WorldWideScience

Sample records for adventitious rooting process1

  1. The Physiology of Adventitious Roots1

    Science.gov (United States)

    Steffens, Bianka; Rasmussen, Amanda

    2016-01-01

    Adventitious roots are plant roots that form from any nonroot tissue and are produced both during normal development (crown roots on cereals and nodal roots on strawberry [Fragaria spp.]) and in response to stress conditions, such as flooding, nutrient deprivation, and wounding. They are important economically (for cuttings and food production), ecologically (environmental stress response), and for human existence (food production). To improve sustainable food production under environmentally extreme conditions, it is important to understand the adventitious root development of crops both in normal and stressed conditions. Therefore, understanding the regulation and physiology of adventitious root formation is critical for breeding programs. Recent work shows that different adventitious root types are regulated differently, and here, we propose clear definitions of these classes. We use three case studies to summarize the physiology of adventitious root development in response to flooding (case study 1), nutrient deficiency (case study 2), and wounding (case study 3). PMID:26697895

  2. Strigolactones Suppress Adventitious Rooting in Arabidopsis and Pea1[C][W][OA

    Science.gov (United States)

    Rasmussen, Amanda; Mason, Michael Glenn; De Cuyper, Carolien; Brewer, Philip B.; Herold, Silvia; Agusti, Javier; Geelen, Danny; Greb, Thomas; Goormachtig, Sofie; Beeckman, Tom; Beveridge, Christine Anne

    2012-01-01

    Adventitious root formation is essential for the propagation of many commercially important plant species and involves the formation of roots from nonroot tissues such as stems or leaves. Here, we demonstrate that the plant hormone strigolactone suppresses adventitious root formation in Arabidopsis (Arabidopsis thaliana) and pea (Pisum sativum). Strigolactone-deficient and response mutants of both species have enhanced adventitious rooting. CYCLIN B1 expression, an early marker for the initiation of adventitious root primordia in Arabidopsis, is enhanced in more axillary growth2 (max2), a strigolactone response mutant, suggesting that strigolactones restrain the number of adventitious roots by inhibiting the very first formative divisions of the founder cells. Strigolactones and cytokinins appear to act independently to suppress adventitious rooting, as cytokinin mutants are strigolactone responsive and strigolactone mutants are cytokinin responsive. In contrast, the interaction between the strigolactone and auxin signaling pathways in regulating adventitious rooting appears to be more complex. Strigolactone can at least partially revert the stimulatory effect of auxin on adventitious rooting, and auxin can further increase the number of adventitious roots in max mutants. We present a model depicting the interaction of strigolactones, cytokinins, and auxin in regulating adventitious root formation. PMID:22323776

  3. Involvement of heme oxygenase-1 in β-cyclodextrin-hemin complex-induced cucumber adventitious rooting process.

    Science.gov (United States)

    Lin, Yuting; Li, Meiyue; Huang, Liqin; Shen, Wenbiao; Ren, Yong

    2012-09-01

    Our previous results showed that β-cyclodextrin-hemin complex (CDH) exhibited a vital protective role against cadmium-induced oxidative damage and toxicity in alfalfa seedling roots by the regulation of heme oxygenase-1 (HO-1) gene expression. In this report, we further test whether CDH exhibited the hormonal-like response. The application of CDH and an inducer of HO-1, hemin, were able to induce the up-regulation of cucumber HO-1 gene (CsHO1) expression and thereafter the promotion of adventitious rooting in cucumber explants. The effect is specific for HO-1 since the potent HO-1 inhibitor zinc protoporphyrin IX (ZnPP) blocked the above responses triggered by CDH, and the inhibitory effects were reversed further when 30% saturation of CO aqueous solution was added together. Further, molecular evidence showed that CDH triggered the increases of the HO-1-mediated target genes responsible for adventitious rooting, including one DnaJ-like gene (CsDNAJ-1) and two calcium-dependent protein kinase (CDPK) genes (CsCDPK1 and CsCDPK5), and were inhibited by ZnPP and reversed by CO. The calcium (Ca2+) chelator ethylene glycol-bis (2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) and the Ca2+ channel blocker lanthanum chloride (LaCl3) not only compromised the induction of adventitious rooting induced by CDH but also decreased the transcripts of above three target genes. However, the application of ascorbic acid (AsA), a well-known antioxidant in plants, failed to exhibit similar inducible effect on adventitious root formation. In short, above results illustrated that the response of CDH in the induction of cucumber adventitious rooting might be through HO-1-dependent mechanism and calcium signaling. Physiological, pharmacological and molecular evidence showed that β-cyclodextrin-hemin complex (CDH) was able to induce cucumber adventitious rooting through heme oxygenase-1 (HO-1)-dependent mechanism and calcium signaling.

  4. [Effect of different parts, harvesting time and processing technologies on alkaloids content of Coptis chinensis adventitious root].

    Science.gov (United States)

    Pang, Jie; Wang, De-Zhen; Zou, Zong-Yao; Wang, Yan-Zhi; Gao, Qian; Li, Xue-Gang

    2014-03-01

    To investigate the effect of different parts, harvesting time and processing technologies on alkaloids content of Coptis chinensis adventitious root. The content of alkaloids were analyzed by HPLC. The content of total alkaloids in adventitious root harvested in different time was ranged from 2.5% to 2.9%, in which that of berberine and coptisine were the highest, reaching to 1%, and that of palmatine was only 0.1%. It suggested there was no significant difference of total alkaloids at different harvesting time. Nevertheless, the difference of the alkaloids content from different parts was much significant. The content of total alkaloid of adventitious root near to rhizome was about 4%, 2 times higher than that away from rhizome (only 2%). In addition, different processing technologies would affect alkaloids content obviously. There was hardly loss of alkaloids when the fresh adventitious root was washed with water, but it would decrease alkaloids content when the dried adventitious root was washed. Medicine value of Coptis chinensis adventitious root near to rhizome is higher than that away from rhizome. And fresh Coptis chinensis adventitious root can be washed with water.

  5. Strigolactones suppress adventitious rooting in Arabidopsis and pea.

    Science.gov (United States)

    Rasmussen, Amanda; Mason, Michael Glenn; De Cuyper, Carolien; Brewer, Philip B; Herold, Silvia; Agusti, Javier; Geelen, Danny; Greb, Thomas; Goormachtig, Sofie; Beeckman, Tom; Beveridge, Christine Anne

    2012-04-01

    Adventitious root formation is essential for the propagation of many commercially important plant species and involves the formation of roots from nonroot tissues such as stems or leaves. Here, we demonstrate that the plant hormone strigolactone suppresses adventitious root formation in Arabidopsis (Arabidopsis thaliana) and pea (Pisum sativum). Strigolactone-deficient and response mutants of both species have enhanced adventitious rooting. CYCLIN B1 expression, an early marker for the initiation of adventitious root primordia in Arabidopsis, is enhanced in more axillary growth2 (max2), a strigolactone response mutant, suggesting that strigolactones restrain the number of adventitious roots by inhibiting the very first formative divisions of the founder cells. Strigolactones and cytokinins appear to act independently to suppress adventitious rooting, as cytokinin mutants are strigolactone responsive and strigolactone mutants are cytokinin responsive. In contrast, the interaction between the strigolactone and auxin signaling pathways in regulating adventitious rooting appears to be more complex. Strigolactone can at least partially revert the stimulatory effect of auxin on adventitious rooting, and auxin can further increase the number of adventitious roots in max mutants. We present a model depicting the interaction of strigolactones, cytokinins, and auxin in regulating adventitious root formation.

  6. Nutrition and adventitious rooting in woody plants

    Directory of Open Access Journals (Sweden)

    Fernanda Bortolanza Pereira

    2016-09-01

    Full Text Available Vegetative propagation success of commercial genotypes via cutting techniques is related to several factors, including nutritional status of mother trees and of propagation material. The nutritional status determines the carbohydrate quantities, auxins and other compounds of plant essential metabolism for root initiation and development. Each nutrient has specific functions in plant, acting on plant structure or on plant physiology. Although the importance of mineral nutrition for success of woody plants vegetative propagation and its relation with adventitious rooting is recognized, the role of some mineral nutrients is still unknown. Due to biochemical and physiological complexity of adventitious rooting process, there are few researches to determine de role of nutrients on development of adventitious roots. This review intends to explore de state of the art about the effect of mineral nutrition on adventitious rooting of woody plants.

  7. Metabolic analysis of the increased adventitious rooting mutant of Artemisia annua reveals a role for the plant monoterpene borneol in adventitious root formation.

    Science.gov (United States)

    Tian, Na; Liu, Shuoqian; Li, Juan; Xu, Wenwen; Yuan, Lin; Huang, Jianan; Liu, Zhonghua

    2014-08-01

    Adventitious root (AR) formation is a critical process for plant clonal propagation. The role of plant secondary metabolites in AR formation is still poorly understood. Chemical and physical mutagenesis in combination with somatic variation were performed on Artemisia annua in order to obtain a mutant with changes in adventitious rooting and composition of plant secondary metabolites. Metabolic and morphological analyses of the iar (increased adventitious rooting) mutant coupled with in vitro assays were used to elucidate the relationship between plant secondary metabolites and AR formation. The only detected differences between the iar mutant and wild-type were rooting capacity and borneol/camphor content. Consistent with this, treatment with borneol in vitro promoted adventitious rooting in wild-type. The enhanced rooting did not continue upon removal of borneol. The iar mutant displayed no significant differences in AR formation upon treatment with camphor. Together, our results suggest that borneol promotes adventitious rooting whereas camphor has no effect on AR formation. © 2013 Scandinavian Plant Physiology Society.

  8. Distinct modes of adventitious rooting in Arabidopsis thaliana.

    Science.gov (United States)

    Correa, L da Rocha; Troleis, J; Mastroberti, A A; Mariath, J E A; Fett-Neto, A G

    2012-01-01

    The literature describes different rooting protocols for Arabidopsis thaliana as models to study adventitious rooting, and results are generally perceived as comparable. However, there is a lack of investigations focusing on the distinct features, advantages and limitations of each method in the study of adventitious rooting with both wild-type (WT) ecotypes and their respective mutants. This investigation was undertaken to evaluate the adventitious rooting process in three different experimental systems, all using A. thaliana, analysing the same rooting parameters after transient exposure to auxin (indole-3-acetic acid) and control conditions: excised leaves, de-rooted plants and etiolated seedlings. The founding tissues and sites of origin of roots differed depending on the system used, whereas all rooting patterns were of the direct type (i.e., without callus formation). None of the systems had an absolute requirement for exogenous auxin, although rooting was enhanced by this phytohormone, with the exception of de-rooted plants, which had adventitious rooting strongly inhibited by exogenous auxin. Root elongation was much favoured in isolated leaves. Auxin-overproducing mutants could not be used in the detached leaf system due to precocious senescence; in the de-rooted plant system, these mutants had a WT-like rooting response, whereas the expression of the 'rooty' phenotype was only evident in the etiolated seedling system. Adventitious rooting of etiolated WT seedlings in the presence of exogenous auxin was inhibited by exogenous flavonoids, which act as auxin transport inhibitors; surprisingly, the flavonoid-deficient mutant chs had a lower rooting response compared to WT. Although Arabidopsis is an excellent model system to study adventitious rooting, physiological and developmental responses differed significantly, underlining the importance of avoiding data generalisation on rooting responses derived from different experimental systems with this species.

  9. Proliferation and glucosinolates accumulation of broccoli adventitious roots in liquid medium

    Science.gov (United States)

    Nhut, Nguyen Minh; Tien, Le Thi Thuy

    2017-09-01

    Cotyledons from 7-day-old in vitro broccoli seedling were used as explant source in adventitious root induction on MS medium supplemented with 30 g/l sucrose, 1.6 mg/l IBA and 7 g/l agar. Adventitious roots from cotyledons were transferred to liquid medium containing the same components as rooting medium for two weeks, then subcultured to MS medium with diferent sugar, macrominerals and casein hydrolysate concentrations. The best adventitious root growth was observed in half-strength MS medium supplemented with 40 g/l sucrose, 600 mg/l casein hydrolysate and 1.6 mg/l IBA (growth index of 4.00 in about 14 culture days with inoculum density of 1.0 g fresh weight / 30 ml of culture medium). The culturing process can be stopped on the 28th day for root biomass and on the 35th day for glucosinolates.

  10. Psoralen production in hairy roots and adventitious roots cultures of Psoralea coryfolia.

    Science.gov (United States)

    Baskaran, P; Jayabalan, N

    2009-07-01

    Psoralea corylifolia is an endangered plant producing various compounds of medical importance. Adventitious roots and hairy roots were induced in cultures prepared from hypocotyl explants. Psoralen content was evaluated in both root types grown either in suspension cultures or on agar solidified medium. Psoralen content was approximately 3 mg g(-1) DW in suspension grown hairy roots being higher than in solid grown hairy roots and in solid and suspension-grown adventitious roots.

  11. Methane-rich water induces cucumber adventitious rooting through heme oxygenase1/carbon monoxide and Ca(2+) pathways.

    Science.gov (United States)

    Cui, Weiti; Qi, Fang; Zhang, Yihua; Cao, Hong; Zhang, Jing; Wang, Ren; Shen, Wenbiao

    2015-03-01

    Methane-rich water triggered adventitious rooting by regulating heme oxygenase1/carbon monoxide and calcium pathways in cucumber explants. Heme oxygenase1/carbon monoxide (HO1/CO) and calcium (Ca(2+)) were reported as the downstream signals in auxin-induced cucumber adventitious root (AR) formation. Here, we observed that application of methane-rich water (MRW; 80% saturation) obviously induced AR formation in IAA-depleted cucumber explants. To address the universality, we checked adventitious rooting in soybean and mung bean explants, and found that MRW (50 and 10% saturation, respectively) exhibited the similar inducing results. To further determine if the HO1/CO system participated in MRW-induced adventitious rooting, MRW, HO1 inducer hemin, its activity inhibitor zinc protoporphyrin IX (ZnPP), and its catalytic by-products CO, bilirubin, and Fe(2+) were used to detect their effects on cucumber adventitious rooting in IAA-depleted explants. Subsequent results showed that MRW-induced adventitious rooting was blocked by ZnPP and further reversed by 20% saturation CO aqueous solution. However, the other two by-products of HO1, bilirubin and Fe(2+), failed to induce AR formation. Above responses were consistent with the MRW-induced increases of HO1 transcript and corresponding protein level. Further molecular evidence indicted that expression of marker genes, including auxin signaling-related genes and cell cycle regulatory genes, were modulated by MRW alone but blocked by the cotreatment with ZnPP, the latter of which could be significantly rescued by the addition of CO. By using the Ca(2+)-channel blocker and Ca(2+) chelator, the involvement of Ca(2+) pathway in MRW-induced adventitious rooting was also suggested. Together, our results indicate that MRW might serve as a stimulator of adventitious rooting, which was partially mediated by HO1/CO and Ca(2+) pathways.

  12. Identification of new adventitious rooting mutants amongst suppressors of the Arabidopsis thaliana superroot2 mutation.

    Science.gov (United States)

    Pacurar, Daniel Ioan; Pacurar, Monica Lacramioara; Bussell, John Desmond; Schwambach, Joseli; Pop, Tiberia Ioana; Kowalczyk, Mariusz; Gutierrez, Laurent; Cavel, Emilie; Chaabouni, Salma; Ljung, Karin; Fett-Neto, Arthur Germano; Pamfil, Doru; Bellini, Catherine

    2014-04-01

    The plant hormone auxin plays a central role in adventitious rooting and is routinely used with many economically important, vegetatively propagated plant species to promote adventitious root initiation and development on cuttings. Nevertheless the molecular mechanisms through which it acts are only starting to emerge. The Arabidopsis superroot2-1 (sur2-1) mutant overproduces auxin and, as a consequence, develops excessive adventitious roots in the hypocotyl. In order to increase the knowledge of adventitious rooting and of auxin signalling pathways and crosstalk, this study performed a screen for suppressors of superroot2-1 phenotype. These suppressors provide a new resource for discovery of genetic players involved in auxin signalling pathways or at the crosstalk of auxin and other hormones or environmental signals. This study reports the identification and characterization of 26 sur2-1 suppressor mutants, several of which were identified as mutations in candidate genes involved in either auxin biosynthesis or signalling. In addition to confirming the role of auxin as a central regulator of adventitious rooting, superroot2 suppressors indicated possible crosstalk with ethylene signalling in this process.

  13. Polyamines and adventitious root formation in Vitis vinifera L.

    Directory of Open Access Journals (Sweden)

    Laurence Geny

    2002-06-01

    Full Text Available The effects of polyamines were examined for growth and polyamine contents in cultings, callus and primary adventitious roots of Vitis vinifera L. Variations in free, conjugated and wall-bound polyamines in cuttings were observed during rhizogenesis. The main polyamines in cuttings were conjugated polyamines while in callus and primary adventitious roots they were free polyamines. Exogenous polyamine addition did not modify the total number of roots per cutting but increased the mean size and number of long roots. Moreover, exogenous polyamines increased polyamine levels in callus and roots, particurlarly wall-bound and conjugated polyamines. The involvement of these classes of polyamines in morphogenic processes is discussed.

  14. AOX1-Subfamily Gene Members in Olea europaea cv. "Galega Vulgar"-Gene Characterization and Expression of Transcripts during IBA-Induced in Vitro Adventitious Rooting.

    Science.gov (United States)

    Velada, Isabel; Grzebelus, Dariusz; Lousa, Diana; M Soares, Cláudio; Santos Macedo, Elisete; Peixe, Augusto; Arnholdt-Schmitt, Birgit; G Cardoso, Hélia

    2018-02-17

    Propagation of some Olea europaea L. cultivars is strongly limited due to recalcitrant behavior in adventitious root formation by semi-hardwood cuttings. One example is the cultivar "Galega vulgar". The formation of adventitious roots is considered a morphological response to stress. Alternative oxidase (AOX) is the terminal oxidase of the alternative pathway of the plant mitochondrial electron transport chain. This enzyme is well known to be induced in response to several biotic and abiotic stress situations. This work aimed to characterize the alternative oxidase 1 (AOX1)-subfamily in olive and to analyze the expression of transcripts during the indole-3-butyric acid (IBA)-induced in vitro adventitious rooting (AR) process. OeAOX1a (acc. no. MF410318) and OeAOX1d (acc. no. MF410319) were identified, as well as different transcript variants for both genes which resulted from alternative polyadenylation events. A correlation between transcript accumulation of both OeAOX1a and OeAOX1d transcripts and the three distinct phases (induction, initiation, and expression) of the AR process in olive was observed. Olive AOX1 genes seem to be associated with the induction and development of adventitious roots in IBA-treated explants. A better understanding of the molecular mechanisms underlying the stimulus needed for the induction of adventitious roots may help to develop more targeted and effective rooting induction protocols in order to improve the rooting ability of difficult-to-root cultivars.

  15. The TOR Pathway Is Involved in Adventitious Root Formation in Arabidopsis and Potato.

    Science.gov (United States)

    Deng, Kexuan; Dong, Pan; Wang, Wanjing; Feng, Li; Xiong, Fangjie; Wang, Kai; Zhang, Shumin; Feng, Shun; Wang, Bangjun; Zhang, Jiankui; Ren, Maozhi

    2017-01-01

    In the agriculture industry, adventitious root formation is a core issue of plants asexual propagation. However, the underlying molecular mechanism of adventitious root formation is far beyond understanding. In present study we found that target of rapamycin (TOR) signaling plays a key role in adventitious root formation in potato and Arabidopsis . The core components of TOR complex including TOR, RAPTOR, and LST8 are highly conserved in potato, but the seedlings of potato are insensitive to rapamycin, implying FK506 Binding Protein 12 KD (FKBP12) lost the function to bridge the interaction of rapamycin and TOR in potato. To dissect TOR signaling in potato, the rapamycin hypersensitive potato plants (BP12-OE) were engineered by introducing yeast FKBP12 ( ScFKBP12 ) into potato. We found that rapamycin can significantly attenuate the capability of adventitious root formation in BP12-OE potatoes. KU63794 (KU, an active-site TOR inhibitor) combined with rapamycin can more significantly suppress adventitious root formation of BP12-OE potato than the single treatments, such as KU63794 or rapamycin, indicating its synergistic inhibitory effects on potato adventitious root formation. Furthermore, RNA-seq data showed that many genes associated with auxin signaling pathway were altered when BP12-OE potato seedlings were treated with rapamycin + KU, suggesting that TOR may play a major role in adventitious root formation via auxin signaling. The auxin receptor mutant tir1 was sensitive to TOR inhibitors and the double and quadruple mutants including tir1afb2, tir1afb3 , and tir1afb1afb2afb3 displayed more sensitive to asTORis than single mutant tir1 . Consistently, overexpression of AtTIR1 in Arabidopsis and potato can partially overcome the inhibitory effect of asTORis and promote adventitious root formation under asTORis treatments. These observations suggest that TOR signaling regulates adventitious root formation by mediating auxin signaling in Arabidopsis and potato.

  16. Expressed sequence tag analysis of functional genes associated with adventitious rooting in Liriodendron hybrids.

    Science.gov (United States)

    Zhong, Y D; Sun, X Y; Liu, E Y; Li, Y Q; Gao, Z; Yu, F X

    2016-06-24

    Liriodendron hybrids (Liriodendron chinense x L. tulipifera) are important landscaping and afforestation hardwood trees. To date, little genomic research on adventitious rooting has been reported in these hybrids, as well as in the genus Liriodendron. In the present study, we used adventitious roots to construct the first cDNA library for Liriodendron hybrids. A total of 5176 expressed sequence tags (ESTs) were generated and clustered into 2921 unigenes. Among these unigenes, 2547 had significant homology to the non-redundant protein database representing a wide variety of putative functions. Homologs of these genes regulated many aspects of adventitious rooting, including those for auxin signal transduction and root hair development. Results of quantitative real-time polymerase chain reaction showed that AUX1, IRE, and FB1 were highly expressed in adventitious roots and the expression of AUX1, ARF1, NAC1, RHD1, and IRE increased during the development of adventitious roots. Additionally, 181 simple sequence repeats were identified from 166 ESTs and more than 91.16% of these were dinucleotide and trinucleotide repeats. To the best of our knowledge, the present study reports the identification of the genes associated with adventitious rooting in the genus Liriodendron for the first time and provides a valuable resource for future genomic studies. Expression analysis of selected genes could allow us to identify regulatory genes that may be essential for adventitious rooting.

  17. Hydrogen peroxide is a second messenger in the salicylic acid-triggered adventitious rooting process in mung bean seedlings.

    Directory of Open Access Journals (Sweden)

    Wei Yang

    Full Text Available In plants, salicylic acid (SA is a signaling molecule that regulates disease resistance responses, such as systemic acquired resistance (SAR and hypertensive response (HR. SA has been implicated as participating in various biotic and abiotic stresses. This study was conducted to investigate the role of SA in adventitious root formation (ARF in mung bean (Phaseolus radiatus L hypocotyl cuttings. We observed that hypocotyl treatment with SA could significantly promote the adventitious root formation, and its effects were dose and time dependent. Explants treated with SA displayed a 130% increase in adventitious root number compared with control seedlings. The role of SA in mung bean hypocotyl ARF as well as its interaction with hydrogen peroxide (H2O2 were also elucidated. Pretreatment of mung bean explants with N, N'-dimethylthiourea (DMTU, a scavenger for H2O2, resulted in a significant reduction of SA-induced ARF. Diphenyleneiodonium (DPI, a specific inhibitor of membrane-linked NADPH oxidase, also inhibited the effect of adventitious rooting triggered by SA treatment. The determination of the endogenous H2O2 level indicated that the seedlings treated with SA could induce H2O2 accumulation compared with the control treatment. Our results revealed a distinctive role of SA in the promotion of adventitious rooting via the process of H2O2 accumulation. This conclusion was further supported by antioxidant enzyme activity assays. Based on these results, we conclude that the accumulation of free H2O2 might be a downstream event in response to SA-triggered adventitious root formation in mung bean seedlings.

  18. AOX1-Subfamily Gene Members in Olea europaea cv. “Galega Vulgar”—Gene Characterization and Expression of Transcripts during IBA-Induced in Vitro Adventitious Rooting

    Science.gov (United States)

    Lousa, Diana; M. Soares, Cláudio; Santos Macedo, Elisete; Arnholdt-Schmitt, Birgit

    2018-01-01

    Propagation of some Olea europaea L. cultivars is strongly limited due to recalcitrant behavior in adventitious root formation by semi-hardwood cuttings. One example is the cultivar ”Galega vulgar”. The formation of adventitious roots is considered a morphological response to stress. Alternative oxidase (AOX) is the terminal oxidase of the alternative pathway of the plant mitochondrial electron transport chain. This enzyme is well known to be induced in response to several biotic and abiotic stress situations. This work aimed to characterize the alternative oxidase 1 (AOX1)-subfamily in olive and to analyze the expression of transcripts during the indole-3-butyric acid (IBA)-induced in vitro adventitious rooting (AR) process. OeAOX1a (acc. no. MF410318) and OeAOX1d (acc. no. MF410319) were identified, as well as different transcript variants for both genes which resulted from alternative polyadenylation events. A correlation between transcript accumulation of both OeAOX1a and OeAOX1d transcripts and the three distinct phases (induction, initiation, and expression) of the AR process in olive was observed. Olive AOX1 genes seem to be associated with the induction and development of adventitious roots in IBA-treated explants. A better understanding of the molecular mechanisms underlying the stimulus needed for the induction of adventitious roots may help to develop more targeted and effective rooting induction protocols in order to improve the rooting ability of difficult-to-root cultivars. PMID:29462998

  19. [Effects of culture conditions on biomass and active components of adventitious roots culture in Panax ginseng].

    Science.gov (United States)

    Huang, Tao; Gao, Wenyuan; Wang, Juan; Cao, Yu

    2010-01-01

    To optimize the culture condition of adventitious roots of Panax ginseng. The adventitious roots were obtained through tissue culture by manipulation of inoculum, various sucrose concentrations and salt strength. The contents of ginsenosides Re, Rb1 and Rg1 were determined by HPLC while the contents of polysaccharides were determined by ultraviolet spectrophotometry. The multiplication of adventitious roots reached the peak when the inoculum was 20 g x L(-1). The effects of sucrose concentration and salt strength on adventitious roots were observed. The contents of polysaccharides were higher when the medium contained more sucrose. 40 g x L(-1) sucrose was favorable for roots growth and biosynthesis of Re, while 30 g x L(-1) was favorable for the biosynthesis of Rb1 and Rg1. 3/4MS medium was benefit for the growth of adventitious roots and the biosynthesis of ginsenosides. The contents of polysaccharides were decreased with the increase of salt strength. The results showed that inoculum, various sucrose concentrations and salt strength have significant influences on adventitious roots growth, secondary metabolite and polysaccharide synthesis in P. ginseng.

  20. Gibberellins inhibit adventitious rooting in hybrid aspen and Arabidopsis by affecting auxin transport.

    Science.gov (United States)

    Mauriat, Mélanie; Petterle, Anna; Bellini, Catherine; Moritz, Thomas

    2014-05-01

    Knowledge of processes involved in adventitious rooting is important to improve both fundamental understanding of plant physiology and the propagation of numerous plants. Hybrid aspen (Populus tremula × tremuloïdes) plants overexpressing a key gibberellin (GA) biosynthesis gene (AtGA20ox1) grow rapidly but have poor rooting efficiency, which restricts their clonal propagation. Therefore, we investigated the molecular basis of adventitious rooting in Populus and the model plant Arabidopsis. The production of adventitious roots (ARs) in tree cuttings is initiated from the basal stem region, and involves the interplay of several endogenous and exogenous factors. The roles of several hormones in this process have been characterized, but the effects of GAs have not been fully investigated. Here, we show that a GA treatment negatively affects the numbers of ARs produced by wild-type hybrid aspen cuttings. Furthermore, both hybrid aspen plants and intact Arabidopsis seedlings overexpressing AtGA20ox1, PttGID1.1 or PttGID1.3 genes (with a 35S promoter) produce few ARs, although ARs develop from the basal stem region of hybrid aspen and the hypocotyl of Arabidopsis. In Arabidopsis, auxin and strigolactones are known to affect AR formation. Our data show that the inhibitory effect of GA treatment on adventitious rooting is not mediated by perturbation of the auxin signalling pathway, or of the strigolactone biosynthetic and signalling pathways. Instead, GAs appear to act by perturbing polar auxin transport, in particular auxin efflux in hybrid aspen, and both efflux and influx in Arabidopsis. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  1. [Effects of Ca2+ on nitric oxide-induced adventitious rooting in cucumber under drought stress].

    Science.gov (United States)

    Li, Chun Lan; Niu, Li Juan; Hu, Lin Li; Liao, Wei Biao; Chen, Yue

    2017-11-01

    Cucumber (Cucumis sativus L. 'Xinchun 4') was used to explore the relationship between nitric oxide (NO) and calcium (Ca 2+ ) during adventitious rooting under drought stress. Rooting parameters, endogenous Ca 2+ fluorescent intensity and the antioxidant enzymes activity (SOD, CAT and APX) in cucumber explants under drought stress were investigated. The results showed that treatment with 200 μmol·L -1 CaCl 2 and 0.05% PEG significantly improved the number and length of adventitious root in cucumber explants under drought stress, while the application of Ca 2+ chelating agent (EGTA) and channel inhibitor (BAPTA/AM) significantly decreased NO-induced number and length of adventitious root under drought stress. Under drought stress, the fluorescence intensity of Ca 2+ in hypocotyls treated with NO and CaCl 2 was improved, however, the Ca 2+ fluorescence intensity in the hypocotyls treated with NO scavenger (cPTIO) was significantly lower than that in the hypocotyls treated with NO. Under drought stress, the activities of antioxidant enzymes in the cucumber explants were significantly promoted by the treatments with NO and CaCl 2 , however, Ca 2+ chelating agent and channel inhibitor significantly decreased the activity of antioxidant enzymes induced by NO. In conclusion, Ca 2+ might be involved in the process of NO-adjusted antioxidant enzymes activity during adventitious rooting under drought stress, which alleviated the negative effects of drought on the adventitious rooting and promoted the formation of adventitious roots.

  2. Localized gene expression changes during adventitious root formation in black walnut (Juglans nigra L.)

    Science.gov (United States)

    Micah E Stevens; Keith E Woeste; Paula M Pijut

    2018-01-01

    Cutting propagation plays a large role in the forestry and horticulture industries where superior genotypes need to be clonally multiplied. Integral to this process is the ability of cuttings to form adventitious roots. Recalcitrance to adventitious root development is a serious hurdle for many woody plant propagation systems including black walnut (Juglans...

  3. Endophytic Bacteria Isolated from Panax ginseng Improves Ginsenoside Accumulation in Adventitious Ginseng Root Culture

    Directory of Open Access Journals (Sweden)

    Xiaolin Song

    2017-05-01

    Full Text Available Ginsenoside is the most important secondary metabolite of ginseng. Natural sources of wild ginseng have been overexploited. Although root culture could reduce the length of the growth cycle of ginseng, the number of ginsenosides is fewer and their contents are lower in adventitious roots of ginseng than that in ginseng cultivated in the field. In this study, we investigated the effects of endophytic bacterial elicitors on biomass and ginsenoside production in adventitious roots cultures of Panax ginseng. Endophyte LB 5-3 as an elicitor could increase biomass and ginsenoside accumulation in ginseng adventitious root culture. After 6 days elicitation with a 10.0 mL of strain LB 5-3, the content of total ginsenoside was 2.026 mg g−1 which was four times more than that in unchallenged roots. The combination of methyl jasmonate and strain LB 5-3 had a negative effect on ginseng adventitious root growth and ginsenoside production. The genomic DNA of strain LB 5-3 was sequenced, and was found to be most closely related to Bacillus altitudinis (KX230132.1. The challenged ginseng adventitious root extracts exerted inhibitory effect against the HepG2 cells, which IC50 value was 0.94 mg mL−1.

  4. Hypocotyl adventitious root organogenesis differs from lateral root development.

    Science.gov (United States)

    Verstraeten, Inge; Schotte, Sébastien; Geelen, Danny

    2014-01-01

    Wound-induced adventitious root (AR) formation is a requirement for plant survival upon root damage inflicted by pathogen attack, but also during the regeneration of plant stem cuttings for clonal propagation of elite plant varieties. Yet, adventitious rooting also takes place without wounding. This happens for example in etiolated Arabidopsis thaliana hypocotyls, in which AR initiate upon de-etiolation or in tomato seedlings, in which AR initiate upon flooding or high water availability. In the hypocotyl AR originate from a cell layer reminiscent to the pericycle in the primary root (PR) and the initiated AR share histological and developmental characteristics with lateral roots (LRs). In contrast to the PR however, the hypocotyl is a determinate structure with an established final number of cells. This points to differences between the induction of hypocotyl AR and LR on the PR, as the latter grows indeterminately. The induction of AR on the hypocotyl takes place in environmental conditions that differ from those that control LR formation. Hence, AR formation depends on differentially regulated gene products. Similarly to AR induction in stem cuttings, the capacity to induce hypocotyl AR is genotype-dependent and the plant growth regulator auxin is a key regulator controlling the rooting response. The hormones cytokinins, ethylene, jasmonic acid, and strigolactones in general reduce the root-inducing capacity. The involvement of this many regulators indicates that a tight control and fine-tuning of the initiation and emergence of AR exists. Recently, several genetic factors, specific to hypocotyl adventitious rooting in A. thaliana, have been uncovered. These factors reveal a dedicated signaling network that drives AR formation in the Arabidopsis hypocotyl. Here we provide an overview of the environmental and genetic factors controlling hypocotyl-born AR and we summarize how AR formation and the regulating factors of this organogenesis are distinct from LR

  5. Hypocotyl adventitious root organogenesis differs from lateral root development

    Directory of Open Access Journals (Sweden)

    Inge eVerstraeten

    2014-09-01

    Full Text Available Wound-induced adventitious root (AR formation is a requirement for plant survival upon root damage inflicted by pathogen attack, but also during the regeneration of plant stem cuttings for clonal propagation of elite plant varieties. Yet, adventitious rooting also takes place without wounding. This happens for example in etiolated Arabidopsis thaliana hypocotyls, in which AR initiate upon de-etiolation or in tomato seedlings, in which AR initiate upon flooding or high water availability. In the hypocotyl AR originate from a cell layer reminiscent to the pericycle in the primary root (PR and the initiated AR share histological and developmental characteristics with lateral roots (LR. In contrast to the PR however, the hypocotyl is a determinate structure with an established final number of cells. This points to differences between the induction of hypocotyl AR and LR on the PR, as the latter grows indeterminately. The induction of AR on the hypocotyl takes place in environmental conditions that differ from those that control LR formation. Hence, AR formation depends on differentially regulated gene products. Similarly to AR induction in stem cuttings, the capacity to induce hypocotyl AR is genotype-dependent and the plant growth regulator auxin is a key regulator controlling the rooting response. The hormones cytokinins, ethylene, jasmonic acid and strigolactones in general reduce the root-inducing capacity. The involvement of this many regulators indicates that a tight control and fine-tuning of the initiation and emergence of AR exists. Recently, several genetic factors, specific to hypocotyl adventitious rooting in Arabidopsis thaliana, have been uncovered. These factors reveal a dedicated signaling network that drives AR formation in the Arabidopsis hypocotyl. Here we provide an overview of the environmental and genetic factors controlling hypocotyl-born AR and we summarize how AR formation and the regulating factors of this organogenesis are

  6. Transcriptional sequencing and analysis of major genes involved in the adventitious root formation of mango cotyledon segments.

    Science.gov (United States)

    Li, Yun-He; Zhang, Hong-Na; Wu, Qing-Song; Muday, Gloria K

    2017-06-01

    A total of 74,745 unigenes were generated and 1975 DEGs were identified. Candidate genes that may be involved in the adventitious root formation of mango cotyledon segment were revealed. Adventitious root formation is a crucial step in plant vegetative propagation, but the molecular mechanism of adventitious root formation remains unclear. Adventitious roots formed only at the proximal cut surface (PCS) of mango cotyledon segments, whereas no roots were formed on the opposite, distal cut surface (DCS). To identify the transcript abundance changes linked to adventitious root development, RNA was isolated from PCS and DCS at 0, 4 and 7 days after culture, respectively. Illumina sequencing of libraries generated from these samples yielded 62.36 Gb high-quality reads that were assembled into 74,745 unigenes with an average sequence length of 807 base pairs, and 33,252 of the assembled unigenes at least had homologs in one of the public databases. Comparative analysis of these transcriptome databases revealed that between the different time points at PCS there were 1966 differentially expressed genes (DEGs), while there were only 51 DEGs for the PCS vs. DCS when time-matched samples were compared. Of these DEGs, 1636 were assigned to gene ontology (GO) classes, the majority of that was involved in cellular processes, metabolic processes and single-organism processes. Candidate genes that may be involved in the adventitious root formation of mango cotyledon segment are predicted to encode polar auxin transport carriers, auxin-regulated proteins, cell wall remodeling enzymes and ethylene-related proteins. In order to validate RNA-sequencing results, we further analyzed the expression profiles of 20 genes by quantitative real-time PCR. This study expands the transcriptome information for Mangifera indica and identifies candidate genes involved in adventitious root formation in cotyledon segments of mango.

  7. Establishment of in vitro adventitious root cultures and analysis of andrographolide in Andrographis paniculata.

    Science.gov (United States)

    Sharma, Shiv Narayan; Jha, Zenu; Sinha, Rakesh Kumar

    2013-08-01

    Andrographolide is the principal bioactive component of the medicinal plant Andrographis paniculata, to which various diverse pharmacological properties are attributed. Traditionally, andrographolide was extracted from the leaves, stems and other parts of the plant. Leaves have the highest andrographolide content (2-3%) in comparison with the other plant parts. Adventitious root culture of leaf explants of A. paniculata was studied using different strength MS medium supplemented by different concentrations of auxins and a combination of NAA + kinetin for growth and andrographolide production. Among the different auxin treatments in adventitious root culture, only NAA was able to induce adventitious roots. Adventitious roots grown in modified strength MS medium showed the highest root growth (26.7 +/- 1.52), as well as the highest amount of andrographolide (133.3 +/- 1.5 mg/g DW) as compared with roots grown in half- and full-strength MS medium. Growth kinetics showed maximum biomass production after five weeks of culture in different strength MS liquid medium. The produced andrographolide content was 3.5 - 5.5 folds higher than that of the natural plant, depending on the medium strength.

  8. Aquatic adventitious roots of the wetland plant Meionectes brownii can photosynthesize

    DEFF Research Database (Denmark)

    Rich, Sarah Meghan; Ludwig, Martha; Pedersen, Ole

    2011-01-01

    • Many wetland plants produce aquatic adventitious roots from submerged stems. Aquatic roots can form chloroplasts, potentially producing endogenous carbon and oxygen. Here, aquatic root photosynthesis was evaluated in the wetland plant Meionectes brownii, which grows extensive stem-borne aquatic...... roots during submergence. • Underwater photosynthetic light and CO(2) response curves were determined for aquatic-adapted leaves, stems and aquatic roots of M. brownii. Oxygen microelectrode and (14)CO(2)-uptake experiments determined shoot inputs of O(2) and photosynthate into aquatic roots. • Aquatic...... adventitious roots contain a complete photosynthetic pathway. Underwater photosynthetic rates are similar to those of stems, with a maximum net photosynthetic rate (P(max)) of 0.38 µmol O(2) m(-2) s(-1); however, this is c. 30-fold lower than that of aquatic-adapted leaves. Under saturating light with 300 mmol...

  9. Growth and Anatomical Parameters of Adventitious Roots Formed on Mung Bean Hypocotyls Are Correlated with Galactoglucomannan Oligosaccharides Structure

    Directory of Open Access Journals (Sweden)

    K. Kollárová

    2012-01-01

    Full Text Available The effect of galactoglucomannan oligosaccharides (GGMOs compared with chemically modified oligosaccharides, GGMOs-g (with reduced number of D-galactose side chains and GGMOs-r (with reduced reducing ends on mung bean (Vigna radiata (L. Wilczek adventitious roots formation, elongation, and anatomical structure have been studied. All types of oligosaccharides influenced adventitious root formation in the same way: stimulation in the absence of exogenous auxin and inhibition in the presence of exogenous auxin. Both reactions are probably related with the presence/content of endogenous auxin in plant cuttings. However, the adventitious root length was inhibited by GGMOs both in the absence as well as in the presence of auxin (IBA or NAA, while GGMOs-g inhibition was significantly weaker compared with GGMOs. GGMOs-r were without significant difference on both processes, compared with GGMOs. GGMOs affected not only the adventitious root length but also their anatomy in dependence on the combination with certain type of auxin. The oligosaccharides influenced cortical cells division, which was reflected in the cortex area and in the root diameter. All processes followed were dependent on oligosaccharides chemical structure. The results suggest also that GGM-derived oligosaccharides may play an important role in adventitious roots elongation but not in their formation.

  10. Calcium and Calmodulin Are Involved in Nitric Oxide-Induced Adventitious Rooting of Cucumber under Simulated Osmotic Stress.

    Science.gov (United States)

    Niu, Lijuan; Yu, Jian; Liao, Weibiao; Yu, Jihua; Zhang, Meiling; Dawuda, Mohammed M

    2017-01-01

    Osmotic stress is a major form of abiotic stress that adversely affects growth and development of plants and subsequently reduces yield and quality of crops. In this study, the effect of nitric oxide (NO) and calcium (Ca 2+ ) on the process of adventitious rooting in cucumber ( Cucumis sativus L.) under simulated osmotic stress was investigated. The results revealed that the effect of exogenous NO and Ca 2+ in promoting the development of adventitious roots in cucumber seedlings under simulated osmotic stress was dose-dependent, with a maximal biological response at 10 μM NO donor nitroprusside (SNP) or 200 μM Ca 2+ . The application of Ca 2+ chelators or channel inhibitors and calmodulin (CaM) antagonists significantly reversed NO-induced adventitious rooting, implying that endogenous Ca 2+ /CaM might be involved in NO-induced adventitious rooting under osmotic stress. Moreover, intracellular Ca amount was also increased by NO in cucumber hypocotyls during the development of adventitious roots under osmotic stress. This increase of endogenous Ca 2+ was inhibited by NO specific scavenger 2-(4-carboxyphenyl) -4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt (cPTIO), nitrate reductase inhibitors tungstate (Na 2 WO 4 ) and sodium azide (NaN 3 ) . This gives an indication that Ca 2+ might be a downstream signaling molecule in the adventitious root development by NO under osmotic condition. The results also show that NO or Ca 2+ play a positive role in improving plant water status and photosynthetic system by increasing chlorophyll content and photochemical activity in leaves. Furthermore, NO and Ca 2+ treatment might alleviate the negative effects of osmotic stress by decreasing membrane damage and reactive oxygen species (ROS) production by enhancing the activities of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX). Therefore, Ca 2+ /CaM may act as a downstream signaling molecule in NO-induced development of adventitious root

  11. Optimization of adventitious root culture for production of biomass and secondary metabolites in Prunella vulgaris L.

    Science.gov (United States)

    Fazal, Hina; Abbasi, Bilal Haider; Ahmad, Nisar

    2014-11-01

    Adventitious root cultures of Prunella vulgaris L. were established in shaking flask system for the production of biomass and secondary metabolites. Adventitious root cultures were induced from callus cultures obtained from leaf explants on solid Murashige and Skoog (MS) medium containing combination of 6-benzyladenine (BA; 1.0 mg l(-1)) and naphthalene acetic acid (NAA; 1.5 mg l(-1)). Thereafter, 0.49 g inoculum was transferred to liquid MS medium supplemented with different concentrations of NAA (0.5-2.0 mg l(-1)). Growth kinetics of adventitious roots was recorded with an interval of 7 days for 49 days period. Highest biomass accumulation (2.13 g/l) was observed in liquid medium containing 1.0 mg l(-1) NAA after 21 days of inoculation. However, other concentrations of NAA also showed similar accumulation pattern but the biomass gradually decreases after 49 days of inoculation. Adventitious roots were collected and dried for investigation of total phenolics (TP), total flavonoids (TF), and antioxidant activities. Higher TPC (0.995 GAE mg/g-DRB) and TFC (6.615 RE mg/g-DRB) were observed in 0.5 mg l(-1) NAA treated cultures. In contrast, higher antioxidant activity (83.53 %) was observed 1.5 mg l(-1) NAA treated cultures. These results are helpful in up scaling of root cultures into bioreactor for secondary metabolites production.

  12. Jasmonates act positively in adventitious root formation in petunia cuttings

    OpenAIRE

    Lischweski, Sandra; Muchow, Anne; Guthörl, Daniela; Hause, Bettina

    2015-01-01

    Background Petunia is a model to study the process of adventitious root (AR) formation on leafy cuttings. Excision of cuttings leads to a transient increase in jasmonates, which is regarded as an early, transient and critical event for rooting. Here, the role of jasmonates in AR formation on petunia cuttings has been studied by a reverse genetic approach. Results To reduce the endogenous levels of jasmonates, transgenic plants were generated expressing a Petunia hybrida ALLENE OXIDE CYCLASE (...

  13. Adventitious rooting declines with the vegetative to reproductive switch and involves a changed auxin homeostasis.

    Science.gov (United States)

    Rasmussen, Amanda; Hosseini, Seyed Abdollah; Hajirezaei, Mohammed-Reza; Druege, Uwe; Geelen, Danny

    2015-03-01

    Adventitious rooting, whereby roots form from non-root tissues, is critical to the forestry and horticultural industries that depend on propagating plants from cuttings. A major problem is that age of the tissue affects the ability of the cutting to form adventitious roots. Here, a model system has been developed using Pisum sativum to differentiate between different interpretations of ageing. It is shown that the decline in adventitious rooting is linked to the ontogenetic switch from vegetative to floral and is mainly attributed to the cutting base. Using rms mutants it is demonstrated that the decline is not a result of increased strigolactones inhibiting adventitious root formation. Monitoring endogenous levels of a range of other hormones including a range of cytokinins in the rooting zone revealed that a peak in jasmonic acid is delayed in cuttings from floral plants. Additionally, there is an early peak in indole-3-acetic acid levels 6h post excision in cuttings from vegetative plants, which is absent in cuttings from floral plants. These results were confirmed using DR5:GUS expression. Exogenous supplementation of young cuttings with either jasmonic acid or indole-3-acetic acid promoted adventitious rooting, but neither of these hormones was able to promote adventitious rooting in mature cuttings. DR5:GUS expression was observed to increase in juvenile cuttings with increasing auxin treatment but not in the mature cuttings. Therefore, it seems the vegetative to floral ontogenetic switch involves an alteration in the tissue's auxin homeostasis that significantly reduces the indole-3-acetic acid pool and ultimately results in a decline in adventitious root formation. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  14. Enhanced Conjugation of Auxin by GH3 Enzymes Leads to Poor Adventitious Rooting in Carnation Stem Cuttings.

    Science.gov (United States)

    Cano, Antonio; Sánchez-García, Ana Belén; Albacete, Alfonso; González-Bayón, Rebeca; Justamante, María Salud; Ibáñez, Sergio; Acosta, Manuel; Pérez-Pérez, José Manuel

    2018-01-01

    Commercial carnation ( Dianthus caryophyllus ) cultivars are vegetatively propagated from axillary stem cuttings through adventitious rooting; a process which is affected by complex interactions between nutrient and hormone levels and is strongly genotype-dependent. To deepen our understanding of the regulatory events controlling this process, we performed a comparative study of adventitious root (AR) formation in two carnation cultivars with contrasting rooting performance, "2101-02 MFR" and "2003 R 8", as well as in the reference cultivar "Master". We provided molecular evidence that localized auxin response in the stem cutting base was required for efficient adventitious rooting in this species, which was dynamically established by polar auxin transport from the leaves. In turn, the bad-rooting behavior of the "2003 R 8" cultivar was correlated with enhanced synthesis of indole-3-acetic acid conjugated to aspartic acid by GH3 proteins in the stem cutting base. Treatment of stem cuttings with a competitive inhibitor of GH3 enzyme activity significantly improved rooting of "2003 R 8". Our results allowed us to propose a working model where endogenous auxin homeostasis regulated by GH3 proteins accounts for the cultivar dependency of AR formation in carnation stem cuttings.

  15. The role of strigolactones in photomorphogenesis of pea is limited to adventitious rooting.

    Science.gov (United States)

    Urquhart, Shelley; Foo, Eloise; Reid, James B

    2015-03-01

    The recently discovered group of plant hormones, the strigolactones, have been implicated in regulating photomorphogenesis. We examined this extensively in our strigolactone synthesis and response mutants and could find no evidence to support a major role for strigolactone signaling in classic seedling photomorphogenesis (e.g. elongation and leaf expansion) in pea (Pisum sativum), consistent with two recent independent reports in Arabidopsis. However, we did find a novel effect of strigolactones on adventitious rooting in darkness. Strigolactone-deficient mutants, Psccd8 and Psccd7, produced significantly fewer adventitious roots than comparable wild-type seedlings when grown in the dark, but not when grown in the light. This observation in dark-grown plants did not appear to be due to indirect effects of other factors (e.g. humidity) as the constitutively de-etiolated mutant, lip1, also displayed reduced rooting in the dark. This role for strigolactones did not involve the MAX2 F-Box strigolactone response pathway as Psmax2 f-box mutants did not show a reduction in adventitious rooting in the dark compared with wild-type plants. The auxin-deficient mutant bushy also reduced adventitious rooting in the dark, as did decapitation of wild-type plants. Rooting was restored by the application of indole-3-acetic acid (IAA) to decapitated plants, suggesting a role for auxin in the rooting response. However, auxin measurements showed no accumulation of IAA in the epicotyls of wild-type plants compared with the strigolactone synthesis mutant Psccd8, suggesting that changes in the gross auxin level in the epicotyl are not mediating this response to strigolactone deficiency. © 2014 Scandinavian Plant Physiology Society.

  16. Effects of free-air CO2 enrichment on adventitious root development of rice under low and normal soil nitrogen levels

    Directory of Open Access Journals (Sweden)

    Chengming Sun

    2014-08-01

    Full Text Available Free air CO2 enrichment (FACE and nitrogen (N have marked effects on rice root growth, and numerical simulation can explain these effects. To further define the effects of FACE on root growth of rice, an experiment was performed, using the hybrid indica cultivar Xianyou 63. The effects of increasing atmospheric CO2 concentration [CO2], 200 μmol mol− 1 higher than ambient, on the growth of rice adventitious roots were evaluated, with two levels of N: low (LN, 125 kg ha− 1 and normal (NN, 250 kg ha− 1. The results showed a significant increase in both adventitious root number (ARN and adventitious root length (ARL under FACE treatment. The application of nitrogen also increased ARN and ARL, but these increases were smaller than that under FACE treatment. On the basis of the FACE experiment, numerical models for rice adventitious root number and length were constructed with time as the driving factor. The models illustrated the dynamic development of rice adventitious root number and length after transplanting, regulated either by atmospheric [CO2] or by N application. The simulation result was supported by statistical tests comparing experimental data from different years, and the model yields realistic predictions of root growth. These results suggest that the models have strong predictive potential under conditions of atmospheric [CO2] rises in the future.

  17. [Effects of elicitors on growth of adventitious roots and contents of secondary metabolites in Tripterygium wilfordii Hook. f].

    Science.gov (United States)

    Li, Yan; Zhao, Lei; Cui, Lei; Lei, Jiamin; Zhang, Xing

    2015-05-01

    To study the effects of the extract of fungal elicitor, AgNO3, MeJA and yeast on the growth and content of secondary metabolites of adventitious roots in Tripterygium wilfordii. The above elicitors were supplemented to the medium, the growth and the content of secondary metabolites were measured. When the medium was supplemented with the elicitor Glomerella cingulata or Collectotrichum gloeosporioides, the content of triptolide was increased by 2.24 and 1.93-fold, the alkaloids content was increased by 2.02 and 2.07-fold, respectively. The optimal concentration of G. cingulata was 50 μg/mL for accumulation of triptolide, alkaloids and for the growth of adventitious roots. AgNO3 inhibited the growth of adventitious roots and the accumulation of the alkaloids, whereas it (at 25 μmol/L) increased the accumulation of triptolide by 1.71-fold compared to the control. The growth of adventitious roots, the contents of triptolide and alkaloids were increased 1.04, 1.64 and 2.12-folds, respectively when MeJA was at 50 μmol/L. When the concentration of yeast reached 2 g/L, the content of triptolide increased 1.48-folds. This research demonstrated that supplementation of AgNO3 and yeast enhanced the biosynthesis of triptolide in adventitious roots and the synergism of G. cingulata and MeJA could promote the biosynthesis of both triptolide and alkaloids.

  18. Enhanced Conjugation of Auxin by GH3 Enzymes Leads to Poor Adventitious Rooting in Carnation Stem Cuttings

    Directory of Open Access Journals (Sweden)

    Antonio Cano

    2018-04-01

    Full Text Available Commercial carnation (Dianthus caryophyllus cultivars are vegetatively propagated from axillary stem cuttings through adventitious rooting; a process which is affected by complex interactions between nutrient and hormone levels and is strongly genotype-dependent. To deepen our understanding of the regulatory events controlling this process, we performed a comparative study of adventitious root (AR formation in two carnation cultivars with contrasting rooting performance, “2101–02 MFR” and “2003 R 8”, as well as in the reference cultivar “Master”. We provided molecular evidence that localized auxin response in the stem cutting base was required for efficient adventitious rooting in this species, which was dynamically established by polar auxin transport from the leaves. In turn, the bad-rooting behavior of the “2003 R 8” cultivar was correlated with enhanced synthesis of indole-3-acetic acid conjugated to aspartic acid by GH3 proteins in the stem cutting base. Treatment of stem cuttings with a competitive inhibitor of GH3 enzyme activity significantly improved rooting of “2003 R 8”. Our results allowed us to propose a working model where endogenous auxin homeostasis regulated by GH3 proteins accounts for the cultivar dependency of AR formation in carnation stem cuttings.

  19. Influence of light and shoot development stage on leaf photosynthesis and carbohydrate status during the adventitious root formation in cuttings of Corylus avellana L.

    Directory of Open Access Journals (Sweden)

    Sergio eTombesi

    2015-11-01

    Full Text Available Adventitious root formation in plant cuttings is influenced by many endogenous and environmental factors. Leaf photosynthesis during rooting of leafy cuttings in hard to root species can contribute to supply carbohydrates to the intensive metabolic processes related to adventious root formation. Light intensity during rooting is artificially kept low to decrease potential cutting desiccation, but can be limiting for photosynthetic activity. Furthermore, leafy cuttings collected from different part of the shoot can have a different ability to fuel adventitious root formation in cutting stem. The aim of this work was to determine the role of leaf photosynthesis on adventitious root formation in hazelnut (Corylus avellana L (a hard-to-root specie leafy cuttings and to investigate the possible influence of the shoot developmental stage on cutting rooting and survival in the post-rooting phase. Cutting rooting was closely related to carbohydrate content in cutting stems during the rooting process. Cutting carbohydrate status was positively influenced by leaf photosynthesis during rooting. Non saturating light exposure of leafy cuttings can contribute to improve photosynthetic activity of leafy cuttings. Collection of cuttings from different part of the mother shoots influenced rooting percentage and this appear related to the different capability to concentrate soluble sugars in the cutting stem during rooting. Adventitious root formation depend on the carbohydrate accumulation at the base of the cutting. Mother shoot developmental stage and leaf photosynthesis appear pivotal factors for adventitious roots formation.

  20. Early steps of adventitious rooting: morphology, hormonal profiling and carbohydrate turnover in carnation stem cuttings.

    Science.gov (United States)

    Agulló-Antón, María Ángeles; Ferrández-Ayela, Almudena; Fernández-García, Nieves; Nicolás, Carlos; Albacete, Alfonso; Pérez-Alfocea, Francisco; Sánchez-Bravo, José; Pérez-Pérez, José Manuel; Acosta, Manuel

    2014-03-01

    The rooting of stem cuttings is a common vegetative propagation practice in many ornamental species. A detailed analysis of the morphological changes occurring in the basal region of cultivated carnation cuttings during the early stages of adventitious rooting was carried out and the physiological modifications induced by exogenous auxin application were studied. To this end, the endogenous concentrations of five major classes of plant hormones [auxin, cytokinin (CK), abscisic acid, salicylic acid (SA) and jasmonic acid] and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid were analyzed at the base of stem cuttings and at different stages of adventitious root formation. We found that the stimulus triggering the initiation of adventitious root formation occurred during the first hours after their excision from the donor plant, due to the breakdown of the vascular continuum that induces auxin accumulation near the wounding. Although this stimulus was independent of exogenously applied auxin, it was observed that the auxin treatment accelerated cell division in the cambium and increased the sucrolytic activities at the base of the stem, both of which contributed to the establishment of the new root primordia at the stem base. Further, several genes involved in auxin transport were upregulated in the stem base either with or without auxin application, while endogenous CK and SA concentrations were specially affected by exogenous auxin application. Taken together our results indicate significant crosstalk between auxin levels, stress hormone homeostasis and sugar availability in the base of the stem cuttings in carnation during the initial steps of adventitious rooting. © 2013 Scandinavian Plant Physiology Society.

  1. Root Formation in Ethylene-Insensitive Plants1

    Science.gov (United States)

    Clark, David G.; Gubrium, Erika K.; Barrett, James E.; Nell, Terril A.; Klee, Harry J.

    1999-01-01

    Experiments with ethylene-insensitive tomato (Lycopersicon esculentum) and petunia (Petunia × hybrida) plants were conducted to determine if normal or adventitious root formation is affected by ethylene insensitivity. Ethylene-insensitive Never ripe (NR) tomato plants produced more belowground root mass but fewer aboveground adventitious roots than wild-type Pearson plants. Applied auxin (indole-3-butyric acid) increased adventitious root formation on vegetative stem cuttings of wild-type plants but had little or no effect on rooting of NR plants. Reduced adventitious root formation was also observed in ethylene-insensitive transgenic petunia plants. Applied 1-aminocyclopropane-1-carboxylic acid increased adventitious root formation on vegetative stem cuttings from NR and wild-type plants, but NR cuttings produced fewer adventitious roots than wild-type cuttings. These data suggest that the promotive effect of auxin on adventitious rooting is influenced by ethylene responsiveness. Seedling root growth of tomato in response to mechanical impedance was also influenced by ethylene sensitivity. Ninety-six percent of wild-type seedlings germinated and grown on sand for 7 d grew normal roots into the medium, whereas 47% of NR seedlings displayed elongated taproots, shortened hypocotyls, and did not penetrate the medium. These data indicate that ethylene has a critical role in various responses of roots to environmental stimuli. PMID:10482660

  2. Comparative evaluation of oxidative enzyme activities during adventitious rooting in the cuttings of grapevine rootstocks.

    Science.gov (United States)

    Kose, Cafer; Erdal, Serkan; Kaya, Ozkan; Atici, Okkeş

    2011-03-15

    This study investigated changes in peroxidase (POX) and polyphenol oxidase (PPO) activities through adventitious rooting in hardwood cuttings of grapevine rootstocks. Three grapevine rootstocks with different propensity to produce adventitious roots were selected: recalcitrant (Ramsey), non-recalcitrant (Rupestris du Lot) and intermediate (99R) cultivars. The averages of root number at 65 days were 96 in Lot, 76 in 99R and 30 in Ramsey. Both enzyme activities characteristically increased before adventitious rooting, regardless of rooting ability of the rootstocks, and then decreased. POX activity increased in Ramsey cuttings at 22 days, in Lot and 99R cuttings at 14 days after planting, and then decreased gradually until 51 days. The highest POX activity was determined in Ramsey rootstock with the highest rooting ability and the lowest activity was determined in the rootstocks with the lowest rooting ability. PPO activity gradually increased in Ramsey rootstock cuttings from 10 days to 22 days, in Lot and 99R cuttings at 14 days, and then decreased until 51 days. A significant correlation was identified between high POX activity and adventitious rooting capability in rootstocks, but the same result was not determined with PPO activity. A recalcitrant rooting variety cannot increase POX activity sufficiently before rooting. Therefore applications that could increase POX activity in stem cuttings during rooting may facilitate increased rooting in such rootstocks. Copyright © 2011 Society of Chemical Industry.

  3. Chemical characterization and prebiotic activity of fructo-oligosaccharides from Stevia rebaudiana (Bertoni) roots and in vitro adventitious root cultures.

    Science.gov (United States)

    Sanches Lopes, Sheila Mara; Francisco, Mariane Grigio; Higashi, Bruna; de Almeida, Rafaela Takako Ribeiro; Krausová, Gabriela; Pilau, Eduardo Jorge; Gonçalves, José Eduardo; Gonçalves, Regina Aparecida Correia; Oliveira, Arildo José Braz de

    2016-11-05

    Stevia rebaudiana (Bertoni) is widely studied because of its foliar steviol glycosides. Fructan-type polysaccharides were recently isolated from its roots. Fructans are reserve carbohydrates that have important positive health effects and technological applications in the food industry. The objective of the present study was to isolate and characterize fructo-oligosaccharides (FOSs) from S. rebaudiana roots and in vitro adventitious root cultures and evaluate the potential prebiotic effect of these molecules. The in vitro adventitious root cultures were obtained using a roller bottle system. Chemical analyses (gas chromatography-mass spectrometry, (1)H nuclear magnetic resonance, and off-line electrospray ionization-mass spectrometry) revealed similar chemical properties of FOSs that were obtained from the different sources. The potential prebiotic effects of FOSs that were isolated from S. rebaudiana roots enhanced the growth of both bifidobacteria and lactobacilli, with strains specificity in their fermentation ability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Effect of ABT + S3307 on sugar metabolism and adventitious root in cuttings of Dendrocalamus spp

    International Nuclear Information System (INIS)

    Shao Ling; Liang Guangjian; Li Ling

    2003-01-01

    Application of ABT + S3307 to the cuttings of Dendrocalamus spp. promoted the sucrase activity. The contents of sucrose and starch in the cuttings based and the first node were decreased. Compared with the control, the content of reducing sugar was increased obviously in the cutting based. The transportation of 3 H-glucose from labeled site to the base in treated cuttings was increased with the adventitious root formation. At the same time, the contents of structural substance in the cuttings based and the adventitious root were raised. The high content of carbohydrate and reducing activity in the adventitious root were available for growth of the roots

  5. Proliferation and ajmalicine biosynthesis of Catharanthus roseus (L). G. Don adventitious roots in self-built temporary immersion system

    Science.gov (United States)

    Phuc, Vo Thanh; Trung, Nguyen Minh; Thien, Huynh Tri; Tien, Le Thi Thuy

    2017-09-01

    Periwinkle (Catharanthus roseus (L.) G. Don) is a medicinal plant containing about 130 types of alkaloids that have important pharmacological effects. Ajmalicine in periwinkle root is an antihypertensive drug used in treatment of high blood pressure. Adventitious roots obtained from periwinkle leaves of in vitro shoots grew well in quarter-strength MS medium supplemented with 0.3 mg/l IBA and 20 g/l sucrose. Dark condition was more suitable for root growth than light. However, callus formation also took place in addition to the growth of adventitious roots. Temporary immersion system was applied in the culture of adventitious roots in order to reduce the callus growth rate formed in shake flask cultures. The highest growth index of roots was achieved using the system with 5-min immersion every 45 min (1.676 ± 0.041). The roots cultured in this system grew well without callus formation. Ajmalicine content was highest in the roots cultured with 5-min immersion every 180 min (950 μg/g dry weight).

  6. The effects of pruning and nodal adventitious roots on polychlorinated biphenyl uptake by Cucurbita pepo grown in field conditions

    Energy Technology Data Exchange (ETDEWEB)

    Low, Jennifer E.; Whitfield Aslund, Melissa L. [Department of Chemistry and Chemical Engineering, Royal Military College of Canada, PO Box 17000 Station Forces, Kingston, ON, K7K 7B4 (Canada); Rutter, Allison [School of Environmental Studies, Rm 0626 Biosciences Complex, Queen' s University, 116 Barrie St., Kingston, ON, K7L 3N6 (Canada); Zeeb, Barbara A., E-mail: zeeb-b@rmc.ca [Department of Chemistry and Chemical Engineering, Royal Military College of Canada, PO Box 17000 Station Forces, Kingston, ON, K7K 7B4 (Canada)

    2011-03-15

    Two cultivation techniques (i-pruning and ii-nodal adventitious root encouragement) were investigated for their ability to increase PCB phytoextraction by Cucurbita pepo ssp pepo cv. Howden (pumpkin) plants in situ at a contaminated industrial site in Ontario (Aroclor 1248, mean soil [PCB] = 5.6 {mu}g g{sup -1}). Pruning was implemented to increase plant biomass close to the root where PCB concentration is known to be highest. This treatment was found to have no effect on final shoot biomass or PCB concentration. However, material pruned from the plant is not included in the final shoot biomass. The encouragement of nodal adventitious roots at stem nodes did significantly increase the PCB concentration in the primary stem, while not affecting shoot biomass. Both techniques are easily applied cultivation practices that may be implemented to decrease phytoextraction treatment time. - Research highlights: > Presence of nodal adventitious roots do increase phytoextraction efficiency. > Pruning may increase the biomass of pumpkin plants during phytoextraction. > [Aroclor 1248] decreases in plant tissue with increasing distance from the root. - The application of cultivation practices (pruning and nodal adventitious root encouragement) increases phytoextraction of PCBs in C. pepo.

  7. The effects of pruning and nodal adventitious roots on polychlorinated biphenyl uptake by Cucurbita pepo grown in field conditions

    International Nuclear Information System (INIS)

    Low, Jennifer E.; Whitfield Aslund, Melissa L.; Rutter, Allison; Zeeb, Barbara A.

    2011-01-01

    Two cultivation techniques (i-pruning and ii-nodal adventitious root encouragement) were investigated for their ability to increase PCB phytoextraction by Cucurbita pepo ssp pepo cv. Howden (pumpkin) plants in situ at a contaminated industrial site in Ontario (Aroclor 1248, mean soil [PCB] = 5.6 μg g -1 ). Pruning was implemented to increase plant biomass close to the root where PCB concentration is known to be highest. This treatment was found to have no effect on final shoot biomass or PCB concentration. However, material pruned from the plant is not included in the final shoot biomass. The encouragement of nodal adventitious roots at stem nodes did significantly increase the PCB concentration in the primary stem, while not affecting shoot biomass. Both techniques are easily applied cultivation practices that may be implemented to decrease phytoextraction treatment time. - Research highlights: → Presence of nodal adventitious roots do increase phytoextraction efficiency. → Pruning may increase the biomass of pumpkin plants during phytoextraction. → [Aroclor 1248] decreases in plant tissue with increasing distance from the root. - The application of cultivation practices (pruning and nodal adventitious root encouragement) increases phytoextraction of PCBs in C. pepo.

  8. Nitric oxide mediates the indole acetic acid induction activation of a mitogen-activated protein kinase cascade involved in adventitious root development.

    Science.gov (United States)

    Pagnussat, Gabriela Carolina; Lanteri, María Luciana; Lombardo, María Cristina; Lamattina, Lorenzo

    2004-05-01

    Recently, it was demonstrated that nitric oxide (NO) and cGMP are involved in the auxin response during the adventitious rooting process in cucumber (Cucumis sativus; Pagnussat et al., 2002, 2003). However, not much is known about the complex molecular network operating during the cell proliferation and morphogenesis triggered by auxins and NO in that process. Anatomical studies showed that formation of adventitious root primordia was clearly detected in indole acetic acid (IAA)- and NO-treated cucumber explants, while neither cell proliferation nor differentiation into root primordia could be observed in control explants 3 d after primary root was removed. In order to go further with signal transduction mechanisms that operate during IAA- and NO-induced adventitious root formation, experiments were designed to test the involvement of a mitogen-activated protein kinase (MAPK) cascade in that process. Cucumber explants were treated with the NO-donor sodium nitroprusside (SNP) or with SNP plus the specific NO-scavenger cPTIO. Protein extracts from those explants were assayed for protein kinase (PK) activity by using myelin basic protein (MBP) as substrate in both in vitro and in-gel assays. The activation of a PK of approximately 48 kD could be detected 1 d after NO treatment with a maximal activation after 3 d of treatment. In control explants, a PK activity was detected only after 4 d of treatment. The MBP-kinase activity was also detected in extracts from IAA-treated explants, while no signal was observed in IAA + cPTIO treatments. The PK activity could be inhibited by the cell-permeable MAPK kinase inhibitor PD098059, suggesting that the NO-dependent MBP-kinase activity is a MAPK. Furthermore, when PD098059 was administered to explants treated with SNP or IAA, it produced a delay in root emergence and a dose-dependent reduction in root number. Altogether, our results suggest that a MAPK signaling cascade is activated during the adventitious rooting process

  9. Life cycle stage and water depth affect flooding-induced adventitious root formation in the terrestrial species Solanum dulcamara.

    Science.gov (United States)

    Zhang, Qian; Visser, Eric J W; de Kroon, Hans; Huber, Heidrun

    2015-08-01

    Flooding can occur at any stage of the life cycle of a plant, but often adaptive responses of plants are only studied at a single developmental stage. It may be anticipated that juvenile plants may respond differently from mature plants, as the amount of stored resources may differ and morphological changes can be constrained. Moreover, different water depths may require different strategies to cope with the flooding stress, the expression of which may also depend on developmental stage. This study investigated whether flooding-induced adventitious root formation and plant growth were affected by flooding depth in Solanum dulcamara plants at different developmental stages. Juvenile plants without pre-formed adventitious root primordia and mature plants with primordia were subjected to shallow flooding or deep flooding for 5 weeks. Plant growth and the timing of adventitious root formation were monitored during the flooding treatments. Adventitious root formation in response to shallow flooding was significantly constrained in juvenile S. dulcamara plants compared with mature plants, and was delayed by deep flooding compared with shallow flooding. Complete submergence suppressed adventitious root formation until up to 2 weeks after shoots restored contact with the atmosphere. Independent of developmental stage, a strong positive correlation was found between adventitious root formation and total biomass accumulation during shallow flooding. The potential to deploy an escape strategy (i.e. adventitious root formation) may change throughout a plant's life cycle, and is largely dependent on flooding depth. Adaptive responses at a given stage of the life cycle thus do not necessarily predict how the plant responds to flooding in another growth stage. As variation in adventitious root formation also correlates with finally attained biomass, this variation may form the basis for variation in resistance to shallow flooding among plants. © The Author 2015. Published by

  10. Transcriptomic analysis reveals the gene expression profile that specifically responds to IBA during adventitious rooting in mung bean seedlings.

    Science.gov (United States)

    Li, Shi-Weng; Shi, Rui-Fang; Leng, Yan; Zhou, Yuan

    2016-01-12

    Auxin plays a critical role in inducing adventitious rooting in many plants. Indole-3-butyric acid (IBA) is the most widely employed auxin for adventitious rooting. However, the molecular mechanisms by which auxin regulate the process of adventitious rooting are less well known. The RNA-Seq data analysis indicated that IBA treatment greatly increased the amount of clean reads and the amount of expressed unigenes by 24.29 % and 27.42 % and by 4.3 % and 5.04 % at two time points, respectively, and significantly increased the numbers of unigenes numbered with RPKM = 10-100 and RPKM = 500-1000 by 13.04 % and 3.12 % and by 24.66 % and 108.2 % at two time points, respectively. Gene Ontology (GO) enrichment analysis indicated that the enrichment of down-regulated GOs was 2.87-fold higher than that of up-regulated GOs at stage 1, suggesting that IBA significantly down-regulated gene expression at 6 h. The GO functional category indicated that IBA significantly up- or down-regulated processes associated with auxin signaling, ribosome assembly and protein synthesis, photosynthesis, oxidoreductase activity and extracellular region, secondary cell wall biogenesis, and the cell wall during the development process. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment indicated that ribosome biogenesis, plant hormone signal transduction, pentose and glucuronate interconversions, photosynthesis, phenylpropanoid biosynthesis, sesquiterpenoid and triterpenoid biosynthesis, ribosome, cutin, flavonoid biosynthesis, and phenylalanine metabolism were the pathways most highly regulated by IBA. A total of 6369 differentially expressed (2-fold change > 2) unigenes (DEGs) with 3693 (58 %) that were up-regulated and 2676 (42 %) down-regulated, 5433 unigenes with 2208 (40.6 %) that were up-regulated and 3225 (59.4 %) down-regulated, and 7664 unigenes with 3187 (41.6 %) that were up-regulated and 4477 (58.4 %) down-regulated were detected at stage 1

  11. Genetic linkage map and QTL identification for adventitious rooting traits in red gum eucalypts.

    Science.gov (United States)

    Sumathi, Murugan; Bachpai, Vijaya Kumar Waman; Mayavel, A; Dasgupta, Modhumita Ghosh; Nagarajan, Binai; Rajasugunasekar, D; Sivakumar, Veerasamy; Yasodha, Ramasamy

    2018-05-01

    The eucalypt species, Eucalyptus tereticornis and Eucalyptus camaldulensis , show tolerance to drought and salinity conditions, respectively, and are widely cultivated in arid and semiarid regions of tropical countries. In this study, genetic linkage map was developed for interspecific cross E. tereticornis  ×  E. camaldulensis using pseudo-testcross strategy with simple sequence repeats (SSRs), intersimple sequence repeats (ISSRs), and sequence-related amplified polymorphism (SRAP) markers. The consensus genetic map comprised totally 283 markers with 84 SSRs, 94 ISSRs, and 105 SRAP markers on 11 linkage groups spanning 1163.4 cM genetic distance. Blasting the SSR sequences against E. grandis sequences allowed an alignment of 64% and the average ratio of genetic-to-physical distance was 1.7 Mbp/cM, which strengths the evidence that high amount of synteny and colinearity exists among eucalypts genome. Blast searches also revealed that 37% of SSRs had homologies with genes, which could potentially be used in the variety of downstream applications including candidate gene polymorphism. Quantitative trait loci (QTL) analysis for adventitious rooting traits revealed six QTL for rooting percent and root length on five chromosomes with interval and composite interval mapping. All the QTL explained 12.0-14.7% of the phenotypic variance, showing the involvement of major effect QTL on adventitious rooting traits. Increasing the density of markers would facilitate the detection of more number of small-effect QTL and also underpinning the genes involved in rooting process.

  12. Indole-3-butyric acid mediates antioxidative defense systems to promote adventitious rooting in mung bean seedlings under cadmium and drought stresses.

    Science.gov (United States)

    Li, Shi-Weng; Zeng, Xiao-Ying; Leng, Yan; Feng, Lin; Kang, Xiao-Hu

    2018-06-08

    In vitro experiments were performed to determine whether auxin can mediate the formation of adventitious roots in response to heavy metal and drought stresses using a model rooting plant, mung bean [Vigna radiata (L.) Wilczek]. The treatments with CdCl 2 or mannitol alone significantly inhibited the formation and growth of adventitious roots in mung bean seedlings. In contrast, when CdCl 2 or mannitol was applied together with indole-3-butyric acid (IBA), IBA considerably cancelled the inhibition of adventitious rooting by stresses. Treatment with CdCl 2 or mannitol alone significantly increased the soluble protein and malondialdehyde (MDA) contents. CdCl 2 and mannitol stress each induced differentially significant changes in the activities of antioxidative enzyme and antioxidant levels during adventitious rooting. Notably, both CdCl 2 and mannitol stress strongly reduced the peroxidase (POD) and ascorbate peroxidase (APX) activities and glutathione (GSH) and phenols levels. Catalase and superoxide dismutase (SOD) activity were enhanced by CdCl 2 but reduced by mannitol. CdCl 2 increased the ascorbate acid (ASA) level, which was decreased by mannitol. Furthermore, when CdCl 2 or mannitol was applied together with IBA, IBA counteracted the CdCl 2 - or mannitol-induced increase or decrease in certain antioxidants, MDA, and antioxidative enzymes. These results suggest that Cd and mannitol stress inhibition of adventitious rooting is associated with the regulation of antioxidative enzymes and antioxidants in cells to defense the oxidative stress. Moreover, IBA alleviates the effects of Cd and mannitol stress on the rooting process partially through the regulation of antioxidative defense systems. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Formation of adventitious roots on green leaf cuttings of Phaseolus vulgaris L.

    NARCIS (Netherlands)

    Oppenoorth, Johanna Margriet

    1980-01-01

    n this thesis the development of adventitious roots on green leaf cuttings of Phaseolus vulgaris L. is studies. The use of green leaf cuttings has the advantage that the leaf blade provides the developing roots inthe petiole with all the nutrients required, a disadvantage is that the composition of

  14. Plant Hormone Homeostasis, Signaling, and Function during Adventitious Root Formation in Cuttings

    OpenAIRE

    Druege, Uwe; Franken, Philipp; Hajirezaei, Mohammad R.

    2016-01-01

    Adventitious root (AR) formation in cuttings is a multiphase developmental process, resulting from wounding at the cutting site and isolation from the resource and signal network of the whole plant. Though, promotive effects of auxins are widely used for clonal plant propagation, the regulation and function of plant hormones and their intricate signaling networks during AR formation in cuttings are poorly understood. In this focused review, we discuss our recent publications on the involvemen...

  15. A dsRNA-binding protein MdDRB1 associated with miRNA biogenesis modifies adventitious rooting and tree architecture in apple.

    Science.gov (United States)

    You, Chun-Xiang; Zhao, Qiang; Wang, Xiao-Fei; Xie, Xing-Bin; Feng, Xiao-Ming; Zhao, Ling-Ling; Shu, Huai-Rui; Hao, Yu-Jin

    2014-02-01

    Although numerous miRNAs have been already isolated from fruit trees, knowledge about miRNA biogenesis is largely unknown in fruit trees. Double-strand RNA-binding (DRB) protein plays an important role in miRNA processing and maturation; however, its role in the regulation of economically important traits is not clear yet in fruit trees. EST blast and RACE amplification were performed to isolate apple MdDRB1 gene. Following expression analysis, RNA binding and protein interaction assays, MdDRB1 was transformed into apple callus and in vitro tissue cultures to characterize the functions of MdDRB1 in miRNA biogenesis, adventitious rooting, leaf development and tree growth habit. MdDRB1 contained two highly conserved DRB domains. Its transcripts existed in all tissues tested and are induced by hormones. It bound to double-strand RNAs and interacted with AtDCL1 (Dicer-Like 1) and MdDCL1. Chip assay indicated its role in miRNA biogenesis. Transgenic analysis showed that MdDRB1 controls adventitious rooting, leaf curvature and tree architecture by modulating the accumulation of miRNAs and the transcript levels of miRNA target genes. Our results demonstrated that MdDRB1 functions in the miRNA biogenesis in a conserved way and that it is a master regulator in the formation of economically important traits in fruit trees. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  16. HPLC-ESI-MS(n) Analysis, Fed-Batch Cultivation Enhances Bioactive Compound Biosynthesis and Immune-Regulative Effect of Adventitious Roots in Pseudostellaria heterophylla.

    Science.gov (United States)

    Wang, Juan; Li, Jing; Li, Hongfa; Wu, Xiaolei; Gao, Wenyuan

    2015-09-01

    A electrospray ionization tandem mass spectrometry (ESI-MS(n)) analysis was performed in order to identify the active composition in Pseudostellaria heterophylla adventitious roots. Pseudostellarin A, C, D, and G were identified from P. heterophylla adventitious roots on the basis of LC-MS(n) analysis. The culture conditions of adventitious roots were optimized, and datasets were subjected to a partial least squares discriminant analysis (PLS-DA), in which the growth ratio and some compounds showed a positive correlation with an aeration volume of 0.3 vvm and inoculum density of 0.15 %. Fed-batch cultivation enhanced the contents of total saponin, polysaccharides, and specific oxygen uptaker rate (SOUR). The maximum dry root weight (4.728 g l(-1)) was achieved in the 3/4 Murashige and Skoog (MS) medium group. PLS-DA showed that polysaccharides contributed significantly to the clustering of different groups and showed a positive correlation in the MS medium group. The delayed-type hypersensitivity (DTH) reaction on the mice induced by 2,4-dinitrofluorobenzene (DNFB) was applied to compare the immunocompetence effects of adventitious roots (AR) with field native roots (NR) of P. heterophylla. As a result, AR possessed a similar immunoregulation function as NR.

  17. Transcriptomic profiling provides molecular insights into hydrogen peroxide-induced adventitious rooting in mung bean seedlings.

    Science.gov (United States)

    Li, Shi-Weng; Leng, Yan; Shi, Rui-Fang

    2017-02-17

    Hydrogen peroxide (H 2 O 2 ) has been known to function as a signalling molecule involved in the modulation of various physiological processes in plants. H 2 O 2 has been shown to act as a promoter during adventitious root formation in hypocotyl cuttings. In this study, RNA-Seq was performed to reveal the molecular mechanisms underlying H 2 O 2 -induced adventitious rooting. RNA-Seq data revealed that H 2 O 2 treatment greatly increased the numbers of clean reads and expressed genes and abundance of gene expression relative to the water treatment. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses indicated that a profound change in gene function occurred in the 6-h H 2 O 2 treatment and that H 2 O 2 mainly enhanced gene expression levels at the 6-h time point but reduced gene expression levels at the 24-h time point compared with the water treatment. In total, 4579 differentially expressed (2-fold change > 2) unigenes (DEGs), of which 78.3% were up-regulated and 21.7% were down-regulated; 3525 DEGs, of which 64.0% were up-regulated and 36.0% were down-regulated; and 7383 DEGs, of which 40.8% were up-regulated and 59.2% were down-regulated were selected in the 6-h, 24-h, and from 6- to 24-h treatments, respectively. The number of DEGs in the 6-h treatment was 29.9% higher than that in the 24-h treatment. The functions of the most highly regulated genes were associated with stress response, cell redox homeostasis and oxidative stress response, cell wall loosening and modification, metabolic processes, and transcription factors (TFs), as well as plant hormone signalling, including auxin, ethylene, cytokinin, gibberellin, and abscisic acid pathways. Notably, a large number of genes encoding for heat shock proteins (HSPs) and heat shock transcription factors (HSFs) were significantly up-regulated during H 2 O 2 treatments. Furthermore, real-time quantitative PCR (qRT-PCR) results showed that, during H 2 O 2 treatments

  18. High miR156 Expression Is Required for Auxin-Induced Adventitious Root Formation via MxSPL26 Independent of PINs and ARFs in Malus xiaojinensis

    Directory of Open Access Journals (Sweden)

    Xiaozhao Xu

    2017-06-01

    Full Text Available Adventitious root formation is essential for the vegetative propagation of perennial woody plants. During the juvenile-to-adult phase change mediated by the microRNA156 (miR156, the adventitious rooting ability decreases dramatically in many species, including apple rootstocks. However, the mechanism underlying how miR156 affects adventitious root formation is unclear. In the present study, we showed that in the presence of the synthetic auxin indole-3-butyric acid (IBA, semi-lignified leafy cuttings from juvenile phase (Mx-J and rejuvenated (Mx-R Malus xiaojinensis trees exhibited significantly higher expression of miR156, PIN-FORMED1 (PIN1, PIN10, and rootless concerning crown and seminal roots-like (RTCS-like genes, thus resulting in higher adventitious rooting ability than those from adult phase (Mx-A trees. However, the expression of SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE26 (SPL26 and some auxin response factor (ARF gene family members were substantially higher in Mx-A than in Mx-R cuttings. The expression of NbRTCS-like but not NbPINs and NbARFs varied with miR156 expression in tobacco (Nicotiana benthamiana plants transformed with 35S:MdMIR156a6 or 35S:MIM156 constructs. Overexpressing the miR156-resistant MxrSPL genes in tobacco confirmed the involvement of MxSPL20, MxSPL21&22, and MxSPL26 in adventitious root formation. Together, high expression of miR156 was necessary for auxin-induced adventitious root formation via MxSPL26, but independent of MxPINs and MxARFs expression in M. xiaojinensis leafy cuttings.

  19. Petunia as model for elucidating adventitious root formation and mycorrhizal symbiosis: at the nexus of physiology, genetics, microbiology and horticulture.

    Science.gov (United States)

    Druege, Uwe; Franken, Philipp

    2018-05-17

    Adventitious root formation in cuttings and establishment of arbuscular mycorrhizal symbiosis reflect the enormous plasticity of plants and are key factors in the efficient and sustainable clonal propagation and production of ornamental crops. Based on the high importance of Petunia hybrida for the European and US annual bedding plant markets and its suitability as a model for basic plant sciences, petunia has been established as an experimental system for elucidating the molecular and physiological processes underlying adventitious root formation and mycorrhizal symbiosis. In the present review, we introduce the tools of the Petunia model system. Then, we discuss findings regarding the hormonal and metabolic control of adventitious rooting in the context of diverse environmental factors as well as findings on the function of arbuscular mycorrhiza related to nutrient uptake and resistance to root pathogens. Considering the recent publication of the genomes of the parental species of P. hybrida and other tools available in the petunia scientific community, we will outline the quality of petunia as a model for future system-oriented analysis of root development and function in the context of environmental and genetic control, which are at the heart of modern horticulture. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Transcriptomic analysis reveals ethylene as stimulator and auxin as regulator of adventitious root formation in petunia cuttings

    OpenAIRE

    Druege, Uwe; Franken, Philipp; Lischewski, Sandra; Ahkami, Amir H.; Zerche, Siegfried; Hause, Bettina; Hajirezaei, Mohammad R.

