WorldWideScience

Sample records for advection-dominated accretion flows

  1. STANDING SHOCK INSTABILITY IN ADVECTION-DOMINATED ACCRETION FLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Le, Truong [Department of Physics, Astronomy and Geology, Berry College, Mount Berry, GA 30149 (United States); Wood, Kent S.; Wolff, Michael T. [High Energy Space Environment Branch, Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Becker, Peter A. [Department of Physics and Astronomy, George Mason University, Fairfax, VA 22030 (United States); Putney, Joy, E-mail: tle@berry.edu [Department of Physics and Engineering, Washington and Lee University, Lexington, VA 24450 (United States)

    2016-03-10

    Depending on the values of the energy and angular momentum per unit mass in the gas supplied at large radii, inviscid advection-dominated accretion flows can display velocity profiles with either preshock deceleration or preshock acceleration. Nakayama has shown that these two types of flow configurations are expected to have different stability properties. By employing the Chevalier and Imamura linearization method and the Nakayama instability boundary conditions, we discover that there are regions of parameter space where disks/shocks with outflows can be stable or unstable. In regions of instability, we find that preshock deceleration is always unstable to the zeroth mode with zero frequency of oscillation, but is always stable to the fundamental mode and overtones. Furthermore, we also find that preshock acceleration is always unstable to the zeroth mode and that the fundamental mode and overtones become increasingly less stable as the shock location moves away from the horizon when the disk half-height expands above ∼12 gravitational radii at the shock radius. In regions of stability, we demonstrate the zeroth mode to be stable for the velocity profiles that exhibit preshock acceleration and deceleration. Moreover, for models that are linearly unstable, our model suggests the possible existence of quasi-periodic oscillations (QPOs) with ratios 2:3 and 3:5. These ratios are believed to occur in stellar and supermassive black hole candidates, for example, in GRS 1915+105 and Sgr A*, respectively. We expect that similar QPO ratios also exist in regions of stable shocks.

  2. Advection-dominated Inflow/Outflows from Evaporating Accretion Disks.

    Science.gov (United States)

    Turolla; Dullemond

    2000-03-01

    In this Letter we investigate the properties of advection-dominated accretion flows (ADAFs) fed by the evaporation of a Shakura-Sunyaev accretion disk (SSD). In our picture, the ADAF fills the central cavity evacuated by the SSD and extends beyond the transition radius into a coronal region. We find that, because of global angular momentum conservation, a significant fraction of the hot gas flows away from the black hole, forming a transsonic wind, unless the injection rate depends only weakly on radius (if r2sigma&d2;~r-xi, xiBernoulli number of the inflowing gas is negative if the transition radius is less, similar100 Schwarzschild radii, so matter falling into the hole is gravitationally bound. The ratio of inflowing to outflowing mass is approximately 1/2, so in these solutions the accretion rate is of the same order as in standard ADAFs and much larger than in advection-dominated inflow/outflow models. The possible relevance of evaporation-fed solutions to accretion flows in black hole X-ray binaries is briefly discussed.

  3. Jet launching radius in low-power radio-loud AGNs in advection-dominated accretion flows

    Science.gov (United States)

    Le, Truong; Newman, William; Edge, Brinkley

    2018-06-01

    Using our theory for the production of relativistic outflows, we estimate the jet launching radius and the inferred mass accretion rate for 52 low-power radio-loud AGNs based on the observed jet powers. Our analysis indicates that (1) a significant fraction of the accreted energy is required to convert the accreted mass to relativistic energy particles for the production of the jets near the event horizon, (2) the jet's launching radius moves radially towards the horizon as the mass accretion rate or jet's power increases, and (3) no jet/outflow formation is possible beyond 44 gravitational radii.

  4. Black Hole Event Horizons and Advection-Dominated Accretion

    Science.gov (United States)

    McClintock, Jeffrey; Mushotzky, Richard F. (Technical Monitor)

    2002-01-01

    The work supported in part by this grant is part of a larger program on the detection of black hole event horizons, which is also partially supported by NASA grant GO0-1105A. This work has been carried out primarily in collaboration with Dr. M. Garcia and Prof. R. Narayan at the Harvard-Smithsonian Center for Astrophysics and with D. Barret and J. Hameury at Centre d'Etude Spoliate des Rayonnements, France. Our purpose is to confirm the existence of black-hole event horizons by comparing accreting black holes to secreting neutron stars in quiescent X-ray novae. Such a comparison is feasible because black holes and neutron stars are both present in similar environments in X-ray novae. Our second purpose is to assess the nature of accretion flows onto black holes at very low mass transfer rates. Observations of some XMM targets are still pending, whereas most of the Chandra observations have been completed. We anticipate further publications on this work in the future.

  5. Relativistic Outflows from Advection-dominated Accretion Disks around Black Holes

    Science.gov (United States)

    Becker, Peter A.; Subramanian, Prasad; Kazanas, Demosthenes

    2001-05-01

    Advection-dominated accretion flows (ADAFs) have a positive Bernoulli parameter and are therefore gravitationally unbound. The Newtonian ADAF model has been generalized recently to obtain the ADIOS model that includes outflows of energy and angular momentum, thereby allowing accretion to proceed self-consistently. However, the utilization of a Newtonian gravitational potential limits the ability of this model to describe the inner region of the disk, where any relativistic outflows are likely to originate. In this paper we modify the ADIOS scenario to incorporate a pseudo-Newtonian potential, which approximates the effects of general relativity. The analysis yields a unique, self-similar solution for the structure of the coupled disk/wind system. Interesting features of the new solution include the relativistic character of the outflow in the vicinity of the radius of marginal stability, which represents the inner edge of the quasi-Keplerian disk in our model. Hence, our self-similar solution may help to explain the origin of relativistic jets in active galaxies. At large distances the radial dependence of the accretion rate approaches the unique form M~r1/2, with an associated density variation given by ρ~r-1. This density variation agrees with that implied by the dependence of the hard X-ray time lags on the Fourier frequency for a number of accreting galactic black hole candidates. While intriguing, the predictions made using our self-similar solution need to be confirmed in the future using a detailed model that includes a physical description of the energization mechanism that drives the outflow, which is likely to be powered by the shear of the underlying accretion disk.

  6. HP-multigrid as smoother algorithm for higher order discontinuous Galerkin discretizations of advection dominated flows. Part I. Multilevel Analysis

    NARCIS (Netherlands)

    van der Vegt, Jacobus J.W.; Rhebergen, Sander

    2011-01-01

    The hp-Multigrid as Smoother algorithm (hp-MGS) for the solution of higher order accurate space-(time) discontinuous Galerkin discretizations of advection dominated flows is presented. This algorithm combines p-multigrid with h-multigrid at all p-levels, where the h-multigrid acts as smoother in the

  7. Can a Wind Model Mimic a Convection-Dominated Accretion Flow Model?

    Science.gov (United States)

    Chang, Heon-Young

    2001-06-01

    In this paper we investigate the properties of advection-dominated accretion flows(ADAFs) in case that outflows carry away infalling matter with its angular momentum and energy. Positive Bernoulli numbers in ADAFs allow a fraction of the gas to be ex-pelled in a form of outflows. The ADAFs are also unstable to convection. We present self-similar solutions for advection-dominated accretion flows in the presence of out-flows from the accretion flows (ADIOS). The axisymmetric flow is treated in variables integrated over polar sections and the effects of outflows on the accretion rlow are parameterized for possible configurations compatible with the one dimensional self-similar ADAF solution. We explicitly derive self-similar solutions of ADAFs in the presence of outflows and show that the strong outflows in the accretion flows result in a flatter density profile, which is similar to that of the convection-dominated accretion flows (CDAFs) in which convection transports the a! ngular momentum inward and the energy outward. These two different versions of the ADAF model should show similar behaviors in X-ray spectrum to some extent. Even though the two models may show similar behaviors, they should be distinguishable due to different physical properties. We suggest that for a central object of which mass is known these two different accretion flows should have different X-ray flux value due to deficient matter in the wind model.

  8. Can a Wind Model Mimic a Convection-Dominated Accretion Flow Model?

    Directory of Open Access Journals (Sweden)

    Heon-Young Chang

    2001-06-01

    Full Text Available In this paper we investigate the properties of advection-dominated accretion flows(ADAFs in case that outflows carry away infalling matter with its angular momentum and energy. Positive Bernoulli numbers in ADAFs allow a fraction of the gas to be ex-pelled in a form of outflows. The ADAFs are also unstable to convection. We present self-similar solutions for advection-dominated accretion flows in the presence of out-flows from the accretion flows (ADIOS. The axisymmetric flow is treated in variables integrated over polar sections and the effects of outflows on the accretion rlow are parameterized for possible configurations compatible with the one dimensional self-similar ADAF solution. We explicitly derive self-similar solutions of ADAFs in the presence of outflows and show that the strong outflows in the accretion flows result in a flatter density profile, which is similar to that of the convection-dominated accretion flows (CDAFs in which convection transports the a! ngular momentum inward and the energy outward. These two different versions of the ADAF model should show similar behaviors in X-ray spectrum to some extent. Even though the two models may show similar behaviors, they should be distinguishable due to different physical properties. We suggest that for a central object of which mass is known these two different accretion flows should have different X-ray flux value due to deficient matter in the wind model.

  9. Self-similar Hot Accretion Flow onto a Neutron Star

    Science.gov (United States)

    Medvedev, Mikhail V.; Narayan, Ramesh

    2001-06-01

    We consider hot, two-temperature, viscous accretion onto a rotating, unmagnetized neutron star. We assume Coulomb coupling between the protons and electrons, as well as free-free cooling from the electrons. We show that the accretion flow has an extended settling region that can be described by means of two analytical self-similar solutions: a two-temperature solution that is valid in an inner zone, r~102.5. In both zones the density varies as ρ~r-2 and the angular velocity as Ω~r-3/2. We solve the flow equations numerically and confirm that the analytical solutions are accurate. Except for the radial velocity, all gas properties in the self-similar settling zone, such as density, angular velocity, temperature, luminosity, and angular momentum flux, are independent of the mass accretion rate; these quantities do depend sensitively on the spin of the neutron star. The angular momentum flux is outward under most conditions; therefore, the central star is nearly always spun down. The luminosity of the settling zone arises from the rotational energy that is released as the star is braked by viscosity, and the contribution from gravity is small; hence, the radiative efficiency, η=Lacc/Mc2, is arbitrarily large at low M. For reasonable values of the gas adiabatic index γ, the Bernoulli parameter is negative; therefore, in the absence of dynamically important magnetic fields, a strong outflow or wind is not expected. The flow is also convectively stable but may be thermally unstable. The described solution is not advection dominated; however, when the spin of the star is small enough, the flow transforms smoothly to an advection-dominated branch of solution.

  10. Clay with Desiccation Cracks is an Advection Dominated Environment

    Science.gov (United States)

    Baram, S.; Kurtzman, D.; Sher, Y.; Ronen, Z.; Dahan, O.

    2012-04-01

    , indicating deep soil evaporation. Daily fluctuation of the air temperature in the desiccation cracks supported thermally induced air convection within the cracks void and could explain the deep soil salinization process. Combination of all the abovementioned observations demonstrated that the formation of desiccation cracks network in dispersive clay sediments generates a bulk advection dominated environment for both air and water flow, and that the reference to clay sediments as "hydrologically safe" should to be reconsidered.

  11. On the importance of aqueous diffusion and electrostatic interactions in advection-dominated transport in saturated porous media

    DEFF Research Database (Denmark)

    Rolle, Massimo

    2015-01-01

    to multicomponent ionic dispersion: the dispersive fluxes of the different ions are cross-coupled due to the effects of Coulombic interactions. Such effects are illustrated in flow-through experiments in saturated porous media. Simple strong electrolytes were selected as tracers and their transport was studied...... under different advection-dominated conditions and in homogeneous and heterogeneous porous media. The interpretation of the experimental results requires a multicomponent modeling approach with an accurate description of local hydrodynamic dispersion and explicitly accounting for the cross-coupling...

  12. X-ray pulsars: accretion flow deceleration

    International Nuclear Information System (INIS)

    Miller, G.S.

    1987-01-01

    X-ray pulsars are thought to be neutron stars that derive the energy for their x-ray emission by accreting material onto their magnetic polar caps. The accreting material and the x-ray pulsar atmospheres were idealized as fully ionized plasmas consisting only of electrons and protons. A high magnetic field (∼ 5 x 10 12 Gauss) permeates the atmospheric plasma, and causes the motion of atmospheric electrons perpendicular to the field to be quantized into discrete Landau levels. All atmospheric electrons initially lie in the Landau ground state, but in the author's calculations of Coulomb collisions between atmospheric electrons and accreting protons, he allows for processes that leave the electrons in the first excited Landau level. He also considers interactions between accreting protons and the collective modes of the atmospheric plasma. Division of the electromagnetic interaction of a fast proton with a magnetized plasma into single particle and collective effects is described in detail in Chapter 2. Deceleration of the accretion flow due to Coulomb collisions with atmospheric electrons and collective plasma effects was studied in a number of computer simulations. These simulations, along with a discussion of the physical state of the atmospheric plasma and its interactions with a past proton, are presented in Chapter 3. Details of the atmospheric model and a description of the results of the simulations are given in Chapter 4. Chapter 5 contains some brief concluding remarks, and some thoughts on future research

  13. Study of magnetized accretion flow with cooling processes

    Indian Academy of Sciences (India)

    Kuldeep Singh

    2018-02-09

    Feb 9, 2018 ... 2University of Delhi, South Campus, Delhi 110 021, India. ∗ ... Abstract. We have studied shock in magnetized accretion flow/funnel flow in case of neutron star with .... where Ap is the area of cross-section of the flux tube.

  14. Foundations of Black Hole Accretion Disk Theory.

    Science.gov (United States)

    Abramowicz, Marek A; Fragile, P Chris

    2013-01-01

    This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads us to the four primary accretion disk models that we review: Polish doughnuts (thick disks), Shakura-Sunyaev (thin) disks, slim disks, and advection-dominated accretion flows (ADAFs). After presenting the models we discuss issues of stability, oscillations, and jets. Following our review of the analytic work, we take a parallel approach in reviewing numerical studies of black hole accretion disks. We finish with a few select applications that highlight particular astrophysical applications: measurements of black hole mass and spin, black hole vs. neutron star accretion disks, black hole accretion disk spectral states, and quasi-periodic oscillations (QPOs).

  15. Foundations of Black Hole Accretion Disk Theory

    Directory of Open Access Journals (Sweden)

    Marek A. Abramowicz

    2013-01-01

    Full Text Available This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads us to the four primary accretion disk models that we review: Polish doughnuts (thick disks, Shakura-Sunyaev (thin disks, slim disks, and advection-dominated accretion flows (ADAFs. After presenting the models we discuss issues of stability, oscillations, and jets. Following our review of the analytic work, we take a parallel approach in reviewing numerical studies of black hole accretion disks. We finish with a few select applications that highlight particular astrophysical applications: measurements of black hole mass and spin, black hole vs. neutron star accretion disks, black hole accretion disk spectral states, and quasi-periodic oscillations (QPOs.

  16. FILAMENTARY ACCRETION FLOWS IN THE EMBEDDED SERPENS SOUTH PROTOCLUSTER

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, Helen; Myers, Philip C.; Bourke, Tyler L. [Radio and Geoastronomy Division, Harvard Smithsonian Center for Astrophysics, MS-42, Cambridge, MA, 02138 (United States); Gutermuth, Robert A.; Wilson, Grant W. [Department of Astronomy, University of Massachusetts Amherst, Amherst, MA 01003 (United States); Hedden, Abigail, E-mail: kirkh@mcmaster.ca [Army Research Labs, Adelphi, MD 20783 (United States)

    2013-04-01

    One puzzle in understanding how stars form in clusters is the source of mass-is all of the mass in place before the first stars are born, or is there an extended period when the cluster accretes material which can continuously fuel the star formation process? We use a multi-line spectral survey of the southern filament associated with the Serpens South embedded cluster-forming region in order to determine if mass is accreting from the filament onto the cluster, and whether the accretion rate is significant. Our analysis suggests that material is flowing along the filament's long axis at a rate of {approx}30 M{sub Sun} Myr{sup -1} (inferred from the N{sub 2}H{sup +} velocity gradient along the filament), and radially contracting onto the filament at {approx}130 M{sub Sun} Myr{sup -1} (inferred from HNC self-absorption). These accretion rates are sufficient to supply mass to the central cluster at a similar rate to the current star formation rate in the cluster. Filamentary accretion flows may therefore be very important in the ongoing evolution of this cluster.

  17. FILAMENTARY ACCRETION FLOWS IN THE EMBEDDED SERPENS SOUTH PROTOCLUSTER

    International Nuclear Information System (INIS)

    Kirk, Helen; Myers, Philip C.; Bourke, Tyler L.; Gutermuth, Robert A.; Wilson, Grant W.; Hedden, Abigail

    2013-01-01

    One puzzle in understanding how stars form in clusters is the source of mass—is all of the mass in place before the first stars are born, or is there an extended period when the cluster accretes material which can continuously fuel the star formation process? We use a multi-line spectral survey of the southern filament associated with the Serpens South embedded cluster-forming region in order to determine if mass is accreting from the filament onto the cluster, and whether the accretion rate is significant. Our analysis suggests that material is flowing along the filament's long axis at a rate of ∼30 M ☉ Myr –1 (inferred from the N 2 H + velocity gradient along the filament), and radially contracting onto the filament at ∼130 M ☉ Myr –1 (inferred from HNC self-absorption). These accretion rates are sufficient to supply mass to the central cluster at a similar rate to the current star formation rate in the cluster. Filamentary accretion flows may therefore be very important in the ongoing evolution of this cluster.

  18. MHD Flows in Compact Astrophysical Objects Accretion, Winds and Jets

    CERN Document Server

    Beskin, Vasily S

    2010-01-01

    Accretion flows, winds and jets of compact astrophysical objects and stars are generally described within the framework of hydrodynamical and magnetohydrodynamical (MHD) flows. Analytical analysis of the problem provides profound physical insights, which are essential for interpreting and understanding the results of numerical simulations. Providing such a physical understanding of MHD Flows in Compact Astrophysical Objects is the main goal of this book, which is an updated translation of a successful Russian graduate textbook. The book provides the first detailed introduction into the method of the Grad-Shafranov equation, describing analytically the very broad class of hydrodynamical and MHD flows. It starts with the classical examples of hydrodynamical accretion onto relativistic and nonrelativistic objects. The force-free limit of the Grad-Shafranov equation allows us to analyze in detail the physics of the magnetospheres of radio pulsars and black holes, including the Blandford-Znajek process of energy e...

  19. Exploring the accretion model of M87 and 3C 84 with the Faraday rotation measure observations

    OpenAIRE

    Li, Ya-Ping; Yuan, Feng; Xie, Fu-Guo

    2016-01-01

    Low-luminosity active galactic nuclei (LLAGNs) are believed to be powered by an accretion-jet model, consisting of an inner advection-dominated accretion flow (ADAF), an outer truncated standard thin disk, and a jet. But model degeneracy still exists in this framework. For example, the X-ray emission can originate from either the ADAF or jet. The aim of the present work is to check these models with the Faraday rotation measure (RM) observations recently detected for two LLAGNs, M87 and 3C 84...

  20. Hydrodynamical wind in magnetized accretion flows with convection

    International Nuclear Information System (INIS)

    Abbassi, Shahram; Mosallanezhad, Amin

    2012-01-01

    The existence of outflow and magnetic fields in the inner region of hot accretion flows has been confirmed by observations and numerical magnetohydrodynamic (MHD) simulations. We present self-similar solutions for radiatively inefficient accretion flows (RIAFs) around black holes in the presence of outflow and a global magnetic field. The influence of outflow is taken into account by adopting a radius that depends on mass accretion rate M-dot = M-dot 0 (r/r 0 ) s with s > 0. We also consider convection through a mixing length formula to calculate convection parameter α con . Moreover we consider the additional magnetic field parameters β r,φ,z [ = c 2 r,φ,z /(2c 2 s )], where c 2 r,φ,z are the Alfvén sound speeds in three directions of cylindrical coordinates. Our numerical results show that by increasing all components of the magnetic field, the surface density and rotational velocity increase, but the sound speed and radial infall velocity of the disk decrease. We have also found that the existence of wind will lead to reduction of surface density as well as rotational velocity. Moreover, the radial velocity, sound speed, advection parameter and the vertical thickness of the disk will increase when outflow becomes important in the RIAF. (research papers)

  1. The multiwavelength spectrum of NGC 3115: hot accretion flow properties

    Science.gov (United States)

    Almeida, Ivan; Nemmen, Rodrigo; Wong, Ka-Wah; Wu, Qingwen; Irwin, Jimmy A.

    2018-04-01

    NGC 3115 is the nearest galaxy hosting a billion solar mass black hole and is also a low-luminosity active galactic nucleus (LLAGN). X-ray observations of this LLAGN are able to spatially resolve the hot gas within the sphere of gravitational influence of the supermassive black hole. These observations make NGC 3115 an important test bed for black hole accretion theory in galactic nuclei since they constrain the outer boundary conditions of the hot accretion flow. We present a compilation of the multiwavelength spectral energy distribution (SED) of the nucleus of NGC 3115 from radio to X-rays. We report the results from modelling the observed SED with radiatively inefficient accretion flow (RIAF) models. The radio emission can be well-explained by synchrotron emission from the RIAF without the need for contribution from a relativistic jet. We obtain a tight constraint on the RIAF density profile, ρ (r) ∝ r^{-0.73 _{-0.02} ^{+0.01}}, implying that mass-loss through subrelativistic outflows from the RIAF is significant. The lower frequency radio observation requires the synchrotron emission from a non-thermal electron population in the RIAF, similarly to Sgr A*.

  2. Dynamic processes during accretion into a black hole

    Directory of Open Access Journals (Sweden)

    G. S. Bisonvatyi-kogan

    2001-01-01

    Full Text Available Accretion disc theory was first developed as a theory with the local heat balance, where the whole energy produced by a viscous heating was emitted to the sides of the disc. One of the most important new invention of this theory was a phenomenological treatment of the turbulent viscosity, known as “alpha” prescription, when the (rϕ component of the stress tensor was approximated by (αP with a unknown constant α This prescription played the role in the accretion disc theory as well important as the mixing-length theory of convection for stellar evolution. Sources of turbulence in the accretion disc are discussed, including nonlinear hydrodynamic turbulence, convection and magnetic filed role. In parallel to the optically thick geometrically thin accretion disc models, a new branch of the optically thin accretion disc models was discovered, with a larger thickness for the same total luminosity. The choice between these solutions should be done of the base of stability analysis. The ideas underlying the necessity to include advection into the accretion disc theory are presented and first models with advection are reviewed. The present status of the solution for a low-luminous optically thin accretion disc model with advection is discussed and the limits for an advection dominated accretion flows (ADAF imposed by the presence of magnetic field are analyzed.

  3. Coulombic interactions during advection-dominated transport of ions in porous media

    DEFF Research Database (Denmark)

    Muniruzzaman, Muhammad; Stolze, Lucien; Rolle, Massimo

    2017-01-01

    bench-scale experiments and numerical simulations. The investigation aims at quantifying the key role of small-scale electrostatic interactions in flow-through systems, especially when advection is the dominant mass-transfer process. Considering dilute solutions of strong electrolytes (e.g., MgCl2......Solute transport of charged species in porous media is significantly affected by the electrochemical migration term resulting from the charge-induced interactions among dissolved ions and with solid surfaces. Therefore, the characterization of such Coulombic interactions and their effect...... on multicomponent ionic transport is of critical importance for assessing the fate of charged solutes in porous media. In this work we present a detailed investigation of the electrochemical effects during conservative multicomponent ionic transport in homogeneous and heterogeneous domains by means of laboratory...

  4. Spinning up black holes with super-critical accretion flows

    Czech Academy of Sciences Publication Activity Database

    Sądowski, A.; Bursa, Michal; Abramowicz, M. A.; Kluzniak, W.; Lasota, J.-P.; Moderski, R.; Safarzadeh, M.

    2011-01-01

    Roč. 532, August (2011), A41/1-A41/11 ISSN 0004-6361 Institutional research plan: CEZ:AV0Z10030501 Keywords : black hole physics * accretion * accretion disks Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.587, year: 2011

  5. Study of magnetized accretion flow with variable Γ equation of state

    Science.gov (United States)

    Singh, Kuldeep; Chattopadhyay, Indranil

    2018-05-01

    We present here the solutions of magnetized accretion flow on to a compact object with hard surface such as neutron stars. The magnetic field of the central star is assumed dipolar and the magnetic axis is assumed to be aligned with the rotation axis of the star. We have used an equation of state for the accreting fluid in which the adiabatic index is dependent on temperature and composition of the flow. We have also included cooling processes like bremsstrahlung and cyclotron processes in the accretion flow. We found all possible accretion solutions. All accretion solutions terminate with a shock very near to the star surface and the height of this primary shock does not vary much with either the spin period or the Bernoulli parameter of the flow, although the strength of the shock may vary with the period. For moderately rotating central star, there is possible formation of multiple sonic points in the flow and therefore, a second shock far away from the star surface may also form. However, the second shock is much weaker than the primary one near the surface. We found that if rotation period is below a certain value (P*), then multiple critical points or multiple shocks are not possible and P* depends upon the composition of the flow. We also found that cooling effect dominates after the shock and that the cyclotron and the bremsstrahlung cooling processes should be considered to obtain a consistent accretion solution.

  6. Parametric study of flow patterns behind the standing accretion shock wave for core-collapse supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Iwakami, Wakana; Nagakura, Hiroki [Yukawa Institute for Theoretical Physics, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan); Yamada, Shoichi, E-mail: wakana@heap.phys.waseda.ac.jp [Advanced Research Institute for Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo 169-8555 (Japan)

    2014-05-10

    In this study, we conduct three-dimensional hydrodynamic simulations systematically to investigate the flow patterns behind the accretion shock waves that are commonly formed in the post-bounce phase of core-collapse supernovae. Adding small perturbations to spherically symmetric, steady, shocked accretion flows, we compute the subsequent evolutions to find what flow pattern emerges as a consequence of hydrodynamical instabilities such as convection and standing accretion shock instability for different neutrino luminosities and mass accretion rates. Depending on these two controlling parameters, various flow patterns are indeed realized. We classify them into three basic patterns and two intermediate ones; the former includes sloshing motion (SL), spiral motion (SP), and multiple buoyant bubble formation (BB); the latter consists of spiral motion with buoyant-bubble formation (SPB) and spiral motion with pulsationally changing rotational velocities (SPP). Although the post-shock flow is highly chaotic, there is a clear trend in the pattern realization. The sloshing and spiral motions tend to be dominant for high accretion rates and low neutrino luminosities, and multiple buoyant bubbles prevail for low accretion rates and high neutrino luminosities. It is interesting that the dominant pattern is not always identical between the semi-nonlinear and nonlinear phases near the critical luminosity; the intermediate cases are realized in the latter case. Running several simulations with different random perturbations, we confirm that the realization of flow pattern is robust in most cases.

  7. Correlating non-linear properties with spectral states of RXTE data: possible observational evidences for four different accretion modes around compact objects

    Science.gov (United States)

    Adegoke, Oluwashina; Dhang, Prasun; Mukhopadhyay, Banibrata; Ramadevi, M. C.; Bhattacharya, Debbijoy

    2018-05-01

    By analysing the time series of RXTE/PCA data, the non-linear variabilities of compact sources have been repeatedly established. Depending on the variation in temporal classes, compact sources exhibit different non-linear features. Sometimes they show low correlation/fractal dimension, but in other classes or intervals of time they exhibit stochastic nature. This could be because the accretion flow around a compact object is a non-linear general relativistic system involving magnetohydrodynamics. However, the more conventional way of addressing a compact source is the analysis of its spectral state. Therefore, the question arises: What is the connection of non-linearity to the underlying spectral properties of the flow when the non-linear properties are related to the associated transport mechanisms describing the geometry of the flow? This work is aimed at addressing this question. Based on the connection between observed spectral and non-linear (time series) properties of two X-ray binaries: GRS 1915+105 and Sco X-1, we attempt to diagnose the underlying accretion modes of the sources in terms of known accretion classes, namely, Keplerian disc, slim disc, advection dominated accretion flow and general advective accretion flow. We explore the possible transition of the sources from one accretion mode to others with time. We further argue that the accretion rate must play an important role in transition between these modes.

  8. Accretion torques due to three-dimensional channelled flows in magnetic cataclysmic variables

    International Nuclear Information System (INIS)

    Campbell, C.G.

    1986-01-01

    Angular momentum transfer due to three-dimensional magnetically channelled accretion flows in cataclysmic binaries is considered. The white dwarf experiences a torque due to the twist in that part of its magnetic field which interacts with the accretion stream. The channelling process can also enhance angular momentum exchange between the stream and the orbit by increasing the gravitational torques. The components of the accretion torque are calculated for an arbitrary static magnetic orientation of the white dwarf, and their variation with orientation is presented. For high inclinations of the accreting pole to the orbital plane the component of the accretion torque parallel to this plane can be comparable to its perpendicular component. It is shown that the parallel component of the torque is still significant relative to the perpendicular component if material links to the white dwarf's magnetic field well away from the L 1 region. (author)

  9. Low-density, radiatively inefficient rotating-accretion flow on to a black hole

    Science.gov (United States)

    Inayoshi, Kohei; Ostriker, Jeremiah P.; Haiman, Zoltán; Kuiper, Rolf

    2018-05-01

    We study low-density axisymmetric accretion flows on to black holes (BHs) with two-dimensional hydrodynamical simulations, adopting the α-viscosity prescription. When the gas angular momentum is low enough to form a rotationally supported disc within the Bondi radius (RB), we find a global steady accretion solution. The solution consists of a rotational equilibrium distribution around r ˜ RB, where the density follows ρ ∝ (1 + RB/r)3/2, surrounding a geometrically thick and optically thin accretion disc at the centrifugal radius RC(accretion flows (ρ ∝ r-1/2). In the inner solution, the gas inflow rate decreases towards the centre due to convection (\\dot{M}∝ r), and the net accretion rate (including both inflows and outflows) is strongly suppressed by several orders of magnitude from the Bondi accretion rate \\dot{M}_B. The net accretion rate depends on the viscous strength, following \\dot{M}/\\dot{M}_B∝ (α /0.01)^{0.6}. This solution holds for low accretion rates of \\dot{M}_B/\\dot{M}_Edd≲ 10^{-3} having minimal radiation cooling, where \\dot{M}_Edd is the Eddington accretion rate. In a hot plasma at the bottom (r < 10-3 RB), thermal conduction would dominate the convective energy flux. Since suppression of the accretion by convection ceases, the final BH feeding rate is found to be \\dot{M}/\\dot{M}_B˜ 10^{-3}-10-2. This rate is as low as \\dot{M}/\\dot{M}_Edd˜ 10^{-7}-10-6 inferred for SgrA* and the nuclear BHs in M31 and M87, and can explain their low luminosities, without invoking any feedback mechanism.

  10. Properties of two-temperature dissipative accretion flow around black holes

    Science.gov (United States)

    Dihingia, Indu K.; Das, Santabrata; Mandal, Samir

    2018-04-01

    We study the properties of two-temperature accretion flow around a non-rotating black hole in presence of various dissipative processes where pseudo-Newtonian potential is adopted to mimic the effect of general relativity. The flow encounters energy loss by means of radiative processes acted on the electrons and at the same time, flow heats up as a consequence of viscous heating effective on ions. We assumed that the flow is exposed with the stochastic magnetic fields that leads to Synchrotron emission of electrons and these emissions are further strengthen by Compton scattering. We obtain the two-temperature global accretion solutions in terms of dissipation parameters, namely, viscosity (α) and accretion rate ({\\dot{m}}), and find for the first time in the literature that such solutions may contain standing shock waves. Solutions of this kind are multitransonic in nature, as they simultaneously pass through both inner critical point (xin) and outer critical point (xout) before crossing the black hole horizon. We calculate the properties of shock-induced global accretion solutions in terms of the flow parameters. We further show that two-temperature shocked accretion flow is not a discrete solution, instead such solution exists for wide range of flow parameters. We identify the effective domain of the parameter space for standing shock and observe that parameter space shrinks as the dissipation is increased. Since the post-shock region is hotter due to the effect of shock compression, it naturally emits hard X-rays, and therefore, the two-temperature shocked accretion solution has the potential to explain the spectral properties of the black hole sources.

  11. Radiative, two-temperature simulations of low-luminosity black hole accretion flows in general relativity

    Science.gov (United States)

    Sądowski, Aleksander; Wielgus, Maciek; Narayan, Ramesh; Abarca, David; McKinney, Jonathan C.; Chael, Andrew

    2017-04-01

    We present a numerical method that evolves a two-temperature, magnetized, radiative, accretion flow around a black hole, within the framework of general relativistic radiation magnetohydrodynamics. As implemented in the code KORAL, the gas consists of two sub-components - ions and electrons - which share the same dynamics but experience independent, relativistically consistent, thermodynamical evolution. The electrons and ions are heated independently according to a prescription from the literature for magnetohydrodynamical turbulent dissipation. Energy exchange between the particle species via Coulomb collisions is included. In addition, electrons gain and lose energy and momentum by absorbing and emitting synchrotron and bremsstrahlung radiation and through Compton scattering. All evolution equations are handled within a fully covariant framework in the relativistic fixed-metric space-time of the black hole. Numerical results are presented for five models of low-luminosity black hole accretion. In the case of a model with a mass accretion rate dot{M}˜ 4× 10^{-8} dot{M}_Edd, we find that radiation has a negligible effect on either the dynamics or the thermodynamics of the accreting gas. In contrast, a model with a larger dot{M}˜ 4× 10^{-4} dot{M}_Edd behaves very differently. The accreting gas is much cooler and the flow is geometrically less thick, though it is not quite a thin accretion disc.

  12. Inclusion of TCAF model in XSPEC to study accretion flow dynamics around black hole candidates

    Science.gov (United States)

    Debnath, Dipak; Chakrabarti, Sandip Kumar; Mondal, Santanu

    Spectral and Temporal properties of black hole candidates can be well understood with the Chakrabarti-Titarchuk solution of two component advective flow (TCAF). This model requires two accretion rates, namely, the Keplerian disk accretion rate and the sub-Keplerian halo accretion rate, the latter being composed of a low angular momentum flow which may or may not develop a shock. In this solution, the relevant parameter is the relative importance of the halo (which creates the Compton cloud region) rate with respect to the Keplerian disk rate (soft photon source). Though this model has been used earlier to manually fit data of several black hole candidates quite satisfactorily, for the first time we are able to create a user friendly version by implementing additive Table model FITS file into GSFC/NASA's spectral analysis software package XSPEC. This enables any user to extract physical parameters of accretion flows, such as two accretion rates, shock location, shock strength etc. for any black hole candidate. Most importantly, unlike any other theoretical model, we show that TCAF is capable of predicting timing properties from spectral fits, since in TCAF, a shock is responsible for deciding spectral slopes as well as QPO frequencies.

  13. Standing shocks in magnetized dissipative accretion flow around ...

    Indian Academy of Sciences (India)

    BIPLOB SARKAR

    2018-02-09

    Feb 9, 2018 ... flow around a black hole admits shock when the flow parameters are tuned for a considerable range. ... not exceed the gas pressure (Pgas) since the magnetic flux will ..... rily characterizes the spectral and temporal behaviour.

  14. Axisymmetric accretion flows very near black holes and Rosen-collapsed objects

    International Nuclear Information System (INIS)

    Stoeger, W.R.

    1979-01-01

    Motivated by the need for stronger observational leverage on the black hole hypothesis and for a more detailed characterization of axisymmetric accretion flows across the marginally stable circular orbit rsub(ms), a general approach for describing the non-Keplerian accretion in the region rsub(H) 0 , where rsub(H) = radius of the event horizon and r 0 > = rsub(ms) is developed. The procedure possesses many advantages, including easily imposed consistency with the Keplerian for r > rsub(o), the avoidance of ad hoc boundary conditions at rsub(ms) and/or at rsub(H) and its application also to accretion in Rosen's bimetric theory, whose spherically symmetric solution has the same qualitative orbital topography as that of general relativity. It becomes apparent, furthermore, that the particular viscosity law chosen in this procedure will have a crucial bearing on the flow in the region rsub(ms) 0 . (author)

  15. Upper Limit of the Viscosity Parameter in Accretion Flows around a Black Hole with Shock Waves

    Science.gov (United States)

    Nagarkoti, Shreeram; Chakrabarti, Sandip K.

    2016-01-01

    Black hole accretion is necessarily transonic; thus, flows must become supersonic and, therefore, sub-Keplerian before they enter into the black hole. The viscous timescale is much longer than the infall timescale close to a black hole. Hence, the angular momentum remains almost constant and the centrifugal force ˜ {l}2/{r}3 becomes increasingly dominant over the gravitational force ˜ 1/{r}2. The slowed down matter piles creating an accretion shock. The flow between shock and inner sonic point is puffed up and behaves like a boundary layer. This so-called Comptonizing cloud/corona produces hard X-rays and jets/outflows and, therefore, is an important component of black hole astrophysics. In this paper, we study steady state viscous, axisymmetric, transonic accretion flows around a Schwarzschild black hole. We adopt a viscosity parameter α and compute the highest possible value of α (namely, {α }{cr}) for each pair of two inner boundary parameters (namely, specific angular momentum carried to horizon, lin and specific energy at inner sonic point, E({x}{in})) which is still capable of producing a standing or oscillating shock. We find that while such possibilities exist for α as high as {α }{cr}=0.3 in very small regions of the flow parameter space, typical {α }{cr} appears to be about ˜0.05-0.1. Coincidentally, this also happens to be the typical viscosity parameter achieved by simulations of magnetorotational instabilities in accretion flows. We therefore believe that all realistic accretion flows are likely to have centrifugal pressure supported shocks unless the viscosity parameter everywhere is higher than {α }{cr}.

  16. Hydrodynamic Simulations of the Inner Accretion Flow of Sagittarius A* Fueled By Stellar Winds

    Science.gov (United States)

    Ressler, S. M.; Quataert, E.; Stone, J. M.

    2018-05-01

    We present Athena++ grid-based, hydrodynamic simulations of accretion onto Sagittarius A* via the stellar winds of the ˜30 Wolf-Rayet stars within the central parsec of the galactic center. These simulations span ˜ 4 orders of magnitude in radius, reaching all the way down to 300 gravitational radii of the black hole, ˜32 times further in than in previous work. We reproduce reasonably well the diffuse thermal X-ray emission observed by Chandra in the central parsec. The resulting accretion flow at small radii is a superposition of two components: 1) a moderately unbound, sub-Keplerian, thick, pressure-supported disc that is at most (but not all) times aligned with the clockwise stellar disc, and 2) a bound, low-angular momentum inflow that proceeds primarily along the southern pole of the disc. We interpret this structure as a natural consequence of a few of the innermost stellar winds dominating accretion, which produces a flow with a broad distribution of angular momentum. Including the star S2 in the simulation has a negligible effect on the flow structure. Extrapolating our results from simulations with different inner radii, we find an accretion rate of ˜ a few × 10-8M⊙/yr at the horizon scale, consistent with constraints based on modeling the observed emission of Sgr A*. The flow structure found here can be used as more realistic initial conditions for horizon scale simulations of Sgr A*.

  17. A numerical study of the stability of radiative shocks. [in accretion flows onto white dwarf stars

    Science.gov (United States)

    Imamura, J. N.; Wolff, M. T.; Durisen, R. H.

    1984-01-01

    Attention is given to the oscillatory instability of optically thin radiative shocks in time-dependent numerical calculations of accretion flows onto degenerate dwarfs. The present nonlinear calculations yield good quantitative agreement with the linear results obtained for oscillation frequencies, damping rates, and critical alpha-values. The fundamental mode and the first overtone in the shock radius and luminosity variations can be clearly identified, and evidence is sometimes seen for the second overtone. Time-dependent calculations are also performed which include additional physics relevant to degenerate dwarf accretion, such as electron thermal conduction, unequal electron and ion temperatures, Compton cooling, and relativistic corrections to the bremsstrahlung cooling law. All oscillatory modes are found to be damped, and hence stable, in the case of a 1-solar mass white dwarf accreting in spherical symmetry.

  18. The profiles of Fe K α line from the inhomogeneous accretion flow

    Science.gov (United States)

    Yu, Xiao-Di; Ma, Ren-Yi; Li, Ya-Ping; Zhang, Hui; Fang, Tao-Tao

    2018-05-01

    The clumpy disc, or inhomogeneous accretion flow, has been proposed to explain the properties of accreting black hole systems. However, the observational evidence remains to be explored. In this work, we calculate the profiles of Fe K α lines emitted from the inhomogeneous accretion flow through the ray-tracing technique, in order to find possible observable signals of the clumps. Compared with the skewed double-peaked profile of the continuous standard accretion disc, the lines show a multipeak structure when the emissivity index is not very steep. The peaks and wings are affected by the position and size of the cold clumps. When the clump is small and is located in the innermost region, due to the significant gravitational redshift, the blue wing can overlap with the red wing of the outer cold disc/clump, forming a fake peak or greatly enhancing the red peak. Given high enough resolution, it is easier to constrain the clumps around the supermassive black holes than the clumps in stellar mass black holes due to the thermal Doppler effect.

  19. Magnetized advective accretion flows: formation of magnetic barriers in magnetically arrested discs

    Science.gov (United States)

    Mondal, Tushar; Mukhopadhyay, Banibrata

    2018-05-01

    We discuss the importance of large-scale strong magnetic field in the removal of angular momentum outward, as well as the possible origin of different kinds of magnetic barrier in advective, geometrically thick, sub-Keplerian accretion flows around black holes. The origin of this large-scale strong magnetic field near the event horizon is due to the advection of the magnetic flux by the accreting gas from the environment, say, the interstellar medium or a companion star, because of flux freezing. In this simplest vertically averaged, 1.5-dimensional disc model, we choose the maximum upper limit of the magnetic field, which the disc around a black hole can sustain. In this so called magnetically arrested disc model, the accreting gas either decelerates or faces the magnetic barrier near the event horizon by the accumulated magnetic field depending on the geometry. The magnetic barrier may knock the matter to infinity. We suggest that these types of flow are the building block to produce jets and outflows in the accreting system. We also find that in some cases, when matter is trying to go back to infinity after knocking the barrier, matter is prevented being escaped by the cumulative action of strong gravity and the magnetic tension, hence by another barrier. In this way, magnetic field can lock the matter in between these two barriers and it might be a possible explanation for the formation of episodic jet.

  20. Stunted accretion growth of black holes by combined effect of the flow angular momentum and radiation feedback

    Science.gov (United States)

    Sugimura, Kazuyuki; Hosokawa, Takashi; Yajima, Hidenobu; Inayoshi, Kohei; Omukai, Kazuyuki

    2018-05-01

    Accretion on to seed black holes (BHs) is believed to play a crucial role in formation of supermassive BHs observed at high-redshift (z > 6). Here, we investigate the combined effect of gas angular momentum and radiation feedback on the accretion flow, by performing 2D axially symmetric radiation hydrodynamics simulations that solve the flow structure across the Bondi radius and the outer part of the accretion disc simultaneously. The accreting gas with finite angular momentum forms a rotationally-supported disc inside the Bondi radius, where the accretion proceeds by the angular momentum transport due to assumed α-type viscosity. We find that the interplay of radiation and angular momentum significantly suppresses accretion even if the radiative feedback is weakened in an equatorial shadowing region. The accretion rate is O(α) ˜ O(0.01 - 0.1) times the Bondi value, where α is the viscosity parameter. By developing an analytical model, we show that such a great reduction of the accretion rate persists unless the angular momentum is so small that the corresponding centrifugal radius is ≲ 0.04 times the Bondi radius. We argue that BHs are hard to grow quickly via rapid mass accretion considering the angular momentum barrier presented in this paper.

  1. Linear analysis on the growth of non-spherical perturbations in supersonic accretion flows

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Kazuya; Yamada, Shoichi, E-mail: ktakahashi@heap.phys.waseda.ac.jp [Advanced Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku 169-8555 (Japan)

    2014-10-20

    We analyzed the growth of non-spherical perturbations in supersonic accretion flows. We have in mind an application to the post-bounce phase of core-collapse supernovae (CCSNe). Such non-spherical perturbations have been suggested by a series of papers by Arnett, who has numerically investigated violent convections in the outer layers of pre-collapse stars. Moreover, Couch and Ott demonstrated in their numerical simulations that such perturbations may lead to a successful supernova even for a progenitor that fails to explode without fluctuations. This study investigated the linear growth of perturbations during the infall onto a stalled shock wave. The linearized equations are solved as an initial and boundary value problem with the use of a Laplace transform. The background is a Bondi accretion flow whose parameters are chosen to mimic the 15 M {sub ☉} progenitor model by Woosley and Heger, which is supposed to be a typical progenitor of CCSNe. We found that the perturbations that are given at a large radius grow as they flow down to the shock radius; the density perturbations can be amplified by a factor of 30, for example. We analytically show that the growth rate is proportional to l, the index of the spherical harmonics. We also found that the perturbations oscillate in time with frequencies that are similar to those of the standing accretion shock instability. This may have an implication for shock revival in CCSNe, which will be investigated in our forthcoming paper in more detail.

  2. Relativistic low angular momentum accretion: long time evolution of hydrodynamical inviscid flows

    Science.gov (United States)

    Mach, Patryk; Piróg, Michał; Font, José A.

    2018-05-01

    We investigate relativistic low angular momentum accretion of inviscid perfect fluid onto a Schwarzschild black hole. The simulations are performed with a general-relativistic, high-resolution (second-order), shock-capturing, hydrodynamical numerical code. We use horizon-penetrating Eddington–Finkelstein coordinates to remove inaccuracies in regions of strong gravity near the black hole horizon and show the expected convergence of the code with the Michel solution and stationary Fishbone–Moncrief toroids. We recover, in the framework of relativistic hydrodynamics, the qualitative behavior known from previous Newtonian studies that used a Bondi background flow in a pseudo-relativistic gravitational potential with a latitude-dependent angular momentum at the outer boundary. Our models exhibit characteristic ‘turbulent’ behavior and the attained accretion rates are lower than those of the Bondi–Michel radial flow. For sufficiently low values of the asymptotic sound speed, geometrically thick tori form in the equatorial plane surrounding the black hole horizon while accretion takes place mainly through the poles.

  3. THE EFFECTS OF ACCRETION FLOW DYNAMICS ON THE BLACK HOLE SHADOW OF SAGITTARIUS A*

    Energy Technology Data Exchange (ETDEWEB)

    Pu, Hung-Yi; Asada, Keiichi [Institute of Astronomy and Astrophysics, Academia Sinica, 11F of Astronomy-Mathematics Building, AS/NTU No. 1, Taipei 10617, Taiwan (China); Akiyama, Kazunori [Massachusetts Institute of Technology, Haystack Observatory, Route 40, Westford, MA 01886 (United States)

    2016-11-01

    A radiatively inefficient accretion flow (RIAF), which is commonly characterized by its sub-Keplerian nature, is a favored accretion model for the supermassive black hole at the Galactic center, Sagittarius A*. To investigate the observable features of an RIAF, we compare the modeled shadow images, visibilities, and spectra of three flow models with dynamics characterized by (i) a Keplerian shell that is rigidly rotating outside the innermost stable circular orbit (ISCO) and infalling with a constant angular momentum inside ISCO, (ii) a sub-Keplerian motion, and (iii) a free-falling motion with zero angular momentum at infinity. At near-millimeter wavelengths, the emission is dominated by the flow within several Schwarzschild radii. The energy shift due to these flow dynamics becomes important and distinguishable, suggesting that the flow dynamics are an important model parameter for interpreting the millimeter/sub-millimeter very long baseline interferometric observations with the forthcoming, fully assembled Event Horizon Telescope (EHT). As an example, we demonstrate that structural variations of Sagittarius A* on event horizon-scales detected in previous EHT observations can be explained by the non-stationary dynamics of an RIAF.

  4. Fermi bubbles inflated by winds launched from the hot accretion flow in Sgr A*

    International Nuclear Information System (INIS)

    Mou, Guobin; Yuan, Feng; Bu, Defu; Sun, Mouyuan; Su, Meng

    2014-01-01

    A pair of giant gamma-ray Bubbles has been revealed by Fermi-LAT. In this paper we investigate their formation mechanism. Observations have indicated that the activity of the supermassive black hole located at the Galactic center, Sgr A*, was much stronger than at the present time. Specifically, one possibility is that while Sgr A* was also in the hot accretion regime, the accretion rate should be 10 3 -10 4 times higher during the past ∼10 7 yr. On the other hand, recent magnetohydrodynamic numerical simulations of hot accretion flows have unambiguously shown the existence and obtained the properties of strong winds. Based on this knowledge, by performing three-dimensional hydrodynamical simulations, we show in this paper that the Fermi Bubbles could be inflated by winds launched from the 'past' hot accretion flow in Sgr A*. In our model, the active phase of Sgr A* is required to last for about 10 million years and it was quenched no more than 0.2 million years ago. The central molecular zone (CMZ) is included and it collimates the wind orientation toward the Galactic poles. Viscosity suppresses the Rayleigh-Taylor and Kelvin-Helmholtz instabilities and results in the smoothness of the Bubbles edge. The main observational features of the Bubbles can be well explained. Specifically, the ROSAT X-ray features are interpreted by the shocked interstellar medium and the interaction region between the wind and CMZ gas. The thermal pressure and temperature obtained in our model are consistent with recent Suzaku observations.

  5. ESTIMATING THE PARAMETERS OF SAGITTARIUS A*'s ACCRETION FLOW VIA MILLIMETER VLBI

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, Avery E [Canadian Institute for Theoretical Astrophysics, 60 St. George St., Toronto, ON M5S 3H8 (Canada); Fish, Vincent L; Doeleman, Sheperd S [Massachusetts Institute of Technology, Haystack Observatory, Route 40, Westford, MA 01886 (United States); Loeb, Abraham [Institute for Theory and Computation, Harvard University, Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States)

    2009-05-20

    Recent millimeter-VLBI observations of Sagittarius A* (Sgr A*) have, for the first time, directly probed distances comparable to the horizon scale of a black hole. This provides unprecedented access to the environment immediately around the horizon of an accreting black hole. We leverage both existing spectral and polarization measurements and our present understanding of accretion theory to produce a suite of generic radiatively inefficient accretion flow (RIAF) models of Sgr A*, which we then fit to these recent millimeter-VLBI observations. We find that if the accretion flow onto Sgr A* is well described by an RIAF model, the orientation and magnitude of the black hole's spin are constrained to a two-dimensional surface in the spin, inclination, position angle parameter space. For each of these, we find the likeliest values and their 1{sigma} and 2{sigma} errors to be a = 0{sup +0.4+0.7}, {theta}=50{sup o+10{sup o}}{sup +30{sup o}}{sub -10{sup o}}{sub -10{sup o}}, and {xi}=-20{sup o+31{sup o}}{sup +107{sup o}}{sub -16{sup o}}{sub -29{sup o}}, when the resulting probability distribution is marginalized over the others. The most probable combination is a = 0{sup +0.2+0.4}, {theta}=90{sup o}{sub -40{sup o}}{sub -50{sup o}}, and {xi}=-14{sup o+7{sup o}}{sup +11{sup o}}{sub -7{sup o}}{sub -11{sup o}}, though the uncertainties on these are very strongly correlated, and high probability configurations exist for a variety of inclination angles above 30 deg. and spins below 0.99. Nevertheless, this demonstrates the ability millimeter-VLBI observations, even with only a few stations, to significantly constrain the properties of Sgr A*.

  6. Instability, Turbulence, and Enhanced Transport in Collisionless Black-Hole Accretion Flows

    Science.gov (United States)

    Kunz, Matthew

    Many astrophysical plasmas are so hot and diffuse that the collisional mean free path is larger than the system size. Perhaps the best examples of such systems are lowluminosity accretion flows onto black holes such as Sgr A* at the center of our own Galaxy, or M87 in the Virgo cluster. To date, theoretical models of these accretion flows are based on magnetohydrodynamics (MHD), a collisional fluid theory, sometimes (but rarely) extended with non-MHD features such as anisotropic (i.e. magnetic-field-aligned) viscosity and thermal conduction. While these extensions have been recognized as crucial, they require ad hoc assumptions about the role of microscopic kinetic instabilities (namely, firehose and mirror) in regulating the transport properties. These assumptions strongly affect the outcome of the calculations, and yet they have never been tested using more fundamental (i.e. kinetic) models. This proposal outlines a comprehensive first-principles study of the plasma physics of collisionless accretion flows using both analytic and state-of-the-art numerical models. The latter will utilize a new hybrid-kinetic particle-in-cell code, Pegasus, developed by the PI and Co-I specifically to study this problem. A comprehensive kinetic study of the 3D saturation of the magnetorotational instability in a collisionless plasma will be performed, in order to understand the interplay between turbulence, transport, and Larmor-scale kinetic instabilities such as firehose and mirror. Whether such instabilities alter the macroscopic saturated state, for example by limiting the transport of angular momentum by anisotropic pressure, will be addressed. Using these results, an appropriate "fluid" closure will be developed that can capture the multi-scale effects of plasma kinetics on magnetorotational turbulence, for use by the astrophysics community in building evolutionary models of accretion disks. The PI has already successfully performed the first three-dimensional kinetic

  7. General Relativistic Magnetohydrodynamic Simulations of Magnetically Choked Accretion Flows around Black Holes

    Energy Technology Data Exchange (ETDEWEB)

    McKinney, Jonathan C.; Tchekhovskoy, Alexander; Blandford, Roger D.

    2012-04-26

    Black hole (BH) accretion flows and jets are qualitatively affected by the presence of ordered magnetic fields. We study fully three-dimensional global general relativistic magnetohydrodynamic (MHD) simulations of radially extended and thick (height H to cylindrical radius R ratio of |H/R| {approx} 0.2-1) accretion flows around BHs with various dimensionless spins (a/M, with BH mass M) and with initially toroidally-dominated ({phi}-directed) and poloidally-dominated (R-z directed) magnetic fields. Firstly, for toroidal field models and BHs with high enough |a/M|, coherent large-scale (i.e. >> H) dipolar poloidal magnetic flux patches emerge, thread the BH, and generate transient relativistic jets. Secondly, for poloidal field models, poloidal magnetic flux readily accretes through the disk from large radii and builds-up to a natural saturation point near the BH. While models with |H/R| {approx} 1 and |a/M| {le} 0.5 do not launch jets due to quenching by mass infall, for sufficiently high |a/M| or low |H/R| the polar magnetic field compresses the inflow into a geometrically thin highly non-axisymmetric 'magnetically choked accretion flow' (MCAF) within which the standard linear magneto-rotational instability is suppressed. The condition of a highly-magnetized state over most of the horizon is optimal for the Blandford-Znajek mechanism that generates persistent relativistic jets with and 100% efficiency for |a/M| {approx}> 0.9. A magnetic Rayleigh-Taylor and Kelvin-Helmholtz unstable magnetospheric interface forms between the compressed inflow and bulging jet magnetosphere, which drives a new jet-disk oscillation (JDO) type of quasi-periodic oscillation (QPO) mechanism. The high-frequency QPO has spherical harmonic |m| = 1 mode period of {tau} {approx} 70GM/c{sup 3} for a/M {approx} 0.9 with coherence quality factors Q {approx}> 10. Overall, our models are qualitatively distinct from most prior MHD simulations (typically, |H/R| << 1 and poloidal flux is

  8. SIMULATIONS OF VISCOUS ACCRETION FLOW AROUND BLACK HOLES IN A TWO-DIMENSIONAL CYLINDRICAL GEOMETRY

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seong-Jae; Hyung, Siek [School of Science Education (Astronomy), Chungbuk National University, Chungbuk 28644 (Korea, Republic of); Chattopadhyay, Indranil; Kumar, Rajiv [ARIES, Manora Peak, Nainital-263002, Uttarakhand (India); Ryu, Dongsu, E-mail: seong@chungbuk.ac.kr [Department of Physics, School of Natural Sciences UNIST, Ulsan 44919 (Korea, Republic of)

    2016-11-01

    We simulate shock-free and shocked viscous accretion flows onto a black hole in a two-dimensional cylindrical geometry, where initial conditions were chosen from analytical solutions. The simulation code used the Lagrangian total variation diminishing plus remap routine, which enabled us to attain high accuracy in capturing shocks and to handle the angular momentum distribution correctly. The inviscid shock-free accretion disk solution produced a thick disk structure, while the viscous shock-free solution attained a Bondi-like structure, but in either case, no jet activity nor any quasi-periodic oscillation (QPO)-like activity developed. The steady-state shocked solution in the inviscid as well as in the viscous regime matched theoretical predictions well. However, increasing viscosity renders the accretion shock unstable. Large-amplitude shock oscillation is accompanied by intermittent, transient inner multiple shocks. This oscillation of the inner part of the disk is interpreted as the source of QPO in hard X-rays observed in micro-quasars. Strong shock oscillation induces strong episodic jet emission. The jets also show the existence of shocks, which are produced as one shell hits the preceding one. The periodicities of the jets and shock oscillation are similar; the jets for the higher viscosity parameter appear to be stronger and faster.

  9. Dynamo dominated accretion and energy flow: The mechanism of active galactic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Colgate, S.A.; Li, H.

    1998-12-31

    An explanation of the magnetic fields of the universe, the central mass concentration of galaxies, the massive black hole of every galaxy, and the AGN phenomena has been an elusive goal. The authors suggest here the outlines of such a theoretical understanding and point out where the physical understanding is missing. They believe there is an imperative to the sequence of mass flow and hence energy flow in the collapse of a galactic mass starting from the first non-linearity appearing in structure formation following decoupling. This first non-linearity of a two to one density fluctuation, the Lyman-{alpha} clouds, ultimately leads to the emission spectra of the phenomenon of AGN, quasars, blazars, etc. The over-arching physical principle is the various mechanisms for the transport of angular momentum. They believe they have now understood the new physics of two of these mechanisms that have previously been illusive and as a consequence they impose strong constraints on the initial conditions of the mechanisms for the subsequent emission of the gravitational binding energy. The new phenomena described are: (1) the Rossby vortex mechanism of the accretion disk {alpha}-viscosity, and (2) the mechanism of the {alpha}-{Omega} dynamo in the accretion disk. The Rossby vortex mechanism leads to a prediction of the black hole mass and rate of energy release and the {alpha}-{Omega} dynamo leads to the generation of the magnetic flux of the galaxy (and the far greater magnetic flux of clusters) and separately explains the primary flux of energy emission as force-free magnetic energy density. This magnetic flux and magnetic energy density separately are the necessary consequence of the saturation of a dynamo created by the accretion disk with a gain greater than unity.

  10. The Properties of Reconnection Current Sheets in GRMHD Simulations of Radiatively Inefficient Accretion Flows

    Science.gov (United States)

    Ball, David; Özel, Feryal; Psaltis, Dimitrios; Chan, Chi-Kwan; Sironi, Lorenzo

    2018-02-01

    Non-ideal magnetohydrodynamic (MHD) effects may play a significant role in determining the dynamics, thermal properties, and observational signatures of radiatively inefficient accretion flows onto black holes. In particular, particle acceleration during magnetic reconnection events may influence black hole spectra and flaring properties. We use representative general relativistic magnetohydrodynamic (GRMHD) simulations of black hole accretion flows to identify and explore the structures and properties of current sheets as potential sites of magnetic reconnection. In the case of standard and normal evolution (SANE) disks, we find that in the reconnection sites, the plasma beta ranges from 0.1 to 1000, the magnetization ranges from 10‑4 to 1, and the guide fields are weak compared with the reconnecting fields. In magnetically arrested (MAD) disks, we find typical values for plasma beta from 10‑2 to 103, magnetizations from 10‑3 to 10, and typically stronger guide fields, with strengths comparable to or greater than the reconnecting fields. These are critical parameters that govern the electron energy distribution resulting from magnetic reconnection and can be used in the context of plasma simulations to provide microphysics inputs to global simulations. We also find that ample magnetic energy is available in the reconnection regions to power the fluence of bright X-ray flares observed from the black hole in the center of the Milky Way.

  11. Characteristics of transonic spherical symmetric accretion flow in Schwarzschild-de Sitter and Schwarzschild anti-de Sitter backgrounds, in pseudo-general relativistic paradigm

    Science.gov (United States)

    Ghosh, Shubhrangshu; Banik, Prabir

    2015-07-01

    In this paper, we present a complete work on steady state spherically symmetric Bondi type accretion flow in the presence of cosmological constant (Λ) in both Schwarzschild-de Sitter (SDS) and Schwarzschild anti-de Sitter (SADS) backgrounds considering an isolated supermassive black hole (SMBH), with the inclusion of a simple radiative transfer scheme, in the pseudo-general relativistic paradigm. We do an extensive analysis on the transonic behavior of the Bondi type accretion flow onto the cosmological BHs including a complete analysis of the global parameter space and the stability of flow, and do a complete study of the global family of solutions for a generic polytropic flow. Bondi type accretion flow in SADS background renders multiplicity in its transonic behavior with inner "saddle" type and outer "center" type sonic points, with the transonic solutions forming closed loops or contours. There is always a limiting value for ∣Λ∣ up to which we obtain valid stationary transonic solutions, which correspond to both SDS and SADS geometries; this limiting value moderately increases with the increasing radiative efficiency of the flow, especially correspond to Bondi type accretion flow in SADS background. Repulsive Λ suppresses the Bondi accretion rate by an order of magnitude for relativistic Bondi type accretion flow for a certain range in temperature, and with a marginal increase in the Bondi accretion rate if the corresponding accretion flow occurs in SADS background. However, for a strongly radiative Bondi type accretion flow with high mass accretion rate, the presence of cosmological constant do not much influence the corresponding Bondi accretion rate of the flow. Our analysis show that the relic cosmological constant has a substantial effect on Bondi type accretion flow onto isolated SMBHs and their transonic solutions beyond length-scale of kiloparsecs, especially if the Bondi type accretion occurs onto the host supergiant ellipticals or central

  12. GLOBAL STRUCTURE OF THREE DISTINCT ACCRETION FLOWS AND OUTFLOWS AROUND BLACK HOLES FROM TWO-DIMENSIONAL RADIATION-MAGNETOHYDRODYNAMIC SIMULATIONS

    International Nuclear Information System (INIS)

    Ohsuga, Ken; Mineshige, Shin

    2011-01-01

    We present the detailed global structure of black hole accretion flows and outflows through newly performed two-dimensional radiation-magnetohydrodynamic simulations. By starting from a torus threaded with weak toroidal magnetic fields and by controlling the central density of the initial torus, ρ 0 , we can reproduce three distinct modes of accretion flow. In model A, which has the highest central density, an optically and geometrically thick supercritical accretion disk is created. The radiation force greatly exceeds the gravity above the disk surface, thereby driving a strong outflow (or jet). Because of mild beaming, the apparent (isotropic) photon luminosity is ∼22L E (where L E is the Eddington luminosity) in the face-on view. Even higher apparent luminosity is feasible if we increase the flow density. In model B, which has moderate density, radiative cooling of the accretion flow is so efficient that a standard-type, cold, and geometrically thin disk is formed at radii greater than ∼7 R S (where R S is the Schwarzschild radius), while the flow is radiatively inefficient otherwise. The magnetic-pressure-driven disk wind appears in this model. In model C, the density is too low for the flow to be radiatively efficient. The flow thus becomes radiatively inefficient accretion flow, which is geometrically thick and optically thin. The magnetic-pressure force, together with the gas-pressure force, drives outflows from the disk surface, and the flow releases its energy via jets rather than via radiation. Observational implications are briefly discussed.

  13. Testing General Relativity with Accretion-Flow Imaging of Sgr A^{*}.

    Science.gov (United States)

    Johannsen, Tim; Wang, Carlos; Broderick, Avery E; Doeleman, Sheperd S; Fish, Vincent L; Loeb, Abraham; Psaltis, Dimitrios

    2016-08-26

    The Event Horizon Telescope is a global, very long baseline interferometer capable of probing potential deviations from the Kerr metric, which is believed to provide the unique description of astrophysical black holes. Here, we report an updated constraint on the quadrupolar deviation of Sagittarius A^{*} within the context of a radiatively inefficient accretion flow model in a quasi-Kerr background. We also simulate near-future constraints obtainable by the forthcoming eight-station array and show that in this model already a one-day observation can measure the spin magnitude to within 0.005, the inclination to within 0.09°, the position angle to within 0.04°, and the quadrupolar deviation to within 0.005 at 3σ confidence. Thus, we are entering an era of high-precision strong gravity measurements.

  14. HP-Multigrid as Smoother algorithm for higher order discontinuous Galerkin discretizations of advection dominated flows. Part II: Optimization of the Runge-Kutta smoother

    NARCIS (Netherlands)

    van der Vegt, Jacobus J.W.; Rhebergen, Sander

    2012-01-01

    Using a detailed multilevel analysis of the complete hp-Multigrid as Smoother algorithm accurate predictions are obtained of the spectral radius and operator norms of the multigrid error transformation operator. This multilevel analysis is used to optimize the coefficients in the semi-implicit

  15. ON THE ROLE AND ORIGIN OF NONTHERMAL ELECTRONS IN HOT ACCRETION FLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Niedźwiecki, Andrzej; Stȩpnik, Agnieszka [Department of Astrophysics, University of Łódź, Pomorska 149/153, 90-236 Łódź (Poland); Xie, Fu-Guo, E-mail: niedzwiecki@uni.lodz.pl, E-mail: agajer@o2.pl, E-mail: fgxie@shao.ac.cn [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China)

    2015-02-01

    We study the X-ray spectra of tenuous, two-temperature accretion flows using a model involving an exact, Monte Carlo computation of the global Comptonization effect as well as a general relativistic description of both the flow structure and radiative processes. In our previous work, we found that in flows surrounding supermassive black holes, thermal synchrotron radiation is not capable of providing a sufficient seed photon flux to explain the X-ray spectral indices as well as the cut-off energies measured in several best-studied active galactic nuclei (AGNs). In this work, we complete the model by including seed photons provided by nonthermal synchrotron radiation and we find that it allows us to reconcile the hot flow model with the AGN data. We take into account two possible sources of nonthermal electrons. First, we consider e {sup ±} produced by charged-pion decay, which should always be present in the innermost part of a two-temperature flow due to proton-proton interactions. We find that for a weak heating of thermal electrons (small δ) the synchrotron emission of pion-decay e {sup ±} is much stronger than the thermal synchrotron emission in the considered range of bolometric luminosities, L ∼ (10{sup –4}-10{sup –2}) L {sub Edd}. The small-δ model including hadronic effects, in general, agrees with the AGN data, except for the case of a slowly rotating black hole and a thermal distribution of protons. For large δ, the pion-decay e {sup ±} have a negligible effect and, in this model, we consider nonthermal electrons produced by direct acceleration. We find an approximate agreement with the AGN data for the fraction of the heating power of electrons, which is used for the nonthermal acceleration η ∼ 0.1. However, for constant η and δ, the model predicts a positive correlation of the X-ray spectral index with the Eddington ratio, and hence a fine tuning of η and/or δ with the accretion rate is required to explain the negative correlation

  16. A NEWLY FORMING COLD FLOW PROTOGALACTIC DISK, A SIGNATURE OF COLD ACCRETION FROM THE COSMIC WEB

    International Nuclear Information System (INIS)

    Martin, D. Christopher; Matuszewski, Mateusz; Morrissey, Patrick; Neill, James D.; Moore, Anna; Steidel, Charles C.; Trainor, Ryan

    2016-01-01

    How galaxies form from, and are fueled by, gas from the intergalactic medium (IGM) remains one of the major unsolved problems in galaxy formation. While the classical Cold Dark Matter paradigm posits galaxies forming from cooling virialized gas, recent theory and numerical simulations have highlighted the importance of cold accretion flows—relatively cool ( T ∼ few × 104 K) unshocked gas streaming along filaments into dark matter halos, including hot, massive, high-redshift halos. These flows are thought to deposit gas and angular momentum into the circumgalactic medium resulting in disk- or ring-like structures, eventually coalescing into galaxies forming at filamentary intersections. We earlier reported a bright, Ly α emitting filament near the QSO HS1549+19 at redshift z = 2.843 discovered with the Palomar Cosmic Web Imager. We now report that the bright part of this filament is an enormous ( R > 100 kpc) rotating structure of hydrogen gas with a disk-like velocity profile consistent with a 4 × 10"1"2 M _⊙ halo. The orbital time of the outer part of the what we term a “protodisk” is comparable to the virialization time and the age of the universe at this redshift. We propose that this protodisk can only have recently formed from cold gas flowing directly from the cosmic web.

