WorldWideScience

Sample records for advective-diffusive heat transfer

  1. Advective-diffusive mass transfer in fractured porous media with variable rock matrix block size.

    Science.gov (United States)

    Sharifi Haddad, Amin; Hassanzadeh, Hassan; Abedi, Jalal

    2012-05-15

    Traditional dual porosity models do not take into account the effect of matrix block size distribution on the mass transfer between matrix and fracture. In this study, we introduce the matrix block size distributions into an advective-diffusive solute transport model of a divergent radial system to evaluate the mass transfer shape factor, which is considered as a first-order exchange coefficient between the fracture and matrix. The results obtained lead to a better understanding of the advective-diffusive mass transport in fractured porous media by identifying two early and late time periods of mass transfer. Results show that fractured rock matrix block size distribution has a great impact on mass transfer during early time period. In addition, two dimensionless shape factors are obtained for the late time, which depend on the injection flow rate and the distance of the rock matrix from the injection point.

  2. New complex variable meshless method for advection-diffusion problems

    Institute of Scientific and Technical Information of China (English)

    Wang Jian-Fei; Cheng Yu-Min

    2013-01-01

    In this paper,an improved complex variable meshless method (ICVMM) for two-dimensional advection-diffusion problems is developed based on improved complex variable moving least-square (ICVMLS) approximation.The equivalent functional of two-dimensional advection-diffusion problems is formed,the variation method is used to obtain the equation system,and the penalty method is employed to impose the essential boundary conditions.The difference method for two-point boundary value problems is used to obtain the discrete equations.Then the corresponding formulas of the ICVMM for advection-diffusion problems are presented.Two numerical examples with different node distributions are used to validate and investigate the accuracy and efficiency of the new method in this paper.It is shown that ICVMM is very effective for advection-diffusion problems,and has a good convergent character,accuracy,and computational efficiency.

  3. Lattice Boltzmann method for the fractional advection-diffusion equation.

    Science.gov (United States)

    Zhou, J G; Haygarth, P M; Withers, P J A; Macleod, C J A; Falloon, P D; Beven, K J; Ockenden, M C; Forber, K J; Hollaway, M J; Evans, R; Collins, A L; Hiscock, K M; Wearing, C; Kahana, R; Villamizar Velez, M L

    2016-04-01

    Mass transport, such as movement of phosphorus in soils and solutes in rivers, is a natural phenomenon and its study plays an important role in science and engineering. It is found that there are numerous practical diffusion phenomena that do not obey the classical advection-diffusion equation (ADE). Such diffusion is called abnormal or superdiffusion, and it is well described using a fractional advection-diffusion equation (FADE). The FADE finds a wide range of applications in various areas with great potential for studying complex mass transport in real hydrological systems. However, solution to the FADE is difficult, and the existing numerical methods are complicated and inefficient. In this study, a fresh lattice Boltzmann method is developed for solving the fractional advection-diffusion equation (LabFADE). The FADE is transformed into an equation similar to an advection-diffusion equation and solved using the lattice Boltzmann method. The LabFADE has all the advantages of the conventional lattice Boltzmann method and avoids a complex solution procedure, unlike other existing numerical methods. The method has been validated through simulations of several benchmark tests: a point-source diffusion, a boundary-value problem of steady diffusion, and an initial-boundary-value problem of unsteady diffusion with the coexistence of source and sink terms. In addition, by including the effects of the skewness β, the fractional order α, and the single relaxation time τ, the accuracy and convergence of the method have been assessed. The numerical predictions are compared with the analytical solutions, and they indicate that the method is second-order accurate. The method presented will allow the FADE to be more widely applied to complex mass transport problems in science and engineering.

  4. Lattice Boltzmann method for the fractional advection-diffusion equation

    Science.gov (United States)

    Zhou, J. G.; Haygarth, P. M.; Withers, P. J. A.; Macleod, C. J. A.; Falloon, P. D.; Beven, K. J.; Ockenden, M. C.; Forber, K. J.; Hollaway, M. J.; Evans, R.; Collins, A. L.; Hiscock, K. M.; Wearing, C.; Kahana, R.; Villamizar Velez, M. L.

    2016-04-01

    Mass transport, such as movement of phosphorus in soils and solutes in rivers, is a natural phenomenon and its study plays an important role in science and engineering. It is found that there are numerous practical diffusion phenomena that do not obey the classical advection-diffusion equation (ADE). Such diffusion is called abnormal or superdiffusion, and it is well described using a fractional advection-diffusion equation (FADE). The FADE finds a wide range of applications in various areas with great potential for studying complex mass transport in real hydrological systems. However, solution to the FADE is difficult, and the existing numerical methods are complicated and inefficient. In this study, a fresh lattice Boltzmann method is developed for solving the fractional advection-diffusion equation (LabFADE). The FADE is transformed into an equation similar to an advection-diffusion equation and solved using the lattice Boltzmann method. The LabFADE has all the advantages of the conventional lattice Boltzmann method and avoids a complex solution procedure, unlike other existing numerical methods. The method has been validated through simulations of several benchmark tests: a point-source diffusion, a boundary-value problem of steady diffusion, and an initial-boundary-value problem of unsteady diffusion with the coexistence of source and sink terms. In addition, by including the effects of the skewness β , the fractional order α , and the single relaxation time τ , the accuracy and convergence of the method have been assessed. The numerical predictions are compared with the analytical solutions, and they indicate that the method is second-order accurate. The method presented will allow the FADE to be more widely applied to complex mass transport problems in science and engineering.

  5. Heat transfer

    CERN Document Server

    Holman, J P

    2010-01-01

    As one of the most popular heat transfer texts, Jack Holman's "Heat Transfer" is noted for its clarity, accessible approach, and inclusion of many examples and problem sets. The new tenth edition retains the straight-forward, to-the-point writing style while covering both analytical and empirical approaches to the subject. Throughout the book, emphasis is placed on physical understanding while, at the same time, relying on meaningful experimental data in those situations that do not permit a simple analytical solution. New examples and templates provide students with updated resources for computer-numerical solutions.

  6. Heat transfer

    CERN Document Server

    Jorge, Kubie; Thomas, Grassie

    2012-01-01

    A core task of engineers is to analyse energy related problems. The analytical treatment is usually based on principles of thermodynamics, fluid mechanics and heat transfer, but is increasingly being handled computationally.This unique resource presents a practical textbook, written for both undergraduates and professionals, with a series of over 60 computer workbooks on an accompanying CD.The book emphasizes how complex problems can be deconstructed into a series of simple steps. All thermophysical property computations are illustrated using diagrams within text and on the compani

  7. Multiple anisotropic collisions for advection-diffusion Lattice Boltzmann schemes

    Science.gov (United States)

    Ginzburg, Irina

    2013-01-01

    This paper develops a symmetrized framework for the analysis of the anisotropic advection-diffusion Lattice Boltzmann schemes. Two main approaches build the anisotropic diffusion coefficients either from the anisotropic anti-symmetric collision matrix or from the anisotropic symmetric equilibrium distribution. We combine and extend existing approaches for all commonly used velocity sets, prescribe most general equilibrium and build the diffusion and numerical-diffusion forms, then derive and compare solvability conditions, examine available anisotropy and stable velocity magnitudes in the presence of advection. Besides the deterioration of accuracy, the numerical diffusion dictates the stable velocity range. Three techniques are proposed for its elimination: (i) velocity-dependent relaxation entries; (ii) their combination with the coordinate-link equilibrium correction; and (iii) equilibrium correction for all links. Two first techniques are also available for the minimal (coordinate) velocity sets. Even then, the two-relaxation-times model with the isotropic rates often gains in effective stability and accuracy. The key point is that the symmetric collision mode does not modify the modeled diffusion tensor but it controls the effective accuracy and stability, via eigenvalue combinations of the opposite parity eigenmodes. We propose to reduce the eigenvalue spectrum by properly combining different anisotropic collision elements. The stability role of the symmetric, multiple-relaxation-times component, is further investigated with the exact von Neumann stability analysis developed in diffusion-dominant limit.

  8. Cryogenic heat transfer

    CERN Document Server

    Barron, Randall F

    2016-01-01

    Cryogenic Heat Transfer, Second Edition continues to address specific heat transfer problems that occur in the cryogenic temperature range where there are distinct differences from conventional heat transfer problems. This updated version examines the use of computer-aided design in cryogenic engineering and emphasizes commonly used computer programs to address modern cryogenic heat transfer problems. It introduces additional topics in cryogenic heat transfer that include latent heat expressions; lumped-capacity transient heat transfer; thermal stresses; Laplace transform solutions; oscillating flow heat transfer, and computer-aided heat exchanger design. It also includes new examples and homework problems throughout the book, and provides ample references for further study.

  9. A high-order splitting scheme for the advection-diffusion equation of pollutants

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A high-order splitting scheme for the advection-diffusion equation of pollutants is proposed in this paper. The multidimensional advection-diffusion equation is splitted into several one-dimensional equations that are solved by the scheme. Only three spatial grid points are needed in each direction and the scheme has fourth-order spatial accuracy. Several typically pure advection and advection-diffusion problems are simulated. Numerical results show that the accuracy of the scheme is much higher than that of the classical schemes and the scheme can be efficiently solved with little programming effort.

  10. Introduction to heat transfer

    CERN Document Server

    SUNDÉN, B

    2012-01-01

    Presenting the basic mechanisms for transfer of heat, Introduction to Heat Transfer gives a deeper and more comprehensive view than existing titles on the subject. Derivation and presentation of analytical and empirical methods are provided for calculation of heat transfer rates and temperature fields as well as pressure drop. The book covers thermal conduction, forced and natural laminar and turbulent convective heat transfer, thermal radiation including participating media, condensation, evaporation and heat exchangers.

  11. Convective heat transfer

    CERN Document Server

    Kakac, Sadik; Pramuanjaroenkij, Anchasa

    2014-01-01

    Intended for readers who have taken a basic heat transfer course and have a basic knowledge of thermodynamics, heat transfer, fluid mechanics, and differential equations, Convective Heat Transfer, Third Edition provides an overview of phenomenological convective heat transfer. This book combines applications of engineering with the basic concepts of convection. It offers a clear and balanced presentation of essential topics using both traditional and numerical methods. The text addresses emerging science and technology matters, and highlights biomedical applications and energy technologies. What’s New in the Third Edition: Includes updated chapters and two new chapters on heat transfer in microchannels and heat transfer with nanofluids Expands problem sets and introduces new correlations and solved examples Provides more coverage of numerical/computer methods The third edition details the new research areas of heat transfer in microchannels and the enhancement of convective heat transfer with nanofluids....

  12. First-Order Hyperbolic System Method for Time-Dependent Advection-Diffusion Problems

    Science.gov (United States)

    Mazaheri, Alireza; Nishikawa, Hiroaki

    2014-01-01

    A time-dependent extension of the first-order hyperbolic system method for advection-diffusion problems is introduced. Diffusive/viscous terms are written and discretized as a hyperbolic system, which recovers the original equation in the steady state. The resulting scheme offers advantages over traditional schemes: a dramatic simplification in the discretization, high-order accuracy in the solution gradients, and orders-of-magnitude convergence acceleration. The hyperbolic advection-diffusion system is discretized by the second-order upwind residual-distribution scheme in a unified manner, and the system of implicit-residual-equations is solved by Newton's method over every physical time step. The numerical results are presented for linear and nonlinear advection-diffusion problems, demonstrating solutions and gradients produced to the same order of accuracy, with rapid convergence over each physical time step, typically less than five Newton iterations.

  13. Basic heat transfer

    CERN Document Server

    Bacon, D H

    2013-01-01

    Basic Heat Transfer aims to help readers use a computer to solve heat transfer problems and to promote greater understanding by changing data values and observing the effects, which are necessary in design and optimization calculations.The book is concerned with applications including insulation and heating in buildings and pipes, temperature distributions in solids for steady state and transient conditions, the determination of surface heat transfer coefficients for convection in various situations, radiation heat transfer in grey body problems, the use of finned surfaces, and simple heat exc

  14. Thermal radiation heat transfer

    CERN Document Server

    Howell, John R; Siegel, Robert

    2016-01-01

    Further expanding on the changes made to the fifth edition, Thermal Radiation Heat Transfer, 6th Edition continues to highlight the relevance of thermal radiative transfer and focus on concepts that develop the radiative transfer equation (RTE). The book explains the fundamentals of radiative transfer, introduces the energy and radiative transfer equations, covers a variety of approaches used to gauge radiative heat exchange between different surfaces and structures, and provides solution techniques for solving the RTE.

  15. HEAT TRANSFER FLUIDS

    OpenAIRE

    Lenert, Andrej; Nam, Youngsuk; Wang, Evelyn N.

    2012-01-01

    The choice of heat transfer fluids has significant effects on the performance, cost, and reliability of solar thermal systems. In this chapter, we evaluate existing heat transfer fluids such as oils and molten salts based on a new figure of merit capturing the combined effects of thermal storage capacity, convective heat transfer characteristics, and hydraulic performance of the fluids. Thermal stability, freezing point, and safety issues are also discussed. Through a comparative analysis, we...

  16. Convection heat transfer

    CERN Document Server

    Bejan, Adrian

    2013-01-01

    Written by an internationally recognized authority on heat transfer and thermodynamics, this second edition of Convection Heat Transfer contains new and updated problems and examples reflecting real-world research and applications, including heat exchanger design. Teaching not only structure but also technique, the book begins with the simplest problem solving method (scale analysis), and moves on to progressively more advanced and exact methods (integral method, self similarity, asymptotic behavior). A solutions manual is available for all problems and exercises.

  17. Radiative heat transfer

    CERN Document Server

    Modest, Michael F

    2013-01-01

    The third edition of Radiative Heat Transfer describes the basic physics of radiation heat transfer. The book provides models, methodologies, and calculations essential in solving research problems in a variety of industries, including solar and nuclear energy, nanotechnology, biomedical, and environmental. Every chapter of Radiative Heat Transfer offers uncluttered nomenclature, numerous worked examples, and a large number of problems-many based on real world situations-making it ideal for classroom use as well as for self-study. The book's 24 chapters cover the four major areas in the field: surface properties; surface transport; properties of participating media; and transfer through participating media. Within each chapter, all analytical methods are developed in substantial detail, and a number of examples show how the developed relations may be applied to practical problems. It is an extensive solution manual for adopting instructors. Features: most complete text in the field of radiative heat transfer;...

  18. Solving the Advection-Diffusion Equations in Biological Contexts using the Cellular Potts Model

    CERN Document Server

    Dan, D; Chen, K; Glazier, J A; Dan, Debasis; Mueller, Chris; Chen, Kun; Glazier, James A.

    2005-01-01

    The Cellular Potts Model (CPM) is a robust, cell-level methodology for simulation of biological tissues and morphogenesis. Both tissue physiology and morphogenesis depend on diffusion of chemical morphogens in the extra-cellular fluid or matrix (ECM). Standard diffusion solvers applied to the cellular potts model use finite difference methods on the underlying CPM lattice. However, these methods produce a diffusing field tied to the underlying lattice, which is inaccurate in many biological situations in which cell or ECM movement causes advection rapid compared to diffusion. Finite difference schemes suffer numerical instabilities solving the resulting advection-diffusion equations. To circumvent these problems we simulate advection-diffusion within the framework of the CPM using off-lattice finite-difference methods. We define a set of generalized fluid particles which detach advection and diffusion from the lattice. Diffusion occurs between neighboring fluid particles by local averaging rules which approxi...

  19. Numerical Solution of Advection-Diffusion Equation Using a Sixth-Order Compact Finite Difference Method

    Directory of Open Access Journals (Sweden)

    Gurhan Gurarslan

    2013-01-01

    Full Text Available This study aims to produce numerical solutions of one-dimensional advection-diffusion equation using a sixth-order compact difference scheme in space and a fourth-order Runge-Kutta scheme in time. The suggested scheme here has been seen to be very accurate and a relatively flexible solution approach in solving the contaminant transport equation for Pe≤5. For the solution of the present equation, the combined technique has been used instead of conventional solution techniques. The accuracy and validity of the numerical model are verified through the presented results and the literature. The computed results showed that the use of the current method in the simulation is very applicable for the solution of the advection-diffusion equation. The present technique is seen to be a very reliable alternative to existing techniques for these kinds of applications.

  20. Improvement of the One-dimensional Vertical Advection-diffusion Model in Seawater

    Institute of Scientific and Technical Information of China (English)

    王保栋; 单宝田; 战闰; 王修林

    2003-01-01

    The classical 1-D vertical advection-diffusion model was improved in this work. Themain advantages of the improved model over the previous one are: 1 ) The applicable condition ofthe 1-D model is made clear in the improved model, in that it is substantively applicable only to avertical domain on which two end-member water masses are mixing. 2) The substitution of parame-ter f(z) in the equation of the classical 1-D model with end-member fraction f1 makes the modelmore precisely and easily solved. 3 ) All the terms in the improved model equation have specificphysical meanings, which makes the model easily understood. Practical application of the improvedmodel to predict the vertical profiles of dissolved oxygen and micronutrients in abyssal ocean waterof the North Pacific proved that the improvement of the 1-D advection-diffusion model is successfuland practicable.

  1. A balancing domain decomposition method by constraints for advection-diffusion problems

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Xuemin; Li, Jing

    2008-12-10

    The balancing domain decomposition methods by constraints are extended to solving nonsymmetric, positive definite linear systems resulting from the finite element discretization of advection-diffusion equations. A pre-conditioned GMRES iteration is used to solve a Schur complement system of equations for the subdomain interface variables. In the preconditioning step of each iteration, a partially sub-assembled finite element problem is solved. A convergence rate estimate for the GMRES iteration is established, under the condition that the diameters of subdomains are small enough. It is independent of the number of subdomains and grows only slowly with the subdomain problem size. Numerical experiments for several two-dimensional advection-diffusion problems illustrate the fast convergence of the proposed algorithm.

  2. Wright functions governed by fractional directional derivatives and fractional advection diffusion equations

    CERN Document Server

    D'Ovidio, Mirko

    2012-01-01

    We consider fractional directional derivatives and establish some connection with stable densities. Solutions to advection equations involving fractional directional derivatives are presented and some properties investigated. In particular we obtain solutions written in terms of Wright functions by exploiting operational rules involving the shift operator. We also consider fractional advection diffusion equations involving fractional powers of the negative Laplace operator and directional derivatives of fractional order and discuss the probabilistic interpretations of solutions.

  3. Numerical Solution of Advection-Diffusion Equation Using a Sixth-Order Compact Finite Difference Method

    OpenAIRE

    Gurhan Gurarslan; Halil Karahan; Devrim Alkaya; Murat Sari; Mutlu Yasar

    2013-01-01

    This study aims to produce numerical solutions of one-dimensional advection-diffusion equation using a sixth-order compact difference scheme in space and a fourth-order Runge-Kutta scheme in time. The suggested scheme here has been seen to be very accurate and a relatively flexible solution approach in solving the contaminant transport equation for Pe≤5. For the solution of the present equation, the combined technique has been used instead of conventional solution techniques. The accuracy and...

  4. Condensation heat transfer

    Science.gov (United States)

    Rose, J. W.

    The paper gives a brief description of some of the better understood aspects of condensation heat transfer and includes discussion of the liquid-vapour interface, natural and forced convection laminar film condensation and dropwise condensation.

  5. Analytical heat transfer

    CERN Document Server

    Han, Je-Chin

    2012-01-01

    … it will complete my library … [and] complement the existing literature on heat transfer. It will be of value for both graduate students and faculty members.-Bengt Sunden, Lund University, Sweden

  6. A heat transfer textbook

    CERN Document Server

    Lienhard, John H

    2011-01-01

    This introduction to heat transfer offers advanced undergraduate and graduate engineering students a solid foundation in the subjects of conduction, convection, radiation, and phase-change, in addition to the related topic of mass transfer. A staple of engineering courses around the world for more than three decades, it has been revised and updated regularly by the authors, a pair of recognized experts in the field. The text addresses the implications, limitations, and meanings of many aspects of heat transfer, connecting the subject to its real-world applications and developing students' ins

  7. Elementary heat transfer analysis

    CERN Document Server

    Whitaker, Stephen; Hartnett, James P

    1976-01-01

    Elementary Heat Transfer Analysis provides information pertinent to the fundamental aspects of the nature of transient heat conduction. This book presents a thorough understanding of the thermal energy equation and its application to boundary layer flows and confined and unconfined turbulent flows. Organized into nine chapters, this book begins with an overview of the use of heat transfer coefficients in formulating the flux condition at phase interface. This text then explains the specification as well as application of flux boundary conditions. Other chapters consider a derivation of the tra

  8. Heat and mass transfer

    CERN Document Server

    Baehr, Hans Dieter

    2011-01-01

    This comprehensive textbook provides a solid foundation of knowledge on the principles of heat and mass transfer and shows how to solve problems by applying modern methods. The basic theory is developed systematically, exploring in detail the solution methods to all important problems.   The thoroughly revised 3rd edition includes an introduction to the numerical solution of Finite Elements. A new section on heat and mass transfer in porous media has also been added.   The book will be useful not only to upper-level and graduate students, but also to practicing scientists and engineers, offering a firm understanding of the principles of heat and mass transfer, and showing how to solve problems by applying modern methods. Many completed examples and numerous exercises with solutions facilitate learning and understanding, and an appendix includes data on key properties of important substances.

  9. Thermal radiation heat transfer

    CERN Document Server

    Howell, John R; Mengüç, M Pinar

    2011-01-01

    Providing a comprehensive overview of the radiative behavior and properties of materials, the fifth edition of this classic textbook describes the physics of radiative heat transfer, development of relevant analysis methods, and associated mathematical and numerical techniques. Retaining the salient features and fundamental coverage that have made it popular, Thermal Radiation Heat Transfer, Fifth Edition has been carefully streamlined to omit superfluous material, yet enhanced to update information with extensive references. Includes four new chapters on Inverse Methods, Electromagnetic Theory, Scattering and Absorption by Particles, and Near-Field Radiative Transfer Keeping pace with significant developments, this book begins by addressing the radiative properties of blackbody and opaque materials, and how they are predicted using electromagnetic theory and obtained through measurements. It discusses radiative exchange in enclosures without any radiating medium between the surfaces-and where heat conduction...

  10. Heat transfer fluids containing nanoparticles

    Science.gov (United States)

    Singh, Dileep; Routbort, Jules; Routbort, A.J.; Yu, Wenhua; Timofeeva, Elena; Smith, David S.; France, David M.

    2016-05-17

    A nanofluid of a base heat transfer fluid and a plurality of ceramic nanoparticles suspended throughout the base heat transfer fluid applicable to commercial and industrial heat transfer applications. The nanofluid is stable, non-reactive and exhibits enhanced heat transfer properties relative to the base heat transfer fluid, with only minimal increases in pumping power required relative to the base heat transfer fluid. In a particular embodiment, the plurality of ceramic nanoparticles comprise silicon carbide and the base heat transfer fluid comprises water and water and ethylene glycol mixtures.

  11. Preconditioned iterative methods for space-time fractional advection-diffusion equations

    Science.gov (United States)

    Zhao, Zhi; Jin, Xiao-Qing; Lin, Matthew M.

    2016-08-01

    In this paper, we propose practical numerical methods for solving a class of initial-boundary value problems of space-time fractional advection-diffusion equations. First, we propose an implicit method based on two-sided Grünwald formulae and discuss its stability and consistency. Then, we develop the preconditioned generalized minimal residual (preconditioned GMRES) method and preconditioned conjugate gradient normal residual (preconditioned CGNR) method with easily constructed preconditioners. Importantly, because resulting systems are Toeplitz-like, fast Fourier transform can be applied to significantly reduce the computational cost. We perform numerical experiments to demonstrate the efficiency of our preconditioners, even in cases with variable coefficients.

  12. Identifying space-dependent coefficients and the order of fractionality in fractional advection diffusion equation

    CERN Document Server

    Maryshev, Boris; Latrille, Christelle; Néel, Marie-Christine

    2016-01-01

    Tracer tests in natural porous media sometimes show abnormalities that suggest considering a fractional variant of the Advection Diffusion Equation supplemented by a time derivative of non-integer order. We are describing an inverse method for this equation: it finds the order of the fractional derivative and the coefficients that achieve minimum discrepancy between solution and tracer data. Using an adjoint equation divides the computational effort by an amount proportional to the number of freedom degrees, which becomes large when some coefficients depend on space. Method accuracy is checked on synthetical data, and applicability to actual tracer test is demonstrated.

  13. Solar Energy: Heat Transfer.

    Science.gov (United States)

    Knapp, Henry H., III

    This module on heat transfer is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies. The…

  14. Nonlinear Lyapunov-based boundary control of distributed heat transfer mechanisms in membrane distillation plant

    KAUST Repository

    Eleiwi, Fadi

    2015-07-01

    This paper presents a nonlinear Lyapunov-based boundary control for the temperature difference of a membrane distillation boundary layers. The heat transfer mechanisms inside the process are modeled with a 2D advection-diffusion equation. The model is semi-descretized in space, and a nonlinear state-space representation is provided. The control is designed to force the temperature difference along the membrane sides to track a desired reference asymptotically, and hence a desired flux would be generated. Certain constraints are put on the control law inputs to be within an economic range of energy supplies. The effect of the controller gain is discussed. Simulations with real process parameters for the model, and the controller are provided. © 2015 American Automatic Control Council.

  15. Heat Transfer Analogies

    International Nuclear Information System (INIS)

    This report contains descriptions of various analogues utilised to study different steady-state and unsteady-state heat transfer problems. The analogues covered are as follows: 1 . Hydraulic: a) water flow b) air flow 2. Membrane 3. Geometric Electrical: a) Electrolytic-tank b) Conducting sheet 4. Network; a) Resistance b) R-C A comparison of the different analogues is presented in the form of a table

  16. Elements of heat transfer

    CERN Document Server

    Rathakrishnan, Ethirajan

    2012-01-01

    1 Basic Concepts and Definitions1.1 Introduction1.1.1 Driving Potential1.2 Dimensions and Units1.2.1 Dimensional Homogeneity1.3 Closed and Open Systems1.3.1 Closed System (ControlMass)1.3.2 Isolated System1.3.3 Open System (ControlVolume)1.4 Forms of Energy1.4.1 Internal Energy1.5 Properties of a System1.5.1 Intensive and Extensive Properties1.6 State and Equilibrium1.7 Thermal and Calorical Properties1.7.1 Specific Heat of an Incompressible Substance1.7.2 Thermally Perfect Gas 1.8 The Perfect Gas1.9 Summary1.10 Exercise ProblemsConduction Heat Transfer2.1 Introduction2.2 Conduction Heat Trans

  17. Large molten pool heat transfer

    International Nuclear Information System (INIS)

    This workshop on large molten pool heat transfer is composed of 5 sessions which titles are: feasibility of in-vessel core debris cooling; experiments on molten pool heat transfer; calculational efforts on molten pool convection; heat transfer to the surrounding water, experimental techniques; future experiments and ex-vessel studies (RASPLAV, TOLBIAC, BALI, SULTAN, CORVIS, VULCANO, CORINE programs)

  18. Preconditioned time-difference methods for advection-diffusion-reaction equations

    Energy Technology Data Exchange (ETDEWEB)

    Aro, C.; Rodrigue, G. [Lawrence Livermore National Lab., CA (United States); Wolitzer, D. [California State Univ., Hayward, CA (United States)

    1994-12-31

    Explicit time differencing methods for solving differential equations are advantageous in that they are easy to implement on a computer and are intrinsically very parallel. The disadvantage of explicit methods is the severe restrictions placed on stepsize due to stability. Stability bounds for explicit time differencing methods on advection-diffusion-reaction problems are generally quite severe and implicit methods are used instead. The linear systems arising from these implicit methods are large and sparse so that iterative methods must be used to solve them. In this paper the authors develop a methodology for increasing the stability bounds of standard explicit finite differencing methods by combining explicit methods, implicit methods, and iterative methods in a novel way to generate new time-difference schemes, called preconditioned time-difference methods.

  19. Multiscale numerical methods for passive advection-diffusion in incompressible turbulent flow fields

    Science.gov (United States)

    Lee, Yoonsang; Engquist, Bjorn

    2016-07-01

    We propose a seamless multiscale method which approximates the macroscopic behavior of the passive advection-diffusion equations with steady incompressible velocity fields with multi-spatial scales. The method uses decompositions of the velocity fields in the Fourier space, which are similar to the decomposition in large eddy simulations. It also uses a hierarchy of local domains with different resolutions as in multigrid methods. The effective diffusivity from finer scale is used for the next coarser level computation and this process is repeated up to the coarsest scale of interest. The grids are only in local domains whose sizes decrease depending on the resolution level so that the overall computational complexity increases linearly as the number of different resolution grids increases. The method captures interactions between finer and coarser scales but has to sacrifice some of interactions between different scales. The proposed method is numerically tested with 2D examples including a successful approximation to a continuous spectrum flow.

  20. A self-organizing Lagrangian particle method for adaptive-resolution advection-diffusion simulations

    Science.gov (United States)

    Reboux, Sylvain; Schrader, Birte; Sbalzarini, Ivo F.

    2012-05-01

    We present a novel adaptive-resolution particle method for continuous parabolic problems. In this method, particles self-organize in order to adapt to local resolution requirements. This is achieved by pseudo forces that are designed so as to guarantee that the solution is always well sampled and that no holes or clusters develop in the particle distribution. The particle sizes are locally adapted to the length scale of the solution. Differential operators are consistently evaluated on the evolving set of irregularly distributed particles of varying sizes using discretization-corrected operators. The method does not rely on any global transforms or mapping functions. After presenting the method and its error analysis, we demonstrate its capabilities and limitations on a set of two- and three-dimensional benchmark problems. These include advection-diffusion, the Burgers equation, the Buckley-Leverett five-spot problem, and curvature-driven level-set surface refinement.

  1. Correlation networks from flows. The case of forced and time-dependent advection-diffusion dynamics

    CERN Document Server

    Tupikina, Liubov; López, Cristóbal; Hernández-García, Emilio; Marwan, Norbert; Kurths, Jürgen

    2016-01-01

    Complex network theory provides an elegant and powerful framework to statistically investigate different types of systems such as society, brain or the structure of local and long-range dynamical interrelationships in the climate system. Network links in climate networks typically imply information, mass or energy exchange. However, the specific connection between oceanic or atmospheric flows and the climate network's structure is still unclear. We propose a theoretical approach for verifying relations between the correlation matrix and the climate network measures, generalizing previous studies and overcoming the restriction to stationary flows. Our methods are developed for correlations of a scalar quantity (temperature, for example) which satisfies an advection-diffusion dynamics in the presence of forcing and dissipation. Our approach reveals that correlation networks are not sensitive to steady sources and sinks and the profound impact of the signal decay rate on the network topology. We illustrate our r...

  2. An advection-diffusion model for cross-field runaway electron transport in perturbed magnetic fields

    CERN Document Server

    Särkimäki, Konsta; Decker, Joan; Varje, Jari; Kurki-Suonio, Taina

    2016-01-01

    Disruption-generated runaway electrons (RE) present an outstanding issue for ITER. The predictive computational studies of RE generation rely on orbit-averaged computations and, as such, they lack the effects from the magnetic field stochasticity. Since stochasiticity is naturally present in post-disruption plasma, and externally induced stochastization offers a prominent mechanism to mitigate RE avalanche, we present an advection-diffusion model that can be used to couple an orbit-following code to an orbit-averaged tool in order to capture the cross-field transport and to overcome the latter's limitation. The transport coefficients are evaluated via a Monte Carlo method. We show that the diffusion coefficient differs significantly from the well-known Rechester-Rosenbluth result. We also demonstrate the importance of including the advection: it has a two-fold role both in modelling transport barriers created by magnetic islands and in amplifying losses in regions where the islands are not present.

  3. An advective diffusion process on hot wasted water discharged to a depression angle direction into water

    International Nuclear Information System (INIS)

    Effect of change in wasted water from nuclear or fossil fuel power plants discharging direction from horizontal one to depression angle one on an advective diffusion process of hot wasted water was investigated. As a result, it could be confirmed that an effect of depression angle jet discharge on water temperature reduction and so forth could be applied present experimental equation on horizontal discharging by a coordinate transformation of various factors with discharging water angle. And, a judgement equation to obtain a limiting area of hot wasted water affecting with bed surface was obtained by using distance from the lowest point of jet to the sea bed, inner diameter of discharging pipe, and field number for parameters, to elucidate its effectiveness. Furthermore, a diagram to estimate an effect of depression angle discharging water in the area on water temperature reduction and so forth was also proposed. (G.K.)

  4. Smoothed particle hydrodynamics model for Landau-Lifshitz-Navier-Stokes and advection-diffusion equations

    Science.gov (United States)

    Kordilla, Jannes; Pan, Wenxiao; Tartakovsky, Alexandre

    2014-12-01

    We propose a novel smoothed particle hydrodynamics (SPH) discretization of the fully coupled Landau-Lifshitz-Navier-Stokes (LLNS) and stochastic advection-diffusion equations. The accuracy of the SPH solution of the LLNS equations is demonstrated by comparing the scaling of velocity variance and the self-diffusion coefficient with kinetic temperature and particle mass obtained from the SPH simulations and analytical solutions. The spatial covariance of pressure and velocity fluctuations is found to be in a good agreement with theoretical models. To validate the accuracy of the SPH method for coupled LLNS and advection-diffusion equations, we simulate the interface between two miscible fluids. We study formation of the so-called "giant fluctuations" of the front between light and heavy fluids with and without gravity, where the light fluid lies on the top of the heavy fluid. We find that the power spectra of the simulated concentration field are in good agreement with the experiments and analytical solutions. In the absence of gravity, the power spectra decay as the power -4 of the wavenumber—except for small wavenumbers that diverge from this power law behavior due to the effect of finite domain size. Gravity suppresses the fluctuations, resulting in much weaker dependence of the power spectra on the wavenumber. Finally, the model is used to study the effect of thermal fluctuation on the Rayleigh-Taylor instability, an unstable dynamics of the front between a heavy fluid overlaying a light fluid. The front dynamics is shown to agree well with the analytical solutions.

  5. Measuring of heat transfer coefficient

    DEFF Research Database (Denmark)

    Henningsen, Poul; Lindegren, Maria

    Subtask 3.4 Measuring of heat transfer coefficient Subtask 3.4.1 Design and setting up of tests to measure heat transfer coefficient Objective: Complementary testing methods together with the relevant experimental equipment are to be designed by the two partners involved in order to measure...... the heat transfer coefficient for a wide range of interface conditions in hot and warm forging processes. Subtask 3.4.2 Measurement of heat transfer coefficient The objective of subtask 3.4.2 is to determine heat transfer values for different interface conditions reflecting those typically operating in hot...

  6. aerodynamics and heat transfer

    Directory of Open Access Journals (Sweden)

    J. N. Rajadas

    1998-01-01

    Full Text Available A multidisciplinary optimization procedure, with the integration of aerodynamic and heat transfer criteria, has been developed for the design of gas turbine blades. Two different optimization formulations have been used. In the first formulation, the maximum temperature in the blade section is chosen as the objective function to be minimized. An upper bound constraint is imposed on the blade average temperature and a lower bound constraint is imposed on the blade tangential force coefficient. In the second formulation, the blade average and maximum temperatures are chosen as objective functions. In both formulations, bounds are imposed on the velocity gradients at several points along the surface of the airfoil to eliminate leading edge velocity spikes which deteriorate aerodynamic performance. Shape optimization is performed using the blade external and coolant path geometric parameters as design variables. Aerodynamic analysis is performed using a panel code. Heat transfer analysis is performed using the finite element method. A gradient based procedure in conjunction with an approximate analysis technique is used for optimization. The results obtained using both optimization techniques are compared with a reference geometry. Both techniques yield significant improvements with the multiobjective formulation resulting in slightly superior design.

  7. Conduction heat transfer solutions

    International Nuclear Information System (INIS)

    This text is a collection of solutions to a variety of heat conduction problems found in numerous publications, such as textbooks, handbooks, journals, reports, etc. Its purpose is to assemble these solutions into one source that can facilitate the search for a particular problem solution. Generally, it is intended to be a handbook on the subject of heat conduction. There are twelve sections of solutions which correspond with the class of problems found in each. Geometry, state, boundary conditions, and other categories are used to classify the problems. Each problem is concisely described by geometry and condition statements, and many times a descriptive sketch is also included. The introduction presents a synopsis on the theory, differential equations, and boundary conditions for conduction heat transfer. Some discussion is given on the use and interpretation of solutions. Supplementary data such as mathematical functions, convection correlations, and thermal properties are included for aiding the user in computing numerical values from the solutions. 155 figs., 92 refs., 9 tabs

  8. Conduction heat transfer solutions

    International Nuclear Information System (INIS)

    This text is a collection of solutions to a variety of heat conduction problems found in numerous publications, such as textbooks, handbooks, journals, reports, etc. Its purpose is to assemble these solutions into one source that can facilitate the search for a particular problem solution. Generally, it is intended to be a handbook on the subject of heat conduction. This material is useful for engineers, scientists, technologists, and designers of all disciplines, particularly those who design thermal systems or estimate temperatures and heat transfer rates in structures. More than 500 problem solutions and relevant data are tabulated for easy retrieval. There are twelve sections of solutions which correspond with the class of problems found in each. Geometry, state, boundary conditions, and other categories are used to classify the problems. A case number is assigned to each problem for cross-referencing, and also for future reference. Each problem is concisely described by geometry and condition statements, and many times a descriptive sketch is also included. At least one source reference is given so that the user can review the methods used to derive the solutions. Problem solutions are given in the form of equations, graphs, and tables of data, all of which are also identified by problem case numbers and source references

  9. Heat transfer physics

    CERN Document Server

    Kaviany, Massoud

    2014-01-01

    This graduate textbook describes atomic-level kinetics (mechanisms and rates) of thermal energy storage, transport (conduction, convection, and radiation), and transformation (various energy conversions) by principal energy carriers. The approach combines the fundamentals of molecular orbitals-potentials, statistical thermodynamics, computational molecular dynamics, quantum energy states, transport theories, solid-state and fluid-state physics, and quantum optics. The textbook presents a unified theory, over fine-structure/molecular-dynamics/Boltzmann/macroscopic length and time scales, of heat transfer kinetics in terms of transition rates and relaxation times, and its modern applications, including nano- and microscale size effects. Numerous examples, illustrations, and homework problems with answers that enhance learning are included. This new edition includes applications in energy conversion (including chemical bond, nuclear, and solar), expanded examples of size effects, inclusion of junction quantum tr...

  10. Correlation Networks from Flows. The Case of Forced and Time-Dependent Advection-Diffusion Dynamics.

    Directory of Open Access Journals (Sweden)

    Liubov Tupikina

    Full Text Available Complex network theory provides an elegant and powerful framework to statistically investigate different types of systems such as society, brain or the structure of local and long-range dynamical interrelationships in the climate system. Network links in climate networks typically imply information, mass or energy exchange. However, the specific connection between oceanic or atmospheric flows and the climate network's structure is still unclear. We propose a theoretical approach for verifying relations between the correlation matrix and the climate network measures, generalizing previous studies and overcoming the restriction to stationary flows. Our methods are developed for correlations of a scalar quantity (temperature, for example which satisfies an advection-diffusion dynamics in the presence of forcing and dissipation. Our approach reveals that correlation networks are not sensitive to steady sources and sinks and the profound impact of the signal decay rate on the network topology. We illustrate our results with calculations of degree and clustering for a meandering flow resembling a geophysical ocean jet.

  11. Correlation Networks from Flows. The Case of Forced and Time-Dependent Advection-Diffusion Dynamics.

    Science.gov (United States)

    Tupikina, Liubov; Molkenthin, Nora; López, Cristóbal; Hernández-García, Emilio; Marwan, Norbert; Kurths, Jürgen

    2016-01-01

    Complex network theory provides an elegant and powerful framework to statistically investigate different types of systems such as society, brain or the structure of local and long-range dynamical interrelationships in the climate system. Network links in climate networks typically imply information, mass or energy exchange. However, the specific connection between oceanic or atmospheric flows and the climate network's structure is still unclear. We propose a theoretical approach for verifying relations between the correlation matrix and the climate network measures, generalizing previous studies and overcoming the restriction to stationary flows. Our methods are developed for correlations of a scalar quantity (temperature, for example) which satisfies an advection-diffusion dynamics in the presence of forcing and dissipation. Our approach reveals that correlation networks are not sensitive to steady sources and sinks and the profound impact of the signal decay rate on the network topology. We illustrate our results with calculations of degree and clustering for a meandering flow resembling a geophysical ocean jet. PMID:27128846

  12. Transport dissipative particle dynamics model for mesoscopic advection- diffusion-reaction problems

    Energy Technology Data Exchange (ETDEWEB)

    Zhen, Li; Yazdani, Alireza; Tartakovsky, Alexandre M.; Karniadakis, George E.

    2015-07-07

    We present a transport dissipative particle dynamics (tDPD) model for simulating mesoscopic problems involving advection-diffusion-reaction (ADR) processes, along with a methodology for implementation of the correct Dirichlet and Neumann boundary conditions in tDPD simulations. tDPD is an extension of the classic DPD framework with extra variables for describing the evolution of concentration fields. The transport of concentration is modeled by a Fickian flux and a random flux between particles, and an analytical formula is proposed to relate the mesoscopic concentration friction to the effective diffusion coefficient. To validate the present tDPD model and the boundary conditions, we perform three tDPD simulations of one-dimensional diffusion with different boundary conditions, and the results show excellent agreement with the theoretical solutions. We also performed two-dimensional simulations of ADR systems and the tDPD simulations agree well with the results obtained by the spectral element method. Finally, we present an application of the tDPD model to the dynamic process of blood coagulation involving 25 reacting species in order to demonstrate the potential of tDPD in simulating biological dynamics at the mesoscale. We find that the tDPD solution of this comprehensive 25-species coagulation model is only twice as computationally expensive as the DPD simulation of the hydrodynamics only, which is a significant advantage over available continuum solvers.

  13. Modeling of advection-diffusion-reaction processes using transport dissipative particle dynamics

    Science.gov (United States)

    Li, Zhen; Yazdani, Alireza; Tartakovsky, Alexandre; Karniadakis, George Em

    2015-11-01

    We present a transport dissipative particle dynamics (tDPD) model for simulating mesoscopic problems involving advection-diffusion-reaction (ADR) processes, along with a methodology for implementation of the correct Dirichlet and Neumann boundary conditions in tDPD simulations. In particular, the transport of concentration is modeled by a Fickian flux and a random flux between tDPD particles, and the advection is implicitly considered by the movements of Lagrangian particles. To validate the proposed tDPD model and the boundary conditions, three benchmark simulations of one-dimensional diffusion with different boundary conditions are performed, and the results show excellent agreement with the theoretical solutions. Also, two-dimensional simulations of ADR systems are performed and the tDPD simulations agree well with the results obtained by the spectral element method. Finally, an application of tDPD to the spatio-temporal dynamics of blood coagulation involving twenty-five reacting species is performed to demonstrate the promising biological applications of the tDPD model. Supported by the DOE Center on Mathematics for Mesoscopic Modeling of Materials (CM4) and an INCITE grant.

  14. Gas turbine heat transfer and cooling technology

    CERN Document Server

    Han, Je-Chin; Ekkad, Srinath

    2012-01-01

    FundamentalsNeed for Turbine Blade CoolingTurbine-Cooling TechnologyTurbine Heat Transfer and Cooling IssuesStructure of the BookReview Articles and Book Chapters on Turbine Cooling and Heat TransferNew Information from 2000 to 2010ReferencesTurbine Heat TransferIntroductionTurbine-Stage Heat TransferCascade Vane Heat-Transfer ExperimentsCascade Blade Heat TransferAirfoil Endwall Heat TransferTurbine Rotor Blade Tip Heat TransferLeading-Edge Region Heat TransferFlat-Surface Heat TransferNew Information from 2000 to 20102.10 ClosureReferencesTurbine Film CoolingIntroductionFilm Cooling on Rotat

  15. Transport dissipative particle dynamics model for mesoscopic advection-diffusion-reaction problems

    Science.gov (United States)

    Li, Zhen; Yazdani, Alireza; Tartakovsky, Alexandre; Karniadakis, George Em

    2015-07-01

    We present a transport dissipative particle dynamics (tDPD) model for simulating mesoscopic problems involving advection-diffusion-reaction (ADR) processes, along with a methodology for implementation of the correct Dirichlet and Neumann boundary conditions in tDPD simulations. tDPD is an extension of the classic dissipative particle dynamics (DPD) framework with extra variables for describing the evolution of concentration fields. The transport of concentration is modeled by a Fickian flux and a random flux between tDPD particles, and the advection is implicitly considered by the movements of these Lagrangian particles. An analytical formula is proposed to relate the tDPD parameters to the effective diffusion coefficient. To validate the present tDPD model and the boundary conditions, we perform three tDPD simulations of one-dimensional diffusion with different boundary conditions, and the results show excellent agreement with the theoretical solutions. We also performed two-dimensional simulations of ADR systems and the tDPD simulations agree well with the results obtained by the spectral element method. Finally, we present an application of the tDPD model to the dynamic process of blood coagulation involving 25 reacting species in order to demonstrate the potential of tDPD in simulating biological dynamics at the mesoscale. We find that the tDPD solution of this comprehensive 25-species coagulation model is only twice as computationally expensive as the conventional DPD simulation of the hydrodynamics only, which is a significant advantage over available continuum solvers.

  16. Crouzeix-Raviart MsFEM with Bubble Functions for Diffusion and Advection-Diffusion in Perforated Media

    OpenAIRE

    Degond, Pierre; Lozinski, Alexei; Muljadi, Bagus Putra; Narski, Jacek

    2013-01-01

    The adaptation of Crouzeix - Raviart finite element in the context of multiscale finite element method (MsFEM) is studied and implemented on diffusion and advection-diffusion problems in perforated media. It is known that the approximation of boundary condition on coarse element edges when computing the multiscale basis functions critically influences the eventual accuracy of any MsFEM approaches. The weakly enforced continuity of Crouzeix - Raviart function space across element edges leads t...

  17. Analytical solutions to the fractional advection-diffusion equation with time-dependent pulses on the boundary

    Science.gov (United States)

    Rubbab, Qammar; Mirza, Itrat Abbas; Qureshi, M. Zubair Akbar

    2016-07-01

    The time-fractional advection-diffusion equation with Caputo-Fabrizio fractional derivatives (fractional derivatives without singular kernel) is considered under the time-dependent emissions on the boundary and the first order chemical reaction. The non-dimensional problem is formulated by using suitable dimensionless variables and the fundamental solutions to the Dirichlet problem for the fractional advection-diffusion equation are determined using the integral transforms technique. The fundamental solutions for the ordinary advection-diffusion equation, fractional and ordinary diffusion equation are obtained as limiting cases of the previous model. Using Duhamel's principle, the analytical solutions to the Dirichlet problem with time-dependent boundary pulses have been obtained. The influence of the fractional parameter and of the drift parameter on the solute concentration in various spatial positions was analyzed by numerical calculations. It is found that the variation of the fractional parameter has a significant effect on the solute concentration, namely, the memory effects lead to the retardation of the mass transport.

  18. Heat Transfer Basics and Practice

    CERN Document Server

    Böckh, Peter

    2012-01-01

    The book provides an easy way to understand the fundamentals of heat transfer. The reader will acquire the ability to design and analyze heat exchangers. Without extensive derivation of the fundamentals, the latest correlations for heat transfer coefficients and their application are discussed. The following topics are presented - Steady state and transient heat conduction - Free and forced convection - Finned surfaces - Condensation and boiling - Radiation - Heat exchanger design - Problem-solving After introducing the basic terminology, the reader is made familiar with the different mechanisms of heat transfer. Their practical application is demonstrated in examples, which are available in the Internet as MathCad files for further use. Tables of material properties and formulas for their use in programs are included in the appendix. This book will serve as a valuable resource for both students and engineers in the industry. The author’s experience indicates that students, after 40 lectures and exercises ...

  19. Advances in industrial heat transfer

    CERN Document Server

    Minea, Alina Adriana

    2012-01-01

    Advances in Industrial Heat Transfer presents the basic principles of industrial heat transfer enhancement. Serving as a reference and guide for future research, this book presents a complete approach, from redesigning equipment to the use of nanofluids in industry. Based on the latest methods of the experiment and their interpretation, this book presents a unified conception of the industrial heat transfer process and procedures which will help decrease global energy consumption. Containing both theoretical and practical results, the book uses text, pictures, graphs, and definitions to illust

  20. Sphere Drag and Heat Transfer.

    Science.gov (United States)

    Duan, Zhipeng; He, Boshu; Duan, Yuanyuan

    2015-07-20

    Modelling fluid flows past a body is a general problem in science and engineering. Historical sphere drag and heat transfer data are critically examined. The appropriate drag coefficient is proposed to replace the inertia type definition proposed by Newton. It is found that the appropriate drag coefficient is a desirable dimensionless parameter to describe fluid flow physical behavior so that fluid flow problems can be solved in the simple and intuitive manner. The appropriate drag coefficient is presented graphically, and appears more general and reasonable to reflect the fluid flow physical behavior than the traditional century old drag coefficient diagram. Here we present drag and heat transfer experimental results which indicate that there exists a relationship in nature between the sphere drag and heat transfer. The role played by the heat flux has similar nature as the drag. The appropriate drag coefficient can be related to the Nusselt number. This finding opens new possibilities in predicting heat transfer characteristics by drag data. As heat transfer for flow over a body is inherently complex, the proposed simple means may provide an insight into the mechanism of heat transfer for flow past a body.

  1. Introductory heat-transfer

    Science.gov (United States)

    Widener, Edward L.

    1992-01-01

    The objective is to introduce some concepts of thermodynamics in existing heat-treating experiments using available items. The specific objectives are to define the thermal properties of materials and to visualize expansivity, conductivity, heat capacity, and the melting point of common metals. The experimental procedures are described.

  2. Spectral decomposition in advection-diffusion analysis by finite element methods

    Energy Technology Data Exchange (ETDEWEB)

    Nickell, R.E.; Gartling, D.K.; Strang, G.

    1978-08-11

    In a recent study of the convergence properties of finite element methods in nonlinear fluid mechanics, an indirect approach was taken. A two-dimensional example with a known exact solution was chosen as the vehicle for the study, and various mesh refinements were tested in an attempt to extract information on the effect of the local Reynolds number. However, more direct approaches are usually preferred. In this study one such direct approach is followed, based upon the spectral decomposition of the solution operator. Spectral decomposition is widely employed as a solution technique for linear structural dynamics problems and can be applied readily to linear, transient heat transfer analysis; in this case, the extension to nonlinear problems is of interest. It was shown previously that spectral techniques were applicable to stiff systems of rate equations, while recent studies of geometrically and materially nonlinear structural dynamics have demonstrated the increased information content of the numerical results. The use of spectral decomposition in nonlinear problems of heat and mass transfer would be expected to yield equally increased flow of information to the analyst, and this information could include a quantitative comparison of various solution strategies, meshes, and element hierarchies.

  3. Advances in heat transfer enhancement

    CERN Document Server

    Saha, Sujoy Kumar; Sundén, Bengt; Wu, Zan

    2016-01-01

    This Brief addresses the phenomena of heat transfer enhancement. A companion edition in the SpringerBrief Subseries on Thermal Engineering and Applied Science to three other monographs including “Critical Heat Flux in Flow Boiling in Microchannels,” this volume is idea for professionals, researchers, and graduate students concerned with electronic cooling.

  4. Heat transfer enhancement with nanofluids

    CERN Document Server

    Bianco, Vincenzo; Nardini, Sergio; Vafai, Kambiz

    2015-01-01

    Properties of NanofluidSamuel Paolucci and Gianluca PolitiExact Solutions and Their Implications in Anomalous Heat TransferWenhao Li, Chen Yang and Akira NakayamaMechanisms and Models of Thermal Conductivity in NanofluidsSeung-Hyun Lee and Seok Pil JangExperimental Methods for the Characterization of Thermophysical Properties of NanofluidsSergio Bobbo and Laura FedeleNanofluid Forced ConvectionGilles RoyExperimental Study of Convective Heat Transfer in NanofluidsEhsan B. Haghighi, Adi T. Utomo, Andrzej W. Pacek and Björn E. PalmPerformance of Heat Exchangers Using NanofluidsBengt Sundén and Za

  5. Fundamental principles of heat transfer

    CERN Document Server

    Whitaker, Stephen

    1977-01-01

    Fundamental Principles of Heat Transfer introduces the fundamental concepts of heat transfer: conduction, convection, and radiation. It presents theoretical developments and example and design problems and illustrates the practical applications of fundamental principles. The chapters in this book cover various topics such as one-dimensional and transient heat conduction, energy and turbulent transport, forced convection, thermal radiation, and radiant energy exchange. There are example problems and solutions at the end of every chapter dealing with design problems. This book is a valuable int

  6. Heat transfer from oriented heat exchange areas

    Science.gov (United States)

    Vantuch, Martin; Huzvar, Jozef; Kapjor, Andrej

    2014-03-01

    This paper deals with the transfer of heat-driven heat transfer surface area in relation to the construction of the criterion equation for "n" horizontal pipe one about another. On the bases of theoretical models have been developed for calculating the thermal performance of natural convection by Churilla and Morgan, for various pipe diameters and temperatures. These models were compared with models created in CFD-Fluent Ansys the same boundary conditions. The aim of the analyse of heat and fluxional pipe fields "n" pipes one about another at natural convection is the creation of criterion equation on the basis of which the heat output of heat transfer from pipe oriented areas one above another with given spacing could be quantified. At presence a sum of criterion equations exists for simple geometrical shapes of individual oriented geometrical areas but the criterion equation which would consider interaction of fluxional field generated by free convection from multiple oriented areas is not mentioned in standardly accessible technical literature and other magazine publications.