    2014-01-01

    Adventitious root (AR) formation in the stem base of cuttings is the basis for propagation of many plant species and petunia is used as model to study this developmental process. Following AR formation from 2 to 192 hours after excision (hpe) of cuttings, transcriptome analysis by microarray revealed a change of the character of the rooting zone from stem base to root identity. The greatest shift in the number of differentially expressed genes was observed between 24 and 72 hpe, when the cate...

  1. Origin, timing, and gene expression profile of adventitious rooting in Arabidopsis hypocotyls and stems.

    Science.gov (United States)

    Welander, Margareta; Geier, Thomas; Smolka, Anders; Ahlman, Annelie; Fan, Jing; Zhu, Li-Hua

    2014-02-01

    Adventitious root (AR) formation is indispensable for vegetative propagation, but difficult to achieve in many crops. Understanding its molecular mechanisms is thus important for such species. Here we aimed at developing a rooting protocol for direct AR formation in stems, locating cellular AR origins in stems and exploring molecular differences underlying adventitious rooting in hypocotyls and stems. In-vitro-grown hypocotyls or stems of wild-type and transgenic ecotype Columbia (Col-0) of Arabidopsis thaliana were rooted on rooting media. Anatomy of AR formation, qRT-PCR of some rooting-related genes and in situ GUS expression were carried out during rooting from hypocotyls and stems. We developed a rooting protocol for AR formation in stems and traced back root origins in stems by anatomical and in situ expression studies. Unlike rooting in hypocotyls, rooting in stems was slower, and AR origins were mainly from lateral parenchyma of vascular bundles and neighboring starch sheath cells as well as, to a lesser extent, from phloem cap and xylem parenchyma. Transcript levels of GH3-3, LBD16, LBD29, and LRP1 in hypocotyls and stems were similar, but transcript accumulation was delayed in stems. In situ expression signals of DR5::GUS, LBD16::GUS, LBD29::GUS, and rolB::GUS reporters in stems mainly occurred at the root initiation sites, suggesting their involvement in AR formation. We have developed an efficient rooting protocol using half-strength Lepoivre medium for studying AR formation in stems, traced back the cellular AR origins in stems, and correlated expression of rooting-related genes with root initiation sites.

  2. Nitrogen remobilisation facilitates adventitious root formation on reversible dark-induced carbohydrate depletion in Petunia hybrida

    OpenAIRE

    Zerche, Siegfried; Haensch, Klaus-Thomas; Druege, Uwe; Hajirezaei, Mohammad-Reza

    2016-01-01

    Background Adventitious root (AR) formation in axillary shoot tip cuttings is a crucial physiological process for ornamental propagation that is utilised in global production chains for young plants. In this process, the nitrogen and carbohydrate metabolisms of a cutting are regulated by its total nitrogen content (Nt), dark exposure during transport and irradiance levels at distinct production sites and phases through a specific plasticity to readjust metabolite pools. Here, we examined how ...

  3. Identification and gene expression analysis of AUX1 influencing adventitious root induction in olive cuttings (Olea europaea L.

    Directory of Open Access Journals (Sweden)

    Seyed Mehdi Hosseini Mazinani

    2014-12-01

    Full Text Available Olive is one of the most important fruit crops throughout the Mediterranean Basin, mainly propagated by cuttings. The adventitious root development is a key stage in vegetative propagation however the low rooting capacity of some cultivars severely affects the efficiency of olive clonal propagation. Auxin Influx Carrier gene (AUX1, plays a key role in lateral root formation in many plant species promoting the export of IAA from newly developing leaves to lateral root primordia. Putative olive homologues were amplified by using degenerate primers designed on the conserved regions of AUX1 transcripts identified in other plants. Transcript and amino acid sequences in root (OeAUX1R and base of cutting (OeAUX1B were different causes of polymorphisms relating to possible distinct roles in these tissues. In order to investigate the gene expression patterns, Real-time PCR was performed on cuttings during the rooting stage collected from genotypes characterized by high and low rooting ability. Moreover, the gene expression was investigated on different olive tissues. Preliminary results showed that the expression of OeAUX1B and OeAUX1R in base of cuttings and roots of the high-rooting genotype were higher which suggests the hypothesis of the involvement of OeAUX1 in olive rooting. Bioinformatics analysis revealed that AUX1 gene had 8 exons in olive and the sequence of this gene in plant was conserved during evolution.

  4. Acetylcholinesterase inhibition and antibacterial activity of Mondia whitei adventitious roots and ex vitro-grown somatic embryogenic-biomass

    Directory of Open Access Journals (Sweden)

    Ponnusamy Baskaran

    2016-10-01

    Full Text Available Mondia whitei (Hook.f. Skeels is an important endangered medicinal and commercial plant in South Africa. In vitro propagation systems are required for biomass production and bioactivity analysis to supplement wild resources/stocks. Adventitious roots from somatic embryogenic explants using suspension culture and ex vitro-grown plants produced via somatic embryogenesis were established using different plant growth regulator treatments. The adventitious root biomass and different parts of ex vitro-grown and mother plants were used to investigate the potential for acetylcholinesterase (AChE and antibacterial activities. Adventitious roots derived from 2.5 µM indole-3-acetic acid (IAA treatments and ex vitro-grown plants derived from meta-topolin riboside (mTR and IAA treatments gave the best AChE and antibacterial activities. The in vitro-established M. whitei and ex vitro biomass have comparable ability to function as inhibitors of acetylcholinesterase and antibacterial agents, and can be used as potent bioresources in traditional medicine

  5. A co-opted hormonal cascade activates dormant adventitious root primordia upon flooding in solanum dulcamara

    NARCIS (Netherlands)

    Dawood, Thikra; Yang, Xinping; Visser, Eric J.W.; Beek, Te Tim A.H.; Kensche, Philip R.; Cristescu, Simona M.; Lee, Sangseok; Floková, Kristýna; Nguyen, Duy; Mariani, Celestina; Rieu, Ivo

    2016-01-01

    Soil flooding is a common stress factor affecting plants. To sustain root function in the hypoxic environment, flooding-tolerant plants may form new, aerenchymatous adventitious roots (ARs), originating from preformed, dormant primordia on the stem. We investigated the signaling pathway behind AR

  6. Mini-incubators improve the adventitious rooting performance of Corymbia and Eucalyptus microcuttings according to the environment in which they are conditioned.

    Science.gov (United States)

    Brondani, Gilvano E; Oliveira, Leandro S DE; Konzen, Enéas R; Silva, André L L DA; Costa, Jefferson L

    2017-10-16

    We addressed a major challenge in the in vitro clonal propagation of Corymbia citriodora, Eucalyptus urophylla and E. benthamii by using an ex vitro adventitious rooting strategy in a mini-incubator. Mini-incubators were placed in four environments for rooting. A shade house with no fogging system and a greenhouse with no ventilation but with a fogging environment had the best performance in terms of rooting, root growth and survival of microcuttings. Daily recording of the temperature within each mini-incubator in each environment allowed the verification of negative correlations between the maximum average temperature and the survival, adventitious rooting and root growth. The ideal maximum air temperature for the efficient production of clonal plants was 28.4°C (± 5.5°C), and the minimum was 20.3°C (± 6.2°C). E. benthamii was more sensitive to higher temperatures than C. citriodora and E. urophylla. Nevertheless, placing mini-incubators in the shade house with no fogging system resulted in a stable and uniform performance among the three species, with 100.0% survival and 81.4% rooting. Histological sections of the adventitious roots revealed connection with the stem vascular cambium. Therefore, our experimental system demonstrated the potential of mini-incubators coupled with the proper environment to optimize the adventitious rooting performance of microcuttings.

  7. Benefits of flooding-induced aquatic adventitious roots depend on the duration of submergence: linking plant performance to root functioning.

    Science.gov (United States)

    Zhang, Qian; Huber, Heidrun; Beljaars, Simone J M; Birnbaum, Diana; de Best, Sander; de Kroon, Hans; Visser, Eric J W

    2017-07-01

    Temporal flooding is a common environmental stress for terrestrial plants. Aquatic adventitious roots (aquatic roots) are commonly formed in flooding-tolerant plant species and are generally assumed to be beneficial for plant growth by supporting water and nutrient uptake during partial flooding. However, the actual contribution of these roots to plant performance under flooding has hardly been quantified. As the investment into aquatic root development in terms of carbohydrates may be costly, these costs may - depending on the specific environmental conditions - offset the beneficial effects of aquatic roots. This study tested the hypothesis that the balance between potential costs and benefits depends on the duration of flooding, as the benefits are expected to outweigh the costs in long-term but not in short-term flooding. The contribution of aquatic roots to plant performance was tested in Solanum dulcamara during 1-4 weeks of partial submergence and by experimentally manipulating root production. Nutrient uptake by aquatic roots, transpiration and photosynthesis were measured in plants differing in aquatic root development to assess the specific function of these roots. As predicted, flooded plants benefited from the presence of aquatic roots. The results showed that this was probably due to the contribution of roots to resource uptake. However, these beneficial effects were only present in long-term but not in short-term flooding. This relationship could be explained by the correlation between nutrient uptake and the flooding duration-dependent size of the aquatic root system. The results indicate that aquatic root formation is likely to be selected for in habitats characterized by long-term flooding. This study also revealed only limited costs associated with adventitious root formation, which may explain the maintenance of the ability to produce aquatic roots in habitats characterized by very rare or short flooding events. © The Author 2017. Published by

  8. Events Associated with Early Age-Related Decline in Adventitious Rooting Competence of Eucalyptus globulus Labill.

    Science.gov (United States)

    Aumond, Márcio L; de Araujo, Artur T; de Oliveira Junkes, Camila F; de Almeida, Márcia R; Matsuura, Hélio N; de Costa, Fernanda; Fett-Neto, Arthur G

    2017-01-01

    The development of adventitious roots is affected by several factors, including the age of the cutting donor plant, which negatively affects rooting capacity. Eucalyptus globulus quickly loses rooting capacity of cuttings as the donor plant ages, although the molecular and biochemical mechanisms behind this process are still unclear. To better understand the bases of rooting competence loss in E. globulus , the time required for a significant decline in rhizogenic ability without exogenous auxin was determined in microcuttings derived from donor plants of different ages after sowing. Tip cuttings of donor plants were severed before and after loss of rooting competence of microcuttings to test the hypothesis that auxin and carbohydrate homeostasis regulate rooting competence decline. There were no significant changes in concentration of carbohydrates, flavonoids, or proteins before and after the loss of rooting capacity. Peroxidase (EC 1.11.1.7) total activity increased with loss of rooting competence. Auxin concentration showed the opposite pattern. In good agreement, TAA1 , a key gene in auxin biosynthesis, had lower expression after loss of rooting capacity. The same applied to the auxin receptor gene TIR1 , suggesting reduced auxin sensitivity. On the other hand, genes associated with auxin response repression ( TPL , IAA12 ) or with the action of cytokinins, the rhizogenesis inhibitor-related ARR1 , showed higher expression in plants with lower rooting competence. Taken together, data suggest that age negatively affects E. globulus rooting by a combination of factors. Decreased endogenous auxin concentration, possibly caused by less biosynthesis, lower auxin sensitivity, higher expression of genes inhibiting auxin action, as well as of genes related to the action of cytokinins, appear to play roles in this process.

  9. Events Associated with Early Age-Related Decline in Adventitious Rooting Competence of Eucalyptus globulus Labill

    Science.gov (United States)

    Aumond, Márcio L.; de Araujo, Artur T.; de Oliveira Junkes, Camila F.; de Almeida, Márcia R.; Matsuura, Hélio N.; de Costa, Fernanda; Fett-Neto, Arthur G.

    2017-01-01

    The development of adventitious roots is affected by several factors, including the age of the cutting donor plant, which negatively affects rooting capacity. Eucalyptus globulus quickly loses rooting capacity of cuttings as the donor plant ages, although the molecular and biochemical mechanisms behind this process are still unclear. To better understand the bases of rooting competence loss in E. globulus, the time required for a significant decline in rhizogenic ability without exogenous auxin was determined in microcuttings derived from donor plants of different ages after sowing. Tip cuttings of donor plants were severed before and after loss of rooting competence of microcuttings to test the hypothesis that auxin and carbohydrate homeostasis regulate rooting competence decline. There were no significant changes in concentration of carbohydrates, flavonoids, or proteins before and after the loss of rooting capacity. Peroxidase (EC 1.11.1.7) total activity increased with loss of rooting competence. Auxin concentration showed the opposite pattern. In good agreement, TAA1, a key gene in auxin biosynthesis, had lower expression after loss of rooting capacity. The same applied to the auxin receptor gene TIR1, suggesting reduced auxin sensitivity. On the other hand, genes associated with auxin response repression (TPL, IAA12) or with the action of cytokinins, the rhizogenesis inhibitor-related ARR1, showed higher expression in plants with lower rooting competence. Taken together, data suggest that age negatively affects E. globulus rooting by a combination of factors. Decreased endogenous auxin concentration, possibly caused by less biosynthesis, lower auxin sensitivity, higher expression of genes inhibiting auxin action, as well as of genes related to the action of cytokinins, appear to play roles in this process. PMID:29067033

  10. Establishment of Aquilaria malaccensis Callus, cell suspension and adventitious root systems

    International Nuclear Information System (INIS)

    Norazlina Noordin; Rusli Ibrahim

    2010-01-01

    Aquilaria malaccensis is a tropical forest tree from the family Thymelaeaceae, an endangered forest species and was listed in CITES since 1995. Locally known as Pokok Karas, this tree produces agar wood or gaharu, a highly valuable, resinous and fragrant forest product. Karas has been highly recognized for its vast medicinal values and gaharu has been widely use for perfumery, incense and religious purposes. The phyto chemical studies of agar wood showed that Sesqui terpenoid and Phenyl ethy chromone derivatives are the principal compounds that have anti allergic and anti microbe activities. Cell and organ culture systems provide large scale production of biomass and offers feasibilities for the production of secondary metabolites. This paper describes the work done for establishing reproducible systems for callus initiation and production of cell suspension cultures as well as production of adventitious roots that will later be amenable for the production of secondary metabolites of A. malaccensis. Hence, further manipulation with Methyl Jasmonate, a chemical elicitor could be done to induce secondary metabolites using callus, cell suspension and adventitious roots systems. (author)

  11. Regulation of tissue differentiation by plant growth regulators on tTCLs of Panax ginseng adventitious roots

    Czech Academy of Sciences Publication Activity Database

    Langhansová, Lenka; Maršík, Petr; Vaněk, Tomáš

    2012-01-01

    Roč. 35, č. 1 (2012), s. 154-159 ISSN 0926-6690 R&D Projects: GA AV ČR KJB400550705; GA MŠk ME08070 Institutional research plan: CEZ:AV0Z50380511 Keywords : Adventitious roots * Panax ginseng * Ginsenosides Subject RIV: CE - Biochemistry Impact factor: 2.468, year: 2012

  12. Reference gene selection for quantitative reverse transcription-polymerase chain reaction normalization during in vitro adventitious rooting in Eucalyptus globulus Labill.

    Science.gov (United States)

    de Almeida, Márcia R; Ruedell, Carolina M; Ricachenevsky, Felipe K; Sperotto, Raul A; Pasquali, Giancarlo; Fett-Neto, Arthur G

    2010-09-20

    Eucalyptus globulus and its hybrids are very important for the cellulose and paper industry mainly due to their low lignin content and frost resistance. However, rooting of cuttings of this species is recalcitrant and exogenous auxin application is often necessary for good root development. To date one of the most accurate methods available for gene expression analysis is quantitative reverse transcription-polymerase chain reaction (qPCR); however, reliable use of this technique requires reference genes for normalization. There is no single reference gene that can be regarded as universal for all experiments and biological materials. Thus, the identification of reliable reference genes must be done for every species and experimental approach. The present study aimed at identifying suitable control genes for normalization of gene expression associated with adventitious rooting in E. globulus microcuttings. By the use of two distinct algorithms, geNorm and NormFinder, we have assessed gene expression stability of eleven candidate reference genes in E. globulus: 18S, ACT2, EF2, EUC12, H2B, IDH, SAND, TIP41, TUA, UBI and 33380. The candidate reference genes were evaluated in microccuttings rooted in vitro, in presence or absence of auxin, along six time-points spanning the process of adventitious rooting. Overall, the stability profiles of these genes determined with each one of the algorithms were very similar. Slight differences were observed in the most stable pair of genes indicated by each program: IDH and SAND for geNorm, and H2B and TUA for NormFinder. Both programs identified UBI and 18S as the most variable genes. To validate these results and select the most suitable reference genes, the expression profile of the ARGONAUTE1 gene was evaluated in relation to the most stable candidate genes indicated by each algorithm. Our study showed that expression stability varied between putative reference genes tested in E. globulus. Based on the AGO1 relative expression

  13. Isolation, characterization and expression analysis of the BABY BOOM (BBM) gene from Larix kaempferi × L. olgensis during adventitious rooting.

    Science.gov (United States)

    Li, Kui-Peng; Sun, Xiao-Mei; Han, Hua; Zhang, Shou-Gong

    2014-11-10

    The full-length cDNA and genomic sequences of the BABY BOOM (BBM) gene, designated LkBBM, were isolated from Larix kaempferi × Larix olgensis. The 3324 bp cDNA was cloned and its open reading frame (ORF) consists of 2370 nucleotides. The deduced 789 amino acid protein contains two AP2 domains and a BBM specific motif. Four conserved motifs between BBM and PLT were identified, which may be conducive to the similar function of BBM and PLT. The three dimensional (3D) structure of LkBBM was predicted and β-sheets in the AP2-R2 domain of LkBBM might recognize the specific base pairs in the major groove. Analysis of the LkBBM gene structure indicates that the gene has eight introns and nine exons. In the 5'-flanking promoter region of LkBBM, many important potential cis-acting elements were identified, such as the TATABOX5 element (a functional TATA element), ROOTMOTIFTAPOX1 element (element of root specificity), AUXREPSIAA4 element (element involved in auxin responsiveness and gene expression in root meristem), MYB1AT element (element involved in MYB recognition), ARR1AT element (element involved in cytokinin responsiveness), GARE1OSREP1 element (element involved in gibberellin responsiveness) and PYRIMIDINEBOXHVEPB1 element (element involved in abscisic acid responsiveness), which all suggested that the expression of LkBBM is highly regulated. Compared with gene expression levels in the stem, stem tip and leaf, LkBBM shows a specific expression in the root, which indicates that LkBBM plays a key role in regulating the development and growth of root in larch. In the processing of larch adventitious root formation, LkBBM started to express on the eighth day after rooting treatment and its transcript level increased continuously afterwards. According to the gene characteristics, LkBBM is proposed as a molecular marker for root primordia of larch, and the initial period of LkBBM expression may be the formation period of root primordia in the processing of adventitious

  14. Microbial transformation of ginsenosides extracted from Panax ginseng adventitious roots in an airlift bioreactor

    OpenAIRE

    Xiaolin Song; Hao Wu; Xuanchun Piao; Zhenhao Yin; Chengri Yin

    2017-01-01

    Background: Ginsenoside is the most important secondary metabolite in ginseng. Natural sources of wild ginseng have been overexploited. Although root culture can reduce the length of the growth cycle of ginseng, the number of species of ginsenosides is reduced and their contents are lower in the adventitious roots of ginseng than in the roots of ginseng cultivated in the field. Results: In this study, 147 strains of β-glucosidase-producing microorganisms were isolated from soil. Of these, ...

  15. Effect of Naphthalene Acetic Acid on the Adventitious Rooting in Shoot Cuttings of Andrographis paniculata (Burm.f. Wall. ex Nees: An Important Therapeutical Herb

    Directory of Open Access Journals (Sweden)

    Md. Sanower Hossain

    2016-01-01

    Full Text Available Andrographis paniculata is one of the most important therapeutical herbs, widely used in traditional medical systems for the treatment of diverse diseases for thousands of years. This study was carried out to assess the effect of 1-naphthaleneacetic acid (NAA on adventitious rooting in A. paniculata shoot cuttings. The cuttings were treated with six concentrations of NAA (0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 mM by applying soaking method and cuttings without hormone (soaking in distilled water were considered as control. The cuttings were then inoculated into peat moss in the planting tray and incubated under complete shade for root induction. Water was sprayed on peat moss once daily to moisten it. The results showed that different concentrations of NAA significantly (P≤0.05 affected the rooting characteristics of A. paniculata and 2.5 mM of NAA was found to be more effective to induce rooting in young apical shoot (YAS cuttings compared to other concentrations and old apical shoot (OAS. This study also postulates that adventitious rooting response depends on the juvenility of plant material and concentration of growth regulator. This report describes a technique for adventitious rooting in A. paniculata, which could be feasible to use for commercial scale propagation of this plant.

  16. Effect of cutting medium temperatures on rooting process and root primordium differentiation of hardwood cuttings of tetraploid robinia pseudoacacia cutting medium temperatures of tetraploid robinia pseudoacacia

    International Nuclear Information System (INIS)

    Ling, W.X.; Jine, Q.; Zhong, Z.

    2014-01-01

    In this study, to examine the effect of heat treatment on the rooting and root development of hardwood cuttings of the tetraploid Robinia pseudoacacia, cuttings of 1-year-old stems were taken from 3-year-old mother trees and treated with IBA solution (1000 mg/L) for 6 h, with water was as a control. Treated cuttings were rooted in heated or unheated nursery beds. Samples were collected on day ten after planting, and then for every five days. The bases of the cuttings were embedded in paraffin and sectioned before being examined under a microscope to determine whether there had been any morphological changes. We found no root primordia in the tissues of the hardwood cuttings of the tetraploid Robinia pseudoacacia before cutting. In the heated bed, adventitious roots originated from callus tissue and the junction between the pith rays and cortical parenchyma cells, and in the unheated bed, adventitious roots originated only from callus tissue. The rooting process involved callus formation, adventitious root formation and elongation; rooting occurred 5-7 days earlier in the heated cuttings than in the unheated ones, and rooting rates were significantly higher in the former 30 days and 50 days after cutting; the minimum effective accumulated temperatures for these three stages were 109.25 degree C, 211.68 degree C and 301.38 degree C, respectively. Our results revealed that heating the soil can promote adventitious root formation, speed up the rooting rate, and cut the propagation period of the tetraploid Robinia pseudoacacia. (author)

  17. Spectral lights trigger biomass accumulation and production of antioxidant secondary metabolites in adventitious root cultures of Stevia rebaudiana (Bert.).

    Science.gov (United States)

    Idrees, Muhammad; Sania, Bibi; Hafsa, Bibi; Kumari, Sana; Khan, Haji; Fazal, Hina; Ahmad, Ishfaq; Akbar, Fazal; Ahmad, Naveed; Ali, Sadeeq; Ahmad, Nisar

    2018-05-30

    Stevia rebaudiana (S. rebaudiana) is the most important therapeutic plant species and has been accepted as such worldwide. It has a tendency to accumulate steviol glycosides, which are 300 times sweeter than marketable sugar. Recently, diabetic patients commonly use this plant as a sugar substitute for sweet taste. In the present study, the effects of different spectral lights were investigated on biomass accumulation and production of secondary metabolites in adventitious root cultures of S. rebaudiana. For callus development, leaf explants were excised from seed-derived plantlets and inoculated on a Murashige and Skoog (MS) medium containing the combination of 2,4-dichlorophenoxy acetic acid (2, 4-D, 2.0mg/l) and 6-benzyladenine (BA, 2.0mg/l), while 0.5mg/l naphthalene acetic acid (NAA) was used for adventitious root culture. Adventitious root cultures were exposed to different spectral lights (blue, green, violet, red and yellow) for a 30-day period. White light was used as control. The growth kinetics was studied for 30days with 3-day intervals. In this study, the violet light showed the maximum accumulation of fresh biomass (2.495g/flask) as compared to control (1.63g/flask), while red light showed growth inhibition (1.025g/flask) as compared to control. The blue light enhanced the highest accumulation of phenolic content (TPC; 6.56mg GAE/g DW), total phenolic production (TPP; 101mg/flask) as compared to control (5.44mg GAE/g DW; 82.2mg GAE/g DW), and exhibited a strong correlation with dry biomass. Blue light also improved the accumulation of total flavonoid content (TFC; 4.33mg RE/g DW) and total flavonoid production (TFP; 65mg/flask) as compared to control. The violet light showed the highest DPPH inhibition (79.72%), while the lowest antioxidant activity was observed for control roots (73.81%). Hence, we concluded that the application of spectral lights is an auspicious strategy for the enhancement of the required antioxidant secondary metabolites in

  18. A comprehensive phylogeny of auxin homeostasis genes involved in adventitious root formation in carnation stem cuttings.

    Directory of Open Access Journals (Sweden)

    Ana Belén Sánchez-García

    Full Text Available Understanding the functional basis of auxin homeostasis requires knowledge about auxin biosynthesis, auxin transport and auxin catabolism genes, which is not always directly available despite the recent whole-genome sequencing of many plant species. Through sequence homology searches and phylogenetic analyses on a selection of 11 plant species with high-quality genome annotation, we identified the putative gene homologs involved in auxin biosynthesis, auxin catabolism and auxin transport pathways in carnation (Dianthus caryophyllus L.. To deepen our knowledge of the regulatory events underlying auxin-mediated adventitious root formation in carnation stem cuttings, we used RNA-sequencing data to confirm the expression profiles of some auxin homeostasis genes during the rooting of two carnation cultivars with different rooting behaviors. We also confirmed the presence of several auxin-related metabolites in the stem cutting tissues. Our findings offer a comprehensive overview of auxin homeostasis genes in carnation and provide a solid foundation for further experiments investigating the role of auxin homeostasis in the regulation of adventitious root formation in carnation.

  19. Translocation of 14C in adventitiously rooting Calluna vulgaris on peat

    International Nuclear Information System (INIS)

    Wallen, B.

    1983-01-01

    Seasonal variation in translocation of 14 C-labelled assimilates showed that 14 C-translocation within woody tissue was mainly limited to the phytomass produced during the last eight years. Independent of overgrowth of basal stem segments or decumbent sections by Sphagnum, or of subsequent adventitious rooting, the allocation followed a negative exponential from the assimilating units down the plant, and reached negligible values in 8-yr-old wood. Translocation to fine roots was however, mainly restricted to the shallow roots. Already at ca. 10 cm depth, the fine roots contained only about 5% of the concentration in the fine roots in the surface. During spring and autumn translocation to below ground parts dominated. During summer the main translocation was within the above ground green shoots and flowers. Here most of the allocated 14 C was irreversibly bound. There were only weak indications of accumulation of moblie 14 C-compounds in the woody parts near the soil surface. (author)

  20. Amide-conjugated indole-3-acetic acid and adventitious root formation in mung bean cuttings

    International Nuclear Information System (INIS)

    Norcini, J.G.

    1986-01-01

    The purpose of this research was to investigate further the relationship between amide-conjugated auxin and adventitious root formation. Indoleacetylaspartic acid (IAA-aspartate) was positively identified as the predominant conjugate isolated from mung bean cuttings after the cuttings has been treated with 10 -3 M IAA. In cuttings treated with [1- 14 C]IAA immediately after excision (0 hr), the percent of extractable 14 C in IAA-aspartate in the hypocotyl sharply increased until 36 hr, then steadily declined. [ 14 C]IAA was completely metabolized between 12 and 24 hr. The rooting activities of IAA-L-aspartate, IAA-L-alanine, and IAA-glycine were determined at various stages of root formation; some cuttings were pretreated with 10 -3 M IAA at 0 hr. Pretreated cuttings that were treated with IAA-glycine at 12, 24, 36 hr exhibited the greatest consistency between replications, the greatest number of long roots, and the longest roots. The conjugates did not stimulate rooting as effectively as IAA, yet like IAA, generally enhanced rooting the greatest when applied before the first cell division (24 hr)

  1. Rooting of microcuttings: Theory and practice

    NARCIS (Netherlands)

    Klerk, de G.J.M.

    2002-01-01

    Poor adventitious root formation is a major obstacle in micropropagation and in conventional propagation. This paper reviews recent progress in the understanding of adventitious root formation as a developmental process focusing on the role of plant hormones and on the effect of rooting conditions

  2. iTRAQ-Based Proteomic Analysis Reveals Potential Regulation Networks of IBA-Induced Adventitious Root Formation in Apple

    Directory of Open Access Journals (Sweden)

    Chao Lei

    2018-02-01

    Full Text Available Adventitious root (AR formation, which is controlled by endogenous and environmental factors, is indispensable for vegetative asexual propagation. However, comprehensive proteomic data on AR formation are still lacking. The aim of this work was to study indole-3-butyric acid (IBA-induced AR formation in the dwarf apple rootstock ‘T337’. In this study, the effect of IBA on AR formation was analysed. Subsequent to treatment with IBA, both the rooting rate and root length of ‘T337’ increased significantly. An assessment of hormone levels in basal stem cuttings suggested that auxin, abscisic acid, and brassinolide were higher in basal stem cuttings that received the exogenous IBA application; while zeatin riboside, gibberellins, and jasmonic acid were lower than non-treated basal stem cuttings. To explore the underlying molecular mechanism, an isobaric tags for relative and absolute quantification (iTRAQ-based proteomic technique was employed to identify the expression profiles of proteins at a key period of adventitious root induction (three days after IBA treatment. In total, 3355 differentially expressed proteins (DEPs were identified. Many DEPs were closely related to carbohydrate metabolism and energy production, protein homeostasis, reactive oxygen and nitric oxide signaling, and cell wall remodeling biological processes; as well as the phytohormone signaling, which was the most critical process in response to IBA treatment. Further, RT-qPCR analysis was used to evaluate the expression level of nine genes that are involved in phytohormone signaling and their transcriptional levels were mostly in accordance with the protein patterns. Finally, a putative work model was proposed. Our study establishes a foundation for further research and sheds light on IBA-mediated AR formation in apple as well as other fruit rootstock cuttings.

  3. Jasmonates act positively in adventitious root formation in petunia cuttings.

    Science.gov (United States)

    Lischweski, Sandra; Muchow, Anne; Guthörl, Daniela; Hause, Bettina

    2015-09-22

    Petunia is a model to study the process of adventitious root (AR) formation on leafy cuttings. Excision of cuttings leads to a transient increase in jasmonates, which is regarded as an early, transient and critical event for rooting. Here, the role of jasmonates in AR formation on petunia cuttings has been studied by a reverse genetic approach. To reduce the endogenous levels of jasmonates, transgenic plants were generated expressing a Petunia hybrida ALLENE OXIDE CYCLASE (PhAOC)-RNAi construct. The transgenic plants exhibited strongly reduced PhAOC transcript and protein levels as well as diminished accumulation of cis-12-oxo-phytodienoic acid, jasmonic acid and jasmonoyl-isoleucine after wounding in comparison to wild type and empty vector expressing plants. Reduced levels of endogenous jasmonates resulted in formation of lower numbers of ARs. However, this effect was not accompanied by altered levels of auxin and aminocyclopropane carboxylate (ACC, precursor of ethylene) or by impaired auxin and ethylene-induced gene expression. Neither activity of cell-wall invertases nor accumulation of soluble sugars was altered by jasmonate deficiency. Diminished numbers of AR in JA-deficient cuttings suggest that jasmonates act as positive regulators of AR formation in petunia wild type. However, wound-induced rise in jasmonate levels in petunia wild type cuttings seems not to be causal for increased auxin and ethylene levels and for sink establishment.

  4. WHEN STRESS AND DEVELOPMENT GO HAND IN HAND: MAIN HORMONAL CONTROLS OF ADVENTITIOUS ROOTING IN CUTTINGS

    Directory of Open Access Journals (Sweden)

    Cibele Tesser Da Costa

    2013-05-01

    Full Text Available Adventitious rooting (AR is a multifactorial response leading to new roots at the base of stem cuttings, and the establishment of a complete and autonomous plant. AR has two main phases: a induction, with a requirement for higher auxin concentration; b formation, inhibited by high auxin and in which anatomical changes take place. The first stages of this process in severed organs necessarily include wounding and water stress responses which may trigger hormonal changes that contribute to reprogram target cells that are competent to respond to rooting stimuli. At severance, the roles of jasmonate and abscisic acid are critical for wound response and perhaps sink strength establishment, although their negative roles on the cell cycle may inhibit root induction. Strigolactones may also inhibit AR. A reduced cytokinin concentration in cuttings results from the separation of the root system, whose tips are a relevant source of these root induction inhibitors. The combined increased accumulation of basipetally transported auxins from the shoot apex at the cutting base is often sufficient for AR in easy-to-root species. The role of peroxidases and phenolic compounds in auxin catabolism may be critical at these early stages right after wounding. The events leading to AR strongly depend on mother plant nutritional status, both in terms of minerals and carbohydrates, as well as on sink establishment at cutting bases. Auxins play a central role in AR. Auxin transporters control auxin canalization to target cells. There, auxins act primarily through selective proteolysis and cell wall loosening, via their receptor proteins TIR1 and ABP1. A complex microRNA circuitry is involved in the control of auxin response factors essential for gene expression in AR. After root establishment, new hormonal controls take place, with auxins being required at lower concentrations for root meristem maintenance and cytokinins needed for root tissue differentiation.

  5. Indole-3-butyric acid promotes adventitious rooting in Arabidopsis thaliana thin cell layers by conversion into indole-3-acetic acid and stimulation of anthranilate synthase activity.

    Science.gov (United States)

    Fattorini, L; Veloccia, A; Della Rovere, F; D'Angeli, S; Falasca, G; Altamura, M M

    2017-07-11

    Indole-3-acetic acid (IAA), and its precursor indole-3-butyric acid (IBA), control adventitious root (AR) formation in planta. Adventitious roots are also crucial for propagation via cuttings. However, IBA role(s) is/are still far to be elucidated. In Arabidopsis thaliana stem cuttings, 10 μM IBA is more AR-inductive than 10 μM IAA, and, in thin cell layers (TCLs), IBA induces ARs when combined with 0.1 μM kinetin (Kin). It is unknown whether arabidopsis TCLs produce ARs under IBA alone (10 μM) or IAA alone (10 μM), and whether they contain endogenous IAA/IBA at culture onset, possibly interfering with the exogenous IBA/IAA input. Moreover, it is unknown whether an IBA-to-IAA conversion is active in TCLs, and positively affects AR formation, possibly through the activity of the nitric oxide (NO) deriving from the conversion process. Revealed undetectable levels of both auxins at culture onset, showing that arabidopsis TCLs were optimal for investigating AR-formation under the total control of exogenous auxins. The AR-response of TCLs from various ecotypes, transgenic lines and knockout mutants was analyzed under different treatments. It was shown that ARs are better induced by IBA than IAA and IBA + Kin. IBA induced IAA-efflux (PIN1) and IAA-influx (AUX1/LAX3) genes, IAA-influx carriers activities, and expression of ANTHRANILATE SYNTHASE -alpha1 (ASA1), a gene involved in IAA-biosynthesis. ASA1 and ANTHRANILATE SYNTHASE -beta1 (ASB1), the other subunit of the same enzyme, positively affected AR-formation in the presence of exogenous IBA, because the AR-response in the TCLs of their mutant wei2wei7 was highly reduced. The AR-response of IBA-treated TCLs from ech2ibr10 mutant, blocked into IBA-to-IAA-conversion, was also strongly reduced. Nitric oxide, an IAA downstream signal and a by-product of IBA-to-IAA conversion, was early detected in IAA- and IBA-treated TCLs, but at higher levels in the latter explants. Altogether, results showed that IBA induced

  6. Molecular cloning and characterization of the genes encoding an auxin efflux carrier and the auxin influx carriers associated with the adventitious root formation in mango (Mangifera indica L.) cotyledon segments.

    Science.gov (United States)

    Li, Yun-He; Zou, Ming-Hong; Feng, Bi-Hong; Huang, Xia; Zhang, Zhi; Sun, Guang-Ming

    2012-06-01

    Polar auxin transport (PAT) plays an important role in the adventitious root formation of mango cotyledon segments, but the molecular mechanism remains unclear. In this study, we cloned a gene encoding an auxin efflux carrier (designated as MiPIN1), and we cloned four genes encoding auxin influx carriers (designated as MiAUX1, MiAUX2, MiAUX3 and MiAUX4). The results of a phylogenetic tree analysis indicated that MiPIN1 and the MiAUXs belong to plant PIN and AUXs/LAXs groups. Quantitative real-time PCR indicated that the expression of MiPIN1 and the MiAUXs was lowest at 0 days but sharply increased on and after day 4. During the root formation in the mango cotyledon segments, the MiPIN1 expression in the distal cut surface (DCS) was always higher than the expression in the proximal cut surface (PCS) whereas the expression of the MiAUXs in the PCS was usually higher than in the DCS. This expression pattern might be result in the PAT from the DCS to the PCS, which is essential for the adventitious root formation in the PCS. Our previous study indicated that a pre-treatment of embryos with indole-3-butyric acid (IBA) significantly promoted adventitious rooting in PCS whereas a pre-treatment with 2,3,5-triiodobenzoic acid (TIBA) completely inhibited this rooting. In this study, however, IBA and TIBA pre-treatments slightly changed the expression of MiPIN1. In contrast, while the MiAUX3 and MiAUX4 expression levels were significantly up-regulated by the IBA pre-treatment, the expression levels were down-regulated by the TIBA pre-treatment. These findings imply that MiAUX3 and MiAUX4 are more sensitive to the IBA and TIBA treatments and that they might play important roles during adventitious root formation in mango cotyledon segments. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  7. When stress and development go hand in hand: main hormonal controls of adventitious rooting in cuttings.

    Science.gov (United States)

    da Costa, Cibele T; de Almeida, Márcia R; Ruedell, Carolina M; Schwambach, Joseli; Maraschin, Felipe S; Fett-Neto, Arthur G

    2013-01-01

    Adventitious rooting (AR) is a multifactorial response leading to new roots at the base of stem cuttings, and the establishment of a complete and autonomous plant. AR has two main phases: (a) induction, with a requirement for higher auxin concentration; (b) formation, inhibited by high auxin and in which anatomical changes take place. The first stages of this process in severed organs necessarily include wounding and water stress responses which may trigger hormonal changes that contribute to reprogram target cells that are competent to respond to rooting stimuli. At severance, the roles of jasmonate and abscisic acid are critical for wound response and perhaps sink strength establishment, although their negative roles on the cell cycle may inhibit root induction. Strigolactones may also inhibit AR. A reduced concentration of cytokinins in cuttings results from the separation of the root system, whose tips are a relevant source of these root induction inhibitors. The combined increased accumulation of basipetally transported auxins from the shoot apex at the cutting base is often sufficient for AR in easy-to-root species. The role of peroxidases and phenolic compounds in auxin catabolism may be critical at these early stages right after wounding. The events leading to AR strongly depend on mother plant nutritional status, both in terms of minerals and carbohydrates, as well as on sink establishment at cutting bases. Auxins play a central role in AR. Auxin transporters control auxin canalization to target cells. There, auxins act primarily through selective proteolysis and cell wall loosening, via their receptor proteins TIR1 (transport inhibitor response 1) and ABP1 (Auxin-Binding Protein 1). A complex microRNA circuitry is involved in the control of auxin response factors essential for gene expression in AR. After root establishment, new hormonal controls take place, with auxins being required at lower concentrations for root meristem maintenance and cytokinins

  8. De Novo Characterization of the Mung Bean Transcriptome and Transcriptomic Analysis of Adventitious Rooting in Seedlings Using RNA-Seq.

    Science.gov (United States)

    Li, Shi-Weng; Shi, Rui-Fang; Leng, Yan

    2015-01-01

    Adventitious rooting is the most important mechanism underlying vegetative propagation and an important strategy for plant propagation under environmental stress. The present study was conducted to obtain transcriptomic data and examine gene expression using RNA-Seq and bioinformatics analysis, thereby providing a foundation for understanding the molecular mechanisms controlling adventitious rooting. Three cDNA libraries constructed from mRNA samples from mung bean hypocotyls during adventitious rooting were sequenced. These three samples generated a total of 73 million, 60 million, and 59 million 100-bp reads, respectively. These reads were assembled into 78,697 unigenes with an average length of 832 bp, totaling 65 Mb. The unigenes were aligned against six public protein databases, and 29,029 unigenes (36.77%) were annotated using BLASTx. Among them, 28,225 (35.75%) and 28,119 (35.62%) unigenes had homologs in the TrEMBL and NCBI non-redundant (Nr) databases, respectively. Of these unigenes, 21,140 were assigned to gene ontology classes, and a total of 11,990 unigenes were classified into 25 KOG functional categories. A total of 7,357 unigenes were annotated to 4,524 KOs, and 4,651 unigenes were mapped onto 342 KEGG pathways using BLAST comparison against the KEGG database. A total of 11,717 unigenes were differentially expressed (fold change>2) during the root induction stage, with 8,772 unigenes down-regulated and 2,945 unigenes up-regulated. A total of 12,737 unigenes were differentially expressed during the root initiation stage, with 9,303 unigenes down-regulated and 3,434 unigenes up-regulated. A total of 5,334 unigenes were differentially expressed between the root induction and initiation stage, with 2,167 unigenes down-regulated and 3,167 unigenes up-regulated. qRT-PCR validation of the 39 genes with known functions indicated a strong correlation (92.3%) with the RNA-Seq data. The GO enrichment, pathway mapping, and gene expression profiles reveal

  9. De Novo Characterization of the Mung Bean Transcriptome and Transcriptomic Analysis of Adventitious Rooting in Seedlings Using RNA-Seq.

    Directory of Open Access Journals (Sweden)

    Shi-Weng Li

    Full Text Available Adventitious rooting is the most important mechanism underlying vegetative propagation and an important strategy for plant propagation under environmental stress. The present study was conducted to obtain transcriptomic data and examine gene expression using RNA-Seq and bioinformatics analysis, thereby providing a foundation for understanding the molecular mechanisms controlling adventitious rooting. Three cDNA libraries constructed from mRNA samples from mung bean hypocotyls during adventitious rooting were sequenced. These three samples generated a total of 73 million, 60 million, and 59 million 100-bp reads, respectively. These reads were assembled into 78,697 unigenes with an average length of 832 bp, totaling 65 Mb. The unigenes were aligned against six public protein databases, and 29,029 unigenes (36.77% were annotated using BLASTx. Among them, 28,225 (35.75% and 28,119 (35.62% unigenes had homologs in the TrEMBL and NCBI non-redundant (Nr databases, respectively. Of these unigenes, 21,140 were assigned to gene ontology classes, and a total of 11,990 unigenes were classified into 25 KOG functional categories. A total of 7,357 unigenes were annotated to 4,524 KOs, and 4,651 unigenes were mapped onto 342 KEGG pathways using BLAST comparison against the KEGG database. A total of 11,717 unigenes were differentially expressed (fold change>2 during the root induction stage, with 8,772 unigenes down-regulated and 2,945 unigenes up-regulated. A total of 12,737 unigenes were differentially expressed during the root initiation stage, with 9,303 unigenes down-regulated and 3,434 unigenes up-regulated. A total of 5,334 unigenes were differentially expressed between the root induction and initiation stage, with 2,167 unigenes down-regulated and 3,167 unigenes up-regulated. qRT-PCR validation of the 39 genes with known functions indicated a strong correlation (92.3% with the RNA-Seq data. The GO enrichment, pathway mapping, and gene expression profiles

  10. Production of the Quinone-Methide Triterpene Maytenin by In Vitro Adventitious Roots of Peritassa campestris (Cambess. A.C.Sm. (Celastraceae and Rapid Detection and Identification by APCI-IT-MS/MS

    Directory of Open Access Journals (Sweden)

    Tiago Antunes Paz

    2013-01-01

    Full Text Available Establishment of adventitious root cultures of Peritassa campestris (Celastraceae was achieved from seed cotyledons cultured in semisolid Woody Plant Medium (WPM supplemented with 2% sucrose, 0.01% PVP, and 4.0 mg L−1 IBA. Culture period on accumulation of biomass and quinone-methide triterpene maytenin in adventitious root were investigated. The accumulation of maytenin in these roots was compared with its accumulation in the roots of seedlings grown in a greenhouse (one year old. A rapid detection and identification of maytenin by direct injection into an atmospheric-pressure chemical ionization ion trap tandem mass spectrometer (APCI-IT-MS/MS were performed without prior chromatographic separation. In vitro, the greatest accumulation of biomass occurred within 60 days of culture. The highest level of maytenin—972.11 μg·g−1 dry weight—was detected at seven days of cultivation; this value was 5.55-fold higher than that found in the roots of seedlings grown in a greenhouse.

  11. Effects of light regime and IBA concentration on adventitious rooting of an eastern cottonwood (Populus deltoides) clone

    Science.gov (United States)

    Alexander P. Hoffman; Joshua P. Adams; Andrew Nelson

    2016-01-01

    Eastern cottonwood (Populus deltoides) has received a substantial amount of interest from invitro studies within the past decade. The ability to efficiently multiply the stock of established clones such as clone 110412 is a valuable asset for forest endeavors. However, a common problem encountered is initiating adventitious rooting in new micropropagation protocols....

  12. Involvement of abscisic acid in regulating antioxidative defense systems and IAA-oxidase activity and improving adventitious rooting in mung bean [Vigna radiata (L.) Wilczek] seedlings under cadmium stress.

    Science.gov (United States)

    Li, Shi-Weng; Leng, Yan; Feng, Lin; Zeng, Xiao-Ying

    2014-01-01

    In vitro experiments were conducted to investigate the effects of abscisic acid (ABA) and Cd on antioxidative defense systems and indole-3-acetic acid (IAA) oxidase during adventitious rooting in mung bean [Vigna radiata (L.) Wilczek] seedlings. The exogenous ABA significantly enhanced the number and fresh weight of the adventitious roots. CdCl2 strongly inhibited adventitious rooting. Pretreatment with 10 μM ABA clearly alleviated the inhibitory effect of Cd on rooting. ABA significantly reduced superoxide dismutase (SOD), ascorbate peroxidase (APX), peroxidase (POD), and catalase (CAT) activities, as well as the levels of glutathione (GSH) and ascorbic acid (ASA) during adventitious rooting. ABA strongly increased IAA-oxidase activity during the induction (0-12 h) and expression (after 48 h) phases and increased the phenols levels. Cd treatment significantly reduced the activities of SOD, APX, POD, and IAA oxidase, as well as GSH level. Cd strongly increased ASA levels. ABA pretreatment counteracted Cd-induced alterations of certain antioxidants and antioxidative enzymes, e.g., remarkably rescued APX and POD activities, reduced the elevated SOD and CAT activities and ASA levels, and recovered the reduced GSH levels, caused by Cd stress. Thus, the physiological effects of the combination of ABA and Cd treatments were opposite of those obtained with Cd treatment alone, suggesting that ABA involved in the regulation of antioxidative defense systems and the alleviation of wounding- and Cd-induced oxidative stress.

  13. A specific role of iron in promoting meristematic cell division during adventitious root formation.

    Science.gov (United States)

    Hilo, Alexander; Shahinnia, Fahimeh; Druege, Uwe; Franken, Philipp; Melzer, Michael; Rutten, Twan; von Wirén, Nicolaus; Hajirezaei, Mohammad-Reza

    2017-07-10

    Adventitious root (AR) formation is characterized by a sequence of physiological and morphological processes and determined by external factors, including mineral nutrition, the impacts of which remain largely elusive. Morphological and anatomical evaluation of the effects of mineral elements on AR formation in leafy cuttings of Petunia hybrida revealed a striking stimulation by iron (Fe) and a promotive action of ammonium (NH4+). The optimal application period for these nutrients corresponded to early division of meristematic cells in the rooting zone and coincided with increased transcript levels of mitotic cyclins. Fe-localization studies revealed an enhanced allocation of Fe to the nuclei of meristematic cells in AR initials. NH4+ supply promoted AR formation to a lesser extent, most likely by favoring the availability of Fe. We conclude that Fe acts locally by promoting cell division in the meristematic cells of AR primordia. These results highlight a specific biological function of Fe in AR development and point to an unexploited importance of Fe for the vegetative propagation of plants from cuttings. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  14. Triterpene and Flavonoid Biosynthesis and Metabolic Profiling of Hairy Roots, Adventitious Roots, and Seedling Roots of Astragalus membranaceus.

    Science.gov (United States)

    Park, Yun Ji; Thwe, Aye Aye; Li, Xiaohua; Kim, Yeon Jeong; Kim, Jae Kwang; Arasu, Mariadhas Valan; Al-Dhabi, Naif Abdullah; Park, Sang Un

    2015-10-14

    Astragalus membranaceus is an important traditional Chinese herb with various medical applications. Astragalosides (ASTs), calycosin, and calycosin-7-O-β-d-glucoside (CG) are the primary metabolic components in A. membranaceus roots. The dried roots of A. membranaceus have various medicinal properties. The present study aimed to investigate the expression levels of genes related to the biosynthetic pathways of ASTs, calycosin, and CG to investigate the differences between seedling roots (SRs), adventitious roots (ARs), and hairy roots (HRs) using quantitative real-time polymerase chain reaction (qRT-PCR). qRT-PCR study revealed that the transcription level of genes involved in the AST biosynthetic pathway was lowest in ARs and showed similar patterns in HRs and SRs. Moreover, most genes involved in the synthesis of calycosin and CG exhibited the highest expression levels in SRs. High-performance liquid chromatography (HPLC) analysis indicated that the expression level of the genes correlated with the content of ASTs, calycosin, and CG in the three different types of roots. ASTs were the most abundant in SRs. CG accumulation was greater than calycosin accumulation in ARs and HRs, whereas the opposite was true in SRs. Additionally, 40 metabolites were identified using gas chromatography-time-of-flight mass spectrometry (GC-TOF-MS). Principal component analysis (PCA) documented the differences among SRs, ARs, and HRs. PCA comparatively differentiated among the three samples. The results of PCA showed that HRs were distinct from ARs and SRs on the basis of the dominant amounts of sugars and clusters derived from closely similar biochemical pathways. Also, ARs had a higher concentration of phenylalanine, a precursor for the phenylpropanoid biosynthetic pathway, as well as CG. TCA cycle intermediates levels including succinic acid and citric acid indicated a higher amount in SRs than in the others.

  15. The major-effect quantitative trait locus CsARN6.1 encodes an AAA ATPase domain-containing protein that is associated with waterlogging stress tolerance by promoting adventitious root formation

    Science.gov (United States)

    In plants, the formation of hypocotyl-derived adventitious roots (AR) is an important morphological acclimation to waterlogging stress, but its genetic basis is largely unknown. In the present study, with combined use of bulked segregant analysis-based high throughput next-gen whole genome sequencin...

  16. Dark exposure of petunia cuttings strongly improves adventitious root formation and enhances carbohydrate availability during rooting in the light.

    Science.gov (United States)

    Klopotek, Yvonne; Haensch, Klaus-Thomas; Hause, Bettina; Hajirezaei, Mohammad-Reza; Druege, Uwe

    2010-05-01

    The effect of temporary dark exposure on adventitious root formation (ARF) in Petuniaxhybrida 'Mitchell' cuttings was investigated. Histological and metabolic changes in the cuttings during the dark treatment and subsequent rooting in the light were recorded. Excised cuttings were exposed to the dark for seven days at 10 degrees C followed by a nine-day rooting period in perlite or were rooted immediately for 16 days in a climate chamber at 22/20 degrees C (day/night) and a photosynthetic photon flux density (PPFD) of 100micromolm(-2)s(-1). Dark exposure prior to rooting increased, accelerated and synchronized ARF. The rooting period was reduced from 16 days (non-treated cuttings) to 9 days (treated cuttings). Under optimum conditions, despite the reduced rooting period, dark-exposed cuttings produced a higher number and length of roots than non-treated cuttings. An increase in temperature to 20 degrees C during the dark treatment or extending the cold dark exposure to 14 days caused a similar enhancement of root development compared to non-treated cuttings. Root meristem formation had already started during the dark treatment and was enhanced during the subsequent rooting period. Levels of soluble sugars (glucose, fructose and sucrose) and starch in leaf and basal stem tissues significantly decreased during the seven days of dark exposure. This depletion was, however, compensated during rooting after 6 and 24h for soluble sugars in leaves and the basal stem, respectively, whereas the sucrose level in the basal stem was already increased at 6h. The association of higher carbohydrate levels with improved rooting in previously dark-exposed versus non-treated cuttings indicates that increased post-darkness carbohydrate availability and allocation towards the stem base contribute to ARF under the influence of dark treatment and provide energy for cell growth subject to a rising sink intensity in the base of the cutting. Copyright 2009 Elsevier GmbH. All rights reserved.

  17. Effect of naphthalene acetic acid on adventitious root development and associated physiological changes in stem cutting of Hemarthria compressa.

    Directory of Open Access Journals (Sweden)

    Yan-Hong Yan

    Full Text Available In order to find a way to induce rooting on cuttings of Hemarthria compressa cv. Ya'an under controlled conditions, a project was carried out to study the effect of naphthalene acetic acid (NAA on rooting in stem cuttings and related physiological changes during the rooting process of Hemarthria compressa. The cuttings were treated with five concentrations of NAA (0, 100, 200 300, 400 mg/l at three soaking durations (10, 20, 30 minutes, and cuttings without treatment were considered as control. Samples were planted immediately into pots after treatment. IAA-oxidase (IAAO activity, peroxidase (POD activity and polyphenol oxidase (PPO activity were determined after planting. Results showed that NAA had positive effect on rooting at the concentration of 200 mg/l compared to other concentrations at 30 days after planting (DAP. Among the three soaking durations, 20 minutes (min of 200 mg/l NAA resulted in higher percentages of rooting, larger numbers of adventitious roots and heavier root dry weight per cutting. The lowest IAAO activity was obtained when soaked at 200 mg/l NAA for 20 min soaking duration. This was consistent with the best rooting ability, indicating that the lower IAAO activity, the higher POD activity and PPO activity could be used as an indicator of better rooting ability for whip grass cuttings and might serve as a good marker for rooting ability in cuttings.

  18. In vitro propagation of garlic ( Allium sativum L.) through adventitious ...

    African Journals Online (AJOL)

    , Balady, Sids 40 and VFG 180 (3 - 1) as well as a garlic wild type through adventitious shoot organogenesis. Shoot and root apices were subjected to eight callus induction treatments. A combination of 1 mg L-1 2,4-D + 5 mg L-1 BA + 5 mg L-1 ...

  19. A simple method suitable to study de novo root organogenesis

    Directory of Open Access Journals (Sweden)

    Xiaodong eChen

    2014-05-01

    Full Text Available De novo root organogenesis is the process in which adventitious roots regenerate from detached or wounded plant tissues or organs. In tissue culture, appropriate types and concentrations of plant hormones in the medium are critical for inducing adventitious roots. However, in natural conditions, regeneration from detached organs is likely to rely on endogenous hormones. To investigate the actions of endogenous hormones and the molecular mechanisms guiding de novo root organogenesis, we developed a simple method to imitate natural conditions for adventitious root formation by culturing Arabidopsis thaliana leaf explants on B5 medium without additive hormones. Here we show that the ability of the leaf explants to regenerate roots depends on the age of the leaf and on certain nutrients in the medium. Based on these observations, we provide examples of how this method can be used in different situations, and how it can be optimized. This simple method could be used to investigate the effects of various physiological and molecular changes on the regeneration of adventitious roots. It is also useful for tracing cell lineage during the regeneration process by differential interference contrast observation of -glucuronidase staining, and by live imaging of proteins labeled with fluorescent tags.

  20. Urea derivatives on the move: cytokinin-like activity and adventitious rooting enhancement depend on chemical structure.

    Science.gov (United States)

    Ricci, A; Bertoletti, C

    2009-05-01

    Urea derivatives are synthetic compounds, some of which have proved to be positive regulators of cell division and differentiation. N-phenyl-N'-(2-chloro-4-pyridyl)urea (forchlorofenuron, CPPU) and N-phenyl-N'-(1,2,3-thiadiazol-5-yl)urea (thidiazuron, TDZ), well known urea cytokinin representatives, are extensively used in in vitro plant morphogenesis studies, as they show cytokinin-like activity often exceeding that of adenine compounds. In recent years, renewed interest in structure-activity relationship studies allowed identification of new urea cytokinins and other urea derivatives that specifically enhance adventitious root formation. In this review, we report the research history of urea derivatives, new insights into their biological activity, and recent progress on their mode of action.

  1. Plant Hormone Homeostasis, Signaling, and Function during Adventitious Root Formation in Cuttings.

    Science.gov (United States)

    Druege, Uwe; Franken, Philipp; Hajirezaei, Mohammad R

    2016-01-01

    Adventitious root (AR) formation in cuttings is a multiphase developmental process, resulting from wounding at the cutting site and isolation from the resource and signal network of the whole plant. Though, promotive effects of auxins are widely used for clonal plant propagation, the regulation and function of plant hormones and their intricate signaling networks during AR formation in cuttings are poorly understood. In this focused review, we discuss our recent publications on the involvement of polar auxin transport (PAT) and transcriptional regulation of auxin and ethylene action during AR formation in petunia cuttings in a broad context. Integrating new findings on cuttings of other plant species and general models on plant hormone networks, a model on the regulation and function of auxin, ethylene, and jasmonate in AR formation of cuttings is presented. PAT and cutting off from the basipetal auxin drain are considered as initial principles generating early accumulation of IAA in the rooting zone. This is expected to trigger a self-regulatory process of auxin canalization and maximization to responding target cells, there inducing the program of AR formation. Regulation of auxin homeostasis via auxin influx and efflux carriers, GH3 proteins and peroxidases, of flavonoid metabolism, and of auxin signaling via AUX/IAA proteins, TOPLESS, ARFs, and SAUR-like proteins are postulated as key processes determining the different phases of AR formation. NO and H2O2 mediate auxin signaling via the cGMP and MAPK cascades. Transcription factors of the GRAS-, AP2/ERF-, and WOX-families link auxin signaling to cell fate specification. Cyclin-mediated governing of the cell cycle, modifications of sugar metabolism and microtubule and cell wall remodeling are considered as important implementation processes of auxin function. Induced by the initial wounding and other abiotic stress factors, up-regulation of ethylene biosynthesis, and signaling via ERFs and early accumulation of

  2. Plant hormone homeostasis, signaling and function during adventitious root formation in cuttings

    Directory of Open Access Journals (Sweden)

    Uwe eDruege

    2016-03-01

    Full Text Available Adventitious root (AR formation in cuttings is a multiphase developmental process, resulting from wounding at the cutting site and isolation from the resource and signal network of the whole plant. Though promotive effects of auxins are widely used for clonal plant propagation, the regulation and function of plant hormones and their intricate signaling networks during AR formation in cuttings are poorly understood. In this focused review, we discuss our recent publications on the involvement of polar auxin transport (PAT and transcriptional regulation of auxin and ethylene action during AR formation in petunia cuttings in a broad context. Integrating new findings on cuttings of other plant species and general models on plant hormone networks, a model on the regulation and function of auxin, ethylene and jasmonate in AR formation of cuttings is presented. PAT and cutting off from the basipetal auxin drain are considered as initial principles generating early accumulation of IAA in the rooting zone. This is expected to trigger a self-regulatory process of auxin canalization and maximization to responding target cells, there inducing the program of AR formation. Regulation of auxin homeostasis via auxin influx and efflux carriers, GH3 proteins and peroxidases, of flavonoid metabolism and of auxin signaling via AUX/IAA proteins, TOPLESS, ARFs and SAUR-like proteins are postulated as key processes determining the different phases of AR formation. NO and H2O2 mediate auxin signaling via the cGMP and MAPK cascades. Transcription factors of the GRAS-, AP2/ERF- and WOX-families link auxin signaling to cell fate specification. Cyclin-mediated governing of the cell cycle, modifications of sugar metabolism and microtubule and cell wall remodeling are considered as important implementation processes of auxin function. Induced by the initial wounding and other abiotic stress factors, up-regulation of ethylene biosynthesis and signaling via ERFs and early

  3. Mutant induction through adventitious buds of Kohleria

    International Nuclear Information System (INIS)

    Parliman, B.J.; Stushnoff, C.

    1979-01-01

    Freshly cut leaves of Kohleria eriantha and K. x 'Longwood' were exposed in a wide range of gamma irradiation doses and allowed to root and form adventitious buds. K. Eriantha could not be successfully propagated from leaf half cuttings. 'Longwood' produced a small number of adventitious plantlets as compared to other Gesneriads. Colchicine treatments reduced leaf half survival in 'Longwood' by more than 50%. Leaf halves exposed to low and moderate doses of gamma irradiation showed increased overall plantlet production compared to nonirradiated leaf halves. (Auth.)

  4. Callus formation impedes adventitious rhizogenesis in air layers of broadleaved tree species

    Directory of Open Access Journals (Sweden)

    Sanjay Singh

    2014-07-01

    Full Text Available Callusing and root induction in air layering was evaluated aiming at evolution of procedure for mass clonal propagation of mature ortets of five tropical broadleaf species differing in their potential for adventitious root formation in shoot cuttings as: Anogiessus latifolia < Boswellia serrata < Dalbergia latifolia < Gmelina arborea < Dalbergia sissoo. Two experiments were conducted in rainy season during consecutive years; without application of growth regulators in the first year and with growth regulators (T1 - water, T2- 100 ppm indole-3-acetic acid, T3-100 ppm thiamine-HCl and T4 -combination of T2 + T3 in the next year. Air layered branches were detached from the trees to record percentage of alive airlayers, callusing and rooting (% as well as root number and root length. Response to air layering was found to be highly variable in five tree species but appeared to be feasible procedure for clonal propagation of mature ortets of B. serrata and D. sissoo with 100% (in auxin + thiamine treatment and 83.3% (in auxin treatment success, respectively. Maximum callusing (% was found in D. latifolia while no callusing was observed in D. sissoo, which is most easy-to-root among all five species. Callus formation impedes adventitious rhizogenesis in air layers as significant negative correlation of callusing (% and adventitious root formation was recorded in air layers of five tropical broadleaved tree species. Application of exogenous auxin alone or in combination with thiamine circumvents callusing to ensure direct development of roots for successful air layering.

  5. Involvement of alternative oxidase (AOX) in adventitious rooting of Olea europaea L. microshoots is linked to adaptive phenylpropanoid and lignin metabolism.

    Science.gov (United States)

    Santos Macedo, E; Sircar, D; Cardoso, H G; Peixe, A; Arnholdt-Schmitt, B

    2012-09-01

    Alternative oxidase (AOX) has been proposed as a functional marker candidate in a number of events involving cell differentiation, including rooting efficiency in semi-hardwood shoot cuttings of olive (Olea europaea L.). To ascertain the general importance of AOX in olive rooting, the auxin-induced rooting process was studied in an in vitro system for microshoot propagation. Inhibition of AOX by salicylhydroxamic acid (SHAM) significantly reduced rooting efficiency. However, the inhibitor failed to exhibit any effect on the preceding calli stage. This makes the system appropriate for distinguishing dedifferentiation and de novo differentiation during root induction. Metabolite analyses of microshoots showed that total phenolics, total flavonoids and lignin contents were significantly reduced upon SHAM treatment. It was concluded that the influence of alternative respiration on root formation was associated to adaptive phenylpropanoid and lignin metabolism. Transcript profiles of two olive AOX genes (OeAOX1a and OeAOX2) were examined during the process of auxin-induced root induction. Both genes displayed stable transcript accumulation in semi-quantitative RT-PCR analysis during all experimental stages. In contrary, when the reverse primer for OeAOX2 was designed from the 3'-UTR instead of the ORF, differential transcript accumulation was observed suggesting posttranscriptional regulation of OeAOX2 during metabolic acclimation. This result confirms former observations in olive semi-hardwood shoot cuttings on differential OeAOX2 expression during root induction. It further points to the importance of future studies on the functional role of sequence and length polymorphisms in the 3'-UTR of this gene. The manuscript reports the general importance of AOX in olive adventitious rooting and the association of alternative respiration to adaptive phenylpropanoid and lignin metabolism.

  6. Distribution of some pectic and arabinogalactan protein epitopes during Solanum lycopersicum (L.) adventitious root development.

    Science.gov (United States)

    Sala, Katarzyna; Malarz, Katarzyna; Barlow, Peter W; Kurczyńska, Ewa U

    2017-01-25

    The adventitious roots (AR) of plants share the same function as primary and lateral roots (LR), although their development is mainly an adaptive reaction to stress conditions. Regeneration of grafted plants is often accompanied by AR formation thus making the grafting technique a good model for studying AR initiation and development and their means of emergence. Pectins and arabinogalactan proteins (AGP) are helpful markers of particular cellular events, such as programmed cell death (PCD), elongation, proliferation or other differentiation events that accompany AR development. However, little is known about the distribution of pectins and AGPs during AR ontogeny, either in the primordium or stem tissues from which AR arise or their correspondence with these events during LR formation. AR were developed from different stem tissues such as parenchyma, xylem rays and the cambium, depending on the stem age and treatment (grafting versus cutting) of the parental tissue. Immunochemical analysis of the presence of pectic (LM8, LM19, LM20) and AGP (JIM8, JIM13, JIM16) epitopes in AR and AR-associated tissues showed differential, tissue-specific distributions of these epitopes. Two pectic epitopes (LM19, LM20) were developmentally regulated and the occurrence of the LM8 xylogalacturonan epitope in the root cap of the AR differed from other species described so far. AGP epitopes were abundantly present in the cytoplasmic compartments (mainly the tonoplast) and were correlated with the degree of cell vacuolisation. JIM8 and JIM13 epitopes were detected in the more advanced stages of primordium development, whereas the JIM16 epitope was present from the earliest division events of the initial AR cells. The comparison between AR and LR showed quantitative (AGP,) and qualitative (pectins) differences. The chemical compositions of adventitious and lateral root cells show differences that correlate with the different origins of these cells. In AR, developmental changes in the

  7. Comparative transcriptional analysis provides new insights into the molecular basis of adventitious rooting recalcitrance in Eucalyptus.

    Science.gov (United States)

    de Almeida, Márcia Rodrigues; de Bastiani, Daniela; Gaeta, Marcos Letaif; de Araújo Mariath, Jorge Ernesto; de Costa, Fernanda; Retallick, Jeffrey; Nolan, Lana; Tai, Helen H; Strömvik, Martina V; Fett-Neto, Arthur Germano

    2015-10-01

    Adventitious rooting (AR) is essential in clonal propagation. Eucalyptus globulus is relevant for the cellulose industry due to its low lignin content. However, several useful clones are recalcitrant to AR, often requiring exogenous auxin, adding cost to clonal garden operations. In contrast, E. grandis is an easy-to-root species widely used in clonal forestry. Aiming at contributing to the elucidation of recalcitrance causes in E. globulus, we conducted a comparative analysis with these two species differing in rooting competence, combining gene expression and anatomical techniques. Recalcitrance in E. globulus is reversed by exposure to exogenous indole-3-acetic acid (IAA), which promotes important gene expression modifications in both species. The endogenous content of IAA was significantly higher in E. grandis than in E. globulus. The cambium zone was identified as an active area during AR, concentrating the first cell divisions. Immunolocalization assay showed auxin accumulation in cambium cells, further indicating the importance of this region for rooting. We then performed a cambium zone-specific gene expression analysis during AR using laser microdissection. The results indicated that the auxin-related genes TOPLESS and IAA12/BODENLOS and the cytokinin-related gene ARR1may act as negative regulators of AR, possibly contributing to the hard-to-root phenotype of E. globulus. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. A Co-Opted Hormonal Cascade Activates Dormant Adventitious Root Primordia upon Flooding in Solanum dulcamara1[OPEN

    Science.gov (United States)

    Dawood, Thikra; Kensche, Philip R.; Cristescu, Simona M.; Mariani, Celestina

    2016-01-01

    Soil flooding is a common stress factor affecting plants. To sustain root function in the hypoxic environment, flooding-tolerant plants may form new, aerenchymatous adventitious roots (ARs), originating from preformed, dormant primordia on the stem. We investigated the signaling pathway behind AR primordium reactivation in the dicot species Solanum dulcamara. Transcriptome analysis indicated that flooding imposes a state of quiescence on the stem tissue, while increasing cellular activity in the AR primordia. Flooding led to ethylene accumulation in the lower stem region and subsequently to a drop in abscisic acid (ABA) level in both stem and AR primordia tissue. Whereas ABA treatment prevented activation of AR primordia by flooding, inhibition of ABA synthesis was sufficient to activate them in absence of flooding. Together, this reveals that there is a highly tissue-specific response to reduced ABA levels. The central role for ABA in the response differentiates the pathway identified here from the AR emergence pathway known from rice (Oryza sativa). Flooding and ethylene treatment also induced expression of the polar auxin transporter PIN2, and silencing of this gene or chemical inhibition of auxin transport inhibited primordium activation, even though ABA levels were reduced. Auxin treatment, however, was not sufficient for AR emergence, indicating that the auxin pathway acts in parallel with the requirement for ABA reduction. In conclusion, adaptation of S. dulcamara to wet habitats involved co-option of a hormonal signaling cascade well known to regulate shoot growth responses, to direct a root developmental program upon soil flooding. PMID:26850278

  9. Development and growth of plantlets of Pinus contorta regenerated from adventitious buds

    Energy Technology Data Exchange (ETDEWEB)

    Flygh, G.; Groenroos, R.; Arnold, S. von [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Forest Genetics; Hoegberg, K.A. [The Association for Forest Tree Breeding, Svaloev (Sweden)

    1998-11-01

    Before micropropagation techniques can be applied to a particular species, it is crucial to optimize the method and to determine how the micropropagated plants grow in the field. Adventitious shoots developed on embryos of Pinus contorta Dougl. ex Loud. after a 2 h pulse treatment with 250 {mu}M N6-benzyladenine. The time to first subculture after the pulse treatment influenced the yield of adventitious shoots. On average, 68% of the adventitious shoots had developed roots 12 weeks after treatment with 1.25 mM indole-3-butyric acid for 6 h. The auxin treatment stimulated early rooting (i.e. within 6 weeks) but had no effect on late rooting (i.e. after 6 weeks). The size of the plantlets was of importance for the survival when potted. All plantlets with a distinct stem elongated during the first growth period while some without did not. The relative height growth rate of plantlets was similar to that of seedlings. In the field the increase of height was similar for plantlets and seedlings. Plagiotropy was higher for the plantlets than for the seedlings (35 and 10% respectively). We concluded that most plantlets of P. contorta elongate normally and have a similar gross morphology to seedlings 23 refs, 8 figs, 4 tabs

  10. Production of aventitious root of eurycoma longifolia jack using air-lift bioreactor system

    International Nuclear Information System (INIS)

    Wan Nazirah Wan Ali; Siti Sarah Abd Wahab; Zakaria Seman; Muhammad Ruzaini Abdul Wahab; Mohamad Rozi Mohamed Yasin; Sobri Hussein; Abdul Rahim Harun; Azhar Mohamad; Rusli Ibrahim

    2009-01-01

    In Malaysia the Eurycoma longifolia is better known as a Tongkat Ali, where it has great local demand as a health tonic. Observation after 3 months revealed that modified MS medium (1/2 Nitrate) supplemented with IBA at 5.0 mg/L and 6.0 mg/L (5% sucrose) was found to be the best formulation for adventitious root induction. The data obtained showed that 70% (10 + 2 adventitious root per explants) of the explants cultured formed the adventitious root in both treatments. Other treatments tested within the range (1.0- 10.0 mg/L) produced less than four adventitious roots per explant. Meanwhile, in the treatment using IAA, the highest formation of root was recorded in 7.0 mg/L with the number of root produced was 3 + 1 per explant. Apart from that, observation after 2 months revealed that 4 + 1 adventitious root per explant was observed in the treatment using 4 mg/L NAA. The chemical profiling studies was carried out by focusing on the production of 9-methoxycanthine-6-one in callus derived from different explants, namely leaf, petiole, rachis and root. The R f value spots of 9-methoxycanthine-6-one (obtained from the TLC) analysis showed a yellowish green in colour when observed under UV light at 366 nm. Based on the intensity and size of the spots on the chromatogram, it was detected that concentration of 9-methoxycanthine-6-one in root-derived callus was generally higher as compared to other calluses. Therefore, adventitious root culture can be an attractive as it is highly differentiated and can cause stable and extensive production of secondary metabolites. (Author)

  11. A review on the molecular mechanism of plants rooting modulated ...

    African Journals Online (AJOL)

    Adventitious root formation is a key step in vegetative propagation of woody or horticul-tural species, and it is a complex process known to be affected by multiple factors. The process of roots development could be divided into three stages: root induction, root initiation, and root protrusion. Phytohormones, especially auxin ...

  12. Production of the quinone-methide triterpene maytenin by in vitro adventitious roots of Peritassa campestris (Cambess.) A.C.Sm. (Celastraceae) and rapid detection and identification by APCI-IT-MS/MS.

    Science.gov (United States)

    Paz, Tiago Antunes; dos Santos, Vânia A F F M; Inácio, Marielle Cascaes; Pina, Edieidia Souza; Pereira, Ana Maria Soares; Furlan, Maysa

    2013-01-01

    Establishment of adventitious root cultures of Peritassa campestris (Celastraceae) was achieved from seed cotyledons cultured in semisolid Woody Plant Medium (WPM) supplemented with 2% sucrose, 0.01% PVP, and 4.0 mg L⁻¹ IBA. Culture period on accumulation of biomass and quinone-methide triterpene maytenin in adventitious root were investigated. The accumulation of maytenin in these roots was compared with its accumulation in the roots of seedlings grown in a greenhouse (one year old). A rapid detection and identification of maytenin by direct injection into an atmospheric-pressure chemical ionization ion trap tandem mass spectrometer (APCI-IT-MS/MS) were performed without prior chromatographic separation. In vitro, the greatest accumulation of biomass occurred within 60 days of culture. The highest level of maytenin--972.11  μ g·g⁻¹ dry weight--was detected at seven days of cultivation; this value was 5.55-fold higher than that found in the roots of seedlings grown in a greenhouse.

  13. Transcriptomic analysis reveals ethylene as stimulator and auxin as regulator of adventitious root formation in petunia cuttings

    Science.gov (United States)

    Druege, Uwe; Franken, Philipp; Lischewski, Sandra; Ahkami, Amir H.; Zerche, Siegfried; Hause, Bettina; Hajirezaei, Mohammad R.

    2014-01-01

    Adventitious root (AR) formation in the stem base (SB) of cuttings is the basis for propagation of many plant species and petunia is used as model to study this developmental process. Following AR formation from 2 to 192 hours post-excision (hpe) of cuttings, transcriptome analysis by microarray revealed a change of the character of the rooting zone from SB to root identity. The greatest shift in the number of differentially expressed genes was observed between 24 and 72 hpe, when the categories storage, mineral nutrient acquisition, anti-oxidative and secondary metabolism, and biotic stimuli showed a notable high number of induced genes. Analyses of phytohormone-related genes disclosed multifaceted changes of the auxin transport system, auxin conjugation and the auxin signal perception machinery indicating a reduction in auxin sensitivity and phase-specific responses of particular auxin-regulated genes. Genes involved in ethylene biosynthesis and action showed a more uniform pattern as a high number of respective genes were generally induced during the whole process of AR formation. The important role of ethylene for stimulating AR formation was demonstrated by the application of inhibitors of ethylene biosynthesis and perception as well as of the precursor aminocyclopropane-1-carboxylic acid, all changing the number and length of AR. A model is proposed showing the putative role of polar auxin transport and resulting auxin accumulation in initiation of subsequent changes in auxin homeostasis and signal perception with a particular role of Aux/IAA expression. These changes might in turn guide the entrance into the different phases of AR formation. Ethylene biosynthesis, which is stimulated by wounding and does probably also respond to other stresses and auxin, acts as important stimulator of AR formation probably via the expression of ethylene responsive transcription factor genes, whereas the timing of different phases seems to be controlled by auxin. PMID

  14. Transcriptomic analysis reveals ethylene as stimulator and auxin as regulator of adventitious root formation in petunia cuttings.

    Science.gov (United States)

    Druege, Uwe; Franken, Philipp; Lischewski, Sandra; Ahkami, Amir H; Zerche, Siegfried; Hause, Bettina; Hajirezaei, Mohammad R

    2014-01-01

    Adventitious root (AR) formation in the stem base (SB) of cuttings is the basis for propagation of many plant species and petunia is used as model to study this developmental process. Following AR formation from 2 to 192 hours post-excision (hpe) of cuttings, transcriptome analysis by microarray revealed a change of the character of the rooting zone from SB to root identity. The greatest shift in the number of differentially expressed genes was observed between 24 and 72 hpe, when the categories storage, mineral nutrient acquisition, anti-oxidative and secondary metabolism, and biotic stimuli showed a notable high number of induced genes. Analyses of phytohormone-related genes disclosed multifaceted changes of the auxin transport system, auxin conjugation and the auxin signal perception machinery indicating a reduction in auxin sensitivity and phase-specific responses of particular auxin-regulated genes. Genes involved in ethylene biosynthesis and action showed a more uniform pattern as a high number of respective genes were generally induced during the whole process of AR formation. The important role of ethylene for stimulating AR formation was demonstrated by the application of inhibitors of ethylene biosynthesis and perception as well as of the precursor aminocyclopropane-1-carboxylic acid, all changing the number and length of AR. A model is proposed showing the putative role of polar auxin transport and resulting auxin accumulation in initiation of subsequent changes in auxin homeostasis and signal perception with a particular role of Aux/IAA expression. These changes might in turn guide the entrance into the different phases of AR formation. Ethylene biosynthesis, which is stimulated by wounding and does probably also respond to other stresses and auxin, acts as important stimulator of AR formation probably via the expression of ethylene responsive transcription factor genes, whereas the timing of different phases seems to be controlled by auxin.

  15. Transcriptomic analysis reveals ethylene as stimulator and auxin as regulator of adventitious root formation in petunia cuttings

    Directory of Open Access Journals (Sweden)

    Uwe eDruege

    2014-09-01

    Full Text Available Adventitious root (AR formation in the stem base of cuttings is the basis for propagation of many plant species and petunia is used as model to study this developmental process. Following AR formation from 2 to 192 hours after excision (hpe of cuttings, transcriptome analysis by microarray revealed a change of the character of the rooting zone from stem base to root identity. The greatest shift in the number of differentially expressed genes was observed between 24 and 72 hpe, when the categories storage, mineral nutrient acquisition, anti-oxidative and secondary metabolism, and biotic stimuli showed a notable high number of induced genes. Analyses of phytohormone-related genes disclosed multifaceted changes of the auxin transport system, auxin conjugation and the auxin signal perception machinery indicating a reduction in auxin sensitivity and phase-specific responses of particular auxin-regulated genes. Genes involved in ethylene biosynthesis and action showed a more uniform pattern as a high number of respective genes were generally induced during the whole process of AR formation. The important role of ethylene for stimulating AR formation was demonstrated by the application of inhibitors of ethylene biosynthesis and perception as well as of the precursor aminocyclopropane-1-carboxylic acid, all changing the number and length of AR. A model is proposed showing the putative role of polar auxin transport and resulting auxin accumulation in initiation of subsequent changes in auxin homeostasis and signal perception with a particular role of Aux/IAA expression. These changes might in turn guide the entrance into the different phases of AR formation. Ethylene biosynthesis, which is stimulated by wounding and does probably also respond to other stresses and auxin, acts as important stimulator of AR formation probably via the expression of ethylene responsive transcription factor genes, whereas the timing of different phases seems to be controlled

  16. Enhancement of anti-inflammatory activity of Aloe vera adventitious root extracts through the alteration of primary and secondary metabolites via salicylic acid elicitation.

    Directory of Open Access Journals (Sweden)

    Yun Sun Lee

    Full Text Available Aloe vera (Asphodeloideae is a medicinal plant in which useful secondary metabolites are plentiful. Among the representative secondary metabolites of Aloe vera are the anthraquinones including aloe emodin and chrysophanol, which are tricyclic aromatic quinones synthesized via a plant-specific type III polyketide biosynthesis pathway. However, it is not yet clear which cellular responses can induce the pathway, leading to production of tricyclic aromatic quinones. In this study, we examined the effect of endogenous elicitors on the type III polyketide biosynthesis pathway and identified the metabolic changes induced in elicitor-treated Aloe vera adventitious roots. Salicylic acid, methyl jasmonate, and ethephon were used to treat Aloe vera adventitious roots cultured on MS liquid media with 0.3 mg/L IBA for 35 days. Aloe emodin and chrysophanol were remarkably increased by the SA treatment, more than 10-11 and 5-13 fold as compared with untreated control, respectively. Ultra-performance liquid chromatography-electrospray ionization mass spectrometry analysis identified a total of 37 SA-induced compounds, including aloe emodin and chrysophanol, and 3 of the compounds were tentatively identified as tricyclic aromatic quinones. Transcript accumulation analysis of polyketide synthase genes and gas chromatography mass spectrometry showed that these secondary metabolic changes resulted from increased expression of octaketide synthase genes and decreases in malonyl-CoA, which is the precursor for the tricyclic aromatic quinone biosynthesis pathway. In addition, anti-inflammatory activity was enhanced in extracts of SA-treated adventitious roots. Our results suggest that SA has an important role in activation of the plant specific-type III polyketide biosynthetic pathway, and therefore that the efficacy of Aloe vera as medicinal agent can be improved through SA treatment.

  17. Enhancement of anti-inflammatory activity of Aloe vera adventitious root extracts through the alteration of primary and secondary metabolites via salicylic acid elicitation.

    Science.gov (United States)

    Lee, Yun Sun; Ju, Hyun Kyoung; Kim, Yeon Jeong; Lim, Tae-Gyu; Uddin, Md Romij; Kim, Yeon Bok; Baek, Jin Hong; Kwon, Sung Won; Lee, Ki Won; Seo, Hak Soo; Park, Sang Un; Yang, Tae-Jin

    2013-01-01

    Aloe vera (Asphodeloideae) is a medicinal plant in which useful secondary metabolites are plentiful. Among the representative secondary metabolites of Aloe vera are the anthraquinones including aloe emodin and chrysophanol, which are tricyclic aromatic quinones synthesized via a plant-specific type III polyketide biosynthesis pathway. However, it is not yet clear which cellular responses can induce the pathway, leading to production of tricyclic aromatic quinones. In this study, we examined the effect of endogenous elicitors on the type III polyketide biosynthesis pathway and identified the metabolic changes induced in elicitor-treated Aloe vera adventitious roots. Salicylic acid, methyl jasmonate, and ethephon were used to treat Aloe vera adventitious roots cultured on MS liquid media with 0.3 mg/L IBA for 35 days. Aloe emodin and chrysophanol were remarkably increased by the SA treatment, more than 10-11 and 5-13 fold as compared with untreated control, respectively. Ultra-performance liquid chromatography-electrospray ionization mass spectrometry analysis identified a total of 37 SA-induced compounds, including aloe emodin and chrysophanol, and 3 of the compounds were tentatively identified as tricyclic aromatic quinones. Transcript accumulation analysis of polyketide synthase genes and gas chromatography mass spectrometry showed that these secondary metabolic changes resulted from increased expression of octaketide synthase genes and decreases in malonyl-CoA, which is the precursor for the tricyclic aromatic quinone biosynthesis pathway. In addition, anti-inflammatory activity was enhanced in extracts of SA-treated adventitious roots. Our results suggest that SA has an important role in activation of the plant specific-type III polyketide biosynthetic pathway, and therefore that the efficacy of Aloe vera as medicinal agent can be improved through SA treatment.

  18. Comprehensive transcriptome analysis unravels the existence of crucial genes regulating primary metabolism during adventitious root formation in Petunia hybrida.

    Science.gov (United States)

    Ahkami, Amirhossein; Scholz, Uwe; Steuernagel, Burkhard; Strickert, Marc; Haensch, Klaus-Thomas; Druege, Uwe; Reinhardt, Didier; Nouri, Eva; von Wirén, Nicolaus; Franken, Philipp; Hajirezaei, Mohammad-Reza

    2014-01-01

    To identify specific genes determining the initiation and formation of adventitious roots (AR), a microarray-based transcriptome analysis in the stem base of the cuttings of Petunia hybrida (line W115) was conducted. A microarray carrying 24,816 unique, non-redundant annotated sequences was hybridized to probes derived from different stages of AR formation. After exclusion of wound-responsive and root-regulated genes, 1,354 of them were identified which were significantly and specifically induced during various phases of AR formation. Based on a recent physiological model distinguishing three metabolic phases in AR formation, the present paper focuses on the response of genes related to particular metabolic pathways. Key genes involved in primary carbohydrate metabolism such as those mediating apoplastic sucrose unloading were induced at the early sink establishment phase of AR formation. Transcriptome changes also pointed to a possible role of trehalose metabolism and SnRK1 (sucrose non-fermenting 1- related protein kinase) in sugar sensing during this early step of AR formation. Symplastic sucrose unloading and nucleotide biosynthesis were the major processes induced during the later recovery and maintenance phases. Moreover, transcripts involved in peroxisomal beta-oxidation were up-regulated during different phases of AR formation. In addition to metabolic pathways, the analysis revealed the activation of cell division at the two later phases and in particular the induction of G1-specific genes in the maintenance phase. Furthermore, results point towards a specific demand for certain mineral nutrients starting in the recovery phase.