  17. A NEWLY FORMING COLD FLOW PROTOGALACTIC DISK, A SIGNATURE OF COLD ACCRETION FROM THE COSMIC WEB

    Energy Technology Data Exchange (ETDEWEB)

    Martin, D. Christopher; Matuszewski, Mateusz; Morrissey, Patrick; Neill, James D. [Cahill Center for Astrophysics, California Institute of Technology, 1216 East California Boulevard, Mail Code 278-17, Pasadena, California 91125 (United States); Moore, Anna [Caltech Optical Observatories, Cahill Center for Astrophysics, California Institute of Technology, 1216 East California Boulevard, Mail Code 11-17, Pasadena, California 91125 (United States); Steidel, Charles C. [Cahill Center for Astrophysics, California Institute of Technology, 1216 East California Boulevard, Mail Code 249-17, Pasadena, California 91125 (United States); Trainor, Ryan, E-mail: cmartin@srl.caltech.edu [Department of Astronomy, University of California, Berkeley, 501 15 Campbell Hall, Berkeley, CA 94720 (United States)

    2016-06-10

    How galaxies form from, and are fueled by, gas from the intergalactic medium (IGM) remains one of the major unsolved problems in galaxy formation. While the classical Cold Dark Matter paradigm posits galaxies forming from cooling virialized gas, recent theory and numerical simulations have highlighted the importance of cold accretion flows—relatively cool ( T ∼ few × 104 K) unshocked gas streaming along filaments into dark matter halos, including hot, massive, high-redshift halos. These flows are thought to deposit gas and angular momentum into the circumgalactic medium resulting in disk- or ring-like structures, eventually coalescing into galaxies forming at filamentary intersections. We earlier reported a bright, Ly α emitting filament near the QSO HS1549+19 at redshift z = 2.843 discovered with the Palomar Cosmic Web Imager. We now report that the bright part of this filament is an enormous ( R > 100 kpc) rotating structure of hydrogen gas with a disk-like velocity profile consistent with a 4 × 10{sup 12} M {sub ⊙} halo. The orbital time of the outer part of the what we term a “protodisk” is comparable to the virialization time and the age of the universe at this redshift. We propose that this protodisk can only have recently formed from cold gas flowing directly from the cosmic web.

  18. Blazar Variability from Turbulence in Jets Launched by Magnetically Arrested Accretion Flows

    Energy Technology Data Exchange (ETDEWEB)

    Riordan, Michael O’; Pe’er, Asaf [Physics Department, University College Cork, Cork (Ireland); McKinney, Jonathan C., E-mail: michael_oriordan@umail.ucc.ie [Department of Physics and Joint Space-Science Institute, University of Maryland, College Park, MD 20742 (United States)

    2017-07-10

    Blazars show variability on timescales ranging from minutes to years, the former being comparable to and in some cases even shorter than the light-crossing time of the central black hole. The observed γ -ray light curves can be described by a power-law power density spectrum (PDS), with a similar index for both BL Lacs and flat-spectrum radio quasars. We show that this variability can be produced by turbulence in relativistic jets launched by magnetically arrested accretion flows (MADs). We perform radiative transport calculations on the turbulent, highly magnetized jet launching region of a MAD with a rapidly rotating supermassive black hole. The resulting synchrotron and synchrotron self-Compton emission, originating from close to the black hole horizon, is highly variable. This variability is characterized by PDS, which is remarkably similar to the observed power-law spectrum at frequencies less than a few per day. Furthermore, turbulence in the jet launching region naturally produces fluctuations in the plasma on scales much smaller than the horizon radius. We speculate that similar turbulent processes, operating in the jet at large radii (and therefore a high bulk Lorentz factor), are responsible for blazar variability over many decades in frequency, including on minute timescales.

  19. Blazar Variability from Turbulence in Jets Launched by Magnetically Arrested Accretion Flows

    International Nuclear Information System (INIS)

    Riordan, Michael O’; Pe’er, Asaf; McKinney, Jonathan C.

    2017-01-01

    Blazars show variability on timescales ranging from minutes to years, the former being comparable to and in some cases even shorter than the light-crossing time of the central black hole. The observed γ -ray light curves can be described by a power-law power density spectrum (PDS), with a similar index for both BL Lacs and flat-spectrum radio quasars. We show that this variability can be produced by turbulence in relativistic jets launched by magnetically arrested accretion flows (MADs). We perform radiative transport calculations on the turbulent, highly magnetized jet launching region of a MAD with a rapidly rotating supermassive black hole. The resulting synchrotron and synchrotron self-Compton emission, originating from close to the black hole horizon, is highly variable. This variability is characterized by PDS, which is remarkably similar to the observed power-law spectrum at frequencies less than a few per day. Furthermore, turbulence in the jet launching region naturally produces fluctuations in the plasma on scales much smaller than the horizon radius. We speculate that similar turbulent processes, operating in the jet at large radii (and therefore a high bulk Lorentz factor), are responsible for blazar variability over many decades in frequency, including on minute timescales.

  20. Period variations in pulsating X-ray sources. I. Accretion flow parameters and neutron star structure from timing observations

    International Nuclear Information System (INIS)

    Lamb, F.K.; Pines, D.; Shaham, J.

    1978-01-01

    We show that valuable information about both accretion flows and neutron star structure can be obtained from X-ray timing observations of period variations in pulsating sources. Such variations can result from variations in the accretion flow, or from internal torque variations, associated with oscillations of the fluid core or the unpinning of vortices in the inner crust. We develop a statistical description of torque variations in terms of noise processes, indicate how the applicability of such a description may be tested observationally, and show how it may be used to determine from observation both the properties of accretion flows and the internal structure of neutron stars, including the relative inertial moments of the crust and superfluid neutron core, the crust-core coupling time, and the frequencies of any low-frequency internal collective modes. Particular attention is paid to the physical origin of spin-down episodes; it is shown that usyc episodes may result either from external torque reversals or from internal torque variations.With the aid of the statistical description, the response of the star to torque fluctuations is calculated for three stellar models: (i) a completely rigid star; (ii) a two-component star; and (iii) a two-component star with a finite-frequency internal mode, such as the Tkachenko mode of a rotating neutron superfluid. Our calculations show that fluctuating torques could account for the period the period variations and spin-down episodes observed in Her X-1 and Cen X-3, including the large spin-down event observed in the latter source during 1972 September-October. The torque noise strengths inferred from current timing observations using the simple two-component models are shown to be consistent with those to be expected from fluctuations in accretion flows onto magnetic neutron stars

  1. THE ROLE OF THE ACCRETION DISK, DUST, AND JETS IN THE IR EMISSION OF LOW-LUMINOSITY ACTIVE GALACTIC NUCLEI

    Energy Technology Data Exchange (ETDEWEB)

    Mason, R. E. [Gemini Observatory, Northern Operations Center, 670 N. A' ohoku Place, Hilo, HI 96720 (United States); Ramos Almeida, C. [Instituto de Astrofísica de Canarias, C/Vía Láctea, s/n, E-38205 La Laguna, Tenerife (Spain); Levenson, N. A. [Gemini Observatory, Southern Operations Center, c/o AURA, Casilla 603, La Serena (Chile); Nemmen, R. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Alonso-Herrero, A., E-mail: rmason@gemini.edu [Instituto de Física de Cantabria, CSIC-UC, Avenida de los Castros s/n, E-39005 Santander (Spain)

    2013-11-10

    We use recent high-resolution infrared (IR; 1-20 μm) photometry to examine the origin of the IR emission in low-luminosity active galactic nuclei (LLAGN). The data are compared with published model fits that describe the spectral energy distribution (SED) of LLAGN in terms of an advection-dominated accretion flow, truncated thin accretion disk, and jet. The truncated disk in these models is usually not luminous enough to explain the observed IR emission, and in all cases its spectral shape is much narrower than the broad IR peaks in the data. Synchrotron radiation from the jet appears to be important in very radio-loud nuclei, but the detection of strong silicate emission features in many objects indicates that dust must also contribute. We investigate this point by fitting the IR SED of NGC 3998 using dusty torus and optically thin (τ{sub mid-IR} ∼ 1) dust shell models. While more detailed modeling is necessary, these initial results suggest that dust may account for the nuclear mid-IR emission of many LLAGN.

  2. EXPLORING THE ACCRETION MODEL OF M87 AND 3C 84 WITH THE FARADAY ROTATION MEASURE OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ya-Ping; Yuan, Feng; Xie, Fu-Guo, E-mail: fyuan@shao.ac.cn [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China)

    2016-10-20

    Low-luminosity active galactic nuclei (LLAGNs) are believed to be powered by an accretion-jet model, consisting of an inner advection-dominated accretion flow (ADAF), an outer truncated standard thin disk, and a jet; however, model degeneracy still exists in this framework. For example, the X-ray emission can originate from either the ADAF or the jet. The aim of the present work is to check these models with the Faraday rotation measure (RM) observations recently detected for two LLAGNs, M87 and 3C 84, in the sub-mm band. For M87, we find that the RM predicted by the model in which the X-ray emission originates from the ADAF is larger than the observed upper limit of RM by over two orders of magnitude, while the model in which the X-ray emission originates from the jet predicts a RM lower than the observed upper limit. For 3C 84, the sub-mm emission is found to be dominated by the jet component, while the Faraday screen is attributed to the ADAFs. This scenario can naturally explain the observed external origin of the RM and why the RM is found to be stable during a two-year interval although the sub-mm emission increases at the same period.

  3. EXPLORING THE ACCRETION MODEL OF M87 AND 3C 84 WITH THE FARADAY ROTATION MEASURE OBSERVATIONS

    International Nuclear Information System (INIS)

    Li, Ya-Ping; Yuan, Feng; Xie, Fu-Guo

    2016-01-01

    Low-luminosity active galactic nuclei (LLAGNs) are believed to be powered by an accretion-jet model, consisting of an inner advection-dominated accretion flow (ADAF), an outer truncated standard thin disk, and a jet; however, model degeneracy still exists in this framework. For example, the X-ray emission can originate from either the ADAF or the jet. The aim of the present work is to check these models with the Faraday rotation measure (RM) observations recently detected for two LLAGNs, M87 and 3C 84, in the sub-mm band. For M87, we find that the RM predicted by the model in which the X-ray emission originates from the ADAF is larger than the observed upper limit of RM by over two orders of magnitude, while the model in which the X-ray emission originates from the jet predicts a RM lower than the observed upper limit. For 3C 84, the sub-mm emission is found to be dominated by the jet component, while the Faraday screen is attributed to the ADAFs. This scenario can naturally explain the observed external origin of the RM and why the RM is found to be stable during a two-year interval although the sub-mm emission increases at the same period.

  4. Exploring the Accretion Model of M87 and 3C 84 with the Faraday Rotation Measure Observations

    Science.gov (United States)

    Li, Ya-Ping; Yuan, Feng; Xie, Fu-Guo

    2016-10-01

    Low-luminosity active galactic nuclei (LLAGNs) are believed to be powered by an accretion-jet model, consisting of an inner advection-dominated accretion flow (ADAF), an outer truncated standard thin disk, and a jet; however, model degeneracy still exists in this framework. For example, the X-ray emission can originate from either the ADAF or the jet. The aim of the present work is to check these models with the Faraday rotation measure (RM) observations recently detected for two LLAGNs, M87 and 3C 84, in the sub-mm band. For M87, we find that the RM predicted by the model in which the X-ray emission originates from the ADAF is larger than the observed upper limit of RM by over two orders of magnitude, while the model in which the X-ray emission originates from the jet predicts a RM lower than the observed upper limit. For 3C 84, the sub-mm emission is found to be dominated by the jet component, while the Faraday screen is attributed to the ADAFs. This scenario can naturally explain the observed external origin of the RM and why the RM is found to be stable during a two-year interval although the sub-mm emission increases at the same period.

  5. Bondi flow from a slowly rotating hot atmosphere

    Science.gov (United States)

    Narayan, Ramesh; Fabian, Andrew C.

    2011-08-01

    A supermassive black hole in the nucleus of an elliptical galaxy at the centre of a cool-core group or cluster of galaxies is immersed in hot gas. Bondi accretion should occur at a rate determined by the properties of the gas at the Bondi radius and the mass of the black hole. X-ray observations of massive nearby elliptical galaxies, including M87 in the Virgo cluster, indicate a Bondi accretion rate ? which roughly matches the total kinetic power of the jets, suggesting that there is a tight coupling between the jet power and the mass accretion rate. While the Bondi model considers non-rotating gas, it is likely that the external gas has some angular momentum, which previous studies have shown could decrease the accretion rate drastically. We investigate here the possibility that viscosity acts at all radii to transport angular momentum outwards so that the accretion inflow proceeds rapidly and steadily. The situation corresponds to a giant advection-dominated accretion flow (ADAF) which extends from beyond the Bondi radius down to the black hole. We find solutions of the ADAF equations in which the gas accretes at just a factor of a few less than ?. These solutions assume that the atmosphere beyond the Bondi radius rotates with a sub-Keplerian velocity and that the viscosity parameter is large, α≥ 0.1, both of which are reasonable for the problem at hand. The infall time of the ADAF solutions is no more than a few times the free-fall time. Thus, the accretion rate at the black hole is closely coupled to the surrounding gas, enabling tight feedback to occur. We show that jet powers of a few per cent of ? are expected if either a fraction of the accretion power is channelled into the jet or the black hole spin energy is tapped by a strong magnetic field pressed against the black hole by the pressure of the accretion flow. We discuss the Bernoulli parameter of the flow, the role of convection and the possibility that these as well as magnetohydrodynamic effects

  6. Hydrodynamic ejection of bipolar flows from objects undergoing disk accretion: T Tauri stars, massive pre-main-sequence objects, and cataclysmic variables

    International Nuclear Information System (INIS)

    Torbett, M.V.

    1984-01-01

    A general mechanism is presented for generating pressure-driven winds that are intrinsically bipolar from objects undergoing disk accretion. The energy librated in a boundary layer shock as the disk matter impacts the central object is shown to be sufficient to eject a fraction βapprox.10 -2 to 10 -3 of the accreted mass. These winds are driven by a mechanism that accelerates the flow perpendicular to the plane of the disk and can therefore account for the bipolar geometry of the mass loss observed near young stars. The mass loss contained in these winds is comparable to that inferred for young stars. Thus, disk accretion-driven winds may constitute the T Tauri phase of stellar evolution. This mechanism is generally applicable, and thus massive pre-main-sequence objects as well as cataclysmic variables at times of enhanced accretion are predicted to eject bipolar outflows as well. Unmagnetized accreting neutron stas are also expected to eject bipolar flows. Since this mechanism requires stellar surfaces, however, it will not operate in disk accretion onto black holes

  7. Strouhal number of bridge cables with ice accretion at low flow turbulence

    Czech Academy of Sciences Publication Activity Database

    Górski, P.; Pospíšil, Stanislav; Kuznetsov, Sergeii; Tatara, M.; Marušić, Ante

    2016-01-01

    Roč. 22, č. 2 (2016), s. 253-272 ISSN 1226-6116 R&D Projects: GA MŠk(CZ) LO1219; GA ČR(CZ) GC13-34405J; GA ČR(CZ) GA14-12892S Keywords : bridge cable * ice accretion * Strouhal number * angle of attack * vortex shedding frequency Subject RIV: JM - Building Engineering Impact factor: 0.868, year: 2016 http://koreascience.or.kr/article/ArticleFullRecord.jsp?cn=KJKHCF_2016_v22n2_253

  8. The Possible Submillimeter Bump and Accretion-jet in the Central Supermassive Black Hole of NGC 4993

    Science.gov (United States)

    Wu, Qingwen; Feng, Jianchao; Fan, Xuliang

    2018-03-01

    NGC 4993, as a host galaxy of the electromagnetic counterpart of the first gravitational-wave detection of a binary neutron-star merger, was observed by many powerful telescopes from radio to γ-ray wavebands. The weak nuclear activities of NGC 4993 suggest that it is a low-luminosity active galactic nuclei (LLAGNs). We build the multiwaveband spectral energy distributions (SEDs) of NGC 4993 from the literature. We find that the radio spectrum at ∼100–300 GHz is much steeper than that of the low-frequency waveband (e.g., 6–100 GHz), where this break was also found in the supermassive black holes (SMBHs) in our galaxy center (Sgr A*), and in some other nearby AGNs. The radio emission above and below this break may have different physical origins, which provide an opportunity to probe the accretion and jet properties. We model the multiwaveband SEDs of NGC 4993 with an advection-dominated accretion flow (ADAF) jet model. We find that the high-frequency steep radio emission at the millimeter waveband is consistent with the prediction of the ADAF, while the low-frequency flat radio spectrum is better fitted by the jet. Furthermore, the X-ray emission can also be simultaneously explained by the ADAF model. From the model fits, we estimate important parameters of the central engine (e.g., the accretion rate near the horizon of the black hole and the mass-loss rate in the jet) for NGC 4993. This result strengthens the theory that the millimeter, submillimeter, and deep X-ray observations are crucial to understanding the weak or quiescent activities in SMBH systems. Further simultaneous millimeter and X-ray monitoring of this kind of LLAGN will help us to better understand the physical origin of multiwaveband emission.

  9. Outflow and Accretion Physics in Active Galactic Nuclei

    Science.gov (United States)

    McGraw, Sean Michael

    2016-09-01

    intervals are associated with high-ionization species such as C IV and N V, low-ionization lines including Mg II and Al III, and ground and excited states from Fe II multiplets. The detected BAL and mini-BAL variations in a subset of sources provide evidence supporting scenarios involving either transverse motions of gas or ionization changes within the absorbers. We conclude that some outflows in our samples likely exist on the order of 0.01-1 pc from the SMBH, and the possibility remains that we are tracing outflowing gas on larger scales within limits ranging from ≤10 pc to ≤1 kpc from the central source. We estimate outflow kinetic luminosities between ˜10 6 and 1 times the bolometric luminosity of the quasar, indicating that the BAL outflows we probe likely possess a range of energies and only some absorber energies are likely sufficient for AGN feedback processes. We estimate the SMBH mass in the LLAGN in NGC 4203 to be ˜1.1x10 7 solar masses within a factor of ˜2. This mass estimate in conjunction with theoretical predictions is consistent with the existence of a two-component accretion flow in the nucleus of NGC 4203, consisting of a hot, advection-dominated torus at small radii connected with a thin, radiatively efficient disk at larger scales. These results provide a significant increase in the information available for quasar outflow properties and the conditions in low-luminosity accretion disks, and will inform future observational and theoretical studies that attempt to construct a more complete picture of AGN and their effects on the surrounding environments.

  10. CONSTRAINING THE STRUCTURE OF SAGITTARIUS A*'s ACCRETION FLOW WITH MILLIMETER VERY LONG BASELINE INTERFEROMETRY CLOSURE PHASES

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, Avery E [Canadian Institute for Theoretical Astrophysics, 60 St. George Street, Toronto, ON M5S 3H8 (Canada); Fish, Vincent L; Doeleman, Sheperd S [Massachusetts Institute of Technology, Haystack Observatory, Route 40, Westford, MA 01886 (United States); Loeb, Abraham [Institute for Theory and Computation, Harvard University, Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2011-09-01

    Millimeter wave very long baseline interferometry (mm-VLBI) provides access to the emission region surrounding Sagittarius A* (Sgr A*), the supermassive black hole at the center of the Milky Way, on sub-horizon scales. Recently, a closure phase of 0{sup 0} {+-} 40{sup 0} was reported on a triangle of Earth-sized baselines (SMT-CARMA-JCMT) representing a new constraint upon the structure and orientation of the emission region, independent from those provided by the previously measured 1.3 mm-VLBI visibility amplitudes alone. Here, we compare this to the closure phases associated with a class of physically motivated, radiatively inefficient accretion flow models and present predictions for future mm-VLBI experiments with the developing Event Horizon Telescope (EHT). We find that the accretion flow models are capable of producing a wide variety of closure phases on the SMT-CARMA-JCMT triangle and thus not all models are consistent with the recent observations. However, those models that reproduce the 1.3 mm-VLBI visibility amplitudes overwhelmingly have SMT-CARMA-JCMT closure phases between {+-}30{sup 0}, and are therefore broadly consistent with all current mm-VLBI observations. Improving station sensitivity by factors of a few, achievable by increases in bandwidth and phasing together multiple antennas at individual sites, should result in physically relevant additional constraints upon the model parameters and eliminate the current 180{sup 0} ambiguity on the source orientation. When additional stations are included, closure phases of order 45{sup 0}-90{sup 0} are typical. In all cases, the EHT will be able to measure these with sufficient precision to produce dramatic improvements in the constraints upon the spin of Sgr A*.

  11. Constraints on the inner accretion flow of 4U/MXB 1636-53 (V 801 Arae) from a comparison of X-ray burst and persistent emission

    NARCIS (Netherlands)

    Damen, E.; Wijers, R.A.M.J.; van Paradijs, J.; Penninx, W.; Oosterbroek, T.; Lewin, W.H.G.; Jansen, F.

    1990-01-01

    A detailed analysis is presented of the importance of Comptonization in burst and persistent spectra of the low-mass X-ray binary 4U/MXB 1636-53, and from this analysis it is inferred that the inner accretion flow is geometrically thin. It is found that burst spectra of 1636-53 are very nearly

  12. GLOBAL GENERAL RELATIVISTIC MAGNETOHYDRODYNAMIC SIMULATIONS OF BLACK HOLE ACCRETION FLOWS: A CONVERGENCE STUDY

    International Nuclear Information System (INIS)

    Shiokawa, Hotaka; Dolence, Joshua C.; Gammie, Charles F.; Noble, Scott C.

    2012-01-01

    Global, general relativistic magnetohydrodynamic (GRMHD) simulations of non-radiative, magnetized disks are widely used to model accreting black holes. We have performed a convergence study of GRMHD models computed with HARM3D. The models span a factor of four in linear resolution, from 96 × 96 × 64 to 384 × 384 × 256. We consider three diagnostics of convergence: (1) dimensionless shell-averaged quantities such as plasma β; (2) the azimuthal correlation length of fluid variables; and (3) synthetic spectra of the source including synchrotron emission, absorption, and Compton scattering. Shell-averaged temperature is, except for the lowest resolution run, nearly independent of resolution; shell-averaged plasma β decreases steadily with resolution but shows signs of convergence. The azimuthal correlation lengths of density, internal energy, and temperature decrease steadily with resolution but show signs of convergence. In contrast, the azimuthal correlation length of magnetic field decreases nearly linearly with grid size. We argue by analogy with local models, however, that convergence should be achieved with another factor of two in resolution. Synthetic spectra are, except for the lowest resolution run, nearly independent of resolution. The convergence behavior is consistent with that of higher physical resolution local model ( s hearing box ) calculations and with the recent non-relativistic global convergence studies of Hawley et al.

  13. Magnetic viscosity by localized shear flow instability in magnetized accretion disks

    International Nuclear Information System (INIS)

    Matsumoto, R.; Tajima, T.

    1995-01-01

    Differentially rotating disks are subject to the axisymmetric instability for perfectly conducting plasma in the presence of poloidal magnetic fields. For nonaxisymmetric perturbations, the authors find localized unstable eigenmodes whose eigenfunction is confined between two Alfven singularities at ω d = ± ω A , where ω d is the Doppler-shifted wave frequency, and ω A = k parallel v A is the Alfven frequency. The radial width of the unstable eigenfunction is Δx ∼ ω A /(Ak y ), where A is the Oort's constant, and k y is the azimuthal wave number. The growth rate of the fundamental mode is larger for smaller value of k y /k z . The maximum growth rate when k y /k z ∼ 0.1 is ∼ 0.2Ω for the Keplerian disk with local angular velocity Ω. It is found that the purely growing mode disappears when k y /k z > 0.12. In a perfectly conducting disk, the instability grows even when the seed magnetic field is infinitesimal. Inclusion of the resistivity, however, leads to the appearance of an instability threshold. When the resistivity η depends on the instability-induced turbulent magnetic fields δB as η([δB 2 ]), the marginal stability condition self-consistently determines the α parameter of the angular momentum transport due to the magnetic stress. For fully ionized disks, the magnetic viscosity parameter α B is between 0.001 and 1. The authors' three-dimensional MHD simulation confirms these unstable eigenmodes. It also shows that the α parameter observed in simulation is between 0.01 and 1, in agreement with theory. The observationally required smaller α in the quiescent phase of accretion disks in dwarf novae may be explained by the decreased ionization due to the temperature drop

  14. Accretion flow dynamics during 1999 outburst of XTE J1859+226—modeling of broadband spectra and constraining the source mass

    Science.gov (United States)

    Nandi, Anuj; Mandal, S.; Sreehari, H.; Radhika, D.; Das, Santabrata; Chattopadhyay, I.; Iyer, N.; Agrawal, V. K.; Aktar, R.

    2018-05-01

    We examine the dynamical behavior of accretion flow around XTE J1859+226 during the 1999 outburst by analyzing the entire outburst data (˜166 days) from RXTE Satellite. Towards this, we study the hysteresis behavior in the hardness intensity diagram (HID) based on the broadband (3-150 keV) spectral modeling, spectral signature of jet ejection and the evolution of Quasi-periodic Oscillation (QPO) frequencies using the two-component advective flow model around a black hole. We compute the flow parameters, namely Keplerian accretion rate (\\dot{m}d), sub-Keplerian accretion rate (\\dot{m}h), shock location (rs) and black hole mass (M_{bh}) from the spectral modeling and study their evolution along the q-diagram. Subsequently, the kinetic jet power is computed as L^{obs}_{jet} ˜3-6 ×10^{37} erg s^{-1} during one of the observed radio flares which indicates that jet power corresponds to 8-16% mass outflow rate from the disc. This estimate of mass outflow rate is in close agreement with the change in total accretion rate (˜14%) required for spectral modeling before and during the flare. Finally, we provide a mass estimate of the source XTE J1859+226 based on the spectral modeling that lies in the range of 5.2-7.9 M_{⊙} with 90% confidence.

  15. On accretion from an inhomogeneous medium

    International Nuclear Information System (INIS)

    Davies, R.E.; Pringle, J.E.

    1980-01-01

    Hypersonic accretion flow in two dimensions from an infinite medium which contains a small density and/or velocity gradient is considered. To first order in rsub(a)/h, where rsub(a) is the accretion radius and h the scale of the gradient, the accretion rate is unaffected and the accreted angular momentum is zero. Thus previous estimates of the amount of angular momentum accreted may severely overestimate the actual value. (author)

  16. Double Relics in the Outskirts of A3376: Accretion Flows Meet ...

    Indian Academy of Sciences (India)

    scale structures form first and these merge to form large structures such as galaxy clus- ters. In the process of structure formation, the gravity-driven supersonic flows of intergalactic matter on to dark matter-dominated collapsing structures such as ...

  17. ANGULAR MOMENTUM TRANSFER AND LACK OF FRAGMENTATION IN SELF-GRAVITATING ACCRETION FLOWS

    International Nuclear Information System (INIS)

    Begelman, Mitchell C.; Shlosman, Isaac

    2009-01-01

    Rapid inflows associated with early galaxy formation lead to the accumulation of self-gravitating gas in the centers of proto-galaxies. Such gas accumulations are prone to nonaxisymmetric instabilities, as in the well known Maclaurin sequence of rotating ellipsoids, which are accompanied by a catastrophic loss of angular momentum (J). Self-gravitating gas is also intuitively associated with star formation. However, recent simulations of the infall process display highly turbulent continuous flows. We propose that J-transfer, which enables the inflow, also suppresses fragmentation. Inefficient J loss by the gas leads to decay of turbulence, triggering global instabilities and renewed turbulence driving. Flow regulated in this way is stable against fragmentation, while staying close to the instability threshold for bar formation-thick self-gravitating disks are prone to global instabilities before they become unstable locally. On smaller scales, the fraction of gravitationally unstable matter swept up by shocks in such a flow is a small and decreasing function of the Mach number. We conclude counterintuitively that gas able to cool down to a small fraction of its virial temperature will not fragment as it collapses. This provides a venue for supermassive black holes to form via direct infall, without the intermediary stage of forming a star cluster. Some black holes could have formed or grown in massive halos at low redshifts. Thus the fragmentation is intimately related to J redistribution within the system: it is less dependent on the molecular/metal cooling but is conditioned by the ability of the flow to develop virial, supersonic turbulence.

  18. Probing the accretion flow and emission-line regions of M81, the nearest broad-lined low-luminosity AGN

    Science.gov (United States)

    Barth, Aaron

    2017-08-01

    The nucleus of M81 is an object of singular importance as a template for low-luminosity accretion flows onto supermassive black holes. We propose to obtain a complete, small-aperture, high S/N STIS UV/optical spectrum of the M81 nucleus and multi-filter WFC3 imaging covering the UV through near-IR. Such data have never previously been obtained with HST; the only prior archival UV/optical spectra of M81 have low S/N, incomplete wavelength coverage, and are strongly contaminated by starlight. Combined with new Chandra X-ray data, our proposed observations will comprise the definitive reference dataset on the spectral energy distribution of this benchmark low-luminosity AGN. These data will provide unique new constraints on the possible contribution of a truncated thin accretion disk to the AGN emission spectrum, clarifying a fundamental property of low-luminosity accretion flows. The data will additionally provide new insights into broad-line region structure and black hole mass scaling relationships at the lowest AGN luminosities, and spatially resolved diagnostics of narrow-line region excitation conditions at unprecedented spatial resolution to assess the impact of the AGN on the ionization state of the gas in the host galaxy bulge.

  19. Contributions to the study of astrophysical plasmas. From accretion-ejection flows to particle acceleration in shocks

    International Nuclear Information System (INIS)

    Casse, Fabien

    2013-01-01

    After having outlined that the study of turbulence is a point of convergence between mathematics and physics, and that magnetic turbulence is omnipresent in astrophysical plasmas and also present in the interstellar medium, in stars and in their environment, in accretion disks, at the vicinity of shocks, and so on, the author proposes an overview of his research works which started with a research thesis on magnetised accretion disks and transport of relativistic particles in a magnetic turbulence. So, in this report for an accreditation to supervise research (HDR), he first focuses on physics of systems in accretion, and particularly on magnetised accretion-ejection structures. He evokes his work on a stationary modelling of these structures, on magnetohydrodynamics digital simulation of these systems, and on some instabilities in accretion disks and their interest in astrophysics. In a second part, the author reports his works on numerical assessment of coefficients of spatial diffusion of cosmic rays in a magnetic turbulence, and the description of multi-scale environments such as supernovae debris or different regions of extra-galactic jets.

  20. Nearly collisionless spherical accretion

    International Nuclear Information System (INIS)

    Begelman, M.C.

    1977-01-01

    A fluid-like gas accretes much more efficiently than a collisionless gas. The ability of an accreting gas to behave like a fluid depends on the relationship of the mean free path of a gas particle at r → infinity lambdasub(infinity), to the typical length scales associated with the star-gas system. This relationship is examined in detail. For constant collision cross-section evidence is found for a rapid changeover from collisionless to fluid-like accretion flow when lambdasub(infinity) drops below a certain value, but for hard Coulomb collisions, the transition is more gradual, and is sensitive to the adiabatic index of the gas at r→ infinity. To these results must be added the effects of the substantial cusp of bound particles, which always develops in a system with arbitrarily small but non-zero cross-section. The density run in such a cusp depends on the collision properties of the particles. 'Loss-cone' accretion from the cusp may in some cases exceed the predicted accretion rate. (author)

  1. Hot Accretion onto Black Holes with Outflow

    Directory of Open Access Journals (Sweden)

    Park Myeong-Gu

    2018-01-01

    Full Text Available Classic Bondi accretion flow can be generalized to rotating viscous accretion flow. Study of hot accretion flow onto black holes show that its physical charateristics change from Bondi-like for small gas angular momentum to disk-like for Keperian gas angular momentum. Especially, the mass accretion rate divided by the Bondi accretion rate is proportional to the viscosity parameter alpha and inversely proportional to the gas angular momentum divided by the Keplerian angular momentum at the Bondi radius for gas angular momentum comparable to the Keplerian value. The possible presence of outflow will increase the mass inflow rate at the Bondi radius but decrease the mass accretion rate across the black hole horizon by many orders of magnitude. This implies that the growth history of supermassive black holes and their coevolution with host galaxies will be dramatically changed when the accreted gas has angular momentum or develops an outflow.

  2. Accretion flow diagnostics with X-ray spectral timing: the hard state of SWIFT J1753.5-0127

    NARCIS (Netherlands)

    Cassatella, P.; Uttley, P.; Maccarone, T.

    2012-01-01

    Recent XMM-Newton studies of X-ray variability in the hard states of black hole X-ray binaries (BHXRBs) indicate that the variability is generated in the ‘standard’ optically thick accretion disc that is responsible for the multi-colour blackbody emission. The variability originates in the disc as

  3. Evolution of accretion disks in tidal disruption events

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Rong-Feng [Current address: Racah Institute of Physics, Hebrew University of Jerusalem, Israel. (Israel); Matzner, Christopher D., E-mail: rf.shen@mail.huji.ac.il, E-mail: matzner@astro.utoronto.ca [Department of Astronomy and Astrophysics, University of Toronto, M5S 3H4 (Canada)

    2014-04-01

    During a stellar tidal disruption event (TDE), an accretion disk forms as stellar debris returns to the disruption site and circularizes. Rather than being confined within the circularizing radius, the disk can spread to larger radii to conserve angular momentum. A spreading disk is a source of matter for re-accretion at rates that may exceed the later stellar fallback rate, although a disk wind can suppress its contribution to the central black hole accretion rate. A spreading disk is detectible through a break in the central accretion rate history or, at longer wavelengths, by its own emission. We model the evolution of TDE disk size and accretion rate by accounting for the time-dependent fallback rate, for the influence of wind losses in the early advective stage, and for the possibility of thermal instability for accretion rates intermediate between the advection-dominated and gas-pressure-dominated states. The model provides a dynamic basis for modeling TDE light curves. All or part of a young TDE disk will precess as a solid body because of the Lense-Thirring effect, and precession may manifest itself as a quasi-periodic modulation of the light curve. The precession period increases with time. Applying our results to the jetted TDE candidate Swift J1644+57, whose X-ray light curve shows numerous quasi-periodic dips, we argue that the data best fit a scenario in which a main-sequence star was fully disrupted by an intermediate mass black hole on an orbit significantly inclined from the black hole equator, with the apparent jet shutoff at t = 500 days corresponding to a disk transition from the advective state to the gas-pressure-dominated state.

  4. EVOLUTION OF MASSIVE PROTOSTARS VIA DISK ACCRETION

    International Nuclear Information System (INIS)

    Hosokawa, Takashi; Omukai, Kazuyuki; Yorke, Harold W.

    2010-01-01

    Mass accretion onto (proto-)stars at high accretion rates M-dot * > 10 -4 M sun yr -1 is expected in massive star formation. We study the evolution of massive protostars at such high rates by numerically solving the stellar structure equations. In this paper, we examine the evolution via disk accretion. We consider a limiting case of 'cold' disk accretion, whereby most of the stellar photosphere can radiate freely with negligible backwarming from the accretion flow, and the accreting material settles onto the star with the same specific entropy as the photosphere. We compare our results to the calculated evolution via spherically symmetric accretion, the opposite limit, whereby the material accreting onto the star contains the entropy produced in the accretion shock front. We examine how different accretion geometries affect the evolution of massive protostars. For cold disk accretion at 10 -3 M sun yr -1 , the radius of a protostar is initially small, R * ≅ a few R sun . After several solar masses have accreted, the protostar begins to bloat up and for M * ≅ 10 M sun the stellar radius attains its maximum of 30-400 R sun . The large radius ∼100 R sun is also a feature of spherically symmetric accretion at the same accreted mass and accretion rate. Hence, expansion to a large radius is a robust feature of accreting massive protostars. At later times, the protostar eventually begins to contract and reaches the zero-age main sequence (ZAMS) for M * ≅ 30 M sun , independent of the accretion geometry. For accretion rates exceeding several 10 -3 M sun yr -1 , the protostar never contracts to the ZAMS. The very large radius of several hundreds R sun results in the low effective temperature and low UV luminosity of the protostar. Such bloated protostars could well explain the existence of bright high-mass protostellar objects, which lack detectable H II regions.

  5. Theoretical modeling of Comptonized X-ray spectra of super-Eddington accretion flow: Origin of hard excess in ultraluminous X-ray sources

    Science.gov (United States)

    Kitaki, Takaaki; Mineshige, Shin; Ohsuga, Ken; Kawashima, Tomohisa

    2017-12-01

    X-ray continuum spectra of super-Eddington accretion flow are studied by means of Monte Carlo radiative transfer simulations based on the radiation hydrodynamic simulation data, in which both thermal- and bulk-Compton scatterings are taken into account. We compare the calculated spectra of accretion flow around black holes with masses of MBH = 10, 102, 103, and 104 M⊙ for a fixed mass injection rate (from the computational boundary at 103 rs) of 103 LEdd/c2 (with rs, LEdd, and c being the Schwarzschild radius, the Eddington luminosity, and the speed of light, respectively). The soft X-ray spectra exhibit mass dependence in accordance with the standard-disk relation; the maximum surface temperature is scaled as T ∝ M_{ BH}^{ -1/4}. The spectra in the hard X-ray band, by contrast with soft X-ray, look to be quite similar among different models, if we normalize the radiation luminosity by MBH. This reflects that the hard component is created by thermal- and bulk-Compton scatterings of soft photons originating from an accretion flow in the overheated and/or funnel regions, the temperatures of which have no dependence on mass. The hard X-ray spectra can be reproduced by a Wien spectrum with the temperature of T ˜ 3 keV accompanied by a hard excess at photon energy above several keV. The excess spectrum can be fitted well with a power law with a photon index of Γ ˜ 3. This feature is in good agreement with that of the recent NuSTAR observations of ULXs (ultra-luminous X-ray sources).

  6. Status of the accretion flow solution in the Golden Jubilee year of the discovery of extra-solar X-ray sources

    Science.gov (United States)

    Chakrabarti, S. K.

    Fifty years have just passed since the first discovery of the extra-solar X-ray sources by Giacconi and his team which we know today to be some stellar mass black holes. By 1973, not only a catalog of these enigmatic objects were made, and their spectra were obtained. Today, forty years have passed since the revolutionary idea of the thin, axisymmetric, Keplerian, disk model by Shakura and Sunyaev was published. Yet, the complete predictability of their radiative properties remains as illusive as ever. The only available and self-consistent solution to date is the generalized viscous transonic flow solutions where both heating and cooling effects are included. I demonstrate that the latest `Avatar' of the accretion/outflow picture, the Generalized Two Component Advective Flow (GTCAF), is capable of explaining almost all the black hole observational results, when the results of the time dependent simulation of viscous and radiative processes are also taken into consideration. I also discuss the problems with predictability and argue that understanding companion's behaviour in terms of its habit of mass loss, ellipticity of its orbit, magnetic properties, etc. is extremely important for the prediction of emission properties of the accretion flow.

  7. TOWARD A MAGNETOHYDRODYNAMIC THEORY OF THE STATIONARY ACCRETION SHOCK INSTABILITY: TOY MODEL OF THE ADVECTIVE-ACOUSTIC CYCLE IN A MAGNETIZED FLOW

    International Nuclear Information System (INIS)

    Guilet, Jerome; Foglizzo, Thierry

    2010-01-01

    The effect of a magnetic field on the linear phase of the advective-acoustic instability is investigated as a first step toward a magnetohydrodynamic (MHD) theory of the stationary accretion shock instability taking place during stellar core collapse. We study a toy model where the flow behind a planar stationary accretion shock is adiabatically decelerated by an external potential. Two magnetic field geometries are considered: parallel or perpendicular to the shock. The entropy-vorticity wave, which is simply advected in the unmagnetized limit, separates into five different waves: the entropy perturbations are advected, while the vorticity can propagate along the field lines through two Alfven waves and two slow magnetosonic waves. The two cycles existing in the unmagnetized limit, advective-acoustic and purely acoustic, are replaced by up to six distinct MHD cycles. The phase differences among the cycles play an important role in determining the total cycle efficiency and hence the growth rate. Oscillations in the growth rate as a function of the magnetic field strength are due to this varying phase shift. A vertical magnetic field hardly affects the cycle efficiency in the regime of super-Alfvenic accretion that is considered. In contrast, we find that a horizontal magnetic field strongly increases the efficiencies of the vorticity cycles that bend the field lines, resulting in a significant increase of the growth rate if the different cycles are in phase. These magnetic effects are significant for large-scale modes if the Alfven velocity is a sizable fraction of the flow velocity.

  8. Wake characteristics of ice-accreted cylindrical bars in a cross-flow at subcritical Reynolds numbers

    Czech Academy of Sciences Publication Activity Database

    Marušić, A.; Kozmar, H.; Pospíšil, Stanislav; Kuznetsov, Sergeii

    2018-01-01

    Roč. 31, č. 2 (2018), č. článku 06017007. ISSN 0893-1321 R&D Projects: GA ČR(CZ) GA15-01035S; GA MŠk(CZ) LO1219 Keywords : bridge cable * ice accretion * wake characteristics * wind-tunnel experiments Subject RIV: JM - Building Engineering OBOR OECD: Construction engineering, Municipal and structural engineering Impact factor: 1.107, year: 2016 https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29AS.1943-5525.0000816

  9. Accretion disks in active galactic nuclei

    International Nuclear Information System (INIS)

    Begelman, M.C.

    1985-01-01

    The innermost regions of the central engines in active galactic nuclei are examined, and it is shown how different modes of accretion with angular momentum may account for the diverse manifestations of activity in the nuclei of galaxies. These modes are subsequently compared with the observed properties of quasars, Type I Seyferts, and radio galaxies. It was found that the qualitative features of an accretion flow orbiting a massive black hole depend principally on the ratio of the actual accretion rate to the Eddington accretion rate. For a value of this ratio much less than one, the flow may become an ion torus supported by gas pressure; for a value much greater than one, the flow traps its radiative output and becomes an inefficient radiation torus. At intermediate values, the flow may settle into a thin accretion disk. 62 references

  10. CONSTRAINTS ON THE NEUTRON STAR AND INNER ACCRETION FLOW IN SERPENS X-1 USING NuSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J. M. [Department of Astronomy, The University of Michigan, 500 Church Street, Ann Arbor, MI 48109-1046 (United States); Parker, M. L.; Fabian, A. C. [Institute of Astronomy, The University of Cambridge, Madingley Road, Cambridge CB3 OHA (United Kingdom); Fuerst, F.; Grefenstette, B. W.; Tendulkar, S.; Harrison, F. A.; Rana, V. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Bachetti, M.; Barret, D. [Universite de Toulouse, UPS-OMP, Toulouse (France); Boggs, S. E.; Craig, W. W.; Tomsick, J. A. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Chakrabarty, D. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 70 Vassar Street, Cambridge, MA 02139 (United States); Christensen, F. E. [Danish Technical University, Lyngby (Denmark); Hailey, C. J.; Paerels, F. [Columbia Astrophysics Laboratory and Department of Astronomy, Columbia University, 550 West 120th Street, New York, NY 10027 (United States); Natalucci, L. [Istituto di Astrofisica e Planetologia Spaziali (INAF), Via Fosso del Cavaliere 100, Roma I-00133 (Italy); Stern, D. K. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Zhang, W. W., E-mail: jonmm@umich.edu [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2013-12-10

    We report on an observation of the neutron star low-mass X-ray binary Serpens X-1, made with NuSTAR. The extraordinary sensitivity afforded by NuSTAR facilitated the detection of a clear, robust, relativistic Fe K emission line from the inner disk. A relativistic profile is required over a single Gaussian line from any charge state of Fe at the 5σ level of confidence, and any two Gaussians of equal width at the same confidence. The Compton back-scattering ''hump'' peaking in the 10-20 keV band is detected for the first time in a neutron star X-ray binary. Fits with relativistically blurred disk reflection models suggest that the disk likely extends close to the innermost stable circular orbit (ISCO) or stellar surface. The best-fit blurred reflection models constrain the gravitational redshift from the stellar surface to be z {sub NS} ≥ 0.16. The data are broadly compatible with the disk extending to the ISCO; in that case, z {sub NS} ≥ 0.22 and R {sub NS} ≤ 12.6 km (assuming M {sub NS} = 1.4 M {sub ☉} and a = 0, where a = cJ/GM {sup 2}). If the star is as large or larger than its ISCO, or if the effective reflecting disk leaks across the ISCO to the surface, the redshift constraints become measurements. We discuss our results in the context of efforts to measure fundamental properties of neutron stars, and models for accretion onto compact objects.

  11. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    We explore the global structure of the accretion flow around a Schwarzschild black hole where the accretion disc is threaded by toroidal magnetic fields. The accretion flow is optically thin and advection dominated. The synchrotron radiation is considered to be the active cooling mechanism in the flow. With this, we obtain ...

  12. Topics in the physics of accretion onto black holes

    International Nuclear Information System (INIS)

    Stoeger, W.R.

    1977-06-01

    The subject is covered in chapters, entitled: introduction and overview; boundary-condition modification of accretion-disk models; standard assumptions and nonkeplerian inner-disk models; the 'inner edge' of accretion disks and spiral orbits; a review of comptonization in accretion disks and a criterion for Lightman-Eardley stability; the thickening of accretion disks and flows; radial pressure gradients and low-angular-momentum accretion; accretion-disk scenarios for X-ray transient and burst sources; photon pair-creation processes in transrelativistic plasmas; and the astrophysical consequences of Rosen's bi-metric theory of gravity. (U.K.)

  13. NUMERICAL AND ANALYTICAL SOLUTIONS OF NEUTRINO-DOMINATED ACCRETION FLOWS WITH A NON-ZERO TORQUE BOUNDARY CONDITION AND ITS APPLICATIONS IN GAMMA-RAY BURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Wei; Lei, Wei-Hua; Wang, Ding-Xiong, E-mail: leiwh@hust.edu.cn [School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2016-12-20

    A stellar-mass black hole (BH) surrounded by a neutrino-dominated accretion flow (NDAF) has been discussed in a number of works as the central engine of gamma-ray bursts (GRBs). It is widely believed that NDAF cannot liberate enough energy for bright GRBs. However, these works have been based on the assumption of a “no torque” boundary condition, which is invalid when the disk is magnetized. In this paper, we present both numerical and analytical solutions for NDAFs with non-zero boundary stresses and reexamine their properties. We find that an NDAF with such a boundary torque can be powerful enough to account for those bright short GRBs, energetic long GRBs, and ultra-long GRBs. The disk becomes viscously unstable, which makes it possible to interpret the variability of GRB prompt emission and the steep decay phase in the early X-ray afterglow. Finally, we study the gravitational waves radiated from a processing BH-NDAF. We find that the effects of the boundary torque on the strength of the gravitational waves can be ignored.

  14. SWIFT X-RAY TELESCOPE STUDY OF THE BLACK HOLE BINARY MAXI J1659–152: VARIABILITY FROM A TWO COMPONENT ACCRETION FLOW

    Energy Technology Data Exchange (ETDEWEB)

    Kalamkar, M.; Klis, M. van der; Heil, L. [Astronomical Institute, “Anton Pannekoek,” University of Amsterdam, Science Park 904, 1098 XH, Amsterdam (Netherlands); Homan, J., E-mail: maithili@oa-roma.inaf.it [MIT Kavli Institute for Astrophysics and Space Research, 70 Vassar Street, Cambridge, MA 02139 (United States)

    2015-08-01

    We present an energy dependent X-ray variability study of the 2010 outburst of the black hole X-ray binary MAXI J1659–152 with the Swift X-ray Telescope (XRT). The broadband noise components and the quasi-periodic oscillations (QPO) observed in the power spectra show a strong and varied energy dependence. Combining Swift XRT data with data from the Rossi X-ray Timing Explorer, we report, for the first time, an rms spectrum (fractional rms amplitude as a function of energy) of these components in the 0.5–30 keV energy range. We find that the strength of the low-frequency component (<0.1 Hz) decreases with energy, contrary to the higher frequency components (>0.1 Hz) whose strengths increase with energy. In the context of the propagating fluctuations model for X-ray variability, we suggest that the low-frequency component originates in the accretion disk (which dominates emission below ∼2 keV) and the higher frequency components are formed in the hot flow (which dominates emission above ∼2 keV). As the properties of the QPO suggest that it may have a different driving mechanism, we investigate the Lense–Thirring precession of the hot flow as a candidate model. We also report on the QPO coherence evolution for the first time in the energy band below 2 keV. While there are strong indications that the QPO is less coherent at energies below 2 keV than above 2 keV, the coherence increases with intensity similar to what is observed at energies above 2 keV in other black hole X-ray binaries.

  15. Accretion and evaporation of modified Hayward black hole

    International Nuclear Information System (INIS)

    Debnath, Ujjal

    2015-01-01

    We assume the most general static spherically symmetric black hole metric. The accretion of any general kind of fluid flow around the black hole is investigated. The accretion of the fluid flow around the modified Hayward black hole is analyzed, and we then calculate the critical point, the fluid's four-velocity, and the velocity of sound during the accretion process. Also the nature of the dynamical mass of the black hole during accretion of the fluid flow, taking into consideration Hawking radiation from the black hole, i.e., evaporation of the black hole, is analyzed. (orig.)

  16. Accretion of Ghost Condensate by Black Holes

    Energy Technology Data Exchange (ETDEWEB)

    Frolov, A

    2004-06-02

    The intent of this letter is to point out that the accretion of a ghost condensate by black holes could be extremely efficient. We analyze steady-state spherically symmetric flows of the ghost fluid in the gravitational field of a Schwarzschild black hole and calculate the accretion rate. Unlike minimally coupled scalar field or quintessence, the accretion rate is set not by the cosmological energy density of the field, but by the energy scale of the ghost condensate theory. If hydrodynamical flow is established, it could be as high as tenth of a solar mass per second for 10MeV-scale ghost condensate accreting onto a stellar-sized black hole, which puts serious constraints on the parameters of the ghost condensate model.

  17. Accreting Black Holes

    OpenAIRE

    Begelman, Mitchell C.

    2014-01-01

    I outline the theory of accretion onto black holes, and its application to observed phenomena such as X-ray binaries, active galactic nuclei, tidal disruption events, and gamma-ray bursts. The dynamics as well as radiative signatures of black hole accretion depend on interactions between the relatively simple black-hole spacetime and complex radiation, plasma and magnetohydrodynamical processes in the surrounding gas. I will show how transient accretion processes could provide clues to these ...

  18. Theories of magnetospheres around accreting compact objects

    International Nuclear Information System (INIS)

    Vasyliunas, V.M.

    1979-01-01

    A wide class of galactic X-ray sources are believed to be binary systems where mass is flowing from a normal star to a companion that is a compact object, such as a neutron star. The strong magnetic fields of the compact object create a magnetosphere around it. We review the theoretical models developed to describe the properties of magnetospheres in such accreting binary systems. The size of the magnetosphere can be estimated from pressure balance arguments and is found to be small compared to the over-all size of the accretion region but large compared object if the latter is a neutron star. In the early models the magnetosphere was assumed to have open funnels in the polar regions, through which accreting plasma could pour in. Later, magnetically closed models were developed, with plasma entry made possible by instabilities at the magnetosphere boundary. The theory of plasma flow inside the magnetosphere has been formulated in analogy to a stellar wind with reversed flow; a complicating factor is the instability of the Alfven critical point for inflow. In the case of accretion via a well-defined disk, new problems if magnetospheric structure appear, in particular the question to what extent and by what process the magnetic fields from the compact object can penetrate into the acretion disk. Since the X-ray emission is powered by the gravitational energy released in the accretion process, mass transfer into the magnetosphere is of fundamental importance; the various proposed mechanisms are critically examined. (orig.)

  19. Numerical study of nonspherical black hole accretion

    International Nuclear Information System (INIS)

    Hawley, J.F.

    1984-01-01

    This thesis describes in detail a two-dimensional, axisymmetric computer code for calculating fully relativistic ideal gas hydrodynamics around a Kerr black hole. The aim is to study fully dynamic inviscid fluid accretion onto black holes, as well as to study the evolution and development of nonlinear instabilities in pressure supported accretion disks. In order to fully calibrate and document the code, certain analytic solutions for shock tubes and special accretion flows are derived; these solutions form the basis for code testing. The numerical techniques used are developed and discussed. A variety of alternate differencing schemes are compared on an analytic test bed. Some discussion is devoted to general issues in finite differencing. The working code is calibrated using analytically solvable accretion problems, including the radial accretion of dust and of fluid with pressure (Bondi accretion). Two dimensional test problems include the spiraling infall of low angular momentum fluid, the formation of a pressure supported torus, and the stable evolution of a torus. A series of numerical models are discussed and illustrated with selected plots

  20. Self-Similar Solutions for Viscous and Resistive Advection ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... In this paper, self-similar solutions of resistive advection dominated accretion flows (ADAF) in the presence of a pure azimuthal magnetic field are investigated. The mechanism of energy dissipation is assumed to be the viscosity and the magnetic diffusivity due to turbulence in the accretion flow.

  1. Accretion onto a charged higher-dimensional black hole

    International Nuclear Information System (INIS)

    Sharif, M.; Iftikhar, Sehrish

    2016-01-01

    This paper deals with the steady-state polytropic fluid accretion onto a higher-dimensional Reissner-Nordstroem black hole. We formulate the generalized mass flux conservation equation, energy flux conservation and relativistic Bernoulli equation to discuss the accretion process. The critical accretion is investigated by finding the critical radius, the critical sound velocity, and the critical flow velocity. We also explore gas compression and temperature profiles to analyze the asymptotic behavior. It is found that the results for the Schwarzschild black hole are recovered when q = 0 in four dimensions. We conclude that the accretion process in higher dimensions becomes slower in the presence of charge. (orig.)

  2. Accretion onto a charged higher-dimensional black hole

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, M.; Iftikhar, Sehrish [University of the Punjab, Department of Mathematics, Lahore (Pakistan)

    2016-03-15

    This paper deals with the steady-state polytropic fluid accretion onto a higher-dimensional Reissner-Nordstroem black hole. We formulate the generalized mass flux conservation equation, energy flux conservation and relativistic Bernoulli equation to discuss the accretion process. The critical accretion is investigated by finding the critical radius, the critical sound velocity, and the critical flow velocity. We also explore gas compression and temperature profiles to analyze the asymptotic behavior. It is found that the results for the Schwarzschild black hole are recovered when q = 0 in four dimensions. We conclude that the accretion process in higher dimensions becomes slower in the presence of charge. (orig.)

  3. Magnetohydrodynamics of accretion disks

    International Nuclear Information System (INIS)

    Torkelsson, U.

    1994-04-01

    The thesis consists of an introduction and summary, and five research papers. The introduction and summary provides the background in accretion disk physics and magnetohydrodynamics. The research papers describe numerical studies of magnetohydrodynamical processes in accretion disks. Paper 1 is a one-dimensional study of the effect of magnetic buoyancy on a flux tube in an accretion disk. The stabilizing influence of an accretion disk corona on the flux tube is demonstrated. Paper 2-4 present numerical simulations of mean-field dynamos in accretion disks. Paper 11 verifies the correctness of the numerical code by comparing linear models to previous work by other groups. The results are also extended to somewhat modified disk models. A transition from an oscillatory mode of negative parity for thick disks to a steady mode of even parity for thin disks is found. Preliminary results for nonlinear dynamos at very high dynamo numbers are also presented. Paper 3 describes the bifurcation behaviour of the nonlinear dynamos. For positive dynamo numbers it is found that the initial steady solution is replaced by an oscillatory solution of odd parity. For negative dynamo numbers the solution becomes chaotic at sufficiently high dynamo numbers. Paper 4 continues the studies of nonlinear dynamos, and it is demonstrated that a chaotic solution appears even for positive dynamo numbers, but that it returns to a steady solution of mixed parity at very high dynamo numbers. Paper 5 describes a first attempt at simulating the small-scale turbulence of an accretion disk in three dimensions. There is only find cases of decaying turbulence, but this is rather due to limitations of the simulations than that turbulence is really absent in accretion disks

  4. Accretion onto a noncommutative geometry inspired black hole

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rahul [Jamia Millia Islamia, Centre for Theoretical Physics, New Delhi (India); Ghosh, Sushant G. [Jamia Millia Islamia, Centre for Theoretical Physics, New Delhi (India); Jamia Millia Islamia, Multidisciplinary Centre for Advanced Research and Studies (MCARS), New Delhi (India); University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, Durban (South Africa)

    2017-09-15

    The spherically symmetric accretion onto a noncommutative (NC) inspired Schwarzschild black hole is treated for a polytropic fluid. The critical accretion rate M, sonic speed a{sub s} and other flow parameters are generalized for the NC inspired static black hole and compared with the results obtained for the standard Schwarzschild black holes. Also explicit expressions for gas compression ratios and temperature profiles below the accretion radius and at the event horizon are derived. This analysis is a generalization of Michel's solution to the NC geometry. Owing to the NC corrected black hole, the accretion flow parameters also have been modified. It turns out that M ∼ M{sup 2} is still achievable but r{sub s} seems to be substantially decreased due to the NC effects. They in turn do affect the accretion process. (orig.)

  5. Gas accretion onto galaxies

    CERN Document Server

    Davé, Romeel

    2017-01-01

    This edited volume presents the current state of gas accretion studies from both observational and theoretical perspectives, and charts our progress towards answering the fundamental yet elusive question of how galaxies get their gas. Understanding how galaxies form and evolve has been a central focus in astronomy for over a century. These studies have accelerated in the new millennium, driven by two key advances: the establishment of a firm concordance cosmological model that provides the backbone on which galaxies form and grow, and the recognition that galaxies grow not in isolation but within a “cosmic ecosystem” that includes the vast reservoir of gas filling intergalactic space. This latter aspect in which galaxies continually exchange matter with the intergalactic medium via inflows and outflows has been dubbed the “baryon cycle”. The topic of this book is directly related to the baryon cycle, in particular its least well constrained aspect, namely gas accretion. Accretion is a rare area of ast...

  6. Relativistic, accreting disks

    International Nuclear Information System (INIS)

    Abramowicz, M.A; Jaroszynski, M.; Sikora, M.

    1978-01-01

    An analytic theory of the hydrodynamical structure of accreting disks (without self-gravitation but with pressure) orbiting around and axially symmetric, stationary, compact body (e.g. black hole) is presented. The inner edge of the marginally stable accreting disk (i.e. disk with constant angular momentum density) has a sharp cusp located on the equatorial plane between rsub(ms) and rsub(mb). The existence of the cusp is also typical for any angular momentum distribution. The physical importance of the cusp follows from the close analogy with the case of a close binary system (L 1 Lagrange point on the Roche lobe). The existence of the cusp is thus a crucial phenomenon in such problems as boundary condition for the viscous stresses, accretion rate etc. (orig.) [de

  7. Relativistic, accreting disks

    Energy Technology Data Exchange (ETDEWEB)

    Abramowicz, M A; Jaroszynski, M; Sikora, M [Polska Akademia Nauk, Warsaw

    1978-02-01

    An analytic theory of the hydrodynamical structure of accreting disks (without self-gravitation but with pressure) orbiting around an axially symmetric, stationary, compact body (e.g. black hole) is presented. The inner edge of the marginally stable accreting disk (i.e. disk with constant angular momentum density) has a sharp cusp located on the equatorial plane between r/sub ms/ and r/sub mb/. The existence of the cusp is also typical for any angular momentum distribution. The physical importance of the cusp follows from the close analogy with the case of a close binary system (L/sub 1/ Lagrange point on the Roche lobe). The existence of the cusp is thus a crucial phenomenon in such problems as boundary condition for the viscous stresses, accretion rate, etc.

  8. Accretion from an inhomogeneous medium

    International Nuclear Information System (INIS)

    Livio, M.; Soker, N.; Koo, M. de; Savonije, G.J.

    1986-01-01

    The problem of accretion by a compact object from an inhomogeneous medium is studied in the general γnot=1 case. The mass accretion rate is found to decrease with increasing γ. The rate of accretion of angular momentum is found to be significantly lower than the rate at which angular momentum is deposited into the Bondi-Hoyle, symmetrical, accretion cylinder. The consequences of the results are studied for the cases of neutron stars accreting from the winds of early-type companions and white dwarfs and main-sequence stars accreting from winds of cool giants. (author)

  9. RINGED ACCRETION DISKS: INSTABILITIES

    Energy Technology Data Exchange (ETDEWEB)

    Pugliese, D.; Stuchlík, Z., E-mail: d.pugliese.physics@gmail.com, E-mail: zdenek.stuchlik@physics.cz [Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo náměstí 13, CZ-74601 Opava (Czech Republic)

    2016-04-01

    We analyze the possibility that several instability points may be formed, due to the Paczyński mechanism of violation of mechanical equilibrium, in the orbiting matter around a supermassive Kerr black hole. We consider a recently proposed model of a ringed accretion disk, made up by several tori (rings) that can be corotating or counter-rotating relative to the Kerr attractor due to the history of the accretion process. Each torus is governed by the general relativistic hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. We prove that the number of the instability points is generally limited and depends on the dimensionless spin of the rotating attractor.

  10. Bondi-Hoyle-Lyttleton Accretion onto Binaries

    Science.gov (United States)

    Antoni, Andrea; MacLeod, Morgan; Ramírez-Ruiz, Enrico

    2018-01-01

    Binary stars are not rare. While only close binary stars will eventually interact with one another, even the widest binary systems interact with their gaseous surroundings. The rates of accretion and the gaseous drag forces arising in these interactions are the key to understanding how these systems evolve. This poster examines accretion flows around a binary system moving supersonically through a background gas. We perform three-dimensional hydrodynamic simulations of Bondi-Hoyle-Lyttleton accretion using the adaptive mesh refinement code FLASH. We simulate a range of values of semi-major axis of the orbit relative to the gravitational focusing impact parameter of the pair. On large scales, gas is gravitationally focused by the center-of-mass of the binary, leading to dynamical friction drag and to the accretion of mass and momentum. On smaller scales, the orbital motion imprints itself on the gas. Notably, the magnitude and direction of the forces acting on the binary inherit this orbital dependence. The long-term evolution of the binary is determined by the timescales for accretion, slow down of the center-of-mass, and decay of the orbit. We use our simulations to measure these timescales and to establish a hierarchy between them. In general, our simulations indicate that binaries moving through gaseous media will slow down before the orbit decays.

  11. Relativistic jets from accreting black holes

    International Nuclear Information System (INIS)

    Coriat, Mickael

    2010-01-01

    Matter ejection processes, more commonly called jets, are among the most ubiquitous phenomena of the universe at ail scales of size and energy and are inseparable from accretion process. This intimate link, still poorly understood, is the main focus of this thesis. Through multi-wavelength observations of X-ray binary Systems hosting a black hole, I will try to bring new constraints on the physics of relativistic jets and the accretion - ejection coupling. We strive first to compare the simultaneous infrared, optical and X-ray emissions of the binary GX 339-4 over a period of five years. We study the nature of the central accretion flow, one of the least understood emission components of X-ray binaries, both in its geometry and in term of the physical processes that take place. This component is fundamental since it is could be the jets launching area or be highly connected to it. Then we focus on the infrared emission of the jets to investigate the physical conditions close to the jets base. We finally study the influence of irradiation of the outer accretion disc by the central X-ray source. Then, we present the results of a long-term radio and X-ray study of the micro-quasar H1743- 322. This System belongs to a population of accreting black holes that display, for a given X-ray luminosity, a radio emission fainter than expected. We make several assumptions about the physical origin of this phenomenon and show in particular that these sources could have a radiatively efficient central accretion flow. We finally explore the phases of return to the hard state of GX 339-4. We follow the re-emergence of the compact jets emission and try to bring new constraints on the physics of jet formation. (author) [fr

  12. Numerical Simulations of Wind Accretion in Symbiotic Binaries

    Science.gov (United States)

    de Val-Borro, M.; Karovska, M.; Sasselov, D.

    2009-08-01

    About half of the binary systems are close enough to each other for mass to be exchanged between them at some point in their evolution, yet the accretion mechanism in wind accreting binaries is not well understood. We study the dynamical effects of gravitational focusing by a binary companion on winds from late-type stars. In particular, we investigate the mass transfer and formation of accretion disks around the secondary in detached systems consisting of an asymptotic giant branch (AGB) mass-losing star and an accreting companion. The presence of mass outflows is studied as a function of mass-loss rate, wind temperature, and binary orbital parameters. A two-dimensional hydrodynamical model is used to study the stability of mass transfer in wind accreting symbiotic binary systems. In our simulations we use an adiabatic equation of state and a modified version of the isothermal approximation, where the temperature depends on the distance from the mass losing star and its companion. The code uses a block-structured adaptive mesh refinement method that allows us to have high resolution at the position of the secondary and resolve the formation of bow shocks and accretion disks. We explore the accretion flow between the components and formation of accretion disks for a range of orbital separations and wind parameters. Our results show the formation of stream flow between the stars and accretion disks of various sizes for certain orbital configurations. For a typical slow and massive wind from an AGB star the flow pattern is similar to a Roche lobe overflow with accretion rates of 10% of the mass loss from the primary. Stable disks with exponentially decreasing density profiles and masses of the order 10-4 solar masses are formed when wind acceleration occurs at several stellar radii. The disks are geometrically thin with eccentric streamlines and close to Keplerian velocity profiles. The formation of tidal streams and accretion disks is found to be weakly dependent on

  13. NUMERICAL SIMULATIONS OF WIND ACCRETION IN SYMBIOTIC BINARIES

    International Nuclear Information System (INIS)

    De Val-Borro, M.; Karovska, M.; Sasselov, D.

    2009-01-01

    About half of the binary systems are close enough to each other for mass to be exchanged between them at some point in their evolution, yet the accretion mechanism in wind accreting binaries is not well understood. We study the dynamical effects of gravitational focusing by a binary companion on winds from late-type stars. In particular, we investigate the mass transfer and formation of accretion disks around the secondary in detached systems consisting of an asymptotic giant branch (AGB) mass-losing star and an accreting companion. The presence of mass outflows is studied as a function of mass-loss rate, wind temperature, and binary orbital parameters. A two-dimensional hydrodynamical model is used to study the stability of mass transfer in wind accreting symbiotic binary systems. In our simulations we use an adiabatic equation of state and a modified version of the isothermal approximation, where the temperature depends on the distance from the mass losing star and its companion. The code uses a block-structured adaptive mesh refinement method that allows us to have high resolution at the position of the secondary and resolve the formation of bow shocks and accretion disks. We explore the accretion flow between the components and formation of accretion disks for a range of orbital separations and wind parameters. Our results show the formation of stream flow between the stars and accretion disks of various sizes for certain orbital configurations. For a typical slow and massive wind from an AGB star the flow pattern is similar to a Roche lobe overflow with accretion rates of 10% of the mass loss from the primary. Stable disks with exponentially decreasing density profiles and masses of the order 10 -4 solar masses are formed when wind acceleration occurs at several stellar radii. The disks are geometrically thin with eccentric streamlines and close to Keplerian velocity profiles. The formation of tidal streams and accretion disks is found to be weakly dependent

  14. The accretion of migrating giant planets

    Science.gov (United States)

    Dürmann, Christoph; Kley, Wilhelm

    2017-02-01

    Aims: Most studies concerning the growth and evolution of massive planets focus either on their accretion or their migration only. In this work we study both processes concurrently to investigate how they might mutually affect one another. Methods: We modeled a two-dimensional disk with a steady accretion flow onto the central star and embedded a Jupiter mass planet at 5.2 au. The disk is locally isothermal and viscosity is modeled using a constant α. The planet is held on a fixed orbit for a few hundred orbits to allow the disk to adapt and carve a gap. After this period, the planet is released and free to move according to the gravitational interaction with the gas disk. The mass accretion onto the planet is modeled by removing a fraction of gas from the inner Hill sphere, and the removed mass and momentum can be added to the planet. Results: Our results show that a fast migrating planet is able to accrete more gas than a slower migrating planet. Utilizing a tracer fluid we analyzed the origin of the accreted gas originating predominantly from the inner disk for a fast migrating planet. In the case of slower migration, the fraction of gas from the outer disk increases. We also found that even for very high accretion rates, in some cases gas crosses the planetary gap from the inner to the outer disk. Our simulations show that the crossing of gas changes during the migration process as the migration rate slows down. Therefore, classical type II migration where the planet migrates with the viscous drift rate and no gas crosses the gap is no general process but may only occur for special parameters and at a certain time during the orbital evolution of the planet.