  7. Nanofluid impingement jet heat transfer.

    Science.gov (United States)

    Zeitoun, Obida; Ali, Mohamed

    2012-02-17

    Experimental investigation to study the heat transfer between a vertical round alumina-water nanofluid jet and a horizontal circular round surface is carried out. Different jet flow rates, jet nozzle diameters, various circular disk diameters and three nanoparticles concentrations (0, 6.6 and 10%, respectively) are used. The experimental results indicate that using nanofluid as a heat transfer carrier can enhance the heat transfer process. For the same Reynolds number, the experimental data show an increase in the Nusselt numbers as the nanoparticle concentration increases. Size of heating disk diameters shows reverse effect on heat transfer. It is also found that presenting the data in terms of Reynolds number at impingement jet diameter can take into account on both effects of jet heights and nozzle diameter. Presenting the data in terms of Peclet numbers, at fixed impingement nozzle diameter, makes the data less sensitive to the percentage change of the nanoparticle concentrations. Finally, general heat transfer correlation is obtained verses Peclet numbers using nanoparticle concentrations and the nozzle diameter ratio as parameters.

  8. Engineering heat transfer

    CERN Document Server

    Annaratone, Donatello

    2010-01-01

    This book is a generalist textbook; it is designed for anybody interested in heat transmission, including scholars, designers and students. Two criteria constitute the foundation of Annaratone's books, including the present one. The first one consists of indispensable scientific rigor without theoretical exasperation. The inclusion in the book of some theoretical studies, even if admirable for their scientific rigor, would have strengthened the scientific foundation of this publication, yet without providing the reader with further applicable know-how. The second criterion is to deliver practi

  9. Computation of diffusion coefficients for waters of Gauthami Godavari estuary using one-dimensional advection-diffusion model

    Digital Repository Service at National Institute of Oceanography (India)

    Jyothi, D.; Murty, T.V.R.; Sarma, V.V.; Rao, D.P.

    of Marine Sciences Vol. 29, June 2000, pp. 185-187 Short Communication Computation of diffusion coefficients for waters of Gauthami Godavari estuary using one-dimensional advection-diffusion model D Jyothi, T V Ramana Murty, V V Sarma & D P Rao National.... - Jan.) Y2(x) = 8.55283 x + 17.5469 (Jan. - April) These equations would be more useful to get diffusion coefficients for any point along the channel axis, which in turn, helps to compute the concentration of pollutant along the axis of estuary. Thus...

  10. ADVECTION-DIFFUSION NUMERICAL MODEL OF AN AIR POLLUTANT EMITTED FROM AN AREA SOURCE OF PRIMARY POLLUTANT WITH WET DEPOSITION

    Directory of Open Access Journals (Sweden)

    C M SURESHA

    2012-01-01

    Full Text Available A two dimensional advection-diffusion numerical model of air pollutant emitted from an area source of primary pollutant with wet deposition is presented. We study the effect of removal mechanism i.e. wet deposition on primary pollutant with respect to distance and height for stable and neutral cases. The numerical model has been solved by using Crank-Nicolson implicit finite difference technique. Concentration contours are plotted and results are analysed for primary pollutant in stable and neutral atmospheric situations for various meteorological parameters.

  11. Advances in heat transfer volume 21

    CERN Document Server

    Hartnett †, James P; Cho, Young I

    1991-01-01

    This volume in a series on heat transfer covers the modelling of the dynamics of turbulent transport processes, supercritical pressures, hydrodynamics, mass transfer near rotating surfaces, lost heat in entropy and the mechanics of heat transfer in a multifluid bubbling pool. Other related titles are "Advances in Heat Transfer", volumes 18, 19 and 20.

  12. Essentials of radiation heat transfer

    CERN Document Server

    Balaji

    2014-01-01

    Essentials of Radiation Heat Transfer is a textbook presenting the essential, fundamental information required to gain an understanding of radiation heat transfer and equips the reader with enough knowledge to be able to tackle more challenging problems. All concepts are reinforced by carefully chosen and fully worked examples, and exercise problems are provided at the end of every chapter. In a significant departure from other books on this subject, this book completely dispenses with the network method to solve problems of radiation heat transfer in surfaces. It instead presents the powerful radiosity-irradiation method and shows how this technique can be used to solve problems of radiation in enclosures made of one to any number of surfaces. The network method is not easily scalable. Secondly, the book introduces atmospheric radiation, which is now being considered as a potentially important area, in which engineers can contribute to the technology of remote sensing and atmospheric sciences in general, b...

  13. Heat Transfer in Steelmaking Ladle

    Institute of Scientific and Technical Information of China (English)

    André Zimmer; (A)lvaro Niedersberg Correia Lima; Rafael Mello Trommer; Saulo Roca Bragan(c)a; Carlos Pérez Bergmann

    2008-01-01

    The heat transfer in a steelmaking ladle was studied. The evaluation of heat transfer of the steel was performed by measuring steel temperature in points including all refining steel process. In the ladle, the temperatures in the refractories and the shell were also measured. To evaluate the thermal profile between the hot and cold faces of the ladle in the slag line position, an experiment which shows the importance of thermal contact resistance was car-ried out. Higher heat losses in the tapping and the vacuum were verified. The temperature measurements of the ladle indicate distinct thermal profiles in each stage of steel refining. Moreover, aseach stage of the process depends on the previous one, the complexity of the ladle thermal control is incremental. So a complete model of heat losses in the ladle is complex.

  14. Heat transfer correlations in mantle tanks

    DEFF Research Database (Denmark)

    Furbo, Simon; Knudsen, Søren

    2005-01-01

    the inlet increases, natural convection starts to dominate. The heat transfer between the wall of the inner hot water tank and the domestic water is governed by natural convection. The results of the CFD-calculations are used to determine improved heat transfer correlations based on dimensionless analysis...... of the inner hot water tank and the domestic water in all levels of the tank. The heat transfer analysis showed that the heat transfer near the mantle inlet port between the solar collector fluid in the mantle and the walls surrounding the mantle is in the mixed convection regime, and as the distance from....... The heat transfer determined by these correlations is compared to the heat transfer determined by the CFD-calculations. The comparisons showed a good agreement between the heat transfer determined by the heat transfer correlations and the heat transfer determined by CFD-calculations. Consequently, the heat...

  15. Experimental research on heat transfer of pulsating heat pipe

    Science.gov (United States)

    Li, Jia; Yan, Li

    2008-06-01

    Experimental research was conducted to understand heat transfer characteristic of pulsating heat pipe in this paper, and the PHP is made of high quality glass capillary tube. Under different fill ratio, heat transfer rate and many other influence factors, the flow patterns were observed in the start-up, transition and stable stage. The effects of heating position on heat transfer were discussed. The experimental results indicate that no annular flow appears in top heating condition. Under different fill ratios and heat transfer rate, the flow pattern in PHP is transferred from bulk flow to semi-annular flow and annular flow, and the performance of heat transfer is improved for down heating case. The experimental results indicate that the total heat resistant of PHP is increased with fill ratio, and heat transfer rate achieves optimum at filling rate 50%. But for pulsating heat pipe with changing diameters the thermal resistance is higher than that with uniform diameters.

  16. Experimental research on heat transfer of pulsating heat pipe

    Institute of Scientific and Technical Information of China (English)

    LI Jia; Yan Li

    2008-01-01

    Experimental research was conducted to understand heat transfer characteristic of pulsating heat pipe in this paper,and the PHP is made of high quality glass capillary tube. Under different fill ratio, heat transfer rate and many other influence factors, the flow patterns were observed in the start-up, transition and stable stage. The effects of heating position on heat transfer were discussed. The experimental results indicate that no annular flow appears in top heating condition. Under different fill ratios and heat transfer rate, the flow pattern in PHP is transferred from bulk flow to semi-annular flow and annular flow, and the performance of heat transfer is improved for down heating case. The experimental results indicate that the total heat resistant of PHP is increased with fill ratio, and heat transfer rate achieves optimum at filling rate 50%. But for pulsating heat pipe with changing diameters the thermal resistance is higher than that with uniform diameters.

  17. Spectral decomposition in advection-diffusion analysis by finite element methods

    Energy Technology Data Exchange (ETDEWEB)

    Nickell, R.E.; Gartling, D.K.

    1979-03-01

    A spectral decomposition method based upon finite element modeling is compared to a Crank-Nicolson direct integration solution scheme and the exact solution for the one-dimensional, nonlinear system defined by Burger's equation. Results from this study are applicable to both fluid mechanics and combined conduction-convection heat transfer. The parameter ..cap alpha.., which governs the importance of diffusive transport, was varied over a sufficiently wide range such that comments on the comparisons are general. The mode superposition method proved to be very attractive in comparison to the second-order accurate Crank-Nicolson approach, generally allowing an order of magnitude larger time step for equivalent convergence to the exact solution. The modal shapes themselves tend to provide useful information about the ability of a given mesh to produce accurate results, much in the same way that modal information is used in nonlinear structural dynamics. For this class of problems, in contrast to structural dynamics, system nonlinearities did not manifest themselves in dramatic changes in the eigenspectrum.

  18. Transient Heat Transfer in Cylinpers.

    Directory of Open Access Journals (Sweden)

    M.G. Chopra

    2000-07-01

    Full Text Available A numerical solution has been obtained for transient heat transfer in cylinders by appropriate choice of body ,conforming grid points. The physical domain is transformed to computational domain using elliptic partial differential equation technique, wherein the grid spacing becomes uniform. The advantage of this method is that the discretisation of transformed equations. and accompanying boundary conditipns becdme very simple. The applicability of this method is very broad, as it can beused for carryinI giout study of any comple'x domain in contrast to finite difference methods, which have limited applicability. Detailedcalculations have been carried out to trace the evolution of temperaturedistribution frpm the initiial stages to the steadystate for circular cylinder, elliptical cylinder and square block with circular hole. This paper is aimed for general-shaped bodies and it has been applied to studytransient heat transfer in combustion-driven shock tube.

  19. Multiscale analysis of collective motion and decision-making in swarms: an advection-diffusion equation with memory approach.

    Science.gov (United States)

    Raghib, M; Levin, S A; Kevrekidis, I G

    2010-06-01

    We propose a (time) multiscale method for the coarse-grained analysis of collective motion and decision-making in self-propelled particle models of swarms comprising a mixture of 'naïve' and 'informed' individuals. The method is based on projecting the particle configuration onto a single 'meta-particle' that consists of the elongation of the flock together with the mean group velocity and position. We find that the collective states can be associated with the transient and asymptotic transport properties of the random walk followed by the meta-particle, which we assume follows a continuous time random walk (CTRW). These properties can be accurately predicted at the macroscopic level by an advection-diffusion equation with memory (ADEM) whose parameters are obtained from a mean group velocity time series obtained from a single simulation run of the individual-based model.

  20. Numerical and analytical approaches to an advection-diffusion problem at small Reynolds number and large P\\'eclet number

    CERN Document Server

    Fuller, Nathaniel J

    2016-01-01

    Obtaining a detailed understanding of the physical interactions between a cell and its environment often requires information about the flow of fluid surrounding the cell. Cells must be able to effectively absorb and discard material in order to survive. Strategies for nutrient acquisition and toxin disposal, which have been evolutionarily selected for their efficacy, should reflect knowledge of the physics underlying this mass transport problem. Motivated by these considerations, in this paper we consider a two-dimensional advection-diffusion problem at small Reynolds number and large P\\'eclet number. We discuss the problem of mass transport for a circular cell in a uniform far-field flow. We approach the problem numerically, and also analytically through a rescaling of the concentration boundary layer. A biophysically motivated first-passage problem for the absorption of material by the cell demonstrates quantitative agreement between the numerical and analytical approaches.

  1. Classical two-dimensional numerical algorithm for ?-Induced charge carrier advection-diffusion in Medipix-3 silicon pixel detectors

    Science.gov (United States)

    Biamonte, Mason; Idarraga, John

    2013-04-01

    A classical hybrid alternating-direction implicit difference scheme is used to simulate two-dimensional charge carrier advection-diffusion induced by alpha particles incident upon silicon pixel detectors at room temperature in vacuum. A mapping between the results of the simulation and a projection of the cluster size for each incident alpha is constructed. The error between the simulation and the experimental data diminishes with the increase in the applied voltage for the pixels in the central region of the cluster. Simulated peripheral pixel TOT values do not match the data for any value of applied voltage, suggesting possible modifications to the current algorithm from first principles. Coulomb repulsion between charge carriers is built into the algorithm using the Barnes-Hut tree algorithm. The plasma effect arising from the initial presence of holes in the silicon is incorporated into the simulation. The error between the simulation and the data helps identify physics not accounted for in standard literature simulation techniques.

  2. Boiling Heat Transfer to Halogenated Hydrocarbon Refrigerants

    Science.gov (United States)

    Yoshida, Suguru; Fujita, Yasunobu

    The current state of knowledge on heat transfer to boiling refrigerants (halogenated hydrocarbons) in a pool and flowing inside a horizontal tube is reviewed with an emphasis on information relevant to the design of refrigerant evaporators, and some recommendations are made for future research. The review covers two-phase flow pattern, heat transfer characteristics, correlation of heat transfer coefficient, influence of oil, heat transfer augmentation, boiling from tube-bundle, influence of return bend, burnout heat flux, film boiling, dryout and post-dryout heat transfer.

  3. Utilization of heat pipes for transfer heat from the flue gas into the heat transfer medium

    Directory of Open Access Journals (Sweden)

    Lenhard Richard

    2014-03-01

    Full Text Available The contribution is listed possible application of heat pipes in systems for obtaining heat from flue gas of small heat sources. It is also stated in the contribution design an experimental device on which to study the impact of fill (the quantity, type of load at various temperature parameters (temperature heating and cooling thermal power transferred to the heat pipe. Is listed measurement methodology using heat pipes designed experimental facility, measurement results and analysis of the results obtained.

  4. Heat transfer coefficient for boiling carbon dioxide

    DEFF Research Database (Denmark)

    Knudsen, Hans Jørgen Høgaard; Jensen, Per Henrik

    1998-01-01

    Heat transfer coefficient and pressure drop for boiling carbon dioxide (R744) flowing in a horizontal pipe has been measured. The calculated heat transfer coeeficient has been compared with the Chart correlation of Shah. The Chart Correlation predits too low heat transfer coefficient but the ratio...

  5. Heat exchanger device and method for heat removal or transfer

    Science.gov (United States)

    Koplow, Jeffrey P

    2013-12-10

    Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

  6. Heat Transfer in a Thermoacoustic Process

    Science.gov (United States)

    Beke, Tamas

    2012-01-01

    Thermoacoustic instability is defined as the excitation of acoustic modes in chambers with heat sources due to the coupling between acoustic perturbations and unsteady heat addition. The major objective of this paper is to achieve accurate theoretical results in a thermoacoustic heat transfer process. We carry out a detailed heat transfer analysis…

  7. Heat transfer in the Knudsen layer

    Science.gov (United States)

    Sharipov, Felix

    2004-06-01

    A concept of the surface heat conductivity determining a heat transfer in the Knudsen layer was introduced. It has the same order with respect to the Knudsen number as the bulk heat transfer and must be taken into account in practical calculations. Using the Onsager principle the coefficient of the surface heat conductivity was related to the thermal slip coefficient.

  8. Experimental research on heat transfer in a coupled heat exchanger

    OpenAIRE

    Liu Yin; Ma Jing; Zhou Guang-Hui; Guan Ren-Bo

    2013-01-01

    The heat exchanger is a devise used for transferring thermal energy between two or more different temperatures. The widespreadly used heat exchanger can only achieve heat exchange between two substances. In this paper, a coupled heat exchanger is proposed, which includes a finned heat exchanger and a double pipe heat exchanger, for multiple heat exchange simultaneously. An experiment is conducted, showing that the average heating capacity increases more tha...

  9. Blowdown heat transfer experiment, (1)

    International Nuclear Information System (INIS)

    Blowdown heat transfer experiment has been carried out with a transparent test section to observe phenomena in coolant behavior during blowdown process. Experimental parameters are discharge position, initial system pressure, initial coolant temperature, power supply to heater rods and number of heater rods. At initial pressure 7-12 ata and initial power 6-50 kw per one heater rod, the flow condition in the test section is a major factor in determining time of DNB occurrence and physical process to DNB during blowdown. (auth.)

  10. Application of Advection-Diffusion Routing Model to Flood Wave Propagation:A Case Study on Big Piney River, Missouri USA

    Institute of Scientific and Technical Information of China (English)

    Yang Yang; Theodore A Endreny; David J Nowak

    2016-01-01

    Flood wave propagation modeling is of critical importance to advancing water re-sources management and protecting human life and property. In this study, we investigated how the advection-diffusion routing model performed in flood wave propagation on a 16 km long down-stream section of the Big Piney River, MO. Model performance was based on gaging station data at the upstream and downstream cross sections. We demonstrated with advection-diffusion theory that for small differences in watershed drainage area between the two river cross sections, inflow along the reach mainly contributes to the downstream hydrograph’s rising limb and not to the falling limb. The downstream hydrograph’s falling limb is primarily determined by the propagated flood wave originating at the upstream cross section. This research suggests the parameter for the advection-diffusion routing model can be calibrated by fitting the hydrograph falling limb. Application of the advection diffusion model to the flood wave of January 29, 2013 supports our theoretical finding that the propagated flood wave determines the downstream cross section falling limb, and the model has good performance in our test examples.

  11. Heat Transfer in Complex Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Mehrdad Massoudi

    2012-01-01

    fluids show Newtonian (linear) behavior for a given range of parameters or geometries; there are many empirical or semi-empirical constitutive equations suggested for these fluids. There have also been many non-linear constitutive relations which have been derived based on the techniques of continuum mechanics. The non-linearities oftentimes appear due to higher gradient terms or time derivatives. When thermal and or chemical effects are also important, the (coupled) momentum and energy equations can give rise to a variety of interesting problems, such as instability, for example the phenomenon of double-diffusive convection in a fluid layer. In Conclusion, we have studied the flow of a compressible (density gradient type) non-linear fluid down an inclined plane, subject to radiation boundary condition. The heat transfer is also considered where a source term, similar to the Arrhenius type reaction, is included. The non-dimensional forms of the equations are solved numerically and the competing effects of conduction, dissipation, heat generation and radiation are discussed. It is observed that the velocity increases rapidly in the region near the inclined surface and is slower in the region near the free surface. Since R{sub 7} is a measure of the heat generation due to chemical reaction, when the reaction is frozen (R{sub 7}=0.0) the temperature distributions would depend only on R{sub 1}, and R{sub 2}, representing the effects of the pressure force developed in the material due to the distribution, R{sub 3} and R{sub 4} viscous dissipation, R{sub 5} the normal stress coefficient, R{sub 6} the measure of the emissivity of the particles to the thermal conductivity, etc. When the flow is not frozen (RP{sub 7} > 0) the temperature inside the flow domain is much higher than those at the inclined and free surfaces. As a result, heat is transferred away from the flow toward both the inclined surface and the free surface with a rate that increases as R{sub 7} increases. For a

  12. Heat transfer models in narrow gap

    International Nuclear Information System (INIS)

    For severe accident assessment in a light water reactor (LWR), heat transfer models in a narrow annular gap between the overheated core debris and the reactor pressure vessel (RPV) are important to evaluate the integrity of RPV and emergency procedures. Some heat transfer models have been proposed as gap cooling CHF (critical heat flux) but the effects of superheat on the heat transfer surface were not taken into account. This paper presents the effects of superheat based on existing data and heat transfer models in a narrow gap. (author)

  13. Engineering calculations in radiative heat transfer

    CERN Document Server

    Gray, W A; Hopkins, D W

    1974-01-01

    Engineering Calculations in Radiative Heat Transfer is a six-chapter book that first explains the basic principles of thermal radiation and direct radiative transfer. Total exchange of radiation within an enclosure containing an absorbing or non-absorbing medium is then described. Subsequent chapters detail the radiative heat transfer applications and measurement of radiation and temperature.

  14. Experimental research on heat transfer in a coupled heat exchanger

    Directory of Open Access Journals (Sweden)

    Liu Yin

    2013-01-01

    Full Text Available The heat exchanger is a devise used for transferring thermal energy between two or more different temperatures. The widespreadly used heat exchanger can only achieve heat exchange between two substances. In this paper, a coupled heat exchanger is proposed, which includes a finned heat exchanger and a double pipe heat exchanger, for multiple heat exchange simultaneously. An experiment is conducted, showing that the average heating capacity increases more than 35%, and the average heating efficiency increases more than 55%, compared with the ordinary air-source heat pump.

  15. Comparison of heat transfer efficiency between heat pipe and tube bundles heat exchanger

    OpenAIRE

    Wu Zhao-Chun; Zhu Xiang-Ping

    2015-01-01

    A comparison of heat transfer efficiency between the heat pipe and tube bundles heat exchanger is made based on heat transfer principle and the analysis of thermal characteristics. This paper argues that although heat pipe has the feature of high axial thermal conductivity, to those cases where this special function of heat transfer is unnecessary, heat pipe exchanger is not a high efficient heat exchanger when it is just used as a conventional heat exchang...

  16. Heat and mass transfer in particulate suspensions

    CERN Document Server

    Michaelides, Efstathios E (Stathis)

    2013-01-01

    Heat and Mass Transfer in Particulate Suspensions is a critical review of the subject of heat and mass transfer related to particulate Suspensions, which include both fluid-particles and fluid-droplet Suspensions. Fundamentals, recent advances and industrial applications are examined. The subject of particulate heat and mass transfer is currently driven by two significant applications: energy transformations –primarily combustion – and heat transfer equipment. The first includes particle and droplet combustion processes in engineering Suspensions as diverse as the Fluidized Bed Reactors (FBR’s) and Internal Combustion Engines (ICE’s). On the heat transfer side, cooling with nanofluids, which include nanoparticles, has attracted a great deal of attention in the last decade both from the fundamental and the applied side and has produced several scientific publications. A monograph that combines the fundamentals of heat transfer with particulates as well as the modern applications of the subject would be...

  17. Boiling Heat Transfer in Circulating Fluidized Beds

    Institute of Scientific and Technical Information of China (English)

    张利斌; 李修伦

    2001-01-01

    A model is proposed to predict boiling heat transfer coefficient in a three-phase circulating fluidized bed (CFB), which is a new type of evaporation boiling means for enhancing heat transfer and preventing fouling. To verify the model, experiments are conducted in a stainless steel column with 39 mm ID and 2.0 m height, in which the heat transfer coefficient is measured for different superficial velocities, steam pressures, particle concentrations and materials of particle. As the steam pressure and particle concentrations increase, the heat transfer coefficient in the bed increases. The heat transfer coefficient increases with the liquid velocity but it exhibits a local minimum.The heat transfer coefficient is correlated with cluster renewed model and two-mechanism method. The prediction of the model is in good agreement with experimental data.

  18. Boiling Heat Transfer in Circulating Fluidized Beds

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A model is proposed to predict boiling heat transfer coefficient in a three-phase circulating fluidized bed (CFB), which is a new type of evaporation boiling means for enhancing heat transfer and preventing fouling. To verify the model, experiments are conducted in a stainless steel column with 39mm ID and 2.0m height, in which the heat transfer coefficient is measured for different superficial velocities, steam pressures, particle concentrations and materials of particle. As the steam pressure and particle concentrations increase, the heat transfer coefficient in the bed increases. The heat transfer coefficient increases with the liquid velocity but it exhibits a local minimum. The heat transfer coefficient is correlated with cluster renewed model and two-mechanism method. The prediction of the model is in good agreement with experimental data.

  19. The nature and role of advection in advection-diffusion equations used for modelling bed load transport

    Science.gov (United States)

    Ancey, Christophe; Bohorquez, Patricio; Heyman, Joris

    2016-04-01

    The advection-diffusion equation arises quite often in the context of sediment transport, e.g., for describing time and space variations in the particle activity (the solid volume of particles in motion per unit streambed area). Stochastic models can also be used to derive this equation, with the significant advantage that they provide information on the statistical properties of particle activity. Stochastic models are quite useful when sediment transport exhibits large fluctuations (typically at low transport rates), making the measurement of mean values difficult. We develop an approach based on birth-death Markov processes, which involves monitoring the evolution of the number of particles moving within an array of cells of finite length. While the topic has been explored in detail for diffusion-reaction systems, the treatment of advection has received little attention. We show that particle advection produces nonlocal effects, which are more or less significant depending on the cell size and particle velocity. Albeit nonlocal, these effects look like (local) diffusion and add to the intrinsic particle diffusion (dispersal due to velocity fluctuations), with the important consequence that local measurements depend on both the intrinsic properties of particle displacement and the dimensions of the measurement system.

  20. Efficient high-order discontinuous Galerkin schemes with first-order hyperbolic advection-diffusion system approach

    Science.gov (United States)

    Mazaheri, Alireza; Nishikawa, Hiroaki

    2016-09-01

    We propose arbitrary high-order discontinuous Galerkin (DG) schemes that are designed based on a first-order hyperbolic advection-diffusion formulation of the target governing equations. We present, in details, the efficient construction of the proposed high-order schemes (called DG-H), and show that these schemes have the same number of global degrees-of-freedom as comparable conventional high-order DG schemes, produce the same or higher order of accuracy solutions and solution gradients, are exact for exact polynomial functions, and do not need a second-derivative diffusion operator. We demonstrate that the constructed high-order schemes give excellent quality solution and solution gradients on irregular triangular elements. We also construct a Weighted Essentially Non-Oscillatory (WENO) limiter for the proposed DG-H schemes and apply it to discontinuous problems. We also make some accuracy comparisons with conventional DG and interior penalty schemes. A relative qualitative cost analysis is also reported, which indicates that the high-order schemes produce orders of magnitude more accurate results than the low-order schemes for a given CPU time. Furthermore, we show that the proposed DG-H schemes are nearly as efficient as the DG and Interior-Penalty (IP) schemes as these schemes produce results that are relatively at the same error level for approximately a similar CPU time.

  1. Finite element simulation of heat transfer

    CERN Document Server

    Bergheau, Jean-Michel

    2010-01-01

    This book introduces the finite element method applied to the resolution of industrial heat transfer problems. Starting from steady conduction, the method is gradually extended to transient regimes, to traditional non-linearities, and to convective phenomena. Coupled problems involving heat transfer are then presented. Three types of couplings are discussed: coupling through boundary conditions (such as radiative heat transfer in cavities), addition of state variables (such as metallurgical phase change), and coupling through partial differential equations (such as electrical phenomena).? A re

  2. Numerical research of heat transfer in gas heat exchanger

    OpenAIRE

    Khomutov Eugene O.; Gil Andrey V.

    2015-01-01

    The article presents a numerical study of heat and mass transfer based on the finite volume method. Researched by installing a tubular heat exchanger for heating of natural gas. The results according to changes in temperature of the natural gas depend on the initial temperature of the heating flow. The results can be used in the analysis of further effective combustion.

  3. Heat transfer coeffcient for boiling carbon dioxide

    DEFF Research Database (Denmark)

    Knudsen, Hans Jørgen Høgaard; Jensen, Per Henrik

    1997-01-01

    Heat transfer coefficient and pressure drop for boiling carbon dioxide (R744) flowing in a horizontal pipe has been measured. The pipe is heated by condensing R22 outside the pipe. The heat input is supplied by an electrical heater wich evaporates the R22. With the heat flux assumed constant over...

  4. A Review on Heat Transfer Improvent of Plate Heat Exchanger

    OpenAIRE

    Abhishek Nandan; Gurpreet Singh Sokhal

    2015-01-01

    Plate heat exchanger has found a wide range of application in various industries like food industries, chemical industries, power plants etc. It reduces the wastage of energy and improves the overall efficiency of the system. Hence, it must be designed to obtain the maximum heat transfer possible. This paper is presented in order to study the various theories and results given over the improvement of heat transfer performance in a plate heat exchanger. However, there is still a la...

  5. Radiative heat transfer in porous uranium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, S.L. [Texas A and M Univ., College Station, TX (United States)

    1992-12-01

    Due to low thermal conductivity and high emissivity of UO{sub 2}, it has been suggested that radiative heat transfer may play a significant role in heat transfer through pores of UO{sub 2} fuel. This possibility was computationally investigated and contribution of radiative heat transfer within pores to overall heat transport in porous UO{sub 2} quantified. A repeating unit cell was developed to model approximately a porous UO{sub 2} fuel system, and the heat transfer through unit cells representing a wide variety of fuel conditions was calculated using a finite element computer program. Conduction through solid fuel matrix as wekk as pore gas, and radiative exchange at pore surface was incorporated. A variety of pore compositions were investigated: porosity, pore size, shape and orientation, temperature, and temperature gradient. Calculations were made in which pore surface radiation was both modeled and neglected. The difference between yielding the integral contribution of radiative heat transfer mechanism to overall heat transport. Results indicate that radiative component of heat transfer within pores is small for conditions representative of light water reactor fuel, typically less than 1% of total heat transport. It is much larger, however, for conditions present in liquid metal fast breeder reactor fuel; during restructuring of this fuel type early in life, the radiative heat transfer mode was shown to contribute as much as 10-20% of total heat transport in hottest regions of fuel.

  6. Conjugate heat and mass transfer in heat mass exchanger ducts

    CERN Document Server

    Zhang, Li-Zhi

    2013-01-01

    Conjugate Heat and Mass Transfer in Heat Mass Exchanger Ducts bridges the gap between fundamentals and recent discoveries, making it a valuable tool for anyone looking to expand their knowledge of heat exchangers. The first book on the market to cover conjugate heat and mass transfer in heat exchangers, author Li-Zhi Zhang goes beyond the basics to cover recent advancements in equipment for energy use and environmental control (such as heat and moisture recovery ventilators, hollow fiber membrane modules for humidification/dehumidification, membrane modules for air purification, desi

  7. Heat transfer from humans wearing clothing

    NARCIS (Netherlands)

    Lotens, W.A.

    1993-01-01

    In this monograph the effects of clothing on human heat transfer are described. The description is based on the physics of heat and mass transfer, depending on the design of the clothing, the climate, and the activity of the wearer. The resulting model has been stepwise implemented in computer progr

  8. Boiling heat transfer with acoustic cavitation

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The effects of acoustic cavitation and nanometer granule on boiling heat transfer of horizontal circular copper tube are investigated experimentally and theoretically using acetone as the working fluid according to the boiling procedure. The results show that heat transfer can be enhanced or weakened by generation of the cavitation bubble or addition of the nanometer granules, respectively. The mechanisms of the effects are analyzed.

  9. Dynamic Heat Transfer Model of Refrigerated Foodstuff

    DEFF Research Database (Denmark)

    Cai, Junping; Risum, Jørgen; Thybo, Claus

    2006-01-01

    their temperature relation. This paper discusses the dynamic heat transfer model of foodstuff inside the display cabinet, one-dimensional dynamic model is developed, and the Explicit Finite Difference Method is applied, to handle the unsteady heat transfer problem with phase change, as well as time varying boundary...

  10. Transition boiling heat transfer during reflooding transients

    International Nuclear Information System (INIS)

    Transition boiling heat transfer is characterized by a heat flux which declines as the heater wall temperature increases. Steady state transition boiling is also characterized by alternate periods of high and low heat transfer caused by intermittent wetting of the heated surface. In flow boiling, the reason for intermittent wetting depends on the volume fraction of vapor present. At high vapor volume fractions, annular flow exists during what is generally called the nucleate boiling region, and a thin liquid film is present on the surface. The remainder of the passage is filled with vapor carrying entrained droplets. Above the nucleate boiling region there is no liquid film, and heat is transferred to droplet-laden vapor. In the narrow transition boiling region between nucleate boiling and heat transfer to steam, the liquid film is present only part of the time. The intermittent wetting produces significant wall temperature oscillations. Recent phenomenologically based modeling of steady state transition boiling heat transfer at high vapor fractions has been successful in predicting the magnitude of both temperature oscillations and heat transfer rates. After a brief review of the steady state model, this note shows how the results of the steady state analysis for vertical surfaces may be used to obtain heat transfer rates during reflooding transients

  11. Dynamic Modeling and Control of Distributed Heat Transfer Mechanisms: Application to a Membrane Distillation Module

    KAUST Repository

    Eleiwi, Fadi

    2015-12-01

    Sustainable desalination technologies are the smart solution for producing fresh water and preserve the environment and energy by using sustainable renewable energy sources. Membrane distillation (MD) is an emerging technology which can be driven by renewable energy. It is an innovative method for desalinating seawater and brackish water with high quality production, and the gratitude is to its interesting potentials. MD includes a transfer of water vapor from a feed solution to a permeate solution through a micro-porous hydrophobic membrane, rejecting other non-volatile constituents present in the influent water. The process is driven by the temperature difference along the membrane boundaries. Different control applications and supervision techniques would improve the performance and the efficiency of the MD process, however controlling the MD process requires comprehensive mathematical model for the distributed heat transfer mechanisms inside the process. Our objective is to propose a dynamic mathematical model that accounts for the time evolution of the involved heat transfer mechanisms in the process, and to be capable of hosting intermittent energy supplies, besides managing the production rate of the process, and optimizing its energy consumption. Therefore, we propose the 2D Advection-Diffusion Equation model to account for the heat diffusion and the heat convection mechanisms inside the process. Furthermore, experimental validations have proved high agreement between model simulations and experiments with less than 5% relative error. Enhancing the MD production is an anticipated goal, therefore, two main control strategies are proposed. Consequently, we propose a nonlinear controller for a semi-discretized version of the dynamic model to achieve an asymptotic tracking for a desired temperature difference. Similarly, an observer-based feedback control is used to track sufficient temperature difference for better productivity. The second control strategy

  12. Boiling heat transfer modern developments and advances

    CERN Document Server

    Lahey, Jr, RT

    2013-01-01

    This volume covers the modern developments in boiling heat transfer and two-phase flow, and is intended to provide industrial, government and academic researchers with state-of-the-art research findings in the area of multiphase flow and heat transfer technology. Special attention is given to technology transfer, indicating how recent significant results may be used for practical applications. The chapters give detailed technical material that will be useful to engineers and scientists who work in the field of multiphase flow and heat transfer. The authors of all chapters are members of the

  13. Heat transfer coefficient of cryotop during freezing.

    Science.gov (United States)

    Li, W J; Zhou, X L; Wang, H S; Liu, B L; Dai, J J

    2013-01-01

    Cryotop is an efficient vitrification method for cryopreservation of oocytes. It has been widely used owing to its simple operation and high freezing rate. Recently, the heat transfer performance of cryotop was studied by numerical simulation in several studies. However, the range of heat transfer coefficient in the simulation is uncertain. In this study, the heat transfer coefficient for cryotop during freezing process was analyzed. The cooling rates of 40 percent ethylene glycol (EG) droplet in cryotop during freezing were measured by ultra-fast measurement system and calculated by numerical simulation at different value of heat transfer coefficient. Compared with the results obtained by two methods, the range of the heat transfer coefficient necessary for the numerical simulation of cryotop was determined, which is between 9000 W/(m(2)·K) and 10000 W/(m (2)·K).

  14. Flow and heat transfer enhancement in tube heat exchangers

    Science.gov (United States)

    Sayed Ahmed, Sayed Ahmed E.; Mesalhy, Osama M.; Abdelatief, Mohamed A.

    2015-11-01

    The performance of heat exchangers can be improved to perform a certain heat-transfer duty by heat transfer enhancement techniques. Enhancement techniques can be divided into two categories: passive and active. Active methods require external power, such as electric or acoustic field, mechanical devices, or surface vibration, whereas passive methods do not require external power but make use of a special surface geometry or fluid additive which cause heat transfer enhancement. The majority of commercially interesting enhancement techniques are passive ones. This paper presents a review of published works on the characteristics of heat transfer and flow in finned tube heat exchangers of the existing patterns. The review considers plain, louvered, slit, wavy, annular, longitudinal, and serrated fins. This review can be indicated by the status of the research in this area which is important. The comparison of finned tubes heat exchangers shows that those with slit, plain, and wavy finned tubes have the highest values of area goodness factor while the heat exchanger with annular fin shows the lowest. A better heat transfer coefficient ha is found for a heat exchanger with louvered finned and thus should be regarded as the most efficient one, at fixed pumping power per heat transfer area. This study points out that although numerous studies have been conducted on the characteristics of flow and heat transfer in round, elliptical, and flat tubes, studies on some types of streamlined-tubes shapes are limited, especially on wing-shaped tubes (Sayed Ahmed et al. in Heat Mass Transf 50: 1091-1102, 2014; in Heat Mass Transf 51: 1001-1016, 2015). It is recommended that further detailed studies via numerical simulations and/or experimental investigations should be carried out, in the future, to put further insight to these fin designs.

  15. A POSTERIORI ENERGY-NORM ERROR ESTIMATES FOR ADVECTION-DIFFUSION EQUATIONS APPROXIMATED BY WEIGHTED INTERIOR PENALTY METHODS

    Institute of Scientific and Technical Information of China (English)

    Alexandre Ern; Annette F.Stephansen

    2008-01-01

    We propose and analyze a posteriori energy-norm error estimates for weighted interior penalty discontinuous Galerkin approximations of advection-diffusion-reaction equations with heterogeneous and anisotropic diffusion.The weights,which play a key role in the analysis.depend on the diffusion tensor and are used to formulate the consistency terms in the discontinuous Galerkin method.The error upper bounds,in which all the constants are specified.consist of three terms:a residual estimator which depends only on the elementwise fluctuation of the discrete solution residual,a diffusive flux estimator where the weights used in the method enter explicitly,and a non-conforming estimator which is nonzero because of the use of discontinuous finite element spaces.The three estimators can be bounded locally by the approximation error.A particular attention is given to the dependency on problem parameters of the constants in the local lower error bounds,For moderate advection.it.is shown that full robustness with respect to diffusion heterogeneities is achieved owing to the specific design of the weights in the discontinuous Galerkin method,while diffusion anisotropies remain purely local and impact the constants through the square root of the condition number of the diffusion tensor.For dominant advection,the local lower error bounds can be written with constants involving a cut-off for the ratio of local mesh size to the reciprocal of the square root of the lowest local eignevalue of the diffusion tensor.

  16. "Nanotechnology Enabled Advanced Industrial Heat Transfer Fluids"

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Ganesh Skandan; Dr. Amit Singhal; Mr. Kenneth Eberts; Mr. Damian Sobrevilla; Prof. Jerry Shan; Stephen Tse; Toby Rossmann

    2008-06-12

    ABSTRACT Nanotechnology Enabled Advanced industrial Heat Transfer Fluids” Improving the efficiency of Industrial Heat Exchangers offers a great opportunity to improve overall process efficiencies in diverse industries such as pharmaceutical, materials manufacturing and food processing. The higher efficiencies can come in part from improved heat transfer during both cooling and heating of the material being processed. Additionally, there is great interest in enhancing the performance and reducing the weight of heat exchangers used in automotives in order to increase fuel efficiency. The goal of the Phase I program was to develop nanoparticle containing heat transfer fluids (e.g., antifreeze, water, silicone and hydrocarbon-based oils) that are used in transportation and in the chemical industry for heating, cooling and recovering waste heat. Much work has been done to date at investigating the potential use of nanoparticle-enhanced thermal fluids to improve heat transfer in heat exchangers. In most cases the effect in a commercial heat transfer fluid has been marginal at best. In the Phase I work, we demonstrated that the thermal conductivity, and hence heat transfer, of a fluid containing nanoparticles can be dramatically increased when subjected to an external influence. The increase in thermal conductivity was significantly larger than what is predicted by commonly used thermal models for two-phase materials. Additionally, the surface of the nanoparticles was engineered so as to have a minimal influence on the viscosity of the fluid. As a result, a nanoparticle-laden fluid was successfully developed that can lead to enhanced heat transfer in both industrial and automotive heat exchangers

  17. Final Technical Report - Stochastic Analysis of Advection-Diffusion-reaction Systems with Applications to Reactive Transport in Porous Media - DE-FG02-07ER24818

    Energy Technology Data Exchange (ETDEWEB)

    Karniadakis, George Em [Brown University

    2014-03-11

    The main objective of this project is to develop new computational tools for uncertainty quantifica- tion (UQ) of systems governed by stochastic partial differential equations (SPDEs) with applications to advection-diffusion-reaction systems. We pursue two complementary approaches: (1) generalized polynomial chaos and its extensions and (2) a new theory on deriving PDF equations for systems subject to color noise. The focus of the current work is on high-dimensional systems involving tens or hundreds of uncertain parameters.

  18. Thermodynamics of Flow Boiling Heat Transfer

    Science.gov (United States)

    Collado, F. J.

    2003-05-01

    Convective boiling in sub-cooled water flowing through a heated channel is essential in many engineering applications where high heat flux needs to be accommodated. It has been customary to represent the heat transfer by the boiling curve, which shows the heat flux versus the wall-minus-saturation temperature difference. However it is a rather complicated problem, and recent revisions of two-phase flow and heat transfer note that calculated values of boiling heat transfer coefficients present many uncertainties. Quite recently, the author has shown that the average thermal gap in the heated channel (the wall temperature minus the average temperature of the coolant) was tightly connected with the thermodynamic efficiency of a theoretical reversible engine placed in this thermal gap. In this work, whereas this correlation is checked again with data taken by General Electric (task III) for water at high pressure, a possible connection between this wall efficiency and the reversible-work theorem is explored.

  19. Heat transfer and planetary evolution

    Science.gov (United States)

    Tozer, D. C.

    1985-06-01

    The object of this account is to show how much one can interprete and predict about the present state of material forming planet size objects, despite the fact we do not and could never have the kind of exact or prior knowledge of initial conditions and in situ material behaviour that would make a formal mathematical analysis of the dynamical problems of planetary evolution an efficient or meaningful exercise The interest and usefulness of results obtained within these limitations stem from the highly non linear nature of planetary scale heat transfer problems when posed in any physically plausible form. The non linearity arising from a strongly temperature dependent rheology assumed for in situ planetary material is particularly valuable in deriving results insensitive to such uncertainties. Qualitatively, the thermal evolution of a planet is quite unlike that given by heat conduction calculation below a very superficial layer, and much unnecessary argument and confusion results from a persistent failure to recognise that fact. At depths that are no greater on average than a few tens of kilometres in the case of Earth, the temperature distribution is determined by a convective flow regime inaccessble to the laboratory experimenter and to the numerical methods regularly employed to study convective movement. A central and guiding quantitative result is the creation in homogeneous planet size objects having surface temperatures less than about half the absolute melting temperature of their material, of internal states with horizontally a veraged viscosity values ˜1021 poise. This happens in times short compared with the present Solar System age. The significance of this result for an understanding of such processes and features as isostasy, continental drift, a minimum in seismic S wave velocity in Earth's upper mantle, a uniformity of mantle viscosity values, the survival of liquid planetary cores and the differentiation of terrestrial planet material is examined

  20. Heat Transfer of Nanofluid in a Double Pipe Heat Exchanger.

    Science.gov (United States)

    Aghayari, Reza; Maddah, Heydar; Zarei, Malihe; Dehghani, Mehdi; Kaskari Mahalle, Sahar Ghanbari

    2014-01-01

    This paper investigates the enhancement of heat transfer coefficient and Nusselt number of a nanofluid containing nanoparticles (γ-AL2O3) with a particle size of 20 nm and volume fraction of 0.1%-0.3% (V/V). Effects of temperature and concentration of nanoparticles on Nusselt number changes and heat transfer coefficient in a double pipe heat exchanger with counter turbulent flow are investigated. Comparison of experimental results with valid theoretical data based on semiempirical equations shows an acceptable agreement. Experimental results show a considerable increase in heat transfer coefficient and Nusselt number up to 19%-24%, respectively. Also, it has been observed that the heat transfer coefficient increases with the operating temperature and concentration of nanoparticles.

  1. Near field heat transfer in superlattices

    Science.gov (United States)

    Esquivel-Sirvent, Raul

    2015-03-01

    I present a theoretical calculation of the near field heat transfer between super lattices made of alternative layers of both metallic and semiconducting materials. The calculation of the near field transfer requires the knowledge of the reflectivities, that are obtained by calculating the surface impedance of the super lattice. Depending on the periodicity of the lattice and the dielectric function of the materials the near field heat transfer can be modulated or engineered. Additional control on the heat transfer is achieved by introducing defects in the superlattice. The results are extended to include photonic hypercrystals that effectively behave like a hyperbolic metamaterial even in the near field (1), where the tuning of the heat transfer is modified by Partial Support from DGAPA-UNAM project IN 111214.

  2. Endwall convective heat transfer for bluff bodies

    DEFF Research Database (Denmark)

    Wang, Lei; Salewski, Mirko; Sundén, Bengt;

    2012-01-01

    The endwall heat transfer characteristics of forced flow past bluff bodies have been investigated using liquid crystal thermography (LCT). The bluff body is placed in a rectangular channel with both its ends attached to the endwalls. The Reynolds number varies from 50,000 to 100,000. In this study......, a single bluff body and two bluff bodies arranged in tandem are considered. Due to the formation of horseshoe vortices, the heat transfer is enhanced appreciably for both cases. However, for the case of two bluff bodies in tandem, it is found that the presence of the second bluff body decreases the heat...... transfer as compared to the case of a single bluff body. In addition, the results show that the heat transfer exhibits Reynolds number similarity. For a single bluff body, the Nusselt number profiles collapse well when the data are scaled by Re0.55; for two bluff bodies arranged in tandem, the heat...

  3. Pumped two-phase heat transfer loop

    Science.gov (United States)

    Edelstein, Fred

    1988-01-01

    A pumped loop two-phase heat transfer system, operating at a nearly constant temperature throughout, includes several independently operating grooved capillary heat exchanger plates supplied with working fluid through independent flow modulation valves connected to a liquid supply line, a vapor line for collecting vapor from the heat exchangers, a condenser between the vapor and the liquid lines, and a fluid circulating pump between the condenser and the heat exchangers.

  4. Heat Transfer Augmentation for Electronic Cooling

    Directory of Open Access Journals (Sweden)

    Suabsakul Gururatana

    2012-01-01

    Full Text Available Problem statement: The performance of electronic devices has been improving along with the rapid technology development. Cooling of electronic systems is consequently essential in controlling the component temperature and avoiding any hot spot. The study aims to review the present electronic cooling methods which are widely used in electronic devices. Approach: There are several methods to cool down the electronics components such as the pin-fin heat sink, confined jet impingement, heat pipe, micro heat sink and so on. Results: The cooling techniques can obviously increase heat transfer rate. Nonetheless, for active and passive cooling methods the pressure drop could extremely rise, when the heat transfer rate is increased. Conclusion: When the cooling techniques are used, it is clearly seen that the heat transfer increases with pressure drop. To avoid excessive expense due to high pressure drop, optimization method is required to obtain optimum cost and cooling rate.

  5. Numerical Study on Flow and Heat Transfer Performance of Rectangular Heat Sink with Compound Heat Transfer Enhancement Structures

    OpenAIRE

    Di Zhang; Shuai Guo; Zhongyang Shen; Yonghui Xie

    2014-01-01

    Modern gas turbine blade is operating at high temperature which requires abundant cooling. Considering both heat transfer rate and pumping power for internal passages, developing efficient cooling passages is of great importance. Ribbed channel has been proved as effective heat transfer enhancement technology for considerable heat transfer characteristics; however, the pressure loss is impressive. Dimple and protrusion are frequently considered as new heat transfer augmentation tools for thei...

  6. Temperature Distribution and Heat Saturating Time of Regenerative Heat Transfer

    Institute of Scientific and Technical Information of China (English)

    Li JIA; Ying MAO; Lixin YANG

    2006-01-01

    In this paper, heat transfer of the ceramic honeycomb regenerator was numerically simulated based on the computational fluid dynamics numerical analysis software CFX5. The longitudinal temperature distribution of regenerator and gas were obtained. The variation of temperature with time was discussed. In addition, the effects of some parameters such as switching time, gas temperature at the inlet of regenerator, height of regenerator and specific heat of the regenerative materials on heat saturating time were discussed. It provided primarily theoretic basis for further study of regenerative heat transfer mechanism.

  7. Heat transfer behavior of molten nitrate salt

    Science.gov (United States)

    Das, Apurba K.; Clark, Michael M.; Teigen, Bard C.; Fiveland, Woodrow A.; Anderson, Mark H.

    2016-05-01

    The usage of molten nitrate salt as heat transfer fluid and thermal storage medium decouples the generation of electricity from the variable nature of the solar resource, allowing CSP plants to avoid curtailment and match production with demand. This however brings some unique challenges for the design of the molten salt central receiver (MSCR). An aspect critical to the use of molten nitrate (60wt%/40wt% - NaNO3/KNO3) salt as heat transfer fluid in the MSCR is to understand its heat transfer behavior. Alstom collaborated with the University of Wisconsin to conduct a series of experiments and experimentally determined the heat transfer coefficients of molten nitrate salt up to high Reynolds number (Re > 2.0E5) and heat flux (q″ > 1000 kW/m2), conditions heretofore not reported in the literature. A cartridge heater instrumented with thermocouples was installed inside a stainless steel pipe to form an annular test section. The test section was installed in the molten salt flow loop at the University of Wisconsin facility, and operated over a range of test conditions to determine heat transfer data that covered the expected operating regime of a practical molten salt receiver. Heat transfer data were compared to widely accepted correlations found in heat transfer literature, including that of Gnielinski. At lower Reynolds number conditions, the results from this work concurred with the molten salt heat transfer data reported in literature and followed the aforementioned correlations. However, in the region of interest for practical receiver design, the correlations did not accurately model the experimentally determined heat transfer data. Two major effects were observed: (i) all other factors remaining constant, the Nusselt numbers gradually plateaued at higher Reynolds number; and (ii) at higher Reynolds number a positive interaction of heat flux on Nusselt number was noted. These effects are definitely not modeled by the existing correlations. In this paper a new

  8. Nanoscale Heat Transfer: from Computation to Experiment

    OpenAIRE

    Luo, Tengfei; Chen, Gang

    2013-01-01

    Heat transfer can differ distinctly at the nanoscale from that at the macroscale. Recent advancement in computational and experimental techniques has enabled a large number of interesting observations and understanding of heat transfer processes at the nanoscale. In this review, we will first discuss recent advances in computational and experimental methods used in nanoscale thermal transport studies, followed by reviews of novel thermal transport phenomena at the nanoscale observed in both c...

  9. Nanoscale heat transfer - from computation to experiment

    OpenAIRE

    Luo, Tengfei; Chen, Gang

    2012-01-01

    Heat transfer can differ distinctly at the nanoscale from that at the macroscale. Recent advancement in computational and 5 experimental techniques has enabled a large number of interesting observations and understanding of heat transfer processes at the nanoscale. In this review, we will first discuss recent advances in computational and experimental methods used in nanoscale thermal transport studies, followed by reviews of novel thermal transport phenomena at the nanoscale obse...

  10. Development of a conjugate heat transfer solver

    OpenAIRE

    Al-Qubeissi, Mansour

    2013-01-01

    The current research study presents a numerical approach in modelling the conjugate heat transfer system of the gas-turbine rotating discs-cavities. The work was undertaken to understand such phenomena and, more specifically, to numerically investigate the thermal interactions in rotating discs-cavities. The developed solver is capable of dealing with complex heat transfer problems, such as unsteady three-dimensional compressible rotating-flows. The development was based on integrating...

  11. Some Aspects Concerning Convective Circulation Mode of Heat Transfer in Furnace to Wood Heat Treatment

    OpenAIRE

    Nadia Potoceanu

    2007-01-01

    The paper presented the most aspects of convective circulate mode of heat transfer : heat transfer through the boundary layer formed at the surface of the heat generator; heat transfer in the heat carrier and heat transfer through the boundary layer formed at the heated surface

  12. Some Aspects Concerning Convective Circulation Mode of Heat Transfer in Furnace to Wood Heat Treatment

    Directory of Open Access Journals (Sweden)

    Nadia Potoceanu

    2007-10-01

    Full Text Available The paper presented the most aspects of convective circulate mode of heat transfer : heat transfer through the boundary layer formed at the surface of the heat generator; heat transfer in the heat carrier and heat transfer through the boundary layer formed at the heated surface

  13. Theory of Periodic Conjugate Heat Transfer

    CERN Document Server

    Zudin, Yuri B

    2012-01-01

    This book presents the theory of periodic conjugate heat transfer in a detailed way. The effects of thermophysical properties and geometry of a solid body on the commonly used and experimentally determined heat transfer coefficient are analytically presented from a general point of view. The main objective of the book is a simplified description of the interaction between a solid body and a fluid as a boundary value problem of the heat conduction equation for the solid body. At the body surface, the true heat transfer coefficient is composed of two parts: the true mean value resulting from the solution of the steady state heat transfer problem and a periodically variable part, the periodic time and length to describe the oscillatory hydrodynamic effects. The second edition is extended by (i) the analysis of stability boundaries in helium flow at supercritical conditions in a heated channel with respect to the interaction between a solid body and a fluid; (ii) a periodic model and a method of heat transfer sim...

