stabilized with the aid of hydrazine and hydroxylamine mixture. The yield of each of the above-cited actinide elements during the complete two-stage separation and at the stage of their separation varies within the range of 98.5-99.3%

  13. Lattice cell and full core physics of internally cooled annular fuel in heavy water moderated reactors

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, J.; Hamilton, H.; Hyland, B. [Atomic Energy of Canada Limited, Chalk River Laboratories, Chalk River, Ontario, K0J 1J0 (Canada)

    2013-07-01

    A program is underway at Atomic Energy of Canada Limited (AECL) to develop a new fuel bundle concept to enable greater burnups for PT-HWR (pressure tube heavy water reactor) cores. One option that AECL is investigating is an internally cooled annular fuel (ICAF) element concept. ICAF contains annular cylindrical pellets with cladding on the inner and outer diameters. Coolant flows along the outside of the element and through the centre. With such a concept, the maximum fuel temperature as a function of linear element rating is significantly reduced compared to conventional, solid-rod type fuel. The preliminary ICAF bundle concept considered in this study contains 24 half-metre long internally cooled annular fuel elements and one non-fuelled centre pin. The introduction of the non-fuelled centre pin reduces the coolant void reactivity (CVR), which is the increase in reactivity that occurs on voiding the coolant in accident scenarios. Lattice cell and full core physics calculations of the preliminary ICAF fuel bundle concept have been performed for medium burnups of approximately 18 GWd/tU using WIMS-AECL and reactor fuel simulation program (RFSP). The results will be used to assist in concept configuration optimization. The effects of radial and axial core power distributions, linear element power ratings, refuelling rates and operational power ramps have been analyzed. The results suggest that burnups of greater than 18 GWd/tU can be achieved in current reactor designs. At approximately 18 GWd/tU, expected maximum linear element ratings in a PT-HWR with online-refuelling are approximately 90 kW/m. These conditions would be prohibitive for solid-rod fuel, but may be possible in ICAF fuel given the reduced maximum fuel temperature as a function of linear element rating. (authors)

  14. Lattice cell and full core physics of internally cooled annular fuel in heavy water moderated reactors

    International Nuclear Information System (INIS)

    Armstrong, J.; Hamilton, H.; Hyland, B.

    2013-01-01

    A program is underway at Atomic Energy of Canada Limited (AECL) to develop a new fuel bundle concept to enable greater burnups for PT-HWR (pressure tube heavy water reactor) cores. One option that AECL is investigating is an internally cooled annular fuel (ICAF) element concept. ICAF contains annular cylindrical pellets with cladding on the inner and outer diameters. Coolant flows along the outside of the element and through the centre. With such a concept, the maximum fuel temperature as a function of linear element rating is significantly reduced compared to conventional, solid-rod type fuel. The preliminary ICAF bundle concept considered in this study contains 24 half-metre long internally cooled annular fuel elements and one non-fuelled centre pin. The introduction of the non-fuelled centre pin reduces the coolant void reactivity (CVR), which is the increase in reactivity that occurs on voiding the coolant in accident scenarios. Lattice cell and full core physics calculations of the preliminary ICAF fuel bundle concept have been performed for medium burnups of approximately 18 GWd/tU using WIMS-AECL and reactor fuel simulation program (RFSP). The results will be used to assist in concept configuration optimization. The effects of radial and axial core power distributions, linear element power ratings, refuelling rates and operational power ramps have been analyzed. The results suggest that burnups of greater than 18 GWd/tU can be achieved in current reactor designs. At approximately 18 GWd/tU, expected maximum linear element ratings in a PT-HWR with online-refuelling are approximately 90 kW/m. These conditions would be prohibitive for solid-rod fuel, but may be possible in ICAF fuel given the reduced maximum fuel temperature as a function of linear element rating. (authors)

  15. Validation of physics and thermalhydraulic computer codes for advanced Candu reactor applications

    International Nuclear Information System (INIS)

    Wren, D.J.; Popov, N.; Snell, V.G.