  15. A spin-down mechanism for accreting neutron stars

    International Nuclear Information System (INIS)

    Illarionov, A.F.; AN SSSR, Moscow. Fizicheskij Inst.); Kompaneets, D.A.

    1990-01-01

    We propose a new spin-down mechanism for accreting neutron stars that explains the existence of a number of long-period (p≅100-1000 s) X-ray pulsars in wide binaries with OB-stars. The spin-down is a result of efficient angular momentum transfer from the rotating magnetosphere of the accreting star to an outflowing stream of magnetized matter. The outflow is formed within a limited solid angle, and the outflow rate is less than the accretion rate. The outflow formation is connected with the anisotropy and intensity of the hard X-ray emission of the neutron star. X-rays from the pulsar heat through Compton scattering the accreting matter anisotropically. The heated matter has a lower density than the surrounding accreting matter and flows up by the action of the buoyancy force. We find the criterion for the outflow to form deep in the accretion flow (i.e., close to the neutron star magnetosphere). The neutron star loses angular momentum when the outflow forms so deep as to capture the magnetic field lines from the rotating magnetosphere. The balance between angular momentum gain by accreting gas and loss by outflowing matter takes place at a particular value of the period of the spinning neutron star. (orig.)

  16. Accreting fluids onto regular black holes via Hamiltonian approach

    Energy Technology Data Exchange (ETDEWEB)

    Jawad, Abdul [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan); Shahzad, M.U. [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan); University of Central Punjab, CAMS, UCP Business School, Lahore (Pakistan)

    2017-08-15

    We investigate the accretion of test fluids onto regular black holes such as Kehagias-Sfetsos black holes and regular black holes with Dagum distribution function. We analyze the accretion process when different test fluids are falling onto these regular black holes. The accreting fluid is being classified through the equation of state according to the features of regular black holes. The behavior of fluid flow and the existence of sonic points is being checked for these regular black holes. It is noted that the three-velocity depends on critical points and the equation of state parameter on phase space. (orig.)

  17. Accretion of a ghost condensate by black holes

    International Nuclear Information System (INIS)

    Frolov, Andrei V.

    2004-01-01

    The intent of this paper is to point out that the accretion of a ghost condensate by black holes could be extremely efficient. We analyze steady-state spherically symmetric flows of the ghost fluid in the gravitational field of a Schwarzschild black hole and calculate the accretion rate. Unlike minimally coupled scalar field or quintessence, the accretion rate is set not by the cosmological energy density of the field, but by the energy scale of the ghost condensate theory. If hydrodynamical flow is established, it could be as high as a tenth of a solar mass per second for 10 MeV scale ghost condensate accreting onto a stellar-sized black hole, which puts serious constraints on the parameters of the ghost condensate model

  18. Neutron star accretion and the neutrino fireball

    International Nuclear Information System (INIS)

    Colgate, S.A.; Herant, M.E.; Benz, W.

    1991-01-01

    The mixing necessary to explain the ''Fe'' line widths and possibly the observed red shifts of 1987A is explained in terms of large scale, entropy conserving, up and down flows (calculated with a smooth particle 2-D code) taking place between the neutron star and the explosion shock wave due to the gravity and neutrino deposition. Depending upon conditions of entropy and mass flux further accretion takes place in single events, similar to relaxation oscillator, fed by the downward flows of low entropy matter. The shock, in turn, is driven by the upflow of the buoyant high entropy bubbles. Some accretion events will reach a temperature high enough to create a neutrino ''fireball,'' a region hot enough, 11 Mev, so as to be partially opaque to its own (neutrino) radiation. The continuing neutrino deposition drives the explosion shock until the entropy of matter flowing downwards onto the neutron star is high enough to prevent further accretion. This process should result in a robust supernova explosion

  19. Accretion Disk Spectra of the Ultra-Luminous X-Ray Sources in Nearby Spiral Galaxies and Galactic Superluminal Jet Sources

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, T

    2003-12-11

    Ultra-luminous Compact X-ray Sources (ULXs) in nearby spiral galaxies and Galactic superluminal jet sources share the common spectral characteristic that they have unusually high disk temperatures which cannot be explained in the framework of the standard optically thick accretion disk in the Schwarzschild metric. On the other hand, the standard accretion disk around the Kerr black hole might explain the observed high disk temperature, as the inner radius of the Kerr disk gets smaller and the disk temperature can be consequently higher. However, we point out that the observable Kerr disk spectra becomes significantly harder than Schwarzschild disk spectra only when the disk is highly inclined. This is because the emission from the innermost part of the accretion disk is Doppler-boosted for an edge-on Kerr disk, while hardly seen for a face-on disk. The Galactic superluminal jet sources are known to be highly inclined systems, thus their energy spectra may be explained with the standard Kerr disk with known black hole masses. For ULXs, on the other hand, the standard Kerr disk model seems implausible, since it is highly unlikely that their accretion disks are preferentially inclined, and, if edge-on Kerr disk model is applied, the black hole mass becomes unreasonably large (> 300 M{sub solar}). Instead, the slim disk (advection dominated optically thick disk) model is likely to explain the observed super-Eddington luminosities, hard energy spectra, and spectral variations of ULXs. We suggest that ULXs are accreting black holes with a few tens of solar mass, which is not unexpected from the standard stellar evolution scenario, and that their X-ray emission is from the slim disk shining at super-Eddington luminosities.

  20. Superluminous accretion discs

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, M [Cambridge Univ. (UK). Inst. of Astronomy; Polska Akademia Nauk, Warsaw. Centrum Astronomiczne)

    1981-07-01

    Upper limits are computed for the total luminosities and collimation of radiation from thick, radiation supported accretion discs around black holes. Numerical results are obtained for the 'extreme' discs with rsub(out) = 10/sup 3/ GMsub(BH)/c/sup 2/, the angular momentum of the black hole being Jsub(BH) = 0.998 GMsub(BH)/c. The high luminosity (L approximately 8.5 Lsub(Edd)) and substantial collimation of radiation found for these discs indicate that such discs can explain both the high luminosities of quasars and similar objects and may produce some of the observed beams and jets.

  1. Source to Accretion Disk Tilt

    OpenAIRE

    Montgomery, M. M.; Martin, E. L.

    2010-01-01

    Many different system types retrogradely precess, and retrograde precession could be from a tidal torque by the secondary on a misaligned accretion disk. However, a source to cause and maintain disk tilt is unknown. In this work, we show that accretion disks can tilt due to a force called lift. Lift results from differing gas stream supersonic speeds over and under an accretion disk. Because lift acts at the disk's center of pressure, a torque is applied around a rotation axis passing through...

  2. The Emerging Paradigm of Pebble Accretion

    NARCIS (Netherlands)

    Ormel, C.W.; Pessah, M.; Gressel, O.

    2017-01-01

    Pebble accretion is the mechanism in which small particles ("pebbles") accrete onto big bodies big (planetesimals or planetary embryos) in gas-rich environments. In pebble accretion accretion , accretion occurs by settling and depends only on the mass of the gravitating body gravitating , not its

  3. Minidisks in Binary Black Hole Accretion

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, Geoffrey; MacFadyen, Andrew, E-mail: gsr257@nyu.edu [Center for Cosmology and Particle Physics, Physics Department, New York University, New York, NY 10003 (United States)

    2017-02-01

    Newtonian simulations have demonstrated that accretion onto binary black holes produces accretion disks around each black hole (“minidisks”), fed by gas streams flowing through the circumbinary cavity from the surrounding circumbinary disk. We study the dynamics and radiation of an individual black hole minidisk using 2D hydrodynamical simulations performed with a new general relativistic version of the moving-mesh code Disco. We introduce a comoving energy variable that enables highly accurate integration of these high Mach number flows. Tidally induced spiral shock waves are excited in the disk and propagate through the innermost stable circular orbit, providing a Reynolds stress that causes efficient accretion by purely hydrodynamic means and producing a radiative signature brighter in hard X-rays than the Novikov–Thorne model. Disk cooling is provided by a local blackbody prescription that allows the disk to evolve self-consistently to a temperature profile where hydrodynamic heating is balanced by radiative cooling. We find that the spiral shock structure is in agreement with the relativistic dispersion relation for tightly wound linear waves. We measure the shock-induced dissipation and find outward angular momentum transport corresponding to an effective alpha parameter of order 0.01. We perform ray-tracing image calculations from the simulations to produce theoretical minidisk spectra and viewing-angle-dependent images for comparison with observations.

  4. RADIATIVELY EFFICIENT MAGNETIZED BONDI ACCRETION

    International Nuclear Information System (INIS)

    Cunningham, Andrew J.; Klein, Richard I.; McKee, Christopher F.; Krumholz, Mark R.; Teyssier, Romain

    2012-01-01

    We have carried out a numerical study of the effect of large-scale magnetic fields on the rate of accretion from a uniform, isothermal gas onto a resistive, stationary point mass. Only mass, not magnetic flux, accretes onto the point mass. The simulations for this study avoid complications arising from boundary conditions by keeping the boundaries far from the accreting object. Our simulations leverage adaptive refinement methodology to attain high spatial fidelity close to the accreting object. Our results are particularly relevant to the problem of star formation from a magnetized molecular cloud in which thermal energy is radiated away on timescales much shorter than the dynamical timescale. Contrary to the adiabatic case, our simulations show convergence toward a finite accretion rate in the limit in which the radius of the accreting object vanishes, regardless of magnetic field strength. For very weak magnetic fields, the accretion rate first approaches the Bondi value and then drops by a factor of ∼2 as magnetic flux builds up near the point mass. For strong magnetic fields, the steady-state accretion rate is reduced by a factor of ∼0.2 β 1/2 compared to the Bondi value, where β is the ratio of the gas pressure to the magnetic pressure. We give a simple expression for the accretion rate as a function of the magnetic field strength. Approximate analytic results are given in the Appendices for both time-dependent accretion in the limit of weak magnetic fields and steady-state accretion for the case of strong magnetic fields.

  5. RADIATIVELY EFFICIENT MAGNETIZED BONDI ACCRETION

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, Andrew J.; Klein, Richard I. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); McKee, Christopher F. [Department of Astronomy, University of California Berkeley, Berkeley, CA 94720 (United States); Krumholz, Mark R. [Department of Astronomy and Astrophysics, University of California Santa Cruz, Santa Cruz, CA 94560 (United States); Teyssier, Romain, E-mail: ajcunn@gmail.com [Service d' Astrophysique, CEA Saclay, 91191 Gif-sur-Yvette (France)

    2012-01-10

    We have carried out a numerical study of the effect of large-scale magnetic fields on the rate of accretion from a uniform, isothermal gas onto a resistive, stationary point mass. Only mass, not magnetic flux, accretes onto the point mass. The simulations for this study avoid complications arising from boundary conditions by keeping the boundaries far from the accreting object. Our simulations leverage adaptive refinement methodology to attain high spatial fidelity close to the accreting object. Our results are particularly relevant to the problem of star formation from a magnetized molecular cloud in which thermal energy is radiated away on timescales much shorter than the dynamical timescale. Contrary to the adiabatic case, our simulations show convergence toward a finite accretion rate in the limit in which the radius of the accreting object vanishes, regardless of magnetic field strength. For very weak magnetic fields, the accretion rate first approaches the Bondi value and then drops by a factor of {approx}2 as magnetic flux builds up near the point mass. For strong magnetic fields, the steady-state accretion rate is reduced by a factor of {approx}0.2 {beta}{sup 1/2} compared to the Bondi value, where {beta} is the ratio of the gas pressure to the magnetic pressure. We give a simple expression for the accretion rate as a function of the magnetic field strength. Approximate analytic results are given in the Appendices for both time-dependent accretion in the limit of weak magnetic fields and steady-state accretion for the case of strong magnetic fields.

  6. New Constraints on the Geometry and Kinematics of Matter Surrounding the Accretion Flow in X-Ray Binaries from Chandra High-energy Transmission Grating X-Ray Spectroscopy

    Science.gov (United States)

    Tzanavaris, P.; Yaqoob, T.

    2018-03-01

    The narrow, neutral Fe Kα fluorescence emission line in X-ray binaries (XRBs) is a powerful probe of the geometry, kinematics, and Fe abundance of matter around the accretion flow. In a recent study it has been claimed, using Chandra High-Energy Transmission Grating (HETG) spectra for a sample of XRBs, that the circumnuclear material is consistent with a solar-abundance, uniform, spherical distribution. It was also claimed that the Fe Kα line was unresolved in all cases by the HETG. However, these conclusions were based on ad hoc models that did not attempt to relate the global column density to the Fe Kα line emission. We revisit the sample and test a self-consistent model of a uniform, spherical X-ray reprocessor against HETG spectra from 56 observations of 14 Galactic XRBs. We find that the model is ruled out in 13/14 sources because a variable Fe abundance is required. In two sources a spherical distribution is viable, but with nonsolar Fe abundance. We also applied a solar-abundance Compton-thick reflection model, which can account for the spectra that are inconsistent with a spherical model, but spectra with a broader bandpass are required to better constrain model parameters. We also robustly measured the velocity width of the Fe Kα line and found FWHM values of up to ∼5000 km s‑1. Only in some spectra was the Fe Kα line unresolved by the HETG.

  7. New Constraints on the Geometry and Kinematics of Matter Surrounding the Accretion Flow in X-Ray Binaries from Chandra High-Energy Transmission Grating X-Ray Spectroscopy

    Science.gov (United States)

    Tzanavaris, P.; Yaqoob, T.

    2018-01-01

    The narrow, neutral Fe Ka fluorescence emission line in X-ray binaries (XRBs) is a powerful probe of the geometry, kinematics, and Fe abundance of matter around the accretion flow. In a recent study it has been claimed, using Chandra High-Energy Transmission Grating (HETG) spectra for a sample of XRBs, that the circumnuclear material is consistent with a solar-abundance, uniform, spherical distribution. It was also claimed that the Fe Ka line was unresolved in all cases by the HETG. However, these conclusions were based on ad hoc models that did not attempt to relate the global column density to the Fe Ka line emission. We revisit the sample and test a self-consistent model of a uniform, spherical X-ray reprocessor against HETG spectra from 56 observations of 14 Galactic XRBs. We find that the model is ruled out in 13/14 sources because a variable Fe abundance is required. In two sources a spherical distribution is viable, but with nonsolar Fe abundance. We also applied a solar-abundance Compton-thick reflection model, which can account for the spectra that are inconsistent with a spherical model, but spectra with a broader bandpass are required to better constrain model parameters. We also robustly measured the velocity width of the Fe Ka line and found FWHM values of up to approx. 5000 km/s. Only in some spectra was the Fe Ka line unresolved by the HETG.

  8. Ice Accretion on Wind Turbine Blades

    DEFF Research Database (Denmark)

    Hudecz, Adriána; Koss, Holger; Hansen, Martin Otto Laver

    2013-01-01

    In this paper, both experimental and numerical simulations of the effects of ice accretion on a NACA 64-618 airfoil section with 7° angle of attack are presented. The wind tunnel tests were conducted in a closed-circuit climatic wind tunnel at Force Technology in Denmark. The changes of aerodynamic...... forces were monitored as ice was building up on the airfoil for glaze, rime and mixed ice. In the first part of the numerical analysis, the resulted ice profiles of the wind tunnel tests were compared to profiles estimated by using the 2D ice accretion code TURBICE. In the second part, Ansys Fluent...... of the rime iced ice profile follows the streamlines quite well, disturbing the flow the least. The TURBICE analysis agrees fairly with the profiles produced during the wind tunnel testing....

  9. Collimation of particle beams from thick accretion discs

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, M [N. Copernicus Astronomical Center, Warszawa (Poland); Wilson, D B [Cambridge Univ. (UK). Inst. of Astronomy

    1981-11-01

    The acceleration and collimation of particle beams in the funnel of thick accretion discs is studied in the approximation that the flow is optically thin. Such flows can be collimated to within approximately 0.1 radians by sufficiently thick discs. The flow cannot convert more than a small fraction of the disc's (super-Eddington) luminosity into the energy flow of a narrow beam without being optically thick.

  10. WIND-ACCRETION DISKS IN WIDE BINARIES, SECOND-GENERATION PROTOPLANETARY DISKS, AND ACCRETION ONTO WHITE DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Perets, Hagai B. [Technion-Israel Institute of Technology, Haifa (Israel); Kenyon, Scott J., E-mail: hperets@physics.technion.ac.il [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2013-02-20

    Mass transfer from an evolved donor star to its binary companion is a standard feature of stellar evolution in binaries. In wide binaries, the companion star captures some of the mass ejected in a wind by the primary star. The captured material forms an accretion disk. Here, we study the evolution of wind-accretion disks, using a numerical approach which allows us to follow the long-term evolution. For a broad range of initial conditions, we derive the radial density and temperature profiles of the disk. In most cases, wind accretion leads to long-lived stable disks over the lifetime of the asymptotic giant branch donor star. The disks have masses of a few times 10{sup -5}-10{sup -3} M {sub Sun }, with surface density and temperature profiles that follow broken power laws. The total mass in the disk scales approximately linearly with the viscosity parameter used. Roughly, 50%-80% of the mass falling into the disk accretes onto the central star; the rest flows out through the outer edge of the disk into the stellar wind of the primary. For systems with large accretion rates, the secondary accretes as much as 0.1 M {sub Sun }. When the secondary is a white dwarf, accretion naturally leads to nova and supernova eruptions. For all types of secondary star, the surface density and temperature profiles of massive disks resemble structures observed in protoplanetary disks, suggesting that coordinated observational programs might improve our understanding of uncertain disk physics.

  11. WIND-ACCRETION DISKS IN WIDE BINARIES, SECOND-GENERATION PROTOPLANETARY DISKS, AND ACCRETION ONTO WHITE DWARFS

    International Nuclear Information System (INIS)

    Perets, Hagai B.; Kenyon, Scott J.

    2013-01-01

    Mass transfer from an evolved donor star to its binary companion is a standard feature of stellar evolution in binaries. In wide binaries, the companion star captures some of the mass ejected in a wind by the primary star. The captured material forms an accretion disk. Here, we study the evolution of wind-accretion disks, using a numerical approach which allows us to follow the long-term evolution. For a broad range of initial conditions, we derive the radial density and temperature profiles of the disk. In most cases, wind accretion leads to long-lived stable disks over the lifetime of the asymptotic giant branch donor star. The disks have masses of a few times 10 –5 -10 –3 M ☉ , with surface density and temperature profiles that follow broken power laws. The total mass in the disk scales approximately linearly with the viscosity parameter used. Roughly, 50%-80% of the mass falling into the disk accretes onto the central star; the rest flows out through the outer edge of the disk into the stellar wind of the primary. For systems with large accretion rates, the secondary accretes as much as 0.1 M ☉ . When the secondary is a white dwarf, accretion naturally leads to nova and supernova eruptions. For all types of secondary star, the surface density and temperature profiles of massive disks resemble structures observed in protoplanetary disks, suggesting that coordinated observational programs might improve our understanding of uncertain disk physics.

  12. Cold gas accretion in galaxies

    NARCIS (Netherlands)

    Sancisi, Renzo; Fraternali, Filippo; Oosterloo, Tom; van der Hulst, Thijs

    Evidence for the accretion of cold gas in galaxies has been rapidly accumulating in the past years. HI observations of galaxies and their environment have brought to light new facts and phenomena which are evidence of ongoing or recent accretion: (1) A large number of galaxies are accompanied by

  13. Magnetospheres of accreting compact objects in binary systems

    International Nuclear Information System (INIS)

    Aly, J.J.

    1985-09-01

    Bright pulsating X-ray sources (X-ray pulsars, AM Her stars,...) have been identified as strongly magnetized compact objects accreting matter from a binary companion. We give here a summary of some of the work which has been recently done to try to understand the interaction between the magnetic field of the compact object and the matter around. We examine in turn the models describing the interaction of the field with: i) a spherically symmetric accretion flow; ii) a thin keplerian accretion disk; iii) the companion itself. In all these cases, we pay particular attention to the following problems: i) how the external plasma interacting with the magnetosphere can get mixed with the field; ii) by which mechanism the magnetic field controls the mass-momentum-energy exchanges between the two stars. In conclusion, we compare the magnetosphere of an accreting compact object with that one of a planet [fr

  14. Snow accretion on overhead wires

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, Y. [Meteorological Research Inst. for Technology Co. Ltd., Tokyo (Japan); Tachizaki, S.; Sudo, N. [Tohoku Electric Power Co. Ltd., Miyagi (Japan)

    2005-07-01

    Wet snow accretion can cause extensive damage to transmission systems. This paper reviewed some of the difficulties faced by researchers in the study of wet snow accretion on overhead lines in Japan. The study of snow accretion phenomena is complicated by the range of phase changes in water. Snowflakes produced in an upper atmospheric layer with a temperature below freezing do not melt when they go through a lower atmospheric layer with a temperature above freezing, but are in a mixed state of solid and liquid due to the latent heat of melting. The complicated properties of water make studies of snow accretion difficult, as well as the fact that snow changes its physical properties rapidly, due to the effects of ambient temperature, rainfall, and solar radiation. The adhesive forces that cause snow accretion include freezing; bonding through freezing; sintering; condensation and freezing of vapor in the air; mechanical intertwining of snowflakes; capillary action due to liquids; coherent forces between ice particles and water formed through the metamorphosis of snowflakes. In addition to these complexities, differences in laboratory room environments and natural snow environments can also pose difficulties for researchers. Equations describing the relationship between the density of accreted snow and the meteorological parameters involved were presented, as well as empirical equations which suggested that snow accretion efficiency has a dependency on air temperature. An empirical model for estimating snow loads in Japan was outlined, as well as various experiments observing show shedding. Correlations for wet snow accretion included precipitation intensity; duration of precipitation; air temperature; wind speed and wind direction in relation to the overhead line. Issues concerning topography and wet snow accretion were reviewed. It was concluded that studies of snow accretion will benefit by the collection of data in each matrix of the relevant parameters. 12 refs

  15. Chaotic cold accretion on to black holes in rotating atmospheres

    Science.gov (United States)

    Gaspari, M.; Brighenti, F.; Temi, P.

    2015-07-01

    The fueling of black holes is one key problem in the evolution of baryons in the universe. Chaotic cold accretion (CCA) profoundly differs from classic accretion models, as Bondi and thin disc theories. Using 3D high-resolution hydrodynamic simulations, we now probe the impact of rotation on the hot and cold accretion flow in a typical massive galaxy. In the hot mode, with or without turbulence, the pressure-dominated flow forms a geometrically thick rotational barrier, suppressing the black hole accretion rate to ~1/3 of the spherical case value. When radiative cooling is dominant, the gas loses pressure support and quickly circularizes in a cold thin disk; the accretion rate is decoupled from the cooling rate, although it is higher than that of the hot mode. In the more common state of a turbulent and heated atmosphere, CCA drives the dynamics if the gas velocity dispersion exceeds the rotational velocity, i.e., turbulent Taylor number Tat 1), the broadening of the distribution and the efficiency of collisions diminish, damping the accretion rate ∝ Tat-1, until the cold disk drives the dynamics. This is exacerbated by the increased difficulty to grow TI in a rotating halo. The simulated sub-Eddington accretion rates cover the range inferred from AGN cavity observations. CCA predicts inner flat X-ray temperature and r-1 density profiles, as recently discovered in M 87 and NGC 3115. The synthetic Hα images reproduce the main features of cold gas observations in massive ellipticals, as the line fluxes and the filaments versus disk morphology. Such dichotomy is key for the long-term AGN feedback cycle. As gas cools, filamentary CCA develops and boosts AGN heating; the cold mode is thus reduced and the rotating disk remains the sole cold structure. Its consumption leaves the atmosphere in hot mode with suppressed accretion and feedback, reloading the cycle.

  16. Super-Eddington Accretion in Tidal Disruption Events: the Impact of Realistic Fallback Rates on Accretion Rates

    Science.gov (United States)

    Wu, Samantha; Coughlin, Eric R.; Nixon, Chris

    2018-04-01

    After the tidal disruption of a star by a massive black hole, disrupted stellar debris can fall back to the hole at a rate significantly exceeding its Eddington limit. To understand how black hole mass affects the duration of super-Eddington accretion in tidal disruption events, we first run a suite of simulations of the disruption of a Solar-like star by a supermassive black hole of varying mass to directly measure the fallback rate onto the hole, and we compare these fallback rates to the analytic predictions of the "frozen-in" model. Then, adopting a Zero-Bernoulli Accretion flow as an analytic prescription for the accretion flow around the hole, we investigate how the accretion rate onto the black hole evolves with the more accurate fallback rates calculated from the simulations. We find that numerically-simulated fallback rates yield accretion rates onto the hole that can, depending on the black hole mass, be nearly an order of magnitude larger than those predicted by the frozen-in approximation. Our results place new limits on the maximum black hole mass for which super-Eddington accretion occurs in tidal disruption events.

  17. Accretion on to Magnetic White Dwarfs

    Directory of Open Access Journals (Sweden)

    Wickramasinghe Dayal

    2014-01-01

    The polars have no counterparts in neutron star systems and their study provides unique insights into the complex nature of the magnetospheric boundary. The observed properties of accretion shocks at the white dwarf surface such as the anomalous soft-X-ray excess and its time variability provide strong support for the hypothesis that under certain circumstances the field channelled funnel flow is “blobby”. This has been attributed to interchange instabilities such as the Magnetic Rayleigh-Taylor instability in the shocked gas at the stream-magnetosphere boundary where the stream fragments into discrete clumps of gas. As the clumps penetrate into the magnetosphere, they are shredded into smaller mass blobs via the Kelvin-Helmholtz instability that then couple on to field lines over an extended inner transition region in the orbital plane. The more massive blobs penetrate deep into the photosphere of the white dwarf releasing their energy as a reprocessed soft-X-ray black body component. Although similar instabilities are expected in the inner transition region in disced accretion albeit on a different scale there has been no direct observational evidence for blobby accretion in the generally lower field and disced IPs.

  18. Synchrotron radiation from spherically accreting black holes

    International Nuclear Information System (INIS)

    Ipser, J.R.; Price, R.H.

    1982-01-01

    Spherical accretion onto a Schwartzchild black hole, of gas with frozen-in magnetic field, is studied numerically and analytically for a range of hole masses and accretion rates in which synchrotron emission is the dominant radiative mechanism. At small radii the equipartition of magnetic, kinetic, and gravitational energy is assumed to apply, and the gas is heated by dissipation of infalling magnetic energy, turbulent energy, etc. The models can be classified into three types: (a) synchrotron cooling negligible, (b) synchrotron cooling important but synchrotron self-absorption negligible, (c) synchrotron cooling and self-absorption important. In the first case gas temperatures become very high near the horizon but luminosity efficiencies (luminosity/mass-energy accretion rate) are low. In cases (b) and (c) the gas flow near the horizon is essentially isothermal and luminosity efficiencies are fairly high. The analysis and results for the isothermal cases (b) and (c) are valid only for moderate dissipative heating and synchrotron self-absorption. If self-absorption is very strong or if dissipated energy is comparable to infall energy, Comptonization effects, not included in the analysis, become important

  19. A COMMON SOURCE OF ACCRETION DISK TILT

    International Nuclear Information System (INIS)

    Montgomery, M. M.; Martin, E. L.

    2010-01-01

    Many different system types retrogradely precess, and retrograde precession could be from a tidal torque by the secondary on a misaligned accretion disk. However, a source that causes and maintains disk tilt is unknown. In this work, we show that accretion disks can tilt due to a force called lift. Lift results from differing gas stream supersonic speeds over and under an accretion disk. Because lift acts at the disk's center of pressure, a torque is applied around a rotation axis passing through the disk's center of mass. The disk responds to lift by pitching around the disk's line of nodes. If the gas stream flow ebbs, then lift also ebbs and the disk attempts to return to its original orientation. To first approximation, lift does not depend on magnetic fields or radiation sources but does depend on the mass and the surface area of the disk. Also, for disk tilt to be initiated, a minimum mass transfer rate must be exceeded. For example, a 10 -11 M sun disk around a 0.8 M sun compact central object requires a mass transfer rate greater than ∼ 8 x 10 -11 M sun yr -1 , a value well below the known mass transfer rates in cataclysmic variable dwarf novae systems that retrogradely precess and exhibit negative superhumps in their light curves and a value well below mass transfer rates in protostellar-forming systems.

  20. Gravity signatures of terrane accretion

    Science.gov (United States)

    Franco, Heather; Abbott, Dallas

    1999-01-01

    In modern collisional environments, accreted terranes are bracketed by forearc gravity lows, a gravitational feature which results from the abandonment of the original trench and the initiation of a new trench seaward of the accreted terrane. The size and shape of the gravity low depends on the type of accreted feature and the strength of the formerly subducting plate. Along the Central American trench, the accretion of Gorgona Island caused a seaward trench jump of 48 to 66 km. The relict trench axes show up as gravity lows behind the trench with minimum values of -78 mgal (N of Gorgona) and -49 mgal (S of Gorgona) respectively. These forearc gravity lows have little or no topographic expression. The active trench immediately seaward of these forearc gravity lows has minimum gravity values of -59 mgal (N of Gorgona) and -58 mgal (S of Gorgona), respectively. In the north, the active trench has a less pronounced gravity low than the sediment covered forearc. In the Mariana arc, two Cretaceous seamounts have been accreted to the Eocene arc. The northern seamount is most likely a large block, the southern seamount may be a thrust slice. These more recent accretion events have produced modest forearc topographic and gravity lows in comparison with the topographic and gravity lows within the active trench. However, the minimum values of the Mariana forearc gravity lows are modest only by comparison to the Mariana Trench (-216 mgal); their absolute values are more negative than at Gorgona Island (-145 to -146 mgal). We speculate that the forearc gravity lows and seaward trench jumps near Gorgona Island were produced by the accretion of a hotspot island from a strong plate. The Mariana gravity lows and seaward trench jumps (or thrust slices) were the result of breaking a relatively weak plate close to the seamount edifice. These gravity lows resulting from accretion events should be preserved in older accreted terranes.

  1. Radiation-driven Turbulent Accretion onto Massive Black Holes

    Energy Technology Data Exchange (ETDEWEB)

    Park, KwangHo; Wise, John H.; Bogdanović, Tamara, E-mail: kwangho.park@physics.gatech.edu [Center for Relativistic Astrophysics, School of Physics, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2017-09-20

    Accretion of gas and interaction of matter and radiation are at the heart of many questions pertaining to black hole (BH) growth and coevolution of massive BHs and their host galaxies. To answer them, it is critical to quantify how the ionizing radiation that emanates from the innermost regions of the BH accretion flow couples to the surrounding medium and how it regulates the BH fueling. In this work, we use high-resolution three-dimensional (3D) radiation-hydrodynamic simulations with the code Enzo , equipped with adaptive ray-tracing module Moray , to investigate radiation-regulated BH accretion of cold gas. Our simulations reproduce findings from an earlier generation of 1D/2D simulations: the accretion-powered UV and X-ray radiation forms a highly ionized bubble, which leads to suppression of BH accretion rate characterized by quasi-periodic outbursts. A new feature revealed by the 3D simulations is the highly turbulent nature of the gas flow in vicinity of the ionization front. During quiescent periods between accretion outbursts, the ionized bubble shrinks in size and the gas density that precedes the ionization front increases. Consequently, the 3D simulations show oscillations in the accretion rate of only ∼2–3 orders of magnitude, significantly smaller than 1D/2D models. We calculate the energy budget of the gas flow and find that turbulence is the main contributor to the kinetic energy of the gas but corresponds to less than 10% of its thermal energy and thus does not contribute significantly to the pressure support of the gas.

  2. Radiatively-suppressed spherical accretion under relativistic radiative transfer

    Science.gov (United States)

    Fukue, Jun

    2018-03-01

    We numerically examine radiatively-suppressed relativistic spherical accretion flows on to a central object with mass M under Newtonian gravity and special relativity. We simultaneously solve both the relativistic radiative transfer equation and the relativistic hydrodynamical equations for spherically symmetric flows under the double iteration process in the case of the intermediate optical depth. We find that the accretion flow is suppressed, compared with the freefall case in the nonrelativistic regime. For example, in the case of accretion on to a luminous core with accretion luminosity L*, the freefall velocity v normalized by the speed of light c under the radiative force in the nonrelativistic regime is β (\\hat{r}) = v/c = -√{(1-Γ _*)/(\\hat{r}+1-Γ _*)}, where Γ* (≡ L*/LE, LE being the Eddington luminosity) is the Eddington parameter and \\hat{r} (= r/rS, rS being the Schwarzschild radius) the normalized radius, whereas the infall speed at the central core is ˜0.7β(1), irrespective of the mass-accretion rate. This is due to the relativistic effect; the comoving flux is enhanced by the advective flux. We briefly examine and discuss an isothermal case, where the emission takes place in the entire space.

  3. Solar neutrinos and solar accretion of interstellar matter

    International Nuclear Information System (INIS)

    Newman, M.J.; Talbot, R.J. Jr.

    1976-01-01

    It is argued that if the Hoyle-Lyttleton mass accretion rate applies (Proc. Camb. Phil. Soc., Math. Phys. Sci. 35: 405 (1939)) the accretion of interstellar matter by the Sun is sufficient to enhance the surface heavy element abundances. This will also apply to other solar-type stars. The enhancement may be sufficient to allow the construction of consistent solar models with an interior heavy element abundance significantly lower than the observed surface abundance. This state of affairs lowers the predicted solar neutrino flux. It has been suggested that a similar enhancement of surface abundances might occur due to accretion of 'planetesimals' left over after formation of the solar system, and both processes may occur, thereby increasing the effect. The simple accretion model of Hoyle and Lyttleton is discussed mathematically. A crucial question to be answered by future research, however, is whether or not accretion on to the solar surface actually occurs. One of the most obvious obstacles is the outward flowing solar wind, and this is discussed. It appears that the outward flow can be reversed to an inward flow for certain interstellar cloud densities. (U.K.)

  4. Wind accretion: Theory and observations

    Science.gov (United States)

    Shakura, N. I.; Postnov, K. A.; Kochetkova, A. Yu.; Hjalmarsdotter, L.; Sidoli, L.; Paizis, A.

    2015-07-01

    A review of wind accretion in high-mass X-ray binaries is presented. We focus on different regimes of quasi-spherical accretion onto the neutron star (NS): the supersonic (Bondi) accretion, which takes place when the captured matter cools down rapidly and falls supersonically towards the NS magnetosphere, and subsonic (settling) accretion which occurs when plasma remains hot until it meets the magnetospheric boundary. These two regimes of accretion are separated by an X-ray luminosity of about 4 × 1036 erg s-1. In the subsonic case, which sets in at lower luminosities, a hot quasi-spherical shell must form around the magnetosphere, and the actual accretion rate onto NS is determined by the ability of the plasma to enter the magnetosphere due to Rayleigh-Taylor instability. In turn, two regimes of subsonic accretion are possible, depending on plasma cooling mechanism (Compton or radiative) near the magnetopshere. The transition from the high-luminosity with Compton cooling to the lowluminosity (Lx ≲ 3 × 1035 erg s-1) with radiative cooling can be responsible for the onset of the off states repeatedly observed in several low-luminosity slowly accreting pulsars, such as Vela X-1, GX 301-2, and 4U 1907+09. The triggering of the transitionmay be due to a switch in the X-ray beam pattern in response to a change in the optical depth in the accretion column with changing luminosity. We also show that in the settling accretion theory, bright X-ray flares (~1038-1040 erg) observed in supergiant fast X-ray transients (SFXT) can be produced by sporadic capture of magnetized stellar wind plasma. At sufficiently low accretion rates, magnetic reconnection can enhance the magnetospheric plasma entry rate, resulting in copious production of X-ray photons, strong Compton cooling and ultimately in unstable accretion of the entire shell. A bright flare develops on the free-fall time scale in the shell, and the typical energy released in an SFXT bright flare corresponds to the mass

  5. Accretion Disks and Coronae in the X-Ray Flashlight

    Science.gov (United States)

    Degenaar, Nathalie; Ballantyne, David R.; Belloni, Tomaso; Chakraborty, Manoneeta; Chen, Yu-Peng; Ji, Long; Kretschmar, Peter; Kuulkers, Erik; Li, Jian; Maccarone, Thomas J.; Malzac, Julien; Zhang, Shu; Zhang, Shuang-Nan

    2018-02-01

    Plasma accreted onto the surface of a neutron star can ignite due to unstable thermonuclear burning and produce a bright flash of X-ray emission called a Type-I X-ray burst. Such events are very common; thousands have been observed to date from over a hundred accreting neutron stars. The intense, often Eddington-limited, radiation generated in these thermonuclear explosions can have a discernible effect on the surrounding accretion flow that consists of an accretion disk and a hot electron corona. Type-I X-ray bursts can therefore serve as direct, repeating probes of the internal dynamics of the accretion process. In this work we review and interpret the observational evidence for the impact that Type-I X-ray bursts have on accretion disks and coronae. We also provide an outlook of how to make further progress in this research field with prospective experiments and analysis techniques, and by exploiting the technical capabilities of the new and concept X-ray missions ASTROSAT, NICER, Insight-HXMT, eXTP, and STROBE-X.

  6. On the absence of winds in ADAFs

    OpenAIRE

    Abramowicz, Marek A.; Lasota, Jean-Pierre; Igumenshchev, Igor V.

    2000-01-01

    We show that recently published assertions that advection dominated accretion flows (ADAFs) require the presence of strong winds are unfounded because they assume that low radiative efficiency in flows accreting at low rates onto black holes implies vanishing radial energy and angular momentum fluxes through the flow (which is also formulated in terms of the `Bernoulli function' being positive). This, however, is a property only of self-similar solutions which are an inadequate representation...

  7. Spectral and Timing Diagnostics of Accretion in XRBs

    Science.gov (United States)

    Nowak, M. N.

    One of the truly great advantages of the Rossi X-ray Timing Explorer has been its flexible scheduling coupled with the presence of the All Sky Monitor. This has allowed mutliple observations of given objects over a wide range of luminosities that, thanks to the ASM, can be placed within the context of the overall behavior of the source. This has begun to allow us to develop theories of how the accretion flow in black hole candidates changes as a function of state and accretion rate. A number of spectral and temporal correlations have been seen, others have merely been suggested as being probably or possible. In this talk I will review some of these suggestions, and outline those correlations that I think are firm and contrast them to those that I believe are still very speculative. I will discuss these observations in the context of suggested models for the structure, size scale, and dynamics of the accretion flow.

  8. Relativistic sonic geometry for isothermal accretion in the Kerr metric

    Science.gov (United States)

    Arif Shaikh, Md

    2018-03-01

    We linearly perturb advective isothermal transonic accretion onto rotating astrophysical black holes to study the emergence of the relativistic acoustic spacetime and to investigate how the salient features of this spacetime is influenced by the spin angular momentum of the black hole. We have perturbed three different quantities—the velocity potential, the mass accretion rate and the relativistic Bernoulli’s constant to show that the acoustic metric obtained for these three cases are the same up to a conformal factor. By constructing the required causal structures, it has been demonstrated that the acoustic black holes are formed at the transonic points of the flow and the acoustic white holes are formed at the shock location. The corresponding acoustic surface gravity has been computed in terms of the relevant accretion variables and the background metric elements. We have performed a linear stability analysis of the background stationary flow.

  9. Transitional millisecond pulsars in the low-level accretion state

    Science.gov (United States)

    Jaodard, Amruta D.; Hessels, Jason W. T.; Archibald, Anne; Bogdanov, Slavko; Deller, Adam; Hernandez Santisteban, Juan; Patruno, Alessandro; D'Angelo, Caroline; Bassa, Cees; Amruta Jaodand

    2018-01-01

    In the canonical pulsar recycling scenario, a slowly spinning neutron star can be rejuvenated to rapid spin rates by the transfer of angular momentum and mass from a binary companion star. Over the last decade, the discovery of three transitional millisecond pulsars (tMSPs) has allowed us to study recycling in detail. These systems transition between accretion-powered (X-ray) and rotation-powered (radio) pulsar states within just a few days, raising questions such as: what triggers the state transition, when does the recycling process truly end, and what will the radio pulsar’s final spin rate be? Systematic multi-wavelength campaigns over the last decade have provided critical insights: multi-year-long, low-level accretion states showing coherent X-ray pulsations; extremely stable, bi-modal X-ray light curves; outflows probed by radio continuum emission; a surprising gamma-ray brightening during accretion, etc. In my thesis I am trying to bring these clues together to understand the low-level accretion process that recycles a pulsar. For example, recently we timed PSR J1023+0038 in the accretion state and found it to be spinning down ~26% faster compared to the non-accreting radio pulsar state. We are currently conducting simultaneous multi-wavelength campaigns (XMM, HST, Kepler and VLA) to understand the global variability of the accretion flow, as well as high-energy Fermi-LAT observations to probe the gamma-ray emission mechanism. I will highlight these recent developments, while also presenting a broad overview of tMSPs as exciting new laboratories to test low-level accretion onto magnetized neutron stars.

  10. Migration of accreting giant planets

    Science.gov (United States)

    Crida, A.; Bitsch, B.; Raibaldi, A.

    2016-12-01

    We present the results of 2D hydro simulations of giant planets in proto-planetary discs, which accrete gas at a more or less high rate. First, starting from a solid core of 20 Earth masses, we show that as soon as the runaway accretion of gas turns on, the planet is saved from type I migration : the gap opening mass is reached before the planet is lost into its host star. Furthermore, gas accretion helps opening the gap in low mass discs. Consequently, if the accretion rate is limited to the disc supply, then the planet is already inside a gap and in type II migration. We further show that the type II migration of a Jupiter mass planet actually depends on its accretion rate. Only when the accretion is high do we retrieve the classical picture where no gas crosses the gap and the planet follows the disc spreading. These results impact our understanding of planet migration and planet population synthesis models. The e-poster presenting these results in French can be found here: L'e-poster présentant ces résultats en français est disponible à cette adresse: http://sf2a.eu/semaine-sf2a/2016/posterpdfs/156_179_49.pdf.

  11. Dissipative advective accretion disc solutions with variable adiabatic index around black holes

    Science.gov (United States)

    Kumar, Rajiv; Chattopadhyay, Indranil

    2014-10-01

    We investigated accretion on to black holes in presence of viscosity and cooling, by employing an equation of state with variable adiabatic index and multispecies fluid. We obtained the expression of generalized Bernoulli parameter which is a constant of motion for an accretion flow in presence of viscosity and cooling. We obtained all possible transonic solutions for a variety of boundary conditions, viscosity parameters and accretion rates. We identified the solutions with their positions in the parameter space of generalized Bernoulli parameter and the angular momentum on the horizon. We showed that a shocked solution is more luminous than a shock-free one. For particular energies and viscosity parameters, we obtained accretion disc luminosities in the range of 10- 4 - 1.2 times Eddington luminosity, and the radiative efficiency seemed to increase with the mass accretion rate too. We found steady state shock solutions even for high-viscosity parameters, high accretion rates and for wide range of composition of the flow, starting from purely electron-proton to lepton-dominated accretion flow. However, similar to earlier studies of inviscid flow, accretion shock was not obtained for electron-positron pair plasma.

  12. Parsec-Scale Accretion and Winds Irradiated by a Quasar

    Science.gov (United States)

    Dorodnitsyn, A.; Kallman, T.; Proga, D.

    2016-01-01

    We present numerical simulations of properties of a parsec-scale torus exposed to illumination by the central black hole in an active galactic nucleus (AGN). Our physical model allows to investigate the balance between the formation of winds and accretion simultaneously. Radiation-driven winds are allowed by taking into account radiation pressure due to UV and IR radiation along with X-ray heating and dust sublimation. Accretion is allowed through angular momentum transport and the solution of the equations of radiative, viscous radiation hydrodynamics. Our methods adopt flux-limited diffusion radiation hydrodynamics for the dusty, infrared pressure driven part of the flow, along with X-ray heating and cooling. Angular momentum transport in the accreting part of the flow is modeled using effective viscosity. Our results demonstrate that radiation pressure on dust can play an important role in shaping AGN obscuration. For example, when the luminosity illuminating the torus exceeds L greater than 0.01 L(sub Edd), where L(sub Edd) is the Eddington luminosity, we find no episodes of sustained disk accretion because radiation pressure does not allow a disk to form. Despite the absence of the disk accretion, the flow of gas to smaller radii still proceeds at a rate 10(exp -4)-10(exp -1)M dot yr(exp -1) through the capturing of the gas from the hot evaporative flow, thus providing a mechanism to deliver gas from a radiation-pressure dominated torus to the inner accretion disk. As L L(sub edd) increases, larger radiation input leads to larger torus aspect ratios and increased obscuration of the central black hole. We also find the important role of the X-ray heated gas in shaping the obscuring torus.

  13. Fulltext PDF

    Indian Academy of Sciences (India)

    user1

    Self-Similar Solutions for Viscous and Resistive Advection Dominated Accretion. Flows (Kazem Faghei), 9. Photoionization Cross-Section of Chlorine-like Iron ... Photoelectric Radial Velocities, Paper XX: 45 Years' Monitoring of the Radial. Velocities of the Redman K Stars (R. F. Griffin & A. Stroe), 245. On the Maximum ...

  14. NUMERICAL SIMULATION OF ICE ACCRETION ON AIRFOIL

    Directory of Open Access Journals (Sweden)

    Nicusor ALEXANDRESCU

    2009-09-01

    Full Text Available This work consists in the simulation of the ice accretion in the leading edge of aerodynamic profiles and our proposed model encompasses: geometry generation, calculation of the potential flow around the body, boundary layer thickness computation, water droplet trajectory computation, heat and mass balances and the consequent modification of the geometry by the ice growth. The flow calculation is realized with panel methods, using only segments defined over the body contour. The viscous effects are considered using the Karman-Pohlhausen method for the laminar boundary layer. The local heat transfer coefficient is obtained by applying the Smith-Spalding method for the thermal boundary layer. The ice accretion limits and the collection efficiency are determined by computing water droplet trajectories impinging the surface. The heat transfer process is analyzed with an energy and a mass balance in each segment defining the body. Finally, the geometry is modified by the addition of the computed ice thickness to the respective panel. The process by repeating all the steps. The model validation is done using a selection of problems with experimental solution, CIRA (the CESAR project. Hereinafter, results are obtained for different aerodynamic profiles, angles of attack and meteorological parameters

  15. Spherically symmetric near-critical accretion onto neutron stars

    International Nuclear Information System (INIS)

    Miller, G.S.

    1990-01-01

    Numerical and approximate analytic solutions for time-independent, spherically symmetric, radiation pressure-dominated accretion flows are presented. For flows with luminosities at infinity, L-infinity, sufficiently close to the Eddington limit L-crit, the flow velocity profile is qualitatively different from the modified free-fall profile v(r) = (1 - L-infinity/L-crit)exp 1/2 (2GM/r)exp 1/2. Advective contributions to the comoving radiation flux decelerate the flow within a criical radius, and, in this settling region, the velocity of the flow decreases linearly with decreasing radius. 14 refs

  16. Formation of primordial supermassive stars by rapid mass accretion

    Energy Technology Data Exchange (ETDEWEB)

    Hosokawa, Takashi; Yoshida, Naoki [Department of Physics and Research Center for the Early Universe, The University of Tokyo, Tokyo 113-0033 (Japan); Yorke, Harold W. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Inayoshi, Kohei; Omukai, Kazuyuki, E-mail: takashi.hosokawa@phys.s.u-tokyo.ac.jp, E-mail: hosokwtk@gmail.com [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan)

    2013-12-01

    Supermassive stars (SMSs) forming via very rapid mass accretion ( M-dot {sub ∗}≳0.1 M{sub ⊙} yr{sup −1}) could be precursors of supermassive black holes observed beyond a redshift of about six. Extending our previous work, here we study the evolution of primordial stars growing under such rapid mass accretion until the stellar mass reaches 10{sup 4–5} M {sub ☉}. Our stellar evolution calculations show that a star becomes supermassive while passing through the 'supergiant protostar' stage, whereby the star has a very bloated envelope and a contracting inner core. The stellar radius increases monotonically with the stellar mass until ≅ 100 AU for M {sub *} ≳ 10{sup 4} M {sub ☉}, after which the star begins to slowly contract. Because of the large radius, the effective temperature is always less than 10{sup 4} K during rapid accretion. The accreting material is thus almost completely transparent to the stellar radiation. Only for M {sub *} ≳ 10{sup 5} M {sub ☉} can stellar UV feedback operate and disturb the mass accretion flow. We also examine the pulsation stability of accreting SMSs, showing that the pulsation-driven mass loss does not prevent stellar mass growth. Observational signatures of bloated SMSs should be detectable with future observational facilities such as the James Webb Space Telescope. Our results predict that an inner core of the accreting SMS should suffer from the general relativistic instability soon after the stellar mass exceeds 10{sup 5} M {sub ☉}. An extremely massive black hole should form after the collapse of the inner core.

  17. Migration of accreting giant planets

    Science.gov (United States)

    Robert, C.; Crida, A.; Lega, E.; Méheut, H.

    2017-09-01

    Giant planets forming in protoplanetary disks migrate relative to their host star. By repelling the gas in their vicinity, they form gaps in the disk's structure. If they are effectively locked in their gap, it follows that their migration rate is governed by the accretion of the disk itself onto the star, in a so-called type II fashion. Recent results showed however that a locking mechanism was still lacking, and was required to understand how giant planets may survive their disk. We propose that planetary accretion may play this part, and help reach this slow migration regime.

  18. Accretion in Radiative Equipartition (AiRE) Disks

    Energy Technology Data Exchange (ETDEWEB)

    Yazdi, Yasaman K.; Afshordi, Niayesh, E-mail: yyazdi@pitp.ca, E-mail: nafshordi@pitp.ca [Perimeter Institute for Theoretical Physics, 31 Caroline Street N, Waterloo, ON N2L 2Y5 (Canada)

    2017-07-01

    Standard accretion disk theory predicts that the total pressure in disks at typical (sub-)Eddington accretion rates becomes radiation pressure dominated. However, radiation pressure dominated disks are thermally unstable. Since these disks are observed in approximate steady state over the instability timescale, our accretion models in the radiation-pressure-dominated regime (i.e., inner disk) need to be modified. Here, we present a modification to the Shakura and Sunyaev model, where the radiation pressure is in equipartition with the gas pressure in the inner region. We call these flows accretion in radiative equipartition (AiRE) disks. We introduce the basic features of AiRE disks and show how they modify disk properties such as the Toomre parameter and the central temperature. We then show that the accretion rate of AiRE disks is limited from above and below, by Toomre and nodal sonic point instabilities, respectively. The former leads to a strict upper limit on the mass of supermassive black holes as a function of cosmic time (and spin), while the latter could explain the transition between hard and soft states of X-ray binaries.

  19. Constraining jet physics in weakly accreting black holes

    Science.gov (United States)

    Markoff, Sera

    2007-04-01

    Outflowing jets are observed in a variety of astronomical objects such as accreting compact objects from X-ray binaries (XRBs) to active galactic nuclei (AGN), as well as at stellar birth and death. Yet we still do not know exactly what they are comprised of, why and how they form, or their exact relationship with the accretion flow. In this talk I will focus on jets in black hole systems, which provide the ideal test population for studying the relationship between inflow and outflow over an extreme range in mass and accretion rate. I will present several recent results from coordinated multi-wavelength studies of low-luminosity sources. These results not only support similar trends in weakly accreting black hole behavior across the mass scale, but also suggest that the same underlying physical model can explain their broadband spectra. I will discuss how comparisons between small- and large-scale systems are revealing new information about the regions nearest the black hole, providing clues about the creation of these weakest of jets. Furthermore, comparisons between our Galactic center nucleus Sgr A* and other sources at slightly higher accretion rates can illucidate the processes which drive central activity, and pave the way for new tests with upcoming instruments.

  20. Wind accretion and formation of disk structures in symbiotic binary systems

    Science.gov (United States)

    de Val-Borro, M.; Karovska, M.; Sasselov, D. D.; Stone, J. M.

    2015-05-01

    We investigate gravitationally focused wind accretion in binary systems consisting of an evolved star with a gaseous envelope and a compact accreting companion. We study the mass accretion and formation of an accretion disk around the secondary caused by the strong wind from the primary late-type component using global 2D and 3D hydrodynamic numerical simulations. In particular, the dependence of the mass accretion rate on the mass loss rate, wind temperature and orbital parameters of the system is considered. For a typical slow and massive wind from an evolved star the mass transfer through a focused wind results in rapid infall onto the secondary. A stream flow is created between the stars with accretion rates of a 2--10% percent of the mass loss from the primary. This mechanism could be an important method for explaining periodic modulations in the accretion rates for a broad range of interacting binary systems and fueling of a large population of X-ray binary systems. We test the plausibility of these accretion flows indicated by the simulations by comparing with observations of the symbiotic variable system CH Cyg.

  1. Protostellar accretion traced with chemistry

    DEFF Research Database (Denmark)

    Frimann, Søren; Jørgensen, Jes Kristian; Dunham, Michael M.

    2017-01-01

    . Our aim is to characterise protostellar accretion histories towards individual sources by utilising sublimation and freeze-out chemistry of CO. Methods. A sample of 24 embedded protostars are observed with the Submillimeter Array (SMA) in context of the large program "Mass Assembly of Stellar Systems...

  2. The Physics of Wind-Fed Accretion

    International Nuclear Information System (INIS)

    Mauche, Christopher W.; Liedahl, Duane A.; Akiyama, Shizuka; Plewa, Tomasz

    2008-01-01

    We provide a brief review of the physical processes behind the radiative driving of the winds of OB stars and the Bondi-Hoyle-Lyttleton capture and accretion of a fraction of the stellar wind by a compact object, typically a neutron star, in detached high-mass X-ray binaries (HMXBs). In addition, we describe a program to develop global models of the radiatively-driven photoionized winds and accretion flows of HMXBs, with particular attention to the prototypical system Vela X-l. The models combine XSTAR photoionization calculations, HULLAC emission models appropriate to X-ray photoionized plasmas, improved models of the radiative driving of photoionized winds, FLASH time-dependent adaptive-mesh hydrodynamics calculations, and Monte Carlo radiation transport. We present two- and three-dimensional maps of the density, temperature, velocity, ionization parameter, and emissivity distributions of representative X-ray emission lines, as well as synthetic global Monte Carlo X-ray spectra. Such models help to better constrain the properties of the winds of HMXBs, which bear on such fundamental questions as the long-term evolution of these binaries and the chemical enrichment of the interstellar medium.

  3. Accretion onto a Kiselev black hole

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Lei [Hebei University, College of Physical Science and Technology, Baoding (China); Yang, Rongjia [Hebei University, College of Physical Science and Technology, Baoding (China); Hebei University, Hebei Key Lab of Optic-Electronic Information and Materials, Baoding (China)

    2017-05-15

    We consider accretion onto a Kiselev black hole. We obtain the fundamental equations for accretion without the back-reaction. We determine the general analytic expressions for the critical points and the mass accretion rate and find the physical conditions the critical points should fulfill. The case of a polytropic gas are discussed in detail. It turns out that the quintessence parameter plays an important role in the accretion process. (orig.)

  4. Misaligned Accretion and Jet Production

    Science.gov (United States)

    King, Andrew; Nixon, Chris

    2018-04-01

    Disk accretion onto a black hole is often misaligned from its spin axis. If the disk maintains a significant magnetic field normal to its local plane, we show that dipole radiation from Lense–Thirring precessing disk annuli can extract a significant fraction of the accretion energy, sharply peaked toward small disk radii R (as R ‑17/2 for fields with constant equipartition ratio). This low-frequency emission is immediately absorbed by surrounding matter or refracted toward the regions of lowest density. The resultant mechanical pressure, dipole angular pattern, and much lower matter density toward the rotational poles create a strong tendency to drive jets along the black hole spin axis, similar to the spin-axis jets of radio pulsars, also strong dipole emitters. The coherent primary emission may explain the high brightness temperatures seen in jets. The intrinsic disk emission is modulated at Lense–Thirring frequencies near the inner edge, providing a physical mechanism for low-frequency quasi-periodic oscillations (QPOs). Dipole emission requires nonzero hole spin, but uses only disk accretion energy. No spin energy is extracted, unlike the Blandford–Znajek process. Magnetohydrodynamic/general-relativistic magnetohydrodynamic (MHD/GRMHD) formulations do not directly give radiation fields, but can be checked post-process for dipole emission and therefore self-consistency, given sufficient resolution. Jets driven by dipole radiation should be more common in active galactic nuclei (AGN) than in X-ray binaries, and in low accretion-rate states than high, agreeing with observation. In non-black hole accretion, misaligned disk annuli precess because of the accretor’s mass quadrupole moment, similarly producing jets and QPOs.

  5. Shocks in the relativistic transonic accretion with low angular momentum

    Science.gov (United States)

    Suková, P.; Charzyński, S.; Janiuk, A.

    2017-12-01

    We perform 1D/2D/3D relativistic hydrodynamical simulations of accretion flows with low angular momentum, filling the gap between spherically symmetric Bondi accretion and disc-like accretion flows. Scenarios with different directional distributions of angular momentum of falling matter and varying values of key parameters such as spin of central black hole, energy and angular momentum of matter are considered. In some of the scenarios the shock front is formed. We identify ranges of parameters for which the shock after formation moves towards or outwards the central black hole or the long-lasting oscillating shock is observed. The frequencies of oscillations of shock positions which can cause flaring in mass accretion rate are extracted. The results are scalable with mass of central black hole and can be compared to the quasi-periodic oscillations of selected microquasars (such as GRS 1915+105, XTE J1550-564 or IGR J17091-3624), as well as to the supermassive black holes in the centres of weakly active galaxies, such as Sgr A*.

  6. Influence of ice accretion on the noise generated by an airfoil section

    International Nuclear Information System (INIS)

    Szasz, Robert-Zoltan; Ronnfors, Matilda; Revstedt, Johan

    2016-01-01

    Highlights: • The noise generated by ice accreted airfoils is investigated using a hybrid approach. • The roughness of the ice surface is found to have an important effect on the radiated noise. • Ice was found to damp lower frequencies and amplify higher ones. - Abstract: We investigate the noise generated by an airfoil section. Three cases are considered, one with a clean airfoil and two cases with airfoils with ice accretion. The amount of ice is the same in the two cases with ice accretion, but the surface of the accreted ice layer is smoother in one of them. The noise is computed using a hybrid approach. First the flow and the acoustic sources are computed. Second, the noise propagation is predicted by solving an inhomogeneous wave equation. The results indicate that in this case the accreted ice layer leads to a decrease of the radiated noise levels, especially in the lower frequency range.

  7. On the Maximum Mass of Accreting Primordial Supermassive Stars

    Energy Technology Data Exchange (ETDEWEB)

    Woods, T. E.; Heger, Alexander [Monash Centre for Astrophysics, School of Physics and Astronomy, Monash University, VIC 3800 (Australia); Whalen, Daniel J. [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Portsmouth PO1 3FX (United Kingdom); Haemmerlé, Lionel; Klessen, Ralf S. [Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische. Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany)

    2017-06-10

    Supermassive primordial stars are suspected to be the progenitors of the most massive quasars at z ∼ 6. Previous studies of such stars were either unable to resolve hydrodynamical timescales or considered stars in isolation, not in the extreme accretion flows in which they actually form. Therefore, they could not self-consistently predict their final masses at collapse, or those of the resulting supermassive black hole seeds, but rather invoked comparison to simple polytropic models. Here, we systematically examine the birth, evolution, and collapse of accreting, non-rotating supermassive stars under accretion rates of 0.01–10 M {sub ⊙} yr{sup −1} using the stellar evolution code Kepler . Our approach includes post-Newtonian corrections to the stellar structure and an adaptive nuclear network and can transition to following the hydrodynamic evolution of supermassive stars after they encounter the general relativistic instability. We find that this instability triggers the collapse of the star at masses of 150,000–330,000 M {sub ⊙} for accretion rates of 0.1–10 M {sub ⊙} yr{sup −1}, and that the final mass of the star scales roughly logarithmically with the rate. The structure of the star, and thus its stability against collapse, is sensitive to the treatment of convection and the heat content of the outer accreted envelope. Comparison with other codes suggests differences here may lead to small deviations in the evolutionary state of the star as a function of time, that worsen with accretion rate. Since the general relativistic instability leads to the immediate death of these stars, our models place an upper limit on the masses of the first quasars at birth.

  8. Accretion Processes in Star Formation

    DEFF Research Database (Denmark)

    Küffmeier, Michael

    for short-lived radionuclides that enrich the cloud as a result of supernova explosions of the massive stars allows us to analyze the distribution of the short-lived radionuclides around young forming stars. In contradiction to results from highly-idealized models, we find that the discrepancy in 26 Al...... that the accretion process of stars is heterogeneous in space, time and among different protostars. In some cases, disks form a few thousand years after stellar birth, whereas in other cases disk formation is suppressed due to efficient removal of angular momentum. Angular momentum is mainly transported outward...... with potentially observable fluctuations in the luminosity profile that are induced by variations in the accretion rate. Considering that gas inside protoplanetary disks is not fully ionized, I implemented a solver that accounts for nonideal MHD effects into a newly developed code framework called dispatch...

  9. Time-Dependent Variations of Accretion Disk

    Directory of Open Access Journals (Sweden)

    Hye-Weon Na

    1987-06-01

    Full Text Available In dward nova we assume the primary star as a white dwarf and the secondary as the late type star which filled Roche lobe. Mass flow from the secondary star leads to the formation of thin accretion disk around the white dwarf. We use the α parameter as viscosity to maintain the disk form and propose that the outburst in dwarf nova cause the steep increase of source term. With these assumptions we solve the basic equations of stellar structure using Newton-Raphson method. We show the physical parameters like temperature, density, pressure, opacity, surface density, height and flux to the radius of disk. Changing the value of α, we compare several parameters when mass flow rate is constant with those of when luminosity of disk is brightest. At the same time, we obtain time-dependent variations of luminosity and mass of disk. We propose the suitable range of α is 0.15-0.18 to the difference of luminosity. We compare several parameters of disk with those of the normal late type stars which have the same molecular weight of disk is lower. Maybe the outburst in dwarf nova is due to the variation of the α value instead of increment of mass flow from the secondary star.

  10. Criteria for retrograde rotation of accreting black holes

    Science.gov (United States)

    Mikhailov, A. G.; Piotrovich, M. Yu; Gnedin, Yu N.; Natsvlishvili, T. M.; Buliga, S. D.

    2018-06-01

    Rotating supermassive black holes produce jets and their origin is connected to the magnetic field that is generated by accreting matter flow. There is a point of view that electromagnetic fields around rotating black holes are brought to the hole by accretion. In this situation the prograde accreting discs produce weaker large-scale black hole threading magnetic fields, implying weaker jets than in retrograde regimes. The basic goal of this paper is to find the best candidates for retrograde accreting systems in observed active galactic nuclei. We show that active galactic nuclei with low Eddington ratio are really the best candidates for retrograde systems. This conclusion is obtained for kinetically dominated Fanaroff-Riley class II radio galaxies, flat-spectrum radio-loud narrow-line Seyfert I galaxies and a number of nearby galaxies. Our conclusion is that the best candidates for retrograde systems are the noticeable population of active galactic nuclei in the Universe. This result corresponds to the conclusion that in the merging process the interaction of merging black holes with a retrograde circumbinary disc is considerably more effective for shrinking the binary system.

  11. Inelastic accretion of inertial particles by a towed sphere

    Science.gov (United States)

    Vallée, Robin; Henry, Christophe; Hachem, Elie; Bec, Jérémie

    2018-02-01

    The problem of accretion of small particles by a sphere embedded in a mean flow is studied in the case where the particles undergo inelastic collisions with the solid object. The collision efficiency, which gives the flux of particles experiencing at least one bounce on the sphere, is found to depend upon the sphere Reynolds number only through the value of the critical Stokes number below which no collision occurs. In the absence of molecular diffusion, it is demonstrated that multiple bounces do not provide enough energy dissipation for the particles to stick to the surface within a finite time. This excludes the possibility of any kind of inelastic collapse, so that determining an accretion efficiency requires modeling more precisely particle-surface microphysical interactions. A straightforward choice is to assume that the particles stick when their kinetic energy at impact is below a threshold. In this view, numerical simulations are performed to describe the statistics of impact velocities at various values of the Reynolds number. Successive bounces are shown to enhance accretion. These results are put together to provide a general qualitative picture on how the accretion efficiency depends upon the nondimensional parameters of the problem.

  12. Fate of an accretion disc around a black hole when both the viscosity and dark energy is in effect

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Sandip; Biswas, Ritabrata [The University of Burdwan, Department of Mathematics, Burdwan, West Bengal (India)

    2017-10-15

    This paper deals with the viscous accretion flow of a modified Chaplygin gas towards a black hole as the central gravitating object. A modified Chaplygin gas is a particular type of dark energy model which mimics of radiation era to phantom era depending on the different values of its parameters. We compare the dark energy accretion with the flow of adiabatic gas. An accretion disc flowing around a black hole is an example of a transonic flow. To construct the model, we consider three components of the Navier-Stokes equation, the equation of continuity and the modified Chaplygin gas equation of state. As a transonic flow passes through the sonic point, the velocity gradient being apparently singular there, it gives rise to two flow branches: one in-falling, the accretion and the other outgoing, the wind. We show that the wind curve is stronger and the wind speed reaches that of light at a finite distance from the black hole when dark energy is considered. Besides, if we increase the viscosity, the accretion disc is shortened in radius. These two processes acting together make the system deviate much from the adiabatic accretion case. It shows a weakening process for the accretion procedure by the work of the viscous system influencing both the angular momentum transport and the repulsive force of the modified Chaplygin gas. (orig.)

  13. Regulation of black-hole accretion by a disk wind during a violent outburst of V404 Cygni.

    Science.gov (United States)

    Muñoz-Darias, T; Casares, J; Mata Sánchez, D; Fender, R P; Armas Padilla, M; Linares, M; Ponti, G; Charles, P A; Mooley, K P; Rodriguez, J

    2016-06-02

    Accretion of matter onto black holes is universally associated with strong radiative feedback and powerful outflows. In particular, black-hole transients have outflows whose properties are strongly coupled to those of the accretion flow. This includes X-ray winds of ionized material, expelled from the accretion disk encircling the black hole, and collimated radio jets. Very recently, a distinct optical variability pattern has been reported in the transient stellar-mass black hole V404 Cygni, and interpreted as disrupted mass flow into the inner regions of its large accretion disk. Here we report observations of a sustained outer accretion disk wind in V404 Cyg, which is unlike any seen hitherto. We find that the outflowing wind is neutral, has a large covering factor, expands at one per cent of the speed of light and triggers a nebular phase once accretion drops sharply and the ejecta become optically thin. The large expelled mass (>10(-8) solar masses) indicates that the outburst was prematurely ended when a sizeable fraction of the outer disk was depleted by the wind, detaching the inner regions from the rest of the disk. The luminous, but brief, accretion phases shown by transients with large accretion disks imply that this outflow is probably a fundamental ingredient in regulating mass accretion onto black holes.

  14. Anchoring Polar Magnetic Field in a Stationary Thick Accretion Disk

    Energy Technology Data Exchange (ETDEWEB)

    Samadi, Maryam; Abbassi, Shahram, E-mail: samadimojarad@um.ac.ir [Department of Physics, School of Sciences, Ferdowsi University of Mashhad, Mashhad, 91775-1436 (Iran, Islamic Republic of)

    2017-08-20

    We investigate the properties of a hot accretion flow bathed in a poloidal magnetic field. We consider an axisymmetric viscous-resistive flow in the steady-state configuration. We assume that the dominant mechanism of energy dissipation is due to turbulence viscosity and magnetic diffusivity. A certain fraction of that energy can be advected toward the central compact object. We employ the self-similar method in the radial direction to find a system of ODEs with just one varible, θ in the spherical coordinates. For the existence and maintenance of a purely poloidal magnetic field in a rotating thick disk, we find that the necessary condition is a constant value of angular velocity along a magnetic field line. We obtain an analytical solution for the poloidal magnetic flux. We explore possible changes in the vertical structure of the disk under the influences of symmetric and asymmetric magnetic fields. Our results reveal that a polar magnetic field with even symmetry about the equatorial plane makes the disk vertically thin. Moreover, the accretion rate decreases when we consider a strong magnetic field. Finally, we notice that hot magnetized accretion flows can be fully advected even in a slim shape.