  19. In Vitro Culture Conditions and OeARF and OeH3 Expressions Modulate Adventitious Root Formation from Oleaster (Olea europaea L. subsp. europaea var. sylvestris) Cuttings

    Science.gov (United States)

    Gagliardi, Cinzia; Bruno, Leonardo; Bitonti, Maria Beatrice

    2014-01-01

    Olea europaea L. subsp. europaea var. sylvestris, also named oleaster, is the wild form of olive and it is used as rootstock and pollen donor for many cultivated varieties. An efficient procedure for in vitro propagation of oleaster was established in this study. A zeatin concentration of 2.5 mg/L was effective to induce an appreciable vegetative growth. Also high rooting efficiency was obtained by using a short IBA pulse, followed by two different IBA concentrations in the culture medium. With the aim to enlarge knowledge on the molecular aspects of adventitious rooting, we also evaluated the transcriptional modulation of an ARFs member and HISTONE H3 genes, involved in auxin signaling and cell replication, respectively, during the root induction phase of cuttings. The obtained results suggest that the selected genes, as markers of the induction phase, could be very useful for setting up efficient culture conditions along the rooting process, thus increasing micropropagation efficiency. PMID:24587768

  20. In vitro culture conditions and OeARF and OeH3 expressions modulate adventitious root formation from oleaster (Olea europaea L. subsp. europaea var. sylvestris) cuttings.

    Science.gov (United States)

    Chiappetta, Adriana; Gagliardi, Cinzia; Bruno, Leonardo; Bitonti, Maria Beatrice

    2014-01-01

    Olea europaea L. subsp. europaea var. sylvestris, also named oleaster, is the wild form of olive and it is used as rootstock and pollen donor for many cultivated varieties. An efficient procedure for in vitro propagation of oleaster was established in this study. A zeatin concentration of 2.5 mg/L was effective to induce an appreciable vegetative growth. Also high rooting efficiency was obtained by using a short IBA pulse, followed by two different IBA concentrations in the culture medium. With the aim to enlarge knowledge on the molecular aspects of adventitious rooting, we also evaluated the transcriptional modulation of an ARFs member and HISTONE H3 genes, involved in auxin signaling and cell replication, respectively, during the root induction phase of cuttings. The obtained results suggest that the selected genes, as markers of the induction phase, could be very useful for setting up efficient culture conditions along the rooting process, thus increasing micropropagation efficiency.

  1. Bioreactor with Ipomoea hederifolia adventitious roots and its endophyte Cladosporium cladosporioides for textile dye degradation

    Energy Technology Data Exchange (ETDEWEB)

    Patil, Swapnil M. [Department of Biotechnology, Shivaji University, Kolhapur-416004 (India); Chandanshive, Vishal V. [Department of Biochemistry, Shivaji University, Kolhapur-416004 (India); Rane, Niraj R.; Khandare, Rahul V. [Department of Biotechnology, Shivaji University, Kolhapur-416004 (India); Watharkar, Anuprita D. [Department of Biochemistry, Shivaji University, Kolhapur-416004 (India); Govindwar, Sanjay P., E-mail: spg_biochem@unishivaji.ac.in [Department of Biochemistry, Shivaji University, Kolhapur-416004 (India)

    2016-04-15

    In vitro grown untransformed adventitious roots (AR) culture of Ipomoea hederifolia and its endophytic fungus (EF) Cladosporium cladosporioides decolorized Navy Blue HE2R (NB-HE2R) at a concentration of 20 ppm up to 83.3 and 65%, respectively within 96 h. Whereas the AR-EF consortium decolorized the dye more efficiently and gave 97% removal within 36 h. Significant inductions in the enzyme activities of lignin peroxidase, tyrosinase and laccase were observed in roots, while enzymes like tyrosinase, laccase and riboflavin reductase activities were induced in EF. Metabolites of dye were analyzed using UV—vis spectroscopy, FTIR and gas chromatography-mass spectrometry. Possible metabolic pathways of NB-HE2R were proposed with AR, EF and AR-EF systems independently. Looking at the superior efficacy of AR-EF system, a rhizoreactor was developed for the treatment of NB-HE2R at a concentration of 1000 ppm. Control reactor systems with independently grown AR and EF gave 94 and 85% NB-HE2R removal, respectively within 36 h. The AR-EF rhizoreactor, however, gave 97% decolorization. The endophyte colonization additionally increased root and shoot lengths of candidate plants through mutualism. Combined bioreactor strategies can be effectively used for future eco-friendly remediation purposes. - Highlights: • Endophytic fungus on Ipomoea hederifolia promotes root growth and shoot development • Endophytic Cladosporium cladosporioides synergistically degrade Navy Blue-HE2R dye • Endophyte colonized I. hederifolia roots proved superior in dye decolorization • Dye stress and toxicity was efficiently dealt by root-endophyte consortium • Root-endophyte consortium can be used as a sustainable remediation strategy.

  2. Bioreactor with Ipomoea hederifolia adventitious roots and its endophyte Cladosporium cladosporioides for textile dye degradation

    International Nuclear Information System (INIS)

    Patil, Swapnil M.; Chandanshive, Vishal V.; Rane, Niraj R.; Khandare, Rahul V.; Watharkar, Anuprita D.; Govindwar, Sanjay P.

    2016-01-01

    In vitro grown untransformed adventitious roots (AR) culture of Ipomoea hederifolia and its endophytic fungus (EF) Cladosporium cladosporioides decolorized Navy Blue HE2R (NB-HE2R) at a concentration of 20 ppm up to 83.3 and 65%, respectively within 96 h. Whereas the AR-EF consortium decolorized the dye more efficiently and gave 97% removal within 36 h. Significant inductions in the enzyme activities of lignin peroxidase, tyrosinase and laccase were observed in roots, while enzymes like tyrosinase, laccase and riboflavin reductase activities were induced in EF. Metabolites of dye were analyzed using UV—vis spectroscopy, FTIR and gas chromatography-mass spectrometry. Possible metabolic pathways of NB-HE2R were proposed with AR, EF and AR-EF systems independently. Looking at the superior efficacy of AR-EF system, a rhizoreactor was developed for the treatment of NB-HE2R at a concentration of 1000 ppm. Control reactor systems with independently grown AR and EF gave 94 and 85% NB-HE2R removal, respectively within 36 h. The AR-EF rhizoreactor, however, gave 97% decolorization. The endophyte colonization additionally increased root and shoot lengths of candidate plants through mutualism. Combined bioreactor strategies can be effectively used for future eco-friendly remediation purposes. - Highlights: • Endophytic fungus on Ipomoea hederifolia promotes root growth and shoot development • Endophytic Cladosporium cladosporioides synergistically degrade Navy Blue-HE2R dye • Endophyte colonized I. hederifolia roots proved superior in dye decolorization • Dye stress and toxicity was efficiently dealt by root-endophyte consortium • Root-endophyte consortium can be used as a sustainable remediation strategy

  3. Comprehensive Transcriptome Analysis Unravels the Existence of Crucial Genes Regulating Primary Metabolism during Adventitious Root Formation in Petunia hybrida

    Science.gov (United States)

    Ahkami, Amirhossein; Scholz, Uwe; Steuernagel, Burkhard; Strickert, Marc; Haensch, Klaus-Thomas; Druege, Uwe; Reinhardt, Didier; Nouri, Eva; von Wirén, Nicolaus; Franken, Philipp; Hajirezaei, Mohammad-Reza

    2014-01-01

    To identify specific genes determining the initiation and formation of adventitious roots (AR), a microarray-based transcriptome analysis in the stem base of the cuttings of Petunia hybrida (line W115) was conducted. A microarray carrying 24,816 unique, non-redundant annotated sequences was hybridized to probes derived from different stages of AR formation. After exclusion of wound-responsive and root-regulated genes, 1,354 of them were identified which were significantly and specifically induced during various phases of AR formation. Based on a recent physiological model distinguishing three metabolic phases in AR formation, the present paper focuses on the response of genes related to particular metabolic pathways. Key genes involved in primary carbohydrate metabolism such as those mediating apoplastic sucrose unloading were induced at the early sink establishment phase of AR formation. Transcriptome changes also pointed to a possible role of trehalose metabolism and SnRK1 (sucrose non-fermenting 1- related protein kinase) in sugar sensing during this early step of AR formation. Symplastic sucrose unloading and nucleotide biosynthesis were the major processes induced during the later recovery and maintenance phases. Moreover, transcripts involved in peroxisomal beta-oxidation were up-regulated during different phases of AR formation. In addition to metabolic pathways, the analysis revealed the activation of cell division at the two later phases and in particular the induction of G1-specific genes in the maintenance phase. Furthermore, results point towards a specific demand for certain mineral nutrients starting in the recovery phase. PMID:24978694

  4. Comprehensive transcriptome analysis unravels the existence of crucial genes regulating primary metabolism during adventitious root formation in Petunia hybrida.

    Directory of Open Access Journals (Sweden)

    Amirhossein Ahkami

    Full Text Available To identify specific genes determining the initiation and formation of adventitious roots (AR, a microarray-based transcriptome analysis in the stem base of the cuttings of Petunia hybrida (line W115 was conducted. A microarray carrying 24,816 unique, non-redundant annotated sequences was hybridized to probes derived from different stages of AR formation. After exclusion of wound-responsive and root-regulated genes, 1,354 of them were identified which were significantly and specifically induced during various phases of AR formation. Based on a recent physiological model distinguishing three metabolic phases in AR formation, the present paper focuses on the response of genes related to particular metabolic pathways. Key genes involved in primary carbohydrate metabolism such as those mediating apoplastic sucrose unloading were induced at the early sink establishment phase of AR formation. Transcriptome changes also pointed to a possible role of trehalose metabolism and SnRK1 (sucrose non-fermenting 1- related protein kinase in sugar sensing during this early step of AR formation. Symplastic sucrose unloading and nucleotide biosynthesis were the major processes induced during the later recovery and maintenance phases. Moreover, transcripts involved in peroxisomal beta-oxidation were up-regulated during different phases of AR formation. In addition to metabolic pathways, the analysis revealed the activation of cell division at the two later phases and in particular the induction of G1-specific genes in the maintenance phase. Furthermore, results point towards a specific demand for certain mineral nutrients starting in the recovery phase.

  5. A higher sink competitiveness of the rooting zone and invertases are involved in dark stimulation of adventitious root formation in Petunia hybrida cuttings.

    Science.gov (United States)

    Klopotek, Yvonne; Franken, Philipp; Klaering, Hans-Peter; Fischer, Kerstin; Hause, Bettina; Hajirezaei, Mohammad-Reza; Druege, Uwe

    2016-02-01

    The contribution of carbon assimilation and allocation and of invertases to the stimulation of adventitious root formation in response to a dark pre-exposure of petunia cuttings was investigated, considering the rooting zone (stem base) and the shoot apex as competing sinks. Dark exposure had no effect on photosynthesis and dark respiration during the subsequent light period, but promoted dry matter partitioning to the roots. Under darkness, higher activities of cytosolic and vacuolar invertases were maintained in both tissues when compared to cuttings under light. This was partially associated with higher RNA levels of respective genes. However, activity of cell wall invertases and transcript levels of one cell wall invertase isogene increased specifically in the stem base during the first two days after cutting excision under both light and darkness. During five days after excision, RNA accumulation of four invertase genes indicated preferential expression in the stem base compared to the apex. Darkness shifted the balance of expression of one cytosolic and two vacuolar invertase genes towards the stem base. The results indicate that dark exposure before planting enhances the carbon sink competitiveness of the rooting zone and that expression and activity of invertases contribute to the shift in carbon allocation. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  6. [Induction and in vitro culture of hairy roots of Dianthus caryophyllus and its plant regeneration].

    Science.gov (United States)

    Shi, Heping; Zhu, Yuanfeng; Wang, Bei; Sun, Jiangbing; Huang, Shengqin

    2014-11-01

    To use Agrobacterium rhizogenes-induced hairy roots to create new germplasm of Dianthus caryophyllus, we transformed D. caryophyllus with A. rhizogenes by leaf disc for plant regeneration from hairy roots. The white hairy roots could be induced from the basal surface of leaf explants of D. caryophyllus 12 days after inoculation with A. rhizogenes ATCC15834. The percentage of the rooting leaf explants was about 90% 21 days after inoculation. The hairy roots could grow rapidly and autonomously in liquid or solid phytohormone-free MS medium. The transformation was confirmed by PCR amplification of rol gene of Ri plasmid and silica gel thin-layer chromatography of opines from D. caryophyllus hairy roots. Hairy roots could form light green callus after cultured on MS+6-BA 1.0-3.0 mg/L + NAA 0.1-0.2 mg/L for 15 days. The optimum medium for adventitious shoots formation was MS + 6-BA 2.0 mg/L + NAA 0.02 mg/L, where the rate of adventitious shoot induction was 100% after cultured for 6 weeks. The mean number of adventitious shoot per callus was 30-40. The adventitious shoots can form roots when cultured on phytohormone-free 1/2 MS or 1/2 MS +0.5 mg/L NAA for 10 days. When the rooted plantlets transplanted in the substrate mixed with perlite sand and peat (volume ratio of 1:2), the survival rate was above 95%.

  7. The major-effect quantitative trait locus CsARN6.1 encodes an AAA ATPase domain-containing protein that is associated with waterlogging stress tolerance by promoting adventitious root formation.

    Science.gov (United States)

    Xu, Xuewen; Ji, Jing; Xu, Qiang; Qi, Xiaohua; Weng, Yiqun; Chen, Xuehao

    2018-03-01

    In plants, the formation of hypocotyl-derived adventitious roots (ARs) is an important morphological acclimation to waterlogging stress; however, its genetic basis remains fragmentary. Here, through combined use of bulked segregant analysis-based whole-genome sequencing, SNP haplotyping and fine genetic mapping, we identified a candidate gene for a major-effect QTL, ARN6.1, that was responsible for waterlogging tolerance due to increased AR formation in the cucumber line Zaoer-N. Through multiple lines of evidence, we show that CsARN6.1 is the most possible candidate for ARN6.1 which encodes an AAA ATPase. The increased formation of ARs under waterlogging in Zaoer-N could be attributed to a non-synonymous SNP in the coiled-coil domain region of this gene. CsARN6.1 increases the number of ARs via its ATPase activity. Ectopic expression of CsARN6.1 in Arabidopsis resulted in better rooting ability and lateral root development in transgenic plants. Transgenic cucumber expressing the CsARN6.1 Asp allele from Zaoer-N exhibited a significant increase in number of ARs compared with the wild type expressing the allele from Pepino under waterlogging conditions. Taken together, these data support that the AAA ATPase gene CsARN6.1 has an important role in increasing cucumber AR formation and waterlogging tolerance. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.

  8. Mass culture of mountain Ginseng roots using rare earth elements in bioreactor cultures

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Sung Jin; Kim, Chang Hyun; Kim, Ha Lim [Chonnam National University, Gwangju (Korea, Republic of)

    2010-01-15

    An adventitious roots of mountain ginseng (Panax ginseng C. A. Meyer) was used in this experiments. Various concentration of lanthanide were tested to find out optimal conditions for biomass and ginsenoside contents in mountain ginseng roots. The MS basal medium with 100 {mu}g/L lanthanide created the most optimum condition for growth of adventitious roots of mountain ginseng. Batch culture with 100 {mu}g/L lanthanide and 0.5 g (F.W) inoculation volume produced maximum final biomass of 1.89 g(F.W/flask) within 4 weeks. However, lanthanide was not effect the ginsenoside contents in adventitious roots of mountain ginseng. In bioreactors, 3.23 g F.W./L of biomass were obtained when 100 {mu}g/L lanthanide were added to the MS basal medium at 26 .deg. C

  9. A novel life cycle arising from leaf segments in plants regenerated from horseradish hairy roots.

    Science.gov (United States)

    Mano, Y; Matsuhashi, M

    1995-03-01

    Horseradish (Armoracia rusticana) hairy root clones were established from hairy roots which were transformed with the Ri plasmid in Agrobacterium rhizogenes 15834. The transformed plants, which were regenerated from hairy root clones, had thicker roots with extensive lateral branches and thicker stems, and grew faster compared with non-transformed horseradish plants. Small sections of leaves of the transformed plants generated adventitious roots in phytohormone-free G (modified Gamborg's) medium. Root proliferation was followed by adventitious shoot formation and plant regeneration. Approximately twenty plants were regenerated per square centimeter of leaf. The transformed plants were easily transferable from sterile conditions to soil. When leaf segments of the transformed plants were cultured in a liquid fertilizer under non-sterile conditions, adventitious roots were generated at the cut ends of the leaves. Adventitious shoots were generated at the boundary between the leaf and the adventitious roots and developed into complete plants. This novel life cycle arising from leaf segments is a unique property of the transformed plants derived from hairy root clones.

  10. Distribution of indole-3-acetic acid in Petunia hybrida shoot tip cuttings and relationship between auxin transport, carbohydrate metabolism and adventitious root formation.

    OpenAIRE

    Ahkami, Amir H.; Melzer, Michael; Ghaffari, Mohammad R.; Pollmann, Stephan; Ghorbani, Majid; Shahinnia, Fahimeh; Hajirezaei, Mohammad R.; Druege, Uwe

    2013-01-01

    To determine the contribution of polar auxin transport (PAT) to auxin accumulation and to adventitious root (AR) formation in the stem base of Petunia hybrida shoot tip cuttings, the level of indole-3-acetic acid (IAA) was monitored in non-treated cuttings and cuttings treated with the auxin transport blocker naphthylphthalamic acid (NPA) and was complemented with precise anatomical studies. The temporal course of carbohydrates, amino acids and activities of controlling enzymes was also inves...

  11. Nitrogen remobilisation facilitates adventitious root formation on reversible dark-induced carbohydrate depletion in Petunia hybrida.

    Science.gov (United States)

    Zerche, Siegfried; Haensch, Klaus-Thomas; Druege, Uwe; Hajirezaei, Mohammad-Reza

    2016-10-10

    Adventitious root (AR) formation in axillary shoot tip cuttings is a crucial physiological process for ornamental propagation that is utilised in global production chains for young plants. In this process, the nitrogen and carbohydrate metabolisms of a cutting are regulated by its total nitrogen content (N t ), dark exposure during transport and irradiance levels at distinct production sites and phases through a specific plasticity to readjust metabolite pools. Here, we examined how elevated N t contents with a combined dark exposure of cuttings influence their internal N-pools including free amino acids and considered early anatomic events of AR formation as well as further root development in Petunia hybrida cuttings. Enhanced N t contents of unrooted cuttings resulted in elevated total free amino acid levels and in particular glutamate (glu) and glutamine (gln) in leaf and basal stem. N-allocation to mobile N-pools increased whereas the allocation to insoluble protein-N declined. A dark exposure of cuttings conserved initial N t and nitrate-N, while it reduced insoluble protein-N and increased soluble protein, amino- and amide-N. The increase of amino acids mainly comprised asparagine (asn), aspartate (asp) and arginine (arg) in the leaves, with distinct tissue specific responses to an elevated N supply. Dark exposure induced an early transient rise of asp followed by a temporary increase of glu. A strong positive N effect of high N t contents of cuttings on AR formation after 384 h was observed. Root meristematic cells developed at 72 h with a negligible difference for two N t levels. After 168 h, an enhanced N t accelerated AR formation and gave rise to first obvious fully developed roots while only meristems were formed with a low N t . However, dark exposure for 168 h promoted AR formation particularly in cuttings with a low N t to such an extent so that the benefit of the enhanced N t was almost compensated. Combined dark exposure and low N t of

  12. Concerted transcription of auxin and carbohydrate homeostasis-related genes underlies improved adventitious rooting of microcuttings derived from far-red treated Eucalyptus globulus Labill mother plants.

    Science.gov (United States)

    Ruedell, Carolina Michels; de Almeida, Márcia Rodrigues; Fett-Neto, Arthur Germano

    2015-12-01

    Economically important plant species, such as Eucalyptus globulus, are often rooting recalcitrant. We have previously shown that far-red light enrichment applied to E. globulus donor-plants improved microcutting rooting competence and increased rooting zone/shoot carbohydrate ratio. To better understand this developmental response, the relative expression profiles of genes involved in auxin signaling (ARF6, ARF8, AGO1), biosynthesis (YUC3) and transport (AUX1, PIN1, PIN2); sucrose cleavage (SUS1, CWINV1), transport (SUC5), hexose phosphorylation (HXK1, FLN1) and starch biosynthesis (SS3) were quantified during adventitious rooting of E. globulus microcuttings derived from donor plants exposed to far-red or white light. Expression of auxin transport-related genes increased in the first days of root induction. Far-red enrichment of donor plants induced ARF6, ARF8 and AGO1 in microcuttings. The first two gene products could activate GH3 and other rooting related genes, whereas AGO1 deregulation of the repressor ARF17 may relief rooting inhibition. Increased sink strength at the basal stem with sucrose unloading in root tissue mediated by SUC and subsequent hydrolysis by SUS1 were also supported by gene expression profile. Fructose phosphorylation and starch biosynthesis could also contribute to proper carbon allocation at the site of rooting, as evidenced by increased expression of related genes. These data are in good agreement with increased contents of hexoses and starch at the cutting base severed from far-red exposed donor plants. To sum up, pathways integrating auxin and carbohydrate metabolism were activated in microcuttings derived from donor plants exposed to far red light enrichment, thereby improving rooting response in E. globulus. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  13. Differential auxin transport and accumulation in the stem base lead to profuse adventitious root primordia formation in the aerial roots (aer) mutant of tomato (Solanum lycopersicum L.).

    Science.gov (United States)

    Mignolli, F; Mariotti, L; Picciarelli, P; Vidoz, M L

    2017-06-01

    The aerial roots (aer) mutant of tomato is characterized by a profuse and precocious formation of adventitious root primordia along the stem. We demonstrated that auxin is involved in the aer phenotype but ruled out higher auxin sensitivity of mutant plants. Interestingly, polar auxin transport was altered in aer, as young seedlings showed a reduced response to an auxin transport inhibitor and higher expression of auxin export carriers SlPIN1 and SlPIN3. An abrupt reduction in transcripts of auxin efflux and influx genes in older aer hypocotyls caused a marked deceleration of auxin transport in more mature tissues. Indeed, in 20days old aer plants, the transport of labeled IAA was faster in apices than in hypocotyls, displaying an opposite trend in comparison to a wild type. In addition, auxin transport facilitators (SlPIN1, SlPIN4, SlLAX5) were more expressed in aer apices than in hypocotyls, suggesting that auxin moves faster from the upper to the lower part of the stem. Consequently, a significantly higher level of free and conjugated IAA was found at the base of aer stems with respect to their apices. This auxin accumulation is likely the cause of the aer phenotype. Copyright © 2017 Elsevier GmbH. All rights reserved.

  14. The effects of exogenous hormones on rooting process and the activities of key enzymes of Malus hupehensis stem cuttings.

    Science.gov (United States)

    Zhang, Wangxiang; Fan, Junjun; Tan, Qianqian; Zhao, Mingming; Zhou, Ting; Cao, Fuliang

    2017-01-01

    Malus hupehensis is an excellent Malus rootstock species, known for its strong adverse-resistance and apomixes. In the present study, stem cuttings of M. hupehensis were treated with three types of exogenous hormones, including indole acetic acid (IAA), naphthalene acetic acid (NAA), or green growth regulator (GGR). The effects and mechanisms of exogenous hormone treatment and antioxidant enzyme activity on adventitious root formation were investigated. The results showed that the apparent morphology of the adventitious root had four stages, including root pre-emergence stage (S0), early stage of root formation (S1), massive root formation stage (S2), and later stage of root formation (S3). The suitable concentrations of the three exogenous hormones, IAA, NAA and GGR, were 100 mg·L-1, 300 mg·L-1, and 300 mg·L-1, respectively. They shortened the rooting time by 25-47.4% and increased the rooting percentages of cuttings by 0.9-1.3 times, compared with that in the control. The dispersion in S0 stage was 3.6 times of that in the S1 stage after exogenous hormone application. The earlier the third critical point (P3) appeared, the shorter the rooting time and the greater the rooting percentage of the cuttings. During rhizogenesis, the activities of three antioxidant enzymes (POD, SOD, and PPO) showed an A-shaped trend. However, peak values of enzyme activity appeared at different points, which were 9 d before the P3, P3, and the fourth critical point (P4), respectively. Exogenous hormone treatment reduced the time to reach the peak value by 18 days, although the peak values of the enzymatic activities did not significantly changed. Our results suggested that exogenous hormone treatment mainly acted during the root pre-emergence stage, accelerated the synthesis of antioxidant enzymes, reduced the rooting time, and consequently promoted root formation. The three kinds of antioxidant enzymes acted on different stages of rooting.

  15. A Co-Opted Hormonal Cascade Activates Dormant Adventitious Root Primordia upon Flooding in Solanum dulcamara.

    Science.gov (United States)

    Dawood, Thikra; Yang, Xinping; Visser, Eric J W; Te Beek, Tim A H; Kensche, Philip R; Cristescu, Simona M; Lee, Sangseok; Floková, Kristýna; Nguyen, Duy; Mariani, Celestina; Rieu, Ivo

    2016-04-01

    Soil flooding is a common stress factor affecting plants. To sustain root function in the hypoxic environment, flooding-tolerant plants may form new, aerenchymatous adventitious roots (ARs), originating from preformed, dormant primordia on the stem. We investigated the signaling pathway behind AR primordium reactivation in the dicot species Solanum dulcamara Transcriptome analysis indicated that flooding imposes a state of quiescence on the stem tissue, while increasing cellular activity in the AR primordia. Flooding led to ethylene accumulation in the lower stem region and subsequently to a drop in abscisic acid (ABA) level in both stem and AR primordia tissue. Whereas ABA treatment prevented activation of AR primordia by flooding, inhibition of ABA synthesis was sufficient to activate them in absence of flooding. Together, this reveals that there is a highly tissue-specific response to reduced ABA levels. The central role for ABA in the response differentiates the pathway identified here from the AR emergence pathway known from rice (Oryza sativa). Flooding and ethylene treatment also induced expression of the polar auxin transporter PIN2, and silencing of this gene or chemical inhibition of auxin transport inhibited primordium activation, even though ABA levels were reduced. Auxin treatment, however, was not sufficient for AR emergence, indicating that the auxin pathway acts in parallel with the requirement for ABA reduction. In conclusion, adaptation of S. dulcamara to wet habitats involved co-option of a hormonal signaling cascade well known to regulate shoot growth responses, to direct a root developmental program upon soil flooding. © 2016 American Society of Plant Biologists. All Rights Reserved.

  16. Effects of light and growth regulators on adventitious bud formation in horseradish (Armoracia rusticana).

    Science.gov (United States)

    Kamada, H; Tachikawa, Y; Saitou, T; Harada, H

    1995-07-01

    To clarify that the presence of Ri T-DNA genes are not prerequisite for the light-induced bud formation in horseradish (Armoracia rusticana) hairy roots, leaf and root segments of nontransformed horseradish plants were used as explants. Bud formation from nontransformed tissues was observed in hormone-free medium under 16 h daylight conditions, but not under continuous darkness. To investigate the effects of growth regulators on bud formation, leaf and root explants were treated with auxin (1-naphthaleneacetic acid; NAA) and / or cytokinin (6-benzyl-aminopurine; BA). The most effective treatment in the dark to stimulate bud formation was BA at 1 mg·1(-1). These results show that adventitious bud formation in horseradish can be induced by light and growth regulators, and especially cytokinin, may be involved in bud formation, irrespective of whether the tissues were transformed with Ri T-DNA.

  17. The PIN1 family gene PvPIN1 is involved in auxin-dependent root emergence and tillering in switchgrass

    Directory of Open Access Journals (Sweden)

    Kaijie Xu

    2016-03-01

    Full Text Available Abstract Switchgrass (Panicum virgatum L.; family Poaceae is a warm-season C4 perennial grass. Tillering plays an important role in determining the morphology of aboveground parts and the final biomass yield of switchgrass. Auxin distribution in plants can affect a variety of important growth and developmental processes, including the regulation of shoot and root branching, plant resistance and biological yield. Auxin transport and gradients in plants are mediated by influx and efflux carriers. PvPIN1, a switchgrass PIN1-like gene that is involved in regulating polar transport, is a putative auxin efflux carrier. Neighbor-joining analysis using sequences deposited in NCBI databases showed that the PvPIN1gene belongs to the PIN1 family and is evolutionarily closer to the Oryza sativa japonica group. Tiller emergence and development was significantly promoted in plants subjected toPvPIN1 RNA interference (RNAi, which yielded a phenotype similar to that of wild-type plants treated with the auxin transport inhibitor TIBA (2,3,5-triiodobenzoic acid. A transgenic approach that inducedPvPIN1 gene overexpression or suppression altered tiller number and the shoot/root ratio. These data suggest that PvPIN1plays an important role in auxin-dependent adventitious root emergence and tillering.

  18. In vitro regeneration of Salix nigra from adventitious shoots.

    Science.gov (United States)

    Lyyra, Satu; Lima, Amparo; Merkle, Scott A

    2006-07-01

    Black willow (Salix nigra Marsh.) is the largest and only commercially important willow species in North America. It is a candidate for phytoremediation of polluted soils because it is fast-growing and thrives on floodplains throughout eastern USA. Our objective was to develop a protocol for the in vitro regeneration of black willow plants that could serve as target material for gene transformation. Unexpanded inflorescence explants were excised from dormant buds collected from three source trees and cultured on woody plant medium (WPM) supplemented with one of: (1) 0.1 mg l(-1) thidiazuron (TDZ); (2) 0.5 mg l(-1) 6-benzoaminopurine (BAP); or (3) 1 mg l(-1) BAP. All plant growth regulator (PGR) treatments induced direct adventitious bud formation from the genotypes. The percentage of explants producing buds ranged from 20 to 92%, depending on genotype and treatment. Although most of the TDZ-treated inflorescences produced buds, these buds failed to elongate into shoots. Buds on explants treated with BAP elongated into shoots that were easily rooted in vitro and further established in potting mix in high humidity. The PGR treatments significantly affected shoot regeneration frequency (P < 0.01). The highest shoot regeneration frequency (36%) was achieved with Genotype 3 cultured on 0.5 mg l(-1) BAP. Mean number of shoots per explant varied from one to five. The ability of black willow inflorescences to produce adventitious shoots makes them potential targets for Agrobacterium-mediated transformation with heavy-metal-resistant genes for phytoremediation.

  19. Clonal variation in lateral and basal rooting of Populus irrigated with landfill leachate

    Science.gov (United States)

    R.S. Zalesny Jr.; J.A. Zalesny

    2011-01-01

    Successful establishment and productivity of Populus depends upon adventitious rooting from: 1) lateral roots that develop from either preformed or induced primordia and 2) basal roots that differentiate from callus at the base of the cutting in response to wounding. Information is needed for phytotechnologies about the degree to which ...

  20. Dynamics of adventitious rooting in mini-cuttings of Eucalyptus benthamii x Eucalyptus dunnii=Dinamica de enraizamento adventício em miniestacas de Eucalyptus benthamii x Eucalyptus dunnii

    Directory of Open Access Journals (Sweden)

    Antônio Natal Gonçalves

    2012-04-01

    Full Text Available It is possible to determine the optimum time for permanence of vegetative propagules (mini-cuttings inside a greenhouse for rooting, and this value can be used to optimize the structure of the nursery. The aim of this study was to determine the dynamics of adventitious rooting in mini-cuttings of three clones of Eucalyptus benthamii x Eucalyptus dunnii. Sprouts of H12, H19 and H20 clones were collected from mini-stumps that were planted in gutters containing sand and grown in a semi-hydroponic system. The basal region of the mini-cuttings was immersed in 2,000 mg L-1 indole-3-butyric acid (IBA solution for 10 seconds. The rooting percentage of the mini-cuttings, the total length of the root system and the rooting rate per mini-cutting were also evaluated at 0 (time of planting, 7, 14, 21, 28, 35, 42, 49 and 56 days. We used logistic and exponential regression to mathematically model the speed of rhizogenesis. The rooting percentage was best represented as a logistic model, and the total length of the root system was best represented as an exponential model. The clones had different speeds of adventitious rooting. The optimum time for permanence of the mini-cuttings inside the greenhouse for rooting was between 35 and 42 days, and varied depending on the genetic material.O tempo ideal de permanência de propágulos vegetativos (miniestacas no interior da casa de vegetação para a rizogênese é possível de ser determinado matematicamente, o que pode otimizar as instalações do viveiro. O objetivo deste estudo foi determinar a dinâmica de enraizamento de miniestacas de três clones de Eucalyptus benthamii x Eucalyptus dunnii. Brotações dos clones H19, H12 e H20 foram coletadas de minicepas plantadas em canaletão com areia e cultivadas sob sistema semi-hidropônico. A região basal da miniestaca foi imersa em solução de 2.000 mg L-1 de ácido indolbutírico (AIB por 10 segundos. A porcentagem de enraizamento de miniestacas, o comprimento

  1. Lipopolysaccharide promotes lipid accumulation in human adventitial fibroblasts via TLR4-NF-κB pathway

    Directory of Open Access Journals (Sweden)

    Wang Jun

    2012-10-01

    Full Text Available Abstract Background Atherosclerosis is a chronic degenerative disease of the arteries and is thought to be one of the most common causes of death globally. In recent years, the functions of adventitial fibroblasts in the development of atherosclerosis and tissue repair have gained increased interests. LPS can increase the morbidity and mortality of atherosclerosis-associated cardiovascular disease. Although LPS increases neointimal via TLR4 activation has been reported, how LPS augments atherogenesis through acting on adventitial fibroblasts is still unknown. Here we explored lipid deposition within adventitial fibroblasts mediated by lipopolysaccharide (LPS to imitate inflammatory conditions. Results In our study, LPS enhanced lipid deposition by the up-regulated expression of adipose differentiation-related protein (ADRP as the silencing of ADRP abrogated lipid deposition in LPS-activated adventitial fibroblasts. In addition, pre-treatment with anti-Toll-like receptor 4 (TLR4 antibody diminished the LPS-induced lipid deposition and ADRP expression. Moreover, LPS induced translocation of nuclear factor-κB (NF-κB, which could markedly up-regulate lipid deposition as pre-treatment with the NF-κB inhibitor, PDTC, significantly reduced lipid droplets. In addition, the lowering lipid accumulation was accompanied with the decreased ADRP expression. Furthermore, LPS-induced adventitial fibroblasts secreted more monocyte chemoattractant protein (MCP-1, compared with transforming growth factor-β1 (TGF-β1. Conclusions Taken together, these results suggest that LPS promotes lipid accumulation via the up-regulation of ADRP expression through TLR4 activated downstream of NF-κB in adventitial fibroblasts. Increased levels of MCP-1 released from LPS-activated adventitial fibroblasts and lipid accumulation may accelerate monocytes recruitment and lipid-laden macrophage foam cells formation. Here, our study provides a new explanation as to how bacterial

  2. Lipopolysaccharide promotes lipid accumulation in human adventitial fibroblasts via TLR4-NF-κB pathway.

    Science.gov (United States)

    Wang, Jun; Si, Yanfang; Wu, Chen; Sun, Lu; Ma, Yudong; Ge, Aili; Li, Baomin

    2012-10-17

    Atherosclerosis is a chronic degenerative disease of the arteries and is thought to be one of the most common causes of death globally. In recent years, the functions of adventitial fibroblasts in the development of atherosclerosis and tissue repair have gained increased interests. LPS can increase the morbidity and mortality of atherosclerosis-associated cardiovascular disease. Although LPS increases neointimal via TLR4 activation has been reported, how LPS augments atherogenesis through acting on adventitial fibroblasts is still unknown. Here we explored lipid deposition within adventitial fibroblasts mediated by lipopolysaccharide (LPS) to imitate inflammatory conditions. In our study, LPS enhanced lipid deposition by the up-regulated expression of adipose differentiation-related protein (ADRP) as the silencing of ADRP abrogated lipid deposition in LPS-activated adventitial fibroblasts. In addition, pre-treatment with anti-Toll-like receptor 4 (TLR4) antibody diminished the LPS-induced lipid deposition and ADRP expression. Moreover, LPS induced translocation of nuclear factor-κB (NF-κB), which could markedly up-regulate lipid deposition as pre-treatment with the NF-κB inhibitor, PDTC, significantly reduced lipid droplets. In addition, the lowering lipid accumulation was accompanied with the decreased ADRP expression. Furthermore, LPS-induced adventitial fibroblasts secreted more monocyte chemoattractant protein (MCP-1), compared with transforming growth factor-β1 (TGF-β1). Taken together, these results suggest that LPS promotes lipid accumulation via the up-regulation of ADRP expression through TLR4 activated downstream of NF-κB in adventitial fibroblasts. Increased levels of MCP-1 released from LPS-activated adventitial fibroblasts and lipid accumulation may accelerate monocytes recruitment and lipid-laden macrophage foam cells formation. Here, our study provides a new explanation as to how bacterial infection contributes to the pathological process of

  3. Adventitial SCA-1+ Progenitor Cell Gene Sequencing Reveals the Mechanisms of Cell Migration in Response to Hyperlipidemia

    Directory of Open Access Journals (Sweden)

    Ioannis Kokkinopoulos

    2017-08-01

    Full Text Available Adventitial progenitor cells, including SCA-1+ and mesenchymal stem cells, are believed to be important in vascular remodeling. It has been shown that SCA-1+ progenitor cells are involved in neointimal hyperplasia of vein grafts, but little is known concerning their involvement in hyperlipidemia-induced atherosclerosis. We employed single-cell sequencing technology on primary adventitial mouse SCA-1+ cells from wild-type and atherosclerotic-prone (ApoE-deficient mice and found that a group of genes controlling cell migration and matrix protein degradation was highly altered. Adventitial progenitors from ApoE-deficient mice displayed an augmented migratory potential both in vitro and in vivo. This increased migratory ability was mimicked by lipid loading to SCA-1+ cells. Furthermore, we show that lipid loading increased miRNA-29b expression and induced sirtuin-1 and matrix metalloproteinase-9 levels to promote cell migration. These results provide direct evidence that blood cholesterol levels influence vascular progenitor cell function, which could be a potential target cell for treatment of vascular disease.

  4. In vitro root induction of faba bean (Vicia faba L.).

    Science.gov (United States)

    Ismail, Roba M; Elazab, Heba E M; Hussein, Gihan M H; Metry, Emad A

    2011-01-01

    A major challenge for regeneration of faba bean (Vicia faba L.) plants is the difficulty of in vitro root induction. In the present study, in vitro rooting and its architecture have been studied. Adventitious root formation was successfully induced from regenerated faba bean shoots of four Egyptian cultivars, i.e., Giza 461, Giza 40, Giza 834 and Giza 716 on hormone free MS medium supplemented with 5 mg/l silver nitrate. Among the four cultivars, Giza 461 and Giza 40 were recorded as the highest root formation response (75 % and 65) followed by cultivars Giza716 and Giza843 (20%, and 10%). Anatomical study proved that the produced roots are initiated as the adventitious lateral root (LR) with tri-arch xylem strands as compared with the penta-arch of the primary roots of the intact faba bean seedling. The obtained results overcome the root induction problem in faba bean.

  5. Dynamic transcriptional profiling provides insights into tuberous root development in Rehmannia glutinosa

    Directory of Open Access Journals (Sweden)

    Peng eSun

    2015-06-01

    Full Text Available Rehmannia glutinosa, a herb of the Scrophulariaceae family, is widely cultivated in the Northern part of China. The tuberous root has well known medicinal properties; however, yield and quality are threatened by abiotic and biotic stresses. Understanding the molecular process of tuberous root development may help identify novel targets for its control. In the present study, we used Illumina sequencing and de novo assembly strategies to obtain a reference transcriptome that is relevant to tuberous root development. We then conducted RNA-seq quantification analysis to determine gene expression profiles of the adventitious root (AR, thickening adventitious root (TAR, and the developing tuberous root (DTR. Expression profiling identified a total of 6,974 differentially expressed unigenes during root developmental. Bioinformatics analysis and gene expression profiling revealed changes in phenylpropanoid biosynthesis, starch and sucrose metabolism, and plant hormone biosynthesis during root development. Moreover, we identified and allocated putative functions to the genes involved in tuberous root development, including genes related to major carbohydrate metabolism, hormone metabolism, and transcription regulation. The present study provides the initial description of gene expression profiles of AR, TAR, and DTR, which facilitates identification of genes of interest. Moreover, our work provides insights into the molecular mechanisms underlying tuberous root development and may assist in the design and development of improved breeding schemes for different R. glutinosa varieties through genetic manipulation.

  6. Aspergillus niger Enhance Bioactive Compounds Biosynthesis As Well As Expression of Functional Genes in Adventitious Roots of Glycyrrhiza uralensis Fisch.

    Science.gov (United States)

    Li, Jing; Wang, Juan; Li, Jinxin; Liu, Dahui; Li, Hongfa; Gao, Wenyuan; Li, Jianli; Liu, Shujie

    2016-02-01

    In the present study, the culture conditions for the accumulation of Glycyrrhiza uralensis adventitious root metabolites in balloon-type bubble bioreactors (BTBBs) have been optimized. The results of the culture showed that the best culture conditions were a cone angle of 90° bioreactor and 0.4-0.6-0.4-vvm aeration volume. Aspergillus niger can be used as a fungal elicitor to enhance the production of defense compounds in plants. With the addition of a fungal elicitor (derived from Aspergillus niger), the maximum accumulation of total flavonoids (16.12 mg g(-1)) and glycyrrhetinic acid (0.18 mg g(-1)) occurred at a dose of 400 mg L(-1) of Aspergillus niger resulting in a 3.47-fold and 1.8-fold increase over control roots. However, the highest concentration of polysaccharide (106.06 mg g(-1)) was achieved with a mixture of elicitors (Aspergillus niger and salicylic acid) added to the medium, resulting in a 1.09-fold increase over Aspergillus niger treatment alone. Electrospray ionization tandem mass spectrometry (ESI-MS(n)) analysis was performed, showing that seven compounds were present after treatment with the elicitors, including uralsaponin B, licorice saponin B2, liquiritin, and (3R)-vestitol, only identified in the mixed elicitor treatment group. It has also been found that elicitors (Aspergillus niger and salicylic acid) significantly upregulated the expression of the cinnamate 4-hydroxylase (C4H), β-amyrin synthase (β-AS), squalene epoxidase (SE) and a cytochrome P450 monooxygenase (CYP72A154) genes, which are involved in the biosynthesis of bioactive compounds, and increased superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) activity.

  7. Cytokinin-induced promotion of root meristem size in the fern Azolla supports a shoot-like origin of euphyllophyte roots.

    Science.gov (United States)

    de Vries, Jan; Fischer, Angela Melanie; Roettger, Mayo; Rommel, Sophie; Schluepmann, Henriette; Bräutigam, Andrea; Carlsbecker, Annelie; Gould, Sven Bernhard

    2016-01-01

    The phytohormones cytokinin and auxin orchestrate the root meristem development in angiosperms by determining embryonic bipolarity. Ferns, having the most basal euphyllophyte root, form neither bipolar embryos nor permanent embryonic primary roots but rather an adventitious root system. This raises the questions of how auxin and cytokinin govern fern root system architecture and whether this can tell us something about the origin of that root. Using Azolla filiculoides, we characterized the influence of IAA and zeatin on adventitious fern root meristems and vasculature by Nomarski microscopy. Simultaneously, RNAseq analyses, yielding 36,091 contigs, were used to uncover how the phytohormones affect root tip gene expression. We show that auxin restricts Azolla root meristem development, while cytokinin promotes it; it is the opposite effect of what is observed in Arabidopsis. Global gene expression profiling uncovered 145 genes significantly regulated by cytokinin or auxin, including cell wall modulators, cell division regulators and lateral root formation coordinators. Our data illuminate both evolution and development of fern roots. Promotion of meristem size through cytokinin supports the idea that root meristems of euphyllophytes evolved from shoot meristems. The foundation of these roots was laid in a postembryonically branching shoot system. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  8. In vitro propagation of Cymbidium goeringii Reichenbach fil. through direct adventitious shoot regeneration.

    Science.gov (United States)

    Park, Han Yong; Kang, Kyung Won; Kim, Doo Hwan; Sivanesan, Iyyakkannu

    2018-03-01

    The influence of 2,4-dichlorophenoxyacetic acid (2,4-D), benzyladenine (BA), and thidiazuron (TDZ) on direct rhizome induction and shoot formation from rhizome explants of Cymbidium goeringii was explored. Rhizome segments obtained from in vitro seed cultures of C. goeringii were placed on Murashige and Skoog (MS) medium incorporated with 5, 10, 20, or 40 µM 2,4-D and 1, 2, 4, or 8 µM BA or TDZ alone or in combination with 20 µM 2,4-D. The explants developed only rhizomes on MS medium with or without 2,4-D. The highest percent of rhizome formation (100%) was obtained on MS medium incorporated with 20 μM of 2,4-D. The morphology and number of rhizomes varied with the level of 2,4-D in the medium. Direct adventitious shoot formation was achieved on medium incorporated with BA or TDZ. The adventitious shoots produced per explant significantly increased with the supplementation of 2,4-D to cytokinin-containing medium. The highest mean of 21.8 ± 1.8 shoot buds per rhizome segment was obtained in medium fortified with 20 μM 2,4-D and 2 μM TDZ. The greatest percent of root induction (100%) and the mean of 5.3 ± 1.1 roots per shoot were achieved on ½ MS medium incorporated with 2 μM of α-naphthaleneacetic acid. About 97% of the in vitro-produced plantlets acclimatized in the greenhouse. An efficient in vitro propagation protocol was thus developed for C. goeringii using rhizome explants.

  9. Cystic adventitial degeneration: ectopic ganglia from adjacent joint capsules.

    Science.gov (United States)

    Ortmann, J; Widmer, M K; Gretener, S; Do, D D; Willenberg, T; Daliri, A; Baumgartner, I

    2009-11-01

    Cystic adventitial degeneration is a rare non-atherosclerotic cause of peripheral arterial occlusive disease, mainly seen in young men without other evidence of vascular disease. Diagnosis will be established by clinical findings and by ultrasound or angiography and can be treated by excision or enucleation of the affected arterial segment or by percutaneous ultrasound-guided aspiration. However, the etiology of adventitial cysts remains unknown. We report a case of cystic adventitial degeneration showing a connection between the joint capsule and the adventitial cyst, supporting the theory that cystic adventitial degeneration may represent ectopic ganglia from adjacent joint capsules.

  10. Variation of root system characters in collection of semi-dwarf spring barley mutants

    International Nuclear Information System (INIS)

    Nawrot, M.; Zbieszczyk, J.; Maluszynski, M.

    2000-01-01

    The collection of 371 semi-dwarf mutants, derived from 12 spring barley varieties has been used as material for analysis of root system. The mutants have been obtained after mutagenic treatment with N-methyl-N-nitroso urea (MNH), sodium azide (NaN3), gamma-rays and fast neutrons. The following analysis of root system were performed: seminal root growth of 8-day old seedlings, seminal and adventitious root growth of 6-week old plants and dynamics of root growth during first 6 weeks of plant growth. Seminal root length, root number and the length of the first leaf in barley mutants were investigated with the use of paper rollers. Root system analysis of 6-week old plants was performed on genotypes grown in PVC tubes filled with sand, supplemented with 1 mineral salts of MS medium. The following measurements were made: the length of the longest seminal root and the longest adventitious root, the number of adventitious roots and the number of tillers. Analysis of dynamics of root growth during the first six weeks of vegetation was performed at the end of each 7-day growth period in the PVC tubes filled with sand. Great variability in the seminal root length was found in analysed 8-day old seedling population. Almost half of the analysed mutants showed significant root length reduction, but about ten percent of semi-dwarf mutants developed roots with an increased length in comparison to parents. No significant differences were found between analysed mutants and corresponding parent varieties regarding the number of seminal roots. After six weeks of growth, the selected mutants showed differences in the reduction of root length in comparison to the 8-day old seedlings. The results of root growth dynamics indicated that analysed mutants had different patterns in comparison to the parent variety. Differences in the growth dynamics were also observed among the parent varieties. The observed differences in pattern of root growth between mutants and corresponding parents

  11. Arabidopsis SHR and SCR transcription factors and AUX1 auxin influx carrier control the switch between adventitious rooting and xylogenesis in planta and in in vitro cultured thin cell layers.

    Science.gov (United States)

    Della Rovere, F; Fattorini, L; D'Angeli, S; Veloccia, A; Del Duca, S; Cai, G; Falasca, G; Altamura, M M

    2015-03-01

    Adventitious roots (ARs) are essential for vegetative propagation. The Arabidopsis thaliana transcription factors SHORT ROOT (SHR) and SCARECROW (SCR) affect primary/lateral root development, but their involvement in AR formation is uncertain. LAX3 and AUX1 auxin influx carriers contribute to primary/lateral root development. LAX3 expression is regulated by SHR, and LAX3 contributes to AR tip auxin maximum. In contrast, AUX1 involvement in AR development is unknown. Xylogenesis is induced by auxin plus cytokinin as is AR formation, but the genes involved are largely unknown. Stem thin cell layers (TCLs) form ARs and undergo xylogenesis under the same auxin plus cytokinin input. The aim of this research was to investigate SHR, SCR, AUX1 and LAX3 involvement in AR formation and xylogenesis in intact hypocotyls and stem TCLs in arabidopsis. Hypocotyls of scr-1, shr-1, lax3, aux1-21 and lax3/aux1-21 Arabidopsis thaliana null mutant seedlings grown with or without auxin plus cytokinin were examined histologically, as were stem TCLs cultured with auxin plus cytokinin. SCR and AUX1 expression was monitored using pSCR::GFP and AUX1::GUS lines, and LAX3 expression and auxin localization during xylogenesis were monitored by using LAX3::GUS and DR5::GUS lines. AR formation was inhibited in all mutants, except lax3. SCR was expressed in pericycle anticlinally derived AR-forming cells of intact hypocotyls, and in cell clumps forming AR meristemoids of TCLs. The apex was anomalous in shr and scr ARs. In all mutant hypocotyls, the pericycle divided periclinally to produce xylogenesis. Xylary element maturation was favoured by auxin plus cytokinin in shr and aux1-21. Xylogenesis was enhanced in TCLs, and in aux1-21 and shr in particular. AUX1 was expressed before LAX3, i.e. in the early derivatives leading to either ARs or xylogenesis. AR formation and xylogenesis are developmental programmes that are inversely related, but they involve fine-tuning by the same proteins, namely SHR

  12. Auxins differentially regulate root system architecture and cell cycle protein levels in maize seedlings.

    Science.gov (United States)

    Martínez-de la Cruz, Enrique; García-Ramírez, Elpidio; Vázquez-Ramos, Jorge M; Reyes de la Cruz, Homero; López-Bucio, José

    2015-03-15

    Maize (Zea mays) root system architecture has a complex organization, with adventitious and lateral roots determining its overall absorptive capacity. To generate basic information about the earlier stages of root development, we compared the post-embryonic growth of maize seedlings germinated in water-embedded cotton beds with that of plants obtained from embryonic axes cultivated in liquid medium. In addition, the effect of four different auxins, namely indole-3-acetic acid (IAA), 1-naphthaleneacetic acid (NAA), indole-3-butyric acid (IBA) and 2,4-dichlorophenoxyacetic acid (2,4-D) on root architecture and levels of the heat shock protein HSP101 and the cell cycle proteins CKS1, CYCA1 and CDKA1 were analyzed. Our data show that during the first days after germination, maize seedlings develop several root types with a simultaneous and/or continuous growth. The post-embryonic root development started with the formation of the primary root (PR) and seminal scutellar roots (SSR) and then continued with the formation of adventitious crown roots (CR), brace roots (BR) and lateral roots (LR). Auxins affected root architecture in a dose-response fashion; whereas NAA and IBA mostly stimulated crown root formation, 2,4-D showed a strong repressing effect on growth. The levels of HSP101, CKS1, CYCA1 and CDKA in root and leaf tissues were differentially affected by auxins and interestingly, HSP101 registered an auxin-inducible and root specific expression pattern. Taken together, our results show the timing of early branching patterns of maize and indicate that auxins regulate root development likely through modulation of the HSP101 and cell cycle proteins. Copyright © 2014 Elsevier GmbH. All rights reserved.

  13. Induction and establishment of adventitious and hairy root cultures ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-19

    Oct 19, 2009 ... vitro root culture has become an alternative method for the production of valuable ... and NAA 0.1-1.0 mg·L-1 alone or combinations of growth regulators,. IAA (0.5 mg·L-1) + NAA ... Data were analyzed by analy- sis of variance ...

  14. The function of root-systems in mineral nutrition of watercress (Rorippa nasturtium-Aquaticum (L) Hayek)

    International Nuclear Information System (INIS)

    Cumbus, I.P.; Robinson, L.W.

    1977-01-01

    The ability of 'adventitious' and 'basal' root systems of watercress (Rorippa nasturtium-aquaticum (L) Hayek) to absorb mineral nutrients from surrounding media is demonstrated using radioisotopes 32 P, 86 Rb and 59 Fe. Controlled experiments on single whole plants cultured in a dual-medium-apparatus, indicate that both root systems have a capacity for nutrient absorption. Analysis of axillary shoots formed during a seven day experimental period show that a greater proportion of phosphate and potassium, gained from the ambient media, was absorbed by the adventitious root system, although there was a greater mass of basal root tissue. Extensive translocation of nutrients to actively growing plant organs occurs from absorption sites on both root systems

  15. Variations of adventitious bud plants initiated from cutting scales of irradiated lily

    International Nuclear Information System (INIS)

    Zhang Kezhong; Zhao Xiangyun; Huang Shanwu; Lu Changxun; Zhang Qixiang

    2003-01-01

    Adventitious bud plants were initiated from cutting scales of irradiated lilies. During adventitious bud plants growth and development, variation was observed on their petals, stamens, pistils and leaves. Stamens gave birth to the highest mutation rate and the most diverse variation, such as no pollen male sterility type, pollen abortion male sterility type, stamen collapse male sterility type and partial male sterility type, etc. Different male sterility types were found among the three lilies. Considering mutation rate of adventitious bud plants, 1-2 Gy was suitable dose for 'Pollyana' and 1-3 Gy was proper to Lilium regale and 'Romano'

  16. Characterization of a resident population of adventitial macrophage progenitor cells in postnatal vasculature.

    Science.gov (United States)

    Psaltis, Peter J; Puranik, Amrutesh S; Spoon, Daniel B; Chue, Colin D; Hoffman, Scott J; Witt, Tyra A; Delacroix, Sinny; Kleppe, Laurel S; Mueske, Cheryl S; Pan, Shuchong; Gulati, Rajiv; Simari, Robert D

    2014-07-18

    Macrophages regulate blood vessel structure and function in health and disease. The origins of tissue macrophages are diverse, with evidence for local production and circulatory renewal. We identified a vascular adventitial population containing macrophage progenitor cells and investigated their origins and fate. Single-cell disaggregates from adult C57BL/6 mice were prepared from different tissues and tested for their capacity to form hematopoietic colony-forming units. Aorta showed a unique predilection for generating macrophage colony-forming units. Aortic macrophage colony-forming unit progenitors coexpressed stem cell antigen-1 and CD45 and were adventitially located, where they were the predominant source of proliferating cells in the aortic wall. Aortic Sca-1(+)CD45(+) cells were transcriptionally and phenotypically distinct from neighboring cells lacking stem cell antigen-1 or CD45 and contained a proliferative (Ki67(+)) Lin(-)c-Kit(+)CD135(-)CD115(+)CX3CR1(+)Ly6C(+)CD11b(-) subpopulation, consistent with the immunophenotypic profile of macrophage progenitors. Adoptive transfer studies revealed that Sca-1(+)CD45(+) adventitial macrophage progenitor cells were not replenished via the circulation from bone marrow or spleen, nor was their prevalence diminished by depletion of monocytes or macrophages by liposomal clodronate treatment or genetic deficiency of macrophage colony-stimulating factor. Rather adventitial macrophage progenitor cells were upregulated in hyperlipidemic ApoE(-/-) and LDL-R(-/-) mice, with adventitial transfer experiments demonstrating their durable contribution to macrophage progeny particularly in the adventitia, and to a lesser extent the atheroma, of atherosclerotic carotid arteries. The discovery and characterization of resident vascular adventitial macrophage progenitor cells provides new insight into adventitial biology and its participation in atherosclerosis and provokes consideration of the broader existence of local macrophage

  17. Axillary bud and pericycle involved in the thickening process of the rhizophore nodes in Smilax species

    Directory of Open Access Journals (Sweden)

    B Appezzato-da-Glória

    Full Text Available AbstractThe species of the genus Smilax, popularly known as sarsaparilla, are widely used in folk medicine due to the antirheumatic properties of its underground structures. Smilax fluminensis and S. syphilitica occur in forested areas and form thickened stems called rhizophores from which adventitious roots grow. To provide information for more accurate identification of the commercialised product and for elucidating the process of stem thickening, a morphology and anatomy study of the underground organs of the two species was conducted. The adventitious roots differ in colour and diameter depending on the stage of development. They are white and have a larger diameter in the early stages of development, but as they grow, the adventitious roots become brown and have a smaller diameter due to the disintegration of the epidermis and virtually the entire cortex. In brown roots, the covering function is then performed by the lignified endodermis and the remaining walls of the cells from the last parenchyma cortical layer. These results are similar to those found in studies of other Smilax and suggest that the anatomy of the roots can be useful for identifying fraud in commercialised materials. The thickening process of the nodal regions of the rhizophores in both species involves the activity of axillary buds and pericyclic layers.

  18. The effect of root temperature on the uptake and metabolism of anions by the root system of Zea mays L. I

    International Nuclear Information System (INIS)

    Holobrada, M.; Mistrik, I.; Kolek, J.

    1980-01-01

    The effect of root temperature upon the uptake of 35 S-sulfate by intact 21 days old maize roots was discussed. The plant roots grown at 20 degC were cooled in steps down to 15 degC or 5 degC. The rate of 35 S uptake was studied both in the whole root system and separately in the individual roots (primary seminal root, seminal adventitious roots and nodal roots). Differences were ascertained at lower uptakes by various root samples from resistant and nonresistant maize cultivars. (author)

  19. Selection of Common Bean Lines, Recombinant Inbred Lines and Commercial Genotypes Tolerant to Low Phosphorus Availability in an Acrisol Soil on the Basis of Root Traits and Grain Yield

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, A.; Gomez, L. A.; Morales, A. [Instituto de Suelos, MINAG (Cuba); others, and

    2013-11-15

    Common bean (Phaseolus vulgaris L.) is the most important food legume for human consumption worldwide and especially in Latin America and Africa, but low soil phosphorus (P) availability limits grain production in these areas. For these reason eighty five recombinant inbred lines (RILs) of BAT 477 x DOR 364 and twenty commercial bean genotypes were sown in plots in an Acrisol soil with low P availability to evaluate nine root traits and grain yield. The study was carried out in Pinar del Rio province in Cuba between November 2006 and February 2009. The plots received basal fertilization (N and K) and P fertilization between 15 and 90 kg P{sub 2}O{sub 5} ha{sup -1}. Ten plants were sampled from each plot at R{sub 6} pod fill to evaluate root traits and shoot biomass, and at R{sub 9} physiological maturity to estimate grain yield. The 85 RILs showed great variability for root traits, grain yield and P stress tolerance calculated as relative grain yield. The commercial bean lines also showed large diversity in yield parameters. Principal Component Analysis showed that there were high and significant correlations between root traits (basal root number, primary root depth, adventitious root length and adventitious root number) and grain yield parameters (grain yield at 15 P level and relative grain yields). Adventitious root traits showed the greatest correlation with yield under low P. Promising RILs included 75.1.1, 60.1.1, 38.1.1, 14.1.1 and 38.1.1 and promising commercial bean lines included ICA Pijao, BAT 482, ICA 23, BAT 24 and BAT 832. (author)

  20. Non-canonical WOX11-mediated root branching contributes to plasticity in Arabidopsis root system architecture.

    Science.gov (United States)

    Sheng, Lihong; Hu, Xiaomei; Du, Yujuan; Zhang, Guifang; Huang, Hai; Scheres, Ben; Xu, Lin

    2017-09-01

    Lateral roots (LRs), which originate from the growing root, and adventitious roots (ARs), which are formed from non-root organs, are the main contributors to the post-embryonic root system in Arabidopsis However, our knowledge of how formation of the root system is altered in response to diverse inductive cues is limited. Here, we show that WOX11 contributes to root system plasticity. When seedlings are grown vertically on medium, WOX11 is not expressed in LR founder cells. During AR initiation, WOX11 is expressed in AR founder cells and activates LBD16 LBD16 also functions in LR formation and is activated in that context by ARF7 / 19 and not by WOX11 This indicates that divergent initial processes that lead to ARs and LRs may converge on a similar mechanism for primordium development. Furthermore, we demonstrated that when plants are grown in soil or upon wounding on medium, the primary root is able to produce both WOX11 -mediated and non- WOX11 -mediated roots. The discovery of WOX11 -mediated root-derived roots reveals a previously uncharacterized pathway that confers plasticity during the generation of root system architecture in response to different inductive cues. © 2017. Published by The Company of Biologists Ltd.

  1. The effect of flowering on adventitious root-formation

    NARCIS (Netherlands)

    Selim, H.H.A.

    1956-01-01

    The rooting of cuttings from day-neutral tomato was not influenced by flower development, nor by SD or LD treatments of them or of the mother plants. In cuttings of the SD plant Perilla crispa flower initiation and development severely inhibited rooting. Leaves produced about 61 %

  2. CsSCL1 is differentially regulated upon maturation in chestnut microshoots and is specifically expressed in rooting-competent cells.

    Science.gov (United States)

    Vielba, Jesús M; Díaz-Sala, Carmen; Ferro, Enrique; Rico, Saleta; Lamprecht, María; Abarca, Dolores; Ballester, Antonio; Sánchez, Conchi

    2011-10-01

    The Castanea sativa SCL1 gene (CsSCL1) has previously been shown to be induced by auxin during adventitious root (AR) formation in rooting-competent microshoots. However, its expression has not previously been analyzed in rooting-incompetent shoots. This study focuses on the regulation of CsSCL1 during maturation and the role of the gene in the formation of AR. The expression of CsSCL1 in rooting-incompetent microshoots and other tissues was investigated by quantitative reverse transcriptase--polymerase chain reaction. The analysis was complemented by in situ hybridization of the basal segments of rooting-competent and --incompetent microshoots during AR induction, as well as in AR and lateral roots. It was found that CsSCL1 is upregulated by auxin in a cell-type- and phase-dependent manner during the induction of AR. In root-forming shoots, CsSCL1 mRNA was specifically located in the cambial zone and derivative cells, which are rooting-competent cells, whereas in rooting-incompetent shoots the hybridization signal was more diffuse and evenly distributed through the phloem and parenchyma. CsSCL1 expression was also detected in lateral roots and axillary buds. The different CsSCL1 expression patterns in rooting-competent and -incompetent microshoots, together with the specific location of transcripts in cell types involved in root meristem initiation and in the root primordia of AR and lateral roots, indicate an important role for the gene in determining whether certain cells will enter the root differentiation pathway and its involvement in meristem maintenance.

  3. Arabidopsis: an adequate model for dicot root systems?

    Directory of Open Access Journals (Sweden)

    Richard W Zobel

    2016-02-01

    Full Text Available The Arabidopsis root system is frequently considered to have only three classes of root: primary, lateral, and adventitious. Research with other plant species has suggested up to 8 different developmental/functional classes of root for a given plant root system. If Arabidopsis has only three classes of root, it may not be an adequate model for eudicot plant root systems. Recent research, however, can be interpreted to suggest that pre-flowering Arabidopsis does have at least five (5 of these classes of root. This then suggests that Arabidopsis root research can be considered an adequate model for eudicot plant root systems.

  4. Checklist of root-sprouters in the Czech flora: mapping the gaps in our knowledge

    Czech Academy of Sciences Publication Activity Database

    Bartušková, Alena; Malíková, Lenka; Klimešová, Jitka

    2017-01-01

    Roč. 52, 3-4 (2017), s. 337-343 ISSN 1211-9520 R&D Projects: GA ČR GB14-36079G Institutional support: RVO:67985939 Keywords : adventitious bud * root * hypocotyl Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 1.017, year: 2016

  5. Protease-activated receptor 1 and 2 contribute to angiotensin II-induced activation of adventitial fibroblasts from rat aorta

    Energy Technology Data Exchange (ETDEWEB)

    He, Rui-Qing; Tang, Xiao-Feng; Zhang, Bao-Li [State Key Laboratory of Medical Genetics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (China); Shanghai Institute of Hypertension, Shanghai (China); Li, Xiao-Dong [State Key Laboratory of Medical Genetics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (China); Laboratory of Vascular Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai (China); Shanghai Institute of Hypertension, Shanghai (China); Hong, Mo-Na [State Key Laboratory of Medical Genetics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (China); Shanghai Institute of Hypertension, Shanghai (China); Chen, Qi-Zhi [Shanghai Institute of Hypertension, Shanghai (China); Han, Wei-Qing, E-mail: whan020@gmail.com [State Key Laboratory of Medical Genetics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (China); Laboratory of Vascular Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai (China); Shanghai Institute of Hypertension, Shanghai (China); Gao, Ping-Jin, E-mail: gaopingjin@sibs.ac.cn [State Key Laboratory of Medical Genetics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (China); Laboratory of Vascular Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai (China); Shanghai Institute of Hypertension, Shanghai (China)

    2016-04-29

    Adventitial fibroblasts (AFs) can be activated by angiotensin II (Ang II) and exert pro-fibrotic and pro-inflammatory effects in vascular remodeling. Protease-activated receptor (PAR) 1 and 2 play a significant role in fibrogenic and inflammatory diseases. The present study hypothesized that PAR1 and PAR2 are involved in Ang II-induced AF activation and contribute to adventitial remodeling. We found that direct activation of PAR1 and PAR2 with PAR1-AP and PAR2-AP led to AF activation, including proliferation and differentiation of AFs, extracellular matrix synthesis, as well as production of pro-fibrotic cytokine TGF-β and pro-inflammatory cytokines IL-6 and MCP-1. Furthermore, PAR1 and PAR2 mediated Ang II-induced AF activation, since both PAR1 and PAR2 antagonists inhibited Ang II-induced proliferation, migration, differentiation, extracellular matrix synthesis and production of pro-fibrotic and pro-inflammatory cytokines in AFs. Finally, mechanistic study showed that Ang II, via Ang II type I receptor (AT1R), upregulated both PAR1 and PAR2 expression, and transactivated PAR1 and PAR2, as denoted by internalization of both proteins. In conclusion, our results suggest that PAR1 and PAR2 play a critical role in Ang II-induced AF activation, and this may contribute to adventitia-related pathological changes. - Highlights: • Direct activation of PAR1 and PAR2 led to adventitial fibroblast (AF) activation. • PAR1 and PAR2 antagonists attenuated Ang II-induced AF activation. • Ang II induced the upregulation and transactivation of PAR1/PAR2 in AFs.

  6. Protease-activated receptor 1 and 2 contribute to angiotensin II-induced activation of adventitial fibroblasts from rat aorta

    International Nuclear Information System (INIS)

    He, Rui-Qing; Tang, Xiao-Feng; Zhang, Bao-Li; Li, Xiao-Dong; Hong, Mo-Na; Chen, Qi-Zhi; Han, Wei-Qing; Gao, Ping-Jin

    2016-01-01

    Adventitial fibroblasts (AFs) can be activated by angiotensin II (Ang II) and exert pro-fibrotic and pro-inflammatory effects in vascular remodeling. Protease-activated receptor (PAR) 1 and 2 play a significant role in fibrogenic and inflammatory diseases. The present study hypothesized that PAR1 and PAR2 are involved in Ang II-induced AF activation and contribute to adventitial remodeling. We found that direct activation of PAR1 and PAR2 with PAR1-AP and PAR2-AP led to AF activation, including proliferation and differentiation of AFs, extracellular matrix synthesis, as well as production of pro-fibrotic cytokine TGF-β and pro-inflammatory cytokines IL-6 and MCP-1. Furthermore, PAR1 and PAR2 mediated Ang II-induced AF activation, since both PAR1 and PAR2 antagonists inhibited Ang II-induced proliferation, migration, differentiation, extracellular matrix synthesis and production of pro-fibrotic and pro-inflammatory cytokines in AFs. Finally, mechanistic study showed that Ang II, via Ang II type I receptor (AT1R), upregulated both PAR1 and PAR2 expression, and transactivated PAR1 and PAR2, as denoted by internalization of both proteins. In conclusion, our results suggest that PAR1 and PAR2 play a critical role in Ang II-induced AF activation, and this may contribute to adventitia-related pathological changes. - Highlights: • Direct activation of PAR1 and PAR2 led to adventitial fibroblast (AF) activation. • PAR1 and PAR2 antagonists attenuated Ang II-induced AF activation. • Ang II induced the upregulation and transactivation of PAR1/PAR2 in AFs.

  7. Direct adventitious shoot bud formation on hypocotyls explants in Millettia pinnata (L.) Panigrahi- a biodiesel producing medicinal tree species.

    Science.gov (United States)

    Nagar, Durga Singh; Jha, Suman Kumar; Jani, Jigar

    2015-04-01

    A reproducible protocol developed for in vitro regeneration of Milletia pinnata using hypocotyl segments. Multiple shoots were induced from hypocotyl explants through direct adventitious shoot bud regeneration. The proximal end of hypocotyls was responsive for shoot bud induction. Silver nitrate and adenine sulphate had a positive effect on shoot bud induction and elongation. The maximum response and number of shoot bud produced in media supplemented with 8.88 μM BAP with 108.6 μM adenine sulphate and 11.84 μM silver nitrate. Elongated shoots were harvested and successful rooting of microshoots achieved on MS media supplemented with 9.84 μM IBA, with 81.1 % rooting. Remaining shoot buds sub-cultured for further multiplication and elongation. Each subculture produced eight to nine elongated microshoots up to four subcultures. The rooted microshoots were successfully hardened and transferred to field.

  8. Arteriovenous fistula stenosis in hemodialysis patients is characterized by an increased adventitial fibrosis.

    Science.gov (United States)

    Simone, Simona; Loverre, Antonia; Cariello, Marica; Divella, Chiara; Castellano, Giuseppe; Gesualdo, Loreto; Pertosa, Giovanni; Grandaliano, Giuseppe

    2014-10-01

    Arteriovenous fistula (AVF) stenosis is the major cause of vascular access failure in hemodialysis. Adventitial remodeling has been suggested to play a role in the pathogenesis of AVF stenosis. This study aimed to evaluate adventitial fibrosis in stenotic AVF and investigate the underlying molecular mechanisms. Forty-four patients undergoing surgery for AVF creation were examined; ten presented AVF failure, with histological-proven AVF stenosis. In stenotic AVF we observed a significant increase of adventitia extracellular matrix deposition and alpha-smooth muscle actin (α-SMA)(+) cell numbers; most of these cells were myofibroblast (α-SMA(+)/vimentin(+)). Phosphorylated platelet-derived growth factor β receptor (p-PDGFRβ) was significantly increased within the adventitia of stenotic compared to native AVF, along with a marked increase in the phosphorylation of Akt and ERK, two key kinases in PDGFRβ signalling. Myofibroblasts were the main cell type associated with the activation of p-PDGFRβ. At the same time, we observed a significant adventitial vessels rarefaction in stenotic AVF, as demonstrated by a reduced CD34 expression. This event was associated with a marked reduction in the expression of KDR/fetal liver kinase-1, the main vascular endothelial growth factor receptor. The degree of adventitial fibrosis was directly correlated with the extent of adventitial α-SMA and inversely associated with adventitial CD34 expression. Finally, we observed an increase in CD34(+)/α-SMA(+) cells within the adventitia of failed AVF. This study suggests that AVF failure is associated with an increased adventitial fibrosis, myofibroblast activation and capillary rarefaction, potentially linked with endothelial-to-mesenchymal transition. In this scenario, our data suggest that PDGF may play a pathogenic role.

  9. Adventitious bud regeneration from the stigma of Sinapis alba L.

    Directory of Open Access Journals (Sweden)

    Elżbieta Zenkteler

    2012-12-01

    Full Text Available Stigmas isolated from flower buds of 'Nakielska' variety of Sinapis alba were used to develop a micropropagation method suitable for breeding of new cultivars. The origin of adventitious bud regeneration was studied on MS medium, under stimulation by bezylaminopurine (BAP in combination with 2,4-D - dichlorophenoxyacetic acid (2,4-D. Histological analysis showed the structure of Sinapis stigma (composed from four types of tissue: papillae, transmitting tissue, parenchyma and vascular bundles and revealed that numerous meristematic centers developed from parenchyma cells in close vicinity of vascular bundles. Buds very quickly appeared on the surface of initial explants and later formed multiplantlets that were easily rooted in the soil.

  10. Cystic adventitial disease of popliteal artery with significant stenosis

    International Nuclear Information System (INIS)

    Gupta, Ranjana; Mittal, Puneet; Gupta, Praveen; Jindal, Nancy

    2013-01-01

    Cystic adventitial disease of popliteal artery is a rare condition of unknown etiology which usually presents in middle-aged men. We present Doppler and computed tomography angiography findings in a case of cystic adventitial disease with significant obstruction of popliteal artery, with secondary narrowing of popliteal vein

  11. Adventitial gene transfer of catalase attenuates angiotensin II-induced vascular remodeling.

    Science.gov (United States)

    Liu, Cun-Fei; Zhang, Jia; Shen, Kai; Gao, Ping-Jin; Wang, Hai-Ya; Jin, Xin; Meng, Chao; Fang, Ning-Yuan

    2015-04-01

    Vascular adventitia and adventitia‑derived reactive oxygen species (ROS) contribute to vascular remodeling following vascular injury. A previous ex vivo study in adventitial fibroblasts showed that catalase, one of most important anti‑oxide enzymes, was downregulated by angiotensin II (AngII). The aim of the present study was to investigate whether adventitial gene transfer of catalase affects AngII‑induced vascular remodeling in vivo. Adenoviruses co‑expressing catalase and enhanced green fluorescent protein (eGFP) or expressing eGFP only were applied to the adventitial surface of common carotid arteries of Sprague‑Dawley rats. Alzet minipumps administering AngII (0.75 mg/kg/day) were then implanted subcutaneously for 14 days. Systolic blood pressure and biological parameters of vascular remodeling were measured in each group. Adventitial fibroblasts were cultured and p38 mitogen‑activated protein kinase (MAPK) phosphorylation was measured using western blot analysis. The results showed that adventitial gene transfer of catalase had no effect on AngII‑induced systolic blood pressure elevation. However, catalase adenovirus transfection significantly inhibited AngII‑induced media hypertrophy compared with that of the control virus (Padventitial α‑smooth muscle actin expression. Furthermore, catalase transfection significantly inhibited the AngII‑induced increase in p38MAPK phosphorylation. In conclusion, the results of the present study demonstrated that adventitial gene transfer of catalase significantly attenuated AngII‑induced vascular remodeling in rats via inhibition of adventitial p38MAPK phosphorylation.

  12. Effect of root temperature on the uptake and metabolism of anions by the root system of Zea mays L. I. Uptake of sulphate by resistant and non-resistant plants

    Energy Technology Data Exchange (ETDEWEB)

    Holobrada, M; Mistrik, I; Kolek, J [Institute of Experimental Biology and Ecology of the Slovak Academy of Sciences, Bratislava (Czechoslovakia)

    1980-01-01

    The effect of root temperature upon the uptake of /sup 35/S-sulfate by intact 21 days old maize roots was discussed. The plant roots grown at 20 degC were cooled in steps down to 15 degC or 5 degC. The rate of /sup 35/S uptake was studied both in the whole root system and separately in the individual roots (primary seminal root, seminal adventitious roots and nodal roots). Differences were ascertained at lower uptakes by various root samples from resistant and nonresistant maize cultivars.

  13. A quantitative risk assessment of exposure to adventitious agents in a cell culture-derived subunit influenza vaccine.

    Science.gov (United States)

    Gregersen, Jens-Peter

    2008-06-19

    A risk-assessment model has demonstrated the ability of a new cell culture-based vaccine manufacturing process to reduce the level of any adventitious agent to a million-fold below infectious levels. The cell culture-derived subunit influenza vaccine (OPTAFLU), Novartis Vaccines and Diagnostics) is produced using Madin-Darby canine kidney (MDCK) cells to propagate seasonal viral strains, as an alternative to embryonated chicken-eggs. As only a limited range of mammalian viruses can grow in MDCK cells, similar to embryonated eggs, MDCK cells can act as an effective filter for a wide range of adventitious agents that might be introduced during vaccine production. However, the introduction of an alternative cell substrate (for example, MDCK cells) into a vaccine manufacturing process requires thorough investigations to assess the potential for adventitious agent risk in the final product, in the unlikely event that contamination should occur. The risk assessment takes into account the entire manufacturing process, from initial influenza virus isolation, through to blending of the trivalent subunit vaccine and worst-case residual titres for the final vaccine formulation have been calculated for >20 viruses or virus families. Maximum residual titres for all viruses tested were in the range of 10(-6) to 10(-16) infectious units per vaccine dose. Thus, the new cell culture-based vaccine manufacturing process can reduce any adventitious agent to a level that is unable to cause infection.

  14. Deciphering Phosphate Deficiency-Mediated Temporal Effects on Different Root Traits in Rice Grown in a Modified Hydroponic System

    Science.gov (United States)

    Negi, Manisha; Sanagala, Raghavendrarao; Rai, Vandna; Jain, Ajay

    2016-01-01

    Phosphate (Pi), an essential macronutrient for growth and development of plant, is often limiting in soils. Plants have evolved an array of adaptive strategies including modulation of root system architecture (RSA) for optimal acquisition of Pi. In rice, a major staple food, RSA is complex and comprises embryonically developed primary and seminal roots and post-embryonically developed adventitious and lateral roots. Earlier studies have used variant hydroponic systems for documenting the effects of Pi deficiency largely on primary root growth. Here, we report the temporal effects of Pi deficiency in rice genotype MI48 on 15 ontogenetically distinct root traits by using easy-to-assemble and economically viable modified hydroponic system. Effects of Pi deprivation became evident after 4 days- and 7 days-treatments on two and eight different root traits, respectively. The effects of Pi deprivation for 7 days were also evident on different root traits of rice genotype Nagina 22 (N22). There were genotypic differences in the responses of primary root growth along with lateral roots on it and the number and length of seminal and adventitious roots. Notably though, there were attenuating effects of Pi deficiency on the lateral roots on seminal and adventitious roots and total root length in both these genotypes. The study thus revealed both differential and comparable effects of Pi deficiency on different root traits in these genotypes. Pi deficiency also triggered reduction in Pi content and induction of several Pi starvation-responsive (PSR) genes in roots of MI48. Together, the analyses validated the fidelity of this modified hydroponic system for documenting Pi deficiency-mediated effects not only on different traits of RSA but also on physiological and molecular responses. PMID:27200025

  15. Automatic adventitious respiratory sound analysis: A systematic review.

    Directory of Open Access Journals (Sweden)

    Renard Xaviero Adhi Pramono

    Full Text Available Automatic detection or classification of adventitious sounds is useful to assist physicians in diagnosing or monitoring diseases such as asthma, Chronic Obstructive Pulmonary Disease (COPD, and pneumonia. While computerised respiratory sound analysis, specifically for the detection or classification of adventitious sounds, has recently been the focus of an increasing number of studies, a standardised approach and comparison has not been well established.To provide a review of existing algorithms for the detection or classification of adventitious respiratory sounds. This systematic review provides a complete summary of methods used in the literature to give a baseline for future works.A systematic review of English articles published between 1938 and 2016, searched using the Scopus (1938-2016 and IEEExplore (1984-2016 databases. Additional articles were further obtained by references listed in the articles found. Search terms included adventitious sound detection, adventitious sound classification, abnormal respiratory sound detection, abnormal respiratory sound classification, wheeze detection, wheeze classification, crackle detection, crackle classification, rhonchi detection, rhonchi classification, stridor detection, stridor classification, pleural rub detection, pleural rub classification, squawk detection, and squawk classification.Only articles were included that focused on adventitious sound detection or classification, based on respiratory sounds, with performance reported and sufficient information provided to be approximately repeated.Investigators extracted data about the adventitious sound type analysed, approach and level of analysis, instrumentation or data source, location of sensor, amount of data obtained, data management, features, methods, and performance achieved.A total of 77 reports from the literature were included in this review. 55 (71.43% of the studies focused on wheeze, 40 (51.95% on crackle, 9 (11.69% on stridor, 9

  16. Automatic adventitious respiratory sound analysis: A systematic review.

    Science.gov (United States)

    Pramono, Renard Xaviero Adhi; Bowyer, Stuart; Rodriguez-Villegas, Esther

    2017-01-01

    Automatic detection or classification of adventitious sounds is useful to assist physicians in diagnosing or monitoring diseases such as asthma, Chronic Obstructive Pulmonary Disease (COPD), and pneumonia. While computerised respiratory sound analysis, specifically for the detection or classification of adventitious sounds, has recently been the focus of an increasing number of studies, a standardised approach and comparison has not been well established. To provide a review of existing algorithms for the detection or classification of adventitious respiratory sounds. This systematic review provides a complete summary of methods used in the literature to give a baseline for future works. A systematic review of English articles published between 1938 and 2016, searched using the Scopus (1938-2016) and IEEExplore (1984-2016) databases. Additional articles were further obtained by references listed in the articles found. Search terms included adventitious sound detection, adventitious sound classification, abnormal respiratory sound detection, abnormal respiratory sound classification, wheeze detection, wheeze classification, crackle detection, crackle classification, rhonchi detection, rhonchi classification, stridor detection, stridor classification, pleural rub detection, pleural rub classification, squawk detection, and squawk classification. Only articles were included that focused on adventitious sound detection or classification, based on respiratory sounds, with performance reported and sufficient information provided to be approximately repeated. Investigators extracted data about the adventitious sound type analysed, approach and level of analysis, instrumentation or data source, location of sensor, amount of data obtained, data management, features, methods, and performance achieved. A total of 77 reports from the literature were included in this review. 55 (71.43%) of the studies focused on wheeze, 40 (51.95%) on crackle, 9 (11.69%) on stridor, 9 (11

  17. Phenotype change and migration of adventitial fibroblasts during postangioplasty

    International Nuclear Information System (INIS)

    Wang Yongli; Zhang Jiaxing; He Nengshu; Si Tongguo; Fan Hailun; Ge Xihong; Xu Rui

    2006-01-01

    Objective: To verify fibroblasts translocation from adventitia into neointima by labeling adventitia cells with bromodeoxyuridine (BrDU) after angioplasty, and to explore the relationship of adventitial fibroblast with restenosis. Methods: Vascular restenosis model was created by injured intima of common carotid artery (CCA) of mouse with guide wire, adventitial fibroblasts were labeled with BrDU, and dynamic distribution of myofibroblasts in adventitia, media and neoitima was observed at different times (3 d, 7 d, 14 d and 28 d) by means of single/double-label immunohistochemistry, light microscope, electronic microscope and image analysis system. Results: 1.Immunohistochemistry: More adventitial fibroblasts combined with BrDU could be found in adventitia on the 3rd day of postangioplasty, and the number of this kind of cells reached the peak on 7th day, and at the same time fibroblasts changed their phenotypes and became myofibroblasts, which produced α-actin and extracellular matrix (ECM). On 14th day, the number of the positive cells decreased in adventitia, increased in media and neointima associated with intima thickening; on 28th day, while the number of fibroblasts labeled by BrDU returned to the basic-line in adventitia, media and intima, nevertheless, intima thickening and vascular stenosis and intimal ELM precipitation were still present. There were significant differences in the number of fibroblasts labeled with BrDU located in three layers of artery (P<0.05). 2. Electronic microscope: After angioplasty, the plasm of fibroblasts became rich, mitochondrious and increase of Golgi apparatus; and the amount of rough endoplasmic reticulums rose with more secretory granules, together with a great amount of collagen synthesized forming the microfilaments; on days of 7th and 14th, the wide pseudopodia of myofibroblasts could be found extending into the windows on the external elastic lamina (ELL) and the internal elastic lamina (ILL); and showing the tendency

  18. Analysis of genetic and environmental effects on hybrid poplar rooting in Central and Northern Minnesota, USA

    Science.gov (United States)

    Ronald S., Jr. Zalesny; Don Riemenschneider; Edmund Bauer

    2000-01-01

    We studied genetic and environmental effects on adventitious root initiation and growth because rooting is biologically prerequisite to the establishment of hybrid poplar plantations. Six clones from two pedigrees (pure Populus deltoides "cottonwoods" and P. deltoides x P. maximowiczii hybrids) were...

  19. Analysis of gene expression profiles for cell wall modifying proteins and ACC synthases in soybean cyst nematode colonized roots, adventitious rooting hypocotyls, root tips, flooded roots, and IBA and ACC treatment roots

    Science.gov (United States)

    We hypothesized that soybean cyst nematode (SCN) co-opts a part or all of one or more innate developmental process in soybean to establish its feeding structure, syncytium, in soybean roots. The syncytium in soybean roots is formed in a predominantly lateral direction within the vascular bundle by ...

  20. Number, Position, Diameter and Initial Direction of Growth of Primary Roots in Musa

    OpenAIRE

    LECOMPTE, FRANCOIS; VAUCELLE, AURELIEN; PAGES, LOIC; OZIER‐LAFONTAINE, HARRY

    2002-01-01

    To understand soil colonization by a root system, information is needed on the architecture of the root system. In monocotyledons, soil exploration is mainly due to the growth of adventitious primary roots. Primary root emergence in banana was quantified in relation to shoot and corm development. Root emergence kinetics were closely related to the development of aerial organs. Root position at emergence on the corm followed an asymptotic function of corm dry weight, so that the age of each ro...

  1. Soybean roots retain the seed urease isozyme synthesized during embryo development

    International Nuclear Information System (INIS)

    Torisky, R.S.; Polacco, J.C.