    2004-01-01

    Atomic Energy of Canada Ltd. (AECL) is developing an Advanced Candu Reactor (ACR) that is an evolutionary advancement of the currently operating Candu 6 reactors. The ACR is being designed to produce electrical power for a capital cost and at a unit-energy cost significantly less than that of the current reactor designs. The ACR retains the modular Candu concept of horizontal fuel channels surrounded by a heavy water moderator. However, ACR uses slightly enriched uranium fuel compared to the natural uranium used in Candu 6. This achieves the twin goals of improved economics (via large reductions in the heavy water moderator volume and replacement of the heavy water coolant with light water coolant) and improved safety. AECL has developed and implemented a software quality assurance program to ensure that its analytical, scientific and design computer codes meet the required standards for software used in safety analyses. Since the basic design of the ACR is equivalent to that of the Candu 6, most of the key phenomena associated with the safety analyses of ACR are common, and the Candu industry standard tool-set of safety analysis codes can be applied to the analysis of the ACR. A systematic assessment of computer code applicability addressing the unique features of the ACR design was performed covering the important aspects of the computer code structure, models, constitutive correlations, and validation database. Arising from this assessment, limited additional requirements for code modifications and extensions to the validation databases have been identified. This paper provides an outline of the AECL software quality assurance program process for the validation of computer codes used to perform physics and thermal-hydraulics safety analyses of the ACR. It describes the additional validation work that has been identified for these codes and the planned, and ongoing, experimental programs to extend the code validation as required to address specific ACR design

  16. Nuclear reactors

    International Nuclear Information System (INIS)

    Barre, Bertrand

    2015-10-01

    After some remarks on the nuclear fuel, on the chain reaction control, on fuel loading and unloading, this article proposes descriptions of the design, principles and operations of different types of nuclear reactors as well as comments on their presence and use in different countries: pressurized water reactors (design of the primary and secondary circuits, volume and chemistry control, backup injection circuits), boiling water reactors, heavy water reactors, graphite and boiling water reactors, graphite-gas reactors, fast breeder reactors, and fourth generation reactors (definition, fast breeding). For these last ones, six concepts are presented: sodium-cooled fast reactor, lead-cooled fast reactor, gas-cooled fast reactor, high temperature gas-cooled reactor, supercritical water-cooled reactor, and molten salt reactor

  17. Hydrogen problems related to reactor accidents

    International Nuclear Information System (INIS)

    Bujor, A.

    1993-09-01

    At reactor accidents, the combustion of hydrogen causes pressure and temperature transients which pose supplementary loads in containment. In certain conditions, they could reach hazardous levels and impair the integrity of the containment and the operability of the safety systems. The mechanisms of chemical reactions specific for the hydrogen-oxygen system are presented. Conditions in which combustion can occur and the various combustion modes, including the transition to detonation are also described. The related safety aspects and mitigation methods are discussed. Examples for particular applications and safety approaches for various types of reactors, included those promoted for the advanced reactors are also given. Presentation of the experimental research completed at AECL-Research, Whiteshell Laboratory is given, where the multi-point ignition effects for constant volume and for vented combustion of dry hydrogen-air mixtures in various geometries have been investigated. Various aspects of modelling and simulation of hydrogen combustion are discussed. The adaptations and the new models implemented in the codes VENT and CONTAIN, aimed to widen the simulation capabilities of hydrogen combustion models are described. The capabilities and limitations of the modelling assumptions of these two codes are also evaluated. (EG) (11 tabs., 39 ills., 82 refs.)

  18. The large-scale vented combustion test facility at AECL-WL: description and preliminary test results

    International Nuclear Information System (INIS)

    Loesel Sitar, J.; Koroll, G.W.; Dewit, W.A.; Bowles, E.M.; Harding, J.; Sabanski, C.L.; Kumar, R.K.

    1997-01-01

    Implementation of hydrogen mitigation systems in nuclear reactor containments requires testing the effectiveness of the mitigation system, reliability and availability of the hardware, potential consequences of its use and the technical basis for hardware placement, on a meaningful scale. Similarly, the development and validation of containment codes used in nuclear reactor safety analysis require detailed combustion data from medium- and large-scale facilities. A Large-Scale Combustion Test Facility measuring 10 m x 4 m x 3 m (volume, 120 m 3 ) has been constructed and commissioned at Whiteshell Laboratories to perform a wide variety of combustion experiments. The facility is designed to be versatile so that many geometrical configurations can be achieved. The facility incorporates extensive capabilities for instrumentation and high speed data acquisition, on-line gas sampling and analysis. Other features of the facility include operation at elevated temperatures up to 150 degrees C, easy access to the interior, and remote operation. Initial thermodynamic conditions in the facility can be controlled to within 0.1 vol% of constituent gases. The first series of experiments examined vented combustion in the full 120 m 3 -volume configuration with vent areas in the range of 0.56 to 2.24 m 2 . The experiments were performed at ∼27 degrees C and near-atmospheric pressures, with hydrogen concentrations in the range of 8 to 12% by volume. This paper describes the Large-Scale Vented Combustion Test Facility and preliminary results from the first series of experiments. (author)

  19. CANDU 6 - the highly successful medium sized reactor

    International Nuclear Information System (INIS)

    Hedges, K. R.; Allen, P. J.; Hopwood, J. M.