  15. Symbiotic stars - a binary model with super-critical accretion

    Energy Technology Data Exchange (ETDEWEB)

    Bath, G T [National Radio Astronomy Observatory, Charlottesville, Va. (USA)

    1977-01-01

    The structure of symbiotic variables is discussed in terms of a binary model. Disc accretion by a main sequence star or white dwarf at rates close to the Eddington limit produces an ultraviolet continuum source near the accreting star surface. This generates a variable, radiatively-driven, out-flowing wind. The wind is optically thick and the disc luminosity is absorbed and scattered and thus degraded into the optical region. Variations in the rate of mass loss in the wind lead to optical eruptions through shifts in the position of, and conditions in, the last scattering surface. The behaviour of Z And determined by Boyarchuk is shown to be in agreement with such a model. The conditions in the out-flowing wind are discussed. Limits on the mass loss rate are derived from conditions at the surface of the accreting star. It is suggested that variable out-flow in the wind is generated by fluctuations in disc luminosity produced by changes in the giant companions rate of mass transfer. The relation between symbiotic variables and classical and dwarf novae is discussed.

  16. Disk tides and accretion runaway

    Science.gov (United States)

    Ward, William R.; Hahn, Joseph M.

    1995-01-01

    It is suggested that tidal interaction of an accreting planetary embryo with the gaseous preplanetary disk may provide a mechanism to breach the so-called runaway limit during the formation of the giant planet cores. The disk tidal torque converts a would-be shepherding object into a 'predator,' which can continue to cannibalize the planetesimal disk. This is more likely to occur in the giant planet region than in the terrestrial zone, providing a natural cause for Jupiter to predate the inner planets and form within the O(10(exp 7) yr) lifetime of the nebula.

  17. A Solution to the Protostellar Accretion Problem

    OpenAIRE

    Padoan, Paolo; Kritsuk, Alexei; Norman, Michael L.; Nordlund, Ake

    2004-01-01

    Accretion rates of order 10^-8 M_\\odot/yr are observed in young protostars of approximately a solar mass with evidence of circumstellar disks. The accretion rate is significantly lower for protostars of smaller mass, approximately proportional to the second power of the stellar mass, \\dot{M}_accr\\propto M^2. The traditional view is that the observed accretion is the consequence of the angular momentum transport in isolated protostellar disks, controlled by disk turbulence or self--gravity. Ho...

  18. Theory of Disk Accretion onto Magnetic Stars

    Directory of Open Access Journals (Sweden)

    Lai Dong

    2014-01-01

    Full Text Available Disk accretion onto magnetic stars occurs in a variety of systems, including accreting neutron stars (with both high and low magnetic fields, white dwarfs, and protostars. We review some of the key physical processes in magnetosphere-disk interaction, highlighting the theoretical uncertainties. We also discuss some applications to the observations of accreting neutron star and protostellar systems, as well as possible connections to protoplanetary disks and exoplanets.

  19. Accretion onto CO White Dwarfs using MESA

    Science.gov (United States)

    Feng, Wanda; Starrfield, Sumner

    2018-06-01

    The nature of type Ia Supernovae (SNe Ia) progenitor systems and their underlying mechanism are not well understood. There are two competing progenitor scenarios: the single-degenerate scenario wherein a white dwarf (WD) star accretes material from a companion star, reaching the Chandrasekhar mass limit; and, the double-degenerate scenario wherein two WDs merge. In this study, we investigate the single-degenerate scenario by accretion onto carbon-oxygen (CO) WDs using the Modules for Experiments in Stellar Astrophysics (MESA). We vary the WD mass, composition of the accreting material, and accretion rate in our models. Mixing between the accreted material and the WD core is informed by multidimensional studies that suggest occurance after thermonuclear runaway (TNR) ensues. We compare the accretion of solar composition material onto CO WDs with the accretion of mixed solar and core material after TNR. As many of our models eject less material than accreted, our study supports that accretion onto CO WDs is a feasible channel for SNe I progenitors.

  20. Cold, clumpy accretion onto an active supermassive black hole.

    Science.gov (United States)

    Tremblay, Grant R; Oonk, J B Raymond; Combes, Françoise; Salomé, Philippe; O'Dea, Christopher P; Baum, Stefi A; Voit, G Mark; Donahue, Megan; McNamara, Brian R; Davis, Timothy A; McDonald, Michael A; Edge, Alastair C; Clarke, Tracy E; Galván-Madrid, Roberto; Bremer, Malcolm N; Edwards, Louise O V; Fabian, Andrew C; Hamer, Stephen; Li, Yuan; Maury, Anaëlle; Russell, Helen R; Quillen, Alice C; Urry, C Megan; Sanders, Jeremy S; Wise, Michael W

    2016-06-09

    Supermassive black holes in galaxy centres can grow by the accretion of gas, liberating energy that might regulate star formation on galaxy-wide scales. The nature of the gaseous fuel reservoirs that power black hole growth is nevertheless largely unconstrained by observations, and is instead routinely simplified as a smooth, spherical inflow of very hot gas. Recent theory and simulations instead predict that accretion can be dominated by a stochastic, clumpy distribution of very cold molecular clouds--a departure from the 'hot mode' accretion model--although unambiguous observational support for this prediction remains elusive. Here we report observations that reveal a cold, clumpy accretion flow towards a supermassive black hole fuel reservoir in the nucleus of the Abell 2597 Brightest Cluster Galaxy (BCG), a nearby (redshift z = 0.0821) giant elliptical galaxy surrounded by a dense halo of hot plasma. Under the right conditions, thermal instabilities produce a rain of cold clouds that fall towards the galaxy's centre, sustaining star formation amid a kiloparsec-scale molecular nebula that is found at its core. The observations show that these cold clouds also fuel black hole accretion, revealing 'shadows' cast by the molecular clouds as they move inward at about 300 kilometres per second towards the active supermassive black hole, which serves as a bright backlight. Corroborating evidence from prior observations of warmer atomic gas at extremely high spatial resolution, along with simple arguments based on geometry and probability, indicate that these clouds are within the innermost hundred parsecs of the black hole, and falling closer towards it.

  1. Turbulence in Accretion Discs. The Global Baroclinic Instability

    Science.gov (United States)

    Klahr, Hubert; Bodenheimer, Peter

    The transport of angular momentum away from the central object is a sufficient condition for a protoplanetary disk to accrete matter onto the star and spin it down. Magnetic fields cannot be of importance for this process in a large part of the cold and dusty disk where the planets supposedly form. Our new hypothesis on the angular momentum transport based on radiation hydro simulations is as follows: We present the global baroclinic instability as a source for vigorous turbulence leading to angular momentum transport in Keplerian accretion disks. We show by analytical considerations and three-dimensional radiation hydro simulations that, in particular, protoplanetary disks have a negative radial entropy gradient, which makes them baroclinic. Two-dimensional numerical simulations show that this baroclinic flow is unstable and produces turbulence. These findings are currently tested for numerical effects by performing barotropic simulations which show that imposed turbulence rapidly decays. The turbulence in baroclinic disks draws energy from the background shear, transports angular momentum outward and creates a radially inward bound accretion of matter, thus forming a self consistent process. Gravitational energy is transformed into turbulent kinetic energy, which is then dissipated, as in the classical accretion paradigm. We measure accretion rates in 2D and 3D simulations of dot M= - 10-9 to -10-7 Msolar yr-1 and viscosity parameters of α = 10-4 - 10-2, which fit perfectly together and agree reasonably with observations. The turbulence creates pressure waves, Rossby waves, and vortices in the (r-φ) plane of the disk. We demonstrate in a global simulation that these vortices tend to form out of little background noise and to be long-lasting features, which have already been suggested to lead to the formation of planets.

  2. COMPETITIVE ACCRETION IN A SHEET GEOMETRY AND THE STELLAR IMF

    International Nuclear Information System (INIS)

    Hsu, Wen-Hsin; Hartmann, Lee; Heitsch, Fabian; Gomez, Gilberto C.

    2010-01-01

    We report a set of numerical experiments aimed at addressing the applicability of competitive accretion to explain the high-mass end of the stellar initial mass function in a sheet geometry with shallow gravitational potential, in contrast to most previous simulations which have assumed formation in a cluster gravitational potential. Our flat cloud geometry is motivated by models of molecular cloud formation due to large-scale flows in the interstellar medium. The experiments consisted of smoothed particle hydrodynamics simulations of gas accretion onto sink particles formed rapidly from Jeans-unstable dense clumps placed randomly in the finite sheet. These simplifications allow us to study accretion with a minimum of free parameters and to develop better statistics on the resulting mass spectra. We considered both clumps of equal mass and Gaussian distributions of masses and either uniform or spatially varying gas densities. In all cases, the sink mass function develops a power-law tail at high masses, with dN/dlog M ∝ M -Γ . The accretion rates of individual sinks follow M-dot ∝M 2 at high masses; this results in a continual flattening of the slope of the mass function toward an asymptotic form Γ ∼ 1 (where the Salpeter slope is Γ = 1.35). The asymptotic limit is most rapidly reached when starting from a relatively broad distribution of initial sink masses. In general, the resulting upper mass slope is correlated with the maximum sink mass; higher sink masses are found in simulations with flatter upper mass slopes. Although these simulations are of a highly idealized situation, the results suggest that competitive accretion may be relevant in a wider variety of environments than previously considered, and in particular that the upper mass distribution may generally evolve toward a limiting value of Γ ∼ 1.

  3. RINGED ACCRETION DISKS: EQUILIBRIUM CONFIGURATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Pugliese, D.; Stuchlík, Z., E-mail: d.pugliese.physics@gmail.com, E-mail: zdenek.stuchlik@physics.cz [Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo náměstí 13, CZ-74601 Opava (Czech Republic)

    2015-12-15

    We investigate a model of a ringed accretion disk, made up by several rings rotating around a supermassive Kerr black hole attractor. Each toroid of the ringed disk is governed by the general relativity hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. Properties of the tori can then be determined by an appropriately defined effective potential reflecting the background Kerr geometry and the centrifugal effects. The ringed disks could be created in various regimes during the evolution of matter configurations around supermassive black holes. Therefore, both corotating and counterrotating rings have to be considered as being a constituent of the ringed disk. We provide constraints on the model parameters for the existence and stability of various ringed configurations and discuss occurrence of accretion onto the Kerr black hole and possible launching of jets from the ringed disk. We demonstrate that various ringed disks can be characterized by a maximum number of rings. We present also a perturbation analysis based on evolution of the oscillating components of the ringed disk. The dynamics of the unstable phases of the ringed disk evolution seems to be promising in relation to high-energy phenomena demonstrated in active galactic nuclei.

  4. Limiting Accretion onto Massive Stars by Fragmentation-Induced Starvation

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Thomas; /ZAH, Heidelberg; Klessen, Ralf S.; /ZAH, Heidelberg /KIPAC, Menlo Park; Mac Low, Mordecai-Mark; /Amer. Museum Natural Hist.; Banerjee, Robi; /ZAH, Heidelberg

    2010-08-25

    Massive stars influence their surroundings through radiation, winds, and supernova explosions far out of proportion to their small numbers. However, the physical processes that initiate and govern the birth of massive stars remain poorly understood. Two widely discussed models are monolithic collapse of molecular cloud cores and competitive accretion. To learn more about massive star formation, we perform simulations of the collapse of rotating, massive, cloud cores including radiative heating by both non-ionizing and ionizing radiation using the FLASH adaptive mesh refinement code. These simulations show fragmentation from gravitational instability in the enormously dense accretion flows required to build up massive stars. Secondary stars form rapidly in these flows and accrete mass that would have otherwise been consumed by the massive star in the center, in a process that we term fragmentation-induced starvation. This explains why massive stars are usually found as members of high-order stellar systems that themselves belong to large clusters containing stars of all masses. The radiative heating does not prevent fragmentation, but does lead to a higher Jeans mass, resulting in fewer and more massive stars than would form without the heating. This mechanism reproduces the observed relation between the total stellar mass in the cluster and the mass of the largest star. It predicts strong clumping and filamentary structure in the center of collapsing cores, as has recently been observed. We speculate that a similar mechanism will act during primordial star formation.

  5. Studies of accreting and non-accreting neutron stars

    International Nuclear Information System (INIS)

    Stollman, G.M.

    1987-01-01

    This thesis is divided into three parts. Part A is devoted to the statistical study of radio pulsars, in which the observations of nearly all known pulsars are used to study their properties such as magnetic field strengths, rotation periods, space velocities as well as their evolution in time. Part B is devoted to the modelling and understanding of quasi-periodic oscillations (QPO) in low-mass X-ray binaries. But, this study is mainly concerned with the accretion process in these sources, and one may hope to learn more about the neutron stars in these systems when the understanding of QPO is improved. In Part C the problem of 'super-Eddington luminosities' in X-ray burst sources is treated. The idea is that a good understanding of the burst process, which takes place directly at the surface of the neutron star, will eventually improve our understanding of the neutron stars themselves. (Auth.)

  6. MASSIVE BLACK HOLES IN STELLAR SYSTEMS: 'QUIESCENT' ACCRETION AND LUMINOSITY

    International Nuclear Information System (INIS)

    Volonteri, M.; Campbell, D.; Mateo, M.; Dotti, M.

    2011-01-01

    Only a small fraction of local galaxies harbor an accreting black hole, classified as an active galactic nucleus. However, many stellar systems are plausibly expected to host black holes, from globular clusters to nuclear star clusters, to massive galaxies. The mere presence of stars in the vicinity of a black hole provides a source of fuel via mass loss of evolved stars. In this paper, we assess the expected luminosities of black holes embedded in stellar systems of different sizes and properties, spanning a large range of masses. We model the distribution of stars and derive the amount of gas available to a central black hole through a geometrical model. We estimate the luminosity of the black holes under simple, but physically grounded, assumptions on the accretion flow. Finally, we discuss the detectability of 'quiescent' black holes in the local universe.

  7. Rotation and Accretion Powered Pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Kaspi, V M [Department of Physics, McGill University, 3600 University St, Montreal, QC H3A 2T8 (Canada)

    2008-03-07

    Pulsar astrophysics has come a long way in the 40 years since the discovery of the first pulsar by Bell and Hewish. From humble beginnings as bits of 'scruff' on the Cambridge University group's chart recorder paper, the field of pulsars has blossomed into a major area of mainstream astrophysics, with an unparalleled diversity of astrophysical applications. These range from Nobel-celebrated testing of general relativity in the strong-field regime to constraining the equation-of-state of ultradense matter; from probing the winds of massive stars to globular cluster evolution. Previous notable books on the subject of pulsars have tended to focus on some particular topic in the field. The classic text Pulsars by Manchester and Taylor (1977 San Francisco, CA: Freeman) targeted almost exclusively rotation-powered radio pulsars, while the Meszaros book High-Energy Radiation from Magnetized Neutron Stars (1992 Chicago, IL: University of Chicago Press) considered both rotation- and accretion-powered neutron stars, but focused on their radiation at x-ray energies and above. The recent book Neutron Stars 1 by Haensel et al (2007 Berlin: Springer) considers only the equation of state and neutron-star structure. Into this context appears Rotation and Accretion Powered Pulsars, by Pranab Ghosh. In contrast to other books, here the author takes an encyclopedic approach and attempts to synthesize practically all of the major aspects of the two main types of neutron star. This is ambitious. The only comparable undertaking is the useful but more elementary Lyne and Graham-Smith text Pulsar Astronomy (1998 Cambridge: Cambridge University Press), or Compact Stellar X-ray Sources (eds Lewin and van der Klis, 2006 Cambridge: Cambridge University Press), an anthology of technical review articles that also includes black hole topics. Rotation and Accretion Powered Pulsars thus fills a clear void in the field, providing a readable, graduate-level book that covers nearly

  8. Rotation and Accretion Powered Pulsars

    International Nuclear Information System (INIS)

    Kaspi, V M

    2008-01-01

    Pulsar astrophysics has come a long way in the 40 years since the discovery of the first pulsar by Bell and Hewish. From humble beginnings as bits of 'scruff' on the Cambridge University group's chart recorder paper, the field of pulsars has blossomed into a major area of mainstream astrophysics, with an unparalleled diversity of astrophysical applications. These range from Nobel-celebrated testing of general relativity in the strong-field regime to constraining the equation-of-state of ultradense matter; from probing the winds of massive stars to globular cluster evolution. Previous notable books on the subject of pulsars have tended to focus on some particular topic in the field. The classic text Pulsars by Manchester and Taylor (1977 San Francisco, CA: Freeman) targeted almost exclusively rotation-powered radio pulsars, while the Meszaros book High-Energy Radiation from Magnetized Neutron Stars (1992 Chicago, IL: University of Chicago Press) considered both rotation- and accretion-powered neutron stars, but focused on their radiation at x-ray energies and above. The recent book Neutron Stars 1 by Haensel et al (2007 Berlin: Springer) considers only the equation of state and neutron-star structure. Into this context appears Rotation and Accretion Powered Pulsars, by Pranab Ghosh. In contrast to other books, here the author takes an encyclopedic approach and attempts to synthesize practically all of the major aspects of the two main types of neutron star. This is ambitious. The only comparable undertaking is the useful but more elementary Lyne and Graham-Smith text Pulsar Astronomy (1998 Cambridge: Cambridge University Press), or Compact Stellar X-ray Sources (eds Lewin and van der Klis, 2006 Cambridge: Cambridge University Press), an anthology of technical review articles that also includes black hole topics. Rotation and Accretion Powered Pulsars thus fills a clear void in the field, providing a readable, graduate-level book that covers nearly everything you

  9. Mixed ice accretion on aircraft wings

    Science.gov (United States)

    Janjua, Zaid A.; Turnbull, Barbara; Hibberd, Stephen; Choi, Kwing-So

    2018-02-01

    Ice accretion is a problematic natural phenomenon that affects a wide range of engineering applications including power cables, radio masts, and wind turbines. Accretion on aircraft wings occurs when supercooled water droplets freeze instantaneously on impact to form rime ice or runback as water along the wing to form glaze ice. Most models to date have ignored the accretion of mixed ice, which is a combination of rime and glaze. A parameter we term the "freezing fraction" is defined as the fraction of a supercooled droplet that freezes on impact with the top surface of the accretion ice to explore the concept of mixed ice accretion. Additionally we consider different "packing densities" of rime ice, mimicking the different bulk rime densities observed in nature. Ice accretion is considered in four stages: rime, primary mixed, secondary mixed, and glaze ice. Predictions match with existing models and experimental data in the limiting rime and glaze cases. The mixed ice formulation however provides additional insight into the composition of the overall ice structure, which ultimately influences adhesion and ice thickness, and shows that for similar atmospheric parameter ranges, this simple mixed ice description leads to very different accretion rates. A simple one-dimensional energy balance was solved to show how this freezing fraction parameter increases with decrease in atmospheric temperature, with lower freezing fraction promoting glaze ice accretion.

  10. Accretion, primordial black holes and standard cosmology

    Indian Academy of Sciences (India)

    Primordial black holes evaporate due to Hawking radiation. We find that the evaporation times of primordial black holes increase when accretion of radiation is included. Thus, depending on accretion efficiency, more primordial black holes are existing today, which strengthens the conjecture that the primordial black holes ...

  11. Isothermal Bondi Accretion in Jaffe and Hernquist Galaxies with a Central Black Hole: Fully Analytical Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Ciotti, Luca; Pellegrini, Silvia, E-mail: luca.ciotti@unibo.it [Department of Physics and Astronomy, University of Bologna, via Piero Gobetti 93/2, I-40129 Bologna (Italy)

    2017-10-10

    One of the most active fields of research of modern-day astrophysics is that of massive black hole formation and coevolution with the host galaxy. In these investigations, ranging from cosmological simulations, to semi-analytical modeling, to observational studies, the Bondi solution for accretion on a central point-mass is widely adopted. In this work we generalize the classical Bondi accretion theory to take into account the effects of the gravitational potential of the host galaxy, and of radiation pressure in the optically thin limit. Then, we present the fully analytical solution, in terms of the Lambert–Euler W -function, for isothermal accretion in Jaffe and Hernquist galaxies with a central black hole. The flow structure is found to be sensitive to the shape of the mass profile of the host galaxy. These results and the formulae that are provided, most importantly, the one for the critical accretion parameter, allow for a direct evaluation of all flow properties, and are then useful for the abovementioned studies. As an application, we examine the departure from the true mass accretion rate of estimates obtained using the gas properties at various distances from the black hole, under the hypothesis of classical Bondi accretion. An overestimate is obtained from regions close to the black hole, and an underestimate outside a few Bondi radii; the exact position of the transition between the two kinds of departure depends on the galaxy model.

  12. Rapid growth of seed black holes in the early universe by supra-exponential accretion.

    Science.gov (United States)

    Alexander, Tal; Natarajan, Priyamvada

    2014-09-12

    Mass accretion by black holes (BHs) is typically capped at the Eddington rate, when radiation's push balances gravity's pull. However, even exponential growth at the Eddington-limited e-folding time t(E) ~ few × 0.01 billion years is too slow to grow stellar-mass BH seeds into the supermassive luminous quasars that are observed when the universe is 1 billion years old. We propose a dynamical mechanism that can trigger supra-exponential accretion in the early universe, when a BH seed is bound in a star cluster fed by the ubiquitous dense cold gas flows. The high gas opacity traps the accretion radiation, while the low-mass BH's random motions suppress the formation of a slowly draining accretion disk. Supra-exponential growth can thus explain the puzzling emergence of supermassive BHs that power luminous quasars so soon after the Big Bang. Copyright © 2014, American Association for the Advancement of Science.

  13. Theoretical, numerical and experimental study of accretion shocks dynamics in magnetic cataclysmic variables

    International Nuclear Information System (INIS)

    Busschaert, Clotilde

    2013-01-01

    Magnetic cataclysmic variables are interacting binary Systems containing a highly magnetized white dwarf which accretes material from a companion. Material is led along magnetic field lines and falls onto the magnetic pole(s) supersonically forming an accretion column. As the material hits the surface, a reverse shock is formed and the shocked region is structured by the cooling effect of radiation processes. This work is a multidisciplinary study of the dynamics of the accretion column. Firstly, a numerical study of the accretion column structure at the astrophysical scale is presented. The observational consequences are discussed. This approach is completed by experiments using radiative flows generated by powerful lasers. The relevance of such experiments is based on the establishment of scaling laws. News scaling laws in the frame of radiative ideal or resistive MHD are exposed. The results of the sizing and the interpretation of the POLAR experimental campaign of 2012 on LULI2000 installation are presented. (author) [fr

  14. THE EXTREME ULTRAVIOLET DEFICIT AND MAGNETICALLY ARRESTED ACCRETION IN RADIO-LOUD QUASARS

    Energy Technology Data Exchange (ETDEWEB)

    Punsly, Brian, E-mail: brian.punsly1@verizon.net [1415 Granvia Altamira, Palos Verdes Estates, CA 90274 (United States); ICRANet, Piazza della Repubblica, I-65100 10 Pescara (Italy)

    2014-12-20

    The Hubble Space Telescope composite quasar spectra presented in Telfer et al. show a significant deficit of emission in the extreme ultraviolet for the radio-loud component of the quasar population (RLQs) compared to the radio-quiet component of the quasar population. The composite quasar continuum emission between 1100 Å and ∼580 Å is generally considered to be associated with the innermost regions of the accretion flow onto the central black hole. The deficit between 1100 Å and 580 Å in RLQs has a straightforward interpretation as a missing or a suppressed innermost region of local energy dissipation in the accretion flow. It is proposed that this can be the result of islands of large-scale magnetic flux in RLQs that are located close to the central black hole that remove energy from the accretion flow as Poynting flux (sometimes called magnetically arrested accretion). These magnetic islands are natural sites for launching relativistic jets. Based on the Telfer et al. data and the numerical simulations of accretion flows in Penna et al., the magnetic islands are concentrated between the event horizon and an outer boundary of <2.8 M (in geometrized units) for rapidly rotating black holes and <5.5 M for modestly rotating black holes.

  15. Simulations of small solid accretion on to planetesimals in the presence of gas

    Science.gov (United States)

    Hughes, A. G.; Boley, A. C.

    2017-12-01

    The growth and migration of planetesimals in a young protoplanetary disc are fundamental to planet formation. In all models of early growth, there are several processes that can inhibit grains from reaching larger sizes. Nevertheless, observations suggest that growth of planetesimals must be rapid. If a small number of 100 km sized planetesimals do manage to form in the disc, then gas drag effects could enable them to efficiently accrete small solids from beyond their gravitationally focused cross-section. This gas-drag-enhanced accretion can allow planetesimals to grow at rapid rates, in principle. We present self-consistent hydrodynamics simulations with direct particle integration and gas-drag coupling to estimate the rate of planetesimal growth due to pebble accretion. Wind tunnel simulations are used to explore a range of particle sizes and disc conditions. We also explore analytic estimates of planetesimal growth and numerically integrate planetesimal drift due to the accretion of small solids. Our results show that, for almost every case that we consider, there is a clearly preferred particle size for accretion that depends on the properties of the accreting planetesimal and the local disc conditions. For solids much smaller than the preferred particle size, accretion rates are significantly reduced as the particles are entrained in the gas and flow around the planetesimal. Solids much larger than the preferred size accrete at rates consistent with gravitational focusing. Our analytic estimates for pebble accretion highlight the time-scales that are needed for the growth of large objects under different disc conditions and initial planetesimal sizes.

  16. Ice accretion modeling for wind turbine rotor blades

    Energy Technology Data Exchange (ETDEWEB)

    Chocron, D.; Brahimi, T.; Paraschivoiu, I.; Bombardier, J.A. [Ecole Polytechnique de Montreal (Canada)

    1997-12-31

    The increasing application of wind energy in northern climates implies operation of wind turbines under severe atmospheric icing conditions. Such conditions are well known in the Scandinavian countries, Canada and most of Eastern European countries. An extensive study to develop a procedure for the prediction of ice accretion on wind turbines rotor blades appears to be essential for the safe and economic operation of wind turbines in these cold regions. The objective of the present paper is to develop a computer code capable of simulating the shape and amount of ice which may accumulate on horizontal axis wind turbine blades when operating in icing conditions. The resulting code is capable to predict and simulate the formation of ice in rime and glaze conditions, calculate the flow field and particle trajectories and to perform thermodynamic analysis. It also gives the possibility of studying the effect of different parameters that influence ice formation such as temperature, liquid water content, droplet diameter and accretion time. The analysis has been conducted on different typical airfoils as well as on NASA/DOE Mod-0 wind turbine. Results showed that ice accretion on wind turbines may reduce the power output by more than 20%.

  17. How young the accretion-powered pulsars could be?

    Science.gov (United States)

    Kostina, M. V.; Ikhsanov, N. R.

    2017-12-01

    A question about the age of accretion-powered X-ray pulsars has recently been reopened by a discovery of the X-ray pulsar SXP 1062 in the SMC. This High Mass X-ray Binary (HMXB) contains a neutron star rotating with the period of 1062 s and is associated with a supernova remnant of the age ∼ 104 yr. An attempt to explain the origin of this young long-period X-ray pulsar within the traditional scenario of three basic states (ejector, propeller and accretor) encounters difficulties. Even if this pulsar were born as a magnetar the spin-down time during the propeller stage would exceed 104 yr. Here we explore a more circuitous way of the pulsar spin evolution in HMXBs, in which the propeller stage in the evolutionary track is avoided. We find this way to be possible if the stellar wind of the massive companion to the neutron star is magnetized. The geometry of plasma flow captured by the neutron star in this case differs from spherically symmetrical and the magnetospheric radius of the neutron star is smaller than that evaluated in the convention accretion scenarios. We show that the age of an accretion-powered pulsar in this case can be as small as ∼ 104 years without the need of invoking initial magnetic field in excess of 1013 G.

  18. Pebble Accretion in Turbulent Protoplanetary Disks

    Science.gov (United States)

    Xu, Ziyan; Bai, Xue-Ning; Murray-Clay, Ruth A.

    2017-09-01

    It has been realized in recent years that the accretion of pebble-sized dust particles onto planetary cores is an important mode of core growth, which enables the formation of giant planets at large distances and assists planet formation in general. The pebble accretion theory is built upon the orbit theory of dust particles in a laminar protoplanetary disk (PPD). For sufficiently large core mass (in the “Hill regime”), essentially all particles of appropriate sizes entering the Hill sphere can be captured. However, the outer regions of PPDs are expected to be weakly turbulent due to the magnetorotational instability (MRI), where turbulent stirring of particle orbits may affect the efficiency of pebble accretion. We conduct shearing-box simulations of pebble accretion with different levels of MRI turbulence (strongly turbulent assuming ideal magnetohydrodynamics, weakly turbulent in the presence of ambipolar diffusion, and laminar) and different core masses to test the efficiency of pebble accretion at a microphysical level. We find that accretion remains efficient for marginally coupled particles (dimensionless stopping time {τ }s˜ 0.1{--}1) even in the presence of strong MRI turbulence. Though more dust particles are brought toward the core by the turbulence, this effect is largely canceled by a reduction in accretion probability. As a result, the overall effect of turbulence on the accretion rate is mainly reflected in the changes in the thickness of the dust layer. On the other hand, we find that the efficiency of pebble accretion for strongly coupled particles (down to {τ }s˜ 0.01) can be modestly reduced by strong turbulence for low-mass cores.

  19. Accretion in Saturn's F Ring

    Science.gov (United States)

    Meinke, B. K.; Esposito, L. W.; Stewart, G.

    2012-12-01

    Saturn's F ring is the solar system's principal natural laboratory for direct observation of accretion and disruption processes. The ring resides in the Roche zone, where tidal disruption competes with self-gravity, which allows us to observe the lifecycle of moonlets. Just as nearby moons create structure at the B ring edge (Esposito et al. 2012) and the Keeler gap (Murray 2007), the F ring "shepherding" moons Prometheus and Pandora stir up ring material and create observably changing structures on timescales of days to decades. In fact, Beurle et al (2010) show that Prometheus makes it possible for "distended, yet gravitationally coherent clumps" to form in the F ring, and Barbara and Esposito (2002) predicted a population of ~1 km bodies in the ring. In addition to the observations over the last three decades, the Cassini Ultraviolet Imaging Spectrograph (UVIS) has detected 27 statistically significant features in 101 occultations by Saturn's F ring since July 2004. Seventeen of those 27 features are associated with clumps of ring material. Two features are opaque in occultation, which makes them candidates for solid objects, which we refer to as Moonlets. The 15 other features partially block stellar signal for 22 m to just over 3.7 km along the radial expanse of the occultation. Upon visual inspection of the occultation profile, these features resemble Icicles, thus we will refer to them as such here. The density enhancements responsible for such signal attenuations are likely due to transient clumping of material, evidence that aggregations of material are ubiquitous in the F ring. Our lengthy observing campaign reveals that Icicles are likely transient clumps, while Moonlets are possible solid objects. Optical depth is an indicator of clumping because more-densely aggregated material blocks more light; therefore, it is natural to imagine moonlets as later evolutionary stage of icicle, when looser clumps of material compact to form a feature that appears

  20. Cyclotron Lines in Accreting Neutron Star Spectra

    Science.gov (United States)

    Wilms, Jörn; Schönherr, Gabriele; Schmid, Julia; Dauser, Thomas; Kreykenbohm, Ingo

    2009-05-01

    Cyclotron lines are formed through transitions of electrons between discrete Landau levels in the accretion columns of accreting neutron stars with strong (1012 G) magnetic fields. We summarize recent results on the formation of the spectral continuum of such systems, describe recent advances in the modeling of the lines based on a modification of the commonly used Monte Carlo approach, and discuss new results on the dependence of the measured cyclotron line energy from the luminosity of transient neutron star systems. Finally, we show that Simbol-X will be ideally suited to build and improve the observational database of accreting and strongly magnetized neutron stars.

  1. Gas-rich dwarfs and accretion phenomena in early-type galaxies

    Science.gov (United States)

    Silk, J.; Norman, C.

    1979-01-01

    An analysis is presented of the combined effects of cloud accretion and galactic winds and coronae. An accretion model is developed wherein gas-rich dwarf galaxies are accreted into galactic halos, which provides an adequate source of H I to account for observations of neutral gas in early-type galaxies. Accretion is found to fuel the wind, thereby regulating the accretion flow and yielding a time-dependent model for star formation, enrichment, and nuclear activity. The permissible parameter range for intergalactic gas clouds and galaxy groups is discussed, along with the frequency of gas-rich dwarfs and their large ratios of gas mass to luminosity. Also considered is the occurrence of gas stripping and the consequent formation of dwarf spheroidal systems that remain in the halo, and gas clouds that dissipate and suffer further infall. A cosmological implication of the model is that, because the characteristic time scale of a gas-rich dwarf galaxy to be accreted and lose its gas is comparable to a Hubble time, there may have been a far more extensive primordial distribution of such systems at earlier epochs.

  2. General Relativistic Radiation MHD Simulations of Supercritical Accretion onto a Magnetized Neutron Star: Modeling of Ultraluminous X-Ray Pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hiroyuki R. [Center for Computational Astrophysics, National Astronomical Observatory of Japan, National Institutes of Natural Sciences, Mitaka, Tokyo 181-8588 (Japan); Ohsuga, Ken, E-mail: takahashi@cfca.jp, E-mail: ken.ohsuga@nao.ac.jp [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, National Institutes of Natural Sciences, Mitaka, Tokyo 181-8588 (Japan)

    2017-08-10

    By performing 2.5-dimensional general relativistic radiation magnetohydrodynamic simulations, we demonstrate supercritical accretion onto a non-rotating, magnetized neutron star, where the magnetic field strength of dipole fields is 10{sup 10} G on the star surface. We found the supercritical accretion flow consists of two parts: the accretion columns and the truncated accretion disk. The supercritical accretion disk, which appears far from the neutron star, is truncated at around ≃3 R {sub *} ( R {sub *} = 10{sup 6} cm is the neutron star radius), where the magnetic pressure via the dipole magnetic fields balances with the radiation pressure of the disks. The angular momentum of the disk around the truncation radius is effectively transported inward through magnetic torque by dipole fields, inducing the spin up of a neutron star. The evaluated spin-up rate, ∼−10{sup −11} s s{sup −1}, is consistent with the recent observations of the ultraluminous X-ray pulsars. Within the truncation radius, the gas falls onto a neutron star along the dipole fields, which results in a formation of accretion columns onto the northern and southern hemispheres. The net accretion rate and the luminosity of the column are ≃66 L {sub Edd}/ c {sup 2} and ≲10 L {sub Edd}, where L {sub Edd} is the Eddington luminosity and c is the light speed. Our simulations support a hypothesis whereby the ultraluminous X-ray pulsars are powered by the supercritical accretion onto the magnetized neutron stars.

  3. Steepest descent approximations for accretive operator equations

    International Nuclear Information System (INIS)

    Chidume, C.E.

    1993-03-01

    A necessary and sufficient condition is established for the strong convergence of the steepest descent approximation to a solution of equations involving quasi-accretive operators defined on a uniformly smooth Banach space. (author). 49 refs

  4. Gravitomagnetic acceleration from black hole accretion disks

    International Nuclear Information System (INIS)

    Poirier, J; Mathews, G J

    2016-01-01

    We demonstrate how the motion of the neutral masses in an accretion disk orbiting a black hole creates a general-relativistic magnetic-like (gravitomagnetic) field that vertically accelerates neutral particles near an accretion disk upward and then inward toward the axis of the accretion disk. Even though this gravitomagnetic field is not the only mechanism contributing to the production of jets, it presents a novel means to identify one general relativistic effect from a much more complicated problem. In addition, as the accelerated material above or below the accretion disk nears the axis with a nearly vertical direction, a frame-dragging effect twists the trajectories around the axis thus contributing to the collimation of the jet. (note)

  5. Gravitomagnetic acceleration from black hole accretion disks

    Science.gov (United States)

    Poirier, J.; Mathews, G. J.

    2016-05-01

    We demonstrate how the motion of the neutral masses in an accretion disk orbiting a black hole creates a general-relativistic magnetic-like (gravitomagnetic) field that vertically accelerates neutral particles near an accretion disk upward and then inward toward the axis of the accretion disk. Even though this gravitomagnetic field is not the only mechanism contributing to the production of jets, it presents a novel means to identify one general relativistic effect from a much more complicated problem. In addition, as the accelerated material above or below the accretion disk nears the axis with a nearly vertical direction, a frame-dragging effect twists the trajectories around the axis thus contributing to the collimation of the jet.

  6. Review of gravitomagnetic acceleration from accretion disks

    Science.gov (United States)

    Poirier, J.; Mathews, G. J.

    2015-11-01

    We review the development of the equations of gravitoelectromagnetism and summarize how the motion of the neutral masses in an accretion disk orbiting a black hole creates a general-relativistic magnetic-like (gravitomagnetic) field that vertically accelerates neutral particles near the accretion disk upward and then inward toward the axis of the accretion disk. Even though this gravitomagnetic field is not the only mechanism to produce collimated jets, it is a novel means to identify one general relativistic effect from a much more complicated problem. In addition, as the accelerated material above or below the accretion disk nears the axis with a nearly vertical direction, a frame-dragging effect twists the trajectories around the axis thus contributing to the collimation of the jet.

  7. On the Calculation of the Fe K-alpha Line Emissivity of Black Hole Accretion Disks

    Energy Technology Data Exchange (ETDEWEB)

    Krawczynski, H.; Beheshtipour, B., E-mail: krawcz@wustl.edu [Physics Department and McDonnell Center for the Space Sciences, Washington University in St. Louis, 1 Brookings Drive, CB 1105, St. Louis, MO 63130 (United States)

    2017-11-01

    Observations of the fluorescent Fe K α emission line from the inner accretion flows of stellar mass black holes in X-ray binaries and supermassive black holes in active galactic nuclei have become an important tool to study the magnitude and inclination of the black hole spin, and the structure of the accretion flow close to the event horizon of the black hole. Modeling spectral, timing, and soon also X-ray polarimetric observations of the Fe K α emission requires the calculation of the specific intensity in the rest frame of the emitting plasma. We revisit the derivation of the equation used for calculating the illumination of the accretion disk by the corona. We present an alternative derivation leading to a simpler equation, and discuss the relation to previously published results.

  8. Aerodynamics and thermal physics of helicopter ice accretion

    Science.gov (United States)

    Han, Yiqiang

    Ice accretion on aircraft introduces significant loss in airfoil performance. Reduced lift-to- drag ratio reduces the vehicle capability to maintain altitude and also limits its maneuverability. Current ice accretion performance degradation modeling approaches are calibrated only to a limited envelope of liquid water content, impact velocity, temperature, and water droplet size; consequently inaccurate aerodynamic performance degradations are estimated. The reduced ice accretion prediction capabilities in the glaze ice regime are primarily due to a lack of knowledge of surface roughness induced by ice accretion. A comprehensive understanding of the ice roughness effects on airfoil heat transfer, ice accretion shapes, and ultimately aerodynamics performance is critical for the design of ice protection systems. Surface roughness effects on both heat transfer and aerodynamic performance degradation on airfoils have been experimentally evaluated. Novel techniques, such as ice molding and casting methods and transient heat transfer measurement using non-intrusive thermal imaging methods, were developed at the Adverse Environment Rotor Test Stand (AERTS) facility at Penn State. A novel heat transfer scaling method specifically for turbulent flow regime was also conceived. A heat transfer scaling parameter, labeled as Coefficient of Stanton and Reynolds Number (CSR = Stx/Rex --0.2), has been validated against reference data found in the literature for rough flat plates with Reynolds number (Re) up to 1x107, for rough cylinders with Re ranging from 3x104 to 4x106, and for turbine blades with Re from 7.5x105 to 7x106. This is the first time that the effect of Reynolds number is shown to be successfully eliminated on heat transfer magnitudes measured on rough surfaces. Analytical models for ice roughness distribution, heat transfer prediction, and aerodynamics performance degradation due to ice accretion have also been developed. The ice roughness prediction model was

  9. Standing non-dissipative shocks in black hole accretion and winds

    International Nuclear Information System (INIS)

    Chakrabarti, S.K.

    1988-07-01

    We present all non-dissipative shock solutions for stationary, axially symmetric and rotating adiabatic flows of small transverse thickness in black hole potential. We show that for a given initial and final states of the flow, there can be as many as four formal shock locations in both the accretion and the winds. Only two (three) of these locations are acceptable for accretion onto black holes (neutron stars) and three of these locations are acceptable for winds. We prove that the shock strength and the temperature jump have a lower limit which does not depend upon the parameters of the flow or the force field in which the flow moves and is only a function of the adiabatic index of flow. (author). 14 refs, 12 figs

  10. Structures formation through self-organized accretion on cosmic strings

    International Nuclear Information System (INIS)

    Murdzek, R.

    2009-01-01

    In this paper, we shall show that the formation of structures through accretion by a cosmic string is driven by a natural feed-back mechanism: a part of the energy radiated by accretions creates a pressure on the accretion disk itself. This phenomenon leads to a nonlinear evolution of the accretion process. Thus, the formation of structures results as a consequence of a self-organized growth of the accreting central object.

  11. Measuring the spins of accreting black holes

    International Nuclear Information System (INIS)

    McClintock, Jeffrey E; Narayan, Ramesh; Gou, Lijun; Kulkarni, Akshay; Penna, Robert F; Steiner, James F; Davis, Shane W; Orosz, Jerome A; Remillard, Ronald A

    2011-01-01

    A typical galaxy is thought to contain tens of millions of stellar-mass black holes, the collapsed remnants of once massive stars, and a single nuclear supermassive black hole. Both classes of black holes accrete gas from their environments. The accreting gas forms a flattened orbiting structure known as an accretion disk. During the past several years, it has become possible to obtain measurements of the spins of the two classes of black holes by modeling the x-ray emission from their accretion disks. Two methods are employed, both of which depend upon identifying the inner radius of the accretion disk with the innermost stable circular orbit, whose radius depends only on the mass and spin of the black hole. In the Fe Kα method, which applies to both classes of black holes, one models the profile of the relativistically broadened iron line with a special focus on the gravitationally redshifted red wing of the line. In the continuum-fitting (CF) method, which has so far only been applied to stellar-mass black holes, one models the thermal x-ray continuum spectrum of the accretion disk. We discuss both methods, with a strong emphasis on the CF method and its application to stellar-mass black holes. Spin results for eight stellar-mass black holes are summarized. These data are used to argue that the high spins of at least some of these black holes are natal, and that the presence or absence of relativistic jets in accreting black holes is not entirely determined by the spin of the black hole.

  12. SUPERNOVA LIGHT CURVES POWERED BY FALLBACK ACCRETION

    Energy Technology Data Exchange (ETDEWEB)

    Dexter, Jason; Kasen, Daniel, E-mail: jdexter@berkeley.edu [Departments of Physics and Astronomy, University of California, Berkeley, CA 94720 (United States)

    2013-07-20

    Some fraction of the material ejected in a core collapse supernova explosion may remain bound to the compact remnant, and eventually turn around and fall back. We show that the late time ({approx}>days) power potentially associated with the accretion of this 'fallback' material could significantly affect the optical light curve, in some cases producing super-luminous or otherwise peculiar supernovae. We use spherically symmetric hydrodynamical models to estimate the accretion rate at late times for a range of progenitor masses and radii and explosion energies. The accretion rate onto the proto-neutron star or black hole decreases as M-dot {proportional_to}t{sup -5/3} at late times, but its normalization can be significantly enhanced at low explosion energies, in very massive stars, or if a strong reverse shock wave forms at the helium/hydrogen interface in the progenitor. If the resulting super-Eddington accretion drives an outflow which thermalizes in the outgoing ejecta, the supernova debris will be re-energized at a time when photons can diffuse out efficiently. The resulting light curves are different and more diverse than previous fallback supernova models which ignored the input of accretion power and produced short-lived, dim transients. The possible outcomes when fallback accretion power is significant include super-luminous ({approx}> 10{sup 44} erg s{sup -1}) Type II events of both short and long durations, as well as luminous Type I events from compact stars that may have experienced significant mass loss. Accretion power may unbind the remaining infalling material, causing a sudden decrease in the brightness of some long duration Type II events. This scenario may be relevant for explaining some of the recently discovered classes of peculiar and rare supernovae.

  13. Accreting neutron stars by QFT

    Science.gov (United States)

    Chen, Shao-Guang

    layer with thickness of 1 km then q = 1 (N1S1), the gravity from N1S1 inside and exterior will be completely shielded. Because of net nuν _{0} flux is the medium to produce and transmit gravity, q obstructed by the shielding layer lie on the density of layer matter and the section of single nucleon to electronic neutrino obtained by nuclear physics experiments is about 1.1*10 ({-) 43} cm (2) . The mass inside N1S1 for exterior has not gravity interaction, it equivalent to has not inertia as the mass vanish. The neutron star is as a empty shell thereby may rapidly rotating and has not upper limit of mass and radii by the gravity accretion of N1S1, which will influence the mechanisms of pulsars, quasars and X-rays generated. At N1S1 interior the mass for exterior has not gravity which is just we searching dark matter. The mass each part will each other shielding and gravity decrease to less than the pressure of the degenerate neutron gas. The neutron star cannot collapse into a singular point with infinite density, i.e., the black hole with infinite gravity cannot be formed or the neutron star is jest the black hole in observational meaning. By the gravity accrete of N1S1 the neutron star may enlarge its shell radii but thickness keep. Only a shell gravity may be not less than any a observed value which to be deemed as black hole. The neutron star has powerful gravity certainly accompany with great surface negative charge and it may rapidly to rotate, so that there is a powerful magnetic field surround it. The accreting neutron star is as a slowly expand empty shell with fixed thickness of 1 km, its spin period depend on its radii or total accretion mass.

  14. Radial Transport and Meridional Circulation in Accretion Disks

    Energy Technology Data Exchange (ETDEWEB)

    Philippov, Alexander A. [Department of Astrophysical Sciences, Princeton University, Ivy Lane, Princeton, NJ 08540 (United States); Rafikov, Roman R., E-mail: sashaph@princeton.edu [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States)

    2017-03-10

    Radial transport of particles, elements and fluid driven by internal stresses in three-dimensional (3D) astrophysical accretion disks is an important phenomenon, potentially relevant for the outward dust transport in protoplanetary disks, origin of the refractory particles in comets, isotopic equilibration in the Earth–Moon system, etc. To gain better insight into these processes, we explore the dependence of meridional circulation in 3D disks with shear viscosity on their thermal stratification, and demonstrate a strong effect of the latter on the radial flow. Previous locally isothermal studies have normally found a pattern of the radial outflow near the midplane, switching to inflow higher up. Here we show, both analytically and numerically, that a flow that is inward at all altitudes is possible in disks with entropy and temperature steeply increasing with height. Such thermodynamic conditions may be typical in the optically thin, viscously heated accretion disks. Disks in which these conditions do not hold should feature radial outflow near the midplane, as long as their internal stress is provided by the shear viscosity. Our results can also be used for designing hydrodynamical disk simulations with a prescribed pattern of the meridional circulation.

  15. Magnetically gated accretion in an accreting 'non-magnetic' white dwarf.

    Science.gov (United States)

    Scaringi, S; Maccarone, T J; D'Angelo, C; Knigge, C; Groot, P J

    2017-12-13

    White dwarfs are often found in binary systems with orbital periods ranging from tens of minutes to hours in which they can accrete gas from their companion stars. In about 15 per cent of these binaries, the magnetic field of the white dwarf is strong enough (at 10 6 gauss or more) to channel the accreted matter along field lines onto the magnetic poles. The remaining systems are referred to as 'non-magnetic', because until now there has been no evidence that they have a magnetic field that is strong enough to affect the accretion dynamics. Here we report an analysis of archival optical observations of the 'non-magnetic' accreting white dwarf in the binary system MV Lyrae, whose light curve displays quasi-periodic bursts of about 30 minutes duration roughly every 2 hours. The timescale and amplitude of these bursts indicate the presence of an unstable, magnetically regulated accretion mode, which in turn implies the existence of magnetically gated accretion, in which disk material builds up around the magnetospheric boundary (at the co-rotation radius) and then accretes onto the white dwarf, producing bursts powered by the release of gravitational potential energy. We infer a surface magnetic field strength for the white dwarf in MV Lyrae of between 2 × 10 4 gauss and 1 × 10 5 gauss, too low to be detectable by other current methods. Our discovery provides a new way of studying the strength and evolution of magnetic fields in accreting white dwarfs and extends the connections between accretion onto white dwarfs, young stellar objects and neutron stars, for which similar magnetically gated accretion cycles have been identified.

  16. Focused Wind Mass Accretion in Mira AB

    Science.gov (United States)

    Karovska, Margarita; de Val-Borro, M.; Hack, W.; Raymond, J.; Sasselov, D.; Lee, N. P.

    2011-05-01

    At a distance of about only 100pc, Mira AB is the nearest symbiotic system containing an Asymptotic Giant Branch (AGB) star (Mira A), and a compact accreting companion (Mira B) at about 0.5" from Mira A. Symbiotic systems are interacting binaries with a key evolutionary importance as potential progenitors of a fraction of asymmetric Planetary Nebulae, and SN type Ia, cosmological distance indicators. The region of interaction has been studied using high-angular resolution, multiwavelength observations ranging from radio to X-ray wavelengths. Our results, including high-angular resolution Chandra imaging, show a "bridge" between Mira A and Mira B, indicating gravitational focusing of the Mira A wind, whereby components exchange matter directly in addition to the wind accretion. We carried out a study using 2-D hydrodynamical models of focused wind mass accretion to determine the region of wind acceleration and the characteristics of the accretion in Mira AB. We highlight some of our results and discuss the impact on our understanding of accretion processes in symbiotic systems and other detached and semidetached interacting systems.

  17. Swinging between rotation and accretion power in a binary millisecond pulsar

    Directory of Open Access Journals (Sweden)

    Papitto A.

    2014-01-01

    While accreting mass, the X-ray emission of IGR J18245–2452 varies dramatically on time-scales ranging from a second to a few hours. We interpret a state characterised by a lower flux and pulsed fraction, and by sudden increases of the hardness of the X-ray emission, in terms of the onset of a magnetospheric centrifugal inhibition of the accretion flow. Prospects of finding new members of the newly established class of transitional pulsars are also briefly discussed.

  18. Continuum Reverberation Mapping of AGN Accretion Disks

    Energy Technology Data Exchange (ETDEWEB)

    Fausnaugh, Michael M. [Department of Astronomy, Ohio State University, Columbus, OH (United States); MIT Kavli Institute for Astrophysics and Space Research, Cambridge, MA (United States); Peterson, Bradley M. [Department of Astronomy, Ohio State University, Columbus, OH (United States); Center for Cosmology and AstroParticle Physics, Ohio State University, Columbus, OH (United States); Space Telescope Science Institute, Baltimore, MD (United States); Starkey, David A. [SUPA Physics and Astronomy, University of St. Andrews, Scotland (United Kingdom); Department of Astronomy, University of Illinois at Urbana-Champaign, Urbana, IL (United States); Horne, Keith, E-mail: faus@mit.edu [SUPA Physics and Astronomy, University of St. Andrews, Scotland (United Kingdom); Collaboration: the AGN STORM Collaboration

    2017-12-05

    We show recent detections of inter-band continuum lags in three AGN (NGC 5548, NGC 2617, and MCG+08-11-011), which provide new constraints on the temperature profiles and absolute sizes of the accretion disks. We find lags larger than would be predicted for standard geometrically thin, optically thick accretion disks by factors of 2.3–3.3. For NGC 5548, the data span UV through optical/near-IR wavelengths, and we are able to discern a steeper temperature profile than the T ~ R{sup −3/4} expected for a standard thin disk. Using a physical model, we are also able to estimate the inclinations of the disks for two objects. These results are similar to those found from gravitational microlensing of strongly lensed quasars, and provide a complementary approach for investigating the accretion disk structure in local, low luminosity AGN.

  19. Thermal structure of the accreting earth

    International Nuclear Information System (INIS)

    Turcotte, D.L.; Pflugrath, J.C.

    1985-01-01

    The energy associated with the accretion of the earth and the segregation of the core is more than sufficient to melt the entire earth. In order to understand the thermal evolution of the early earth it is necessary to study the relevant heat transfer mechanisms. In this paper we postulate the existence of a global magma ocean and carry out calculations of the heat flux through it in order to determine its depth. In the solid mantle heat is transferred by the upward migration of magma. This magma supplies the magma ocean. The increase in the mantle liquidus with depth (pressure) is the dominant effect influencing heat transfer through the magma ocean. We find that a magma ocean with a depth of the order of 20 km would have existed as the earth accreted. We conclude that the core segregated and an atmosphere was formed during accretion

  20. Accretion disks in active galactic nuclei

    International Nuclear Information System (INIS)

    Shields, G.A.

    1989-01-01

    Active galactic nuclei (AGN) have taunted astrophysicists for a quarter century. How do these objects produce huge luminosities---in some cases, far outshining our galaxy---from a region perhaps no larger than the solar system? Accretion onto supermassive black holes has been widely considered the best buy in theories of AGN. Much work has gone into accretion disk theory, searches for black holes in galactic nuclei, and observational tests. These efforts have not proved the disk model, but there is progress. Evidence for black holes in the nuclei of nearby galaxies is provided by observations of stellar velocities, and radiation from the disk's hot surface may be observed in the ultraviolet (UV) and neighboring spectral bands. In the review, the author describe some of the recent work on accretion disks in AGN, with an emphasis on points of contact between theory and observation

  1. Thin accretion disk around regular black hole

    Directory of Open Access Journals (Sweden)

    QIU Tianqi

    2014-08-01

    Full Text Available The Penrose′s cosmic censorship conjecture says that naked singularities do not exist in nature.So,it seems reasonable to further conjecture that not even a singularity exists in nature.In this paper,a regular black hole without singularity is studied in detail,especially on its thin accretion disk,energy flux,radiation temperature and accretion efficiency.It is found that the interaction of regular black hole is stronger than that of the Schwarzschild black hole. Furthermore,the thin accretion will be more efficiency to lost energy while the mass of black hole decreased. These particular properties may be used to distinguish between black holes.

  2. Magnetohydrodynamic Simulations of Black Hole Accretion

    Science.gov (United States)

    Avara, Mark J.

    Black holes embody one of the few, simple, solutions to the Einstein field equations that describe our modern understanding of gravitation. In isolation they are small, dark, and elusive. However, when a gas cloud or star wanders too close, they light up our universe in a way no other cosmic object can. The processes of magnetohydrodynamics which describe the accretion inflow and outflows of plasma around black holes are highly coupled and nonlinear and so require numerical experiments for elucidation. These processes are at the heart of astrophysics since black holes, once they somehow reach super-massive status, influence the evolution of the largest structures in the universe. It has been my goal, with the body of work comprising this thesis, to explore the ways in which the influence of black holes on their surroundings differs from the predictions of standard accretion models. I have especially focused on how magnetization of the greater black hole environment can impact accretion systems.

  3. Electron-positron pair production in a hot accretion plasma around a massive black hole

    International Nuclear Information System (INIS)

    Takahara, Fumio; Kusunose, Masaaki.

    1985-01-01

    We investigate the electron-positron pair production in a hot accretion plasma around a supermassive black hole in connection with active galactic nuclei. Assuming that an optically thin two-temperature plasma is produced in the vicinity of the central black hole, we examine the condition for the significant pair production by comparing relevant time scales. Since the pair production is dominated by collisions between hard photons, the conditions for significant pair production depend on the production rate of hard photons. We examine the case where the unsaturated Comptonization of soft photons produces hard photons as well as that of bremsstrahlung. We show that significant pair production occurs for a moderately high accretion rate with relatively slow accretion flow as compared to the free fall velocity in both cases. Possible consequences of pair production are briefly discussed. (author)

  4. Accreting CO material onto ONe white dwarfs towards accretion-induced collapse

    Science.gov (United States)

    Wu, Cheng-Yuan; Wang, Bo

    2018-03-01

    The final outcomes of accreting ONe white dwarfs (ONe WDs) have been studied for several decades, but there are still some issues that are not resolved. Recently, some studies suggested that the deflagration of oxygen would occur for accreting ONe WDs with Chandrasekhar masses. In this paper, we aim to investigate whether ONe WDs can experience accretion-induced collapse (AIC) or explosions when their masses approach the Chandrasekhar limit. Employing the stellar evolution code Modules for Experiments in Stellar Astrophysics (MESA), we simulate the long-term evolution of ONe WDs with accreting CO material. The ONe WDs undergo weak multicycle carbon flashes during the mass-accretion process, leading to mass increase of the WDs. We found that different initial WD masses and mass-accretion rates influence the evolution of central density and temperature. However, the central temperature cannot reach the explosive oxygen ignition temperature due to neutrino cooling. This work implies that the final outcome of accreting ONe WDs is electron-capture induced collapse rather than thermonuclear explosion.

  5. Coastal erosion and accretion rates in Greece

    Science.gov (United States)

    Foteinis, Spyros; Papadopoulos, Costas; Koutsogiannaki, Irini; Synolakis, Costas

    2010-05-01

    Erosion threatens many coastal regions of Greece. Anthropogenic changes of landforms such as coastal roads built on even narrow beaches, sand mining for construction, poor design of coastal structures that interfere with sediment, and dams without sediment bypasses have significantly reduced beach widths. We present erosion rates for different beaches, some of which are in sensitive ecosystems, otherwise "protected" by local and EU ordinances. By comparing inferences of beach widths in varying intervals from 1933 to 2006, we infer that the construction of dams in Acheloos river in western Greece, built in a faraonic attempt to partially divert its flows to eastern Greece, this is responsible for up to 20m/year erosion rates observed in certain locales in the Acheloos delta. More characteristic erosion rates in the region are ~ 2m/year. By contrast, there appears rapid accretion of up to 4m/year in the beaches around the Nestos delta in northern Greece (Papadopoulos, 2009). In beaches that are not near large river deltas, erosion rates range from 0.5m/year to 1m/year. While we have not done comprehensive comparisons among coastlines with different levels of coastal development, it does appear that rapid coastal development correlates well with erosion rates. The underlying problem is the complete lack of any semblance of coastal zone management in Greece and substandard design of coastal structures, which are often sited without any measurements of waves and currents offshore (Synolakis et al, 2008). Beach maintenance remains an exotic concept for most local authorities, who invariably prefer to build hard coastal structures to "protect" versus nourish, siting lack of experience with nourishment and "environmental" concerns. In certain cases, choices are dictated by costs, the larger the cost the easier the project gets approved by regulatory authorities, hence the preference for concrete or rubble structures. We conclude that, unless urgent salvage measures are

  6. Stability of black hole accretion disks

    Directory of Open Access Journals (Sweden)

    Czerny B.

    2012-12-01

    Full Text Available We discuss the issues of stability of accretion disks that may undergo the limit-cycle oscillations due to the two main types of thermal-viscous instabilities. These are induced either by the domination of radiation pressure in the innermost regions close to the central black hole, or by the partial ionization of hydrogen in the zone of appropriate temperatures. These physical processes may lead to the intermittent activity in AGN on timescales between hundreds and millions of years. We list a number of observational facts that support the idea of the cyclic activity in high accretion rate sources. We conclude however that the observed features of quasars may provide only indirect signatures of the underlying instabilities. Also, the support from the sources with stellar mass black holes, whose variability timescales are observationally feasible, is limited to a few cases of the microquasars. Therefore we consider a number of plausible mechanisms of stabilization of the limit cycle oscillations in high accretion rate accretion disks. The newly found is the stabilizing effect of the stochastic viscosity fluctuations.

  7. Cooling of Accretion-Heated Neutron Stars

    Science.gov (United States)

    Wijnands, Rudy; Degenaar, Nathalie; Page, Dany

    2017-09-01

    We present a brief, observational review about the study of the cooling behaviour of accretion-heated neutron stars and the inferences about the neutron-star crust and core that have been obtained from these studies. Accretion of matter during outbursts can heat the crust out of thermal equilibrium with the core and after the accretion episodes are over, the crust will cool down until crust-core equilibrium is restored. We discuss the observed properties of the crust cooling sources and what has been learned about the physics of neutron-star crusts. We also briefly discuss those systems that have been observed long after their outbursts were over, i.e, during times when the crust and core are expected to be in thermal equilibrium. The surface temperature is then a direct probe for the core temperature. By comparing the expected temperatures based on estimates of the accretion history of the targets with the observed ones, the physics of neutron-star cores can be investigated. Finally, we discuss similar studies performed for strongly magnetized neutron stars in which the magnetic field might play an important role in the heating and cooling of the neutron stars.

  8. VARIABLE ACCRETION OUTBURSTS IN PROTOSTELLAR EVOLUTION

    International Nuclear Information System (INIS)

    Bae, Jaehan; Hartmann, Lee; Zhu, Zhaohuan; Gammie, Charles

    2013-01-01

    We extend the one-dimensional, two-zone models of long-term protostellar disk evolution with infall of Zhu et al. to consider the potential effects of a finite viscosity in regions where the ionization is too low for the magnetorotational instability (MRI) to operate (the d ead zone ) . We find that the presence of a small but finite dead zone viscosity, as suggested by simulations of stratified disks with MRI-active outer layers, can trigger inside-out bursts of accretion, starting at or near the inner edge of the disk, instead of the previously found outside-in bursts with zero dead zone viscosity, which originate at a few AU in radius. These inside-out bursts of accretion bear a qualitative resemblance to the outburst behavior of one FU Ori object, V1515 Cyg, in contrast to the outside-in burst models, which more closely resemble the accretion events in FU Ori and V1057 Cyg. Our results suggest that the type and frequency of outbursts are potentially a probe of transport efficiency in the dead zone. Simulations must treat the inner disk regions, R ∼< 0.5 AU, to show the detailed time evolution of accretion outbursts in general and to observe the inside-out bursts in particular.

  9. VARIABLE ACCRETION OUTBURSTS IN PROTOSTELLAR EVOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Jaehan; Hartmann, Lee [Department of Astronomy, University of Michigan, 500 Church St., Ann Arbor, MI 48105 (United States); Zhu, Zhaohuan [Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Peyton Hall, Princeton, NJ 08544 (United States); Gammie, Charles, E-mail: jaehbae@umich.edu, E-mail: lhartm@umich.edu, E-mail: zhuzh@astro.princeton.edu, E-mail: gammie@illinois.edu [Department of Astronomy, University of Illinois Urbana-Champaign, 1002 W. Green St., Urbana, IL 61801 (United States)

    2013-02-20

    We extend the one-dimensional, two-zone models of long-term protostellar disk evolution with infall of Zhu et al. to consider the potential effects of a finite viscosity in regions where the ionization is too low for the magnetorotational instability (MRI) to operate (the {sup d}ead zone{sup )}. We find that the presence of a small but finite dead zone viscosity, as suggested by simulations of stratified disks with MRI-active outer layers, can trigger inside-out bursts of accretion, starting at or near the inner edge of the disk, instead of the previously found outside-in bursts with zero dead zone viscosity, which originate at a few AU in radius. These inside-out bursts of accretion bear a qualitative resemblance to the outburst behavior of one FU Ori object, V1515 Cyg, in contrast to the outside-in burst models, which more closely resemble the accretion events in FU Ori and V1057 Cyg. Our results suggest that the type and frequency of outbursts are potentially a probe of transport efficiency in the dead zone. Simulations must treat the inner disk regions, R {approx}< 0.5 AU, to show the detailed time evolution of accretion outbursts in general and to observe the inside-out bursts in particular.

  10. QPOs and Resonance in Accretion Disks

    Czech Academy of Sciences Publication Activity Database

    Kluzniak, W.; Abramowicz, M. A.; Bursa, Michal; Török, G.

    2007-01-01

    Roč. 27, Marzo 2007 (2007), s. 18-25 ISSN 1405-2059 R&D Projects: GA AV ČR IAA300030510 Institutional research plan: CEZ:AV0Z10030501 Keywords : quasi-periodic oscillations * accretion disks * general relativity Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  11. Disk accretion onto magnetic T Tauri stars

    International Nuclear Information System (INIS)

    Koenigl, A.

    1991-01-01

    The dynamical and radiative consequences of disk accretion onto magnetic T Tauri stars (TTS) are examined using the Ghosh and Lamb model. It is shown that a prolonged disk accretion phase is compatible with the low rotation rates measured in these stars if they possess a kilogauss strength field that disrupts the disk at a distance of a few stellar radii from the center. It is estimated that a steady state in which the net torque exerted on the star is zero can be attained on a time scale that is shorter than the age of the youngest visible TTS. Although the disk does not develop an ordinary shear boundary layer in this case, one can account for the observed UV excess and Balmer emission in terms of the shocks that form at the bottom of the high-latitude magnetic accretion columns on the stellar surface. This picture also provides a natural explanation of some of the puzzling variability properties of stars like DF Tau and RY Lup. YY Ori stars are interpreted as magnetic TTS in which the observer's line of sight is roughly parallel to an accretion column. 37 refs

  12. Cooling of Accretion-Heated Neutron Stars

    Indian Academy of Sciences (India)

    Rudy Wijnands

    2017-09-12

    Sep 12, 2017 ... the magnetic field might play an important role in the heating and cooling of the neutron stars. .... Source near Sgr A ..... marked the start of the research field that uses the cool- ... This curve is just to guide the eye for the individual sources and it is clear ..... Not all accretion-induced nuclear reactions might.

  13. On the resonant behavior of longitudinally vibrating accreting rods

    CSIR Research Space (South Africa)

    Shatalov, M

    2012-09-01

    Full Text Available The theory of accreting structures is a new and fast developing branch of analytical mechanics basing on the theory of partial differential and integral equations. In the present paper the authors analyze qualitative properties of accreting rods...

  14. MOLECULAR CLOUD EVOLUTION. III. ACCRETION VERSUS STELLAR FEEDBACK

    International Nuclear Information System (INIS)

    Vazquez-Semadeni, Enrique; ColIn, Pedro; Gomez, Gilberto C.; Ballesteros-Paredes, Javier; Watson, Alan W.

    2010-01-01

    We numerically investigate the effect of feedback from the ionization heating from massive stars on the evolution of giant molecular clouds (GMCs) and their star formation efficiency (SFE), which we treat as an instantaneous, time-dependent quantity. We follow the GMCs' evolution from their formation to advanced star-forming stages. After an initial period of contraction, the collapsing clouds begin forming stars, whose feedback evaporates part of the clouds' mass, opposing the continuing accretion from the infalling gas. Our results are as follows: (1) in the presence of feedback, the clouds attain levels of the SFE that are consistent at all times with observational determinations for regions of comparable star formation rates. (2) However, the dense gas mass is larger in general in the presence of feedback, while the total mass (dense gas + stars) is nearly insensitive to the presence of feedback, suggesting that it is determined mainly by the accretion, while the feedback inhibits mainly the conversion of dense gas to stars, because it acts directly to reheat and disperse the gas that is directly on its way to forming stars. (3) The factor by which the SFE is reduced upon the inclusion of feedback is a decreasing function of the cloud's mass, for clouds of size ∼10 pc. This naturally explains the larger observed SFEs of massive-star-forming regions. (4) The clouds may attain a pseudo-virialized state, with a value of the virial mass very similar to the actual cloud mass. However, this state differs from true virialization in that the clouds, rather than being equilibrium entities, are the centers of a larger-scale collapse, in which accretion replenishes the mass consumed by star formation. (5) The higher-density regions within the clouds are in a similar situation, accreting gas infalling from the less-dense, more extended regions of the clouds. (6) The density probability density functions of the regions containing the clouds in general exhibit a shape

  15. EARTH, MOON, SUN, AND CV ACCRETION DISKS

    International Nuclear Information System (INIS)

    Montgomery, M. M.