  14. Capillary-Pumped Heat-Transfer Loop

    Science.gov (United States)

    1989-01-01

    New type of capillary-pumped heat-transfer loop primes itself at startup. Removes substantial quantities of heat like that generated by people and equipment in rooms and vehicles. Creates continuous path for its working fluid; both vapor and liquid move in same direction. Key element in operation of loop is formation of slugs of liquid, condensed from vapor and moved along loop by vapor bubbles before and after it. Both evaporator and condenser contain axial arteries carrying water. Heat entering evaporator from heat source provides energy for transport of fluid and heat. Dimensions in inches.

  15. Mass and Heat Transfer Enhancement of Chemical Heat Pumps

    Institute of Scientific and Technical Information of China (English)

    Gui-PingLin; Xiu-GanYuan

    1993-01-01

    An inert additive,expanded graphit(EG),has been prepared and used to enhance the heat and mass transfer process of chemical heat pumps.The effects of mixing ratio and mixing method on the chemical reaction time are investigated.

  16. Cornish heat transfer experiment - final report

    International Nuclear Information System (INIS)

    The transfer of heat released in an in-site heating experiment simulating high level radioactive waste packages in granite in Cornwall has been found to be mainly by conduction but some appreciable convection does occur. Interim analysis of the data suggests that the latter may account for about 20% of the total. (author)

  17. Enhanced heat transfer in confined pool boiling

    NARCIS (Netherlands)

    Rops, C.M.; Lindken, R.; Velthuis, J.F.M.; Westerweel, J.

    2009-01-01

    We report the results of an experimental investigation of the heat transfer during nucleate boiling on a spatially confined boiling surface. The heat flux as a function of the boiling surface temperature was measured in pool boiling pots with diameters ranging from 15 mm down to 4.5 mm. It was found

  18. Interactive Heat Transfer Simulations for Everyone

    Science.gov (United States)

    Xie, Charles

    2012-01-01

    Heat transfer is widely taught in secondary Earth science and physics. Researchers have identified many misconceptions related to heat and temperature. These misconceptions primarily stem from hunches developed in everyday life (though the confusions in terminology often worsen them). Interactive computer simulations that visualize thermal energy,…

  19. Topology optimization for transient heat transfer problems

    DEFF Research Database (Denmark)

    Zeidan, Said; Sigmund, Ole; Lazarov, Boyan Stefanov

    The focus of this work is on passive control of transient heat transfer problems using the topology optimization (TopOpt) method [1]. The goal is to find distributions of a limited amount of phase change material (PCM), within a given design domain, which optimizes the heat energy storage [2]. Our...

  20. Heat transfer with freezing and thawing

    CERN Document Server

    Lunardini, VJ

    1991-01-01

    This volume provides a comprehensive overview on the vast amount of literature on solidification heat transfer. Chapter one develops important basic equations and discusses the validity of considering only conductive heat transfer, while ignoring convection, in the large class of materials which make up the porous media. Chapters 2 to 4 deal with problems that can be expressed in plane (Cartesian) coordinates. These problems are further divided into boundary conditions of temperature, prescribed heat flux, and surface convection. Chapter 5 examines some plane geometries involving three-dime

  1. Capillary-Condenser-Pumped Heat-Transfer Loop

    Science.gov (United States)

    Silverstein, Calvin C.

    1989-01-01

    Heat being transferred supplies operating power. Capillary-condenser-pumped heat-transfer loop similar to heat pipe and to capillary-evaporator-pumped heat-transfer loop in that heat-transfer fluid pumped by evaporation and condensation of fluid at heat source and sink, respectively. Capillary condenser pump combined with capillary evaporator pump to form heat exchanger circulating heat-transfer fluids in both loops. Transport of heat more nearly isothermal. Thermal stress in loop reduced, and less external surface area needed in condenser section for rejection of heat to heat sink.

  2. Heat Transfer in Underground Rail Tunnels

    CERN Document Server

    Sadokierski, Stefan

    2007-01-01

    The transfer of heat between the air and surrounding soil in underground tunnels ins investigated, as part of the analysis of environmental conditions in underground rail systems. Using standard turbulent modelling assumptions, flow profiles are obtained in both open tunnels and in the annulus between a tunnel wall and a moving train, from which the heat transfer coefficient between the air and tunnel wall is computed. The radial conduction of heat through the surrounding soil resulting from changes in the temperature of air in the tunnel are determined. An impulse change and an oscillating tunnel air temperature are considered separately. The correlations between fluctuations in heat transfer coefficient and air temperature are found to increase the mean soil temperature. Finally, a model for the coupled evolution of the air and surrounding soil temperature along a tunnel of finite length is given.

  3. Simplified models for heat transfer in rooms

    Science.gov (United States)

    Graca, Guilherme C. C. Carrilho Da

    Buildings protect their occupants from the outside environment. As a semi-enclosed environment, buildings tend to contain the internally generated heat and air pollutants, as well as the solar and conductive heat gains that can occur in the facade. In the warmer months of the year this generally leads to overheating, creating a need for a cooling system. Ventilation air replaces contaminated air in the building and is often used as the dominant medium for heat transfer between indoor and outdoor environments. The goal of the research presented in this thesis is to develop a better understanding of the important parameters in the performance of ventilation systems and to develop simplified convective heat transfer models. The general approach used in this study seeks to capture the dominant physical processes for these problems with first order accuracy, and develop simple models that show the correct system behavior trends. Dimensional analysis, in conjunction with simple momentum and energy conservation, scaled model experiments and numerical simulations, is used to improve airflow and heat transfer rate predictions in both single and multi room ventilation systems. This study includes the three commonly used room ventilation modes: mixing, displacement and cross-ventilation. A new modeling approach to convective heat transfer between the building and the outside is presented: the concept of equivalent room heat transfer coefficient. The new model quantifies the reduction in heat transfer between ventilation air and internal room surfaces caused by limited thermal capacity and temperature variation of the air for the three modes studied. Particular emphasis is placed on cross-ventilation, and on the development of a simple model to characterize the airflow patterns that occur in this case. The implementation of the models in a building thermal simulation software tool is presented as well as comparisons between model predictions, experimental results and complex

  4. Modeling microscale heat transfer using Calore.

    Energy Technology Data Exchange (ETDEWEB)

    Gallis, Michail A.; Rader, Daniel John; Wong, Chung-Nin Channy; Bainbridge, Bruce L.; Torczynski, John Robert; Piekos, Edward Stanley

    2005-09-01

    Modeling microscale heat transfer with the computational-heat-transfer code Calore is discussed. Microscale heat transfer problems differ from their macroscopic counterparts in that conductive heat transfer in both solid and gaseous materials may have important noncontinuum effects. In a solid material, three noncontinuum effects are considered: ballistic transport of phonons across a thin film, scattering of phonons from surface roughness at a gas-solid interface, and scattering of phonons from grain boundaries within the solid material. These processes are modeled for polycrystalline silicon, and the thermal-conductivity values predicted by these models are compared to experimental data. In a gaseous material, two noncontinuum effects are considered: ballistic transport of gas molecules across a thin gap and accommodation of gas molecules to solid conditions when reflecting from a solid surface. These processes are modeled for arbitrary gases by allowing the gas and solid temperatures across a gas-solid interface to differ: a finite heat transfer coefficient (contact conductance) is imposed at the gas-solid interface so that the temperature difference is proportional to the normal heat flux. In this approach, the behavior of gas in the bulk is not changed from behavior observed under macroscopic conditions. These models are implemented in Calore as user subroutines. The user subroutines reside within Sandia's Source Forge server, where they undergo version control and regression testing and are available to analysts needing these capabilities. A Calore simulation is presented that exercises these models for a heated microbeam separated from an ambient-temperature substrate by a thin gas-filled gap. Failure to use the noncontinuum heat transfer models for the solid and the gas causes the maximum temperature of the microbeam to be significantly underpredicted.

  5. ADVECTION - DIFFUSION NUMERICAL MODEL OF AN AIR POLLUTANT EMITTED FROM AN AREA SOURCE OF PRIMARY POLLUTANT WITH CHEMICAL REACTION AND DRY DEPOSITION

    Directory of Open Access Journals (Sweden)

    SUDHEER PAI K L

    2012-01-01

    Full Text Available A time dependent two dimensional advection-diffusion numerical model for primary pollutant with chemical reaction and dry deposition for an urban area is presented. The proposed numerical model takes into account of realistic form of variable wind velocity and eddy diffusivity profiles. The partial differential equation of primarypollutant is solved by using Crank-Nicolson implicit finite difference technique. The results are plotted for concentration of primary pollutant and the effect of chemical reaction and dry deposition on the dispersion of pollutant are analysed extensively.

  6. A heat transfer model of a horizontal ground heat exchanger

    Science.gov (United States)

    Mironov, R. E.; Shtern, Yu. I.; Shtern, M. Yu.; Rogachev, M. S.

    2016-04-01

    Ground-source heat pumps are gaining popularity in Eastern Europe, especially those which are using the horizontal ground heat exchanger (GHX). Due to the difficulty of accessing GHX after the installation, materials and the quality of the installation must satisfy the very high requirements. An inaccurate calculation of GHX can be the reason of a scarcity of heat power in a crucial moment. So far, there isn't any appropriate mathematical description of the horizontal GHX which takes into account the mutual influence of GHX pipes on each other. To solve this problem we used the temperature wave approach. As a result, a mathematical model which describes the dependence of the heat transfer rate per unit length of the horizontal GHX pipe on the thermal properties of soil, operating time of GHX and the distance between pipes was obtained. Using this model, heat transfer rates per unit length of a horizontal GHX were plotted as functions of the distance between pipes and operating time. The modeling shows that heat transfer rates decreases rapidly with the distance between pipes lower then 2 meters. After the launch of heat pump, heat power of GHX is reduced during the first 20 - 30 days and get steady after that. The obtained results correlate with experimental data. Therefore the proposed mathematical model can be used to design a horizontal GHX with the optimal characteristics, and predict its capability during operation.

  7. Microscale and nanoscale heat transfer fundamentals and engineering applications

    CERN Document Server

    Sobhan, CB

    2008-01-01

    Preface Introduction to Microscale Heat Transfer Microscale Heat Transfer: A Recent Avenue in Energy Transport State of the Art: Some Introductory Remarks Overview of Microscale Transport Phenomena Discussions on Size-Effect Behavior Fundamental Approach for Microscale Heat Transfer Introduction to Engineering Applications of Microscale Heat Transfer Microscale Heat Conduction Review of Conduction Heat Transfer Conduction at the Microscale Space and Timescales Fundamental Approach Thermal Conductivity Boltzmann Equation and Phonon Transport Conduction in Thin Films

  8. Heat transfer law in leaching dump

    Institute of Scientific and Technical Information of China (English)

    WU Ai-xiang; WANG Hong-jiang; XI Yong; YANG Bao-hua; LI Jian-feng; YIN Sheng-hua; ZHA Ke-bing

    2005-01-01

    Based on the law of temperature changes in the leaching dump and the forming process of heat flux, the basic balance equation of heat flow in dump was established, the dissipated heat flow from dump to the atmosphere was analyzed to estimate the surface temperature of the ore particle in dump and discover the law of forced heat convection of heat flow transfer in dump. And the lixiviate flow formula taking a certain heat flow out of dump was deduced by using the inversion method. Through theoretic analysis, combining Dexing copper mine heap leaching production practice, the results show that the heat flow of chalcopyrite leaching emitted is not so great, but the heat flow of pyrite leaching and sulphur oxidation produced take up a higher proportion of total heat flow; the dissipated heat flow takes up a lower proportion, and most of heat flow is absorbed by itself, thus the inside temperature rises gradually; and the saturation flow form for leaching is adopted, which makes the lixiviate seepage in the transitional flow or even in the turbulent flow, so as to accelerate the heat flow diffusing and keep the leaching dump temperature suitable for bacteria living.

  9. Evaluation of heat transfer enhancement in air-heating collectors

    Energy Technology Data Exchange (ETDEWEB)

    Mattox, D. L.

    1979-06-01

    The present research effort was initiated for the purpose of increasing the thermal efficiency of air heating solar collectors through identification and development of optimum design and operation criteria for solar absorber-to-air heat exchangers. Initially this effort took the form of a solar collector systems analysis to evaluate the impact of various techniques for enhancing the heat transfer between the absorber and air stream on overall thermal performance of the entire solar collector. This systems analysis resulted in the selection of solar collector designs providing ducted cooling air on the absorber shaded side as a base line. A transient heat transfer analysis of a complete solar air heating collector was used to demonstrate that an optimum absorber-to-air heat exchanger design could be provided with several interrupted fin configurations. Additional analyses were performed to establish that the maximum solar collector thermal performance to required pumping power was realized for a Reynolds number range of 1000 to 2000. This Reynolds number range was used to establish a theoretical design limit curve for maximum thermal performance versus required pumping power for all interrupted fin designs as published in the open literature. Heat and momentum transfer empirical relationships were defined for scaling the state-of-the-art high conductance fin designs identified from a compact configuration to the less compact designs needed for solar collectors.

  10. Axial flow heat exchanger devices and methods for heat transfer using axial flow devices

    Energy Technology Data Exchange (ETDEWEB)

    Koplow, Jeffrey P.

    2016-02-16

    Systems and methods described herein are directed to rotary heat exchangers configured to transfer heat to a heat transfer medium flowing in substantially axial direction within the heat exchangers. Exemplary heat exchangers include a heat conducting structure which is configured to be in thermal contact with a thermal load or a thermal sink, and a heat transfer structure rotatably coupled to the heat conducting structure to form a gap region between the heat conducting structure and the heat transfer structure, the heat transfer structure being configured to rotate during operation of the device. In example devices heat may be transferred across the gap region from a heated axial flow of the heat transfer medium to a cool stationary heat conducting structure, or from a heated stationary conducting structure to a cool axial flow of the heat transfer medium.

  11. Coupled Seepage and Heat Transfer Intake Model

    Institute of Scientific and Technical Information of China (English)

    WU Junhua; YOU Shijun; ZHANG Huan; LI Haishan

    2009-01-01

    In the beach well intake system, heat is transferred from soil to fluid when seawater is filtered through the aquifer, providing higher temperature source water to the seawater source heat pump (SWHP) system in winter. A 3-D coupled seepage and heat transfer model for studying beach well intake system is established by adopting the computer code FLUENT. Numerical results of this model are compared with the experimental results under the same conditions. Based on the experiment-verified coupled model, numerical simulation of the supply water temperature is studied over a heating season. Results show that the minimum temperature of supply water is 275.2 K when this intake system continuously provides seawater with flow rate of 35 m3/h to SWHP. Results also indicate that the supply water temperature is higher than seawater, and that the minimum temperature of supply water lags behind seawater, ensuring effective and reliable operation of SWHP.

  12. Heat transfer mechanisms in pulsating heat-pipes with nanofluid

    Science.gov (United States)

    Gonzalez, Miguel; Kelly, Brian; Hayashi, Yoshikazu; Kim, Yoon Jo

    2015-01-01

    In this study, the effect of silver nanofluid on a pulsating heat-pipe (PHP) thermal performance was experimentally investigated to figure out how nanofluid works with PHP. A closed loop PHP was built with 3 mm diameter tubes. Thermocouples and pressure transducers were installed for fluid and surface temperature and pressure measurements. The operating temperature of the PHP varied from 30-100 °C, with power rates of 61 W and 119 W. The fill ratio of 30%, 50%, and 70% were tested. The results showed that the evaporator heat transfer performance was degraded by the addition of nanoparticles due to increased viscosity at high power rate, while the positive effects of high thermal conductivity and enhanced nucleate boiling worked better at low power rate. In the condenser section, owing to the relatively high liquid content, nanofluid more effectively improved the heat transfer performance. However, since the PHP performance was dominantly affected by evaporator heat transfer performance, the overall benefit of enhanced condenser section performance was greatly limited. It was also observed that the poor heat transfer performance with nanofluid at the evaporator section led to lower operating pressure of PHP.

  13. Evaporative heat transfer in beds of sensible heat pellets

    Energy Technology Data Exchange (ETDEWEB)

    Arimilli, R.V.; Moy, C.A. [Univ. of Tennessee, Knoxville, TN (United States)

    1989-03-01

    An experimental study of boiling/evaporative heat transfer from heated spheres in vertical packed beds with downward liquid-vapor flow of Refrigerant-113 was conducted. Surface superheats of 1 to 50{degrees}C, mass flow rates of 1.7 to 5.6 Kg/min, sphere diameters of 1.59 and 2.54 cm, quality (i.e., mass fraction of vapor) of the inlet flow of 0.02 to 1.0, and two surface conditions were considered. Instrumented smooth and rough aluminum spheres were used to measure the heat transfer coefficients under steady state conditions. Heat transfer coefficients were independently determined for each sphere at three values three values of surface superheat. The quantitative results of this extensive experimental study are successfully correlated. The correlation equation for the boiling heat transfer coefficients is presented in terms of a homogeneous model. The correlation may be used in the development of numerical models to simulate the transient thermal performance of packed bed thermal energy storage unit while operating as an evaporator. The boiling of the liquid-vapor flow around the spheres in the packed bed was visually observed with a fiber-optic baroscope and recorded on a videotape. The visualization results showed qualitatively the presence of four distinct flow regimes. One of these occurs under saturated inlet conditions and are referred to as the Low-quality, Medium-quality, and High-quality Regimes. The regimes are discussed in detail in this paper.

  14. Heat transfer characteristics of an emergent strand

    Science.gov (United States)

    Simon, W. E.; Witte, L. C.; Hedgcoxe, P. G.

    1974-01-01

    A mathematical model was developed to describe the heat transfer characteristics of a hot strand emerging into a surrounding coolant. A stable strand of constant efflux velocity is analyzed, with a constant (average) heat transfer coefficient on the sides and leading surface of the strand. After developing a suitable governing equation to provide an adequate description of the physical system, the dimensionless governing equation is solved with Laplace transform methods. The solution yields the temperature within the strand as a function of axial distance and time. Generalized results for a wide range of parameters are presented, and the relationship of the results and experimental observations is discussed.

  15. Heat transfer applications for the practicing engineer

    CERN Document Server

    Theodore, Louis

    2011-01-01

    This book serves as a training tool for individuals in industry and academia involved with heat transfer applications. Although the literature is inundated with texts emphasizing theory and theoretical derivations, the goal of this book is to present the subject of heat transfer from a strictly pragmatic point of view. The book is divided into four Parts: Introduction, Principles, Equipment Design Procedures and Applications, and ABET-related Topics. The first Part provides a series of chapters concerned with introductory topics that are required when solving most engineering problems, inclu

  16. Microscale surface modifications for heat transfer enhancement.

    Science.gov (United States)

    Bostanci, Huseyin; Singh, Virendra; Kizito, John P; Rini, Daniel P; Seal, Sudipta; Chow, Louis C

    2013-10-01

    In this experimental study, two surface modification techniques were investigated for their effect on heat transfer enhancement. One of the methods employed the particle (grit) blasting to create microscale indentations, while the other used plasma spray coating to create microscale protrusions on Al 6061 (aluminum alloy 6061) samples. The test surfaces were characterized using scanning electron microscopy (SEM) and confocal scanning laser microscopy. Because of the surface modifications, the actual surface area was increased up to 2.8× compared to the projected base area, and the arithmetic mean roughness value (Ra) was determined to vary from 0.3 μm for the reference smooth surface to 19.5 μm for the modified surfaces. Selected samples with modified surfaces along with the reference smooth surface were then evaluated for their heat transfer performance in spray cooling tests. The cooling system had vapor-atomizing nozzles and used anhydrous ammonia as the coolant in order to achieve heat fluxes up to 500 W/cm(2) representing a thermal management setting for high power systems. Experimental results showed that the microscale surface modifications enhanced heat transfer coefficients up to 76% at 500 W/cm(2) compared to the smooth surface and demonstrated the benefits of these practical surface modification techniques to enhance two-phase heat transfer process.

  17. Natural convective heat transfer from square cylinder

    Science.gov (United States)

    Novomestský, Marcel; Smatanová, Helena; Kapjor, Andrej

    2016-06-01

    This article is concerned with natural convective heat transfer from square cylinder mounted on a plane adiabatic base, the cylinders having an exposed cylinder surface according to different horizontal angle. The cylinder receives heat from a radiating heater which results in a buoyant flow. There are many industrial applications, including refrigeration, ventilation and the cooling of electrical components, for which the present study may be applicable

  18. Heterogeneous nanofluids: natural convection heat transfer enhancement

    OpenAIRE

    Bennacer Rachid; Oueslati Fakhreddine

    2011-01-01

    Abstract Convective heat transfer using different nanofluid types is investigated. The domain is differentially heated and nanofluids are treated as heterogeneous mixtures with weak solutal diffusivity and possible Soret separation. Owing to the pronounced Soret effect of these materials in combination with a considerable solutal expansion, the resulting solutal buoyancy forces could be significant and interact with the initial thermal convection. A modified formulation taking into account th...

  19. Applicability of heat and gas trans-port models in biocover design based on a case study from Denmark

    DEFF Research Database (Denmark)

    Nielsen, A. A. F.; Binning, Philip John; Kjeldsen, Peter

    2015-01-01

    . Both models used the heat equation for heat transfer, and the numerical model used advection-diffusion model with dual Monod kinetics for gas transport. The results were validated with data from a Danish landfi The models correlated well with the observed data: the coefficient of determination (R2......) was 0.95 for the analytic model and 0.91 for the numerical model. The models can be used for different design scenarios (e.g. varying methane infl thickness or start of operation), and can also help understand the processes that take place in the system, e.g. how oxygen penetration depends on ambient...

  20. Convective heat transfer of nanofluids with correlations

    Institute of Scientific and Technical Information of China (English)

    Lazarus Godson Asirvatham; Balakrishnan Raja; Dhasan Mohan Lal; Somchai Wongwises

    2011-01-01

    To investigate the convective heat transfer of nanofluids,experiments were performed using silver-water nanofluids under laminar,transition and turbulent flow regimes in a horizontal 4.3 mm inner-diameter tube-in-tube counter-current heat transfer test section.The volume concentration of the nanoparticles varied from 0.3% to 0.9% in steps of 0.3%,and the effects of thermo-physical properties,inlet temperature,volume concentration,and mass flow rate on heat transfer coefficient were investigated.Experiments showed that the suspended nanoparticles remarkably increased the convective heat transfer coefficient,by as much as 28.7% and 69.3% for 0.3% and 0.9% of silver content,respectively.Based on the experimental results a correlation was developed to predict the Nusselt number of the silver-water nanofluid,with ±10% agreement between experiments and prediction.

  1. Free convection film flows and heat transfer

    CERN Document Server

    Shang, Deyi

    2010-01-01

    Presents development of systematic studies for hydrodynamics and heat and mass transfer in laminar free convection, accelerating film boiling and condensation of Newtonian fluids, and accelerating film flow of non-Newtonian power-law fluids. This book provides a system of analysis models with a developed velocity component method.

  2. Conjugate problems in convective heat transfer

    CERN Document Server

    Dorfman, Abram S

    2009-01-01

    The conjugate heat transfer (CHT) problem takes into account the thermal interaction between a body and fluid flowing over or through it, a key consideration in both mechanical and aerospace engineering. Presenting more than 100 solutions of non-isothermal and CHT problems, this title considers the approximate solutions of CHT problems.

  3. Forced Convection Heat Transfer in Circular Pipes

    Science.gov (United States)

    Tosun, Ismail

    2007-01-01

    One of the pitfalls of engineering education is to lose the physical insight of the problem while tackling the mathematical part. Forced convection heat transfer (the Graetz-Nusselt problem) certainly falls into this category. The equation of energy together with the equation of motion leads to a partial differential equation subject to various…

  4. Heat transfer in high density electronics packaging

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In order to get an insight into the thermal characteristic and to evaluate the thermal reliability of the "System in Packaging"(SIP), a new solution of electronics packaging, a heat transfer model of SIP was developed to predict the heat dissipation capacity and to investigate the effect of different factors on the temperature distribution in the electronics. The affecting parameters under consideration include the thermophysical properties of the substrates, the coefficient of convection heat transfer, the thickness of the chip, and the density of power dissipation. ALGOR, a kind of finite element analysis software,was used to do the model simulation. Based on the sinulation and analysis of the heat conduction and convection resistance, criteria for the thermal design were established and possible measurement for enhancing power dissipation was provided, The results show that the heat transfer model provides a new and effective way to the thermal design and thermal analysis of SIP and to the mechanical analysis for the further investigation of SIP.

  5. Heat transfer interface between a high temperature heat source and a heat sink

    Energy Technology Data Exchange (ETDEWEB)

    du Pre, F.K.; Jaspers, H.A.

    1977-10-11

    A heat-transfer interface between and separating a high temperature heat source and a heat sink is formed by the adjacent walls of the heat source and heat sink with a thin gap between these walls and helium gas sealed in the gap, the walls preferably defining concentric hemispheres; this interface being particularly feasible as separable walls of the heater portion of a Stirling engine and a heat source.

  6. Heat transfer augmentation in rod bundles near grid spacers

    International Nuclear Information System (INIS)

    Heat transfer augmentation by straight grid spacers in rod bundles is studied for single phase flow and for post critical heat flux dispersed flow. The heat transfer effect of swirling grid spacers in single phase flow is also examined. Governing heat transfer mechanisms are analyzed, and predictive formulations are established. For single phase flow, the local heat transfer at a straight spacer and at its upstream or downstream locations are treated separately. 18 refs

  7. A comprehensive comparison on vibration and heat transfer of two elastic heat transfer tube bundles

    Institute of Scientific and Technical Information of China (English)

    闫柯; 葛培琪; 翟强

    2015-01-01

    Elastic heat transfer tube bundles are widely used in the field of flow-induced vibration heat transfer enhancement. Two types of mainly used tube bundles, the planar elastic tube bundle and the conical spiral tube bundle were comprehensively compared in the condition of the same shell side diameter. The natural mode characteristics, the effect of fluid−structure interaction, the stress distribution, the comprehensive heat transfer performance and the secondary fluid flow of the two elastic tube bundles were all concluded and compared. The results show that the natural frequency and the critical velocity of vibration buckling of the planar elastic tube bundle are larger than those of the conical spiral tube bundle, while the stress distribution and the comprehensive heat transfer performance of the conical spiral tube bundle are relatively better.

  8. Unsteady heat transfer during subcooled film boiling

    Science.gov (United States)

    Yagov, V. V.; Zabirov, A. R.; Lexin, M. A.

    2015-11-01

    Cooling of high-temperature bodies in subcooled liquid is of importance for quenching technologies and also for understanding the processes initiating vapor explosion. An analysis of the available experimental information shows that the mechanisms governing heat transfer in these processes are interpreted ambiguously; a more clear-cut definition of the Leidenfrost temperature notion is required. The results of experimental observations (Hewitt, Kenning, and previous investigations performed by the authors of this article) allow us to draw a conclusion that there exists a special mode of intense heat transfer during film boil- ing of highly subcooled liquid. For revealing regularities and mechanisms governing intense transfer of energy in this process, specialists of Moscow Power Engineering Institute's (MPEI) Department of Engineering Thermal Physics conduct systematic works aimed at investigating the cooling of high-temperature balls made of different metals in water with a temperature ranging from 20 to 100°C. It has been determined that the field of temperatures that takes place in balls with a diameter of more than 30 mm in intense cooling modes loses its spherical symmetry. An approximate procedure for solving the inverse thermal conductivity problem for calculating the heat flux density on the ball surface is developed. During film boiling, in which the ball surface temperature is well above the critical level for water, and in which liquid cannot come in direct contact with the wall, the calculated heat fluxes reach 3-7 MW/m2.

  9. Heat transfer simulation in solid substrate fermentation.

    Science.gov (United States)

    Saucedo-Castañeda, G; Gutiérrez-Rojas, M; Bacquet, G; Raimbault, M; Viniegra-González, G

    1990-04-01

    A mathematical model was developed and tested to simulate the generation and transfer of heat in solid substrate fermentation (SSF). The experimental studies were realized in a 1-L static bioreactor packed with cassava wet meal and inoculated with Aspergillus niger. A simplified pseudohomogeneous monodimensional dynamic model was used for the energy balance. Kinetic equations taking into account biomass formation (logistic), sugar consumption (with maintenance), and carbon dioxide formation were used. Model verification was achieved by comparison of calculated and experimental temperatures. Heat transfer was evaluated by the estimation of Biot and Peclet heat dimensionless numbers 5-10 and 2550-2750, respectively. It was shown that conduction through the fermentation fixed bed was the main heat transfer resistance. This model intends to reach a better understanding of transport phenomena in SSF, a fact which could be used to evaluate various alternatives for temperature control of SSF, i.e., changing air flow rates and increasing water content. Dimensionless numbers could be used as scale-up criteria of large fermentors, since in those ratios are described the operating conditions, geometry, and size of the bioreactor. It could lead to improved solid reactor systems. The model can be used as a basis for automatic control of SSF for the production of valuable metabolites in static fermentors.

  10. Heterogeneous nanofluids: natural convection heat transfer enhancement

    Science.gov (United States)

    Oueslati, Fakhreddine Segni; Bennacer, Rachid

    2011-12-01

    Convective heat transfer using different nanofluid types is investigated. The domain is differentially heated and nanofluids are treated as heterogeneous mixtures with weak solutal diffusivity and possible Soret separation. Owing to the pronounced Soret effect of these materials in combination with a considerable solutal expansion, the resulting solutal buoyancy forces could be significant and interact with the initial thermal convection. A modified formulation taking into account the thermal conductivity, viscosity versus nanofluids type and concentration and the spatial heterogeneous concentration induced by the Soret effect is presented. The obtained results, by solving numerically the full governing equations, are found to be in good agreement with the developed solution based on the scale analysis approach. The resulting convective flows are found to be dependent on the local particle concentration φ and the corresponding solutal to thermal buoyancy ratio N. The induced nanofluid heterogeneity showed a significant heat transfer modification. The heat transfer in natural convection increases with nanoparticle concentration but remains less than the enhancement previously underlined in forced convection case.

  11. Heterogeneous nanofluids: natural convection heat transfer enhancement

    Directory of Open Access Journals (Sweden)

    Bennacer Rachid

    2011-01-01

    Full Text Available Abstract Convective heat transfer using different nanofluid types is investigated. The domain is differentially heated and nanofluids are treated as heterogeneous mixtures with weak solutal diffusivity and possible Soret separation. Owing to the pronounced Soret effect of these materials in combination with a considerable solutal expansion, the resulting solutal buoyancy forces could be significant and interact with the initial thermal convection. A modified formulation taking into account the thermal conductivity, viscosity versus nanofluids type and concentration and the spatial heterogeneous concentration induced by the Soret effect is presented. The obtained results, by solving numerically the full governing equations, are found to be in good agreement with the developed solution based on the scale analysis approach. The resulting convective flows are found to be dependent on the local particle concentration φ and the corresponding solutal to thermal buoyancy ratio N. The induced nanofluid heterogeneity showed a significant heat transfer modification. The heat transfer in natural convection increases with nanoparticle concentration but remains less than the enhancement previously underlined in forced convection case.

  12. Heat transfer between graphene and amorphous SiO2.

    Science.gov (United States)

    Persson, B N J; Ueba, H

    2010-11-24

    We study the heat transfer between graphene and amorphous SiO(2). We include both the heat transfer from the area of real contact, and between the surfaces in the non-contact region. We consider the radiative heat transfer associated with the evanescent electromagnetic waves which exist outside of all bodies, and the heat transfer by the gas in the non-contact region. We find that the dominant contribution to the heat transfer results from the area of real contact, and the calculated value of the heat transfer coefficient is in good agreement with the value deduced from experimental data.

  13. Exergy Transfer Characteristics on Low Temperature Heat Exchangers

    Science.gov (United States)

    Wu, S. Y.; Yuan, X. F.; Li, Y. R.; Peng, L.

    By analyzing exergy transfer process of the low temperature heat exchangers operating below the surrounding temperature, the concept of exergy transfer coefficient is put forward and the expressions which involving relevant variables for the exergy transfer coefficient, the heat transfer units number and the ratio of cold to hot fluids heat capacity rate, etc. are derived. Taking the parallel flow, counter flow and cross flow low temperature heat exchangers as examples, the numerical results of exergy transfer coefficient are given and the comparison of exergy transfer coefficient with heat transfer coefficient is analyzed.

  14. Magnetic Heat Transfer Enhancements on Fin-Tube Heat Exchangers

    Institute of Scientific and Technical Information of China (English)

    Yan SU; C.T. HSU

    2007-01-01

    通过DNS方法解耦合的三维非稳态流动和固流体能量方程组,本文研究了两平行磁质平板和圆管所组成的肋片式圆管换热器单元与震荡流体间的传热过程.对不同的磁场频率和振幅的三维动态流热场的模拟结果表明增强磁场频率和振幅能很有效地增加周期平均传热强度达到强化传热的目的.%Two narrowly-gapped magnetic parallel plates embedding a circular disk was considered as a unit-cell to represent the fin-tube heat exchanger where heat from a circular tube was dissipated by a series of parallel equally-spaced thin plates in normal to the tube. The unsteady 3-D continuity,Navier-Stokes and energy equations for fluids and solids describing the convective heat transfer for the unit-cell geometry were solved numerically with DNS method. The present study aims on using oscillating flows and magnetic fields to enhance the heat transfer for various amplitudes and frequencies of the magnetic field. Results from cycle-averaged heat fluxes from the cylinder wall show that the increase in magnetic amplitude and frequency will greatly enhance the heat transfer. The effects of the oscillating magnetic field were discussed and the three dimensional flow and temperature fields were also presented.

  15. Intensification of Convective Heat Transfer in Heating Device of Mobile Heating System with BH-Heat Generator

    Directory of Open Access Journals (Sweden)

    N. Nesenchuk

    2013-01-01

    Full Text Available Directions pertaining to intensification of convective heat transfer in a soft heating device have been experimentally investigated  in the paper and the most efficient one has been selected that is creation of artificial roughness on the device surface. The considered heating device for a heat supply system of a mobile object has been made of soft polymer material (polyvinyl chloride. Following  evaluation results of  heat exchange intensification a criteria equation has been obtained for calculation of external heat transfer with due account of heat transfer intensification.

  16. Natural convection heat transfer in Gambrel roofs

    Energy Technology Data Exchange (ETDEWEB)

    Varol, Yasin; Koca, Ahmet [Department of Mechanical Education, Technical Education Faculty, Firat University, TR-23119 Elazig (Turkey); Oztop, Hakan F. [Department of Mechanical Engineering, Firat University,TR-23119 Elazig (Turkey)

    2007-03-15

    Buoyancy induced natural convection is investigated with a numerical technique in Gambrel roofs. The geometry adapted to both winter day conditions, the bottom is hot temperature while top is cold, and summer day conditions, bottom is cold and inclined top wall is hot temperature. Governing equations in stream function-vorticity form are solved with finite difference technique and algebraic equations are solved using successive under relaxation (SUR) method. Rayleigh number is taken as parameter which affects the flow and heat transfer. Its value changes between 10{sup 3} and 10{sup 7}. It is found that winterlike boundary conditions are more effective than summerlike boundary conditions on the flow field and heat transfer in the roof. (author)

  17. Heat transfer modeling an inductive approach

    CERN Document Server

    Sidebotham, George

    2015-01-01

    This innovative text emphasizes a "less-is-more" approach to modeling complicated systems such as heat transfer by treating them first as "1-node lumped models" that yield simple closed-form solutions. The author develops numerical techniques for students to obtain more detail, but also trains them to use the techniques only when simpler approaches fail. Covering all essential methods offered in traditional texts, but with a different order, Professor Sidebotham stresses inductive thinking and problem solving as well as a constructive understanding of modern, computer-based practice. Readers learn to develop their own code in the context of the material, rather than just how to use packaged software, offering a deeper, intrinsic grasp behind models of heat transfer. Developed from over twenty-five years of lecture notes to teach students of mechanical and chemical engineering at The Cooper Union for the Advancement of Science and Art, the book is ideal for students and practitioners across engineering discipl...

  18. Condensation heat transfer on superhydrophobic surfaces

    OpenAIRE

    Miljkovic, Nenad; Wang, Evelyn N.

    2013-01-01

    Condensation is a phase change phenomenon often encountered in nature, as well as used in industry for applications including power generation, thermal management, desalination, and environmental control. For the past eight decades, researchers have focused on creating surfaces allowing condensed droplets to be easily removed by gravity for enhanced heat transfer performance. Recent advancements in nanofabrication have enabled increased control of surface structuring for the development of su...

  19. Quantum heat transfer: A Born Oppenheimer method

    OpenAIRE

    Wu, Lian-Ao; Segal, Dvira

    2010-01-01

    We develop a Born-Oppenheimer type formalism for the description of quantum thermal transport along hybrid nanoscale objects. Our formalism is suitable for treating heat transfer in the off-resonant regime, where e.g., the relevant vibrational modes of the interlocated molecule are high relative to typical bath frequencies, and at low temperatures when tunneling effects dominate. A general expression for the thermal energy current is accomplished, in the form of a generalized Landauer formula...

  20. Heat transfer in multi-phase materials

    CERN Document Server

    Öchsner, Andreas

    2011-01-01

    This book provides a profound understanding, which physical processes and mechanisms cause the heat transfer in composite and cellular materials. It shows models for all important classes of composite materials and introduces into the latest advances. In three parts, the book covers Composite Materials (Part A), Porous and Cellular Materials (Part B) and the appearance of a conjoint solid phase and fluid aggregate (Part C).

  1. Sensitivity of the Heat Transfer Coefficient Calculation

    OpenAIRE

    Singer, Sasa

    2014-01-01

    The purpose of the Liscic/Petrofer probe is to determine the cooling intensity during liquid quenching in laboratory and workshop environments. The surface heat transfer coefficient is calculated by the one-dimensional finite volume method from the smoothed temperature curve, measured at a near-surface point in the probe. Smoothed reference temperature curves for oil and water, based on measurements made by the probe, are used in a series of numerical experiments to investigate the sensitivit...

  2. Heat Transfer in a Superelliptic Transition Duct

    Science.gov (United States)

    Poinsatte, Philip; Thurman, Douglas; Hippensteele, Steven

    2008-01-01

    Local heat transfer measurements were experimentally mapped using a transient liquid-crystal heat transfer technique on the surface of a circular-to-rectangular transition duct. The transition duct had a length-to-diameter ratio of 1.5 and an exit-plane aspect ratio of 3. The crosssectional geometry was defined by the equation of a superellipse. The cross-sectional area was the same at the inlet and exit but varied up to 15 percent higher through the transition. The duct was preheated to a uniform temperature (nominally 64 C) before allowing room temperature air to be suddenly drawn through it. As the surface cooled, the resulting isothermal contours on the duct surface were revealed using a surface coating of thermochromic liquid crystals that display distinctive colors at particular temperatures. A video record was made of the surface temperature and time data for all points on the duct surfaces during each test. Using this surface temperature-time data together with the temperature of the air flowing through the model and the initial temperature of the model wall, the heat transfer coefficient was calculated by employing the classic one-dimensional, semi-infinite wall heat transfer conduction model. Test results are reported for inlet diameter-based Reynolds numbers ranging from 0.4x106 to 2.4x106 and two grid-generated freestream turbulence intensities of about 1 percent, which is typical of wind tunnels, and up to 16 percent, which may be more typical of real engine conditions.

  3. Ecological performance of a generalized irreversible Carnot heat engine with complex heat transfer law

    Directory of Open Access Journals (Sweden)

    Jun Li, Lingen Chen, Fengrui Sun

    2011-01-01

    Full Text Available The optimal ecological performance of a generalized irreversible Carnot heat engine with the losses of heat-resistance, heat leakage and internal irreversibility, in which the transfer between the working fluid and the heat reservoirs obeys a complex heat transfer law, including generalized convective heat transfer law and generalized radiative heat transfer law is derived by taking an ecological optimization criterion as the objective, which consists of maximizing a function representing the best compromise between the power and entropy production rate of the heat engine. The effects of heat transfer laws and various loss terms are analyzed. The obtained results include those obtained in many literatures.

  4. Enhanced condensation heat transfer with wettability patterning

    Science.gov (United States)

    Sinha Mahapatra, Pallab; Ghosh, Aritra; Ganguly, Ranjan; Megaridis, Constantine

    2015-11-01

    Condensation of water vapor on metal surfaces is useful for many engineering applications. A facile and scalable method is proposed for removing condensate from a vertical plate during dropwise condensation (DWC) in the presence of non-condensable gases (NCG). We use wettability-patterned superhydrophilic tracks (filmwise condensing domains) on a mirror-finish (hydrophilic) aluminum surface that promotes DWC. Tapered, horizontal ``collection'' tracks are laid to create a Laplace pressure driven flow, which collects condensate from the mirror-finish domains and sends it to vertical ``drainage tracks'' for gravity-induced shedding. An optimal design is achieved by changing the fractional area of superhydrophilic tracks with respect to the overall plate surface, and augmenting capillary-driven condensate-drainage by adjusting the track spatial layout. The design facilitates pump-less condensate drainage and enhances DWC heat transfer on the mirror-finish regions. The study highlights the relative influences of the promoting and retarding effects of dropwise and filmwise condensation zones on the overall heat transfer improvement on the substrate. The study demonstrated ~ 34% heat transfer improvement on Aluminum surface for the optimized design.

  5. Conjugate Problems in Convective Heat Transfer: Review

    Directory of Open Access Journals (Sweden)

    Abram Dorfman

    2009-01-01

    Full Text Available A review of conjugate convective heat transfer problems solved during the early and current time of development of this modern approach is presented. The discussion is based on analytical solutions of selected typical relatively simple conjugate problems including steady-state and transient processes, thermal material treatment, and heat and mass transfer in drying. This brief survey is accompanied by the list of almost two hundred publications considering application of different more and less complex analytical and numerical conjugate models for simulating technology processes and industrial devices from aerospace systems to food production. The references are combined in the groups of works studying similar problems so that each of the groups corresponds to one of selected analytical solutions considered in detail. Such structure of review gives the reader the understanding of early and current situation in conjugate convective heat transfer modeling and makes possible to use the information presented as an introduction to this area on the one hand, and to find more complicated publications of interest on the other hand.

  6. Refrigeration. Heat Transfer. Part I: Evaporators and Condensers

    DEFF Research Database (Denmark)

    Knudsen, Hans-Jørgen Høgaard

    2002-01-01

    The note gives an introduction to heat transfer with phase shift. Pool Boiling, Flow Boiling, Condensation.......The note gives an introduction to heat transfer with phase shift. Pool Boiling, Flow Boiling, Condensation....

  7. Modeling of steam condensation using inverse heat transfer technique

    International Nuclear Information System (INIS)

    The estimation of heat flux is of prime importance in many heat transfer applications like furnaces, reactors, combustion chambers, etc. inverse heat transfer technique developed by Levenberg-Marquardt has been applied to simulated temperature data for the estimation of applied wall heat flux. The algorithm is able to correctly estimate the heat flux for different applied heat flux profiles (constant heat flux, periodically varying heat flux and non-periodically varying heat flux) demostrating the suitability of inverse algorithm for the evaluation of heat flux. The algorithm can be used for the estimation of wall heat flux during steam condensation on a nuclear reactor wall. (author)

  8. Heat transfer, condensation and fog formation in crossflow plastic heat exchangers

    OpenAIRE

    Brouwers, H. J. H.; Geld, van der, C.W.M.

    1996-01-01

    In this paper heat transfer of air-water-vapour mixtures in plastic crossflow heat exchangers is studied theoretically and experimentally. First, a model for heat transfer without condensation is derived, resulting in a set of classical differential equations. Subsequently, heat transfer with wall condensation and fog formation are considered in some detail. Separate attention is paid to the heat transfer and condensation of pure steam in the heat exchanger. Finally, the experiments performed...

  9. Analysis of solid-liquid phase change heat transfer enhancement

    Institute of Scientific and Technical Information of China (English)

    张寅平; 王馨

    2002-01-01

    Solid-liquid phase change processes have two important features: the process is an approximately isothermal process and the heat of fusion of phase change material tends to be much greater than its specific heat. Therefore, if any phase change material adjacent to a hot or cold surface undergoes phase change, the heat transfer rate on the surface will be noticeably enhanced. This paper presents a novel insight into the mechanisms of heat transfer enhancement induced by solid-liquid phase change based on the analogy analysis for heat conduction with an internal heat source and solid-liquid phase change heat transfer. Three degrees of surface heat transfer enhancement for different conditions are explored, and corresponding formulae are written to describe them. The factors influencing the degrees of heat transfer enhancement are clarified and their effects quantitatively analyzed. Both the novel insight and the analysis contribute to effective application of phase change heat transfer enhancement technique.

  10. Handbook of heat transfer fundamentals (2nd edition)

    International Nuclear Information System (INIS)

    Recent advances in heat transfer are discussed, providing data and methodology to solve a wide range of heat transfer problems. The topics considered include: basic concepts of heat transfer, mathematical methods, thermophysical properties, conduction, numerical methods in heat transfer, natural convection, and internal duct flow and external flows in forced convection. Also addressed are: rarefied gases, electric and magnetic fields, condensation, boiling, two-phase flow, and radiation

  11. Transient buoyancy-driven ventilation: Part 2. Modelling heat transfer

    OpenAIRE

    Steven D. Sandbach and Gregory F. Lane-Serff

    2011-01-01

    A new mathematical model for buoyancy-driven ventilation [Sandbach SD, Lane-Serif GF. Transient buoyancy-driven ventilation: Part 1. Modelling advection. Building and Environment, 2011] is modified to include heat transfer at the boundaries. Heat transfers at the ceiling and floor are included, using Newton's law of cooling to model convective heat transfer between the air and the solid boundaries, Fourier's law to model conductive heat transfer through the floor and ceiling, and a linear ver...

  12. Post-dryout heat transfer analysis by Lagrangian simulation

    International Nuclear Information System (INIS)

    Post-dryout heat transfer analysis model by Lagrangian simulation was developed. In the model, wall-vapor forced convective heat transfer, wall-droplet direct contact heat transfer and vapor-droplet forced convective heat transfer model were introduced. Furthermore by using Lagrangian simulation, the interaction between steam and droplet can be considered. In the sample calculation, the results of wall temperature were shown. (author)

  13. Surface Engineering for Phase Change Heat Transfer: A Review

    OpenAIRE

    Attinger, Daniel; Frankiewicz, Christophe; Betz, Amy R.; Schutzius, Thomas M.; Ganguly, Ranjan; Das, Arindam; Kim, C. -J.; Megaridis, Constantine M.

    2014-01-01

    Among numerous challenges to meet the rising global energy demand in a sustainable manner, improving phase change heat transfer has been at the forefront of engineering research for decades. The high heat transfer rates associated with phase change heat transfer are essential to energy and industry applications; but phase change is also inherently associated with poor thermodynamic efficiencies at low heat flux, and violent instabilities at high heat flux. Engineers have tried since the 1930'...

  14. Enhancement of heat and mass transfer by cavitation

    Science.gov (United States)

    Zhang, Y. N.; Zhang, Y. N.; Du, X. Z.; Xian, H. Z.

    2015-01-01

    In this paper, a brief summary of effects of cavitation on the heat and mass transfer are given. The fundamental studies of cavitation bubbles, including its nonlinearity, rectified heat and mass diffusion, are initially introduced. Then selected topics of cavitation enhanced heat and mass transfer were discussed in details including whales stranding caused by active sonar activity, pool boiling heat transfer, oscillating heat pipe and high intensity focused ultrasound treatment.

  15. Heat Transfer in Glass, Aluminum, and Plastic Beverage Bottles

    Science.gov (United States)

    Clark, William M.; Shevlin, Ryan C.; Soffen, Tanya S.

    2010-01-01

    This paper addresses a controversy regarding the effect of bottle material on the thermal performance of beverage bottles. Experiments and calculations that verify or refute advertising claims and represent an interesting way to teach heat transfer fundamentals are described. Heat transfer coefficients and the resistance to heat transfer offered…

  16. Low-Flow Film Boiling Heat Transfer on Vertical Surfaces

    DEFF Research Database (Denmark)

    Munthe Andersen, J. G.; Dix, G. E.; Leonard, J. E.;

    1976-01-01

    The phenomenon of film boiling heat transfer for high wall temperatures has been investigated. Based on the assumption of laminar flow for the film, the continuity, momentum, and energy equations for the vapor film are solved and a Bromley-type analytical expression for the heat transfer...... length, an average film boiling heat transfer coefficient is obtained....

  17. Laminar natural convection heat transfer from an inclined cylinder

    International Nuclear Information System (INIS)

    Laminar natural convection heat transfer from the outside surface of a uniformly heated cylinder (constant heat flux condition) was investigated experimentally at different angles of inclination of the cylinder. General equations for the effect of inclination were determined for both the local and the average heat transfer. (author)

  18. Heat Transfer Analysis of the Passive Residual Heat Removal Heat Exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenwen; Tian, Wenxi; Su, Guanghui; Qiu, Suizheng [Jiaotong University, Shaanxi (China)

    2014-08-15

    In the present study, thermal-hydraulics characteristics of AP1000 passive residual heat removal heat exchanger (PRHR-HX) at initial operating stage were analyzed based on the porous media models. The data predicated by RELAP5 under the condition of the station blackout was employed as the inlet flow rate and temperature boundary of CFD calculation. The heat transfer from the primary side coolant to the in-containment refueling water storage tank (IRWST) side fluid was calculated in a three-dimensional geometry during iterations, and the distributed resistances were added into the C-type tube bundle regions. Three-dimensional distributions of velocity and temperature in the IRWST were calculated by the CFD code ANSYS FLUENT. The primary temperature, heat transfer coefficients of two sides and the heat transfer were obtained using the coupled heat transfer between the primary side and the IRWST side. The simulation results indicated that the water temperature rises gradually which leads to a thermal stratification phenomenon in the tank and the heat transfer capability decreases with an increase of water temperature. The present results indicated that the method containing coupled heat transfer from the primary side fluid to IRWST side fluid and porous media model is a suitable approach to study the transient thermal-hydraulics of PRHR/IRWST.

  19. Heat transfer model for quenching by submerging

    Energy Technology Data Exchange (ETDEWEB)

    Passarella, D N; Varas, F [Departamento de Matematica Aplicada II, E.T.S. de Ing. de Telecomunicacion, Universidad de Vigo, Campus Marcosende, 36310 Vigo (Spain); MartIn, E B, E-mail: diego@dma.uvigo.es, E-mail: fvaras@uvigo.es, E-mail: emortega@uvigo.es [Area de Mecanica de Fluidos, E.T.S. de Ing. Industriales, Universidad de Vigo, Campus Marcosende, 36310 Vigo (Spain)

    2011-05-01

    In quenching by submerging the workpiece is cooled due to vaporization, convective flow and interaction of both mechanisms. The dynamics of these phenomena is very complex and the corresponding heat fluxes are strongly dependent on local flow variables such as velocity of fluid and vapor fraction. This local dependence may produce very different cooling rates along the piece, responsible for inappropriate metallurgical transformations, variability of material properties and residual stresses. In order to obtain an accurate description of cooling during quenching, a mathematical model of heat transfer is presented here. The model is based on the drift-flux mixture-model for multiphase flows, including an equation of conservation of energy for the liquid phase and specific boundary conditions that account for evaporation and presence of vapor phase on the surface of the piece. The model was implemented on Comsol Multiphysics software. Generation of appropriate initial and boundary conditions, as well as numerical resolution details, is briefly discussed. To test the model, a simple flow condition was analyzed. The effect of vapor fraction on heat transfer is assessed. The presence of the typical vapor blanket and its collapse can be recovered by the model, and its effect on the cooling rates on different parts of the piece is analyzed. Comparisons between numerical results and data from literature are made.

  20. Analysis of roll gap heat transfers in hot steel strip rolling through roll temperature sensors and heat transfer models

    OpenAIRE

    WEISZ-PATRAULT, Daniel; Ehrlacher, Alain; Legrand, Nicolas; LABBE, Nathalie; Horsky, Jaroslav; Luks, Tomas

    2012-01-01

    This paper presents an analysis of roll bite heat transfers during pilot hot steel strip rolling. Two types of temperature sensors (drilled and slot sensors) implemented near roll surface are used with heat transfer models to identify interfacial heat flux, roll surface temperature and Heat Transfer Coefficient HTCroll-bite in the roll bite. It is shown that: - the slot type sensor is more efficient than the drilled type sensor to capture correctly fast roll temperature changes and heat fluxe...

  1. Heat transfer, condensation and fog formation in crossflow plastic heat exchangers

    NARCIS (Netherlands)

    Brouwers, H.J.H.; Geld, van der C.W.M.

    1996-01-01

    In this paper heat transfer of air-water-vapour mixtures in plastic crossflow heat exchangers is studied theoretically and experimentally. First, a model for heat transfer without condensation is derived, resulting in a set of classical differential equations. Subsequently, heat transfer with wall c

  2. Heat mass transfer model of fouling process of calcium carbonate on heat transfer surface

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A new heat mass transfer model was developed to predict the fouling process of calcium carbonate on heat transfer surface. The model took into account not only the crystallization fouling but also the particle fouling which was formed on the heat transfer surface by the suspension particles of calcium carbonate in the su- persaturated solution. Based on experimental results of the fouling process, the deposition and removal rates of the mixing fouling were expressed. Furthermore, the coupling effect of temperature with the fouling process was considered in the physics model. As a result the fouling resistance varying with time was obtained to describe the fouling process and the prediction was compared with experimental data under same conditions. The results showed that the present model could give a good prediction of fouling process, and the deviation was less than 15% of the experimental data in most cases. The new model is credible to predict the fouling process.