    2000-01-01

    The CANDU 6 Pressurized Heavy Water Reactor system, featuring horizontal fuel channels and heavy water moderator continues to evolve, supported by AECL's strong commitment to comprehensive R and D programs. The initial CANDU 6 design started in the 1970's. The first plants went into service in 1983, and the latest version of the plant is under construction in China. With each plant the technology has evolved giving the dual advantages of proveness and modern technology. CANDU 6 delivers important advantages of the CANDU system with benefit to small and medium-sized grids. This technology has been successfully adopted by, and localized to varying extents in, each of the CANDU 6 markets. For example, all CANDU owners obtain their fuel from domestic suppliers. Progressive CANDU development continues at AECL to enhance this medium size product CANDU 6. There are three key CANDU development strategic thrusts: improved economics, fuel cycle flexibility, and enhanced safety. The CANDU 6 product is also enhanced by incorporating improvements and advanced features that will be arising from our CANDU Technology R and D programs in areas such as heavy water and tritium, control and instrumentation, fuel and fuel cycles, systems and equipment and safety and constructability. (author)

  20. Removal of a seized fuel channel from the KANUPP reactor

    International Nuclear Information System (INIS)

    Butt, W.M.; Gunn, R.J.

    1995-01-01

    In support of the Safe operation of KANUPP program, AECL was commissioned in early 1992 to assist the Karachi Nuclear Power Plant in the design and supply of equipment and procedures for removal of a seized fuel channel from the KANUPP CANDU reactor. In addition AECL was also asked to supply technical site support to assist the KANUPP station staff during the removal of the G-12 channel. The design of a fuel channel removal system presented an interesting challenge. The fuel channel design was unique to KANUPP with no history of previous channel removal, consequently nearly all tools and equipment had to be specially designed. In addition, the seized end fitting posed a special problem requiring the development several contingency tools and techniques. This paper is an account of the design and development of the removal system and the site experiences during the actual fuel channel removal. After the channel had been removed, it was confirmed that a corrosion seizure between the end fitting sleeve bearings was inhibiting normal channel elongation. (author)

  1. Technical report on implementation of reactor internal 3D modeling and visual database system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeun Seung; Eom, Young Sam; Lee, Suk Hee; Ryu, Seung Hyun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-06-01

    In this report was described a prototype of reactor internal 3D modeling and VDB system for NSSS design quality improvement. For improving NSSS design quality several cases of the nuclear developed nation`s integrated computer aided engineering system, such as Mitsubishi`s NUWINGS (Japan), AECL`s CANDID (Canada) and Duke Power`s PASCE (USA) were studied. On the basis of these studies the strategy for NSSS design improvement system was extracted and detail work scope was implemented as follows : 3D modelling of the reactor internals were implemented by using the parametric solid modeler, a prototype system of design document computerization and database was suggested, and walk-through simulation integrated with 3D modeling and VDB was accomplished. Major effects of NSSS design quality improvement system by using 3D modeling and VDB are the plant design optimization by simulation, improving the reliability through the single design database system and engineering cost reduction by improving productivity and efficiency. For applying the VDB to full scope of NSSS system design, 3D modelings of reactor coolant system and nuclear fuel assembly and fuel rod were attached as appendix. 2 tabs., 31 figs., 7 refs. (Author) .new.

  2. Enhanced CANDU 6 (EC6): a proven mid-sized reactor with fuel cycle capability

    International Nuclear Information System (INIS)

    Hopwood, J.; Soulard, M.; Hastings, I.J.