    1990-01-01

    Roots of young soybean plants contain two urease isozymes which are separable by hydroxyapatite chromatography. These two urease species (HAP1 and HAP2) differ in: (1) native gel electrophoretic mobility, (2) pH optima, and (3) recognition by a monoclonal antibody specific for the embryo-specific urease. By these parameters HAP1 is similar to the abundant embryo-specific urease isozyme while HAP2 resembles the ubiquitous urease, found in all soybean tissues previously examined (embryo, seed coat, cultured cells). Roots of mutant soybean plants lacking the seed urease contain no HAP1 urease activity, whereas roots of mutants lacking the ubiquitous urease contain no HAP2 urease activity. However, adventitious roots generated from cuttings of any urease genotype lack HAP1 urease activity. Furthermore, [ 35 S] methionine labelling shows no de novo synthesis of the HAP1 urease in the root, and total root HAP1 urease activity decreases sharply following germination. We conclude: (1) HAP1 is a remnant of the seed urease accumulated in the embryonic root axis during seed development, and (2) HAP2 is ubiquitous urease synthesized de novo in the root

  2. Nitric oxide mediates strigolactone signaling in auxin and ethylene-sensitive lateral root formation in sunflower seedlings

    OpenAIRE

    Bharti, Niharika; Bhatla, Satish C

    2015-01-01

    Strigolactones (SLs) play significant role in shaping root architecture whereby auxin-SL crosstalk has been observed in SL-mediated responses of primary root elongation, lateral root formation and adventitious root (AR) initiation. Whereas GR24 (a synthetic strigolactone) inhibits LR and AR formation, the effect of SL biosynthesis inhibitor (fluridone) is just the opposite (root proliferation). Naphthylphthalamic acid (NPA) leads to LR proliferation but completely inhibits AR development. The...

  3. Decreased adventitial neovascularization after intracoronary irradiation in swine: a time course study

    International Nuclear Information System (INIS)

    Kollum, Marc; Cottin, Yves; Chan, Rosanna C.; Kim, Han Soo; Bhargava, Balram; Vodovotz, Yoram; Waksman, Ron

    2001-01-01

    Background: Intracoronary radiation (IR) suppresses the formation of neointima after arterial injury in swine, through mechanisms incompletely understood. Neointimal development appears related to expansion of adventitial microvessels; we therefore examined the hypothesis that IR inhibits neointima formation through an anti-angiogenic effect. Methods and Results: Juvenile swine were treated with either 0 or 15 Gy 192 Ir (γ-source) and euthanized 3, 7, or 14 days later or treated with 18 Gy 90 Y (β-source) and euthanized after 14 days. Adventitial area (AA), intimal area (IA), IA corrected for medial fracture length, and adventitial vessel area were assessed in both injured and uninjured segments by computer-aided histomorphometry on Verhoeff-Von Giesson stained sections. Adventitial vessel count (AVC) was enumerated visually on hematoxylin and eosin stained sections and confirmed by anti-factor VIII-associated antigen immunostaining for endothelial cells. AA and IA were reduced in injured arteries subjected to IR as compared to controls. The AVC was significantly lower in injured irradiated arterial segments as well as all uninjured segments as compared with injured control segments. In the injured and irradiated arteries, the AVC remained unchanged at 3, 7, and 14 days. The injured segments of arteries treated with IR demonstrated a significantly lower adventitial microvessel density (AVC/AA) as compared to the injured control segments. Comparison of γ- and β-irradiation at 14 days did not show any differences for vessel parameters and measurements of adventitial microvessels. IA and AVC were correlated positively (R 2 = 0.63, α = 0.79, p < 0.01). Conclusion: IR induced an early and sustained anti-angiogenic effect between 3 and 14 days. The relation between IA and AVC may indicate an antiproliferative effect associated with an anti-angiogenic effect independent of the type of radiation. CONDENSED ABSTRACT Intracoronary radiation suppresses neointima

  4. Polymorphisms in the AOX2 gene are associated with the rooting ability of olive cuttings.

    Science.gov (United States)

    Hedayati, Vahideh; Mousavi, Amir; Razavi, Khadijeh; Cultrera, Nicolò; Alagna, Fiammetta; Mariotti, Roberto; Hosseini-Mazinani, Mehdi; Baldoni, Luciana

    2015-07-01

    Different rooting ability candidate genes were tested on an olive cross progeny. Our results demonstrated that only the AOX2 gene was strongly induced. OeAOX2 was fully characterised and correlated to phenotypical traits. The formation of adventitious roots is a key step in the vegetative propagation of trees crop species, and this ability is under strict genetic control. While numerous studies have been carried out to identify genes controlling adventitious root formation, only a few loci have been characterised. In this work, candidate genes that were putatively involved in rooting ability were identified in olive (Olea europaea L.) by similarity with orthologs identified in other plant species. The mRNA levels of these genes were analysed by real-time PCR during root induction in high- (HR) and low-rooting (LR) individuals. Interestingly, alternative oxidase 2 (AOX2), which was previously reported to be a functional marker for rooting in olive cuttings, showed a strong induction in HR individuals. From the OeAOX2 full-length gene, alleles and effective polymorphisms were distinguished and analysed in the cross progeny, which were segregated based on rooting. The results revealed a possible correlation between two single nucleotide polymorphisms of OeAOX2 gene and rooting ability.

  5. Mechanisms of waterlogging tolerance in wheat - a review of root and shoot physiology

    DEFF Research Database (Denmark)

    Herzog, Max; Striker, Gustavo G; Colmer, Timothy D

    2016-01-01

    :shoot ratio. Genotypes differ in seminal root anoxia tolerance, but mechanisms remain to be established; ethanol production rates do not explain anoxia tolerance. Root tip survival is short-term, and thereafter, seminal root re-growth upon re-aeration is limited. Genotypes differ in adventitious root numbers....... Although photosynthesis declines, sugars typically accumulate in shoots of waterlogged plants. Mn or Fe toxicity might occur in shoots of wheat on strongly acidic soils, but probably not more widely. Future breeding for waterlogging tolerance should focus on root internal aeration and better N...

  6. An Integrated Strategy to Identify Key Genes in Almond Adventitious Shoot Regeneration

    Science.gov (United States)

    Plant genetic transformation usually depends on efficient adventitious regeneration systems. In almond (Prunus dulcis Mill.), regeneration of transgenic adventitious shoots was achieved but with low efficiency. Histological studies identified two main stages of organogenesis in almond explants that ...

  7. Adventitious bud formation from bulb-scale explants of Lilium speciosum Thunb. in vitro

    NARCIS (Netherlands)

    Aartrijk, van J.

    1984-01-01

    In this thesis the interactive effects are described of tissue, medium, and other environmental factors on the process of adventitious bud formation in vitro from bulb-scale explants of Lilium speciosum Thunb. Besides, results are presented of experiments

  8. Effect of polyvinyl alcohol on in vitro rooting capacity of shoots in pear clones (Pyrus communis L.) of different ploidy

    Science.gov (United States)

    Poor adventitious root formation is a major obstacle in micropropagation. In this study, intense efforts have been made for improvement of rooting procedures for triploid, tetraploid, and mixploid clones of the pear cultivar, 'Fertility', obtained by in vitro colchicine treatment. An efficient roo...

  9. [Impact of TDZ and NAA on adventitious bud induction and cluster bud multiplication in Tulipa edulis].

    Science.gov (United States)

    Zhu, Li-Fang; Xu, Chao; Zhu, Zai-Biao; Yang, He-Tong; Guo, Qiao-Sheng; Xu, Hong-jian; Ma, Hong-Jian; Zhao, Gui-Hua

    2014-08-01

    To explore the method of explants directly induced bud and establish the tissue culture system of mutiple shoot by means of direct organogenesis, core bud and daughter bulbs (the top of bud stem expanded to form daughter bulb) of T. edulis were used as explants and treated with thidiazuron (TDZ) and 1-naphthlcetic acid (NAA). The results showed that the optimal medium for bud inducted form core bud and daughter bulb were MS + TDZ 2.0 mg x L(-1) + NAA 4.0 mg x L(-1) and MS +TDZ 2.0 mg x L(-1) + NAA 2.0 mg x L(-1) respectively, both of them had a bud induction rate of 72.92%, 79.22%. The optimal medium for cluster buds multiplication was MS + TDZ 0.2 mg x L(-1) + NAA 0.2 mg x L(-1), and proliferation coefficient was 2.23. After proliferation, cluster buds rooting occurred on MS medium with IBA 1.0 mg x L(-1) and the rooting rate was 52.6%, three to five seedlings in each plant. Using core bud and daughter bulb of T. edulis, the optimum medium for adventitious bud directly inducted from daughter bulb, core bud and cluster bud multiplication were screened out and the tissue culture system of multiple shoot by means of direct organogenesis was established.

  10. Comparative proteomics analysis of proteins expressed in the I-1 and I-2 internodes of strawberry stolons

    Directory of Open Access Journals (Sweden)

    Lai Wenguo

    2011-05-01

    Full Text Available Abstract Background Strawberries (Fragaria ananassa reproduce asexually through stolons, which have strong tendencies to form adventitious roots at their second node. Understanding how the development of the proximal (I-1 and distal (I-2 internodes of stolons differ should facilitate nursery cultivation of strawberries. Results Herein, we compared the proteomic profiles of the strawberry stolon I-1 and I-2 internodes. Proteins extracted from the internodes were separated by two-dimensional gel electrophoresis, and 164 I-1 protein spots and 200 I-2 protein spots were examined further. Using mass spectrometry and database searches, 38 I-1 and 52 I-2 proteins were identified and categorized (8 and 10 groups, respectively according to their cellular compartmentalization and functionality. Many of the identified proteins are enzymes necessary for carbohydrate metabolism and photosynthesis. Furthermore, identification of proteins that interact revealed that many of the I-2 proteins form a dynamic network during development. Finally, given our results, we present a mechanistic scheme for adventitious root formation of new clonal plants at the second node. Conclusions Comparative proteomic analysis of I-1 and I-2 proteins revealed that the ubiquitin-proteasome pathway and sugar-hormone pathways might be important during adventitious root formation at the second node of new clonal plants.

  11. Using Upland Rice Root Traits to Identify N Use Efficient Genotypes for Limited Soil Nutrient Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Traore, K.; Traore, O. [INERA / Station de Farakoba, Bobo-Dioulasso (Burkina Faso); Bado, V. B. [Africa Rice Center (AfricaRice), Saint Louis (Senegal)

    2013-11-15

    Crop production in the Sahelian countries of Africa is limited by many factors. The most important are low potential yields of local varieties, low inherent soil fertility and low applications of external inputs (organic and mineral fertilizers). A field experiment was conducted from 2007 to 2008 with the objective to develop and validate screening protocols for plant traits that enhance N acquisition and utilization in upland rice grown in low N soils of two hundred (200) upland rice (Oryza sativa L.) genotypes from WAB, NERICA, CNA, CNAX, IRAT and IR lines. An experiment in small pots was carried out in a greenhouse of Farakoba research center. The pots were filled with a sandy soil and upland rice genotypes were grown during three weeks, harvested and studied for their root characteristics (seminal root length, adventitious root number, lateral root length and number and roots hair density). The small pot method was reliable for root trait characterisation at the seedling stage. A large variability among genotypes was exhibited for the root characteristics. The variability was larger within the NERICA and WAB lines compared to the other lines. The length of the seminal roots varied from 10 to 40 cm, the lateral root number ranged between 3 and 15 and the number of adventitious roots varied between 2 and 7. The selected root traits can be used to identify high nutrients and water use efficient genotypes. (author)

  12. Non-destructive digital imaging in poplar allows detailed analysis of adventitious rooting dynamics

    Science.gov (United States)

    R.J. Kodrzycki; R.B. Michaels; A.L. Friend; R.S. Zalesny; Ch.P. Mawata; D.W. McDonald

    2008-01-01

    The dynamics of root formation are difficult to observe directly over time without disturbing the rooting environment. A novel system for a non-destructive, non-invasive root analysis (RootViz FS, Phenotype Screening Corp.) was evaluated for its ability to analyze root formation from cuttings over a 32 day period in three poplar genotypes (DN70, P. Deltoides x...

  13. Effects of hydroxysafflor yellow A on proliferation and collagen synthesis of rat vascular adventitial fibroblasts induced by angiotensin II.

    Science.gov (United States)

    Yuan, Wendan; Yang, Dongxia; Sun, Xuhong; Liu, Wei; Wang, Liang; Li, Xiaoyan; Man, Xuejing; Fu, Qiang

    2014-01-01

    1) examine the effects of hydroxysafflor yellow A (HSYA) on the proliferation, collagen and cytokine synthesis of vascular adventitial fibroblasts as induced by angiotensin II (Ang II) in normal Sprague-Dawley (SD) rats in vitro, and 2) to assess the effects of HSYA on morphological changes and collagen accumulation of vascular adventitia in spontaneously hypertensive rats (SHR) in vivo. In vitro experiment, vascular adventitial fibroblasts from SD rats were isolated, cultured, and divided into control groups, model groups and HSYA groups. Cell morphology of adventitial fibroblasts was assessed using laser confocal microscopy, while cell proliferation with the MTT assay, and collagen synthesis was determined using hydroxyproline chromatometry. Immunocytochemistry and reverse transcription PCR were used for detecting the expression of TGF-β1, MMP-1, α-SMA and NF-κB in adventitial fibroblasts. In vivo experiment, vascular adventitia proliferation and collagen synthesis were analyzed using hematoxylin-eosin and Sirius staining. Our results showed that: 1) in vitro experiment of SD rats, HSYA inhibited proliferative activity and collagen synthesis of adventitial fibroblasts as induced by Ang II, and the inhibitory effects of HSYA on the increased expression of MMP-1, TGF-β1, α-SMA and NF-κB p65 as induced by Ang II were assessed, and 2) in vivo experiment of SHR, histological analysis displayed fewer pathological changes of vascular adventitia in HSYA treatment groups as compared with no HSYA treatment groups, and MMP-1, TGF-β1, α-SMA and NF-κB p65 expression significantly reduced after HSYA treatment (P adventitia components. This study provides experimental evidence demonstrating that HSYA has the capacity to decrease vascular adventitia proliferation and hyperplasia during vascular remodeling.

  14. MAIL1 is essential for development of the primary root but not of anchor roots.

    Science.gov (United States)

    Ühlken, Christine; Hoth, Stefan; Weingartner, Magdalena

    2014-01-01

    MAIN-LIKE1 (MAIL1) is a ubiquitously expressed nuclear protein, which has a crucial function during root development. We have recently described loss of function mutants for MAIL1, in which the organization and function of the primary root meristem is lost soon after germination. Moreover cell differentiation is impaired resulting in primary root growth arrest soon after emergence. Here we show that mail1 mutants form several anchor roots from the hypocotyl to root junction. These anchor roots show similar defects in the organization of the stem cell niche as the primary root. In contrast, differentiation processes are not impaired and thus anchor roots seem to be able to compensate for the loss of primary root function. Our data show that MAIL1 is essential for specification of cell fate in the primary root but not in anchor roots.

  15. Cloning and Characterization of ThSHRs and ThSCR Transcription Factors in Taxodium Hybrid 'Zhongshanshan 406'.

    Science.gov (United States)

    Wang, Zhiquan; Yin, Yunlong; Hua, Jianfeng; Fan, Wencai; Yu, Chaoguang; Xuan, Lei; Yu, Fangyuan

    2017-07-20

    Among the GRAS family of transcription factors, SHORT ROOT (SHR) and SCARECROW (SCR) are key regulators of the formation of root tissues. In this study, we isolated and characterized two genes encoding SHR proteins and one gene encoding an SCR protein: ThSHR1 (Accession Number MF045148), ThSHR2 (Accession Number MF045149) and ThSCR (Accession Number MF045152) in the adventitious roots of Taxodium hybrid 'Zhongshanshan'. Gene structure analysis indicated that ThSHR1 , ThSHR2 and ThSCR are all intron free. Multiple protein sequence alignments showed that each of the corresponding proteins, ThSHR1, ThSHR2 and ThSCR, contained five well-conserved domains: leucine heptad repeat I (LHRI), the VHIID motif, leucine heptad repeat II (LHR II), the PFYRE motif, and the SAW motif. The phylogenetic analysis indicated that ThSCR was positioned in the SCR clade with the SCR proteins from eight other species, while ThSHR1 and ThSHR2 were positioned in the SHR clade with the SHR proteins from six other species. Temporal expression patterns of these genes were profiled during the process of adventitious root development on stem cuttings. Whereas expression of both ThSHR2 and ThSCR increased up to primary root formation before declining, that of ThSHR1 increased steadily throughout adventitious root formation. Subcellular localization studies in transgenic poplar protoplasts revealed that ThSHR1, ThSHR2 and ThSCR were localized in the nucleus. Collectively, these results suggest that the three genes encode Taxodium GRAS family transcription factors, and the findings contribute to improving our understanding of the expression and function of SHR and SCR during adventitious root production, which may then be manipulated to achieve high rates of asexual propagation of valuable tree species.

  16. Negative Phototropism of Chlorophytum comosum Roots and Their Mechanisms

    Directory of Open Access Journals (Sweden)

    Chen Juan

    2015-07-01

    Full Text Available The aerial roots of Chlorophytum comosum were grown hydroponically, allowing us to study the performance and mechanism of negative phototropism. The results of this study were as follows. All the adventitious roots and their branch roots bent away from light with a maximum curvature of approximately 88.5°. Blue-violet light prominently induced negative phototropism while red light had no effect. The root cap was the site of photo perception. Roots with shaded or divested root caps exposed to unilateral light showed no negative phototropism, but resumed their original characteristics when the shade was removed or when new root caps grew. The curvature increased when the light intensity ranged 0–110 μmol · m−2 · s−1. The negative phototropism curvature could be promoted by exogenous CaCl2 but was inhibited by exogenous LaCl3; exogenous CaCl2 could reduce the inhibitory effect of LaCl3. Unilateral light induced the horizontal transport of IAA from the irradiated side to the shaded side, resulting in an unequal distribution of IAA in both the sides, leading to negative phototropism. The horizontal transport of IAA was promoted by exogenous Ca2+ but inhibited by exogenous La3+.

  17. Adventitious shoots induction and plant regeneration from ...

    African Journals Online (AJOL)

    A highly efficient regeneration system is a prerequisite step for successful genetic transformation of watermelon cultivars (Citrullus lanatus L.). The objective of this study was to establish efficient in vitro plant regeneration for three watermelon cultivars. To achieve optimal conditions for adventitious shoot induction, the ...

  18. Alpha-root Processes for Derivatives pricing

    OpenAIRE

    Balakrishna, BS

    2010-01-01

    A class of mean reverting positive stochastic processes driven by alpha-stable distributions, referred to here as alpha-root processes in analogy to the square root process (Cox-Ingersoll-Ross process), is a subclass of affine processes, in particular continuous state branching processes with immigration (CBI processes). Being affine, they provide semi-analytical results for the implied term structures as well as for the characteristic exponents for their associated distributions. Their use h...

  19. Endogenous isoflavone methylation correlates with the in vitro rooting phases of Spartium junceum L. (Leguminosae).

    Science.gov (United States)

    Clematis, Francesca; Viglione, Serena; Beruto, Margherita; Lanzotti, Virginia; Dolci, Paola; Poncet, Christine; Curir, Paolo

    2014-09-01

    Spartium junceum L. (Leguminosae) is a perennial shrub, native to the Mediterranean region in southern Europe, widespread in all the Italian regions and, as a leguminous species, it has a high isoflavone content. An in vitro culture protocol was developed for this species starting from stem nodal sections of in vivo plants, and isoflavone components of the in vitro cultured tissues were studied by means of High Performance Liquid Chromatography (HPLC) analytical techniques. Two main isoflavones were detected in the S. junceum tissues during the in vitro propagation phases: Genistein (4',5,7-Trihydroxyisoflavone), already reported in this species, and its methylated form 4',5,7-Trimethoxyisoflavone, detected for the first time in this plant species (0.750 ± 0.02 mg g(-1) dry tissue). The presence of both of these compounds in S. junceum tissues was consistently detected during the in vitro multiplication phase. The absence of the methylated form within plant tissues in the early phases of the in vitro adventitious root formation was correlated with its negative effect displayed on root induction and initiation phases, while its presence in the final "root manifestation" phase influenced positively the rooting process. The unmethylated form, although detectable in tissues in the precocious rooting phases, was no longer present in the final rooting phase. Its effect on rooting, however, proved always to be beneficial. Copyright © 2014 Elsevier GmbH. All rights reserved.

  20. thidiazuron improves adventitious bud and shoot regeneration

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    Induction of adventitious buds and shoots from intact leaves and stem internode segments of two recalcitrant. Ugandan sweetpotato (Ipomoea batatas L.) cultivars was investigated in vitro on Murashige and Skoog (MS) medium, supplemented with 3 different levels (0.5, 2.0 and 4.0 µM) of Thidiazuron (TDZ). Shoots were.

  1. Improving adventitious shoot regeneration from cultured leaf ...

    African Journals Online (AJOL)

    The effect of various concentrations of thidiazuron (TDZ) with or without 2.7 μM of α-naphthalene acetic acid (NAA) on adventitious shoot formation of two Petunia hybrida cultivars was studied. Seeds from 'Daddy Blue' and 'Dreams White' cultivars were germinated in vitro. Expanded leaves from both seedlings and ...

  2. Crescimento radicular de plântulas de milho afetado pela resistência do solo à penetração Root growth of corn seedlings as affected by soil resistance to penetration

    Directory of Open Access Journals (Sweden)

    Ciro Antonio Rosolem

    1999-05-01

    Full Text Available A resistência do solo à penetração é relacionada com a textura, compactação e umidade do solo. No presente trabalho se estudou o efeito da interação desses fatores sobre o crescimento de raízes de milho. Materiais de solo com 22, 30, 34, 41 e 48% de argila foram acondicionados em tubos de PVC de 10 cm com 4,3 cm de diâmetro interno, nas densidades globais de 1,07, 1,18, 1,36 e 1,53 g cm-3, em três tensões de água: -0,034, -0,106 e -0,640 MPa. Plântulas de milho foram cultivadas nos tubos por 48 horas. Quando a densidade do solo é baixa, a textura tem papel preponderante no crescimento radicular. Esse efeito é menor à medida que aumenta a densidade global. O aumento da resistência do solo à penetração causa diminuição no comprimento e número de raízes seminais adventícias; a raiz seminal primária mostra menor capacidade de penetração do que as raízes seminais adventícias. Resistências do solo à penetração da ordem de 1,3 MPa reduzem à metade o crescimento das raízes seminais adventícias do milho.The soil resistance to penetration is affected by soil texture, compaction and moisture content. In this paper, the effects of the interaction of these factors on corn root growth was studied. Soil materials with 22, 30, 34, 41 and 48% of clay were packed in PVC tubes 10 cm high, with 4.3 cm of internal diameter to reach bulk densities of 1.07, 1.18, 1.36 and 1.53 g cm-3. Water was added to reach water potentials of -0.034, -0.106 and -0.640 MPa. Corn seedlings were grown in the tubes for 48 hours. When the soil bulk density was low, root growth was affected mainly by soil texture. As soil bulk density increased, there was a decrease in the effect of soil texture on root growth. The increase in soil strength caused a decrease in root length and in the number of seminal adventitious roots. The primary roots showed a lower penetration ability when compared to seminal adventitious roots. A soil resitance of 1.3 MPa

  3. Adventitious agents in viral vaccines: lessons learned from 4 case studies.

    Science.gov (United States)

    Petricciani, John; Sheets, Rebecca; Griffiths, Elwyn; Knezevic, Ivana

    2014-09-01

    Since the earliest days of biological product manufacture, there have been a number of instances where laboratory studies provided evidence for the presence of adventitious agents in a marketed product. Lessons learned from such events can be used to strengthen regulatory preparedness for the future. We have therefore selected four instances where an adventitious agent, or a signal suggesting the presence of an agent, was found in a viral vaccine, and have developed a case study for each. The four cases are: a) SV40 in polio vaccines; b) bacteriophage in measles and polio vaccines; c) reverse transcriptase in measles and mumps vaccines; and d) porcine circovirus and porcine circovirus DNA sequences in rotavirus vaccines. The lessons learned from each event are discussed. Based in part on those experiences, certain scientific principles have been identified by WHO that should be considered in regulatory risk evaluation if an adventitious agent is found in a marketed vaccine in the future. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Effects of chronic gamma irradiation on adventitious plantlet formation of Saintpaulia ionantha (African violet) detached leaves

    International Nuclear Information System (INIS)

    Arunee Wongpiyasatid; Peeranuch Jompuk; Katarat Chusreeaeom; Thanya Taychasinpitak

    2007-01-01

    Formation of adventitious plantlets on unrootedly detached leaves of two African violet (Saintpaulia ionantha) cultivars, pink and violet flowers, chronically gamma-irradiated in gamma room at The Gamma Irradiation Service and Nuclear Technology Research Center, Kasetsart University was compared. Detached leaves were immediately planted after detachment in plastic trays containing peat moss, 18 leaves per treatment with 3 replications. Three dose rates (rad/h) with 3 doses (rad)/dose rate, were applied to the irradiated samples while the controls were placed outside the gamma room. Three months after irradiation, the number of survived leaves, the number of leaves producing adventitious plantlets and the number of plantlets per leaf were recorded. After that, the young plantlets were transferred to the new pots for further observation on plant growth and mutation characters. The results revealed that the number of survived leaves, the number of leaves producing adventitious plantlets and the number of plantlets per leaf varied slightly with radiation doses but were not significantly different at different dose rates. Radiosensitivity was noticed to be higher in pink flower cultivar than the violet one. M 1 V 1 plantlets will be followed up for growth and mutation character observations

  5. Anticonvulsant mechanism of saponins fraction from adventitious roots of Ficus religiosa: possible modulation of GABAergic, calcium and sodium channel functions

    Directory of Open Access Journals (Sweden)

    Damanpreet Singh

    Full Text Available ABSTRACT In our previous studies, quantified saponins-rich fraction from adventitious root extract of Ficus religiosa L., Moraceae, showed anticonvulsant effect in acute, as well as chronic mice models of epilepsy. The present study was designed to reveal putative anticonvulsant mechanism of quantified saponins-rich fraction using target specific animal models. The anticonvulsant effect of quantified saponins-rich fraction was initially studied in maximal electroshock and pentylenetetrazol test at 1, 2 and 4 mg/kg; i.p. doses. Based on the results of initial anticonvulsant testing, different groups of mice were injected with vehicle or quantified saponins-rich fraction (4 mg/kg; i.p., 30 min prior to an injection of N-methyl-D-aspartic acid (100 mg/kg; s.c., bicuculline (5 mg/kg; i.p., strychnine hydrochloride (2 mg/kg; i.p., BAY k-8644 (37.5 µg; i.c.v., veratridine (500 µg/kg; i.p. and the convulsive episodes were studied. Treatment with the extract (1, 2 and 4 mg/kg showed significant protection in maximal electroshock and pentylenetetrazol-induced convulsion tests, in a dose-dependent manner. Moreover, quantified saponins-rich fraction at 4 mg/kg dose showed significant increase in latency to clonic convulsions, decrease in seizure severity and increase in average wave amplitude in bicuculline, BAY k-8644 and veratridine tests, respectively, as compared to vehicle control. However, SRF treatment failed to abolish N-methyl-D-aspartic acid and strychnine-induced convulsions, indicated by insignificant change in the appearance of turning behavior and onset of tonic extension, respectively, as compared to vehicle control. From the results of present study, it is concluded that quantified saponins-rich fraction suppress maximal electroshock, pentylenetetrazol, bicuculline, BAY k-8644 and veratridine-induced convulsions, indicating its GABAergic, Na+ and Ca2+ channel modulatory effects. Further it can be correlated that quantified saponins

  6. Soybean roots retain the seed urease isozyme synthesized during embryo development

    International Nuclear Information System (INIS)

    Torisky, R.S.; Polacco, J.C.

    1990-01-01

    Roots of young soybean (Glycine max [L.] Merr.) plants (up to 25 days old) contain two distinct urease isozymes, which are separable by hydroxyapatite chromatography. These two urease species (URE1 and URE2) differ in: (a) electrophoretic mobility in native gels, (b) pH dependence, and (c) recognition by a monoclonal antibody specific for the seed (embryo-specific) urease. By these parameters root URE1 urease is similar to the abundant embryo-specific urease isozyme, while root URE2 resembles the ubiquitous urease which has previously been found in all soybean tissues examined (leaf, embryo, seed coat, and cultured cells). The embryo-specific and ubiquitous urease isozymes are products of the Eu1 and Eu4 structural genes, respectively. Roots of the eu1-sun/eu1-sun genotype, which lacks the embryo-specific urease (i.e. seed urease-null), contain no URE1 urease activity. Roots of eu4/eu4, which lacks ubiquitous urease, lack the URE2 (leaflike) urease activity. From these genetic and biochemical criteria, then, we conclude that URE1 and URE2 are the embryo-specific and ubiquitous ureases, respectively. Adventitious roots generated from cuttings of any urease genotype lack URE1 activity. In seedling roots the seedlike (URE1) activity declines during development. Roots of 3-week-old plants contain 5% of the total URE1 activity of the radicle of 4-day-old seedlings, which, in turn, has approximately the same urease activity level as the dormant embryonic axis. The embryo-specific urease incorporates label from [ 35 S]methionine during embryo development but not during germination, indicating that there is no de novo synthesis of the embryo-specific (URE1) urease in the germinating root

  7. Expression of root-related transcription factors associated with flooding tolerance of soybean (Glycine max).

    Science.gov (United States)

    Valliyodan, Babu; Van Toai, Tara T; Alves, Jose Donizeti; de Fátima P Goulart, Patricia; Lee, Jeong Dong; Fritschi, Felix B; Rahman, Mohammed Atiqur; Islam, Rafiq; Shannon, J Grover; Nguyen, Henry T

    2014-09-29

    Much research has been conducted on the changes in gene expression of the model plant Arabidopsis to low-oxygen stress. Flooding results in a low oxygen environment in the root zone. However, there is ample evidence that tolerance to soil flooding is more than tolerance to low oxygen alone. In this study, we investigated the physiological response and differential expression of root-related transcription factors (TFs) associated with the tolerance of soybean plants to soil flooding. Differential responses of PI408105A and S99-2281 plants to ten days of soil flooding were evaluated at physiological, morphological and anatomical levels. Gene expression underlying the tolerance response was investigated using qRT-PCR of root-related TFs, known anaerobic genes, and housekeeping genes. Biomass of flood-sensitive S99-2281 roots remained unchanged during the entire 10 days of flooding. Flood-tolerant PI408105A plants exhibited recovery of root growth after 3 days of flooding. Flooding induced the development of aerenchyma and adventitious roots more rapidly in the flood-tolerant than the flood-sensitive genotype. Roots of tolerant plants also contained more ATP than roots of sensitive plants at the 7th and 10th days of flooding. Quantitative transcript analysis identified 132 genes differentially expressed between the two genotypes at one or more time points of flooding. Expression of genes related to the ethylene biosynthesis pathway and formation of adventitious roots was induced earlier and to higher levels in roots of the flood-tolerant genotype. Three potential flood-tolerance TFs which were differentially expressed between the two genotypes during the entire 10-day flooding duration were identified. This study confirmed the expression of anaerobic genes in response to soil flooding. Additionally, the differential expression of TFs associated with soil flooding tolerance was not qualitative but quantitative and temporal. Functional analyses of these genes will be

  8. Expression of Root-Related Transcription Factors Associated with Flooding Tolerance of Soybean (Glycine max

    Directory of Open Access Journals (Sweden)

    Babu Valliyodan

    2014-09-01

    Full Text Available Much research has been conducted on the changes in gene expression of the model plant Arabidopsis to low-oxygen stress. Flooding results in a low oxygen environment in the root zone. However, there is ample evidence that tolerance to soil flooding is more than tolerance to low oxygen alone. In this study, we investigated the physiological response and differential expression of root-related transcription factors (TFs associated with the tolerance of soybean plants to soil flooding. Differential responses of PI408105A and S99-2281 plants to ten days of soil flooding were evaluated at physiological, morphological and anatomical levels. Gene expression underlying the tolerance response was investigated using qRT-PCR of root-related TFs, known anaerobic genes, and housekeeping genes. Biomass of flood-sensitive S99-2281 roots remained unchanged during the entire 10 days of flooding. Flood-tolerant PI408105A plants exhibited recovery of root growth after 3 days of flooding. Flooding induced the development of aerenchyma and adventitious roots more rapidly in the flood-tolerant than the flood-sensitive genotype. Roots of tolerant plants also contained more ATP than roots of sensitive plants at the 7th and 10th days of flooding. Quantitative transcript analysis identified 132 genes differentially expressed between the two genotypes at one or more time points of flooding. Expression of genes related to the ethylene biosynthesis pathway and formation of adventitious roots was induced earlier and to higher levels in roots of the flood-tolerant genotype. Three potential flood-tolerance TFs which were differentially expressed between the two genotypes during the entire 10-day flooding duration were identified. This study confirmed the expression of anaerobic genes in response to soil flooding. Additionally, the differential expression of TFs associated with soil flooding tolerance was not qualitative but quantitative and temporal. Functional analyses of

  9. Risk Mitigation in Preventing Adventitious Agent Contamination of Mammalian Cell Cultures.

    Science.gov (United States)

    Shiratori, Masaru; Kiss, Robert

    2017-11-14

    Industrial-scale mammalian cell culture processes have been contaminated by viruses during the culturing phase. Although the historical frequency of such events has been quite low, the impact of contamination can be significant for the manufacturing company and for the supply of the product to patients. This chapter discusses sources of adventitious agent contamination risk in a cell culture process, provides a semiquantitative assessment of such risks, and describes potential process barriers that can be used to reduce contamination risk. High-temperature, short-time (HTST) heat treatment is recommended as the process barrier of choice, when compatible with the process. A case study assessing the compatibility of HTST heat treatment with a cell culture medium is presented, and lessons learned are shared from our experiences over many years of developing and implementing virus barriers in mammalian cell culture processes. Graphical Abstract.

  10. Root cause analysis with enriched process logs

    NARCIS (Netherlands)

    Suriadi, S.; Ouyang, C.; Aalst, van der W.M.P.; Hofstede, ter A.H.M.; La Rosa, M.; Soffer, P.

    2013-01-01

    n the field of process mining, the use of event logs for the purpose of root cause analysis is increasingly studied. In such an analysis, the availability of attributes/features that may explain the root cause of some phenomena is crucial. Currently, the process of obtaining these attributes from

  11. Adventitious shoot regeneration from leaf explants of the valuable ...

    African Journals Online (AJOL)

    The objective of this study was to develop an efficient protocol for adventitious shoot regeneration for Plectranthus barbatus Andrews using leaf explants. The explants were cultured on MS (Murashige and Skoog, 1962) medium containing various concentration of kinetin (KN), 6-benzylaminopurine (BAP) and thidiazuron ...

  12. Histopathological Evidence of Adventitial or Medial Injury Is a Strong Predictor of Restenosis During Directional Atherectomy for Peripheral Artery Disease.

    Science.gov (United States)

    Tarricone, Arthur; Ali, Ziad; Rajamanickam, Anitha; Gujja, Karthik; Kapur, Vishal; Purushothaman, K-Raman; Purushothaman, Meerarani; Vasquez, Miguel; Zalewski, Adrian; Parides, Micheal; Overbey, Jessica; Wiley, Jose; Krishnan, Prakash

    2015-10-01

    To investigate the impact on restenosis rates of deep injury to the adventitial layer during directional atherectomy. Between 2007 and 2010, 116 consecutive patients (mean age 69.6 years; 56 men) with symptomatic femoropopliteal stenoses were treated with directional atherectomy at a single center. All patients had claudication and TASC A/B lesions in the superficial femoral or popliteal arteries. Histopathology analysis of atherectomy specimens was performed to identify adventitial injury. Clinical follow-up included physical examination and duplex ultrasound scans at 3, 6, and 12 months in all patients. The primary endpoint was the duplex-documented 1-year rate of restenosis, which was determined by a peak systolic velocity ratio 0.05), lesion length (58.7±12.8 vs 56.2±13.6 mm, p=0.40), or vessel runoff (1.9±0.6 vs 2.0±0.6, p=0.37) between patients with and without adventitial injury, respectively. The overall 1-year incidence of restenosis was 57%, but the rate was significantly higher (patherectomy for femoropopliteal stenosis is strongly related to patency at 1 year. © The Author(s) 2015.

  13. Primisulfuron herbicide-resistant tobacco plants: mutant selection in vitro by adventitious shoot formation from cultured leaf discs

    International Nuclear Information System (INIS)

    Harms, C.T.; DiMaio, J.J.; Jayne, S.M.; Middlesteadt, L.A.; Negrotto, D.V.; Thompson-Taylor, H.; Montoya, A.L.

    1991-01-01

    A simple procedure has been developed for the rapid and direct selection of herbicide-resistant mutant plants. The procedure uses adventitious shoot formation from suitable explants, such as leaf discs, on a shoot-inducing culture medium containing a toxic herbicide concentration. Resistant green shoots were thus isolated from tobacco (Nicotiana tabacum L.) leaf explants cultured on medium containing 100 μg 11 primisulfuron, a new sulfonylurea herbicide. Resistant shoots were recovered from both haploid and diploid explants after UV mutagenesis, as well as without mutagenic treatment. Three mutant plants of separate origin were further analyzed biochemically and genetically. Their acetohydroxyacid synthase (AHAS) enzyme activity was less inhibited by sulfonylurea herbicides than that of unselected, sensitive wild type plants. The extent of inhibition of the AHAS enzyme among the three mutants was different for different sulfonylurea and imidazolinone herbicides suggesting different sites were affected by each mutation. Herbicide tolerance was scored for germinating seedling populations and was found to be inherited as a single dominant nuclear gene. Adventitious shoot formation from cultured leaf discs was used to determine the cross tolerance of mutant plants to various herbicidal AHAS inhibitors. The usefulness of this rapid and direct scheme for mutant selection based on adventitious shoot formation or embryogenesis is discussed. (author)

  14. Results of Survey Regarding Prevalence of Adventitial Infections in Mice and Rats at Biomedical Research Facilities.

    Science.gov (United States)

    Marx, James O; Gaertner, Diane J; Smith, Abigail L

    2017-09-01

    Control of rodent adventitial infections in biomedical research facilities is of extreme importance in assuring both animal welfare and high-quality research results. Sixty-three U.S. institutions participated in a survey reporting the methods used to detect and control these infections and the prevalence of outbreaks from 1 January 2014 through 31 December 2015. These results were then compared with the results of 2 similar surveys published in 1998 and 2008. The results of the current survey demonstrated that the rate of viral outbreaks in mouse colonies was decreasing, particularly in barrier facilities, whereas the prevalence of parasitic outbreaks has remained constant. These results will help our profession focus its efforts in the control of adventitial rodent disease outbreaks to the areas of the greatest needs.

  15. Ethylene-Induced Inhibition of Root Growth Requires Abscisic Acid Function in Rice (Oryza sativa L.) Seedlings

    Science.gov (United States)

    He, Si-Jie; Lu, Xiang; Zhang, Wan-Ke; Lu, Tie-Gang; Chen, Shou-Yi; Zhang, Jin-Song

    2014-01-01

    Ethylene and abscisic acid (ABA) have a complicated interplay in many developmental processes. Their interaction in rice is largely unclear. Here, we characterized a rice ethylene-response mutant mhz4, which exhibited reduced ethylene-response in roots but enhanced ethylene-response in coleoptiles of etiolated seedlings. MHZ4 was identified through map-based cloning and encoded a chloroplast-localized membrane protein homologous to Arabidopsis thaliana (Arabidopsis) ABA4, which is responsible for a branch of ABA biosynthesis. MHZ4 mutation reduced ABA level, but promoted ethylene production. Ethylene induced MHZ4 expression and promoted ABA accumulation in roots. MHZ4 overexpression resulted in enhanced and reduced ethylene response in roots and coleoptiles, respectively. In root, MHZ4-dependent ABA pathway acts at or downstream of ethylene receptors and positively regulates root ethylene response. This ethylene-ABA interaction mode is different from that reported in Arabidopsis, where ethylene-mediated root inhibition is independent of ABA function. In coleoptile, MHZ4-dependent ABA pathway acts at or upstream of OsEIN2 to negatively regulate coleoptile ethylene response, possibly by affecting OsEIN2 expression. At mature stage, mhz4 mutation affects branching and adventitious root formation on stem nodes of higher positions, as well as yield-related traits. Together, our findings reveal a novel mode of interplay between ethylene and ABA in control of rice growth and development. PMID:25330236

  16. Coexisting secondary intraneural and vascular adventitial ganglion cysts of joint origin: a causal rather than a coincidental relationship supporting an articular theory

    International Nuclear Information System (INIS)

    Spinner, Robert J.; Scheithauer, Bernd W.; Desy, Nicholas M.; Rock, Michael G.; Holdt, Frederik C.; Amrami, Kimberly K.

    2006-01-01

    To introduce the clinical entity of an intraneural ganglion cyst coexisting with a vascular adventitial cyst arising from the same joint. Retrospective review. Two patients presented with predominantly deep peroneal neuropathy due to complex superior tibiofibular joint-related cysts. In addition to having peroneal intraneural ganglion cysts, these patients had vascular adventitial cysts: one involving a capsular arterial branch, the other a capsular vein [as well as a large, recurrent, intramuscular (extraneural) ganglion]. We then reviewed MRIs of 12 other consecutive cases of intraneural ganglia (10 peroneal and 2 tibial) arising from the superior tibiofibular joint that we treated, as well as other reported cases in the literature to determine if there were other (unrecognized) examples supporting the combination of clinical findings and radiographic patterns. Retrospective analysis of MRIs in the two surgically proven cases of peroneal intraneural ganglia with vascular adventitial cyst extension showed a common imaging pattern that we have termed ''the wishbone sign,'' consisting of the connection of the ascending limb of the peroneal intraneural ganglion and the longitudinal limb of the vascular adventitial cyst in the axial plane. Our review suggests that vascular adventitial cyst extension occurs in a large proportion of cases of peroneal intraneural ganglia. A similar growth pattern was noted in a case of a tibial intraneural ganglion. The combination of intraneural and vascular adventitial cysts is understandable given our knowledge of normal and pathologic anatomy of para-articular cysts. The combination of intraneural ganglia and vascular adventitial cysts broadens the spectrum of clinical presentations of these cysts and suggests that cysts and their content can dissect from a joint along neurovascular bundles. These cases provide important evidence to support the articular theory for the pathogenesis of not only neural but vascular adventitial cysts as

  17. Association of Adventitial Vasa Vasorum and Inflammation With Coronary Hyperconstriction After Drug-Eluting Stent Implantation in Pigs In Vivo.

    Science.gov (United States)

    Nishimiya, Kensuke; Matsumoto, Yasuharu; Shindo, Tomohiko; Hanawa, Kenichiro; Hasebe, Yuhi; Tsuburaya, Ryuji; Shiroto, Takashi; Takahashi, Jun; Ito, Kenta; Ishibashi-Ueda, Hatsue; Yasuda, Satoshi; Shimokawa, Hiroaki

    2015-01-01

    The importance of adventitial inflammation has been implicated for the pathogenesis of coronary artery disease. However, the roles of adventitial changes in drug-eluting stent (DES)-induced coronary hyperconstriction remain largely unknown. In the present study, this issue in pigs in vivo with a special reference to adventitial vasa vasorum (VV) formation and Rho-kinase activation, a central mechanism of coronary vasospasm, was examined. Each animal received a sirolimus-eluting stent (SES) and a biolimus A9-eluting stent (BES), one in the left anterior descending and another in the left circumflex coronary arteries in a randomized manner (n=18). After 1, 3 and 6 months, coronary vasomotion was examined. At 1 month, coronary vasoconstriction to serotonin was significantly enhanced at the SES edges as compared with the BES edges (SES, 52±7% vs. BES, 22±3%, Pmicro-CT showed VV augmentation at the SES site, extending to the proximal and distal edges. Immunostainings demonstrated that VV formation, macrophage infiltration in the adventitia and Rho-kinase expressions/activation were significantly enhanced at the SES edges as compared with the BES edges. The DES with durable polymers enhances VV formation and inflammation in the adventitia, associating with the pathogenesis of DES-induced coronary hyperconstriction through Rho-kinase activation in pigs in vivo.

  18. Adventitious rooting of auxin-treated Lavandula dentata cuttings Enraizamento adventício de estacas de Lavandula dentata tratadas com auxina

    Directory of Open Access Journals (Sweden)

    Claudine Maria de Bona

    2010-05-01

    Full Text Available Lavandula species may be propagated by seeds. However, plants will present expressive variation both in size and essential oil content. Indole-3-butyric acid (IBA is a growth regulator which efficiently stimulates rooting and the objective of this research was to observe the influence of different IBA concentrations on rooting of L. dentata cuttings. Herbaceous cuttings with approximately 10cm in length and around 1/3 of leaf retention had their bases submerged into 0 (control, 500, 1.000, 2.000 or 3.000mg dm-3 of IBA diluted in de-ionized water for 30 seconds and placed in polystyrene foam trays filled with commercial substrate and kept under intermittent mist system. Averages of root number, length of the longest root, fresh and dry root weight, and percentage of rooted cuttings were evaluated after 60 days. There was no significant difference between treatments for the length of root, fresh and dry root weight. The percentage of rooted cuttings increased with IBA concentrations. A quadratic regression was obtained to root number. The 2.000mg dm-3 dose increased the percentage of rooted cuttings and the mean root number per cutting. L. dentata cuttings are easy to root.Espécies de Lavandula podem ser propagadas por sementes. Entretanto, as plantas apresentarão elevada variabilidade em tamanho e em produção de óleo essencial. O ácido indol-3-butírico (AIB é um regulador de crescimento que eficientemente estimula o enraizamento. O objetivo deste trabalho foi observar a influência de diferentes concentrações de AIB no enraizamento de estacas de L. dentata. Estacas herbáceas com aproximadamente 10cm de comprimento e 1/3 de retenção foliar tiveram suas bases submersas em 0 (controle, 500, 1.000, 2.000 ou 3.000mg dm-3 de AIB diluído em água deionizada por 30 segundos e colocadas em bandejas de isopor contendo substrato comercial sob sistema de nebulização intermitente. As médias de número de raízes, comprimento da raiz mais

  19. Composite potato plants with transgenic roots on non-transgenic shoots: a model system for studying gene silencing in roots.

    Science.gov (United States)

    Horn, Patricia; Santala, Johanna; Nielsen, Steen Lykke; Hühns, Maja; Broer, Inge; Valkonen, Jari P T

    2014-12-01

    Composite potato plants offer an extremely fast, effective and reliable system for studies on gene functions in roots using antisense or inverted-repeat but not sense constructs for gene inactivation. Composite plants, with transgenic roots on a non-transgenic shoot, can be obtained by shoot explant transformation with Agrobacterium rhizogenes. The aim of this study was to generate composite potato plants (Solanum tuberosum) to be used as a model system in future studies on root-pathogen interactions and gene silencing in the roots. The proportion of transgenic roots among the roots induced was high (80-100%) in the four potato cultivars tested (Albatros, Desirée, Sabina and Saturna). No wild-type adventitious roots were formed at mock inoculation site. All strains of A. rhizogenes tested induced phenotypically normal roots which, however, showed a reduced response to cytokinin as compared with non-transgenic roots. Nevertheless, both types of roots were infected to a similar high rate with the zoospores of Spongospora subterranea, a soilborne potato pathogen. The transgenic roots of composite potato plants expressed significantly higher amounts of β-glucuronidase (GUS) than the roots of a GUS-transgenic potato line event. Silencing of the uidA transgene (GUS) was tested by inducing roots on the GUS-transgenic cv. Albatros event with strains of A. rhizogenes over-expressing either the uidA sense or antisense transcripts, or inverted-repeat or hairpin uidA RNA. The three last mentioned constructs caused 2.5-4.0 fold reduction in the uidA mRNA expression. In contrast, over-expression of uidA resulted in over 3-fold increase in the uidA mRNA and GUS expression, indicating that sense-mediated silencing (co-suppression) was not functional in roots. The results suggest that composite plants offer a useful experimental system for potato research, which has gained little previous attention.

  20. Cystic Adventitial Disease of Popliteal Artery with Venous Aneurysm of Popliteal Vein: Two-Year Follow-Up after Surgery

    Directory of Open Access Journals (Sweden)

    Koki Takizawa

    2017-01-01

    Full Text Available We report a rare case of cystic adventitial disease of popliteal artery with venous aneurysm of popliteal vein. A 46-year-old woman had sudden-onset intermittent claudication and coldness in her right leg. The right-sided ankle-brachial pressure index (ABI was 1.01, but peripheral arterial pulsation was decreased at knee venting position. Computed tomography revealed simple cystic lesion of the popliteal artery and stenosis of the arterial lumen in this lesion. The patient was treated by complete resection of the cystic adventitial layer of popliteal artery. A venous aneurysm of popliteal vein was revealed by intraoperative echo and was simply ligated. The patient had uneventful postoperative course and no symptoms of relevance during the two years of follow-up.

  1. Number, position, diameter and initial direction of growth of primary roots in Musa.

    Science.gov (United States)

    Lecompte, Francois; Vaucelle, Aurelien; Pages, Loic; Ozier-Lafontaine, Harry

    2002-07-01

    To understand soil colonization by a root system, information is needed on the architecture of the root system. In monocotyledons, soil exploration is mainly due to the growth of adventitious primary roots. Primary root emergence in banana was quantified in relation to shoot and corm development. Root emergence kinetics were closely related to the development of aerial organs. Root position at emergence on the corm followed an asymptotic function of corm dry weight, so that the age of each root at a given time could be deduced from its position. Root diameter at emergence was related to the position of the roots on the corm, with younger roots being thicker than older ones. However, root diameters were not constant along a given root, but instead decreased with the distance to the base; roots appear to be conical in their basal and apical parts. Root growth directions at emergence were variable, but a high proportion of the primary roots emerged with a low angle to the horizontal. Further research is needed to evaluate whether these initial trajectories are conserved during root development. Results presented in this study are in good agreement with those reported for other monocotyledons such as maize and rice. They give quantitative information that will facilitate the development of models of root system architecture in banana.

  2. Changes in the level of [14C]indole-3-acetic acid and [14C]indoleacetylaspartic acid during root formation in mung bean cuttings

    International Nuclear Information System (INIS)

    Norcini, J.G.; Heuser, C.W.

    1988-01-01

    Changes in the levels of [ 14 C]indole-3-acetic acid (IAA) and [ 14 C]indoleacetylaspartic acid (IAAsp) were examined during adventitious root formation in mung bean (Vigna radiata [L.] R. Wilcz. Berken) stem cuttings. IAAsp was identified by GC-MS as the primary conjugate in IAA-treated cuttings. During root formation in IAA-treated cuttings, the level of [ 14 C]IAAsp increased rapidly the first day and then declined; [ 14 C]IAA was rapidly metabolized and not detected after 12 hours

  3. The microtubule associated protein END BINDING 1 represses root responses to mechanical cues.

    Science.gov (United States)

    Gleeson, Laura; Squires, Shannon; Bisgrove, Sherryl R

    2012-05-01

    The ability of roots to navigate around rocks and other debris as they grow through the soil requires a mechanism for detecting and responding to input from both touch and gravity sensing systems. The microtubule associated protein END BINDING 1b (EB1b) is involved in this process as mutants have defects responding to combinations of touch and gravity cues. This study investigates the role of EB1b in root responses to mechanical cues. We find that eb1b-1 mutant roots exhibit an increase over wild type in their response to touch and that the expression of EB1b genes in transgenic mutants restores the response to wild type levels, indicating that EB1b is an inhibitor of the response. Mutant roots are also hypersensitive to increased levels of mechanical stimulation, revealing the presence of another process that activates the response. These findings are supported by analyses of double mutants between eb1b-1 and seedlings carrying mutations in PHOSPHOGLUCOMUTASE (PGM), ALTERED RESPONSE TO GRAVITY1 (ARG1), or TOUCH3 (TCH3), genes that encode proteins involved in gravity sensing, signaling, or touch responses, respectively. A model is proposed in which root responses to mechanical cues are modulated by at least two competing regulatory processes, one that promotes touch-mediated growth and another, regulated by EB1b, which dampens root responses to touch and enhances gravitropism. © 2012. Published by Elsevier Ireland Ltd. All rights reserved.

  4. EPICORMIC SHOOTS INDUCTION AND ROOTING CUTTINGS OF Calophyllum brasiliense

    Directory of Open Access Journals (Sweden)

    Dagma Kratz

    2016-12-01

    Full Text Available Calophyllum brasiliense is present in a wide natural distribution range in Brazil and its monopodial growth, with a rectilinear stem and a moderately dense timber has attracted the attention from the logging industry in recent decades. In the meantime, the lack of efficient rescue and vegetative propagation methods of adult plants has been a narrowing condition for the selection of superior genotypes in breeding programs of the species. Therefore, we evaluate epicormic shoots induction methods and the rooting cuttings of 14 year-old Calophyllum brasiliense trees. From this scope, three methods of epicormic shoots induction were evaluated: coppicing, girdling and partial girdling. We evaluate the number of produced sprouts and the percentage of sprouted trees at 06, 12 and 15 months’ after the experiment installation. Results have indicated the feasibility of Calophyllum brasiliense vegetative rescue by cuttings method using epicormic shoots induced by coppicing and girdling. In contrast, partial girdling was not effective in epicormic shoots emission. Concerning adventitious roots, the sprouting technique had no influence in the rooting of cuttings, showing variation among the different stock plants.

  5. Significance of in vitro adventitious bud techniques for mutation breeding of vegetatively propagated crops

    International Nuclear Information System (INIS)

    Broertjes, C.

    1982-01-01

    It was investigated whether in vitro propagation techniques are of significance for the production of solid, non-chimeric mutants in mutation breeding programmes of vegetatively propagated crops. Irradiated explants of chrysanthemum, potato, begonia and carnation were used for the production of (adventitious) shoots and plantlets to determine the number and frequency of solid mutants and chimeras respectively. It was demonstrated that by the methods described high numbers of solid, non-chimeric mutants can be obtained and that the percentage of chimeras is comparable to the low figures reported after use of in vivo adventitious bud techniques. Consequently, the micro-propagation techniques seem very promising for the commercial plant breeder of vegetatively propagated crops. (author)

  6. Fine roots in stands of Fagus sylvatica and Picea abies along a gradient of soil acidification

    International Nuclear Information System (INIS)

    Braun, Sabine; Cantaluppi, Leonardo; Flueckiger, Walter

    2005-01-01

    Root length of naturally grown young beech trees (Fagus sylvatica L.) was investigated in 26 forest plots of differing base saturation and nitrogen deposition. The relative length of finest roots (<0.25 mm) was found to decrease in soils with low base saturation. A similar reduction of finest roots in plots with high nitrogen deposition was masked by the effect of base saturation. The formation of adventitious roots was enhanced in acidic soils. The analysis of 128 soil profiles for fine roots of all species present in stands of either Fagus sylvatica L., Picea abies [Karst.] L. or both showed a decreased rooting depth in soils with ≤20% base saturation and in hydromorphic soils. For base rich, well drained soils an average rooting depth of 108 cm was found. This decreased by 28 cm on acidic, well drained soils. The results suggest an effect of the current soil acidification in Switzerland and possibly also of nitrogen deposition on the fine root systems of forest trees. - Fine root length of Fagus sylvatica and fine root depth in stands of Fagus sylvatica and/or Picea abies were impaired in soils with low base saturation

  7. Role of seagrass photosynthesis in root aerobic processes.

    Science.gov (United States)

    Smith, R D; Dennison, W C; Alberte, R S

    1984-04-01

    The role of shoot photosynthesis as a means of supporting aerobic respiration in the roots of the seagrass Zostera marina was examined. O(2) was transported rapidly (10-15 minutes) from the shoots to the root-rhizome tissues upon shoot illumination. The highest rates of transport were in shoots possessing the greatest biomass and leaf area. The rates of O(2) transport do not support a simple gas phase diffusion mechanism. O(2) transport to the root-rhizome system supported aerobic root respiration and in many cases exceeded respiratory requirements leading to O(2) release from the subterranean tissue. Release of O(2) can support aerobic processes in reducing sediments typical of Z. marina habitats. Since the root-rhizome respiration is supported primarily under shoot photosynthetic conditions, then the daily period of photosynthesis determines the diurnal period of root aerobiosis.

  8. Biochemical changes in barberries during adventitious root formation: the role of indole-3-butyric acid and hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Ali Tehranifar

    2014-03-01

    Full Text Available Peroxidase, polyphenol oxidase (PPO, phenolic compounds and total sugars (TS were investigated during root formation in cuttings of Berberis vulgaris var. asperma (BVA and Berberis thunbergii var. atropurpurea (BTA treated with indole-3-butyric acid (IBA and IBA+H2O2. Rooting was observed on BTA cuttings but not on BVA cuttings. The BTA cuttings treated with IBA and IBA+H2O2 showed higher rooting percentages, number of roots, and root length over the control. Those treated with IBA+H2O2 recorded the lowest peroxidase activity after planting. BTA cuttings treated with IBA+H2O2 showed the highest peroxidase activity at 50 d after planting; BVA cuttings under different treatments showed no significant difference for peroxidase activity at planting time or up to 80 d after planting. PPO activity for the BTA cuttings in the control treatment was lower than for other treatments during root formation. The cuttings in the IBA and IBA+H2O2 treatments showed increased PPO activity from 0 to 50 d after planting and a slight decrease in PPO activity from 60 to 80 d after planting. PPO activity for the BVA cuttings was significantly lower than for BTA during root formation. The BTA cuttings treated with IBA and IBA+H2O2 showed the highest phenolic compound content during root formation. The BVA cuttings displayed higher TS than BTA during the initial stage of root formation. A comparison of the anatomical structure of easy-to-root and difficult-to-root cuttings indicated that physical inhibitors did not affect the rooting capacity of BVA.

  9. Deep rooting conferred by DEEPER ROOTING 1 enhances rice yield in paddy fields.

    Science.gov (United States)

    Arai-Sanoh, Yumiko; Takai, Toshiyuki; Yoshinaga, Satoshi; Nakano, Hiroshi; Kojima, Mikiko; Sakakibara, Hitoshi; Kondo, Motohiko; Uga, Yusaku

    2014-07-03

    To clarify the effect of deep rooting on grain yield in rice (Oryza sativa L.) in an irrigated paddy field with or without fertilizer, we used the shallow-rooting IR64 and the deep-rooting Dro1-NIL (a near-isogenic line homozygous for the Kinandang Patong allele of DEEPER ROOTING 1 (DRO1) in the IR64 genetic background). Although total root length was similar in both lines, more roots were distributed within the lower soil layer of the paddy field in Dro1-NIL than in IR64, irrespective of fertilizer treatment. At maturity, Dro1-NIL showed approximately 10% higher grain yield than IR64, irrespective of fertilizer treatment. Higher grain yield of Dro1-NIL was mainly due to the increased 1000-kernel weight and increased percentage of ripened grains, which resulted in a higher harvest index. After heading, the uptake of nitrogen from soil and leaf nitrogen concentration were higher in Dro1-NIL than in IR64. At the mid-grain-filling stage, Dro1-NIL maintained higher cytokinin fluxes from roots to shoots than IR64. These results suggest that deep rooting by DRO1 enhances nitrogen uptake and cytokinin fluxes at late stages, resulting in better grain filling in Dro1-NIL in a paddy field in this study.

  10. Core-level photoelectron study of Si(1 1 1) sq root 7x sq root 3-(Pb, Sn) surface

    CERN Document Server

    Soda, K; Takada, T; Yoshimoto, O; Kato, M; Yagi, S; Morita, K; Kamada, M

    2003-01-01

    The Sn 4d and Pb 5d core-level photoelectron spectra have been studied in order to clarify their bonding properties and atomic arrangement on a Si(1 1 1) sq root 7x sq root 3-(Pb, Sn) surface, which is formed by the coadsorption of 0.4 ML Pb and 0.4 ML Sn and shows two kinds of bright spots in the scanning tunneling microscopic (STM) images: (A) those aligned zigzag on the T sub 1 site and (B) those on the T sub 1 and H sub 3 sites along the [1 1 -2] direction. The Pb 5d spectrum shows a single spin-orbit-split feature with weak tailing towards the high binding energy side, while the Sn 4d spectrum exhibits shoulder structures at the high binding energy side of the main peaks. This definitely indicates at least two different Sn-Si bonds or inequivalent Sn adsorbing sites and single bond or site for Pb. Thus the spots A at the T sub 1 site and those B at the T sub 1 and H sub 3 sites in the STM images are ascribed to Pb and Sn adatoms, respectively. The formation process of this surface will be also discussed ...

  11. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions.

    Science.gov (United States)

    Uga, Yusaku; Sugimoto, Kazuhiko; Ogawa, Satoshi; Rane, Jagadish; Ishitani, Manabu; Hara, Naho; Kitomi, Yuka; Inukai, Yoshiaki; Ono, Kazuko; Kanno, Noriko; Inoue, Haruhiko; Takehisa, Hinako; Motoyama, Ritsuko; Nagamura, Yoshiaki; Wu, Jianzhong; Matsumoto, Takashi; Takai, Toshiyuki; Okuno, Kazutoshi; Yano, Masahiro

    2013-09-01

    The genetic improvement of drought resistance is essential for stable and adequate crop production in drought-prone areas. Here we demonstrate that alteration of root system architecture improves drought avoidance through the cloning and characterization of DEEPER ROOTING 1 (DRO1), a rice quantitative trait locus controlling root growth angle. DRO1 is negatively regulated by auxin and is involved in cell elongation in the root tip that causes asymmetric root growth and downward bending of the root in response to gravity. Higher expression of DRO1 increases the root growth angle, whereby roots grow in a more downward direction. Introducing DRO1 into a shallow-rooting rice cultivar by backcrossing enabled the resulting line to avoid drought by increasing deep rooting, which maintained high yield performance under drought conditions relative to the recipient cultivar. Our experiments suggest that control of root system architecture will contribute to drought avoidance in crops.

  12. Responses of root physiological characteristics and yield of sweet potato to humic acid urea fertilizer.

    Directory of Open Access Journals (Sweden)

    Xiaoguang Chen

    Full Text Available Humic acid (HA, not only promote the growth of crop roots, they can be combined with nitrogen (N to increase fertilizer use efficiency and yield. However, the effects of HA urea fertilizer (HA-N on root growth and yield of sweet potato has not been widely investigated. Xushu 28 was used as the experimental crop to investigate the effects of HA-N on root morphology, active oxygen metabolism and yield under field conditions. Results showed that nitrogen application alone was not beneficial for root growth and storage root formation during the early growth stage. HA-N significantly increased the dry weight of the root system, promoted differentiation from adventitious root to storage root, and increased the overall root activity, total root length, root diameter, root surface area, as well as root volume. HA-N thus increased the activity of superoxide dismutase (SOD, peroxidase (POD, and Catalase (CAT as well as increasing the soluble protein content of roots and decreasing the malondialdehyde (MDA content. HA-N significantly increased both the number of storage roots per plant increased by 14.01%, and the average fresh weight per storage root increased by 13.7%, while the yield was also obviously increased by 29.56%. In this study, HA-N increased yield through a synergistic increase of biological yield and harvest index.

  13. Effect of the culture filtrate of Pseudocercospora fijiensis Morelet on adventitious buds of Musa spp. cultivars

    Directory of Open Access Journals (Sweden)

    Lourdes R. García

    2004-01-01

    Full Text Available The obtaining of bananas tolerant or resistant to the Black Sigatoka (Mycosphaerella fijiensis Morelet is an imperious need since 1991 with its apparition in our country. The effect of the culture filtrate was studied on different strain of the fungus on adventitious buds of the cultivar Grande Naine (AAA (susceptible and Pellipita (ABB (resistant with the objective of determining possible differences between these cultivars the most effective strain and the optimum dilution. Adventitious buds of these cultivars formed in a cultivation medium with high concentrations of 6 BAP were utilized and then they were subcultivated on the selective medium that contained different dilutions of culture filtrate of the strains C-27, C-21, and C-19. It was evaluated at 15 and 30 days the fresh weight increment of the explants and the percentage of growth and mortality, being found differences between the susceptible cultivar and the resistant one with the most concentrated dilutions. The best results of differentiation were obtained with the dilution 1:5 The strains studied showed different effects on the explants. Significant differences were founded when C-21 and C-19 were used, not been so with the C-27. Growth stimulation was observed in both cultivars in the control treatment that contained the components of the fungus culture medium, discarding so any type of toxicity of these substances on the adventitious buds that could disguise the results. key words: Black Sigatoka, in vitro selection, Mycosphaerella fijiensis Morelet, strains, tissue culture

  14. Over-expression of mango (Mangifera indica L.) MiARF2 inhibits root and hypocotyl growth of Arabidopsis.

    Science.gov (United States)

    Wu, Bei; Li, Yun-He; Wu, Jian-Yong; Chen, Qi-Zhu; Huang, Xia; Chen, Yun-Feng; Huang, Xue-Lin

    2011-06-01

    An auxin response factor 2 gene, MiARF2, was cloned in our previous study [1] from the cotyledon section of mango (Mangifera indica L. cv. Zihua) during adventitious root formation, which shares an 84% amino acid sequence similarity to Arabidopsis ARF2. This study was to examine the effects of over-expression of the full-length MiARF2 open reading frame on the root and hypocotyl growth in Arabidopsis. Phenotype analysis showed that the T(3) transgenic lines had about 20-30% reduction in the length of hypocotyls and roots of the seedlings in comparison with the wild-type. The transcription levels of ANT and ARGOS genes which play a role in controlling organ size and cell proliferation in the transgenic seedlings also decreased. Therefore, the inhibited root and hypocotyl growth in the transgenic seedlings may be associated with the down-regulated transcription of ANT and ARGOS by the over-expression of MiARF2. This study also suggests that although MiARF2 only has a single DNA-binding domain (DBD), it can function as other ARF-like proteins containing complete DBD, middle region (MR) and carboxy-terminal dimerization domain (CTD).

  15. In vtro adventitious shoot regeneration from cotyledon explant of brassica oleracea subsp. Italica and brassica oleracea subsp. capitata using tdz and naa

    International Nuclear Information System (INIS)

    Salim, S.; Rashid, A.

    2014-01-01

    Broccoli(Brassica oleracea subsp. italica) cv. Green Dragon King and cabbage (Brassica oleracea subsp. capitata) cv. Gianty are important vegetable crops grown in Cameron Highlands, Malaysia. The cotyledons of both cultivars were used as explant source for in vitro shoot regeneration. The objective of this research was to examine the influence of the growth regulators thidiazuron (TDZ) and naphthaleneacetic acid (NAA) on adventitious shoot formation in these cultivars. This system of adventitious shoot regeneration from cotyledon explants could be useful as a tool for genetic transformation of the subspecies. Cotyledon explants of both cultivars excised from 5-day-old in vitro germinated seedlings were placed on shoot induction medium containing basal salts of Murashige and Skoog (MS) and various concentrations of TDZ and NAA. The highest percentage of cotyledon explant of broccoli cv. Green Dragon King producing shoot (76.66%) and the highest mean number of shoots produced per explant (0.9) were obtained on 0.1 mg/l TDZ with 0.1 mg/l NAA. Meanwhile, the highest percentage of cotyledon explant of cabbage cv. Gianty producing shoots (86.67%) and highest number of shoots produced per explant (1.1) were recorded on 0.5 mg/l TDZ with 0.1 mg/l NAA. Therefore, 0.1 mg/l TDZ with 0.1 mg/l NAA and 0.5 mg/l TDZ with 0.1mg/l NAA are the recommended combinations for adventitious shoot regeneration from cotyledonary explants of broccoli cv. Dragon King and cabbage cv. Gianty respectively. (author)

  16. MAIL1 is essential for development of the primary root but not of anchor roots

    OpenAIRE

    Ühlken, Christine; Hoth, Stefan; Weingartner, Magdalena

    2014-01-01

    MAIN-LIKE1 (MAIL1) is a ubiquitously expressed nuclear protein, which has a crucial function during root development. We have recently described loss of function mutants for MAIL1, in which the organization and function of the primary root meristem is lost soon after germination. Moreover cell differentiation is impaired resulting in primary root growth arrest soon after emergence. Here we show that mail1 mutants form several anchor roots from the hypocotyl to root junction. These anchor root...

  17. Context-Dependent Development of Lymphoid Stroma from Adult CD34+ Adventitial Progenitors

    DEFF Research Database (Denmark)

    Sitnik, Katarzyna Maria; Wendland, Kerstin; Weishaupt, Holger

    2016-01-01

    Despite the key role of primary and secondary lymphoid organ stroma in immunity, our understanding of the heterogeneity and ontogeny of these cells remains limited. Here, we identify a functionally distinct subset of BP3-PDPN+PDGFRβ+/α+CD34+ stromal adventitial cells in both lymph nodes (LNs...

  18. Adventitial fibroblasts induce a distinct proinflammatory/profibrotic macrophage phenotype in pulmonary hypertension.

    Science.gov (United States)

    El Kasmi, Karim C; Pugliese, Steven C; Riddle, Suzette R; Poth, Jens M; Anderson, Aimee L; Frid, Maria G; Li, Min; Pullamsetti, Soni S; Savai, Rajkumar; Nagel, Maria A; Fini, Mehdi A; Graham, Brian B; Tuder, Rubin M; Friedman, Jacob E; Eltzschig, Holger K; Sokol, Ronald J; Stenmark, Kurt R

    2014-07-15

    Macrophage accumulation is not only a characteristic hallmark but is also a critical component of pulmonary artery remodeling associated with pulmonary hypertension (PH). However, the cellular and molecular mechanisms that drive vascular macrophage activation and their functional phenotype remain poorly defined. Using multiple levels of in vivo (bovine and rat models of hypoxia-induced PH, together with human tissue samples) and in vitro (primary mouse, rat, and bovine macrophages, human monocytes, and primary human and bovine fibroblasts) approaches, we observed that adventitial fibroblasts derived from hypertensive pulmonary arteries (bovine and human) regulate macrophage activation. These fibroblasts activate macrophages through paracrine IL-6 and STAT3, HIF1, and C/EBPβ signaling to drive expression of genes previously implicated in chronic inflammation, tissue remodeling, and PH. This distinct fibroblast-activated macrophage phenotype was independent of IL-4/IL-13-STAT6 and TLR-MyD88 signaling. We found that genetic STAT3 haplodeficiency in macrophages attenuated macrophage activation, complete STAT3 deficiency increased macrophage activation through compensatory upregulation of STAT1 signaling, and deficiency in C/EBPβ or HIF1 attenuated fibroblast-driven macrophage activation. These findings challenge the current paradigm of IL-4/IL-13-STAT6-mediated alternative macrophage activation as the sole driver of vascular remodeling in PH, and uncover a cross-talk between adventitial fibroblasts and macrophages in which paracrine IL-6-activated STAT3, HIF1α, and C/EBPβ signaling are critical for macrophage activation and polarization. Thus, targeting IL-6 signaling in macrophages by completely inhibiting C/EBPβ or HIF1α or by partially inhibiting STAT3 may hold therapeutic value for treatment of PH and other inflammatory conditions characterized by increased IL-6 and absent IL-4/IL-13 signaling. Copyright © 2014 by The American Association of Immunologists

  19. The Impact of Rhizosphere Processes on Water Flow and Root Water Uptake

    Science.gov (United States)

    Schwartz, Nimrod; Kroener, Eva; Carminati, Andrea; Javaux, Mathieu

    2015-04-01

    For many years, the rhizosphere, which is the zone of soil in the vicinity of the roots and which is influenced by the roots, is known as a unique soil environment with different physical, biological and chemical properties than those of the bulk soil. Indeed, in recent studies it has been shown that root exudate and especially mucilage alter the hydraulic properties of the soil, and that drying and wetting cycles of mucilage result in non-equilibrium water dynamics in the rhizosphere. While there are experimental evidences and simplified 1D model for those concepts, an integrated model that considers rhizosphere processes with a detailed model for water and roots flow is absent. Therefore, the objective of this work is to develop a 3D physical model of water flow in the soil-plant continuum that take in consideration root architecture and rhizosphere specific properties. Ultimately, this model will enhance our understanding on the impact of processes occurring in the rhizosphere on water flow and root water uptake. To achieve this objective, we coupled R-SWMS, a detailed 3D model for water flow in soil and root system (Javaux et al 2008), with the rhizosphere model developed by Kroener et al (2014). In the new Rhizo-RSWMS model the rhizosphere hydraulic properties differ from those of the bulk soil, and non-equilibrium dynamics between the rhizosphere water content and pressure head is also considered. We simulated a wetting scenario. The soil was initially dry and it was wetted from the top at a constant flow rate. The model predicts that, after infiltration the water content in the rhizosphere remained lower than in the bulk soil (non-equilibrium), but over time water infiltrated into the rhizosphere and eventually the water content in the rhizosphere became higher than in the bulk soil. These results are in qualitative agreement with the available experimental data on water dynamics in the rhizosphere. Additionally, the results show that rhizosphere processes

  20. Scaling root processes based on plant functional traits (Invited)

    Science.gov (United States)

    Eissenstat, D. M.; McCormack, M. L.; Gaines, K.; Adams, T.

    2013-12-01

    There are great challenges to scaling root processes as variation across species and variation of a particular species over different spatial and temporal scales is poorly understood. We have examined tree species variation using multispecies plantings, often referred to by ecologists as 'common gardens'. Choosing species with wide variation in growth rate, root morphology (diameter, branching intensity) and root chemistry (root N and Ca concentration), we found that variation in root lifespan was well correlated with plant functional traits across 12 species. There was also evidence that localized liquid N addition could increase root lifespan and localized water addition diminished root lifespan over untreated controls, with effects strongest in the species of finest root diameter. In an adjacent forest, we have also seen tree species variation in apparent depth of rooting using water isotopes. In particular species of wood anatomy that was ring porous (e.g. oaks) typically had the deepest rooting depth, whereas those that had either diffuse-porous sapwood (maples) or tracheid sapwood (pines) were shallower rooted. These differences in rooting depth were related to sap flux of trees during and immediately after periods of drought. The extent that the patterns observed in central Pennsylvania are modulated by environment or indicative of other plant species will be discussed.

  1. Anatomy and Histochemistry of Roots and Shoots in Wild Rice (Zizania latifolia Griseb.

    Directory of Open Access Journals (Sweden)

    Chaodong Yang

    2014-01-01

    Full Text Available Wild rice (Zizania latifolia Griseb. is a famous, perennial, emergent vegetable in China. The current work explores the anatomy and histochemistry of roots, stems, and leaves and the permeability of apoplastic barriers of wild rice. The adventitious roots in wild rice have suberized and lignified endodermis and adjacent, thick-walled cortical layers and suberized and lignified hypodermis, composed of a uniseriate sclerenchyma layer (SC underlying uniseriate exodermis; they also have lysigenous aerenchyma. Stems have a thickened epidermal cuticle, a narrow peripheral mechanical ring (PMR, an outer ring of vascular bundles, and an inner ring of vascular bundles embedded in a multiseriate sclerenchyma ring (SCR. There is evidence of suberin in stem SCR and PMR sclerenchyma cells. Sheathing leaves are characterized by thick cuticles and fibrous bundle sheath extensions. Air spaces in stems and leaves consist of mostly lysigenous aerenchyma and pith cavities in stems. Apoplastic barriers are found in roots and stems.

  2. 1-Aminocyclopropane-1-carboxylic acid (ACC) concentration and ACC synthase expression in soybean roots, root tips, and soybean cyst nematode (Heterodera glycines)-infected roots.

    Science.gov (United States)

    Tucker, Mark L; Xue, Ping; Yang, Ronghui

    2010-01-01

    Colonization of plant roots by root knot and cyst nematodes requires a functional ethylene response pathway. However, ethylene plays many roles in root development and whether its role in nematode colonization is direct or indirect, for example lateral root initiation or root hair growth, is not known. The temporal requirement for ethylene and localized synthesis of ethylene during the life span of soybean cyst nematode (SCN) on soybean roots was further investigated. Although a significant increase in ethylene evolution was not detected from SCN-colonized roots, the concentration of the immediate precursor to ethylene, 1-aminocyclopropane-1-carboxylic acid (ACC), was higher in SCN-colonized root pieces and root tips than in other parts of the root. Moreover, expression analysis of 17 ACC synthase (ACS) genes indicated that a select set of ACS genes is expressed in SCN-colonized root pieces that is clearly different from the set of genes expressed in non-colonized roots or root tips. Semi-quantitative real-time PCR indicated that ACS transcript accumulation correlates with the high concentration of ACC in root tips. In addition, an ACS-like sequence was found in the public SCN nucleotide database. Acquisition of a full-length sequence for this mRNA (accession GQ389647) and alignment with transcripts for other well-characterized ACS proteins indicated that the nematode sequence is missing a key element required for ACS activity and therefore probably is not a functional ACS. Moreover, no significant amount of ACC was found in any growth stage of SCN that was tested.

  3. Microbial transformation of ginsenosides extracted from Panax ginseng adventitious roots in an airlift bioreactor

    Directory of Open Access Journals (Sweden)

    Xiaolin Song

    2017-03-01

    Conclusion: These findings may not only solve the problem of low productivity of metabolite in ginseng root culture but may also result in the development of a new valuable method of manufacturing ginsenoside CK.

  4. Root locus analysis and design of the adaptation process in active noise control.

    Science.gov (United States)

    Tabatabaei Ardekani, Iman; Abdulla, Waleed H

    2012-10-01

    This paper applies root locus theory to develop a graphical tool for the analysis and design of adaptive active noise control systems. It is shown that the poles of the adaptation process performed in these systems move on typical trajectories in the z-plane as the adaptation step-size varies. Based on this finding, the dominant root of the adaptation process and its trajectory can be determined. The first contribution of this paper is formulating parameters of the adaptation process root locus. The next contribution is introducing a mechanism for modifying the trajectory of the dominant root in the root locus. This mechanism creates a single open loop zero in the original root locus. It is shown that appropriate localization of this zero can cause the dominant root of the locus to be pushed toward the origin, and thereby the adaptation process becomes faster. The validity of the theoretical findings is confirmed in an experimental setup which is implemented using real-time multi-threading and multi-core processing techniques.

  5. Nitric oxide mediates strigolactone signaling in auxin and ethylene-sensitive lateral root formation in sunflower seedlings.

    Science.gov (United States)

    Bharti, Niharika; Bhatla, Satish C

    2015-01-01

    Strigolactones (SLs) play significant role in shaping root architecture whereby auxin-SL crosstalk has been observed in SL-mediated responses of primary root elongation, lateral root formation and adventitious root (AR) initiation. Whereas GR24 (a synthetic strigolactone) inhibits LR and AR formation, the effect of SL biosynthesis inhibitor (fluridone) is just the opposite (root proliferation). Naphthylphthalamic acid (NPA) leads to LR proliferation but completely inhibits AR development. The diffusive distribution of PIN1 in the provascular cells in the differentiating zone of the roots in response to GR24, fluridone or NPA treatments further indicates the involvement of localized auxin accumulation in LR development responses. Inhibition of LR formation by GR24 treatment coincides with inhibition of ACC synthase activity. Profuse LR development by fluridone and NPA treatments correlates with enhanced [Ca(2+)]cyt in the apical region and differentiating zones of LR, indicating a critical role of [Ca(2+)] in LR development in response to the coordinated action of auxins, ethylene and SLs. Significant enhancement of carotenoid cleavage dioxygenase (CCD) activity (enzyme responsible for SL biosynthesis) in tissue homogenates in presence of cPTIO (NO scavenger) indicates the role of endogenous NO as a negative modulator of CCD activity. Differences in the spatial distribution of NO in the primary and lateral roots further highlight the involvement of NO in SL-modulated root morphogenesis in sunflower seedlings. Present work provides new report on the negative modulation of SL biosynthesis through modulation of CCD activity by endogenous nitric oxide during SL-modulated LR development.

  6. Methyl Jasmonate and Salicylic Acid Induced Oxidative Stress and Accumulation of Phenolics in Panax ginseng Bioreactor Root Suspension Cultures

    Directory of Open Access Journals (Sweden)

    Kee-Yoeup Paek

    2007-03-01

    Full Text Available To investigate the enzyme variations responsible for the synthesis of phenolics, 40 day-old adventitious roots of Panax ginseng were treated with 200 μM methyl jasmonate (MJ or salicylic acid (SA in a 5 L bioreactor suspension culture (working volume 4 L. Both treatments caused an increase in the carbonyl and hydrogen peroxide (H2O2 contents, although the levels were lower in SA treated roots. Total phenolic, flavonoid, ascorbic acid, non-protein thiol (NPSH and cysteine contents and 1,1-diphenyl-2-picrylhydrazyl (DPPH radical reducing activity were increased by MJ and SA. Fresh weight (FW and dry weight (DW decreased significantly after 9 days of exposure to SA and MJ. The highest total phenolics (62%, DPPH activity (40%, flavonoids (88%, ascorbic acid (55%, NPSH (33%, and cysteine (62% contents compared to control were obtained after 9 days in SA treated roots. The activities of glucose 6-phosphate dehydrogenase, phenylalanine ammonia lyase, substrate specific peroxidases (caffeic acid peroxidase, quercetin peroxidase and ferulic acid peroxidase were higher in MJ treated roots than the SA treated ones. Increased shikimate dehydrogenase, chlorogenic acid peroxidase and β-glucosidase activities and proline content were observed in SA treated roots than in MJ ones. Cinnamyl alcohol dehydrogenase activity remained unaffected by both MJ and SA. These results strongly indicate that MJ and SA induce the accumulation of phenolic compounds in ginseng root by altering the phenolic synthesis enzymes.

  7. A comparative analysis of coronary adventitial T-lymphocytes - an autopsy study

    International Nuclear Information System (INIS)

    Zubair, A.; Mubarik, A.; Jamal, S.; Naz, S.

    2010-01-01

    Background: Recent clinical and histopathologic data suggests that inflammation plays a key role in coronary artery plaque instability and subsequent occlusive thrombosis. The intima has received much attention as a site of inflammation, while the adventitia has remained relatively unexplored. The aim of the present study was to investigate the frequency of inflammatory activity in the cap and shoulder region of un ruptured, atherosclerotic lesions in coronary arteries and to correlate these findings with distribution of inflammatory cells in adventitia. Methods: The study was carried out in Histopathology Department, Army Medical College, Rawalpindi and National University of Sciences and Technology (NUST), from August 2008 to July 2009. Sixty-seven autopsy cases performed at Military Hospital Rawalpindi, Pakistan were selected. The cases were divided into study group and control group. Case group (n=35) included those where cause of death was ischemic heart disease. Those coronary arteries were taken as control (n=32) where atherosclerotic changes were found by chance (death without history of ischemic heart disease). Plaques in each group were assessed by light microscopy and by immunohistochemistry. Results: The ages of the deceased ranged from 38 to 49 years. Within study group, adventitial lymphocytes exhibited strong correlation with erosion, thrombus formation in culprit plaque (p=0.001). No correlation was found between adventitial T-lymphocytes and erosion of plaque (p=0.700) in control group. In 72% of culprit plaques moderate staining for T-lymphocytes was observed in adventitia as well as intima. In control group, most of the cases contained scattered cells. Few cases of stable plaques revealed lymphocytes as clusters, both in adventitia and in intima. Conclusion: Adventitial inflammation may play a pivotal role for atherosclerotic lesion histology and atheroma instability. With the help of these autopsy findings, we hope to be able to reduce the

  8. Macrophages activate iNOS signaling in adventitial fibroblasts and contribute to adventitia fibrosis.

    Science.gov (United States)

    Zhang, Guannan; Li, Xiaodong; Sheng, Chengyu; Chen, Xiaohui; Chen, Yu; Zhu, Dingliang; Gao, Pingjin

    2016-12-30

    A large amount of NO is generated through the inducible nitric oxide synthase (iNOS) pathway from the vascular adventitia in various vascular diseases. However, it is currently not fully understood how the iNOS signaling pathway is activated. In the present study, this question was addressed in the context of adventitial cellular interactions. A rat model of acute hypertension in the contralateral carotid arteries was established through transverse aortic constriction (TAC) surgery. In this model, activated macrophages were found surrounded by a large quantity of iNOS-expressing adventitial fibroblasts (AFs), suggesting a possible causal relationship between macrophages and iNOS activation of the neighboring AFs. In an in vitro model, a macrophage-like cell line RAW 264.7 was first activated by LPS treatment. The supernatant was then harvested and applied to treat primary rat AFs. iNOS in AFs was activated robustly by the supernatant treatment but not by LPS itself. Treating AFs with interleukin-1β (IL-1β) also activated iNOS signaling, suggesting that the IL-1β pathway might be a possible mediator. As a consequence of the iNOS activation, total protein nitration and S-nitrosylation significantly increased in those AFs. Additionally, increased deposition of type I and type III collagens was observed in both in vitro and in vivo models. The collagen deposition was partially restored by an iNOS inhibitor, 1400 W. These findings highlight the importance of iNOS signaling during vascular inflammation, and advance our understanding of its activation through a cellular interaction perspective. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. ZIFL1.1 transporter modulates polar auxin transport by stabilizing membrane abundance of multiple PINs in Arabidopsis root tip

    Science.gov (United States)

    Remy, Estelle; Baster, Pawel; Friml, Jiří; Duque, Paula

    2013-01-01

    Cell-to-cell directional flow of the phytohormone auxin is primarily established by polar localization of the PIN auxin transporters, a process tightly regulated at multiple levels by auxin itself. We recently reported that, in the context of strong auxin flows, activity of the vacuolar ZIFL1.1 transporter is required for fine-tuning of polar auxin transport rates in the Arabidopsis root. In particular, ZIFL1.1 function protects plasma-membrane stability of the PIN2 carrier in epidermal root tip cells under conditions normally triggering PIN2 degradation. Here, we show that ZIFL1.1 activity at the root tip also promotes PIN1 plasma-membrane abundance in central cylinder cells, thus supporting the notion that ZIFL1.1 acts as a general positive modulator of polar auxin transport in roots. PMID:23857365

  10. Eficiência das auxinas (AIB e ANA no enraizamento de miniestacas de clones de Eucalyptus cloeziana F. Muell Auxin (IBA and NAA effects on minicuttings rooting of Eucalyptus cloeziana F. Muell. clones

    Directory of Open Access Journals (Sweden)

    Fernanda Daniele de Almeida

    2007-01-01

    Full Text Available Este trabalho teve como objetivo avaliar a eficiência das auxinas AIB (ácido indolbutírico e ANA (ácido naftalenoacético no enraizamento adventício de miniestacas de clones de Eucalyptus cloeziana. Foram utilizadas miniestacas provenientes de sete clones de Eucalyptus cloeziana, estabelecidos em minijardim clonal, sendo avaliados os efeitos de AIB (0, 1.500, 3.000 e 6.000 mg L-1 na forma líquida e em pó e ANA (0, 3.000 e 6.000 mg L-1 na forma líquida. Os resultados apontaram ser a miniestaquia técnica viável na propagação vegetativa dos clones de Eucalyptus cloeziana estudados, apresentando, de modo geral, alto índice de enraizamento das miniestacas. Os clones com maior potencial de enraizamento adventício responderam mais positivamente às menores dosagens de AIB, enquanto nos clones com capacidade de enraizamento reduzida houve tendência de as maiores dosagens de AIB serem mais eficientes no enraizamento, independentemente da forma de aplicação do fitorregulador (líquido ou pó. O ANA, de modo geral, não influenciou significativamente o enraizamento das miniestacas da maioria dos clones estudados.The present work aimed to evaluate the efficiency of the auxins IBA (indolbutyric acid and NAA (naphtaleneacetic acid on the adventitious rooting of Eucalyptus cloeziana clones. Minicuttings originated from seven Eucalyptus cloeziana clones established in mini-clonal hedge, were evaluated for the effects of IBA (0, 1500, 3000 and 6000 mg L-1 in the liquid and powder forms and NAA (0, 3000 and 6000 mg L-1 in the liquid form. The results showed that minicutting is a viable technique for vegetative propagation of the studied Eucalyptus cloeziana clones, with overall high rooting rates. Clones with higher adventitious rooting potential gave better response to lower IBA doses, while clones with reduced rooting potential were more efficient with higher doses, independently of the form of the applied phytoregulator (powder or liquid. NAA

  11. Arabidopsis CDS blastp result: AK105400 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK105400 001-123-C10 At1g14130.1 2-oxoglutarate-dependent dioxygenase, putative similar to adventitious root...ing related oxygenase ARRO-1 from Malus x domestica, gi|3492806; contains Pfam domain PF03171, 2OG-Fe(II) oxygenase superfamily 2e-66 ...