  3. Boiling Heat Transfer on Porous Surfaces with Vapor Channels

    Institute of Scientific and Technical Information of China (English)

    吴伟; 杜建华; 王补宣

    2002-01-01

    Boiling heat transfer on porous coated surfaces with vapor channels was investigated experimentally to determine the effects of the size and density of the vapor channels on the boiling heat transfer. Observations showed that bubbles escaping from the channels enhanced the heat transfer. Three regimes were identified: liquid flooding, bubbles in the channel and the bottom drying out region. The maximum heat transfer occurred for an optimum vapor channel density and the boiling heat transfer performance was increased if the channels were open to the bottom of the porous coating.

  4. CFD simulations of heat transfer in internally helically ribbed tubes

    Directory of Open Access Journals (Sweden)

    Majewski Karol

    2016-06-01

    Full Text Available Heating surfaces in power boilers are exposed to very high heat flux. For evaporator protection against overheating, internally helically ribbed tubes are used. The intensification of the heat transfer and the maintenance of the thin water layer in the intercostal space, using ribbed tubes, enables better protection of the power boiler evaporator than smooth pipes. Extended inner surface changes flow and thermal conditions by influencing the linear pressure drop and heat transfer coefficient. This paper presents equations that are used to determine the heat transfer coefficient. The results of total heat transfer, obtained from CFD simulations, for two types of internally ribbed and plain tubes are also presented.

  5. Condensation heat transfer coefficient versus wettability

    Science.gov (United States)

    Roudgar, M.; De Coninck, J.

    2015-05-01

    In this paper we show how condensation on substrates can induce wetting behavior that is quite different from that of deposited or impinging drops. We describe surfaces with the same wettability in ambient conditions presenting different wetting behavior and growth of droplets in condensation. The experimental results show a rapid spread of droplets and formation of the film on the copper surface, while droplets on SU-8 surface remains on the regular shape while they grow within the time, without coalescence, as observed for Cu. Although the heat conductivity of SU-8 is much lower, due to a difference in wetting behavior, the heat transfer coefficient (h) is higher for dropwise condensation on Cu with a thin layer of SU-8 than filmwise on the bare copper.

  6. Internal Heat Transfer Characteristics of Lamilloy Configurations

    Institute of Scientific and Technical Information of China (English)

    Kong Manzhao; Zhu Huiren; Liu Songling; Yuan Hepeng

    2008-01-01

    A transient measurement technique by using narrow-band thermoehromic liquid crystal (TLC) is employed to determine temperature and heat transfer coefficient (HTC) distribution on inner surfaces of the typical lamilloy configurations. With this technique, both local HTC distribution and average HTC distribution could be obtained. The experimental results indicate that the variation of the porosity ratio, the one that the area of impingement holes divided by that of the plate, has a great effect on the HTC distribution on the inner surfaces. Heat exchange of inner surfaces varies directly as the porosity ratio. The impingement Reynolds number ranges from 20 000 to 50 000. The average HTC of inner surfaces bears a linear relationship with the Reynolds number.

  7. Porous media heat transfer for injection molding

    Energy Technology Data Exchange (ETDEWEB)

    Beer, Neil Reginald

    2016-05-31

    The cooling of injection molded plastic is targeted. Coolant flows into a porous medium disposed within an injection molding component via a porous medium inlet. The porous medium is thermally coupled to a mold cavity configured to receive injected liquid plastic. The porous medium beneficially allows for an increased rate of heat transfer from the injected liquid plastic to the coolant and provides additional structural support over a hollow cooling well. When the temperature of the injected liquid plastic falls below a solidifying temperature threshold, the molded component is ejected and collected.

  8. Computational fluid mechanics and heat transfer

    CERN Document Server

    Pletcher, Richard H; Anderson, Dale

    2012-01-01

    ""I have always considered this book the best gift from one generation to the next in computational fluid dynamics. I earnestly recommend this book to graduate students and practicing engineers for the pleasure of learning and a handy reference. The description of the basic concepts and fundamentals is thorough and is crystal clear for understanding. And since 1984, two newer editions have kept abreast to the new, relevant, and fully verified advancements in CFD.""-Joseph J.S. Shang, Wright State University""Computational Fluid Mechanics and Heat Transfer is very well written to be used as a t

  9. Solar Pond Fluid Dynamics and Heat Transfer

    Science.gov (United States)

    Jones, G. F.

    1984-01-01

    The primary objective of the solar pond research was to obtain an indepth understanding of solar pond fluid dynamics and heat transfer. The key product was the development of a validated one-dimensional computer model with the capability to accurately predict time-dependent solar pond temperature, salinities, and interface motions. Laboratory scale flow visualization experiments were conducted to better understand layer motion. Two laboratory small-scale ponds and a large-scale outdoor solar pond were designed and built to provide quantitative data. This data provided a basis for validating the model and enhancing the understanding of pond dynamic behavior.

  10. [Mechanism of heat transfer in various regions of human body].

    Science.gov (United States)

    Luchakov, Iu I; Nozdrachev, A D

    2009-01-01

    The processes of heat transfer in a human body were studied with the use of a mathematical model. It has been shown that only conductive or only convective heat transfer may occur in different body areas. The rate of blood-mediated heat transfer in the presence of blood circulation is many times higher than heat transfer due to temperature gradient; therefore, the convective process prevails over the conductive process. The body core contains a variety of blood vessels, and the bulk of blood concentrates there in the norm. Hence, heat transfer in it is mainly convective. In surface tissues, where the rate of blood circulation is lower and the vasculature has certain specific features, heat transfer is mainly conductive. Hence, the core and surface tissues are absolutely different body zones in terms of heat transfer.

  11. Mechanism and control of convective heat transfer-- Coordination of velocity and heat flow fields

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A second look has been given at the mechanism of convective heat transfer based on the analogy between convection and conduction with heat sources. The strength of convective heat transfer depends not only on the fluid velocity and fluid properties, but also on the coordination of fluid velocity and heat flow fields. Hence, based on the included angle of velocity and temperature gradient vectors, the presence of fluid motion may enhance or reduce heat transfer. With this concept, the known heat transfer phenomena may be understood in a deeper way. More important is that some novel approaches of heat transfer control can be developed.

  12. Theoretical and experimental research on heat transfer performance of the semi-open heat pipe

    Institute of Scientific and Technical Information of China (English)

    Hua ZHU; Bo ZHUANG; Jin-jun TAN; Rong-hua HONG

    2008-01-01

    This paper focuses on the heat transfer performance of semi-open heat pipe which is a new type of heat pipe. After analyzing its condensation heat transfer mechanisms theoretically, several semi-open heat pipes in different length ratios and upper hole diameters are studied experimentally and compared with the same dimensions closed heat pipes. Experimental results show that the heat transfer performance of semi-open heat pipe becomes better by increasing heat transfer rate. At the first transitional point, the heat transfer performance of semi-open heat pipe approaches the level of the closed heat pipe. It is suitable to choose upper small hole about 1 mm in diameter and length ratio larger than 0.6 for the semi-open heat pipe.

  13. Pumped, Two-Phase Heat-Transfer Loop

    Science.gov (United States)

    Edelstein, F.

    1986-01-01

    Two-phase heat-transfer system delivers coolant to equipment as liquid and removes it as vapor. Alternatively, system heats equipment by delivering vapor and removing condensed liquid. Two-phase scheme effective for heat transfer over long distances. Heat-transfer plates remove heat from or supply heat to equipment. If temperature of plate is high, valve opens liquid-supply line to plate, and cooling results. If plate temperature is low, valve opens liquid-suction line to plate, and heating ensues.

  14. Heat and mass transfer in building services design

    CERN Document Server

    Moss, Keith

    1998-01-01

    Building design is increasingly geared towards low energy consumption. Understanding the fundamentals of heat transfer and the behaviour of air and water movements is more important than ever before. Heat and Mass Transfer in Building Services Design provides an essential underpinning knowledge for the technology subjects of space heating, water services, ventilation and air conditioning. This new text: *provides core understanding of heat transfer and fluid flow from a building services perspective *complements a range of courses in building services engineering *

  15. Evaluation of different heat transfer conditions on an automotive turbocharger

    OpenAIRE

    Aghaali, Habib; Angström, Hans-Erik; Serrano Cruz, José Ramón

    2015-01-01

    This paper presents a combination of theoretical and experimental investigations for determining the main heat fluxes within a turbocharger. These investigations consider several engine speeds and loads as well as different methods of conduction, convection, and radiation heat transfer on the turbocharger. A one-dimensional heat transfer model of the turbocharger has been developed in combination with simulation of a turbocharged engine that includes the heat transfer of the turbo...

  16. Research on Marine Boiler's Pressurized Combustion and Heat Transfer

    Institute of Scientific and Technical Information of China (English)

    Pingjian MING; Renqiu JIANG; Yanjun LI; Baozhi SUN

    2005-01-01

    The effect of pressure on combustion and heat transfer is analyzed. The research is based on the basic combustion and heat transfer theorem. A correction for the heat calculation method for pressurized furnace is made on the basis of the normal pressure case. The correction takes the effect of pressurizing into account. The results show that the correction is reasonable and the method is applicable to combustion and heat transfer of the marine supercharged boiler.

  17. Heat Transfer Phenomena in Supercritical Water Nuclear Reactors

    International Nuclear Information System (INIS)

    A supercritical water heat transfer facility has been built at the University of Wisconsin to study heat transfer in a circular and square annular flow channel. A series of integral heat transfer measurements has been carried out over a wide range of heat flux, mass velocity and bulk water temperatures at a pressure of 25 MPa. The circular annular test section geometry is a 1.07 cm diameter heater rod within a 4.29 diameter flow channel

  18. Heat Transfer Characteristics of SiC-coated Heat Pipe for Passive Decay Heat Removal

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Mo; Kim, In Guk; Jeong, Yeong Shin; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-10-15

    The main concern with the Fukushima accident was the failure of active and passive core cooling systems. The main function of existing passive decay heat removal systems is feeding additional coolant to the reactor core. Thus, an established emergency core cooling system (ECCS) cannot operate properly because of impossible depressurization under the station blackout (SBO) condition. Therefore, a new concept for passive decay heat removal system is required. In this study, an innovative hybrid control rod concept is considered for passive in-core decay heat removal that differs from the existing direct vessel injection core cooling system and passive auxiliary feedwater system (PAFS). The heat transfer between the evaporator and condenser sections occurs by phase change of the working fluid and capillary action induced by wick structures installed on the inner wall of the heat pipe. In this study, a hybrid control rod is developed to take the roles of both neutron absorption and heat removal by combining the functions of a heat pipe and control rod. Previous studies on enhancing the heat removal capacity of heat pipes used nanofluids, self-rewetting fluids, various wick structures and condensers. Many studies have examined the thermal performances of heat pipes using various nanofluids. They concluded that the enhanced thermal performance of the heat pipe using nanofluids is due to nanoparticle deposition on the wick structures. Thus, the wick structure of heat pipes has been modified by nanoparticle deposition to enhance the heat removal capacity. However, previous studies used relatively small heat pipes and narrow ranges of heat loads. The environment of a nuclear reactor is very specific, and the decay heat produced by fission products after shutdown is relatively large. Thus, this study tested a large-scale heat pipe over a wide range of power. The concept of a hybrid heat pipe for an advanced in-core decay heat removal system was introduced for complete

  19. Nanoscale heat transfer and phase transformation surrounding intensely heated nanoparticles

    Science.gov (United States)

    Sasikumar, Kiran

    Over the last decade there has been significant ongoing research to use nanoparticles for hyperthermia-based destruction of cancer cells. In this regard, the investigation of highly non-equilibrium thermal systems created by ultrafast laser excitation is a particularly challenging and important aspect of nanoscale heat transfer. It has been observed experimentally that noble metal nanoparticles, illuminated by radiation at the plasmon resonance wavelength, can act as localized heat sources at nanometer-length scales. Achieving biological response by delivering heat via nanoscale heat sources has also been demonstrated. However, an understanding of the thermal transport at these scales and associated phase transformations is lacking. A striking observation made in several laser-heating experiments is that embedded metal nanoparticles heated to extreme temperatures may even melt without an associated boiling of the surrounding fluid. This unusual phase stability is not well understood and designing experiments to understand the physics of this phenomenon is a challenging task. In this thesis, we will resort to molecular dynamics (MD) simulations, which offer a powerful tool to investigate this phenomenon, without assumptions underlying continuum-level model formulations. We present the results from a series of steady state and transient non-equilibrium MD simulations performed on an intensely heated nanoparticle immersed in a model liquid. For small nanoparticles (1-10 nm in diameter) we observe a stable liquid phase near the nanoparticle surface, which can be at a temperature well above the boiling point. Furthermore, we report the existence of a critical nanoparticle size (4 nm in diameter) below which we do not observe formation of vapor even when local fluid temperatures exceed the critical temperature. Instead, we report the existence of a stable fluid region with a density much larger than that of the vapor phase. We explain this stability in terms of the

  20. I Using Porous Material for Heat Transfer Enhancement in Heat Exchangers: Review

    Directory of Open Access Journals (Sweden)

    M. A. Delavar

    2013-01-01

    Full Text Available The increase in energy cost and energy consumption has required more effective use of energy. The problem of dissipating high heat fluxes has received much attention due to its importance in applications such as heat exchanger. The heat transfer duty of heat exchangers can be improved by heat transfer enhancement techniques. In recent years, Considerable efforts have been made to increase heat transfer rates in heat exchangers by implementing passive enhancement methods that require no direct consumption of external power. On the basis of a theoretical and experimental analysis the conclusion derived was that the best heat transfer enhancement can be reached by the use of porous material as an inexpensive technique to extend the heat transfer area, improve effective thermal conductivity, and mix fluid flow. This paper presents a brief discussion on the application of using porous media to heat exchangers by means of heat transfer enhancement.

  1. Heat transfer and fluid flow in microchannels

    Science.gov (United States)

    Mala, Ghulam Mohiuddin

    Fluid flow and heat transfer characteristics in microchannels of different cross-sections; parallel plate, cylindrical and trapezoidal microchannels were studied. The trapezoidal microchannels were etched in silicon and glass by photolithographic techniques. The cylindrical microchannels of fused silica and stainless steel were readily available. Channels with depths of 18 μm to 300 μm were studied. The study was divided into three parts viz. theoretical modeling, numerical simulation and experimentation. Electrokinetic effects such as the effects of electrical double layer (EDL) at the solid-liquid interface and surface roughness effects were considered. An experimental apparatus was constructed and a procedure devised to measure the flow rate, pressure drop, temperatures and electrokinetic parameters like streaming potential, streaming current, and conductivity of the working fluid. Great care was taken so that the measurements were accurate and repeatable. For steady state laminar flow and heat transfer in microchannels, mathematical models were developed that consider the effects of electrical double layer and surface roughness at the microchannel walls. The non- linear, 2-D, Poisson-Boltzmann equation that describes the potential distribution at the solid liquid interface was solved numerically and results were compared with a linear approximate solution that overestimates the potential distribution for higher values of zeta potential. Effects of the EDL field at the solid-liquid interface, surface roughness at the microchannel walls and the channel size, on the velocity distribution, streaming potential, apparent viscosity, temperature distribution and heat transfer characteristics are discussed. The experimental results indicate significant departure in flow characteristics from the predictions of the Navier-Stokes equations, referred to as conventional theory. The difference between the experimental results and theoretical predictions decreases as the

  2. Transient critical heat flux and blowdown heat-transfer studies

    Energy Technology Data Exchange (ETDEWEB)

    Leung, J.C.

    1980-05-01

    Objective of this study is to give a best-estimate prediction of transient critical heat flux (CHF) during reactor transients and hypothetical accidents. To accomplish this task, a predictional method has been developed. Basically it involves the thermal-hydraulic calculation of the heated core with boundary conditions supplied from experimental measurements. CHF predictions were based on the instantaneous ''local-conditions'' hypothesis, and eight correlations (consisting of round-tube, rod-bundle, and transient correlations) were tested against most recent blowdown heat-transfer test data obtained in major US facilities. The prediction results are summarized in a table in which both CISE and Biasi correlations are found to be capable of predicting the early CHF of approx. 1 s. The Griffith-Zuber correlation is credited for its prediction of the delay CHF that occurs in a more tranquil state with slowly decaying mass velocity. In many instances, the early CHF can be well correlated by the x = 1.0 criterion; this is certainly indicative of an annular-flow dryout-type crisis. The delay CHF occurred at near or above 80% void fraction, and the success of the modified Zuber pool-boiling correlation suggests that this CHF is caused by flooding and pool-boiling type hydrodynamic crisis.

  3. Heat Transfer Enhancement by Using Different Types of Inserts

    OpenAIRE

    Tabatabaeikia, S.; Mohammed, H.A.; Nik-Ghazali, N.; Shahizare, B.

    2014-01-01

    Heat transfer enhancement has been always a significantly interesting topic in order to develop high efficient, low cost, light weight, and small heat exchangers. The energy cost and environmental issue are also encouraging researchers to achieve better performance than the existing designs. Two of the most effective ways to achieve higher heat transfer rate in heat exchangers are using different kinds of inserts and modifying the heat exchanger tubes. There are different kinds of inserts emp...

  4. Boiling local heat transfer enhancement in minichannels using nanofluids.

    Science.gov (United States)

    Chehade, Ali Ahmad; Gualous, Hasna Louahlia; Le Masson, Stephane; Fardoun, Farouk; Besq, Anthony

    2013-03-18

    This paper reports an experimental study on nanofluid convective boiling heat transfer in parallel rectangular minichannels of 800 μm hydraulic diameter. Experiments are conducted with pure water and silver nanoparticles suspended in water base fluid. Two small volume fractions of silver nanoparticles suspended in water are tested: 0.000237% and 0.000475%. The experimental results show that the local heat transfer coefficient, local heat flux, and local wall temperature are affected by silver nanoparticle concentration in water base fluid. In addition, different correlations established for boiling flow heat transfer in minichannels or macrochannels are evaluated. It is found that the correlation of Kandlikar and Balasubramanian is the closest to the water boiling heat transfer results. The boiling local heat transfer enhancement by adding silver nanoparticles in base fluid is not uniform along the channel flow. Better performances and highest effect of nanoparticle concentration on the heat transfer are obtained at the minichannels entrance.

  5. Heat Transfer in Flue Gas with Vapor Condensation

    Institute of Scientific and Technical Information of China (English)

    贾力; 彭晓峰

    2002-01-01

    This paper combines the film model with Nusselt's condensation theory to analyze the effects of water vapor condensation on the heat transfer performance of flue gas flowing through a vertical tube. The analysis compares the condensation and convective heat transfer rates. For the concentration range investigated, the water vapor condensation transfers more energy than the flue gas convection, but the convective heat transfer can not be neglected. The heat transfer intensification due to the condensation increased as the water vapor fraction increased. The theoretical results compared well with experimental data.

  6. Heat and Mass Transfer in a Semi Infinite Porous

    Directory of Open Access Journals (Sweden)

    H. N. Narang

    1967-07-01

    Full Text Available Unsteady axially symmetric transfer of heat and mass in a semi-infinite porous circular cylinder initially at a constant temperature and mass transfer potential has been considered. The circular boundary of the porous cylinder is maintained at temperature and mass transfer potential which are functions of both axial co-ordinate and time, whereas the plane end is impervious to heat and mass transfer. Both the axial and radial components of heat and diffusive mass transfer have been taken into account. A particular case when the temperature and mass transfer potential are unit step functions has been discussed in detail and some results have been exhibited graphically.

  7. Heat transfer and fluid friction in bundles of twisted tubes

    Science.gov (United States)

    Dzyubenko, B. V.; Dreitser, G. A.

    1986-06-01

    The results of heat-transfer and friction studies in bundles of twisted tubes and rods with spiral wire-wrap spacers are analyzed, and recommendations are given for calculating the heat-transfer coefficient in heat exchangers using twisted tubes.

  8. Understanding fast heat transfer in the shallow subsurface

    Science.gov (United States)

    Rutten, Martine; Steele-Dunne, Susan; Judge, Jasmeet; van de Giesen, Nick

    2010-05-01

    Understanding the temperature profile of the shallow subsurface is of great importance for interpreting remote sensing observations and modeling land-atmosphere interaction. Remote sensing observations are translated to surface characteristics, such as vegetation and soil moisture, using radiative transfer schemes that are sensitive to skin temperature estimation. The surface temperature is also a key variable in the heat partitioning of net radiation into sensible, latent and soil heat flux at the interface between land and atmosphere. The temperature profile of the soil is determined by the processes of radiative, convective and conductive heat transfer. Whereas radiative and convective heat transfer are dominant at the soil-air interface, heat transfer within the soil is typically assumed to be governed by conduction and as such is described with a diffusion model. The thermal diffusivity of the soil depends mainly on mineral composition and moisture content and is described in many empirical models. Using temperature data from experiments conducted in Florida (MicroWex 2) and the Netherlands (Monster), we show that diffusion cannot describe heat transfer within approximately the upper ten centimeters of the soil. The heat transfer is significantly faster than would be predicted with a diffusion equation. Diffusivity values, estimated using an inversion approach to the diffusion equation, fall outside the physically reasonable range, which is defined by available soil diffusivity models. The extent of this strongly thermally active layer depends on vegetation conditions, and possibly moisture conditions. We investigate mechanisms that may explain the fast heat transfer in the shallow subsurface. Possible mechanisms include heat transfer by convective heat transfer processes such as latent heat formation and heat transfer due to water percolation. We estimated the size of the heat sink-source at depth and compared these to observations of latent heat and

  9. Physical quantity synergy in laminar flow field of convective heat transfer and analysis of heat transfer enhancement

    Institute of Scientific and Technical Information of China (English)

    LIU Wei; LIU ZhiChun; GUO ZengYuan

    2009-01-01

    Based on the principle of field synergy for heat transfer enhancement, the concept of physical quantity synergy in the laminar flow field is proposed in the present study according to the physical mechanism of convective heat transfer between fluid and tube wall. The synergy regulation among physical quantities of fluid particle is revealed by establishing formulas reflecting the relation between synergy angles and heat transfer enhancement. The physical nature of enhancing heat transfer and reducing flow resistance, which is directly associated with synergy angles α,βγ,φ, θ and ψ, is also explained. Be-sides, the principle of synergy among physical quantities is numerically verified by the calculation of heat transfer and flow in a thin cylinder-interpolated tube, which may guide the optimum design for better heat transfer unit and high-efficiency heat exchanger.

  10. Loop heat pipes - highly efficient heat-transfer devices for systems of sun heat supply

    Energy Technology Data Exchange (ETDEWEB)

    Maydanik, Yu. [Ural Branch of the Russian Academy of Sciences, Ekaterinburg (Russian Federation). Inst. of Thermophysics

    2004-07-01

    Loop heat pipes (LHPs) are hermetic heat-transfer devices operating on a closed evaporation-condensation cycle with the use of capillary pressure for pumping the working fluid [1]. In accordance with this, they possess all the main advantages of conventional heat pipes, but, as distinct from the latter, have a considerably higher heat-transfer capacity, especially when operating in the ''antigravity'' regime, when heat is transferred from above downwards. Besides, LHPs possess a higher functional versatility, are adaptable to different operating conditions and provide great scope for various design embodiments. This is achieved at the expense of both the original design of the device and the properties of the wick - a special capillary structure used for the creation of capillary pressure. The LHP schematic diagram is given in Fig. 1. The device contains an evaporator and a condenser - heat exchanger connected by means of smooth-walled pipe-lines with a relatively small diameter intended for separate motion of vapor and liquid. At present loop heat pipes are most extensively employed in thermoregulation systems of spacecrafts. Miniature LHPs are used for cooling electronics and computers. At the same time there exists a considerable potential of using these devices for the recovery of low-grade (waste) heat from different sources, and also in systems of sun heat supply. In the latter case LHPs may serve as an efficient heat-transfer link between a sun collector and a heat accumulator, which has a low thermal resistance and does not consume any additional energy for pumping the working fluid between them. (orig.)

  11. Submersible pumping system with heat transfer mechanism

    Science.gov (United States)

    Hunt, Daniel Francis Alan; Prenger, F. Coyne; Hill, Dallas D; Jankowski, Todd Andrew

    2014-04-15

    A submersible pumping system for downhole use in extracting fluids containing hydrocarbons from a well. In one embodiment, the pumping system comprises a rotary induction motor, a motor casing, one or more pump stages, and a cooling system. The rotary induction motor rotates a shaft about a longitudinal axis of rotation. The motor casing houses the rotary induction motor such that the rotary induction motor is held in fluid isolation from the fluid being extracted. The pump stages are attached to the shaft outside of the motor casing, and are configured to impart fluid being extracted from the well with an increased pressure. The cooling system is disposed at least partially within the motor casing, and transfers heat generated by operation of the rotary induction motor out of the motor casing.

  12. Influence of structural design condensing part of NH3 heat pipe to heat transfer

    OpenAIRE

    Vantúch Martin; Malcho Milan

    2014-01-01

    The article describes influence design heat exchangers to efficiency condensation liquid ammonia in the gravitational heat pipe. Analyse adverse factors in the operation and flow of ammonia in heat pipe. Also describes heat transfer characteristics of heat pipe in low-potential geothermal heat transport simulations.

  13. Experimental investigation of heat transfer and effectiveness in corrugated plate heat exchangers having different chevron angles

    Science.gov (United States)

    Kılıç, Bayram; İpek, Osman

    2016-06-01

    In this study, heat transfer rate and effectiveness of corrugated plate heat exchangers having different chevron angles were investigated experimentally. Chevron angles of plate heat exchangers are β = 30° and β = 60°. For this purpose, experimentally heating system used plate heat exchanger was designed and constructed. Thermodynamic analysis of corrugated plate heat exchangers having different chevron angles were carried out. The heat transfer rate and effectiveness values are calculated. The experimental results are shown that heat transfer rate and effectiveness values for β = 60° is higher than that of the other. Obtained experimental results were graphically presented.

  14. FILM-30: A Heat Transfer Properties Code for Water Coolant

    Energy Technology Data Exchange (ETDEWEB)

    MARSHALL, THERON D.

    2001-02-01

    A FORTRAN computer code has been written to calculate the heat transfer properties at the wetted perimeter of a coolant channel when provided the bulk water conditions. This computer code is titled FILM-30 and the code calculates its heat transfer properties by using the following correlations: (1) Sieder-Tate: forced convection, (2) Bergles-Rohsenow: onset to nucleate boiling, (3) Bergles-Rohsenow: partially developed nucleate boiling, (4) Araki: fully developed nucleate boiling, (5) Tong-75: critical heat flux (CHF), and (6) Marshall-98: transition boiling. FILM-30 produces output files that provide the heat flux and heat transfer coefficient at the wetted perimeter as a function of temperature. To validate FILM-30, the calculated heat transfer properties were used in finite element analyses to predict internal temperatures for a water-cooled copper mockup under one-sided heating from a rastered electron beam. These predicted temperatures were compared with the measured temperatures from the author's 1994 and 1998 heat transfer experiments. There was excellent agreement between the predicted and experimentally measured temperatures, which confirmed the accuracy of FILM-30 within the experimental range of the tests. FILM-30 can accurately predict the CHF and transition boiling regimes, which is an important advantage over current heat transfer codes. Consequently, FILM-30 is ideal for predicting heat transfer properties for applications that feature high heat fluxes produced by one-sided heating.

  15. Heat-transfer augmentation in rod bundles near grid spacers

    International Nuclear Information System (INIS)

    Heat-transfer augmentation by straight grid spacers in rod bundles is studied for single-phase flow and for post-critical heat flux dispersed flow. The heat transfer effect of swirling grid spacers in single-phase flow is also examined. Governing heat-transfer mechanisms are analyzed, and predictive formulations are established. For single-phase flow, the local heat transfer at a straight spacer and at its upstream or downstream locations are treated separately. The effect of local velocity increasing near swirling spacer is considered. For post critical heat flux (CHF) dispersed flow, the heat transfer by thermal radiation, fin cooling, and vapor convection near the spacer are calculated. The predictions are compared with experimental data with satisfactory agreement

  16. A one-dimensional heat transfer model for parallel-plate thermoacoustic heat exchangers

    NARCIS (Netherlands)

    Jong, de J.A.; Wijnant, Y.H.; Boer, de A.

    2014-01-01

    A one-dimensional (1D) laminar oscillating flow heat transfer model is derived and applied to parallel-plate thermoacoustic heat exchangers. The model can be used to estimate the heat transfer from the solid wall to the acoustic medium, which is required for the heat input/output of thermoacoustic s

  17. Personalized recommendation based on heat bidirectional transfer

    Science.gov (United States)

    Ma, Wenping; Feng, Xiang; Wang, Shanfeng; Gong, Maoguo

    2016-02-01

    Personalized recommendation has become an increasing popular research topic, which aims to find future likes and interests based on users' past preferences. Traditional recommendation algorithms pay more attention to forecast accuracy by calculating first-order relevance, while ignore the importance of diversity and novelty that provide comfortable experiences for customers. There are some levels of contradictions between these three metrics, so an algorithm based on bidirectional transfer is proposed in this paper to solve this dilemma. In this paper, we agree that an object that is associated with history records or has been purchased by similar users should be introduced to the specified user and recommendation approach based on heat bidirectional transfer is proposed. Compared with the state-of-the-art approaches based on bipartite network, experiments on two benchmark data sets, Movielens and Netflix, demonstrate that our algorithm has better performance on accuracy, diversity and novelty. Moreover, this method does better in exploiting long-tail commodities and cold-start problem.

  18. Condensation Heat Transfer Inside a Tube in a Microgravity Environment

    Institute of Scientific and Technical Information of China (English)

    LiuYuke; WangWeicheng

    1996-01-01

    This paper introduces a method for studying condensation heat transfer inside a tube in microgravity environment.The model assumes laminar flow in the condensate film and an annular flow pattern,The local heat transfer coefficinet is the calculated by gravitational acceleration,g,from 0 to 9.8m/s2.the model was tested indirectly by measuring condensation heat transfer inside a vertical tube in a normal gravity environment through experiments.

  19. Surface-Phonon Polariton Contribution to Nanoscale Radiative Heat Transfer.

    OpenAIRE

    Rousseau, Emmanuel; Laroche, Marine; Greffet, Jean-Jacques

    2009-01-01

    Heat transfer between two plates of polar materials at nanoscale distance is known to be enhanced by several orders of magnitude as compared with its far-field value. In this article, we show that nanoscale heat transfer is dominated by the coupling between surface phonon-polaritons located on each interface. Furthermore, we derive an asymptotic closed-form expression of the radiative heat transfer between two polar materials in the near-field regime. We study the temperature dependence of th...

  20. On-Engine Turbocharger Performance Considering Heat Transfer

    OpenAIRE

    Aghaali, Habib

    2012-01-01

    Heat transfer plays an important role in affecting an on-engine turbocharger performance. However, it is normally not taken into account for turbocharged engine simulations. Generally, an engine simulation based on one-dimensional gas dynamics uses turbocharger performance maps which are measured without quantifying and qualifying the heat transfer, regardless of the fact that they are measured on the hot-flow or cold-flow gas-stand. Since heat transfer situations vary for on-engine turbochar...

  1. Sensitivity Analysis of the Gap Heat Transfer Model in BISON.

    Energy Technology Data Exchange (ETDEWEB)

    Swiler, Laura Painton; Schmidt, Rodney C.; Williamson, Richard (INL); Perez, Danielle (INL)

    2014-10-01

    This report summarizes the result of a NEAMS project focused on sensitivity analysis of the heat transfer model in the gap between the fuel rod and the cladding used in the BISON fuel performance code of Idaho National Laboratory. Using the gap heat transfer models in BISON, the sensitivity of the modeling parameters and the associated responses is investigated. The study results in a quantitative assessment of the role of various parameters in the analysis of gap heat transfer in nuclear fuel.

  2. Turbine stage aerodynamics and heat transfer prediction

    Science.gov (United States)

    Griffin, Lisa W.; Mcconnaughey, H. V.

    1989-01-01

    A numerical study of the aerodynamic and thermal environment associated with axial turbine stages is presented. Computations were performed using a modification of the unsteady NASA Ames viscous code, ROTOR1, and an improved version of the NASA Lewis steady inviscid cascade system MERIDL-TSONIC coupled with boundary layer codes BLAYER and STAN5. Two different turbine stages were analyzed: the first stage of the United Technologies Research Center Large Scale Rotating Rig (LSRR) and the first stage of the Space Shuttle Main Engine (SSME) high pressure fuel turbopump turbine. The time-averaged airfoil midspan pressure and heat transfer profiles were predicted for numerous thermal boundary conditions including adiabatic wall, prescribed surface temperature, and prescribed heat flux. Computed solutions are compared with each other and with experimental data in the case of the LSRR calculations. Modified ROTOR1 predictions of unsteady pressure envelopes and instantaneous contour plots are also presented for the SSME geometry. Relative merits of the two computational approaches are discussed.

  3. Heat Transfer of DE-Series MOSFETs

    Directory of Open Access Journals (Sweden)

    Arthur James Swart

    2011-01-01

    Full Text Available MOSFET devices have developed significantly over the past few years to become the number one choice for high-power applications in power electronics and electronic communication. Commercially available devices (such as the IXYS RF manufactured now operate into the VHF range with output RF powers of up to 300 W. They are optimized for linear operation and suitable for broadcast and communication applications. This paper presents the heat transfer out of an IXZ210N50L MOSFET which is sandwiched between two identical heatsinks. The results reveal a linear decrease in heat flowing away from the top of the MOSFET when compared to the bottom of the MOSFET for each step increase of drain current. Two graphs (representing the top and bottom heatsinks connected to the MOSFET device contrast the temperature rise for the Bisink technique when the drain current through the IXZ210N50L MOSFET is kept constant at 5 A. The Bisink technique has the advantages of lower on-state resistances and higher output powers when compared to the traditional mounting using only one heatsink, resulting in improved reliability and performance. Results further reveal that the ambient temperature must be measured in the vicinity of the heatsink.

  4. TACO: a finite element heat transfer code

    International Nuclear Information System (INIS)

    TACO is a two-dimensional implicit finite element code for heat transfer analysis. It can perform both linear and nonlinear analyses and can be used to solve either transient or steady state problems. Either plane or axisymmetric geometries can be analyzed. TACO has the capability to handle time or temperature dependent material properties and materials may be either isotropic or orthotropic. A variety of time and temperature dependent loadings and boundary conditions are available including temperature, flux, convection, and radiation boundary conditions and internal heat generation. Additionally, TACO has some specialized features such as internal surface conditions (e.g., contact resistance), bulk nodes, enclosure radiation with view factor calculations, and chemical reactive kinetics. A user subprogram feature allows for any type of functional representation of any independent variable. A bandwidth and profile minimization option is also available in the code. Graphical representation of data generated by TACO is provided by a companion post-processor named POSTACO. The theory on which TACO is based is outlined, the capabilities of the code are explained, the input data required to perform an analysis with TACO are described. Some simple examples are provided to illustrate the use of the code

  5. Numerical simulation on heat transfer inside rotating porous disk subjected to local heat flux

    Institute of Scientific and Technical Information of China (English)

    ZHU; XingDan; ZHANG; JingZhou; TAN; XiaoMing

    2013-01-01

    Numerical simulation was carried out to study the centrifugally-driven flow and heat transfer inside rotating metallic porous disk subjected to local heat flux. The effects of rotational speed, solid thermal conductivity and porosity on heat transfer were analyzed. The thermal transport coefficient, defined as the ratio of local heat flux to maximum temperature difference on the disk, was introduced to evaluate the thermal transport capacity in rotating porous disk. For convenience, the conjugation between convective heat transfer inside the rotating porous disk and convective heat transfer over the rotating disk surface was decoupled in the present study. Firstly, the convective heat transfer over the free rotating disk surface was investigated indi-vidually to determine the heat transfer coefficient over the disk surface to the ambient air. Then the convective heat transfer over a rotating disk surface was treated as the thermal boundary condition for the computation of convective heat transfer in-side rotating porous disk. Under the present research conditions, the results show that the centrifugally-driven flow is enhanced significantly with the increase of rotational speed. Consequently, the maximum temperature on the disk surface is decreased and the temperature distribution tends to be uniform. The thermal transport capacity in rotating porous disk is also enhanced with the increase of solid thermal conductivity or the decrease of solid porosity. In the rotating porous disk, the solid phase heat transfer is clearly the dominant mode of heat transport and the fluid phase makes an incremental contribution to the total heat transfer.

  6. Boiling heat transfer of refrigerant R-21 in upward flow in plate-fin heat exchanger

    Science.gov (United States)

    Kuznetsov, V. V.; Shamirzaev, A. S.

    2015-11-01

    The article presents the results of experimental investigation of boiling heat transfer of refrigerant R-21 in upward flow in a vertical plate-fin heat exchanger with transverse size of the channels that is smaller than the capillary constant. The heat transfer coefficients obtained in ranges of small mass velocities and low heat fluxes, which are typical of the industry, have been poorly studied yet. The characteristic patterns of the upward liquid-vapor flow in the heat exchanger channels and the regions of their existence are detected. The obtained data show a weak dependence of heat transfer coefficient on equilibrium vapor quality, mass flow rate, and heat flux density and do not correspond to calculations by the known heat transfer models. A possible reason for this behavior is a decisive influence of evaporation of thin liquid films on the heat transfer at low heat flux.

  7. An introduction to heat transfer principles and calculations

    CERN Document Server

    Ede, A J; Ower, E

    1967-01-01

    An Introduction to Heat Transfer Principles and Calculations is an introductory text to the principles and calculations of heat transfer. The theory underlying heat transfer is described, and the principal results and formulae are presented. Available techniques for obtaining rapid, approximate solutions to complicated problems are also considered. This book is comprised of 12 chapters and begins with a brief account of some of the concepts, methods, nomenclature, and other relevant information about heat transfer. The reader is then introduced to radiation, conduction, convection, and boiling

  8. Heat transfer enhancement by application of nano-powder

    Energy Technology Data Exchange (ETDEWEB)

    Mosavian, M. T. Hamed, E-mail: mosavian@um.ac.ir; Heris, S. Zeinali [Ferdowsi University of Mashhad, Department of Chemical Engineering, Faculty of Engineering (Iran, Islamic Republic of); Etemad, S. Gh.; Esfahany, M. Nasr [Isfahan University of Technology, Department of Chemical Engineering (Iran, Islamic Republic of)

    2010-09-15

    In this investigation, laminar flow heat transfer enhancement in circular tube utilizing different nanofluids including Al{sub 2}O{sub 3} (20 nm), CuO (50 nm), and Cu (25 nm) nanoparticles in water was studied. Constant wall temperature was used as thermal boundary condition. The results indicate enhancement of heat transfer with increasing nanoparticle concentrations, but an optimum concentration for each nanofluid suspension can be found. Based on the experimental results, metallic nanoparticles show better enhancement of heat transfer coefficient in comparison with oxide particles. The promotions of heat transfer due to utilizing nanoparticles are higher than the theoretical correlation prediction.

  9. Pool boiling heat transfer performance of Newtonian nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Soltani, Saide; Etemad, Seyed Gholamreza [Isfahan University of Technology, Department of Chemical Engineering, Isfahan (Iran); Thibault, Jules [University of Ottawa, Department of Chemical and Biological Engineering, Ottawa, ON (Canada)

    2009-10-15

    Experimental measurements were carried out on the boiling heat transfer characteristics of {gamma}-Al{sub 2}O{sub 3}/water and SnO{sub 2}/water Newtonian nanofluids. Nanofluids are liquid suspensions containing nanoparticles with sizes smaller than 100 nm. In this research, suspensions with different concentrations of {gamma}-Al{sub 2}O{sub 3} and SnO{sub 2} nanoparticles in water were studied under nucleate pool boiling heat transfer conditions. Results show that nanofluids possess noticeably higher boiling heat transfer coefficients than the base fluid. The boiling heat transfer coefficients depend on the type and concentration of nanoparticles. (orig.)

  10. Heat transfer coefficient in serpentine coolant passage for CCDTL

    International Nuclear Information System (INIS)

    A series of heat transfer experiments were conducted to refine the cooling passage design in the drift tubes of a coupled cavity drift tube linac (CCDTL). The experimental data were then compared to numerical models to derive relationships between heat transfer rates, Reynold's number, and Prandtl number, over a range of flow rates. Data reduction consisted of axisymmetric finite element modeling where the heat transfer coefficients were modified to match the experimental data. Unfortunately, the derived relationship is valid only for this specific geometry of the test drift tube. Fortunately, the heat transfer rates were much better (approximately 2.5 times) than expected

  11. 46 CFR 153.430 - Heat transfer systems; general.

    Science.gov (United States)

    2010-10-01

    ... this part and each cargo heating system must: (a) Meet the standards of Subchapters F (Marine... separated from all other cooling and heating systems; and (c) Allow manual regulation of the system's heat... 46 Shipping 5 2010-10-01 2010-10-01 false Heat transfer systems; general. 153.430 Section...

  12. Particle-water heat transfer during explosive volcanic eruptions

    OpenAIRE

    Woodcock, D. C.; Gilbert, Jennie; Lane, S. J.

    2012-01-01

    Thermal interaction between volcanic particles and water during explosive eruptions has been quantified using a numerical heat transfer model for spherical particles. The model couples intraparticle conduction with heat transfer from the particle surface by boiling water in order to explore heat loss with time for a range of particle diameters. The results are combined with estimates of particle settling times to provide insight into heat removal during eruption from samples of volcanic parti...

  13. INFLUENCE OF REFRIGERANT DISTRIBUTION ON HEAT TRANSFER IN EVAPORATORS

    Institute of Scientific and Technical Information of China (English)

    高原; 田怀璋; 曾艳; 袁秀玲

    2003-01-01

    Objective To prevent the maldistribution of two-phase refrigerant in dry expansion evaporators composed of parallel coils, a distributor is needed to supply refrigerant into the coils. Methods A simplified model of dry expansion evaporator was proposed. The flow and heat transfer in distributing pipes and evaporator coils were simulated with a numerical method. Results The heat flow rate decreases while the refrigerant is distributed unequally to evaporator coils. Conclusion In order to maintain the heat flow rate, larger heat transfer area should be arranged to make up the effect of maldistribution. The larger the discrepancy of mass flow rate is, the more heat transfer area is needed.

  14. Bubble Coalescence Heat Transfer During Subcooled Nucleate Pool Boiling

    Institute of Scientific and Technical Information of China (English)

    Abdoulaye Coulibaly; LIN Xipeng; Bi Jingliang; David M Christopher

    2012-01-01

    Bubble coalescence during subcooled nucleate pool boiling was investigated experimentally using constant wall temperature boundary conditions while the wall heat flux was measured at a various locations to understand the effects of coalescence on the heat transfer. The observations showed that the coalesced bubble moved and oscillated on the heater surface with significant heat transfer variations prior to departure. Some observations also showed coalescence with no increase in the heat transfer rate. The heat flux for boiling with coalescence fluctuated much more than for single bubble boiling due to the vaporization of the liquid layer trapped between the bubbles.

  15. Condensation heat transfer coefficient with noncondensible gases for heat transfer in thermal hydraulic codes

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, S.; Hassan, Y.A. [Texas A& M Univ., College Station, TX (United States)

    1995-09-01

    Condensation in the presence of noncondensible gases plays an important role in the nuclear industry. The RELAP5/MOD3 thermal hydraulic code was used to study the ability of the code to predict this phenomenon. Two separate effects experiments were simulated using this code. These were the Massachusetts Institute of Technology`s (MIT) Pressurizer Experiment, the MIT Single Tube Experiment. A new iterative approach to calculate the interface temperature and the degraded heat transfer coefficient was developed and implemented in the RELAP5/MOD3 thermal hydraulic code. This model employs the heat transfer simultaneously. This model was found to perform much better than the reduction factor approach. The calculations using the new model were found to be in much better agreement with the experimental values.

  16. Heat transfer enhancement using tip and junction vortices

    Science.gov (United States)

    Gentry, Mark Cecil

    1998-10-01

    Single-phase convective heat transfer can be enhanced by modifying the heat transfer surface to passively generate streamwise vortices. The swirling flow of the vortices modifies the temperature field, thinning the thermal boundary layer and increasing surface convection. Tip vortices generated by delta wings and junction vortices generated by hemispherical protuberances were studied in laminar flat-plate and developing channel flows. Local and average convective measurements were obtained, and the structure of the vortices was studied using quantitative flow visualization and vortex strength measurements. The pressure drop penalty associated with the heat transfer enhancement was also investigated. Tip vortices generated by delta wings enhanced local convection by as much as 300% over a flat-plate boundary layer flow. Vortex strength increased with Reynolds number based on chord length, wing aspect ratio, and wing angle of attack. As the vortices were advected downstream, they decayed because of viscous interactions. In the developing channel flow, tip vortices produced a significant local heat transfer enhancement on both sides of the channel. The largest spatially averaged heat transfer enhancement was 55%; it was accompanied by a 100% increase in the pressure drop relative to the same channel flow with no delta-wing vortex generator. Junction vortices created by hemispherical surface protuberances provided local heat transfer enhancements as large as 250%. Vortex strength increased with an increasing ratio of hemisphere radius to local boundary layer thickness on a flat plate. In the developing channel flows, heat transfer enhancements were observed on both sides of the channel. The largest spatially averaged heat transfer enhancement was 50%; it was accompanied by a 90% pressure drop penalty relative to the same channel flow with no hemispherical vortex generator. This research is important in compact heat exchanger design. Enhancing heat transfer can lead to

  17. On-Engine Turbocharger Performance Considering Heat Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Aghaali, Habib

    2012-07-01

    Heat transfer plays an important role in affecting an on-engine turbocharger performance. However, it is normally not taken into account for turbocharged engine simulations. Generally, an engine simulation based on one-dimensional gas dynamics uses turbocharger performance maps which are measured without quantifying and qualifying the heat transfer, regardless of the fact that they are measured on the hot-flow or cold-flow gas-stand. Since heat transfer situations vary for on-engine turbochargers, the maps have to be shifted and corrected in the 1-D engine simulation, which mass and efficiency multipliers usually do for both the turbine and the compressor. The multipliers change the maps and are often different for every load point. Particularly, the efficiency multiplier is different for every heat transfer situation on the turbocharger. The heat transfer leads to a deviation from turbocharger performance maps, and increased complexity of the turbocharged engine simulation. Turbochargers operate under different heat transfer situations while they are installed on the engines. The main objectives of this thesis are: 1. Heat transfer modeling of a turbocharger to quantify and qualify heat transfer mechanisms. 2. Improving turbocharged engine simulation by including heat transfer in the turbocharger. 3. Assessing the use of two different turbocharger performance maps concerning the heat transfer situation (cold-measured and hot-measured turbocharger performance maps) in the simulation of a measured turbocharged engine. 4. Prediction of turbocharger walls' temperatures and their effects on the turbocharger performance on different heat transfer situations. Experimental investigation has been performed on a water-oil-cooled turbocharger, which was installed on a 2-liter GDI engine for different load points of the engine and different heat transfer situations on the turbocharger by using insulators, an extra cooling fan, radiation shields and water-cooling settings

  18. Heat mass transfer model of fouling process of calcium carbonate on heat transfer surface

    Institute of Scientific and Technical Information of China (English)

    QUAN ZhenHua; CHEN YongChang; MA ChongFang

    2008-01-01

    A new heat mass transfer model was developed to predict the fouling process of calcium carbonate on heat transfer surface.The model took into account not only the crystallization fouling but also the particle fouling which was formed on the heat transfer surface by the suspension particles of calcium carbonate in the su-persaturated solution.Based on experimental results of the fouling process,the deposition and removal rates of the mixing fouling were expressed.Furthermore,the coupling effect of temperature with the fouling process was considered in the physics model.As a result the fouling resistance varying with time was obtained to describe the fouling process and the prediction was compared with experimental data under same conditions.The results showed that the present model could give a good prediction of fouling process,and the deviation was less than 15% of the experimental data in most cases.The new model is credible to predict the fouling process.

  19. PyFR: An open source framework for solving advection-diffusion type problems on streaming architectures using the flux reconstruction approach

    Science.gov (United States)

    Witherden, F. D.; Farrington, A. M.; Vincent, P. E.

    2014-11-01

    High-order numerical methods for unstructured grids combine the superior accuracy of high-order spectral or finite difference methods with the geometric flexibility of low-order finite volume or finite element schemes. The Flux Reconstruction (FR) approach unifies various high-order schemes for unstructured grids within a single framework. Additionally, the FR approach exhibits a significant degree of element locality, and is thus able to run efficiently on modern streaming architectures, such as Graphical Processing Units (GPUs). The aforementioned properties of FR mean it offers a promising route to performing affordable, and hence industrially relevant, scale-resolving simulations of hitherto intractable unsteady flows within the vicinity of real-world engineering geometries. In this paper we present PyFR, an open-source Python based framework for solving advection-diffusion type problems on streaming architectures using the FR approach. The framework is designed to solve a range of governing systems on mixed unstructured grids containing various element types. It is also designed to target a range of hardware platforms via use of an in-built domain specific language based on the Mako templating engine. The current release of PyFR is able to solve the compressible Euler and Navier-Stokes equations on grids of quadrilateral and triangular elements in two dimensions, and hexahedral elements in three dimensions, targeting clusters of CPUs, and NVIDIA GPUs. Results are presented for various benchmark flow problems, single-node performance is discussed, and scalability of the code is demonstrated on up to 104 NVIDIA M2090 GPUs. The software is freely available under a 3-Clause New Style BSD license (see www.pyfr.org). Catalogue identifier: AETY_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AETY_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: New style BSD license No. of lines in

  20. Double tube heat exchanger with novel enhancement: Part II - single phase convective heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Tiruselvam, R.; Chin, W.M.; Raghavan, Vijay R. [OYL Sdn. Bhd., Research and Application Department, Kuala Lumpur (Malaysia)

    2012-08-15

    The study is conducted to evaluate the heat transfer characteristics of two new and versatile enhancement configurations in a double tube heat exchanger annulus. The novelty is that they are usable in single phase forced convection, evaporation and condensation. Heat transfer coefficients are determined by the Wilson Plot technique in laminar and turbulent flow and correlations are proposed for Nusselt numbers. Comparisons are then made between heat transfer and flow friction. (orig.)

  1. Non intrusive measurement of the convective heat transfer coefficient

    Energy Technology Data Exchange (ETDEWEB)

    Rebay, M.; Mebarki, G.; Padet, J. [Reims Univ., Reims (France). Faculty of Science, GRESPI Thermomechanical Lab; Arfaoui, A. [Reims Univ., Reims (France). Faculty of Science, GRESPI Thermomechanical Lab; Tunis Univ., Tunis (Tunisia). Faculty of Science, EL MANAR, LETTM; Maad, B.R. [Tunis Univ., Tunis (Tunisia). Faculty of Science, EL MANAR, LETTM

    2010-07-01

    The efficiency of cooling methods in thermal systems such as radiators and heat exchangers must be improved in order to enhance performance. The evaluation of the heat transfer coefficients between a solid and a fluid is necessary for the control and the dimensioning of thermal systems. In this study, the pulsed photothermal method was used to measure the convective heat transfer coefficient on a solid-fluid interface, notably between an air flow and a heated slab mounted on a PVC flat plate. This configuration simulated the electronic air-cooling inside enclosures and racks. The influence of the deflector's inclination angle on the enhancement of heat transfer was investigated using 2 newly developed identification models. The first model was based on a constant heat transfer coefficient during the pulsed experiment, while the second, improved model was based on a variable heat transfer coefficient. The heat transfer coefficient was deduced from the evolution of the transient temperature induced by a sudden deposit of a luminous energy on the front face of the slab. Temperature evolutions were derived by infrared thermography, a camera for cartography and a detector for precise measurement in specific locations. The results show the improvement of measurement accuracies when using a model that considers the temporal evolution of the convective heat transfer coefficient. The deflection of air flow on the upper surface of the heated slab demonstrated better cooling of the slab by the deflection of air flow. 11 refs., 1 tab., 8 figs.

  2. Study of a high performance evaporative heat transfer surface

    Science.gov (United States)

    Saaski, E. W.; Hamasaki, R. H.

    1977-01-01

    An evaporative surface is described for heat pipes and other two-phase heat transfer applications that consists of a hybrid composition of V-grooves and capillary wicking. Characteristics of the surface include both a high heat transfer coefficient and high heat flux capability relative to conventional open-faced screw thread surfaces. With a groove density of 12.6 cm/1 and ammonia working fluid, heat transfer coefficients in the range of 1 to 2 W/sq cm have been measured along with maximum heat flux densities in excess of 20 W/sq cm. A peak heat transfer coefficient in excess of 2.3 W/sq cm was measured with a 37.8 cm/1 hybrid surface.

  3. Heat Transfer Analysis of Passive Residual Heat Removal Heat Exchanger under Natural Convection Condition in Tank

    Directory of Open Access Journals (Sweden)

    Qiming Men

    2014-01-01

    Full Text Available Aiming at the heat transfer calculation of the Passive Residual Heat Removal Heat Exchanger (PRHR HX, experiments on the heat transfer of C-shaped tube immerged in a water tank were performed. Comparisons of different correlation in literatures with the experimental data were carried out. It can be concluded that the Dittus-Boelter correlation provides a best-estimate fit with the experimental results. The average error is about 0.35%. For the tube outside, the McAdams correlations for both horizontal and vertical regions are best-estimated. The average errors are about 0.55% for horizontal region and about 3.28% for vertical region. The tank mixing characteristics were also investigated in present work. It can be concluded that the tank fluid rose gradually which leads to a thermal stratification phenomenon.