    2011-01-01

    Atomic Energy of Canada (AECL) is finalizing development of the Enhanced CANDU 6 (EC6), which incorporates the CANDU 6's well-proven features, and adds enhancements that make the reactor even more safe and easier to operate. The EC6 is the only mid-sized reactor (700 MWe class) with a proven pedigree that meets modern reactor expectations and regulatory standards. It is sized for smaller grids and also has outstanding fuel-cycle capability. Changes are incremental and consistent with the CANDU 6 project approach. The EC6 utilizes modern computers and a distributed control system housed in an advanced control room which, along with automated testing and on-line diagnostics, make the plant easier and safer to operate, with minimal operator intervention. Containment and seismic capability are upgraded to meet modern standards. The first deployment of the EC6 is anticipated in Canada; international markets are also being pursued. AECL is performing a comprehensive review of the EC6 design in the wake of the Fukushima accident, will review lessons learned, and incorporate any necessary improvements into new build design. (author)

  3. Enhanced CANDU 6 (EC6): a proven mid-sized reactor with fuel cycle capability

    International Nuclear Information System (INIS)

    Hopwood, J.; Soulard, M.; Hastings, I.J.

    2011-01-01

    Atomic Energy of Canada (AECL) is finalizing development of the Enhanced CANDU 6 (EC6), which incorporates the CANDU 6's well-proven features, and enhancements that make the reactor even more safe and easier to operate. The EC6 is the only mid-sized reactor (700 MWe class) with a proven pedigree that meets modern reactor expectations and regulatory standards. It is sized for smaller grids and also has outstanding fuel-cycle capability. Changes are incremental and consistent with the CANDU 6 project approach. The EC6 utilizes modern computers and a distributed control system housed in an advanced control room which, along with automated testing and on-line diagnostics, make the plant easier and safer to operate, with minimal operator intervention. Containment and seismic capability are upgraded to meet modern standards. The first deployment of the EC6 is anticipated in Canada; international markets are also being pursued. AECL is performing a comprehensive review of the EC6 design in the wake of the Fukushima accident, will review lessons learned, and incorporate any necessary improvements into new build design. (author)

  4. Fast reactors and nonproliferation

    International Nuclear Information System (INIS)

    Orlov, V.V.

    1997-01-01

    1.Three aspects of nonproliferation relevant to nuclear power are: Pu buildup in NPP spent fuel cooling ponds (∼ 104 t in case of consumption of ∼ 107 t cheap uranium). Danger of illegal radiochemical extraction of Pu for weapons production; Pu extraction from NPP fuel at the plants available in nuclear countries, its burning along with weapon-grade Pu in NPP reactors or in special-purpose burners; increased hazard of nuclear weapons sprawl with breeders and closed fuel cycle technology spreading all over the world. 2.The latter is one of major obstacles to creation of large-scale nuclear power. 3.Nuclear power of the first stage using 235 U will be able to meet the demands of certain fuel-deficient countries and regions, replacing ∼ 5-10% of conventional fuels in the global consumption for a number of decades. 4.Fast reactors of the first generation and the currently employed fuel technology are far from exhausting their potential for solving economic problems and meeting the challenges of safety, radioactive waste and nonproliferation. Development of large-scale nuclear power will become an option accepted by society for solving energy problems in the following century, provided a breeder technology is elaborated and demonstrated in the next 15-20 years, which would comply with the totality of the following requirement: full internal Pu breeding deterministic elimination of severe accidents involving fuel damage and high radioactivity releases: fast runaway, loss of coolant, fires, steam and hydrogen explosions, etc.; reaching a balance between radioactive wastes disposed of and uranium mined in terms of radiation hazard; technology of closed fuel cycle preventing its use for Pu extraction and permitting physical protection from fuel thefts;economic competitiveness of nuclear power for most of countries and regions, i.e. primarily the cost of NPPs with fat reactors is to be below the cost of modern LWR plants, etc

  5. H Reactor

    Data.gov (United States)

    Federal Laboratory Consortium — The H Reactor was the first reactor to be built at Hanford after World War II.It became operational in October of 1949, and represented the fourth nuclear reactor on...