  12. Rhabdovirus-like endogenous viral elements in the genome of Spodoptera frugiperda insect cells are actively transcribed: Implications for adventitious virus detection.

    Science.gov (United States)

    Geisler, Christoph; Jarvis, Donald L

    2016-07-01

    Spodoptera frugiperda (Sf) cell lines are used to produce several biologicals for human and veterinary use. Recently, it was discovered that all tested Sf cell lines are persistently infected with Sf-rhabdovirus, a novel rhabdovirus. As part of an effort to search for other adventitious viruses, we searched the Sf cell genome and transcriptome for sequences related to Sf-rhabdovirus. To our surprise, we found intact Sf-rhabdovirus N- and P-like ORFs, and partial Sf-rhabdovirus G- and L-like ORFs. The transcribed and genomic sequences matched, indicating the transcripts were derived from the genomic sequences. These appear to be endogenous viral elements (EVEs), which result from the integration of partial viral genetic material into the host cell genome. It is theoretically impossible for the Sf-rhabdovirus-like EVEs to produce infectious virus particles as 1) they are disseminated across 4 genomic loci, 2) the G and L ORFs are incomplete, and 3) the M ORF is missing. Our finding of transcribed virus-like sequences in Sf cells underscores that MPS-based searches for adventitious viruses in cell substrates used to manufacture biologics should take into account both genomic and transcribed sequences to facilitate the identification of transcribed EVE's, and to avoid false positive detection of replication-competent adventitious viruses. Copyright © 2016 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  13. Metabolic Reprogramming Regulates the Proliferative and Inflammatory Phenotype of Adventitial Fibroblasts in Pulmonary Hypertension Through the Transcriptional Corepressor C-Terminal Binding Protein-1.

    Science.gov (United States)

    Li, Min; Riddle, Suzette; Zhang, Hui; D'Alessandro, Angelo; Flockton, Amanda; Serkova, Natalie J; Hansen, Kirk C; Moldvan, Radu; McKeon, B Alexandre; Frid, Maria; Kumar, Sushil; Li, Hong; Liu, Hongbing; Caánovas, Angela; Medrano, Juan F; Thomas, Milton G; Iloska, Dijana; Plecitá-Hlavatá, Lydie; Ježek, Petr; Pullamsetti, Soni; Fini, Mehdi A; El Kasmi, Karim C; Zhang, QingHong; Stenmark, Kurt R

    2016-10-11

    Changes in metabolism have been suggested to contribute to the aberrant phenotype of vascular wall cells, including fibroblasts, in pulmonary hypertension (PH). Here, we test the hypothesis that metabolic reprogramming to aerobic glycolysis is a critical adaptation of fibroblasts in the hypertensive vessel wall that drives proliferative and proinflammatory activation through a mechanism involving increased activity of the NADH-sensitive transcriptional corepressor C-terminal binding protein 1 (CtBP1). RNA sequencing, quantitative polymerase chain reaction, 13 C-nuclear magnetic resonance, fluorescence-lifetime imaging, mass spectrometry-based metabolomics, and tracing experiments with U- 13 C-glucose were used to assess glycolytic reprogramming and to measure the NADH/NAD + ratio in bovine and human adventitial fibroblasts and mouse lung tissues. Immunohistochemistry was used to assess CtBP1 expression in the whole-lung tissues. CtBP1 siRNA and the pharmacological inhibitor 4-methylthio-2-oxobutyric acid (MTOB) were used to abrogate CtBP1 activity in cells and hypoxic mice. We found that adventitial fibroblasts from calves with severe hypoxia-induced PH and humans with idiopathic pulmonary arterial hypertension (PH-Fibs) displayed aerobic glycolysis when cultured under normoxia, accompanied by increased free NADH and NADH/NAD + ratios. Expression of the NADH sensor CtBP1 was increased in vivo and in vitro in fibroblasts within the pulmonary adventitia of humans with idiopathic pulmonary arterial hypertension and animals with PH and cultured PH-Fibs, respectively. Decreasing NADH pharmacologically with MTOB or genetically blocking CtBP1 with siRNA upregulated the cyclin-dependent genes (p15 and p21) and proapoptotic regulators (NOXA and PERP), attenuated proliferation, corrected the glycolytic reprogramming phenotype of PH-Fibs, and augmented transcription of the anti-inflammatory gene HMOX1. Chromatin immunoprecipitation analysis demonstrated that CtBP1 directly

  14. Investigating niche partitioning of ectomycorrhizal fungi in specialized rooting zones of the monodominant leguminous tree Dicymbe corymbosa.

    Science.gov (United States)

    Smith, Matthew E; Henkel, Terry W; Williams, Gwendolyn C; Aime, M Catherine; Fremier, Alexander K; Vilgalys, Rytas

    2017-07-01

    Temperate ectomycorrhizal (ECM) fungi show segregation whereby some species dominate in organic layers and others favor mineral soils. Weak layering in tropical soils is hypothesized to decrease niche space and therefore reduce the diversity of ectomycorrhizal fungi. The Neotropical ECM tree Dicymbe corymbosa forms monodominant stands and has a distinct physiognomy with vertical crown development, adventitious roots and massive root mounds, leading to multi-stemmed trees with spatially segregated rooting environments: aerial litter caches, aerial decayed wood, organic root mounds and mineral soil. We hypothesized that these microhabitats host distinct fungal assemblages and therefore promote diversity. To test our hypothesis, we sampled D. corymbosa ectomycorrhizal root tips from the four microhabitats and analyzed community composition based on pyrosequencing of fungal internal transcribed spacer (ITS) barcode markers. Several dominant fungi were ubiquitous but analyses nonetheless suggested that communities in mineral soil samples were statistically distinct from communities in organic microhabitats. These data indicate that distinctive rooting zones of D. corymbosa contribute to spatial segregation of the fungal community and likely enhance fungal diversity. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  15. [Identification of an auxin response factor-like protein cDNA from mango cotyledon section].

    Science.gov (United States)

    Xiao, Jie-Ning; Huang, Xue-Lin; Huang, Xia; Li, Xiao-Ju

    2004-01-01

    Auxin-responsive elements (AuxRE) interact with a new class of plant-specific transcription factors, auxin response factors (ARFs). Some of ARFs have been shown to repress or activate expression of genes with an AuxRE promotor element. In Arabidopsis, ARFs play important roles in early embryo development and vascular strand formation (ARF5), floral patterning (ARF3) and photo- and gravitropic responses (ARF7). Two cut surfaces (distal and proximal) of mango (Mangifera indica L. var. Zi-Hua) cotyledon showed different patterns of adventitious root formation, with only the proximal cut surface, but not the distal one, could be induced to form the roots. Thus, the mango cotyledon is a good system for studying adventitious root formation. A cDNA fragment homologous to the Arabidopsis auxin response factor-like protein and relates to adventitious root formation from the cut sections were isolated using suppressive subtractive hybridization (SSH). Two cDNA clones, designated as MiARF1 (mango auxin response factor 1 gene, GenBank accession number AY255705) and MiARF2 (mango auxin response factor 2 gene, GenBank accession number is AY300808), were identified by 3'RACE. MiARF1, 3 272bp long, contains an open reading frame (ORF) of 2 523bp, 5'UTR of 285bp and 3'UTR of 464bp, MiARF2, 1 474bp long, contains an ORF of 981bp, 5' UTR of 285bp and 3'UTR of 208bp. The deduced MiARF1 and MiARF2 are homologues of auxin response factor (ARF) family of transcriptional regulators, and show high similarity to ARF of Arabidopsis in conserved domains. The motifs of MiARF1 EL-WHACAGPL in DBD (DNA binding domain) and GDDPW in IV domain are identical to that of ARF-like protein of Arabidopsis. MiARF2 is identical to MiARF1 in a large part of DBD, but lacks a carboxyl-terminal domain containing conserved motifs III and IV. Virtual Northern blot showed that the expression of MiARF2 was high in rooting tissue of cultured cotyledon sections but low in non-rooting tissue, and the MiARF1 was

  16. Fine Mapping of QUICK ROOTING 1 and 2, Quantitative Trait Loci Increasing Root Length in Rice.

    Science.gov (United States)

    Kitomi, Yuka; Nakao, Emari; Kawai, Sawako; Kanno, Noriko; Ando, Tsuyu; Fukuoka, Shuichi; Irie, Kenji; Uga, Yusaku

    2018-02-02

    The volume that the root system can occupy is associated with the efficiency of water and nutrient uptake from soil. Genetic improvement of root length, which is a limiting factor for root distribution, is necessary for increasing crop production. In this report, we describe identification of two quantitative trait loci (QTLs) for maximal root length, QUICK ROOTING 1 ( QRO1 ) on chromosome 2 and QRO2 on chromosome 6, in cultivated rice ( Oryza sativa L.). We measured the maximal root length in 26 lines carrying chromosome segments from the long-rooted upland rice cultivar Kinandang Patong in the genetic background of the short-rooted lowland cultivar IR64. Five lines had longer roots than IR64. By rough mapping of the target regions in BC 4 F 2 populations, we detected putative QTLs for maximal root length on chromosomes 2, 6, and 8. To fine-map these QTLs, we used BC 4 F 3 recombinant homozygous lines. QRO1 was mapped between markers RM5651 and RM6107, which delimit a 1.7-Mb interval on chromosome 2, and QRO2 was mapped between markers RM20495 and RM3430-1, which delimit an 884-kb interval on chromosome 6. Both QTLs may be promising gene resources for improving root system architecture in rice. Copyright © 2018 Kitomi et al.

  17. Fine Mapping of QUICK ROOTING 1 and 2, Quantitative Trait Loci Increasing Root Length in Rice

    Directory of Open Access Journals (Sweden)

    Yuka Kitomi

    2018-02-01

    Full Text Available The volume that the root system can occupy is associated with the efficiency of water and nutrient uptake from soil. Genetic improvement of root length, which is a limiting factor for root distribution, is necessary for increasing crop production. In this report, we describe identification of two quantitative trait loci (QTLs for maximal root length, QUICK ROOTING 1 (QRO1 on chromosome 2 and QRO2 on chromosome 6, in cultivated rice (Oryza sativa L.. We measured the maximal root length in 26 lines carrying chromosome segments from the long-rooted upland rice cultivar Kinandang Patong in the genetic background of the short-rooted lowland cultivar IR64. Five lines had longer roots than IR64. By rough mapping of the target regions in BC4F2 populations, we detected putative QTLs for maximal root length on chromosomes 2, 6, and 8. To fine-map these QTLs, we used BC4F3 recombinant homozygous lines. QRO1 was mapped between markers RM5651 and RM6107, which delimit a 1.7-Mb interval on chromosome 2, and QRO2 was mapped between markers RM20495 and RM3430-1, which delimit an 884-kb interval on chromosome 6. Both QTLs may be promising gene resources for improving root system architecture in rice.

  18. Huanglongbing impairs the rhizosphere-to-rhizoplane enrichment process of the citrus root-associated microbiome.

    Science.gov (United States)

    Zhang, Yunzeng; Xu, Jin; Riera, Nadia; Jin, Tao; Li, Jinyun; Wang, Nian

    2017-08-10

    Roots are the primary site for plant-microbe interactions. Among the three root-associated layers (i.e., rhizosphere, rhizoplane, and endorhiza), the rhizoplane is a key component serving a critical gating role that controls microbial entry into plant roots. The microbial communities colonizing the three layers are believed to be gradually enriched from the bulk soil inoculum. However, it is unknown how this enrichment process, particularly the rhizosphere to rhizoplane step, is affected by biotic stresses, such as disease. In this study, we address this question using the citrus root-associated microbiome as a model. We identified the rhizosphere-to-rhizoplane-enriched taxonomic and functional properties of the citrus root-associated microbiome and determined how they were affected by Huanglongbing (HLB), a severe systemic disease caused by Candidatus Liberibacter asiaticus, using metagenomic and metatranscriptomic approaches. Multiple rhizoplane-enriched genera were identified, with Bradyrhizobium and Burkholderia being the most dominant. Plant-derived carbon sources are an important driving force for the enrichment process. The enrichment of functional attributes, such as motility, chemotaxis, secretion systems, and lipopolysaccharide (LPS) synthesis, demonstrated more active microbe-plant interactions on the rhizoplane than the rhizosphere. We observed that HLB impaired the rhizosphere-to-rhizoplane enrichment process of the citrus root-associated microbiome in three ways: (1) by decreasing the relative abundance of most rhizoplane-enriched genera; (2) by reducing the relative abundance and/or expression activity of the functional attributes involved in microbe-plant interactions; and (3) by recruiting more functional features involved in autotrophic life cycle adaptation, such as carbon fixation and nitrogen nitrification in the HLB rhizoplane microbiome. Finally, our data showed that inoculation of Burkholderia strains isolated from the healthy citrus root

  19. IBA levels and substrates in the rooting of UENF/CALIMAN 02 hybrid papaya minicuttings in a semi-hydroponic system

    Directory of Open Access Journals (Sweden)

    Márcio José Vieira de Oliveira

    2018-02-01

    Full Text Available Abstract Mini-cutting is a technique with large applications in various crops, mainly due to the increase in the percentage and quality of adventitious roots, reducing time for the formation of clonal seedlings. The aim of this study was to evaluate IBA levels and substrates on the rooting of UENF/CALIMAN 02 hybrid papaya mini-cuttings. To perform the experiment, papaya mini-cuttings were taken from mother plants grown in pots in greenhouse, induced to produce shoots through pruning and growth regulator applications. Mini-cuttings were fixed in vermiculite or coconut fiver substrates placed in alveolate trays with 4.5x4.5x5.0 cm cells, and styrofoam trays were placed in plastic trays where different IBA levels were added in a modified Hoagland solution. After 45 days, rooted buds were transplanted to plastic pots of 600 mL of volume with soil, sand, well-cured bovine fertilizer, in the proportion of 3:1:1, remaining for 45 days. When they were taken from pots, roots were carefully washed, and the length of shoots, length of the largest root, dried mass of shoots and radicular system and root percentage were measured. The experiment was set up in a randomized complete block 5 x 2 factorial design, with 5 IBA levels: 0; 2.5; 5.0; 7.5 and 10 mg L-1, two substrates: vermiculite and coconut fiber, three replicates, with six plants per replicate. IBA levels of 5.0 mg L-1 and substrate vermiculite are the most adequate for the rooting of ‘UENF/CALIMAN 02’ papaya mini-cuttings in semi-hydroponic system in alveolate styrofoam trays with 4.5x4.5x5.0 cm cells.

  20. Adventitial Fibroblasts induce a distinct Pro-inflammatory/Pro-fibrotic Macrophage Phenotype in Pulmonary Hypertension

    Science.gov (United States)

    El Kasmi, Karim C.; Pugliese, Steven C.; Riddle, Suzette R.; Poth, Jens M.; Anderson, Aimee L.; Frid, Maria G.; Li, Min; Pullamsetti, Soni S.; Savai, Rajkumar; Nagel, Maria A.; Fini, Mehdi A.; Graham, Brian B.; Tuder, Rubin M.; Friedman, Jacob E.; Eltzschig, Holger K.; Sokol, Ronald J.; Stenmark, Kurt R.

    2014-01-01

    Macrophage accumulation is not only a characteristic hallmark but also a critical component of pulmonary artery (PA) remodeling associated with pulmonary hypertension (PH). However, the cellular and molecular mechanisms that drive vascular macrophage activation and their functional phenotype remain poorly defined. Utilizing multiple levels of in vivo (bovine and rat models of hypoxia-induced PH, together with human tissue samples) and in vitro (primary mouse, rat, and bovine macrophages, human monocytes, as well as primary human and bovine fibroblasts) approaches, we observed that adventitial fibroblasts derived from hypertensive Pas (bovine and human) regulate macrophage activation. These fibroblasts activate macrophages through paracrine IL6 and STAT3, HIF1, and C/EBPβ signaling to drive expression of genes previously implicated in chronic inflammation, tissue remodeling, and PH. This distinct fibroblast-activated macrophage phenotype was independent of IL4/IL13-STAT6 and TLR-MyD88 signaling. We found that genetic STAT3 haplodeficiency in macrophages attenuated macrophage activation while complete STAT3 deficiency increased macrophage activation through compensatory upregulation of STAT1 signaling, while deficiency in C/EBPβ or HIF1 attenuated fibroblast driven macrophage activation. These findings challenge the current paradigm of IL4/IL13-STAT6 mediated alternative macrophage activation as the sole driver of vascular remodeling in PH and uncover a crosstalk between adventitial fibroblasts and macrophages in which paracrine IL6 activated STAT3, HIF1, and C/EBPβ signaling is critical for macrophage activation and polarization. Thus, targeting IL6 signaling in macrophages by completely inhibiting C/EBPβ, HIF1a or partially inhibiting STAT3 may hold therapeutic value for treatment of PH and other inflammatory conditions characterized by increased IL6 and absent IL4/IL13 signaling. PMID:24928992

  1. Metabolic Reprogramming Regulates the Proliferative and Inflammatory Phenotype of Adventitial Fibroblasts in Pulmonary Hypertension Through the Transcriptional Co-Repressor C-terminal Binding Protein-1

    Science.gov (United States)

    Li, Min; Riddle, Suzette; Zhang, Hui; D’Alessandro, Angelo; Flockton, Amanda; Serkova, Natalie J.; Hansen, Kirk C.; Moldvan, Radu; McKeon, B. Alexandre; Frid, Maria; Kumar, Sushil; Li, Hong; Liu, Hongbing; Cánovas, Angela; Medrano, Juan F.; Thomas, Milton G.; Iloska, Dijana; Plecita-Hlavata, Lydie; Ježek, Petr; Pullamsetti, Soni; Fini, Mehdi A.; El Kasmi, Karim C.; Zhang, Qinghong; Stenmark, Kurt R.

    2016-01-01

    Background Changes in metabolism have been suggested to contribute to the aberrant phenotype of vascular wall cells including fibroblasts in pulmonary hypertension (PH). Herein, we test the hypothesis that metabolic reprogramming to aerobic glycolysis is a critical adaptation of fibroblasts in the hypertensive vessel wall that drives proliferative and pro-inflammatory activation through a mechanism involving increased activity of the NADH-sensitive transcriptional co-repressor C-terminal binding protein 1 (CtBP1). Methods RNA-Sequencing, qPCR, 13C-NMR, fluorescence-lifetime imaging, mass spectrometry-based metabolomics and tracing experiments with U-13C-glucose were used to assess glycolytic reprogramming and to measure NADH/NAD+ ratio in bovine and human adventitial fibroblasts, and mouse lung tissues. Immunohistochemistry was utilized to assess CtBP1 expression in the whole lung tissues. CtBP1 siRNA and the pharmacologic inhibitor 4-methylthio-2-oxobutyric acid (MTOB) were utilized to abrogate CtBP1 activity in cells and hypoxic mice. Results We found adventitial fibroblasts from calves with severe hypoxia-induced PH and humans with IPAH (PH-Fibs) displayed aerobic glycolysis when cultured under normoxia, accompanied by increased free NADH and NADH/NAD+ ratios. Expression of the NADH sensor CtBP1 was increased in vivo and in vitro in fibroblasts within the pulmonary adventitia of humans with IPAH and animals with PH and cultured PH-Fibs, respectively. Decreasing NADH pharmacologically with MTOB, or genetically blocking CtBP1 using siRNA, upregulated the cyclin-dependent genes (p15 and p21) and pro-apoptotic regulators (NOXA and PERP), attenuated proliferation, corrected the glycolytic reprogramming phenotype of PH-Fibs, and augmented transcription of the anti-inflammatory gene HMOX1. ChIP analysis demonstrated that CtBP1 directly binds the HMOX1 promoter. Treatment of hypoxic mice with MTOB decreased glycolysis and expression of inflammatory genes, attenuated

  2. Microbial processes associated with roots of bulbous rush coated with iron plaques

    Energy Technology Data Exchange (ETDEWEB)

    Kusel, K.; Chabbi, A.; Trinkwalter, T. [University of Bayreuth, Bayreuth (Germany). BITOEK

    2003-11-01

    The objectives of this work were to enumerate the microbes involved in the turnover of iron and organic root exudates in the rhizoplane, to investigate the effect of oxygen and pH on the utilization of these exudates by the rhizobacteria, and to study the ability of the root-colonizing microbiota to reduce sulfate. Enumeration studies done at pH 3 demonstrated that 10{sup 6} Fe(III) reducers and 10{sup 7} Fe(II) oxidizers g (fresh wt root){sup -1} were associated with Juncus roots. When roots were incubated in goethite-containing medium without and with supplemental glucose, Fe(II) was formed at rates approximating 1.1 mmol g (fresh wt root) {sup -1} d{sup -1} and 3.6 mmol g (fresh wt root){sup -1} d{sup -1} under anoxic conditions, respectively. These results suggest that a rapid microbially mediated cycling of iron occurs in the rhizosphere of Juncus roots under changing redox conditions. Most-probable-number estimates of aerobes and anaerobes capable of consuming root exudates at pH 3 were similar in the rhizosphere sediment and in Juncus roots, but numbers of aerobes were significantly higher than those of anaerobes. At pH 3, supplemental organic exudates were primarily subject to aerobic oxidation to CO{sub 2} and not subject to fermentation. However, at pH 4.5, root exudates were also rapidly utilized under anoxic conditions. Root-associated sulfate reduction was not observed at pH 3 to 4.5 but was observed at pH 4.9. The pH increased during all root-incubation studies both under oxic and anoxic conditions. Thus, as result of the microbial turnover of organic root exudates, pH and CO{sub 2} levels might be elevated at the root surface and favor Juncus plants to colonize acidic habitats.

  3. Metabolic and Proliferative State of Vascular Adventitial Fibroblasts in Pulmonary Hypertension Is Regulated Through a MicroRNA-124/PTBP1 (Polypyrimidine Tract Binding Protein 1)/Pyruvate Kinase Muscle Axis.

    Science.gov (United States)

    Zhang, Hui; Wang, Daren; Li, Min; Plecitá-Hlavatá, Lydie; D'Alessandro, Angelo; Tauber, Jan; Riddle, Suzette; Kumar, Sushil; Flockton, Amanda; McKeon, B Alexandre; Frid, Maria G; Reisz, Julie A; Caruso, Paola; El Kasmi, Karim C; Ježek, Petr; Morrell, Nicholas W; Hu, Cheng-Jun; Stenmark, Kurt R

    2017-12-19

    An emerging metabolic theory of pulmonary hypertension (PH) suggests that cellular and mitochondrial metabolic dysfunction underlies the pathology of this disease. We and others have previously demonstrated the existence of hyperproliferative, apoptosis-resistant, proinflammatory adventitial fibroblasts from human and bovine hypertensive pulmonary arterial walls (PH-Fibs) that exhibit constitutive reprogramming of glycolytic and mitochondrial metabolism, accompanied by an increased ratio of glucose catabolism through glycolysis versus the tricarboxylic acid cycle. However, the mechanisms responsible for these metabolic alterations in PH-Fibs remain unknown. We hypothesized that in PH-Fibs microRNA-124 (miR-124) regulates PTBP1 (polypyrimidine tract binding protein 1) expression to control alternative splicing of pyruvate kinase muscle (PKM) isoforms 1 and 2, resulting in an increased PKM2/PKM1 ratio, which promotes glycolysis and proliferation even in aerobic environments. Pulmonary adventitial fibroblasts were isolated from calves and humans with severe PH (PH-Fibs) and from normal subjects. PTBP1 gene knockdown was achieved via PTBP1-siRNA; restoration of miR-124 was performed with miR-124 mimic. TEPP-46 and shikonin were used to manipulate PKM2 glycolytic function. Histone deacetylase inhibitors were used to treat cells. Metabolic products were determined by mass spectrometry-based metabolomics analyses, and mitochondrial function was analyzed by confocal microscopy and spectrofluorometry. We detected an increased PKM2/PKM1 ratio in PH-Fibs compared with normal subjects. PKM2 inhibition reversed the glycolytic status of PH-Fibs, decreased their cell proliferation, and attenuated macrophage interleukin-1β expression. Furthermore, normalizing the PKM2/PKM1 ratio in PH-Fibs by miR-124 overexpression or PTBP1 knockdown reversed the glycolytic phenotype (decreased the production of glycolytic intermediates and byproducts, ie, lactate), rescued mitochondrial

  4. Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes.

    Science.gov (United States)

    Tuberosa, Roberto; Sanguineti, Maria Corinna; Landi, Pierangelo; Giuliani, Marcella Michela; Salvi, Silvio; Conti, Sergio

    2002-01-01

    We investigated the overlap among quantitative trait loci (QTLs) in maize for seminal root traits measured in hydroponics with QTLs for grain yield under well-watered (GY-WW) and water-stressed (GY-WS) field conditions as well as for a drought tolerance index (DTI) computed as GY-WS/GY-WW. In hydroponics, 11, 7, 9, and 10 QTLs were identified for primary root length (R1L), primary root diameter (R1D), primary root weight (R1W), and for the weight of the adventitious seminal roots (R2W), respectively. In the field, 7, 8, and 9 QTLs were identified for GY-WW, GY-WS, and DTI, respectively. Despite the weak correlation of root traits in hydroponics with GY-WW, GY-WS, and DTI, a noticeable overlap between the corresponding QTLs was observed. QTLs for R2W most frequently and consistently overlapped with QTLs for GY-WW, GY-WS, and/or DTI. At four QTL regions, an increase in R2W was positively associated with GY-WW, GY-WS, and/or DTI. A 10 cM interval on chromosome 1 between PGAMCTA205 and php20644 showed the strongest effect on R1L, R1D, R2W, GY-WW, GY-WS, and DTI. These results indicate the feasibility of using hydroponics in maize to identify QTL regions controlling root traits at an early growth stage and also influencing GY in the field. A comparative analysis of the QTL regions herein identified with those described in previous studies investigating root traits in different maize populations revealed a number of QTLs in common.

  5. Adventitious shoot regeneration from in vitro cultured leaves of guava (Psidium guava L.

    Directory of Open Access Journals (Sweden)

    Óscar Concepción Laffitte

    2004-07-01

    Full Text Available Adventitious regeneration is a key step in the application of genetic engineering to the breeding programs of plants. In this work a method for adventitious shoot regeneration from leaves of micropropagated guava shoots has been developed and some of main factors to affect the shoot regeneration like, concentration of plant growth regulators (citoquinine, physiological state of explants and the wound are studied. Leaves from guava in vitro cultured of variety Cuban Red Dwarf 18-40 was used like explant in all experiments. The best re-sult was reached with MS basal medium supplemented with 0.75 mg/L of 6-benzylaminopurine. Was de-monstrated that for the leaves with more multiplication subculture number and taken from lower part of shoot (older; the morfogenetic potential falls significantly (p60% and the largest number of shoot per regenerating leaf (>3 were obtained with several wounds carried out in f orm of jabs to the central nerve of leaves. This regeneration protocol constitutes an important tool that can be applied for future studies of genetic transformation in this species. Key words: Tissue culture, leaf explants, growth regulators, organogenesis, guava

  6. Adventitial cystic disease of the common femoral vein presenting as deep vein thrombosis

    Directory of Open Access Journals (Sweden)

    Young-Kyun Kim

    2016-07-01

    Full Text Available Adventitial cystic disease of the common femoral vein is a rare condition. We herein report the case of a 50-year-old woman who presented with painless swelling in her left lower leg that resembled deep vein thrombosis. She underwent femoral exploration and excision of the cystic wall. The presentation, investigation, treatment, and pathology of this condition are discussed with a literature review.

  7. Clomipramine ameliorates adventitious movements and compulsions in prepubertal boys with autistic disorder and severe mental retardation.

    Science.gov (United States)

    Brasic, J R; Barnett, J Y; Kaplan, D; Sheitman, B B; Aisemberg, P; Lafargue, R T; Kowalik, S; Clark, A; Tsaltas, M O; Young, J G

    1994-07-01

    In an open, nonblind clinical trial, clomipramine reduced adventitious movements and compulsions in five previously medicated prepubertal boys with autistic disorder and severe mental retardation. Poorly adapted rating scales, interrater variability, subject heterogeneity, different treatment histories, and environmental stresses confounded the assessment of treatment effects.

  8. Inhibiting Cadmium Transport Process in Root Cells of Plants: A Review

    Directory of Open Access Journals (Sweden)

    ZHAO Yan-ling

    2016-05-01

    Full Text Available Cadmium(Cd is the most common element found in the heavy-metal contaminated soils in China. Roots of rice and vegetables can concentrate Cd from acid soils, and then transport Cd to above-ground parts. Cd in edible part of plants directly influences the food safety. Cellwall, plasma membrane and organells of root cells in plant can discriminate Cd from other elements. A lot of Cd can be fixed in root cells by precipitation, complexation, compartmentation, and so on, to inhibit its transport from roots to shoot and guarantee the physiological activities in above-ground parts carrying out normally. This paper summarized recent advance on inhibiting Cd transport process in subcellular fractions of root cells of plants, which is in advantage of exploring excellent germplasms and gene resources in the future.

  9. GROWTH AND ROOTING SYSTEM OF ACACIA MANGIUM OBTAINED BY TISSUE CULTURE

    Directory of Open Access Journals (Sweden)

    SUPRIYANTO

    1991-01-01

    Full Text Available Since 1980/1981, the government of Indonesia through the Ministry of Forestry has started to reforest logged-over, alang-alang, unproductive areas and to convert them to Forest Industry Plantation. The target is 300 000 ha per year. It means, 750 million seedlings should be provided per year (planting distance 2 m x 2 m. The tree species to be planted in forest industry plantation should have shorter life cycle (8 - 10 years, good stem-form, good rooting system, and should be fast growing. Acacia mangium has been selected as one of the important tree species for forest industry plantation due to its growth, quality of fiber wood (pulp and paper industry and rooting system (produce a lot of secondary root and nitrogen fixater (Soebardjo 1986. The reforestation of logged-over Dipterocarp forests in Malaysia with A. mangium has also been considered (Appanah and Weinland 1989. Generally, reforestation with A. mangium is done with seedlings obtained by seed germination. A. mangium produce a lot of seeds but its production is still limited by the season, while the conventional method of vegetative propagation through cuttings gave very low percentage of rooted-cuttings (1% (Umboh and Syamsul Yani 1989. The micropropagation of A. mangium through tissue culture is a promising method. The production of A. mangium plantlets through that method has been done at the Forest Genetic Laboratory, Tropical Forest Biology, SEAMEO BIOTROP (Situmorang 1988, Umboh 1988, Umboh et al. 1989, 1990. These rooted-plantlets (plantlings were first put in the green house (acclimatization before planting in the field. Field tests of some agricultural plants have been done but information on forest trees species is still lacking because the production of plantlings through tissue culture is still limited as there are still problems of their rooting. In fact, the progress of reproducing woody plants by tissue culture has been much slower than with herbaceous plants. The major

  10. Shoot-supplied ammonium targets the root auxin influx carrier AUX1 and inhibits lateral root emergence in Arabidopsis

    KAUST Repository

    Li, Baohai

    2011-03-24

    Deposition of ammonium (NH4 +) from the atmosphere is a substantial environmental problem. While toxicity resulting from root exposure to NH4 + is well studied, little is known about how shoot-supplied ammonium (SSA) affects root growth. In this study, we show that SSA significantly affects lateral root (LR) development. We show that SSA inhibits lateral root primordium (LRP) emergence, but not LRP initiation, resulting in significantly impaired LR number. We show that the inhibition is independent of abscisic acid (ABA) signalling and sucrose uptake in shoots but relates to the auxin response in roots. Expression analyses of an auxin-responsive reporter, DR5:GUS, and direct assays of auxin transport demonstrated that SSA inhibits root acropetal (rootward) auxin transport while not affecting basipetal (shootward) transport or auxin sensitivity of root cells. Mutant analyses indicated that the auxin influx carrier AUX1, but not the auxin efflux carriers PIN-FORMED (PIN)1 or PIN2, is required for this inhibition of LRP emergence and the observed auxin response. We found that AUX1 expression was modulated by SSA in vascular tissues rather than LR cap cells in roots. Taken together, our results suggest that SSA inhibits LRP emergence in Arabidopsis by interfering with AUX1-dependent auxin transport from shoot to root. © 2011 Blackwell Publishing Ltd.

  11. Osteopontin is an endogenous modulator of the constitutively activated phenotype of pulmonary adventitial fibroblasts in hypoxic pulmonary hypertension

    Science.gov (United States)

    Anwar, Adil; Li, Min; Frid, Maria G.; Kumar, Binod; Gerasimovskaya, Evgenia V.; Riddle, Suzette R.; McKeon, B. Alexandre; Thukaram, Roopa; Meyrick, Barbara O.; Fini, Mehdi A.

    2012-01-01

    Increased cell proliferation and migration, of several cell types are key components of vascular remodeling observed in pulmonary hypertension (PH). Our previous data demonstrate that adventitial fibroblasts isolated from pulmonary arteries of chronically hypoxic hypertensive calves (termed PH-Fibs) exhibit a “constitutively activated” phenotype characterized by high proliferative and migratory potential. Osteopontin (OPN) has been shown to promote several cellular activities including growth and migration in cancer cells. We thus tested the hypothesis that elevated OPN expression confers the “activated” highly proproliferative and promigratory/invasive phenotype of PH-Fibs. Our results demonstrate that, both in vivo and ex vivo, PH-Fibs exhibited increased expression of OPN, as well as its cognate receptors, αVβ3 and CD44, compared with control fibroblasts (CO-Fibs). Augmented OPN expression in PH-Fibs corresponded to their high proliferative, migratory, and invasive properties and constitutive activation of ERK1/2 and AKT signaling. OPN silencing via small interfering RNA or sequestering OPN production by specific antibodies led to decreased proliferation, migration, invasion, and attenuated ERK1/2, AKT phosphorylation in PH-Fibs. Furthermore, increasing OPN levels in CO-Fibs via recombinant OPN resulted in significant increases in their proliferative, migratory, and invasive capabilities to the levels resembling those of PH-Fibs. Thus our data suggest OPN as an essential contributor to the activated (highly proliferative, migratory, and proinvasive) phenotype of pulmonary adventitial fibroblasts in hypoxic PH. PMID:22582113

  12. Early physiological flood tolerance is followed by slow post-flooding root recovery in the dryland riparian tree Eucalyptus camaldulensis subsp. refulgens.

    Science.gov (United States)

    Argus, R E; Colmer, T D; Grierson, P F

    2015-06-01

    We investigated physiological and morphological responses to flooding and recovery in Eucalyptus camaldulensis subsp. refulgens, a riparian tree species from a dryland region prone to intense episodic floods. Seedlings in soil flooded for 88 d produced extensive adventitious roots, displayed stem hypertrophy (stem diameter increased by 93%) and increased root porosity owing to aerenchyma formation. Net photosynthesis (Pn) and stomatal conductance (gs) were maintained for at least 2 weeks of soil flooding, contrasting with previous studies of other subspecies of E. camaldulensis. Gradual declines followed in both gs (30% less than controls) and Pn (19% less). Total leaf soluble sugars did not differ between flooded and control plants. Root mass did not recover 32 d after flooding ceased, but gs was not lower than controls, suggesting the root system was able to functionally compensate. However, the limited root growth during recovery after flooding was surprising given the importance of extensive root systems in dryland environments. We conclude that early flood tolerance could be an adaptation to capitalize on scarce water resources in a water-limited environment. Overall, our findings highlight the need to assess flooding responses in relation to a species' fitness for particular flood regimes or ecological niches. © 2014 John Wiley & Sons Ltd.

  13. A novel class of gibberellin 2-oxidases control semidwarfism, tillering, and root development in rice.

    Science.gov (United States)

    Lo, Shuen-Fang; Yang, Show-Ya; Chen, Ku-Ting; Hsing, Yue-Ie; Zeevaart, Jan A D; Chen, Liang-Jwu; Yu, Su-May

    2008-10-01

    Gibberellin 2-oxidases (GA2oxs) regulate plant growth by inactivating endogenous bioactive gibberellins (GAs). Two classes of GA2oxs inactivate GAs through 2beta-hydroxylation: a larger class of C(19) GA2oxs and a smaller class of C(20) GA2oxs. In this study, we show that members of the rice (Oryza sativa) GA2ox family are differentially regulated and act in concert or individually to control GA levels during flowering, tillering, and seed germination. Using mutant and transgenic analysis, C(20) GA2oxs were shown to play pleiotropic roles regulating rice growth and architecture. In particular, rice overexpressing these GA2oxs exhibited early and increased tillering and adventitious root growth. GA negatively regulated expression of two transcription factors, O. sativa homeobox 1 and TEOSINTE BRANCHED1, which control meristem initiation and axillary bud outgrowth, respectively, and that in turn inhibited tillering. One of three conserved motifs unique to the C(20) GA2oxs (motif III) was found to be important for activity of these GA2oxs. Moreover, C(20) GA2oxs were found to cause less severe GA-defective phenotypes than C(19) GA2oxs. Our studies demonstrate that improvements in plant architecture, such as semidwarfism, increased root systems and higher tiller numbers, could be induced by overexpression of wild-type or modified C(20) GA2oxs.

  14. Gene tree rooting methods give distributions that mimic the coalescent process.

    Science.gov (United States)

    Tian, Yuan; Kubatko, Laura S

    2014-01-01

    Multi-locus phylogenetic inference is commonly carried out via models that incorporate the coalescent process to model the possibility that incomplete lineage sorting leads to incongruence between gene trees and the species tree. An interesting question that arises in this context is whether data "fit" the coalescent model. Previous work (Rosenfeld et al., 2012) has suggested that rooting of gene trees may account for variation in empirical data that has been previously attributed to the coalescent process. We examine this possibility using simulated data. We show that, in the case of four taxa, the distribution of gene trees observed from rooting estimated gene trees with either the molecular clock or with outgroup rooting can be closely matched by the distribution predicted by the coalescent model with specific choices of species tree branch lengths. We apply commonly-used coalescent-based methods of species tree inference to assess their performance in these situations. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Adventitious Carbon on Primary Sample Containment Metal Surfaces

    Science.gov (United States)

    Calaway, M. J.; Fries, M. D.

    2015-01-01

    Future missions that return astromaterials with trace carbonaceous signatures will require strict protocols for reducing and controlling terrestrial carbon contamination. Adventitious carbon (AC) on primary sample containers and related hardware is an important source of that contamination. AC is a thin film layer or heterogeneously dispersed carbonaceous material that naturally accrues from the environment on the surface of atmospheric exposed metal parts. To test basic cleaning techniques for AC control, metal surfaces commonly used for flight hardware and curating astromaterials at JSC were cleaned using a basic cleaning protocol and characterized for AC residue. Two electropolished stainless steel 316L (SS- 316L) and two Al 6061 (Al-6061) test coupons (2.5 cm diameter by 0.3 cm thick) were subjected to precision cleaning in the JSC Genesis ISO class 4 cleanroom Precision Cleaning Laboratory. Afterwards, the samples were analyzed by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy.

  16. The Arabidopsis WRINKLED1 transcription factor affects auxin homeostasis in roots.

    Science.gov (United States)

    Kong, Que; Ma, Wei; Yang, Haibing; Ma, Guojie; Mantyla, Jenny J; Benning, Christoph

    2017-07-20

    WRINKLED1 (WRI1) is a key transcriptional regulator of fatty acid biosynthesis genes in diverse oil-containing tissues. Loss of function of Arabidopsis WRI1 leads to a reduction in the expression of genes for fatty acid biosynthesis and glycolysis, and concomitant strong reduction of seed oil content. The wri1-1 loss-of-function mutant shows reduced primary root growth and decreased acidification of the growth medium. The content of a conjugated form of the plant growth hormone auxin, indole-3-acetic acid (IAA)-Asp, was higher in wri1-1 plants compared with the wild-type. GH3.3, a gene encoding an enzyme involved in auxin degradation, displayed higher expression in the wri1-1 mutant. EMSAs demonstrated that AtWRI1 bound to the promoter of GH3.3. Specific AtWRI1-binding motifs were identified in the promoter of GH3.3. In addition, wri1-1 displayed decreased auxin transport. Expression of some PIN genes, which encode IAA carrier proteins, was reduced in wri1-1 plants as well. Correspondingly, AtWRI1 bound to the promoter regions of some PIN genes. It is well known that auxin exerts its maximum effects at a specific, optimal concentration in roots requiring a finely balanced auxin homeostasis. This process appears to be disrupted when the expression of WRI1 and in turn a subset of its target genes are misregulated, highlighting a role for WRI1 in root auxin homeostasis. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  17. Root induced changes of effective 1D hydraulic properties in a soil column.

    Science.gov (United States)

    Scholl, P; Leitner, D; Kammerer, G; Loiskandl, W; Kaul, H-P; Bodner, G

    Roots are essential drivers of soil structure and pore formation. This study aimed at quantifying root induced changes of the pore size distribution (PSD). The focus was on the extent of clogging vs. formation of pores during active root growth. Parameters of Kosugi's lognormal PSD model were determined by inverse estimation in a column experiment with two cover crops (mustard, rye) and an unplanted control. Pore dynamics were described using a convection-dispersion like pore evolution model. Rooted treatments showed a wider range of pore radii with increasing volumes of large macropores >500 μm and micropores <2.5 μm, while fine macropores, mesopores and larger micropores decreased. The non-rooted control showed narrowing of the PSD and reduced porosity over all radius classes. The pore evolution model accurately described root induced changes, while structure degradation in the non-rooted control was not captured properly. Our study demonstrated significant short term root effects with heterogenization of the pore system as dominant process of root induced structure formation. Pore clogging is suggested as a partial cause for reduced pore volume. The important change in micro- and large macropores however indicates that multiple mechanic and biochemical processes are involved in root-pore interactions.

  18. Novel MtCEP1 peptides produced in vivo differentially regulate root development in Medicago truncatula.

    Science.gov (United States)

    Mohd-Radzman, Nadiatul A; Binos, Steve; Truong, Thy T; Imin, Nijat; Mariani, Michael; Djordjevic, Michael A

    2015-08-01

    Small, post-translationally modified and secreted peptides regulate diverse plant developmental processes. Due to low natural abundance, it is difficult to isolate and identify these peptides. Using an improved peptide isolation protocol and Orbitrap mass spectrometry, nine 15-amino-acid CEP peptides were identified that corresponded to the two domains encoded by Medicago truncatula CEP1 (MtCEP1). Novel arabinosylated and hydroxylated peptides were identified in root cultures overexpressing MtCEP1. The five most abundant CEP peptides were hydroxylated and these species were detected also in low amounts in vector control samples. Synthetic peptides with different hydroxylation patterns differentially affected root development. Notably, the domain 1 peptide hydroxylated at Pro4 and Pro11 (D1:HyP4,11) imparted the strongest inhibition of lateral root emergence when grown with 5mM KNO3 and stimulated the highest increase in nodule number when grown with 0mM KNO3. Inhibition of lateral root emergence by D1:HyP4,11 was not alleviated by removing peptide exposure. In contrast, the domain 2 peptide hydroxylated at Pro11 (D2:HyP11) increased stage III-IV lateral root primordium numbers by 6-fold (P emerge. Auxin addition at levels which stimulated lateral root formation in wild-type plants had little or no ameliorating effect on CEP peptide-mediated inhibition of lateral root formation or emergence. Both peptides increased and altered the root staining pattern of the auxin-responsive reporter GH3:GUS suggesting CEPs alter auxin sensitivity or distribution. The results showed that CEP primary sequence and post-translational modifications influence peptide activities and the improved isolation procedure effectively and reproducibly identifies and characterises CEPs. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  19. Lead and cadmium in mangrove root crab (Goniopsis cruentata), in natura and at food processing stages.

    Science.gov (United States)

    Costa, Renata G; Bah, Homegnon A F; Bandeira, Matheus J; Oliveira, Sérgio S P; Menezes-Filho, José A

    2017-09-01

    Lead (Pb) and cadmium (Cd) were determined in mangrove root crab (Goniopsis cruentata) tissues (in natura) and in two culinary preparations by graphite furnace atomic absorption spectrometry. Mangrove root crab samples from three sampling sites along the Jaguaripe River, Bahia, Brazil, where lead-glazed ceramics are produced, and from two commercial preparations were collected or purchased in March and April 2016. Cd levels in raw and processed samples were below the methods' limits of detection (0.016 mg kg -1 ), while Pb levels in the raw tissues were determined only in the gills (0.67 mg kg -1 ) and in the hepatopancreas (0.14 mg kg -1 ). However, Pb levels increased from 0.05 to 2.84 mg kg -1 in boiled/sorted muscle and in the traditional stew (with a 57-fold increase), respectively. Pb levels augmented significantly in the processed food due to migration of Pb used in the glazing of cooking ceramic utensils, surpassing the Brazilian and international safety limits.

  20. Genotypic Variation in Yield, Yield Components, Root Morphology and Architecture, in Soybean in Relation to Water and Phosphorus Supply

    Science.gov (United States)

    He, Jin; Jin, Yi; Du, Yan-Lei; Wang, Tao; Turner, Neil C.; Yang, Ru-Ping; Siddique, Kadambot H. M.; Li, Feng-Min

    2017-01-01

    Water shortage and low phosphorus (P) availability limit yields in soybean. Roots play important roles in water-limited and P-deficient environment, but the underlying mechanisms are largely unknown. In this study we determined the responses of four soybean [Glycine max (L.) Merr.] genotypes [Huandsedadou (HD), Bailudou (BLD), Jindou 21 (J21), and Zhonghuang 30 (ZH)] to three P levels [applied 0 (P0), 60 (P60), and 120 (P120) mg P kg-1 dry soil to the upper 0.4 m of the soil profile] and two water treatment [well-watered (WW) and water-stressed (WS)] with special reference to root morphology and architecture, we compared yield and its components, root morphology and root architecture to find out which variety and/or what kind of root architecture had high grain yield under P and drought stress. The results showed that water stress and low P, respectively, significantly reduced grain yield by 60 and 40%, daily water use by 66 and 31%, P accumulation by 40 and 80%, and N accumulation by 39 and 65%. The cultivar ZH with the lowest daily water use had the highest grain yield at P60 and P120 under drought. Increased root length was positively associated with N and P accumulation in both the WW and WS treatments, but not with grain yield under water and P deficits. However, in the WS treatment, high adventitious and lateral root densities were associated with high N and P uptake per unit root length which in turn was significantly and positively associated with grain yield. Our results suggest that (1) genetic variation of grain yield, daily water use, P and N accumulation, and root morphology and architecture were observed among the soybean cultivars and ZH had the best yield performance under P and water limited conditions; (2) water has a major influence on nutrient uptake and grain yield, while additional P supply can modestly increase yields under drought in some soybean genotypes; (3) while conserved water use plays an important role in grain yield under drought

  1. Designing new interfaces for ROOT data processing

    CERN Document Server

    Vuorinen, Kalle Elmer

    2016-01-01

    ROOT is a C++ framework for data analysis provided with a Python interface (PyRoot). ROOT is used in every Large Hadron Collider experiment. This project presents a way of reading ROOT TTree by using a new class called DataFrame, which allows the usage of cache and functional chains. Reading TTrees in Python has been quite slow compared to the C++ way of doing it and for this reason we also bring the possibility to read them with just-in-time (JIT) compiled C++ code, using another new Python class called TreeReader.

  2. Lateral root development in the maize (Zea mays) lateral rootless1 mutant.

    Science.gov (United States)

    Husakova, Eva; Hochholdinger, Frank; Soukup, Ales

    2013-07-01

    The maize lrt1 (lateral rootless1) mutant is impaired in its development of lateral roots during early post-embryonic development. The aim of this study was to characterize, in detail, the influences that the mutation exerts on lateral root initiation and the subsequent developments, as well as to describe the behaviour of the entire plant under variable environmental conditions. Mutant lrt1 plants were cultivated under different conditions of hydroponics, and in between sheets of moist paper. Cleared whole mounts and anatomical sections were used in combination with both selected staining procedures and histochemical tests to follow root development. Root surface permeability tests and the biochemical quantification of lignin were performed to complement the structural data. The data presented suggest a redefinition of lrt1 function in lateral roots as a promoter of later development; however, neither the complete absence of lateral roots nor the frequency of their initiation is linked to lrt1 function. The developmental effects of lrt1 are under strong environmental influences. Mutant primordia are affected in structure, growth and emergence; and the majority of primordia terminate their growth during this last step, or shortly thereafter. The lateral roots are impaired in the maintenance of the root apical meristem. The primary root shows disturbances in the organization of both epidermal and subepidermal layers. The lrt1-related cell-wall modifications include: lignification in peripheral layers, the deposition of polyphenolic substances and a higher activity of peroxidase. The present study provides novel insights into the function of the lrt1 gene in root system development. The lrt1 gene participates in the spatial distribution of initiation, but not in its frequency. Later, the development of lateral roots is strongly affected. The effect of the lrt1 mutation is not as obvious in the primary root, with no influences observed on the root apical meristem

  3. Lateral root development in the maize (Zea mays) lateral rootless1 mutant

    Science.gov (United States)

    Husakova, Eva; Hochholdinger, Frank; Soukup, Ales

    2013-01-01

    Background and Aims The maize lrt1 (lateral rootless1) mutant is impaired in its development of lateral roots during early post-embryonic development. The aim of this study was to characterize, in detail, the influences that the mutation exerts on lateral root initiation and the subsequent developments, as well as to describe the behaviour of the entire plant under variable environmental conditions. Methods Mutant lrt1 plants were cultivated under different conditions of hydroponics, and in between sheets of moist paper. Cleared whole mounts and anatomical sections were used in combination with both selected staining procedures and histochemical tests to follow root development. Root surface permeability tests and the biochemical quantification of lignin were performed to complement the structural data. Key Results The data presented suggest a redefinition of lrt1 function in lateral roots as a promoter of later development; however, neither the complete absence of lateral roots nor the frequency of their initiation is linked to lrt1 function. The developmental effects of lrt1 are under strong environmental influences. Mutant primordia are affected in structure, growth and emergence; and the majority of primordia terminate their growth during this last step, or shortly thereafter. The lateral roots are impaired in the maintenance of the root apical meristem. The primary root shows disturbances in the organization of both epidermal and subepidermal layers. The lrt1-related cell-wall modifications include: lignification in peripheral layers, the deposition of polyphenolic substances and a higher activity of peroxidase. Conclusions The present study provides novel insights into the function of the lrt1 gene in root system development. The lrt1 gene participates in the spatial distribution of initiation, but not in its frequency. Later, the development of lateral roots is strongly affected. The effect of the lrt1 mutation is not as obvious in the primary root, with no

  4. Interplay between field observations and numerical modeling to understand temporal pulsing of tree root throw processes, Canadian Rockies, Canada

    Science.gov (United States)

    Martin, Y. E.; Johnson, E. A.; Chaikina, O.

    2013-10-01

    During the cycle of forest disturbance, regeneration, and maturity, tree mortality leading to topple is a regular occurrence. When tree topple occurs relatively soon after mortality and if the tree has attained some threshold diameter at breast height (dbh) at the time of death, then notable amounts of soil may be upheaved along with the root wad. This upheaval may result in sediment transfers and soil production. A combination of field evidence and numerical modeling is used herein to gain insights regarding the temporal dynamics of tree topple, associated root throw processes, and pit-mound microtopography. Results from our model of tree population dynamics demonstrate temporal patterns in root throw processes in subalpine forests of the Canadian Rockies, a region in which forests are affected largely by wildfire disturbance. As the forest regenerates after disturbance, the new cohort of trees has to reach a critical dbh before significant root plate upheaval can occur; in the subalpine forests of the Canadian Rockies, this may take up to ~ 102 years. Once trees begin to reach this critical dbh for root plate upheaval, a period of sporadic root throw arises that is caused by mortality of trees during competition. In due course, another wildfire will occur on the landscape and a period of much increased root throw activity then takes place for the next several decades; tree sizes and, therefore, the amount of sediment disturbance will be greater the longer the time period since the previous fire. Results of previous root throw studies covering a number of regional settings are used to guide an exercise in diffusion modeling with the aim of defining a range of reasonable diffusion coefficients for pit-mound degradation; the most appropriate values to fit the field data ranged from 0.01 m2 y- 1 to 0.1 m2 y- 1. A similar exercise is then undertaken that is guided by our field observations in subalpine forests of the Canadian Rockies. For these forests, the most

  5. Nuevas citas de monocotiledóneas adventicias para la Argentina New records of adventitious monocots for Argentina

    Directory of Open Access Journals (Sweden)

    Julio A. Hurrell

    2009-12-01

    Full Text Available Este trabajo incluye cinco nuevos registros de monocotiledóneas adventicias para la Argentina: Aloe ciliaris Haw. (Asphodelaceae, Aspidistra elatior Blume (Convallariaceae, Sansevieria trifasciata Prain (Dracaenaceae, Phormium tenax J. R. Forst. & G. Forst. (Hemerocallidaceae y Ornithogalum arabicum L. (Hyacinthaceae, pertenecientes al orden Asparagales. También incluye una evaluación del estado actual de estas especies, en relación al proceso de naturalización: escapadas de cultivo ocasionales, naturalizadas.This paper includes five new records of adventitious monocots for Argentina: Aloe ciliaris Haw. (Asphodelaceae, Aspidistra elatior Blume (Convallariaceae, Sansevieria trifasciata Prain (Dracaenaceae, Phormium tenax J. R. Forst. & G. Forst. (Hemerocallidaceae and Ornithogalum arabicum L. (Hyacinthaceae, belonging to order Asparagales. Also includes an evaluation of its status in the naturalization process: casual alien, naturalized.

  6. Biogeomorphological influence of slope processes and sedimentology on vascular talus vegetation in the southern Cascades, California

    Science.gov (United States)

    Pérez, Francisco L.

    2012-02-01

    The vascular vegetation of alpine talus slopes between 2035 and 3095 m altitude was studied at Lassen Volcanic National Park (California) in the Cascade Range. Taluses show a diverse flora, with 79 plant species; growth forms include coniferous trees, shrubs, suffrutices, herbs, graminoids, and ferns. Spatial patterns of plant distribution were studied along 40 point-intercept transects. Plant cover was low (0-32.7%) on all slopes, spatially variable, and showed no consistent trends. Sedimentological characteristics were determined by photosieving next to 1500 plants; this census indicated preferential plant growth on blocks and cobbles, with 43.2% and 23.3% of the plants growing on these stones, respectively; fewer specimens were rooted on pebbles (13%) or on stone-free gravel areas (20.5%). Growth forms displayed different substrate preferences: 92.5% of the shrubs and 83% of the suffrutices colonized blocks or cobbles, but only 57.2% of the herbs and 59.8% of the graminoids grew on large stones. Plants are associated with large clasts because (1) coarse talus is more stable than fine sediment areas, which are more frequently disturbed by various geomorphic processes, and (2) large stones help conserve substrate water beneath them while moisture quickly evaporates from fine debris. Root patterns were studied for 30 plant species; 10 specimens for each species were excavated and inspected, and several root growth ratios calculated. All species exhibited pronounced root asymmetry, as roots for most plants grew upslope from their shoot base. For 23 species, all specimens had 100% of their roots growing upslope; for the other 7 species, 92.2-99.3% of below-ground biomass extended uphill. This uneven root distribution is ascribed to continual substrate instability and resulting talus shift; as cascading debris progressively buries roots and stems, plants are gradually pushed and/or stretched downhill. Various disturbance events affect root development. Slope erosion

  7. Inhibition of histone deacetylation alters Arabidopsis root growth in response to auxin via PIN1 degradation.

    Science.gov (United States)

    Nguyen, Hoai Nguyen; Kim, Jun Hyeok; Jeong, Chan Young; Hong, Suk-Whan; Lee, Hojoung

    2013-10-01

    Our results showed the histone deacetylase inhibitors (HDIs) control root development in Arabidopsis via regulation of PIN1 degradation. Epigenetic regulation plays a crucial role in the expression of many genes in response to exogenous or endogenous signals in plants as well as other organisms. One of epigenetic mechanisms is modifications of histone, such as acetylation and deacetylation, are catalyzed by histone acetyltransferase (HAT) and histone deacetylase (HDAC), respectively. The Arabidopsis HDACs, HDA6, and HDA19, were reported to function in physiological processes, including embryo development, abiotic stress response, and flowering. In this study, we demonstrated that histone deacetylase inhibitors (HDIs) inhibit primary root elongation and lateral root emergence. In response to HDIs treatment, the PIN1 protein was almost abolished in the root tip. However, the PIN1 gene did not show decreased expression in the presence of HDIs, whereas IAA genes exhibited increases in transcript levels. In contrast, we observed a stable level of gene expression of stress markers (KIN1 and COR15A) and a cell division marker (CYCB1). Taken together, these results suggest that epigenetic regulation may control auxin-mediated root development through the 26S proteasome-mediated degradation of PIN1 protein.

  8. Arabidopsis CDS blastp result: AK121520 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK121520 J033028J23 At1g14130.1 2-oxoglutarate-dependent dioxygenase, putative similar to adventitious rooti...ng related oxygenase ARRO-1 from Malus x domestica, gi|3492806; contains Pfam domain PF03171, 2OG-Fe(II) oxygenase superfamily 2e-66 ...

  9. Accounting for nanometer-thick adventitious carbon contamination in X-ray absorption spectra of carbon-based materials.

    Science.gov (United States)

    Mangolini, Filippo; McClimon, J Brandon; Rose, Franck; Carpick, Robert W

    2014-12-16

    Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy is a powerful technique for characterizing the composition and bonding state of nanoscale materials and the top few nanometers of bulk and thin film specimens. When coupled with imaging methods like photoemission electron microscopy, it enables chemical imaging of materials with nanometer-scale lateral spatial resolution. However, analysis of NEXAFS spectra is often performed under the assumption of structural and compositional homogeneity within the nanometer-scale depth probed by this technique. This assumption can introduce large errors when analyzing the vast majority of solid surfaces due to the presence of complex surface and near-surface structures such as oxides and contamination layers. An analytical methodology is presented for removing the contribution of these nanoscale overlayers from NEXAFS spectra of two-layered systems to provide a corrected photoabsorption spectrum of the substrate. This method relies on the subtraction of the NEXAFS spectrum of the overlayer adsorbed on a reference surface from the spectrum of the two-layer system under investigation, where the thickness of the overlayer is independently determined by X-ray photoelectron spectroscopy (XPS). This approach is applied to NEXAFS data acquired for one of the most challenging cases: air-exposed hard carbon-based materials with adventitious carbon contamination from ambient exposure. The contribution of the adventitious carbon was removed from the as-acquired spectra of ultrananocrystalline diamond (UNCD) and hydrogenated amorphous carbon (a-C:H) to determine the intrinsic photoabsorption NEXAFS spectra of these materials. The method alters the calculated fraction of sp(2)-hybridized carbon from 5 to 20% and reveals that the adventitious contamination can be described as a layer containing carbon and oxygen ([O]/[C] = 0.11 ± 0.02) with a thickness of 0.6 ± 0.2 nm and a fraction of sp(2)-bonded carbon of 0.19 ± 0.03. This

  10. The Lexical Status of the Root in Processing Morphologically Complex Words in Arabic

    Science.gov (United States)

    Shalhoub-Awwad, Yasmin; Leikin, Mark

    2016-01-01

    This study investigated the effects of the Arabic root in the visual word recognition process among young readers in order to explore its role in reading acquisition and its development within the structure of the Arabic mental lexicon. We examined cross-modal priming of words that were derived from the same root of the target…

  11. Microscopic processes ruling the bioavailability of Zn to roots of Euphorbia pithyusa L. pioneer plant.

    Science.gov (United States)

    Medas, Daniela; De Giudici, Giovanni; Casu, Maria Antonietta; Musu, Elodia; Gianoncelli, Alessandra; Iadecola, Antonella; Meneghini, Carlo; Tamburini, Elena; Sprocati, Anna Rosa; Turnau, Katarzyna; Lattanzi, Pierfranco

    2015-02-03

    Euphorbia pithyusa L. was used in a plant growth-promoting assisted field trial experiment. To unravel the microscopic processes at the interface, thin slices of E. pithyusa roots were investigated by micro-X-ray fluorescence mapping. Roots and rhizosphere materials were examined by X-ray absorption spectroscopy at the Zn K-edge, X-ray diffraction, and scanning electron microscopy. Results indicate some features common to all the investigated samples. (i) In the rhizosphere of E. pithyusa, Zn was found to exist in different phases. (ii) Si and Al are mainly concentrated in a rim at the epidermis of the roots. (iii) Zn is mostly stored in root epidermis and does not appear to be coordinated to organic molecules but mainly occurs in mineral phases such as Zn silicates. We interpreted that roots of E. pithyusa significantly promote mineral evolution in the rhizosphere. Concomitantly, the plant uses Si and Al extracted by soil minerals to build a biomineralization rim, which can capture Zn. This Zn silicate biomineralization has relevant implications for phytoremediation techniques and for further biotechnology development, which can be better designed and developed after specific knowledge of molecular processes ruling mineral evolution and biomineralization processes has been gained.

  12. Periapical repair after root canal filling with different root canal sealers.

    Science.gov (United States)

    Tanomaru-Filho, Mário; Tanomaru, Juliane Maria Guerreiro; Leonardo, Mario Roberto; da Silva, Lea Assed Bezerra

    2009-01-01

    The aim of this study was to evaluate periapical repair after root canal filling with different endodontic sealers. Sixty-four root canals from dog s teeth were filled, divided into 4 groups (n=16). Root canals were instrumented with K-type files and irrigated with 1% sodium hypochlorite solution. Root canals were filled in the same session by active lateral condensation of the cones and sealers: Intrafill, AH Plus, Roeko Seal and Resilon/Epiphany System. After 90 days, the animals were euthanized and the tissues to be evaluated were processed and stained with hematoxylin and eosin. For histopathological analysis, the following parameters were evaluated: inflammatory process, mineralized tissue resorption, and apical mineralized tissue deposition. Histopathological analysis demonstrated that Intrafill had less favorable results in terms of apical and periapical repair, compared to the other sealers (p0.05). In conclusion, AH Plus and the materials Roeko Seal and Epiphany are good options for clinical use in Endodontics.

  13. Endogenous cytokinin profiles and their relationships to between-family differences during adventitious caulogenesis in Pinus pinea cotyledons

    Czech Academy of Sciences Publication Activity Database

    Cuesta, C.; Novák, Ondřej; Ordas, R. J.; Fernandez, B.; Strnad, Miroslav; Doležal, Karel; Rodriguez, A.

    2012-01-01

    Roč. 169, č. 18 (2012), s. 1830-1830-1837 ISSN 0176-1617 R&D Projects: GA AV ČR KAN200380801 Grant - others:GA MŠk(CZ) ED0007/01/01 Program:ED Institutional research plan: CEZ:AV0Z50380511 Keywords : Natural cytokinins * Adventitious shoot organogenesis * Pinus pinea Subject RIV: EC - Immunology Impact factor: 2.699, year: 2012

  14. Enhanced M1/M2 macrophage ratio promotes orthodontic root resorption.

    Science.gov (United States)

    He, D; Kou, X; Luo, Q; Yang, R; Liu, D; Wang, X; Song, Y; Cao, H; Zeng, M; Gan, Y; Zhou, Y

    2015-01-01

    Mechanical force-induced orthodontic root resorption is a major clinical challenge in orthodontic treatment. Macrophages play an important role in orthodontic root resorption, but the underlying mechanism remains unclear. In this study, we examined the mechanism by which the ratio of M1 to M2 macrophage polarization affects root resorption during orthodontic tooth movement. Root resorption occurred when nickel-titanium coil springs were applied on the upper first molars of rats for 3 to 14 d. Positively stained odontoclasts or osteoclasts with tartrate-resistant acid phosphatase were found in resorption areas. Meanwhile, M1-like macrophages positive for CD68 and inducible nitric oxide synthase (iNOS) persistently accumulated on the compression side of periodontal tissues. In addition, the expressions of the M1 activator interferon-γ and the M1-associated pro-inflammatory cytokine tumor necrosis factor (TNF)-α were upregulated on the compression side of periodontal tissues. When the coil springs were removed at the 14th day after orthodontic force application, root resorption was partially rescued. The number of CD68(+)CD163(+) M2-like macrophages gradually increased on the compression side of periodontal tissues. The levels of M2 activator interleukin (IL)-4 and the M2-associated anti-inflammatory cytokine IL-10 also increased. Systemic injection of the TNF-α inhibitor etanercept or IL-4 attenuated the severity of root resorption and decreased the ratio of M1 to M2 macrophages. These data imply that the balance between M1 and M2 macrophages affects orthodontic root resorption. Root resorption was aggravated by an enhanced M1/M2 ratio but was partially rescued by a reduced M1/M2 ratio. © International & American Associations for Dental Research 2014.

  15. Progress in Root Cause and Fault Propagation Analysis of Large-Scale Industrial Processes

    Directory of Open Access Journals (Sweden)

    Fan Yang

    2012-01-01

    Full Text Available In large-scale industrial processes, a fault can easily propagate between process units due to the interconnections of material and information flows. Thus the problem of fault detection and isolation for these processes is more concerned about the root cause and fault propagation before applying quantitative methods in local models. Process topology and causality, as the key features of the process description, need to be captured from process knowledge and process data. The modelling methods from these two aspects are overviewed in this paper. From process knowledge, structural equation modelling, various causal graphs, rule-based models, and ontological models are summarized. From process data, cross-correlation analysis, Granger causality and its extensions, frequency domain methods, information-theoretical methods, and Bayesian nets are introduced. Based on these models, inference methods are discussed to find root causes and fault propagation paths under abnormal situations. Some future work is proposed in the end.

  16. Azacytidine and miR156 promote rooting in adult but not in juvenile Arabidopsis tissues.

    Science.gov (United States)

    Massoumi, Mehdi; Krens, Frans A; Visser, Richard G F; De Klerk, Geert-Jan M

    2017-01-01

    Poor adventitious root (AR) formation is a major obstacle in micropropagation and conventional vegetative propagation of many crops. It is affected by many endogenous and exogenous factors. With respect to endogenous factors, the phase change from juvenile to adult has a major influence on AR formation and rooting is usually much reduced or even fully inhibited in adult tissues. It has been reported that the phase change is characterized by an increase in DNA-methylation and a decrease in the expression of microRNA156 (miR156). In this paper, we examined the effect of azacytidine (AzaC) and miR156 on AR formation in adult and juvenile Arabidopsis tissues. To identify the ontogenetic state researchers have used flowering or leaf morphology. We have used the rootability which allows - in contrast with both other characteristics- to examine the ontogenetic state at the cellular level. Overexpression of miR156 promoted only the rooting of adult tissues indicating that the phase change-associated loss in tissues' competence to develop ARs is also under the control of miR156. Azacytidine inhibits DNA methylation during DNA replication. Azacytidine treatment also promoted AR formation in nonjuvenile tissues but had no or little effect in juvenile tissues. Its addition during seedling growth (by which all tissues become hypomethylated) or during the rooting treatment (by which only those cells become hypomethylated that are generated after taking the explant) are both effective in the promotion of rooting. An AzaC treatment may be useful in tissue culture for crops that are recalcitrant to root. Copyright © 2016 Elsevier GmbH. All rights reserved.

  17. Root morphology, hydraulic conductivity and plant water relations of high-yielding rice grown under aerobic conditions.

    Science.gov (United States)

    Kato, Yoichiro; Okami, Midori

    2011-09-01

    Increasing physical water scarcity is a major constraint for irrigated rice (Oryza sativa) production. 'Aerobic rice culture' aims to maximize yield per unit water input by growing plants in aerobic soil without flooding or puddling. The objective was to determine (a) the effect of water management on root morphology and hydraulic conductance, and (b) their roles in plant-water relationships and stomatal conductance in aerobic culture. Root system development, stomatal conductance (g(s)) and leaf water potential (Ψ(leaf)) were monitored in a high-yielding rice cultivar ('Takanari') under flooded and aerobic conditions at two soil moisture levels [nearly saturated (> -10 kPa) and mildly dry (> -30 kPa)] over 2 years. In an ancillary pot experiment, whole-plant hydraulic conductivity (soil-leaf hydraulic conductance; K(pa)) was measured under flooded and aerobic conditions. Adventitious root emergence and lateral root proliferation were restricted even under nearly saturated conditions, resulting in a 72-85 % reduction in total root length under aerobic culture conditions. Because of their reduced rooting size, plants grown under aerobic conditions tended to have lower K(pa) than plants grown under flooded conditions. Ψ(leaf) was always significantly lower in aerobic culture than in flooded culture, while g(s) was unchanged when the soil moisture was at around field capacity. g(s) was inevitably reduced when the soil water potential at 20-cm depth reached -20 kPa. Unstable performance of rice in water-saving cultivations is often associated with reduction in Ψ(leaf). Ψ(leaf) may reduce even if K(pa) is not significantly changed, but the lower Ψ(leaf) would certainly occur in case K(pa) reduces as a result of lower water-uptake capacity under aerobic conditions. Rice performance in aerobic culture might be improved through genetic manipulation that promotes lateral root branching and rhizogenesis as well as deep rooting.

  18. Arabidopsis homolog of trithorax1 (ATX1) is required for cell production, patterning, and morphogenesis in root development.

    Science.gov (United States)

    Napsucialy-Mendivil, Selene; Alvarez-Venegas, Raúl; Shishkova, Svetlana; Dubrovsky, Joseph G

    2014-12-01

    Arabidopsis homolog of trithorax1 (ATX1/SDG27), a known regulator of flower development, encodes a H3K4histone methyltransferase that maintains a number of genes in an active state. In this study, the role of ATX1 in root development was evaluated. The loss-of-function mutant atx1-1 was impaired in primary root growth. The data suggest that ATX1 controls root growth by regulating cell cycle duration, cell production, and the transition from cell proliferation in the root apical meristem (RAM) to cell elongation. In atx1-1, the quiescent centre (QC) cells were irregular in shape and more expanded than those of the wild type. This feature, together with the atypical distribution of T-divisions, the presence of oblique divisions, and the abnormal cell patterning in the RAM, suggests a lack of coordination between cell division and cell growth in the mutant. The expression domain of QC-specific markers was expanded both in the primary RAM and in the developing lateral root primordia of atx1-1 plants. These abnormalities were independent of auxin-response gradients. ATX1 was also found to be required for lateral root initiation, morphogenesis, and emergence. The time from lateral root initiation to emergence was significantly extended in the atx1-1 mutant. Overall, these data suggest that ATX1 is involved in the timing of root development, stem cell niche maintenance, and cell patterning during primary and lateral root development. Thus, ATX1 emerges as an important player in root system architecture. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  19. An adventitious interaction of filamin A with RhoGDI2(Tyr153Glu)

    International Nuclear Information System (INIS)

    Song, Mia; He, Qianjing; Berk, Benjamin-Andreas; Hartwig, John H.; Stossel, Thomas P.; Nakamura, Fumihiko

    2016-01-01

    Filamin A (FLNA) is an actin filament crosslinking protein with multiple intracellular binding partners. Mechanical force exposes cryptic FLNA binding sites for some of these ligands. To identify new force-dependent binding interactions, we used a fusion construct composed of two FLNA domains, one of which was previously identified as containing a force-dependent binding site as a bait in a yeast two-hybrid system and identified the Rho dissociation inhibitor 2 (RhoGDI2) as a potential interacting partner. A RhoGDI2 truncate with 81 N-terminal amino acid residues and a phosphomimetic mutant, RhoGDI(Tyr153Glu) interacted with the FLNA construct. However, neither wild-type or full-length RhoGDI2 phosphorylated at Y153 interacted with FLNA. Our interpretation of these contradictions is that truncation and/or mutation of RhoGDI2 perturbs its conformation to expose a site that adventitiously binds FLNA and is not a bona–fide interaction. Therefore, previous studies reporting that a RhoGDI(Y153E) mutant suppresses the metastasis of human bladder cancer cells must be reinvestigated in light of artificial interaction of this point mutant with FLNA. - Highlights: • RhoGDI2 is identified as a potential filamin A (FLNA)-binding partner. • Phosphomimetic mutant, RhoGDI2(Tyr153Glu) interacts with FLNA. • RhoGDI2 phosphorylated (Tyr153) by src kinase does not interact with FLNA. • Mutation of Tyr-153 to Glu of RhoGDI2 does not mimic phosphorylation. • RhoGDI2(Tyr153Glu) provokes an adventitious interaction with FLNA.

  20. An adventitious interaction of filamin A with RhoGDI2(Tyr153Glu)

    Energy Technology Data Exchange (ETDEWEB)

    Song, Mia; He, Qianjing [Hematology Division, Department of Medicine, Brigham and Women' s Hospital, Harvard Medical School, Boston MA (United States); Berk, Benjamin-Andreas [Faculty of Veterinary Medicine and Faculty of Biosciences and Pharmacy, University of Leipzig, Leipzig (Germany); Hartwig, John H.; Stossel, Thomas P. [Hematology Division, Department of Medicine, Brigham and Women' s Hospital, Harvard Medical School, Boston MA (United States); Nakamura, Fumihiko, E-mail: fnakamura@partners.org [Hematology Division, Department of Medicine, Brigham and Women' s Hospital, Harvard Medical School, Boston MA (United States)

    2016-01-15

    Filamin A (FLNA) is an actin filament crosslinking protein with multiple intracellular binding partners. Mechanical force exposes cryptic FLNA binding sites for some of these ligands. To identify new force-dependent binding interactions, we used a fusion construct composed of two FLNA domains, one of which was previously identified as containing a force-dependent binding site as a bait in a yeast two-hybrid system and identified the Rho dissociation inhibitor 2 (RhoGDI2) as a potential interacting partner. A RhoGDI2 truncate with 81 N-terminal amino acid residues and a phosphomimetic mutant, RhoGDI(Tyr153Glu) interacted with the FLNA construct. However, neither wild-type or full-length RhoGDI2 phosphorylated at Y153 interacted with FLNA. Our interpretation of these contradictions is that truncation and/or mutation of RhoGDI2 perturbs its conformation to expose a site that adventitiously binds FLNA and is not a bona–fide interaction. Therefore, previous studies reporting that a RhoGDI(Y153E) mutant suppresses the metastasis of human bladder cancer cells must be reinvestigated in light of artificial interaction of this point mutant with FLNA. - Highlights: • RhoGDI2 is identified as a potential filamin A (FLNA)-binding partner. • Phosphomimetic mutant, RhoGDI2(Tyr153Glu) interacts with FLNA. • RhoGDI2 phosphorylated (Tyr153) by src kinase does not interact with FLNA. • Mutation of Tyr-153 to Glu of RhoGDI2 does not mimic phosphorylation. • RhoGDI2(Tyr153Glu) provokes an adventitious interaction with FLNA.

  1. Propagação vegetativa de Platanus acerifolia Ait: (II efeito da aplicação de zinco, boro e ácido indolbutírico no enraizamento de estacas Vegetative propagation of Platanus acerifolia Ait: (II effect of zinc,boron, and indolbutiric acid on rooting of cuttings

    Directory of Open Access Journals (Sweden)

    Fernando Teixeira Nicoloso

    1999-09-01

    husk, 1:1 v/v, both washed. The experiment was conducted during 110 days under intermittent artificial mist conditions. The evaluated parameters were: length and number of primary adventitious roots, dry weight of adventitious roots, and percentage of rooting. The results show that Zn and B have no influence on the rooting, and the addition of IBA on thin basal semi-herbaceous cuttings reduces the percentage of rooting and increase the number of roots.

  2. Tissue culture of adult larch as a tool for breeding purposes

    Energy Technology Data Exchange (ETDEWEB)

    Ewald, D.; Kretzschmar, U. [Federal Research Centre of Forestry and Forest Products, Waldsieversdorf (Germany). Inst. for Forest Tree Biology

    1995-12-31

    Aimed at the identical reproduction of genotypes which are considered superior different methods were tested to establish and to propagate tissue cultures from old larch trees (L. decidua, L. kaempferi, L. sukaczewii, L. gmelinii, L. eurolepis). Serial subcultures without phytohormones (shoot tip propagation) led to the establishment of clone lines. After ten subcultures propagation velocity, shoot morphology and rooting behavior were similar to juvenile plant material. Serial subcultures which included a cytokinin induction led to the formation of adventitious shoot clusters (adventitious bud propagation). Adventitious shoots derived from male flowers of one L. kaempferi clone could be propagated via shoot tip propagation. Micrografting of meristems in vitro resulted in a regained rooting capacity of green cuttings from micrografts. Combining these in vitro techniques offers now the possibility to propagate selected mature larch trees for different breeding purposes. 23 refs, 5 figs, 2 tabs

  3. Tissue culture of adult larch as a tool for breeding purposes

    Energy Technology Data Exchange (ETDEWEB)

    Ewald, D; Kretzschmar, U [Federal Research Centre of Forestry and Forest Products, Waldsieversdorf (Germany). Inst. for Forest Tree Biology

    1996-12-31

    Aimed at the identical reproduction of genotypes which are considered superior different methods were tested to establish and to propagate tissue cultures from old larch trees (L. decidua, L. kaempferi, L. sukaczewii, L. gmelinii, L. eurolepis). Serial subcultures without phytohormones (shoot tip propagation) led to the establishment of clone lines. After ten subcultures propagation velocity, shoot morphology and rooting behavior were similar to juvenile plant material. Serial subcultures which included a cytokinin induction led to the formation of adventitious shoot clusters (adventitious bud propagation). Adventitious shoots derived from male flowers of one L. kaempferi clone could be propagated via shoot tip propagation. Micrografting of meristems in vitro resulted in a regained rooting capacity of green cuttings from micrografts. Combining these in vitro techniques offers now the possibility to propagate selected mature larch trees for different breeding purposes. 23 refs, 5 figs, 2 tabs

  4. Advantages of MAG-STT Welding Process for Root Pass Welding in the Oil and Gas Industry

    Directory of Open Access Journals (Sweden)

    Pandzic Adi

    2016-02-01

    Full Text Available This paper describesthe basics of modern MAG-STT welding process and its advantages for root pass welding of construction steels in oil and gas industry. MAG-STT welding process was compared with competitive arc welding processes (SMAW and TIG, which are also used for root pass welding on pipes and plates. After experimental tests, the obtained results are analyzed and presented in this paper

  5. The jasmonate receptor COI1 plays a role in jasmonate-induced lateral root formation and lateral root positioning in Arabidopsis thaliana.

    Science.gov (United States)

    Raya-González, Javier; Pelagio-Flores, Ramón; López-Bucio, José

    2012-09-15

    Jasmonic acid (JA) regulates a broad range of plant defense and developmental responses. COI1 has been recently found to act as JA receptor. In this report, we show that low micromolar concentrations of JA inhibited primary root (PR) growth and promoted lateral root (LR) formation in Arabidopsis wild-type (WT) seedlings. It was observed that the coi1-1 mutant was less sensitive to JA on pericycle cell activation to induce lateral root primordia (LRP) formation and presented alterations in lateral root positioning and lateral root emergence on bends. To investigate JA-auxin interactions important for remodeling of root system (RS) architecture, we tested the expression of auxin-inducible markers DR5:uidA and BA3:uidA in WT and coi1-1 seedlings in response to indole-3-acetic acid (IAA) and JA and analyzed the RS architecture of a suite of auxin-related mutants under JA treatments. We found that JA did not affect DR5:uidA and BA3:uidA expression in WT and coi1-1 seedlings. Our data also showed that PR growth inhibition in response to JA was likely independent of auxin signaling and that the induction of LRP required ARF7, ARF19, SLR, TIR1, AFB2, AFB3 and AXR1 loci. We conclude that JA regulation of postembryonic root development involves both auxin-dependent and independent mechanisms. Copyright © 2012 Elsevier GmbH. All rights reserved.

  6. Clonal propagation of eucalyptus by tissue culture

    Energy Technology Data Exchange (ETDEWEB)

    Mehra-Palta, A.

    1982-07-01

    Multiple adventitious buds were induced on cotyledons, shoot tips and nodal stem segments of Eucalyptus species cultured on a defined nutrient medium supplemented with the cytokinin zeatin and the auxin indole-3-butyric acid (IBA). The adventitious buds could be recycled on cytokinin medium to produce more buds thus providing the possibility of producing large clones from selected genotypes. The adventitious shoots were rooted in auxin medium and some of the resulting propagules were outplanted in the field. These techniques have the potential for use in the genetic improvement of Eucalyptus. (Refs. 15).

  7. In vitro rhizogenesis: histoanatomy of Cedrela odorata (Meliaceae microcuttings

    Directory of Open Access Journals (Sweden)

    Liliana Millán-Orozco

    2011-03-01

    Full Text Available Cedrela odorata (Meliaceae is considered as one of the most valuable forest tree in the tropics. Clonal propagation of this species provide an alternative method to propagate superior genotypes, being the production of good quality adventitious roots one of the most important steps in micropropagation techniques. The sequence of anatomical changes that takes place during the formation of adventitious roots in shoots of Cedrela odorata cultured in vitro is described in this study. Eigth-week-old shoots, from multiplication cultures, were rooted in Murashige and Skoog´s medium (1962 with half- strength macronutrients and with 0 or 1mg/l indole-3-butyric acid (IBA. Between 12 and 24h after the start of rooting, some cambium, phloem and interfascicular parenchyma cells became dense cytoplasm, nuclei with prominent nucleoli and the first cell divisions were observed, especially in shoots treated with auxin (dedifferentiation phase. After 3-4 days, the number of dedifferentiated cells and mitotic divisions increased considerably, and the formation of groups of some 30-40 meristematic cells (meristemoids was observed (induction phase. The first primordial roots developed from the 4th-5th day. The vascular tissues of these primordia connected to those of the explant, and roots began to emerge from the base by day 6. Development of the primordial roots was similar in the control shoots and shoots treated with 1mg/l IBA, although there were more roots per explant in the latter. Rev. Biol. Trop. 59 (1: 447-453. Epub 2011 March 01.

  8. Developmental role of phenylalanine-ammonia-lyase (PAL) and cinnamate 4-hydroxylase (C4H) genes during adventitious rooting of Juglans regia L. microshoots.