  4. Capillary Pumped Heat Transfer (CHT) Experiment

    Science.gov (United States)

    Hallinan, Kevin P.; Allen, J. S.

    1998-01-01

    The operation of Capillary Pumped Loops (CPL's) in low gravity has generally been unable to match ground-based performance. The reason for this poorer performance has been elusive. In order to investigate the behavior of a CPL in low-gravity, an idealized, glass CPL experiment was constructed. This experiment, known as the Capillary-driven Heat Transfer (CHT) experiment, was flown on board the Space Shuttle Columbia in July 1997 during the Microgravity Science Laboratory mission. During the conduct of the CHT experiment an unexpected failure mode was observed. This failure mode was a result of liquid collecting and then eventually bridging the vapor return line. With the vapor return line blocked, the condensate was unable to return to the evaporator and dry-out subsequently followed. The mechanism for this collection and bridging has been associated with long wavelength instabilities of the liquid film forming in the vapor return line. Analysis has shown that vapor line blockage in present generation CPL devices is inevitable. Additionally, previous low-gravity CPL tests have reported the presence of relatively low frequency pressure oscillations during erratic system performance. Analysis reveals that these pressure oscillations are in part a result of long wavelength instabilities present in the evaporator pores, which likewise lead to liquid bridging and vapor entrapment in the porous media. Subsequent evaporation to the trapped vapor increases the vapor pressure. Eventually the vapor pressure causes ejection of the bridged liquid. Recoil stresses depress the meniscus, the vapor pressure rapidly increases, and the heated surface cools. The process then repeats with regularity.

  5. Heat transfer of suspended carbon nanotube yarn to gases

    Science.gov (United States)

    Wada, Yukiko; Kita, Koji; Takei, Kuniharu; Arie, Takayuki; Akita, Seiji

    2016-08-01

    We investigate the pressure dependence of heat transfer to ambient gases for a suspended carbon nanotube yarn. The heat transport of the yarn including the heat exchange with surrounding gases is investigated using a simple one-dimensional heat transport model under Joule heating of the yarn. It is revealed that the effective diameter of the yarn for heat exchange is much smaller than the geometrical diameter of the yarn. This smaller effective diameter for heat exchange should contribute to realizing higher sensitivity and sensing over a wider range of pressures for heat-exchange-type vacuum gauges and flow sensors.

  6. Heat transfer entropy resistance for the analyses of two-stream heat exchangers and two-stream heat exchanger networks

    International Nuclear Information System (INIS)

    The entropy generation minimization method is often used to analyze heat transfer processes from the thermodynamic viewpoint. In this paper, we analyze common heat transfer processes with the concept of entropy generation, and propose the concept of heat transfer entropy resistance. It is found that smaller heat transfer entropy resistance leads to smaller equivalent thermodynamic force difference with prescribed heat transfer rate and larger heat transfer rate with prescribed equivalent thermodynamic force difference. With the concept of heat transfer entropy resistance, the performance of two-stream heat exchangers (THEs) and two-stream heat exchanger networks (THENs) is analyzed. For the cases discussed in this paper, it is found that smaller heat transfer entropy resistance always leads to better heat transfer performance for THEs and THENs, while smaller values of the entropy generation, entropy generation numbers and revised entropy generation number do not always. -- Highlights: • The concept of entropy resistance is defined. • The minimum entropy resistance principle is developed. • Smaller entropy resistance leads to better heat transfer

  7. Analytical Evalution of Heat Transfer Conductivity with Variable Properties

    DEFF Research Database (Denmark)

    Rahimi, Masoume; Hosseini, Mohammad Javad; Barari, Amin;

    2011-01-01

    The homotopy analysis method (HAM) as a new technique which is powerful and easy-to-use, is applied to solve heat transfer problems. In this paper, we use HAM for heat transfer conductivity equation with variable properties which may contain highly nonlinear terms. The obtained results are also...

  8. The porosity in a fluidized bed heat transfer model

    NARCIS (Netherlands)

    Visser, G.; Valk, M.

    1993-01-01

    A mathematical model of heat transfer between a fluidized bed and an immersed surface and a model of gas flow and porosity, both recently published, were combined and further modified in the area of low velocities where the particle convective component of heat transfer is low or neglectable. Experi

  9. Experimental Investigation of Heat Transfer during Night-Time Ventilation

    DEFF Research Database (Denmark)

    Artmann, Nikolai; Jensen, Rasmus Lund; Manz, H.;

    2010-01-01

    is the heat transfer at the internal room surfaces. Increased convection is expected due to high air flow rates and the possibility of a cold air jet flowing along the ceiling, but the magnitude of these effects is hard to predict. In order to improve the predictability, heat transfer during night...

  10. Improving Heat Transfer Performance of Printed Circuit Boards

    Science.gov (United States)

    Schatzel, Donald V.

    2009-01-01

    This paper will explore the ability of printed circuit boards laminated with a Carbon Core Laminate to transfer heat vs. standard printed circuit boards that use only thick layers of copper. The paper will compare the differences in heat transfer performance of printed circuit boards with and without CCL.

  11. HEAT TRANSFER ENHANCEMENT OF SMALL SCALE HEAT SINKS USING VIBRATING PIN FIN

    OpenAIRE

    Suabsakul Gururatana; Xianchang Li

    2013-01-01

    Heat sinks are widely adopted in electronics cooling together with different technologies to enhance the cooling process. For the small electronics application, the small scale pin fins heat sinks are extensively used to dissipate heat in electronics devices. Due to the limit of space in the small devices, it is impossible to increase heat transfer area. In order to improve the heat transfer performance, the applying the forced vibration is one of challenging method. This study applies the vi...

  12. Measurement of flow field and local heat transfer distribution on a scraped heat exchanger crystalliser surface

    OpenAIRE

    Rodriguez, Marcos; Ravelet, Florent; Delfos, Rene; Witkamp, Geert-Jan

    2008-01-01

    In a cylindrical scraped heat exchanger crystallizer geometry the flow field influence on the local heat transfer distribution on an evenly cooled scraped heat exchanger surface has been studied by direct measurements of the heat exchanger surface temperature and the fluid velocity field inside the crystallizer. Liquid Crystal Thermometry revealed that the local heat transfer is higher in the middle area of the scraped surface. Stereoscopic PIV measurements demonstrated that the secondary flo...

  13. Burnout detector design for heat transfer experiments

    International Nuclear Information System (INIS)

    This paper describes the design of an burnout detector for heat transfer experiments, applied during tests for optimization of fuel elements for PWR reactors. The burnout detector avoids the fuel rods destruction during the experiments at the Centro de Desenvolvimento da Tecnologia Nuclear. The detector evaluates the temperature changes over the fuel rods in the temperature changes over the fuel rods in the area where the burnout phenomenon could be anticipated. As soon as the phenomenon appears, the system power supply is turned off. The thermal Circuit No. 1, during the experiments, had been composed by nine fuel rods feed parallelly by the same power supply. Fine copper wires had been attached at the centre and at the ends of the fuel rod to take two Wheat stone bridge arms. The detector had been applied across the bridge diagonals, which must be balanced the burnout excursion can be detected as a small but fast increase of the signal over the detector. Large scale experiments had been carried out to compare the resistance bridge performance against a thermocouple attached through the fuel rod wall. These experiments had been showed us the advantages of the first method over the last, because the bridge evaluates the whole fuel rod, while the thermocouple evaluates only the area where it had been attached. (author)

  14. Effect of surface etching on condensing heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Seok, Sung Chul; Park, Jae Won; Jung, Jiyeon; Choi, Chonggun; Choi, Gyu Hong; Hwang, Seung Sik; Chung, Tae Yong; Shin, Donghoon [Kookmin University, Seoul (Korea, Republic of); Kim, Jin Jun [Hoseo University, Asan (Korea, Republic of)

    2016-02-15

    This study conducted experiments on humid air condensation during heat transfer in an air preheating exchanger attached to a home condensing boiler to improve thermal efficiency. An etchant composed of sulfuric acid and sodium nitrate was used to create roughness on the heat exchanger surface made from STS430J1L. A counter flow heat exchanger was fabricated to test the performance of heat transfer. Results showed that the overall heat transfer coefficients of all specimens treated with etchant improved with respect to the original specimens (not treated with etchant), and the overall heat transfer coefficient of the 60 s etching specimen increased by up to 15%. However, the increasing rate of the heat transfer coefficient was disproportional to the etching time. When the etching time specifically increased above 60 s, the heat transfer coefficient decreased. This effect was assumed to be caused by surface characteristics such as contact angle. Furthermore, a smaller contact angle or higher hydrophilicity leads to higher heat transfer coefficient.

  15. Laminar fluid flow and heat transfer in a fin-tube heat exchanger with vortex generators

    Energy Technology Data Exchange (ETDEWEB)

    Yanagihara, J.I.; Rodriques, R. Jr. [Polytechnic School of Univ. of Sao Paolo, Sao Paolo (Brazil). Dept. of Mechanical Engineering

    1996-12-31

    Development of heat transfer enhancement techniques for fin-tube heat exchangers has great importance in industry. In recent years, heat transfer augmentation by vortex generators has been considered for use in plate fin-tube heat exchangers. The present work describes a numerical investigation about the influence of delta winglet pairs of vortex generators on the flow structure and heat transfer of a plate fin-tube channel. The Navier-Stokes and Energy equations are solved by the finite volume method using a boundary-fitted coordinate system. The influence of vortex generators parameters such as position, angle of attack and aspect ratio were investigated. Local and global influences of vortex generators in heat transfer and flow losses were analyzed by comparison with a model using smooth fin. The results indicate great advantages of this type of geometry for application in plate fin-tube heat exchangers, in terms of large heat transfer enhancement and small pressure loss penalty. (author)

  16. Hydrodynamic and Heat Transfer Characteristics of Magnetofluidized Beds

    Institute of Scientific and Technical Information of China (English)

    S.C.Saxena; R.Z.Qian

    1994-01-01

    To investigate the flow and heat-transfer behaviors of magnetofluidized beds,an experimental facility was designed.A constant uniform magnetic field is produced by a Helmhotz electromagnet.The nature of fluidization and heat-transfer characteristics,of a horizontal electrically heated tube immersed in the bed were measured.The bed material is iron shots.Depending upon the intensity of magneticfield(weak,moderate and strong),the bed pressure drop and heat transfer coefficient are classified into three ranges of magnetic fields.The range of variation of maximum magnetic-field intensity is from 0 to about 20690 A/m.

  17. Bed-to-wall heat transfer in a downer reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lehner, P.; Wirth, K-E. [Erlangen-Nuremberg Univ., Lehrstuhl Mechanische Verfahrenstechnik, Erlangen (Germany)

    1999-04-01

    The effects of superficial gas velocity, solid circulating rate, suspension density and particle sizes on the bed-to-wall heat transfer coefficient have been determined in a downer reactor 3.5 m high , with an internal diameter of 0.1 m. Results showed an increase in the bed-to-wall heat transfer coefficient with increasing suspension density. The heat transfer coefficient by gas convection was found to play a significant role, especially at lower solid circulation rates or suspension densities and larger particle sizes. It was determined that at a given particle suspension density in the downer reactor, the heat transfer coefficient increase with decreasing particle size. A model was proposed to determine the bed-to-wall heat transfer coefficient in a downer reactor. 24 refs., 1 tab., 8 figs.

  18. Heat transfer between immiscible liquids enhanced by gas bubbling

    Science.gov (United States)

    Greene, G. A.; Schwarz, C. E.; Klages, J.; Klein, J.

    1982-08-01

    The phenomena of core-concrete interactions impact upon containment integrity of light water reactors (LWR) following postulated complete meltdown of the core by containment pressurization, production of combustible gases, and basemat penetration. Experiments were performed with nonreactor materials to investigate one aspect of this problem, heat transfer between overlying immiscible liquids whose interface is disturbed by a transverse non-condensable gas flux emanating from below. Hydrodynamic studies were performed to test a criterion for onset of entrainment due to bubbling through the interface and subsequent heat transfer studies were performed to assess the effect of bubbling on interfacial heat transfer rates, both with and without bubble induced entrainment. Non entraining interfacial heat transfer data with mercury-water/oil fluid pairs were observed to be bounded from below within a factor of two to three by the Szekeley surface renewal heat transfer model.

  19. Phononic heat transfer across an interface: thermal boundary resistance.

    Science.gov (United States)

    Persson, B N J; Volokitin, A I; Ueba, H

    2011-02-01

    We present a general theory of phononic heat transfer between two solids (or a solid and a fluid) in contact at a flat interface. We present simple analytical results which can be used to estimate the heat transfer coefficient (the inverse of which is usually called the 'thermal boundary resistance' or 'Kapitza resistance'). We present numerical results for the heat transfer across solid-solid and solid-liquid He contacts, and between a membrane (graphene) and a solid substrate (amorphous SiO(2)). The latter system involves the heat transfer between weakly coupled systems, and the calculated value of the heat transfer coefficient is in good agreement with the value deduced from experimental data.

  20. Heat transfer analysis of liquid piston compressor for hydrogen applications

    DEFF Research Database (Denmark)

    Kermani, Nasrin Arjomand; Rokni, Masoud

    2015-01-01

    A hydrogen compression technology using liquid as the compression piston is investigated from heat transfer point of view. A thermodynamic model, simulating a single compression stroke, is developed to investigate the heat transfer phenomena inside the compression chamber. The model is developed...... and through the walls, is investigated and compared with the adiabatic case. The results show that depending on heat transfer correlation, the hydrogen temperature reduces slightly between 0.2% and 0.4% compared to the adiabatic case, at 500bar, due to the large wall resistance and small contact area...... at the interface. Moreover, the results of the sensitivity analysis illustrates that increasing the total heat transfer coefficients at the interface and the wall, together with compression time, play key roles in reducing the hydrogen temperature. Increasing the total heat transfer coefficient at the interface...

  1. Modelling of Heat Transfer in Single Crystal Growth

    CERN Document Server

    Zhmakin, Alexander I

    2014-01-01

    An attempt is made to review the heat transfer and the related problems encountered in the simulation of single crystal growth. The peculiarities of conductive, convective and radiative heat transfer in the different melt, solution, and vapour growth methods are discussed. The importance of the adequate description of the optical crystal properties (semitransparency, specular reflecting surfaces) and their effect on the heat transfer is stresses. Treatment of the unknown phase boundary fluid/crystal as well as problems related to the assessment of the quality of the grown crystals (composition, thermal stresses, point defects, disclocations etc.) and their coupling to the heat transfer/fluid flow problems is considered. Differences between the crystal growth simulation codes intended for the research and for the industrial applications are indicated. The problems of the code verification and validation are discussed; a brief review of the experimental techniques for the study of heat transfer and flow structu...

  2. Boiling heat transfer in porous media composed of particles

    International Nuclear Information System (INIS)

    The boiling heat transfer in the porous media composed of spherical fuel elements exerts significant influences on the reactor's efficiency and safety. In the present study an experimental setup was designed and the boiling heat transfer in the porous media composed of spheres of regular distribution was investigated. Four spheres with diameters of 5mm, 6mm, 7mm and 8mm were used in the test sections. The greater particle diameter led to lower heat transfer coefficient, and resulted in higher wall superheat of original nucleation boiling. The variation of heat transfer coefficient was divided into three groups according to two-phase flow patterns and void fraction. A correlation of heat transfer coefficient was proposed with a mean relative deviation of ± 16%. (author)

  3. An assessment of RELAP5 MOD3.1.1 condensation heat transfer modeling with GIRAFFE heat transfer tests

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, B.D.; Parlatan, Y.; Slovik, G.C. [and others

    1995-09-01

    RELAP5 MOD3.1.1 is being used to simulate Loss of Coolant Accidents (LOCA) for the Simplified Boiling Water Reactor (SBWR) being proposed by General Electric (GE). One of the major components associated with the SBWR is the Passive Containment Cooling System (PCCS) which provides the long-term heat sink to reject decay heat. The RELAP5 MOD3.1.1 code is being assessed for its ability to represent accurately the PCCS. Data from the Phase 1, Step 1 Heat Transfer Tests performed at Toshiba`s Gravity-Driven Integral Full-Height Test for Passive Heat Removal (GIRAFFE) facility will be used for assessing the ability of RELAP5 to model condensation in the presence of noncondensables. The RELAP5 MOD3.1.1 condensation model uses the University of California at Berkeley (UCB) correlation developed by Vierow and Schrock. The RELAP5 code uses this heat transfer coefficient with the gas velocity effect multiplier being limited to 2. This heat transfer option was used to analyze the condensation heat transfer in the GIRAFFE PCCS heat exchanger tubes in the Phase 1, Step 1 Heat Transfer Tests which were at a pressure of 3 bar and had a range of nitrogen partial pressure fractions from 0.0 to 0.10. The results of a set of RELAP5 calculations at these conditions were compared with the GIRAFFE data. The effects of PCCS cell noding on the heat transfer process were also studied. The UCB correlation, as implemented in RELAP5, predicted the heat transfer to {plus_minus}5% of the data with a three--node model. The three-node model has a large cell in the entrance region which smeared out the entrance effects on the heat transfer, which tend to overpredict the condensation. Hence, the UCB correlation predicts condensation heat transfer correlation implemented in the code must be removed to allow for accurate calculations with smaller cell sizes.

  4. Flow and heat transfer in compact offset strip fin surfaces

    Institute of Scientific and Technical Information of China (English)

    Junqi DONG; Jiangping CHEN; Zhijiu CHEN

    2008-01-01

    Experimental studies of air-side heat transfer and pressure drop characteristics of offset strip fins and flat tube heat exchangers were performed. A series of tests were conducted for 9 heat exchangers with different fin space, fin height, fin strip length and flow length, at a constant tube-side water flow rate of 2.5 m3/h. The char-acteristics of the heat transfer and pressure drop of differ-ent fin space, fin height and fin length were analyzed and compared. The curves of the heat transfer coefficients vs. The pumping power per unit frontal area were then plot-ted. Moreover, the enhanced heat transfer mechanism of offset strip fins was analyzed using field synergy theory. The results showed that fin length and flow length have more obviously effect on the thermal hydraulic character-istics of offset strip fins.

  5. Conjugate heat transfer with the entropic lattice Boltzmann method.

    Science.gov (United States)

    Pareschi, G; Frapolli, N; Chikatamarla, S S; Karlin, I V

    2016-07-01

    A conjugate heat-transfer model is presented based on the two-population entropic lattice Boltzmann method. The present approach relies on the extension of Grad's boundary conditions to the two-population model for thermal flows, as well as on the appropriate exact conjugate heat-transfer condition imposed at the fluid-solid interface. The simplicity and efficiency of the lattice Boltzmann method (LBM), and in particular of the entropic multirelaxation LBM, are retained in the present approach, thus enabling simulations of turbulent high Reynolds number flows and complex wall boundaries. The model is validated by means of two-dimensional parametric studies of various setups, including pure solid conduction, conjugate heat transfer with a backward-facing step flow, and conjugate heat transfer with the flow past a circular heated cylinder. Further validations are performed in three dimensions for the case of a turbulent flow around a heated mounted cube.

  6. Non-Uniform Heat Transfer in Thermal Regenerators

    DEFF Research Database (Denmark)

    Jensen, Jesper Buch

    This thesis presents investigations on the heat transfer in complex heat ex- changers in general and in regenerative heat exchangers (regenerators) in par- ticular. The motivation for this work is a result of inconsistencies obeserved in the results from a series of experiments on active magnetic...... regenerators (AMRs) with parallel plates. The results suggest that random variations in the regenerator geometries causes maldistributed fluid flow inside the regener- ators, which affects the regenerator performance. In order to study the heat transfer processes in regenerators with non-uniform geometries......, a numerical model, which simulates a single-blow operation in a parallel-plate regenerator, was developed and used to model the heat transfer under various conditions. In addition to the modeling of the heat transfer, a series of experiments on passive regenerators with non-uniform, but precisely controlled...

  7. A three-dimensional numerical analysis of complete crossflow heat exchangers with conjugate heat transfer

    OpenAIRE

    Perčić, Marko; Lenić, Kristian; TRP, Anica

    2013-01-01

    In this paper, a three dimensional numerical analysis of turbulent fluid flow and heat transfer on the air-side and water-side of plain fin-and-tube heat exchangers is performed in order to obtain their heat transfer characteristics with non-constant physical properties. Besides convection heat transfer on water and air sides, the heat conduction through pipe walls and fins is also considered in the study. The two types of heat exchangers having cascade and in-line flat tube arrangements are ...

  8. Similarity of Heat Transfer on Heat Source Elements in the Entrance Region in Electronic Equipment

    Institute of Scientific and Technical Information of China (English)

    Jane Z. Jiang; Sui Lin

    2001-01-01

    A similarity equation for heat transfer on heat source elements situated in the entrance region in electronic equipment is developed based on the experimental data obtained by Sparrow et al.[4]. The characteristic of the similarity equation is that the ratio of the heat transfer coefficient at the entrance region to that at the fully developed region is independent of the Reynolds number. It depends only on the row number of the elements situated in the entrance region. An example of the usefulness of the similarity equation is presented that determines the heat transfer on heat source elements in a power unit that contains only a small number of the heat source elements.

  9. HEAT TRANSFER ENHANCEMENT OF SMALL SCALE HEAT SINKS USING VIBRATING PIN FIN

    Directory of Open Access Journals (Sweden)

    Suabsakul Gururatana

    2013-01-01

    Full Text Available Heat sinks are widely adopted in electronics cooling together with different technologies to enhance the cooling process. For the small electronics application, the small scale pin fins heat sinks are extensively used to dissipate heat in electronics devices. Due to the limit of space in the small devices, it is impossible to increase heat transfer area. In order to improve the heat transfer performance, the applying the forced vibration is one of challenging method. This study applies the vibration frequency between 50 to 1,000 Hz to pin fins heat sinks. The results of numerical simulation clearly show satisfied heat transfer augmentation. However, the Pressure drop significantly increases with frequency. This phenomenon affects the heat transfer enhancement performance that it increases with frequency until certain value then it drops rapidly. The results of this study can help designing heat sinks for electronics cooling by employing the concept of vibration.

  10. On heat transfer at microscale with implications for microactuator design

    OpenAIRE

    Özsun, Özgür; Alaca, B. Erdem; Yalcinkaya, Arda D.; Yilmaz, Mehmet; Zervas, Michail; Leblebici, Yusuf

    2009-01-01

    The dominance of conduction and the negligible effect of gravity, and hence free convection, are verified in the case of microscale heat sources surrounded by air at atmospheric pressure. A list of temperature-dependent heat transfer coefficients is provided. In contrast to previous approaches based on free convection, supplied coefficients converge with increasing temperature. Instead of creating a new external function for the definition of boundary conditions via conductive heat transfer, ...

  11. International symposium on radiative heat transfer: Book of abstracts

    International Nuclear Information System (INIS)

    The international symposium on radiative heat transfer was held on 14-18 August 1995 Turkey. The specialists discussed radiation transfer in materials processing and manufacturing, solution of radiative heat transfer equation, transient radiation problem and radiation-turbulence interactions, raditive properties of gases, atmospheric and stellar radiative transfer , radiative transfer and its applications, optical and radiative properties of soot particles, inverse radiation problems, partticles, fibres,thermophoresis and waves and modelling of comprehensive systems at the meeting. Almost 79 papers were presented in the meeting

  12. Heat transfer in Rockwool modelling and method of measurement. The effect of natural convection on heat transfer in fibrous materials

    Energy Technology Data Exchange (ETDEWEB)

    Dyrboel, Susanne

    1998-05-01

    Fibrous materials are some of the most widely used materials for thermal insulation. In this project the focus of interest has been on fibrous materials for building application. Interest in improving the thermal properties of insulation materials is increasing as legislation is being tightened to reduce the overall energy consumption. A knowledge of the individual heat transfer mechanisms - whereby heat is transferred within a particular material is an essential tool to improve continuously the thermal properties of the material. Heat is transferred in fibrous materials by four different transfer mechanisms: conduction through air, conduction through fibres, thermal radiation and convection. In a particular temperature range the conduction through air can be regarded as a constant, and conduction through fibres is an insignificant part of the total heat transfer. Radiation, however, constitutes 25-40% of the total heat transfer in light fibrous materials. In Denmark and a number of other countries convection in fibrous materials is considered as non-existent when calculating heat transmission as well as when designing building structures. Two heat transfer mechanisms have been the focus of the current project: radiation heat transfer and convection. The radiation analysis serves to develop a model that can be used in further work to gain a wider knowledge of the way in which the morphology of the fibrous material, i.e. fibre diameter distribution, fibre orientation distribution etc., influences the radiation heat transfer under different conditions. The convection investigation serves to examine whether considering convection as non-existent is a fair assumption to use in present and future building structures. The assumption applied in practically is that convection makes a notable difference only in very thick insulation, at external temperatures below -20 deg. C, and at very low densities. For large thickness dimensions the resulting heat transfer through the

  13. Two-Dimensional Heat Transfer in a Heterogeneous Fracture Network

    Science.gov (United States)

    Gisladottir, V. R.; Roubinet, D.; Tartakovsky, D. M.

    2015-12-01

    Geothermal energy harvesting requires extraction and injection of geothermal fluid. Doing so in an optimal way requires a quantitative understanding of site-specific heat transfer between geothermal fluid and the ambient rock. We develop a heat transfer particle-tracking approach to model that interaction. Fracture-network models of heat transfer in fractured rock explicitly account for the presence of individual fractures, ambient rock matrix, and fracture-matrix interfaces. Computational domains of such models span the meter scale, whereas fracture apertures are on the millimeter scale. The computations needed to model these multi-scale phenomenon can be prohibitively expensive, even for methods using nonuniform meshes. Our approach appreciably decreases the computational costs. Current particle-tracking methods usually assume both infinite matrix and one-dimensional (1D) heat transfer in the matrix blocks. They rely on 1D analytical solutions for heat transfer in a single fracture, which can lead to large predictive errors. Our two-dimensional (2D) heat transfer simulation algorithm is mesh-free and takes into account both longitudinal and transversal heat conduction in the matrix. It uses a probabilistic model to transfer particle to the appropriate neighboring fracture unless it returns to the fracture of origin or remains in the matrix. We use this approach to look at the impact of a fracture-network topology (e.g. the importance of smaller scale fractures), as well as the matrix block distribution on the heat transport in heterogeneous fractured rocks.

  14. The heat transfer mechanisms in fluidized beds; Laemmoensiirtomekanismit leijukerroksessa

    Energy Technology Data Exchange (ETDEWEB)

    Fogelholm, C.J.; Blomster, A.M.; Kojola, H. [Helsinki Univ. of Technology, Espoo (Finland)

    1996-12-01

    The goal of the research project is to improve the accuracy of the heat transfer correlation in circulating fluidized beds and to define how the heat transfer is distributed in radiation and convection in the different parts of the fluidized bed. This will be carried out by studying the behaviour and heat transfer of the fluidized bed in the boundary layer near the wall. The total and radiative heat transfer as well as the particle concentration will be measured. Based on the data a correlation will be created. Two different measurement systems are used. The particle concentration is measured by a image-analysis system. A video camera and a Super VHS recorder are used to capture live images from the bed. The images are digitized and stored on a PC. The system has been used in previous research projects at our laboratory. In earlier projects all measurements have been carried out in cold environments. In this project the system will be modified for hot environments. The radiative heat transfer is measured by a radiative heat transfer probe connected to a PC via an A/D converter. The probe consists of a heat flow detector which is isolated from the bed by a sapphire window so that only the radiative part of the heat transfer is detected. The probe will be calibrated in a black body oven so that the effect of the conduction and the sapphire window can be separated. (author)

  15. Enhanced two phase flow in heat transfer systems

    Energy Technology Data Exchange (ETDEWEB)

    Tegrotenhuis, Ward E; Humble, Paul H; Lavender, Curt A; Caldwell, Dustin D

    2013-12-03

    A family of structures and designs for use in devices such as heat exchangers so as to allow for enhanced performance in heat exchangers smaller and lighter weight than other existing devices. These structures provide flow paths for liquid and vapor and are generally open. In some embodiments of the invention, these structures can also provide secondary heat transfer as well. In an evaporate heat exchanger, the inclusion of these structures and devices enhance the heat transfer coefficient of the evaporation phase change process with comparable or lower pressure drop.

  16. Heat transfer to the adsorbent in solar adsorption cooling device

    Science.gov (United States)

    Pilat, Peter; Patsch, Marek; Papucik, Stefan; Vantuch, Martin

    2014-08-01

    The article deals with design and construction of solar adsorption cooling device and with heat transfer problem in adsorber. The most important part of adsorption cooling system is adsorber/desorber containing adsorbent. Zeolith (adsorbent) type was chosen for its high adsorption capacity, like a coolant was used water. In adsorber/desorber occur, at heating of adsorbent, to heat transfer from heat change medium to the adsorbent. The time required for heating of adsorber filling is very important, because on it depend flexibility of cooling system. Zeolith has a large thermal resistance, therefore it had to be adapted the design and construction of adsorber. As the best shows the tube type of adsorber with double coat construction. By this construction is ensured thin layer of adsorbent and heating is quick in all volume of adsorbent. The process of heat transfer was experimentally measured, but for comparison simulated in ANSYS, too.

  17. Droplet Evaporator For High-Capacity Heat Transfer

    Science.gov (United States)

    Valenzuela, Javier A.

    1993-01-01

    Proposed heat-exchange scheme boosts heat transfer per unit area. Key component is generator that fires uniform size droplets of subcooled liquid at hot plate. On impact, droplets spread out and evaporate almost instantly, removing heat from plate. In practice, many generator nozzles arrayed over evaporator plate.

  18. Heat Transfer Analysis for Industrial AC Electric Arc Furnace

    Institute of Scientific and Technical Information of China (English)

    (U)nal (C)amdali; Murat Tun(c)

    2005-01-01

    The heat transfer analysis was performed for an AC electric arc furnace (EAF). Heat losses by conduction, convection and radiation from outer surface, roof, bottom and electrodes of EAF were determined in detail. Some suggestions about decreasing heat losses were presented.

  19. Optimization of Heat Transfer Systems and Use of the Environmental Exergy Potential - Application to Compact Heat Exchangers and Heat Pumps

    OpenAIRE

    Canhoto, Paulo

    2012-01-01

    In this thesis, the optimization of forced convection heat sinks and groundwater-source heat pumps is addressed with the purpose of improving energy efficiency. Parallel ducts heat sinks are considered under constrained (fixed) pressure drop, pumping power and heat transfer rate. The intersection-of-asymptotes method is employed together with numerical simulations and relationships for determining optimum hydraulic diameter are put forward. An optimal design emerges under fixed heat transfer ...

  20. Numerical Simulation of Flow Instability and Heat Transfer

    Science.gov (United States)

    Dou, Hua-Shu; Jiang, Gang

    2014-11-01

    This paper numerically investigates the physical mechanism of flow instability and heat transfer of natural convection in a cavity with thin fin(s). The left and the right walls of the cavity are differentially heated. The cavity is given an initial temperature, and the thin fin(s) is fixed on the hot wall in order to control the heat transfer. The finite volume method with the SIMPLE scheme is used to simulate the flow. Distributions of the temperature, the pressure, the velocity and the total pressure are achieved. Then, the energy gradient method is employed to study the physical mechanism of flow instability and the effect of the thin fin(s) on heat transfer. Based on the energy gradient method, the energy gradient function K represents the characteristic of flow instability. It is observed from the simulation results that the positions where instabilities take place in the temperature contours accord well with those of higher K value, which demonstrates that the energy gradient method reveals the physical mechanism of flow instability. Furthermore, the effect of the fin length, the fin position, the fin number, and Ra on heat transfer is also investigated. It is found that the effect of the fin length on heat transfer is negligible when Ra is relatively high. When there is only one fin, the most efficient heat transfer rate is achieved as the fin is fixed at the middle height of the cavity. The fin blocks heat transfer with a relatively small Ra, but the fin enhances heat transfer with a relatively large Ra. The fin(s) enhances heat transfer gradually with the increase of Ra under the influence of the thin fin(s). Finally, it is observed that both Kmax and Ra can reveal the physical mechanism of natural convection from different approaches.

  1. Experiments on microgravity boiling heat transfer by using transparent heaters

    Energy Technology Data Exchange (ETDEWEB)

    Ohta, H. [Kyushu Univ., Fukuoka (Japan). Dept. of Energy and Mech. Eng.

    1997-11-01

    To clarify the relation between the liquid-vapor behavior and the heat transfer characteristics in the boiling phenomena, the structures of transparent heaters were developed for both flow boiling experiments and were applied to the microgravity environment realized by the parabolic flight of aircraft. In the flow boiling experiment, a transparent heated tube makes the heating, the observation of liquid-vapor behavior and the measurement of heat transfer data simultaneously possible. The heat transfer coefficient in the annular flow regime at moderate quality has distinct dependence on gravity provided that the mass velocity is not so high, while no noticeable gravity effect is seen at high quality and in the bubbly flow regime. The measured gravity effect was directly related to the behavior of annular liquid film observed through the transparent tube wall. In the pool boiling experiment, a structure of transparent heating surface realizes both the observation of the macrolayer or microlayer behavior from underneath and the measurements of local surface temperatures and the layer thickness. It was clarified in the microgravity experiments that no vapor stem exists but tiny bubbles are observed in the macrolayer underneath a large coalesced bubble at high heat flux. The heat flux evaluated by the heat conduction across the layer assumes less than 30% of the total to be transferred. The evaporation of the microlayers underneath primary bubbles just after the generation dominates the heat transfer in the microgravity, not only in the isolated bubble region but also in the coalesced bubble region. (orig.) 14 refs.

  2. Identification of interfacial heat transfer between molten metal and green sand by inverse heat conduction method

    Science.gov (United States)

    Ke, Quanpeng

    Heat flux and heat transfer coefficients at the interfaces of castings and molds are important parameters in the mold design and computer simulations of the solidification process in foundry operations. A better understanding of the heat flux and heat transfer coefficient between the solidifying casting and its mold can promote model design and improve the accuracy of computer simulation. The main purpose of the present dissertation involves the estimation of the heat flux and heat transfer coefficient at the interface of the molten metal and green sand. Since the inverse heat conduction method requires temperature measurement data to deduce the missing surface information, it is suitable for the present research. However, heat transfer inside green sand is complicated by the migration of water vapor and zonal temperature distribution results. This makes the solution of the inverse heat conduction problem more challenging. In this dissertation, Galerkin's method of Weighted Residual together with the front tracking technique is used in the development of a forward solver. Beck's future time step method incorporated with the Gaussian iterative minimization method is used as the inverse solver. The mathematical descriptions of the sensitivity coefficient for both the direct heat flux and direct heat transfer coefficient estimation are derived. The variations of the sensitivity coefficients with time are revealed. From the analysis of sensitivity coefficients, the concept of blank time period is proposed. This blank time period makes the inverse problem much more difficult. A total energy balance criterion is used to combat this. Numerical experiments confirmed the accuracy and robustness of both the direct heat flux estimation algorithm and the direct heat transfer coefficient estimation algorithm. Finally, some pouring experiments are carried out. The inverse algorithms are applied to the estimation of the heat flux and heat transfer coefficient at the interface of

  3. Numerical Simulation of Heat Transfer in a Gas Solid Crossflow Moving Packed Bed Heat Exchanger

    Institute of Scientific and Technical Information of China (English)

    Anyuan Liu; Shi Liu; Yufeng Duan; Zhonggang Pan

    2001-01-01

    The mechanism of heat transfer in a crossfiow moving packed bed heat transfer exchanger is analyzed and a two dimensional heat transfer mathematical model has been developed based on the two fluid model (TFM) approach, in which both phases are considered to be continuous and fully interpenetrating. This model is solved by means of numerical method and the results are approximately in agreement with the experimental ones.

  4. Conjugate Compressible Fluid Flow and Heat Transfer in Ducts

    Science.gov (United States)

    Cross, M. F.

    2011-01-01

    A computational approach to modeling transient, compressible fluid flow with heat transfer in long, narrow ducts is presented. The primary application of the model is for analyzing fluid flow and heat transfer in solid propellant rocket motor nozzle joints during motor start-up, but the approach is relevant to a wide range of analyses involving rapid pressurization and filling of ducts. Fluid flow is modeled through solution of the spatially one-dimensional, transient Euler equations. Source terms are included in the governing equations to account for the effects of wall friction and heat transfer. The equation solver is fully-implicit, thus providing greater flexibility than an explicit solver. This approach allows for resolution of pressure wave effects on the flow as well as for fast calculation of the steady-state solution when a quasi-steady approach is sufficient. Solution of the one-dimensional Euler equations with source terms significantly reduces computational run times compared to general purpose computational fluid dynamics packages solving the Navier-Stokes equations with resolved boundary layers. In addition, conjugate heat transfer is more readily implemented using the approach described in this paper than with most general purpose computational fluid dynamics packages. The compressible flow code has been integrated with a transient heat transfer solver to analyze heat transfer between the fluid and surrounding structure. Conjugate fluid flow and heat transfer solutions are presented. The author is unaware of any previous work available in the open literature which uses the same approach described in this paper.

  5. Radiative heat transfer in the extreme near field.

    Science.gov (United States)

    Kim, Kyeongtae; Song, Bai; Fernández-Hurtado, Víctor; Lee, Woochul; Jeong, Wonho; Cui, Longji; Thompson, Dakotah; Feist, Johannes; Reid, M T Homer; García-Vidal, Francisco J; Cuevas, Juan Carlos; Meyhofer, Edgar; Reddy, Pramod

    2015-12-17

    Radiative transfer of energy at the nanometre length scale is of great importance to a variety of technologies including heat-assisted magnetic recording, near-field thermophotovoltaics and lithography. Although experimental advances have enabled elucidation of near-field radiative heat transfer in gaps as small as 20-30 nanometres (refs 4-6), quantitative analysis in the extreme near field (less than 10 nanometres) has been greatly limited by experimental challenges. Moreover, the results of pioneering measurements differed from theoretical predictions by orders of magnitude. Here we use custom-fabricated scanning probes with embedded thermocouples, in conjunction with new microdevices capable of periodic temperature modulation, to measure radiative heat transfer down to gaps as small as two nanometres. For our experiments we deposited suitably chosen metal or dielectric layers on the scanning probes and microdevices, enabling direct study of extreme near-field radiation between silica-silica, silicon nitride-silicon nitride and gold-gold surfaces to reveal marked, gap-size-dependent enhancements of radiative heat transfer. Furthermore, our state-of-the-art calculations of radiative heat transfer, performed within the theoretical framework of fluctuational electrodynamics, are in excellent agreement with our experimental results, providing unambiguous evidence that confirms the validity of this theory for modelling radiative heat transfer in gaps as small as a few nanometres. This work lays the foundations required for the rational design of novel technologies that leverage nanoscale radiative heat transfer.

  6. Heat transfer and flow characteristics on a gas turbine shroud.

    Science.gov (United States)

    Obata, M; Kumada, M; Ijichi, N

    2001-05-01

    The work described in this paper is an experimental investigation of the heat transfer from the main flow to a turbine shroud surface, which may be applicable to ceramic gas turbines. Three kinds of turbine shrouds are considered with a flat surface, a taper surface and a spiral groove surface opposite to the blades in an axial flow turbine of actual turbo-charger. Heat transfer measurements were performed for the experimental conditions of a uniform heat flux or a uniform wall temperature. The effects of the inlet flow angle, rotational speed, and tip clearance on the heat transfer coefficient were clarified under on- and off-design flow conditions. The mean heat transfer coefficient was correlated to the blade Reynolds number and tip clearance, and compared with an experimental correlation and measurements of a flat surface. A comparison was also made for the measurement of static pressure distributions.

  7. Heat Transfer - Milwaukee 1981; Proceedings of the Twentieth National Heat Transfer Conference, Milwaukee, WI, August 2-5, 1981

    Science.gov (United States)

    Stein, R. P.

    Aspects of direct contact heat transfer are considered along with transport phenomena in fusion reactors, enhanced nucleate boiling, flow boiling, heat transfer in non-Newtonian systems, two-phase systems, heat transfer in fossil fuel conversion systems, process heat transfer, thermal and hydraulic behavior in rod and tube bundles, and two-phase systems in rod and tube bundles. Attention is also given to solar energy heat transfer, heat transfer in fluidized beds, and fire and combustion fundamentals, taking into account thermal stress oscillations induced by dynamic instabilities in radiation-heated boiler tubes, convection losses from a cavity receiver, numerical solutions of turbulent models for flow over a flat plate with angle of attack, and the heat transfer from smooth horizontal tubes immersed in gas fluidized beds. A description is provided of aspects of turbulent combustion modelling, the exhaust gas emission from a swirl stabilized combustor, the analytical solution for diffusion in the core of a droplet with internal circulation, and the radiant ignition of a thin combustible solid.

  8. Simulation of rarefied gas flow and heat transfer in microchannels

    Institute of Scientific and Technical Information of China (English)

    WANG; Xian(王娴); WANG; Qiuwang(王秋旺); TAO; Wenquan(陶文铨); ZHENG; Ping(郑平)

    2002-01-01

    Analysis and simulation of rarefied nitrogen gas flow and heat transfer were performed with the Knusden number ranging from 0.05 to 1.0, using the direct simulation of Monte Carlo (DSMC) method. The influences of the Kn number and the aspect ratio on the gas temperature and wall heat flux in the microchannels were studied parametrically. The total and local heat fluxes of the microchannel walls varying with the channel inlet velocities were also investigated in detail. It was found that the Kn number and the aspect ratio greatly influence the heat transfer performance of microchannels, and both the channel inlet and outlet have higher heat fluxes while the heat flux in the middle part of channels is very low. It is also found that the inlet free stream flow velocity has small affect on the wall total heat flux while it changes the distribution of local heat flux.

  9. Cryogenic apparatus for study of near-field heat transfer

    Science.gov (United States)

    Kralik, T.; Hanzelka, P.; Musilova, V.; Srnka, A.; Zobac, M.

    2011-05-01

    For bodies spaced in vacuum at distances shorter than the wavelength of the thermal radiation, radiative heat transfer substantially increases due to the contribution of evanescent electromagnetic waves. Experimental data on heat transfer in near-field regime are scarce. We have designed a cryogenic apparatus for the study of heat transfer over microscopic distances between metallic and non-metallic surfaces. Using a mechanical positioning system, a planeparallel gap between the samples, concentric disks, each 35 mm in diameter, is set and varied from 100 to 103 μm. The heat transferred from the hot (10 - 100 K) to the cold sample (˜5 K) sinks into a liquid helium bath through a thermal resistor, serving as a heat flux meter. Transferred heat power within ˜2 nW/cm2 and ˜30 μW/cm2 is derived from the temperature drop along the thermal resistor. For tungsten samples, the distance of the near-field effect onset was inversely proportional to temperature and the heat power increase was observed up to three orders of magnitude greater than the power of far-field radiative heat transfer.

  10. Analytical Solution of Coupled Laminar Heat-Mass Transfer in a Tube with Uniform Heat Flux

    Institute of Scientific and Technical Information of China (English)

    1992-01-01

    Analytical solution is obtained of coupled laminar heat-mass transfer in a tube with uniform heat flux.This corresponds to the case when a layer of sublimable material is coated on the inner surface of a tube with its outer surface heated by uniform heat flux and this coated material will sublime as gas flows throught the tube.

  11. DNS of channel flow with conjugate heat transfer - Budgets of turbulent heat fluxes and temperature variance

    OpenAIRE

    Flageul Cédric, Benhamadouche Sofiane, Lamballais Éric, Laurence Dominique.

    2014-01-01

    The present work provides budgets of turbulent heat fluxes and temperature variance for a channel flow with different thermal boundary conditions: an imposed temperature, an imposed heat flux and with conjugate heat transfer combined with an imposed heat flux at the outer wall.

  12. Oil Circulation Effects on Evaporation Heat Transfer in Brazed Plate Heat Exchanger using R134A

    OpenAIRE

    Jang, Jaekyoo; Chang, Youngsoo; Kang, Byungha

    2012-01-01

    Experimental study was performed for oil circulation effects on evaporation heat transfer in the brazed type plate heat exchangers using R134A. In this study, distribution device was installed to ensure uniform flow distribution in the refrigerant flow passage, which enhances heat transfer performance of plate type heat exchanger. Tests were conducted for three evaporation temperature; 33℃, 37℃, and 41℃ and several oil circulation conditions. The nominal conditions of refrigerant are as follo...

  13. An analysis of conjugate heat transfer in the heat sink of an electronic chip

    OpenAIRE

    Horvat, Andrej; Catton, Ivan

    2015-01-01

    This paper describes the construction of an algorithm for conjugate heat-transfer calculations in order to find the most suitable form for the heat sink of an electronic chip. Applying volume averaging theory (VAT) to a system of transport equations, a heat-sink structure was modeled as a homogeneous porous medium. The geometry of the simulation domain and the boundary conditions followed the experimental setup used in the Morrin-Martinelly-Gier Memorial Heat Transfer Laboratory at the Univer...

  14. A one-dimensional heat transfer model for parallel-plate thermoacoustic heat exchangers.

    Science.gov (United States)

    de Jong, J A; Wijnant, Y H; de Boer, A

    2014-03-01

    A one-dimensional (1D) laminar oscillating flow heat transfer model is derived and applied to parallel-plate thermoacoustic heat exchangers. The model can be used to estimate the heat transfer from the solid wall to the acoustic medium, which is required for the heat input/output of thermoacoustic systems. The model is implementable in existing (quasi-)1D thermoacoustic codes, such as DeltaEC. Examples of generated results show good agreement with literature results. The model allows for arbitrary wave phasing; however, it is shown that the wave phasing does not significantly influence the heat transfer.

  15. Numerical modeling of boiling heat transfer in porous media

    International Nuclear Information System (INIS)

    Theoretical models were developed and validated to investigate boiling heat transfer in porous layers with and without the presence of chimneys. The critical heat flux and distributions of temperature, liquid saturation, liquid and vapor pressures, and liquid and vapor velocities were predicted numerically under typical PWR conditions. The results indicate that a porous layer produces a higher heat transfer coefficient in the nucleate boiling regime, as is well-known, and could potentially yield a much higher critical heat flux than a plain surface does. Moreover, a chimney-type porous layer can have a better thermal performance, i.e., heat transfer coefficient and critical heat flux than a homogeneous one, primarily due to the presence of chimneys providing pathways for vapor to escape from the porous layer with less resistance

  16. A review on boiling heat transfer enhancement with nanofluids.

    Science.gov (United States)

    Barber, Jacqueline; Brutin, David; Tadrist, Lounes

    2011-04-04

    There has been increasing interest of late in nanofluid boiling and its use in heat transfer enhancement. This article covers recent advances in the last decade by researchers in both pool boiling and convective boiling applications, with nanofluids as the working fluid. The available data in the literature is reviewed in terms of enhancements, and degradations in the nucleate boiling heat transfer and critical heat flux. Conflicting data have been presented in the literature on the effect that nanofluids have on the boiling heat-transfer coefficient; however, almost all researchers have noted an enhancement in the critical heat flux during nanofluid boiling. Several researchers have observed nanoparticle deposition at the heater surface, which they have related back to the critical heat flux enhancement.

  17. A Compact Remote Heat Transfer Device for Space Cryocoolers

    Science.gov (United States)

    Yan, T.; Zhao, Y.; Liang, T.

    In this paper a compact remote heat transfer device (CRHD) for cryocoolers is proposed. This device is especially attractive in cases where cryocoolers are not easy to set near the heat source, generally the infrared sensor. The CRHD is designed on basis of the concept of loop heat pipes, while the primary evaporator is located near the cryocooler cold head and a simple tube-in-tube secondary evaporator is remotely located and thermally connected with the heat source for cooling. With such a device a cooling power of 1 W is achieved across a heat transfer distance of about 2 m. The major problem of this device is the low heat transfer efficiency (1 W of net cooling power at the cost of about 7 W of cooling power from the cryocooler), and in the future a secondary wicked evaporator will be used instead of the tube-in-tube evaporator in order to improve the efficiency.

  18. NANOFLUID PROPERTIES FOR FORCED CONVECTION HEAT TRANSFER: AN OVERVIEW

    Directory of Open Access Journals (Sweden)

    W.H.Azmi

    2013-06-01

    Full Text Available Nanofluids offer a significant advantage over conventional heat transfer fluids and consequently, they have attracted much attention in recent years. The engineered suspension of nano-sized particles in a base liquid alters the properties of these nanofluids. Many researchers have measured and modeled the thermal conductivity and viscosity of nanofluids. The estimation of forced convective heat transfer coefficients is done through experiments with either metal or nonmetal solid particles dispersed in water. Regression equations are developed for the determination of the thermal conductivity and viscosity of nanofluids. The parameters influencing the decrease in convection heat transfer, observed by certain investigators, is explained.

  19. Heat Transfer and Cooling Techniques at Low Temperature

    CERN Document Server

    Baudouy, B

    2014-01-01

    The first part of this chapter gives an introduction to heat transfer and cooling techniques at low temperature. We review the fundamental laws of heat transfer (conduction, convection and radiation) and give useful data specific to cryogenic conditions (thermal contact resistance, total emissivity of materials and heat transfer correlation in forced or boiling flow for example) used in the design of cooling systems. In the second part, we review the main cooling techniques at low temperature, with or without cryogen, from the simplest ones (bath cooling) to the ones involving the use of cryocoolers without forgetting the cooling flow techniques.

  20. Thermal Conductivity and Heat Transfer Coefficient of Concrete

    Institute of Scientific and Technical Information of China (English)

    GUO Lixia; GUO Lei; ZHONG Ling; ZHU Yueming

    2011-01-01

    A very simple model for predicting thermal conductivity based on its definiensis was presented.The thermal conductivity obtained using the model provided a good coincidence to the investigations performed by other authors.The heat transfer coefficient was determined by inverse analysis using the temperature measurements.From experimental results,it is noted that heat transfer coefficient increases with the increase of wind velocity and relative humidity,a prediction equation on heat transfer coefficient about wind velocity and relative humidity is given.

  1. Intensification of heat transfer by changing the burner nozzle

    Science.gov (United States)

    DzurÅák, Róbert; Kizek, Ján; Jablonský, Gustáv

    2016-06-01

    Thermal aggregates are using burner which burns combustible mixture with an oxidizing agent, by adjustment of the burner nozzle we can achieve better conditions of combustion to intensify heat transfer at furnace space. The aim of the present paper was using a computer program Ansys Workbench to create a computer simulation which analyzes the impact of the nozzle on the shape of a flame thereby intensifies heat transfer in rotary drum furnaces and radiation heat transfer from the flue gas into the furnace space. Article contains analysis of the geometry of the burner for achieving temperature field in a rotary drum furnace using oxy-combustion and the practical results of computer simulations

  2. Investigation of Enhanced Boiling Heat Transfer from Porous Surfaces

    Institute of Scientific and Technical Information of China (English)

    LinZhiping; MaTongze; 等

    1994-01-01

    Experimental investigations of boiling heat transfer from porous surfaces at atmospheric pressure were performne.The porous surfaces are plain tubes coverd with metal screens.V-shaped groove tubes covered with screens,plain tubes sintered with screens.and V-shaped groove tubes sintered with screens,The experimental results show that sintering metal screens around spiral V-shaped groove tubes can greatly improve the boiling heat transfer,The boiling hystesis was observed in the experiment.This paper discusses the mechanism of the boiling heat transfer from those kinds of porous surfaces stated above.

  3. COMPLEX HEAT TRANSFER ENHANCEMENT BY FLUID INDUCED VIBRATION

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A new method of heat transfer enhancement by fluid induced vibration was put forward, and its theoretical analysis and experimental study were performed. Though people always try to prophylaxis fluid induced vibration for regarding it as an accident, the utilization space of fluid induced vibration is still very large. The in-surface and out-surface vibrations which come from the fluid induce elastic tube bundles, can effectively increase the convective heat transfer coefficient, and also decrease the fouling resistance, then increase the heat transfer coefficient remarkably.

  4. Nanoscale heat transfer in the head-disk interface for heat assisted magnetic recording

    Science.gov (United States)

    Wu, Haoyu; Xiong, Shaomin; Canchi, Sripathi; Schreck, Erhard; Bogy, David

    2016-02-01

    Laser heating has been introduced in heat-assisted magnetic recording in order to reduce the magnetic coercivity and enable data writing. However, the heat flow inside a couple of nanometers head-disk gap is still not well understood. An experimental stage was built for studying heat transfer in the head-disk interface (HDI) and the heat-induced instability of the HDI. A laser heating system is included to produce a heated spot on the disk at the position of the slider. A floating air bearing slider is implemented in the stage for sensing the temperature change of the slider due to the heat transfer from the disk by the use of an embedded contact sensor, and the gap between the two surfaces is controlled by the use of a thermal fly-height control actuator. By using this system, we explore the dependency of the heat transfer on the gap spacing as well as the disk temperature.

  5. Heat exchanger network retrofit through heat transfer enhancement

    OpenAIRE

    Wang, Yufei

    2012-01-01

    Heat exchanger network retrofit plays an important role in energy saving in process industry. Many design methods for the retrofit of heat exchanger networks have been proposed during the last three decades. Conventional retrofit methods rely heavily on topology modifications which often results in a long retrofit duration and high initial costs. Moreover, the addition of extra surface area to the heat exchanger can prove difficult due to topology, safety and downtime constraints. These probl...