  6. Papers presented by A.E.C.L. to the International Conference of the Canadian Nuclear Association

    International Nuclear Information System (INIS)

    1964-06-01

    The International Conference of the Canadian Nuclear Association was held in Toronto, Ontario, Canada on May 25-27, 1964. There were six papers presented by Atomic Energy of Canada Limited. The titles were: I. Canada - A Nuclear Power Plant Supplier, by J.L. Gray; II. Nuclear Power Development in Canada and Other Countries, by W.B. Lewis; III. The Development and Some Applications of Cobalt-60 Irradiators, by R.F. Errington; IV. The Definition and Achievement of Development Targets for the Canadian Power Reactor Program, by A.J. Mooradian; V. Recent Applications of Tracers in the Physical Sciences in Canada, by R.H. Betts and J.A. Davies; and, VI. Economic Comparison of Oyster Creek, Nine Mile Point and CANDU-type Stations under Canadian Conditions, by G.A. Pon and R.L. Beck.

  7. Preparation, radiochemical purity control and stability of 99mTc-mertiatide (Mag-3)

    International Nuclear Information System (INIS)

    Van Hemert, F.J.; Schimmel, K.J.M.; Van Eck-Smit, B.L.F.; Van Lenthe, H.

    2005-01-01

    Scintigraphic image analysis of 99m Tc-mertiatide (Mag-3, mercaptoacetyltriglycine) clearance provides the determination of the blood flow, the tubular transit time and the excretion as well from both kidneys. Radiopharmaceutical routine recommends a radiochemical purity control before administration of the product to a patient. The main objective of this study is to develop a Mag-3 labeling procedure that fits better than the previous one in our daily routine production of radiopharmaceuticals. Increasing proportions of 99m Tc-Mag-3 were measured during the heating and cooling steps of the Mag-3 labeling procedure. High performance liquid chromatography (HPLC) analysis was used to confirm the results of a rapid radiochemical quality control assay on standard instant thin-layer chromatography-silica gel (ITLC-SG) paper. The reconstitution time takes 20-25 minutes from the harvest of pertechnetate to a ready-for-use calibrated patient syringe. The HPLC profile of 99m Tc-Mag-3 including its minor impurities remains unchanged for 24-48 hours after reconstitution. The application of a programmable Peltier-directed device for heating/cooling provides a better control of the temperature course. The procedure proposed fully meets the labeling criteria recommended by the supplier and can be performed with a minimum of attention within a time-span that we formerly needed for solely the radiochemical purity control assay. Moreover, 99m Tc-Mag-3 prepared in this way seems to be considerably more stable than mentioned in the manufacturer's instructions. (author)

  8. Radiochemical determination of 210 Pb and 226Ra in petroleum sludges and scales

    International Nuclear Information System (INIS)

    Araujo, Andressa Arruda de

    2005-01-01

    The oil extraction and production, both onshore and offshore, can generate different types of residues, such as sludge, that is deposited in the water/oil separators, valves and storage tanks and scales, which form i the inner surface of ducts and equipment. Analyses already carried out through gamma spectrometry indicated the existence of high radioisotope concentration. However, radionuclides emitting low-energy gamma-rays, such as 210 Pb, are hardly detected by that technique. Consequently, there is a need to test alternative techniques to determine this and other radionuclides from the 238 U series. This work, therefore, focuses on the radiochemical determination of the concentration of 210 Pb, and 226 Ra in samples of sludge and scale from the oil processing stations of the UN-SEAL, a PETROBRAS unit responsible for the exploration and production of petroleum in Sergipe and Alagoas. The sludge and scale samples went through a preliminary process of extraction of oil, in order to separate the solid phase, where the largest fraction of the radioactivity is concentrated. After oil removal, the samples were digested using alkaline fusion as an option for dissolution. Finally, their activity concentration was determined for the samples of sludge and scales, using and alternative radiochemical method, which is based on ionic exchange. The activity concentration found for 210 Pb varied from 1,14 to 507,3 kBq kg -1 . The values for 226 Ra were higher, varying from 4,36 to 3.445 kBq kg -1 . The results for 226 Ra were then compared with the ones found for the same samples of sludge and scales using gamma spectrometry. The results of the comparison confirm the efficiency of the methodology used int hi work, that is, radiochemical determination by means of ionic exchange. (author)

  9. Dosimetry aspects of the new Canadian MAPLE-X10 reactor

    International Nuclear Information System (INIS)

    Lidstone, R.F.; Wilkin, G.B.