    Science.gov (United States)

    Cheniany, Monireh; Ganjeali, Ali

    2016-12-01

    Phenylalanine-ammonia-lyase and cinnamate-4-hydroxylase play important role in the phenylpropanoid pathway, which produces many biologically important secondary metabolites participating in normal plant development. Flavonol quercetin is the main representant of these compounds that has been identified in numerous Juglans spp. In this survey, the developmental expression patterns of PAL and C4H genes during in vitro rooting of two walnut cultivars 'Sunland' and 'Howard' was examined by RT-PCR. To understand the potential role in rooting, the changing pattern of endogenous content of quercetin was also analyzed by HPLC. The 'Sunland' with better capacity to root had more quercetin content during the "inductive phase" of rooting than 'Howard'. In each cultivar, the level of PAL transcripts showed the same behavior with the changing patterns of quercetin during root formation of microshoots. The positive correlation between the changes of quercetin and PAL-mRNA indicated that PAL gene may have an immediate effect on flavonoid pathway metabolites including quercetin. Although the behavioral change of C4H expression was similar in both cultivars during root formation (with significantly more level for 'Howard'), it was not coincide with the changes of quercerin concentrations. Our results showed that C4H function is important for the normal development, but its transcriptional regulation does not correlate with quercetin as an efficient phenolic compound for walnut rhizogenesis.

  9. ARABIDOPSIS HOMOLOG of TRITHORAX1 (ATX1) is required for cell production, patterning, and morphogenesis in root development

    OpenAIRE

    Napsucialy-Mendivil, Selene; Alvarez-Venegas, Raúl; Shishkova, Svetlana; Dubrovsky, Joseph G.

    2014-01-01

    ARABIDOPSIS HOMOLOG of TRITHORAX1 (ATX1/SDG27), a known regulator of flower development, encodes a H3K4histone methyltransferase that maintains a number of genes in an active state. In this study, the role of ATX1 in root development was evaluated. The loss-of-function mutant atx1-1 was impaired in primary root growth. The data suggest that ATX1 controls root growth by regulating cell cycle duration, cell production, and the transition from cell proliferation in the root apical meristem (RAM)...

  10. Interactions of NH4+ and L-glutamate with NO3- transport processes of non-mycorrhizal Fagus sylvatica roots

    NARCIS (Netherlands)

    Kreuzwieser, J; Herschbach, C; Stulen, [No Value; Wiersema, P; Vaalburg, W; Rennenberg, H

    The processes of NO3- uptake and transport and the effects of NH4+ or L-glutamate on these processes were investigated with excised non-mycorrhizal beech (Fagus sylvatica L,) roots, NO3- net uptake followed uniphasic Michaelis-Menten kinetics in a concentration range of 10 mu M to 1 mM with an

  11. 1. Extraction and Demonstration of Uterotonic Activity from the Root ...

    African Journals Online (AJOL)

    user

    to demonstrate uterotonic activities using strips of pregnant rat uterus. ... on increase, parallel to this is the demand of services of Traditional ... for the protection of plant varieties either by patents or by an ... B. Processing and extraction of the roots. Preliminary .... these physiological interactions is in process. In conclusion ...

  12. A New Anatomically Based Nomenclature for the Roots and Root Canals—Part 1: Maxillary Molars

    OpenAIRE

    Kottoor, Jojo; Albuquerque, Denzil Valerian; Velmurugan, Natanasabapathy

    2012-01-01

    Numerous terminologies have been employed in the dental literature to describe the roots and root canal systems of maxillary molars. This multiplicity in naming of roots and canals makes the reader susceptible to misinterpretation and confusion. No consensus thus far has been arrived at for defining the names of roots and root canals in maxillary molars, including their various morphological aberrations. The anatomical relation of roots and their root canals were identified and were subsequen...

  13. Rooting of cuttings of vanilla plant (Orchidaceae / Enraizamento de estacas da baunilheira (Orchidaceae

    Directory of Open Access Journals (Sweden)

    Aparecida Gomes de Araujo

    2009-07-01

    Full Text Available The vanilla plant (Vanilla planifolia could have a higher commercial production but there are problems in the efficiency of propagation. The present work was conducted with the aim of studying the effect of different substrates, in the adventitious rooting of cuttings taken at five heights in the plant stem. The cuttings were 20cm long and had two buds and one leaf and were planted in: 1 Liquid medium formed by Clark’s nutrient added of 2.5mg L-1 of IBA placed in plastic foam box with a capacity of 1.5L lined inside with transparent plastic bag and lidded with proper lid. 2 Solid substrate formed by the mixture of sand, carbonized rice husk, soil and cured cow manure in equal proportions of volume, they being placed in rigid polypropylene with a capacity of 0.28L. 3 Pre-rooting of the cuttings in liquid medium (20 days before planting, and later transferred into seedling tubes containing solid substrate. The cuttings planted in the solid substrate were maintained under intermittent mist condition controlled by a timer. After 90 days, the percentage of rooting was of 98-100%, regardless of the treatment. Larger and more vigorous sproutings were obtained from cuttings planted directly into solid substrate. Adventitious rooting of cuttings and formation of new vanilla cuttings occurred, when the cuttings were obtained from position P2 (ranging between 20 to 40cm in stem height and planted in solid substrate in greenhouse with intermittent misting system. A baunilheira (Vanilla planifolia é uma planta pouco explorada comercialmente, devido ao emprego de tecnologias de baixa eficiência para a produção de mudas. Assim sendo, realizou-se o presente trabalho com o objetivo de estudar o efeito de diferentes substratos, no enraizamento adventício de estacas retiradas de diferentes posições na planta. Estacas com 20cm de comprimento, duas gemas e uma folha, tomadas na haste da planta, em cinco posições subseqüentes, a partir do ápice caulinar

  14. IAA oxidase activity in relation to adventitious root formation on stem cuttings of some forest tree species. [Salix tetrasperma, Populus Robusta, Hibiscus rosa-sinensis, Eucalyptus citriodora

    Energy Technology Data Exchange (ETDEWEB)

    Bansal, M.P.; Nanda, K.K.

    1981-01-01

    In rooting tests with stem cuttings, IAA oxidase activity was found to be very high in Salix tetrasperma and Populus 'Robusta' both of which rooted profusely, less in Hibiscus rosa-sinensis which rooted but weakly and insignificant in Eucalyptus citriodora, which did not root at all. Proteins extracted from the stem cuttings of E. citriodora inhibited IAA oxidase activity, and also root formation on hypocotyl cuttings of Phaseolus mungo.

  15. Isolation and characterization of an Aux/IAA gene (LaIAA2) from Larix

    African Journals Online (AJOL)

    微软用户

    there was large variation in LaIAA2 gene during evolution. Furthermore, the predicted results .... Previous researches of rooting ability of cuttings in conifer and other plants .... morphological changes that led to adventitious root formation and at ...

  16. Root anatomy, morphology, and longevity among root orders in Vaccinium corymbosum (Ericaceae).

    Science.gov (United States)

    Valenzuela-Estrada, Luis R; Vera-Caraballo, Vivianette; Ruth, Leah E; Eissenstat, David M

    2008-12-01

    Understanding root processes at the whole-plant or ecosystem scales requires an accounting of the range of functions within a root system. Studying root traits based on their branching order can be a powerful approach to understanding this complex system. The current study examined the highly branched root system of the ericoid plant, Vaccinium corymbosum L. (highbush blueberry) by classifying its root orders with a modified version of the morphometric approach similar to that used in hydrology for stream classification. Root anatomy provided valuable insight into variation in root function across orders. The more permanent portion of the root system occurred in 4th- and higher-order roots. Roots in these orders had radial growth; the lowest specific root length, N:C ratios, and mycorrhizal colonization; the highest tissue density and vessel number; and the coarsest root diameter. The ephemeral portion of the root system was mainly in the first three root orders. First- and 2nd-order roots were nearly anatomically identical, with similar mycorrhizal colonization and diameter, and also, despite being extremely fine, median lifespans were not very short (115-120 d; estimated with minirhizotrons). Our research underscores the value of examining root traits by root order and its implications to understanding belowground processes.

  17. Effect of Roots on Infiltration Process around a Tree - an Application of Tension-TDR Probes

    Science.gov (United States)

    -Lun Li, Sheng; Liang, Wei-Li

    2014-05-01

    The infiltration processe around a tree is usually complex because of preferential pathways around roots. In order to clarify the effect of tree roots on the infiltration process, we simultaneously measured volumetric water content (θ) and metric potential (ψ) with a high-density installation of Tensio-TDR probes, which could provid in situ soil-water characteristic curves in a small area around tree roots. A tension-TDR probe includes a coiled time domain reflectometry (TDR) probe around the porous cup of a standard tensiometer. The investigation was carried out around a Taiwanese cedar (Taiwania cryptomerioides) in a mixed coniferous forested stand. There were 24 soil moisture sensors and 12 Tensio-TDR probes installed in different depths of two soil profiles, respectively. The result suggested that the Tensio-TDR probe is better to determine the occurrence of preferential flow around tree roots than soil moisture sensors. Woody roots promoted the occurrence of lateral flows and caused rapid increases of θ in the deeper soil layers. Soil porosity was high in the area with fine roots where infiltration was dominated by vertical flows. We also compared the difference betweenthe field and laboratory soil-water characteristic curves, which were determined by the θ and ψ datasets from the field and the measurement using pressure plate method in a laboratory, respectively.

  18. A New Anatomically Based Nomenclature for the Roots and Root Canals—Part 1: Maxillary Molars

    Directory of Open Access Journals (Sweden)

    Jojo Kottoor

    2012-01-01

    Full Text Available Numerous terminologies have been employed in the dental literature to describe the roots and root canal systems of maxillary molars. This multiplicity in naming of roots and canals makes the reader susceptible to misinterpretation and confusion. No consensus thus far has been arrived at for defining the names of roots and root canals in maxillary molars, including their various morphological aberrations. The anatomical relation of roots and their root canals were identified and were subsequently named based on definite sets of criteria. A new method for identification and naming of roots and root canal anatomy in maxillary molars, based on their root and canal relationship, was formulated and is presented in this paper. The nomenclature makes certain essential modifications to the traditional approach to accommodate naming of the various aberrations presented in the maxillary molars. A simple, yet extensive, nomenclature system has been proposed that appropriately names the internal and external morphology of maxillary molars.

  19. A new anatomically based nomenclature for the roots and root canals-part 1: maxillary molars.

    Science.gov (United States)

    Kottoor, Jojo; Albuquerque, Denzil Valerian; Velmurugan, Natanasabapathy

    2012-01-01

    Numerous terminologies have been employed in the dental literature to describe the roots and root canal systems of maxillary molars. This multiplicity in naming of roots and canals makes the reader susceptible to misinterpretation and confusion. No consensus thus far has been arrived at for defining the names of roots and root canals in maxillary molars, including their various morphological aberrations. The anatomical relation of roots and their root canals were identified and were subsequently named based on definite sets of criteria. A new method for identification and naming of roots and root canal anatomy in maxillary molars, based on their root and canal relationship, was formulated and is presented in this paper. The nomenclature makes certain essential modifications to the traditional approach to accommodate naming of the various aberrations presented in the maxillary molars. A simple, yet extensive, nomenclature system has been proposed that appropriately names the internal and external morphology of maxillary molars.

  20. In Vitro Propagation, Phytochemical Analysis, and Evaluation of Free Radical Scavenging Property of Scrophularia kakudensis Franch Tissue Extracts.

    Science.gov (United States)

    Manivannan, Abinaya; Soundararajan, Prabhakaran; Park, Yoo Gyeong; Jeong, Byoung Ryong

    2015-01-01

    The current study deals with in vitro propagation, antioxidant property estimation, and assessment of acacetin content in Scrophularia kakudensis Franch. Adventitious shoot induction was achieved from the nodal explant with the highest number of adventitious shoots per explant (17.4) on Murashige and Skoog's (MS) medium fortified with 2.0 mg·L(-1) 6-benzyladenine (BA) and 0.5 mg L(-1) indole-3-acetic acid (IAA). Maximum number of roots per plant (16.5) was noted in half strength MS medium supplemented with 0.5 mg·L(-1) IAA. The regenerated plants displayed successful survival ratio (95%) in the greenhouse. The highest content of acacetin, a pharmaceutically important flavonoid, was observed in the shoot extracts (in vitro: 32.83 µg·g(-1) FW; in vivo: 30.05 µg·g(-1) FW) followed by root extracts. Total phenol and flavonoid contents along with free radical scavenging assays revealed the occurrence of larger amount of antioxidants in shoot extract in comparison with callus and root extracts of S. kakudensis. Thus, the outcome of the present study can be highly beneficial for the germplasm conservation and commercial cultivation of S. kakudensis for therapeutic purposes.

  1. Induced mutation In Nelumbo nucifera Gaertn. by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lama, Sainiya; Aeksomtramaet, Ladda; Kanchanapoom, Kamnoon [Department of Biology, Faculty of Science, Prince of Songkla University, Songkhla (Thailand)

    2005-10-15

    Lotus (Nelumbo nucifera Gaertn.) seeds were exposed to different levels of Gamma irradiation at 0, 2, 4, 6, 8 and 10 Kilo rad. The exposed embryos were cultured on solid M S medium supplemented with 2 mg/l B A and overlaid with a liquid M S medium without growth regulators for 1 month. It was found that 50% growth reduction (GR50) was at 6 Kilo rad. The plant lets were subcultured twice every 2 months then they were transferred to solid M S medium supplemented with 4 mg/l NAA and overlaid with M S medium without growth regulators for root induction. The results revealed that plant lets in the control treatment (not exposed to Gamma irradiation) had the highest shoot growth and adventitious root formation. Plant lets at 2-Kilo rad treatment showed the second highest growth. The plant lets at 4-Kilo rad treatment did not exhibit adventitious root formation and had abnormal characteristics. Treatments at 6-10 Kilo rad inhibited the growth of the plant lets.

  2. Induced mutation In Nelumbo nucifera Gaertn. by gamma irradiation

    International Nuclear Information System (INIS)

    Lama, Sainiya; Aeksomtramaet, Ladda; Kanchanapoom, Kamnoon

    2005-10-01

    Lotus (Nelumbo nucifera Gaertn.) seeds were exposed to different levels of Gamma irradiation at 0, 2, 4, 6, 8 and 10 Kilo rad. The exposed embryos were cultured on solid M S medium supplemented with 2 mg/l B A and overlaid with a liquid M S medium without growth regulators for 1 month. It was found that 50% growth reduction (GR50) was at 6 Kilo rad. The plant lets were subcultured twice every 2 months then they were transferred to solid M S medium supplemented with 4 mg/l NAA and overlaid with M S medium without growth regulators for root induction. The results revealed that plant lets in the control treatment (not exposed to Gamma irradiation) had the highest shoot growth and adventitious root formation. Plant lets at 2-Kilo rad treatment showed the second highest growth. The plant lets at 4-Kilo rad treatment did not exhibit adventitious root formation and had abnormal characteristics. Treatments at 6-10 Kilo rad inhibited the growth of the plant lets

  3. In vitro adventitious shoot regeneration and acclimatisation of ...

    African Journals Online (AJOL)

    Different potting media were assessed during plantlet acclimatization. The highest percentage of plant survival (83.33%) was on the medium that contained sand and soil (1:1), while maximum root length (4.37 cm) and plant height (7.87 cm) were attained in potting medium that consisted peat moss, perlite and vermiculite ...

  4. Nitrate Controls Root Development through Posttranscriptional Regulation of the NRT1.1/NPF6.3 Transporter/Sensor.

    Science.gov (United States)

    Bouguyon, Eléonore; Perrine-Walker, Francine; Pervent, Marjorie; Rochette, Juliette; Cuesta, Candela; Benkova, Eva; Martinière, Alexandre; Bach, Lien; Krouk, Gabriel; Gojon, Alain; Nacry, Philippe

    2016-10-01

    Plants are able to modulate root growth and development to optimize their nitrogen nutrition. In Arabidopsis (Arabidopsis thaliana), the adaptive root response to nitrate (NO 3 - ) depends on the NRT1.1/NPF6.3 transporter/sensor. NRT1.1 represses emergence of lateral root primordia (LRPs) at low concentration or absence of NO 3 - through its auxin transport activity that lowers auxin accumulation in LR. However, these functional data strongly contrast with the known transcriptional regulation of NRT1.1, which is markedly repressed in LRPs in the absence of NO 3 - To explain this discrepancy, we investigated in detail the spatiotemporal expression pattern of the NRT1.1 protein during LRP development and combined local transcript analysis with the use of transgenic lines expressing tagged NRT1.1 proteins. Our results show that although NO 3 - stimulates NRT1.1 transcription and probably mRNA stability both in primary root tissues and in LRPs, it acts differentially on protein accumulation, depending on the tissues considered with stimulation in cortex and epidermis of the primary root and a strong repression in LRPs and to a lower extent at the primary root tip. This demonstrates that NRT1.1 is strongly regulated at the posttranscriptional level by tissue-specific mechanisms. These mechanisms are crucial for controlling the large palette of adaptive responses to NO 3 - mediated by NRT1.1 as they ensure that the protein is present in the proper tissue under the specific conditions where it plays a signaling role in this particular tissue. © 2016 American Society of Plant Biologists. All Rights Reserved.

  5. Root resorption

    DEFF Research Database (Denmark)

    Kjaer, Inger

    2014-01-01

    Introduction: This paper summarizes the different conditions, which have a well-known influence on the resorption of tooth roots, exemplified by trauma and orthodontic treatment. The concept of the paper is to summarize and explain symptoms and signs of importance for avoiding resorption during...... orthodontic treatment. The Hypothesis: The hypothesis in this paper is that three different tissue layers covering the root in the so-called periroot sheet can explain signs and symptoms of importance for avoiding root resorption during orthodontic treatment. These different tissue layers are; outermost...... processes provoked by trauma and orthodontic pressure. Inflammatory reactions are followed by resorptive processes in the periroot sheet and along the root surface. Evaluation of the Hypothesis: Different morphologies in the dentition are signs of abnormal epithelium or an abnormal mesodermal layer. It has...

  6. Characterization of a type-A response regulator differentially expressed during adventitious caulogenesis in Pinus pinaster.

    Science.gov (United States)

    Alvarez, José M; Cortizo, Millán; Ordás, Ricardo J

    2012-12-15

    The molecular cloning and characterization of PipsRR1, a type-A response regulator in Pinus pinaster, is reported here. Type-A response regulators mediate downstream responses to cytokinin and act as negative feedback regulators of the signal transduction pathway. Some type-A response regulators in Arabidopsis have been related to de novo meristem formation. However, little information exists in Pinus spp. The PipsRR1 gene contains 5 exons, as do all type-A response regulators in Arabidopsis, and the deduced protein contains a receiver domain with the conserved DDK residues and a short C terminal extension. Expression analysis showed that the PipsRR1 gene is differentially expressed during the first phases of adventitious caulogenesis induced by benzyladenine in P. pinaster cotyledons, suggesting that PipsRR1 plays a role in caulogenesis in conifers. Additionally, a binary vector carrying the PipsRR1 promoter driving GFP:GUS expression was constructed to analyze the promoter activity in P. pinaster somatic embryos. The results of genetic transformation showed GUS activity during somatic embryo mass proliferation and embryo maturation. Copyright © 2012 Elsevier GmbH. All rights reserved.

  7. Automated Root Tracking with "Root System Analyzer"

    Science.gov (United States)

    Schnepf, Andrea; Jin, Meina; Ockert, Charlotte; Bol, Roland; Leitner, Daniel

    2015-04-01

    Crucial factors for plant development are water and nutrient availability in soils. Thus, root architecture is a main aspect of plant productivity and needs to be accurately considered when describing root processes. Images of root architecture contain a huge amount of information, and image analysis helps to recover parameters describing certain root architectural and morphological traits. The majority of imaging systems for root systems are designed for two-dimensional images, such as RootReader2, GiA Roots, SmartRoot, EZ-Rhizo, and Growscreen, but most of them are semi-automated and involve mouse-clicks in each root by the user. "Root System Analyzer" is a new, fully automated approach for recovering root architectural parameters from two-dimensional images of root systems. Individual roots can still be corrected manually in a user interface if required. The algorithm starts with a sequence of segmented two-dimensional images showing the dynamic development of a root system. For each image, morphological operators are used for skeletonization. Based on this, a graph representation of the root system is created. A dynamic root architecture model helps to determine which edges of the graph belong to an individual root. The algorithm elongates each root at the root tip and simulates growth confined within the already existing graph representation. The increment of root elongation is calculated assuming constant growth. For each root, the algorithm finds all possible paths and elongates the root in the direction of the optimal path. In this way, each edge of the graph is assigned to one or more coherent roots. Image sequences of root systems are handled in such a way that the previous image is used as a starting point for the current image. The algorithm is implemented in a set of Matlab m-files. Output of Root System Analyzer is a data structure that includes for each root an identification number, the branching order, the time of emergence, the parent

  8. Infection, Reproduction Potential, and Root Galling by Root-knot Nematode Species and Concomitant Populations on Peanut and Tobacco

    Science.gov (United States)

    Hirunsalee, Anan; Barker, K. R.; Beute, M. K.

    1995-01-01

    Single populations of Meloidogyne arenaria races 1 (MA1) and 2 (MA2) and M. hapla (MH), and mixed populations of MA1 + MA2 and MA1 + MH with four inoculum levels of eggs were tested on peanut cv. 'Florigiant' and M. incognita-resistant tobacco cv. 'McNair 373' in a greenhouse experiment. Root infection, female development, and reproduction of MA2 on peanut and MA1 on resistant tobacco were limited at 2 and 6 weeks. MA1, MH, and MA1 + MH on peanut had similar root infection (total parasitic forms per root unit) at both 2 and 6 weeks, and similar female development and reproduction potentials at 6 weeks. MA2 tended to depress root infection, female development, and reproduction of MA1 on peanut. MH had little effect on MA1 on this crop. On tobacco, MA2 population had greater incidence of root infection than did MH at 2 weeks. The two nematode species had similar development in roots at 6 weeks. All of these processes were restricted when either MA2 or MH was present together with MA1. As initial inoculum level of parasitically fit populations increased, relative infection ratio on both peanut and tobacco, and reproduction factor on peanut decreased. Populations that had high infection incidence and reproduction rates induced greater root galling than did other populations. Root galling was suppressed in the presence of antagonistic response between nematode populations. PMID:19277277

  9. Vegetative regeneration

    Science.gov (United States)

    George A. Schier; John R. Jones; Robert P. Winokur

    1985-01-01

    Aspen is noted for its ability to regenerate vegetatively by adventitious shoots or suckers that arise on its long lateral roots. It also produces sprouts from stumps and root collars; but they are not common. In a survey of regeneration after clearcutting mature aspen in Utah. Baker (1918b) found that 92% of the shoots originated from roots, 7% from root collars, and...

  10. Localization of ENHANCER OF TRY AND CPC1 protein in Arabidopsis root epidermis.

    Science.gov (United States)

    Tominaga-Wada, Rumi; Kurata, Tetsuya; Wada, Takuji

    2017-07-01

    CAPRICE (CPC) is a R3-type MYB transcription factor, which induces root-hair cell differentiation in Arabidopsis thaliana. The CPC homologous gene ENHANCER TRY AND CPC1 (ETC1) has a similar function to CPC, and acts in concert with CPC. The CPC protein moves between root epidermal cells, from hairless cells to the neighboring cells, and promotes root-hair differentiation. Therefore, ETC1 is predicted to have movement ability similar to that of CPC. In this study, we generated ETC1:ETC1:GFP and CPC:ETC1:GFP transgenic plants to clarify whether ETC1 exhibits cell-to-cell movement. Transgenic plants showed many-root-haired and trichome-less phenotypes, similar to those observed in CPC:CPC:GFP plants, suggesting a similar function of ETC1 and CPC. However, the ETC1:GFP fusion protein located exclusively to the hairless cells in both ETC1:ETC1:GFP and CPC:ETC1:GFP transgenic plants. These results indicate that, unexpectedly, the ETC1 protein cannot move in the root epidermis from hairless cells to the neighboring cells. Copyright © 2017 Elsevier GmbH. All rights reserved.

  11. Root growth, secondary root formation and root gravitropism in carotenoid-deficient seedlings of Zea mays L

    Science.gov (United States)

    Ng, Y. K.; Moore, R.

    1985-01-01

    The effect of ABA on root growth, secondary-root formation and root gravitropism in seedlings of Zea mays was investigated by using Fluridone-treated seedlings and a viviparous mutant, both of which lack carotenoids and ABA. Primary roots of seedlings grown in the presence of Fluridone grew significantly slower than those of control (i.e. untreated) roots. Elongation of Fluridone-treated roots was inhibited significantly by the exogenous application of 1 mM ABA. Exogenous application of 1 micromole and 1 nmole ABA had either no effect or only a slight stimulatory effect on root elongation, depending on the method of application. The absence of ABA in Fluridone-treated plants was not an important factor in secondary-root formation in seedlings less than 9-10 d old. However, ABA may suppress secondary-root formation in older seedlings, since 11-d-old control seedlings had significantly fewer secondary roots than Fluridone-treated seedlings. Roots of Fluridone-treated and control seedlings were graviresponsive. Similar data were obtained for vp-9 mutants of Z. mays, which are phenotypically identical to Fluridone-treated seedlings. These results indicate that ABA is necessary for neither secondary-root formation nor for positive gravitropism by primary roots.

  12. Accumulation and mobility of cesium in roots of tulip popular seedlings

    International Nuclear Information System (INIS)

    Cox, T.L.

    1975-01-01

    Tulip poplar, Liriodendron tulipifera L., seedlings were stem-well tagged with cesium, periodically harvested, and separated into root and shoot compartments to determine seasonal cesium distributions in different root-diameter classes and to delineate element pathways to forest soils. The cesium concentration (μCi/g) in roots less than 0.1 cm in diameter averaged 1.5 and 3.0 times greater than in roots in the 0.5- to 0.1-cm- and 1.0- to 0.5-cm-diameter classes, respectively. Roots contained 24 percent of the seedling pool of cesium in 1 week and about 40 percent in 7 weeks after inoculation. Sixty-five percent of the seedling content was in the root system 8 months after tagging. On an annual basis, roots of the less than 0.5-cm-diameter classes contained an average of 36 percent of the seedling pool (root and shoot) and 72 percent of the root pool of cesium. This is important because small roots constituted a considerable portion of the annual turnover in these root systems. Soil content of cesium (3.37 μCi) at the termination of the study and analysis of treatment effects (aboveground inputs to soil allowed or not allowed) indicated that root processes contributed twice as much cesium to the soil during the study period as the combined aboveground processes contributed

  13. Induction of shoot regeneration in cotyledon explants of the oilseed crop Sesamum indicum L.

    Directory of Open Access Journals (Sweden)

    Masochon Zimik

    2017-12-01

    Full Text Available Sesamum indicum is an ancient oilseed crop known for its high quality edible oil and its medicinally important lignans. The crop is said to be recalcitrant to plant tissue culture thus limiting the use of modern biotechnology for its genetic improvement. We present here a protocol describing plant regeneration through adventitious shoot formation from cotyledons dissected from sesame seeds soaked for four hours in water. Subculturing of the cotyledons after two weeks of culture on to a fresh Murashige and Skoog medium leads to differentiation of adventitious shoots from the proximal cut end of the explant. Culture of cotyledons on a medium containing 9% sucrose for a couple of weeks prior to transfer to MS medium supplemented with 3% sucrose induced a higher frequency of shoot regeneration. The highest frequency of 25% adventitious shoot regeneration was observed for S. indicum variety UMA. This variety also turned out to be the best among the ten genotypes tested for shoot regeneration through tissue culture. While addition of IAA marginally improved regeneration, silver nitrate was found essential for enhancing the frequency of shoot regeneration. The regenerated shoots formed roots on full strength MS medium supplemented with 1 mg/l IBA and the rooted plants were established in soil.

  14. Localized iron supply triggers lateral root elongation in Arabidopsis by altering the AUX1-mediated auxin distribution.

    Science.gov (United States)

    Giehl, Ricardo F H; Lima, Joni E; von Wirén, Nicolaus

    2012-01-01

    Root system architecture depends on nutrient availability, which shapes primary and lateral root development in a nutrient-specific manner. To better understand how nutrient signals are integrated into root developmental programs, we investigated the morphological response of Arabidopsis thaliana roots to iron (Fe). Relative to a homogeneous supply, localized Fe supply in horizontally separated agar plates doubled lateral root length without having a differential effect on lateral root number. In the Fe uptake-defective mutant iron-regulated transporter1 (irt1), lateral root development was severely repressed, but a requirement for IRT1 could be circumvented by Fe application to shoots, indicating that symplastic Fe triggered the local elongation of lateral roots. The Fe-stimulated emergence of lateral root primordia and root cell elongation depended on the rootward auxin stream and was accompanied by a higher activity of the auxin reporter DR5-β-glucuronidase in lateral root apices. A crucial role of the auxin transporter AUXIN RESISTANT1 (AUX1) in Fe-triggered lateral root elongation was indicated by Fe-responsive AUX1 promoter activities in lateral root apices and by the failure of the aux1-T mutant to elongate lateral roots into Fe-enriched agar patches. We conclude that a local symplastic Fe gradient in lateral roots upregulates AUX1 to accumulate auxin in lateral root apices as a prerequisite for lateral root elongation.

  15. A QTL for root growth angle on rice chromosome 7 is involved in the genetic pathway of DEEPER ROOTING 1.

    Science.gov (United States)

    Uga, Yusaku; Kitomi, Yuka; Yamamoto, Eiji; Kanno, Noriko; Kawai, Sawako; Mizubayashi, Tatsumi; Fukuoka, Shuichi

    2015-01-01

    Root growth angle (RGA) is an important trait that influences the ability of rice to avoid drought stress. DEEPER ROOTING 1 (DRO1), which is a major quantitative trait locus (QTL) for RGA, is responsible for the difference in RGA between the shallow-rooting cultivar IR64 and the deep-rooting cultivar Kinandang Patong. However, the RGA differences between these cultivars cannot be fully explained by DRO1. The objective of this study was to identify new QTLs for RGA explaining the difference in RGA between these cultivars. By crossing IR64 (which has a non-functional allele of DRO1) with Kinandang Patong (which has a functional allele of DRO1), we developed 26 chromosome segment substitution lines (CSSLs) that carried a particular chromosome segment from Kinandang Patong in the IR64 genetic background. Using these CSSLs, we found only one chromosomal region that was related to RGA: on chromosome 9, which includes DRO1. Using an F2 population derived from a cross between Kinandang Patong and the Dro1-NIL (near isogenic line), which had a functional DRO1 allele in the IR64 genetic background, we identified a new QTL for RGA (DRO3) on the long arm of chromosome 7. DRO3 may only affect RGA in plants with a functional DRO1 allele, suggesting that DRO3 is involved in the DRO1 genetic pathway.

  16. Mechanical touch responses of Arabidopsis TCH1-3 mutant roots on inclined hard-agar surface

    Science.gov (United States)

    Zha, Guodong; Wang, Bochu; Liu, Junyu; Yan, Jie; Zhu, Liqing; Yang, Xingyan

    2016-01-01

    The gravity-induced mechanical touch stimulus can affect plant root architecture. Mechanical touch responses of plant roots are an important aspect of plant root growth and development. Previous studies have reported that Arabidopsis TCH1-3 genes are involved in mechano-related events, how-ever, the physiological functions of TCH1-3 genes in Arabidopsis root mechanoresponses remain unclear. In the present study, we applied an inclined hard agar plate method to produce mechanical touch stimulus, and provided evidence that altered mechanical environment could influence root growth. Furthermore, tch1-3 Arabidopsis mutants were investigated on inclined agar surfaces to explore the functions of TCH1-3 genes on Arabidopsis root mechanoresponses. The results showed that two tch2 mutants, cml24-2 and cml24-4, exhibited significantly reduced root length, biased skewing, and decreased density of lateral root. In addition, primary root length and density of lateral root of tch3 (cml12-2) was significantly decreased on inclined agar surfaces. This study indicates that the tch2 and tch3 mutants are hypersensitive to mechanical touch stimulus, and TCH2 (CML24-2 and CML24-4) and TCH3 (CML12-2) genes may participate in the mechanical touch response of Arabidopsis roots.

  17. Impairment of the DNA synthesis in roots of γ-irradiated seedlings, and the restorative processes

    International Nuclear Information System (INIS)

    Golikova, O.P.; Mironyuk, T.J.

    1976-01-01

    Degradation of a prelabelled H 3 -DNA and post-irradiation incorporation of 2-C 14 -thymidine into root DNA of mung beans, peas, and horse beans, have been studied as a function of a radiation dose. A marked dose-dependent decrease in the activity of H 3 -DNA has been detected in γ-irradiated roots. As the radiation dose increases, the specific activity of 2-C 14 -DNA also increases in roots of beans and mung beans. A maximum increase is registered at a dose of 1500 rads. The effects observed are thought to be due to the restorative processes

  18. Periapical inflammation subsequent to coronal inoculation of dog teeth root filled with resilon/epiphany in 1 or 2 treatment sessions with chlorhexidine medication.

    Science.gov (United States)

    Santos, João M; Palma, Paulo J; Ramos, João C; Cabrita, António S; Friedman, Shimon

    2014-06-01

    Therapeutic methods that inhibit microbial ingress into filled root canals are desirable. This in vivo study assessed the inhibition of periapical inflammation subsequent to coronal inoculation in canals medicated with 2% chlorhexidine gel and filled with Resilon/Epiphany (Pentron Clinical Technologies, Wallingford, CT). Six Beagle dogs each had 10 two-rooted premolars treated. In group 1 (n = 36 roots), 1 root/tooth had the canal conditioned with Primer Epiphany, filled with Epiphany sealer and Resilon core in 1 session, and coronally sealed with PhotacFil. In group 2 (n = 36 roots), the second root/tooth had the canal medicated with 2% chlorhexidine gel for 1 week and then filled and coronally sealed as in group 1. After 3 weeks, canals were exposed to the oral environment for 7 days, inoculated with isologous plaque, and coronally sealed. Negative controls treated as groups 1 and 2 remained sealed. Positive controls had canals unfilled and exposed. Seven months after inoculation, dogs were euthanized; jaw blocks processed for histologic examination; and periapical inflammation (PI) recorded as none, mild, or severe. In groups 1 and 2, severe PI occurred in 5 of 65 roots (8%) and mild PI in 18 of 65 roots (28%) with a significantly higher (P = .031) PI incidence in group 2 than in group 1. Negative controls had only mild PI in 9 of 29 roots (31%). Roots medicated with 2% chlorhexidine gel had mild PI significantly more (P = .009) than roots filled in 1 session (more than 2-fold). Intracanal medication with 2% chlorhexidine gel and root filling with Resilon/Epiphany did not effectively inhibit apical periodontitis subsequent to coronal inoculation. Copyright © 2014 American Association of Endodontists. All rights reserved.

  19. Construction Process of the Length of [cube root of 2] by Paper Folding

    Science.gov (United States)

    Guler, Hatice Kubra; Gurbuz, Mustafa Cagri

    2018-01-01

    The main purpose of this study is to investigate mathematics teachers' mathematical thinking process while they are constructing the length of [cube root of 2] by paper folding. To carry out this aim, two teachers--who are PhD. students--were interviewed one by one. During the construction, it was possible to observe the consolidation process of…

  20. Comparative studies of saponins in 1-3-year-old main roots, fibrous roots, and rhizomes of Panax notoginseng, and identification of different parts and growth-year samples.

    Science.gov (United States)

    Jia, Xiu-Hong; Wang, Chao-Qun; Liu, Jin-Huai; Li, Xiao-Wei; Wang, Xuan; Shang, Ming-Ying; Cai, Shao-Qing; Zhu, Shu; Komatsu, Katsuko

    2013-04-01

    Notoginsenosides R1, R4, Fa, and K (N-R1, N-R4, N-Fa, and N-K), as well as ginsenosides Rg1, Rb1, Rd, Re, Rf, Rg2 and Rh1 (G-Rg1, G-Rb1, G-Rd, G-Re, G-Rf, G-Rg2 and G-Rh1) in 47 Notoginseng samples including 1-, 2- and 3-year-old main roots, rhizomes and fibrous roots of Panax notoginseng were determined by high-performance liquid chromatography-diode array detection method. Total contents (%) of the 11 saponins were 9.82-14.57 for 2-year old and 14.20-16.00 for 3-year-old rhizomes; 2.72-4.50 for 2-year-old and 1.98-4.92 for 3-year-old fibrous roots; 1.75-3.05 for 1-year-old whole roots; and 3.71-8.98 for 2-year-old and 7.03-11.23 for 3-year-old main roots. Contents of most saponins and total content of 11 saponins were in the order 3- >2- >1-year-old main root samples. G-Rf content, sum of G-Rf and G-Rh1 were, respectively, 0.08-0.18 and 0.14-0.32 for 2- or 3-year-old rhizomes, and 0.01-0.07 and 0.03-0.10 for 2- or 3-year-old main roots. Combined contents of N-R1, G-Rg1 and G-Rb1 were 5.78-9.37 in 3-year-old main roots, and 2.99-7.13 in 2-year-old main roots, of which nearly one-third of samples were lower than the limit (5 %) in the Chinese Pharmacopoeia. Those of 2- or 3-year-old fibrous roots (1.47-3.83) and 1-year-old whole roots (1.41-2.44) were much lower than the limit, and were considered not suitable for use as Notoginseng. Two-year-old main roots are not appropriate for collection as Notoginseng. Different parts and growth years of P. notoginseng can be identified from each another according to differences in saponin content.

  1. Dro1, a major QTL involved in deep rooting of rice under upland field conditions.

    Science.gov (United States)

    Uga, Yusaku; Okuno, Kazutoshi; Yano, Masahiro

    2011-05-01

    Developing a deep root system is an important strategy for avoiding drought stress in rice. Using the 'basket' method, the ratio of deep rooting (RDR; the proportion of total roots that elongated through the basket bottom) was calculated to evaluate deep rooting. A new major quantitative trait locus (QTL) controlling RDR was detected on chromosome 9 by using 117 recombinant inbred lines (RILs) derived from a cross between the lowland cultivar IR64, with shallow rooting, and the upland cultivar Kinandang Patong (KP), with deep rooting. This QTL explained 66.6% of the total phenotypic variance in RDR in the RILs. A BC(2)F(3) line homozygous for the KP allele of the QTL had an RDR of 40.4%, compared with 2.6% for the homozygous IR64 allele. Fine mapping of this QTL was undertaken using eight BC(2)F(3) recombinant lines. The RDR QTL Dro1 (Deeper rooting 1) was mapped between the markers RM24393 and RM7424, which delimit a 608.4 kb interval in the reference cultivar Nipponbare. To clarify the influence of Dro1 in an upland field, the root distribution in different soil layers was quantified by means of core sampling. A line homozygous for the KP allele of Dro1 (Dro1-KP) and IR64 did not differ in root dry weight in the shallow soil layers (0-25 cm), but root dry weight of Dro1-KP in deep soil layers (25-50 cm) was significantly greater than that of IR64, suggesting that Dro1 plays a crucial role in increased deep rooting under upland field conditions.

  2. Cabin crew collectivism: labour process and the roots of mobilization

    OpenAIRE

    Taylor, P.; Moore, S.

    2015-01-01

    The protracted dispute (2009–11) between British Airways and BASSA (British Airways Stewards and Stewardesses Association) was notable for the strength of collective action by cabin crew. In-depth interviews reveal collectivism rooted in the labour process and highlight the key agency of BASSA in effectively articulating worker interests. This data emphasizes crews’ relative autonomy, sustained by unionate on-board Cabin Service Directors who have defended the frontier of control against mana...

  3. Sheared-root inocula of vesicular-arbuscular mycorrhizal fungi.

    Science.gov (United States)

    Sylvia, D M; Jarstfer, A G

    1992-01-01

    For efficient handling, vesicular-arbuscular mycorrhizal fungi should be processed into small and uniform inocula; however, processing can reduce the inoculum density. In this article we describe the preparation and use of sheared-root inocula of Glomus spp. in which inoculum densities were increased during processing. Our objectives were to determine inoculum viability and density after shearing and to ascertain if the sheared inocula could be pelletized or used with a gel carrier. Root samples were harvested from aeroponic cultures, blotted dry, cut into 1-cm lengths, and sheared in a food processor for up to 80 s. After shearing, the inoculum was washed over sieves, and the propagule density in each fraction was determined. Sheared inocula were also encapsulated in carrageenan or used in a gel carrier. Shearing aeroponically produced root inocula reduced particle size. Propagule density increased with decreasing size fraction down to a size of 63 mum, after which propagule density decreased. The weighted-average propagule density of the inoculum was 135,380 propagules g (dry weight) of sheared root material. Sheared roots were encapsulated successfully in carrageenan, and the gel served as an effective carrier. Aeroponic root inoculum was stored dry at 4 degrees C for 23 months without significant reduction in propagule density; however, this material was not appropriate for shearing. Moist roots, useful for shearing, began to lose propagule density after 1 month of storage. Shearing proved to be an excellent method to prepare viable root inocula of small and uniform size, allowing for more efficient and effective use of limited inoculum supplies.

  4. Root morphology of Ni-treated plants

    International Nuclear Information System (INIS)

    Leskova, A.; Fargasova, A.; Giehl, R. F. H.; Wiren, N. von

    2015-01-01

    Plant roots are very important organs in terms of nutrient and water acquisition but they also serve as anchorages for the aboveground parts of the plants. The roots display extraordinary plasticity towards stress conditions as a result of integration of environmental cues into the developmental processes of the roots. Our aim was to investigate the root morphology of Arabidopsis thaliana plants exposed to a particular stress condition, excess Ni supply. We aimed to find out which cellular processes - cell division, elongation and differentiation are affected by Ni, thereby explaining the seen root phenotype. Our results reveal that a distinct sensitivity exists between roots of different order and interference with various cellular processes is responsible for the effects of Ni on roots. We also show that Ni-treated roots have several auxin-related phenotypes. (authors)

  5. New Steroidal Erythrityl Triesters from the Heat Processed Roots of Panax ginseng

    Directory of Open Access Journals (Sweden)

    Ill-Min Chung

    2013-01-01

    Full Text Available Two new compounds stigmasta-3α-ol-3α-(2′R,3′S-butane-1′,2′,3′,4′-tetraolyl-2′,3′-dioctadec-9″/9‴-enoyl-4′-octadec-9″″,12″″-dienoate (1 and stigmasta-5-en-3β-ol-3β-(2′R,3′S-butane-1′,2′,3′,4′-tetraolyl-2′,3′-dioctadec-9″/9‴-enoyl-4′-octadec-9″″,12″″-dienoate (2 along with β-sitosterol-β-D-glucoside were isolated and identified from the heat processed roots of Panax ginseng. The structures of the new compounds were elucidated by 1D and 2D NMR (COSY, HSQC, and HMBC spectroscopic techniques aided by FAB-MS, ESI FT/MS, and IR spectra.

  6. A late embryogenesis abundant protein HVA1 regulated by an inducible promoter enhances root growth and abiotic stress tolerance in rice without yield penalty.

    Science.gov (United States)

    Chen, Yi-Shih; Lo, Shuen-Fang; Sun, Peng-Kai; Lu, Chung-An; Ho, Tuan-Hua D; Yu, Su-May

    2015-01-01

    Regulation of root architecture is essential for maintaining plant growth under adverse environment. A synthetic abscisic acid (ABA)/stress-inducible promoter was designed to control the expression of a late embryogenesis abundant protein (HVA1) in transgenic rice. The background of HVA1 is low but highly inducible by ABA, salt, dehydration and cold. HVA1 was highly accumulated in root apical meristem (RAM) and lateral root primordia (LRP) after ABA/stress treatments, leading to enhanced root system expansion. Water-use efficiency (WUE) and biomass also increased in transgenic rice, likely due to the maintenance of normal cell functions and metabolic activities conferred by HVA1 which is capable of stabilizing proteins, under osmotic stress. HVA1 promotes lateral root (LR) initiation, elongation and emergence and primary root (PR) elongation via an auxin-dependent process, particularly by intensifying asymmetrical accumulation of auxin in LRP founder cells and RAM, even under ABA/stress-suppressive conditions. We demonstrate a successful application of an inducible promoter in regulating the spatial and temporal expression of HVA1 for improving root architecture and multiple stress tolerance without yield penalty. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  7. Enraizamento de estacas de Sebastiania schottiana Müll. Arg. Rooting of Sebastiania schottiana Müll. Arg. cuttings

    Directory of Open Access Journals (Sweden)

    Eduardo Garcia Frassetto

    2010-12-01

    trial, basal, median and apical cuttings had their bases immersed in Orgasol® FTS at levels of 0, 5, 10 and 15mL L-1, for 1 minute. The experimental design was in random blocks, with three replicates and 20 cuttings per plot. At 75 days, the rooted cuttings percentage, the length and diameter of the longest root were evaluated. In a second trial, basal and median cuttings were treated for 0, 15, 30 and 45 minutes in 15mL L-1 of Orgasol® FTS. The experimental design was in random blocks, with three replicates of 20 cuttings per plot. At 150 day, the rooted cuttings percentage, dry roots mass and the length and diameter of the longest root were evaluated. In the first trial, higher levels of product was beneficial to rooting, it was observed the largets rooted cuttings percentage in the treatment with 15mL L-1 of product. In second trial, the higher rooting potential was observed in the basal and median cuttings treated by 45 minutes in 15mL L-1 of product. The use of orgasol® FTS promotes adventitious roots in Sebastiania schottiana cuttings.

  8. Better Rooting Procedure to Enhance Survival Rate of Field Grown Malaysian Eksotika Papaya Transformed with 1-Aminocyclopropane-1-Carboxylic Acid Oxidase Gene

    Science.gov (United States)

    Sekeli, Rogayah; Abdullah, Janna Ong; Namasivayam, Parameswari; Muda, Pauziah; Abu Bakar, Umi Kalsom

    2013-01-01

    A high survival rate for transformed papaya plants when transferred to the field is useful in the quest for improving the commercial quality traits. We report in this paper an improved rooting method for the production of transformed Malaysian Eksotika papaya with high survival rate when transferred to the field. Shoots were regenerated from embryogenic calli transformed with antisense and RNAi constructs of 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) genes using the Agrobacterium tumefaciens-mediated transformation method. Regenerated transformed shoots, each measuring approximately 3-4 cm in height, were cultured in liquid half-strength Murashige and Skoog (MS) medium or sterile distilled water, and with either perlite or vermiculite supplementation. All the culturing processes were conducted either under sterile or nonsterile condition. The results showed that rooting under sterile condition was better. Shoots cultured in half-strength MS medium supplemented with vermiculite exhibited a 92.5% rooting efficiency while perlite showed 77.5%. The survival rate of the vermiculite-grown transformed papaya plantlets after transfer into soil, contained in polybags, was 94%, and the rate after transfer into the ground was 92%. Morpho-histological analyses revealed that the tap roots were more compact, which might have contributed to the high survival rates of the plantlets. PMID:25969786

  9. Better rooting procedure to enhance survival rate of field grown malaysian eksotika papaya transformed with 1-aminocyclopropane-1-carboxylic Acid oxidase gene.

    Science.gov (United States)

    Sekeli, Rogayah; Abdullah, Janna Ong; Namasivayam, Parameswari; Muda, Pauziah; Abu Bakar, Umi Kalsom

    2013-01-01

    A high survival rate for transformed papaya plants when transferred to the field is useful in the quest for improving the commercial quality traits. We report in this paper an improved rooting method for the production of transformed Malaysian Eksotika papaya with high survival rate when transferred to the field. Shoots were regenerated from embryogenic calli transformed with antisense and RNAi constructs of 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) genes using the Agrobacterium tumefaciens-mediated transformation method. Regenerated transformed shoots, each measuring approximately 3-4 cm in height, were cultured in liquid half-strength Murashige and Skoog (MS) medium or sterile distilled water, and with either perlite or vermiculite supplementation. All the culturing processes were conducted either under sterile or nonsterile condition. The results showed that rooting under sterile condition was better. Shoots cultured in half-strength MS medium supplemented with vermiculite exhibited a 92.5% rooting efficiency while perlite showed 77.5%. The survival rate of the vermiculite-grown transformed papaya plantlets after transfer into soil, contained in polybags, was 94%, and the rate after transfer into the ground was 92%. Morpho-histological analyses revealed that the tap roots were more compact, which might have contributed to the high survival rates of the plantlets.

  10. Plant roots use a patterning mechanism to position lateral root branches toward available water.

    Science.gov (United States)

    Bao, Yun; Aggarwal, Pooja; Robbins, Neil E; Sturrock, Craig J; Thompson, Mark C; Tan, Han Qi; Tham, Cliff; Duan, Lina; Rodriguez, Pedro L; Vernoux, Teva; Mooney, Sacha J; Bennett, Malcolm J; Dinneny, José R

    2014-06-24

    The architecture of the branched root system of plants is a major determinant of vigor. Water availability is known to impact root physiology and growth; however, the spatial scale at which this stimulus influences root architecture is poorly understood. Here we reveal that differences in the availability of water across the circumferential axis of the root create spatial cues that determine the position of lateral root branches. We show that roots of several plant species can distinguish between a wet surface and air environments and that this also impacts the patterning of root hairs, anthocyanins, and aerenchyma in a phenomenon we describe as hydropatterning. This environmental response is distinct from a touch response and requires available water to induce lateral roots along a contacted surface. X-ray microscale computed tomography and 3D reconstruction of soil-grown root systems demonstrate that such responses also occur under physiologically relevant conditions. Using early-stage lateral root markers, we show that hydropatterning acts before the initiation stage and likely determines the circumferential position at which lateral root founder cells are specified. Hydropatterning is independent of endogenous abscisic acid signaling, distinguishing it from a classic water-stress response. Higher water availability induces the biosynthesis and transport of the lateral root-inductive signal auxin through local regulation of tryptophan aminotransferase of Arabidopsis 1 and PIN-formed 3, both of which are necessary for normal hydropatterning. Our work suggests that water availability is sensed and interpreted at the suborgan level and locally patterns a wide variety of developmental processes in the root.

  11. SHB1/HY1 Alleviates Excess Boron Stress by Increasing BOR4 Expression Level and Maintaining Boron Homeostasis in Arabidopsis Roots

    Directory of Open Access Journals (Sweden)

    Qiang Lv

    2017-05-01

    Full Text Available Boron is an essential mineral nutrient for higher plant growth and development. However, excessive amounts of boron can be toxic. Here, we report on the characterization of an Arabidopsis mutant, shb1 (sensitive to high-level of boron 1, which exhibits hypersensitivity to excessive boron in roots. Positional cloning demonstrated that the shb1 mutant bears a point mutation in a gene encoding a heme oxygenase 1 (HO1 corresponding to the HY1 gene involved in photomorphogenesis. The transcription level of the SHB1/HY1 gene in roots is up-regulated under excessive boron stimulation. Either overexpressing SHB1/HY1 or applying the HO1 inducer hematin reduces boron accumulation in roots and confers high boron tolerance. Furthermore, carbon monoxide and bilirubin, catalytic products of HO1, partially rescue the boron toxicity-induced inhibition of primary root growth in shb1. Additionally, the mRNA level of BOR4, a boron efflux transporter, is reduced in shb1 roots with high levels of boron supplementation, and hematin cannot relieve the boron toxicity-induced root inhibition in bor4 mutants. Taken together, our study reveals that HO1 acts via its catalytic by-products to promote tolerance of excessive boron by up-regulating the transcription of the BOR4 gene and therefore promoting the exclusion of excessive boron in root cells.

  12. Flooding avoidance Triplaris gardneriana Wedd. (Polygonaceae: growth and morpho-anatomical aspects

    Directory of Open Access Journals (Sweden)

    Vanessa Pontara

    2016-12-01

    Full Text Available The aim of this study was to analyze the effect of flooding in Triplaris gardneriana Wedd, cultivated in drained soil (control and in flooded condition. The experiment was developed in a greenhouse, using plants with 90 days after the emergency. The response to treatment was evaluated at 0, 30, 60 and 90 days. Growth measurements were made, such as biomass allocation, relative growth rate (RGR. Adventitious roots were not measured only observed, as well as the development of hypertrophied lenticels. The RGR was continuously reduced along the 90 days in flooding conditions for the roots, stem and leaves, compared to control. The flooding of the substrate caused alterations such as: increasing of the cortex width and diameter of the central cylinder of root and increasing the diameter of the vessel element of the root and stem. Results show that T. gardneriana remains under stress when submitted to flooding. Therefore, the production of structures as lenticels, aerenchyma and adventitious roots, structures related to the avoidance of this type of stress, were key factors for the maintenance and survival of T. gardneriana.

  13. MORPHOANATOMY OF Garcinia madruno (KUNTH HAMMEL (CLUSIACEAE UNDER WATERLOGGED CONDITIONS

    Directory of Open Access Journals (Sweden)

    NATÁLIA DO COUTO ABREU

    2017-12-01

    Full Text Available ABSTRACT Garcinia madruno (Kunth Hammel is a neotropical tree that naturally occurs in terra firme forests and is important as a source of income and medicine for Amazonian populations. This study describes and compares the morphoanatomical responses of plants under conditions of stress and normoxia. Young plants of Garcinia madruno were subjected to two water regimes: daily controlled irrigation and waterlogged for 84 days. Hypertrophic lenticels, adventitious roots and anatomical characteristics of the roots and leaves were evaluated on days 0, 21, 42, 63 and 84. There were no changes in leaf structure, but cracks and hypertrophic lenticels appeared on the stems, there was an increase in blackness of the roots and the plants formed adventitious roots to adapt to the flooded environment. The anatomical changes in the roots of the flooded plants were thickening of the exodermis in the main root and of the pericycle in the lateral roots, and a large increase in the amount of aerenchyma. Histochemical tests detected starch in the midrib, mesophyll, stem and root of flooded plants, and in the petiole of control plants. In the waterlogged plants, phenolic compounds were found in the petiole and alkaloids were found in the midrib, petiole and root.

  14. Transcriptomics-based identification of WRKY genes and characterization of a salt and hormone-responsive PgWRKY1 gene in Panax ginseng.

    Science.gov (United States)

    Nuruzzaman, Mohammed; Cao, Hongzhe; Xiu, Hao; Luo, Tiao; Li, Jijia; Chen, Xianghui; Luo, Junli; Luo, Zhiyong

    2016-02-01

    WRKY proteins belong to a transcription factor (TF) family and play dynamic roles in many plant processes, including plant responses to abiotic and biotic stresses, as well as secondary metabolism. However, no WRKY gene in Panax ginseng C.A. Meyer has been reported to date. In this study, a number of WRKY unigenes from methyl jasmonate (MeJA)-treated adventitious root transcriptome of this species were identified using next-generation sequencing technology. A total of 48 promising WRKY unigenes encoding WRKY proteins were obtained by eliminating wrong and incomplete open reading frame (ORF). Phylogenetic analysis reveals 48 WRKY TFs, including 11 Group I, 36 Group II, and 1 Group III. Moreover, one MeJA-responsive unigene designated as PgWRKY1 was cloned and characterized. It contains an entire ORF of 1077 bp and encodes a polypeptide of 358 amino acid residues. The PgWRKY1 protein contains a single WRKY domain consisting of a conserved amino acid sequence motif WRKYGQK and a C2H2-type zinc-finger motif belonging to WRKY subgroup II-d. Subcellular localization of PgWRKY1-GFP fusion protein in onion and tobacco epidermis cells revealed that PgWRKY1 was exclusively present in the nucleus. Quantitative real-time polymerase chain reaction analysis demonstrated that the expression of PgWRKY1 was relatively higher in roots and lateral roots compared with leaves, stems, and seeds. Importantly, PgWRKY1 expression was significantly induced by salicylic acid, abscisic acid, and NaCl, but downregulated by MeJA treatment. These results suggested that PgWRKY1 might be a multiple stress-inducible gene responding to hormones and salt stresses. © The Author 2015. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.

  15. Light as stress factor to plant roots - case of root halotropism.

    Science.gov (United States)

    Yokawa, Ken; Fasano, Rossella; Kagenishi, Tomoko; Baluška, František

    2014-01-01

    Despite growing underground, largely in darkness, roots emerge to be very sensitive to light. Recently, several important papers have been published which reveal that plant roots not only express all known light receptors but also that their growth, physiology and adaptive stress responses are light-sensitive. In Arabidopsis, illumination of roots speeds-up root growth via reactive oxygen species-mediated and F-actin dependent process. On the other hand, keeping Arabidopsis roots in darkness alters F-actin distribution, polar localization of PIN proteins as well as polar transport of auxin. Several signaling components activated by phytohormones are overlapping with light-related signaling cascade. We demonstrated that the sensitivity of roots to salinity is altered in the light-grown Arabidopsis roots. Particularly, light-exposed roots are less effective in their salt-avoidance behavior known as root halotropism. Here we discuss these new aspects of light-mediated root behavior from cellular, physiological and evolutionary perspectives.

  16. Mevalonate-derived quinonemethide triterpenoid from in vitro roots of Peritassa laevigata and their localization in root tissue by MALDI imaging

    Science.gov (United States)

    Pina, Edieidia S.; Silva, Denise B.; Teixeira, Simone P.; Coppede, Juliana S.; Furlan, Maysa; França, Suzelei C.; Lopes, Norberto P.; Pereira, Ana Maria S.; Lopes, Adriana A.

    2016-03-01

    Biosynthetic investigation of quinonemethide triterpenoid 22β-hydroxy-maytenin (2) from in vitro root cultures of Peritassa laevigata (Celastraceae) was conducted using 13C-precursor. The mevalonate pathway in P. laevigata is responsible for the synthesis of the quinonemethide triterpenoid scaffold. Moreover, anatomical analysis of P. laevigata roots cultured in vitro and in situ showed the presence of 22β-hydroxy-maytenin (2) and maytenin (1) in the tissues from transverse or longitudinal sections with an intense orange color. MALDI-MS imaging confirmed the distribution of (2) and (1) in the more distal portions of the root cap, the outer cell layers, and near the vascular cylinder of P. laevigata in vitro roots suggesting a role in plant defense against infection by microorganisms as well as in the root exudation processes.

  17. High Spatial Resolution MRI of Cystic Adventitial Disease of the Iliofemoral Vein Communicating with the Hip Joint

    International Nuclear Information System (INIS)

    Michaelides, Michael; Papas, Stylianos; Pantziara, Maria; Ioannidis, Kleanthis

    2014-01-01

    Venous cystic adventitial disease (CAD) is an extremely rare entity, and so far less than 20 cases have been described in the literature. Herein, we describe the imaging findings of CAD of iliofemoral vein in a 51-year-old woman who presented with leg swelling with special emphasis on high spatial resolution MRI, which demonstrated communication of the cyst with the hip joint. To our knowledge, this is the first description of high spatial resolution MRI findings in venous CAD supporting a new theory about the pathogenesis of venous CAD

  18. High Spatial Resolution MRI of Cystic Adventitial Disease of the Iliofemoral Vein Communicating with the Hip Joint

    Energy Technology Data Exchange (ETDEWEB)

    Michaelides, Michael, E-mail: mihalismihailidis@gmail.com [Ygia Polyclinic Hospital, MRI/CT Department (Cyprus); Papas, Stylianos, E-mail: vascular@drpapas.com [Ygia Polyclinic Hospital, Vascular Surgery Department (Cyprus); Pantziara, Maria, E-mail: mgpantziara@gmail.com; Ioannidis, Kleanthis, E-mail: aktinodiagnostis@gmail.com [Ygia Polyclinic Hospital, MRI/CT Department (Cyprus)

    2013-05-14

    Venous cystic adventitial disease (CAD) is an extremely rare entity, and so far less than 20 cases have been described in the literature. Herein, we describe the imaging findings of CAD of iliofemoral vein in a 51-year-old woman who presented with leg swelling with special emphasis on high spatial resolution MRI, which demonstrated communication of the cyst with the hip joint. To our knowledge, this is the first description of high spatial resolution MRI findings in venous CAD supporting a new theory about the pathogenesis of venous CAD.

  19. Cellular and Molecular Pathways Leading to External Root Resorption

    Science.gov (United States)

    Iglesias-Linares, A.; Hartsfield, J.K.

    2016-01-01

    External apical root resorption during orthodontic treatment implicates specific molecular pathways that orchestrate nonphysiologic cellular activation. To date, a substantial number of in vitro and in vivo molecular, genomic, and proteomic studies have supplied data that provide new insights into root resorption. Recent mechanisms and developments reviewed here include the role of the cellular component—specifically, the balance of CD68+, iNOS+ M1- and CD68+, CD163+ M2-like macrophages associated with root resorption and root surface repair processes linked to the expression of the M1-associated proinflammatory cytokine tumor necrosis factor, inducible nitric oxide synthase, the M1 activator interferon γ, the M2 activator interleukin 4, and M2-associated anti-inflammatory interleukin 10 and arginase I. Insights into the role of mesenchymal dental pulp cells in attenuating dentin resorption in homeostasis are also reviewed. Data on recently deciphered molecular pathways are reviewed at the level of (1) clastic cell adhesion in the external apical root resorption process and the specific role of α/β integrins, osteopontin, and related extracellular matrix proteins; (2) clastic cell fusion and activation by the RANKL/RANK/OPG and ATP-P2RX7-IL1 pathways; and (3) regulatory mechanisms of root resorption repair by cementum at the proteomic and transcriptomic levels. PMID:27811065

  20. Induced Jasmonate Signaling Leads to Contrasting Effects on Root Damage and Herbivore Performance1

    Science.gov (United States)

    Lu, Jing; Robert, Christelle Aurélie Maud; Riemann, Michael; Cosme, Marco; Mène-Saffrané, Laurent; Massana, Josep; Stout, Michael Joseph; Lou, Yonggen; Gershenzon, Jonathan; Erb, Matthias

    2015-01-01

    Induced defenses play a key role in plant resistance against leaf feeders. However, very little is known about the signals that are involved in defending plants against root feeders and how they are influenced by abiotic factors. We investigated these aspects for the interaction between rice (Oryza sativa) and two root-feeding insects: the generalist cucumber beetle (Diabrotica balteata) and the more specialized rice water weevil (Lissorhoptrus oryzophilus). Rice plants responded to root attack by increasing the production of jasmonic acid (JA) and abscisic acid, whereas in contrast to in herbivore-attacked leaves, salicylic acid and ethylene levels remained unchanged. The JA response was decoupled from flooding and remained constant over different soil moisture levels. Exogenous application of methyl JA to the roots markedly decreased the performance of both root herbivores, whereas abscisic acid and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid did not have any effect. JA-deficient antisense 13-lipoxygenase (asLOX) and mutant allene oxide cyclase hebiba plants lost more root biomass under attack from both root herbivores. Surprisingly, herbivore weight gain was decreased markedly in asLOX but not hebiba mutant plants, despite the higher root biomass removal. This effect was correlated with a herbivore-induced reduction of sucrose pools in asLOX roots. Taken together, our experiments show that jasmonates are induced signals that protect rice roots from herbivores under varying abiotic conditions and that boosting jasmonate responses can strongly enhance rice resistance against root pests. Furthermore, we show that a rice 13-lipoxygenase regulates root primary metabolites and specifically improves root herbivore growth. PMID:25627217

  1. EFFECT OF PRE-TREATMENT ON QUALITATIVE INDICES OF WHITE ROOTS

    Directory of Open Access Journals (Sweden)

    I. Bilenka

    2018-04-01

    Full Text Available In the work, various technological methods are presented of preliminary processing of celery and parsnip roots to prevent their darkening during cooking in restaurants. These methods are: immersing in a citric acid solution (c = 0.05 %, 0.1 %, 0.15 %, in solution NaCl (c = 0. 5%, 1 %, 2 %, and microwave processing in various modes. The activity of peroxidase, polyphenol oxidase, and ascorbate oxidase enzymes of root crops in the varietal section is also determined. Fresh white roots were selected as research objects: celery of the varieties Yablucnyy and Diamant, and parsnip of the varieties Student and Kruhlyy. It was revealed that polyphenol oxidase shows the highest activity. In order to inactivate the above-stated oxidoreductase, different methods of treating white roots were compared, too. The lowest oxidative enzymes activity was characteristic of the roots of the Diamant varieties and the parsnip roots of the Student variety, which were selected for further work. Studies have been carried out on changes in the mass fraction of L-ascorbic acid during steam blasting and microwave processing in different modes. It is proved that the treatment of white roots with ultra high frequency irradiation at 650 W for 1 minute is optimal. Such treatment allowes preventing the darkening of the raw material after its peeling due to the action of oxidation-reducing enzymes. It also allows preserving L-ascorbic acid by 64.6 % and 65.0 % in the roots of celery and parsnip, respectively. The distribution of polyphenol oxidase activity in the celery and parsnip root crop is analyzed. The results of the work can be used in preparation of dishes with the use of white roots in restaurants in order to improve technological techniques during processing of raw materials into finished products, improve its quality, and preserve L-ascorbic acid, as well as expand the range of culinary products based on spicy aromatic raw materials.

  2. Quantitative analyses of the behavior of exogenously added bacteria during an acidulocomposting process.

    Science.gov (United States)

    Suematsu, Takatoshi; Yamashita, Satoshi; Hemmi, Hisashi; Yoshinari, Ayaka; Shimoyama, Takefumi; Nakayama, Toru; Nishino, Tokuzo

    2012-07-01

    The behavior of adventitious bacteria during an acidulocomposting process was quantitatively analyzed in garbage-free trials. The numbers of the added Bacillus subtilis and Pseudomonas putida cells diminished in a first-order manner with t(1/2) values of 0.45d and 0.79d, respectively, consistent with the observed stability of the acidulocomposting function. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. The Effects of IBA and NAA, and Rooting Media on Propagation of Miniature Rose Cuttings (Rosa hybrida

    Directory of Open Access Journals (Sweden)

    azam ranjbar

    2017-09-01

    Full Text Available Introduction: Miniature rose (Rosa hybrida are well known as one of the world’s most popular ornamental plants cultivated worldwide as potted and/or bed plants. Nowadays, more than 100 million pots of miniature roses are propagated by stem cutting in the commercial greenhouses of European countries such as Denmark and Germany. Some treatments such as application of plant growth regulators and suitable rooting medium could be required for accelerating root formation in rose cuttings. Using plant growth regulators like natural or synthetic auxin is a pre-requirement for the initiation of adventitious root in some stem cuttings and it has been reported that the division of the first initiator cells of root depends on internal or synthetic auxin. Methods of application of these chemicals and suitable concentration could be related to several factors, importantly the plant varieties, type of cuttings and the time of cutting preparation. Various kinds of media such as soil, peat moss, perlite and vermiculite are used as bed substrate according to required ratio. Rooting media must provide appropriate moisture and air ventilation for cuttings establishment, which highly affect the cuttings root formation. Appropriate procedure for using wastes materials as culture bed, especially those materials that produced locally, is main aim of some studies to find an alternative medium in ornamental pot plant production. In this regards, evaluation of agricultural wastes to be used to culture bed and introducing suitable materials could be considered. Accordingly, the objective of the present study was to determine the effects of two types of plant growth regulators and bed combinations on rooting percentage of semi-hardwood cuttings in miniature rose. Materials and Methods: In order to evaluate the effects of different concentrations of indolebutyric acid (IBA and naphtaleneacetic acid (NAA, and two media with different composition on root formation of

  4. Two major quantitative trait loci controlling the number of seminal roots in maize co-map with the root developmental genes rtcs and rum1.

    Science.gov (United States)

    Salvi, Silvio; Giuliani, Silvia; Ricciolini, Claudia; Carraro, Nicola; Maccaferri, Marco; Presterl, Thomas; Ouzunova, Milena; Tuberosa, Roberto

    2016-02-01

    The genetic dissection of root architecture and functions allows for a more effective and informed design of novel root ideotypes and paves the way to evaluate their effects on crop resilience to a number of abiotic stresses. In maize, limited attention has been devoted to the genetic analysis of root architecture diversity at the early stage. The difference in embryonic (including seminal and primary) root architecture between the maize reference line B73 (which mostly develops three seminal roots) and the landrace Gaspé Flint (with virtually no seminal roots) was genetically dissected using a collection of introgression lines grown in paper rolls and pots. Quantitative trait locus (QTL) analysis identified three QTLs controlling seminal root number (SRN) on chromosome bins 1.02, 3.07, and 8.04-8.05, which collectively explained 66% of the phenotypic variation. In all three cases, Gaspé Flint contributed the allele for lower SRN. Primary root dry weight was negatively correlated with SRN (r= -0.52), and QTLs for primary root size co-mapped with SRN QTLs, suggesting a pleiotropic effect of SRN QTLs on the primary root, most probably caused by competition for seed resources. Interestingly, two out of three SRN QTLs co-mapped with the only two known maize genes (rtcs and rum1) affecting the number of seminal roots. The strong additive effect of the three QTLs and the development of near isogenic lines for each QTL in the elite B73 background provide unique opportunities to characterize functionally the genes involved in root development and to evaluate how root architecture affects seedling establishment, early development, and eventually yield in maize. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  5. Root proliferation in decaying roots and old root channels: A nutrient conservation mechanism in oligotrophic mangrove forests?

    Science.gov (United States)

    McKee, K.L.

    2001-01-01

    1. In oligotrophic habitats, proliferation of roots in nutrient-rich microsites may contribute to overall nutrient conservation by plants. Peat-based soils on mangrove islands in Belize are characterized by the presence of decaying roots and numerous old root channels (0.1-3.5 cm diameter) that become filled with living and highly branched roots of Rhizophora mangle and Avicennia germinans. The objectives of this study were to quantify the proliferation of roots in these microsites and to determine what causes this response. 2. Channels formed by the refractory remains of mangrove roots accounted for only 1-2% of total soil volume, but the proportion of roots found within channels varied from 9 to 24% of total live mass. Successive generations of roots growing inside increasingly smaller root channels were also found. 3. When artificial channels constructed of PVC pipe were buried in the peat for 2 years, those filled with nutrient-rich organic matter had six times more roots than empty or sand-filled channels, indicating a response to greater nutrient availability rather than to greater space or less impedance to root growth. 4. Root proliferation inside decaying roots may improve recovery of nutrients released from decomposing tissues before they can be leached or immobilized in this intertidal environment. Greatest root proliferation in channels occurred in interior forest zones characterized by greater soil waterlogging, which suggests that this may be a strategy for nutrient capture that minimizes oxygen losses from the whole root system. 5. Improved efficiency of nutrient acquisition at the individual plant level has implications for nutrient economy at the ecosystem level and may explain, in part, how mangroves persist and grow in nutrient-poor environments.

  6. Dominant root locus in state estimator design for material flow processes: A case study of hot strip rolling.

    Science.gov (United States)

    Fišer, Jaromír; Zítek, Pavel; Skopec, Pavel; Knobloch, Jan; Vyhlídal, Tomáš

    2017-05-01

    The purpose of the paper is to achieve a constrained estimation of process state variables using the anisochronic state observer tuned by the dominant root locus technique. The anisochronic state observer is based on the state-space time delay model of the process. Moreover the process model is identified not only as delayed but also as non-linear. This model is developed to describe a material flow process. The root locus technique combined with the magnitude optimum method is utilized to investigate the estimation process. Resulting dominant roots location serves as a measure of estimation process performance. The higher the dominant (natural) frequency in the leftmost position of the complex plane the more enhanced performance with good robustness is achieved. Also the model based observer control methodology for material flow processes is provided by means of the separation principle. For demonstration purposes, the computer-based anisochronic state observer is applied to the strip temperatures estimation in the hot strip finishing mill composed of seven stands. This application was the original motivation to the presented research. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  7. An information transfer based novel framework for fault root cause tracing of complex electromechanical systems in the processing industry

    Science.gov (United States)

    Wang, Rongxi; Gao, Xu; Gao, Jianmin; Gao, Zhiyong; Kang, Jiani

    2018-02-01

    As one of the most important approaches for analyzing the mechanism of fault pervasion, fault root cause tracing is a powerful and useful tool for detecting the fundamental causes of faults so as to prevent any further propagation and amplification. Focused on the problems arising from the lack of systematic and comprehensive integration, an information transfer-based novel data-driven framework for fault root cause tracing of complex electromechanical systems in the processing industry was proposed, taking into consideration the experience and qualitative analysis of conventional fault root cause tracing methods. Firstly, an improved symbolic transfer entropy method was presented to construct a directed-weighted information model for a specific complex electromechanical system based on the information flow. Secondly, considering the feedback mechanisms in the complex electromechanical systems, a method for determining the threshold values of weights was developed to explore the disciplines of fault propagation. Lastly, an iterative method was introduced to identify the fault development process. The fault root cause was traced by analyzing the changes in information transfer between the nodes along with the fault propagation pathway. An actual fault root cause tracing application of a complex electromechanical system is used to verify the effectiveness of the proposed framework. A unique fault root cause is obtained regardless of the choice of the initial variable. Thus, the proposed framework can be flexibly and effectively used in fault root cause tracing for complex electromechanical systems in the processing industry, and formulate the foundation of system vulnerability analysis and condition prediction, as well as other engineering applications.

  8. Ethylene Inhibits Cell Proliferation of the Arabidopsis Root Meristem1[OPEN

    Science.gov (United States)

    Street, Ian H.; Aman, Sitwat; Zubo, Yan; Ramzan, Aleena; Wang, Xiaomin; Shakeel, Samina N.; Kieber, Joseph J.; Schaller, G. Eric

    2015-01-01

    The root system of plants plays a critical role in plant growth and survival, with root growth being dependent on both cell proliferation and cell elongation. Multiple phytohormones interact to control root growth, including ethylene, which is primarily known for its role in controlling root cell elongation. We find that ethylene also negatively regulates cell proliferation at the root meristem of Arabidopsis (Arabidopsis thaliana). Genetic analysis indicates that the inhibition of cell proliferation involves two pathways operating downstream of the ethylene receptors. The major pathway is the canonical ethylene signal transduction pathway that incorporates CONSTITUTIVE TRIPLE RESPONSE1, ETHYLENE INSENSITIVE2, and the ETHYLENE INSENSITIVE3 family of transcription factors. The secondary pathway is a phosphorelay based on genetic analysis of receptor histidine kinase activity and mutants involving the type B response regulators. Analysis of ethylene-dependent gene expression and genetic analysis supports SHORT HYPOCOTYL2, a repressor of auxin signaling, as one mediator of the ethylene response and furthermore, indicates that SHORT HYPOCOTYL2 is a point of convergence for both ethylene and cytokinin in negatively regulating cell proliferation. Additional analysis indicates that ethylene signaling contributes but is not required for cytokinin to inhibit activity of the root meristem. These results identify key elements, along with points of cross talk with cytokinin and auxin, by which ethylene negatively regulates cell proliferation at the root apical meristem. PMID:26149574

  9. Searching for Roots. Pärt: Symphony No. 1, "Polyphonic" / Guy S. Rickards

    Index Scriptorium Estoniae

    Rickards, Guy S.

    1997-01-01

    Uuest heliplaadist "Searching for Roots. Pärt: Symphony No. 1, "Polyphonic". Nekrolog, Op. 3; Tubin: Symphony No. 11; Tüür: Searching for Roots. Insula deserta. Zeitraum. Royal Stockholm Philharmonic Orchestra / Paavo Järvi. Virgin Classics VC5 45212-2 (72 min.:DDD)

  10. Root hairs aid soil penetration by anchoring the root surface to pore walls.

    Science.gov (United States)

    Bengough, A Glyn; Loades, Kenneth; McKenzie, Blair M

    2016-02-01

    The physical role of root hairs in anchoring the root tip during soil penetration was examined. Experiments using a hairless maize mutant (Zea mays: rth3-3) and its wild-type counterpart measured the anchorage force between the primary root of maize and the soil to determine whether root hairs enabled seedling roots in artificial biopores to penetrate sandy loam soil (dry bulk density 1.0-1.5g cm(-3)). Time-lapse imaging was used to analyse root and seedling displacements in soil adjacent to a transparent Perspex interface. Peak anchorage forces were up to five times greater (2.5N cf. 0.5N) for wild-type roots than for hairless mutants in 1.2g cm(-3) soil. Root hair anchorage enabled better soil penetration for 1.0 or 1.2g cm(-3) soil, but there was no significant advantage of root hairs in the densest soil (1.5g cm(-3)). The anchorage force was insufficient to allow root penetration of the denser soil, probably because of less root hair penetration into pore walls and, consequently, poorer adhesion between the root hairs and the pore walls. Hairless seedlings took 33h to anchor themselves compared with 16h for wild-type roots in 1.2g cm(-3) soil. Caryopses were often pushed several millimetres out of the soil before the roots became anchored and hairless roots often never became anchored securely.The physical role of root hairs in anchoring the root tip may be important in loose seed beds above more compact soil layers and may also assist root tips to emerge from biopores and penetrate the bulk soil. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  11. Avocado roots treated with salicylic acid produce phenol-2,4-bis (1,1-dimethylethyl), a compound with antifungal activity.

    Science.gov (United States)

    Rangel-Sánchez, Gerardo; Castro-Mercado, Elda; García-Pineda, Ernesto

    2014-02-15

    We demonstrated the ability of salicylic acid (SA) to induce a compound in avocado roots that strengthens their defense against Phytophthora cinnamomi. The SA content of avocado roots, before and after the application of exogenous SA, was determined by High-Performance Liquid Chromatography (HPLC). After 4h of SA feeding, the endogenous level in the roots increased to 223 μg g(-1) FW, which was 15 times the amount found in control roots. The methanolic extract obtained from SA-treated avocado roots inhibited the radial growth of P. cinnamomi. A thin layer chromatographic bioassay with the methanolic extract and spores of Aspergillus showed a distinct inhibition zone. The compound responsible for the inhibition was identified as phenol-2,4-bis (1,1-dimethylethyl) by gas chromatography and mass spectrometry. At a concentration of 100 μg/mL, the substance reduced germinative tube length in Aspergillus and radial growth of P. cinnamomi. A commercial preparation of phenol-2,4-bis (1,1-dimethylethyl) caused the same effects on mycelium morphology and radial growth as our isolate, confirming the presence of this compound in the root extracts. This is the first report of the induction of this compound in plants by SA, and the results suggest that it plays an important role in the defense response of avocado. Copyright © 2013 Elsevier GmbH. All rights reserved.

  12. Processing and statistical analysis of soil-root images

    Science.gov (United States)

    Razavi, Bahar S.; Hoang, Duyen; Kuzyakov, Yakov

    2016-04-01

    Importance of the hotspots such as rhizosphere, the small soil volume that surrounds and is influenced by plant roots, calls for spatially explicit methods to visualize distribution of microbial activities in this active site (Kuzyakov and Blagodatskaya, 2015). Zymography technique has previously been adapted to visualize the spatial dynamics of enzyme activities in rhizosphere (Spohn and Kuzyakov, 2014). Following further developing of soil zymography -to obtain a higher resolution of enzyme activities - we aimed to 1) quantify the images, 2) determine whether the pattern (e.g. distribution of hotspots in space) is clumped (aggregated) or regular (dispersed). To this end, we incubated soil-filled rhizoboxes with maize Zea mays L. and without maize (control box) for two weeks. In situ soil zymography was applied to visualize enzymatic activity of β-glucosidase and phosphatase at soil-root interface. Spatial resolution of fluorescent images was improved by direct application of a substrate saturated membrane to the soil-root system. Furthermore, we applied "spatial point pattern analysis" to determine whether the pattern (e.g. distribution of hotspots in space) is clumped (aggregated) or regular (dispersed). Our results demonstrated that distribution of hotspots at rhizosphere is clumped (aggregated) compare to control box without plant which showed regular (dispersed) pattern. These patterns were similar in all three replicates and for both enzymes. We conclude that improved zymography is promising in situ technique to identify, analyze, visualize and quantify spatial distribution of enzyme activities in the rhizosphere. Moreover, such different patterns should be considered in assessments and modeling of rhizosphere extension and the corresponding effects on soil properties and functions. Key words: rhizosphere, spatial point pattern, enzyme activity, zymography, maize.

  13. Submergence of Roots for Alveolar Bone Preservation. I. Endodontically Treated Roots.

    Science.gov (United States)

    1977-05-10

    With Endodontic Submerged Roots Scale 0 1 2 3 Periapical 15 0 1 0 Pericoronal 7 3 3 3 (3 cysts ) = 1 _ _ _ _ _ _ _ _ _ = REFERENCES 1. Lam, R.: Contour...with coronal portions of the roots. These epithe lial-lined cysts prevented the formation of osteo- cementum over the coronal surface . In this study...the endodontically treated roots appeared to be primarily a response to the excess root cana l sealer that was expressed coronally and periapically

  14. Search for the Higgs boson in events with missing transverse energy and b quark jets produced in pp collisions at square root(s)=1.96 TeV.

    Science.gov (United States)

    Aaltonen, T; Adelman, J; Akimoto, T; Albrow, M G; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Bednar, P; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'Orso, M; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Genser, K; Gerberich, H; Gerdes, D; Giagu, S; Giakoumopolou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Koay, S A; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lu, R-S; Lucchesi, D; Lueck, J; Luci, C; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moed, S; Moggi, N; Moon, C S; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Rott, C; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shalhout, S Z; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner-Kuhr, J; Wagner, W; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zheng, Y; Zucchelli, S

    2008-05-30

    We search for the standard model Higgs boson produced in association with an electroweak vector boson in events with no identified charged leptons, large imbalance in transverse momentum, and two jets where at least one contains a secondary vertex consistent with the decay of b hadrons. We use approximately 1 fb(-1) integrated luminosity of pp collisions at square root(s)=1.96 TeV recorded by the Collider Detector at Fermilab II experiment at the Tevatron. We find 268 (16) single (double) b-tagged candidate events, where 248+/-43 (14.4+/-2.7) are expected from standard model background processes. We observe no significant excess over the expected background and thus set 95% confidence level upper limits on the Higgs boson production cross section for several Higgs boson masses ranging from 110 to 140 GeV/c(2). For a mass of 115 GeV/c(2), the observed (expected) limit is 20.4 (14.2) times the standard model prediction.

  15. Light as stress factor to plant roots – case of root halotropism

    Science.gov (United States)

    Yokawa, Ken; Fasano, Rossella; Kagenishi, Tomoko; Baluška, František

    2014-01-01

    Despite growing underground, largely in darkness, roots emerge to be very sensitive to light. Recently, several important papers have been published which reveal that plant roots not only express all known light receptors but also that their growth, physiology and adaptive stress responses are light-sensitive. In Arabidopsis, illumination of roots speeds-up root growth via reactive oxygen species-mediated and F-actin dependent process. On the other hand, keeping Arabidopsis roots in darkness alters F-actin distribution, polar localization of PIN proteins as well as polar transport of auxin. Several signaling components activated by phytohormones are overlapping with light-related signaling cascade. We demonstrated that the sensitivity of roots to salinity is altered in the light-grown Arabidopsis roots. Particularly, light-exposed roots are less effective in their salt-avoidance behavior known as root halotropism. Here we discuss these new aspects of light-mediated root behavior from cellular, physiological and evolutionary perspectives. PMID:25566292

  16. Direct adventitious shoot bud formation on hypocotyls explants in Millettia pinnata (L.) Panigrahi- a biodiesel producing medicinal tree species

    OpenAIRE

    Nagar, Durga Singh; Jha, Suman Kumar; Jani, Jigar

    2015-01-01

    A reproducible protocol developed for in vitro regeneration of Milletia pinnata using hypocotyl segments. Multiple shoots were induced from hypocotyl explants through direct adventitious shoot bud regeneration. The proximal end of hypocotyls was responsive for shoot bud induction. Silver nitrate and adenine sulphate had a positive effect on shoot bud induction and elongation. The maximum response and number of shoot bud produced in media supplemented with 8.88 μM BAP with 108.6 μM adenine sul...

  17. Search for Higgs boson production in dilepton and missing energy final states with 5.4 fb(-1) of pp collisions at square root(s) = 1.96 TeV.