  6. Process heat transfer principles, applications and rules of thumb

    CERN Document Server

    Serth, Robert W

    2014-01-01

    Process Heat Transfer is a reference on the design and implementation of industrial heat exchangers. It provides the background needed to understand and master the commercial software packages used by professional engineers in the design and analysis of heat exchangers. This book focuses on types of heat exchangers most widely used by industry: shell-and-tube exchangers (including condensers, reboilers and vaporizers), air-cooled heat exchangers and double-pipe (hairpin) exchangers. It provides a substantial introduction to the design of heat exchanger networks using pinch technology, the mos

  7. Fundamental optimal relation of a generalized irreversible Carnot heat pump with complex heat transfer law

    Indian Academy of Sciences (India)

    Jun Li; Lingen Chen; Fengrui Sun

    2010-02-01

    The fundamental optimal relation between heating load and coefficient of performance (COP) of a generalized irreversible Carnot heat pump is derived based on a new generalized heat transfer law, which includes the generalized convective heat transfer law and generalized radiative heat transfer law, $q \\varpropto ( T^{n})^{m}$. The generalized irreversible Carnot heat pump model incorporates several internal and external irreversibilities, such as heat resistance, bypass heat leakage, friction, turbulence and other undesirable irreversibility factors. The added irreversibilities besides heat resistance are characterized by a constant parameter and a constant coefficient. The effects of heat transfer laws and various loss terms are analysed. The heating load vs. COP characteristic of a generalized irreversible Carnot heat pump is a parabolic-like curve, which is consistent with the experimental result of thermoelectric heat pump. The obtained results include those obtained in many literatures and indicated that the analysis results of the generalized irreversible Carnot heat pump were more suitable for engineering practice than those of the endoreversible Carnot heat pump.

  8. REVIEW OF HEAT TRANSFER AUGMENTATION WITH TAPE INSERTS

    Directory of Open Access Journals (Sweden)

    S.S.JOSHI,

    2011-03-01

    Full Text Available Heat transfer augmentation techniques refer to different methods used to increase rate of heat transfer without affecting much the overall performance of the system. These techniques are used in heat exchangers. Some of the applications of heat exchangers are-in process industries, thermal Power plants, airconditioning equipments, refrigerators, radiators for space vehicles, automobiles etc. These techniques broadly are of three types viz. passive, active and compound techniques. The present paper is a review of the passive augmentation techniques used in the recent past.

  9. Turbocharger Heat Transfer Modeling Under Steady and Transient Conditions

    Directory of Open Access Journals (Sweden)

    Jean-François Hetet

    2009-12-01

    Full Text Available In the field of automotive propulsion, environmental issues (need for drastic reduction of greenhouse gases and diminishing fossil fuels supplies enhance the need to reduce fuel consumption. To reach this goal, a possible solution is downsizing. Unfortunately, the degradation of the transient performance of the engine limits the expected benefits of downsizing. Engine manufacturers try to improve turbocharger matching using simulation. However, the literature and experiments on a turbocharger test bench show that, contrary to general opinions, heat transfer can influence the turbocharger performance. Thus it seems essential to determine and correlate the different types of heat transfer phenomena occurring in a turbocharger. First a complete experimental characterization of turbocharger heat transfer is performed in steady and transient conditions. The experimental results are used to correlate turbocharger heat transfer coefficients. Then, the equivalent heat transfer resistance method is explained. The correlations obtained are then used in this method to calculate all heat transfer interactions within the turbocharger and transferred to the surroundings in steady and transient conditions. In each case, comparisons between numerical and experimental results are performed to verify the quality of the method proposed.

  10. Fourier analysis of conductive heat transfer for glazed roofing materials

    Energy Technology Data Exchange (ETDEWEB)

    Roslan, Nurhana Lyana; Bahaman, Nurfaradila; Almanan, Raja Noorliyana Raja; Ismail, Razidah [Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia); Zakaria, Nor Zaini [Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia)

    2014-07-10

    For low-rise buildings, roof is the most exposed surface to solar radiation. The main mode of heat transfer from outdoor via the roof is conduction. The rate of heat transfer and the thermal impact is dependent on the thermophysical properties of roofing materials. Thus, it is important to analyze the heat distribution for the various types of roofing materials. The objectives of this paper are to obtain the Fourier series for the conductive heat transfer for two types of glazed roofing materials, namely polycarbonate and polyfilled, and also to determine the relationship between the ambient temperature and the conductive heat transfer for these materials. Ambient and surface temperature data were collected from an empirical field investigation in the campus of Universiti Teknologi MARA Shah Alam. The roofing materials were installed on free-standing structures in natural ventilation. Since the temperature data are generally periodic, Fourier series and numerical harmonic analysis are applied. Based on the 24-point harmonic analysis, the eleventh order harmonics is found to generate an adequate Fourier series expansion for both glazed roofing materials. In addition, there exists a linear relationship between the ambient temperature and the conductive heat transfer for both glazed roofing materials. Based on the gradient of the graphs, lower heat transfer is indicated through polyfilled. Thus polyfilled would have a lower thermal impact compared to polycarbonate.

  11. Fourier analysis of conductive heat transfer for glazed roofing materials

    International Nuclear Information System (INIS)

    For low-rise buildings, roof is the most exposed surface to solar radiation. The main mode of heat transfer from outdoor via the roof is conduction. The rate of heat transfer and the thermal impact is dependent on the thermophysical properties of roofing materials. Thus, it is important to analyze the heat distribution for the various types of roofing materials. The objectives of this paper are to obtain the Fourier series for the conductive heat transfer for two types of glazed roofing materials, namely polycarbonate and polyfilled, and also to determine the relationship between the ambient temperature and the conductive heat transfer for these materials. Ambient and surface temperature data were collected from an empirical field investigation in the campus of Universiti Teknologi MARA Shah Alam. The roofing materials were installed on free-standing structures in natural ventilation. Since the temperature data are generally periodic, Fourier series and numerical harmonic analysis are applied. Based on the 24-point harmonic analysis, the eleventh order harmonics is found to generate an adequate Fourier series expansion for both glazed roofing materials. In addition, there exists a linear relationship between the ambient temperature and the conductive heat transfer for both glazed roofing materials. Based on the gradient of the graphs, lower heat transfer is indicated through polyfilled. Thus polyfilled would have a lower thermal impact compared to polycarbonate

  12. Natural heat transfer augmentation in passive advanced BWR plants

    International Nuclear Information System (INIS)

    In the European Simplified Boiling Water Reactor (ESBWR), the long-term post-accident containment pressure is determined by the combination of non condensable gas pressure and steam pressure in the wet well gas space. Since there are no active systems for heat removal in the wet well, energy transmitted to the wet well gas space, by a variety of means, must be removed by passive heat transfer to the walls and suppression pool (SP). The cold suppression pool located below the hotter gas space provides a stable configuration in which convection currents are suppressed thus limiting heat and mass transfer between the gas space and pool. However, heat transfer to the walls results in natural circulation currents that can augment the heat and mass transfer to the pool surface. Using a simplified model, parametric studies are carried out to show that augmentation of the order of magnitude expected can significantly impact the heat and mass transfer to the pool. Additionally a review of available literature in the area of augmentation and mixed convection of this type is presented and indicates the need for additional experimental work in order to develop adequate models for heat and mass transfer augmentation in the configuration of a BWR suppression pool. (author)

  13. EXPERIMENTAL INVESTIGATION OF HEAT TRANSFER ENHANCEMENT OVER THE DIMPLED SURFACE

    Directory of Open Access Journals (Sweden)

    Dr. Sachin L. Borse

    2012-08-01

    Full Text Available Over the past couple of years the focus on using concavities or dimples provides enhanced heat transfer has been documented by a number of researchers. Dimples are used on the surface of internal flow passages because they produce substantial heat transfer augmentation. This project work is concerned with experimentalinvestigation of the forced convection heat transfer over the dimpled surface. The objective of the experiment is to find out the heat transfer and air flow distribution on dimpled surfaces and all the results obtained are compared with those from a flat surface. The varying parameters were i Dimple arrangement on the plate i.e.staggered and inline arrangement and ii Heat input iiiDimple density on the plate. Heat transfer coefficients and Nusselt number were measured in a channel with one side dimpled surface. Thespherical type dimples were fabricated, and the diameter and the depth of dimple were 6 mm and 3 mm, respectively. Channel height is 25.4mm, two dimple configurations were tested. The Reynolds number based on the channel hydraulic diameter was varied from 5000 to 15000.Study shown that thermal performance is increasing with Reynolds number. With the inline and staggered dimple arrangement, the heat transfer coefficients, Nusselt number and the thermal performance factors were higher for the staggered arrangement.

  14. Boiling heat transfer and droplet spreading of nanofluids.

    Science.gov (United States)

    Murshed, S M Sohel; de Castro, C A Nieto

    2013-11-01

    Nanofluids- a new class of heat transfer fluids have recently been a very attractive area of research due to their fascinating thermophysical properties and numerous potential benefits and applications in many important fields. However, there are many controversies and inconsistencies in reported arguments and experimental results on various thermal characteristics such as effective thermal conductivity, convective heat transfer coefficient and boiling heat transfer rate of nanofluids. As of today, researchers have mostly focused on anomalous thermal conductivity of nanofluids. Although investigations on boiling and droplet spreading are very important for practical application of nanofluids as advanced coolants, considerably fewer efforts have been made on these thermal features of nanofluids. In this paper, recent research and development in boiling heat transfer and droplet spreading of nanofluids are reviewed together with summarizing most related patents on nanofluids published in literature. Review reveals that despite some inconsistent results nanofluids exhibit significantly higher boiling heat transfer performance compared to their base fluids and show great promises to be used as advanced heat transfer fluids in numerous applications. However, there is a clear lack of in-depth understanding of heat transport mechanisms during phase change of nanofluids. It is also found that the nanofluids related patents are limited and among them most of the patents are based on thermal conductivity enhancement and synthesising processes of specific type of nanofluids.

  15. Fourier analysis of conductive heat transfer for glazed roofing materials

    Science.gov (United States)

    Roslan, Nurhana Lyana; Bahaman, Nurfaradila; Almanan, Raja Noorliyana Raja; Ismail, Razidah; Zakaria, Nor Zaini

    2014-07-01

    For low-rise buildings, roof is the most exposed surface to solar radiation. The main mode of heat transfer from outdoor via the roof is conduction. The rate of heat transfer and the thermal impact is dependent on the thermophysical properties of roofing materials. Thus, it is important to analyze the heat distribution for the various types of roofing materials. The objectives of this paper are to obtain the Fourier series for the conductive heat transfer for two types of glazed roofing materials, namely polycarbonate and polyfilled, and also to determine the relationship between the ambient temperature and the conductive heat transfer for these materials. Ambient and surface temperature data were collected from an empirical field investigation in the campus of Universiti Teknologi MARA Shah Alam. The roofing materials were installed on free-standing structures in natural ventilation. Since the temperature data are generally periodic, Fourier series and numerical harmonic analysis are applied. Based on the 24-point harmonic analysis, the eleventh order harmonics is found to generate an adequate Fourier series expansion for both glazed roofing materials. In addition, there exists a linear relationship between the ambient temperature and the conductive heat transfer for both glazed roofing materials. Based on the gradient of the graphs, lower heat transfer is indicated through polyfilled. Thus polyfilled would have a lower thermal impact compared to polycarbonate.

  16. Evaporation heat transfer of hot water from horizontal free service

    International Nuclear Information System (INIS)

    Evaporation heat transfer from the hot water flow to the cold air flow in a horizontal duct was examined. Hot water was in the range of 35oC ~ 65oC. Cold air was approximately 25oC. The air velocity was varied from 0.0656 m/s ~ 1.41 m/s. The heat transfer rate from the water flow to the air flow became large with an increase in the air velocity. The higher the water temperature was, the larger the heat transfer rate was. When the total heat flux from water to the air flow is divided into two terms; the evaporation term and the forced flow convection term, the evaporation term dominate main part and that is about 90 ~ 80 % of the total heat flux. The measured values of the evaporation term and the forced flow convection term were larger than the predicted because of the effect of the diffusion of evaporated vapor. The correlation to predict the heat transfer from the hot water flow to the cold air flow with the evaporation was developed by modifying the laminar flow mass transfer correlation and the laminar forced convection heat transfer correlation. Good results were obtained. (author)

  17. Analysis of radiative heat transfer impact in cross-flow tube and fin heat exchangers

    Directory of Open Access Journals (Sweden)

    Hanuszkiewicz-Drapała Małgorzata

    2016-03-01

    Full Text Available A cross-flow, tube and fin heat exchanger of the water – air type is the subject of the analysis. The analysis had experimental and computational form and was aimed for evaluation of radiative heat transfer impact on the heat exchanger performance. The main element of the test facility was an enlarged recurrent segment of the heat exchanger under consideration. The main results of measurements are heat transfer rates, as well as temperature distributions on the surface of the first fin obtained by using the infrared camera. The experimental results have been next compared to computational ones coming from a numerical model of the test station. The model has been elaborated using computational fluid dynamics software. The computations have been accomplished for two cases: without radiative heat transfer and taking this phenomenon into account. Evaluation of the radiative heat transfer impact in considered system has been done by comparing all the received results.

  18. Maximum heat transfer capacity of high temperature heat pipe with triangular grooved wick

    Institute of Scientific and Technical Information of China (English)

    沈妍; 张红; 许辉; 于萍; 白穜

    2015-01-01

    A mathematical model was developed to predict the maximum heat transfer capacity of high temperature heat pipe with triangular grooved wick. The effects of the inclination angle and geometry structure were considered in the proposed model. Maximum heat transfer capacity was also investigated experimentally. The model was validated by comparing with the experimental results. The maximum heat transfer capacity increases with the vapor core radius increasing. Compared with the inclination angle of 0°, the maximum heat transfer capacity increases at the larger inclination angle, and the change with temperature is larger. The performance of heat pipe with triangular grooved wick is greatly influenced by gravity, so it is not recommended to be applied to the dish solar heat pipe receiver.

  19. Asymmetric heat transfer from nanoparticles in lipid bilayers

    Science.gov (United States)

    Potdar, Dipti; Sammalkorpi, Maria

    2015-12-01

    Here, we use molecular dynamics simulations to characterize the heat transfer properties of lipid bilayer - gold nanoparticle systems in which the nanoparticle acts as a heat source. The focus is on dipalmitoylphosphatidylcholine (DPPC) lipid bilayers and thiolated alcohol and alkyl functionalized nanoparticles as prototype hydrophilic and hydrophobic nanoparticles. We find hydrophilic nanoparticles which are partly in contact with the surrounding water environment are more efficient in transferring heat to the system than hydrophobic ones which reside surrounded by the membrane. This is because of the hydrogen bonding capability of the hydroxy pentanethiol and the more efficient heat conductivity through water than the lipid bilayer. Additionally, we find the heat conductance is strongly asymmetric and has a discontinuity between the bilayer leaflets. In total, the findings provide understanding on heat transport from localized heat sources in lipid bilayers and could bear significance, e.g., in engineering and controlling photoactivated triggering of liposomal systems.

  20. Heat transfer and thermoregulation in the largemouth blackbass, Micropterus salmoides

    Energy Technology Data Exchange (ETDEWEB)

    Erskine, D. J.

    1976-01-01

    An energy budget equation, based on energy budget theory for terrestrial organisms, was developed to describe the heat energy exchange between a largemouth bass (Micropterus salmoides) and its aquatic environment. The energy budget equation indicated that convection and a combined conduction-convection process were major avenues of heat exchange for a fish. Solid aluminum castings were used to experimentally determine heat transfer coefficients for the largemouth bass at water velocities covering the free and forced convection ranges. Heat energy budget theory was applied to the casting data and the derived coefficients were used to characterize heat exchange between the bass and its aquatic habitat. The results indicate that direct transfer of heat from the body surface is the major mechanism of heat exchange for a fish.

  1. Enhancement of laminar convective heat transfer using microparticle suspensions

    Science.gov (United States)

    Zhu, Jiu Yang; Tang, Shiyang; Yi, Pyshar; Baum, Thomas; Khoshmanesh, Khashayar; Ghorbani, Kamran

    2016-04-01

    This paper investigates the enhancement of convective heat transfer within a sub-millimetre diameter copper tube using Al2O3, Co3O4 and CuO microparticle suspensions. Experiments are conducted at different particle concentrations of 1.0, 2.0 and 5.0 wt% and at various flow rates ranging from 250 to 1000 µl/min. Both experimental measurements and numerical analyses are employed to obtain the convective heat transfer coefficient. The results indicate a significant enhancement in convective heat transfer coefficient due to the implementation of microparticle suspensions. For the case of Al2O3 microparticle suspension with 5.0 wt% concentration, a 20.3 % enhancement in convective heat transfer coefficient is obtained over deionised water. This is comparable to the case of Al2O3 nanofluid at the same concentration. Hence, there is a potential for the microparticle suspensions to be used for cooling of compact integrated systems.

  2. Volume-energy parameters for heat transfer to supercritical fluids

    Science.gov (United States)

    Kumakawa, A.; Niino, M.; Hendricks, R. C.; Giarratano, P. J.; Arp, V. D.

    1986-01-01

    Reduced Nusselt numbers of supercritical fluids from different sources were grouped by several volume-energy parameters. A modified bulk expansion parameter was introduced based on a comparative analysis of data scatter. Heat transfer experiments on liquefied methane were conducted under near-critical conditions in order to confirm the usefulness of the parameters. It was experimentally revealed that heat transfer characteristics of near-critical methane are similar to those of hydrogen. It was shown that the modified bulk expansion parameter and the Gibbs-energy parameter grouped the heat transfer data of hydrogen, oxygen and methane including the present data on near-critical methane. It was also indicated that the effects of surface roughness on heat transfer were very important in grouping the data of high Reynolds numbers.

  3. Time-delay models of heat transfer systems

    International Nuclear Information System (INIS)

    The paper deals with a new approach to modeling the heat transfer phenomena by means of differential equations with delays. The infinite order dynamics of thermal processes by suitable combinations of capacitance and delay elements is presented. An identification of transfer function of heat exchangers is presented. In the mathematical treatment of heat transfer systems, it is usually quite advantageous to deal in the frequency domain rather than the time. In such cases, the response of the system to sinusoidal inputs over a band of frequencies must be known. Identification is based on the least square method, which is based on minimization of the weighted sum of the squares of the errors between the absolute magnitudes of the frequency characteristic real object and the frequency characteristic of time-delay model of heat transfer system, which is proposed in this paper. (author)

  4. Scalable graphene coatings for enhanced condensation heat transfer.

    Science.gov (United States)

    Preston, Daniel J; Mafra, Daniela L; Miljkovic, Nenad; Kong, Jing; Wang, Evelyn N

    2015-05-13

    Water vapor condensation is commonly observed in nature and routinely used as an effective means of transferring heat with dropwise condensation on nonwetting surfaces exhibiting heat transfer improvement compared to filmwise condensation on wetting surfaces. However, state-of-the-art techniques to promote dropwise condensation rely on functional hydrophobic coatings that either have challenges with chemical stability or are so thick that any potential heat transfer improvement is negated due to the added thermal resistance of the coating. In this work, we show the effectiveness of ultrathin scalable chemical vapor deposited (CVD) graphene coatings to promote dropwise condensation while offering robust chemical stability and maintaining low thermal resistance. Heat transfer enhancements of 4× were demonstrated compared to filmwise condensation, and the robustness of these CVD coatings was superior to typical hydrophobic monolayer coatings. Our results indicate that graphene is a promising surface coating to promote dropwise condensation of water in industrial conditions with the potential for scalable application via CVD.

  5. Heat Transfer Equation With Delay for Media With Thermal Memory

    Directory of Open Access Journals (Sweden)

    Anton Oleksandrovych Vasylenko

    2013-04-01

    Full Text Available A new model for heat transfer in this paper is proposed. It combines idea of medium with memory and phase-lag model. Equation for a temperature field based on new heat transfer model was obtained and investigated with wave-like solutions. New model was compared with common models for non-stationary heat transfer by its wave-like solutions amplitude attenuation, wave length and phase velocity. It was shown that model with memory is equivalent to a hyperbolic model of heat transfer. While new combined model is equivalent with a phase-lag model for a low frequencies but differs for a high frequencies. Both this models predict possibility of undamped thermal waves, but phase-lag model predict a numerous quantity of undumped thermal waves, while combined model predict undumped wave for a one frequency.

  6. The measurement of capsule heat transfer gaps using neutron radiography.

    Science.gov (United States)

    Thaler, L. A.

    1971-01-01

    The use of neutron radiographs to determine dimensional changes of heat transfer gaps in cylindrical nuclear fueled capsules is described. A method was developed which involves scanning a very fine grained neutron radiograph negative with a recording microdensitometer. The output of the densitometer is recorded on graph paper and the heat transfer gap is plotted as a well-defined optical density change. Calibration of the recording microdensitometer ratio arms permits measurements to be made of the heat transfer optical density change from the microdensitometer trace. Total heat transfer gaps, measured by this method, agree with the physical measurements within plus or minus 0.005 cm over a range of gaps from 0.061 to 0.178 cm.

  7. Heat Transfer in Magnetohydrodynamic Fluid Flows - A Review

    Directory of Open Access Journals (Sweden)

    Zakariya M. Kaneesamkandi

    2012-08-01

    Full Text Available The fluid flow parameters associated with increase or decrease in heat transfer is identified from the literature. Control of heat and mass transfer processes by means of external force effects is one of the most important problems in many specialized process and manufacturing applications. The Lorentz force effect inducing the formation of side layer jets in magnetohydrodynamic flows can potentially result in significant variations of the heat transfer properties. Recent developments in computational modeling and experimental methods have given better understanding in several areas which were indistinct in earlier studies. This study is aimed at reviewing the recently reported developments and consolidating the progress in the area of heat transfer in magnetohydrodynamic flows. This includes natural convective fluid flows due to the combined effect of buoyant and magnetic forces as well as magnetic effects on liquids flowing through conduits of different geometry. The different approaches used are briefly discussed.

  8. Heat transfer in two-component internal mist cooling

    International Nuclear Information System (INIS)

    The prediction of a mechanistic, three-dimensional, two-phase flow model is compared with experimental heat transfer data presented in the experimental part of this study for steady, internal, nozzle-generated, gas/liquid mist flow in vertical channels. The mechanistic model is based on the modification of the KIVA-3V computer code. The KIVA-3V code has been modified to solve the heat conduction equation in the surrounding structure with either steady or pulsed heat generation simultaneously with the fluid transport equations, and allow modeling of the various channel geometries and droplet injection methods. Among the numerically examined operating and design parameters are: the liquid atomization nozzle design, heat flux, carrier gas velocity and inlet temperature, liquid mass fraction at inlet, and flow direction. Comparison is made between the experimental data for wall and fluid bulk temperatures and heat transfer coefficients, and the predictions of the numerical model. Overall, reasonable agreement is obtained for downward mist flow, in particular at moderate heat fluxes; at high heat fluxes, the model slightly underpredicts the local heat transfer coefficients. For upward mist flow, the model underpredicts the local heat transfer coefficients typically by about 20%, and appears to predict dryout at the test section exit earlier than experiment. Some parametric and sensitivity calculation results are also presented and discussed

  9. Liquid metal heat transfer in heat exchangers under low flow rate conditions

    International Nuclear Information System (INIS)

    The present paper describes the liquid metal heat transfer in heat exchangers under low flow rate conditions. Measured data from some experiments indicate that heat transfer coefficients of liquid metals at very low Péclet number are much lower than what are predicted by the well-known empirical relations. The cause of this phenomenon was not fully understood for many years. In the present study, one countercurrent-type heat exchanger is analyzed using three, separated countercurrent heat exchanger models: one is a heat exchanger model in the tube bank region, while the upper and lower plena are modeled as two heat exchangers with a single heat transfer tube. In all three heat exchangers, the same empirical correlation is used in the heat transfer calculation on the tube and the shell sides. The Nusselt number, as a function of the Péclet number, calculated from measured temperature and flow rate data in a 50 MW experimental facility was correctly reproduced by the calculation result, when the calculated result is processed in the same way as the experiment. Finally, it is clarified that the deviation is a superficial phenomenon which is caused by the heat transfer in the plena of the heat exchanger. (author)

  10. Fractal approach to heat transfer in silkworm cocoon hierarchy

    Directory of Open Access Journals (Sweden)

    Fei Dong-Dong

    2013-01-01

    Full Text Available Silkworm cocoon has a complex hierarchic structure with discontinuity. In this paper, heat transfer through the silkworm cocoon is studied using fractal theory. The fractal approach has been successfully applied to explain the fascinating phenomenon of cocoon survival under extreme temperature environment. A better understanding of heat transfer mechanisms for the cocoon could be beneficial to the design of biomimetic clothes for special applications.

  11. Comparison of Methods for Calculating Radiative Heat Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Schock, Alfred; Abbate, M J

    2012-01-19

    Various approximations for calculating radioactive heat transfer between parallel surfaces are evaluated. This is done by applying the approximations based on total emissivities to a special case of known spectral emissivities, for which exact heat transfer calculations are possible. Comparison of results indicates that the best approximation is obtained by basing the emissivity of the receiving surface primarily on the temperature of the emitter. A specific model is shown to give excellent agreement over a very wide range of values.

  12. Advanced turbine cooling, heat transfer, and aerodynamic studies

    Energy Technology Data Exchange (ETDEWEB)

    Je-Chin Han; Schobeiri, M.T. [Texas A& M Univ., College Station, TX (United States)

    1995-10-01

    The contractual work is in three parts: Part I - Effect of rotation on enhanced cooling passage heat transfer, Part II - Effect on Thermal Barrier Coating (TBC) spallation on surface heat transfer, and Part III - Effect of surface roughness and trailing edge ejection on turbine efficiency under unsteady flow conditions. Each section of this paper has been divided into three parts to individually accommodate each part. Part III is further divided into Parts IIIa and IIIb.

  13. The Mathematical Modelling of Heat Transfer in Electrical Cables

    OpenAIRE

    Bugajev Andrej; Jankevičiūtė Gerda; Tumanova Natalija

    2014-01-01

    This paper describes a mathematical modelling approach for heat transfer calculations in underground high voltage and middle voltage electrical power cables. First of the all typical layout of the cable in the sand or soil is described. Then numerical algorithms are targeted to the two-dimensional mathematical models of transient heat transfer. Finite Volume Method is suggested for calculations. Different strategies of nonorthogonality error elimination are considered. Acute triangles meshes ...

  14. Radiative heat transfer between nanoparticles enhanced by intermediate particle

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yanhong; Wu, Jingzhi, E-mail: jzwu@live.nuc.edu.cn [Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, Shanxi (China)

    2016-02-15

    Radiative heat transfer between two polar nanostructures at different temperatures can be enhanced by resonant tunneling of surface polaritons. Here we show that the heat transfer between two nanoparticles is strongly varied by the interactions with a third nanoparticle. By controlling the size of the third particle, the time scale of thermalization toward the thermal bath temperature can be modified over 5 orders of magnitude. This effect provides control of temperature distribution in nanoparticle aggregation and facilitates thermal management at nanoscale.

  15. Heat transfers from gaseous fuel - oxygen flames to metals

    Energy Technology Data Exchange (ETDEWEB)

    Guelen, J.; Kadirgan, N.; Sarac, A. (Yildiz Univ., Istanbul (TR). Dept. of Chemical Engineering)

    1991-01-01

    Because the flames produced by burning gaseous fuels with oxygen are too hot (3000{sup o}C), the heat transfers from these flames to metals cannot be investigated by classical methods. In the present study, the validity of a method depending on measuring the cutting time has been explored in order to compare the effectiveness of premixed gaseous fuel-oxygen flames from a heat transfer point of view. (author).

  16. Investigation of radiative heat transfer in fixed bed biomass furnaces

    Energy Technology Data Exchange (ETDEWEB)

    T. Klason; X.S. Bai; M. Bahador; T.K. Nilsson; B. Sunden [Lund Institute of Technology, Lund (Sweden). Division of Fluid Mechanics

    2008-08-15

    This paper presents an investigation of the radiative heat transfer process in two fixed bed furnaces firing biomass fuels and the performance of several widely used models for calculation of radiative heat transfer in the free-room of fixed bed furnaces. The effective mean grey gas absorption coefficients are calculated using an optimised version of the exponential wide band model (EWBM) based on an optical mean beam length. Fly-ash and char particles are taken into account using Mie scattering. In the investigated updraft small-scale fixed bed furnace radiative transfer carries heat from the bed to the free-room, whereas in the cross-current bed large-scale industry furnace, radiative transfer brings heat from the hot zones in the free-room to the drying zone of the bed. Not all the investigated models can predict these heat transfer trends, and the sensitivity of results to model parameters is fairly different in the two furnaces. In the small-scale furnace, the gas absorption coefficient predicted by using different optical lengths has great impact on the predicted temperature field. In the large-scale furnaces, the predicted temperature field is less sensitive to the optical length. In both furnaces, with the same radiative properties, the low-computational-cost P1 model predicts a temperature field in the free-room similar to that by the more time consuming SLW model. In general, the radiative heat transfer rates to the fuel bed are not very sensitive to the radiative properties, but they are sensitive to the different radiative heat transfer models. For a realistic prediction of the radiative heat transfer rate to the fuel bed or to the walls, more computationally demanding models such as the FGG or SLW models should be used. 37 refs., 7 figs., 2 tabs.

  17. Revealing the complex conduction heat transfer mechanism of nanofluids

    OpenAIRE

    Sergis, A; Hardalupas, Y

    2015-01-01

    Nanofluids are two-phase mixtures consisting of small percentages of nanoparticles (sub 1–10 %vol) inside a carrier fluid. The typical size of nanoparticles is less than 100 nm. These fluids have been exhibiting experimentally a significant increase of thermal performance compared to the corresponding carrier fluids, which cannot be explained using the classical thermodynamic theory. This study deciphers the thermal heat transfer mechanism for the conductive heat transfer mode via a molecular...

  18. Analysis of the flow structure and heat transfer in a vertical mantle heat exchanger

    DEFF Research Database (Denmark)

    Knudsen, Søren; Morrison, GL; Behnia, M;

    2005-01-01

    initially mixed and initially stratified inner tank and mantle. The analysis of the heat transfer showed that the flow in the mantle near the inlet is mixed convection flow and that the heat transfer is dependent on the mantle inlet temperature relative to the core tank temperature at the mantle level. (C...

  19. Developing an Improved Heat Transfer Correlation for Applications in SCWR

    International Nuclear Information System (INIS)

    This thesis work seeks to complement ongoing research works on heat transfer from heated surface to supercritical water in the SCWR. The study was inspired by ongoing efforts directed at obtaining a correlation that predict supercritical-water heat transfer more accurately, especially with the identification of the SCWR concept as one of the six Generation IV nuclear reactors. The thesis focuses on the development of an improved heat transfer correlation for supercritical water flowing through a vertical heater in a natural circulation loop which is basically a bare vertical heater tube made of Inconnel-625, having an overall heating length of 1.37m and internal diameter of 4.62m. The study involves the investigation of some existing empirical heat transfer correlations for both forced and natural convections and then subsequently comparing their results to that of the Chen Yuzhou et al experimental dataset in order to notice their extent of deviations from the experimental data. Finally, one of the correlations considered for this study is used as a baseline to developing a more improved correlation. The parameters used for computing the selected heat transfer correlations and also developing an improved correlation are based on the wall and bulk temperatures obtained from the Supercritical-water heat-transfer dataset. The experiment for the dataset was performed in a natural circulation loop at the China Institute of Atomic Energy, China (CIAE) having pressure kept within the range of 24.2-25.2MPa, a heating power ranging from 0 to 18kW or heat flux from 0 to 0.91 MW/m2, and the maximum water temperature of up to 402 oC. A physical parametric sensitivity analysis was the technique used to develop and propose an improved Modified Churchill-Chu correlation with a reasonable agreement with the experimental data, having the least root mean square error of about 24% better than the investigated existing correlations. (au)

  20. Literature survey of heat transfer enhancement techniques in refrigeration applications

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, M.K.; Shome, B. [Rensselaer Polytechnic Inst., Troy, NY (United States). Dept. of Mechanical Engineering, Aeronautical Engineering and Mechanics

    1994-05-01

    A survey has been performed of the technical and patent literature on enhanced heat transfer of refrigerants in pool boiling, forced convection evaporation, and condensation. Extensive bibliographies of the technical literature and patents are given. Many passive and active techniques were examined for pure refrigerants, refrigerant-oil mixtures, and refrigerant mixtures. The citations were categorized according to enhancement technique, heat transfer mode, and tube or shell side focus. The effects of the enhancement techniques relative to smooth and/or pure refrigerants were illustrated through the discussion of selected papers. Patented enhancement techniques also are discussed. Enhanced heat transfer has demonstrated significant improvements in performance in many refrigerant applications. However, refrigerant mixtures and refrigerant-oil mixtures have not been studied extensively; no research has been performed with enhanced refrigerant mixtures with oil. Most studies have been of the parametric type; there has been inadequate examination of the fundamental processes governing enhanced refrigerant heat transfer, but some modeling is being done and correlations developed. It is clear that an enhancement technique must be optimized for the refrigerant and operating condition. Fundamental processes governing the heat transfer must be examined if models for enhancement techniques are to be developed; these models could provide the method to optimize a surface. Refrigerant mixtures, with and without oil present, must be studied with enhancement devices; there is too little known to be able to estimate the effects of mixtures (particularly NARMs) with enhanced heat transfer. Other conclusions and recommendations are offered.

  1. Spinodal turbulence enhances heat transfer in micro devices

    Science.gov (United States)

    Farisé, Stefano; Poesio, Pietro; Beretta, Gian Paolo

    2012-11-01

    We experimentally prove the possibility of using spinodal mixtures to increase heat transfer in micro devices as a consequence of an evenly distributed micro agitation, which increases the effective diffusivity. Despite the Re -number is as low as 5, turbulence-like mixing can be achieved by mass transfer effects. A mixture of acetone-hexadecane is quenched in a micro heat exchanger to induce spinodal decomposition. The heat transfer rate is enhanced by self-induced convective motion (spinodal turbulence) because the drops of one phase move against each others under the influence of non-equilibrium capillary forces, Korteweg stresses,which are sustained by the free energy liberated during phase separation. The heat transfer is increased up to the 200% and the effect become larger as the bulk Re decreses, while no dramatic increase in the pressure drop is observed. We built two different experimental set-ups: in the first we measure the heat transfer with a feedback method and in the second we measure the pressure drop and we visualize the induced convection. High-speed camera visualization,pressure drop and temperature measurements allow a complete characterization of the phenomenon, with a special attention to the quantification of the heat transfer coefficent enhancement.

  2. Revealing the complex conduction heat transfer mechanism of nanofluids.

    Science.gov (United States)

    Sergis, A; Hardalupas, Y

    2015-12-01

    Nanofluids are two-phase mixtures consisting of small percentages of nanoparticles (sub 1-10 %vol) inside a carrier fluid. The typical size of nanoparticles is less than 100 nm. These fluids have been exhibiting experimentally a significant increase of thermal performance compared to the corresponding carrier fluids, which cannot be explained using the classical thermodynamic theory. This study deciphers the thermal heat transfer mechanism for the conductive heat transfer mode via a molecular dynamics simulation code. The current findings are the first of their kind and conflict with the proposed theories for heat transfer propagation through micron-sized slurries and pure matter. The authors provide evidence of a complex new type of heat transfer mechanism, which explains the observed abnormal heat transfer augmentation. The new mechanism appears to unite a number of popular speculations for the thermal heat transfer mechanism employed by nanofluids as predicted by the majority of the researchers of the field into a single one. The constituents of the increased diffusivity of the nanoparticle can be attributed to mismatching of the local temperature profiles between parts of the surface of the solid and the fluid resulting in increased local thermophoretic effects. These effects affect the region surrounding the solid manifesting interfacial layer phenomena (Kapitza resistance). In this region, the activity of the fluid and the interactions between the fluid and the nanoparticle are elevated. Isotropic increased nanoparticle mobility is manifested as enhanced Brownian motion and diffusion effects.

  3. A new heat transfer correlation for supercritical fluids

    Institute of Scientific and Technical Information of China (English)

    Yanhua YANG; Xu CHENG; Shanfang HUANG

    2009-01-01

    A new method of heat transfer prediction in supercritical fluids is presented. Emphasis is put on the simplicity of the correlation structure and its explicit coupling with physical phenomena. Assessment of qualitative behaviour of heat transfer is conducted based on existing test data and experience gathered from open literature. Based on phenomenological analysis and test data evaluation, a single dimensionless number, the acceleration number, is introduced to correct the deviation of heat transfer from its conventional behaviour, which is predicted by the Dittus-Boelter equation. The new correlation structure excludes direct dependence of heat transfer coefficient on wall surface temperature and eliminates possible numerical convergence. The uncertainty analysis of test data provides information about the sources and the levels of uncertainties of various parameters and is highly required for the selection of both the dimensionless parameters implemented into the heat transfer correlation and the test data for the development and validation of new correlations. Comparison of various heat transfer correlations with the selected test data shows that the new correlation agrees better with the test data than other correlations selected from the open literature.

  4. Revealing the complex conduction heat transfer mechanism of nanofluids

    Science.gov (United States)

    Sergis, A.; Hardalupas, Y.

    2015-06-01

    Nanofluids are two-phase mixtures consisting of small percentages of nanoparticles (sub 1-10 %vol) inside a carrier fluid. The typical size of nanoparticles is less than 100 nm. These fluids have been exhibiting experimentally a significant increase of thermal performance compared to the corresponding carrier fluids, which cannot be explained using the classical thermodynamic theory. This study deciphers the thermal heat transfer mechanism for the conductive heat transfer mode via a molecular dynamics simulation code. The current findings are the first of their kind and conflict with the proposed theories for heat transfer propagation through micron-sized slurries and pure matter. The authors provide evidence of a complex new type of heat transfer mechanism, which explains the observed abnormal heat transfer augmentation. The new mechanism appears to unite a number of popular speculations for the thermal heat transfer mechanism employed by nanofluids as predicted by the majority of the researchers of the field into a single one. The constituents of the increased diffusivity of the nanoparticle can be attributed to mismatching of the local temperature profiles between parts of the surface of the solid and the fluid resulting in increased local thermophoretic effects. These effects affect the region surrounding the solid manifesting interfacial layer phenomena (Kapitza resistance). In this region, the activity of the fluid and the interactions between the fluid and the nanoparticle are elevated. Isotropic increased nanoparticle mobility is manifested as enhanced Brownian motion and diffusion effects

  5. Measurement of boiling heat transfer coefficient in liquid nitrogen bath by inverse heat conduction method

    Institute of Scientific and Technical Information of China (English)

    Tao JIN; Jian-ping HONG; Hao ZHENG; Ke TANG; Zhi-hua GAN

    2009-01-01

    Inverse heat conduction method (IHCM)is one of the most effective approaches to obtaining the boiling heat transfer coefficient from measured results.This paper focuses on its application in cryogenic boiling heat transfer.Experiments were conducted on the heattransfer of a stainless steel block in a liquid nitrogen bath.with the assumption of a ID conduction condition to realize fast acquisition of the temperature of the test points inside the block.With the inverse-heat conduction theory and the explicit finite difference model,a solving program was developed to calculate the heat flux and the boiling heat transfer coefficient of a stainless steel block in liquid nitrogen bath based on the temperature acquisition data.Considering the oscillating data and some unsmooth transition points in the inverse-heat-conduction calculation result of the heat-transfer coefficient,a two-step data-fitting procedure was proposed to obtain the expression for the boiling heat transfer coefficients.The coefficient was then verified for accuracy by a comparison between the simulation results using this expression and the verifying experimental results of a stainless steel block.The maximum error with a revised segment fitting iS around 6%.which verifies the feasibility of using IHCM to measure the boiling heat transfer coefficient in liquid nitrogen bath.

  6. Micro-channel convective boiling heat transfer with flow instabilities

    International Nuclear Information System (INIS)

    Flow boiling heat transfer in micro-channels has attracted much interest in the past decade, and is currently a strong candidate for high performance compact heat sinks, such as those required in electronics systems, automobile air conditioning units, micro-reactors, fuel cells, etc. Currently the literature presents numerous experimental studies on two-phase heat transfer in micro-channels, providing an extensive database that covers many different fluids and operating conditions. Among the noteworthy elements that have been reported in previous studies, is the sensitivity of micro-channel evaporators to oscillatory two-phase instabilities. These periodic fluctuations in flow and pressure drop either result from the presence of upstream compressibility, or are simply due to the interaction among parallel channels in multi-port systems. An oscillating flow presents singular characteristics that are expected to produce an effect on the local heat transfer mechanisms, and thus on the estimation of the two-phase heat transfer coefficients. The present investigation illustrates results for flow boiling of refrigerants R-134a, R-236fa, and R-245fa in a 510 μm circular micro-channel, exposed to various degrees of oscillatory compressible volume instabilities. The data describe the main features of the fluctuations in the temperatures of the heated wall and fluid, and draw attention to the differences in the measured unstable time-averaged heat transfer coefficients with respect to those for stable flow boiling. (author)

  7. Analyzing the Heat Transfer Property of Heat Pipe Influenced by Integrated Cooling Apparatus

    Directory of Open Access Journals (Sweden)

    Chen-Ching Ting

    2014-01-01

    Full Text Available Heat pipe with discrete heat transfer property is often called thermal superconductor because it has extremely large thermal conductivity. This special heat transfer property is destroyed by integrating cooling apparatus and further reducing the cooling power of a heat pipe cooler. This paper experimentally studied the heat transfer property of heat pipe influenced by integrated cooling apparatus. To simplify the investigating process, a home-made square heat pipe with the dimensions of L×W×H=10×10×100 mm3 was built with two pieces of copper plates and two pieces of glass plates face to face, respectively. The two pieces of copper plates were constructed with inside walls of capillary structure and the two pieces of glasses were with antifog inside walls for observing the inner phenomenon. Moreover, isothermal circulating cooling water was applied outside the heat pipe instead of cooling fin. The results show that heat vapor in the heat pipe is condensed earlier and cannot reach the remote section of condenser. In other words, the heat transfer property of heat pipe is destroyed by integrating cooling water. This phenomenon causes the unfavorable cooling power of the heat pipe cooler.

  8. Numerical and Experimental Investigation for Heat Transfer Enhancement by Dimpled Surface Heat Exchanger in Thermoelectric Generator

    Science.gov (United States)

    Wang, Yiping; Li, Shuai; Yang, Xue; Deng, Yadong; Su, Chuqi

    2016-03-01

    For vehicle thermoelectric exhaust energy recovery, the temperature difference between the heat exchanger and the coolant has a strong influence on the electric power generation, and ribs are often employed to enhance the heat transfer of the heat exchanger. However, the introduction of ribs will result in a large unwanted pressure drop in the exhaust system which is unfavorable for the engine's efficiency. Therefore, how to enhance the heat transfer and control the pressure drop in the exhaust system is quite important for thermoelectric generators (TEG). In the current study, a symmetrical arrangement of dimpled surfaces staggered in the upper and lower surfaces of the heat exchanger was proposed to augment heat transfer rates with minimal pressure drop penalties. The turbulent flow characteristics and heat transfer performance of turbulent flow over the dimpled surface in a flat heat exchanger was investigated by numerical simulation and temperature measurements. The heat transfer capacity in terms of Nusselt number and the pressure loss in terms of Fanning friction factors of the exchanger were compared with those of the flat plate. The pressure loss and heat transfer characteristics of dimples with a depth-to-diameter ratio ( h/D) at 0.2 were investigated. Finally, a quite good heat transfer performance with minimal pressure drop heat exchanger in a vehicle TEG was obtained. And based on the area-averaged surface temperature of the heat exchanger and the Seeback effect, the power generation can be improved by about 15% at Re = 25,000 compared to a heat exchanger with a flat surface.

  9. Instabilities encountered during heat transfer to a supercritical fluid

    Science.gov (United States)

    Cornelius, A. J.

    1969-01-01

    Investigation was made of the unstable behavior of a heat-transfer loop operating at a supercritical pressure. Natural convection operation of the loop, with observations on acoustic and slow oscillatory behavior, was emphasized during testing. The basic cause of both types of behavior appeared to originate in the heated boundary layer.

  10. International symposium on transient convective heat transfer: book of abstracts

    International Nuclear Information System (INIS)

    The international symposium on convective heat transfer was held on 19-23 August 1996, in Cesme, Izmir, Turkey. The spesialists discussed forced convection, heat exchangers, free convection and multiphase media and phase change at the meeting. Almost 53 papers were presented in the meeting

  11. Students' Misconceptions about Heat Transfer Mechanisms and Elementary Kinetic Theory

    Science.gov (United States)

    Pathare, S. R.; Pradhan, H. C.

    2010-01-01

    Heat and thermodynamics is a conceptually rich area of undergraduate physics. In the Indian context in particular there has been little work done in this area from the point of view of misconceptions. This prompted us to undertake a study in this area. We present a study of students' misconceptions about heat transfer mechanisms, i.e. conduction,…

  12. A correlation for heat transfer coefficients in food extruders.

    Science.gov (United States)

    Levine, L; Rockwood, J

    1986-06-01

    A dimensionless correlation of heat transfer coefficient for heat flow between the extruder barrel wall and extrudate is presented. The standard error of estimate of the correlation is 12.4%. The correlation is useful for the design and scale-up of food extruders and the design of associated temperature control systems.

  13. Streamline upwind finite element method for conjugate heat transfer problems

    Institute of Scientific and Technical Information of China (English)

    Niphon Wansophark; Atipong Malatip; Pramote Dechaumphai; Yunming Chen

    2005-01-01

    This paper presents a combined finite element method for solving conjugate heat transfer problems where heat conduction in a solid is coupled with heat convection in viscous fluid flow. The streamline upwind finite element method is used for the analysis of thermal viscous flow in the fluid region, whereas the analysis of heat conduction in solid region is performed by the Galerkin method. The method uses the three-node triangular element with equal-order interpolation functions for all the variables of the velocity components,the pressure and the temperature. The main advantage of the proposed method is to consistently couple heat transfer along the fluid-solid interface. Three test cases, i.e. conjugate Couette flow problem in parallel plate channel, counter-flow in heat exchanger, and conjugate natural convection in a square cavity with a conducting wall, are selected to evaluate the efficiency of the present method.

  14. Experimental investigation of ice slurry heat transfer in horizontal tube

    Energy Technology Data Exchange (ETDEWEB)

    Grozdek, Marino; Khodabandeh, Rahmatollah; Lundqvist, Per; Palm, Bjoern; Melinder, Aake [Department of Energy Technology, Division of Applied Thermodynamics and Refrigeration, Royal Institute of Technology, Brinellvaegen 68, 10044 Stockholm (Sweden)

    2009-09-15

    Heat transfer of ice slurry flow based on ethanol-water mixture in a circular horizontal tube has been experimentally investigated. The secondary fluid was prepared by mixing ethanol and water to obtain initial alcohol concentration of 10.3% (initial freezing temperature -4.4 C). The heat transfer tests were conducted to cover laminar and slightly turbulent flow with ice mass fraction varying from 0% to 22% depending on test performed. Measured heat transfer coefficients of ice slurry are found to be higher than those for single phase fluid, especially for laminar flow conditions and high ice mass fractions where the heat transfer is increased with a factor 2 in comparison to the single phase flow. In addition, experimentally determined heat transfer coefficients of ice slurry flow were compared to the analytical results, based on the correlation by Sieder and Tate for laminar single phase regime, by Dittus-Boelter for turbulent single phase regime and empirical correlation by Christensen and Kauffeld derived for laminar/turbulent ice slurry flow in circular horizontal tubes. It was found that the classical correlation proposed by Sieder and Tate for laminar forced convection in smooth straight circular ducts cannot be used for heat transfer prediction of ice slurry flow since it strongly underestimates measured values, while, for the turbulent flow regime the simple Dittus-Boelter relation predicts the heat transfer coefficient of ice slurry flow with high accuracy but only up to an ice mass fraction of 10% and Re{sub cf} > 2300 regardless of imposed heat flux. For higher ice mass fractions and regardless of the flow regime, the correlation proposed by Christensen and Kauffeld gives good agreement with experimental results. (author)

  15. Intensification of heat and mass transfer by ultrasound: application to heat exchangers and membrane separation processes.

    Science.gov (United States)

    Gondrexon, N; Cheze, L; Jin, Y; Legay, M; Tissot, Q; Hengl, N; Baup, S; Boldo, P; Pignon, F; Talansier, E

    2015-07-01

    This paper aims to illustrate the interest of ultrasound technology as an efficient technique for both heat and mass transfer intensification. It is demonstrated that the use of ultrasound results in an increase of heat exchanger performances and in a possible fouling monitoring in heat exchangers. Mass transfer intensification was observed in the case of cross-flow ultrafiltration. It is shown that the enhancement of the membrane separation process strongly depends on the physico-chemical properties of the filtered suspensions.

  16. Heat Transfer Characteristics of Calcined Petroleum Coke in Waste Heat Recovery Process

    Directory of Open Access Journals (Sweden)

    Bin Zheng

    2016-01-01

    Full Text Available This paper reports the results of heat transfer characteristics of calcined petroleum coke in waste heat recovery process. The model of heat exchanger was set up. The model has been used to investigate the effects of porosity (0.58 to 0.79, equivalent heat conductivity coefficient (0.9 to 1.1, and equivalent specific heat (0.9 to 1.1. The calculated values of calcined petroleum coke temperature showed good agreement with the corresponding available experimental data. The temperature distribution of calcined petroleum coke, the calcined petroleum coke temperature at heat exchanger outlet, the average heat transfer coefficient, and the heat recovery efficiency were studied. It can also be used in deriving much needed data for heat exchanger designs when employed in industry.

  17. Determining convective heat transfer coefficient using phoenics software package

    Energy Technology Data Exchange (ETDEWEB)

    Kostikov, A.; Matsevity, Y. [Institute of Mechanical Engineering Problems of National Academy of Sciences of Ukraine, Kharkov (Ukraine)

    1997-12-31

    The two methods of determination of such important quantity of heat exchange on a body surface using PHOENICS are suggested in the presentation. The first method consists in a post-processing of results of conjugate heat transfer problem solved by PHOENICS. The second one is solving an inverse heat conduction problem for solid body using PHOENICS. Comparative characteristic of these two methods is represented. (author) 4 refs.

  18. Heat transfer and pressure drop in flow boiling in microchannels

    CERN Document Server

    Saha, Sujoy Kumar

    2016-01-01

    This Brief addresses the phenomena of heat transfer and pressure drop in flow boiling in micro channels occurring in high heat flux electronic cooling. A companion edition in the Springer Brief Subseries on Thermal Engineering and Applied Science to “Critical Heat Flux in Flow Boiling in Micro channels,” by the same author team, this volume is idea for professionals, researchers and graduate students concerned with electronic cooling.

  19. Boiling Heat Transfer Experiments by using Transparent Heated Microtube

    Science.gov (United States)

    Huang, Shih-Che; Kawanami, Osamu; Kawakami, Kazunari; Honda, Itsuro; Kawashima, Yousuke; Ohta, Haruhiko

    For detailed study of the relationship between boiling bubble behavior and inner wall temperature during flow boiling in microtubes, a transparent heated microtube, whose inner wall was coated with a thin gold film, was employed. Boiling behavior could be observed clearly, and the inner wall temperature of the tube was measured simultaneously with direct heating of the film. Ionized water was used as a test fluid. The experimental conditions were as follows: tube diameter, 1 mm; inlet liquid subcooling, 10 K; mass velocity, 100 kg/m2s and heat flux, up to 469 kW/m2 in the open system. As a result, the frequencies of fluctuation of the inner wall temperature and flow rate were divided into four regions. In addition, the fluctuation range of flow rate increased with increasing heat flux however, this fluctuation decreased drastically for heat flux over 212 kW/m2. The fluctuation of void fraction coincided with that of inner wall temperature.

  20. Verification of Conjugate Heat Transfer Models in a Closed Volume with Radiative Heat Source

    Directory of Open Access Journals (Sweden)

    Maksimov Vyacheslav I.

    2016-01-01

    Full Text Available The results of verification of mathematical model of convective-conductive heat transfer in a closed volume with a thermally conductive enclosing structures are presented. Experiments were carried out to determine the temperature of floor premises in the working conditions of radiant heating systems. Comparison of mathematical modelling of temperature fields and experiments showed their good agreement. It is concluded that the mathematical model of conjugate heat transfers in the air cavity with a heat-conducting and heat-retaining walls correspond to the real process of formation of temperature fields in premises with gas infrared heaters system.

  1. A Conceptual Change Model for Teaching Heat Energy, Heat Transfer and Insulation

    Science.gov (United States)

    Lee, C. K.