    1994-01-01

    Atomic Energy of Canada Limited is building the 10-MW t MAPLE-X10 reactor facility as a dedicated producer of medical and industrial radioisotopes. Dosimetry aspects of the MAPLE-X10 nuclear design include the calculated thermal and fast neutron flux distributions throughout the reactor assembly and the rate of heat generation in reactor materials and components. Examples of the resolution of design issues are also presented, such as the use of fission counters and ion chambers to provide diverse methods of detecting neutron flux levels and the use of the difference between photon and neutron signals to guard against the effects of downgrading of the heavy-water reflector. Computer codes employed in the calculations include MCNP, ONEDANT, WIMS-AECL, and 3DDT

  10. The radiochemical purity of technetium-99m-tin-diethylene-triamino-pentaacetic acid (DTPA) complex

    International Nuclear Information System (INIS)

    Besnard, M.; Costerousse, O.; Merlin, L.; Coehn, Y.

    1975-01-01

    The effect on radiochemical purity was studied as a function of the storage period of tin-DTPA solution and of the technetium-complex solution. The quantity of the pertechnetate ions present in the solution is determined by ascending paper chromatography, and an attempt was made to clarify the bond type of technetium by a spectrophotometric method. The tin-DTPA solutions for complexing of the reduced technetium are stable over a period of 8 weeks. The yield of the radiopharmaceutical product is better than 95%. (G.Gy.)

  11. Radiochemical and thermal studies of the cation-exchanged forms of synthetic zeolite Linde sieve A

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, S P [Saugar Univ. (India). Dept. of Chemistry

    1976-02-01

    The compositions of the cobalt and silver-exchanged forms of synthetic zeolite Sieve A have been determined by radiochemical and TGA studies and correspond to Co/sub 6/A.19.8H/sub 2/O and Ag/sub 12/..cap alpha... 20H/sub 2/O respectively (A=Al/sub 12/Si/sub 12/O/sub 48//sup 12/-). Heating of these zeolites inhibits their capacity for cation exchange and water absorption. No evidence of occluded NaAlO/sub 2/ has been found.

  12. Trace element evaluation of different varieties of chewing gum by radiochemical neutron activation analysis

    International Nuclear Information System (INIS)

    Zaidi, J.H.; Arif, M.; Fatima, I.; Ahmad, S.; Qureshi, I.H.

    2000-01-01

    Extensive use of chewing gums, by children in particular, entails the evaluation of trace element contents in them. Radiochemical neutron activation analysis (RNAA) was successfully employed to determine the concentration of 35 trace elements (essential, toxic and nonessential) in eight different brands of chewing gum generally consumed in Rawalpindi/Islamabad area. Comparison of trace element data of our work with literature has been presented. None of the elements detected in the brands of chewing gum examined was found to be present at a level representing a substantial contribution to the total dietary intake of the element. (author)

  13. Design of the Laboratory-Scale Plutonium Oxide Processing Unit in the Radiochemical Processing Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Lumetta, Gregg J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Meier, David E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tingey, Joel M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Casella, Amanda J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Delegard, Calvin H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Edwards, Matthew K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Orton, Robert D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rapko, Brian M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smart, John E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-05-01

    This report describes a design for a laboratory-scale capability to produce plutonium oxide (PuO2) for use in identifying and validating nuclear forensics signatures associated with plutonium production, as well as for use as exercise and reference materials. This capability will be located in the Radiochemical Processing Laboratory at the Pacific Northwest National Laboratory. The key unit operations are described, including PuO2 dissolution, purification of the Pu by ion exchange, precipitation, and re-conversion to PuO2 by calcination.

  14. Conceptual Design for the Pilot-Scale Plutonium Oxide Processing Unit in the Radiochemical Processing Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Lumetta, Gregg J.; Meier, David E.; Tingey, Joel M.; Casella, Amanda J.; Delegard, Calvin H.; Edwards, Matthew K.; Jones, Susan A.; Rapko, Brian M.

    2014-08-05

    This report describes a conceptual design for a pilot-scale capability to produce plutonium oxide for use as exercise and reference materials, and for use in identifying and validating nuclear forensics signatures associated with plutonium production. This capability is referred to as the Pilot-scale Plutonium oxide Processing Unit (P3U), and it will be located in the Radiochemical Processing Laboratory at the Pacific Northwest National Laboratory. The key unit operations are described, including plutonium dioxide (PuO2) dissolution, purification of the Pu by ion exchange, precipitation, and conversion to oxide by calcination.

  15. A new radiochemical assay for fructose-1,6-diphosphatase in human leucocytes

    International Nuclear Information System (INIS)

    Janssen, A.J.M.; Trijbels, F.J.M.