    Science.gov (United States)

    Abazov, V M; Abbott, B; Abolins, M; Acharya, B S; Adams, M; Adams, T; Aguilo, E; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Ancu, L S; Aoki, M; Arnoud, Y; Arov, M; Askew, A; Asman, B; Atramentov, O; Avila, C; BackusMayes, J; Badaud, F; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Barberis, E; Barfuss, A-F; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Beale, S; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Benitez, J A; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Blazey, G; Blessing, S; Bloom, K; Boehnlein, A; Boline, D; Bolton, T A; Boos, E E; Borissov, G; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Brown, D; Bu, X B; Buchholz, D; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Burnett, T H; Buszello, C P; Calfayan, P; Calpas, B; Calvet, S; Camacho-Pérez, E; Cammin, J; Carrasco-Lizarraga, M A; Carrera, E; Casey, B C K; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Cheu, E; Chevalier-Théry, S; Cho, D K; Cho, S W; Choi, S; Choudhary, B; Christoudias, T; Cihangir, S; Claes, D; Clutter, J; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Cutts, D; Cwiok, M; Das, A; Davies, G; De, K; de Jong, S J; De la Cruz-Burelo, E; DeVaughan, K; Déliot, F; Demarteau, M; Demina, R; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Dominguez, A; Dorland, T; Dubey, A; Dudko, L V; Duflot, L; Duggan, D; Duperrin, A; Dutt, S; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Eno, S; Evans, H; Evdokimov, A; Evdokimov, V N; Facini, G; Ferapontov, A V; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fortner, M; Fox, H; Fuess, S; Gadfort, T; Galea, C F; Garcia-Bellido, A; Gavrilov, V; Gay, P; Geist, W; Geng, W; Gerbaudo, D; Gerber, C E; Gershtein, Y; Gillberg, D; Ginther, G; Golovanov, G; Gómez, B; Goussiou, A; Grannis, P D; Greder, S; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guo, F; Guo, J; Gutierrez, G; Gutierrez, P; Haas, A; Haefner, P; Hagopian, S; Haley, J; Hall, I; Han, L; Harder, K; Harel, A; Hauptman, J M; Hays, J; Hebbeker, T; Hedin, D; Hegeman, J G; Heinson, A P; Heintz, U; Hensel, C; Heredia-De la Cruz, I; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hoang, T; Hobbs, J D; Hoeneisen, B; Hohlfeld, M; Hossain, S; Houben, P; Hu, Y; Hubacek, Z; Huske, N; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jamin, D; Jesik, R; Johns, K; Johnson, C; Johnson, M; Johnston, D; Jonckheere, A; Jonsson, P; Juste, A; Kajfasz, E; Karmanov, D; Kasper, P A; Katsanos, I; Kaushik, V; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y N; Khatidze, D; Kirby, M H; Kirsch, M; Kohli, J M; Kozelov, A V; Kraus, J; Kumar, A; Kupco, A; Kurca, T; Kuzmin, V A; Kvita, J; Lam, D; Lammers, S; Landsberg, G; Lebrun, P; Lee, H S; Lee, W M; Leflat, A; Lellouch, J; Li, L; Li, Q Z; Lietti, S M; Lim, J K; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Y; Liu, Z; Lobodenko, A; Lokajicek, M; Love, P; Lubatti, H J; Luna-Garcia, R; Lyon, A L; Maciel, A K A; Mackin, D; Mättig, P; Magaña-Villalba, R; Mal, P K; Malik, S; Malyshev, V L; Maravin, Y; Martínez-Ortega, J; McCarthy, R; McGivern, C L; Meijer, M M; Melnitchouk, A; Mendoza, L; Menezes, D; Mercadante, P G; Merkin, M; Meyer, A; Meyer, J; Mondal, N K; Moulik, T; Muanza, G S; Mulhearn, M; Mundal, O; Mundim, L; Nagy, E; Naimuddin, M; Narain, M; Nayyar, R; Neal, H A; Negret, J P; Neustroev, P; Nilsen, H; Nogima, H; Novaes, S F; Nunnemann, T; Obrant, G; Onoprienko, D; Orduna, J; Osman, N; Osta, J; Otec, R; Otero y Garzón, G J; Owen, M; Padilla, M; Padley, P; Pangilinan, M; Parashar, N; Parihar, V; Park, S-J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Penning, B; Perfilov, M; Peters, K; Peters, Y; Pétroff, P; Piegaia, R; Piper, J; Pleier, M-A; Podesta-Lerma, P L M; Podstavkov, V M; Pol, M-E; Polozov, P; Popov, A V; Prewitt, M; Price, D; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rangel, M S; Ranjan, K; Ratoff, P N; Razumov, I; Renkel, P; Rich, P; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Robinson, S; Rominsky, M; Royon, C; Rubinov, P; Ruchti, R; Safronov, G; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Sanghi, B; Savage, G; Sawyer, L; Scanlon, T; Schaile, D; Schamberger, R D; Scheglov, Y; Schellman, H; Schliephake, T; Schlobohm, S; Schwanenberger, C; Schwienhorst, R; Sekaric, J; Severini, H; Shabalina, E; Shary, V; Shchukin, A A; Shivpuri, R K; Simak, V; Sirotenko, V; Skubic, P; Slattery, P; Smirnov, D; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Spurlock, B; Stark, J; Stolin, V; Stoyanova, D A; Strandberg, J; Strang, M A; Strauss, E; Strauss, M; Ströhmer, R; Strom, D; Stutte, L; Svoisky, P; Takahashi, M; Tanasijczuk, A; Taylor, W; Tiller, B; Titov, M; Tokmenin, V V; Tsybychev, D; Tuchming, B; Tully, C; Tuts, P M; Unalan, R; Uvarov, L; Uvarov, S; Uzunyan, S; van den Berg, P J; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Verdier, P; Vertogradov, L S; Verzocchi, M; Vesterinen, M; Vilanova, D; Vint, P; Vokac, P; Wahl, H D; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weber, G; Weber, M; Wetstein, M; White, A; Wicke, D; Williams, M R J; Wilson, G W; Wimpenny, S J; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Xu, C; Yacoob, S; Yamada, R; Yang, W-C; Yasuda, T; Yatsunenko, Y A; Ye, Z; Yin, H; Yip, K; Yoo, H D; Youn, S W; Yu, J; Zeitnitz, C; Zelitch, S; Zhao, T; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zivkovic, L; Zutshi, V; Zverev, E G

    2010-02-12

    A search for the standard model Higgs boson is presented using events with two charged leptons and large missing transverse energy selected from 5.4 fb(-1) of integrated luminosity in pp collisions at square root(s) = 1.96 TeV collected with the D0 detector at the Fermilab Tevatron collider. No significant excess of events above background predictions is found, and observed (expected) upper limits at 95% confidence level on the rate of Higgs boson production are derived that are a factor of 1.55 (1.36) above the predicted standard model cross section at m(H) = 165 GeV.

  18. Jasmonic Acid Enhances Al-Induced Root Growth Inhibition.

    Science.gov (United States)

    Yang, Zhong-Bao; He, Chunmei; Ma, Yanqi; Herde, Marco; Ding, Zhaojun

    2017-02-01

    Phytohormones such as ethylene and auxin are involved in the regulation of the aluminum (Al)-induced root growth inhibition. Although jasmonate (JA) has been reported to play a crucial role in the regulation of root growth and development in response to environmental stresses through interplay with ethylene and auxin, its role in the regulation of root growth response to Al stress is not yet known. In an attempt to elucidate the role of JA, we found that exogenous application of JA enhanced the Al-induced root growth inhibition. Furthermore, phenotype analysis with mutants defective in either JA biosynthesis or signaling suggests that JA is involved in the regulation of Al-induced root growth inhibition. The expression of the JA receptor CORONATINE INSENSITIVE1 (COI1) and the key JA signaling regulator MYC2 was up-regulated in response to Al stress in the root tips. This process together with COI1-mediated Al-induced root growth inhibition under Al stress was controlled by ethylene but not auxin. Transcriptomic analysis revealed that many responsive genes under Al stress were regulated by JA signaling. The differential responsive of microtubule organization-related genes between the wild-type and coi1-2 mutant is consistent with the changed depolymerization of cortical microtubules in coi1 under Al stress. In addition, ALMT-mediated malate exudation and thus Al exclusion from roots in response to Al stress was also regulated by COI1-mediated JA signaling. Together, this study suggests that root growth inhibition is regulated by COI1-mediated JA signaling independent from auxin signaling and provides novel insights into the phytohormone-mediated root growth inhibition in response to Al stress. © 2017 American Society of Plant Biologists. All Rights Reserved.

  19. Environmental regulation of lateral root emergence in Medicago truncatula requires the HD-Zip I transcription factor HB1.

    Science.gov (United States)

    Ariel, Federico; Diet, Anouck; Verdenaud, Marion; Gruber, Véronique; Frugier, Florian; Chan, Raquel; Crespi, Martin

    2010-07-01

    The adaptation of root architecture to environmental constraints is a major agricultural trait, notably in legumes, the third main crop worldwide. This root developmental plasticity depends on the formation of lateral roots (LRs) emerging from primary roots. In the model legume Medicago truncatula, the HD-Zip I transcription factor HB1 is expressed in primary and lateral root meristems and induced by salt stress. Constitutive expression of HB1 in M. truncatula roots alters their architecture, whereas hb1 TILLING mutants showed increased lateral root emergence. Electrophoretic mobility shift assay, promoter mutagenesis, and chromatin immunoprecipitation-PCR assays revealed that HB1 directly recognizes a CAATAATTG cis-element present in the promoter of a LOB-like (for Lateral Organ Boundaries) gene, LBD1, transcriptionally regulated by auxin. Expression of these genes in response to abscisic acid and auxin and their behavior in hb1 mutants revealed an HB1-mediated repression of LBD1 acting during LR emergence. M. truncatula HB1 regulates an adaptive developmental response to minimize the root surface exposed to adverse environmental stresses.

  20. Root zone effects on tracer migration in arid zones

    International Nuclear Information System (INIS)

    Tyler, S.W.; Walker, G.R.

    1994-01-01

    The study of groundwater recharge and soil water movement in arid regions has received increased attention in the search for safe disposal sites for hazardous wastes. In passing through the upper 1 to 2 m of most soil profiles, tracers indicative of recharge such as Cl, 2 H, 18 O, Br, 3 H, and 56 Cl are subjected to a wide range of processes not encountered deeper in the profile. This transition zone, where water enters as precipitation and leaves as recharge, is often ignored when environmental tracers are used to estimate deep soil water flux and recharge, yet its effect may be profound. In this work, we reexamine the processes of root extraction and its effect on the velocity and distribution of tracers. Examples are presented for idealized conditions, which show clearly the relation between the root zone processes and the deep drainage or recharge. The results indicate that, when recharge is small and root zone processes are not accounted for, tracer techniques can significantly overestimate recharge until the tracer has moved well below the root zone. By incorporating simple models of root zone processes, a clearer understanding of tracer distributions and a more accurate estimate of recharge can then be made. 11 refs., 9 figs

  1. 7 CFR 201.56-2 - Sunflower family, Asteraceae (Compositae).

    Science.gov (United States)

    2010-01-01

    ...) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Germination Tests in the Administration of the Act § 201.56... any attached seed coats at the end of the test period for evaluation of cotyledons.) (ii) Epicotyl: (A... adventitious roots. (Seedlings with roots bound within tough seed coats should be left in the test until the...

  2. Nitrogen Rate Effects on Cry3Bb1 and Cry3Bb1 + Cry34/35Ab1 Expression in Transgenic Corn Roots, Resulting Root Injury, and Corn Rootworm Beetle Emergence.

    Science.gov (United States)

    Leaf, T M; Ostlie, K R

    2017-06-01

    Nitrogen (N) application rates have been recommended historically for maximum economic yield of corn (Zea mays L.), but not for optimal expression or impacts of Bt (Bacillus thuringiensis Berliner) Cry protein(s) on target insects. This study explored the need to adjust N rates to optimize expression of corn rootworm-active Bt (Bt-RW) protein(s) in a single and a pyramided trait hybrid and resulting impacts on beetle emergence and root injury, under field conditions. The experiment featured a factorial treatment arrangement in a split-plot randomized complete block design with six N rates as the main plots and three hybrids (MON88017 expressing Cry3Bb1, MON88017 x DAS-59122 expressing Cry3Bb1 + Cry34/35Ab1, and a non-Bt-RW hybrid) as the subplots. Corn roots were sampled at the beginning of, and after, peak larval feeding to determine Bt-expression levels using an enzyme-linked immunosorbent assay. Beetles were collected every 2-3 d during emergence using cut-plant emergence cages. Cry3Bb1 expression was significantly reduced when little or no N was applied. Cry34Ab1 and Cry35Ab1 expression was highly variable and unaffected by N rate. Beetle emergence increased with N rate in the non-Bt-RW hybrid while root injury declined. Provided Bt-RW hybrids had sufficient applied N, root injury was relatively low. Results indicate that N management could affect Bt-RW expression and success of insect resistance management plans provided N is applied at rates that enhance production of susceptible beetles emerging from the non-Bt-RW (refuge) hybrid, and achieve optimal expression and efficacy of Bt traits. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Characterisation of the oxygen fluxes in the division, elongation and mature zones of Vitis roots: influence of oxygen availability.

    Science.gov (United States)

    Mancuso, Stefano; Boselli, Maurizio

    2002-03-01

    Oxygen fluxes into and from root cells of Vitis rupestris (flooding sensitive), V. riparia (flooding tolerant) and V. vinifera (medium tolerance to flooding) were measured under different levels of O2 availability using a recently developed polarographic O2-selective, vibrating-microelectrode system. The system enables fluxes to be measured with a spatial resolution of 2-3 microm and a temporal resolution of 10 s. No difference in root porosity was found among the genotypes when grown for 30 days in an aerated solution. Under normoxic conditions, O2 influx was characterised by two distinct peaks, one in the division zone and the other in the elongation zone of the roots. This pattern was found in all three species studied, although the fluxes showed a different magnitude. The peak in the elongation zone coincided with maximum relative elemental growth rates. When the energetics of the cell was disturbed by cyanide, both growth and oxygen O2 influxes ceased at the same time. Under hypoxic conditions, V. riparia plants showed a precise strategy directed toward the maintenance of enough O2 for the respiratory needs of mitosis in the apical meristem of the roots. Thus, whereas in the division zone of V. rupestris and V. vinifera, at bulk O2 concentrations of 0.094 mol x m(-3), the O2 influx was reduced by 70.5 and 38.5%, respectively, for V. riparia no variation in the O2 influx was detected down to bulk O2 concentrations of 0.078 mol x m(-3). Moreover, in accordance with the different tolerances of the plants, the Vitis genotypes were found to differ in their radial O2 loss from the adventitious roots when in an O2-free environment. The results are discussed in terms of possible mechanisms of response to anoxia in Vitis species with different tolerances to flooding.

  4. Characterization of the psoRPM1 gene for resistance to root-knot ...

    African Journals Online (AJOL)

    Several root-knot nematode (Meloidogyne spp.) resistance genes have been discovered in different stone fruit crops. However, none of them has yet been cloned and they were only located on the chromosomes. In this study, a candidate root-knot nematode resistance gene (designated as psoRPM1) was isolated from the ...

  5. Allelic variants of OsHKT1;1 underlie the divergence between indica and japonica subspecies of rice (Oryza sativa for root sodium content.

    Directory of Open Access Journals (Sweden)

    Malachy T Campbell

    2017-06-01

    Full Text Available Salinity is a major factor limiting crop productivity. Rice (Oryza sativa, a staple crop for the majority of the world, is highly sensitive to salinity stress. To discover novel sources of genetic variation for salt tolerance-related traits in rice, we screened 390 diverse accessions under 14 days of moderate (9 dS·m-1 salinity. In this study, shoot growth responses to moderate levels of salinity were independent of tissue Na+ content. A significant difference in root Na+ content was observed between the major subpopulations of rice, with indica accessions displaying higher root Na+ and japonica accessions exhibiting lower root Na+ content. The genetic basis of the observed variation in phenotypes was elucidated through genome-wide association (GWA. The strongest associations were identified for root Na+:K+ ratio and root Na+ content in a region spanning ~575 Kb on chromosome 4, named Root Na+ Content 4 (RNC4. Two Na+ transporters, HKT1;1 and HKT1;4 were identified as candidates for RNC4. Reduced expression of both HKT1;1 and HKT1;4 through RNA interference indicated that HKT1;1 regulates shoot and root Na+ content, and is likely the causal gene underlying RNC4. Three non-synonymous mutations within HKT1;1 were present at higher frequency in the indica subpopulation. When expressed in Xenopus oocytes the indica-predominant isoform exhibited higher inward (negative currents and a less negative voltage threshold of inward rectifying current activation compared to the japonica-predominant isoform. The introduction of a 4.5kb fragment containing the HKT1;1 promoter and CDS from an indica variety into a japonica background, resulted in a phenotype similar to the indica subpopulation, with higher root Na+ and Na+:K+. This study provides evidence that HKT1;1 regulates root Na+ content, and underlies the divergence in root Na+ content between the two major subspecies in rice.

  6. Localized Iron Supply Triggers Lateral Root Elongation in Arabidopsis by Altering the AUX1-Mediated Auxin Distribution[C][W][OA

    Science.gov (United States)

    Giehl, Ricardo F.H.; Lima, Joni E.; von Wirén, Nicolaus

    2012-01-01

    Root system architecture depends on nutrient availability, which shapes primary and lateral root development in a nutrient-specific manner. To better understand how nutrient signals are integrated into root developmental programs, we investigated the morphological response of Arabidopsis thaliana roots to iron (Fe). Relative to a homogeneous supply, localized Fe supply in horizontally separated agar plates doubled lateral root length without having a differential effect on lateral root number. In the Fe uptake-defective mutant iron-regulated transporter1 (irt1), lateral root development was severely repressed, but a requirement for IRT1 could be circumvented by Fe application to shoots, indicating that symplastic Fe triggered the local elongation of lateral roots. The Fe-stimulated emergence of lateral root primordia and root cell elongation depended on the rootward auxin stream and was accompanied by a higher activity of the auxin reporter DR5-β-glucuronidase in lateral root apices. A crucial role of the auxin transporter AUXIN RESISTANT1 (AUX1) in Fe-triggered lateral root elongation was indicated by Fe-responsive AUX1 promoter activities in lateral root apices and by the failure of the aux1-T mutant to elongate lateral roots into Fe-enriched agar patches. We conclude that a local symplastic Fe gradient in lateral roots upregulates AUX1 to accumulate auxin in lateral root apices as a prerequisite for lateral root elongation. PMID:22234997

  7. Tonoplast aquaporins facilitate lateral root emergence

    DEFF Research Database (Denmark)

    Reinhardt, Hagen; Hachez, Charles; Bienert, Manuela Désirée

    2016-01-01

    Aquaporins (AQPs) are water channels allowing fast and passive diffusion of water across cell membranes. It was hypothesized that AQPs contribute to cell elongation processes by allowing water influx across the plasma membrane and the tonoplast to maintain adequate turgor pressure. Here, we report...... mutants showed no or minor reduction in growth of the main root. This phenotype was due to the retardation of LRP emergence. Live cell imaging revealed that tight spatiotemporal control of TIP abundance in the tonoplast of the different LRP cells is pivotal to mediating this developmental process. While...... lateral root emergence is correlated to a reduction of AtTIP1;1 and AtTIP1;2 protein levels in LRPs, expression of AtTIP2;1 is specifically needed in a restricted cell population at the base, then later at the flanks, of developing LRPs. Interestingly, the LRP emergence phenotype of the triple tip mutants...

  8. Root Hydraulics and Root Sap Flow in a Panamanian Low-Land Tropical Forest

    Science.gov (United States)

    Bretfeld, M.; Ewers, B. E.; Hall, J. S.; Ogden, F. L.; Beverly, D.; Speckman, H. N.

    2017-12-01

    In the tropics, trees are subjected to increasingly frequent and severe droughts driven by climate change. Given the hydrological benefits associated with tropical forests, such as reduced peak runoff during high precipitation events and increased base flow during drought periods ("sponge-effect"), the underlying plant-hydrological processes at the soil-plant interface have become the focus of recent research efforts. In Panama, the 2015/16 El Niño-Southern Oscillation (ENSO) event ranks amongst the driest and hottest periods on record, thus providing an excellent opportunity to study the effects of drought on tropical forests. Starting in 2015, we instrumented 76 trees with heat-ratio sap flow sensors in regrowing secondary forest (8-, 25-, and 80-year old stands) in the 15 km2 Agua Salud study area, located in central Panama. Of those trees, 16 individuals were instrumented with additional sap flow sensors on three roots each. Data were logged every 30 minutes and soil moisture was measured at 10, 30, 50, and 100 cm depth. Meteorological data were taken from a nearby met-station. Rooting depth and root density were assessed in eight 2×2×2 m soil pits. In April 2017, we measured hydraulic conductance and vulnerability to cavitation of eight species using the centrifuge technique. Trees in 8-year old forest limited transpiration during the drought whereas no such limitation was evident in trees of the 80-year old forest. Root sap flow data show seasonal shifts in water uptake between individual roots of a given tree, with sap flow decreasing in some roots while simultaneously increasing in other roots during the wet-dry season transition. Roots followed a typical log distribution along the profile, with overall root densities of 46, 43, and 52 roots m-2 in the 8-, 25-, and 80-yo stand, respectively. Roots were found up to 200 cm depth in all forests, with roots >5 cm occurring at lower depths (>125 cm) only in 25- and 80-year old forests. Maximum hydraulic

  9. Fourier transforms related to a root system of rank 1.

    NARCIS (Netherlands)

    Groenevelt, W.G.M.

    2007-01-01

    Abstract : We introduce an algebra $\\mathcal H$ consisting of difference-reflection operators and multiplication operators that can be considered as a q = 1 analogue of Sahi's double affine Hecke algebra related to the affine root system of type $(C^\\vee_1, C_1)$ . We study eigenfunctions of a

  10. Anatomic investigation of the lumbosacral nerve roots and dorsal root ganglia by MRI

    International Nuclear Information System (INIS)

    Hasegawa, Toru; Fuse, Kenzo; Mikawa, Yoshihiro; Watanabe, Ryo

    1995-01-01

    The morphology of the lumbosacral nerve roots and dorsal root ganglia (DRG) was examined by using magnetic resonance imaging (MRI) in 11 healthy male volunteers aged 20-40 years. One hundred and twenty-three nerve roots (15 at the L1 level, 22 each at the L2-L5 levels, and 20 at the S1 level) were examined in terms of the position and angle of the bifurcation of the nerve roots, length of the nerve root, and the position and width of DRG. The nerve roots at the lower levels showed more cephalad position and smaller angle of bifurcation on MRI. The distance from the bifurcation of nerve roots to the cephalad edge of DRG was significantly longer in the upper root levels and was significantly shorter in the L5 roots than the S1 roots. The positions of DRG at the S1 level tended to become cephalad. DRG that was positioned toward more caudal direction was larger and more elliptic. MRI provided useful information concerning morphology and anatomical position of nerve roots and DRG, thereby allowing accurate diagnosis and the determination of surgical indications. (N.K.)

  11. Interleukin 1 receptor antagonist (IL1RN) genetic variations condition post-orthodontic external root resorption in endodontically-treated teeth.

    Science.gov (United States)

    Iglesias-Linares, Alejandro; Yañez-Vico, Rosa Ma; Ballesta-Mudarra, Sofía; Ortiz-Ariza, Estefanía; Mendoza-Mendoza, Asunción; Perea-Pérez, Evelio; Moreno-Fernández, Ana Ma; Solano-Reina, Enrique

    2013-06-01

    External apical root resorption (EARR) is a frequent iatrogenic problem following orthodontic treatment in endodontically-treated teeth, about which the literature reports substantial variability in post-orthodontic treatment EARR responses. The main focus of the present study is to clarify whether variants in the interleukin-1 receptor antagonist gene coding for the IL-1ra protein have a positive/negative influence on EARR of endodontically-treated teeth. Ninety-three orthodontic patients were genetically screened for a single nucleotide polymorphism (SNP:rs419598) in the IL1 cluster. The sample was classified into 2 groups: group 1 (affected-group) showed radiographic EARR of more than 2mm; group 2 (control-group), had no EARR or EARR ≤ to 2mm following orthodontic treatment on root-filled teeth. Logistic regression analysis was performed to obtain an adjusted estimate between the SNPs studied and EARR. Genotype distributions, allelic frequencies, adjusted odds ratios (OR) and 95% confidence intervals were also calculated. We found that subjects homozygous [1/1(TT)] for the IL1RN gene [OR:10.85; p=0.001;CI:95%] were at risk of EARR in root-filled teeth. Genetic variants in the antagonist axis balance of the IL1RN (rs419598) have a direct repercussion on the predisposition to post-orthodontic EARR in root-filled teeth. Variants in allele 1 of the interleukin-1 receptor antagonist gene(rs419598) are associated(p=0.001**) with an increased risk of suffering post-orthodontic EARR in root-filled teeth.

  12. GROWTH PROCESS OF ORGANIC VETIVER ROOT WITH POTATO AS INTERCROPPING PLANT

    Directory of Open Access Journals (Sweden)

    Asep Kadarohman

    2012-02-01

    Full Text Available Vetiver oil (Vetiveria zizanoides is one of Indonesia main export commodities. Vetiver root is perennial plant and generally planted with vegetables as intercropping plant. Increasing the selling price of vetiver oil can be done by transferring the production of conventional vetiver oil (non-organic to organic vetiver oil. Demonstration of land used was one hectare, which 2,000 m2 for planting vetiver root with potato (Solanum tuberosum as inter-cropping plant and 8,000 m2 for vetiver root without intercropping, in Sukakarya-Samarang, Garut. The planting used goat and cow dung as manure, distillate water of vetiver oil and liquid bio-pesticide as pesticide. Variables studied included plant height, number of leaf and crotch. In the first quarter of the years, the number of leaf and crotch of vetiver root with intercropping was better than vetiver root without inter-cropping. However, there was not significant difference for plant height of vetiver root, both with and without intercropping. Products of organic potato as intercropping plant of vetiver root were less than those of non-organic potato, but the latter had a better texture and durability.

  13. Micropropagation of Plantago camtschatica Link

    Directory of Open Access Journals (Sweden)

    Emilia Andrzejewska-Golec

    2011-01-01

    Full Text Available The Far East medicinal plant - Plantago camtschatica was propagated in vitro from tips of shoots (obtained in vitro and from different explants of 4-week-old seedlings: seedling tips, hypocotyls, cotyledons, roots, first leaves. To our knowledge there is no information in literature about in vitro culture of this plantain. MS basal medium, supplemented with 0.6 pM IAA in combination with various cytokinins (BA, KIN, ZEA, was used. After 6 weeks of culture, micropropagation rate (MR - mean number of buds and shoots per explant - was calculated. Our study proved that P. camtschatica species was amenable to propagation in vitro from different kinds of explants. However, multiplication by adventitious shoot regeneration from hypocotyl explants was found to be the most suitable method for the propagation of this plant. Adventitious shoots could root without stimulation what allows to omit the stage of rooting. The plants obtained as a result of micropropagation were not phenotypically changed.

  14. Characteristic of root decomposition in a tropical rainforest in Sarawak, Malaysi

    Science.gov (United States)

    Ohashi, Mizue; Makita, Naoki; Katayam, Ayumi; Kume, Tomonori; Matsumoto, Kazuho; Khoon Kho, L.

    2016-04-01

    Woody roots play a significant role in forest carbon cycling, as up to 60 percent of tree photosynthetic production can be allocated to belowground. Root decay is one of the main processes of soil C dynamics and potentially relates to soil C sequestration. However, much less attention has been paid for root litter decomposition compared to the studies of leaf litter because roots are hidden from view. Previous studies have revealed that physico-chemical quality of roots, climate, and soil organisms affect root decomposition significantly. However, patterns and mechanisms of root decomposition are still poorly understood because of the high variability of root properties, field environment and potential decomposers. For example, root size would be a factor controlling decomposition rates, but general understanding of the difference between coarse and fine root decompositions is still lacking. Also, it is known that root decomposition is performed by soil animals, fungi and bacteria, but their relative importance is poorly understood. In this study, therefore, we aimed to characterize the root decomposition in a tropical rainforest in Sarawak, Malaysia, and clarify the impact of soil living organisms and root sizes on root litter decomposition. We buried soil cores with fine and coarse root litter bags in soil in Lambir Hills National Park. Three different types of soil cores that are covered by 1.5 cm plastic mesh, root-impermeable sheet (50um) and fungi-impermeable sheet (1um) were prepared. The soil cores were buried in February 2013 and collected 4 times, 134 days, 226 days, 786 days and 1151 days after the installation. We found that nearly 80 percent of the coarse root litter was decomposed after two years, whereas only 60 percent of the fine root litter was decomposed. Our results also showed significantly different ratio of decomposition between different cores, suggesting the different contribution of soil living organisms to decomposition process.

  15. Cytokinin signaling during root development.

    Science.gov (United States)

    Bishopp, Anthony; Help, Hanna; Helariutta, Ykä

    2009-01-01

    The cytokinin class of phytohormones regulates division and differentiation of plant cells. They are perceived and signaled by a phosphorelay mechanism similar to those observed in prokaryotes. Research into the components of phosphorelay had previously been marred by genetic redundancy. However, recent studies have addressed this with the creation of high-order mutants. In addition, several new elements regulating cytokinin signaling have been identified. This has uncovered many roles in diverse developmental and physiological processes. In this review, we look at these processes specifically in the context of root development. We focus on the formation and maintenance of the root apical meristem, primary and secondary vascular development, lateral root emergence and development, and root nodulation. We believe that the root is an ideal organ with which to investigate cytokinin signaling in a wider context.

  16. In vitro ROOTING OF TENERA HYBRID OIL PALM (Elaeis guineensis Jacq. PLANTS1

    Directory of Open Access Journals (Sweden)

    Marlúcia Souza Souza Pádua

    2018-04-01

    Full Text Available ABSTRACT Oil palm is a woody monocot of economic importance due to high oil production from its fruits. Currently, the conventional method most used to propagate oil palm is seed germination, but success is limited by long time requirements and low germination percentage. An alternative for large-scale propagation of oil palm is the biotechnological technique of somatic embryogenesis. The rooting of plants germinated from somatic embryos is a difficult step, yet it is of great importance for later acclimatization and success in propagation. The aim of this study was to evaluate the effect of the auxins indole acetic acid (IAA and indole butyric acid (IBA on the rooting of somatic embryos of Tenera hybrid oil palm. Plants obtained by somatic embryogenesis were inoculated in modified MS medium with 10% sucrose and 0.6% agar and supplemented with IAA or IBA at concentrations of 5 µM, 10 µM, and 15 µM, and the absence of growth regulators. After 120 days, the presence of roots, root type, length of the longest root, number of roots, number of leaves, and shoot length were analyzed. Growth regulators were favorable to rooting; plants cultivated with IBA growth regulator at 15 µM showed higher rooting percentage (87% and better results for the parameters of number of roots (1.33 and shoot length (9.83.

  17. GLO-Roots: an imaging platform enabling multidimensional characterization of soil-grown root systems

    Science.gov (United States)

    Rellán-Álvarez, Rubén; Lobet, Guillaume; Lindner, Heike; Pradier, Pierre-Luc; Sebastian, Jose; Yee, Muh-Ching; Geng, Yu; Trontin, Charlotte; LaRue, Therese; Schrager-Lavelle, Amanda; Haney, Cara H; Nieu, Rita; Maloof, Julin; Vogel, John P; Dinneny, José R

    2015-01-01

    Root systems develop different root types that individually sense cues from their local environment and integrate this information with systemic signals. This complex multi-dimensional amalgam of inputs enables continuous adjustment of root growth rates, direction, and metabolic activity that define a dynamic physical network. Current methods for analyzing root biology balance physiological relevance with imaging capability. To bridge this divide, we developed an integrated-imaging system called Growth and Luminescence Observatory for Roots (GLO-Roots) that uses luminescence-based reporters to enable studies of root architecture and gene expression patterns in soil-grown, light-shielded roots. We have developed image analysis algorithms that allow the spatial integration of soil properties, gene expression, and root system architecture traits. We propose GLO-Roots as a system that has great utility in presenting environmental stimuli to roots in ways that evoke natural adaptive responses and in providing tools for studying the multi-dimensional nature of such processes. DOI: http://dx.doi.org/10.7554/eLife.07597.001 PMID:26287479

  18. Measurements of water uptake of maize roots: the key function of lateral roots

    Science.gov (United States)

    Ahmed, M. A.; Zarebanadkouki, M.; Kroener, E.; Kaestner, A.; Carminati, A.

    2014-12-01

    Maize (Zea mays L.) is one of the most important crop worldwide. Despite its importance, there is limited information on the function of different root segments and root types of maize in extracting water from soils. Therefore, the aim of this study was to investigate locations of root water uptake in maize. We used neutron radiography to: 1) image the spatial distribution of maize roots in soil and 2) trace the transport of injected deuterated water (D2O) in soil and roots. Maizes were grown in aluminum containers (40×38×1 cm) filled with a sandy soil. When the plants were 16 days old, we injected D2O into selected soil regions containing primary, seminal and lateral roots. The experiments were performed during the day (transpiring plants) and night (not transpiring plants). The transport of D2O into roots was simulated using a new convection-diffusion numerical model of D2O transport into roots. By fitting the observed D2O transport we quantified the diffusional permeability and the water uptake of the different root segments. The maize root architecture consisted of a primary root, 4-5 seminal roots and many lateral roots connected to the primary and seminal roots. Laterals emerged from the proximal 15 cm of the primary and seminal roots. Water uptake occurred primarily in lateral roots. Lateral roots had the highest diffusional permeability (9.4×10-7), which was around six times higher that the diffusional permeability of the old seminal segments (1.4×10-7), and two times higher than the diffusional permeability of the young seminal segments (4.7×10-7). The radial flow of D2O into the lateral (6.7×10-5 ) was much higher than in the young seminal roots (1.1×10-12). The radial flow of D2O into the old seminal was negligible. We concluded that the function of the primary and seminal roots was to collect water from the lateral roots and transport it to the shoot. A maize root system with lateral roots branching from deep primary and seminal roots would be

  19. The effect of altered dosage of a mutant allele of Teosinte branched 1 (tb1-ref) on the root system of modern maize.

    Science.gov (United States)

    Gaudin, Amelie C M; McClymont, Sarah A; Soliman, Sameh S M; Raizada, Manish N

    2014-02-14

    There was ancient human selection on the wild progenitor of modern maize, Balsas teosinte, for decreased shoot branching (tillering), in order to allow more nutrients to be diverted to grain. Mechanistically, the decline in shoot tillering has been associated with selection for increased expression of the major domestication gene Teosinte Branched 1 (Tb1) in shoot primordia. Therefore, TB1 has been defined as a repressor of shoot branching. It is known that plants respond to changes in shoot size by compensatory changes in root growth and architecture. However, it has not been reported whether altered TB1 expression affects any plant traits below ground. Previously, changes in dosage of a well-studied mutant allele of Tb1 in modern maize, called tb1-ref, from one to two copies, was shown to increase tillering. As a result, plants with two copies of the tb1-ref allele have a larger shoot biomass than heterozygotes. Here we used aeroponics to phenotype the effects of tb1-ref copy number on maize roots at macro-, meso- and micro scales of development. An increase in the tb1-ref copy number from one to two copies resulted in: (1) an increase in crown root number due to the cumulative initiation of crown roots from successive tillers; (2) higher density of first and second order lateral roots; and (3) reduced average lateral root length. The resulting increase in root system biomass in homozygous tb1-ref mutants balanced the increase in shoot biomass caused by enhanced tillering. These changes caused homozygous tb1-ref mutants of modern maize to more closely resemble its ancestor Balsas teosinte below ground. We conclude that a decrease in TB1 function in maize results in a larger root system, due to an increase in the number of crown roots and lateral roots. Given that decreased TB1 expression results in a more highly branched and larger shoot, the impact of TB1 below ground may be direct or indirect. We discuss the potential implications of these findings for whole

  20. Assessment of Root Morphological Traits of 16 Tropical and Four Temperate Maize Cultivars for Nitrogen Efficiency in Short-Term Nutrient Solution Experiments with the Cigar Roll and Growth Pouch Methods

    Energy Technology Data Exchange (ETDEWEB)

    Saifu, S.; Schulte auf' m Erley, G.; Horst, W. J. [Institute for Plant Nutrition, Leibniz University of Hannover (Germany)

    2013-11-15

    Genotypic differences in N efficiency of maize have been reported by many authors. One of the reasons responsible for genotypic differences in N efficiency is differences in N uptake efficiency after anthesis. Continuous root growth and N uptake activity are responsible for the high N uptake efficiency of N-efficient genotypes. This study was conducted mainly to identify root parameters which could be used as secondary selection traits for genotypic differences in N efficiency of maize established in field experiments. The specific objective of the first experiment was to establish a relationship between root parameters with genotypic differences in N efficiency in the field, and to identify root traits to be used as secondary selection criteria for N efficiency. Four temperate and 16 tropical genotypes were grown in low-N nutrient solution with a cigar roll and a growth pouch culture for 9 and 10 days, respectively. In the cigar roll experiment individual root fractions (adventitious, seminal and primary root fractions) and in growth pouch experiment root distribution and root branching angle were of primary interest. Genotypic differences were found in most of the root traits, but the differences were not clear cut between N-efficient and inefficient genotypes with few exceptions. The N-efficient genotypes had the highest percentage of root length in the deepest (>20 cm) interval in the growth pouch, which also positively correlated with N uptake after anthesis and grain yield. The N-efficient genotypes also had a high percentage of roots in the root branching angle interval of 60-90{sup o}. It was concluded that the high N uptake efficiency of N-efficient genotypes might be related to a higher percentage of roots growing downwards (high branching angle) and a high percentage of root length in deeper soil layers enabling them to exploit nitrate in the subsoil more efficiently. These two root parameters were found promising to use as selection criteria for N

  1. Studies on the reaction in tissue culture of tomato genotypes under biotic stress

    Directory of Open Access Journals (Sweden)

    Ewa Hanus-Fajerska

    2014-01-01

    Full Text Available Plant regeneration in vitro from virus-infected somatic tomato (Lycopersicon sp. tissue was performed. Regeneration experiments were started after the determination of virus presence, using enzyme-linked immunosorbent assay, in leaves used as a source of explants. Leaf explants infected with selected strains of tomato mosaic Tobamovirus or cucumber mosaic Cucumovirus respectively, were cultured on a standarised MS agar medium to induce adventitious shoots, which were afterwards excised, rooted in vitro and cultured to plants. Explants were also screened for their ability to produce callus. Diverse effects of viral infection, ranging from stimulation to inhibition of callus formation and of morphogenesis rate, were observed. The health condition of the tissue proved to affect regeneration potential of Lycopersicon esculentum, whereas wild accesions did not react in that case so distinctly. In cultivated tomato was encountered the decline in competence to reproduce shoots adventitiously in infected tissue. There was also relationship between donor plant health condition and adventitious root formation in regenerated shoots. Experiments with short-term cultures of L. esculenum reveled also that a certain number of shoots regenerated from diseased tissue can be virus-free.

  2. CLE-CLAVATA1 peptide-receptor signaling module regulates the expansion of plant root systems in a nitrogen-dependent manner.

    Science.gov (United States)

    Araya, Takao; Miyamoto, Mayu; Wibowo, Juliarni; Suzuki, Akinori; Kojima, Soichi; Tsuchiya, Yumiko N; Sawa, Shinichiro; Fukuda, Hiroo; von Wirén, Nicolaus; Takahashi, Hideki

    2014-02-04

    Morphological plasticity of root systems is critically important for plant survival because it allows plants to optimize their capacity to take up water and nutrients from the soil environment. Here we show that a signaling module composed of nitrogen (N)-responsive CLE (CLAVATA3/ESR-related) peptides and the CLAVATA1 (CLV1) leucine-rich repeat receptor-like kinase is expressed in the root vasculature in Arabidopsis thaliana and plays a crucial role in regulating the expansion of the root system under N-deficient conditions. CLE1, -3, -4, and -7 were induced by N deficiency in roots, predominantly expressed in root pericycle cells, and their overexpression repressed the growth of lateral root primordia and their emergence from the primary root. In contrast, clv1 mutants showed progressive outgrowth of lateral root primordia into lateral roots under N-deficient conditions. The clv1 phenotype was reverted by introducing a CLV1 promoter-driven CLV1:GFP construct producing CLV1:GFP fusion proteins in phloem companion cells of roots. The overaccumulation of CLE2, -3, -4, and -7 in clv1 mutants suggested the amplitude of the CLE peptide signals being feedback-regulated by CLV1. When CLE3 was overexpressed under its own promoter in wild-type plants, the length of lateral roots was negatively correlated with increasing CLE3 mRNA levels; however, this inhibitory action of CLE3 was abrogated in the clv1 mutant background. Our findings identify the N-responsive CLE-CLV1 signaling module as an essential mechanism restrictively controlling the expansion of the lateral root system in N-deficient environments.

  3. Root Transcriptomic Analysis Revealing the Importance of Energy Metabolism to the Development of Deep Roots in Rice (Oryza sativa L.

    Directory of Open Access Journals (Sweden)

    Qiaojun Lou

    2017-07-01

    Full Text Available Drought is the most serious abiotic stress limiting rice production, and deep root is the key contributor to drought avoidance. However, the genetic mechanism regulating the development of deep roots is largely unknown. In this study, the transcriptomes of 74 root samples from 37 rice varieties, representing the extreme genotypes of shallow or deep rooting, were surveyed by RNA-seq. The 13,242 differentially expressed genes (DEGs between deep rooting and shallow rooting varieties (H vs. L were enriched in the pathway of genetic information processing and metabolism, while the 1,052 DEGs between the deep roots and shallow roots from each of the plants (D vs. S were significantly enriched in metabolic pathways especially energy metabolism. Ten quantitative trait transcripts (QTTs were identified and some were involved in energy metabolism. Forty-nine candidate DEGs were confirmed by qRT-PCR and microarray. Through weighted gene co-expression network analysis (WGCNA, we found 18 hub genes. Surprisingly, all these hub genes expressed higher in deep roots than in shallow roots, furthermore half of them functioned in energy metabolism. We also estimated that the ATP production in the deep roots was faster than shallow roots. Our results provided a lot of reliable candidate genes to improve deep rooting, and firstly highlight the importance of energy metabolism to the development of deep roots.

  4. Root Transcriptomic Analysis Revealing the Importance of Energy Metabolism to the Development of Deep Roots in Rice (Oryza sativa L.).

    Science.gov (United States)

    Lou, Qiaojun; Chen, Liang; Mei, Hanwei; Xu, Kai; Wei, Haibin; Feng, Fangjun; Li, Tiemei; Pang, Xiaomeng; Shi, Caiping; Luo, Lijun; Zhong, Yang

    2017-01-01

    Drought is the most serious abiotic stress limiting rice production, and deep root is the key contributor to drought avoidance. However, the genetic mechanism regulating the development of deep roots is largely unknown. In this study, the transcriptomes of 74 root samples from 37 rice varieties, representing the extreme genotypes of shallow or deep rooting, were surveyed by RNA-seq. The 13,242 differentially expressed genes (DEGs) between deep rooting and shallow rooting varieties (H vs. L) were enriched in the pathway of genetic information processing and metabolism, while the 1,052 DEGs between the deep roots and shallow roots from each of the plants (D vs. S) were significantly enriched in metabolic pathways especially energy metabolism. Ten quantitative trait transcripts (QTTs) were identified and some were involved in energy metabolism. Forty-nine candidate DEGs were confirmed by qRT-PCR and microarray. Through weighted gene co-expression network analysis (WGCNA), we found 18 hub genes. Surprisingly, all these hub genes expressed higher in deep roots than in shallow roots, furthermore half of them functioned in energy metabolism. We also estimated that the ATP production in the deep roots was faster than shallow roots. Our results provided a lot of reliable candidate genes to improve deep rooting, and firstly highlight the importance of energy metabolism to the development of deep roots.

  5. Potential involvement of drought-induced Ran GTPase CLRan1 in root growth enhancement in a xerophyte wild watermelon.

    Science.gov (United States)

    Akashi, Kinya; Yoshimura, Kazuya; Kajikawa, Masataka; Hanada, Kouhei; Kosaka, Rina; Kato, Atsushi; Katoh, Akira; Nanasato, Yoshihiko; Tsujimoto, Hisashi; Yokota, Akiho

    2016-10-01

    Enhanced root growth is known as the survival strategy of plants under drought. Previous proteome analysis in drought-resistant wild watermelon has shown that Ran GTPase, an essential regulator of cell division and proliferation, was induced in the roots under drought. In this study, two cDNAs were isolated from wild watermelon, CLRan1 and CLRan2, which showed a high degree of structural similarity with those of other plant Ran GTPases. Quantitative RT-PCR and promoter-GUS assays suggested that CLRan1 was expressed mainly in the root apex and lateral root primordia, whereas CLRan2 was more broadly expressed in other part of the roots. Immunoblotting analysis confirmed that the abundance of CLRan proteins was elevated in the root apex region under drought stress. Transgenic Arabidopsis overexpressing CLRan1 showed enhanced primary root growth, and the growth was maintained under osmotic stress, indicating that CLRan1 functions as a positive factor for maintaining root growth under stress conditions.

  6. Chromatic roots and hamiltonian paths

    DEFF Research Database (Denmark)

    Thomassen, Carsten

    2000-01-01

    We present a new connection between colorings and hamiltonian paths: If the chromatic polynomial of a graph has a noninteger root less than or equal to t(n) = 2/3 + 1/3 (3)root (26 + 6 root (33)) + 1/3 (3)root (26 - 6 root (33)) = 1.29559.... then the graph has no hamiltonian path. This result...

  7. Giving pandas ROOT to chew on: experiences with the XENON1T Dark Matter experiment

    Science.gov (United States)

    Remenska, D.; Tunnell, C.; Aalbers, J.; Verhoeven, S.; Maassen, J.; Templon, J.

    2017-10-01

    In preparation for the XENON1T Dark Matter data acquisition, we have prototyped and implemented a new computing model. The XENON signal and data processing software is developed fully in Python 3, and makes extensive use of generic scientific data analysis libraries, such as the SciPy stack. A certain tension between modern “Big Data” solutions and existing HEP frameworks is typically experienced in smaller particle physics experiments. ROOT is still the “standard” data format in our field, defined by large experiments (ATLAS, CMS). To ease the transition, our computing model caters to both analysis paradigms, leaving the choice of using ROOT-specific C++ libraries, or alternatively, Python and its data analytics tools, as a front-end choice of developing physics algorithms. We present our path on harmonizing these two ecosystems, which allowed us to use off-the-shelf software libraries (e.g., NumPy, SciPy, scikit-learn, matplotlib) and lower the cost of development and maintenance. To analyse the data, our software allows researchers to easily create “mini-trees” small, tabular ROOT structures for Python analysis, which can be read directly into pandas DataFrame structures. One of our goals was making ROOT available as a cross-platform binary for an easy installation from the Anaconda Cloud (without going through the “dependency hell”). In addition to helping us discover dark matter interactions, lowering this barrier helps shift the particle physics toward non-domain-specific code.

  8. Root systems and soil microbial biomass under no-tillage system

    Directory of Open Access Journals (Sweden)

    Venzke Filho Solismar de Paiva

    2004-01-01

    Full Text Available Some root parameters such as distribution, length, diameter and dry matter are inherent to plant species. Roots can influence microbial population during vegetative cycle through the rhizodeposits and, after senescence, integrating the soil organic matter pool. Since they represent labile substrates, especially regarding nitrogen, they can determine the rate of nutrient availability to the next crop cultivated under no-tillage (NT. The root systems of two crop species: maize (Zea mays L. cultivar Cargill 909 and soybean [Glycine max (L. Merr.] cultivar Embrapa 59, were compared in the field, and their influence on spatial distribution of the microbial C and N in a clayey-textured Typic Hapludox cultivated for 22 years under NT, at Tibagi, State of Paraná (PR, Brazil, was determined. Digital image processing and nail-plate techniques were used to evaluate 40 plots of a 80 ´ 50 ´ 3 cm soil profile. It was observed that 36% and 30% of the maize and soybeans roots, respectively, are concentrated in the 0 to 10 cm soil layer. The percent distribution of root dry matter was similar for both crops. The maize roots presented a total of 1,324 kg C ha-1 and 58 kg N ha-1, with higher root dry matter density and more roots in decomposition in the upper soil layer, decreasing with depth. The soybean roots (392 kg C ha-1 and 21 kg N ha-1 showed higher number of thinner roots and higher density per length unity compared to the maize. The maize roots enhanced microbial-C down to deeper soil layers than did the soybean roots. The microbial N presented a better correlation with the concentration of thin active roots and with roots in decomposition or in indefinite shape, possibly because of higher concentration of C and N easily assimilated by soil microorganisms.

  9. The Aux/IAA gene rum1 involved in seminal and lateral root formation controls vascular patterning in maize (Zea mays L.) primary roots.

    Science.gov (United States)

    Zhang, Yanxiang; Paschold, Anja; Marcon, Caroline; Liu, Sanzhen; Tai, Huanhuan; Nestler, Josefine; Yeh, Cheng-Ting; Opitz, Nina; Lanz, Christa; Schnable, Patrick S; Hochholdinger, Frank

    2014-09-01

    The maize (Zea mays L.) Aux/IAA protein RUM1 (ROOTLESS WITH UNDETECTABLE MERISTEMS 1) controls seminal and lateral root initiation. To identify RUM1-dependent gene expression patterns, RNA-Seq of the differentiation zone of primary roots of rum1 mutants and the wild type was performed in four biological replicates. In total, 2 801 high-confidence maize genes displayed differential gene expression with Fc ≥2 and FDR ≤1%. The auxin signalling-related genes rum1, like-auxin1 (lax1), lax2, (nam ataf cuc 1 nac1), the plethora genes plt1 (plethora 1), bbm1 (baby boom 1), and hscf1 (heat shock complementing factor 1) and the auxin response factors arf8 and arf37 were down-regulated in the mutant rum1. All of these genes except nac1 were auxin-inducible. The maize arf8 and arf37 genes are orthologues of Arabidopsis MP/ARF5 (MONOPTEROS/ARF5), which controls the differentiation of vascular cells. Histological analyses of mutant rum1 roots revealed defects in xylem organization and the differentiation of pith cells around the xylem. Moreover, histochemical staining of enlarged pith cells surrounding late metaxylem elements demonstrated that their thickened cell walls displayed excessive lignin deposition. In line with this phenotype, rum1-dependent mis-expression of several lignin biosynthesis genes was observed. In summary, RNA-Seq of RUM1-dependent gene expression in maize primary roots, in combination with histological and histochemical analyses, revealed the specific regulation of auxin signal transduction components by RUM1 and novel functions of RUM1 in vascular development. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  10. Rooting depth and root depth distribution of Trifolium repens × T. uniflorum interspecific hybrids.

    Science.gov (United States)

    Nichols, S N; Hofmann, R W; Williams, W M; van Koten, C

    2016-05-20

    Traits related to root depth distribution were examined in Trifolium repens × T. uniflorum backcross 1 (BC 1 ) hybrids to determine whether root characteristics of white clover could be improved by interspecific hybridization. Two white clover cultivars, two T. uniflorum accessions and two BC 1 populations were grown in 1 -m deep tubes of sand culture. Maximum rooting depth and root mass distribution were measured at four harvests over time, and root distribution data were fitted with a regression model to provide measures of root system shape. Morphological traits were measured at two depths at harvest 3. Root system shape of the hybrids was more similar to T. uniflorum than to white clover. The hybrids and T. uniflorum had a higher rate of decrease in root mass with depth than white clover, which would result in higher proportions of root mass in the upper profile. Percentage total root mass at 100-200 mm depth was higher for T. uniflorum than white clover, and for Crusader BC 1 than 'Crusader'. Roots of the hybrids and T. uniflorum also penetrated deeper than those of white clover. T. uniflorum had thicker roots at 50-100 mm deep than the other entries, and more of its fine root mass at 400-500 mm. The hybrids and white clover had more of their fine root mass higher in the profile. Consequently, T. uniflorum had a higher root length density at 400-500 mm than most entries, and a smaller decrease in root length density with depth. These results demonstrate that rooting characteristics of white clover can be altered by hybridization with T. uniflorum, potentially improving water and nutrient acquisition and drought resistance. Root traits of T. uniflorum are likely to be adaptations to soil moisture and fertility in its natural environment. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Adventitious staminate flower formation in gibberellin treated gynoecious cucumber plants

    International Nuclear Information System (INIS)

    Fuchs, E.; Atsmon, D.; Halevy, A.H.

    1977-01-01

    Single gibberellin (A sub(4 + 7)) treatments induced the appearance of staminate floral buds in several consecutive nodes on the main stem of genetically female cucumber (Cucumis sativus L.). The staminate buds appeared next to pistillate buds which showed various degrees of degeneration. Similarly, repeated GA treatments induced the appearance of staminate flowers in otherwise strictly hermaphrodite plants, next to bisexual flowers. However, the bisexual buds, unlike the pistillate ones, did not show any deleterious effects of the GA treatment. Therefore, it is inferred that the hormonally induced staminate buds did not develop by sexual reversion of would-be pistillate or bisexual buds, but rather, represent adventitious buds which, in normally grown female or hermaphrodite plants, never develop. It thus seems that predetermined pistillate or bisexual buds do not change into staminate ones, while change in the reverse direction has been demonstrated in the past (at least for the gynoecious ones). The effectiveness of the GA treatment in the gynoecious plants showed an acropetal gradient both within the affected region, as well as along the main stem. Autoradiographic histological examinations showed that the course of development of the induced staminate floral bud did not differ from that of normally developing buds. (auth.)

  12. Cadmium translocation by contractile roots differs from that in regular, non-contractile roots.

    Science.gov (United States)

    Lux, Alexander; Lackovič, Andrej; Van Staden, Johannes; Lišková, Desana; Kohanová, Jana; Martinka, Michal

    2015-06-01

    Contractile roots are known and studied mainly in connection with the process of shrinkage of their basal parts, which acts to pull the shoot of the plant deeper into the ground. Previous studies have shown that the specific structure of these roots results in more intensive water uptake at the base, which is in contrast to regular root types. The purpose of this study was to find out whether the basal parts of contractile roots are also more active in translocation of cadmium to the shoot. Plants of the South African ornamental species Tritonia gladiolaris were cultivated in vitro for 2 months, at which point they possessed well-developed contractile roots. They were then transferred to Petri dishes with horizontally separated compartments of agar containing 50 µmol Cd(NO3)2 in the region of the root base or the root apex. Seedlings of 4-d-old maize (Zea mays) plants, which do not possess contractile roots, were also transferred to similar Petri dishes. The concentrations of Cd in the leaves of the plants were compared after 10 d of cultivation. Anatomical analyses of Tritonia roots were performed using appropriately stained freehand cross-sections. The process of contraction required specific anatomical adaptation of the root base in Tritonia, with less lignified and less suberized tissues in comparison with the subapical part of the root. These unusual developmental characteristics were accompanied by more intensive translocation of Cd ions from the basal part of contractile roots to the leaves than from the apical-subapical root parts. The opposite effects were seen in the non-contractile roots of maize, with higher uptake and transport by the apical parts of the root and lower uptake and transport by the basal part. The specific characteristics of contractile roots may have a significant impact on the uptake of ions, including toxic metals from the soil surface layers. This may be important for plant nutrition, for example in the uptake of nutrients from

  13. The Arabidopsis LAZY1 Family Plays a Key Role in Gravity Signaling within Statocytes and in Branch Angle Control of Roots and Shoots.

    Science.gov (United States)

    Taniguchi, Masatoshi; Furutani, Masahiko; Nishimura, Takeshi; Nakamura, Moritaka; Fushita, Toyohito; Iijima, Kohta; Baba, Kenichiro; Tanaka, Hirokazu; Toyota, Masatsugu; Tasaka, Masao; Morita, Miyo Terao

    2017-08-01

    During gravitropism, the directional signal of gravity is perceived by gravity-sensing cells called statocytes, leading to asymmetric distribution of auxin in the responding organs. To identify the genes involved in gravity signaling in statocytes, we performed transcriptome analyses of statocyte-deficient Arabidopsis thaliana mutants and found two candidates from the LAZY1 family, AtLAZY1 / LAZY1-LIKE1 ( LZY1 ) and AtDRO3 / AtNGR1 / LZY2 We showed that LZY1 , LZY2 , and a paralog AtDRO1/AtNGR2/LZY3 are redundantly involved in gravitropism of the inflorescence stem, hypocotyl, and root. Mutations of LZY genes affected early processes in gravity signal transduction without affecting amyloplast sedimentation. Statocyte-specific expression of LZY genes rescued the mutant phenotype, suggesting that LZY genes mediate gravity signaling in statocytes downstream of amyloplast displacement, leading to the generation of asymmetric auxin distribution in gravity-responding organs. We also found that lzy mutations reversed the growth angle of lateral branches and roots. Moreover, expression of the conserved C-terminal region of LZY proteins also reversed the growth direction of primary roots in the lzy mutant background. In lateral root tips of lzy multiple mutants, asymmetric distribution of PIN3 and auxin response were reversed, suggesting that LZY genes regulate the direction of polar auxin transport in response to gravity through the control of asymmetric PIN3 expression in the root cap columella. © 2017 American Society of Plant Biologists. All rights reserved.

  14. Weeds that can do both tricks: vegetative versus generative regeneration of short-lived root-sprouting herbs Rorippa palustris and Barbarea vulgaris

    Czech Academy of Sciences Publication Activity Database

    Klimešová, Jitka; Kociánová, Alena; Martínková, Jana

    2008-01-01

    Roč. 48, č. 2 (2008), s. 131-135 ISSN 0043-1737 R&D Projects: GA ČR GD206/03/H034 Institutional research plan: CEZ:AV0Z60050516 Keywords : Adventitious sprouting * disturbance * Brassicaceae Subject RIV: EF - Botanics Impact factor: 1.793, year: 2008

  15. [Induction of hairy roots of Panax ginseng and studies on suitable culture condition of ginseng hairy roots].

    Science.gov (United States)

    Zhao, Shou-Jing; Li, Chang-Yu; Qian, Yan-Chun; Luo, Xiao-Pei; Zhang, Xin; Wang, Xue-Song; Kang, Bo-Yu

    2004-03-01

    Rd in hairy root clone R9923 was determined by the HPLC. The total ginsenosides content in the hairy toot clone R9923 came up to 15.2 mg/g. The suitable culture conditions for ginseng hairy roots growing were 1/2 MS liquid medium (30 g/L glucose), in a shaker at 110 r/min, changing the culture solution at 2 weeks and subculture time 4 weeks. In the liquid fermented culture of 2L medium, the yield of the hairy roots could amount to 270.10 g in 4 weeks. The industrial production of ginsenosides has been preliminarily realized. Effect factors on biomass and ginsenosides content such as culture volume, inoculation, in steps cultural technology at the scale-up process of hairy roots culture were also explorated. Our results have laid a foundation for defining optimum culture manner for large-scale cultivation and large-scale production of ginsenosides.

  16. Promotion of adventitious root formation of difficult-to-root hardwood tree species

    Science.gov (United States)

    Paula M. Pijut; Keith E. Woeste; Charles H. Michler

    2011-01-01

    North American hardwood tree species, such as alder (Alnus spp.), ash (Fraxinus spp.), basswood (Tilia spp.), beech (Fagus spp.), birch (Betula spp.), black cherry (Prunus seratina), black walnut (Juglans nigra), black willow (...

  17. Genetic interaction of two abscisic acid signaling regulators, HY5 and FIERY1, in mediating lateral root formation

    KAUST Repository

    Chen, Hao

    2011-01-01

    Root architecture is continuously shaped in a manner that helps plants to better adapt to the environment. Gene regulation at the transcriptional or post-transcriptional levels largely controls this environmental response. Recently, RNA silencing has emerged as an important player in gene regulation and is involved in many aspects of plant development, including lateral root formation. In a recent study, we found that FIERY1, a bifunctional abiotic stress and abscisic acid (ABA) signaling regulator and an endogenous RNA silencing suppressor, mediates auxin response during lateral root formation in Arabidopsis. We proposed that FRY1 regulates lateral root development through its activity on adenosine 3,5-bisphosphate (PAP), a strong inhibitor of exoribonucleases (XRNs). Interestingly, some of the phenotypes of fry1, such as enhanced response to light in repressing hypocotyl elongation and hypersensitivity to ABA in lateral root growth, are opposite to those of another light- and ABA-signaling mutant, hy5. Here we analyzed the hy5 fry1 double mutant for root and hypocotyl growth. We found that the hy5 mutation can suppress the enhanced light sensitivity in fry1 hypocotyl elongation and restore the lateral root formation. The genetic interaction between HY5 and FRY1 indicates that HY5 and FRY1 may act in overlapping pathways that mediate light signaling and lateral root development. © 2011 Landes Bioscience.

  18. High Levels of Hemoglobin Promote Carotid Adventitial Vasa Vasorum Neoangiogenesis in Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Maria Vittoria Arcidiacono

    2017-01-01

    Full Text Available Chronic kidney disease (CKD patients, characterized by traditional and nontraditional risk factors, are prone to develop atheromatosis and thus cardiovascular events and mortality. The angiogenesis of the adventitial vasa vasorum (aVV surrounding the carotid has been described as the atheromatosis initiator. Therefore, the aim of the study was to (1 evaluate if the carotid aVV in CKD patients increases in comparison to its physiological value of healthy patients; (2 explore which traditional or nontraditional risk factor including inflammation, bone and mineral metabolism, and anemia could be related to the aVV angiogenesis. CKD patients without previous cardiovascular events (44, stages 3-4; 37, stage 5D and 65 healthy subjects were compared. The carotid aVV and the intima-media thickness (cIMT were evaluated by ultrasound. CKD patients at stages 3-4 showed higher aVV of the right carotid artery even after adjusting for age. Importantly, a multiple linear regression model showed hemoglobin levels > 12.5 g/dL as the factor for an estimated higher aVV of the right carotid artery. In conclusion, the association of hemoglobin with higher aVV could suggest the role of high hemoglobin in the higher incidence of adverse cardiovascular outcomes in CKD patients.

  19. IAA transport in corn roots includes the root cap

    International Nuclear Information System (INIS)

    Hasenstein, K.H.

    1989-01-01

    In earlier reports we concluded that auxin is the growth regulator that controls gravicurvature in roots and that the redistribution of auxin occurs within the root cap. Since other reports did not detect auxin in the root cap, we attempted to confirm the IAA does move through the cap. Agar blocks containing 3 H-IAA were applied to the cut surface of 5 mm long apical segments of primary roots of corn (mo17xB73). After 30 to 120 min radioactivity (RA) of the cap and root tissue was determined. While segments suspended in water-saturated air accumulated very little RA in the cap, application of 0.5 μ1 of dist. water to the cap (=controls) increased RA of the cap dramatically. Application to the cap of 0.5 μ1 of sorbitol or the Ca 2+ chelator EGTA reduced cap RA to 46% and 70% respectively compared to water, without affecting uptake. Control root segments gravireacted faster than non-treated or osmoticum or EGTA treated segments. The data indicate that both the degree of hydration and calcium control the amount of auxin moving through the cap

  20. Brassinosteroid signaling-dependent root responses to prolonged elevated ambient temperature.

    Science.gov (United States)

    Martins, Sara; Montiel-Jorda, Alvaro; Cayrel, Anne; Huguet, Stéphanie; Roux, Christine Paysant-Le; Ljung, Karin; Vert, Grégory

    2017-08-21

    Due to their sessile nature, plants have to cope with and adjust to their fluctuating environment. Temperature elevation stimulates the growth of Arabidopsis aerial parts. This process is mediated by increased biosynthesis of the growth-promoting hormone auxin. How plant roots respond to elevated ambient temperature is however still elusive. Here we present strong evidence that temperature elevation impinges on brassinosteroid hormone signaling to alter root growth. We show that elevated temperature leads to increased root elongation, independently of auxin or factors known to drive temperature-mediated shoot growth. We further demonstrate that brassinosteroid signaling regulates root responses to elevated ambient temperature. Increased growth temperature specifically impacts on the level of the brassinosteroid receptor BRI1 to downregulate brassinosteroid signaling and mediate root elongation. Our results establish that BRI1 integrates temperature and brassinosteroid signaling to regulate root growth upon long-term changes in environmental conditions associated with global warming.Moderate heat stimulates the growth of Arabidopsis shoots in an auxin-dependent manner. Here, Martins et al. show that elevated ambient temperature modifies root growth by reducing the BRI1 brassinosteroid-receptor protein level and downregulating brassinosteroid signaling.

  1. Effects of rare earth oxide nanoparticles on root elongation of plants.

    Science.gov (United States)

    Ma, Yuhui; Kuang, Linglin; He, Xiao; Bai, Wei; Ding, Yayun; Zhang, Zhiyong; Zhao, Yuliang; Chai, Zhifang

    2010-01-01

    The phytotoxicity of four rare earth oxide nanoparticles, nano-CeO(2), nano-La(2)O(3), nano-Gd(2)O(3) and nano-Yb(2)O(3) on seven higher plant species (radish, rape, tomato, lettuce, wheat, cabbage, and cucumber) were investigated in the present study by means of root elongation experiments. Their effects on root growth varied greatly between different nanoparticles and plant species. A suspension of 2000 mg L(-1) nano-CeO(2) had no effect on the root elongation of six plants, except lettuce. On the contrary, 2000 mg L(-1) suspensions of nano-La(2)O(3), nano-Gd(2)O(3) and nano-Yb(2)O(3) severely inhibited the root elongation of all the seven species. Inhibitory effects of nano-La(2)O(3), nano-Gd(2)O(3), and nano-Yb(2)O(3) also differed in the different growth process of plants. For wheat, the inhibition mainly took place during the seed incubation process, while lettuce and rape were inhibited on both seed soaking and incubation process. The fifty percent inhibitory concentrations (IC(50)) for rape were about 40 mg L(-1) of nano-La(2)O(3), 20mg L(-1) of nano-Gd(2)O(3), and 70 mg L(-1) of nano-Yb(2)O(3), respectively. In the concentration ranges used in this study, the RE(3+) ion released from the nanoparticles had negligible effects on the root elongation. These results are helpful in understanding phytotoxicity of rare earth oxide nanoparticles. Copyright 2009 Elsevier Ltd. All rights reserved.

  2. Mutation of the Arabidopsis NRT1.5 nitrate transporter causes defective root-to-shoot nitrate transport.

    Science.gov (United States)

    Lin, Shan-Hua; Kuo, Hui-Fen; Canivenc, Geneviève; Lin, Choun-Sea; Lepetit, Marc; Hsu, Po-Kai; Tillard, Pascal; Lin, Huey-Ling; Wang, Ya-Yun; Tsai, Chyn-Bey; Gojon, Alain; Tsay, Yi-Fang

    2008-09-01

    Little is known about the molecular and regulatory mechanisms of long-distance nitrate transport in higher plants. NRT1.5 is one of the 53 Arabidopsis thaliana nitrate transporter NRT1 (Peptide Transporter PTR) genes, of which two members, NRT1.1 (CHL1 for Chlorate resistant 1) and NRT1.2, have been shown to be involved in nitrate uptake. Functional analysis of cRNA-injected Xenopus laevis oocytes showed that NRT1.5 is a low-affinity, pH-dependent bidirectional nitrate transporter. Subcellular localization in plant protoplasts and in planta promoter-beta-glucuronidase analysis, as well as in situ hybridization, showed that NRT1.5 is located in the plasma membrane and is expressed in root pericycle cells close to the xylem. Knockdown or knockout mutations of NRT1.5 reduced the amount of nitrate transported from the root to the shoot, suggesting that NRT1.5 participates in root xylem loading of nitrate. However, root-to-shoot nitrate transport was not completely eliminated in the NRT1.5 knockout mutant, and reduction of NRT1.5 in the nrt1.1 background did not affect root-to-shoot nitrate transport. These data suggest that, in addition to that involving NRT1.5, another mechanism is responsible for xylem loading of nitrate. Further analyses of the nrt1.5 mutants revealed a regulatory loop between nitrate and potassium at the xylem transport step.

  3. Simulating root carbon storage with a coupled carbon — Water cycle root model

    Science.gov (United States)

    Kleidon, A.; Heimann, M.

    1996-12-01

    Is it possible to estimate carbon allocation to fine roots from the water demands of the vegetation? We assess this question by applying a root model which is based on optimisation principles. The model uses a new formulation of water uptake by fine roots, which is necessary to explicitly take into account the highly dynamic and non-steady process of water uptake. Its carbon dynamics are driven by maximising the water uptake while keeping maintenance costs at a minimum. We apply the model to a site in northern Germany and check averaged vertical fine root biomass distribution against measured data. The model reproduces the observed values fairly well and the approach seems promising. However, more validation is necessary, especially on the predicted dynamics of the root biomass.

  4. New phytotoxic diterpenoids from Vellozia gigantea (Velloziaceae), an endemic neotropical plant living in the endangered Brazilian biome Rupestrian grasslands

    Science.gov (United States)

    Vellozia gigantea is a rare, ancient and endemic neotropical plant present in the Brazilian Rupestrian grasslands. The dichloromethane extract of V. gigantea adventitious roots was phytotoxic against Lactuca sativa, Agrostis stolonifera and Lemna paucicostata, and showed larvicidal activity against ...

  5. Influence of the type of packaging on textural properties of minimally processed yellow Peruvian roots

    Directory of Open Access Journals (Sweden)

    Lara Santana Fernandes

    2016-06-01

    Full Text Available ABSTRACT The textural properties of minimally processed products indicate its quality, and the package is fundamental to maintain the conservation of these foods. The aim of this study was to evaluate texture alterations that occur during the storage period of minimally processed yellow Peruvian roots, using texture profile analysis (TPA and relaxation, in function of four types of plastic packaging, combined to refrigeration. The roots were selected, sanitized, peeled and sliced. The processing continued with final sanitization, rinsing and immersion in ascorbic and citric acid solution. The slices were centrifuged and packed in expanded polystyrene trays covered with PVC film, and in high-density polyethylene bags (HDPE, polypropylene bags (PP and multilayer polyolefin bags for vacuum, and stored at 5 ± 2 ºC and 90 ± 5% relative humidity during 12 days. For the TPA, the parameters of interest were hardness and adhesiveness, automatically calculated from the force curves (F x time (s. For modeling the relaxation process, the generalized Maxwell model was used. The slices packed in PP and vacuum showed higher hardness and normalized force in the balance (0.7502 and 0.7580, respectively, indicating that they were more elastic, better preserving the quality during storage than slices packed in other packaging.

  6. RootAnalyzer: A Cross-Section Image Analysis Tool for Automated Characterization of Root Cells and Tissues.

    Directory of Open Access Journals (Sweden)

    Joshua Chopin

    Full Text Available The morphology of plant root anatomical features is a key factor in effective water and nutrient uptake. Existing techniques for phenotyping root anatomical traits are often based on manual or semi-automatic segmentation and annotation of microscopic images of root cross sections. In this article, we propose a fully automated tool, hereinafter referred to as RootAnalyzer, for efficiently extracting and analyzing anatomical traits from root-cross section images. Using a range of image processing techniques such as local thresholding and nearest neighbor identification, RootAnalyzer segments the plant root from the image's background, classifies and characterizes the cortex, stele, endodermis and epidermis, and subsequently produces statistics about the morphological properties of the root cells and tissues. We use RootAnalyzer to analyze 15 images of wheat plants and one maize plant image and evaluate its performance against manually-obtained ground truth data. The comparison shows that RootAnalyzer can fully characterize most root tissue regions with over 90% accuracy.

  7. Influence of Cultivar and UGmax on Antioxidative Properties of Carrot Roots (Daucus Carota L. and their Stability During Freezing Process

    Directory of Open Access Journals (Sweden)

    Keutgen Anna J.

    2014-12-01

    Full Text Available In the present experiment, the significance of cultivar (convention-al and coloured and of the application of the soil fertility enhancer UGmax on health-promoting properties of carrot roots subjected to the freezing process of carrot cubes after water blanching was investigated. The selection of cultivar turned out to be highly signif-icant with respect to the development of health-promoting properties of carrot roots. The highest antioxidant properties were found in the purple cultivar ‘Deep Purple’. Its mean antioxidant capacity accounted for 5.31 mmol Fe+2 · kg–1 f.m. Essential for health-promoting properties were the contents of anthocyanins (R2 = 0.83, chlorogenic acid (R2 = 0.81 and total polyphenolics (R2 = 0.71. The application of the biological agent UGmax improved the qual-ity of carrot significantly, increasing the content of total carotenoids and reducing the losses of ascorbic acid during processing. The freezing process negatively influenced the antioxidative properties of carrot irrespective of cultivar and applied agro-technique (use of UGmax, especially in the case of water-soluble antioxidants such as anthocyanins and ascorbic acid.

  8. External root resorption: Different etiologies explained from the composition of the human root-close periodontal membrane

    Directory of Open Access Journals (Sweden)

    Inger Kjaer

    2013-01-01

    Full Text Available Introduction: This paper summarizes different conditions, which have a well-known influence on the resorption of tooth roots. It also highlights factors important for individual susceptibility to root resorption. Furthermore, the paper focuses on idiopathic root resorption where the provoking factor is not known. The Hypothesis: The several different disturbances causing root resorption can be either orthodontically provoked or acquired by trauma, virus or congenital diseases. It is presumed that all these conditions lead to inflammatory processes in the three main tissue layers, comprising the peri-root sheet. Evaluation of the Hypothesis: This paper explains how different etiologies behind root resorption and how different phenotypic traits in root resorption can be understood from immunohistochemical studies of the human periodontal membrane close to the root and thus, gain a new understanding of the phenomenon of root resorption.

  9. The density and length of root hairs are enhanced in response to cadmium and arsenic by modulating gene expressions involved in fate determination and morphogenesis of root hairs in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Ramin Bahmani

    2016-11-01

    Full Text Available Root hairs are tubular outgrowths that originate from epidermal cells. Exposure of Arabidopsis to cadmium (Cd and arsenic [arsenite, As(III] increases root hair density and length. To examine the underlying mechanism, we measured the expression of genes involved in fate determination and morphogenesis of root hairs. Cd and As(III downregulated TTG1 and GL2 (negative regulators of fate determination and upregulated GEM (positive regulator, suggesting that root hair fate determination is stimulated by Cd and As(III. Cd and As(III increased the transcript levels of genes involved in root hair initiation (RHD6 and AXR2 and root hair elongation (AUX1, AXR1, ETR1, and EIN2 except CTR1. DR5::GUS transgenic Arabidopsis showed a higher DR5 expression in the root tip, suggesting that Cd and As(III increased the auxin content in the root tip. Knockdown of TTG1 in Arabidopsis resulted in increased root hair density and decreased root hair length compared with the control (Col-0 on 1/2 MS media. This phenotype may be attributed to the downregulation of GL2 and CTR1 and upregulation of RHD6. By contrast, gem mutant plants displayed a decrease in root hair density and length with reduced expression of RHD6, AXR2, AUX1, AXR1, ETR1, CTR1, and EIN2. Taken together, our results indicate that fate determination, initiation, and elongation of root hairs are stimulated in response to Cd and As(III through the modulation of the expression of genes involved in these processes in Arabidopsis.

  10. Expressing Parallelism with ROOT

    Energy Technology Data Exchange (ETDEWEB)

    Piparo, D. [CERN; Tejedor, E. [CERN; Guiraud, E. [CERN; Ganis, G. [CERN; Mato, P. [CERN; Moneta, L. [CERN; Valls Pla, X. [CERN; Canal, P. [Fermilab

    2017-11-22

    The need for processing the ever-increasing amount of data generated by the LHC experiments in a more efficient way has motivated ROOT to further develop its support for parallelism. Such support is being tackled both for shared-memory and distributed-memory environments. The incarnations of the aforementioned parallelism are multi-threading, multi-processing and cluster-wide executions. In the area of multi-threading, we discuss the new implicit parallelism and related interfaces, as well as the new building blocks to safely operate with ROOT objects in a multi-threaded environment. Regarding multi-processing, we review the new MultiProc framework, comparing it with similar tools (e.g. multiprocessing module in Python). Finally, as an alternative to PROOF for cluster-wide executions, we introduce the efforts on integrating ROOT with state-of-the-art distributed data processing technologies like Spark, both in terms of programming model and runtime design (with EOS as one of the main components). For all the levels of parallelism, we discuss, based on real-life examples and measurements, how our proposals can increase the productivity of scientists.

  11. Expressing Parallelism with ROOT

    Science.gov (United States)

    Piparo, D.; Tejedor, E.; Guiraud, E.; Ganis, G.; Mato, P.; Moneta, L.; Valls Pla, X.; Canal, P.

    2017-10-01

    The need for processing the ever-increasing amount of data generated by the LHC experiments in a more efficient way has motivated ROOT to further develop its support for parallelism. Such support is being tackled both for shared-memory and distributed-memory environments. The incarnations of the aforementioned parallelism are multi-threading, multi-processing and cluster-wide executions. In the area of multi-threading, we discuss the new implicit parallelism and related interfaces, as well as the new building blocks to safely operate with ROOT objects in a multi-threaded environment. Regarding multi-processing, we review the new MultiProc framework, comparing it with similar tools (e.g. multiprocessing module in Python). Finally, as an alternative to PROOF for cluster-wide executions, we introduce the efforts on integrating ROOT with state-of-the-art distributed data processing technologies like Spark, both in terms of programming model and runtime design (with EOS as one of the main components). For all the levels of parallelism, we discuss, based on real-life examples and measurements, how our proposals can increase the productivity of scientists.

  12. Evaluation of uva camarona (Macleania rupestris Kunth A.C. Smith propagation with air layering

    Directory of Open Access Journals (Sweden)

    Santiago Durán-Casas

    2013-04-01

    Full Text Available Uva camarona (Macleania rupestris Kunth A.C. Smith belongs to the Ericaceae family and grows in páramo and subpáramo areas in Colombia, between 2,200 and 3,500 m a.s.l. This plant presents edible berries that serve as a source of food and small income for local communities. The absence of a propagation protocol for this species limits its use. This study aimed to evaluate the effectiveness of asexual propagation of M. rupestris with air layering, using indole-butyric acid (IBA as a rooting hormone at different concentrations: 0, 500, 1,000, and 2,000 mg L-1. The results showed that an exogenous application of IBA accelerated the rooting process in the layered zone, with a notable emission of first adventitious roots at 60 days from the start of the experiment. The treatments of 500 and 1,000 mg L-1 IBA had the highest number of roots per layer, being two to three times higher than those presented in the control. No significant differences were seen in root length between treatments. The treatments of 500 and 1,000 mg L-1 IBA showed a high production for the dry weights of the roots and callus, with a higher weight of callus compared to root weight. Air layering negatively affected the longitudinal growth of the branches, since their average growth rate was 1.49 cm per month, while the growth of intact branches was 2.78 cm per month. The results suggest that the best concentration for rooting was 1.200 mg L-1 IBA because it had the largest number and dry weight of roots in air-layered M. rupestris

  13. Search for the production of scalar bottom quarks in pp collisions at square root(s) = 1.96 TeV.

    Science.gov (United States)

    Aaltonen, T; Adelman, J; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauer, G; Beauchemin, P-H; Bedeschi, F; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Calancha, C; Camarda, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Chung, K; Chung, W H; Chung, Y S; Chwalek, T; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lorenzo, G; Dell'Orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; d'Errico, M; Di Canto, A; di Giovanni, G P; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Dorigo, T; Dube, S; Ebina, K; Elagin, A; Erbacher, R; Errede, D; Errede, S; Ershaidat, N; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Garosi, P; Gerberich, H; Gerdes, D; Gessler, A; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Group, R C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, S R; Halkiadakis, E; Han, B-Y; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harr, R F; Hartz, M; Hatakeyama, K; Hays, C; Heck, M; Heinrich, J; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Hughes, R E; Hurwitz, M; Husemann, U; Hussein, M; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Ketchum, W; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, H W; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kuhr, T; Kulkarni, N P; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, E; Lee, H S; Lee, J S; Lee, S W; Leone, S; Lewis, J D; Lin, C-J; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, T; Lockyer, N S; Loginov, A; Lovas, L; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, V; Martínez, M; Martínez-Ballarín, R; Mastrandrea, P; Mathis, M; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Mesropian, C; Miao, T; Mietlicki, D; Miladinovic, N; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moed, S; Moggi, N; Mondragon, M N; Moon, C S; Moore, R; Morello, M J; Morlock, J; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Nett, J; Neu, C; Neubauer, M S; Neubauer, S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Osterberg, K; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramanov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Peiffer, T; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Potamianos, K; Poukhov, O; Prokoshin, F; Pronko, A; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Renton, P; Renz, M; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Rutherford, B; Saarikko, H; Safonov, A; Sakumoto, W K; Santi, L; Sartori, L; Sato, K; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sforza, F; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shiraishi, S; Shochet, M; Shon, Y; Shreyber, I; Simonenko, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S; Sorin, V; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Suh, J S; Sukhanov, A; Suslov, I; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thome, J; Thompson, G A; Thomson, E; Tipton, P; Ttito-Guzmán, P; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Tourneur, S; Trovato, M; Tsai, S-Y; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Vidal, M; Vila, I; Vilar, R; Vogel, M; Volobouev, I; Volpi, G; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wagner-Kuhr, J; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Weinelt, J; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wolfe, H; Wright, T; Wu, X; Würthwein, F; Yagil, A; Yamamoto, K; Yamaoka, J; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanetti, A; Zeng, Y; Zhang, X; Zheng, Y; Zucchelli, S

    2010-08-20

    We report on a search for direct scalar bottom quark (sbottom) pair production in pp collisions at square root(s) = 1.96 TeV, in events with large missing transverse energy and two jets of hadrons in the final state, where at least one of the jets is required to be identified as originating from a b quark. The study uses a collider detector at Fermilab Run II data sample corresponding to 2.65 fb(-1) of integrated luminosity. The data are in agreement with the standard model. In an R-parity conserving minimal supersymmetric scenario, and assuming that the sbottom decays exclusively into a bottom quark and a neutralino, 95% confidence-level upper limits on the sbottom pair production cross section of 0.1 pb are obtained. For neutralino masses below 70 GeV/c2, sbottom masses up to 230 GeV/c2 are excluded at 95% confidence level.

  14. Behavior of piles and indolbutyric or homeopathic prepared acid Arnica montana spread of false-erica

    Directory of Open Access Journals (Sweden)

    Darcieli Aparecida Cassol

    2017-06-01

    Full Text Available The market for flowers and ornamental plants is growing. Since the false-érica (Cuphea gracilis is a plant with many uses in the landscape, adapting to partial shade or full sun can be used for ground covers or chromatic combinations with other plants. Usually, the false-erica is propagated by seeds or by cuttings. The objective of this study was to evaluate the size of stakes and the concentration of IBA (indole butyric acid and prepared homeopathic base of Arnica montana in rooting false-erica stakes. The collection of cuttings was carried out in arrays plants grown in gardens in standard sizes 6 and 12 cm in length, and were treated with IBA at concentrations of 0; 1.000 and 2.000 mg L-1 in addition to the homeopathic preparation A. montana 12 CH. The experiment was conducted in a completely randomized design in a 2x4 factorial [length x stake stimulant treatment], with 4 replications of 10 cuttings per plot. After 45 days, they were evaluated percentage of rooted and dead cuttings, root length (cm, number of shoots and number of leaves. The concentrations of AIB, and the application of homeopathy stimulated the adventitious rooting processes of this kind.

  15. In-vitro neoformation of woody plants (apple, pear, Weigela)

    International Nuclear Information System (INIS)

    Chevreau, E.; Dufour, M.; Duron, M.

    1990-01-01

    Full text: Adventitious bud neoformation may induce variability in two ways: somaclonal variation, if the explant has undergone undifferentiated growth (callus); induced mutations, if a physical or chemical mutagen has been applied to the explant prior to the regeneration. Three apple scion cultivars ('Gala', 'Granny Smith', 'Golden Delicious') and four apple rootstock cultivars ('Mark', 'Novole', 'Lancep', 'Cepiland') were grown on basal apple multiplication medium. Leaves, internodes and roots were used for callogenesis and/or regeneration experiments. Scion varieties were more responsive than rootstocks. 1000 'Gala' neoformations will be planted in the field to investigate somaclonal variation. In pear, shoot regeneration was obtained from in-vitro leaves of 3 varieties of Pyrus communis ('Seckel', 'Louise Bonne', 'Comice') and one variety of Pyrus bretschneideri ('Crystal Pear'). It was observed that regeneration is still possible from leaves irradiated with up to 40 Gy of γ rays, or treated with 5mM ENU for one hour. In Weigela, stem segments (0.5 cm) from rooted in vitro plants of 5 cultivars were used in experiments to induce adventitious buds. On the cultivar 'Eva Rathke' the adventitious buds were detected as early as 10 to 15 days after the beginning of the culture. A mutagenic treatment was carried out by immersing explants of 'Bristol Ruby' in a suspension of ethyl methane sulfonate (EMS). Among 400 plants regenerated from treated explants, 5 mutants were detected after 5 years of field observation. Two of them seem to be solid mutants. Apparently in Weigela both homogeneous mutants and chimeras are produced by adventitious regeneration from mutagenised explants. (author)

  16. The Usage of ROOT in the LHCb Online System

    CERN Document Server

    Frank, M

    2013-01-01

    The online system in the LHCb experiment uses ROOT in various areas. ROOT is used in all processes participating in event data processing. The degree of usage varies quite significantly - from the very rudimentary usage of the ROOT plugin mechanism to fully equipped applications filling histograms with data describing online the detector status for monitoring purposes and the display of these data. An increasing number of processes uses the python binding offered by PyROOT to configure these processes. PyROOT also allows to efficiently and quickly manipulate certain corners of the experiment controls system where necessary. Beside these areas, where the LHCb online team advocated the usage of ROOT, in other areas other technologies were chosen. These deliberate choices like e.g. in the area of persistency of event data from particle collisions will be discussed.

  17. Exogenous auxin alleviates cadmium toxicity in Arabidopsis thaliana by stimulating synthesis of hemicellulose 1 and increasing the cadmium fixation capacity of root cell walls

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiao Fang [Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Wang, Zhi Wei [Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Dong, Fang; Lei, Gui Jie [State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Shi, Yuan Zhi [The Key Laboratory of Tea Chemical Engineering, Ministry of Agriculture, Yunqi Road 1, Hangzhou 310008 (China); Li, Gui Xin, E-mail: guixinli@zju.edu.cn [College of Agronomy and Biotechnology, Zhejiang University, Hangzhou 310058 (China); Zheng, Shao Jian [Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China)

    2013-12-15

    Highlights: • Cd reduces endogenous auxin levels in Arabidopsis. • Exogenous applied auxin NAA increases Cd accumulation in the roots but decreases in the shoots. • NAA increases cell wall hemicellulose 1 content. • Hemicellulose 1 retains Cd and makes it difficult to be translocated to shoots. • NAA rescues Cd-induced chlorosis. -- Abstract: Auxin is involved in not only plant physiological and developmental processes but also plant responses to abiotic stresses. In this study, cadmium (Cd{sup 2+}) stress decreased the endogenous auxin level, whereas exogenous auxin (α-naphthaleneacetic acid, NAA, a permeable auxin analog) reduced shoot Cd{sup 2+} concentration and rescued Cd{sup 2+}-induced chlorosis in Arabidopsis thaliana. Under Cd{sup 2+} stress conditions, NAA increased Cd{sup 2+} retention in the roots and most Cd{sup 2+} in the roots was fixed in hemicellulose 1 of the cell wall. NAA treatment did not affect pectin content and its binding capacity for Cd{sup 2+}, whereas it significantly increased the content of hemicellulose 1 and the amount of Cd{sup 2+} retained in it. There were highly significant correlations between Cd{sup 2+} concentrations in the root, cell wall and hemicellulose 1 when the plants were subjected to Cd{sup 2+} or NAA + Cd{sup 2+} treatment for 1 to 7 d, suggesting that the increase in hemicellulose 1 contributes greatly to the fixation of Cd{sup 2+} in the cell wall. Taken together, these results demonstrate that auxin-induced alleviation of Cd{sup 2+} toxicity in Arabidopsis is mediated through increasing hemicellulose 1 content and Cd{sup 2+} fixation in the root, thus reducing the translocation of Cd{sup 2+} from roots to shoots.