    2009-01-01

    Net tidal torque by the secondary on a misaligned accretion disk, like the net tidal torque by the Moon and the Sun on the equatorial bulge of the spinning and tilted Earth, is suggested by others to be a source to retrograde precession in non-magnetic, accreting cataclysmic variable (CV) dwarf novae (DN) systems that show negative superhumps in their light curves. We investigate this idea in this work. We generate a generic theoretical expression for retrograde precession in spinning disks that are misaligned with the orbital plane. Our generic theoretical expression matches that which describes the retrograde precession of Earths' equinoxes. By making appropriate assumptions, we reduce our generic theoretical expression to those generated by others, or to those used by others, to describe retrograde precession in protostellar, protoplanetary, X-ray binary, non-magnetic CV DN, quasar, and black hole systems. We find that spinning, tilted CV DN systems cannot be described by a precessing ring or by a precessing rigid disk. We find that differential rotation and effects on the disk by the accretion stream must be addressed. Our analysis indicates that the best description of a retrogradely precessing spinning, tilted, CV DN accretion disk is a differentially rotating, tilted disk with an attached rotating, tilted ring located near the innermost disk annuli. In agreement with the observations and numerical simulations by others, we find that our numerically simulated CV DN accretion disks retrogradely precess as a unit. Our final, reduced expression for retrograde precession agrees well with our numerical simulation results and with selective observational systems that seem to have main-sequence secondaries. Our results suggest that a major source to retrograde precession is tidal torques like that by the Moon and the Sun on the Earth. In addition, these tidal torques should be common to a variety of systems where one member is spinning and tilted, regardless if

  16. Accretion dynamics and polarized x-ray emission of magnetized neutron stars

    International Nuclear Information System (INIS)

    Arons, J.

    1991-01-01

    The basic ideas of accretion onto magnetized neutron stars are outlined. These are applied to a simple model of the structure of the plasma mound sitting at the magnetic poles of such as star, in which upward diffusion of photons is balanced by their downward advection. This steady flow model of the plasma's dynamical state is used to compute the emission of polarized X-rays from the optically thick, birefringent medium. The linear polarization of the continuum radiation emerging from the quasi-static mound is found to be as much as 40% at some rotation phases, but is insensitive to the geometry of the accretion flow. The role of the accretion shock, whose detailed polarimetric and spectral characteristics have yet to be calculated, is emphasized as the final determinant of the properties of the emerging X-rays. Some results describing the fully time dependent dynamics of the flow are also presented. In particular, steady flow onto a neutron star is shown to exhibit formation of ''photon bubbles,'' regions of greatly reduced plasma density filled with radiation which form and rise on millisecond time scales. The possible role of these complex structures in the flow for the formation of the emergent spectrum is briefly outlined

  17. Accretion dynamics and polarized X-ray emission of magnetized neutron stars

    Science.gov (United States)

    Arons, Jonathan

    1991-01-01

    The basic ideas of accretion onto magnetized neutron stars are outlined. These are applied to a simple model of the structure of the plasma mound sitting at the magnetic poles of such a star, in which upward diffusion of photons is balanced by their downward advection. This steady flow model of the plasma's dynamical state is used to compute the emission of polarized X-raysfrom the optically thick, birefringent medium. The linear polarization of the continuum radiation emerging from the quasi-static mound is found to be as much as 40 percent at some rotation phases, but is insensitive to the geometry of the accretion flow. The role of the accretion shock, whose detailed polarimetric and spectral characteristics have yet to be calculated, is emphasized as the final determinant of the properties of the emerging X-rays. Some results describing the fully time dependent dynamics of the flow are also presented. In particular, steady flow onto a neutron star is shown to exhibit formation of 'photon bubbles', regions of greatly reduced plasma density filled with radiation which form and rise on millisecond time scale. The possible role of these complex structures in the flow for the formation of the emergent spectrum is briefly outlined.

  18. Simulating X-ray bursts during a transient accretion event

    Science.gov (United States)

    Johnston, Zac; Heger, Alexander; Galloway, Duncan K.

    2018-06-01

    Modelling of thermonuclear X-ray bursts on accreting neutron stars has to date focused on stable accretion rates. However, bursts are also observed during episodes of transient accretion. During such events, the accretion rate can evolve significantly between bursts, and this regime provides a unique test for burst models. The accretion-powered millisecond pulsar SAX J1808.4-3658 exhibits accretion outbursts every 2-3 yr. During the well-sampled month-long outburst of 2002 October, four helium-rich X-ray bursts were observed. Using this event as a test case, we present the first multizone simulations of X-ray bursts under a time-dependent accretion rate. We investigate the effect of using a time-dependent accretion rate in comparison to constant, averaged rates. Initial results suggest that using a constant, average accretion rate between bursts may underestimate the recurrence time when the accretion rate is decreasing, and overestimate it when the accretion rate is increasing. Our model, with an accreted hydrogen fraction of X = 0.44 and a CNO metallicity of ZCNO = 0.02, reproduces the observed burst arrival times and fluences with root mean square (rms) errors of 2.8 h, and 0.11× 10^{-6} erg cm^{-2}, respectively. Our results support previous modelling that predicted two unobserved bursts and indicate that additional bursts were also missed by observations.

  19. INTERFERENCE AS AN ORIGIN OF THE PEAKED NOISE IN ACCRETING X-RAY BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Veledina, Alexandra, E-mail: alexandra.veledina@gmail.com [Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-10691 Stockholm (Sweden)

    2016-12-01

    We propose a physical model for the peaked noise in the X-ray power density spectra of accreting X-ray binaries. We interpret its appearance as an interference of two Comptonization continua: one coming from the upscattering of seed photons from the cold thin disk and the other fed by the synchrotron emission of the hot flow. Variations of both X-ray components are caused by fluctuations in mass accretion rate, but there is a delay between them corresponding to the propagation timescale from the disk Comptonization radius to the region of synchrotron Comptonization. If the disk and synchrotron Comptonization are correlated, the humps in the power spectra are harmonically related and the dips between them appear at frequencies related as odd numbers 1:3:5. If they are anti-correlated, the humps are related as 1:3:5, but the dips are harmonically related. Similar structures are expected to be observed in accreting neutron star binaries and supermassive black holes. The delay can be easily recovered from the frequency of peaked noise and further used to constrain the combination of the viscosity parameter and disk height-to-radius ratio α ( H / R ){sup 2} of the accretion flow. We model multi-peak power spectra of black hole X-ray binaries GX 339–4 and XTE J1748–288 to constrain these parameters.

  20. A New Paradigm for Gamma Ray Bursts: Long Term Accretion Rate Modulation by an External Accretion Disk

    Science.gov (United States)

    Cannizzo, John; Gehrels, Neil

    2009-01-01

    We present a new way of looking at the very long term evolution of GRBs in which the disk of material surrounding the putative black hole powering the GRB jet modulates the mass flow, and hence the efficacy of the process that extracts rotational energy from the black hole and inner accretion disk. The pre-Swift paradigm of achromatic, shallow-to-steep "breaks" in the long term GRB light curves has not been borne out by detailed Swift data amassed in the past several years. We argue that, given the initial existence of a fall-back disk near the progenitor, an unavoidable consequence will be the formation of an "external disk" whose outer edge continually moves to larger radii due to angular momentum transport and lack of a confining torque. The mass reservoir at large radii moves outward with time and gives a natural power law decay to the GRB light curves. In this model, the different canonical power law decay segments in the GRB identified by Zhang et al. and Nousek et al. represent different physical states of the accretion disk. We identify a physical disk state with each power law segment.

  1. Modeling the Effects of Ice Accretion on the Low Pressure Compressor and the Overall Turbofan Engine System Performance

    Science.gov (United States)

    Veres, Joseph P.; Jorgenson, Philip C. E.; Wright, William B.

    2011-01-01

    The focus of this study is on utilizing a mean line compressor flow analysis code coupled to an engine system thermodynamic code, to estimate the effects of ice accretion on the low pressure compressor, and quantifying its effects on the engine system throughout a notional flight trajectory. In this paper a temperature range in which engine icing would occur was assumed. This provided a mechanism to locate potential component icing sites and allow the computational tools to add blockages due to ice accretion in a parametric fashion. Ultimately the location and level of blockage due to icing would be provided by an ice accretion code. To proceed, an engine system modeling code and a mean line compressor flow analysis code were utilized to calculate the flow conditions in the fan-core and low pressure compressor and to identify potential locations within the compressor where ice may accrete. In this study, an "additional blockage" due to the accretion of ice on the metal surfaces, has been added to the baseline aerodynamic blockage due to boundary layer, as well as the blade metal blockage. Once the potential locations of ice accretion are identified, the levels of additional blockage due to accretion were parametrically varied to estimate the effects on the low pressure compressor blade row performance operating within the engine system environment. This study includes detailed analysis of compressor and engine performance during cruise and descent operating conditions at several altitudes within the notional flight trajectory. The purpose of this effort is to develop the computer codes to provide a predictive capability to forecast the onset of engine icing events, such that they could ultimately help in the avoidance of these events.

  2. Standing shocks in adiabatic black hole accretion of rotating matter

    International Nuclear Information System (INIS)

    Abramowicz, M.A.; Chakrabarti, S.K.

    1988-08-01

    We present all the solutions for stationary, axially symmetric, transonic, adiabatic flows with polytropic, rotating fluid configurations of small transverse thickness, in an arbitrarily chosen potential. Special attention is paid to the formation of the standing shocks in the case of black hole accretion and winds. We point out the possibility of three types of shocks depending upon three extreme physical conditions at the shocks. These are: Rankine-Hugoniot shocks, isentropic compression waves, and isothermal shocks. We write down the shock conditions for these three cases and discuss briefly the physical situations under which these shocks may form. A complete discussion on the properties of these shocks will be presented elsewhere. (author). 21 refs, 4 figs

  3. Near-ultraviolet Excess in Slowly Accreting T Tauri Stars: Limits Imposed by Chromospheric Emission

    Science.gov (United States)

    Ingleby, Laura; Calvet, Nuria; Bergin, Edwin; Herczeg, Gregory; Brown, Alexander; Alexander, Richard; Edwards, Suzan; Espaillat, Catherine; France, Kevin; Gregory, Scott G.; Hillenbrand, Lynne; Roueff, Evelyne; Valenti, Jeff; Walter, Frederick; Johns-Krull, Christopher; Brown, Joanna; Linsky, Jeffrey; McClure, Melissa; Ardila, David; Abgrall, Hervé; Bethell, Thomas; Hussain, Gaitee; Yang, Hao

    2011-12-01

    Young stars surrounded by disks with very low mass accretion rates are likely in the final stages of inner disk evolution and therefore particularly interesting to study. We present ultraviolet (UV) observations of the ~5-9 Myr old stars RECX-1 and RECX-11, obtained with the Cosmic Origins Spectrograph and Space Telescope Imaging Spectrograph on the Hubble Space Telescope, as well as optical and near-infrared spectroscopic observations. The two stars have similar levels of near-UV emission, although spectroscopic evidence indicates that RECX-11 is accreting and RECX-1 is not. The line profiles of Hα and He I λ10830 in RECX-11 show both broad and narrow redshifted absorption components that vary with time, revealing the complexity of the accretion flows. We show that accretion indicators commonly used to measure mass accretion rates, e.g., U-band excess luminosity or the Ca II triplet line luminosity, are unreliable for low accretors, at least in the middle K spectral range. Using RECX-1 as a template for the intrinsic level of photospheric and chromospheric emission, we determine an upper limit of 3 × 10-10 M ⊙ yr-1 for RECX-11. At this low accretion rate, recent photoevaporation models predict that an inner hole should have developed in the disk. However, the spectral energy distribution of RECX-11 shows fluxes comparable to the median of Taurus in the near-infrared, indicating that substantial dust remains. Fluorescent H2 emission lines formed in the innermost disk are observed in RECX-11, showing that gas is present in the inner disk, along with the dust. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  4. Effects of ice accretion on the aerodynamics of bridge cables

    DEFF Research Database (Denmark)

    Demartino, C.; Koss, Holger; Georgakis, Christos T.

    2015-01-01

    and stay cables. The aim of this paper is twofold; first, it was investigated the ice accretion process and the final shape of the ice accreted; then the aerodynamics of the ice accreted bridge cables was characterized, and related to the ice shape. Different climatic conditions, i.e. combinations...... of temperature, wind speed and yaw angle of accretion, were reproduced in a climatic wind tunnel, giving rise to different types of accretion. These were chosen such to generate the most common natural ice formations expected to produce bridge cable vibrations. A description of the geometric characteristics...

  5. Early Results from NICER Observations of Accreting Neutron Stars

    Science.gov (United States)

    Chakrabarty, Deepto; Ozel, Feryal; Arzoumanian, Zaven; Gendreau, Keith C.; Bult, Peter; Cackett, Ed; Chenevez, Jerome; Fabian, Andy; Guillot, Sebastien; Guver, Tolga; Homan, Jeroen; Keek, Laurens; Lamb, Frederick; Ludlam, Renee; Mahmoodifar, Simin; Markwardt, Craig B.; Miller, Jon M.; Psaltis, Dimitrios; Strohmayer, Tod E.; Wilson-Hodge, Colleen A.; Wolff, Michael T.

    2018-01-01

    The Neutron Star Interior Composition Explorer (NICER) offers significant new capabilities for the study of accreting neuton stars relative to previous X-ray missions including large effective area, low background, and greatly improved low-energy response. The NICER Burst and Accretion Working Group has designed a 2 Ms observation program to study a number of phenomena in accreting neutron stars including type-I X-ray bursts, superbursts, accretion-powered pulsations, quasi-periodic oscillations, and accretion disk reflection spectra. We present some early results from the first six months of the NICER mission.

  6. Volatile accretion history of the Earth.

    Science.gov (United States)

    Wood, B J; Halliday, A N; Rehkämper, M

    2010-10-28

    It has long been thought that the Earth had a protracted and complex history of volatile accretion and loss. Albarède paints a different picture, proposing that the Earth first formed as a dry planet which, like the Moon, was devoid of volatile constituents. He suggests that the Earth's complement of volatile elements was only established later, by the addition of a small veneer of volatile-rich material at ∼100 Myr (here and elsewhere, ages are relative to the origin of the Solar System). Here we argue that the Earth's mass balance of moderately volatile elements is inconsistent with Albarède's hypothesis but is well explained by the standard model of accretion from partially volatile-depleted material, accompanied by core formation.

  7. WORKSHOP: Accreting X-ray sources

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-09-15

    Earlier this year a workshop on 'High Energy/Ultra High Energy Behaviour of Accreting X-Ray Sources' was held in Vulcano, a small island near Sicily, jointly organized by the Italian Istituto Nazionale di Fisica Nucleare and Consiglio Nazionale delle Ricerche. About 60 astrophysicists and particle physicists attended the meeting which covered the study of galactic cosmic sources emitting in the wide energy range from the optical region to some 10{sup 15} eV.

  8. Accretion onto stellar mass black holes

    Science.gov (United States)

    Deegan, Patrick

    2009-12-01

    I present work on the accretion onto stellar mass black holes in several scenarios. Due to dynamical friction stellar mass black holes are expected to form high density cusps in the inner parsec of our Galaxy. These compact remnants may be accreting cold dense gas present there, and give rise to potentially observable X-ray emission. I build a simple but detailed time-dependent model of such emission. Future observations of the distribution and orbits of the gas in the inner parsec of Sgr A* will put tighter constraints on the cusp of compact remnants. GRS 1915+105 is an LMXB, whose large orbital period implies a very large accretion disc and explains the extraordinary duration of its current outburst. I present smoothed particle hydrodynamic simulations of the accretion disc. The models includes the thermo-viscous instability, irradiation from the central object and wind loss. I find that the outburst of GRS 1915+105 should last a minimum of 20 years and up to ˜ 100 years if the irradiation is playing a significant role in this system. The predicted recurrence times are of the order of 104 years, making the duty cycle of GRS 1915+105 to be a few 0.1%. I present a simple analytical method to describe the observable behaviour of long period black hole LMXBs, similar to GRS 1915+105. Constructing two simple models for the surface density in the disc, outburst and quiescence times are calculated as a function of orbital period. LMXBs are an important constituent of the X-ray light function (XLF) of giant elliptical galaxies. I find that the duty cycle can vary considerably with orbital period, with implications for modelling the XLF.

  9. Blob accretion in AM Herculis systems

    International Nuclear Information System (INIS)

    Litchfield, S.J.; King, A.R.

    1990-01-01

    We calculate self-consistent hydrostatic temperature distributions for the atmosphere of a white dwarf in an AM Herculis system on to which a discrete blob has accreted. We show that the surface derived from this temperature structure does not produce soft X-ray light curves characteristic of the anomalous X-ray state of AM Herculis. We suggest that non-hydrostatic splashes are a more likely origin for the light curves. (author)

  10. Accretion and primary differentiation of Mars

    International Nuclear Information System (INIS)

    Drake, M.J.

    1988-01-01

    In collecting samples from Mars to address questions such as whether Mars accreted homogeneously or heterogeneously, how Mars segregated into a metallic core and silicate mantle, and whether Mars outgassed catastrophically coincident with accretion or more serenely on a longer timescale, we must be guided by our experience in addressing these questions for the Earth, Moon, and igneous meteorite parent bodies. A key measurement to be made on any sample returned from Mars is its oxygen isotopic composition. A single measurement will suffice to bind the SNC meteorites to Mars or demonstrate that they cannot be samples of that planet. A positive identification of Mars as the SNC parent planet will permit all that has been learned from the SNC meteorites to be applied to Mars with confidence. A negative result will perhaps be more exciting in forcing us to look for another object that has been geologically active in the recent past. If the oxygen isotopic composition of Earth and Mars are established to be distinct, accretion theory must provide for different compositions for two planets now separated by only 0.5 AU

  11. Highly Accreting Quasars at High Redshift

    Directory of Open Access Journals (Sweden)

    Mary L. Martínez-Aldama

    2018-01-01

    Full Text Available We present preliminary results of a spectroscopic analysis for a sample of type 1 highly accreting quasars (L/LEdd ~ 1.0 at high redshift, z ~2–3. The quasars were observed with the OSIRIS spectrograph on the GTC 10.4 m telescope located at the Observatorio del Roque de los Muchachos in La Palma. The highly accreting quasars were identified using the 4D Eigenvector 1 formalism, which is able to organize type 1 quasars over a broad range of redshift and luminosity. The kinematic and physical properties of the broad line region have been derived by fitting the profiles of strong UV emission lines such as Aliiiλ1860, Siiii]λ1892 and Ciii]λ1909. The majority of our sources show strong blueshifts in the high-ionization lines and high Eddington ratios which are related with the productions of outflows. The importance of highly accreting quasars goes beyond a detailed understanding of their physics: their extreme Eddington ratio makes them candidates standard candles for cosmological studies.

  12. Highly Accreting Quasars at High Redshift

    Science.gov (United States)

    Martínez-Aldama, Mary L.; Del Olmo, Ascensión; Marziani, Paola; Sulentic, Jack W.; Negrete, C. Alenka; Dultzin, Deborah; Perea, Jaime; D'Onofrio, Mauro

    2017-12-01

    We present preliminary results of a spectroscopic analysis for a sample of type 1 highly accreting quasars (LLedd>0.2) at high redshift, z 2-3. The quasars were observed with the OSIRIS spectrograph on the GTC 10.4 m telescope located at the Observatorio del Roque de los Muchachos in La Palma. The highly accreting quasars were identified using the 4D Eigenvector 1 formalism, which is able to organize type 1 quasars over a broad range of redshift and luminosity. The kinematic and physical properties of the broad line region have been derived by fitting the profiles of strong UV emission lines such as AlIII, SiIII and CIII. The majority of our sources show strong blueshifts in the high-ionization lines and high Eddington ratios which are related with the productions of outflows. The importance of highly accreting quasars goes beyond a detailed understanding of their physics: their extreme Eddington ratio makes them candidates standard candles for cosmological studies.

  13. Hyper-Eddington accretion in GRB

    International Nuclear Information System (INIS)

    Janiuk, A.; Czerny, B.; Perna, R.; Di Matteo, T.

    2005-01-01

    Popular models of the GRB origin associate this event with a cosmic explosion, birth of a stellar mass black ho le and jet ejection. Due to the shock collisions that happen in the jet, the gamma rays are produced and we detect a burst of duration up to several tens of seconds. This burst duration is determined by the lifetime of the central engine, which may be different in various scenarios. Characteristically, the observed bursts have a bimodal distribution and constitute the two classes: short (t < 2 s) and long bursts. Theoretical models invoke the mergers of two neutron stars or a neutron star with a black hole, or, on the other hand, a massive star explosion (collapsar). In any of these models we have a phase of disc accretion onto a newly born black hole: the di se is formed from the disrupted neutron star or fed by the material fallback from the ejected collapsar envelope. The disc is extremely hot and dense, and the accretion rate is orders of magnitude higher than the Eddington rate. In such physical conditions the main cooling mechanism is neutrino emission, and one of possible ways of energy extraction from the accretion disc is the neutrino-antineutrino annihilation

  14. Thermal Comptonization in standard accretion disks

    International Nuclear Information System (INIS)

    Maraschi, L.; Molendi, S.

    1990-01-01

    The standard model of an accretion disk is considered. The temperature in the inner region is computed assuming that the radiated power derives from Comptonized photons, produced in a homogeneous single-temperature plasma, supported by radiation pressure. The photon production mechanisms are purely thermal, including ion-electron bremsstrahlung, bound-free and bound-bound processes, and e-e bremsstrahlung. Pair production is not included, which limits the validity of the treatment to kT less than 60 keV. Three different approximations for the effects of Comptonization on the energy loss are used, yielding temperatures which agree within 50 percent. The maximum temperature is very sensitive to the accretion rate and viscosity parameters, ranging, for a 10 to the 8th solar mass black hole, between 0.1 and 50 keV for m between 0.1 and 1 and alpha between 0.1 and 1 and, for a 10-solar-mass black hole, between 0.6 and 60 keV for m between 0.1 and 0.9 and alpha between 0.1 and 0.5. For high viscosity and accretion rates, the emission spectra show a flat component following a peak corresponding to the temperature of the innermost optically thick annulus. 28 refs

  15. SPIN EVOLUTION OF ACCRETING YOUNG STARS. II. EFFECT OF ACCRETION-POWERED STELLAR WINDS

    International Nuclear Information System (INIS)

    Matt, Sean P.; Pinzón, Giovanni; Greene, Thomas P.; Pudritz, Ralph E.

    2012-01-01

    We present a model for the rotational evolution of a young, solar-mass star interacting magnetically with an accretion disk. As in a previous paper (Paper I), the model includes changes in the star's mass and radius as it descends the Hayashi track, a decreasing accretion rate, and a prescription for the angular momentum transfer between the star and disk. Paper I concluded that, for the relatively strong magnetic coupling expected in real systems, additional processes are necessary to explain the existence of slowly rotating pre-main-sequence stars. In the present paper, we extend the stellar spin model to include the effect of a spin-down torque that arises from an accretion-powered stellar wind (APSW). For a range of magnetic field strengths, accretion rates, initial spin rates, and mass outflow rates, the modeled stars exhibit rotation periods within the range of 1-10 days in the age range of 1-3 Myr. This range coincides with the bulk of the observed rotation periods, with the slow rotators corresponding to stars with the lowest accretion rates, strongest magnetic fields, and/or highest stellar wind mass outflow rates. We also make a direct, quantitative comparison between the APSW scenario and the two types of disk-locking models (namely, the X-wind and Ghosh and Lamb type models) and identify some remaining theoretical issues for understanding young star spins.

  16. Accretion Disk Assembly During Common Envelope Evolution: Implications for Feedback and LIGO Binary Black Hole Formation

    Energy Technology Data Exchange (ETDEWEB)

    Murguia-Berthier, Ariadna; Ramirez-Ruiz, Enrico; Antoni, Andrea; Macias, Phillip [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); MacLeod, Morgan, E-mail: armurgui@ucsc.edu [School of Natural Sciences, Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ 08540 (United States)

    2017-08-20

    During a common envelope (CE) episode in a binary system, the engulfed companion spirals to tighter orbital separations under the influence of drag from the surrounding envelope material. As this object sweeps through material with a steep radial gradient of density, net angular momentum is introduced into the flow, potentially leading to the formation of an accretion disk. The presence of a disk would have dramatic consequences for the outcome of the interaction because accretion might be accompanied by strong, polar outflows with enough energy to unbind the entire envelope. Without a detailed understanding of the necessary conditions for disk formation during CE, therefore, it is difficult to accurately predict the population of merging compact binaries. This paper examines the conditions for disk formation around objects embedded within CEs using the “wind tunnel” formalism developed by MacLeod et al. We find that the formation of disks is highly dependent on the compressibility of the envelope material. Disks form only in the most compressible of stellar envelope gas, found in envelopes’ outer layers in zones of partial ionization. These zones are largest in low-mass stellar envelopes, but comprise small portions of the envelope mass and radius in all cases. We conclude that disk formation and associated accretion feedback in CE is rare, and if it occurs, transitory. The implication for LIGO black hole binary assembly is that by avoiding strong accretion feedback, CE interactions should still result in the substantial orbital tightening needed to produce merging binaries.

  17. PBH mass growth through radial accretion during the radiation dominated era

    Energy Technology Data Exchange (ETDEWEB)

    Lora-Clavijo, F.D. [Instituto de Astronomía, Universidad Nacional Autónoma de México, AP 70-264, Distrito Federal 04510 (Mexico); Guzmán, F.S.; Cruz-Osorio, A., E-mail: fdlora@astro.unam.mx, E-mail: guzman@ifm.umich.mx, E-mail: alejandro@ifm.umich.mx [Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C-3, Cd. Universitaria, 58040 Morelia, Michoacán (Mexico)

    2013-12-01

    We model the radial accretion of radiation on Primordial Black Holes (PBH) by numerically solving Einstein's equations coupled to an ultrarelativistic ideal gas with equation of state p = ρ/3. We calculate the final mass of a black hole by the integration of the accreted radiation energy density during the leptonic era between t ∼ 10{sup −4}s to t ∼ 10{sup 2}s after the Big Bang. Our results indicate that small PBHs with initial masses between 10{sup −4} to 1M{sub ⊙} may grow up to hundreds of solar masses, and thus can be SMBH seeds. On the other hand, PBHs formed at t ∼ 1s with initial mass between 900 and ∼ 980M{sub ⊙}, by the time t ∼ 100s show masses of 10{sup 4} to 10{sup 6}M{sub ⊙} which are masses of seeds or already formed SMBHs. The fact that we consider only radial flow implies that our results work well as limiting cases, and it is expected that under more general scenarios the accretion rates may change significantly. Nevertheless we show that it is possible that SMBHs can be PBHs that grew due to the accretion of radiation.

  18. Estimation of bipolar jets from accretion discs around Kerr black holes

    Science.gov (United States)

    Kumar, Rajiv; Chattopadhyay, Indranil

    2017-08-01

    We analyse flows around a rotating black hole and obtain self-consistent accretion-ejection solutions in full general relativistic prescription. Entire energy-angular momentum parameter space is investigated in the advective regime to obtain shocked and shock-free accretion solutions. Jet equations of motion are solved along the von Zeipel surfaces computed from the post-shock disc, simultaneously with the equations of accretion disc along the equatorial plane. For a given spin parameter, the mass outflow rate increases as the shock moves closer to the black hole, but eventually decreases, maximizing at some intermediate value of shock location. Interestingly, we obtain all types of possible jet solutions, for example, steady shock solution with multiple critical points, bound solution with two critical points and smooth solution with single critical point. Multiple critical points may exist in jet solution for spin parameter as ≥ 0.5. The jet terminal speed generally increases if the accretion shock forms closer to the horizon and is higher for corotating black hole than the counter-rotating and the non-rotating one. Quantitatively speaking, shocks in jet may form for spin parameter as > 0.6 and jet shocks range between 6rg and 130rg above the equatorial plane, while the jet terminal speed vj∞ > 0.35 c if Bernoulli parameter E≥1.01 for as > 0.99.

  19. 3D Modeling of Accretion Disks and Circumbinary Envelopes in Close Binaries

    Science.gov (United States)

    Bisikalo, D.

    2010-12-01

    A number of observations prove the complex flow structure in close binary stars. The gas dynamic structure of the flow is governed by the stream of matter from the inner Lagrange point, the accretion disk, the circum-disk halo, and the circumbinary envelope. Observations reflect the current state of a binary system and for their interpretation one should consider the gas dynamics of flow patterns. Three-dimensional numerical gasdynamical modeling is used to study the gaseous flow structure and dynamics in close binaries. It is shown that the periodic variations of the positions of the disk and the bow shock formed when the inner parts of the circumbinary envelope flow around the disk result in variations in both the rate of angular-momentum transfer to the disk and the flow structure near the Lagrange point L3. All these factors lead to periodic ejections of matter from the accretion disk and circum-disk halo into the outer layers of the circumbinary envelope. The results of simulations are used to estimate the physical parameters of the circumbinary envelope, including 3D matter distribution in it, and the matter-flow configuration and dynamics. The envelope becomes optically thick for systems with high mass-exchange rates, M⊙=10-8 Msun/year, and has a significant influence on the binary's observed features. The uneven phase distributions of the matter and density variations due to periodic injections of matter into the envelope are important for interpretations of observations of CBSs.

  20. NUMERICAL SIMULATIONS OF NATURALLY TILTED, RETROGRADELY PRECESSING, NODAL SUPERHUMPING ACCRETION DISKS

    International Nuclear Information System (INIS)

    Montgomery, M. M.

    2012-01-01

    Accretion disks around black hole, neutron star, and white dwarf systems are thought to sometimes tilt, retrogradely precess, and produce hump-shaped modulations in light curves that have a period shorter than the orbital period. Although artificially rotating numerically simulated accretion disks out of the orbital plane and around the line of nodes generate these short-period superhumps and retrograde precession of the disk, no numerical code to date has been shown to produce a disk tilt naturally. In this work, we report the first naturally tilted disk in non-magnetic cataclysmic variables using three-dimensional smoothed particle hydrodynamics. Our simulations show that after many hundreds of orbital periods, the disk has tilted on its own and this disk tilt is without the aid of radiation sources or magnetic fields. As the system orbits, the accretion stream strikes the bright spot (which is on the rim of the tilted disk) and flows over and under the disk on different flow paths. These different flow paths suggest the lift force as a source to disk tilt. Our results confirm the disk shape, disk structure, and negative superhump period and support the source to disk tilt, source to retrograde precession, and location associated with X-ray and He II emission from the disk as suggested in previous works. Our results identify the fundamental negative superhump frequency as the indicator of disk tilt around the line of nodes.

  1. Kinetic description of quasi-stationary axisymmetric collisionless accretion disk plasmas with arbitrary magnetic field configurations

    International Nuclear Information System (INIS)

    Cremaschini, Claudio; Miller, John C.; Tessarotto, Massimo

    2011-01-01

    A kinetic treatment is developed for collisionless magnetized plasmas occurring in high-temperature, low-density astrophysical accretion disks, such as are thought to be present in some radiatively inefficient accretion flows onto black holes. Quasi-stationary configurations are investigated, within the framework of a Vlasov-Maxwell description. The plasma is taken to be axisymmetric and subject to the action of slowly time-varying gravitational and electromagnetic fields. The magnetic field is assumed to be characterized by a family of locally nested but open magnetic surfaces. The slow collisionless dynamics of these plasmas is investigated, yielding a reduced gyrokinetic Vlasov equation for the kinetic distribution function. For doing this, an asymptotic quasi-stationary solution is first determined, represented by a generalized bi-Maxwellian distribution expressed in terms of the relevant adiabatic invariants. The existence of the solution is shown to depend on having suitable kinetic constraints and conditions leading to particle trapping phenomena. With this solution, one can treat temperature anisotropy, toroidal and poloidal flow velocities, and finite Larmor-radius effects. An asymptotic expansion for the distribution function permits analytic evaluation of all the relevant fluid fields. Basic theoretical features of the solution and their astrophysical implications are discussed. As an application, the possibility of describing the dynamics of slowly time-varying accretion flows and the self-generation of magnetic field by means of a ''kinetic dynamo effect'' are discussed. Both effects are shown to be related to intrinsically kinetic physical mechanisms.

  2. Circum-Pacific accretion of oceanic terranes to continental blocks: accretion of the Early Permian Dun Mountain ophiolite to the E Gondwana continental margin, South Island, New Zealand

    Science.gov (United States)

    Robertson, Alastair

    2016-04-01

    also resulted in the formation of the overlying Maitai continental margin fore-arc basin (possibly related to rollback or a decrease in dip of the remaining subduction zone).Very coarse clastic material (up to ca. 700 m thick) including detached blocks of basaltic and gabbroic rocks, up to tens or metres in size (or more), was shed down fault scarps from relatively shallow water into a deeper water setting by gravity flow processes, ranging from rock fall, to debris flow, to turbidity currents. In addition, relatively fine-grained volcaniclastic-terrigenous sediment was input from an E Gondwana continental margin arc in the form of distal gravity flows, as indicated by geochemical data (e.g. Rare Earth Element analysis of sandstones and shales). The lowest part of the overlying Maitai fore-arc sequence in some areas is represented by hundreds of metres-thick sequences of mixed carbonate-volcaniclastic-terrigenous gravity flows (Wooded Peak Fm.), which are interpreted to have been derived from the E Gondwana continental margin and which finally accumulated in fault-controlled depocentres. Input of shallow-water carbonate material later waned and the Late Permian-Triassic Maitai fore-arc basin was dominated by gravity flows that were largely derived from a contemporaneous continental margin arc (partially preserved in present SE Australia). Subsequent tectonic deformation included on-going subduction, strike-slip and terrane accretion. The sedimentary covers of comparable accreted ophiolites elsewhere (e.g. Coast Range ophiolite, California) may reveal complementary evidence of fundamental terrane accretion processes. Acknowledgements: Hamish Campbell, Dave Craw, Mike Johnson, Chuck Landis, Nick Mortimer, Dhana Pillai and other members of the South Island geological research community

  3. Modeling Polarized Emission from Black Hole Jets: Application to M87 Core Jet

    Directory of Open Access Journals (Sweden)

    Monika Mościbrodzka

    2017-09-01

    Full Text Available We combine three-dimensional general-relativistic numerical models of hot, magnetized Advection Dominated Accretion Flows around a supermassive black hole and the corresponding outflows from them with a general relativistic polarized radiative transfer model to produce synthetic radio images and spectra of jet outflows. We apply the model to the underluminous core of M87 galaxy. The assumptions and results of the calculations are discussed in context of millimeter observations of the M87 jet launching zone. Our ab initio polarized emission and rotation measure models allow us to address the constrains on the mass accretion rate onto the M87 supermassive black hole.

  4. EVOLUTION OF WARPED ACCRETION DISKS IN ACTIVE GALACTIC NUCLEI. I. ROLES OF FEEDING AT THE OUTER BOUNDARIES

    International Nuclear Information System (INIS)

    Li, Yan-Rong; Wang, Jian-Min; Cheng, Cheng; Qiu, Jie

    2013-01-01

    We investigate the alignment processes of spinning black holes and their surrounding warped accretion disks in a frame of two different types of feeding at the outer boundaries. We consider (1) fixed flows in which gas is continually fed with a preferred angular momentum, and (2) free flows in which there is no gas supply and the disks diffuse freely at their outer edges. As expected, we find that for the cases of fixed flows the black hole disk systems always align on timescales of several 10 6 yr, irrespective of the initial inclinations. If the initial inclination angles are larger than π/2, the black hole accretion transits from retrograde to prograde fashion, and the accreted mass onto the black holes during these two phases is comparable. On the other hand, for the cases of free flows, both alignments and anti-alignments can occur, depending on the initial inclinations and the ratios of the angular momentum of the disks to that of the black holes. In such cases, the disks will be consumed within timescales of 10 6 yr by black holes accreting at the Eddington limit. We propose that there is a close connection between the black hole spin and the lifetime for which the feeding persists, which determines the observable episodic lifetimes of active galactic nuclei. We conclude that careful inclusion of the disk feeding at the outer boundaries is crucial for modeling the evolution of the black hole spin.

  5. Fundamental Ice Crystal Accretion Physics Studies

    Science.gov (United States)

    Struk, Peter M.; Broeren, Andy P.; Tsao, Jen-Ching; Vargas, Mario; Wright, William B.; Currie, Tom; Knezevici, Danny; Fuleki, Dan

    2012-01-01

    Due to numerous engine power-loss events associated with high-altitude convective weather, ice accretion within an engine due to ice crystal ingestion is being investigated. The National Aeronautics and Space Administration (NASA) and the National Research Council (NRC) of Canada are starting to examine the physical mechanisms of ice accretion on surfaces exposed to ice-crystal and mixed-phase conditions. In November 2010, two weeks of testing occurred at the NRC Research Altitude Facility utilizing a single wedge-type airfoil designed to facilitate fundamental studies while retaining critical features of a compressor stator blade or guide vane. The airfoil was placed in the NRC cascade wind tunnel for both aerodynamic and icing tests. Aerodynamic testing showed excellent agreement compared with CFD data on the icing pressure surface and allowed calculation of heat transfer coefficients at various airfoil locations. Icing tests were performed at Mach numbers of 0.2 to 0.3, total pressures from 93 to 45 kPa, and total temperatures from 5 to 15 C. Ice and liquid water contents ranged up to 20 and 3 g/m3, respectively. The ice appeared well adhered to the surface in the lowest pressure tests (45 kPa) and, in a particular case, showed continuous leading-edge ice growth to a thickness greater than 15 mm in 3 min. Such widespread deposits were not observed in the highest pressure tests, where the accretions were limited to a small area around the leading edge. The suction surface was typically ice-free in the tests at high pressure, but not at low pressure. The icing behavior at high and low pressure appeared to be correlated with the wet-bulb temperature, which was estimated to be above 0 C in tests at 93 kPa and below 0 C in tests at lower pressure, the latter enhanced by more evaporative cooling of water. The authors believe that the large ice accretions observed in the low pressure tests would undoubtedly cause the aerodynamic performance of a compressor component

  6. Angular momentum transfer in steady disk accretion

    International Nuclear Information System (INIS)

    Gorbatskij, V.G.

    1977-01-01

    The conditions of steady disk accretion have been investigated. The disk axisymmetric model is considered. It is shown that the gas is let at the outer boundary of the disk with the azimuthal velocity which is slightly less than the Kepler circular one. Gas possesses the motion quality moment which is transferred from the outer layers of the disk to the surface of the star. The steady state of the disk preserved until the inflow of the moment to the star increases its rotation velocity up to magnitudes close to the critical one

  7. Thermal Comptonization in standard accretion disks

    International Nuclear Information System (INIS)

    Maraschi, L.; Molendi, S.

    1990-01-01

    Using the theory of geometrically thin accretion disks (where the effects of viscosity are parametrized in terms of the total pressure, viscosity parameter, α) equations are presented for the innermost region of the disk (where the pressure is due to radiation, and the main source of opacity is Thompson scattering). It is important to stress that the four equations can be solved without making use of an equation for the temperature. This is not true for the other regions of the disk. An equation given is used to determine the temperature, assuming that the disk is homogeneous and isothermal in the vertical direction. (author)

  8. Smearing of mass accretion rate variation by viscous processes in accretion disks in compact binary systems

    Science.gov (United States)

    Ghosh, A.; Chakrabarti, Sandip K.

    2016-09-01

    Variation of mass supply rate from the companion can be smeared out by viscous processes inside an accretion disk. Hence, by the time the flow reaches the inner edge, the variation in X-rays need not reflect the true variation of the mass supply rate at the outer edge. However, if the viscosity fluctuates around a mean value, one would expect the viscous time scale t_{{visc}} also to spread around a mean value. In high mass X-ray binaries, which are thought to be primarily wind-fed, the size of the viscous Keplerian disk is smaller and thus such a spread could be lower as compared to the low mass X-ray binaries which are primarily fed by Roche lobe overflow. If there is an increasing or decreasing trend in viscosity, the interval between enhanced emission would be modified systematically. In the absence of a detailed knowledge about the variation of mass supply rates at the outer edge, we study ideal circumstances where modulation must take place exactly in orbital time scales, such as when there is an ellipticity in the orbit. We study a few compact binaries using long term All Sky monitor (ASM) data (1.5-12 keV) of Rossi X-ray Timing Explorer (RXTE) and all sky survey data (15-50 keV) of Swift satellites by different methods to look for such smearing effects and to infer what these results can tell us about the viscous processes inside the respective disks. We employ three different methods to seek imprints of periodicity on the X-ray variation and found that in all the cases, the location of the peak in the power density spectra is consistent with the orbital frequencies. Interestingly, in high mass X-ray binaries the peaks are sharp with high rms values, consistent with a small Keplerian disk in a wind fed system. However, in low mass X-ray binaries with larger Keplerian disk component, the peaks are spreaded out with much lower rms values. X-ray reflections, or superhump phenomena which may also cause such X-ray modulations would not be affected by the size of

  9. Pulsed Accretion in the T Tauri Binary TWA 3A

    Energy Technology Data Exchange (ETDEWEB)

    Tofflemire, Benjamin M.; Mathieu, Robert D. [Department of Astronomy, University of Wisconsin–Madison, 475 North Charter Street, Madison, WI 53706 (United States); Herczeg, Gregory J. [The Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Akeson, Rachel L.; Ciardi, David R. [NASA Exoplanet Science Institute, IPAC/Caltech, Pasadena, CA 91125 (United States)

    2017-06-20

    TWA 3A is the most recent addition to a small group of young binary systems that both actively accrete from a circumbinary disk and have spectroscopic orbital solutions. As such, it provides a unique opportunity to test binary accretion theory in a well-constrained setting. To examine TWA 3A’s time-variable accretion behavior, we have conducted a two-year, optical photometric monitoring campaign, obtaining dense orbital phase coverage (∼20 observations per orbit) for ∼15 orbital periods. From U -band measurements we derive the time-dependent binary mass accretion rate, finding bursts of accretion near each periastron passage. On average, these enhanced accretion events evolve over orbital phases 0.85 to 1.05, reaching their peak at periastron. The specific accretion rate increases above the quiescent value by a factor of ∼4 on average but the peak can be as high as an order of magnitude in a given orbit. The phase dependence and amplitude of TWA 3A accretion is in good agreement with numerical simulations of binary accretion with similar orbital parameters. In these simulations, periastron accretion bursts are fueled by periodic streams of material from the circumbinary disk that are driven by the binary orbit. We find that TWA 3A’s average accretion behavior is remarkably similar to DQ Tau, another T Tauri binary with similar orbital parameters, but with significantly less variability from orbit to orbit. This is only the second clear case of orbital-phase-dependent accretion in a T Tauri binary.

  10. Accretion-Ejection Instability in magnetized accretion disk around compact objects

    International Nuclear Information System (INIS)

    Varniere, Peggy

    2002-01-01

    The major problem in accretion physics come from the origin of angular momentum transfer in the disk. My PhD deal with a mechanism (the Accretion-Ejection Instability, AEI) able to explain and link together accretion in the inner region of the disk and ejection. This instability occurs in magnetized accretion disk near equipartition with gas pressure. We first study the impact of some relativistic effects on the instability, particularly on the m = 1 mode. And compared the results with the Quasi-Periodic Oscillation (QPO) observed in micro-quasars. In the second part we study analytically and numerically the Alfven wave emission mechanism which re-emit the angular momentum and energy taken from the inner region of the disk into the corona. The last part deals with MHD numerical simulation. First of all a 2D non-linear disk simulation which contribute to QPO modelization. The last chapter is about a beginning collaboration on 3D simulation in order to study the Alfven wave emission in the corona. (author) [fr

  11. Brown dwarf accretion: Nonconventional star formation over very long timescales

    Directory of Open Access Journals (Sweden)

    Ćirković Milan M.

    2005-01-01

    Full Text Available We investigate the process of accretion of interstellar gas by the Galactic population of brown dwarfs over very long timescales typical for physical eschatology. In particular, we use the classical Hoyle-Lyttleton-Bondi accretion model to investigate the rate at which brown dwarfs collect enough additional mass to become red dwarfs, accretion-induced changes in the mass function of the low- mass objects, and the corresponding accretion heating of brown dwarfs. In addition, we show how we can make the definition of the final mass function for stellar objects more precise.

  12. Gamma-burst emission from neutron-star accretion

    Science.gov (United States)

    Colgate, S. A.; Petschek, A. G.; Sarracino, R.

    1983-01-01

    A model for emission of the hard photons of gamma bursts is presented. The model assumes accretion at nearly the Eddington limited rate onto a neutron star without a magnetic field. Initially soft photons are heated as they are compressed between the accreting matter and the star. A large electric field due to relatively small charge separation is required to drag electrons into the star with the nuclei against the flux of photons leaking out through the accreting matter. The photon number is not increased substantially by Bremsstrahlung or any other process. It is suggested that instability in an accretion disc might provide the infalling matter required.

  13. Truncation of the Inner Accretion Disk Around a Black Hole at Low Luminosity

    Science.gov (United States)

    Tomsick, John A.; Yamoka, Kazutaka; Corbel, Stephane; Kaaret, Philip; Kalemci, Emrah; Migliari, Simone

    2011-01-01

    Most black hole binaries show large changes in X-ray luminosity caused primarily by variations in mass accretion rate. An important question for understanding black hole accretion and jet production is whether the inner edge of the accretion disk recedes at low accretion rate. Measurements of the location of the inner edge (R(sub in)) can be made using iron emission lines that arise due to fluorescence of iron in the disk, and these indicate that R(sub in) is very close to the black hole at high and moderate luminosities (greater than or equal to 1% of the Eddington luminosity, L(sub Edd). Here, we report on X-ray observations of the black hole GX 339-4 in the hard state by Suzaku and the Rossi X-ray Timing Explorer that extend iron line studies to 0.14% L(sub Edd) and show that R(sub in) increases by a factor of greater than 27 over the value found when GX 339-4 was bright. The exact value of R(sub in) depends on the inclination of the inner disk (i), and we derive 90% confidence limits of R(sub in) greater than 35 R(sub g) at i = 0 degrees and R(sub in) greater than 175 R(sub g) at i = 30 degrees. This provides direct evidence that the inner portion of the disk is not present at low luminosity, allowing for the possibility that the inner disk is replaced by advection- or magnetically dominated accretion flows.

  14. ACCRETION DISK SIGNATURES IN TYPE I X-RAY BURSTS: PROSPECTS FOR FUTURE MISSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Keek, L. [CRESST and X-ray Astrophysics Laboratory NASA/GSFC, Greenbelt, MD 20771 (United States); Wolf, Z.; Ballantyne, D. R., E-mail: laurens.keek@nasa.gov [Center for Relativistic Astrophysics, School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta, GA 30332-0430 (United States)

    2016-07-20

    Type I X-ray bursts and superbursts from accreting neutron stars illuminate the accretion disk and produce a reflection signal that evolves as the burst fades. Examining the evolution of reflection features in the spectra will provide insight into the burst–disk interaction, a potentially powerful probe of accretion disk physics. At present, reflection has been observed during only two bursts of exceptional duration. We investigate the detectability of reflection signatures with four of the latest well-studied X-ray observatory concepts: Hitomi , Neutron Star Interior Composition Explorer ( NICER ), Athena , and Large Observatory For X-ray Timing ( LOFT ). Burst spectra are modeled for different values for the flux, temperature, and the disk ionization parameter, which are representative for most known bursts and sources. The effective area and throughput of a Hitomi -like telescope are insufficient for characterizing burst reflection features. NICER and Athena will detect reflection signatures in Type I bursts with peak fluxes ≳10{sup 7.5} erg cm{sup 2} s{sup 1} and also effectively constrain the reflection parameters for bright bursts with fluxes of ∼10{sup 7} erg cm{sup 2} s{sup 1} in exposures of several seconds. Thus, these observatories will provide crucial new insight into the interaction of accretion flows and X-ray bursts. For sources with low line-of-sight absorption, the wide bandpass of these instruments allows for the detection of soft X-ray reflection features, which are sensitive to the disk metallicity and density. The large collecting area that is part of the LOFT design would revolutionize the field by tracing the evolution of the accretion geometry in detail throughout short bursts.

  15. Modeling the response of a standard accretion disc to stochastic viscous fluctuations

    Science.gov (United States)

    Ahmad, Naveel; Misra, Ranjeev; Iqbal, Naseer; Maqbool, Bari; Hamid, Mubashir

    2018-01-01

    The observed variability of X-ray binaries over a wide range of time-scales can be understood in the framework of a stochastic propagation model, where viscous fluctuations at different radii induce accretion rate variability that propagate inwards to the X-ray producing region. The scenario successfully explains the power spectra, the linear rms-flux relation as well as the time-lag between different energy photons. The predictions of this model have been obtained using approximate analytical solutions or empirically motivated models which take into account the effect of these propagating variability on the radiative process of complex accretion flows. Here, we study the variation of the accretion rate due to such viscous fluctuations using a hydro-dynamical code for the standard geometrically thin, gas pressure dominated α-disc with a zero torque boundary condition. Our results confirm earlier findings that the time-lag between a perturbation and the resultant inner accretion rate variation depends on the frequency (or time-period) of the perturbation. Here we have quantified that the time-lag tlag ∝f-0.54 , for time-periods less than the viscous time-scale of the perturbation radius and is nearly constant otherwise. This, coupled with radiative process would produce the observed frequency dependent time-lag between different energy bands. We also confirm that if there are random Gaussian fluctuations of the α-parameter at different radii, the resultant inner accretion rate has a power spectrum which is a power-law.

  16. IMPETUS: Consistent SPH calculations of 3D spherical Bondi accretion onto a black hole

    Science.gov (United States)

    Ramírez-Velasquez, J. M.; Sigalotti, L. Di G.; Gabbasov, R.; Cruz, F.; Klapp, J.

    2018-04-01

    We present three-dimensional calculations of spherically symmetric Bondi accretion onto a stationary supermassive black hole (SMBH) of mass 108M⊙ within a radial range of 0.02 - 10 pc, using a modified version of the smoothed particle hydrodynamics (SPH) GADGET-2 code, which ensures approximate first-order consistency (i.e., second-order accuracy) for the particle approximation. First-order consistency is restored by allowing the number of neighbours, nneigh, and the smoothing length, h, to vary with the total number of particles, N, such that the asymptotic limits nneigh → ∞ and h → 0 hold as N → ∞. The ability of the method to reproduce the isothermal (γ = 1) and adiabatic (γ = 5/3) Bondi accretion is investigated with increased spatial resolution. In particular, for the isothermal models the numerical radial profiles closely match the Bondi solution, except near the accretor, where the density and radial velocity are slightly underestimated. However, as nneigh is increased and h is decreased, the calculations approach first-order consistency and the deviations from the Bondi solution decrease. The density and radial velocity profiles for the adiabatic models are qualitatively similar to those for the isothermal Bondi accretion. Steady-state Bondi accretion is reproduced by the highly resolved consistent models with a percent relative error of ≲ 1% for γ = 1 and ˜9% for γ = 5/3, with the adiabatic accretion taking longer than the isothermal case to reach steady flow. The performance of the method is assessed by comparing the results with those obtained using the standard GADGET-2 and the GIZMO codes.

  17. HEROIC: 3D general relativistic radiative post-processor with comptonization for black hole accretion discs

    Science.gov (United States)

    Narayan, Ramesh; Zhu, Yucong; Psaltis, Dimitrios; Saḑowski, Aleksander

    2016-03-01

    We describe Hybrid Evaluator for Radiative Objects Including Comptonization (HEROIC), an upgraded version of the relativistic radiative post-processor code HERO described in a previous paper, but which now Includes Comptonization. HEROIC models Comptonization via the Kompaneets equation, using a quadratic approximation for the source function in a short characteristics radiation solver. It employs a simple form of accelerated lambda iteration to handle regions of high scattering opacity. In addition to solving for the radiation field, HEROIC also solves for the gas temperature by applying the condition of radiative equilibrium. We present benchmarks and tests of the Comptonization module in HEROIC with simple 1D and 3D scattering problems. We also test the ability of the code to handle various relativistic effects using model atmospheres and accretion flows in a black hole space-time. We present two applications of HEROIC to general relativistic magnetohydrodynamics simulations of accretion discs. One application is to a thin accretion disc around a black hole. We find that the gas below the photosphere in the multidimensional HEROIC solution is nearly isothermal, quite different from previous solutions based on 1D plane parallel atmospheres. The second application is to a geometrically thick radiation-dominated accretion disc accreting at 11 times the Eddington rate. Here, the multidimensional HEROIC solution shows that, for observers who are on axis and look down the polar funnel, the isotropic equivalent luminosity could be more than 10 times the Eddington limit, even though the spectrum might still look thermal and show no signs of relativistic beaming.

  18. General relativistic hydrodynamics with Adaptive-Mesh Refinement (AMR) and modeling of accretion disks

    Science.gov (United States)

    Donmez, Orhan

    We present a general procedure to solve the General Relativistic Hydrodynamical (GRH) equations with Adaptive-Mesh Refinement (AMR) and model of an accretion disk around a black hole. To do this, the GRH equations are written in a conservative form to exploit their hyperbolic character. The numerical solutions of the general relativistic hydrodynamic equations is done by High Resolution Shock Capturing schemes (HRSC), specifically designed to solve non-linear hyperbolic systems of conservation laws. These schemes depend on the characteristic information of the system. We use Marquina fluxes with MUSCL left and right states to solve GRH equations. First, we carry out different test problems with uniform and AMR grids on the special relativistic hydrodynamics equations to verify the second order convergence of the code in 1D, 2 D and 3D. Second, we solve the GRH equations and use the general relativistic test problems to compare the numerical solutions with analytic ones. In order to this, we couple the flux part of general relativistic hydrodynamic equation with a source part using Strang splitting. The coupling of the GRH equations is carried out in a treatment which gives second order accurate solutions in space and time. The test problems examined include shock tubes, geodesic flows, and circular motion of particle around the black hole. Finally, we apply this code to the accretion disk problems around the black hole using the Schwarzschild metric at the background of the computational domain. We find spiral shocks on the accretion disk. They are observationally expected results. We also examine the star-disk interaction near a massive black hole. We find that when stars are grounded down or a hole is punched on the accretion disk, they create shock waves which destroy the accretion disk.

  19. Stability of stagnation via an expanding accretion shock wave

    International Nuclear Information System (INIS)

    Velikovich, A. L.; Giuliani, J. L.; Murakami, M.; Taylor, B. D.; Zalesak, S. T.; Iwamoto, Y.

    2016-01-01

    Stagnation of a cold plasma streaming to the center or axis of symmetry via an expanding accretion shock wave is ubiquitous in inertial confinement fusion (ICF) and high-energy-density plasma physics, the examples ranging from plasma flows in x-ray-generating Z pinches [Maron et al., Phys. Rev. Lett. 111, 035001 (2013)] to the experiments in support of the recently suggested concept of impact ignition in ICF [Azechi et al., Phys. Rev. Lett. 102, 235002 (2009); Murakami et al., Nucl. Fusion 54, 054007 (2014)]. Some experimental evidence indicates that stagnation via an expanding shock wave is stable, but its stability has never been studied theoretically. We present such analysis for the stagnation that does not involve a rarefaction wave behind the expanding shock front and is described by the classic ideal-gas Noh solution in spherical and cylindrical geometry. In either case, the stagnated flow has been demonstrated to be stable, initial perturbations exhibiting a power-law, oscillatory or monotonic, decay with time for all the eigenmodes. This conclusion has been supported by our simulations done both on a Cartesian grid and on a curvilinear grid in spherical coordinates. Dispersion equation determining the eigenvalues of the problem and explicit formulas for the eigenfunction profiles corresponding to these eigenvalues are presented, making it possible to use the theory for hydrocode verification in two and three dimensions.

  20. Stability of stagnation via an expanding accretion shock wave

    Energy Technology Data Exchange (ETDEWEB)

    Velikovich, A. L.; Giuliani, J. L. [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 (United States); Murakami, M. [Institute of Laser Engineering, Osaka University, Osaka 565-0871 (Japan); Taylor, B. D. [Laboratory for Computational Physics and Fluid Dynamics, Naval Research Laboratory, Washington, DC 20375 (United States); Zalesak, S. T. [Berkeley Research Associates, Beltsville, Maryland 20705 (United States); Iwamoto, Y. [Ehime University, Matsuyama, Ehime Pref. 790-8577 (Japan)

    2016-05-15

    Stagnation of a cold plasma streaming to the center or axis of symmetry via an expanding accretion shock wave is ubiquitous in inertial confinement fusion (ICF) and high-energy-density plasma physics, the examples ranging from plasma flows in x-ray-generating Z pinches [Maron et al., Phys. Rev. Lett. 111, 035001 (2013)] to the experiments in support of the recently suggested concept of impact ignition in ICF [Azechi et al., Phys. Rev. Lett. 102, 235002 (2009); Murakami et al., Nucl. Fusion 54, 054007 (2014)]. Some experimental evidence indicates that stagnation via an expanding shock wave is stable, but its stability has never been studied theoretically. We present such analysis for the stagnation that does not involve a rarefaction wave behind the expanding shock front and is described by the classic ideal-gas Noh solution in spherical and cylindrical geometry. In either case, the stagnated flow has been demonstrated to be stable, initial perturbations exhibiting a power-law, oscillatory or monotonic, decay with time for all the eigenmodes. This conclusion has been supported by our simulations done both on a Cartesian grid and on a curvilinear grid in spherical coordinates. Dispersion equation determining the eigenvalues of the problem and explicit formulas for the eigenfunction profiles corresponding to these eigenvalues are presented, making it possible to use the theory for hydrocode verification in two and three dimensions.

  1. Stability of stagnation via an expanding accretion shock wave

    Science.gov (United States)

    Velikovich, A. L.; Murakami, M.; Taylor, B. D.; Giuliani, J. L.; Zalesak, S. T.; Iwamoto, Y.

    2016-05-01

    Stagnation of a cold plasma streaming to the center or axis of symmetry via an expanding accretion shock wave is ubiquitous in inertial confinement fusion (ICF) and high-energy-density plasma physics, the examples ranging from plasma flows in x-ray-generating Z pinches [Maron et al., Phys. Rev. Lett. 111, 035001 (2013)] to the experiments in support of the recently suggested concept of impact ignition in ICF [Azechi et al., Phys. Rev. Lett. 102, 235002 (2009); Murakami et al., Nucl. Fusion 54, 054007 (2014)]. Some experimental evidence indicates that stagnation via an expanding shock wave is stable, but its stability has never been studied theoretically. We present such analysis for the stagnation that does not involve a rarefaction wave behind the expanding shock front and is described by the classic ideal-gas Noh solution in spherical and cylindrical geometry. In either case, the stagnated flow has been demonstrated to be stable, initial perturbations exhibiting a power-law, oscillatory or monotonic, decay with time for all the eigenmodes. This conclusion has been supported by our simulations done both on a Cartesian grid and on a curvilinear grid in spherical coordinates. Dispersion equation determining the eigenvalues of the problem and explicit formulas for the eigenfunction profiles corresponding to these eigenvalues are presented, making it possible to use the theory for hydrocode verification in two and three dimensions.

  2. Accretion disc origin of the Earth's water.

    Science.gov (United States)

    Vattuone, Luca; Smerieri, Marco; Savio, Letizia; Asaduzzaman, Abu Md; Muralidharan, Krishna; Drake, Michael J; Rocca, Mario

    2013-07-13

    Earth's water is conventionally believed to be delivered by comets or wet asteroids after the Earth formed. However, their elemental and isotopic properties are inconsistent with those of the Earth. It was thus proposed that water was introduced by adsorption onto grains in the accretion disc prior to planetary growth, with bonding energies so high as to be stable under high-temperature conditions. Here, we show both by laboratory experiments and numerical simulations that water adsorbs dissociatively on the olivine {100} surface at the temperature (approx. 500-1500 K) and water pressure (approx. 10⁻⁸ bar) expected for the accretion disc, leaving an OH adlayer that is stable at least up to 900 K. This may result in the formation of many Earth oceans, provided that a viable mechanism to produce water from hydroxyl exists. This adsorption process must occur in all disc environments around young stars. The inevitable conclusion is that water should be prevalent on terrestrial planets in the habitable zone around other stars.

  3. Stratified Simulations of Collisionless Accretion Disks

    Energy Technology Data Exchange (ETDEWEB)

    Hirabayashi, Kota; Hoshino, Masahiro, E-mail: hirabayashi-k@eps.s.u-tokyo.ac.jp [Department of Earth and Planetary Science, The University of Tokyo, Tokyo, 113-0033 (Japan)

    2017-06-10

    This paper presents a series of stratified-shearing-box simulations of collisionless accretion disks in the recently developed framework of kinetic magnetohydrodynamics (MHD), which can handle finite non-gyrotropy of a pressure tensor. Although a fully kinetic simulation predicted a more efficient angular-momentum transport in collisionless disks than in the standard MHD regime, the enhanced transport has not been observed in past kinetic-MHD approaches to gyrotropic pressure anisotropy. For the purpose of investigating this missing link between the fully kinetic and MHD treatments, this paper explores the role of non-gyrotropic pressure and makes the first attempt to incorporate certain collisionless effects into disk-scale, stratified disk simulations. When the timescale of gyrotropization was longer than, or comparable to, the disk-rotation frequency of the orbit, we found that the finite non-gyrotropy selectively remaining in the vicinity of current sheets contributes to suppressing magnetic reconnection in the shearing-box system. This leads to increases both in the saturated amplitude of the MHD turbulence driven by magnetorotational instabilities and in the resultant efficiency of angular-momentum transport. Our results seem to favor the fast advection of magnetic fields toward the rotation axis of a central object, which is required to launch an ultra-relativistic jet from a black hole accretion system in, for example, a magnetically arrested disk state.

  4. Bondi or not Bondi: the impact of resolution on accretion and drag force modelling for Supermassive Black Holes

    Science.gov (United States)

    Beckmann, R. S.; Slyz, A.; Devriendt, J.

    2018-04-01

    Whilst in galaxy-size simulations, supermassive black holes (SMBH) are entirely handled by sub-grid algorithms, computational power now allows the accretion radius of such objects to be resolved in smaller scale simulations. In this paper, we investigate the impact of resolution on two commonly used SMBH sub-grid algorithms; the Bondi-Hoyle-Lyttleton (BHL) formula for accretion onto a point mass, and the related estimate of the drag force exerted onto a point mass by a gaseous medium. We find that when the accretion region around the black hole scales with resolution, and the BHL formula is evaluated using local mass-averaged quantities, the accretion algorithm smoothly transitions from the analytic BHL formula (at low resolution) to a supply limited accretion (SLA) scheme (at high resolution). However, when a similar procedure is employed to estimate the drag force it can lead to significant errors in its magnitude, and/or apply this force in the wrong direction in highly resolved simulations. At high Mach numbers and for small accretors, we also find evidence of the advective-acoustic instability operating in the adiabatic case, and of an instability developing around the wake's stagnation point in the quasi-isothermal case. Moreover, at very high resolution, and Mach numbers above M_∞ ≥ 3, the flow behind the accretion bow shock becomes entirely dominated by these instabilities. As a result, accretion rates onto the black hole drop by about an order of magnitude in the adiabatic case, compared to the analytic BHL formula.

  5. Probing thermonuclear burning on accreting neutron stars

    Science.gov (United States)

    Keek, L.

    2008-12-01

    Neutron stars are the most compact stars that can be directly observed, which makes them ideal laboratories to study physics at extreme densities. Neutron stars in low-mass X-ray binaries accrete hydrogen and helium from a lower-mass companion star through Roche lobe overflow. This matter undergoes thermonuclear burning in the neutron star envelope, creating carbon and heavier elements. The fusion process may proceed in an unstable manner, resulting in a thermonuclear runaway. Within one second the entire surface is burned, which is observable as a sharp rise in the emitted X-ray flux: a type I X-ray burst. Afterwards the neutron star surface cools down on a timescale of ten to one hundred seconds. During these bursts the surface of an accreting neutron star can be observed directly, which makes them instrumental for studying this type of stars. We have studied rare kinds of X-ray bursts. One such rare burst is the superburst, which lasts a thousand times longer than an ordinary burst. Superbursts are thought to result from the explosive burning of a thick carbon layer, which lies deeper inside the neutron star, close to a layer known as the crust. A prerequisite for the occurrence of a superburst is a high enough temperature, which is set by the temperature of the crust and the heat conductivity of the envelope. The latter is lowered by the presence of heavy elements that are produced during normal X-ray bursts. Using a large set of observations from the Wide Field Camera's onboard the BeppoSAX satellite, we find that, at high accretion rate, sources which do not exhibit normal bursts likely have a longer superburst recurrence time, than the observed superburst recurrence time of one burster. We analyze in detail the first superburst from a transient source, which went into outburst only 55 days before the superburst. Recent models of the neutron star crust predict that this is too small a time to heat the crust sufficiently for superburst ignition, indicating

  6. Radio emission from Sgr A*: pulsar transits through the accretion disc

    Science.gov (United States)

    Christie, I. M.; Petropoulou, M.; Mimica, P.; Giannios, D.

    2017-06-01

    Radiatively inefficient accretion flow models have been shown to accurately account for the spectrum and luminosity observed from Sgr A* in the X-ray regime down to mm wavelengths. However, observations at a few GHz cannot be explained by thermal electrons alone but require the presence of an additional non-thermal particle population. Here, we propose a model for the origin of such a population in the accretion flow via means of a pulsar orbiting the supermassive black hole in our Galaxy. Interactions between the relativistic pulsar wind with the disc lead to the formation of a bow shock in the wind. During the pulsar's transit through the accretion disc, relativistic pairs, accelerated at the shock front, are injected into the disc. The radio-emitting particles are long lived and remain within the disc long after the pulsar's transit. Periodic pulsar transits through the disc result in regular injection episodes of non-thermal particles. We show that for a pulsar with spin-down luminosity Lsd ˜ 3 × 1035 erg s-1 and a wind Lorentz factor of γw ˜ 104 a quasi-steady synchrotron emission is established with luminosities in the 1-10 GHz range comparable to the observed one.

  7. Study on accretion of ice on oscillating aerofoils; Shindoyokujo no chakuhyo ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Nishikawa, S; Sugihara, H [Kandenko Co. Ltd., Tokyo (Japan); Kimura, S; Sugiyama, Y [Kanagawa Institute of Technology, Kanagawa (Japan); Tsuboi, K [Ibaraki University, Ibaraki (Japan). Faculty of Engineering

    1997-11-25

    The effects of pitching and heaving motions of an aerofoil on accretion of ice thereon are investigated for the design of wind turbine blades. The conditions under which an aerofoil shows a heaving motion are 10m/s as wind velocity, -12degC as ambient temperature, 0.5Hz as frequency and 5mm as amplitude. Initial growth of ice is stochastic to a great extent; ice grows rapidly around the seed which is formed by chance somewhere on an laerofoil. The effects of ice appear in the flow field in the vicinity of the aerofoil front edge, as it continues to grow, providing different conditions for water droplets to collide with each other. Average ice shapes can be classified by environment, although at low repeatability. Range of ice accretion varies depending on aerofoil motion, whether it is pitching, heaving or at rest. The most important factor that determines behavior of ice accretion is conditions of the flow field near the aerofoil front edge. In a pitching or heaving motion, its speed is an important factor for growth of ice. 2 refs., 5 figs.

  8. Probing the Accretion Geometry of Black Holes with X-Ray Polarization

    Science.gov (United States)

    Schnitman, Jeremy D.

    2011-01-01

    In the coming years, new space missions will be able to measure X-ray polarization at levels of 1% or better in the approx.1-10 keV energy band. In particular, X-ray polarization is an ideal tool for determining the nature of black hole (BH) accretion disks surrounded by hot coronae. Using a Monte Carlo radiation transport code in full general relativity, we calculate the spectra and polarization features of these BH systems. At low energies, the signal is dominated by the thermal flux coming directly from the optically thick disk. At higher energies, the thermal seed photons have been inverse-Compton scattered by the corona, often reflecting back off the disk before reaching the observer, giving a distinctive polarization signature. By measuring the degree and angle of this X-ray polarization, we can infer the BH inclination, the emission geometry of the accretion flow, and also determine the spin of the black hole.