    1982-01-01

    Fructose-1,6-diphosphatase (D-fructose-1,6-diphosphate 1-phosphohydrolase, EC 3.1.3.11, FDPase) is one of the key enzymes of the gluconeogenic pathway. Measuring the activity both in the presence and in the absence of AMP yields the true FDPase activity, corrected for non-specific phosphatase activity. In this paper the authors introduce a new radiochemical assay for FDPase, based on the decarboxylating activity of 6-phosphogluconate dehydrogenase. One molecule [U- 14 C]fructose-1,6-diphosphate yields one molecule 14 CO 2 which can be captured in strongly basic solutions and counted in a liquid scintillation counter. (Auth.)

  16. Radiochemical procedure for the determination of plutonium isotopes in powdered milk

    International Nuclear Information System (INIS)

    Taddei, M.H.T.; Silva, N.C.

    2006-01-01

    A radiochemical procedure for the determination of alpha-emitting isotopes of plutonium in powdered milk is proposed. The procedure involves sample dissolution (by HNO 3 and HClO 4 ), separation by ionic-exchange resin, electrodeposition and alpha-spectroscopy. In order to determine the chemical recovery, 242 Pu was employed as a tracer. A reference material (Marine Sediment IAEA 135) was analyzed to validate such procedure, and to show its reliability. Afterwards, some powdered milk, produced for international trade, was analyzed and chemical recovery was found to be around 95%. (author)

  17. Determination of trace elements in bottled water in Greece by instrumental and radiochemical neutron activation analyses

    International Nuclear Information System (INIS)

    Soupioni, M.J.; Symeopoulos, B.D.; Papaefthymiou, H.V.

    2006-01-01

    Four different bottled water brands sold in Greece in the winter of 2001-2002 were analyzed for a wide range of chemical elements, using neutron activation analysis (NAA). The elements Na and Br were determined instrumentally (INAA), whereas the other metals and trace elements radiochemically (RNAA). The results indicated that the mean level of all the elements determined in the samples were well within the European Union (EU) directive on drinking water and accomplish the drinking water standards of the World Health Organisation (WHO) as well as of the Food and Drug Administration (FDA). (author)

  18. Radiochemical techniques for determining some naturally occurring radionuclides in marine environmental materials

    Energy Technology Data Exchange (ETDEWEB)

    Baker, C W [Ministry of Agriculture, Fisheries and Food, Lowestoft (UK). Fisheries Lab.

    1984-06-15

    The determination of some of the naturally-occurring, alpha-emitting radionuclides in marine environmental materials, is of interest for several reasons. Radium and radon nuclides are potentially useful as oceanographic tracers. Lead and thorium nuclides may be used to study sedimentation rates, mixing processes and bioturbation in sediments. Radium and polonium nuclides are incorporated into food chains and the data may provide a perspective against which to assess the significance, for marine organisms, of exposure to radiation in a marine radioactive waste disposal situation. This paper discusses the manner in which samples are taken, and the radiochemical methods which have been employed to measure the nuclides, together with some data produced.

  19. Integral method of treatment of experimental data from radiochemical solar neutrino detectors

    International Nuclear Information System (INIS)

    Gavrin, V.N.; Kopylov, A.V.; Streltsov, A.V.

    1985-01-01

    An analysis is made of the statistical errors in solar neutrino detection by radiochemical detectors at different times of exposure. It is shown that short exposures (tau/sub e/ = one-half to one half-life) give minimal one-year error. The possibility is considered of the detection of the solar neutrino flux variation due to annual changes of the Earth-Sun distance. The integral method of treatment of the experimental data is described. Results are given of the statistical treatment of computer simulated data

  20. Radiochemical analysis of radio-nuclides in sea water collected near Bikini Atoll

    Energy Technology Data Exchange (ETDEWEB)

    Miyake, Y; Sugiura, Y

    1955-01-01

    A radiochemical analysis of sea water containing fission materials collected near Bikini Atoll in June, 1954, was performed. The sea water was boiled with hydrochloric acid, iron and lanthanum salts each 5 mg as Fe and La were added to it. They were precipitated as hydroxide, which was dissolved in hydrochloric acid and ferric chloride was extracted with ethyl ether. The remaining solution was evaporated to dryness and the residue was dissolved in hydrochloric acid. Using the latter solution the group separation was done with cation exchanger resins.