    2014-01-01

    This study examines the existing knowledge that pre-service elementary teachers (PSETs) have regarding heat energy, heat transfer and insulation. The PSETs' knowledge of heat energy was initially assessed by using an activity: determining which container would be best to keep hot water warm for the longest period of time. Results showed that…

  2. Heat and mass transfer during silica gel-moisture interactions

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jin; Besant, Robert W. [Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, Canada S7N 5A9 (Canada)

    2005-11-01

    An initially dry granular silica gel bed is subject to a sudden uniform air flow at a selected temperature and humidity. The coupled non-equilibrium heat transfer and moisture transfer were investigated experimentally and numerically. This study provides a fundamental view of heat and mass transfer process within the granular particle pores. It was found that only a small fraction of internal surface area of silica gel is exposed to water vapour during the test and this occurs very slowly with a time delay that must be accounted for in the model. This modified model gives transient response results that agree with the experimental data within the uncertainty bounds. (author)

  3. Heat transfer in underground heating experiments in granite, Stipa, Sweden

    International Nuclear Information System (INIS)

    Electrical heater experiments have been conducted underground in granite at Stripa, Sweden, to investigate the effects of heating associated with nuclear waste storage. Temperature data from these experiments are compared with closed-form and finite-element solutions. Good agreement is found between measured temperatures and both types of models, but especially for a nonlinear finite-element heat conduction model incorporating convective boundary conditions, measured nonuniform initial rock temperature distribution, and temperature-dependent thermal conductivity. In situ thermal properties, determined by least-squares regression, are very close to laboratory values. A limited amount of sensitivity analysis is undertaken

  4. Ultrasonic Heat Transfer Enhancement Using a Horn-Type Transducer

    Science.gov (United States)

    Nomura, Shinfuku; Yamamoto, Akira; Murakami, Koichi

    2002-05-01

    The purpose of this study is to clarify experimentally the influence of streaming induced by ultrasonic vibration on heat transfer using a horn-type ultrasonic vibrator. A horn tip of 6 mm diameter and 60.7 kHz resonant frequency was used as the ultrasonic transducer. Heat transfer experiments for a downward-facing horizontal heating surface with ultrasonic vibration from below were carried out in a natural convection region. The acoustic jet in the water from the horn tip of the transducer regarded as a nozzle exit was induced by this transducer, and as a result, up to a ten-fold increase in heat transfer coefficient was obtained by application of 20 W in both tap water and degassed water. It was found that the mechanism of heat transfer enhancement by ultrasonic vibration in tap water can be classified into four categories. In degassed water, heat transfer enhancement is influenced not by the acoustic jet, but by small-scale perturbations by cavitation microjets.

  5. Heat transfer to liquid sodium in the thermal entrance region

    International Nuclear Information System (INIS)

    It is well known that the convective heat transfer in the regions of duct systems where the thermal boundary layers are not yet established can be far superior to heat transfer in the fully developed regions. A quantitative understanding of heat transfer in the thermal entrance region is essential in designing high heat-flux nuclear reactors. More specifically, if the thermal boundary layers have not been fully established in the system, the forced-convection relations for the fully developed regions cannot be used to predict the heat transfer characteristics. The present work is characterized by the following: 1. The behaviours in the thermal entrance region have been examined more completely. 2. To obtain a higher accuracy of analyses, in present study the method of SPARROW et al. for pipe was improved for annulus by utilizing a finite difference technique. Furthermore, an asymptotic solution was developed. 3. This is, in our knowledge, the first experimental investigation about the thermal development effect on turbulent heat transfer from rod element to liquid sodium in annulus with fully developed flow. (MDC)

  6. Convective Heat Transfer of Magnetic Nanofluids in a Microtube

    Directory of Open Access Journals (Sweden)

    Kuo Jung Lo

    2015-05-01

    Full Text Available This paper conducts an analysis of convective heat transfer of magnetic nanofluids in an isothermally heated microtube. The main purpose is to investigate the influences of particle volume fraction and external magnetic field strength on the fluid velocity, temperature, pressure, pressure drop, flow drag, and heat transfer rate. Firstly, a flow and heat transfer model is built. A water-based magnetite (Fe3O4 nanofluid is then pre-pared, and a thermal flow test system is further de-signed, so as to verify the theoretical model with experimental data. Finally, the thermal flow fields and the corresponding characteristics are numerically analyzed by using the marching implicit (MI procedure. The results reveal that when the particle volume fraction is increased, the average flow drag also increases while the average heat transfer rate goes down. Furthermore, as the external magnetic field strength is increased, the average flow drag rises and the average heat transfer rate also rises in the general case.

  7. Scaling of heat transfer in gas-gas injector combustor

    Institute of Scientific and Technical Information of China (English)

    Wang Xiao-Wei; Cai Guo-Biao; Gao Yu-Shan

    2011-01-01

    The scaling of heat transfer in gas-gas injector combuetor is investigated theoretically, numerically and experimentally based on the previous study on the scaling of gas-gas combustion flowfield. The similarity condition of the gas-gas injector combustor heat transfer is obtained by conducting a formulation analysis of the boundary layer Navier-Stokes equations and a dimensional analysis of the corresponding heat transfer phenomenon. Then, a practicable engineering scaling criterion of the gas-gas injector combustor heat transfer is put forward. The criterion implies that when the similarity conditions of inner flowfield are satisfied, the size and the pressure of gas-gas combustion chamber can be changed, while the heat transfer can still be qualitatively similar to the distribution trend and quantitatively correlates well with the size and pressure as q ∝ pc0.8dt-0.2. Based on the criterion, single-element injector chambers with different geometric sizes and at different chamber pressures ranging from 1 MPa to 20 MPa are numerically simulated. A single-element injector chamber is designed and hot-fire tested at seven chamber pressures from 0.92 MPa to 6.1 MPa.The inner wall heat flux are obtained and analysed. The numerical and experimental results both verified the scaling criterion in gas-gas injector combustion chambers under different chamber pressures and geometries.

  8. Thin liquid film flow and heat transfer under spray impingement

    International Nuclear Information System (INIS)

    A mathematical model was derived to investigate thin liquid film flow under spray impingement. Based on predicted flow patterns, a heat transfer model was developed to investigate the heat transfer performance in the non-boiling regime of spray cooling. The film thickness predicted by the thin film flow model favourably compares with reported experimental results obtained at different measurement locations and nozzle inlet pressures. It is found that the film thickness is sensitive to droplet flux distribution but not the nozzle inlet pressure. The comparison of the heated surface temperature between the proposed heat transfer model and the published experimental data shows good agreement. - Highlights: ► Thin liquid film flow in spray cooling is theoretically studied. ► A thin liquid film flow model is derived to predict the thin film flow pattern under spray impingement. ► A heat transfer model is developed to predict the heat transfer performance in the non-boiling regime of spray cooling. ► Film thickness of the liquid film flow is sensitive to droplet flux distribution but not the nozzle inlet pressure. ► Droplet impingement cooling is the primary cooling mechanism in the non-boiling regime of spray cooling.

  9. Heat Transfer Characteristics of Slush Nitrogen in Turbulent Pipe Flows

    Science.gov (United States)

    Ohira, K.; Ishimoto, J.; Nozawa, M.; Kura, T.; Takahashi, N.

    2008-03-01

    Slush fluids, such as slush hydrogen and slush nitrogen, are two-phase (solid-liquid) single-component cryogenic fluids containing solid particles in a liquid, and consequently their density and refrigerant capacity are greater than for liquid state fluid alone. This paper reports on the experimental results of the forced convection heat transfer characteristics of slush nitrogen flowing in a pipe. Heat was supplied to slush nitrogen by a heater wound around the copper pipe wall. The local heat transfer coefficient was measured in conjunction with changes in the velocity and the solid fraction. The differences in heat transfer characteristics between two-phase slush and single phase liquid nitrogen were obtained, and the decrease in heat transfer to slush nitrogen caused by the previously observed pressure drop reduction was confirmed by this study. Furthermore, for the purpose of establishing the thermal design criteria for slush nitrogen in the case of pressure drop reduction, the heat transfer correlation between the experimental results and the Sieder-Tate Equation was obtained.

  10. Bibliography on augmentation of convective heat and mass transfer

    Energy Technology Data Exchange (ETDEWEB)

    Bergles, A.E.; Webb, R.L.; Junkhan, G.H.; Jensen, M.K.

    1979-05-01

    Heat transfer augmentation has developed into a major specialty area in heat transfer research and development. A bibliography of world literature on augmentation is presented. The literature is classified into passive augmentation techniques, which require no external power, and active techniques, which do require external power. The fourteen techniques are grouped in terms of their application to the various modes of heat transfer. Mass transfer is included for completeness. Key words are included with each citation for technique/mode identification. The total number of publications cited is 1,967, including 75 surveys of various techniques and 42 papers on performance evaluation of passive techniques. Patents are not included as they will be the subject of a future topical report.

  11. Bibliography on augmentation of convective heat and mass transfer

    International Nuclear Information System (INIS)

    Heat transfer augmentation has developed into a major specialty area in heat transfer research and development. A bibliography of world literature on augmentation is presented. The literature is classified into passive augmentation techniques, which require no external power, and active techniques, which do require external power. The fourteen techniques are grouped in terms of their application to the various modes of heat transfer. Mass transfer is included for completeness. Key words are included with each citation for technique/mode identification. The total number of publications cited is 1,967, including 75 surveys of various techniques and 42 papers on performance evaluation of passive techniques. Patents are not included as they will be the subject of a future topical report

  12. Numerical computations of natural convection heat transfer in irregular geometries

    Science.gov (United States)

    Glakpe, E. K.

    1987-01-01

    This report explains the determination of buoyancy driven flow characteristics and heat transfer in enclosures of complex geometrical shapes. Applications of buoyancy driven flows can be found in solar collector devices, energy conservation technologies, cooling of micro-electronic chips, and nuclear reactor spent fuel shipping configurations. The problem is further complicated when three dimensional effects, non-Boussinesq effects, turbulence, and heat transfer by radiation are accounted for in the overall balance of energy transfer. This study developed a capability to model and predict the heat transfer and flow characteristics in shipping cask configurations involving light water and fast reactor fuel assemblies. We explored the complex flow phenomena involved in these configurations to develop numerical prediction capabilities to obtain data for the design and/or thermal analysis of such shipping casks.

  13. BROWNIAN HEAT TRANSFER ENHANCEMENT IN THE TURBULENT REGIME

    Directory of Open Access Journals (Sweden)

    Suresh Chandrasekhar

    2016-08-01

    Full Text Available The paper presents convection heat transfer of a turbulent flow Al2O3/water nanofluid in a circular duct. The duct is a under constant and uniform heat flux. The paper computationally investigates the system’s thermal behavior in a wide range of Reynolds number and also volume concentration up to 6%. To obtain the nanofluid thermophysical properties, the Hamilton-Crosser model along with the Brownian motion effect are utilized. Then the thermal performance of the system with the nanofluid is compared to the conventional systems which use water as the working fluid. The results indicate that the use of nanofluid of 6% improves the heat transfer rate up to 36.8% with respect to pure water. Therefore, using the Al2O3/water nanofluid instead of water can be a great choice when better heat transfer is needed.

  14. Fluid dynamics at transition regions of enhanced heat transfer channels

    Science.gov (United States)

    Case, Jennifer C.; Pohlman, Nicholas A.

    2012-11-01

    Helical wire coil inserts are used to enhance heat transfer in high heat flux cooling channels. Past research using temperature probes has sufficiently proven that wire coils increase heat transfer by factors of three to five through the disruption of the boundary layer in the channels. The coils are passive devices that are inexpensive to manufacture and easily integrate into existing heat exchangers given the limited pressure drop they produce. Most of the fluid mechanics research in flow over helical coils has focused on the dynamics and vortex structure in fully developed regions rather than the short transition region where the enhanced heat transfer is often expected. Understanding how the development of the flow occurs over the axial length of the cooling channel will determine minimum dimensions necessary for enhanced heat transfer. Results of particle-shadow velocimetry (PSV) measurements report on the flow velocities and turbulence that occurs in the transition regions at the beginning of wire coil inserts. The ability to relate parameters such as flow rate, wire diameter, coil pitch, and the total tube length will increase fundamental knowledge and will allow for more efficient heat exchanger designs. Funding provided by NIU's Undergraduate Special Opportunities in Artistry & Research grant program.

  15. Experimental study for convective heat transfer of staged tube bundles

    International Nuclear Information System (INIS)

    The lack of potable water is one of the most serious problems the world is facing at present. SMART which is a 330 MWt advanced integral PWR, was developed by the KAERI for electricity generation and seawater desalination. SMART adopted a passive system to enhance its safety. The passive system can passively remove a decay heat from a reactor core to an emergency cooldown tank through the heat exchanger. Tube bundles of the heat exchanger, which is submerged in an emergency cooldown tank, transfer heat to an emergency cooldown tank by natural circulation. Heat transfer tests for the upward straight tube bundle were performed to confirm the capability of the SMART design under natural circulation conditions. The heat transfer at the tube bundle was affected by the fluid temperature in the emergency cooldown tank and the radial location of tube bundle. However, it had nearly the same value at the inlet region regardless of the tube location. The average heat transfer at the tube bundle was slightly higher than that at the single tube. (author)

  16. Heat transfer enhancement accompanying Leidenfrost state suppression at ultrahigh temperatures.

    Science.gov (United States)

    Shahriari, Arjang; Wurz, Jillian; Bahadur, Vaibhav

    2014-10-14

    The well-known Leidenfrost effect is the formation of a vapor layer between a liquid and an underlying hot surface. This insulating vapor layer severely degrades heat transfer and results in surface dryout. We measure the heat transfer enhancement and dryout prevention benefits accompanying electrostatic suppression of the Leidenfrost state. Interfacial electric fields in the vapor layer can attract liquid toward the surface and promote wetting. This principle can suppress dryout even at ultrahigh temperatures exceeding 500 °C, which is more than 8 times the Leidenfrost superheat for organic solvents. Robust Leidenfrost state suppression is observed for a variety of liquids, ranging from low electrical conductivity organic solvents to electrically conducting salt solutions. Elimination of the vapor layer increases heat dissipation capacity by more than 1 order of magnitude. Heat removal capacities exceeding 500 W/cm(2) are measured, which is 5 times the critical heat flux (CHF) of water on common engineering surfaces. Furthermore, the heat transfer rate can be electrically controlled by the applied voltage. The underlying science is explained via a multiphysics analytical model which captures the coupled electrostatic-fluid-thermal transport phenomena underlying electrostatic Leidenfrost state suppression. Overall, this work uncovers the physics underlying dryout prevention and demonstrates electrically tunable boiling heat transfer with ultralow power consumption.

  17. A characteristic correlation for heat transfer over serrated finned tubes

    International Nuclear Information System (INIS)

    Highlights: • Numerical investigation og heat transfer over serrated finned tubes. • Fins used on the outside of the tubes of a sodium to air heat exchanger. • RANS approach with RNG k–ε model to handle turbulence to handle closure. • Validation with in-house experiments. • Parametric studies culminating in a correlation for Nusselt number. - Abstract: Conjugate heat transfer from serrated fins on the outside of the tubes of a sodium to air tubular heat exchanger of sodium cooled fast breeder reactors, has been investigated by combined experimental and computational approaches. For the latter approach, the RNG k–ε model, which is applicable for a wide range of Reynolds numbers, was used for turbulence closure. The numerical model employed was validated by conducting in-house heat transfer experiments on a single serrated finned tube. A detailed parametric study has been carried out to investigate the effect of serration depth, fin pitch, fin height and fin thickness. In addition to pure cross flow, the effect of angle of attack of the flow on the heat transfer also has been studied. A correlation for determining the Nusselt number over a serrated finned tube has been proposed taking into account the serration parameters. This is expected to be useful in the design of sodium to air heat exchangers of fast breeder reactors

  18. Optimal configuration for a finite high-temperature source heat engine cycle with the complex heat transfer law

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The optimal configuration of a heat engine operating between a finite high-temperature source and an infinite low-temperature reservoir is derived by using finite time thermodynamics based on a complex heat transfer law,including Newtonian heat transfer law,linear phenomenological heat transfer law,radiative heat transfer law,Dulong-Petit heat transfer law,generalized convective heat transfer law and generalized radiative heat transfer law,q ∝(△T n). In the engine model the only irreversibility of finite rate heat transfer is considered. The optimal relation between the power output and efficiency of the heat engine is also derived by using an equivalent temperature of the hot reservoir. The obtained results include those obtained in recent literature and can provide some theoretical guidance for the designs of practical engines.

  19. Optimal configuration for a finite high-temperature source heat engine cycle with the complex heat transfer law

    Institute of Scientific and Technical Information of China (English)

    LI Jun; CHEN LinGen; SUN FengRui

    2009-01-01

    The optimal configuration of a heat engine operating between a finite high-temperature source and an infinite low-temperature reservoir is derived by using finite time thermodynamics based on a complex heat transfer law, including Newtonian heat transfer law, linear phenomenological heat transfer law, radiative heat transfer law, Dulong-Petit heat transfer law, generalized convective heat transfer law and generalized radiative heat transfer law, q∝ (△Tn). In the engine model the only irreversibility of finite rate heat transfer is considered. The optimal relation between the power output and efficiency of the heat engine is also derived by using an equivalent temperature of the hot reservoir. The obtained re-sults include those obtained in recent literature and can provide some theoretical guidance for the de-signs of practical engines.

  20. Numerical Analysis for Heat Transfer Characteristics of Elliptic Fin-Tube Heat Exchanger with Various Shapes

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jae Hwan; Yoon, Jun Kyu [Gachon Univ., Seongnam (Korea, Republic of)

    2013-04-15

    In this study, the characteristics of the heat transfer coefficient and pressure drop were numerically analyzed according to the axis ratio (A R), pitch, location of vortex generator, and bump phase of the tube surface about an elliptical fin-tube heat exchanger. The boundary condition for CAD analysis was decided as a tube surface temperature of 348 K and inlet air velocity of 1.5 m/s. RCM 7th turbulent model was chosen as the numerical analysis for the sensitivity level. The analysis results indicated that the A R and transverse pitch decreased whereas the heat transfer coefficient increased. On the other hand, there was little difference in the longitudinal pitch. Furthermore, the heat transfer rate was more favorable when the vortex generator was located in front of the tube. Also, the bump phase of the tube surface indicated that the pressure drop and heat transfer were more favorable with the circle type than with the serrated type.

  1. Particle shape effect on heat transfer performance in an oscillating heat pipe

    Directory of Open Access Journals (Sweden)

    Chen Hsiu-hung

    2011-01-01

    Full Text Available Abstract The effect of alumina nanoparticles on the heat transfer performance of an oscillating heat pipe (OHP was investigated experimentally. A binary mixture of ethylene glycol (EG and deionized water (50/50 by volume was used as the base fluid for the OHP. Four types of nanoparticles with shapes of platelet, blade, cylinder, and brick were studied, respectively. Experimental results show that the alumina nanoparticles added in the OHP significantly affect the heat transfer performance and it depends on the particle shape and volume fraction. When the OHP was charged with EG and cylinder-like alumina nanoparticles, the OHP can achieve the best heat transfer performance among four types of particles investigated herein. In addition, even though previous research found that these alumina nanofluids were not beneficial in laminar or turbulent flow mode, they can enhance the heat transfer performance of an OHP.

  2. High thermal power density heat transfer apparatus providing electrical isolation at high temperature using heat pipes

    Science.gov (United States)

    Morris, J. F. (Inventor)

    1985-01-01

    This invention is directed to transferring heat from an extremely high temperature source to an electrically isolated lower temperature receiver. The invention is particularly concerned with supplying thermal power to a thermionic converter from a nuclear reactor with electric isolation. Heat from a high temperature heat pipe is transferred through a vacuum or a gap filled with electrically nonconducting gas to a cooler heat pipe. If the receiver requires gratr thermal power density, geometries are used with larger heat pipe areas for transmitting and receiving energy than the area for conducting the heat to the thermionic converter. In this way the heat pipe capability for increasing thermal power densities compensates for the comparative low thermal power densities through the electrically nonconducting gap between the two heat pipes.

  3. Base fluid in improving heat transfer for EV car battery

    Science.gov (United States)

    Bin-Abdun, Nazih A.; Razlan, Zuradzman M.; Shahriman, A. B.; Wan, Khairunizam; Hazry, D.; Ahmed, S. Faiz; Adnan, Nazrul H.; Heng, R.; Kamarudin, H.; Zunaidi, I.

    2015-05-01

    This study examined the effects of base fluid (as coolants) channeling inside the heat exchanger in the process of the increase in thermal conductivity between EV car battery and the heat exchanger. The analysis showed that secondary cooling system by means of water has advantages in improving the heat transfer process and reducing the electric power loss on the form of thermal energy from batteries. This leads to the increase in the efficiency of the EV car battery, hence also positively reflecting the performance of the EV car. The present work, analysis is performed to assess the design and use of heat exchanger in increasing the performance efficiency of the EV car battery. This provides a preface to the use this design for nano-fluids which increase and improve from heat transfer.

  4. Heat transfer measurements and CFD simulations of an impinging jet

    Science.gov (United States)

    Petera, Karel; Dostál, Martin

    2016-03-01

    Heat transport in impinging jets makes a part of many experimental and numerical studies because some similarities can be identified between a pure impingement jet and industrial processes like, for example, the heat transfer at the bottom of an agitated vessel. In this paper, experimental results based on measuring the response to heat flux oscillations applied to the heat transfer surface are compared with CFD simulations. The computational cost of a LES-based approach is usually too high therefore a comparison with less computationally expensive RANS-based turbulence models is made in this paper and a possible improvement of implementing an anisotropic explicit algebraic model for the turbulent heat flux model is evaluated.

  5. Experimental evaluation of the heat transfer performance of sodium heated once through steam generator

    Energy Technology Data Exchange (ETDEWEB)

    Vinod, V., E-mail: vvinod@igcar.gov.in; Sivakumar, L.S.; Kumar, V.A. Suresh; Noushad, I.B.; Padmakumar, G.; Rajan, K.K.

    2014-07-01

    Highlights: • PFBR has eight units of steam generators to transfer 1250 MWt power. • A model steam generator was tested for its heat transfer performance. • The model steam generator transferred 6.05 MWt power at nominal conditions. • To produce steam at nominal conditions 91.7% of area is sufficient. • The steam generator design for PFBR is validated by experiments. - Abstract: Steam generator is a crucial component in a nuclear power plant because its availability is directly linked to the availability of heat transport system and thus the plant availability. In Prototype Fast Breeder Reactor (PFBR) which is in advanced stage of construction in India, eight number of steam generators each with a heat transfer capacity of 156 MWt transfers 1250 MW of heat from secondary sodium to the conventional steam/water system. The sodium heated once through steam generator with 23 m long seamless straight tubes produces super heated steam at 17.2 MPa pressure and 493 °C temperature. A model steam generator of 5.5 MWt power was tested in steam generator test facility of Indira Gandhi Center for Atomic research for validating the thermal hydraulic and mechanical design of the steam generator. The testing revealed the adequacy of heat transfer capability of the steam generator to transfer the intended power. From the experimental data it is estimated that the steam generator has 8.3% more tube surface area than the required to produce steam at nominal conditions. This paper gives the details of the model steam generator, heat transfer experiments conducted to validate the thermal design and the method for estimating the additional heat transfer area in once through type steam generator.

  6. An investigation of heat pipe meniscus heat transfer

    Science.gov (United States)

    Saaski, E. W.; Franklin, J. L.; Mccreight, C. R.

    1978-01-01

    The use of grooved evaporator surfaces in heat pipes has increased in popularity in the past few years primarily due to the reproducibility achievable with grooved walls and the relatively low costs of the threading or extrusion processes involved in their production. The present study combines both analyses and experiments on square groove geometries, with special emphasis on overcoming the limitations of earlier analyses with finite-difference methods and groove-fillet hydrodynamic simplifications. The groove fillet, which has in previous analyses been assumed constant in radius of curvature, is permitted to change in thickness and curvature consistent with hydrodynamics and heat loss from the groove. A model is developed for accurate determination of the effect of constriction resistance on groove performance. The grooved-surface tests to be conducted are briefly described which will provide data under closely controlled operation to allow comparison and verification of the analyses.

  7. The effect of plate heat exchanger’s geometry on heat transfer

    OpenAIRE

    Oana GIURGIU; Angela PLEŞA; Dan OPRUŢA

    2014-01-01

    The study presents further Computational Fluid Dynamics (CFD) numerical analysis for two models of plate heat exchangers. Comparatively was studied the influence of geometric characteristics of plates on the intensification process of heat exchange. For this purpose, it was examined the distribution of velocity and temperatures fields on active plate height. Heat transfer characteristics were analysed through the variation of mass flow on the primary heat agent.

  8. Simplified model of heat transfer at the indoor glazing surface with a blind heated by insolation

    Energy Technology Data Exchange (ETDEWEB)

    Roeleveld, D.; Naylor, D. [Ryerson Polytechnic Univ., Toronto, ON (Canada). Dept. of Mechanical and Industrial Engineering

    2007-07-01

    A simplified model to predict the radiative and convective heat transfer in complex fenestration systems was presented. Empirical correlations for free convection in an asymmetrically heated channel were used to develop the model at an indoor glazing adjacent to a louvered blind. An energy balance was performed at the blind surface using a mean blind temperature. Radiative heat exchange between the blind, window, and room was calculated using a 4-surface grey-diffuse model coupled to the convective heat transfer. The venetian blind were approximated as an impermeable vertical surface. Convection from the room-side of the blind was calculated using empirical correlations for free convection from an isothermal vertical flat plate. Spacing calculations were used to calculate the Rayleigh number and Nusselt number calculations. The window was heated to a temperature above ambient and the blinds were left unheated to simulate night-time conditions. Sample results were presented to illustrate the effect of blind slat angle, blind-to-wind spacing, and absorbed solar heat flux on the heat transfer at the window surface. The model gave poor results in terms of predicting the convective-radiative split of the heat transfer at the glazing surface. However, the total heat transfer rate to the room was predicted with a maximum error of approximately 20 per cent. It was concluded that the inaccuracies of the model stemmed from impermeable channel approximation. 9 refs., 5 tabs., 4 figs.

  9. Heat transfer performance of Al2O3/water nanofluids in a mini channel heat sink.

    Science.gov (United States)

    Dominic, A; Sarangan, J; Suresh, S; Sai, Monica

    2014-03-01

    The high density heat removal in electronic packaging is a challenging task of modern days. Finding compact, energy efficient and cost effective methods of heat removal is being the interest of researchers. In the present work, mini channel with forced convective heat transfer in simultaneously developing regime is investigated as the heat transfer coefficient is inversely proportional to hydraulic diameter. Mini channel heat sink is made from the aluminium plate of 30 mm square with 8 mm thickness. It has 15 mini channel of 0.9 mm width, 1.3 mm height and 0.9 mm of pitch. DI water and water based 0.1% and 0.2% volume fractions of Al2O3/water nanofluids are used as coolant. The flow rates of the coolants are maintained in such a way that it is simultaneously developing. Reynolds number is varied from 400 to 1600 and heat input is varied from 40 W to 70 W. The results showed that heat transfer coefficient is more than the heat transfer coefficient of fully developed flow. Also the heat transfer is more for nanofluids compared to DI water.

  10. Experimental investigation on Heat Transfer Performance of Annular Flow Path Heat Pipe

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Guk; Kim, Kyung Mo; Jeong, Yeong Shin; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of)

    2015-05-15

    Mochizuki et al. was suggested the passive cooling system to spent nuclear fuel pool. Detail analysis of various heat pipe design cases was studied to determine the heat pipes cooling performance. Wang et al. suggested the concept PRHRS of MSR using sodium heat pipes, and the transient performance of high temperature sodium heat pipe was numerically simulated in the case of MSR accident. The meltdown at the Fukushima Daiichi nuclear power plants alarmed to the dangers of station blackout (SBO) accident. After the SBO accident, passive decay heat removal systems have been investigated to prevent the severe accidents. Mochizuki et al. suggested the heat pipes cooling system using loop heat pipes for decay heat removal cooling and analysis of heat pipe thermal resistance for boiling water reactor (BWR). The decay heat removal systems for pressurized water reactor (PWR) were suggested using natural convection mechanisms and modification of PWR design. Our group suggested the concept of a hybrid heat pipe with control rod as Passive IN-core Cooling System (PINCs) for decay heat removal for advanced nuclear power plant. Hybrid heat pipe is the combination of the heat pipe and control rod. In the present research, the main objective is to investigate the effect of the inner structure to the heat transfer performance of heat pipe containing neutron absorber material, B{sub 4}C. The main objective is to investigate the effect of the inner structure in heat pipe to the heat transfer performance with annular flow path. ABS pellet was used instead of B{sub 4}C pellet as cylindrical structures. The thermal performances of each heat pipes were measured experimentally. Among them, concentric heat pipe showed the best performance compared with others. 1. Annular evaporation section heat pipe and annular flow path heat pipe showed heat transfer degradation. 2. AHP also had annular vapor space and contact cooling surface per unit volume of vapor was increased. Heat transfer

  11. Characterizations and Convective Heat Transfer Performance of Nanofluids

    Science.gov (United States)

    Yang, Yijun

    In recent years, many experimental studies have reported anomalous thermal conductivity enhancement and heat transfer increase in liquid suspensions of nanoparticles. In order to understand the mechanism of this phenomenon and examine the possible applications of nanofluids in heat transfer, the present study experimentally investigated thermal, rheological and heat transfer properties of nanofluids. In the first part of the work, several types of suspensions of near spherical nanoparticles and base fluids were examined. The results show that particles in suspensions without stabilizers agglomerate over time. The thermal conductivity and viscosity of a range of nanofluids were measured. These measurements indicate that the thermal conductivities of nanofluids are in the range predicted using effective medium theory. For example, Bruggeman predicted a 13% thermal conductivity increase for a 3.86% concentration of particles by volume; our experimental measurement indicated a 15% increase for this concentration. Viscosity measurements indicate that dispersions with larger agglomeration experience a larger increase in shear thinning. The results also suggest that finer particles and a narrow particle size distribution should result in a large viscosity increase. The second part of this study examined heat transfer performance of nanofluids in both laminar and transitional flows. Within experimental uncertainty, the non-dimensional heat transfer behavior of nanofluids in laminar flow region was the same as for base fluids without particles. The laminar flow data indicates that nanoparticles migrate from regions of high shear rate to regions of low shear rate, causing them to migrate away from the boundaries of pipe flow. For transitional flow (2,600 migrate away from the boundaries of pipe flow. For transitional flow (2,600pressure drop measurements showed that pumping power was increased by more than five times for the 2.6% concentration. An examination of the ratio of

  12. Stagnation Region Heat Transfer Augmentation at Very High Turbulence Levels

    Energy Technology Data Exchange (ETDEWEB)

    Ames, Forrest [University of North Dakota; Kingery, Joseph E. [University of North Dakota

    2015-06-17

    A database for stagnation region heat transfer has been extended to include heat transfer measurements acquired downstream from a new high intensity turbulence generator. This work was motivated by gas turbine industry heat transfer designers who deal with heat transfer environments with increasing Reynolds numbers and very high turbulence levels. The new mock aero-combustor turbulence generator produces turbulence levels which average 17.4%, which is 37% higher than the older turbulence generator. The increased level of turbulence is caused by the reduced contraction ratio from the liner to the exit. Heat transfer measurements were acquired on two large cylindrical leading edge test surfaces having a four to one range in leading edge diameter (40.64 cm and 10.16 cm). Gandvarapu and Ames [1] previously acquired heat transfer measurements for six turbulence conditions including three grid conditions, two lower turbulence aero-combustor conditions, and a low turbulence condition. The data are documented and tabulated for an eight to one range in Reynolds numbers for each test surface with Reynolds numbers ranging from 62,500 to 500,000 for the large leading edge and 15,625 to 125,000 for the smaller leading edge. The data show augmentation levels of up to 136% in the stagnation region for the large leading edge. This heat transfer rate is an increase over the previous aero-combustor turbulence generator which had augmentation levels up to 110%. Note, the rate of increase in heat transfer augmentation decreases for the large cylindrical leading edge inferring only a limited level of turbulence intensification in the stagnation region. The smaller cylindrical leading edge shows more consistency with earlier stagnation region heat transfer results correlated on the TRL (Turbulence, Reynolds number, Length scale) parameter. The downstream regions of both test surfaces continue to accelerate the flow but at a much lower rate than the leading edge. Bypass transition occurs

  13. Intensification of heat transfer between heat exchange surfaces at low RE values

    Directory of Open Access Journals (Sweden)

    Cernecky Jozef

    2015-09-01

    Full Text Available This contribution deals with the heat transfer parameters and pressure losses in heat exchange sets with six geometrical arrangements at low Re values (Re from 476 to 2926. Geometrical arrangements were characterised by the h/H ratio ranging from 0.2 to 1.0. The experiments used the holographic interferometry method in real time. This method enables visible and quantitative evaluations of images of temperature fields in the examined heat exchange. These images are used to determine the local and mean heat transfer parameters. The obtained data were used to determine the Colburn j-factor and the friction coefficient f. The measured values show that by using the profiled heat exchange surfaces and inserting regulating tubes, an intensification of heat transfer (increase of Num, and/or j was achieved. However, pressure losses recorded a significant increase (increase of f.

  14. Effect of Corrugation Angle on Heat Transfer Studies of Viscous Fluids in Corrugated Plate Heat Exchangers

    Directory of Open Access Journals (Sweden)

    B Sreedhara Rao

    2015-04-01

    Full Text Available In the present investigation heat transfer studies are conducted in corrugated plate heat exchangers (PHEs having three different corrugation angles of 300, 400 and 500. The plate heat exchangers have a length of 30 cm and a width of 10 cm with a spacing of 5 mm. Water and 20% glycerol solution are taken as test fluids and hot fluid is considered as heating medium. The wall temperatures are measured along the length of exchanger at seven different locations by means of thermocouples. The inlet and outlet temperatures of test fluid and hot fluid are measured by means of four more thermocouples. The experiments are conducted at a flowrate ranging from 0.5 lpm to 6 lpm with the test fluid. Film heat transfer coefficient and Nusselt number are determined from the experimental data. These values are compared with different corrugation angles. The effects of corrugation angles on heat transfer rates are discussed.

  15. Heat transfer and fluid flow in minichannels and microchannels

    CERN Document Server

    Kandlikar, Satish; Li, Dongqing; Colin, Stephane; King, Michael R

    2013-01-01

    Heat exchangers with minichannel and microchannel flow passages are becoming increasingly popular due to their ability to remove large heat fluxes under single-phase and two-phase applications. Heat Transfer and Fluid Flow in Minichannels and Microchannels methodically covers gas, liquid, and electrokinetic flows, as well as flow boiling and condensation, in minichannel and microchannel applications. Examining biomedical applications as well, the book is an ideal reference for anyone involved in the design processes of microchannel flow passages in a heat exchanger. Each chapter is accompan

  16. Effects of ridged walls on the heat transfer in a heated square duct

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, M.S.; Rodriguez, W.V. [Ciudad Universitaria, Mexico DF (Mexico). Instituto de Ingenieria, UNAM, Coordinacion de Ingenieria de Procesos Industrails y Ambientales, Circuito Interior; Issa, R. [LEGI-MOST, INPG, Grenoble (France)

    2005-05-01

    Turbulent flows in rectangular cooling ducts of rocket engine thrust chambers are characterized by secondary motions of Prandtl's first and second kinds. These secondary currents play a prominent part in heat transfer between the thrust chamber and the cooling gas conveyed in the duct. Previous numerical and experimental works reveal that attaching ridges on the walls of the duct causes the formation of new secondary flows of Prandtl's second kind. These new structures are likely to increase the heat transfer. The present study has investigated numerically, through large eddy simulations, the effects of different forms of ridges on heat transfer in straight square duct flows. (author)

  17. Gravity and Heater Size Effects on Pool Boiling Heat Transfer

    Science.gov (United States)

    Kim, Jungho; Raj, Rishi

    2014-01-01

    The current work is based on observations of boiling heat transfer over a continuous range of gravity levels between 0g to 1.8g and varying heater sizes with a fluorinert as the test liquid (FC-72/n-perfluorohexane). Variable gravity pool boiling heat transfer measurements over a wide range of gravity levels were made during parabolic flight campaigns as well as onboard the International Space Station. For large heaters and-or higher gravity conditions, buoyancy dominated boiling and heat transfer results were heater size independent. The power law coefficient for gravity in the heat transfer equation was found to be a function of wall temperature under these conditions. Under low gravity conditions and-or for smaller heaters, surface tension forces dominated and heat transfer results were heater size dependent. A pool boiling regime map differentiating buoyancy and surface tension dominated regimes was developed along with a unified framework that allowed for scaling of pool boiling over a wide range of gravity levels and heater sizes. The scaling laws developed in this study are expected to allow performance quantification of phase change based technologies under variable gravity environments eventually leading to their implementation in space based applications.

  18. HEAT TRANSFER ENHANCEMENT WITH NANOFLUIDS – A REVIEW

    Directory of Open Access Journals (Sweden)

    A.M. Hussein

    2013-06-01

    Full Text Available This paper presents a review of the studies undertaken on convection heat transfer with nanofluids. Initial studies were directed towards the determination of the properties of nanofluids, especially their thermal conductivity and viscosity. The studies indicate that thermal conductivity and viscosity increase with an increase in the concentration of the nanofluid. Experiments were conducted with different nanofluids, at various concentrations and temperature ranges, for the estimation of the heat transfer coefficient and friction factor for water-based nanofluids. All the studies confirmed enhancement of the heat transfer coefficient with an increase in concentration. The experimental ranges of temperature undertaken by the authors were different for different nanofluids. Certain studies with smaller particle sizes indicated an increase in heat transfer enhancements when compared with values obtained when using larger particle sizes. It is observed that the concentration of the nanofluid, the operating temperature, the particle size and shape, together with the material of the nanoparticle dispersed in the base liquid, have significant influence on the heat transfer coefficient. All the studies indicate a nominal increase in pressure drop.

  19. Heat Transfer Studies in Tube Banks with Integral Wake Splitters

    Directory of Open Access Journals (Sweden)

    Suzairin Md Seri

    2009-09-01

    Full Text Available This paper reports the findings from heat transfer studies with the presence of extended surfaces from tube banks which are termed as integral wake splitter plates. Employing this type of fins, investigations on heat transfer characteristics on a single circular tube as well as tube banks were carried out in cross flow of air in a rectangular duct. Experiments were carried out in the Reynolds number range 5 x 103 to 105 on a single cylinder of various splitter length-to-tube diameter ratios, L/D = 0.5, 1.0, 1.5 and 2.0. Further, tube banks consisting of 12 rows and 3 tubes per row in equilateral triangle arrangements with transverse pitch to diameter ratio, a = 2, were also investigated, the banks being made up of plain tubes or tubes with splitters. Heat transfer characteristics were studied for tubes with L/D = 0, 0.5 and 1.0 under constant heat flux conditions. Tube banks with L/D = 1.0 yielded the highest heat transfer rates. Findings from this work may be adopted to be utilized in various industrial applications such as economizer of a steam boiler, air-conditioning coils or waste heat recovery systems.

  20. Heat transfer and core neutronics considerations of the heat pipe cooled thermionic reactor

    Science.gov (United States)

    Determan, W. R.; Lewis, Brian

    1991-01-01

    The authors summarize the results of detailed neutronic and thermal-hydraulic evaluations of the heat pipe cooled thermionic (HPTI) reactor design, identify its key design attributes, and quantify its performance characteristics. The HPTI core uses modular, liquid-metal core heat transfer assemblies to replace the liquid-metal heat transport loop employed by in-core thermionic reactor designs of the past. The nuclear fuel, power conversion, heat transport, and heat rejection functions are all combined into a single modular unit. The reactor/converter assembly uses UN fuel pins to obtain a critical core configuration with in-core safety rods and reflector controls added to complete the subassembly. By thermally bonding the core heat transfer assemblies during the reactor core is coupled neutronically, thermally, and electrically into a modular assembly of individual power sources with cross-tied architecture. A forward-facing heat pipe radiator assembly extends from the reactor head in the shape of a frustum of a cone on the opposite side of the power system from the payload. Important virtues of the concept are the absence of any single-point failures and the ability of the core to effectively transfer the TFE waste heat load laterally to other in-core heat transfer assemblies in the event of multiple failures in either in-core and radiator heat pipes.

  1. Experimental Study of Heat Transfer Enhancement in a Heated Tube Caused by Wire-Coil and Rings

    OpenAIRE

    Saeed Vahidifar; M. Kahrom

    2015-01-01

    This study investigates heat transfer characteristics and the pressure drop of a horizontal double pipe heat exchanger with wire coil inserts. The amplification of convection heat transfer coefficient in the heat exchanger reduces the weight, size and cost of heat exchanger. One way of augmenting the heat transfer is to disturb the boundary layer. When an object is placed in a boundary layer, it affects the flow structure and alters the velocity and thermal profiles. The change is affected by...

  2. Heat transfer over a stretching surface with variable heat flux in micropolar fluids

    Energy Technology Data Exchange (ETDEWEB)

    Ishak, Anuar [School of Mathematical Sciences, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Nazar, Roslinda [School of Mathematical Sciences, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia)], E-mail: rmn72my@yahoo.com; Pop, Ioan [Faculty of Mathematics, University of Cluj, R-3400 Cluj, CP 253 (Romania)

    2008-01-28

    Heat transfer over a stretching surface with uniform or variable heat flux in micropolar fluids is investigated in this Letter. The boundary layer equations are transformed into ordinary differential equations, and then they are solved numerically by a finite-difference method. The effects of the material parameter K, Prandtl number Pr, velocity exponent parameter m, and heat flux exponent parameter n on the heat transfer characteristics are studied. It is found that the local Nusselt number is higher for micropolar fluids compared to Newtonian fluids.

  3. Heat Transfer and Pressure Drop Characteristics in Straight Microchannel of Printed Circuit Heat Exchangers

    Directory of Open Access Journals (Sweden)

    Jang-Won Seo

    2015-05-01

    Full Text Available Performance tests were carried out for a microchannel printed circuit heat exchanger (PCHE, which was fabricated with micro photo-etching and diffusion bonding technologies. The microchannel PCHE was tested for Reynolds numbers in the range of 100‒850 varying the hot-side inlet temperature between 40 °C–50 °C while keeping the cold-side temperature fixed at 20 °C. It was found that the average heat transfer rate and heat transfer performance of the countercurrrent configuration were 6.8% and 10%‒15% higher, respectively, than those of the parallel flow. The average heat transfer rate, heat transfer performance and pressure drop increased with increasing Reynolds number in all experiments. Increasing inlet temperature did not affect the heat transfer performance while it slightly decreased the pressure drop in the experimental range considered. Empirical correlations have been developed for the heat transfer coefficient and pressure drop factor as functions of the Reynolds number.

  4. Heat transfer investigations within dry spent fuel casks

    International Nuclear Information System (INIS)

    For studying the heat transfer processes and predicting the maximum spent fuel element surface temperature in a spent fuel assembly (SFA) transported in a dry cask, model experiments have been performed with a gas-filled model cask containing a simplified electrically heated model of a WWER-type SFA with 90 fuel elements. The temperature distribution of the SFA model is measured for different heat rates under vacuum in the model cask, and under normal pressure and overpressure (0.1 ... 0.7 MPa) for several cooling gases (air, argon, helium) in order to separately investigate heat transfer processes by radiation and convection/conduction. The measuring results were compared with the calculations. Computer programmes as well as simplified calculation methods for temperature prediction were developed and checked. The results obtained are also useful for thermal analyses in the field of the dry storage of SFAs in a cask or can. Specifically it was found that: The heat removal from the SFA can be considerably improved by increasing the internal cask pressure or by using helium as coolant. The radiant heat exchange in the SFA model can be calculated with sufficient accuracy by means of a computer programme developed in 1978 or by means of a simplified analytical representation shown in the final report. Both methods are directly applicable to the original SFA and useful in order to approximately calculate the maximum SFE surface temperature under normal pressure, if the fraction of heat transferred by radiation is allowed for. For the calculation of the total heat transfer a computer programme was developed and verified, which completely permits the temperature prediction of the SFA model in dependence on heat rate, type of gaseous coolant and coolant pressure. This computer programme can be directly applied to the original SFA for the calculation of the maximum SFE surface temperature

  5. 46 CFR 153.436 - Heat transfer fluids: compatibility with cargo.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Heat transfer fluids: compatibility with cargo. 153.436... Equipment Cargo Temperature Control Systems § 153.436 Heat transfer fluids: compatibility with cargo. A heat transfer fluid separated from the cargo by only one wall (for example, the heat transfer fluid in a...

  6. Flow impinging effect of critical heat flux and nucleation boiling heat transfer on a downward facing heating surface

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Huai-En; Chen, Mei-Shiue; Chen, Jyun-Wei; Lin, Wei-Keng; Pei, Bau-Shei [National Tsing Hua Univ., Taiwan (China). Inst. of Nuclear Engineering and Science

    2015-05-15

    Boiling heat transfer has a high heat removal capability in convective cooling. However, the heat removal capability of downward-facing boiling is significantly worse than that of upward-facing cases because of the confined buoyancy effect. This study was inspired by the conception of external reactor vessel cooling (ERVC) condition relevant to the in-vessel retention (IVR) design of Westinghouse AP1000 plant. In the present study, a small-scale test facility had been established to investigate the local phenomena of boiling heat transfer under a downward-facing horizontal heated surface with impinging coolant flow. In this study, the surface temperature, heat flux information and several specific scenes of bubbles are taken down throughout the boiling processes for detailed investigation. It is observed that bubbles are confined under the downward-facing heated surface, which causes a worse heat transfer rate and a lower critical heat flux (CHF) limit than upward-facing boiling. Nevertheless, the impinging coolant flow is found to disturb the thermal boundary layer formed by the heated surface, so the CHF increases with an increase of coolant flow rate. In addition, during nucleate boiling, it is discovered that the growth, combination and dissipation of bubbles induce turbulent wakes and therefore enhance the heat transfer capability.

  7. Investigation of methods to transfer heat from solar liquid-heating collectors to heat storage tanks. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Horel, J. D.; de Winter, F.

    1978-04-20

    A study was made of the methods available to transfer heat from the collector to the water storage tank in water heating systems. In counterflow heat exchangers used in double loop water heating systems, it was found to be more important to use a high water flowrate than a high heat transfer fluid flowrate. It was earlier thought to be best to have matched WC/sub p/ (mass flowrate-specific heat) products in the loops. It was shown in this study that the water WC/sub p/ product should be about twice as large as that of the heat transfer fluid. It was found that neither the heat exchanger type nor the size was very critical, so that very simple criteria were adequate in determining optimum heat exchanger size. It was found that there is a definite system size below which one should use a traced tank or a coil in a tank. Equations and optimization criteria were developed for traced tanks or tanks with coils. At present, there is no quantitative understanding of liquid to liquid (direct contact) heat exchangers, though they are clearly quite effective. Draindown systems are discussed, and several appendices are included on heat transfer and other characteristics of fluid and of equipment.

  8. Multi-scale analysis of collective behavior in 2D self-propelled particle models of swarms: An Advection-Diffusion with Memory Approach

    Science.gov (United States)

    Raghib, Michael; Levin, Simon; Kevrekidis, Ioannis

    2010-05-01

    2. The long-time behavior of the msd of the centroid walk scales linearly with time for naïve groups (diffusion), but shows a sharp transition to quadratic scaling (advection) for informed ones. These observations suggest that the mesoscopic variables of interest are the magnitude of the drift, the diffusion coefficient and the time-scales at which the anomalous and the asymptotic behavior respectively dominate transport, the latter being linked to the time scale at which the group reaches a decision. In order to estimate these summary statistics from the msd, we assumed that the configuration centroid follows an uncoupled Continuous Time Random Walk (CTRW) with smooth jump and waiting time pdf's. The mesoscopic transport equation for this type of random walk corresponds to an Advection-Diffusion Equation with Memory (ADEM). The introduction of the memory, and thus non-Markovian effects, is necessary in order to correctly account for the two time scales present. Although we were not able to calculate the memory directly from the individual-level rules, we show that it can estimated from a single, relatively short, simulation run using a Mittag-Leffler function as template. With this function it is possible to predict accurately the behavior of the msd, as well as the full pdf for the position of the centroid. The resulting ADEM is self-consistent in the sense that transport parameters estimated from the memory via a Kubo relationship coincide with those estimated from the moments of the jump size pdf of the associated CTRW for a large number of group sizes, proportions of informed individuals, and degrees of bias along the preferred direction. We also discuss the phase diagrams for the transport coefficients estimated from this method, where we notice velocity-precision trade-offs, where precision is a measure of the deviation of realized group orientations with respect to the informed direction. We also note that the time scale to collective decision is invariant

  9. Experimental study on heat transfer performance of pulsating heat pipe with refrigerants

    Science.gov (United States)

    Wang, Xingyu; Jia, Li

    2016-10-01

    The effects of different refrigerants on heat transfer performance of pulsating heat pipe (PHP) are investigated experimentally. The working temperature of pulsating heat pipe is kept in the range of 20°C-50°C. The startup time of the pulsating heat pipe with refrigerants can be shorter than 4 min, when heating power is in the range of 10W?100W. The startup time decreases with heating power. Thermal resistances of PHP with filling ratio 20.55% were obviously larger than those with other filling ratios. Thermal resistance of the PHP with R134a is much smaller than that with R404A and R600a. It indicates that the heat transfer ability of R134a is better. In addition, a correlation to predict thermal resistance of PHP with refrigerants was suggested.

  10. Investigation of Condensation Heat Transfer Correlation of Heat Exchanger Design in Secondary Passive Cooling System

    International Nuclear Information System (INIS)

    Recently, condensation heat exchangers have been studied for applications to the passive cooling systems of nuclear plants. To design vertical-type condensation heat exchangers in secondary passive cooling systems, TSCON (Thermal Sizing of CONdenser), a thermal sizing program for a condensation heat exchanger, was developed at KAERI (Korea Atomic Energy Research Institute). In this study, the existing condensation heat transfer correlation of TSCON was evaluated using 1,157 collected experimental data points from the heat exchanger of a secondary passive cooling system for the case of pure steam condensation. The investigation showed that the Shah correlation, published in 2009, provided the most satisfactory results for the heat transfer coefficient with a mean absolute error of 34.8%. It is suggested that the Shah correlation is appropriate for designing a condensation heat exchanger in TSCON

  11. Single-phase convective heat transfer in microchannels

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A comprehensive review is conducted on the investigations of the forced single-phase convective heat transfer in non-circular microchannels. The observations and results available in the open literature are inspected and compared for better understanding of the physical nature of the heat transfer performance and providing some lines of future research. There seems to be no unequivocal agreement in the understanding on the relative phenomena and the determination of the heat transfer coefficients in microchannels. The study on the interfacial phenomena and interaction at the interface will be the frontier in this area. Appropriate data reduction and the correlating parameters will be the cornerstone of comparability and evaluation for comprehensive investigations. The selection of correlating parameters will actually be the basis for the better understanding and description of new phenomena.

  12. Development of heat transfer package for JRR-3 thermohydrodynamic analysis

    International Nuclear Information System (INIS)

    This report presents a package of heat transfer correlations which were developed for the thermohydrodynamic analysis of the research reactor, JRR-3 at the Japan Atomic Energy Research Institute (JAERI). The applicability and validity of the heat transfer correlations were investigated through the comparison with available existing experiments under the elaborate considerations for key features of the JRR-3. The JRR-3 is a research reactor of about 20 MWt at a normal condition, whose core is cooled by the downflow at about 6 m/s under rather low pressure and temperature. The heat transfer package presented in this report are applicable for both downflow and upflow in a narrow rectangular subchannel at the normal operation, operational transients and accidents in the thermohydrodynamic analysis of the JRR-3. (author)

  13. Optimizing Structure of LED Light Bulb for Heat Transfer

    International Nuclear Information System (INIS)

    In this paper, in order to optimize the heat transfer structure of LED light bulb, the effects of various parameters on the temperature of the LED device were systematically analyzed, and a design guideline was shown. Although LED device has become popular due to its high-efficiency and long life, the design issues on the heat transfer structure of LED light bulbs has still remained. Because the original efficiency and life of the LED device can not be obtained due to the local temperature rise of LED element and the surrounding polymer molding material. Therefore, heat transfer analysis by finite element method was conducted systematically by changing parameters such as the shape, number and thickness of the radiating fin of the LED. As a result, advantage of open type structure was shown, and the proper design guidance for the structure of the fin shape was obtained.

  14. Fundamental Research on Convective Heat Transfer in Electronic Cooling Technology

    Institute of Scientific and Technical Information of China (English)

    C.F.Ma; Y.P.Gan; 等

    1992-01-01

    During the past six years comprehensive research programs have been conducted at the Beijing Polytechnic University to provide a better understanding of heat transfer characteristics of existing and condidate cooling techniques for electronic and microelestanding of heat transfer characteristics of existing and condidate cooling techniques for electronic and microleectronic devices.This paper provides a review and summary of the programs with emphasis on direct liquid cooling.Included in this review are the heat transfer investigations related to the following cooling modes:liquid free,mixed and forced convection.liquid jet impingement,flowing liquid film cooling,pool boiling,spray cooling,foreign gas jet impingement in liquid pool,and forced convection air-cooling.

  15. Experimental Investigation on Heat Transfer Enhancement in Composite Porous Media

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The method of composite porous media with mini-longitudinal channels at the surface and with beads packing between plates was put foward to improve the integated performance of flow and heat transfer in porous media. The experimental results in the corresponding porous media were reported and analyzed. The experiments indicate that with proper matching of the particle diameter dp, the mini-channel width w, the channel depth d and the distance between plates δr the heat transfer in the composite porois media is enhanced and flow resistence reduced compared with those of no mini-longitudinal channels at the surface. So this is an effective method to improve the integrated performance of flow and heat transfer in porous media.