  9. Compton-heated winds and coronae above accretion disks. II. Instability and oscillations

    International Nuclear Information System (INIS)

    Shields, G.A.; Mckee, C.F.; Lin, D.N.C.; Begelman, M.C.; California Univ., Berkeley; California Univ., Santa Cruz; Colorado Univ., Boulder)

    1986-01-01

    The stability and evolution of windy accretion disks is investigated in detail. The basic disk evolution equations are briefly recapitulated, and an idealized analytic treatment of the wind and viscosity is used to show that steady disk flow is indeed unstable for sufficiently large ratio of the mass loss rate in the wind to the central accretion rate. Numerical solutions for a more realistic and appropriate expression for the mass loss rate and the standard ad hoc alpha model prescription for the viscosity are presented. The application of these results to real systems with Compton-heated winds is discussed, and a general formula for the oscillation period is given. The prediction is compared with observed periodic behavior of Galactic X-ray sources and AGNs. 17 references

  10. On the structure of circumbinary accretion disks and the tidal evolution of commensurable satellites

    International Nuclear Information System (INIS)

    Lin, D.N.C.; Papaloizou, J.

    1979-01-01

    The investigation is continued of tidal torques on accretion disk flows in the vicinity of close binary systems. It is shown that the tidal effect can truncate the inner edge of circumbinary accretion discs. If the viscous dissipation is weak in such disks, density enhancement can be produced at the outer Lindblad resonance. The results are applied to contact binaries and the formation of commensurable satellites in the solar system. In order to determine whether the present configurations are a result of formation, or subsequent tidal evolution, the forced eccentricity of resonant satellites is related to the Q values of the planet and satellites. It is found that while the Galilean satellites may owe their present configuration, in part, to tidal effects, this is unlikely for other commensurable pairs. (author)

  11. Halogens in chondritic meteorites and terrestrial accretion

    Science.gov (United States)

    Clay, Patricia L.; Burgess, Ray; Busemann, Henner; Ruzié-Hamilton, Lorraine; Joachim, Bastian; Day, James M. D.; Ballentine, Christopher J.

    2017-11-01

    Volatile element delivery and retention played a fundamental part in Earth’s formation and subsequent chemical differentiation. The heavy halogens—chlorine (Cl), bromine (Br) and iodine (I)—are key tracers of accretionary processes owing to their high volatility and incompatibility, but have low abundances in most geological and planetary materials. However, noble gas proxy isotopes produced during neutron irradiation provide a high-sensitivity tool for the determination of heavy halogen abundances. Using such isotopes, here we show that Cl, Br and I abundances in carbonaceous, enstatite, Rumuruti and primitive ordinary chondrites are about 6 times, 9 times and 15-37 times lower, respectively, than previously reported and usually accepted estimates. This is independent of the oxidation state or petrological type of the chondrites. The ratios Br/Cl and I/Cl in all studied chondrites show a limited range, indistinguishable from bulk silicate Earth estimates. Our results demonstrate that the halogen depletion of bulk silicate Earth relative to primitive meteorites is consistent with the depletion of lithophile elements of similar volatility. These results for carbonaceous chondrites reveal that late accretion, constrained to a maximum of 0.5 ± 0.2 per cent of Earth’s silicate mass, cannot solely account for present-day terrestrial halogen inventories. It is estimated that 80-90 per cent of heavy halogens are concentrated in Earth’s surface reservoirs and have not undergone the extreme early loss observed in atmosphere-forming elements. Therefore, in addition to late-stage terrestrial accretion of halogens and mantle degassing, which has removed less than half of Earth’s dissolved mantle gases, the efficient extraction of halogen-rich fluids from the solid Earth during the earliest stages of terrestrial differentiation is also required to explain the presence of these heavy halogens at the surface. The hydropilic nature of halogens, whereby they track

  12. HOT HIGH-MASS ACCRETION DISK CANDIDATES

    International Nuclear Information System (INIS)

    Beuther, H.; Walsh, A. J.; Longmore, S. N.

    2009-01-01

    To better understand the physical properties of accretion disks in high-mass star formation, we present a study of a dozen high-mass accretion disk candidates observed at high spatial resolution with the Australia Telescope Compact Array (ATCA) in the high-excitation (4,4) and (5,5) lines of NH 3 . All of our originally selected sources were detected in both NH 3 transitions, directly associated with CH 3 OH Class II maser emission and implying that high-excitation NH 3 lines are good tracers of the dense gas components in hot-core-type targets. Only the one source that did not satisfy the initial selection criteria remained undetected. From the 11 mapped sources, six show clear signatures of rotation and/or infall motions. These signatures vary from velocity gradients perpendicular to the outflows, to infall signatures in absorption against ultracompact H II regions, to more spherical infall signatures in emission. Although our spatial resolution is ∼1000 AU, we do not find clear Keplerian signatures in any of the sources. Furthermore, we also do not find flattened structures. In contrast to this, in several of the sources with rotational signatures, the spatial structure is approximately spherical with sizes exceeding 10 4 AU, showing considerable clumpy sub-structure at even smaller scales. This implies that on average typical Keplerian accretion disks-if they exist as expected-should be confined to regions usually smaller than 1000 AU. It is likely that these disks are fed by the larger-scale rotating envelope structure we observe here. Furthermore, we do detect 1.25 cm continuum emission in most fields of view. While in some cases weak cm continuum emission is associated with our targets, more typically larger-scale H II regions are seen offset more than 10'' from our sources. While these H II regions are unlikely to be directly related to the target regions, this spatial association nevertheless additionally stresses that high-mass star formation rarely

  13. Time-dependent Models of Magnetospheric Accretion onto Young Stars

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, C. E.; Espaillat, C. C. [Department of Astronomy, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Owen, J. E. [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States); Adams, F. C., E-mail: connorr@bu.edu [Physics Department, University of Michigan, Ann Arbor, MI 48109 (United States)

    2017-04-01

    Accretion onto Classical T Tauri stars is thought to take place through the action of magnetospheric processes, with gas in the inner disk being channeled onto the star’s surface by the stellar magnetic field lines. Young stars are known to accrete material in a time-variable manner, and the source of this variability remains an open problem, particularly on the shortest (∼day) timescales. Using one-dimensional time-dependent numerical simulations that follow the field line geometry, we find that for plausibly realistic young stars, steady-state transonic accretion occurs naturally in the absence of any other source of variability. However, we show that if the density in the inner disk varies smoothly in time with ∼day-long timescales (e.g., due to turbulence), this complication can lead to the development of shocks in the accretion column. These shocks propagate along the accretion column and ultimately hit the star, leading to rapid, large amplitude changes in the accretion rate. We argue that when these shocks hit the star, the observed time dependence will be a rapid increase in accretion luminosity, followed by a slower decline, and could be an explanation for some of the short-period variability observed in accreting young stars. Our one-dimensional approach bridges previous analytic work to more complicated multi-dimensional simulations and observations.

  14. Time-dependent Models of Magnetospheric Accretion onto Young Stars

    International Nuclear Information System (INIS)

    Robinson, C. E.; Espaillat, C. C.; Owen, J. E.; Adams, F. C.

    2017-01-01

    Accretion onto Classical T Tauri stars is thought to take place through the action of magnetospheric processes, with gas in the inner disk being channeled onto the star’s surface by the stellar magnetic field lines. Young stars are known to accrete material in a time-variable manner, and the source of this variability remains an open problem, particularly on the shortest (∼day) timescales. Using one-dimensional time-dependent numerical simulations that follow the field line geometry, we find that for plausibly realistic young stars, steady-state transonic accretion occurs naturally in the absence of any other source of variability. However, we show that if the density in the inner disk varies smoothly in time with ∼day-long timescales (e.g., due to turbulence), this complication can lead to the development of shocks in the accretion column. These shocks propagate along the accretion column and ultimately hit the star, leading to rapid, large amplitude changes in the accretion rate. We argue that when these shocks hit the star, the observed time dependence will be a rapid increase in accretion luminosity, followed by a slower decline, and could be an explanation for some of the short-period variability observed in accreting young stars. Our one-dimensional approach bridges previous analytic work to more complicated multi-dimensional simulations and observations.

  15. m-Accretive extensions of a sectorial operator

    Energy Technology Data Exchange (ETDEWEB)

    Arlinskii, Yu M; Popov, A B [East-Ukrainian National University, Lugansk (Ukraine)

    2013-08-31

    A description of all the maximal accretive extensions and their resolvents is given for a densely defined closed sectorial operator in terms of abstract boundary conditions. These results are applied to parametrize all the m-accretive extensions of a symmetric operator in a planar model of one-centre point interaction. Bibliography: 40 titles.

  16. SPREADING LAYERS IN ACCRETING OBJECTS: ROLE OF ACOUSTIC WAVES FOR ANGULAR MOMENTUM TRANSPORT, MIXING, AND THERMODYNAMICS

    Energy Technology Data Exchange (ETDEWEB)

    Philippov, Alexander A.; Rafikov, Roman R.; Stone, James M., E-mail: sashaph@princeton.edu [Department of Astrophysical Sciences, Princeton University, Ivy Lane, Princeton, NJ 08540 (United States)

    2016-01-20

    Disk accretion at a high rate onto a white dwarf (WD) or a neutron star has been suggested to result in the formation of a spreading layer (SL)—a belt-like structure on the object's surface, in which the accreted matter steadily spreads in the poleward (meridional) direction while spinning down. To assess its basic characteristics, we perform two-dimensional hydrodynamic simulations of supersonic SLs in the relevant morphology with a simple prescription for cooling. We demonstrate that supersonic shear naturally present at the base of the SL inevitably drives sonic instability that gives rise to large-scale acoustic modes governing the evolution of the SL. These modes dominate the transport of momentum and energy, which is intrinsically global and cannot be characterized via some form of local effective viscosity (e.g., α-viscosity). The global nature of the wave-driven transport should have important implications for triggering Type I X-ray bursts in low-mass X-ray binaries. The nonlinear evolution of waves into a system of shocks drives effective rearrangement (sensitively depending on thermodynamical properties of the flow) and deceleration of the SL, which ultimately becomes transonic and susceptible to regular Kelvin–Helmholtz instability. We interpret this evolution in terms of the global structure of the SL and suggest that mixing of the SL material with the underlying stellar fluid should become effective only at intermediate latitudes on the accreting object's surface, where the flow has decelerated appreciably. In the near-equatorial regions the transport is dominated by acoustic waves and mixing is less efficient. We speculate that this latitudinal nonuniformity of mixing in accreting WDs may be linked to the observed bipolar morphology of classical nova ejecta.

  17. He stars and He-accreting CO white dwarfs

    International Nuclear Information System (INIS)

    Limongi, M.; Tornambe, A.

    1991-01-01

    He star models in the mass range 0.4-1.0 solar mass have been evolved until the red giant phase or, depending on their mass, until crystallization on the white-dwarf cooling sequence. Some of the degenerate structures obtained in these computations have been successively accreted at various He accretion rates in order to better define the fate of the accreting dwarf versus its mass and accretion rate for a fixed degeneracy level of the accreting dwarf. He stars have been further induced to transfer mass to a degenerate companion through Roche lobe overflow, in conditions of large gravitational wave radiation by the system. CO dwarfs in binary systems with He stars are found to experience a thermal behavior whose effects are such to locate the structure on the verge of obtaining a strong SN-like explosive event. 22 refs

  18. Pre-main-sequence disk accretion in Z Canis Majoris

    International Nuclear Information System (INIS)

    Hartmann, L.; Kenyon, S.J.; Hewett, R.; Edwards, S.; Strom, K.M.; Strom, S.E.; Stauffer, J.R.

    1989-01-01

    It is suggested that the pre-main-sequence object Z CMa is a luminous accretion disk, similar in many respects to the FU Orionis variables. Z CMa shows the broad, doubled optical absorption lines expected from a rapidly rotating accretion disk. The first overtone CO absorption detected in Z CMa is blue-shifted, suggesting line formation in a disk wind. Accretion at rates about 0.001 solar mass/yr over 100 yr is required to explain the luminosity of Z CMa. The large amount of material accreted (0.1 solar mass/yr) indicates that Z CMa is in a very early stage of stellar evolution, possibly in an initial phase of massive disk accretion. 41 references

  19. Variable accretion of stellar winds onto Sgr A*

    Science.gov (United States)

    Cuadra, Jorge; Nayakshin, Sergei

    2006-12-01

    We report a 3-dimensional numerical study of the accretion of stellar winds onto Sgr A*, the super-massive black hole at the centre of our Galaxy. Compared with previous investigations, we allow the stars to be on realistic orbits, include the recently discovered slow wind sources, and allow for optically thin radiative cooling. We frst show the strong inflience of the stellar dynamics on the accretion onto the central black hole. We then present more realistic simulations of Sgr A* accretion and frid that the slow winds shock and rapidly cool, forming cold gas clumps and flaments that coexist with the hot X-ray emitting gas. The accretion rate in this case is highly variable on time-scales of tens to hundreds of years. Such variability can in principle lead to a strongly non-linear response through accretion fbw physics not resolved here, making Sgr A* an important energy source for the Galactic centre.

  20. Variable accretion of stellar winds onto Sgr A*

    Energy Technology Data Exchange (ETDEWEB)

    Cuadra, Jorge [Max-Planck-Institut fuer Astrophysik, D-85741 Garching (Germany); Nayakshin, Sergei [Department of Physics and Astronomy, University of Leicester, LEI 7RH (United Kingdom)

    2006-12-15

    We report a 3-dimensional numerical study of the accretion of stellar winds onto Sgr A*, the super-massive black hole at the centre of our Galaxy. Compared with previous investigations, we allow the stars to be on realistic orbits, include the recently discovered slow wind sources, and allow for optically thin radiative cooling. We frst show the strong inflience of the stellar dynamics on the accretion onto the central black hole. We then present more realistic simulations of Sgr A* accretion and frid that the slow winds shock and rapidly cool, forming cold gas clumps and flaments that coexist with the hot X-ray emitting gas. The accretion rate in this case is highly variable on time-scales of tens to hundreds of years. Such variability can in principle lead to a strongly non-linear response through accretion fbw physics not resolved here, making Sgr A* an important energy source for the Galactic centre.

  1. Variable accretion of stellar winds onto Sgr A*

    International Nuclear Information System (INIS)

    Cuadra, Jorge; Nayakshin, Sergei

    2006-01-01

    We report a 3-dimensional numerical study of the accretion of stellar winds onto Sgr A*, the super-massive black hole at the centre of our Galaxy. Compared with previous investigations, we allow the stars to be on realistic orbits, include the recently discovered slow wind sources, and allow for optically thin radiative cooling. We frst show the strong inflience of the stellar dynamics on the accretion onto the central black hole. We then present more realistic simulations of Sgr A* accretion and frid that the slow winds shock and rapidly cool, forming cold gas clumps and flaments that coexist with the hot X-ray emitting gas. The accretion rate in this case is highly variable on time-scales of tens to hundreds of years. Such variability can in principle lead to a strongly non-linear response through accretion fbw physics not resolved here, making Sgr A* an important energy source for the Galactic centre

  2. Pre-main-sequence disk accretion in Z Canis Majoris

    Science.gov (United States)

    Hartmann, L.; Kenyon, S. J.; Hewett, R.; Edwards, S.; Strom, K. M.; Strom, S. E.; Stauffer, J. R.

    1989-01-01

    It is suggested that the pre-main-sequence object Z CMa is a luminous accretion disk, similar in many respects to the FU Orionis variables. Z CMa shows the broad, doubled optical absorption lines expected from a rapidly rotating accretion disk. The first overtone CO absorption detected in Z CMa is blue-shifted, suggesting line formation in a disk wind. Accretion at rates about 0.001 solar mass/yr over 100 yr is required to explain the luminosity of Z CMa. The large amount of material accreted (0.1 solar mass/yr) indicates that Z CMa is in a very early stage of stellar evolution, possibly in an initial phase of massive disk accretion.

  3. A Model to Assess the Risk of Ice Accretion Due to Ice Crystal Ingestion in a Turbofan Engine and its Effects on Performance

    Science.gov (United States)

    Jorgenson, Philip C. E.; Veres, Joseph P.; Wright, William B.; Struk, Peter M.

    2013-01-01

    The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that were attributed to ice crystal ingestion, partially melting, and ice accretion on the compression system components. The result was one or more of the following anomalies: degraded engine performance, engine roll back, compressor surge and stall, and flameout of the combustor. The main focus of this research is the development of a computational tool that can estimate whether there is a risk of ice accretion by tracking key parameters through the compression system blade rows at all engine operating points within the flight trajectory. The tool has an engine system thermodynamic cycle code, coupled with a compressor flow analysis code, and an ice particle melt code that has the capability of determining the rate of sublimation, melting, and evaporation through the compressor blade rows. Assumptions are made to predict the complex physics involved in engine icing. Specifically, the code does not directly estimate ice accretion and does not have models for particle breakup or erosion. Two key parameters have been suggested as conditions that must be met at the same location for ice accretion to occur: the local wet-bulb temperature to be near freezing or below and the local melt ratio must be above 10%. These parameters were deduced from analyzing laboratory icing test data and are the criteria used to predict the possibility of ice accretion within an engine including the specific blade row where it could occur. Once the possibility of accretion is determined from these parameters, the degree of blockage due to ice accretion on the local stator vane can be estimated from an empirical model of ice growth rate and time spent at that operating point in the flight trajectory. The computational tool can be used to assess specific turbine engines to their susceptibility to

  4. TESTING CONVERGENCE FOR GLOBAL ACCRETION DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Hawley, John F.; Richers, Sherwood A.; Guan Xiaoyue [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States); Krolik, Julian H., E-mail: jh8h@virginia.edu, E-mail: xg3z@virginia.edu, E-mail: jhk@pha.jhu.edu [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States)

    2013-08-01

    Global disk simulations provide a powerful tool for investigating accretion and the underlying magnetohydrodynamic turbulence driven by magneto-rotational instability (MRI). Using them to accurately predict quantities such as stress, accretion rate, and surface brightness profile requires that purely numerical effects, arising from both resolution and algorithm, be understood and controlled. We use the flux-conservative Athena code to conduct a series of experiments on disks having a variety of magnetic topologies to determine what constitutes adequate resolution. We develop and apply several resolution metrics: (Q{sub z} ) and (Q{sub {phi}}), the ratio of the grid zone size to the characteristic MRI wavelength, {alpha}{sub mag}, the ratio of the Maxwell stress to the magnetic pressure, and /, the ratio of radial to toroidal magnetic field energy. For the initial conditions considered here, adequate resolution is characterized by (Q{sub z} ) {>=} 15, (Q{sub {phi}}) {>=} 20, {alpha}{sub mag} Almost-Equal-To 0.45, and /{approx}0.2. These values are associated with {>=}35 zones per scaleheight H, a result consistent with shearing box simulations. Numerical algorithm is also important. Use of the Harten-Lax-van Leer-Einfeldt flux solver or second-order interpolation can significantly degrade the effective resolution compared to the Harten-Lax-van Leer discontinuities flux solver and third-order interpolation. Resolution at this standard can be achieved only with large numbers of grid zones, arranged in a fashion that matches the symmetries of the problem and the scientific goals of the simulation. Without it, however, quantitative measures important to predictions of observables are subject to large systematic errors.

  5. Coherence of burst oscillations and accretion-powered pulsations in the accreting millisecond pulsar XTE J1814-338

    NARCIS (Netherlands)

    Watts, A.L.; Patruno, A.; van der Klis, M.

    2008-01-01

    X-ray timing of the accretion-powered pulsations during the 2003 outburst of the accreting millisecond pulsar XTE J1814-338 has revealed variation in the pulse time of arrival residuals. These can be interpreted in several ways, including spin-down and wandering of the fuel impact point around the

  6. THERMAL AND DYNAMICAL PROPERTIES OF GAS ACCRETING ONTO A SUPERMASSIVE BLACK HOLE IN AN ACTIVE GALACTIC NUCLEUS

    International Nuclear Information System (INIS)

    Mościbrodzka, M.; Proga, D.

    2013-01-01

    We study stability of gas accretion in active galactic nuclei (AGNs). Our grid-based simulations cover a radial range from 0.1 to 200 pc, which may enable linking the galactic/cosmological simulations with small-scale black hole (BH) accretion models within a few hundreds of Schwarzschild radii. Here, as in previous studies by our group, we include gas radiative cooling as well as heating by a sub-Eddington X-ray source near the central supermassive BH of 10 8 M ☉ . Our theoretical estimates and simulations show that for the X-ray luminosity, L X ∼ 0.008 L Edd , the gas is thermally and convectively unstable within the computational domain. In the simulations, we observe that very tiny fluctuations in an initially smooth, spherically symmetric, accretion flow, grow first linearly and then nonlinearly. Consequently, an initially one-phase flow relatively quickly transitions into a two-phase/cold-hot accretion flow. For L X = 0.015 L Edd or higher, the cold clouds continue to accrete but in some regions of the hot phase, the gas starts to move outward. For L X Edd , the cold phase contribution to the total mass accretion rate only moderately dominates over the hot phase contribution. This result might have some consequences for cosmological simulations of the so-called AGN feedback problem. Our simulations confirm the previous results of Barai et al. who used smoothed particle hydrodynamic (SPH) simulations to tackle the same problem. Here, however, because we use a grid-based code to solve equations in one dimension and two dimensions, we are able to follow the gas dynamics at much higher spacial resolution and for longer time compared with the three-dimensional SPH simulations. One of the new features revealed by our simulations is that the cold condensations in the accretion flow initially form long filaments, but at the later times, those filaments may break into smaller clouds advected outward within the hot outflow. Therefore, these simulations may serve as

  7. Strong gravity effects in accreting black-hole systems

    International Nuclear Information System (INIS)

    Niedzwiecki, A.

    2006-01-01

    I briefly review current status of studying effects of strong gravity in X-ray astronomy. Matter accreting onto a black hole probes the relativistic region of space-time and the high-energy radiation it produces should contain signatures of strong gravity effects. Current X-ray observations provide the evidence that the observed emission originates, in some cases, at a distance of a few gravitational radii from a black hole. Moreover, certain observations invoke interpretations favouring rapid rotation of the black hole. Some observational properties of black hole systems are supposed to result from the lack of a material surface in these objects. I consider further effects, specific for the black hole environment, which can be studied in X-ray data. Bulk motion Comptonization, which would directly reveal converging flow of matter plunging into a black hole, is unlikely to be important in formation of X-ray spectra. Similarly, Penrose processes are unlikely to give observational effects, although this issue has not been thoroughly studied so far for all plausible radiative mechanisms. (author)

  8. 3D numerical modeling of YSO accretion shocks

    Directory of Open Access Journals (Sweden)

    Matsakos T.

    2014-01-01

    Full Text Available The dynamics of YSO accretion shocks is determined by radiative processes as well as the strength and structure of the magnetic field. A quasi-periodic emission signature is theoretically expected to be observed, but observations do not confirm any such pattern. In this work, we assume a uniform background field, in the regime of optically thin energy losses, and we study the multi-dimensional shock evolution in the presence of perturbations, i.e. clumps in the stream and an acoustic energy flux flowing at the base of the chromosphere. We perform 3D MHD simulations using the PLUTO code, modelling locally the impact of the infalling gas onto the chromosphere. We find that the structure and dynamics of the post-shock region is strongly dependent on the plasma-beta (thermal over magnetic pressure, different values of which may give distinguishable emission signatures, relevant for observations. In particular, a strong magnetic field effectively confines the plasma inside its flux tubes and leads to the formation of quasi-independent fibrils. The fibrils may oscillate out of phase and hence the sum of their contributions in the emission results in a smooth overall profile. On the contrary, a weak magnetic field is not found to have any significant effect on the shocked plasma and the turbulent hot slab that forms is found to retain its periodic signature.

  9. VARIABILITY FROM NON-AXISYMMETRIC FLUCTUATIONS INTERACTING WITH STANDING SHOCKS IN TILTED BLACK HOLE ACCRETION DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Henisey, Ken B. [Natural Science Division, Pepperdine University, Malibu, CA 90263 (United States); Blaes, Omer M. [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Fragile, P. Chris [Department of Physics and Astronomy, College of Charleston, Charleston, SC 29424 (United States)

    2012-12-10

    We study the spatial and temporal behavior of fluid in fully three-dimensional, general relativistic, magnetohydrodynamical simulations of both tilted and untilted black hole accretion flows. We uncover characteristically greater variability in tilted simulations at frequencies similar to those predicted by the formalism of trapped modes, but ultimately conclude that its spatial structure is inconsistent with a modal interpretation. We find instead that previously identified, transient, overdense clumps orbiting on roughly Keplerian trajectories appear generically in our global simulations, independent of tilt. Associated with these fluctuations are acoustic spiral waves interior to the orbits of the clumps. We show that the two non-axisymmetric standing shock structures that exist in the inner regions of these tilted flows effectively amplify the variability caused by these spiral waves to markedly higher levels than in untilted flows, which lack standing shocks. Our identification of clumps, spirals, and spiral-shock interactions in these fully general relativistic, magnetohydrodynamical simulations suggests that these features may be important dynamical elements in models that incorporate tilt as a way to explain the observed variability in black hole accretion flows.

  10. Thin accretion disks in stationary axisymmetric wormhole spacetimes

    International Nuclear Information System (INIS)

    Harko, Tiberiu; Kovacs, Zoltan; Lobo, Francisco S. N.

    2009-01-01

    In this paper, we study the physical properties and the equilibrium thermal radiation emission characteristics of matter forming thin accretion disks in stationary axially symmetric wormhole spacetimes. The thin disk models are constructed by taking different values of the wormhole's angular velocity, and the time averaged energy flux, the disk temperature, and the emission spectra of the accretion disks are obtained. Comparing the mass accretion in a rotating wormhole geometry with the one of a Kerr black hole, we verify that the intensity of the flux emerging from the disk surface is greater for wormholes than for rotating black holes with the same geometrical mass and accretion rate. We also present the conversion efficiency of the accreting mass into radiation, and show that the rotating wormholes provide a much more efficient engine for the transformation of the accreting mass into radiation than the Kerr black holes. Therefore specific signatures appear in the electromagnetic spectrum of thin disks around rotating wormholes, thus leading to the possibility of distinguishing wormhole geometries by using astrophysical observations of the emission spectra from accretion disks.

  11. Energy transport in radially accreting white dwarf stars

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, A.M.

    1986-10-01

    Some of the non-thermal energy transport processes which may be present in a white dwarf accretion column are examined and it is determined whether these could in any way contribute to a resolution of the soft X-ray puzzle. The first two Chapters of this Thesis constitute a review of the observations and proposed models for white dwarf accretion columns. In Chapter 3 we show that in Kuijpers and Pringle's original bombardment model of white dwarf accretion columns, in which the energy of the accreting material is deposited uniformly into a static atmosphere which then radiates the energy away as optically thin bremsstrahlung/line radiation, an incorrect Coulomb collisional timescale was used. In Chapter 4 we extend the calculations of Chapter 3 to include the effect of cyclotron radiation. It is concluded that a cyclotron cooled bombardment solution for a white dwarf accretion column may exist. We extend this calculation to derive a simple piecewise uniform temperature structure for such an accretion column, incorporating the effect of thermal conduction. In Chaper 5 we examine two of the non thermal emission mechanisms that might be present in white dwarf accretion columns:- non thermal Lyman-{alpha} emission and non thermal inverse bremsstrahlung emission. It is shown that neither would actually be sufficiently large to be detectable. In Chapter 6 some possible extensions to the work presented are suggested. (author).

  12. Observational diagnostics of accretion on young stars and brown dwarfs

    Science.gov (United States)

    Stelzer, Beate; Argiroffi, Costanza

    I present a summary of recent observational constraints on the accretion properties of young stars and brown dwarfs with focus on the high-energy emission. In their T Tauri phase young stars assemble a few percent of their mass by accretion from a disk. Various observational signatures of disks around pre-main sequence stars and the ensuing accretion process are found in the IR and optical regime: e.g. excess emission above the stellar photosphere, strong and broad emission lines, optical veiling. At high energies evidence for accretion is less obvious, and the X-ray emission from stars has historically been ascribed to magnetically confined coronal plasmas. While being true for the bulk of the emission, new insight obtained from XMM-Newton and Chandra observations has unveiled contributions from accretion and outflow processes to the X-ray emission from young stars. Their smaller siblings, the brown dwarfs, have been shown to undergo a T Tauri phase on the basis of optical/IR observations of disks and measurements of accretion rates. Most re-cently, first evidence was found for X-rays produced by accretion in a young brown dwarf, complementing the suspected analogy between stars and substellar objects.

  13. Regimes of mini black hole abandoned to accretion

    Science.gov (United States)

    Paik, Biplab

    2018-01-01

    Being inspired by the Eddington’s idea, along with other auxiliary arguments, it is unveiled that there exist regimes of a black hole that would prohibit accretion of ordinary energy. In explicit words, there exists a lower bound to black hole mass below which matter accretion process does not run for black holes. Not merely the baryonic matter, but, in regimes, also the massless photons could get prohibited from rushing into a black hole. However, unlike the baryon accretion abandoned black hole regime, the mass-regime of a black hole prohibiting accretion of radiation could vary along with its ambient temperature. For example, we discuss that earlier to 10‑8 s after the big-bang, as the cosmological temperature of the Universe grew above ˜ 1014 K, the mass range of black hole designating the radiation accretion abandoned regime, had to be in varying state being connected with the instantaneous age of the evolving Universe by an “one half” power law. It happens to be a fact that a black hole holding regimes prohibiting accretion of energy is gigantic by its size in comparison to the Planck length-scale. Hence the emergence of these regimes demands mini black holes for not being viable as profound suckers of energy. Consideration of accretion abandoned regimes could be crucial for constraining or judging the evolution of primordial black holes over the age of the Universe.

  14. A Global Three-Dimensional Radiation Hydrodynamic Simulation of a Self-Gravitating Accretion Disk

    Science.gov (United States)

    Phillipson, Rebecca; Vogeley, Michael S.; McMillan, Stephen; Boyd, Patricia

    2018-01-01

    We present three-dimensional, radiation hydrodynamic simulations of initially thin accretion disks with self-gravity using the grid-based code PLUTO. We produce simulated light curves and spectral energy distributions and compare to observational data of X-ray binary (XRB) and active galactic nuclei (AGN) variability. These simulations are of interest for modeling the role of radiation in accretion physics across decades of mass and frequency. In particular, the characteristics of the time variability in various bandwidths can probe the timescales over which different physical processes dominate the accretion flow. For example, in the case of some XRBs, superorbital periods much longer than the companion orbital period have been observed. Smoothed particle hydrodynamics (SPH) calculations have shown that irradiation-driven warping could be the mechanism underlying these long periods. In the case of AGN, irradiation-driven warping is also predicted to occur in addition to strong outflows originating from thermal and radiation pressure driving forces, which are important processes in understanding feedback and star formation in active galaxies. We compare our simulations to various toy models via traditional time series analysis of our synthetic and observed light curves.

  15. Buoyancy limits on magnetic viscosity stress-law scalings in quasi stellar object accretion disk models

    International Nuclear Information System (INIS)

    Sakimoto, P.J.

    1985-01-01

    Quasi-Stellar Objects (QSOs) are apparently the excessively bright nuclei of distant galaxies. They are thought to be powered by accretion disks surrounding supermassive black holes: however, proof of this presumption is hampered by major uncertainties in the viscous stress necessary for accretion to occur. Models generally assume an and hoc stress law which scales the stress with the total pressure. Near the black hole, radiation pressure dominates gas pressure; scaling the stress with the radiation pressure results in disk models that are thermally unstable and optically thin. This dissertation shows that a radiation pressure scaling for the stress is not possible if the viscosity is due to turbulent magnetic Maxwell stresses. The argument is one of internal self-consistency. First, four model accretion disks that bound the reasonably expected ranges of viscous stress scalings and vertical structures are constructed. Magnetic flux tubes of various initial field strengths are then placed within these models, nd their buoyancy is modeled numerically. In disks using the radiation pressure stress law scaling, low opacities allow rapid heat flow into the flux tubes: the tubes are extremely buoyant, and magnetic fields strong enough to provide the required stress cannot be retained. If an alternative gas pressure scaling for the stress is assumed, then the disks are optically thick; flux tubes have corresponding lower buoyancy, and magnetic fields strong enough to provide the stress can be retained for dynamically significant time periods

  16. Fallback accretion onto magnetized neutron stars and the hidden magnetic field model

    International Nuclear Information System (INIS)

    Torres, A; Cerdá-Durán, P; Font, J A

    2015-01-01

    The observation of several neutron stars with relatively low values of the surface magnetic field found in supernova remnants has led in recent years to controversial interpretations. A possible explanation is the slow rotation of the proto-neutron star at birth which is unable to amplify its magnetic field to typical pulsar levels. An alternative possibility, the hidden magnetic field scenario, seems to be favoured over the previous one due to the observation of three low magnetic field magnetars. This scenario considers the accretion of the fallback of the supernova debris onto the neutron star as the responsible for the observed low magnetic field. In this work, we have studied under which conditions the magnetic field of a neutron star can be buried into the crust due to an accreting fluid. We have considered a simplified toy model in general relativity to estimate the balance between the incoming accretion flow an the magnetosphere. We conclude that the burial is possible for values of the surface magnetic field below 10 13 G. The preliminary results reported in this paper for simplified polytropic models should be confirmed using a more realistic thermodynamical setup. (paper)

  17. ON THE ACCRETION-FED GROWTH OF NEUTRON STARS DURING COMMON ENVELOPE

    Energy Technology Data Exchange (ETDEWEB)

    MacLeod, Morgan; Ramirez-Ruiz, Enrico [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2015-01-01

    This paper models the orbital inspiral of a neutron star (NS) through the envelope of its giant-branch companion during a common envelope (CE) episode. These CE episodes are necessary to produce close pairs of NSs that can inspiral and merge due to gravitational wave losses in less than a Hubble time. Because cooling by neutrinos can be very efficient, NSs have been predicted to accumulate significant mass during CE events, perhaps enough to lead them to collapse to black holes. We revisit this conclusion with the additional consideration of CE structure, particularly density gradients across the embedded NS's accretion radius. This work is informed by our recent numerical simulations that find that the presence of a density gradient strongly limits accretion by imposing a net angular momentum to the flow around the NS. Our calculations suggest that NSs should survive CE encounters. They accrete only modest amounts of envelope material, ≲ 0.1 M {sub ☉}, which is broadly consistent with mass determinations of double NS binaries. With less mass gain, NSs must spiral deeper to eject their CE, leading to a potential increase in mergers. The survival of NSs in CE events has implications for the formation mechanism of observed double NS binaries, as well as for predicted rates of NS binary gravitational wave inspirals and their electromagnetic counterparts.

  18. THE GLOBAL EVOLUTION OF GIANT MOLECULAR CLOUDS. II. THE ROLE OF ACCRETION

    International Nuclear Information System (INIS)

    Goldbaum, Nathan J.; Krumholz, Mark R.; Matzner, Christopher D.; McKee, Christopher F.

    2011-01-01

    We present virial models for the global evolution of giant molecular clouds (GMCs). Focusing on the presence of an accretion flow and accounting for the amount of mass, momentum, and energy supplied by accretion and star formation feedback, we are able to follow the growth, evolution, and dispersal of individual GMCs. Our model clouds reproduce the scaling relations observed in both galactic and extragalactic clouds. We find that accretion and star formation contribute roughly equal amounts of turbulent kinetic energy over the lifetime of the cloud. Clouds attain virial equilibrium and grow in such a way as to maintain roughly constant surface densities, with typical surface densities of order 50-200 M sun pc -2 , in good agreement with observations of GMCs in the Milky Way and nearby external galaxies. We find that as clouds grow, their velocity dispersion and radius must also increase, implying that the linewidth-size relation constitutes an age sequence. Lastly, we compare our models to observations of GMCs and associated young star clusters in the Large Magellanic Cloud and find good agreement between our model clouds and the observed relationship between H II regions, young star clusters, and GMCs.

  19. Constraints on the evolution of black hole spin due to magnetohydrodynamic accretion

    International Nuclear Information System (INIS)

    Takahashi, Masaaki; Tomimatsu, Akira

    2008-01-01

    Stationary and axisymmetric ideal magnetohydrodynamic (MHD) accretion onto a black hole is studied analytically. The accreting plasma ejected from a plasma source with low velocity must be superfast magnetosonic before passing through the event horizon. We work out and apply a trans-fast magnetosonic solution without detailed analysis of the regularity conditions at the magnetosonic point, by introducing the bending angle β of the magnetic field line, which is the ratio of the toroidal and poloidal components of the magnetic field. To accrete onto a black hole, the trans-magnetosonic solution has some restrictions on β, which are related to the field-aligned parameters of the MHD flows. One of the restrictions gives the boundary condition at the event horizon for the inclination of a magnetic field line. We find that this inclination is related to the energy and angular momentum transport to the black hole. Then, we discuss the spin-up/down process of a rotating black hole by cold MHD inflows in a secular evolution time scale. There are two asymptotic states for the spin evolution. One is that the angular velocity of the black hole approaches to that of the magnetic field line, and the other is that the spin-up effect by the positive angular momentum influx and the spin-down effect by the energy influx (as the mass-energy influx) are canceled. We also show that the MHD inflows prevents the evolution to the maximally rotating black hole.

  20. 2.5-D modelling of rime ice accretion on a swept airfoil

    International Nuclear Information System (INIS)

    Szilder, K.; Lozowski, E.P.

    2004-01-01

    In this paper, we present a three-dimensional morphogenetic model which simulates discrete rime ice accretion structures forming on a swept airfoil. Rime is an ice deposit caused by the impingement and freezing of supercooled cloud droplets at accretion temperatures below 0 o C. Depending on conditions, the droplets may freeze as spheres or deform on the surface, but for rime to form, surface liquid flow is limited or non-existent. In the model, roughness elements that develop initially on the wing surface evolve into rime feathers and other complex, three-dimensional structures. On swept wings, these resemble the so-called 'lobster tails' or 'scallops' that are observed in wind tunnels and in flight. We show the results of sensitivity tests, performed as a function of two model parameters: sweep angle and freezing range parameter. Our exploratory research has shown that the model predicts realistic-looking, three-dimensional ice structures on swept wings. This capability does not exist in current in-flight ice accretion models. (author)

  1. 2.5-D modelling of rime ice accretion on a swept airfoil

    Energy Technology Data Exchange (ETDEWEB)

    Szilder, K. [National Research Council of Canada, Inst. for Aerospace Research, Ottawa, Ontario (Canada)]. E-mail: Krzysztof.Szilder@nrc-cnrc.gc.ca; Lozowski, E.P. [Univ. of Alberta, Dept. of Earth and Atmospheric Sciences, Edmonton, Alberta (Canada)

    2004-07-01

    In this paper, we present a three-dimensional morphogenetic model which simulates discrete rime ice accretion structures forming on a swept airfoil. Rime is an ice deposit caused by the impingement and freezing of supercooled cloud droplets at accretion temperatures below 0{sup o}C. Depending on conditions, the droplets may freeze as spheres or deform on the surface, but for rime to form, surface liquid flow is limited or non-existent. In the model, roughness elements that develop initially on the wing surface evolve into rime feathers and other complex, three-dimensional structures. On swept wings, these resemble the so-called 'lobster tails' or 'scallops' that are observed in wind tunnels and in flight. We show the results of sensitivity tests, performed as a function of two model parameters: sweep angle and freezing range parameter. Our exploratory research has shown that the model predicts realistic-looking, three-dimensional ice structures on swept wings. This capability does not exist in current in-flight ice accretion models. (author)

  2. Accretion Disks Around Binary Black Holes of Unequal Mass: GRMHD Simulations Near Decoupling

    Science.gov (United States)

    Gold, Roman; Paschalidis, Vasileios; Etienne, Zachariah B.; Shapiro, Stuart L.; Pfeiffer, Harald, P.

    2013-01-01

    We report on simulations in general relativity of magnetized disks onto black hole binaries. We vary the binary mass ratio from 1:1 to 1:10 and evolve the systems when they orbit near the binary disk decoupling radius. We compare (surface) density profiles, accretion rates (relative to a single, non-spinning black hole), variability, effective alpha-stress levels and luminosities as functions of the mass ratio. We treat the disks in two limiting regimes: rapid radiative cooling and no radiative cooling. The magnetic field lines clearly reveal jets emerging from both black hole horizons and merging into one common jet at large distances. The magnetic fields give rise to much stronger shock heating than the pure hydrodynamic flows, completely alter the disk structure, and boost accretion rates and luminosities. Accretion streams near the horizons are among the densest structures; in fact, the 1:10 no-cooling evolution results in a refilling of the cavity. The typical effective temperature in the bulk of the disk is approx. 10(exp5) (M / 10(exp 8)M solar mass (exp -1/4(L/L(sub edd) (exp 1/4K) yielding characteristic thermal frequencies approx. 10 (exp 15) (M /10(exp 8)M solar mass) (exp -1/4(L/L (sub edd) (1+z) (exp -1)Hz. These systems are thus promising targets for many extragalactic optical surveys, such as LSST, WFIRST, and PanSTARRS.

  3. MEASURING TINY MASS ACCRETION RATES ONTO YOUNG BROWN DWARFS

    International Nuclear Information System (INIS)

    Herczeg, Gregory J.; Cruz, Kelle L.; Hillenbrand, Lynne A.

    2009-01-01

    We present low-resolution Keck I/LRIS spectra spanning from 3200 to 9000 A of nine young brown dwarfs and three low-mass stars in the TW Hya Association and in Upper Sco. The optical spectral types of the brown dwarfs range from M5.5 to M8.75, though two have near-IR spectral types of early L dwarfs. We report new accretion rates derived from excess Balmer continuum emission for the low-mass stars TW Hya and Hen 3-600A and the brown dwarfs 2MASS J12073347-3932540, UScoCTIO 128, SSSPM J1102-3431, USco J160606.29-233513.3, DENIS-P J160603.9-205644, and Oph J162225-240515B, and upper limits on accretion for the low-mass star Hen 3-600B and the brown dwarfs UScoCTIO 112, Oph J162225-240515A, and USco J160723.82-221102.0. For the six brown dwarfs in our sample that are faintest at short wavelengths, the accretion luminosity or upper limit is measurable only when the image is binned over large wavelength intervals. This method extends our sensitivity to accretion rate down to ∼10 -13 M sun yr -1 for brown dwarfs. Since the ability to measure an accretion rate from excess Balmer continuum emission depends on the contrast between excess continuum emission and the underlying photosphere, for objects with earlier spectral types the upper limit on accretion rate is much higher. Absolute uncertainties in our accretion rate measurements of ∼3-5 include uncertainty in accretion models, brown dwarf masses, and distance. The accretion rate of 2 x 10 -12 M sun yr -1 onto 2MASS J12073347-3932540 is within 15% of two previous measurements, despite large changes in the Hα flux.

  4. New perspectives on the accretion and internal evolution of Venus

    Science.gov (United States)

    O'Rourke, J. G.

    2017-12-01

    Dichotomous conditions on Earth and Venus present one of the most compelling mysteries in our Solar System. Ongoing debate centers on how the internal dynamics of Venus have shaped its atmospheric composition, surface features, and even habitability over geologic time. In particular, Venus may have resembled Earth for billions of years before suffering catastrophic transformation, or perhaps some accretionary process set these twin planets on divergent paths from the beginning. Unfortunately, the limited quality of decades-old data—particularly the low resolution of radar imagery and global topography from NASA's Magellan mission—harms our ability to draw definite conclusions. But some progress is possible given recent advances in modeling techniques and improved topography derived from stereo images that are available for roughly twenty percent of the surface. Here I present simulations of the interior evolution of Venus consistent with all available constraints and, more importantly, identify future measurements that would dramatically narrow the range of acceptable scenarios. Obtaining high-resolution imagery and topography, along with any information about the temporal history of a magnetic field, is extremely important. Deformation of geologic features constrains the surface heat flow and lithospheric rheology during their formation. Determining whether craters with radar-dark floors (which comprise 80% of the population) are actually embayed by lava flows would finally settle the controversy over catastrophic versus equilibrium resurfacing. If the core of Venus has completely solidified, then the lack of an internally generated magnetic field today is unsurprising. We might expect dynamo action in the past since relatively high mantle temperatures may increase the rate of core cooling—unless a lack of giant impacts during accretion permitted chemical stratification that resists convection. In any case, uncertainty about our celestial cousin reveals a

  5. Do we see accreting magnetars in X-ray pulsars?

    Directory of Open Access Journals (Sweden)

    Postnov K.A.

    2014-01-01

    Full Text Available Strong magnetic field of accreting neutron stars (1014 G is hard to probe by Xray spectroscopy but can be indirectly inferred from spin-up/spin-down measurement in X-ray pulsars. The existing observations of slowly rotating X-ray pulsars are discussed. It is shown that magnetic fields of neutron stars derived from these observations (or lower limits in some cases fall within the standard 1012-1013 G range. Claims about the evidence for accreting magnetars are critically discussed in the light of recent progress in understanding of accretion onto slowly rotating neutron stars in the subsonic regime.

  6. WIND-DRIVEN ACCRETION IN PROTOPLANETARY DISKS. II. RADIAL DEPENDENCE AND GLOBAL PICTURE

    Energy Technology Data Exchange (ETDEWEB)

    Bai Xuening, E-mail: xbai@cfa.harvard.edu [Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-51, Cambridge, MA 02138 (United States)

    2013-08-01

    Non-ideal magnetohydrodynamical effects play a crucial role in determining the mechanism and efficiency of angular momentum transport as well as the level of turbulence in protoplanetary disks (PPDs), which are the key to understanding PPD evolution and planet formation. It was shown in our previous work that at 1 AU, the magnetorotational instability (MRI) is completely suppressed when both ohmic resistivity and ambipolar diffusion (AD) are taken into account, resulting in a laminar flow with accretion driven by magnetocentrifugal wind. In this work, we study the radial dependence of the laminar wind solution using local shearing-box simulations. The scaling relation on the angular momentum transport for the laminar wind is obtained, and we find that the wind-driven accretion rate can be approximated as M-dot approx. 0.91 x 10{sup -8}R{sub AU}{sup 1.21}(B{sub p}/10 mG){sup 0.93} M{sub Sun} yr{sup -1}, where B{sub p} is the strength of the large-scale poloidal magnetic field threading the disk. The result is independent of disk surface density. Four criteria are outlined for the existence of the laminar wind solution: (1) ohmic resistivity dominated the midplane region, (2) the AD-dominated disk upper layer, (3) the presence of a (not too weak) net vertical magnetic flux, and (4) sufficiently well-ionized gas beyond the disk surface. All these criteria are likely to be met in the inner region of the disk from {approx}0.3 AU to about 5-10 AU for typical PPD accretion rates. Beyond this radius, the angular momentum transport is likely to proceed due to a combination of the MRI and disk wind, and eventually completely dominated by the MRI (in the presence of strong AD) in the outer disk. Our simulation results provide key ingredients for a new paradigm on the accretion processes in PPDs.

  7. Accretion from a clumpy massive-star wind in supergiant X-ray binaries

    Science.gov (United States)

    El Mellah, I.; Sundqvist, J. O.; Keppens, R.

    2018-04-01

    Supergiant X-ray binaries (SgXB) host a compact object, often a neutron star (NS), orbiting an evolved O/B star. Mass transfer proceeds through the intense line-driven wind of the stellar donor, a fraction of which is captured by the gravitational field of the NS. The subsequent accretion process on to the NS is responsible for the abundant X-ray emission from SgXB. They also display peak-to-peak variability of the X-ray flux by a factor of a few 10-100, along with changes in the hardness ratios possibly due to varying absorption along the line of sight. We use recent radiation-hydrodynamic simulations of inhomogeneities (a.k.a. clumps) in the non-stationary wind of massive hot stars to evaluate their impact on the time-variable accretion process. For this, we run 3D hydrodynamic simulations of the wind in the vicinity of the accretor to investigate the formation of the bow shock and follow the inhomogeneous flow over several spatial orders of magnitude, down to the NS magnetosphere. In particular, we show that the impact of the wind clumps on the time variability of the intrinsic mass accretion rate is severely tempered by the crossing of the shock, compared to the purely ballistic Bondi-Hoyle-Lyttleton estimation. We also account for the variable absorption due to clumps passing by the line of sight and estimate the final effective variability of the column density and mass accretion rate for different orbital separations. Finally, we compare our results to the most recent analysis of the X-ray flux and the hardness ratio in Vela X-1.

  8. Possible Accretion Disk Origin of the Emission Variability of a Blazar Jet

    Science.gov (United States)

    Chatterjee, Ritaban; Roychowdhury, Agniva; Chandra, Sunil; Sinha, Atreyee

    2018-06-01

    We analyze X-ray light curves of the blazar Mrk 421 obtained from the Soft X-ray Imaging Telescope (SXT) and the Large Area X-ray Proportional Counter (LAXPC) instrument on board the Indian space telescope AstroSat and archival observations from Swift. We show that the X-ray power spectral density (PSD) is a piece-wise power-law with a break; i.e., the index becomes more negative below a characteristic “break timescale.” Galactic black hole (BH) X-ray binaries and Seyfert galaxies exhibit a similar characteristic timescale in their X-ray variability that is proportional to their respective BH mass. X-rays in these objects are produced in the accretion disk or corona. Hence, such a timescale is believed to be linked to the properties of the accretion flow. Any relation observed between events in the accretion disk and those in the jet can be used to characterize the disk–jet connection. However, evidence of such a link has been scarce and indirect. Mrk 421 is a BL Lac object that has a prominent jet pointed toward us and a weak disk emission, and it is assumed that most of its X-rays are generated in the jet. Hence, the existence of the break in its X-ray PSD may indicate that changes in the accretion disk, which may be the source of the break timescale, are translating into the jet where the X-rays are produced.

  9. Design of Experiments Relevant to Accreting Stream-Disk Impact in Interacting Binaries

    Science.gov (United States)

    Krauland, Christine; Drake, R. P.; Kuranz, C. C.; Grosskopf, M. J.; Young, R.; Plewa, T.

    2010-05-01

    In many Cataclysmic Binary systems, mass transfer via Roche lobe overflow onto an accretion disk occurs. This produces a hot spot from the heating created by the supersonic impact of the infalling flow with the rotating accretion disk, which can produce a radiative reverse shock in the infalling flow. This collision region has many ambiguities as a radiation hydrodynamic system. Depending upon conditions, it has been argued (Armitgae & Livio, ApJ 493, 898) that the shocked region may be optically thin, thick, or intermediate, which has the potential to significantly alter its structure and emissions. Laboratory experiments have yet to produce colliding flows that create a radiative reverse shock or to produce obliquely incident colliding flows, both of which are aspects of these Binary systems. We have undertaken the design of such an experiment, aimed at the Omega-60 laser facility. The design elements include the production of postshock flows within a dense material layer or ejecta flows by release of material from a shocked layer. Obtaining a radiative reverse shock in the laboratory requires producing a sufficiently fast flow (> 100 km/s) within a material whose opacity is large enough to produce energetically significant emission from experimentally achievable layers. In this poster we will discuss the astrophysical context, the experimental design work we have done, and the challenges of implementing and diagnosing an actual experiment. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, by the National Laser User Facility Program in NNSA-DS and by the Predictive Sciences Academic Alliances Program in NNSA-ASC. The corresponding grant numbers are DE-FG52-09NA29548, DE-FG52-09NA29034, and DE-FC52-08NA28616.

  10. Hydraulic jumps in ''viscous'' accretion disks

    International Nuclear Information System (INIS)

    Michel, F.C.

    1984-01-01

    We propose that the dissipative process necessary for rapid accretion disk evolution is driven by hydraulic jump waves on the surface of the disk. These waves are excited by the asymmetric nature of the central rotator (e.g., neutron star magnetosphere) and spiral out into the disk to form a pattern corotating with the central object. Disk matter in turn is slowed slightly at each encounter with the jump and spirals inward. In this process, the disk is heated by true turbulence produced in the jumps. Additional effects, such as a systematic misalignment of the magnetic moment of the neutron star until it is nearly orthogonal, and systematic distortion of the magnetosphere in such a way as to form an even more asymmetric central ''paddle wheel'' may enhance the interaction with inflowing matter. The application to X-ray sources corresponds to the ''slow'' solutions of Ghosh and Lamb, and therefore to rms magnetic fields of about 4 x 10 10 gauss. Analogous phenomena have been proposed to act in the formation of galactic spiral structure

  11. Black Hole Accretion in Gamma Ray Bursts

    Directory of Open Access Journals (Sweden)

    Agnieszka Janiuk

    2017-02-01

    Full Text Available We study the structure and evolution of the hyperaccreting disks and outflows in the gamma ray bursts central engines. The torus around a stellar mass black hole is composed of free nucleons, Helium, electron-positron pairs, and is cooled by neutrino emission. Accretion of matter powers the relativistic jets, responsible for the gamma ray prompt emission. The significant number density of neutrons in the disk and outflowing material will cause subsequent formation of heavier nuclei. We study the process of nucleosynthesis and its possible observational consequences. We also apply our scenario to the recent observation of the gravitational wave signal, detected on 14 September 2015 by the two Advanced LIGO detectors, and related to an inspiral and merger of a binary black hole system. A gamma ray burst that could possibly be related with the GW150914 event was observed by the Fermi satellite. It had a duration of about 1 s and appeared about 0.4 s after the gravitational-wave signal. We propose that a collapsing massive star and a black hole in a close binary could lead to the event. The gamma ray burst was powered by a weak neutrino flux produced in the star remnant’s matter. Low spin and kick velocity of the merged black hole are reproduced in our simulations. Coincident gravitational-wave emission originates from the merger of the collapsed core and the companion black hole.

  12. Accreting Binary Populations in the Earlier Universe

    Science.gov (United States)

    Hornschemeier, Ann

    2010-01-01

    It is now understood that X-ray binaries dominate the hard X-ray emission from normal star-forming galaxies. Thanks to the deepest (2-4 Ms) Chandra surveys, such galaxies are now being studied in X-rays out to z approximates 4. Interesting X-ray stacking results (based on 30+ galaxies per redshift bin) suggest that the mean rest-frame 2-10 keV luminosity from z=3-4 Lyman break galaxies (LBGs), is comparable to the most powerful starburst galaxies in the local Universe. This result possibly indicates a similar production mechanism for accreting binaries over large cosmological timescales. To understand and constrain better the production of X-ray binaries in high-redshift LBGs, we have utilized XMM-Newton observations of a small sample of z approximates 0.1 GALEX-selected Ultraviolet-Luminous Galaxies (UVLGs); local analogs to high-redshift LBGs. Our observations enable us to study the X-ray emission from LBG-like galaxies on an individual basis, thus allowing us to constrain object-to-object variances in this population. We supplement these results with X-ray stacking constraints using the new 3.2 Ms Chandra Deep Field-South (completed spring 2010) and LBG candidates selected from HST, Swift UVOT, and ground-based data. These measurements provide new X-ray constraints that sample well the entire z=0-4 baseline

  13. Experimental measurements of the 15O(alpha,gamma)19Ne reaction rate and the stability of thermonuclear burning on accreting neutron stars

    International Nuclear Information System (INIS)

    Fisker, J; Tan, W; Goerres, J; Wiescher, M; Cooper, R

    2007-01-01

    Neutron stars in close binary star systems often accrete matter from their companion stars. Thermonuclear ignition of the accreted material in the atmosphere of the neutron star leads to a thermonuclear explosion which is observed as an X-ray burst occurring periodically between hours and days depending on the accretion rate. The ignition conditions are characterized by a sensitive interplay between the accretion rate of the fuel supply and its depletion rate by nuclear burning in the hot CNO cycle and the rp-process. For accretion rates close to stable burning the burst ignition therefore depends critically on the hot CNO breakout reaction 15 O(α, γ) 19 Ne that regulates the flow between the hot CNO cycle and the rapid proton capture process. Until recently, the 15 O(α, γ) 19 Ne reaction rate was not known experimentally and the theoretical estimates carried significant uncertainties. In this paper we perform a parameter study of the uncertainty of this reaction rate and determine the astrophysical consequences of the first measurement of this reaction rate. Our results corroborate earlier predictions and show that theoretically burning remains unstable up to accretion rates near the Eddington limit, in contrast to astronomical observations

  14. A NICER View of the Accretion Disk in GX 339-4

    Science.gov (United States)

    Steiner, James Francis; Bulbul, Esra; Cackett, Ed; Fabian, Andy; Gendreau, Keith C.; Neilsen, Joseph; Ranga Reddy Pasham, Dheeraj; Remillard, Ron; Uttley, Phil; Wood, Kent S.

    2018-01-01

    The poster-child black hole transient GX 339-4 has gone into outburst once again. With no pileup, low-background, and high fidelity in the soft X-ray bandpass, NICER is uniquely positioned to detect emergent thermal disk emission from an optically thick accretion flow approaching the innermost-stable circular orbit. We present NICER's results on the 2017 outburst, and detail its implications for the disk-truncation controversy. We also investigate the X-ray state evolution, as seen in NICER's spectral range of 0.2 to 12 keV.

  15. Pair production instabilities as a source of X-ray flares from accreting black holes

    Energy Technology Data Exchange (ETDEWEB)

    Moskalik, P; Sikora, M

    1986-02-20

    The paper concerns pair production instability in active galaxies which emit most of their energy at h..gamma..>100 keV. The authors show that the esub(..gamma..)-e-pair production instability leads to cyclic variations of accretion flow, during which high-energy flares are produced. This mechanism can account for the large amplitude luminosity changes observed in several active galactic nuclei. The same scenario may also be responsible for the short-timescale quasiperiodic variability reported in some proposed galactic black holes. (U.K.).

  16. Analogue Hawking radiation from astrophysical black-hole accretion

    International Nuclear Information System (INIS)

    Das, Tapas K

    2004-01-01

    We show that spherical accretion onto astrophysical black holes can be considered as a natural example of an analogue system. We provide, for the first time, an exact analytical scheme for calculating the analogue Hawking temperature and surface gravity for general relativistic accretion onto astrophysical black holes. Our calculation may bridge the gap between the theory of transonic astrophysical accretion and the theory of analogue Hawking radiation. We show that the domination of the analogue Hawking temperature over the actual Hawking temperature may be a real astrophysical phenomenon, though observational tests of this fact will at best be difficult and at worst might prove to be impossible. We also discuss the possibilities of the emergence of analogue white holes around astrophysical black holes. Our calculation is general enough to accommodate accreting black holes with any mass

  17. Dynamically important magnetic fields near accreting supermassive black holes.

    Science.gov (United States)

    Zamaninasab, M; Clausen-Brown, E; Savolainen, T; Tchekhovskoy, A

    2014-06-05

    Accreting supermassive black holes at the centres of active galaxies often produce 'jets'--collimated bipolar outflows of relativistic particles. Magnetic fields probably play a critical role in jet formation and in accretion disk physics. A dynamically important magnetic field was recently found near the Galactic Centre black hole. If this is common and if the field continues to near the black hole event horizon, disk structures will be affected, invalidating assumptions made in standard models. Here we report that jet magnetic field and accretion disk luminosity are tightly correlated over seven orders of magnitude for a sample of 76 radio-loud active galaxies. We conclude that the jet-launching regions of these radio-loud galaxies are threaded by dynamically important fields, which will affect the disk properties. These fields obstruct gas infall, compress the accretion disk vertically, slow down the disk rotation by carrying away its angular momentum in an outflow and determine the directionality of jets.

  18. Angular Momentum Transport in Quasi-Keplerian Accretion Disks ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Keplerian accretion disk yield results that are inconsistent with the generally accepted model. If correct, the ideas proposed by Hayashi &. Matsuda would radically alter our understanding of the nature of the angular momentum transport in the disk, ...

  19. Revisiting Field Burial by Accretion onto Neutron Stars

    Indian Academy of Sciences (India)

    Dipanjan Mukherjee

    2017-09-12

    Sep 12, 2017 ... review the recent work on magnetic confinement of accreted matter on neutron stars poles. We present ..... hours to days, see Brown & Bildsten 1998) where the ...... Radhakrishnan, V., Srinivasan, G. 1984, in: Second Asian-.

  20. Fate of accreting white dwarfs: Type I supernovae vs collapse

    International Nuclear Information System (INIS)

    Nomoto, Ken'ichi.

    1986-01-01

    The final fate of accreting C + O white dwarfs is either thermonuclear explosion or collapse, if the white dwarf mass grows to the Chandrasekhar mass. We discuss how the fate depends on the initial mass, age, composition of the white dwarf and the mass accretion rate. Relatively fast accretion leads to a carbon deflagration at low central density that gives rise to a Type Ia supernova. Slower accretion induces a helium detonation that could be observed as a Type Ib supernova. If the initial mass of the C + O white dwarf is larger than 1.2 Msub solar, a carbon deflagration starts at high central density and induces a collapse of the white dwarf to form a neutron star. We examine the critical condition for which a carbon deflagration leads to collapse, not explosion. For the case of explosion, we discuss to what extent the nucleosynthesis models are consistent with spectra of Type Ia and Ib supernovae. 61 refs., 18 figs

  1. Influence of nuclear burning of the stability of degenerate and nondegenerate accretion disks

    International Nuclear Information System (INIS)

    Taam, R.E.; Fryxell, B.A.

    1985-01-01

    The structure and stability of accretion disks composed of hydrogen-rich matter rotating about a central neutron star have been investigated for known sources of viscosity. Two general classes of solutions have been found. For one class the energy generated in the disk is provided by hydrogen burning, whereas for the other class the gravitational binding energy released by viscous dissipation dominates. The former solutions are thermally unstable (stable) whenever hydrogen burns via the normal CNO cycle ( pp chain) in a partially or fully degenerate region of the disk. Solutions characterized by nuclear burning via the β-limited CNO cycle or by viscous dissipation only are always stable. On the basis of a local analysis it is shown that modulations of the mass flow in the disk are possible for a range of mass inflow rates into the disk. In such circumstances the disk can undergo a phase transition from a cold, low-viscosity state to a hot, high-viscosity state as a result of the thermonuclear flash instability. Phase transitions from the hot state to the cold state also occur whenever the mass input rate into the disk is less than the equilibrium mass flow rate corresponding to the hot state. It is also shown that for sufficiently high mass flow rates all the hydrogen-rich matter can be processed to helium in the inner regions of the disk before it can be accreted by a neutron star

  2. Modelling hard and soft states of Cygnus X-1 with propagating mass accretion rate fluctuations

    Science.gov (United States)

    Rapisarda, S.; Ingram, A.; van der Klis, M.

    2017-12-01

    We present a timing analysis of three Rossi X-ray Timing Explorer observations of the black hole binary Cygnus X-1 with the propagating mass accretion rate fluctuations model PROPFLUC. The model simultaneously predicts power spectra, time lags and coherence of the variability as a function of energy. The observations cover the soft and hard states of the source, and the transition between the two. We find good agreement between model predictions and data in the hard and soft states. Our analysis suggests that in the soft state the fluctuations propagate in an optically thin hot flow extending up to large radii above and below a stable optically thick disc. In the hard state, our results are consistent with a truncated disc geometry, where the hot flow extends radially inside the inner radius of the disc. In the transition from soft to hard state, the characteristics of the rapid variability are too complex to be successfully described with PROPFLUC. The surface density profile of the hot flow predicted by our model and the lack of quasi-periodic oscillations in the soft and hard states suggest that the spin of the black hole is aligned with the inner accretion disc and therefore probably with the rotational axis of the binary system.

  3. Black hole accretion discs and screened scalar hair

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Anne-Christine; Jha, Rahul [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom); Gregory, Ruth, E-mail: acd@damtp.cam.ac.uk, E-mail: r.a.w.gregory@durham.ac.uk, E-mail: r.jha@damtp.cam.ac.uk [Centre for Particle Theory, Durham University, South Road, Durham, DH1 3LE (United Kingdom)

    2016-10-01

    We present a novel way to investigate scalar field profiles around black holes with an accretion disc for a range of models where the Compton wavelength of the scalar is large compared to other length scales. By analysing the problem in ''Weyl' coordinates, we are able to calculate the scalar profiles for accretion discs in the static Schwarzschild, as well as rotating Kerr, black holes. We comment on observational effects.

  4. On Hydromagnetic Stresses in Accretion Disk Boundary Layers

    DEFF Research Database (Denmark)

    Pessah, Martin Elias; Chan, Chi-kwan

    2012-01-01

    Detailed calculations of the physical structure of accretion disk boundary layers, and thus their inferred observational properties, rely on the assumption that angular momentum transport is opposite to the radial angular frequency gradient of the disk. The standard model for turbulent shear...... of efficient angular momentum transport in the inner disk regions. This suggests that the detailed structure of turbulent MHD accretion disk boundary layers could differ appreciably from those derived within the standard framework of turbulent shear viscosity...

  5. Magnetic fields and accretion discs around static black holes

    International Nuclear Information System (INIS)

    Dadhich, N.

    1982-01-01

    Some aspects of accretion onto static black holes immersed in a uniform magnetic field are investigated. The Ernst metric is employed to find the 'Keplerian' angular momentum distribution and the efficiency of mass-to-energy conversion for a plasma and for test particles. Under almost all physically reasonable conditions for hydrodynamic accretion the effect of the magnetic field is small. However, for test particles the effect can be very important and the efficiency can approach unity. (author)

  6. The relative role of galaxy mergers and cosmic flows in feeding black holes

    International Nuclear Information System (INIS)

    Bellovary, Jillian; Brooks, Alyson; Volonteri, Marta; Governato, Fabio; Quinn, Thomas; Wadsley, James

    2013-01-01

    Using a set of zoomed-in cosmological simulations of high-redshift progenitors of massive galaxies, we isolate and trace the history of gas that is accreted by central supermassive black holes. We determine the origins of the accreted gas, in terms of whether it entered the galaxy during a merger event or was smoothly accreted. Furthermore, we designate whether the smoothly accreted gas is accreted via a cold flow or is shocked upon entry into the halo. For moderate-mass (10 6 -10 7 M ☉ ) black holes at z ∼ 4, there is a preference to accrete cold flow gas as opposed to gas of shocked or merger origin. However, this result is a consequence of the fact that the entire galaxy has a higher fraction of gas from cold flows. In general, each black hole tends to accrete the same fractions of smooth- and merger-accreted gas as is contained in its host galaxy, suggesting that once gas enters a halo it becomes well-mixed, and its origins are erased. We find that the angular momentum of the gas upon halo entry is a more important factor; black holes preferentially accrete gas that had low angular momentum when it entered the galaxy, regardless of whether it was accreted smoothly or through mergers.

  7. TEMPERATURE STRUCTURE OF PROTOPLANETARY DISKS UNDERGOING LAYERED ACCRETION

    International Nuclear Information System (INIS)

    Lesniak, M. V.; Desch, S. J.

    2011-01-01

    We calculate the temperature structures of protoplanetary disks (PPDs) around T Tauri stars heated by both incident starlight and viscous dissipation. We present a new algorithm for calculating the temperatures in disks in hydrostatic and radiative equilibrium, based on Rybicki's method for iteratively calculating the vertical temperature structure within an annulus. At each iteration, the method solves for the temperature at all locations simultaneously, and converges rapidly even at high (>>10 4 ) optical depth. The method retains the full frequency dependence of the radiation field. We use this algorithm to study for the first time disks evolving via the magnetorotational instability. Because PPD midplanes are weakly ionized, this instability operates preferentially in their surface layers, and disks will undergo layered accretion. We find that the midplane temperatures T mid are strongly affected by the column density Σ a of the active layers, even for fixed mass accretion rate M-dot . Models assuming uniform accretion predict midplane temperatures in the terrestrial planet forming region several x 10 2 K higher than our layered accretion models do. For M-dot -7 M sun yr -1 and the column densities Σ a -2 associated with layered accretion, disk temperatures are indistinguishable from those of a passively heated disk. We find emergent spectra are insensitive to Σ a , making it difficult to observationally identify disks undergoing layered versus uniform accretion.

  8. Hot accreting white dwarfs in the quasi-static approximation

    International Nuclear Information System (INIS)

    Iben, I. Jr.