  18. Exogenous auxin alleviates cadmium toxicity in Arabidopsis thaliana by stimulating synthesis of hemicellulose 1 and increasing the cadmium fixation capacity of root cell walls

    International Nuclear Information System (INIS)

    Zhu, Xiao Fang; Wang, Zhi Wei; Dong, Fang; Lei, Gui Jie; Shi, Yuan Zhi; Li, Gui Xin; Zheng, Shao Jian

    2013-01-01

    Highlights: • Cd reduces endogenous auxin levels in Arabidopsis. • Exogenous applied auxin NAA increases Cd accumulation in the roots but decreases in the shoots. • NAA increases cell wall hemicellulose 1 content. • Hemicellulose 1 retains Cd and makes it difficult to be translocated to shoots. • NAA rescues Cd-induced chlorosis. -- Abstract: Auxin is involved in not only plant physiological and developmental processes but also plant responses to abiotic stresses. In this study, cadmium (Cd 2+ ) stress decreased the endogenous auxin level, whereas exogenous auxin (α-naphthaleneacetic acid, NAA, a permeable auxin analog) reduced shoot Cd 2+ concentration and rescued Cd 2+ -induced chlorosis in Arabidopsis thaliana. Under Cd 2+ stress conditions, NAA increased Cd 2+ retention in the roots and most Cd 2+ in the roots was fixed in hemicellulose 1 of the cell wall. NAA treatment did not affect pectin content and its binding capacity for Cd 2+ , whereas it significantly increased the content of hemicellulose 1 and the amount of Cd 2+ retained in it. There were highly significant correlations between Cd 2+ concentrations in the root, cell wall and hemicellulose 1 when the plants were subjected to Cd 2+ or NAA + Cd 2+ treatment for 1 to 7 d, suggesting that the increase in hemicellulose 1 contributes greatly to the fixation of Cd 2+ in the cell wall. Taken together, these results demonstrate that auxin-induced alleviation of Cd 2+ toxicity in Arabidopsis is mediated through increasing hemicellulose 1 content and Cd 2+ fixation in the root, thus reducing the translocation of Cd 2+ from roots to shoots

  19. Long term water integration in interconnected ramets of ...

    African Journals Online (AJOL)

    ONOS

    2010-08-23

    Aug 23, 2010 ... than any other non-clonal plants could, there exists a high possibility that one clone ... leaves and attached adventitious roots were grown in containers of. 16 cm in diameters and ..... availability than elder ramets. Thus, we can ...

  20. Representing the root water uptake process in the Common Land Model for better simulating the energy and water vapour fluxes in a Central Asian desert ecosystem

    NARCIS (Netherlands)

    Li, Longhui; van der Tol, C.; Chen, Xuelong; Jing, C.; Su, Zhongbo; Luo, G.; Tian, Xin

    2013-01-01

    The ability of roots to take up water depends on both root distribution and root water uptake efficiency. The former can be experimentally measured, while the latter is extremely difficult to determine. Yet a correct representation of root water uptake process in land surface models (LSMs) is

  1. PHIV-RootCell: a supervised image analysis tool for rice root anatomical parameter quantification

    Directory of Open Access Journals (Sweden)

    Marc eLartaud

    2015-01-01

    Full Text Available We developed the PHIV-RootCell software to quantify anatomical traits of rice roots transverse section images. Combined with an efficient root sample processing method for image acquisition, this program permits supervised measurements of areas (those of whole root section, stele, cortex and central metaxylem vessels, number of cell layers and number of cells per cell layer. The PHIV-RootCell toolset runs under ImageJ, an independent operating system that has a license-free status. To demonstrate the usefulness of PHIV-RootCell, we conducted a genetic diversity study and an analysis of salt-stress responses of root anatomical parameters in rice (Oryza sativa L.. Using 16 cultivars, we showed that we could discriminate between some of the varieties even at the 6 day-old stage, and that tropical japonica varieties had larger root sections due to an increase in cell number. We observed, as described previously, that root sections become enlarged under salt stress. However, our results show an increase in cell number in ground tissues (endodermis and cortex but a decrease in external (peripheral tissues (sclerenchyma, exodermis and epidermis. Thus, the PHIV-RootCell program is a user-friendly tool that will be helpful for future genetic and physiological studies that investigate root anatomical trait variations.

  2. Quantitative determination of secoiridoid and gamma-pyrone compounds in Gentiana lutea cultured in vitro.

    Science.gov (United States)

    Menković, N; Savikin-Fodulović, K; Momcilović, I; Grubisić, D

    2000-02-01

    The production of secondary metabolites was studied in shoots, roots, and hairy roots of Gentiana lutea obtained in vitro. In shoots, both secoiridoid and gamma-pyrone compounds were detected in amounts similar to those found in aerial parts of plants collected from nature. The most abundant secoiridoid was gentiopicrin while mangiferin was the main compound among the gamma-pyrones. The adventitious roots obtained in vitro showed a poor biosynthetic capacity. Upon infection with Agrobacterium rhizogenes, nine hairy root clones were established which differed in the amount of secondary metabolites.

  3. Root resorption: Focus on signs and symptoms of importance for avoiding root resorption during orthodontic treatment

    Directory of Open Access Journals (Sweden)

    Inger Kjaer

    2014-01-01

    Full Text Available Introduction: This paper summarizes the different conditions, which have a well-known influence on the resorption of tooth roots, exemplified by trauma and orthodontic treatment. The concept of the paper is to summarize and explain symptoms and signs of importance for avoiding resorption during orthodontic treatment. The Hypothesis: The hypothesis in this paper is that three different tissue layers covering the root in the so-called periroot sheet can explain signs and symptoms of importance for avoiding root resorption during orthodontic treatment. These different tissue layers are; outermost - an ectodermal tissue layer (Malassez′s epithelium, a middle layer - composed by the collagen-mesodermal tissue layer, and an innermost root-close innervation layer. Abnormalities in one of these tissue layers are thought to cause inflammatory processes in the periodontal membrane comparable to inflammatory processes provoked by trauma and orthodontic pressure. Inflammatory reactions are followed by resorptive processes in the periroot sheet and along the root surface. Evaluation of the Hypothesis: Different morphologies in the dentition are signs of abnormal epithelium or an abnormal mesodermal layer. It has formerly been demonstrated how demyelinization of the myelin sheaths in the peripheral nerves close to the root provoke resorption. Accordingly, conditions affecting these tissue layers can be associated not only with different morphologies but also with general symptoms and diseases (e.g., ectodermal dysplasia and hypophosphatasia.

  4. Identification of qSOR1, a major rice QTL involved in soil-surface rooting in paddy fields.

    Science.gov (United States)

    Uga, Yusaku; Hanzawa, Eiko; Nagai, Shinsei; Sasaki, Kazuhiro; Yano, Masahiro; Sato, Tadashi

    2012-01-01

    Specific Indonesian lowland rice (Oryza sativa L.) cultivars elongate thick primary roots on the soil surface of paddy fields. To clarify the genetic factors controlling soil-surface rooting, we performed quantitative trait locus (QTL) analyses using 124 recombinant inbred lines (RILs) derived from a cross between Gemdjah Beton, an Indonesian lowland rice cultivar with soil-surface roots, and Sasanishiki, a Japanese lowland rice cultivar without soil-surface roots. These cultivars and the RILs were tested for soil-surface rooting in a paddy field. We identified four regions of chromosomes 3, 4, 6, and 7 that were associated with soil-surface rooting in the field. Among them, one major QTL was located on the long arm of chromosome 7. This QTL explained 32.5-53.6% of the total phenotypic variance across three field evaluations. To perform fine mapping of this QTL, we measured the basal root growth angle of crown roots at the seedling stage in seven BC(2)F(3) recombinant lines grown in small cups in a greenhouse. The QTL was mapped between markers RM21941 and RM21976, which delimit an 812-kb interval in the reference cultivar Nipponbare. We have designated this QTL qSOR1 (quantitative trait locus for SOIL SURFACE ROOTING 1).

  5. The bifunctional abiotic stress signalling regulator and endogenous RNA silencing suppressor FIERY1 is required for lateral root formation

    KAUST Repository

    Chen, Hao

    2010-09-28

    The Arabidopsis FIERY1 (FRY1) locus was originally identified as a negative regulator of stress-responsive gene expression and later shown to be required for suppression of RNA silencing. In this study we discovered that the FRY1 locus also regulates lateral root formation. Compared with the wild type, fry1 mutant seedlings generated significantly fewer lateral roots under normal growth conditions and also exhibited a dramatically reduced sensitivity to auxin in inducing lateral root initiation. Using transgenic plants that overexpress a yeast homolog of FRY1 that possesses only the 3\\', 5\\'-bisphosphate nucleotidase activity but not the inositol 1-phosphatase activity, we demonstrated that the lateral root phenotypes in fry1 result from loss of the nucleotidase activity. Furthermore, a T-DNA insertion mutant of another RNA silencing suppressor, XRN4 (but not XRN2 or XRN3), which is an exoribonuclease that is inhibited by the substrate of the FRY1 3\\', 5\\'-bisphosphate nucleotidase, exhibits similar lateral root defects. Although fry1 and xrn4 exhibited reduced sensitivity to ethylene, our experiments demonstrated that restoration of ethylene sensitivity in the fry1 mutant is not sufficient to rescue the lateral root phenotypes of fry1. Our results indicate that RNA silencing modulated by FRY1 and XRN4 plays an important role in shaping root architecture. © 2010 Blackwell Publishing Ltd.

  6. [Effects of rhynchophylla alkaloids on vascular adventitial fibroblast apoptosis and proliferation in the thoracic aorta of spontaneously hypertensive rats].

    Science.gov (United States)

    Dai, Guo-Hua; Sun, Jing-Chang; Qi, Dong-Mei

    2012-09-01

    To study the effects of rhynchophylline, isorhynchophylline, and rhynchophylla alkaloids on the vascular adventitial fibroblasts (VAF) apoptosis and proliferation in thoracic aorta of spontaneously hypertensive rats (SHR), and on the Bcl-2, Bax, c-Fos, c-Myc, laminin (LN), and fibronectin (FN). Forty 8-week old male SHR were randomly divided into five groups, i. e., the model group, the captopril group (17.5 mg/kg), the isorhynchophylline group (5.0 mg/kg), the rhynchophylline group (5.0 mg/kg), and the rhynchophylla alkaloids group (50.0 mg/kg), 8 in each group. In addition, eight 8-week old male Wistar rats were selected as the normal group. Equal volume of normal saline was given to rats in the normal group and the model group by gastrogavage. Rats in the rest groups were perfused with isovolumic medication solution (10 mL/kg), six days per week for eight successive weeks. The dosage of drugs was adjusted according to the change of body weight. The VAF apoptosis rate of the thoracic aorta was measured by Annexin V-FITC combined with PI dyeing and flow cytometry. The protein expressions of thoracic aortic Bcl-2, Bax, c-Myc, c-Fos, FN, and LN were detected by immunohistochemical assay. The adventitial transforming growth factor beta1 (TGF-beta1) mRNA expression in the thoracic aorta was detected by in situ hybridization method. Compared with the model group, the tail arterial systolic pressure decreased, the VAF apoptosis and the protein expression of Bax increased, Bcl-2, c-Fos, FN, LN, and TGF-beta1 mRNA all decreased in the thoracic aorta of SHR in each treatment group after 4-and 8-week of intervention. Rhynchophylline, isorhynchophylline, and rhynchophylla alkaloids could inhibit the protein expression of c-Myc with statistical difference (Prhynchophylla alkaloids group (P>0.05). There was statistical difference in increased VAF apoptosis and decreased protein expressions of Bcl-2, c-Myc, and LN (Prhynchophylla alkaloids group (P>0.05). Rhynchophylline

  7. How genetic modification of roots affects rhizosphere processes and plant performance

    NARCIS (Netherlands)

    Kabouw, P.; Van Dam, N.M.; Van der Putten, W.H.; Biere, A.

    2012-01-01

    Genetic modification of plants has become common practice. However, root-specific genetic modifications have only recently been advocated. Here, a review is presented regarding how root-specific modifications can have both plant internal and rhizosphere-mediated effects on aboveground plant

  8. Vegetation root zone storage and rooting depth, derived from local calibration of a global hydrological model

    Science.gov (United States)

    van der Ent, R.; Van Beek, R.; Sutanudjaja, E.; Wang-Erlandsson, L.; Hessels, T.; Bastiaanssen, W.; Bierkens, M. F.

    2017-12-01

    The storage and dynamics of water in the root zone control many important hydrological processes such as saturation excess overland flow, interflow, recharge, capillary rise, soil evaporation and transpiration. These processes are parameterized in hydrological models or land-surface schemes and the effect on runoff prediction can be large. Root zone parameters in global hydrological models are very uncertain as they cannot be measured directly at the scale on which these models operate. In this paper we calibrate the global hydrological model PCR-GLOBWB using a state-of-the-art ensemble of evaporation fields derived by solving the energy balance for satellite observations. We focus our calibration on the root zone parameters of PCR-GLOBWB and derive spatial patterns of maximum root zone storage. We find these patterns to correspond well with previous research. The parameterization of our model allows for the conversion of maximum root zone storage to root zone depth and we find that these correspond quite well to the point observations where available. We conclude that climate and soil type should be taken into account when regionalizing measured root depth for a certain vegetation type. We equally find that using evaporation rather than discharge better allows for local adjustment of root zone parameters within a basin and thus provides orthogonal data to diagnose and optimize hydrological models and land surface schemes.

  9. High-throughput microarray mapping of cell wall polymers in roots and tubers during the viscosity-reducing process

    DEFF Research Database (Denmark)

    Huang, Yuhong; Willats, William George Tycho; Lange, Lene

    2016-01-01

    the viscosity-reducing process are poorly characterized. Comprehensive microarray polymer profiling, which is a high-throughput microarray, was used for the first time to map changes in the cell wall polymers of sweet potato (Ipomoea batatas), cassava (Manihot esculenta), and Canna edulis Ker. over the entire...... viscosity-reducing process. The results indicated that the composition of cell wall polymers among these three roots and tubers was markedly different. The gel-like matrix and glycoprotein network in the C. edulis Ker. cell wall caused difficulty in viscosity reduction. The obvious viscosity reduction......Viscosity reduction has a great impact on the efficiency of ethanol production when using roots and tubers as feedstock. Plant cell wall-degrading enzymes have been successfully applied to overcome the challenges posed by high viscosity. However, the changes in cell wall polymers during...

  10. Metabonomic Analysis of Water Extracts from Different Angelica Roots by 1H-Nuclear Magnetic Resonance Spectroscopy

    Directory of Open Access Journals (Sweden)

    Pui Hei Chan

    2014-03-01

    Full Text Available Angelica Radix, the roots of the genus Angelica, has been used for more than 2,000 years as a traditional medicine in Eastern Asia. The Chinese Pharmacopoeia records more than 100 herbal formulae containing Angelica roots. There are two common sources of Angelica roots, Angelica sinensis from China and A. gigas from Korea. The two species of Angelica roots differ in their chemical compositions, pharmacological properties and clinical efficacy. 1H-NMR metabolic profiling has recently emerged as a promising quality control method for food and herbal chemistry. We explored the use of 1H-NMR metabolic profiling for the quality control of Angelica Radix. Unlike previous work, we performed the metabolic profiling on hot water extracts, so as to mimic the clinically relevant preparation method. Unsupervised principle component analyses of both the full spectral profile and a selection of targeted molecules revealed a clear differentiation of three types of Angelica roots. In addition, the levels of 13 common metabolites were measured. Statistically significant differences in the levels of glucose, fructose and threonine were found between different sources of Angelica. Ferulic acid, a marker commonly used to evaluate Angelica root, was detected in our samples, but the difference in ferulic acid levels between the samples was not statistically significant. Overall, we successfully applied 1H-NMR metabolic profiling with water extraction to discriminate all three sources of Angelica roots, and obtained quantitative information of many common metabolites.

  11. Analysis of AtGUS1 and AtGUS2 in Arabidopsis root apex by a highly sensitive TSA-MISH method.

    Science.gov (United States)

    Bruno, Leonardo; Ronchini, Matteo; Gagliardi, Olimpia; Corinti, Tamara; Chiappetta, Adriana; Gerola, Paolo; Bitonti, Maria B

    2015-01-01

    A new highly sensitive whole-mount in situ hybridization method, based on tyramide signal amplification (TSA-MISH) was developed and a combined GFP detection and TSA-MISH procedure was applied for the first time in plants, to precisely define the spatial pattern of AtGUS1 and AtGUS2 expression in the root apex. β-glucuronidases (GUSs) belonging to the glycosyl hydrolases (GHs) 79 family, are widely distributed in plants, but their functional role has not yet been fully investigated. In the model system Arabidopsis Thaliana, three different AtGUS genes have been identified which encode proteins with putative different fates. Endogenous GUS expression has been detected in different organs and tissues, but the cyto-histological domains of gene expression remain unclear. The results here reported show co-expression of AtGUS1 and AtGUS2 in different functional zones of the root apex (the cap central zone, the root cap meristem, the staminal cell niche and the cortical cell layers of the proximal meristem), while AtGUS2 is exclusively expressed in the cap peripheral layer and in the epidermis in the elongation zone. Interestingly, both genes are not expressed in the stelar portion of the proximal meristem. A spatial (cortex vs. stele) and temporal (proximal meristem vs. transition zone) regulation of AtGUS1 and AtGUS2 expression is therefore active in the root apex. This expression pattern, although globally consistent with the involvement of GUS activity in both cell proliferation and elongation, clearly indicates that AtGUS1 and AtGUS2 could control distinct downstream process depending on the developmental context and the interaction with other players of root growth control. In the future, the newly developed approaches may well be very useful to dissect such interactions.

  12. Effect of Root Moisture Content and Diameter on Root Tensile Properties

    Science.gov (United States)

    Yang, Yuanjun; Chen, Lihua; Li, Ning; Zhang, Qiufen

    2016-01-01

    The stabilization of slopes by vegetation has been a topical issue for many years. Root mechanical characteristics significantly influence soil reinforcement; therefore it is necessary to research into the indicators of root tensile properties. In this study, we explored the influence of root moisture content on tensile resistance and strength with different root diameters and for different tree species. Betula platyphylla, Quercus mongolica, Pinus tabulaeformis, and Larix gmelinii, the most popular tree species used for slope stabilization in the rocky mountainous areas of northern China, were used in this study. A tensile test was conducted after root samples were grouped by diameter and moisture content. The results showedthat:1) root moisture content had a significant influence on tensile properties; 2) slightly loss of root moisture content could enhance tensile strength, but too much loss of water resulted in weaker capacity for root elongation, and consequently reduced tensile strength; 3) root diameter had a strong positive correlation with tensile resistance; and4) the roots of Betula platyphylla had the best tensile properties when both diameter and moisture content being controlled. These findings improve our understanding of root tensile properties with root size and moisture, and could be useful for slope stabilization using vegetation. PMID:27003872

  13. Expression of interleukin-1 beta in rat dorsal root ganglia

    NARCIS (Netherlands)

    Copray, JCVM; Mantingh, [No Value; Brouwer, N; Biber, K; Kust, BM; Liem, RSB; Huitinga, [No Value; Tilders, FJH; Van Dam, AM; Boddeke, HWGM

    2001-01-01

    The expression of interleukin-lp was examined in dorsal root ganglion (DRG) neurons from adult rats using non-radioactive in Situ hybridization and immunocytochemistry. At all spinal levels, approximately 70% of the DRG neurons appeared to express IL-1 beta mRNA: about 80% of these DRG neurons

  14. Nitrate induction of root hair density is mediated by TGA1/TGA4 and CPC transcription factors in Arabidopsis thaliana.

    Science.gov (United States)

    Canales, Javier; Contreras-López, Orlando; Álvarez, José M; Gutiérrez, Rodrigo A

    2017-10-01

    Root hairs are specialized cells that are important for nutrient uptake. It is well established that nutrients such as phosphate have a great influence on root hair development in many plant species. Here we investigated the role of nitrate on root hair development at a physiological and molecular level. We showed that nitrate increases root hair density in Arabidopsis thaliana. We found that two different root hair defective mutants have significantly less nitrate than wild-type plants, suggesting that in A. thaliana root hairs have an important role in the capacity to acquire nitrate. Nitrate reductase-null mutants exhibited nitrate-dependent root hair phenotypes comparable with wild-type plants, indicating that nitrate is the signal that leads to increased formation of root hairs. We examined the role of two key regulators of root hair cell fate, CPC and WER, in response to nitrate treatments. Phenotypic analyses of these mutants showed that CPC is essential for nitrate-induced responses of root hair development. Moreover, we showed that NRT1.1 and TGA1/TGA4 are required for pathways that induce root hair development by suppression of longitudinal elongation of trichoblast cells in response to nitrate treatments. Our results prompted a model where nitrate signaling via TGA1/TGA4 directly regulates the CPC root hair cell fate specification gene to increase formation of root hairs in A. thaliana. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  15. On the role of MT1-MMP, a matrix metalloproteinase essential to collagen remodeling, in murine molar eruption and root growth

    NARCIS (Netherlands)

    Beertsen, Wouter; Holmbeck, Kenn; Niehof, Anneke; Bianco, Paolo; Chrysovergis, Kaliiopi; Birkedal-Hansen, Henning; Everts, Vincent

    2002-01-01

    Although the connective tissues of the periodontium are subject to a high turnover rate, no conclusive evidence has yet emerged that periodontal collagen turnover is essential for the eruption of teeth or for root elongation. These processes were studied in mice deficient in MT1-MMP, a membrane type

  16. Neuronal calcium-binding proteins 1/2 localize to dorsal root ganglia and excitatory spinal neurons and are regulated by nerve injury

    DEFF Research Database (Denmark)

    Zhang, Ming Dong; Tortoriello, Giuseppe; Hsueh, Brian

    2014-01-01

    , and nerve injury-induced regulation of NECAB1/NECAB2 in mouse dorsal root ganglia (DRGs) and spinal cord. In DRGs, NECAB1/2 are expressed in around 70% of mainly small- and medium-sized neurons. Many colocalize with calcitonin gene-related peptide and isolectin B4, and thus represent nociceptors. NECAB1....../2 neurons are much more abundant in DRGs than the Ca2+-binding proteins (parvalbumin, calbindin, calretinin, and secretagogin) studied to date. In the spinal cord, the NECAB1/2 distribution is mainly complementary. NECAB1 labels interneurons and a plexus of processes in superficial layers of the dorsal horn....... In the dorsal horn, most NECAB1/2 neurons are glutamatergic. Both NECAB1/2 are transported into dorsal roots and peripheral nerves. Peripheral nerve injury reduces NECAB2, but not NECAB1, expression in DRG neurons. Our study identifies NECAB1/2 as abundant Ca2+-binding proteins in pain-related DRG neurons...

  17. Properties of estimated characteristic roots

    OpenAIRE

    Bent Nielsen; Heino Bohn Nielsen

    2008-01-01

    Estimated characteristic roots in stationary autoregressions are shown to give rather noisy information about their population equivalents. This is remarkable given the central role of the characteristic roots in the theory of autoregressive processes. In the asymptotic analysis the problems appear when multiple roots are present as this implies a non-differentiablity so the δ-method does not apply, convergence rates are slow, and the asymptotic distribution is non-normal. In finite samples ...

  18. Light Requirement for Shoot Regeneration in Horseradish Hairy Roots 1

    Science.gov (United States)

    Saitou, Tsutomu; Kamada, Hiroshi; Harada, Hiroshi

    1992-01-01

    Hairy roots of horseradish (Armoracia rusticana) were induced by inoculation with Agrobacterium rhizogenes harboring Ri plasmid and cultured on phytohormone-free Murashige and Skoog medium after eliminating the bacteria. Hairy roots grew vigorously and sometimes formed yellowish calli under dark conditions. On the other hand, growth of hairy roots stopped after several weeks of culture with light, then shoots were regenerated. Frequency of shoot formation from hairy roots increased as the culture period in light lengthened and the light intensity increased. The shoot regeneration was induced by treatment with white or red light, but not with far-red light. Shoot regeneration by red light was inhibited by following treatment with far-red light. Red and far-red light reversibly affected shoot regeneration. Excised roots of nontransformed plants grew quite slowly on phytohormone-free Murashige and Skoog medium and occasionally formed shoots under white light conditions. PMID:16669041

  19. Variations in the Root Form and Root Canal Morphology of Permanent Mandibular First Molars in a Sri Lankan Population

    Directory of Open Access Journals (Sweden)

    Roshan Peiris

    2015-01-01

    Full Text Available The present study was conducted to determine the number of roots and morphology of the root canal system of permanent mandibular first molars (M1 in a Sri Lankan population. Sample of 529 M1 teeth was used. The number of roots was examined and the lengths of the mesial and distal roots were measured to the nearest 0.01 mm. Vacuum injection protocol was used to inject China ink into the root canal system, making it transparent. Root canal morphology was recorded using Vertucci’s classification. Presence of furcation canals, position of lateral canals, intercanal communications, level of bifurcation, and convergence of the root canal system were recorded. M1 showed three roots in 4.1% of the sample. Commonest root canal morphology of the mesial root was type IV and the distal root was type I. The level of bifurcation of the root canals was commonly observed in the cervical one-third of the root while convergence was observed in the apical one-third in both roots. Prevalence of three rooted mandibular first molars is less than 5%. Mesial root showed the most variable canal morphology. Prevalence of furcation canals was 1.5% while that of middle mesial canals was 0.2%.

  20. ARG1 and ARL2 contribute to gravity signal transduction in the statocytes of Arabidopsis thaliana roots and hypocotyls

    Science.gov (United States)

    Masson, Patrick; Harrison, Benjamin; Stanga, John; Otegui, Marisa; Sedbrook, John

    Gravity is an important cue that plant organs use to guide their growth. Each organ is characterized by a defined gravity set point angle that dictates its optimal orientation within the gravity field. Specialized cells, named statocytes, enable this directional growth response by perceiving gravity via the sedimentation of, and/or tension/pressure exerted by, starch-filled plastids within their cytoplasm. Located in the columella region of the cap in roots and in the endodermis of hypocotyls and stems, these cells modulate the lateral transport of auxin across the corresponding organ in a gravistimulus-dependent manner. Upon plant reorientation within the gravity field, a gravity signal transduction pathway is activated within those cells, which in roots leads to a relocalization of the PIN3 auxin efflux carrier toward the lower membrane and an alkalinization of the cytoplasm. In turn, these events appear to promote a lateral transport of auxin toward the bottom side of the stimulated organ, which promotes a curvature. We previously uncovered ARG1 and ARL2 as essential contributors to these cellular processes. Mutations in these genes result in altered root and hypocotyl gravitropism. In roots, this abnormal growth behavior is associated with a lack of PIN3 relocalization within the statocytes and an absence of preferential downward auxin transport upon gravistimulation. These two genes encode paralogous J-domain proteins that are associated with the plasma membrane and other membranes of the vesicular trafficking pathway, and appear to modulate protein trafficking within the statocytes. An analysis of the root gravitropic phenotypes associated with different double mutant configurations affecting ARG1, ARL2 and PIN3 suggest that all three proteins function in a common gravity-signaling pathway. Surprisingly, when a mutation that affects starch biosynthesis (pgm) is introgressed into an arg1-2 mutant, the gravitropic defects are dramatically enhanced relative to

  1. Pre-procambial cells are niches for pluripotent and totipotent stem-like cells for organogenesis and somatic embryogenesis in the peach palm: a histological study.

    Science.gov (United States)

    de Almeida, Marcilio; de Almeida, Cristina Vieira; Mendes Graner, Erika; Ebling Brondani, Gilvano; Fiori de Abreu-Tarazi, Monita

    2012-08-01

    The direct induction of adventitious buds and somatic embryos from explants is a morphogenetic process that is under the influence of exogenous plant growth regulators and its interactions with endogenous phytohormones. We performed an in vitro histological analysis in peach palm (Bactris gasipaes Kunth) shoot apexes and determined that the positioning of competent cells and their interaction with neighboring cells, under the influence of combinations of exogenously applied growth regulators (NAA/BAP and NAA/TDZ), allows the pre-procambial cells (PPCs) to act in different morphogenic pathways to establish niche competent cells. It is likely that there has been a habituation phenomenon during the regeneration and development of the microplants. This includes promoting the tillering of primary or secondary buds due to culturing in the absence of NAA/BAP or NAA/TDZ after a period in the presence of these growth regulators. Histological analyses determined that the adventitious roots were derived from the dedifferentiation of the parenchymal cells located in the basal region of the adventitious buds, with the establishment of rooting pole, due to an auxin gradient. Furthermore, histological and histochemical analyses allowed us to characterize how the PPCs provide niches for multipotent, pluripotent and totipotent stem-like cells for vascular differentiation, organogenesis and somatic embryogenesis in the peach palm. The histological and histochemical analyses also allowed us to detect the unicellular or multicellular origin of somatic embryogenesis. Therefore, our results indicate that the use of growth regulators in microplants can lead to habituation and to different morphogenic pathways leading to potential niche establishment, depending on the positioning of the competent cells and their interaction with neighboring cells. Our results indicate that the use of growth regulators in microplants can lead to habituation and to different morphogenic pathways leading to

  2. Nonsurgical management of horizontal root fracture associated external root resorption and internal root resorption

    Directory of Open Access Journals (Sweden)

    Shiraz Pasha

    2016-01-01

    Full Text Available Horizontal root fractures, which frequently affect the upper incisors, usually result from a frontal impact. As a result, combined injuries occur in dental tissues such as the pulp, dentin, cementum, periodontal ligament, and alveolar bone. Internal root canal inflammatory resorption involves a progressive loss of intraradicular dentin without adjunctive deposition of hard tissues adjacent to the resorptive sites. It is frequently associated with chronic pulpal inflammation, and bacteria might be identified from the granulation tissues when the lesion is progressive to the extent that it is identifiable with routine radiographs. With the advancement in technology, it is imperative to use modern diagnostic tools such as cone beam computed tomography and radiovisuography to diagnose and confirm the presence and extent of resorptions and fractures and their exact location. This case report presents a rare case having internal root resorption and horizontal root fracture with external inflammatory root resorption both which were treated successfully following guidelines by International Association of Dental Traumatology by nonsurgical treatment with 1 year follow-up.

  3. Uronide Deposition Rates in the Primary Root of Zea mays1

    Science.gov (United States)

    Silk, Wendy Kuhn; Walker, Robert C.; Labavitch, John

    1984-01-01

    The spatial distribution of the rate of deposition of uronic acids in the elongation zone of Zea mays L. Crow WF9 × Mo 17 was determined using the continuity equation with experimentally determined values for uronide density and growth velocity. In spatial terms, the uronide deposition rate has a maximum of 0.4 micrograms per millimeter per hour at s = 3.5 mm (i.e., at the location 3.5 mm from the root tip) and decreases to 0.1 mg mm−1 h−1 by s = 10 mm. In terms of a material tissue element, a tissue segment located initially from s = 2.0 to s = 2.1 mm has 0.14 μg of uronic acids and increases in both length and uronic acid content until it is 0.9 mm long and has 0.7 μg of uronide when its center is at s = 10 mm. Simulations of radioactive labeling experiments show that 15 min is the appropriate time scale for pulse determinations of deposition rate profiles in a rapidly growing corn root. PMID:16663488

  4. T1-nerve root neuroma presenting with apical mass and Horner's syndrome

    Directory of Open Access Journals (Sweden)

    Podnar Simon

    2007-03-01

    Full Text Available Abstract Background The appearance of dumbbell neuroma of the first thoracic root is extremely rare. The extradural component of a T1-dumbbell neuroma may present as an apical mass. The diagnosis of hand weakness is complex and may be delayed in T1-neuroma because of absence of the palpable cervical mass. One-stage removal of a T1-root neuroma and its intrathoracic extension demanded an extended posterior midline approach in the sitting position. Case presentation A 51-year old man had suffered a traumatic partial tendon rupture of his wrist flexor muscles 6 years ago. Since the incident he occasionally felt fullness and tenderness in the affected forearm with some tingling in his fingers bilaterally. During the last two years the hand weakness was continuous and hypotrophy of the medial flexor and intrinsic hand muscles had become apparent. Electrophysiological studies revealed an ulnar neuropathy in addition to mild median and radial nerve dysfunction, including a mild contralateral carpal tunnel syndrome. The diagnostic work-up for multiple mononeuropathy in the upper extremity was negative. Repeated electrophysiological studies revealed fibrillations in the C7 paravertebral muscles on the affected side. Chest x-ray revealed a large round apical mass on the affected side. A Horner's syndrome was noted at this point of diagnostic work-up. MRI of the cervical and thoracic spine revealed a dumbbell T1 neuroma enlarging the intervertebral foramen at T1-2 and a 5 cm large extradural tumor with extension into the apex of the ipsilateral lung. The patient underwent surgery in sitting position using a left dorsal midline approach. Although the T1 root could not be preserved, the patient's neurological condition was unchanged after the surgery. Conclusion Extended posterior midline exposure described here using hemilaminectomy, unilateral facetectomy and costo-transversectomy is efficient and safe for one-stage removal of dumbbell tumors at the T1

  5. Mass propagation of Rauwolfia serpentina L. Benth.

    Science.gov (United States)

    Salma, U; Rahman, M S M; Islam, S; Haque, N; Khatun, M; Jubair, T A; Paul, B C

    2008-05-01

    A protocol for mass propagation through axillary bud proliferation was established for Rauwolfia serpentina L. Benth. (Apocynaceae). MS medium supplemented with 1.5 mg L(-1) BA and 0.2 mg L(-1) NAA elicited the maximum number of shoots (4 multiple shoots) from nodal explants. These adventitious shoots were best rooted on half strength MS medium supplemented with 1.0 mg L(-1) each of IBA and IAA. The in vitro raised plants were acclimatized in glass house and successfully transplanted to field condition with almost 95% survival.

  6. Fine Mapping of qroot-yield-1.06, a QTL for Root, Plant Vigor and Yield in Maize

    OpenAIRE

    Martinez Ascanio, Ana Karine

    2015-01-01

    Root-yield-1.06 is a major QTL affecting root system architecture (RSA) and other agronomic traits in maize. The effect of this QTL has been evaluated with the development of near isogenic lines (NILs) differing at the QTL position. The objective of this study was to fine map qroot-yield-1.06 by marker-assisted searching for chromosome recombinants in the QTL interval and concurrent root phenotyping in both controlled and field conditions, through successive generations. Complementary approac...

  7. ROOT I/O in Javascript - Reading ROOT files in a browser

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    A JavaScript version of the ROOT I/O subsystem is being developed, in order to be able to browse (inspect) ROOT files in a platform independent way. This allows the content of ROOT files to be displayed in most web browsers, without having to install ROOT or any other software on the server or on the client. This gives a direct access to ROOT files from new (e.g. portable) devices in a light way. It will be possible to display simple graphical objects such as histograms and graphs (TH1, TH2, TH3, TProfile, TGraph, ...). The rendering will first be done with an external JavaScript graphic library, before investigating a way to produce graphics closer to what ROOT supports on other platforms (X11, Windows).

  8. Effects of Indole-Butyric Acid Doses, Different Rooting Media and Cutting Thicknesses on Rooting Ratios and Root Qualities of 41B, 5 BB and 420A American Grapevine Rootstocks

    OpenAIRE

    DOĞAN, Adnan; UYAK, Cüneyt; KAZANKAYA, Ahmet

    2016-01-01

    The present study was conducted to investigate the effects of different rooting media [perlite, perlite+sand (1:1), perlite+sand+soil (1:1:1)], different indole butyric acid (IBA) doses (control, 1000, 2000, 3000 and 4000 ppm) and different cutting thicknesses [thin (4-7 mm), medium (8-10 mm) and thick (10-12 mm)] on rooting and root qualities of 41B, 5BB and 420A American grapevine rootstocks adapted to Van region of Turkey. Within the scope of the study, rooting ratios (%), number of roots,...

  9. Download this PDF file

    African Journals Online (AJOL)

    sunny

    tion to soil: s crocorms, reg lius .... adjusted to pH 5.6 prior to adding 0.7% plant agar for solidifying the media. ... a week, or when the plants started showing signs of healthy growth, ..... the adventitious rooting of Eucalyptus species differing in.

  10. Measuring and Modeling Root Distribution and Root Reinforcement in Forested Slopes for Slope Stability Calculations

    Science.gov (United States)

    Cohen, D.; Giadrossich, F.; Schwarz, M.; Vergani, C.

    2016-12-01

    Roots provide mechanical anchorage and reinforcement of soils on slopes. Roots also modify soil hydrological properties (soil moisture content, pore-water pressure, preferential flow paths) via subsurface flow path associated with root architecture, root density, and root-size distribution. Interactions of root-soil mechanical and hydrological processes are an important control of shallow landslide initiation during rainfall events and slope stability. Knowledge of root-distribution and root strength are key components to estimate slope stability in vegetated slopes and for the management of protection forest in steep mountainous area. We present data that show the importance of measuring root strength directly in the field and present methods for these measurements. These data indicate that the tensile force mobilized in roots depends on root elongation (a function of soil displacement), root size, and on whether roots break in tension of slip out of the soil. Measurements indicate that large lateral roots that cross tension cracks at the scarp are important for slope stability calculations owing to their large tensional resistance. These roots are often overlooked and when included, their strength is overestimated because extrapolated from measurements on small roots. We present planned field experiments that will measure directly the force held by roots of different sizes during the triggering of a shallow landslide by rainfall. These field data are then used in a model of root reinforcement based on fiber-bundle concepts that span different spacial scales, from a single root to the stand scale, and different time scales, from timber harvest to root decay. This model computes the strength of root bundles in tension and in compression and their effect on soil strength. Up-scaled to the stand the model yields the distribution of root reinforcement as a function of tree density, distance from tree, tree species and age with the objective of providing quantitative

  11. Identification of Tobacco Topping Responsive Proteins in Roots

    Directory of Open Access Journals (Sweden)

    Hongxiang eGuo

    2016-04-01

    Full Text Available Tobacco plant has many responses to topping, such as the increase in ability of nicotine synthesis and secondary growth of roots. Some topping responsive miRNAs and genes had been identified in our previous work, but it is not enough to elaborate mechanism of tobacco response to topping. Here, topping responsive proteins were screened from tobacco roots with two-dimensional electrophoresis. Of these proteins, calretulin (CRT and Auxin-responsive protein IAA9 were related to the secondary growth of roots, LRR disease resistance, heat shock protein 70 and farnesyl pyrophosphate synthase 1(FPPS)were involved in wounding stress response, and F-box protein played an important role in promoting the ability of nicotine synthesis after topping. In addition, there were five tobacco bHLH proteins (NtbHLH, NtMYC1a, NtMYC1b, NtMYC2a and NtMYC2b related to nicotine synthesis. It was suggested that NtMYC2 might be the main positive transcription factor and NtbHLH protein is a negative regulator in the JA-mediating activation of nicotine synthesis after topping. Tobacco topping activates some comprehensive biology processes involving IAA and JA signaling pathway, and the identification of these proteins will be helpful to understand the process of topping response.

  12. Pectins, ROS homeostasis and UV-B responses in plant roots.

    Science.gov (United States)

    Yokawa, Ken; Baluška, František

    2015-04-01

    Light from the sun contains far-red, visible and ultra violet (UV) wavelength regions. Almost all plant species have been evolved under the light environment. Interestingly, several photoreceptors, expressing both in shoots and roots, process the light information during the plant life cycle. Surprisingly, Arabidopsis root apices express besides the UVR8 UV-B receptor, also root-specific UV-B sensing proteins RUS1 and RUS2 linked to the polar cell-cell transport of auxin. In this mini-review, we focus on reactive oxygen species (ROS) signaling and possible roles of pectins internalized via endocytic vesicle recycling system in the root-specific UV-B perception and ROS homeostasis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. An analysis of root cause identification and continuous quality improvement in public health H1N1 after-action reports.

    Science.gov (United States)

    Singleton, Christa-Marie; Debastiani, Summer; Rose, Dale; Kahn, Emily B

    2014-01-01

    To identify the extent to which the Homeland Security Exercise and Evaluation Program's (HSEEP) After Action Report/Improvement Plan (AAR/IP) template was followed by public health entities and facilitated the identification of detailed corrective actions and continuous improvement. Data were drawn from the US H1N1 Public Health Emergency Response (PHER) federal grant awardees (n = 62). After action report/improvement plan text was examined to identify the presence of AAR/IP HSEEP elements and characterized as "minimally complete," "partially complete," or "complete." Corrective actions (CA) and recommendations within the IP focusing on performance deficits were coded as specific, measurable, and time-bound, and whether they were associated with a problem that met root cause criteria and whether the CA/recommendation was intended to address or fix the root cause. A total of 2619 CA/recommendations were identified. More than half (n = 1480, 57%) addressed root causes. Corrective actions/recommendations associated with complete AARs more frequently addressed root cause (58% vs 51%, χ = 9.1, P < 0.003) and were more specific (34% vs 23%, χ = 32.3, P < 0.0001), measurable (30% vs 18%, χ = 37.9, P < 0.0001), and time-bound (38% vs 15%, χ = 115.5, P < 0.0001) than partially complete AARs. The same pattern was not observed with completeness of IPs. Corrective actions and recommendations were similarly specific and measurable. Recommendations significantly addressed root cause more than CAs. Our analysis indicates a possible lack of awardee distinction between CA and recommendations in AARs. As HSEEP adapts to align with the 2011 National Preparedness Goal and National Preparedness System, future HSEEP documents should emphasize the importance of root cause analysis as a required element within AAR documents and templates in the exercise and real incident environment, as well as the need for specific and measurable CAs.

  14. Developmental Functions of miR156-Regulated SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) Genes in Arabidopsis thaliana.

    Science.gov (United States)

    Xu, Mingli; Hu, Tieqiang; Zhao, Jianfei; Park, Mee-Yeon; Earley, Keith W; Wu, Gang; Yang, Li; Poethig, R Scott

    2016-08-01

    Correct developmental timing is essential for plant fitness and reproductive success. Two important transitions in shoot development-the juvenile-to-adult vegetative transition and the vegetative-to-reproductive transition-are mediated by a group of genes targeted by miR156, SQUAMOSA PROMOTER BINDING PROTEIN (SBP) genes. To determine the developmental functions of these genes in Arabidopsis thaliana, we characterized their expression patterns, and their gain-of-function and loss-of-function phenotypes. Our results reveal that SBP-LIKE (SPL) genes in Arabidopsis can be divided into three functionally distinct groups: 1) SPL2, SPL9, SPL10, SPL11, SPL13 and SPL15 contribute to both the juvenile-to-adult vegetative transition and the vegetative-to-reproductive transition, with SPL9, SP13 and SPL15 being more important for these processes than SPL2, SPL10 and SPL11; 2) SPL3, SPL4 and SPL5 do not play a major role in vegetative phase change or floral induction, but promote the floral meristem identity transition; 3) SPL6 does not have a major function in shoot morphogenesis, but may be important for certain physiological processes. We also found that miR156-regulated SPL genes repress adventitious root development, providing an explanation for the observation that the capacity for adventitious root production declines as the shoot ages. miR156 is expressed at very high levels in young seedlings, and declines in abundance as the shoot develops. It completely blocks the expression of its SPL targets in the first two leaves of the rosette, and represses these genes to different degrees at later stages of development, primarily by promoting their translational repression. These results provide a framework for future studies of this multifunctional family of transcription factors, and offer new insights into the role of miR156 in Arabidopsis development.

  15. Induction of mutation in Jujube (Zizyphus jujuba Mill) using tissue culture combined with {sup 60}Coγ-ray irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, H. R. [Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai (China); Liu, Z. C. [Shanghai Agrobiological Gene Center, Shanghai (China); Ye, Z. W.; Su, M. S.; Jin, Y. F.

    2009-05-15

    In vivo and in vitro mutagenesis techniques were assayed to explore effects of irradiation in jujube (Ziziphus jujuba Mill) improvement. {sup 60}Co γ-ray irradiated seeds and shoot tips of a land race of jujube originating in Shangdong province of China were micropropagated up to M{sub 1}V{sub 4} generation on MS basal medium containing 2 mg/L BA and 0.4 mg/L IBA. The rooting MS medium contained 1 mg/L BA and 0.6 mg/L IAA, ZEA 1 mg/L, 2, 4-D 0.5 mg/L, and NAA 0.5 mg/L in different combinations. Adventitious buds were also produced from irradiated calli derived from leaf and hypocotyl fragments and the elongated adventitious buds rooted in vitro prior to green house transfer. Different doses (20 to 900Gy) were tested for in vitro explants as well as the jujube kernels irradiation. Six types of leaf shape and seven types of fruit shape mutations were observed and different ripening characters and growth habits were recorded in the orchard on putatively mutated mature trees. Even though there is a need for confirmation and molecular characterization, these mutations may be considered as a new and powerful way for jujube improvement in order to develop genotypes with promising value added traits. (author)

  16. Degradation of Surfactants in Hydroponic Wheat Root Zones

    Science.gov (United States)

    Monje, Oscar; McCoy, Lashelle; Flanagan, Aisling

    Hygiene water recycling in recirculating hydroponic systems can be enhanced by plant roots by providing a substrate and root exudates for bacterial growth. However, reduced plant growth can occur during batch mode additions of high concentrations of surfactant. An analog hygiene water stream containing surfactants (Steol CS330, Mirataine CB) was added to a hydroponically-grown wheat plant root zone. The plants were grown at 700 mol mol-1 CO2, a photosynthetic photon flux of 300 mol m-2 s-1, and a planting density of 380 plants m-2. Volumetric oxygen mass transfer coefficients were determined using the fermentative/dynamic outgassing method to maintain adequate oxygen mass transfer rates in the root zone. This analysis suggested an optimal flow rate of the hydroponic solution of 5 L min-1. The hydroponic system was inoculated with biofilm from a bioreactor and rates of surfactant degradation were measured daily based on reduction in chemical oxygen demand (COD). The COD decreased from 400 to 100 mg L-1 after 2 days following batch addition of the analog hygiene water to the hydroponic system. Measurements of dissolved oxygen concentration and solution temperature suggest that the root zone was provided adequate aeration to meet both oxygen demands from plant and microbial respiration during the degradation of the surfactant. Results from this study show that hydroponic systems can be used to enhance rates of hygiene water processing.

  17. Characterization of Root and Shoot Traits in Wheat Cultivars with Putative Differences in Root System Size

    Directory of Open Access Journals (Sweden)

    Victoria Figueroa-Bustos

    2018-07-01

    Full Text Available Root system size is a key trait for improving water and nitrogen uptake efficiency in wheat (Triticum aestivum L.. This study aimed (i to characterize the root system and shoot traits of five wheat cultivars with apparent differences in root system size; (ii to evaluate whether the apparent differences in root system size observed at early vegetative stages in a previous semi-hydroponic phenotyping experiment are reflected at later phenological stages in plants grown in soil using large rhizoboxes. The five wheat cultivars were grown in a glasshouse in rhizoboxes filled to 1.0 m with field soil. Phenology and shoot traits were measured and root growth and proliferation were mapped to quantify root length density (RLD, root length per plant, root biomass and specific root length (SRL. Wheat cultivars with large root systems had greater root length, more root biomass and thicker roots, particularly in the top 40 cm, than those with small root systems. Cultivars that reached anthesis later had larger root system sizes than those that reached anthesis earlier. Later anthesis allowed more time for root growth and proliferation. Cultivars with large root systems had 25% more leaf area and biomass than those with small root systems, which presumably reflects high canopy photosynthesis to supply the demand for carbon assimilates to roots. Wheat cultivars with contrasting root system sizes at the onset of tillering (Z2.1 in a semi-hydroponic phenotyping system maintained their size ranking at booting (Z4.5 when grown in soil. Phenology, particularly time to anthesis, was associated with root system size.

  18. Evaluation and Comparison of the Position of the Apical Constriction in Single-root and Multiple-root Teeth

    Directory of Open Access Journals (Sweden)

    Alireza Farhad

    2017-12-01

    Full Text Available Introduction: Precise knowledge of the location of the apical constriction is essential to root canal treatment and long-term prognosis. Considering the differences in the apical constriction and size of the roots in single- and multiple-root teeth in various races, examination and comparison of the location of the apical constriction in single-root and multiple-root teeth are of paramount importance. The present studies aimed to measure and compare the distance of the apical constriction from the apical foramen and anatomical apex in single-root and multiple-root teeth. Materials and Methods: In this cross-sectional study, 60 roots of single-rooted teeth and 60 roots of multiple-rooted teeth were collected from the patients referring to the health centers in Isfahan, Iran. After cleansing and disinfecting the surface of the roots, the surface of the teeth was washed with hypochlorite. Based on the direction of the apical foramen, a longitudinal cut was made in the same direction, and the roots were examined microscopically at the magnification of 25. Following that, the distance of the apical constriction from the apical foramen and anatomical apex was measured using a digital camera. In addition, mean and standard deviation of the obtained distance values were determined. Distances in the single-root and multiple-root teeth were compared using independent t-test, at the significance level of Results: Mean distance between the apical constriction and apical foramen was 0.86±0.33 mm in the single-root teeth and 0.072±0.27 mm in the multiple-root teeth. Mean distance between the apical constriction and anatomical apex was 1.14±0.36 mm in the single-root teeth and 1.03±0.36 mm in the multiple-root teeth. Moreover, the results of independent t-test showed the distance of the apical constriction from the apical foramen to be significant between single-root and multiple-rooted teeth (P=0.013. However, the distance between the apical constriction

  19. Search for Randall-Sundrum gravitons in the dielectron and diphoton final states with 5.4  fb(-1) of data from pp collisions at square root(s) = 1.96  TeV.

    Science.gov (United States)

    Abazov, V M; Abbott, B; Abolins, M; Acharya, B S; Adams, M; Adams, T; Aguilo, E; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Ancu, L S; Aoki, M; Arnoud, Y; Arov, M; Askew, A; Asman, B; Atramentov, O; Avila, C; Backus Mayes, J; Badaud, F; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Barberis, E; Barfuss, A-F; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Beale, S; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Benitez, J A; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Blazey, G; Blessing, S; Bloom, K; Boehnlein, A; Boline, D; Bolton, T A; Boos, E E; Borissov, G; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Brown, D; Bu, X B; Buchholz, D; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Burnett, T H; Buszello, C P; Calfayan, P; Calpas, B; Calvet, S; Camacho-Pérez, E; Cammin, J; Carrasco-Lizarraga, M A; Carrera, E; Casey, B C K; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Chen, G; Chevalier-Théry, S; Cho, D K; Cho, S W; Choi, S; Choudhary, B; Christoudias, T; Cihangir, S; Claes, D; Clutter, J; Cooke, M S; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Croc, A; Cutts, D; Cwiok, M; Das, A; Davies, G; De, K; de Jong, S J; De la Cruz-Burelo, E; DeVaughan, K; Déliot, F; Demarteau, M; Demina, R; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Dominguez, A; Dorland, T; Dubey, A; Dudko, L V; Duggan, D; Duperrin, A; Dutt, S; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Eno, S; Evans, H; Evdokimov, A; Evdokimov, V N; Facini, G; Ferapontov, A V; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fortner, M; Fox, H; Fuess, S; Gadfort, T; Garcia-Bellido, A; Gavrilov, V; Gay, P; Geist, W; Geng, W; Gerbaudo, D; Gerber, C E; Gershtein, Y; Gillberg, D; Ginther, G; Golovanov, G; Goussiou, A; Grannis, P D; Greder, S; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guo, F; Guo, J; Gutierrez, G; Gutierrez, P; Haas, A; Haefner, P; Hagopian, S; Haley, J; Hall, I; Han, L; Harder, K; Harel, A; Hauptman, J M; Hays, J; Hebbeker, T; Hedin, D; Heinson, A P; Heintz, U; Hensel, C; Heredia-De la Cruz, I; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hoang, T; Hobbs, J D; Hoeneisen, B; Hohlfeld, M; Hossain, S; Houben, P; Hu, Y; Hubacek, Z; Huske, N; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jamin, D; Jesik, R; Johns, K; Johnson, C; Johnson, M; Johnston, D; Jonckheere, A; Jonsson, P; Juste, A; Kaadze, K; Kajfasz, E; Karmanov, D; Kasper, P A; Katsanos, I; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y N; Khatidze, D; Kirby, M H; Kirsch, M; Kohli, J M; Kozelov, A V; Kraus, J; Kumar, A; Kupco, A; Kurca, T; Kuzmin, V A; Kvita, J; Lammers, S; Landsberg, G; Lebrun, P; Lee, H S; Lee, W M; Lellouch, J; Li, L; Li, Q Z; Lietti, S M; Lim, J K; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Y; Liu, Z; Lobodenko, A; Lokajicek, M; Love, P; Lubatti, H J; Luna-Garcia, R; Lyon, A L; Maciel, A K A; Mackin, D; Madar, R; Magaña-Villalba, R; Mal, P K; Malik, S; Malyshev, V L; Maravin, Y; Martínez-Ortega, J; McCarthy, R; McGivern, C L; Meijer, M M; Melnitchouk, A; Menezes, D; Mercadante, P G; Merkin, M; Meyer, A; Meyer, J; Mondal, N K; Moulik, T; Muanza, G S; Mulhearn, M; Nagy, E; Naimuddin, M; Narain, M; Nayyar, R; Neal, H A; Negret, J P; Neustroev, P; Nilsen, H; Novaes, S F; Nunnemann, T; Obrant, G; Onoprienko, D; Orduna, J; Osman, N; Osta, J; Otero y Garzón, G J; Owen, M; Padilla, M; Pangilinan, M; Parashar, N; Parihar, V; Park, S-J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Penning, B; Perfilov, M; Peters, K; Peters, Y; Petrillo, G; Pétroff, P; Piegaia, R; Piper, J; Pleier, M-A; Podesta-Lerma, P L M; Podstavkov, V M; Pol, M-E; Polozov, P; Popov, A V; Prewitt, M; Price, D; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rangel, M S; Ranjan, K; Ratoff, P N; Razumov, I; Renkel, P; Rich, P; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Rominsky, M; Royon, C; Rubinov, P; Ruchti, R; Safronov, G; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Sanghi, B; Savage, G; Sawyer, L; Scanlon, T; Schaile, D; Schamberger, R D; Scheglov, Y; Schellman, H; Schliephake, T; Schlobohm, S; Schwanenberger, C; Schwienhorst, R; Sekaric, J; Severini, H; Shabalina, E; Shary, V; Shchukin, A A; Shivpuri, R K; Simak, V; Sirotenko, V; Skubic, P; Slattery, P; Smirnov, D; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Spurlock, B; Stark, J; Stolin, V; Stoyanova, D A; Strang, M A; Strauss, E; Strauss, M; Ströhmer, R; Strom, D; Stutte, L; Svoisky, P; Takahashi, M; Tanasijczuk, A; Taylor, W; Tiller, B; Titov, M; Tokmenin, V V; Tsybychev, D; Tuchming, B; Tully, C; Tuts, P M; Unalan, R; Uvarov, L; Uvarov, S; Uzunyan, S; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Verdier, P; Vertogradov, L S; Verzocchi, M; Vesterinen, M; Vilanova, D; Vint, P; Vokac, P; Wahl, H D; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weber, G; Weber, M; Wetstein, M; White, A; Wicke, D; Williams, M R J; Wilson, G W; Wimpenny, S J; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Xu, C; Yacoob, S; Yamada, R; Yang, W-C; Yasuda, T; Yatsunenko, Y A; Ye, Z; Yin, H; Yip, K; Yoo, H D; Youn, S W; Yu, J; Zelitch, S; Zhao, T; Zhou, B; Zhou, N; Zhu, J; Zielinski, M; Zieminska, D; Zivkovic, L

    2010-06-18

    Using 5.4  fb(-1) of integrated luminosity from pp collisions at square root(s)=1.96  TeV collected by the D0 detector at the Fermilab Tevatron Collider, we search for decays of the lightest Kaluza-Klein mode of the graviton in the Randall-Sundrum model to ee and γγ. We set 95% C.L. lower limits on the mass of the lightest graviton between 560 and 1050 GeV for values of the coupling k/M(Pl) between 0.01 and 0.1.

  20. Cytoplasm localization of aminopeptidase M1 and its functional activity in root hair cells and BY-2 cells.

    Science.gov (United States)

    Lee, Ok Ran; Cho, Hyung-Taeg

    2012-12-01

    Aminopeptidase M1 (APM1) was the first M1 metallopeptidase family member identified in Arabidopsis, isolated by its affinity for the auxin transport inhibitor N-1-naphthylphthalamic acid (NPA). A loss-of-function mutation showed various developmental defects in cell division and auxin transport. APM1 was shown to be localized in endomembrane structures, the cytoplasm, and the plasma membrane. These previous results suggested that APM1 has diverse functional roles in different cell and tissue types. Here we report that APM1 localized to the cytoplasm, and its over-expression in the root hair cell caused longer root hair phenotypes. Treatment of aminopeptidase inhibitors caused internalization of auxin efflux PIN-FORMED proteins in root hair cells and suppressed short root hair phenotype of PIN3 overexpression line (PIN3ox). APM1 also localized to the cytoplasm in tobacco BY-2 cells, its over-expression had little effect on auxin transport in these cells.

  1. Primary root protophloem differentiation requires balanced phosphatidylinositol-4,5-biphosphate levels and systemically affects root branching.

    Science.gov (United States)

    Rodriguez-Villalon, Antia; Gujas, Bojan; van Wijk, Ringo; Munnik, Teun; Hardtke, Christian S

    2015-04-15

    Protophloem is a specialized vascular tissue in growing plant organs, such as root meristems. In Arabidopsis mutants with impaired primary root protophloem differentiation, brevis radix (brx) and octopus (ops), meristematic activity and consequently overall root growth are strongly reduced. Second site mutation in the protophloem-specific presumed phosphoinositide 5-phosphatase cotyledon vascular pattern 2 (CVP2), but not in its homolog CVP2-like 1 (CVL1), partially rescues brx defects. Consistent with this finding, CVP2 hyperactivity in a wild-type background recreates a brx phenotype. Paradoxically, however, while cvp2 or cvl1 single mutants display no apparent root defects, the root phenotype of cvp2 cvl1 double mutants is similar to brx or ops, although, as expected, cvp2 cvl1 seedlings contain more phosphatidylinositol-4,5-biphosphate. Thus, tightly balanced phosphatidylinositol-4,5-biphosphate levels appear essential for proper protophloem differentiation. Genetically, OPS acts downstream of phosphatidylinositol-4,5-biphosphate levels, as cvp2 mutation cannot rescue ops defects, whereas increased OPS dose rescues cvp2 cvl1 defects. Finally, all three mutants display higher density and accelerated emergence of lateral roots, which correlates with increased auxin response in the root differentiation zone. This phenotype is also created by application of peptides that suppress protophloem differentiation, clavata3/embryo surrounding region 26 (CLE26) and CLE45. Thus, local changes in the primary root protophloem systemically shape overall root system architecture. © 2015. Published by The Company of Biologists Ltd.

  2. New solutions of the Yang-Baxter equation based on root of 1 representations of the Para-Bose superalgebra Uq[osp(1/2)

    International Nuclear Information System (INIS)

    Palev, T.D.; Stoilova, N.I.

    1995-07-01

    New solutions of the quantum Yang-Baxter equation, depending in general on three arbitrary parameters, are written down. They are based on the root of unity representations of the quantum orthosymplectic superalgebra U q [osp(1/2)], which were found recently. Representations of the braid group B N are defined within any N th tensorial power of root of 1 U q [osp(1/2)] modules. (author). 40 refs

  3. Pea-root exudates and their effect upon root-nodule bacteria

    NARCIS (Netherlands)

    Egeraat, van A.W.S.M.

    1972-01-01

    The main purpose of this investigation was to study the exudation (mechanism, sites) of various compounds by roots of pea seedlings in relation to the growth of Rhizobium leguminosarum.

    Chapter 1 gives a survey of the literature pertaining to plant-root

  4. Shoot-supplied ammonium targets the root auxin influx carrier AUX1 and inhibits lateral root emergence in Arabidopsis

    KAUST Repository

    Li, Baohai; Li, Qing; Su, Yanhua; Chen, Hao; Xiong, Liming; Mi, Guohua; Kronzucker, Herbert J.; Shi, Weiming

    2011-01-01

    . In this study, we show that SSA significantly affects lateral root (LR) development. We show that SSA inhibits lateral root primordium (LRP) emergence, but not LRP initiation, resulting in significantly impaired LR number. We show that the inhibition

  5. ABNORMAL INFLORESCENCE MERISTEM1 Functions in Salicylic Acid Biosynthesis to Maintain Proper Reactive Oxygen Species Levels for Root Meristem Activity in Rice.

    Science.gov (United States)

    Xu, Lei; Zhao, Hongyu; Ruan, Wenyuan; Deng, Minjuan; Wang, Fang; Peng, Jinrong; Luo, Jie; Chen, Zhixiang; Yi, Keke

    2017-03-01

    Root meristem activity determines root growth and root architecture and consequently affects water and nutrient uptake in plants. However, our knowledge about the regulation of root meristem activity in crop plants is very limited. Here, we report the isolation and characterization of a short root mutant in rice ( Oryza sativa ) with reduced root meristem activity. This root growth defect is caused by a mutation in ABNORMAL INFLORESCENCE MERISTEM1 ( AIM1 ), which encodes a 3-hydroxyacyl-CoA dehydrogenase, an enzyme involved in β-oxidation. The reduced root meristem activity of aim1 results from reduced salicylic acid (SA) levels and can be rescued by SA application. Furthermore, reduced SA levels are associated with reduced levels of reactive oxygen species (ROS) in aim1 , likely due to increased expression of redox and ROS-scavenging-related genes, whose increased expression is (at least in part) caused by reduced expression of the SA-inducible transcriptional repressors WRKY62 and WRKY76. Like SA, ROS application substantially increased root length and root meristem activity in aim1 These results suggest that AIM1 is required for root growth in rice due to its critical role in SA biosynthesis: SA maintains root meristem activity through promoting ROS accumulation by inducing the activity of WRKY transcriptional repressors, which repress the expression of redox and ROS-scavenging genes. © 2017 American Society of Plant Biologists. All rights reserved.

  6. Are Current Accounts of Asian Economies Mean-reverting?: Nonlinear Unit Root Test Approach

    Directory of Open Access Journals (Sweden)

    Bonghan Kim

    2005-12-01

    Full Text Available This paper tests the mean reverting property of current account in the financial crisis-affected 5 counties of southeast Asia using nonlinear unit root tests of Park and shintani(2004. Our approach is based on the idea that a conventional unit root test has lower power in detecting the nonlinear mean reverting behavior if the current account follows a nonlinear mean reversion process. We obtained following empirical results. First, for the pre-crisis period (1981Q1-1996Q4, the current accounts of Indonesia, Malaysia and Philippines are mean-reverting but those of Korea and Thailand are not mean-reverting. Second, for the full sample period (1981Q1-2003Q4, the ADF test fails to reject the unit root of the current account in all countries except Philippines. However, unit root is rejected in favor of nonlinear mean reversion except Thailand. This nonlinear unit root test result implies that crisis-affected Asian countries except Thailand have sustainable paths of current accounts. Third, when the current accounts of East Asian countries are nonlinear mean-reverting, the mean reverting process can be well described by the ESTAR model, instead of the DTAR or DLSTAR model. The nonlinear unit root test results imply smooth nonlinear mean-reversion behaviors of East Asian current accounts. Finally, the shape of estimated impulse response functions becomes steeper as the size of shock increases, which is the very characteristic of the nonlinear process.

  7. Immediate, non-submerged, root-analogue direct laser metal sintering (DLMS) implants: a 1-year prospective study on 15 patients.

    Science.gov (United States)

    Mangano, Francesco Guido; De Franco, Michele; Caprioglio, Alberto; Macchi, Aldo; Piattelli, Adriano; Mangano, Carlo

    2014-07-01

    This study evaluated the 1-year survival and success rate of root-analogue direct laser metal sintering (DLMS) implants, placed into the extraction sockets of 15 patients. DLMS is a technology which allows solids with complex geometry to be fabricated by annealing metal powder microparticles in a focused laser beam, according to a computer-generated three-dimensional (3D) model; the fabrication process involves the laser-induced fusion of titanium microparticles, in order to build, layer-by-layer, the desired object. Cone-beam computed tomography (CBCT) acquisition and 3D image conversion, combined with the DLMS process, allow the fabrication of custom-made, root-analogue implants (RAIs). CBCT images of 15 non-restorable premolars (eight maxilla; seven mandible) were acquired and transformed into 3D models: from these, custom-made, root-analogue DLMS implants with integral abutment were fabricated. Immediately after tooth extraction, the RAIs were placed in the sockets and restored with a single crown. One year after implant placement, clinical and radiographic parameters were assessed: success criteria included absence of pain, suppuration, and exudation; absence of implant mobility and absence of continuous peri-implant radiolucency; distance between the implant shoulder and the first visible bone-to-implant contact <1.5 mm from initial surgery; and absence of prosthetic complications. At the 1-year follow-up, no implants were lost, for a survival rate of 100 %. All implants were stable, with no signs of infection. The good conditions of the peri-implant tissues were confirmed by the radiographic examination, with a mean DIB of 0.7 mm (±0.2). The possibility of fabricating custom-made, RAI DLMS implants opens new interesting horizons for immediate placement of dental implants.

  8. Propagation of goldenrod (Solidago canadensis L. from leaf and nodal explants

    Directory of Open Access Journals (Sweden)

    Jun Li

    2012-02-01

    Full Text Available Goldenrod (Solidago canadensis L. is an invasive plant species in many countries except North America but a cut-flower species worldwide. There is a need to generate and propagate goldenrod clones efficiently for research and commercial purposes. A callus induction and plantlet regeneration system was developed by studying the influence of explant type and different concentrations of plant growth regulators. The highest callus production from leaf segments was obtained on Murashige and Skoog’s medium (MS medium supplemented with 1.0 mg/L naphthalene acetic acid (NAA and 1.0 mg/L 6-benzylaminopurine (BA. Adventitious shoots could be regenerated directly from leaf explants without an intermediate callus phase with the highest shoot induction percentage of 87.2%. The largest number of adventitious shoots per leaf explant (3.2 was obtained on MS medium supplemented with 0.4 mg/L NAA and 2.0 mg/L BA. MS medium supplemented with 0.1 mg/L NAA and 1.0 mg/L BA was the best medium for axillary shoot regeneration from nodal segments. The highest root number and longest roots occurred on half-strength MS without the addition of any growth regulator. Rooted plantlets were then transferred to a soil-based growth medium, placed in a greenhouse, and acclimatized with 100% success. All surviving plants grew normally without showing any morphological varia­tion when compared to those grow from seed. This regeneration protocol may be used to produce certain biotypes of goldenrod suitable for genetic transformation rapid propagation of goldenrod for commercial purposes or for screening fungi and toxins as potential biocontrol agents against this weed.

  9. Analysis of gene expression in the outer cell layers of Arabidopsis roots during lateral root development

    NARCIS (Netherlands)

    Veth-Tello, Luz Marina

    2005-01-01

    Lateral roots are an important means for the plant to increase its absorptive area and the volume of substrate exploited. Lateral roots originate in the pericycle, the outermost layer of the vascular cylinder, and by growing penetrate the overlaying cell layers before emergence. This process is

  10. Respiração e produção de etileno em beterrabas inteiras e minimamente processadas submetidas a tratamentos com etileno e biorreguladores Respiratory rate and ethylene production of whole and minimally processed beet roots submitted to ethylene and bioregulators treatments

    Directory of Open Access Journals (Sweden)

    Ricardo Alfredo Kluge

    2010-03-01

    Full Text Available Verificou-se o efeito do etileno e de biorreguladores sobre a atividade respiratória e a síntese de etileno em beterrabas minimamente processadas e inteiras. Para o processamento mínimo, as raízes foram selecionadas quanto à firmeza, cor e tamanho, descascadas, sanificadas, sendo em seguida cortadas em fatias (2 mm de espessura, enxaguadas e centrifugadas. Os tratamentos aplicados foram: etileno (1000 µL L-1, 1-metilciclopropeno (300 nL L-1 e ácido salicílico (500 mg L-1. Após os tratamentos, as beterrabas foram embaladas e armazenadas a 5±1ºC e 85±5% UR durante 10 dias. Observou-se que o ácido salicílico promoveu a diminuição da atividade respiratória do produto minimamente processado durante o armazenamento. Além disso, verificou-se que a resposta fisiológica de beterraba minimamente processada é diferente de beterraba inteira, o que foi comprovada ao se analisar a atividade respiratória e a produção de etileno, que foram significativamente maiores no produto minimamente processado.The objective of this work was to evaluate the effects of ethylene and bioregulators on the respiratory activity and ethylene synthesis of minimally processed and whole beet roots. For the minimal processing, beet roots were graded for firmness, color and size, and were peeled. Roots were then sanitized, shredded (2 mm thick, rinsed and centrifuged. The following treatments were applied: ethylene (1000 µL L-1, 1-methylciclopropene (300 nL L-1 and salicylic acid (500 mg L-1. After treatments, beet roots were packed and stored at 5±1 ºC and 85±5% RH during 10 days. It was observed that salicylic acid use promoted the decrease of respiratory rates of minimally processed beet roots during all storage time. It was also noted difference between whole and minimally processed beet roots physiology. This difference was observed by the high values of respiratory activity and ethylene production rates in the minimally processed beet roots.

  11. Rhizobial infection in Adesmia bicolor (Fabaceae) roots.

    Science.gov (United States)

    Bianco, Luciana

    2014-09-01

    The native legume Adesmia bicolor shows nitrogen fixation efficiency via symbiosis with soil rhizobia. The infection mechanism by means of which rhizobia infect their roots has not been fully elucidated to date. Therefore, the purpose of the present study was to identify the infection mechanism in Adesmia bicolor roots. To this end, inoculated roots were processed following conventional methods as part of our root anatomy study, and the shape and distribution of root nodules were analyzed as well. Neither root hairs nor infection threads were observed in the root system, whereas infection sites-later forming nodules-were observed in the longitudinal sections. Nodules were found to form between the main root and the lateral roots. It can be concluded that in Adesmia bicolor, a bacterial crack entry infection mechanism prevails and that such mechanism could be an adaptive strategy of this species which is typical of arid environments.

  12. Tolerance of Hordeum marinum accessions to O2 deficiency, salinity and these stresses combined

    Science.gov (United States)

    Malik, Al Imran; English, Jeremy Parker; Colmer, Timothy David

    2009-01-01

    Background and Aims When root-zone O2 deficiency occurs together with salinity, regulation of shoot ion concentrations is compromised even more than under salinity alone. Tolerance was evaluated amongst 34 accessions of Hordeum marinum, a wild species in the Triticeae, to combined salinity and root-zone O2 deficiency. Interest in H. marinum arises from the potential to use it as a donor for abiotic stress tolerance into wheat. Methods Two batches of 17 H. marinum accessions, from (1) the Nordic Gene Bank and (2) the wheat belt of Western Australia, were exposed to 0·2 or 200 mol m−3 NaCl in aerated or stagnant nutrient solution for 28–29 d. Wheat (Triticum aestivum) was included as a sensitive check species. Growth, root porosity, root radial O2 loss (ROL) and leaf ion (Na+, K+, Cl−) concentrations were determined. Key Results Owing to space constraints, this report is focused mainly on the accessions from the Nordic Gene Bank. The 17 accessions varied in tolerance; relative growth rate was reduced by 2–38 % in stagnant solution, by 8–42 % in saline solution (aerated) and by 39–71 % in stagnant plus saline treatment. When in stagnant solution, porosity of adventitious roots was 24–33 %; salinity decreased the root porosity in some accessions, but had no effect in others. Roots grown in stagnant solution formed a barrier to ROL, but variation existed amongst accessions in apparent barrier ‘strength’. Leaf Na+ concentration was 142–692 µmol g−1 d. wt for plants in saline solution (aerated), and only increased to 247–748 µmol g−1 d. wt in the stagnant plus saline treatment. Leaf Cl− also showed only small effects of stagnant plus saline treatment, compared with saline alone. In comparison with H. marinum, wheat was more adversely affected by each stress alone, and particularly when combined; growth reductions were greater, adventitious root porosity was 21 %, it lacked a barrier to ROL, leaf K+ declined to lower levels, and leaf Na+ and

  13. Untangling the effects of root age and tissue nitrogen on root respiration in Populus tremuloides at different nitrogen supply.

    Science.gov (United States)

    Ceccon, Christian; Tagliavini, Massimo; Schmitt, Armin Otto; Eissenstat, David M

    2016-05-01

    Root respiration is a major contributor to terrestrial carbon flux. Many studies have shown root respiration to increase with an increase in root tissue nitrogen (N) concentration across species and study sites. Studies have also shown that both root respiration and root N concentration typically decrease with root age. The effects of added N may directly increase respiration of existing roots or may affect respiration by shifting the age structure of a root population by stimulating growth. To the best of our knowledge, no study has ever examined the effect of added N as a function of root age on root respiration. In this study, root respiration of 13-year-old Populus tremuloides Michx. trees grown in the field and 1-year-old P. tremuloides seedlings grown in containers was analyzed for the relative influence of root age and root N concentration independent of root age on root respiration. Field roots were first tracked using root windows and then sampled at known age. Nitrogen was either applied or not to small patches beneath the windows. In a pot experiment, each plant was grown with its root system split between two separate pots and N was applied at three different levels, either at the same or at different rates between pots. Root N concentration ranged between 1.4 and 1.7% in the field experiment and 1.8 and 2.6% in the seedling experiment. We found that addition of N increased root N concentration of only older roots in the field but of roots of all ages in the potted seedlings. In both experiments, the age-dependent decline in root respiration was largely consistent, and could be explained by a negative power function. Respiration decreased ∼50% by 3 weeks of age. Although root age was the dominant factor affecting respiration in both experiments, in the field experiment, root N also contributed to root respiration independent of root age. These results add further insight into respiratory responses of roots to N addition and mechanisms underlying the

  14. Sorghum root-system classification in contrasting P environments reveals three main rooting types and root-architecture-related marker-trait associations.

    Science.gov (United States)

    Parra-Londono, Sebastian; Kavka, Mareike; Samans, Birgit; Snowdon, Rod; Wieckhorst, Silke; Uptmoor, Ralf

    2018-02-12

    Roots facilitate acquisition of macro- and micronutrients, which are crucial for plant productivity and anchorage in the soil. Phosphorus (P) is rapidly immobilized in the soil and hardly available for plants. Adaptation to P scarcity relies on changes in root morphology towards rooting systems well suited for topsoil foraging. Root-system architecture (RSA) defines the spatial organization of the network comprising primary, lateral and stem-derived roots and is important for adaptation to stress conditions. RSA phenotyping is a challenging task and essential for understanding root development. In this study, 19 traits describing RSA were analysed in a diversity panel comprising 194 sorghum genotypes, fingerprinted with a 90-k single-nucleotide polymorphism (SNP) array and grown under low and high P availability. Multivariate analysis was conducted and revealed three different RSA types: (1) a small root system; (2) a compact and bushy rooting type; and (3) an exploratory root system, which might benefit plant growth and development if water, nitrogen (N) or P availability is limited. While several genotypes displayed similar rooting types in different environments, others responded to P scarcity positively by developing more exploratory root systems, or negatively with root growth suppression. Genome-wide association studies revealed significant quantitative trait loci (P root-system development on chromosomes SBI-02 and SBI-03. Sorghum genotypes with a compact, bushy and shallow root system provide potential adaptation to P scarcity in the field by allowing thorough topsoil foraging, while genotypes with an exploratory root system may be advantageous if N or water is the limiting factor, although such genotypes showed highest P uptake levels under the artificial conditions of the present study. © The Author(s) 2018. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. In vitro plant regeneration from leaf explants of Solanum pimpinellifolium L.

    Directory of Open Access Journals (Sweden)

    Shirley Valderrama-Alfaro

    2011-01-01

    Full Text Available Tomato is a species of agricultural importance. Besides, it is a source of vitamins, minerals and antioxidant compounds. Therefore it is essential to obtain varieties resistant to diseases. Solanum pimpinellifolium L. ‘Tomatillo wild’, one of the wild relatives of tomato, is considered multipurpose reservoir of genes. This characteristic must be exploited. In vitro plantlets from leaves of ‘wild tomatillo’ were regenerated with this objective. A system for in vitro germination of seeds obtained from ex vitro sources was created. The use of seed allowed obtaining adequate seedlings in a short time to start regeneration. Thein vitro response of explants was evaluated in four treatments. The Murashige and Skoog (MS basal culture medium supplemented with a-naphthaleneacetic acid (NAA and 6-benzyl aminopurine (BAP was used in different combinations. The higher percentage (30% of shoot induction was achieved with 0.1 mg l1 NAA / 1 mg l1 BAP. The presence of callus and roots was observed after seven days of culture in the combination treatment with 1 mg l1 NAA / 0.1 mg l1 BAP. Callus showed 1 or 2 adventitious shoots per explant after 30 days of culture and 3 to 6 shoots after seventy days. Furthermore, the presence of fully formed adventitious plantlets (shoot and root was observed after the fifth week of culture. Therefore, the best combination for in vitro regeneration is NAA 0.1 mg l1 / 1 mg l1 BAP. Keywords: auxin, cytokinins, indirect organogenesis

  16. Missing links in the root-soil organic matter continuum

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Sarah L. [Argonne National Laboratory (ANL); Iversen, Colleen M [ORNL

    2009-01-01

    The soil environment remains one of the most complex and poorly understood research frontiers in ecology. Soil organic matter (SOM), which spans a continuum from fresh detritus to highly processed, mineral-associated organic matter, is the foundation of sustainable terrestrial ecosystems. Heterogeneous SOM pools are fueled by inputs from living and dead plants, driven by the activity of micro- and mesofauna, and are shaped by a multitude of abiotic factors. The specialization required to measure unseen processes that occur on a wide range of spatial and temporal scales has led to the partitioning of soil ecology research across several disciplines. In the organized oral session 'Missing links in the root-soil organic matter continuum' at the annual Ecological Society of America meeting in Albuquerque, NM, USA, we joined the call for greater communication and collaboration among ecologists who work at the root-soil interface (e.g. Coleman, 2008). Our goal was to bridge the gap between scientific disciplines and to synthesize disconnected pieces of knowledge from root-centric and soil-centric studies into an integrated understanding of belowground ecosystem processes. We focused this report around three compelling themes that arose from the session: (1) the influence of the rhizosphere on SOM cycling, (2) the role of soil heterotrophs in driving the transformation of root detritus to SOM, and (3) the controlling influence of the soil environment on SOM dynamics. We conclude with a discussion of new approaches for gathering data to bridge gaps in the root-SOM continuum and to inform the next generation of ecosystem models. Although leaf litter has often been considered to be the main source of organic inputs to soil, Ann Russell synthesized a convincing body of work demonstrating that roots, rather than surface residues, control the accumulation of SOM in a variety of ecosystems. Living roots, which are chemically diverse and highly dynamic, also influence a

  17. ROOT HYDRAULIC CONDUCTIVITY AND PHOTOSYNTHETIC CAPACITY OF EUCALYPT CLONAL CUTTINGS WITH ROOT MALFORMATION INDUCTIONS

    Directory of Open Access Journals (Sweden)

    Fábio Afonso Mazzei Moura de Assis Figueiredo

    2014-06-01

    Full Text Available http://dx.doi.org/10.5902/1980509814566The gain reduction of wood biomass in trees has been assigned to root deformations even in the nursery phase. The objective of this work was the evaluation of the root system hydraulic conductivity, gas exchanges and photochemical efficiency of eucalypt clonal cuttings with and without root deformation inductions. The treatments were: 1 operational cuttings without root malformation inductions (grown according to the used methodology of Fibria Cellulose S.A.; 2 root deformation inductions. These inductions did not promote decrease in the root volume. However, the deformations brought reduction of the root system hydraulic conductivity. Lower photosynthetic rates were also observed along the day in the cuttings in the root deformed cuttings. This decreasing rate is connected to stomatal and non stomatal factors.

  18. Differential effects of fine root morphology on water dynamics in the root-soil interface

    Science.gov (United States)

    DeCarlo, K. F.; Bilheux, H.; Warren, J.

    2017-12-01

    Soil water uptake form plants, particularly in the rhizosphere, is a poorly understood question in the plant and soil sciences. Our study analyzed the role of belowground plant morphology on soil structural and water dynamics of 5 different plant species (juniper, grape, maize, poplar, maple), grown in sandy soils. Of these, the poplar system was extended to capture drying dynamics. Neutron radiography was used to characterize in-situ dynamics of the soil-water-plant system. A joint map of root morphology and soil moisture was created for the plant systems using digital image processing, where soil pixels were connected to associated root structures via minimum distance transforms. Results show interspecies emergent behavior - a sigmoidal relationship was observed between root diameter and bulk/rhizosphere soil water content difference. Extending this as a proxy for extent of rhizosphere development with root age, we observed a logistic growth pattern for the rhizosphere: minimal development in the early stages is superceded by rapid onset of rhizosphere formation, which then stabilizes/decays with the likely root suberization. Dynamics analysis of water content differences between the root/rhizosphere, and rhizosphere/bulk soil interface highlight the persistently higher water content in the root at all water content and root size ranges. At the rhizosphere/bulk soil interface, we observe a shift in soil water dynamics by root size: in super fine roots, we observe that water content is primarily lower in the rhizosphere under wetter conditions, which then gradually increases to a relatively higher water content under drier conditions. This shifts to a persistently higher rhizosphere water content relative to bulk soil in both wet/dry conditions with increased root size, suggesting that, by size, the finest root structures may contribute the most to total soil water uptake in plants.

  19. Root cause investigation of a viral contamination incident occurred during master cell bank (MCB) testing and characterization--a case study.

    Science.gov (United States)

    Chen, Dayue; Nims, Raymond; Dusing, Sandra; Miller, Pamela; Luo, Wen; Quertinmont, Michelle; Parekh, Bhavin; Poorbaugh, Josh; Boose, Jeri Ann; Atkinson, E Morrey

    2008-11-01

    An adventitious agent contamination occurred during a routine 9 CFR bovine viral screening test at BioReliance for an Eli Lilly Chinese Hamster Ovary (CHO) cell-derived Master Cell Bank (MCB) intended for biological production. Scientists from the sponsor (Eli Lilly and Company) and the testing service company (BioReliance) jointly conducted a systematic investigation in an attempt to determine the root cause of the contamination. Our investigation resulted in the identification of the viral nature of the contaminant. Subsequent experiments indicated that the viral contaminant was a non-enveloped and non-hemadsorbing virus. Transmission electron microscopy (TEM) revealed that the viral contaminant was 25-30 nm in size and morphologically resembled viruses of the family Picornaviridae. The contaminant virus was readily inactivated when exposed to acidic pH, suggesting that the viral contaminant was a member of rhinoviruses. Although incapable of infecting CHO cells, the viral contaminant replicated efficiently in Vero cell with a life cycle of approximately 16 h. Our investigation provided compelling data demonstrating that the viral contaminant did not originate from the MCB. Instead, it was introduced into the process during cell passaging and a possible entry point was proposed. We identified the viral contaminant as an equine rhinitis A virus using molecular cloning and DNA sequencing. Finally, our investigation led us to conclude that the source of the viral contaminant was the equine serum added to the cell growth medium in the 9 CFR bovine virus test.

  20. Enhancement of ginsenoside Rg(1) in Panax ginseng hairy root by overexpressing the α-L-rhamnosidase gene from Bifidobacterium breve.

    Science.gov (United States)

    Zhang, Ru; Zhang, Bian-Ling; Li, Gu-Cai; Xie, Tao; Hu, Teng; Luo, Zhi-Yong

    2015-10-01

    To improve the production of ginsenoside Rg1 in Panax ginseng. The α-L-rhamnosidase gene from Bifidobacterium breve (BbRha) was overexpressed into hairy root culture system using Agrobacterium rhizogenes A4. Ginsenoside Rg1 in hairy roots was obtained following transformation via overexpressed gene representing 2.2-fold higher than those of control lines. Several overexpression transgenic hairy root lines were obtained exhibiting markedly increased levels of the corresponding α-L-rhamnosidase enzymatic activity relative to control. Ginsenoside Rg1 levels in the transgenic lines were higher (2.2-fold) than those of control after following 30 days culturing, while ginsenoside Re contents in tested transgenic lines were found to be lower. The transgenic hairy roots harboring α-L-rhamnosidase gene improved the accumulation of ginsenoside Rg1 up to 3.6 mg g(-1) dry weight. BbRha gene selectively enhances the production of ginsenoside Rg1 in P. ginseng hairy roots.