  16. Convective heat transfer around vertical jet fires: an experimental study.

    Science.gov (United States)

    Kozanoglu, Bulent; Zárate, Luis; Gómez-Mares, Mercedes; Casal, Joaquim

    2011-12-15

    The convection heat transfer phenomenon in vertical jet fires was experimentally analyzed. In these experiments, turbulent propane flames were generated in subsonic as well as sonic regimes. The experimental data demonstrated that the rate of convection heat transfer increases by increasing the length of the flame. Assuming the solid flame model, the convection heat transfer coefficient was calculated. Two equations in terms of adimensional numbers were developed. It was found out that the Nusselt number attains greater values for higher values of the Rayleigh and Reynolds numbers. On the other hand, the Froude number was analyzed only for the subsonic flames where the Nusselt number grows by this number and the diameter of the orifice. PMID:21962859

  17. Radiative heat transfer by the Monte Carlo method

    CERN Document Server

    Hartnett †, James P; Cho, Young I; Greene, George A; Taniguchi, Hiroshi; Yang, Wen-Jei; Kudo, Kazuhiko

    1995-01-01

    This book presents the basic principles and applications of radiative heat transfer used in energy, space, and geo-environmental engineering, and can serve as a reference book for engineers and scientists in researchand development. A PC disk containing software for numerical analyses by the Monte Carlo method is included to provide hands-on practice in analyzing actual radiative heat transfer problems.Advances in Heat Transfer is designed to fill the information gap between regularly scheduled journals and university level textbooks by providing in-depth review articles over a broader scope than journals or texts usually allow.Key Features* Offers solution methods for integro-differential formulation to help avoid difficulties* Includes a computer disk for numerical analyses by PC* Discusses energy absorption by gas and scattering effects by particles* Treats non-gray radiative gases* Provides example problems for direct applications in energy, space, and geo-environmental engineering

  18. Forced convection heat transfer to air/water vapor mixtures

    Science.gov (United States)

    Richards, D. R.; Florschuetz, L. W.

    1986-01-01

    Heat transfer coefficients were measured using both dry air and air/water vapor mixtures in the same forced convection cooling test rig (jet array impingement configurations) with mass ratios of water vapor to air up to 0.23. The primary objective was to verify by direct experiment that selected existing methods for evaluation of viscosity and thermal conductivity of air/water vapor mixtures could be used with confidence to predict heat transfer coefficients for such mixtures using as a basis heat transfer data for dry air only. The property evaluation methods deemed most appropriate require as a basis a measured property value at one mixture composition in addition to the property values for the pure components.

  19. Combination study of operation characteristics and heat transfer mechanism for pulsating heat pipe

    International Nuclear Information System (INIS)

    Pulsating heat pipe (PHP) is becoming a promising heat transfer device for the application like electronics cooling. However, due to its complicated operation mechanism, the heat transfer properties of the PHP still have not been fully understood. This study experimentally investigated on a closed-loop PHP charged with four types of working fluids, deionized water, methanol, ethanol and acetone. Combined with the visualization experimental results from the open literature, the operation characteristics and the corresponding heat transfer mechanisms for different heat inputs (5 W up to 100 W) and different filling ratios (20% up to 95%) have been presented and elaborated. The results show that heat-transfer mechanism changed with the transition of operation patterns; before valid oscillation started, the thermal resistance was not like that described in the open literature where it decreased almost linearly, but would rather slowdown descending or even change into rise first before further decreasing (i.e. an inflection point existed); when the heat input further increased to certain level, e.g. 65 W or above, there presented a limit of heat-transfer performance which was independent of the types of working fluids and the filling ratios, but may be related to the structure, the material, the size and the inclination of the PHP. - Highlights: •The thermal mechanisms altered accordingly with the operation features in the PHP. •Unlike conventional heat pipes, continuous temperature soaring would not happen in the PHP. •Before the oscillation start-up, there existed a heat-transfer limit for the relatively stagnated flow in the PHP. •A limit of thermal performance existed in the PHP at relatively high heat inputs

  20. Fluid flow and heat transfer at supercritical pressure

    International Nuclear Information System (INIS)

    The feature of fluids at supercritical pressure which makes them of special interest is, continuous transition from a liquid-like to a gas-like state with increase of temperature at constant pressure accompanied by variation of properties over a particular band of temperature within which the specific heat reaches its peak value (the pseudocritical point). At pressures just above the critical value this band of temperature is very narrow, the peak is high and it is very sharp. As a consequence of the extreme dependence on temperature of fluid properties under such conditions the equations which govern fluid flow and heat transfer are very non-linear and strongly inter-linked. Thus, some of the simplifying concepts and assumptions which are widely employed in the case heat transfer to conventional fluids (such as fully developed flow and negligible influence of buoyancy and thermal expansion) no longer apply. Non-uniformity of density, can lead to important effects on the mean flow and turbulence fields and the effectiveness of heat transfer. When the author and his colleagues commenced work on supercritical pressure fluids almost fifty years ago they were very conscious of these challenges. Therefore, after carrying out a careful review of the literature they made the decision to begin with a novel experiment specifically designed to include effects of strong non-uniformity of fluid properties on heat transfer without involving the particular complications identified above. This very challenging experiment on stably-stratified turbulent flow of carbon dioxide at slightly supercritical pressure between two horizontal planes, with the upper one heated and the lower one cooled in such a way that there was no net heat transfer, yielded interesting results and some evidence of a special mechanism for enhancement of turbulent mixing. Non-dimensional representation of the governing equations and boundary conditions for flow and heat transfer in vertical tubes of fluids

  1. Optimal Allocation of Heat Exchanger Inventory Associated with Fixed Power Output or Fixed Heat Transfer Rate Input

    Directory of Open Access Journals (Sweden)

    M. Costea

    2002-03-01

    Full Text Available The purpose of this study is to determine the optimal distribution of the heat transfer surface area or conductance among the Stirling engine heat exchangers when the minimum of the total heat transfer surface area of the heat exchangers is sought. The optimization procedure must fulfill one of the following constraints: (1 fixed power output of the engine, (2 fixed heat transfer rate available at the source, or (3 fixed power output and heat transfer rate at the source. Internal and external irreversibilities of the Stirling engine are considered. An analytic approach, when heat transfer occurs at small temperature differences at the heat reservoirs, provides several restrictions with regard to variables of the model. A sensitivity analysis of the minimum of the total heat transfer surface area of the heat exchangers with respect to these variables and parameters is presented. The results show optimal temperatures of the working fluid and optimum allocation of heat exchanger inventory.

  2. Heat transfer in vapour-liquid flow of carbon dioxide

    International Nuclear Information System (INIS)

    During the last decade a number of studies of boiling heat transfer in carbon dioxide notably increase. As a field of CO2 practical using corresponds to high reduced pressures, and a majority of available experimental data on CO2 flow boiling even in submillimetric channels relate to turbulent liquid flow regimes, a possibility arises to develop sufficiently general method for HTC predicting. Under the above conditions nucleate boiling occurs up to rather high flow quality, even in annular flow regime due to extremely small size of an equilibrium vapour bubble. This conclusion is in agreement with the available experimental data. The predicting equation for nucleate boiling heat transfer developed by the present author in 1988 is valid for any nonmetallic liquid. A contribution of forced convection in heat transfer is calculated according to the Petukhov et al. equation with correction factor, which accounted for an effect of velocity increase due to evaporation. This effect can be essential at relatively small heat fluxes and rather high mass flow rates. The Reynolds analogy and homogeneous model are used in order to account for the convective heat transfer augmentation in two-phase flow. Due to low ratio of liquid and vapour densities at high reduced pressures the homogeneous approximation of two-phase flow seems to be warranted. A total heat transfer coefficient is calculated as an interpolated value of boiling and convective HTCs. The experimental data on CO2 flow boiling related to regimes before heated wall dryout incipience are in rather good agreement with the calculations. (author)

  3. Heat transfer in vapour-liquid flow of carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Yagov, V.V. [Moscow Power Engineering Institute (Technical University), Moscow (Russian Federation)], e-mail: YagovVV@mpei.ru

    2009-07-01

    During the last decade a number of studies of boiling heat transfer in carbon dioxide notably increase. As a field of CO{sub 2} practical using corresponds to high reduced pressures, and a majority of available experimental data on CO{sub 2} flow boiling even in submillimetric channels relate to turbulent liquid flow regimes, a possibility arises to develop sufficiently general method for HTC predicting. Under the above conditions nucleate boiling occurs up to rather high flow quality, even in annular flow regime due to extremely small size of an equilibrium vapour bubble. This conclusion is in agreement with the available experimental data. The predicting equation for nucleate boiling heat transfer developed by the present author in 1988 is valid for any nonmetallic liquid. A contribution of forced convection in heat transfer is calculated according to the Petukhov et al. equation with correction factor, which accounted for an effect of velocity increase due to evaporation. This effect can be essential at relatively small heat fluxes and rather high mass flow rates. The Reynolds analogy and homogeneous model are used in order to account for the convective heat transfer augmentation in two-phase flow. Due to low ratio of liquid and vapour densities at high reduced pressures the homogeneous approximation of two-phase flow seems to be warranted. A total heat transfer coefficient is calculated as an interpolated value of boiling and convective HTCs. The experimental data on CO{sub 2} flow boiling related to regimes before heated wall dryout incipience are in rather good agreement with the calculations. (author)

  4. Active latent heat storage with a screw heat exchanger - experimental results for heat transfer and concept for high pressure steam

    Science.gov (United States)

    Zipf, Verena; Willert, Daniel; Neuhäuser, Anton

    2016-05-01

    An innovative active latent heat storage concept was invented and developed at Fraunhofer ISE. It uses a screw heat exchanger (SHE) for the phase change during the transport of a phase change material (PCM) from a cold to a hot tank or vice versa. This separates heat transfer and storage tank in comparison to existing concepts. A test rig has been built in order to investigate the heat transfer coefficients of the SHE during melting and crystallization of the PCM. The knowledge of these characteristics is crucial in order to assess the performance of the latent heat storage in a thermal system. The test rig contains a double shafted SHE, which is heated or cooled with thermal oil. The overall heat transfer coefficient U and the convective heat transfer coefficient on the PCM side hPCM both for charging and discharging have been calculated based on the measured data. For charging, the overall heat transfer coefficient in the tested SHE was Uch = 308 W/m2K and for discharging Udis = 210 W/m2K. Based on the values for hPCM the overall heat transfer coefficients for a larger SHE with steam as heat transfer fluid and an optimized geometry were calculated with Uch = 320 W/m2K for charging and Udis = 243 W/m2K for discharging. For pressures as high as p = 100 bar, an SHE concept has been developed, which uses an organic fluid inside the flight of the SHE as working media. With this concept, the SHE can also be deployed for very high pressure, e.g. as storage in solar thermal power plants.

  5. Experimental observation for the heat transfer in fluids

    International Nuclear Information System (INIS)

    The heat transfer that occurs into a cavity with a relation 2/1 with constant heat supply in a vertical wall and on the opposed wall at constant temperature is studied. The energy transfer process causes the heat convection that occurs mainly due to energy transport that is present by means of the motion of the fluid itself. Also the heat conduction process by molecular exchange is obtained. During the fluid particle displacements, the high energy regions take contact with the low energy regions resulting by this way the free convection by density differences. The flow can be followed by means of tracers and the changes of density can be registered by optical techniques like interferometry. (Author)

  6. Modeling and simulation of heat transfer for glass bulb mold

    Institute of Scientific and Technical Information of China (English)

    ZHOU Huamin; LI Dequn

    2005-01-01

    Cooling system design in glass bulb pressing operation can greatly affect the productivity and the quality of the final product. The concept of cyclic-averaged steady temperature field is proposed in modeling. Heat transfer in the mold region is considered to be a cyclic-steady, three-dimensional conduction; heat transfer within the glass melt region is treated as a transient, one-dimensional conduction; heat exchange between the cooling system surface and coolant is treated as a steady heat convection. A hybrid model consisting of a three-dimensional boundary element method for the mold region and a finite-difference method with a variable mesh for the melt region is used for numerical simulation. Compared with the experimental data, the numerical model developed here is computationally efficient and sufficiently accurate.

  7. Stability of superconductors cooled internally by He II heat transfer

    International Nuclear Information System (INIS)

    He II (superfluid helium) is a unique fluid which offers substantial advantages when utilized as a coolant for large superconducting magnets. One of the principal advantages of He II is its extremely high heat conductivity which allows rapid diffusion of localized transient heating. The present paper reviews the processes involved in transient heat transfer in He II. Emphasis is placed on those processes which are particularly relevant to the stability of superconducting magnets. The implications that these processes have on predicting the performance of actual magnet systems are also discussed. A recent experiment involving composite superconductors cooled with He II demonstrates the importance of transient heat transfer for obtaining stability in these systems. (author)

  8. Heat transfer characteristics of the fluidized bed through the annulus

    Science.gov (United States)

    Shedid, Mohamed H.; Hassan, M. A. M.

    2016-09-01

    The annular fluidized bed can be regarded as a promising technique for waste heat recovery applications. This study investigates on the determination of steady state values of the average heat transfer on the surface of the inner tube under different operating conditions that include: (1) input heat flux ranging from 557 to 1671 W/m2, (2) superficial air velocity ranging between 0.12 and 0.36 m/s, (3) initial bed height ranging from 25 to 55 cm, (4) ratio of the inner to the outer diameters ranging from 1/6 to 1/2 and Kaolin particle diameters ranging between 282 and 550 µm. The average values of the heat transfer coefficient along the inner tube (consisting of the fluidized and free board sections) are also deduced. An empirical correlation for calculating the Nusselt number is obtained for the given parameters and ranges.

  9. Heat transfer characteristics of the fluidized bed through the annulus

    Science.gov (United States)

    Shedid, Mohamed H.; Hassan, M. A. M.

    2015-11-01

    The annular fluidized bed can be regarded as a promising technique for waste heat recovery applications. This study investigates on the determination of steady state values of the average heat transfer on the surface of the inner tube under different operating conditions that include: (1) input heat flux ranging from 557 to 1671 W/m2, (2) superficial air velocity ranging between 0.12 and 0.36 m/s, (3) initial bed height ranging from 25 to 55 cm, (4) ratio of the inner to the outer diameters ranging from 1/6 to 1/2 and Kaolin particle diameters ranging between 282 and 550 µm. The average values of the heat transfer coefficient along the inner tube (consisting of the fluidized and free board sections) are also deduced. An empirical correlation for calculating the Nusselt number is obtained for the given parameters and ranges.

  10. Fast heat transfer calculations in supercritical fluids versus hydrodynamic approach

    CERN Document Server

    Nikolayev, Vadim; Garrabos, Y; Beysens, D

    2016-01-01

    This study investigates the heat transfer in a simple pure fluid whose temperature is slightly above its critical temperature. We propose a efficient numerical method to predict the heat transfer in such fluids when the gravity can be neglected. The method, based on a simplified thermodynamic approach, is compared with direct numerical simulations of the Navier-Stokes and energy equations performed for CO2 and SF6. A realistic equation of state is used to describe both fluids. The proposed method agrees with the full hydrodynamic solution and provides a huge gain in computation time. The connection between the purely thermodynamic and hydrodynamic descriptions is also discussed.

  11. Wall-to-bed heat transfer in circulating fluidized beds

    Energy Technology Data Exchange (ETDEWEB)

    Fox, W.B.; Grewal, N.S.; Moen, D.A. [Univ. of North Dakota, Grand Forks, ND (United States). Mechanical Engineering Dept.

    1999-05-01

    Circulating fluidized beds (CFBs) have become increasingly important in recent years for coal combustion and gas-solid reactions. Here, heat transfer from the wall of a circulating fluidized bed to the fast bed suspension has been investigated for several materials. The range of investigation includes dense and dilute phase fast fluidization and pneumatic transport. The overall heat transfer coefficient was found to be a function mainly of cross-sectional average suspension density. Effects of superficial velocity and solids mass flux were obscured by their interrelationship to the suspension density. Two models from the literature are evaluated using present and published data.

  12. Advanced Computational Methods for Thermal Radiative Heat Transfer.

    Energy Technology Data Exchange (ETDEWEB)

    Tencer, John; Carlberg, Kevin Thomas; Larsen, Marvin E.; Hogan, Roy E.,

    2016-10-01

    Participating media radiation (PMR) in weapon safety calculations for abnormal thermal environments are too costly to do routinely. This cost may be s ubstantially reduced by applying reduced order modeling (ROM) techniques. The application of ROM to PMR is a new and unique approach for this class of problems. This approach was investigated by the authors and shown to provide significant reductions in the computational expense associated with typical PMR simulations. Once this technology is migrated into production heat transfer analysis codes this capability will enable the routine use of PMR heat transfer in higher - fidelity simulations of weapon resp onse in fire environments.

  13. Dropwise condensation heat transfer of steam on a polytethefluoroethylene film

    Science.gov (United States)

    Ma, Xuehu; Tao, Bai; Chen, Jiabin; Xu, Dunqi; Lin, Jifang

    2001-07-01

    Excellent dropwise condensation of steam was observed on a polytethefluoroethylene (PTFE) coated plate. The experimental results indicated that the condensation heat transfer performance was increased by 30 to 47 times when compared with film condensation values at the same surface subcooling degrees. The random fluctuation of the surface temperature was resulted from the high thermal conductivity of the copper substrate and the ultra thin coated polymer film with lower surface free energy. The effect of the steam temperature for pressures near atmospheric pressure on the dropwise condensation heat transfer characteristics was investigated as well.

  14. Dropwise Condensation Heat Transfer of Steam on a Polytethefluoroethylene Film

    Institute of Scientific and Technical Information of China (English)

    Ma Xuehu; Tao Bai; Chen Jiabin; Xu Dunqi; Lin Jifang

    2001-01-01

    Excellent dropwise condensation of steam was observed on a polytethefluoroethylene (PTFE) coated plate. The experimental results indicated that the condensation heat transfer performance was increased by 30 to 47 times when compared with film condensation values at the same surface subcooling degrees. The random fluctuation of the surface temperature was resulted from the high thermal conductivity of the copper substrate and the ultra thin coated polymer film with lower surface free energy. The effect of the steam temperature for pressures near atmospheric pressure on the dropwise condensation heat transfer characteristics was investigated as well.

  15. Fluid flow and heat transfer in rotating porous media

    CERN Document Server

    Vadasz, Peter

    2016-01-01

    This Book concentrates the available knowledge on rotating fluid flow and heat transfer in porous media in one single reference. Dr. Vadasz develops the fundamental theory of rotating flow and heat transfer in porous media and introduces systematic classification and identification of the relevant problems. An initial distinction between rotating flows in isothermal heterogeneous porous systems and natural convection in homogeneous non-­‐isothermal porous systems provides the two major classes of problems to be considered. A few examples of solutions to selected problems are presented, highlighting the significant impact of rotation on the flow in porous media.

  16. Radiative heat transfer between nanoparticles enhanced by intermediate particle

    Directory of Open Access Journals (Sweden)

    Yanhong Wang

    2016-02-01

    Full Text Available Radiative heat transfer between two polar nanostructures at different temperatures can be enhanced by resonant tunneling of surface polaritons. Here we show that the heat transfer between two nanoparticles is strongly varied by the interactions with a third nanoparticle. By controlling the size of the third particle, the time scale of thermalization toward the thermal bath temperature can be modified over 5 orders of magnitude. This effect provides control of temperature distribution in nanoparticle aggregation and facilitates thermal management at nanoscale.

  17. Measurement of capsule heat transfer gaps using neutron radiography

    Science.gov (United States)

    Thaler, L. A.

    1974-01-01

    A technique is described for measuring heat transfer gaps from neutron radiographs. The method involves scanning the radiograph negative with a recording microdensitometer to obtain a trace of the optical density variation across the diameter of the capsule. The optical density change representing the gap is measured from the microdensitometer trace and related to the physical measurement. Heat transfer gaps from 0.061 to 0.178 cm have been determined by this technique and agree with preassembly physical measurements to plus or minus 0.005 cm.

  18. Heat transfer education : Keeping it relevant and vibrant.

    Energy Technology Data Exchange (ETDEWEB)

    Khounsary, A. M.

    1998-08-14

    The motivation for a fresh look at heat transfer education, both in content and in methodology, is generated by a number of trends in engineering practice. These include the increasing demand for engineers with interdisciplinary skills, rapid integration of technology, emergence of computerized and interactive problem-solving tools, shortening time of concept-to-market, availability of new technologies, and an increasing number of new or redesigned products and processes in which heat transfer plays a part. Examination of heat transfer education in this context can be aided by considering the changes, both qualitatively and quantitatively, in the student, educator, and researcher populations, employment opportunities, in the needs of corporations, government, industry, and universities, and in the relevant technical problems and issues of the day. Such an overview provides the necessary background for charting a response to the difficult question of how to maintain excellence and continuity in heat transfer education in the face of rapid, widespread, and complex changes. The present paper addresses how to make heat transfer education more relevant and stimulating. This paper represents a written summary of a 1996 panel discussion at the 1996 International Mechanical Engineering Conference and Exhibition (IMECE) of the American Society of Mechanical Engineers (ASME) in Atlanta, Georgia, on ''Heat Transfer Education: Keeping it Relevant and Vibrant,'' with significant expansion and amplification by the authors and the panelists in the 1997-98 period. The consensus of the participants is that the steps necessary to ensure the desired outcome in heat transfer education should include: (1) a better understanding of the interaction between the student, course content, and market needs; (2) an appreciation of the need in multidisciplinary industrial environments for engineers trained with a broad background: (3) a revision of the introductory heat

  19. Computation of Radiation Heat Transfer in Aeroengine Combustors

    Science.gov (United States)

    Patankar, S. V.

    1996-01-01

    In this report the highlights of the research completed for the NASA are summarized. This research has been completed in the form of two Ph.D. theses by Chai (1994) and Parthasarathy (1996). Readers are referred to these theses for a complete details of the work and lists of references. In the following sections, first objectives of this research are introduced, then the finite-volume method for radiation heat transfer is described, and finally computations of radiative heat transfer in non-gray participating media is presented.

  20. Numerical prediction of flow, heat transfer, turbulence and combustion

    CERN Document Server

    Spalding, D Brian; Pollard, Andrew; Singhal, Ashok K

    1983-01-01

    Numerical Prediction of Flow, Heat Transfer, Turbulence and Combustion: Selected Works of Professor D. Brian Spalding focuses on the many contributions of Professor Spalding on thermodynamics. This compilation of his works is done to honor the professor on the occasion of his 60th birthday. Relatively, the works contained in this book are selected to highlight the genius of Professor Spalding in this field of interest. The book presents various research on combustion, heat transfer, turbulence, and flows. His thinking on separated flows paved the way for the multi-dimensional modeling of turbu

  1. Heat Transfer Analysis for Peristaltic Mechanism in Variable Viscosity Fluid

    Institute of Scientific and Technical Information of China (English)

    T.Hayat; F.M.Abbasi; Awatif A.Hendi

    2011-01-01

    An analysis is carried out for a peristaltic flow of a third-order fluid with heat transfer and variable viscosity when no-slip condition does not hold. Perturbation solution is discussed and a comparative study between the cases of constant and variable viscosities is presented and analyzed.%@@ An analysis is carried out for a peristaltic flow of a third-order fluid with heat transfer and variable viscosity when no-slip condition does not hold.Perturbation solution is discussed and a comparative stuity between the cases of constant and variable viscosities is presented and analyzed.

  2. Advanced Computational Methods for Thermal Radiative Heat Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Tencer, John; Carlberg, Kevin Thomas; Larsen, Marvin E.; Hogan, Roy E.,

    2016-10-01

    Participating media radiation (PMR) in weapon safety calculations for abnormal thermal environments are too costly to do routinely. This cost may be s ubstantially reduced by applying reduced order modeling (ROM) techniques. The application of ROM to PMR is a new and unique approach for this class of problems. This approach was investigated by the authors and shown to provide significant reductions in the computational expense associated with typical PMR simulations. Once this technology is migrated into production heat transfer analysis codes this capability will enable the routine use of PMR heat transfer in higher - fidelity simulations of weapon resp onse in fire environments.

  3. Simulation of Single Crystal Growth: Heat and Mass Transfer

    CERN Document Server

    Zhmakin, A I

    2015-01-01

    The heat transfer (conductive, convective, radiative) and the related problems (the unknown phase boundary fluid/crystal, the assessment of the quality of the grown crystals) encountered in the melt and vapour growth of single crystal as well as the corresponding macroscopic models are reviewed. The importance of the adequate description of the optical crystal properties (semitransparency, absorption, scattering, refraction, diffuse and specular reflecting surfaces) and their effect on the heat transfer is stressed. The problems of the code verification and validation are discussed; differences between the crystal growth simulation codes intended for the research and for the industrial applications are indicated.

  4. Explicit Numerical Modeling of Heat Transfer in Glacial Channels

    Science.gov (United States)

    Jarosch, A. H.; Zwinger, T.

    2015-12-01

    Turbulent flow and heat transfer of water in englacial channels is explicitly modelelled and the numerical results are compared to the most commonly used heat transfer parameterization in glaciology, i.e. the Dittus-Boelter equation. The three-dimensional flow is simulated by solving the incompressible Navier-Stokes equations utilizing a variational multiscale method (VMS) turbulence model and the finite-element method (i.e. Elmer-FEM software), which also solves the heat equation. By studying a wide range of key parameters of the system, e.g. channel diameter, Reynolds number, water flux, water temperature and Darcy-Weisbach wall roughness (which is explicitly represented on the wall geometry), it is found that the Dittus-Boelter equation is inadequate for glaciological applications and a new, highly suitable heat transfer parameterization for englacial/subglacial channels will be presented. This new parameterization utilizes a standard combination of dimensionless numbers describing the flow and channel (i.e. Reynolds number, Prandtl number and Darcy-Weisbach roughness) to predict a suitable Nusselt number describing the effective heat transfer and thus can be readily used in existing englacial/subglacial hydrology models.

  5. Enhanced boiling heat transfer in horizontal test bundles

    Energy Technology Data Exchange (ETDEWEB)

    Trewin, R.R.; Jensen, M.K.; Bergles, A.E.

    1994-08-01

    Two-phase flow boiling from bundles of horizontal tubes with smooth and enhanced surfaces has been investigated. Experiments were conducted in pure refrigerant R-113, pure R-11, and mixtures of R-11 and R-113 of approximately 25, 50, and 75% of R-113 by mass. Tests were conducted in two staggered tube bundles consisting of fifteen rows and five columns laid out in equilateral triangular arrays with pitch-to-diameter ratios of 1.17 and 1.5. The enhanced surfaces tested included a knurled surface (Wolverine`s Turbo-B) and a porous surface (Linde`s High Flux). Pool boiling tests were conducted for each surface so that reference values of the heat transfer coefficient could be obtained. Boiling heat transfer experiments in the tube bundles were conducted at pressures of 2 and 6 bar, heat flux values from 5 to 80 kW/m{sup 2}s, and qualities from 0% to 80%, Values of the heat transfer coefficients for the enhanced surfaces were significantly larger than for the smooth tubes and were comparable to the values obtained in pool boiling. It was found that the performance of the enhanced tubes could be predicted using the pool boiling results. The degradation in the smooth tube heat transfer coefficients obtained in fluid mixtures was found to depend on the difference between the molar concentration in the liquid and vapor.

  6. Forced Convective Heat Transfer in a Porous Plate Channel

    Institute of Scientific and Technical Information of China (English)

    PeixueJiang; ZhanWang; 等

    1997-01-01

    Fored convective heat transfer in a plate channel filled with metallic spherical particales was investigated experimentally and numerically.The test section ,58mm×80mm×50mm in size,was heated by a 0.4mm thick plate electrical heater,The coolant water flow rate ranged from 0.015 to 0.833 kg/s.The local wall temperature distribution was measured along with the inlet and outlet fliud temperatures and pressures.The results illustrate the heat transfer augmentation and increased pressure drop caused by the porous medium.The heat transfer coefficient was increased 5-12 times by the porous media although the hydraulic resistance was increased even more.The Nusselt number and the heat transfer coefficient increased with decreasing particle diameter,while the pressure drop decreased as the particle diameter increased.It was found that,for the conditions studied(metallic packed bed),the effect of thermal dispersion did not need to be considered in the physical model,as opposed to a non-metallic packed bed,where thermal dispersion is important.

  7. Non-newtonian heat transfer on a plate heat exchanger with generalized configurations

    Energy Technology Data Exchange (ETDEWEB)

    Carezzato, A.; Tadini, C.C.; Gut, J.A.W. [Department of Chemical Engineering, Escola Politecnica, University of Sao Paulo, Sao Paulo (Brazil); Alcantara, M.R. [Department of Fundamental Chemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo (Brazil); Telis-Romero, J. [Department of Food Engineering and Technology, Universidade Estadual Paulista, Sao Jose do Rio Preto (Brazil)

    2007-01-15

    For the configuration optimization of plate heat exchangers (PHEs), the mathematical models for heat transfer and pressure drop must be valid for a wide range of operational conditions of all configurations of the exchanger or the design results may be compromised. In this investigation, the thermal model of a PHE is adjusted to fit experimental data obtained from non-Newtonian heat transfer for eight different configurations, using carboxymethylcellulose solutions (CMC) as test fluid. Although it is possible to successfully adjust the model parameters, Newtonian and non-Newtonian heat transfer cannot be represented by a single generalized correlation. In addition, the specific heat, thermal conductivity and power-law rheological parameters of CMC solutions were correlated with temperature, over a range compatible with a continuous pasteurization process. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  8. Some specific features of subcooled boiling heat transfer and crisis at extremely high heat flux densities

    Energy Technology Data Exchange (ETDEWEB)

    Gotovsky, M.A. [Polzunov Institute, Saint Petersburg (Russian Federation)

    2001-07-01

    Forced convection boiling is the process used widely in a lot of industry branches including NPP. Heat transfer intensity under forced convection boiling is considered in different way in dependence on conditions. One of main problems for the process considered is an influence of interaction between forced flow and boiling on heat transfer character. For saturated water case a transition from ''pure'' forced convection to nucleate boiling can be realized in smooth form. (author)

  9. Exergetic Optimization of the Heat Recovery Steam Generators by Imposing the Total Heat Transfer Area

    OpenAIRE

    Cenuşă, Victor-Eduard; Feidt, Michel; Badea, Adrian; Benelmir, Riad

    2004-01-01

    The paper presents an original and fast method for the heat recovery steam generator (HRSG) exergetic optimization. The objective is maximizing the exergy transfer to the water / steam circuit. The proposed approach, different from the classical method that fixes the pinch point, is essentially thermodynamic but it considers also the economics by imposing the total heat transfer area of HRSG. The HRSG may have one or two steam pressures, without reheat. The input data from the gas turbine are...

  10. Research progresses and future directions on pool boiling heat transfer

    Directory of Open Access Journals (Sweden)

    M. Kumar

    2015-12-01

    Full Text Available This paper reviews the previous work carried on pool boiling heat transfer during heating of various liquids and commodities categorized as refrigerants and dielectric fluids, pure liquids, nanofluids, hydrocarbons and additive mixtures, as well as natural and synthetic colloidal solutions. Nucleate pool boiling is an efficient and effective method of boiling because high heat fluxes are possible with moderate temperature differences. It is characterized by the growth of bubbles on a heated surface. It occurs during boiling of liquids for excess temperature ranging from 5 to 30 °C in various processes related to high vaporization of liquid for specific purposes like sugarcane juice heating for jaggery making, milk heating for khoa making, steam generation, cooling of electronic equipments, refrigeration and etcetera. In this review paper, pool boiling method during heating of liquids for specific purpose is depicted. It is inferred that enhancement in pool boiling heat transfer is a challenging and complex task. Also, recent research and use of various correlations for natural convection pool boiling is reviewed.

  11. Surface Bloch waves mediated heat transfer between two photonic crystals

    OpenAIRE

    Ben-Abdallah, Philippe; Joulain, Karl; Pryamikov, Andrey

    2010-01-01

    submitted to Applied Physics Letters We theoretically investigate the non-radiative heat transfer between two photonic crystals separated by a small gap in non-equilibrium thermal situation. We predict that the surface Bloch states coupling supported by these media can make heat exchanges larger than those measured at the same separation distance between two massive homogeneous materials made with the elementary components of photonic crystals. These results could find broad applications i...

  12. Investigation on Heat Transfer in Small Hydrocarbon Rocket Combustion Chambers

    OpenAIRE

    Kirchberger, Christoph Ulrich

    2015-01-01

    Low costs and nonhazardous properties draw interest in application of hydrocarbon fuels in liquid rocket engines. Within this work, results of experiments on heat transfer, film cooling, transpiration cooled and convectively cooled fiber-reinforced ceramics conducted at a kerosene/oxygen rocket combustion chamber test facility are presented. The experimental data serves as the base for design and validation of simple-to-use models and correlations, which allow estimates of heat flux and cooli...

  13. Heat transfer simulation in a helically coiled tube steam generator

    Science.gov (United States)

    Hassanzadeh, Bazargan; Keshavarz, Ali; Ebrahimi, Masood

    2014-01-01

    A symmetric helically coiled tube steam generator that operates by methane has been simulated analytically and numerically. In the analytical method, the furnace has been divided into five zones. The numerical method computes the total heat absorbed in the furnace, while the existing analytical methods compute only the radiation heat transfer. In addition, according to the numerical results, a correlation is proposed for the Nusselt number in the furnace.

  14. Flow mechanism and heat transfer enhancement in longitudinal-flow tube bundle of shell-and-tube heat exchanger

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The flow disturbance and heat transfer mechanism in the tube bundle of rod baffle shell-and-tube heat exchanger were analyzed, on the basis of which and combined with the concept of heat transfer enhancement in the core flow, a new type of shell-and-tube heat exchanger with combination of rod and van type spoiler was designed. Corresponding mathematical and physical models on the shell side about the new type heat exchanger were established, and fluid flow and heat transfer characteristics were numerically analyzed. The simulation results showed that heat transfer coefficient of the new type of heat exchanger approximated to that of rod baffle heat exchanger, but flow pressure drop was much less than the latter, indicating that comprehensive performance of the former is superior to that of the latter. Compared with rod baffle heat exchanger, heat transfer coefficient of the heat exchanger under investigation is higher under same pressure drop, especially under the high Reynolds numbers.

  15. Overall Heat and Mass Transfer Coefficient of Water Vapor Adsorption

    Science.gov (United States)

    Hamamoto, Yoshinori; Mori, Hideo; Godo, Masazumi; Miura, Kunio; Watanabe, Yutaka; Ishizawa, Toshihiko; Takatsuka, Takeshi

    A fundamental investigation was performed to develop a compact and simple desiccant ventilation unit which is one of the main components of a novel energy saving air-conditioning system. Water vapor in the air is adsorbed and/or desorbed to be controlled the humidity of supply air through a unit of an adsorbent packed bed. A numerical simulation helps to understand the phenomena of heat and mass transfer in the bed. Overall transfer coefficients of them as properties for the simulation were estimated by performing both experiment and calculation. It was clarified that the transient overall equivalent heat and mass transfer does not strongly depend on the air flow rate through the packed bed, the averaged equivalent mass transfer is governed by surface and pore diffusion in a particle of adsorbent at low flow rate. Moreover, the coefficient during the adsorption process is slightly larger than desorption. An equation of the overall mass transfer coefficient is derived. It shows five times as large as the value estimated by experiment. Therefore, the correlation and fitting parameters are presented for prediction of the overall heat and mass transfer coefficients. The estimation accuracy was improved.

  16. The Heat Transfer Coefficient of Recycled Concrete Bricks Combination with EPS Insulation Board Wall

    OpenAIRE

    Jianhua Li; Wanlin Cao

    2015-01-01

    Four tectonic forms samples were conducted to test their heat transfer coefficients. By analyzing and comparing the test values and theoretical values of the heat transfer coefficient, a corrected-value calculation method for determining the heat transfer coefficient was proposed; the proposed method was proved to be reasonably correct. The results indicated that the recycled concrete brick wall heat transfer coefficient is higher than that of the clay brick wall, the heat transfer coefficien...

  17. Boiling heat transfer of nanofluids--special emphasis on critical heat flux.

    Science.gov (United States)

    Kim, Sung Joong; Kim, Hyungdae

    2013-11-01

    As innovative nanotechnology-based heat-transfer media, nanofluids have evoked considerable interest among researchers owing to their improved thermal properties as well as their extendable applications to various high-power thermal systems. This paper presents a comprehensive review of recent research developments and patents pertaining to nanofluid boiling heat transfer. Nanofluids definitely offer a wide range of potential improvements in boiling heat-transfer performance. However, experimental data available from different studies are currently beset by numerous contradictions, suggesting that the fundamental mechanisms of nanofluid boiling heat transfer are not yet well understood. Consequently application of these technologies has been limited in some aspects. Only a small number of patents related to nanofluid boiling heat transfer have thus far been reported in the literature. Based on the present review, future technological development and research requirements in this area are outlined in line with technical challenges. To utilize nanofluid boiling heat-transfer technologies for practical applications, more systematic and fundamental studies are required to understand the physical mechanisms involved.

  18. Convective heat transfer enhancement of laminar flow of latent functionally thermal fluid in a circular tube with constant heat flux: internal heat source model and its application

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Yinping; (张寅平); HU; Xianxu; (胡先旭); HAO; Qing; (郝磬); WANG; Xin; (王馨)

    2003-01-01

    This paper analyzes the convective heat transfer enhancement mechanism of latent heat functionally thermal fluid. By using the proposed internal heat source model, the influence of each factor affecting the heat transfer enhancement of laminar flow in a circular tube with constant heat flux is analyzed. The main influencing factors and the mechanisms of heat transfer enhancement are clarified, and the influences of the main factors on the heat transfer enhancement are quantitatively analyzed. A modified Nusselt number for internal flow is introduced to describe more effectively the degree of heat transfer enhancement for latent functionally thermal fluid.

  19. Heat transfer of ascending cryomagma on Europa

    Science.gov (United States)

    Quick, Lynnae C.; Marsh, Bruce D.

    2016-06-01

    Jupiter's moon Europa has a relatively young surface (60-90 Myr on average), which may be due in part to cryovolcanic processes. Current models for both effusive and explosive cryovolcanism on Europa may be expanded and enhanced by linking the potential for cryovolcanism at the surface to subsurface cryomagmatism. The success of cryomagma transport through Europa's crust depends critically on the rate of ascent relative to the rate of solidification. The final transport distance of cryomagma is thus governed by initial melt volume, ascent rate, overall ascent distance, transport mechanism (i.e., diapirism, diking, or ascent in cylindrical conduits), and melt temperature and composition. The last two factors are especially critical in determining the budget of expendable energy before complete solidification. Here we use these factors as constraints to explore conditions under which cryomagma may arrive at Europa's surface to facilitate cryovolcanism. We find that 1-5 km radius warm ice diapirs ascending from the base of a 10 km thick stagnant lid can reach the shallow subsurface in a partially molten state. Cryomagma transport may be further facilitated if diapirs travel along pre-heated ascent paths. Under certain conditions, cryolava transported from 10 km depths in tabular dikes or pipe-like conduits may reach the surface at temperatures exceeding 250 K. Ascent rates for these geometries may be high enough that isothermal transport is approached. Cryomagmas containing significant amounts of low eutectic impurities can also be delivered to Europa's surface by propagating dikes or pipe-like conduits.

  20. Coupling heat and chemical tracer experiments for estimating heat transfer parameters in shallow alluvial aquifers.

    Science.gov (United States)

    Wildemeersch, S; Jamin, P; Orban, P; Hermans, T; Klepikova, M; Nguyen, F; Brouyère, S; Dassargues, A

    2014-11-15

    Geothermal energy systems, closed or open, are increasingly considered for heating and/or cooling buildings. The efficiency of such systems depends on the thermal properties of the subsurface. Therefore, feasibility and impact studies performed prior to their installation should include a field characterization of thermal properties and a heat transfer model using parameter values measured in situ. However, there is a lack of in situ experiments and methodology for performing such a field characterization, especially for open systems. This study presents an in situ experiment designed for estimating heat transfer parameters in shallow alluvial aquifers with focus on the specific heat capacity. This experiment consists in simultaneously injecting hot water and a chemical tracer into the aquifer and monitoring the evolution of groundwater temperature and concentration in the recovery well (and possibly in other piezometers located down gradient). Temperature and concentrations are then used for estimating the specific heat capacity. The first method for estimating this parameter is based on a modeling in series of the chemical tracer and temperature breakthrough curves at the recovery well. The second method is based on an energy balance. The values of specific heat capacity estimated for both methods (2.30 and 2.54MJ/m(3)/K) for the experimental site in the alluvial aquifer of the Meuse River (Belgium) are almost identical and consistent with values found in the literature. Temperature breakthrough curves in other piezometers are not required for estimating the specific heat capacity. However, they highlight that heat transfer in the alluvial aquifer of the Meuse River is complex and contrasted with different dominant process depending on the depth leading to significant vertical heat exchange between upper and lower part of the aquifer. Furthermore, these temperature breakthrough curves could be included in the calibration of a complex heat transfer model for

  1. Heat Transfer Characteristics of Calcined Petroleum Coke in Waste Heat Recovery Process

    OpenAIRE

    Bin Zheng; Yongqi Liu; Lichen Zou; Ruiyang Li

    2016-01-01

    This paper reports the results of heat transfer characteristics of calcined petroleum coke in waste heat recovery process. The model of heat exchanger was set up. The model has been used to investigate the effects of porosity (0.58 to 0.79), equivalent heat conductivity coefficient (0.9 to 1.1), and equivalent specific heat (0.9 to 1.1). The calculated values of calcined petroleum coke temperature showed good agreement with the corresponding available experimental data. The temperature distri...

  2. Analysis of flow and heat transfer characteristics of porous heat-storage wall in greenhouse

    Institute of Scientific and Technical Information of China (English)

    Li OUYANG; Wei LIU

    2008-01-01

    The flow and heat transfer characteristics of porous heat-storage wall in greenhouse are studied by using the one-dimensional steady energy two-equation model for saturated porous medium. The results show that the heat exchange between the air and the solid matrix of the porous heat-storage wall depends upon the inlet air velocity, the porosity and the permeability of porous medium, and the thermal conductivity of the solid matrix. Because the incidence of solar radiation on the porous heat-storage wall is not uniform, the new compos-ite porous solar wall with different porosity is proposed to reduce the disadvantageous effect.

  3. On Heat Transfer through a Solid Slab Heated Uniformly and Periodically: Determination of Thermal Properties

    Science.gov (United States)

    Rojas-Trigos, J. B.; Bermejo-Arenas, J. A.; Marin, E.

    2012-01-01

    In this paper, some heat transfer characteristics through a sample that is uniformly heated on one of its surfaces by a power density modulated by a periodical square wave are discussed. The solution of this problem has two contributions, comprising a transient term and an oscillatory term, superposed to it. The analytical solution is compared to…

  4. Convective Heat Transfer Analysis in Fluid Flow with Turbulence Promoters with Heat Pipes

    Directory of Open Access Journals (Sweden)

    Theodor Mateescu

    2007-01-01

    Full Text Available The present paper proposes the analysis and the simulation of the convection heat transfer into the fluid flow with turbulence promoters utilizing heat pipes. The study is based on the necesity of the unconventional energy forms capitalization, increasing of the energy efficiency and leads to the energy consumtion decrease in concordance with the sustainable development concept.

  5. Heat transfer and thermoregulation in the largemouth blackbass (Micropterus salmoides)

    Energy Technology Data Exchange (ETDEWEB)

    Erskine, D.J.; Spotila, J.R.

    1976-01-01

    We have approached the problem by examining temperature response from the viewpoint of the effects of the physical environment on the fish. Instead of focusing on the physiological processes within the organism we began by considering the constraints placed on the internal processes of the fish by its physical environment. Our objective was to define the mechanisms of heat exchange between a freshwater fish and its environment and thereby describe the steady-state energy balance for the fish. In this study we derived a heat energy budget equation for a fish and made experimental determinations of heat transfer coefficients for fish in still and moving water.

  6. Heat transfer and pressure drop characteristics of dry tower extended surfaces. Part I. Heat transfer and pressure drop data

    Energy Technology Data Exchange (ETDEWEB)

    1976-03-01

    A compilation is presented of heat transfer and pressure drop data which were collected from literature reports on extended surface heat exchangers. The type of extended surfaces considered are tubular finned tubes as distinct from compact heat exchangers. These surfaces have a base tube to which additional surface was added by mechanical means. This additional surface is in the form of fins attached to the outside surface of the tube. These tubes are normally employed for heat transfer between a liquid and a gas. The liquid flows inside the tubes and the gas, normally air, flows outside the tubes. The fins are oriented so that their surface is transverse to the axis of the tubes. The gas flows across the tubes in a direction parallel to the fin surface.

  7. New ceramic heat exchangers with enhanced heat transfer properties for recuperative gas burners

    OpenAIRE

    Fino, Paolo

    2011-01-01

    Heat recovery from waste gas is a major key process for increasing efficiency of thermal processes. The aim of the present work is to increase heat transfer coeffi cients of ceramic heat exchangers of recuperative burners using highly structured surface elements created from a textile precursor. The paper describes the chosen geometries and their thermal behavior, the ceramization process and the preliminary design of the new recuperative burners

  8. Analysis of Heat Transfer in Actively Cooled Compound Gun Barrel

    Institute of Scientific and Technical Information of China (English)

    WU Bin; XIA Wei

    2005-01-01

    when a gun fires, a large amount of heat is brought in the barrel. Erosion/wear and security problems(self ignition of the propellant) associated with this high thermal energy have to be solved owing to the use of higher combustion gas temperature for improved cannon performance and firing at the sustained high rates. Barrel cooling technologies are the effective measures for addressing this issue. In view of the importance of having knowledge of the heat flux, an approach to calculate heat flux based on measurements was presented and validated. The calculated heat flux is used as the inner boundary condition for modeling heat transfer in a 155 mm mid-wall cooled compound gun barrel. Theoretical analysis and simulated results show that natural air cooling is dramatically slower than the forced liquid mid-wall cooling, accordingly wear life of actively cooled barrel is increased and barrel overheating is prevented.

  9. Effect of Heat Leak and Finite Thermal Capacity on the Optimal Configuration of a Two-Heat-Reservoir Heat Engine for Another Linear Heat Transfer Law

    OpenAIRE

    Chih Wu; Fengrui Sun; Lingen Chen; Tong Zheng

    2003-01-01

    Abstract: Based on a model of a two-heat-reservoir heat engine with a finite high-temperature source and bypass heat leak, the optimal configuration of the cycle is found for the fixed cycle period with another linear heat transfer law . The finite thermal capacity source without heat leak makes the configuration of the cycle to a class of generalized Carnot cycle. The configuration of the cycle with heat leak and finite thermal capacity source is different from others.

  10. Heat transfer in the post-dryout regime

    International Nuclear Information System (INIS)

    Post-dryout heat transfer from fuel elements is important in the safety analysis of water-cooled nuclear reactors. Limited availability of relevant data has resulted in much uncertainty in the prediction of post-dryout fuel surface temperatures. Recent studies have permitted the development of a better prediction technique based on non-equilibrium effects. (author)

  11. Heat Transfer Performance of Functionalized Graphene Nanoplatelet Aqueous Nanofluids

    Directory of Open Access Journals (Sweden)

    Roberto Agromayor

    2016-06-01

    Full Text Available The low thermal conductivity of fluids used in many industrial applications is one of the primary limitations in the development of more efficient heat transfer systems. A promising solution to this problem is the suspension of nanoparticles with high thermal conductivities in a base fluid. These suspensions, known as nanofluids, have great potential for enhancing heat transfer. The heat transfer enhancement of sulfonic acid-functionalized graphene nanoplatelet water-based nanofluids is addressed in this work. A new experimental setup was designed for this purpose. Convection coefficients, pressure drops, and thermophysical properties of various nanofluids at different concentrations were measured for several operational conditions and the results are compared with those of pure water. Enhancements in thermal conductivity and in convection heat transfer coefficient reach 12% (1 wt % and 32% (0.5 wt %, respectively. New correlations capable of predicting the Nusselt number and the friction factor of this kind of nanofluid as a function of other dimensionless quantities are developed. In addition, thermal performance factors are obtained from the experimental convection coefficient and pressure drop data in order to assess the convenience of replacing the base fluid with designed nanofluids.

  12. Heat transfer investigation in pipe by IR thermography

    Science.gov (United States)

    Koppel, Tiit; Ainola, Leo; Ekholm, Ari; Lahdeniemi, Matti

    2000-03-01

    The IR-thermography has proved to be a useful contactless instrument in fluid flow research, especially for investigation of heat transfer processes. Series of experimental measurements of suddenly accelerated and pulsating pipe flow were made at Satakunta Polytechnic, Technology in Pori, Finland, with this aim.

  13. Integration of Heat Transfer, Stress, and Particle Trajectory Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Thuc Bui; Michael Read; Lawrence ives

    2012-05-17

    Calabazas Creek Research, Inc. developed and currently markets Beam Optics Analyzer (BOA) in the United States and abroad. BOA is a 3D, charged particle optics code that solves the electric and magnetic fields with and without the presence of particles. It includes automatic and adaptive meshing to resolve spatial scales ranging from a few millimeters to meters. It is fully integrated with CAD packages, such as SolidWorks, allowing seamless geometry updates. The code includes iterative procedures for optimization, including a fully functional, graphical user interface. Recently, time dependent, particle in cell capability was added, pushing particles synchronically under quasistatic electromagnetic fields to obtain particle bunching under RF conditions. A heat transfer solver was added during this Phase I program. Completed tasks include: (1) Added a 3D finite element heat transfer solver with adaptivity; (2) Determined the accuracy of the linear heat transfer field solver to provide the basis for development of higher order solvers in Phase II; (3) Provided more accurate and smoother power density fields; and (4) Defined the geometry using the same CAD model, while maintaining different meshes, and interfacing the power density field between the particle simulator and heat transfer solvers. These objectives were achieved using modern programming techniques and algorithms. All programming was in C++ and parallelization in OpenMP, utilizing state-of-the-art multi-core technology. Both x86 and x64 versions are supported. The GUI design and implementation used Microsoft Foundation Class.

  14. Enhancing heat transfer and crud mitigation in PWR fuel

    International Nuclear Information System (INIS)

    This paper discusses three methods for increasing single phase heat transfer in PWR fuel. The primary effect of increasing heat transfer is a reduction in the steaming rate from the fuel rods, which in turn reduces the likelihood of crud formation on the fuel rods and the potential for adsorption of boron into the crud. The advantage of lowering boron mass on the fuel is reduced risk of Axial Offset Anomaly (AOA). Another benefit of reduced crud formation is a lower risk of localized corrosion, a known contributor to rod cladding failures. Thinner crud leads to locally lower rod operating temperatures (lower corrosion rate) since crud acts as a thermal insulator between the rod and the coolant. The first method of increasing heat transfer involves addition of more than one Intermediate Flow Mixing vane grid (IFM) in the span between two neighboring structural spacing grids. The second method includes optimization of the mixing vane according to axial position. The third method involves variation of the IFMs axial position to optimize axial distribution of rod heat transfer. (authors)

  15. Modeling of Heat Transfer and Solidification of Composite Roll

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Modeling of heat transfer and solidification of composite roll was established and used to predict the thermal history and solidification process of roll during spray forming. Evolution of temperature field of the preform and cooling rate in the growing deposit during spray deposition and post-deposition were numerically simulated.

  16. Estimation of bulk transfer coefficient for latent heat flux (Ce)

    Digital Repository Service at National Institute of Oceanography (India)

    Sadhuram, Y.

    The bulk transfer coefficient for latent heat flux (Ce) has been estimated over the Arabian Sea from the moisture budget during the pre-monsoon season of 1988. The computations have been made over two regions (A: 0-8 degrees N: 60-68 degrees E: B: 0...

  17. A Course in Advanced Topics in Heat and Mass Transfer.

    Science.gov (United States)

    Shaeiwitz, Joseph A.

    1983-01-01

    A three or four semester-hour graduate course was designed to provide basic instruction in heat/mass transfer topics relevant to chemical engineering problems and to train students to develop mathematical descriptions for new situations encountered in problem-solving. Course outline and list of references used in the course are provided. (JM)

  18. Measurement of the convective heat-transfer coefficient

    CERN Document Server

    Conti, Rosaria; Fiordilino, Emilio

    2014-01-01

    We propose an experiment for investigating how objects cool down toward the thermal equilibrium with its surrounding through convection. We describe the time dependence of the temperature difference of the cooling object and the environment with an exponential decay function. By measuring the thermal constant tau, we determine the convective heat-transfer coefficient, which is a characteristic constant of the convection system.

  19. Simulation Tests in Whole Building Heat and Moisture Transfer

    DEFF Research Database (Denmark)

    Rode, Carsten; Peuhkuri, Ruut Hannele; Woloszyn, Monika

    2006-01-01

    An important part of the International Energy Agency project, ECBCS, Annex 41 is about modelling the integral heat, air and moisture transfer processes that take place in “whole buildings”. Such modelling deals with all most relevant elements of buildings: The indoor air, the building envelope...

  20. Simulation of heat and mass transfer in spray drying

    NARCIS (Netherlands)

    Lijn, van der J.

    1976-01-01

    A survey is given of heat and mass transfer around droplets in spray dryers and the diffusional transport inside them. A calculational model is developed which includes variable diffusion coefficients in the drying liquid and swelling or shrinking of droplets. Calculations for droplets containing so