    1982-01-01

    Properties of white dwarfs which are accreting hydrogen-rich matter at rates in the range 1.5 x 10 -9 to 2.5 x 10 -7 M/sub sun/ yr -1 are investigated in several approximations. Steady-burning models, in which matter is processed through nuclear-burning shells as rapidly as it is accreted, provide a framework for understanding the properties of models in which thermal pulses induced by hydrogen burning and helium burning are allowed to occur. In these latter models, the underlying carbon-oxygen core is chosen to be in a cycle-averaged steady state with regard to compressional heating and neutrino losses. Several of these models are evolved in the quasi-static approximation. Combining results obtained in the steady-burning approximation with those obtained in the quasi-static approximation, expressions are obtained for estimating, as functions of accretion rate and white dwarf mass, the thermal pulse recurrence period and the duration of hydrogen-burning phases. The time spent by an accreting model burning hydrogen as a large star of giant dimensions versus time spent burning hydrogen as a hot dwarf is also estimated as a function of model mass and accretion rate. Finally, suggestions for detecting observational counterparts of the theoretical models and suggestions for further theoretical investigations are offered. Subject headings: stars: accretion: stars: interiors: stars: novae: stars: symbiotic: stars: white dwarfs

  9. Thermal structure of accreting neutron stars and strange stars

    International Nuclear Information System (INIS)

    Miralda-Escude, J.; Paczynski, B.; Haensel, P.

    1990-01-01

    Steady-state models of accreting neutron stars and strange stars are presented, and their properties as a function of accretion rate are analyzed. The models have steady-state envelopes, with stationary hydrogen burning taken into account, the helium shell flashes artificially suppressed, and the crust with a large number of secondary heat sources. The deep interiors are almost isothermal and are close to thermal equilibrium. A large number of models were calculated for many values of the accretion rates, with ordinary, pion-condensed, and strange cores, with and without secondary heat sources in the crust, and with the heavy element content of the accreting matter in the range Z = 0.0002-0.02. All models show a similar pattern of changes as the accretion rate is varied. For low accretion rates, the hydrogen burning shell is unstable; for intermediate rates, the hydrogen burning shell is stable, but helium burning is not; for high rates, the two shell sources burn together and are unstable. 60 refs

  10. Hydrodynamic simulations of accretion disks in cataclysmic variables

    International Nuclear Information System (INIS)

    Hirose, Masahito; Osaki, Yoji

    1990-01-01

    The tidal effects of secondary stars on accretion disks in cataclysmic variables are studied by two-dimensional hydrodynamical simulations. The time evolution of an accretion disk under a constant mass supply rate from the secondary is followed until it reaches a quasi-steady state. We have examined various cases of different mass ratios of binary systems. It is found that the accretion disk settles into a steady state of an elongated disk fixed in the rotating frame of the binary in a binary system with comparable masses of component stars. On the other hand, in the case of a low-mass secondary, the accretion disk develops a non-axisymmetric (eccentric) structure and finally settles into a periodically oscillating state in which a non-axisymmetric eccentric disk rotates in the opposite direction to the orbital motion of the binary in the rotating frame of the binary. The period of oscillation is a few percent longer than the orbital period of the binary, and it offers a natural explanation for the ''superhump'' periodicity of SU UMa stars. Our results thus confirm basically those of Whitehurst (1988, AAA 45.064.032) who discovered the tidal instability of an accretion disk in the case of a low-mass secondary. We then discuss the cause of the tidal instability. It is shown that the tidal instability of accretion disks is caused by a parametric resonance between particle orbits and an orbiting secondary star with a 1:3 period ratio. (author)

  11. On the illumination of neutron star accretion discs

    Science.gov (United States)

    Wilkins, D. R.

    2018-03-01

    The illumination of the accretion disc in a neutron star X-ray binary by X-rays emitted from (or close to) the neutron star surface is explored through general relativistic ray tracing simulations. The applicability of the canonical suite of relativistically broadened emission line models (developed for black holes) to discs around neutron stars is evaluated. These models were found to describe well emission lines from neutron star accretion discs unless the neutron star radius is larger than the innermost stable orbit of the accretion disc at 6 rg or the disc is viewed at high inclination, above 60° where shadowing of the back side of the disc becomes important. Theoretical emissivity profiles were computed for accretion discs illuminated by hotspots on the neutron star surfaces, bands of emission and emission by the entirety of the hot, spherical star surface and in all cases, the emissivity profile of the accretion disc was found to be well represented by a single power law falling off slightly steeper than r-3. Steepening of the emissivity index was found where the emission is close to the disc plane and the disc can appear truncated when illuminated by a hotspot at high latitude. The emissivity profile of the accretion disc in Serpens X-1 was measured and found to be consistent with a single unbroken power law with index q=3.5_{-0.4}^{+0.3}, suggestive of illumination by the boundary layer between the disc and neutron star surface.

  12. A 2.5-dimensional viscous, resistive, advective magnetized accretion-outflow coupling in black hole systems: a higher order polynomial approximation

    Science.gov (United States)

    Ghosh, Shubhrangshu

    2017-09-01

    The correlated and coupled dynamics of accretion and outflow around black holes (BHs) are essentially governed by the fundamental laws of conservation as outflow extracts matter, momentum and energy from the accretion region. Here we analyze a robust form of 2.5-dimensional viscous, resistive, advective magnetized accretion-outflow coupling in BH systems. We solve the complete set of coupled MHD conservation equations self-consistently, through invoking a generalized polynomial expansion in two dimensions. We perform a critical analysis of the accretion-outflow region and provide a complete quasi-analytical family of solutions for advective flows. We obtain the physically plausible outflow solutions at high turbulent viscosity parameter α (≳ 0.3), and at a reduced scale-height, as magnetic stresses compress or squeeze the flow region. We found that the value of the large-scale poloidal magnetic field B P is enhanced with the increase of the geometrical thickness of the accretion flow. On the other hand, differential magnetic torque (-{r}2{\\bar{B}}\\varphi {\\bar{B}}z) increases with the increase in \\dot{M}. {\\bar{B}}{{P}}, -{r}2{\\bar{B}}\\varphi {\\bar{B}}z as well as the plasma beta β P get strongly augmented with the increase in the value of α, enhancing the transport of vertical flux outwards. Our solutions indicate that magnetocentrifugal acceleration plausibly plays a dominant role in effusing out plasma from the radial accretion flow in a moderately advective paradigm which is more centrifugally dominated. However in a strongly advective paradigm it is likely that the thermal pressure gradient would play a more contributory role in the vertical transport of plasma.

  13. Initiation of continental accretion: metamorphic conditions

    Science.gov (United States)

    Clement, Conand; Frederic, Mouthereau; Gianreto, Manatschal; Adbeltif, Lahfid

    2017-04-01

    The physical processes involved at the beginning of the continental collision are largely unknown because they are transient and therefore hardly identifiable from the rock record. Despite the importance of key parameters for understanding mountain building processes, especially the formation of deep mountain roots and their impacts on earthquakes nucleation, rock/fluid transfers and oil/gas resources in the continental crust, observations from the earliest collision stages remain fragmentary. Here, we focus on the example of Taiwan, a young and active mountain belt where the transition from oceanic subduction, accretion of the first continental margin to mature collision can be followed in space and time. We present preliminary results and provide key questions regarding the reconstruction of time-pressure-temperature paths of rocks & fluids to allow discriminating between rift-related thermal/rheological inheritance and burial/heating phases during convergence. Previous studies have focused on peak temperatures analyzed by Raman Spectrometry of Carbonaceous Matter from the deeper structural layers exposed in the Central Range of Taiwan. In the pre-rift sediments, these studies reported a positive gradient from West to Est, and values from geothermal gradients (up to 60°C/km) known in the region, and higher temperature closer to the pre-rift units. Cross sections and maps with high resolution peak temperatures are in process as well as pressure estimations to determine how the sediments were metamorphosed. In addition to this work, we report a few inherited temperatures in the 390-570 °C range, indicating recycling of organic matter from metasediments that recorded HT events, likely originated from higher grade metamorphic units of mainland China, which have been eroded and deposited in the post-rift sediments.

  14. FORMING AN O STAR VIA DISK ACCRETION?

    International Nuclear Information System (INIS)

    Qiu Keping; Zhang Qizhou; Beuther, Henrik; Fallscheer, Cassandra

    2012-01-01

    We present a study of outflow, infall, and rotation in a ∼10 5 L ☉ star-forming region, IRAS 18360-0537, with Submillimeter Array and IRAM 30 m observations. The 1.3 mm continuum map shows a 0.5 pc dust ridge, of which the central compact part has a mass of ∼80 M ☉ and harbors two condensations, MM1 and MM2. The CO (2-1) and SiO (5-4) maps reveal a biconical outflow centered at MM1, which is a hot molecular core (HMC) with a gas temperature of 320 ± 50 K and a mass of ∼13 M ☉ . The outflow has a gas mass of 54 M ☉ and a dynamical timescale of 8 × 10 3 yr. The kinematics of the HMC are probed by high-excitation CH 3 OH and CH 3 CN lines, which are detected at subarcsecond resolution and unveil a velocity gradient perpendicular to the outflow axis, suggesting a disk-like rotation of the HMC. An infalling envelope around the HMC is evidenced by CN lines exhibiting a profound inverse P Cygni profile, and the estimated mass infall rate, 1.5 × 10 –3 M ☉ yr –1 , is well comparable to that inferred from the mass outflow rate. A more detailed investigation of the kinematics of the dense gas around the HMC is obtained from the 13 CO and C 18 O (2-1) lines; the position-velocity diagrams of the two lines are consistent with the model of a free-falling and Keplerian-like rotating envelope. The observations suggest that the protostar of a current mass ∼10 M ☉ embedded within MM1 will develop into an O star via disk accretion and envelope infall.

  15. Prediction of ice accretion and anti-icing heating power on wind turbine blades using standard commercial software

    International Nuclear Information System (INIS)

    Villalpando, Fernando; Reggio, Marcelo; Ilinca, Adrian

    2016-01-01

    An approach to numerically simulate ice accretion on 2D sections of a wind turbine blade is presented. The method uses standard commercial ANSYS-Fluent and Matlab tools. The Euler-Euler formulation is used to calculate the water impingement on the airfoil, and a UDF (Used Defined Function) has been devised to turn the airfoil's solid wall into a permeable boundary. Mayer's thermodynamic model is implemented in Matlab for computing ice thickness and for updating the airfoil contour. A journal file is executed to systematize the procedure: meshing, droplet trajectory calculation, thermodynamic model application for computing ice accretion, and the updating of airfoil contours. The proposed ice prediction strategy has been validated using iced airfoil contours obtained experimentally in the AMIL refrigerated wind tunnel (Anti-icing Materials International Laboratory). Finally, a numerical prediction method has been generated for anti-icing assessment, and its results compared with data obtained in this laboratory. - Highlights: • A methodology for ice accretion prediction using commercial software is proposed. • Euler model gives better prediction of airfoil water collection with detached flow. • A source term is used to change from a solid wall to a permeable wall in Fluent. • Energy needed for ice-accretion mitigation system is predicted.

  16. A possible origin of viscosity in Keplerian accretion disks due to secondary perturbation: Turbulent transport without magnetic fields

    International Nuclear Information System (INIS)

    Mukhopadhyay, Banibrata; Saha, Kanak

    2011-01-01

    The origin of hydrodynamic turbulence in rotating shear flow is a long standing puzzle. Resolving it is especially important in astrophysics when the flow's angular momentum profile is Keplerian which forms an accretion disk having negligible molecular viscosity. Hence, any viscosity in such systems must be due to turbulence, arguably governed by magnetorotational instability, especially when temperature T > or approx. 10 5 . However, such disks around quiescent cataclysmic variables, protoplanetary and star-forming disks, and the outer regions of disks in active galactic nuclei are practically neutral in charge because of their low temperature, and thus are not expected to be coupled with magnetic fields enough to generate any transport due to the magnetorotational instability. This flow is similar to plane Couette flow including the Coriolis force, at least locally. What drives their turbulence and then transport, when such flows do not exhibit any unstable mode under linear hydrodynamic perturbation? We demonstrate that the three-dimensional secondary disturbance to the primarily perturbed flow that triggers elliptical instability may generate significant turbulent viscosity in the range 0.0001 ∼ t ∼< 0.1, which can explain transport in accretion flows.

  17. Perils at the heart of the Milky Way: Systematic effects for studying low-luminosity accretion onto Sgr A*

    Science.gov (United States)

    Corrales, Lia; Mon, Brayden; Haggard, Daryl; Baganoff, Frederick K.; Garmire, Gordon; Degenaar, Nathalie; Reynolds, Mark

    2017-08-01

    The supermassive black hole at the center of our galaxy, Sgr A*, is surprisingly under-luminous. This problem has motivated a host of theoretical models to explain low-level radiatively inefficient accretion flows onto compact objects. We discuss how the Galactic Center sight line, which is optically thick to the scattering of soft X-rays (tau ~ 5), affects high resolution studies of the accretion flow around Sgr A*. X-ray light from compact objects in the dense GC environment is scattered by foreground dust, producing scattering echoes that are time delayed relative to the X-ray source's light curve. We discuss the scattering halo of SWIFT J174540.7-290015, which underwent the brightest X-ray outburst within 30’' of Sgr A*. Preliminary fits to the scattering halo suggest that a small amount of foreground dust, within 250 pc of the GC, affects the X-ray surface brightness profile within 10’' of any GC point source. The associated time delay is on the order of several hours, which is important for understanding the quiescent accretion flow of Sgr A*. We take advantage of the Chandra Galactic Center XVP dataset to explore the effect of the interstellar medium on the inferred characteristics of Sgr A*.

  18. Simulation of incompressible flows with heat and mass transfer using parallel finite element method

    Directory of Open Access Journals (Sweden)

    Jalal Abedi

    2003-02-01

    Full Text Available The stabilized finite element formulations based on the SUPG (Stream-line-Upwind/Petrov-Galerkin and PSPG (Pressure-Stabilization/Petrov-Galerkin methods are developed and applied to solve buoyancy-driven incompressible flows with heat and mass transfer. The SUPG stabilization term allows us to solve flow problems at high speeds (advection dominant flows and the PSPG term eliminates instabilities associated with the use of equal order interpolation functions for both pressure and velocity. The finite element formulations are implemented in parallel using MPI. In parallel computations, the finite element mesh is partitioned into contiguous subdomains using METIS, which are then assigned to individual processors. To ensure a balanced load, the number of elements assigned to each processor is approximately equal. To solve nonlinear systems in large-scale applications, we developed a matrix-free GMRES iterative solver. Here we totally eliminate a need to form any matrices, even at the element levels. To measure the accuracy of the method, we solve 2D and 3D example of natural convection flows at moderate to high Rayleigh numbers.

  19. A New Two-fluid Radiation-hydrodynamical Model for X-Ray Pulsar Accretion Columns

    Energy Technology Data Exchange (ETDEWEB)

    West, Brent F. [Department of Electrical and Computer Engineering, United States Naval Academy, Annapolis, MD (United States); Wolfram, Kenneth D. [Naval Research Laboratory (retired), Washington, DC (United States); Becker, Peter A., E-mail: bwest@usna.edu, E-mail: kswolfram@gmail.com, E-mail: pbecker@gmu.edu [Department of Physics and Astronomy, George Mason University, Fairfax, VA USA (United States)

    2017-02-01

    Previous research centered on the hydrodynamics in X-ray pulsar accretion columns has largely focused on the single-fluid model, in which the super-Eddington luminosity inside the column decelerates the flow to rest at the stellar surface. This type of model has been relatively successful in describing the overall properties of the accretion flows, but it does not account for the possible dynamical effect of the gas pressure. On the other hand, the most successful radiative transport models for pulsars generally do not include a rigorous treatment of the dynamical structure of the column, instead assuming an ad hoc velocity profile. In this paper, we explore the structure of X-ray pulsar accretion columns using a new, self-consistent, “two-fluid” model, which incorporates the dynamical effect of the gas and radiation pressures, the dipole variation of the magnetic field, the thermodynamic effect of all of the relevant coupling and cooling processes, and a rigorous set of physical boundary conditions. The model has six free parameters, which we vary in order to approximately fit the phase-averaged spectra in Her X-1, Cen X-3, and LMC X-4. In this paper, we focus on the dynamical results, which shed new light on the surface magnetic field strength, the inclination of the magnetic field axis relative to the rotation axis, the relative importance of gas and radiation pressures, and the radial variation of the ion, electron, and inverse-Compton temperatures. The results obtained for the X-ray spectra are presented in a separate paper.

  20. Probing the Jet Turnover Frequency Dependence on Mass and Mass Accretion Rate

    Science.gov (United States)

    Hammerstein, Erica; Gültekin, Kayhan; King, Ashley

    2018-01-01

    We have examined a sample of 15 sub-Eddington supermassive black holes (SMBHs) in a variety of galaxy classifications to further understand the proposed fundamental plane of black hole activity and scaling relations between black hole masses and their radio and X-ray luminosities. This plane describes black holes from stellar-mass to supermassive. The physics probed by these sub-Eddington systems is thought to be a radiatively inefficient, jet-dominated accretion flow. By studying black holes in this regime, we can learn important information on the disk-jet connection for accreting black holes.A key factor in studying the fundamental plane is the turnover frequency — the frequency at which emission transitions from optically thick at lower frequencies to optically thin at higher frequencies. This turnover point can be measured by observing the source in both radio and X-ray. Our project aims to test the dependence of the turnover frequency on mass and mass accretion rate.Radio observations of the sample were obtained using the Karl G. Jansky Very Large Array (VLA) in the range of 5-40 GHz across four different frequency bands in A configuration to give the highest spatial resolution to focus on the core emission. Our carefully chosen sample of SMBHs with dynamically measured masses consists of two sub-samples: those with approximately constant mass accretion rate (LX/LEdd ~ 10‑7) and those with approximately constant mass (MBH ~ 108 Msun). X-ray data were obtained from archival Chandra observations. To find the turnover frequency, we used Markov Chain Monte Carlo methods to fit two power laws to the radio data and the archival X-ray data. The intersection of the radio and X-ray fits is the turnover frequency.We present the results for both subsamples of SMBHs and their relationship between the turnover frequency and X-ray luminosity, which we take to scale with mass accretion rate, and jet power derived from both radio and X-ray properties.

  1. Study of the high energy emission of accreting compact objects with SPI/INTEGRAL

    International Nuclear Information System (INIS)

    Droulans, R.

    2011-01-01

    The study of the high energy emission is essential for understanding the radiative processes inherent to accretion flows onto compact objects (black holes and neutron stars). The X/γ-ray continuum of these systems is successfully interpreted in terms of two components. The first component corresponds to blackbody emission from a geometrically thin optically thick accretion disk while the second component is generally associated to Compton scattering of the thermal disk flux off hot electrons. Despite considerable advances throughout the years, the heating mechanisms as well as the structure of the hot Comptonizing plasma remain poorly understood. In order to shed light on the physical processes that govern the innermost regions of the accretion flow, we take advantage of the data archive accumulated by the SPI instrument, a high energy spectrometer (20 keV - 8 MeV) developed at the CESR (now IRAP, Toulouse, France) for the INTEGRAL mission. Above 150 keV, SPI combines a unique spectral resolution with unequalled sensitivity, being thus an ideal tool to study the high energy emission of accreting compact objects. The thesis manuscript reports on the results of timing and spectral studies of three particular systems. First, I address the high energy emission of the enigmatic micro-quasar GRS 1915+105, a source characterized by colossal luminosity and strong chaotic variability in X-rays. On a timescale of about one day, the photon index of the 20 - 200 keV spectrum varies between 2.7 and 3.5; at higher energies (≥150 keV), SPI unveils the systematic presence of an additional emission component, extending without folding energy up to ∼ 500 keV. Second, I study the high energy emission of GX 339-4, a source whose spectral properties are representative of black hole transients. The spectrum of the luminous hard state of this system shows a variable high energy tail (≥150 keV), with significant flux changes on a short timescale (several hours). I explain the

  2. MIGRATION OF EXTRASOLAR PLANETS: EFFECTS FROM X-WIND ACCRETION DISKS

    International Nuclear Information System (INIS)

    Adams, Fred C.; Cai, Mike J.; Lizano, Susana

    2009-01-01

    Magnetic fields are dragged in from the interstellar medium during the gravitational collapse that forms star/disk systems. Consideration of mean field magnetohydrodynamics in these disks shows that magnetic effects produce sub-Keplerian rotation curves and truncate the inner disk. This Letter explores the ramifications of these predicted disk properties for the migration of extrasolar planets. Sub-Keplerian flow in gaseous disks drives a new migration mechanism for embedded planets and modifies the gap-opening processes for larger planets. This sub-Keplerian migration mechanism dominates over Type I migration for sufficiently small planets (m P ∼ + ) and/or close orbits (r ∼< 1 AU). Although the inclusion of sub-Keplerian torques shortens the total migration time by only a moderate amount, the mass accreted by migrating planetary cores is significantly reduced. Truncation of the inner disk edge (for typical system parameters) naturally explains final planetary orbits with periods P ∼ 4 days. Planets with shorter periods, P ∼ 2 days, can be explained by migration during FU-Orionis outbursts, when the mass accretion rate is high and the disk edge moves inward. Finally, the midplane density is greatly increased at the inner truncation point of the disk (the X-point); this enhancement, in conjunction with continuing flow of gas and solids through the region, supports the in situ formation of giant planets.

  3. LUNAR ACCRETION FROM A ROCHE-INTERIOR FLUID DISK

    Energy Technology Data Exchange (ETDEWEB)

    Salmon, Julien; Canup, Robin M., E-mail: julien@boulder.swri.edu, E-mail: robin@boulder.swri.edu [Department of Space Studies, Southwest Research Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80302 (United States)

    2012-11-20

    We use a hybrid numerical approach to simulate the formation of the Moon from an impact-generated disk, consisting of a fluid model for the disk inside the Roche limit and an N-body code to describe accretion outside the Roche limit. As the inner disk spreads due to a thermally regulated viscosity, material is delivered across the Roche limit and accretes into moonlets that are added to the N-body simulation. Contrary to an accretion timescale of a few months obtained with prior pure N-body codes, here the final stage of the Moon's growth is controlled by the slow spreading of the inner disk, resulting in a total lunar accretion timescale of {approx}10{sup 2} years. It has been proposed that the inner disk may compositionally equilibrate with the Earth through diffusive mixing, which offers a potential explanation for the identical oxygen isotope compositions of the Earth and Moon. However, the mass fraction of the final Moon that is derived from the inner disk is limited by resonant torques between the disk and exterior growing moons. For initial disks containing <2.5 lunar masses (M{sub Last-Quarter-Moon }), we find that a final Moon with mass > 0.8 M{sub Last-Quarter-Moon} contains {<=}60% material derived from the inner disk, with this material preferentially delivered to the Moon at the end of its accretion.

  4. Accretion disk emission from a BL Lacertae object

    International Nuclear Information System (INIS)

    Wandel, A.; Urry, C.M.

    1991-01-01

    It is suggested here that the UV and X-ray emission of BL Lac objects may originate in an accretion disk. Using detailed calculations of accretion disk spectra, the best-measured ultraviolet and soft X-ray spectra of the BL Lac object PKS 2155-304 are fitted, and the mass and accretion rate required is determined. The ultraviolet through soft X-ray continuum is well fitted by the spectrum of an accretion disk, but near-Eddington accretion rates are required to produce the soft X-ray excess. A hot disk or corona could Comptonize soft photons from the cool disk and produce the observed power-law spectrum in the 1-10 keV range. The dynamic time scale in the disk regions that contribute most of the observed ultraviolet and soft X-ray photons are consistent with the respective time scales for intensity variations observed in these two wave bands; the mass derived from fitting the continuum spectrum is consistent with the limit derived from the fastest hard X-ray variability. 37 refs

  5. Hydrogen and helium shell burning during white dwarf accretion

    Science.gov (United States)

    Cui, Xiao; Meng, Xiang-Cun; Han, Zhan-Wen

    2018-05-01

    Type Ia supernovae (SNe Ia) are believed to be thermonuclear explosions of carbon oxygen (CO) white dwarfs (WDs) with masses close to the Chandrasekhar mass limit. How a CO WD accretes matter and grows in mass to this limit is not well understood, hindering our understanding of SN Ia explosions and the reliability of using SNe Ia as a cosmological distance indicator. In this work, we employed the stellar evolution code MESA to simulate the accretion process of hydrogen-rich material onto a 1.0 M ⊙ CO WD at a high rate (over the Eddington limit) of 4.3 × 10‑7 M ⊙ yr‑1. The simulation demonstrates the characteristics of the double shell burning on top of the WD, with a hydrogen shell burning on top of a helium burning shell. The results show that helium shell burning is not steady (i.e. it flashes). Flashes from the helium shell are weaker than those in the case of accretion of helium-rich material onto a CO WD. The carbon to oxygen mass ratio resulting from the helium shell burning is higher than what was previously thought. Interestingly, the CO WD growing due to accretion has an outer part containing a small fraction of helium in addition to carbon and oxygen. The flashes become weaker and weaker as the accretion continues.

  6. AN ENERGETIC AGN OUTBURST POWERED BY A RAPIDLY SPINNING SUPERMASSIVE BLACK HOLE OR AN ACCRETING ULTRAMASSIVE BLACK HOLE

    International Nuclear Information System (INIS)

    McNamara, B. R.; Kazemzadeh, F.; Kirkpatrick, C. C.; Rafferty, D. A.; Birzan, L.; Nulsen, P. E. J.; Wise, M. W.

    2009-01-01

    Powering the 10 62 erg nuclear outburst in the MS0735.6+7421 cluster central galaxy by accretion with a 10% mass-to-energy conversion efficiency implies that its putative supermassive black hole (SMBH) grew by ∼6 x 10 8 M sun over the past 100 Myr. Guided by data at several wavelengths, we place upper limits on the amount of cold gas and star formation near the nucleus of 9 M sun and sun yr -1 , respectively. These limits imply that an implausibly large fraction of the preexisting cold gas in the inner several kpc must have been consumed by its SMBH at the rate of ∼3-5 M sun yr -1 during the past 100 Myr while leaving no trace of star formation. Such a high accretion rate would be difficult to maintain by stellar accretion or the Bondi mechanism, unless the black hole mass approaches 10 11 M sun . Furthermore, its feeble nuclear luminosities in the UV, I, and X-ray bands compared to its enormous mechanical power are inconsistent with rapid accretion onto a ∼5 x 10 9 M sun black hole. We suggest instead that the active galactic nucleus (AGN) outburst is powered by angular momentum released from a rapidly spinning black hole. The rotational energy and power available from a spinning black hole are consistent with the cavity and shock energetics inferred from X-ray observations. A maximally spinning 10 9 M sun black hole contains enough rotational energy, ∼10 62 erg, to quench a cooling flow over its lifetime and to contribute significantly to the excess entropy found in the hot atmospheres of groups and clusters. Two modes of AGN feedback may be quenching star formation in elliptical galaxies centered in cooling halos at late times. An accretion mode that operates in gas-rich systems, and a spin mode operating at modest accretion rates. The spin conjecture may be avoided in MS0735 by appealing to Bondi accretion onto a central black hole whose mass greatly exceeds 10 10 M sun . The host galaxy's unusually large 3.8 kpc stellar core radius (light deficit) may

  7. Accretion and ejection in resistive GR-MHD

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Qian

    2017-05-10

    In this thesis, the accretion and ejection processes from a black hole accretion system is investigated by means of resistive general relativistic magnetohydrodynamic simulations. As a supplement to the results from prior research with non-relativistic simulations, my results confirm that the winds and outflows originated from thin accretion disks can also be observed in general relativistic simulations. In the first part, the execution of the implementation of resistivity, namely magnetic diffusivity, into the existing non-resistive general relativistic magnetohydrodynamic code HARM is illustrated. The test simulations of the new code rHARM include the comparison with analytical solution of the diffusion equation and a classic shock tube test. rHARM shows reliable performances in these tests. In the second part, rHARM is applied to investigate the evolution of magnetized tori. The results show that the existence of resistivity leads to inefficient accretions of matter from tori onto black holes by weakening the magnetorotational instability inside the tori. An indication for a critical magnetic diffusivity in this simulation setup is found beyond which no magnetorotational instability develops in the linear regime. In the third part, as the main purpose of this PhD project, rHARM is used to perform simulations of magnetically diffusive thin accretion disks that are threaded by a large-scale poloidal magnetic field around non-rotating and rotating black holes. These long-term simulations last 3000 code time units, which are about 195 rotation periods at the disk inner boundary, correspondingly. Their computational domains extend from black hole horizon to 80 Schwarzschild radii. Outflows driven from the accretion disk are clearly seen. These outflows have the typical radial velocity of 0.1 speed of light. In my analyses, I argue that these outflows are driven by the magnetic pressure gradient from the toroidal magnetic field generated by the rotation of the disk

  8. Accretion onto a noncommutative-inspired Schwarzschild black hole

    Science.gov (United States)

    Gangopadhyay, Sunandan; Paik, Biplab; Mandal, Rituparna

    2018-05-01

    In this paper, we investigate the problem of ordinary baryonic matter accretion onto the noncommutative (NC) geometry-inspired Schwarzschild black hole. The fundamental equations governing the spherically symmetric steady state matter accretion are deduced. These equations are seen to be modified due to the presence of noncommutativity. The matter accretion rate is computed and is found to increase rapidly with the increase in strength of the NC parameter. The sonic radius reduces while the sound speed at the sonic point increases with the increase in the strength of noncommutativity. The profile of the thermal environment is finally investigated below the sonic radius and at the event horizon and is found to be affected by noncommutativity.

  9. Holocene reef accretion: southwest Molokai, Hawaii, U.S.A.

    Science.gov (United States)

    Engels, Mary S.; Fletcher, Charles H.; Field, Michael E.; Storlazzi, Curt D.; Grossman, Eric E.; Rooney, John J.B.; Conger, Christopher L.; Glenn, Craig

    2004-01-01

    Two reef systems off south Molokai, Hale O Lono and Hikauhi (separated by only 10 km), show strong and fundamental differences in modern ecosystem structure and Holocene accretion history that reflect the influence of wave-induced near-bed shear stresses on reef development in Hawaii. Both sites are exposed to similar impacts from south, Kona, and trade-wind swell. However, the Hale O Lono site is exposed to north swell and the Hikuahi site is not. As a result, the reef at Hale O Lono records no late Holocene net accretion while the reef at Hikauhi records consistent and robust accretion over late Holocene time. Analysis and dating of 24 cores from Hale O Lono and Hikauhi reveal the presence of five major lithofacies that reflect paleo-environmental conditions. In order of decreasing depositional energy they are: (1) coral-algal bindstone; (2) mixed skeletal rudstone; (3) massive coral framestone; (4) unconsolidated floatstone; and (5) branching coral framestone-bafflestone. At Hale O Lono, 10 cores document a backstepping reef ranging from ∼ 8,100 cal yr BP (offshore) to ∼ 4,800 cal yr BP (nearshore). A depauperate community of modern coral diminishes shoreward and seaward of ∼ 15 m depth due to wave energy, disrupted recruitment activities, and physical abrasion. Evidence suggests a change from conditions conducive to accretion during the early Holocene to conditions detrimental to accretion in the late Holocene. Reef structure at Hikauhi, reconstructed from 14 cores, reveals a thick, rapidly accreting and young reef (maximum age ∼ 900 cal yr BP). Living coral cover on this reef increases seaward with distance from the reef crest but terminates at a depth of ∼ 20 m where the reef ends in a large sand field. The primary limitation on vertical reef growth is accommodation space under wave base, not recruitment activities or energy conditions. Interpretations of cored lithofacies suggest that modern reef growth on the southwest corner of Molokai, and by

  10. Evidence of Accretion in Saturn's F Ring (Invited)

    Science.gov (United States)

    Agnor, C. B.; Buerle, K.; Murray, C. D.; Evans, M. W.; Cooper, N. J.; Williams, G. W.

    2010-12-01

    Lying slightly outside the classical Roche radius and being strongly perturbed by the adjacent moons Prometheus and Pandora, Saturn's F ring represents a unique astrophysical laboratory for examining the processes of mass accretion and moonlet formation. Recent images from the Cassini spacecraft reveal optically thick clumps, capable of casting shadows, and associated structures in regions of the F ring following close passage by Prometheus. Here we examine the accretion environment of the F ring and Prometheus' role in moonlet formation and evolution. Using the observed structures adjacent to these clumps and dynamical arguments we estimate the masses of these clumps and find them comparable to that of ~10-20-km contiguous moonlets. Further, we show that Prometheus' perturbations on the F ring create regions of enhanced density and low relative velocity that may accelerate the accretion of clumps and moonlets.

  11. Accretion disc boundary layers - geometrically and optically thin case

    International Nuclear Information System (INIS)

    Regev, Oded; Hougerat, A.A.

    1988-01-01

    The method of matched asymptotic expansions is applied to an optically and geometrically thin boundary layer between an accretion disc and the accreting star. Analytical solutions are presented for a particular viscosity prescription in the boundary layer. For a typical example we find that the disc closely resembles standard steady-disc theory. It is identical to it everywhere save a narrow boundary layer, where the temperature increases rapidly inward (by an order of magnitude), the angular velocity achieves maximum and decreases to its surface value and other variables also undergo rapid changes. This and previous work can now be used to calculate the emission from accretion discs including the boundary layers for a wide range of parameters. (author)

  12. Hot accretion disks with electron-positron pairs

    International Nuclear Information System (INIS)

    White, T.R.; Lightman, A.P.

    1989-01-01

    The hot thermal accretion disks of the 1970s are studied and consideration is given to the effects of electron-positron pairs, which were originally neglected. It is found that disks cooled by internally produced photons have a critical accretion rate above which equilibrium is not possible in a radial annulus centered around r = 10 GM/c-squared, where M is the mass of the central object. This confirms and extends previous work by Kusunose and Takahara. Above the critical rate, pairs are created more rapidly than they can be destroyed. Below the critical rate, there are two solutions to the disk structure, one with a high pair density and one with a low pair density. Depending on the strength of the viscosity, the critical accretion rate corresponds to a critical luminosity of about 3-10 percent of the Eddington limit. 32 refs

  13. Observations of Accreting Pulsars with the FERMI-GBM

    Science.gov (United States)

    Wilson-Hodge, Colleen

    2012-01-01

    The Gamma-ray Burst Monitor (GBM) on-board Fermi comprises 12 NaI detectors spanning the 8-1000 keV band and 2 BGO detectors spanning the 100 keV to 40 MeV band. These detectors view the entire unocculted sky, providing long (approximately 40 ks/day) observations of accreting pulsars daily, which allow long-term monitoring of spin-frequencies and pulsed uxes via epoch-folded searches plus daily blind searches for new pulsars. Phase averaged uxes can be measured using the Earth occultation technique. In this talk I will present highlights of GBM accretion-powered pulsar monitoring such as the discovery of a torque reversal in 4U1626-67, a high-energy QPO in A0535+26, and evidence for a stable accretion disk in OAO 1657-415.

  14. The Hikurangi Plateau: Tectonic Ricochet and Accretion

    Science.gov (United States)

    Willis, David; Moresi, Louis; Betts, Peter; Whittaker, Joanne

    2015-04-01

    80 million years between interactions with different subduction systems provided time for the Hikurangi Plateau and Pacific Ocean lithosphere to cool, densify and strengthen. Neogene subduction of the Hikurangi Plateau occurring orthogonal to its Cretaceous predecessor, provides a unique opportunity to explore how changes to the physical properties of oceanic lithosphere affect subduction dynamics. We used Underworld to build mechanically consistent collision models to understand the dynamics of the two Hikurangi collisions. The Hikurangi Plateau is a ~112 Ma, 15km thick oceanic plateau that has been entrained by subduction zones immediately preceding the final break-up of Eastern Gondwana and currently within the active Hikurangi Margin. We explore why attempted subduction of the plateau has resulted in vastly different dynamics on two separate occasions. Slab break-off occured during the collision with Gondwana, currently there is apparent subduction of the plateau underneath New Zealand. At ~100Ma the young, hot Hikurangi Plateau, positively buoyant with respect to the underlying mantle, impacted a Gondwana Margin under rapid extension after the subduction of an mid-ocean ridge 10-15Ma earlier. Modelling of plateaus within young oceanic crust indicates that subduction of the thickened crust was unlikely to occur. Frontal accretion of the plateau and accompanying slab break-off is expected to have occured rapidly after its arrival. The weak, young slab was susceptible to lateral propagation of the ~1500 km window opened by the collision, and break-off would have progressed along the subduction zone inhibiting the "step-back" of the trench seen in older plates. Slab break-off coincided with a world-wide reorganisation of plate velocites, and orogenic collapse along the Gondwana margin characterised by rapid extension and thinning of the over-riding continental plate from ~60 to 30km. Following extension, Zealandia migrated to the NW until the Miocene allowing the

  15. Increases to Inferred Rates of Planetesimal Accretion due to Thermohaline Mixing in Metal-accreting White Dwarfs

    Science.gov (United States)

    Bauer, Evan B.; Bildsten, Lars

    2018-06-01

    Many isolated, old white dwarfs (WDs) show surprising evidence of metals in their photospheres. Given that the timescale for gravitational sedimentation is astronomically short, this is taken as evidence for ongoing accretion, likely of tidally disrupted planetesimals. The rate of such accretion, {\\dot{M}}acc}, is important to constrain, and most modeling of this process relies on assuming an equilibrium between diffusive sedimentation and metal accretion supplied to the WD’s surface convective envelope. Building on the earlier work of Deal and collaborators, we show that high {\\dot{M}}acc} models with only diffusive sedimentation are unstable to thermohaline mixing and that models that account for the enhanced mixing from the active thermohaline instability require larger accretion rates, sometimes reaching {\\dot{M}}acc}≈ {10}13 {{g}} {{{s}}}-1 to explain observed calcium abundances. We present results from a grid of MESA models that include both diffusion and thermohaline mixing. These results demonstrate that both mechanisms are essential for understanding metal pollution across the range of polluted WDs with hydrogen atmospheres. Another consequence of active thermohaline mixing is that the observed metal abundance ratios are identical to accreted material.

  16. ACCRETION KINEMATICS THROUGH THE WARPED TRANSITION DISK IN HD 142527 FROM RESOLVED CO(6–5) OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Casassus, S.; Marino, S.; Pérez, S.; Plas, G. van der; Christiaens, V.; Montesinos, Matías [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile); Roman, P.; Dunhill, A.; Cuadra, J.; Cieza, L.; Moral, Victor [Millennium Nucleus “Protoplanetary Disks,” Chile (Chile); Armitage, P. J. [JILA, University of Colorado and NIST, UCB 440, Boulder, CO 80309 (United States); Wootten, A., E-mail: scasassus@u.uchile.cl [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903-2475 (United States)

    2015-10-01

    The finding of residual gas in the large central cavity of the HD 142527 disk motivates questions regarding the origin of its non-Keplerian kinematics and possible connections with planet formation. We aim to understand the physical structure that underlies the intra-cavity gaseous flows, guided by new molecular-line data in CO(6–5) with unprecedented angular resolutions. Given the warped structure inferred from the identification of scattered-light shadows cast on the outer disk, the kinematics are consistent, to first order, with axisymmetric accretion onto the inner disk occurring at all azimuths. A steady-state accretion profile, fixed at the stellar accretion rate, explains the depth of the cavity as traced in CO isotopologues. The abrupt warp and evidence for near free-fall radial flows in HD 142527 resemble theoretical models for disk tearing, which could be driven by the reported low-mass companion, whose orbit may be contained in the plane of the inner disk. The companion’s high inclination with respect to the massive outer disk could drive Kozai oscillations over long timescales; high-eccentricity periods may perhaps account for the large cavity. While shadowing by the tilted disk could imprint an azimuthal modulation in the molecular-line maps, further observations are required to ascertain the significance of azimuthal structure in the density field inside the cavity of HD 142527.

  17. How cores grow by pebble accretion. I. Direct core growth

    Science.gov (United States)

    Brouwers, M. G.; Vazan, A.; Ormel, C. W.

    2018-03-01

    Context. Planet formation by pebble accretion is an alternative to planetesimal-driven core accretion. In this scenario, planets grow by the accretion of cm- to m-sized pebbles instead of km-sized planetesimals. One of the main differences with planetesimal-driven core accretion is the increased thermal ablation experienced by pebbles. This can provide early enrichment to the planet's envelope, which influences its subsequent evolution and changes the process of core growth. Aims: We aim to predict core masses and envelope compositions of planets that form by pebble accretion and compare mass deposition of pebbles to planetesimals. Specifically, we calculate the core mass where pebbles completely evaporate and are absorbed before reaching the core, which signifies the end of direct core growth. Methods: We model the early growth of a protoplanet by calculating the structure of its envelope, taking into account the fate of impacting pebbles or planetesimals. The region where high-Z material can exist in vapor form is determined by the temperature-dependent vapor pressure. We include enrichment effects by locally modifying the mean molecular weight of the envelope. Results: In the pebble case, three phases of core growth can be identified. In the first phase (Mcore mixes outwards, slowing core growth. In the third phase (Mcore > 0.5M⊕), the high-Z inner region expands outwards, absorbing an increasing fraction of the ablated material as vapor. Rainout ends before the core mass reaches 0.6 M⊕, terminating direct core growth. In the case of icy H2O pebbles, this happens before 0.1 M⊕. Conclusions: Our results indicate that pebble accretion can directly form rocky cores up to only 0.6 M⊕, and is unable to form similarly sized icy cores. Subsequent core growth can proceed indirectly when the planet cools, provided it is able to retain its high-Z material.

  18. Universal subhalo accretion in cold and warm dark matter cosmologies

    Science.gov (United States)

    Kubik, Bogna; Libeskind, Noam I.; Knebe, Alexander; Courtois, Hélène; Yepes, Gustavo; Gottlöber, Stefan; Hoffman, Yehuda

    2017-12-01

    The influence of the large-scale structure on host haloes may be studied by examining the angular infall pattern of subhaloes. In particular, since warm dark matter (WDM) and cold dark matter (CDM) cosmologies predict different abundances and internal properties for haloes at the low-mass end of the mass function, it is interesting to examine if there are differences in how these low-mass haloes are accreted. The accretion events are defined as the moment a halo becomes a substructure, namely when it crosses its host's virial radius. We quantify the cosmic web at each point by the shear tensor and examine where, with respect to its eigenvectors, such accretion events occur in ΛCDM and ΛWDM (1 keV sterile neutrino) cosmological models. We find that the CDM and WDM subhaloes are preferentially accreted along the principal axis of the shear tensor corresponding to the direction of weakest collapse. The beaming strength is modulated by the host and subhalo masses and by the redshift at which the accretion event occurs. Although strongest for the most massive hosts and subhaloes at high redshift, the preferential infall is found to be always aligned with the axis of weakest collapse, thus we say that it has universal nature. We compare the strength of beaming in the ΛWDM cosmology with the one found in the ΛCDM scenario. While the main findings remain the same, the accretion in the ΛWDM model for the most massive host haloes appears more beamed than in ΛCDM cosmology across all the redshifts.

  19. Mass-Accretion effects on white dwarf interiors

    International Nuclear Information System (INIS)

    Canal, R.; Hernanz, M.; Isern, J.; Labay, J.; Mochkovitch, R.

    1986-01-01

    There is observational evidence of the presence of young neutron stars in old binary systems. A likely explanation is that those neutron stars were produced in the collapse of old C+O white dwarfs. Old white dwarfs being cold and at least partially solid, accretion-induced mass growth should finally lead in a number of cases, to their collapse rather than to their explosion. We show in detail how mass accretion on initially solid white dwarfs can leave central solid cores when dynamical instability sets in. We also study the different effects of the existence of such cores on the outcome of the competition between thermonuclear explosion and gravitational collapse

  20. SURPRISINGLY WEAK MAGNETISM ON YOUNG ACCRETING BROWN DWARFS

    International Nuclear Information System (INIS)

    Reiners, A.; Basri, G.; Christensen, U. R.

    2009-01-01

    We have measured the surface magnetic flux on four accreting young brown dwarfs and one nonaccreting young very low mass (VLM) star utilizing high-resolution spectra of absorption lines of the FeH molecule. A magnetic field of 1-2 kG had been proposed for one of the brown dwarfs, Two Micron All Sky Survey (2MASS) J1207334-393254, because of its similarities to higher mass T Tauri stars as manifested in accretion and the presence of a jet. We do not find clear evidence for a kilogauss field in any of our young brown dwarfs but do find a 2 kG field on the young VLM star. Our 3σ upper limit for the magnetic flux in 2MASS J1207334-393254 just reaches 1 kG. We estimate the magnetic field required for accretion in young brown dwarfs given the observed rotations, and find that fields of only a few hundred gauss are sufficient for magnetospheric accretion. This predicted value is less than our observed upper limit. We conclude that magnetic fields in young brown dwarfs are a factor of 5 or more lower than in young stars of about one solar mass, and in older stars with spectral types similar to our young brown dwarfs. It is interesting that, during the first few million years, the fields scale down with mass in line with what is needed for magnetospheric accretion, yet no such scaling is observed at later ages within the same effective temperature range. This scaling is opposite to the trend in rotation, with shorter rotation periods for very young accreting brown dwarfs compared with accreting solar-mass objects (and very low Rossby numbers in all cases). We speculate that in young objects a deeper intrinsic connection may exist between magnetospheric accretion and magnetic field strength, or that magnetic field generation in brown dwarfs may be less efficient than in stars. Neither of these currently has an easy physical explanation.

  1. Accretion onto some well-known regular black holes

    International Nuclear Information System (INIS)

    Jawad, Abdul; Shahzad, M.U.

    2016-01-01

    In this work, we discuss the accretion onto static spherically symmetric regular black holes for specific choices of the equation of state parameter. The underlying regular black holes are charged regular black holes using the Fermi-Dirac distribution, logistic distribution, nonlinear electrodynamics, respectively, and Kehagias-Sftesos asymptotically flat regular black holes. We obtain the critical radius, critical speed, and squared sound speed during the accretion process near the regular black holes. We also study the behavior of radial velocity, energy density, and the rate of change of the mass for each of the regular black holes. (orig.)

  2. Accretion outbursts in self-gravitating protoplanetary disks

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Jaehan; Hartmann, Lee [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48105 (United States); Zhu, Zhaohuan [Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Peyton Hall, Princeton, NJ 08544 (United States); Nelson, Richard P., E-mail: jaehbae@umich.edu, E-mail: lhartm@umich.edu, E-mail: zhuzh@astro.princeton.edu, E-mail: r.p.nelson@qmul.ac.uk [Astronomy Unit, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom)

    2014-11-01

    We improve on our previous treatments of the long-term evolution of protostellar disks by explicitly solving disk self-gravity in two dimensions. The current model is an extension of the one-dimensional layered accretion disk model of Bae et al. We find that gravitational instability (GI)-induced spiral density waves heat disks via compressional heating (i.e., PdV work), and can trigger accretion outbursts by activating the magnetorotational instability (MRI) in the magnetically inert disk dead zone. The GI-induced spiral waves propagate well inside of the gravitationally unstable region before they trigger outbursts at R ≲ 1 AU where GI cannot be sustained. This long-range propagation of waves cannot be reproduced with the previously used local α treatments for GI. In our standard model where zero dead-zone residual viscosity (α{sub rd}) is assumed, the GI-induced stress measured at the onset of outbursts is locally as large as 0.01 in terms of the generic α parameter. However, as suggested in our previous one-dimensional calculations, we confirm that the presence of a small but finite α{sub rd} triggers thermally driven bursts of accretion instead of the GI + MRI-driven outbursts that are observed when α{sub rd} = 0. The inclusion of non-zero residual viscosity in the dead zone decreases the importance of GI soon after mass feeding from the envelope cloud ceases. During the infall phase while the central protostar is still embedded, our models stay in a 'quiescent' accretion phase with M-dot {sub acc}∼10{sup −8}--10{sup −7} M{sub ⊙} yr{sup −1} over 60% of the time and spend less than 15% of the infall phase in accretion outbursts. While our models indicate that episodic mass accretion during protostellar evolution can qualitatively help explain the low accretion luminosities seen in most low-mass protostars, detailed tests of the mechanism will require model calculations for a range of protostellar masses with some constraint on the

  3. Accretion outbursts in self-gravitating protoplanetary disks

    International Nuclear Information System (INIS)

    Bae, Jaehan; Hartmann, Lee; Zhu, Zhaohuan; Nelson, Richard P.

    2014-01-01

    We improve on our previous treatments of the long-term evolution of protostellar disks by explicitly solving disk self-gravity in two dimensions. The current model is an extension of the one-dimensional layered accretion disk model of Bae et al. We find that gravitational instability (GI)-induced spiral density waves heat disks via compressional heating (i.e., PdV work), and can trigger accretion outbursts by activating the magnetorotational instability (MRI) in the magnetically inert disk dead zone. The GI-induced spiral waves propagate well inside of the gravitationally unstable region before they trigger outbursts at R ≲ 1 AU where GI cannot be sustained. This long-range propagation of waves cannot be reproduced with the previously used local α treatments for GI. In our standard model where zero dead-zone residual viscosity (α rd ) is assumed, the GI-induced stress measured at the onset of outbursts is locally as large as 0.01 in terms of the generic α parameter. However, as suggested in our previous one-dimensional calculations, we confirm that the presence of a small but finite α rd triggers thermally driven bursts of accretion instead of the GI + MRI-driven outbursts that are observed when α rd = 0. The inclusion of non-zero residual viscosity in the dead zone decreases the importance of GI soon after mass feeding from the envelope cloud ceases. During the infall phase while the central protostar is still embedded, our models stay in a 'quiescent' accretion phase with M-dot acc ∼10 −8 --10 −7 M ⊙ yr −1 over 60% of the time and spend less than 15% of the infall phase in accretion outbursts. While our models indicate that episodic mass accretion during protostellar evolution can qualitatively help explain the low accretion luminosities seen in most low-mass protostars, detailed tests of the mechanism will require model calculations for a range of protostellar masses with some constraint on the initial core angular momentum, which

  4. Accretion onto some well-known regular black holes

    Energy Technology Data Exchange (ETDEWEB)

    Jawad, Abdul; Shahzad, M.U. [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan)

    2016-03-15

    In this work, we discuss the accretion onto static spherically symmetric regular black holes for specific choices of the equation of state parameter. The underlying regular black holes are charged regular black holes using the Fermi-Dirac distribution, logistic distribution, nonlinear electrodynamics, respectively, and Kehagias-Sftesos asymptotically flat regular black holes. We obtain the critical radius, critical speed, and squared sound speed during the accretion process near the regular black holes. We also study the behavior of radial velocity, energy density, and the rate of change of the mass for each of the regular black holes. (orig.)

  5. Accretion onto some well-known regular black holes

    Science.gov (United States)

    Jawad, Abdul; Shahzad, M. Umair

    2016-03-01

    In this work, we discuss the accretion onto static spherically symmetric regular black holes for specific choices of the equation of state parameter. The underlying regular black holes are charged regular black holes using the Fermi-Dirac distribution, logistic distribution, nonlinear electrodynamics, respectively, and Kehagias-Sftesos asymptotically flat regular black holes. We obtain the critical radius, critical speed, and squared sound speed during the accretion process near the regular black holes. We also study the behavior of radial velocity, energy density, and the rate of change of the mass for each of the regular black holes.

  6. Black holes in radiation-dominated gas: an analogue of the Bondi accretion problem

    International Nuclear Information System (INIS)

    Begelman, M.C.

    1978-01-01

    Black holes, unlike other compact objects, are able to accrete matter more rapidly than their Eddington rate (dM/dt)sub(E) = Lsub(E)/c 2 . Nevertheless, at such a high dM/dt, radiation will probably be emitted by the in-falling gas in copious enough quantities to have a profound influence on the flow. To aid in understanding the nature of this influence a study is made of the steady flow, on to a stationary Schwarzchild black hole, of a uniform, non-relativistic gas in which radiation pressure swamps thermal pressure at infinity, and in which Thomson scattering provides the only radiation-gas couple. Asymptotic radiation pressure p (infinity) and matter density rho(infinity) determine an asymptotic sound speed c(infinity), from which one can derive an accretion rate (dM/dt)sub(B) corresponding to the adiabatic flow of a γ = 4/3 gas. The actual accretion rate depends on the optical depth tausub(B) of a column of unperturbed gas spanning the Bondi radius, rsub(B) = GM/c 2 (infinity). If tau > ((square root of 2)/3) (c/c(infinity)), then the flow is adiabatic, and dM/dt (dM/dt)sub(B). For a somewhat smaller tausub(B), diffusion is efficient enough for the radiation to leak out of the gas as it moves towards the trans-sonic point. As a result, the sound speed decreases inwards in the subsonic region, while the density must increase steeply to maintain pressure balance. dM/dt may then exceed (dM/dt)sub(B) by a factor of up to ((square root of 2)/3) (c/tausub(B)c (infinity)), although this effect can be limited by thermal pressure. Finally, for small enough tausub(B) the diffusion approximation breaks down, and radiation drag limits an otherwise thermally-determined dM/dt. Our boundary conditions occur within supermassive (M/M (solar mass) approximately >10 2 ) stars, and in the pre- and post-recombination universe. (author)

  7. The outflows accelerated by the magnetic fields and radiation force of accretion disks

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Xinwu, E-mail: cxw@shao.ac.cn [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai, 200030 (China)

    2014-03-01

    The inner region of a luminous accretion disk is radiation-pressure-dominated. We estimate the surface temperature of a radiation-pressure-dominated accretion disk, Θ=c{sub s}{sup 2}/r{sup 2}Ω{sub K}{sup 2}≪(H/r){sup 2}, which is significantly lower than that of a gas-pressure-dominated disk, Θ ∼ (H/r){sup 2}. This means that the outflow can be launched magnetically from the photosphere of the radiation-pressure-dominated disk only if the effective potential barrier along the magnetic field line is extremely shallow or no potential barrier is present. For the latter case, the slow sonic point in the outflow will probably be in the disk, which leads to a slow circular dense flow above the disk. This implies that hot gas (probably in the corona) is necessary for launching an outflow from the radiation-pressure-dominated disk, which provides a natural explanation for the observational evidence that the relativistic jets are related to hot plasma in some X-ray binaries and active galactic nuclei. We investigate the outflows accelerated from the hot corona above the disk by the magnetic field and radiation force of the accretion disk. We find that with the help of the radiation force, the mass loss rate in the outflow is high, which leads to a slow outflow. This may be why the jets in radio-loud narrow-line Seyfert galaxies are in general mildly relativistic compared with those in blazars.

  8. IRON OPACITY BUMP CHANGES THE STABILITY AND STRUCTURE OF ACCRETION DISKS IN ACTIVE GALACTIC NUCLEI

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yan-Fei [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Davis, Shane W. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States); Stone, James M. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

    2016-08-10

    Accretion disks around supermassive black holes have regions where the Rosseland mean opacity can be larger than the electron scattering opacity due to the large number of bound–bound transitions in iron. We study the effects of this iron opacity “bump” on the thermal stability and vertical structure of radiation-pressure-dominated accretion disks, utilizing three-dimensional radiation magnetohydrodynamic (MHD) simulations in the local shearing box approximation. The simulations self-consistently calculate the heating due to MHD turbulence caused by magneto-rotational instability and radiative cooling by using the radiative transfer module based on a variable Eddington tensor in Athena. For a 5 × 10{sup 8} solar mass black hole with ∼3% of the Eddington luminosity, a model including the iron opacity bump maintains its structure for more than 10 thermal times without showing significant signs of thermal runaway. In contrast, if only electron scattering and free–free opacity are included as in the standard thin disk model, the disk collapses on the thermal timescale. The difference is caused by a combination of (1) an anti-correlation between the total optical depth and the midplane pressure, and (2) enhanced vertical advective energy transport. These results suggest that the iron opacity bump may have a strong impact on the stability and structure of active galactic nucleus (AGN) accretion disks, and may contribute to a dependence of AGN properties on metallicity. Since this opacity is relevant primarily in UV emitting regions of the flow, it may help to explain discrepancies between observation and theory that are unique to AGNs.

  9. Accretion of new variable modified Chaplygin gas and generalized cosmic Chaplygin gas onto Schwarzschild and Kerr-Newman black holes

    International Nuclear Information System (INIS)

    Bhadra, Jhumpa; Debnath, Ujjal

    2012-01-01

    In this work, we have studied accretion of the dark energies in new variable modified Chaplygin gas (NVMCG) and generalized cosmic Chaplygin gas (GCCG) models onto Schwarzschild and Kerr-Newman black holes. We find the expression of the critical four velocity component which gradually decreases for the fluid flow towards the Schwarzschild as well as the Kerr-Newman black hole. We also find the expression for the change of mass of the black hole in both cases. For the Kerr-Newman black hole, which is rotating and charged, we calculate the specific angular momentum and total angular momentum. We showed that in both cases, due to accretion of dark energy, the mass of the black hole increases and angular momentum increases in the case of a Kerr-Newman black hole. (orig.)

  10. Global hydromagnetic simulations of a planet embedded in a dead zone: Gap opening, gas accretion, and formation of a protoplanetary jet

    Energy Technology Data Exchange (ETDEWEB)

    Gressel, O. [NORDITA, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-106 91 Stockholm (Sweden); Nelson, R. P. [Astronomy Unit, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Turner, N. J. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Ziegler, U., E-mail: oliver.gressel@nordita.org, E-mail: r.p.nelson@qmul.ac.uk, E-mail: neal.j.turner@jpl.nasa.gov, E-mail: uziegler@aip.de [Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482, Potsdam (Germany)

    2013-12-10

    We present global hydrodynamic (HD) and magnetohydrodynamic (MHD) simulations with mesh refinement of accreting planets embedded in protoplanetary disks (PPDs). The magnetized disk includes Ohmic resistivity that depends on the overlying mass column, leading to turbulent surface layers and a dead zone near the midplane. The main results are: (1) the accretion flow in the Hill sphere is intrinsically three-dimensional for HD and MHD models. Net inflow toward the planet is dominated by high-latitude flows. A circumplanetary disk (CPD) forms. Its midplane flows outward in a pattern whose details differ between models. (2) The opening of a gap magnetically couples and ignites the dead zone near the planet, leading to stochastic accretion, a quasi-turbulent flow in the Hill sphere, and a CPD whose structure displays high levels of variability. (3) Advection of magnetized gas onto the rotating CPD generates helical fields that launch magnetocentrifugally driven outflows. During one specific epoch, a highly collimated, one-sided jet is observed. (4) The CPD's surface density is ∼30 g cm{sup −2}, small enough for significant ionization and turbulence to develop. (5) The accretion rate onto the planet in the MHD simulation reaches a steady value 8 × 10{sup –3} M {sub ⊕} yr{sup –1} and is similar in the viscous HD runs. Our results suggest that gas accretion onto a forming giant planet within a magnetized PPD with a dead zone allows rapid growth from Saturnian to Jovian masses. As well as being relevant for giant planet formation, these results have important implications for the formation of regular satellites around gas giant planets.

  11. WIND-DRIVEN ACCRETION IN PROTOPLANETARY DISKS. I. SUPPRESSION OF THE MAGNETOROTATIONAL INSTABILITY AND LAUNCHING OF THE MAGNETOCENTRIFUGAL WIND

    International Nuclear Information System (INIS)

    Bai Xuening; Stone, James M.

    2013-01-01

    We perform local, vertically stratified shearing-box MHD simulations of protoplanetary disks (PPDs) at a fiducial radius of 1 AU that take into account the effects of both Ohmic resistivity and ambipolar diffusion (AD). The magnetic diffusion coefficients are evaluated self-consistently from a look-up table based on equilibrium chemistry. We first show that the inclusion of AD dramatically changes the conventional picture of layered accretion. Without net vertical magnetic field, the system evolves into a toroidal field dominated configuration with extremely weak turbulence in the far-UV ionization layer that is far too inefficient to drive rapid accretion. In the presence of a weak net vertical field (plasma β ∼ 10 5 at midplane), we find that the magnetorotational instability (MRI) is completely suppressed, resulting in a fully laminar flow throughout the vertical extent of the disk. A strong magnetocentrifugal wind is launched that efficiently carries away disk angular momentum and easily accounts for the observed accretion rate in PPDs. Moreover, under a physical disk wind geometry, all the accretion flow proceeds through a strong current layer with a thickness of ∼0.3H that is offset from disk midplane with radial velocity of up to 0.4 times the sound speed. Both Ohmic resistivity and AD are essential for the suppression of the MRI and wind launching. The efficiency of wind transport increases with increasing net vertical magnetic flux and the penetration depth of the FUV ionization. Our laminar wind solution has important implications on planet formation and global evolution of PPDs.

  12. EVIDENCE FOR LOW BLACK HOLE SPIN AND PHYSICALLY MOTIVATED ACCRETION MODELS FROM MILLIMETER-VLBI OBSERVATIONS OF SAGITTARIUS A*

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, Avery E [Canadian Institute for Theoretical Astrophysics, 60 St. George Street, Toronto, ON M5S 3H8 (Canada); Fish, Vincent L; Doeleman, Sheperd S [Massachusetts Institute of Technology, Haystack Observatory, Route 40, Westford, MA 01886 (United States); Loeb, Abraham [Institute for Theory and Computation, Harvard University, Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2011-07-10

    Millimeter very long baseline interferometry (mm-VLBI) provides the novel capacity to probe the emission region of a handful of supermassive black holes on sub-horizon scales. For Sagittarius A* (Sgr A*), the supermassive black hole at the center of the Milky Way, this provides access to the region in the immediate vicinity of the horizon. Broderick et al. have already shown that by leveraging spectral and polarization information as well as accretion theory, it is possible to extract accretion-model parameters (including black hole spin) from mm-VLBI experiments containing only a handful of telescopes. Here we repeat this analysis with the most recent mm-VLBI data, considering a class of aligned, radiatively inefficient accretion flow (RIAF) models. We find that the combined data set rules out symmetric models for Sgr A*'s flux distribution at the 3.9{sigma} level, strongly favoring length-to-width ratios of roughly 2.4:1. More importantly, we find that physically motivated accretion flow models provide a significantly better fit to the mm-VLBI observations than phenomenological models, at the 2.9{sigma} level. This implies that not only is mm-VLBI presently capable of distinguishing between potential physical models for Sgr A*'s emission, but further that it is sensitive to the strong gravitational lensing associated with the propagation of photons near the black hole. Based upon this analysis we find that the most probable magnitude, viewing angle, and position angle for the black hole spin are a = 0.0{sup +0.64+0.86}, {theta}=68{sup o+5o+9o}{sub -20}{sup o}{sub -28}{sup o}, and {xi}=-52{sup o+17o+33o}{sub -15}{sup o}{sub -24}{sup o} east of north, where the errors quoted are the 1{sigma} and 2{sigma} uncertainties.

  13. EVIDENCE FOR LOW BLACK HOLE SPIN AND PHYSICALLY MOTIVATED ACCRETION MODELS FROM MILLIMETER-VLBI OBSERVATIONS OF SAGITTARIUS A*

    International Nuclear Information System (INIS)

    Broderick, Avery E.; Fish, Vincent L.; Doeleman, Sheperd S.; Loeb, Abraham

    2011-01-01

    Millimeter very long baseline interferometry (mm-VLBI) provides the novel capacity to probe the emission region of a handful of supermassive black holes on sub-horizon scales. For Sagittarius A* (Sgr A*), the supermassive black hole at the center of the Milky Way, this provides access to the region in the immediate vicinity of the horizon. Broderick et al. have already shown that by leveraging spectral and polarization information as well as accretion theory, it is possible to extract accretion-model parameters (including black hole spin) from mm-VLBI experiments containing only a handful of telescopes. Here we repeat this analysis with the most recent mm-VLBI data, considering a class of aligned, radiatively inefficient accretion flow (RIAF) models. We find that the combined data set rules out symmetric models for Sgr A*'s flux distribution at the 3.9σ level, strongly favoring length-to-width ratios of roughly 2.4:1. More importantly, we find that physically motivated accretion flow models provide a significantly better fit to the mm-VLBI observations than phenomenological models, at the 2.9σ level. This implies that not only is mm-VLBI presently capable of distinguishing between potential physical models for Sgr A*'s emission, but further that it is sensitive to the strong gravitational lensing associated with the propagation of photons near the black hole. Based upon this analysis we find that the most probable magnitude, viewing angle, and position angle for the black hole spin are a = 0.0 +0.64+0.86 , θ=68 o+5 o +9 o -20 o -28 o , and ξ=-52 o+17 o +33 o -15 o -24 o east of north, where the errors quoted are the 1σ and 2σ uncertainties.

  14. Instrumental Implementation of an Experiment to Demonstrate αω -dynamos in Accretion Disks

    Science.gov (United States)

    Si, Jiahe; Sonnenfeld, Richard; Colgate, Art; Li, Hui; Nornberg, Mark

    2016-10-01

    The New Mexico Liquid Metal αω -dynamo experiment is aimed to demonstrate a galactic dynamo. Our goal is to generate the ω-effect and α-effect by two semi-coherent flows in laboratory. Two coaxial cylinders are used to generate Taylor-Couette flows to simulate the differential rotation of accretion disks. Plumes induced by jets injected into the Couette flows are expected to produce helicities necessary for the α-effect. We have demonstrated an 8-fold poloidal-to-toroidal flux amplification from differential rotation (the ω-effect) by minimizing turbulence in our apparatus. To demonstrate the α-effect, the experimental apparatus is undergoing significant upgrade. We have constructed a helicity injection facility, and are also designing and testing a new data acquisition system capable of transmitting data in a high speed rotating frame. Additional magnetic field diagnostics will also be included. The upgrade is intended to answer the question of whether a self-sustaining αω -dynamo can be constructed with a realistic fluid flow field, as well as to obtain more details to understand dynamo action in highly turbulent Couette flow.

  15. Massive Star Formation: Accreting from Companion X. Chen1 ...

    Indian Academy of Sciences (India)

    Abstract. We report the possible accretion from companion in the mas- sive star forming region (G350.69–0.49). This region seems to be a binary system composed of a diffuse object (possible nebulae or UC HII region) and a Massive Young Stellar Object (MYSO) seen in Spitzer IRAC image. The diffuse object and MYSO ...

  16. Mass-accreting white dwarfs and type Ia supernovae

    Science.gov (United States)

    Wang, Bo

    2018-05-01

    Type Ia supernovae (SNe Ia) play a prominent role in understanding the evolution of the Universe. They are thought to be thermonuclear explosions of mass-accreting carbon-oxygen white dwarfs (CO WDs) in binaries, although the mass donors of the accreting WDs are still not well determined. In this article, I review recent studies on mass-accreting WDs, including H- and He-accreting WDs. I also review currently most studied progenitor models of SNe Ia, i.e., the single-degenerate model (including the WD+MS channel, the WD+RG channel and the WD+He star channel), the double-degenerate model (including the violent merger scenario) and the sub-Chandrasekhar mass model. Recent progress on these progenitor models is discussed, including the initial parameter space for producing SNe Ia, the binary evolutionary paths to SNe Ia, the progenitor candidates for SNe Ia, the possible surviving companion stars of SNe Ia, some observational constraints, etc. Some other potential progenitor models of SNe Ia are also summarized, including the hybrid CONe WD model, the core-degenerate model, the double WD collision model, the spin-up/spin-down model and the model of WDs near black holes. To date, it seems that two or more progenitor models are needed to explain the observed diversity among SNe Ia.

  17. Broad-Band Variability in Accreting Compact Objects

    Directory of Open Access Journals (Sweden)

    S. Scaringi

    2015-02-01

    Full Text Available Cataclysmic variable stars are in many ways similar to X-ray binaries. Both types of systems possess an accretion disk, which in most cases can reach the surface (or event horizon of the central compact object. The main difference is that the embedded gravitational potential well in X-ray binaries is much deeper than those found in cataclysmic variables. As a result, X-ray binaries emit most of their radiation at X-ray wavelengths, as opposed to cataclysmic variables which emit mostly at optical/ultraviolet wavelengths. Both types of systems display aperiodic broad-band variability which can be associated to the accretion disk. Here, the properties of the observed X-ray variability in XRBs are compared to those observed at optical wavelengths in CVs. In most cases the variability properties of both types of systems are qualitatively similar once the relevant timescales associated with the inner accretion disk regions have been taken into account. The similarities include the observed power spectral density shapes, the rms-flux relation as well as Fourier-dependant time lags. Here a brief overview on these similarities is given, placing them in the context of the fluctuating accretion disk model which seeks to reproduce the observed variability.

  18. WIND-DRIVEN ACCRETION IN TRANSITIONAL PROTOSTELLAR DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lile; Goodman, Jeremy J. [Princeton University Observatory, Princeton, NJ 08544 (United States)

    2017-01-20

    Transitional protostellar disks have inner cavities that are heavily depleted in dust and gas, yet most of them show signs of ongoing accretion, often at rates comparable to full disks. We show that recent constraints on the gas surface density in a few well-studied disk cavities suggest that the accretion speed is at least transsonic. We propose that this is the natural result of accretion driven by magnetized winds. Typical physical conditions of the gas inside these cavities are estimated for plausible X-ray and FUV radiation fields. The gas near the midplane is molecular and predominantly neutral, with a dimensionless ambipolar parameter in the right general range for wind solutions of the type developed by Königl, Wardle, and others. That is to say, the density of ions and electrons is sufficient for moderately good coupling to the magnetic field, but it is not so good that the magnetic flux needs to be dragged inward by the accreting neutrals.

  19. Eclipsing the innermost accretion disc regions in AGN

    Czech Academy of Sciences Publication Activity Database

    Sanfrutos, M.; Miniutti, G.; Dovčiak, Michal; Agis-Gonzalez, B.

    2016-01-01

    Roč. 337, 4-5 (2016), s. 546-551 ISSN 0004-6337 Institutional support: RVO:67985815 Keywords : accretion disks * black hole physics * relativistic effects Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.916, year: 2016

  20. Interaction of Accretion Shocks with Winds Kinsuk Acharya , Sandip ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. Accretion shocks are known to oscillate in presence of cool- ing processes in the disk. This oscillation may also cause quasi-periodic oscillations of black holes. In the presence of strong winds, these shocks have oscillations in vertical direction as well. We show examples of shock oscillations under the influence of ...

  1. New possibilities in supernova accretion phase from dense matter effect

    Science.gov (United States)

    Chakraborty, S.; Mirizzi, A.; Saviano, N.

    2012-07-01

    We carry out a detailed analysis of the supernova (SN) neutrino flavor evolution during the accretion phase (at post-bounce times tpb Mikheyev-Smirnov-Wolfenstein effect in the SN mantle and Earth matter effects, can reveal the neutrino mass hierarchy in the likely case that the mixing angle θ13 is not very small.

  2. An Accretion Model for Anomalous X-Ray Pulsars

    Science.gov (United States)

    Chatterjee, Pinaki; Hernquist, Lars; Narayan, Ramesh

    2000-05-01

    We present a model for the anomalous X-ray pulsars (AXPs) in which the emission is powered by accretion from a fossil disk, established from matter falling back onto the neutron star following its birth. The time-dependent accretion drives the neutron star toward a ``tracking'' solution in which the rotation period of the star increases slowly, in tandem with the declining accretion rate. For appropriate choices of disk mass, neutron star magnetic field strength, and initial spin period, we demonstrate that a rapidly rotating neutron star can be spun down to periods characteristic of AXPs on timescales comparable to the estimated ages of these sources. In other cases, accretion onto the neutron star switches off after a short time and the star becomes an ordinary radio pulsar. Thus, in our picture, radio pulsars and AXPs are drawn from the same underlying population, in contrast to the situation in models involving neutron stars with ultrastrong magnetic fields, which require a new population of stars with very different properties.

  3. Constraining jet physics in weakly accreting black holes

    NARCIS (Netherlands)

    Markoff, S.

    2007-01-01

    Outflowing jets are observed in a variety of astronomical objects such as accreting compact objects from X-ray binaries (XRBs) to active galactic nuclei (AGN), as well as at stellar birth and death. Yet we still do not know exactly what they are comprised of, why and how they form, or their exact

  4. Orbital Evolution Measurement of the Accreting Millisecond X-ray ...

    Indian Academy of Sciences (India)

    accretion-powered millisecond X-ray pulsar SAX J1808.4–3658 using. X-ray data .... converts the photon arrival times to the solar system barycenter. ... applies all the known RXTE clock corrections and converts the photon arrival times.

  5. Gravitomagnetic acceleration of accretion disk matter to polar jets

    Science.gov (United States)

    Poirier, John; Mathews, Grant

    2016-03-01

    The motion of the masses of an accretion disk around a black hole creates a general relativistic, gravitomagnetic field (GEM) from the moving matter (be it charged or uncharged) of the accretion disk. This GEM field accelerates moving masses (neutral or charged) near the accretion disk vertically upward and away from the disk, and then inward toward the axis of the disk. As the accelerated material nears the axis with approximately vertical angles, a frame dragging effect contributes to the formation of narrow jets emanating from the poles. This GEM effect is numerically evaluated in the first post Newtonian (1PN) approximation from observable quantities like the mass and velocity of the disk. This GEM force is linear in the total mass of the accretion disk matter and quadratic in the velocity of matter near to the disk with approximately the same velocity. Since these masses and velocities can be quite high in astrophysical contexts, the GEM force, which in other contexts is weak, is quite significant. This GEM effect is compared to the ordinary electromagnetic effects applied to this problem in the past.

  6. Shocks in the relativistic transonic accretion with low angular momentum

    Czech Academy of Sciences Publication Activity Database

    Suková, Petra; Charzynski, S.; Janiuk, A.

    2017-01-01

    Roč. 472, č. 4 (2017), s. 4327-4342 ISSN 0035-8711 R&D Projects: GA ČR(CZ) GJ17-06962Y Institutional support: RVO:67985815 Keywords : accretion discs * hydrodynamics * shock waves Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 4.961, year: 2016

  7. Dynamical and Radiative Properties of X-Ray Pulsar Accretion Columns: Phase-averaged Spectra

    Energy Technology Data Exchange (ETDEWEB)

    West, Brent F. [Department of Electrical and Computer Engineering, United States Naval Academy, Annapolis, MD (United States); Wolfram, Kenneth D. [Naval Research Laboratory (retired), Washington, DC (United States); Becker, Peter A., E-mail: bwest@usna.edu, E-mail: kswolfram@gmail.com, E-mail: pbecker@gmu.edu [Department of Physics and Astronomy, George Mason University, Fairfax, VA (United States)

    2017-02-01

    The availability of the unprecedented spectral resolution provided by modern X-ray observatories is opening up new areas for study involving the coupled formation of the continuum emission and the cyclotron absorption features in accretion-powered X-ray pulsar spectra. Previous research focusing on the dynamics and the associated formation of the observed spectra has largely been confined to the single-fluid model, in which the super-Eddington luminosity inside the column decelerates the flow to rest at the stellar surface, while the dynamical effect of gas pressure is ignored. In a companion paper, we have presented a detailed analysis of the hydrodynamic and thermodynamic structure of the accretion column obtained using a new self-consistent model that includes the effects of both gas and radiation pressures. In this paper, we explore the formation of the associated X-ray spectra using a rigorous photon transport equation that is consistent with the hydrodynamic and thermodynamic structure of the column. We use the new model to obtain phase-averaged spectra and partially occulted spectra for Her X-1, Cen X-3, and LMC X-4. We also use the new model to constrain the emission geometry, and compare the resulting parameters with those obtained using previously published models. Our model sheds new light on the structure of the column, the relationship between the ionized gas and the photons, the competition between diffusive and advective transport, and the magnitude of the energy-averaged cyclotron scattering cross-section.

  8. ON THE ROLE OF FAST MAGNETIC RECONNECTION IN ACCRETING BLACK HOLE SOURCES

    International Nuclear Information System (INIS)

    Singh, C. B.; De Gouveia Dal Pino, E. M.; Kadowaki, L. H. S.

    2015-01-01

    We attempt to explain the observed radio and gamma-ray emission produced in the surroundings of black holes by employing a magnetically dominated accretion flow model and fast magnetic reconnection triggered by turbulence. In earlier work, a standard disk model was used and we refine the model by focusing on the sub-Eddington regime to address the fundamental plane of black hole activity. The results do not change substantially with regard to previous work, ensuring that the details of accretion physics are not relevant in the magnetic reconnection process occurring in the corona. Rather, our work puts fast magnetic reconnection events as a powerful mechanism operating in the core region near the jet base of black hole sources on more solid ground. For microquasars and low-luminosity active galactic nuclei, the observed correlation between radio emission and the mass of the sources can be explained by this process. The corresponding gamma-ray emission also seems to be produced in the same core region. On the other hand, emission from blazars and gamma-ray bursts cannot be correlated to core emission based on fast reconnection

  9. The Stochastic X-Ray Variability of the Accreting Millisecond Pulsar MAXI J0911-655

    Science.gov (United States)

    Bult, Peter

    2017-01-01

    In this work, I report on the stochastic X-ray variability of the 340 hertz accreting millisecond pulsar MAXI J0911-655. Analyzing pointed observations of the XMM-Newton and NuSTAR observatories, I find that the source shows broad band-limited stochastic variability in the 0.01-10 hertz range with a total fractional variability of approximately 24 percent root mean square timing residuals in the 0.4 to 3 kiloelectronvolt energy band that increases to approximately 40 percent root mean square timing residuals in the 3 to 10 kiloelectronvolt band. Additionally, a pair of harmonically related quasi-periodic oscillations (QPOs) are discovered. The fundamental frequency of this harmonic pair is observed between frequencies of 62 and 146 megahertz. Like the band-limited noise, the amplitudes of the QPOs show a steep increase as a function of energy; this suggests that they share a similar origin, likely the inner accretion flow. Based on their energy dependence and frequency relation with respect to the noise terms, the QPOs are identified as low-frequency oscillations and discussed in terms of the Lense-Thirring precession model.

  10. Quasi-periodic oscillations and the global modes of relativistic, MHD accretion discs

    Science.gov (United States)

    Dewberry, Janosz W.; Latter, Henrik N.; Ogilvie, Gordon I.

    2018-05-01

    The high-frequency quasi-periodic oscillations that punctuate the light curves of X-ray binary systems present a window on to the intrinsic properties of stellar-mass black holes and hence a testbed for general relativity. One explanation for these features is that relativistic distortion of the accretion disc's differential rotation creates a trapping region in which inertial waves (r-modes) might grow to observable amplitudes. Local analyses, however, predict that large-scale magnetic fields push this trapping region to the inner disc edge, where conditions may be unfavourable for r-mode growth. We revisit this problem from a pseudo-Newtonian but fully global perspective, deriving linearized equations describing a relativistic, magnetized accretion flow, and calculating normal modes with and without vertical density stratification. In an unstratified model we confirm that vertical magnetic fields drive r-modes towards the inner edge, though the effect depends on the choice of vertical wavenumber. In a global model we better quantify this susceptibility, and its dependence on the disc's vertical structure and thickness. Our calculations suggest that in thin discs, r-modes may remain independent of the inner disc edge for vertical magnetic fields with plasma betas as low as β ≈ 100-300. We posit that the appearance of r-modes in observations may be more determined by a competition between excitation and damping mechanisms near the ISCO than by the modification of the trapping region by magnetic fields.

  11. Black hole accretion: the quasar powerhouse

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    A program is described which calculates the effects of material falling into the curved space-time surrounding a rotation black hole. The authors have developed a two-dimensional, general-relativistic hydrodynamics code to simulate fluid flow in the gravitational field of a rotating black hole. Such calculations represent models that have been proposed for the energy sources of both quasars and jets from radiogalaxies. In each case, the black hole that powers the quasar or jet would have a mass of about 100 million times the mass of the sun. The black hole would be located in the center of a galaxy whose total mass is 1000 time greater than the black hole mass. (SC)

  12. Planet population synthesis driven by pebble accretion in cluster environments

    Science.gov (United States)

    Ndugu, N.; Bitsch, B.; Jurua, E.

    2018-02-01

    The evolution of protoplanetary discs embedded in stellar clusters depends on the age and the stellar density in which they are embedded. Stellar clusters of young age and high stellar surface density destroy protoplanetary discs by external photoevaporation and stellar encounters. Here, we consider the effect of background heating from newly formed stellar clusters on the structure of protoplanetary discs and how it affects the formation of planets in these discs. Our planet formation model is built on the core accretion scenario, where we take the reduction of the core growth time-scale due to pebble accretion into account. We synthesize planet populations that we compare to observations obtained by radial velocity measurements. The giant planets in our simulations migrate over large distances due to the fast type-II migration regime induced by a high disc viscosity (α = 5.4 × 10-3). Cold Jupiters (rp > 1 au) originate preferably from the outer disc, due to the large-scale planetary migration, while hot Jupiters (rp meaning that more gas giants are formed at larger metallicity. However, our synthetic population of isolated stars host a significant amount of giant planets even at low metallicity, in contradiction to observations where giant planets are preferably found around high metallicity stars, indicating that pebble accretion is very efficient in the standard pebble accretion framework. On the other hand, discs around stars embedded in cluster environments hardly form any giant planets at low metallicity in agreement with observations, where these changes originate from the increased temperature in the outer parts of the disc, which prolongs the core accretion time-scale of the planet. We therefore conclude that the outer disc structure and the planet's formation location determines the giant planet occurrence rate and the formation efficiency of cold and hot Jupiters.

  13. Modeling the Deterioration of Engine and Low Pressure Compressor Performance During a Roll Back Event Due to Ice Accretion

    Science.gov (United States)

    Veres, Joseph P.; Jorgenson, Philip, C. E.; Jones, Scott M.

    2014-01-01

    The main focus of this study is to apply a computational tool for the flow analysis of the engine that has been tested with ice crystal ingestion in the Propulsion Systems Laboratory (PSL) of NASA Glenn Research Center. A data point was selected for analysis during which the engine experienced a full roll back event due to the ice accretion on the blades and flow path of the low pressure compressor. The computational tool consists of the Numerical Propulsion System Simulation (NPSS) engine system thermodynamic cycle code, and an Euler-based compressor flow analysis code, that has an ice particle melt estimation code with the capability of determining the rate of sublimation, melting, and evaporation through the compressor blade rows. Decreasing the performance characteristics of the low pressure compressor (LPC) within the NPSS cycle analysis resulted in matching the overall engine performance parameters measured during testing at data points in short time intervals through the progression of the roll back event. Detailed analysis of the fan-core and LPC with the compressor flow analysis code simulated the effects of ice accretion by increasing the aerodynamic blockage and pressure losses through the low pressure compressor until achieving a match with the NPSS cycle analysis results, at each scan. With the additional blockages and losses in the LPC, the compressor flow analysis code results were able to numerically reproduce the performance that was determined by the NPSS cycle analysis, which was in agreement with the PSL engine test data. The compressor flow analysis indicated that the blockage due to ice accretion in the LPC exit guide vane stators caused the exit guide vane (EGV) to be nearly choked, significantly reducing the air flow rate into the core. This caused the LPC to eventually be in stall due to increasing levels of diffusion in the rotors and high incidence angles in the inlet guide vane (IGV) and EGV stators. The flow analysis indicating

  14. Skeletal muscle protein accretion rates and hindlimb growth are reduced in late gestation intrauterine growth-restricted fetal sheep.

    Science.gov (United States)

    Rozance, Paul J; Zastoupil, Laura; Wesolowski, Stephanie R; Goldstrohm, David A; Strahan, Brittany; Cree-Green, Melanie; Sheffield-Moore, Melinda; Meschia, Giacomo; Hay, William W; Wilkening, Randall B; Brown, Laura D

    2018-01-01

    Adults who were affected by intrauterine growth restriction (IUGR) suffer from reductions in muscle mass, which may contribute to insulin resistance and the development of diabetes. We demonstrate slower hindlimb linear growth and muscle protein synthesis rates that match the reduced hindlimb blood flow and oxygen consumption rates in IUGR fetal sheep. These adaptations resulted in hindlimb blood flow rates in IUGR that were similar to control fetuses on a weight-specific basis. Net hindlimb glucose uptake and lactate output rates were similar between groups, whereas amino acid uptake was significantly lower in IUGR fetal sheep. Among all fetuses, blood O 2 saturation and plasma glucose, insulin and insulin-like growth factor-1 were positively associated and norepinephrine was negatively associated with hindlimb weight. These results further our understanding of the metabolic and hormonal adaptations to reduced oxygen and nutrient supply with placental insufficiency that develop to slow hindlimb growth and muscle protein accretion. Reduced skeletal muscle mass in the fetus with intrauterine growth restriction (IUGR) persists into adulthood and may contribute to increased metabolic disease risk. To determine how placental insufficiency with reduced oxygen and nutrient supply to the fetus affects hindlimb blood flow, substrate uptake and protein accretion rates in skeletal muscle, late gestation control (CON) (n = 8) and IUGR (n = 13) fetal sheep were catheterized with aortic and femoral catheters and a flow transducer around the external iliac artery. Muscle protein kinetic rates were measured using isotopic tracers. Hindlimb weight, linear growth rate, muscle protein accretion rate and fractional synthetic rate were lower in IUGR compared to CON (P fetal norepinephrine and reduced IGF-1 and insulin. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  15. Accretion and jets from stellar-mass to supermassive black holes

    NARCIS (Netherlands)

    Connors, R.M.T.

    2017-01-01

    Accretion and jets occur in many astrophysical systems across a multitude of size and mass scales, and environments. As such, the study of accretion and jet physics has for decades been, and still remains, a hot topic in astrophysics. Accretion onto black holes has particular significance for many

  16. MAGNETOROTATIONAL-INSTABILITY-DRIVEN ACCRETION IN PROTOPLANETARY DISKS

    International Nuclear Information System (INIS)

    Bai Xuening

    2011-01-01

    Non-ideal MHD effects play an important role in the gas dynamics in protoplanetary disks (PPDs). This paper addresses the influence of non-ideal MHD effects on the magnetorotational instability (MRI) and angular momentum transport in PPDs using the most up-to-date results from numerical simulations. We perform chemistry calculations using a complex reaction network with standard prescriptions for X-ray and cosmic-ray ionizations. We first show that whether or not grains are included, the recombination time is at least one order of magnitude less than the orbital time within five disk scale heights, justifying the validity of local ionization equilibrium and strong coupling limit in PPDs. The full conductivity tensor at different disk radii and heights is evaluated, with the MRI active region determined by requiring that (1) the Ohmic Elsasser number Λ be greater than 1 and (2) the ratio of gas to magnetic pressure β be greater than β min (Am) as identified in the recent study by Bai and Stone, where Am is the Elsasser number for ambipolar diffusion. With full flexibility as to the magnetic field strength, we provide a general framework for estimating the MRI-driven accretion rate M-dot and the magnetic field strength in the MRI active layer. We find that the MRI active layer always exists at any disk radius as long as the magnetic field in PPDs is sufficiently weak. However, the optimistically predicted M-dot in the inner disk (r = 1-10 AU) appears insufficient to account for the observed range of accretion rates in PPDs (around 10 -8 M sun yr -1 ) even in the grain-free calculation, and the presence of solar abundance sub-micron grains further reduces M-dot by one to two orders of magnitude. Moreover, we find that the predicted M-dot increases with radius in the inner disk where accretion is layered, which would lead to runaway mass accumulation if disk accretion is solely driven by the MRI. Our results suggest that stronger sources of ionization and

  17. Radio Loud AGN Unification: Connecting Jets and Accretion

    Directory of Open Access Journals (Sweden)

    Meyer Eileen T.

    2013-12-01

    Full Text Available While only a fraction of Active Galactic Nuclei are observed to host a powerful relativistic jet, a cohesive picture is emerging that radio-loud AGN may represent an important phase in the evolution of galaxies and the growth of the central super-massive black hole. I will review my own recent observational work in radio-loud AGN unification in the context of understanding how and why jets form and their the connection to different kinds of accretion and growing the black hole, along with a brief discussion of possible connections to recent modeling work in jet formation. Starting from the significant observational advances in our understanding of jetted AGN as a population over the last decade thanks to new, more sensitive instruments such as Fermi and Swift as well as all-sky surveys at all frequencies, I will lay out the case for a dichotomy in the jetted AGN population connected to accretion mode onto the black hole. In recent work, we have identified two sub-populations of radio-loud AGN which appear to be distinguished by jet structure, where low-efficiency accreting systems produce ‘weak’ jets which decelerate more rapidly than the ’strong’ jets of black holes accreting near the Eddington limit. The two classes are comprised of: (1The weak jet sources, corresponding to the less collimated, edge-darkened FR Is, with a decelerating or spine-sheath jet with velocity gradients, and (2 The strong jet sources, having fast, collimated jets, and typically displaying strong emission lines. The dichotomy in the vp-Lp plane can be understood as a "broken power sequence" in which jets exist on one branch or the other based on the particular accretion mode (Georganopolous 2011.We suggest that the intrinsic kinetic power (as measured by low-frequency, isotropic radio emission, the orientation, and the accretion rate of the SMBH system are the the fundamental axes needed for unification of radio-loud AGN by studying a well-characterized sample

  18. The structure and spectrum of the accretion shock in the atmospheres of young stars

    Science.gov (United States)

    Dodin, Alexandr

    2018-04-01

    The structure and spectrum of the accretion shock have been self-consistently simulated for a wide range of parameters typical for Classical T Tauri Stars (CTTS). Radiative cooling of the shocked gas was calculated, taking into account the self-absorption and non-equilibrium (time-dependent) effects in the level populations. These effects modify the standard cooling curve for an optically thin plasma in coronal equilibrium, however the shape of high-temperature (T > 3 × 105 K) part of the curve remains unchanged. The applied methods allow us to smoothly describe the transition from the cooling flow to the hydrostatic stellar atmosphere. Thanks to this approach, it has been found that the narrow component of He II lines is formed predominantly in the irradiated stationary atmosphere (hotspot), i.e. at velocities of the settling gas law via the full energy flux.

  19. Multiwavelength diagnostics of accretion in an X-ray selected sample of CTTSs

    Science.gov (United States)

    Curran, R. L.; Argiroffi, C.; Sacco, G. G.; Orlando, S.; Peres, G.; Reale, F.; Maggio, A.

    2011-02-01

    Context. High resolution X-ray spectroscopy has revealed soft X-rays from high density plasma in classical T Tauri stars (CTTSs), probably arising from the accretion shock region. However, the mass accretion rates derived from the X-ray observations are consistently lower than those derived from UV/optical/NIR studies. Aims: We aim to test the hypothesis that the high density soft X-ray emission originates from accretion by analysing, in a homogeneous manner, optical accretion indicators for an X-ray selected sample of CTTSs. Methods: We analyse optical spectra of the X-ray selected sample of CTTSs and calculate the accretion rates based on measuring the Hα, Hβ, Hγ, He ii 4686 Å, He i 5016 Å, He i 5876 Å, O i 6300 Å, and He i 6678 Å equivalent widths. In addition, we also calculate the accretion rates based on the full width at 10% maximum of the Hα line. The different optical tracers of accretion are compared and discussed. The derived accretion rates are then compared to the accretion rates derived from the X-ray spectroscopy. Results: We find that, for each CTTS in our sample, the different optical tracers predict mass-accretion rates that agree within the errors, albeit with a spread of ≈ 1 order of magnitude. Typically, mass-accretion rates derived from Hα and He i 5876 Å are larger than those derived from Hβ, Hγ, and O i. In addition, the Hα full width at 10%, whilst a good indicator of accretion, may not accurately measure the mass-accretion rate. When the optical mass-accretion rates are compared to the X-ray derived mass-accretion rates, we find that: a) the latter are always lower (but by varying amounts); b) the latter range within a factor of ≈ 2 around 2 × 10-10 M⊙ yr-1, despite the former spanning a range of ≈ 3 orders of magnitude. We suggest that the systematic underestimate of the X-ray derived mass-accretion rates could depend on the density distribution inside the accretion streams, where the densest part of the stream is

  20. Constraints on two accretion disks centered on the equatorial plane of a Kerr SMBH

    Science.gov (United States)

    Pugliese, Daniela; Stuchlík, Zdeněk

    2017-12-01

    The possibility that two toroidal accretion configurations may be orbiting around a super–massive Kerr black hole has been addressed. Such tori may be formed during different stages of the Kerr attractor accretion history. We consider the relative rotation of the tori and the corotation or counterrotation of a single torus with respect to the Kerr attractor. We give classification of the couples of accreting and non–accreting tori in dependence on the Kerr black hole dimensionless spin. We demonstrate that only in few cases a double accretion tori system may be formed under specific conditions.

  1. The response of relativistic outflowing gas to the inner accretion disk of a black hole.

    Science.gov (United States)

    Parker, Michael L; Pinto, Ciro; Fabian, Andrew C; Lohfink, Anne; Buisson, Douglas J K; Alston, William N; Kara, Erin; Cackett, Edward M; Chiang, Chia-Ying; Dauser, Thomas; De Marco, Barbara; Gallo, Luigi C; Garcia, Javier; Harrison, Fiona A; King, Ashley L; Middleton, Matthew J; Miller, Jon M; Miniutti, Giovanni; Reynolds, Christopher S; Uttley, Phil; Vasudevan, Ranjan; Walton, Dominic J; Wilkins, Daniel R; Zoghbi, Abderahmen

    2017-03-01

    The brightness of an active galactic nucleus is set by the gas falling onto it from the galaxy, and the gas infall rate is regulated by the brightness of the active galactic nucleus; this feedback loop is the process by which supermassive black holes in the centres of galaxies may moderate the growth of their hosts. Gas outflows (in the form of disk winds) release huge quantities of energy into the interstellar medium, potentially clearing the surrounding gas. The most extreme (in terms of speed and energy) of these-the ultrafast outflows-are the subset of X-ray-detected outflows with velocities higher than 10,000 kilometres per second, believed to originate in relativistic (that is, near the speed of light) disk winds a few hundred gravitational radii from the black hole. The absorption features produced by these outflows are variable, but no clear link has been found between the behaviour of the X-ray continuum and the velocity or optical depth of the outflows, owing to the long timescales of quasar variability. Here we report the observation of multiple absorption lines from an extreme ultrafast gas flow in the X-ray spectrum of the active galactic nucleus IRAS 13224-3809, at 0.236 ± 0.006 times the speed of light (71,000 kilometres per second), where the absorption is strongly anti-correlated with the emission of X-rays from the inner regions of the accretion disk. If the gas flow is identified as a genuine outflow then it is in the fastest five per cent of such winds, and its variability is hundreds of times faster than in other variable winds, allowing us to observe in hours what would take months in a quasar. We find X-ray spectral signatures of the wind simultaneously in both low- and high-energy detectors, suggesting a single ionized outflow, linking the low- and high-energy absorption lines. That this disk wind is responding to the emission from the inner accretion disk demonstrates a connection between accretion processes occurring on very different

  2. Accreting neutron stars, black holes, and degenerate dwarf stars.

    Science.gov (United States)

    Pines, D

    1980-02-08

    During the past 8 years, extended temporal and broadband spectroscopic studies carried out by x-ray astronomical satellites have led to the identification of specific compact x-ray sources as accreting neutron stars, black holes, and degenerate dwarf stars in close binary systems. Such sources provide a unique opportunity to study matter under extreme conditions not accessible in the terrestrial laboratory. Quantitative theoretical models have been developed which demonstrate that detailed studies of these sources will lead to a greatly increased understanding of dense and superdense hadron matter, hadron superfluidity, high-temperature plasma in superstrong magnetic fields, and physical processes in strong gravitational fields. Through a combination of theory and observation such studies will make possible the determination of the mass, radius, magnetic field, and structure of neutron stars and degenerate dwarf stars and the identification of further candidate black holes, and will contribute appreciably to our understanding of the physics of accretion by compact astronomical objects.

  3. Self-gravity in Magnetized Neutrino-dominated Accretion Disks

    Energy Technology Data Exchange (ETDEWEB)

    Shahamat, Narjes; Abbassi, Shahram, E-mail: abbassi@um.ac.ir [Department of Physics, School of Science, Ferdowsi University of Mashhad, Mashhad, P.O. Box 91775-1436 (Iran, Islamic Republic of)

    2017-08-10

    In the present work we study self-gravity effects on the vertical structure of a magnetized neutrino-dominated accretion disk as a central engine for gamma-ray bursts (GRBs). Some of the disk physical timescales that are supposed to play a pivotal role in the late-time evolutions of the disk, such as viscous, cooling, and diffusion timescales, have been studied. We are interested in investigating the possibility of the occurrence of X-ray flares, observed in late-time GRBs’ extended emission through the “magnetic barrier” and “fragmentation” processes in our model. The results lead us to interpret self-gravity as an amplifier for Blandford–Payne luminosity (BP power) and the generated magnetic field, but a suppressor for neutrino luminosity and magnetic barrier processes via highlighting the fragmentation mechanism in the outer disk, especially for the higher mass accretion rates.

  4. Retrograde versus Prograde Models of Accreting Black Holes

    Directory of Open Access Journals (Sweden)

    David Garofalo

    2013-01-01

    Full Text Available There is a general consensus that magnetic fields, accretion disks, and rotating black holes are instrumental in the generation of the most powerful sources of energy in the known universe. Nonetheless, because magnetized accretion onto rotating black holes involves both the complications of nonlinear magnetohydrodynamics that currently cannot fully be treated numerically, and uncertainties about the origin of magnetic fields that at present are part of the input, the space of possible solutions remains less constrained. Consequently, the literature still bears witness to the proliferation of rather different black hole engine models. But the accumulated wealth of observational data is now sufficient to meaningfully distinguish between them. It is in this light that this critical paper compares the recent retrograde framework with standard “spin paradigm” prograde models.

  5. A model for neutrino emission from nuclear accretion disks

    Science.gov (United States)

    Deaton, Michael

    2015-04-01

    Compact object mergers involving at least one neutron star can produce short-lived black hole accretion engines. Over tens to hundreds of milliseconds such an engine consumes a disk of hot, nuclear-density fluid, and drives changes to its surrounding environment through luminous emission of neutrinos. The neutrino emission may drive an ultrarelativistic jet, may peel off the disk's outer layers as a wind, may irradiate those winds or other forms of ejecta and thereby change their composition, may change the composition and thermodynamic state of the disk itself, and may oscillate in its flavor content. We present the full spatial-, angular-, and energy-dependence of the neutrino distribution function around a realistic model of a nuclear accretion disk, to inform future explorations of these types of behaviors. Spectral Einstein Code (SpEC).

  6. Conditions for accretion-induced collapse of white dwarfs

    International Nuclear Information System (INIS)

    Nomoto, Kenichi; Kondo, Yoji

    1991-01-01

    Recent discovery of an unexpectedly large number of low-mass binary pulsars (LMBPs) in globular clusters has instigated active discussions on the evolutionary origin of binary pulsars. Prompted by the possibility that at least some of LMBPs originate from accretion-induced collapse (AIC) of white dwarfs, a reexamination is conducted as to whether or not AIC occurs for the new models of O + Ne + Mg white dwarfs and solid C + O white dwarfs that can ignite explosive nuclear burning at significantly lower central densities than in the previous models. Even with low critical densities, AIC is still much more likely than explosion for both types of white dwarfs. Possible regions for AIC are presented in a diagram of mass accretion rate vs initial mass of the white dwarfs. 42 refs

  7. No Collective Neutrino Flavor Conversions during the Supernova Accretion Phase

    Science.gov (United States)

    Chakraborty, Sovan; Fischer, Tobias; Mirizzi, Alessandro; Saviano, Ninetta; Tomàs, Ricard

    2011-10-01

    We perform a dedicated study of the supernova (SN) neutrino flavor evolution during the accretion phase, using results from recent neutrino radiation hydrodynamics simulations. In contrast to what was expected in the presence of only neutrino-neutrino interactions, we find that the multiangle effects associated with the dense ordinary matter suppress collective oscillations. The matter suppression implies that neutrino oscillations will start outside the neutrino decoupling region and therefore will have a negligible impact on the neutrino heating and the explosion dynamics. Furthermore, the possible detection of the next galactic SN neutrino signal from the accretion phase, based on the usual Mikheyev-Smirnov-Wolfenstein effect in the SN mantle and Earth matter effects, can reveal the neutrino mass hierarchy in the case that the mixing angle θ13 is not very small.

  8. Accreting Millisecond Pulsars: Neutron Star Masses and Radii

    Science.gov (United States)

    Strohmayer, Tod

    2004-01-01

    High amplitude X-ray brightness oscillations during thermonuclear X-ray bursts were discovered with the Rossi X-ray Timing Explorer (RXTE) in early 1996. Spectral and timing evidence strongly supports the conclusion that these oscillations are caused by rotational modulation of the burst emission and that they reveal the spin frequency of neutron stars in low mass X-ray binaries. The recent discovery of X-ray burst oscillations from two accreting millisecond pulsars has confirmed this basic picture and provided a new route to measuring neutron star properties and constraining the dense matter equation of state. I will briefly summarize the current observational understanding of accreting millisecond pulsars, and describe recent attempts to determine the mass and radius of the neutron star in XTE J1814-338.

  9. Measuring the surface inhomogeneity of metals on accreting white dwarfs

    International Nuclear Information System (INIS)

    Montgomery, M H; Hippel, T von; Thompson, S E

    2009-01-01

    Due to the short settling times of metals in DA white dwarf atmospheres, any white dwarfs with photospheric metals must be actively accreting. It is therefore natural to expect that the metals may not be deposited uniformly on the surface of the star. We present calculations showing how the temperature variations associated with white dwarf pulsations lead to an observable diagnostic of the surface metal distribution, and we show what constraints current data sets are able to provide.

  10. Phantom energy accretion onto black holes in a cyclic universe

    International Nuclear Information System (INIS)

    Sun Chengyi

    2008-01-01

    Black holes pose a serious problem in cyclic or oscillating cosmology. It is speculated that, in the cyclic universe with phantom turnarounds, black holes will be torn apart by phantom energy prior to turnaround before they can create any problems. In this paper, using the mechanism of phantom accretion onto black holes, we find that black holes do not disappear before phantom turnaround. But the remanent black holes will not cause any problems due to Hawking evaporation.

  11. Gap opening by gas accretion and influence on planet populations

    Science.gov (United States)

    Crida, A.; Bitsch, B.; Ndugu, N.; Morbidelli, A.

    2017-09-01

    Giant planets grow and migrate in protoplanetary disks. Because they accrete gas from their horseshoe region until the latter is depleted, we find that giant planets can open a gap before being lost into their central star by type I migration. A reduced type II migration is then enough and necessary to limit the total amount of migration that a giant planet suffers during its formation.

  12. Enigmatic sub-luminous accreting neutron stars in our Galaxy

    NARCIS (Netherlands)

    Wijnands, R.

    2008-01-01

    During the last few years a class of enigmatic sub-luminous accreting neutron stars has been found in our Galaxy. They have peak X-ray luminosities (2-10 keV) of a few times 10(34) erg s(−1) to a few times 10(35) erg s(−1), and both persistent and transient sources have been found. I present a short

  13. Nanoscale volcanoes: accretion of matter at ion-sculpted nanopores.

    Science.gov (United States)

    Mitsui, Toshiyuki; Stein, Derek; Kim, Young-Rok; Hoogerheide, David; Golovchenko, J A

    2006-01-27

    We demonstrate the formation of nanoscale volcano-like structures induced by ion-beam irradiation of nanoscale pores in freestanding silicon nitride membranes. Accreted matter is delivered to the volcanoes from micrometer distances along the surface. Volcano formation accompanies nanopore shrinking and depends on geometrical factors and the presence of a conducting layer on the membrane's back surface. We argue that surface electric fields play an important role in accounting for the experimental observations.

  14. Multiple accretion events as a trigger for Sagittarius A* activity

    Czech Academy of Sciences Publication Activity Database

    Czerny, B.; Kunneriath, Devaky; Karas, Vladimír; Das, T. K.

    2013-01-01

    Roč. 555, July (2013), A97/1-A97/11 ISSN 0004-6361 R&D Projects: GA ČR(CZ) GC13-00070J Grant - others:EU(XE) COST Action ref. 208092 Institutional support: RVO:67985815 Keywords : accretion * galaxy center * black holes Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.479, year: 2013

  15. Condition of the existence of cooling flow in galaxies

    International Nuclear Information System (INIS)

    Volkov, E.V.

    1986-01-01

    A criterion for the existence of subsonic spherical symmetrical flow of cooling gas in galaxies has been found. Some equations are given describing the behaviour of gas in the gravitational field of a galaxy in the framework of a stationary accretion model. The results of numerical calculations of a nonstationary accretion of gas on a cD galaxy are presented. The gas is initially in a hydrostatic equilibrium

  16. Dynamic effects on cyclotron scattering in pulsar accretion columns

    International Nuclear Information System (INIS)

    Brainerd, J.J.; Meszaros, P.

    1991-01-01

    A resonant scattering model for photon reprocessing in a pulsar accretion column is presented. The accretion column is optically thin to Thomson scattering and optically thick to resonant scattering at the cyclotron frequency. Radiation from the neutron star surface propagates freely through the column until the photon energy equals the local cyclotron frequency, at which point the radiation is scattered, much of it back toward the star. The radiation pressure in this regime is insufficient to stop the infall. Some of the scattered radiation heats the stellar surface around the base of the column, which adds a softer component to the spectrum. The partial blocking by the accretion column of X-rays from the surface produces a fan beam emission pattern. X-rays above the surface cyclotron frequency freely escape and are characterized by a pencil beam. Gravitational light bending produces a pencil beam pattern of column-scattered radiation in the antipodal direction, resulting in a strongly angle-dependent cyclotron feature. 31 refs

  17. EVIDENCE FOR ACCRETION IN A NEARBY, YOUNG BROWN DWARF

    International Nuclear Information System (INIS)

    Reiners, Ansgar

    2009-01-01

    We report on the discovery of the young, nearby, brown dwarf 2MASS J0041353-562112. The object has a spectral type of M7.5; it shows Li absorption and signatures of accretion, which implies that it still has a disk and suggests an age below 10 Myr. The space motion vector and position on the sky indicate that the brown dwarf is probably a member of the ∼20 Myr old Tuc-Hor association, or that it may be an ejected member of the ∼12 Myr old β Pic association; both would imply that 2MASS J0041353-562112 may in fact be older than 10 Myr. No accreting star or brown dwarf was previously known in these associations. Assuming an age of 10 Myr, the brown dwarf has a mass of about 30 M Jup and is located at 35 pc distance. The newly discovered object is the closest accreting brown dwarf known. Its membership to an association older than 10 Myr implies that either disks in brown dwarfs can survive as long as in more massive stars, perhaps even longer, or that star formation in Tuc-Hor or β Pic occurred more recently than previously thought. The history and evolution of this object can provide new fundamental insight into the formation process of stars, brown dwarfs, and planets.

  18. Quasistationary solutions of scalar fields around accreting black holes

    Science.gov (United States)

    Sanchis-Gual, Nicolas; Degollado, Juan Carlos; Izquierdo, Paula; Font, José A.; Montero, Pedro J.

    2016-08-01

    Massive scalar fields can form long-lived configurations around black holes. These configurations, dubbed quasibound states, have been studied both in the linear and nonlinear regimes. In this paper, we show that quasibound states can form in a dynamical scenario in which the mass of the black hole grows significantly due to the capture of infalling matter. We solve the Klein-Gordon equation numerically in spherical symmetry, mimicking the evolution of the spacetime through a sequence of analytic Schwarzschild black hole solutions of increasing mass. It is found that the frequency of oscillation of the quasibound states decreases as the mass of the black hole increases. In addition, accretion leads to an increase of the exponential decay of the scalar field energy. We compare the black hole mass growth rates used in our study with estimates from observational surveys and extrapolate our results to values of the scalar field masses consistent with models that propose scalar fields as dark matter in the universe. We show that, even for unrealistically large mass accretion rates, quasibound states around accreting black holes can survive for cosmological time scales. Our results provide further support to the intriguing possibility of the existence of dark matter halos based on (ultralight) scalar fields surrounding supermassive black holes in galactic centers.

  19. ACCRETION DISKS AROUND KICKED BLACK HOLES: POST-KICK DYNAMICS

    International Nuclear Information System (INIS)

    Ponce, Marcelo; Faber, Joshua A.; Lombardi, James C.

    2012-01-01

    Numerical calculations of merging black hole binaries indicate that asymmetric emission of gravitational radiation can kick the merged black hole at up to thousands of km s –1 , and a number of systems have been observed recently whose properties are consistent with an active galactic nucleus containing a supermassive black hole moving with substantial velocity with respect to its broader accretion disk. We study here the effect of an impulsive kick delivered to a black hole on the dynamical evolution of its accretion disk using a smoothed particle hydrodynamics code, focusing attention on the role played by the kick angle with respect to the orbital angular momentum vector of the pre-kicked disk. We find that for more vertical kicks, for which the angle between the kick and the normal vector to the disk θ ∼ 45°, matter rapidly accretes toward the black hole. There is a systematic trend for higher potential luminosities for more oblique kick angles for a given black hole mass, disk mass, and kick velocity, and we find large amplitude oscillations in time in the case of a kick oriented 60° from the vertical.

  20. Disk accretion onto a black hole at subcritical luminosity

    International Nuclear Information System (INIS)

    Bisnovatyi-Kogan, G.S.; Blinnikov, S.I.

    1977-01-01

    The influence of radiation pressure on the structure of an accretion disk is considered when the total luminosity L approaches the Eddington limit Lsub(c). The motion of particles in the disk radiation field and gravitational field of a nonrotating black hole is investigated. It is shown that the disk accretion is destroyed when L approximately equal to (0.6 / 1.0) Lsub(c). Matter outflow from the central parts of the disk to infinity then sets in. We conclude that the luminosity cannot significantly exceed the Eddington limit. We show that for L > approximately 0.1 Lsub(c) the plasma in the upper layers of the central region of the disk is heated up to temperatures T approximately 10 9 K and the disk becomes thicker as compared with the standard theory. It is shown that the radiative force can generate magnetic fields B approximately 100 G. We find that convection is the main energy transfer mechanism along z-coordinate in the central parts of the disk. The convection generates an acoustic flux which dissipates in the upper, optically thin layers of the disk and heats them. The comptonization of soft photons going from layers to the hot upper layers and variable accretion rate may explain the spectrum and variations of X-ray emission of the CygX-1. (orig.) [de

  1. Convection Enhances Magnetic Turbulence in AM CVn Accretion Disks

    Science.gov (United States)

    Coleman, Matthew S. B.; Blaes, Omer; Hirose, Shigenobu; Hauschildt, Peter H.

    2018-04-01

    We present the results of local, vertically stratified, radiation magnetohydrodynamic shearing-box simulations of magnetorotational instability (MRI) turbulence for a (hydrogen poor) composition applicable to accretion disks in AM CVn type systems. Many of these accreting white dwarf systems are helium analogs of dwarf novae (DNe). We utilize frequency-integrated opacity and equation-of-state tables appropriate for this regime to accurately portray the relevant thermodynamics. We find bistability of thermal equilibria in the effective-temperature, surface-mass-density plane typically associated with disk instabilities. Along this equilibrium curve (i.e., the S-curve), we find that the stress to thermal pressure ratio α varied with peak values of ∼0.15 near the tip of the upper branch. Similar to DNe, we found enhancement of α near the tip of the upper branch caused by convection; this increase in α occurred despite our choice of zero net vertical magnetic flux. Two notable differences we find between DN and AM CVn accretion disk simulations are that AM CVn disks are capable of exhibiting persistent convection in outburst, and ideal MHD is valid throughout quiescence for AM CVns. In contrast, DNe simulations only show intermittent convection, and nonideal MHD effects are likely important in quiescence. By combining our previous work with these new results, we also find that convective enhancement of the MRI is anticorrelated with mean molecular weight.

  2. On hard X-ray spectra of accreting neutron stars

    International Nuclear Information System (INIS)

    Zheleznyakov, V.V.

    1982-01-01

    Formation of the spectra of X-ray pulsars and gamma bursters is investigated. Interpretation of a hard X-ray spectrum of pulsars containing cyclotron lines is feasible on the basis of an isothermal model of a polar spot heated due to acccretion to a neutron star. It has been ascertained that in the regions responsible for the formation of continuum radiation and lines the mode polarization is determined by a magnetized vacuum rather than by a plasma. Bearing this in mind, the influence of the magnetic field of a star on the wide wings of the cyclotron line and on its depth is discussed. The part played by the accreting column in the case of strong accretion (approx. equal to 10 19 el cm -3 ) needed for long sustaining of the high level of X-rays from a neutron star-pulsar is studied. There occur the gaps in spectrum at frequencies close to the electron gyro-frequency and its harmonics due to the screening of the hot spot by the opaque gyro-resonant layer located within the accreting column. These gaps ensure the formation of cyclotron lines in absorption irrespective of the presence of such lines in the X-ray spectrum of a polar hot spot. (orig./WL)

  3. HYPERCRITICAL ACCRETION, INDUCED GRAVITATIONAL COLLAPSE, AND BINARY-DRIVEN HYPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Fryer, Chris L. [CCS-2, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Rueda, Jorge A.; Ruffini, Remo [ICRANet, Piazza della Repubblica 10, I-65122 Pescara (Italy)

    2014-10-01

    The induced gravitational collapse (IGC) paradigm has been successfully applied to the explanation of the concomitance of gamma-ray bursts (GRBs) with supernovae (SNe) Ic. The progenitor is a tight binary system composed of a carbon-oxygen (CO) core and a neutron star (NS) companion. The explosion of the SN leads to hypercritical accretion onto the NS companion, which reaches the critical mass, hence inducing its gravitational collapse to a black hole (BH) with consequent emission of the GRB. The first estimates of this process were based on a simplified model of the binary parameters and the Bondi-Hoyle-Lyttleton accretion rate. We present here the first full numerical simulations of the IGC phenomenon. We simulate the core-collapse and SN explosion of CO stars to obtain the density and ejection velocity of the SN ejecta. We follow the hydrodynamic evolution of the accreting material falling into the Bondi-Hoyle surface of the NS all the way up to its incorporation in the NS surface. The simulations go up to BH formation when the NS reaches the critical mass. For appropriate binary parameters, the IGC occurs in short timescales ∼10{sup 2}-10{sup 3} s owing to the combined effective action of the photon trapping and the neutrino cooling near the NS surface. We also show that the IGC scenario leads to a natural explanation for why GRBs are associated only with SNe Ic with totally absent or very little helium.

  4. Clumpy wind accretion in Supergiant X-ray Binaries

    Science.gov (United States)

    El Mellah, I.; Sundqvist, J. O.; Keppens, R.

    2017-12-01

    Supergiant X-ray binaries (\\sgx) contain a neutron star (NS) orbiting a Supergiant O/B star. The fraction of the dense and fast line-driven wind from the stellar companion which is accreted by the NS is responsible for most of the X-ray emission from those system. Classic \\sgx display photometric variability of their hard X-ray emission, typically from a few 10^{35} to a few 10^{37}erg\\cdots^{-1}. Inhomogeneities (\\aka clumps) in the wind from the star are expected to play a role in this time variability. We run 3D hydrodynamical (HD) finite volume simulations to follow the accretion of the inhomogeneous stellar wind by the NS over almost 3 orders of magnitude. To model the unperturbed wind far upstream the NS, we use recent simulations which managed to resolve its micro-structure. We observe the formation of a Bondi-Hoyle-Lyttleton (BHL) like bow shock around the accretor and follow the clumps as they cross it, down to the NS magnetosphere. Compared to previous estimations discarding the HD effects, we measure lower time variability due to both the damping effect of the shock and the necessity to evacuate angular momentum to enable accretion. We also compute the associated time-variable column density and compare it to recent observations in Vela X-1.

  5. Comptonization effects in spherical accretion onto black holes

    International Nuclear Information System (INIS)

    Ipser, J.R.; Price, R.H.

    1983-01-01

    For spherical accretion of gas onto a black hole, dissipative heating (from magnetic reconnection), dissipation of turbulence, etc.) leads at high accretion rates to densities and temperatures at which Comptonization unavoidably plays an important role, both in determining gas temperature and in forming the emergent spectrum. A careful and reliable treatment of the interaction of the gas with the radiation field is greatly complicated by the necessity of dealing with the essentially nonlocal nature of Comptonization. We limit ourselves here to finding approximate descriptions of some observational features of such astrophysical objects with a simple, yet justifiable, Ansatz that evades the complexities of nonlocality. The results for accretion spectra are of interest, e.g., in connection with galactic halo objects (1--10 5 M/sub sun/). High mass (10 7 --10 10 M/sub sun/) cases are of interest as models for active galactic nuclei. In particular, a very natural connection between the ratio of luminosity to Eddington luminosity and the hardness of X-ray spectra emerges, suggesting that the observed X-ray hardness ratios of luminous sources are a consequence of those sources being more or less Eddington limited

  6. Two-temperature accretion disks in pair equilibrium

    International Nuclear Information System (INIS)

    Kusunose, Masaaki; Takahara, Fumio.

    1989-01-01

    We investigate two-temperature accretion disks with electron-positron pair production, taking account of the bremsstrahlung and Comptonization of soft photons produced by the cyclotron higher harmonics. The properties of the disks are qualitatively the same as those of disks in which bremsstrahlung is the only photon source. For an accretion rate higher than a critical value, M cr , no steady solutions exist for a certain range of radial distance from a central black hole. The critical value increases only slightly with the input of soft photons; the increment is 45%, i.e., M cr ∼ 0.43 M Edd , for the viscosity parameter α = 0.1, where M Edd ≡ L Edd /c 2 = 4πGM BH m p /(σ T c) with M BH being the mass of the central black hole. Furthermore, the disks are unstable against perturbations of the proton temperature. For α ∼ 0.1, the equipartition magnetic field, and a range of accretion rates, emission spectra obey the power law with a spectral index of -0.7 to -0.6, which coincides with the observed universal X-ray spectra of Seyfert galaxies. Brief comments on the model of the γ-ray flare of Cyg X-1 are also given. (author)

  7. Accretion onto hot white dwarfs in relation to symbiotic novae

    International Nuclear Information System (INIS)

    Livio, M.; Prialnik, D.; Regev, O.

    1989-01-01

    Numerical calculations are used to study the hydrodynamic evolution of a hot white dwarf with 1 solar mass accreting hydrogen-rich matter at rates between 10 to the -8th and 10 to the -6th solar masses/yr. It is found that for accretion at a rate of about 10 to the -8th solar masses/yr, nova-type outbursts of long duration occur at intervals of about 1500 yr. About half of the accreted envelope is ejected during these outbursts. At a rate of about 10 to the -7th solar masses/yr, the star alternates between comparable periods at a high plateau luminosity and giant dimensions and periods at a low luminosity and white dwarf dimension. At 10 to the -6th solar masses/yr, equilibrium is achieved with a typical red giant luminosity supported by steady hydrogen burning. It is concluded that symbiotic novae are more likely to occur in detached systems involving wind accretors. Thus, the contribution of symbiotic stars to the frequency of type I supernovae is severely constrained. 39 refs

  8. Accretion torques and motion of the hot spot on the accreting millisecond pulsar XTE J1807-294

    NARCIS (Netherlands)

    Patruno, A.; Hartman, J.M.; Wijnands, R.; Chakrabarty, D.; van der Klis, M.

    2010-01-01

    We present a coherent timing analysis of the 2003 outburst of the accreting millisecond pulsar (AMXP) XTEJ1807-294. We find a 95% confidence interval for the pulse frequency derivative of (+0.7, +4.7) x 10(-14) Hz s(-1) and (-0.6, +3.8) x 10(-14) Hz s(-1) for the fundamental and second harmonics,

  9. Massive star formation by accretion. II. Rotation: how to circumvent the angular momentum barrier?

    Science.gov (United States)

    Haemmerlé, L.; Eggenberger, P.; Meynet, G.; Maeder, A.; Charbonnel, C.; Klessen, R. S.

    2017-06-01

    Context. Rotation plays a key role in the star-formation process, from pre-stellar cores to pre-main-sequence (PMS) objects. Understanding the formation of massive stars requires taking into account the accretion of angular momentum during their PMS phase. Aims: We study the PMS evolution of objects destined to become massive stars by accretion, focusing on the links between the physical conditions of the environment and the rotational properties of young stars. In particular, we look at the physical conditions that allow the production of massive stars by accretion. Methods: We present PMS models computed with a new version of the Geneva Stellar Evolution code self-consistently including accretion and rotation according to various accretion scenarios for mass and angular momentum. We describe the internal distribution of angular momentum in PMS stars accreting at high rates and we show how the various physical conditions impact their internal structures, evolutionary tracks, and rotation velocities during the PMS and the early main sequence. Results: We find that the smooth angular momentum accretion considered in previous studies leads to an angular momentum barrier and does not allow the formation of massive stars by accretion. A braking mechanism is needed in order to circumvent this angular momentum barrier. This mechanism has to be efficient enough to remove more than two thirds of the angular momentum from the inner accretion disc. Due to the weak efficiency of angular momentum transport by shear instability and meridional circulation during the accretion phase, the internal rotation profiles of accreting stars reflect essentially the angular momentum accretion history. As a consequence, careful choice of the angular momentum accretion history allows circumvention of any limitation in mass and velocity, and production of stars of any mass and velocity compatible with structure equations.

  10. The Accretion Disk and the Boundary Layer of the Symbiotic Recurrent Nova T Corona Borealis

    Science.gov (United States)

    Mukai, Koji; Luna, Gerardo; Nelson, Thomas; Sokoloski, Jennifer L.; Lucy, Adrian; Nuñez, Natalia

    2017-08-01

    T Corona Borealis is one of four known Galactic recurrent symbiotic novae, red giant-white dwarf binaries from which multiple thermonuclear runaway (TNR) events, or nova eruptions, have been observed. TNR requires high pressure at the base of the accreted envelope, and a recurrence time of less than a century almost certainly requires both high white dwarf mass and high accretion rate. The eruptions of T CrB were observed in 1866 and 1946; if the 80 year interval is typical, the next eruption would be expected within the next decade or two. Optical observations show that T CrB has entered a super-active state starting in 2015, similar to that seen in 1938, 8 years before the last eruption. In quiescence, T CrB is a known, bright hard X-ray source that has been detected in the Swift/BAT all-sky survey. Here we present the result of our NuSTAR observation of T CrB in 2015, when it had started to brighten but had not yet reached the peak of the super-active state. We were able to fit the spectrum with an absorbed cooling flow model with reflection, with a reflection amplitude of 1.0. We also present recent Swift and XMM-Newton observations during the peak of the super-active state, when T CrB had faded dramatically in the BAT band. T CrB is found to be much more luminous in the UV, while the X-ray spectrum became complex including a soft, optically thick component. We present our interpretation of the overall variability as due to instability of a large disk, and of the X-rays as due to emission from the boundary layer. In our view, the NuSTAR observation was performed when the boundary layer was optically thin, and the reflection was only from the white dwarf surface that subtended 2π steradian of the sky as seen from the emission region. With these assumptions, we infer the white dwarf in the T CrB system to have a mass of ~1.2 Msun. During the very active state, the boundary layer had turned partially optically thick and produced the soft X-ray component, while

  11. Mass Flux and Terminal Velocities of Magnetically Driven Jets from Accretion Disks

    Science.gov (United States)

    Kudoh, Takahiro; Shibata, Kazunari

    1995-10-01

    In order to investigate astrophysical jets from accretion disks, we solve 1.5-dimensional steady MHD equations for a wide range of parameters, assuming the shape of poloidal magnetic field lines. We include a thermal effect to obtain the relation between the mass flux of the jet and the magnetic energy at the disk, although the jet is mainly accelerated by the magnetic force. It is found that the mass flux of the jets ( M dot ) is dependent on the magnetic energy at the disk surface, i.e., M dot ~ (rho Aa|Bp/B|)_{{slow}} ~ (rho Aa|Bp/Bphi|)_{{slow}} ~ Ealpha_{{mg}} [where rho is the density, a is the sound velocity, A is the cross section of the magnetic flux, B = (B2p + B2phi)^{1/2} , Bp and B phi are the poloidal and toroidal magnetic field strength, respectively, Emg is the magnetic energy in unit of the gravitational energy at the disk surface, and the suffix "slow" denotes the value at a slow point], when the magnetic energy is not too large. The parameter alpha increases from 0 to 0.5 with decreasing magnetic energy. Since the scaling law of Michel's minimum energy solution nearly holds in the magnetically driven flows, the dependence of the terminal velocity on the magnetic energy becomes weaker than had been expected, i.e., v_∞ ~ E^{(1-alpha)/3}_{{mg}} . It is shown that the terminal velocity of the jet is an order of Keplerian velocity at the footpoint of the jets for a wide range of values of Emg expected for accretion disks in star-forming regions and active galactic nuclei. We argue that the mass-loss rates observed in the star-forming regions would constrain the magnetic energies at the disk surfaces.

  12. Changes in the metallicity of gas giant planets due to pebble accretion

    Science.gov (United States)

    Humphries, R. J.; Nayakshin, S.

    2018-06-01

    We run numerical simulations to study the accretion of gas and dust grains on to gas giant planets embedded into massive protoplanetary discs. The outcome is found to depend on the disc cooling rate, planet mass, grain size, and irradiative feedback from the planet. If radiative cooling is efficient, planets accrete both gas and pebbles rapidly, open a gap, and usually become massive brown dwarfs. In the inefficient cooling case, gas is too hot to accrete on to the planet but pebble accretion continues and the planets migrate inward rapidly. Radiative feedback from the planet tends to suppress gas accretion. Our simulations predict that metal enrichment of planets by dust grain accretion inversely correlates with the final planet mass, in accordance with the observed trend in the inferred bulk composition of Solar system and exosolar giant planets. To account for observations, however, as many as ˜30-50 per cent of the dust mass should be in the form of large grains.

  13. Basic properties of a stationary accretion disk surrounding a black hole

    International Nuclear Information System (INIS)

    Hoshi, Reiun

    1977-01-01

    The structure of a stationary accretion disk surrounding a black hole is studied by means of newly developed basic equations. The basic equations are derived under the assumption that the vertical distribution of disk matter is given by a polytrope. For a Keplerian accretion disk, basic equations reduce to a differential equation of the first order. We have found that solutions of an optically thick accretion disk converge to a limiting value, irrespective of the outer boundary condition. This gives the happy consequence that the inner structure of an optically thick accretion disk is determined irrespective of the outer boundary condition. On the contrary, an optically thin accretion disk shows bimodal behavior, that is, two physically distinct states exist depending on the outer boundary condition imposed at the outer edge of the accretion disk. (auth.)

  14. Initiation of continental accretion in the Betic-Rif domain

    Science.gov (United States)

    Maxime, Daudet; Frederic, Mouthereau; Stéphanie, Brichau; Ana, Crespo-Blanc; Arnaud, Vacherat

    2017-04-01

    The Betic - Rif cordillera in southern Spain and northern Morocco, respectively, form one of the tightest orogenic arc on Earth. The formation of this arcuate orogenic belt resulted from the westward migration of the Alboran crustal domain, constituted by the internal zone of the orogeny and the basement of the Alboran back-arc basin, that collided with the rifted margins of Iberia and Africa at least since the early Miocene. This collision is intimately linked to the post-35-30Ma regional slab roll-back and back-arc extension in the western Mediterranean region. The geodynamics of the Betic-Rif domain, which is of great importance for the paleogeographic reconstructions of the Tethys-Altantic and the Mediterranean sea, is still largely debated. Answers will come from a more detailed structural analyses, including refinement of the time-temperature paths and kinematics of the main structural units, which is one of the main objectives of the OROGEN research project, co-financed by BRGM, TOTAL & CNRS. In this study, we focus on the well-developed flysch-type sediments now accreted in the Betics-Rif but initially deposited in a basin, north of the african margin and on the iberian margin from the Early Cretaceous to the Early Miocene. Using low-temperature thermochronology (fission-track and (U-Th)/He analyses) combined with zircon U-Pb geochronology on the flyschs deposited on the most distal part of the margin, we aim to constrain the thermal history of both the source rocks and accreted thrust sheets at the earliest stages of continental accretion. Sample have been collected in flyschs series ranging from Mesozoic, Paleogene to Neogene ages. Additional samples have been collected in the Rif where Cretaceous series are more developed. Combined with a detailed structural analysis, LT thermochronological constraints will refine the kinematics of thrust units when continental accretion started before the final thrust emplacement occurred in the Early Miocene

  15. Visualizing SPH Cataclysmic Variable Accretion Disk Simulations with Blender

    Science.gov (United States)

    Kent, Brian R.; Wood, Matthew A.

    2015-01-01

    We present innovative ways to use Blender, a 3D graphics package, to visualize smoothed particle hydrodynamics particle data of cataclysmic variable accretion disks. We focus on the methods of shape key data constructs to increasedata i/o and manipulation speed. The implementation of the methods outlined allow for compositing of the various visualization layers into a final animation. The viewing of the disk in 3D from different angles can allow for a visual analysisof the physical system and orbits. The techniques have a wide ranging set of applications in astronomical visualization,including both observation and theoretical data.

  16. Population studies - evidence for accretion of the galactic halo

    International Nuclear Information System (INIS)

    Norris, J.E.; Ryan, S.G.

    1989-01-01

    While there are comparatively few prograde-orbit dwarf stars in advance of the sun's motion of the type of which 510, selected kinematically, are presented, it is noted that there are significant numbers of objects on retrograde orbits that move with a speed greater than the sun's, relative to a nonrotating system, in the opposite direction about the Galactic center. It is suggested that this asymmetry is explainable in terms of the Searle and Zinn (1978) and Rodgers and Paltoglou (1984) models of halo formation by accretion; in these, fragments experience dynamical friction from an already-formed Galactic disk. 21 references

  17. Bimodal SLD Ice Accretion on a NACA 0012 Airfoil Model

    Science.gov (United States)

    Potapczuk, Mark; Tsao, Jen-Ching; King-Steen, Laura

    2016-01-01

    This presentation describes the results of ice accretion measurements on a NACA 0012 airfoil model, from the NASA Icing Research Tunnel, using an icing cloud composed of a bimodal distribution of Supercooled Large Droplets. The data consists of photographs, laser scans of the ice surface, and measurements of the mass of ice for each icing condition. The results of ice shapes accumulated as a result of exposure to an icing cloud with a bimodal droplet distribution were compared to the ice shapes resulting from an equivalent cloud composed of a droplet distribution with a standard bell curve shape.

  18. Accretion onto a moving Reissner-Nordström black hole

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Lei; Yang, Rongjia, E-mail: jiaoleizhijia@163.com, E-mail: yangrongjia@tsinghua.org.cn [College of Physical Science and Technology, Hebei University, No. 180, Wusi east road, Baoding 071002 (China)

    2017-09-01

    We obtain an analytic solution for accretion of a gaseous medium with a adiabatic equation of state ( P =ρ) onto a Reissner-Nordström black hole which moves at a constant velocity through the medium. We obtain the specific expression for each component of the velocity and present the mass accretion rate which depends on the mass and the electric charge. The result we obtained may be helpful to understand the physical mechanism of accretion onto a moving black hole.

  19. A model of two-stream non-radial accretion for binary X-ray pulsars

    International Nuclear Information System (INIS)

    Lipunov, V.M.

    1982-01-01

    The general case of non-radial accretion is assumed to occur in real binary systems containing X-ray pulsars. The structure and the stability of the magnetosphere, the interaction between the magnetosphere and accreted matter, as well as evolution of neutron star in close binary system are examined within the framework of the two-stream model of nonradial accretion onto a magnetized neutron star. Observable parameters of X-ray pulsars are explained in terms of the model considered. (orig.)

  20. Gravitomagnetic Acceleration of Black Hole Accretion Disk Matter to Polar Jets

    Science.gov (United States)

    Poirier, John; Mathews, Grant

    2015-04-01

    It is shown that the motion of the neutral masses in an accretion disk orbiting a black hole creates a magnetic-like (gravitomagnetic) field that vertically accelerates neutral particles near the accretion disk away from the disk and then inward toward the axis of the accretion disk. Moreover, as the accelerated material nears the axis, a frame-dragging effect twists the trajectories around the axis thus contributing to the formation of a narrow polar jet emanating from the poles.

  1. Accreting white dwarf models for type I supernovae. I. Presupernova evolution and triggering mechanisms

    International Nuclear Information System (INIS)

    Nomoto, K.

    1982-01-01

    The evolution of carbon-oxygen white dwarfs accreting helium in binary systems has been investigated from the onset of accretion up to the point at which a thermonuclear explosion occurs as a plausible explosion model for a Type I supernova. Although the accreted material has been assumed to be helium, our results should also be applicable to the more general case of accretion of hydrogen-rich material, since hydrogen shell burning leads to the development of a helium zone. Several cases with different accretion rates of helium and different initial masses of the white dwarf have been studied. The relationship between the conditions in the binary system and the triggering mechanism for the supernova explosion is discussed, especially for the cases with relatively slow accretion rate. It is found that the growth of a helium zone on the carbon-oxygen core leads to a supernova explosion which is triggered either by the off-center helium detonation for slow and intermediate accretion rates, or by the carbon deflagration for slow and rapid accretion rates. Both helium detonation and carbon deflagration are possible for the case for the slow accretion since, in this case, the initial mass of the white dwarf is an important parameter for determining the mode of ignition. Finally, various modes of building up the helium zone on the white dwarf, namely, direct transfer of helium from the companion star and the various types and strength of the hydrogen shell flashes are discussed in some detail

  2. Reaction rate and composition dependence of the stability of thermonuclear burning on accreting neutron stars

    International Nuclear Information System (INIS)

    Keek, L.; Cyburt, R. H.; Heger, A.

    2014-01-01

    The stability of thermonuclear burning of hydrogen and helium accreted onto neutron stars is strongly dependent on the mass accretion rate. The burning behavior is observed to change from Type I X-ray bursts to stable burning, with oscillatory burning occurring at the transition. Simulations predict the transition at a 10 times higher mass accretion rate than observed. Using numerical models we investigate how the transition depends on the hydrogen, helium, and CNO mass fractions of the accreted material, as well as on the nuclear reaction rates of 3α and the hot-CNO breakout reactions 15 O(α, γ) 19 Ne and 18 Ne(α, p) 21 Na. For a lower hydrogen content the transition is at higher accretion rates. Furthermore, most experimentally allowed reaction rate variations change the transition accretion rate by at most 10%. A factor 10 decrease of the 15 O(α, γ) 19 Ne rate, however, produces an increase of the transition accretion rate of 35%. None of our models reproduce the transition at the observed rate, and depending on the true 15 O(α, γ) 19 Ne reaction rate, the actual discrepancy may be substantially larger. We find that the width of the interval of accretion rates with marginally stable burning depends strongly on both composition and reaction rates. Furthermore, close to the stability transition, our models predict that X-ray bursts have extended tails where freshly accreted fuel prolongs nuclear burning.

  3. THE EFFECT OF TRANSIENT ACCRETION ON THE SPIN-UP OF MILLISECOND PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, Sudip; Chakrabarty, Deepto, E-mail: sudip@tifr.res.in [Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Colaba, Mumbai 400005 (India)

    2017-01-20

    A millisecond pulsar is a neutron star that has been substantially spun up by accretion from a binary companion. A previously unrecognized factor governing the spin evolution of such pulsars is the crucial effect of nonsteady or transient accretion. We numerically compute the evolution of accreting neutron stars through a series of outburst and quiescent phases, considering the drastic variation of the accretion rate and the standard disk–magnetosphere interaction. We find that, for the same long-term average accretion rate, X-ray transients can spin up pulsars to rates several times higher than can persistent accretors, even when the spin-down due to electromagnetic radiation during quiescence is included. We also compute an analytical expression for the equilibrium spin frequency in transients, by taking spin equilibrium to mean that no net angular momentum is transferred to the neutron star in each outburst cycle. We find that the equilibrium spin rate for transients, which depends on the peak accretion rate during outbursts, can be much higher than that for persistent sources. This explains our numerical finding. This finding implies that any meaningful study of neutron star spin and magnetic field distributions requires the inclusion of the transient accretion effect, since most accreting neutron star sources are transients. Our finding also implies the existence of a submillisecond pulsar population, which is not observed. This may point to the need for a competing spin-down mechanism for the fastest-rotating accreting pulsars, such as gravitational radiation.

  4. The formation of stars by gravitational collapse rather than competitive accretion

    Science.gov (United States)

    Krumholz, Mark R.; McKee, Christopher F.; Klein, Richard I.

    2005-11-01

    There are two dominant models of how stars form. Under gravitational collapse, star-forming molecular clumps, of typically hundreds to thousands of solar masses (Msolar), fragment into gaseous cores that subsequently collapse to make individual stars or small multiple systems. In contrast, competitive accretion theory suggests that at birth all stars are much smaller than the typical stellar mass (~0.5Msolar), and that final stellar masses are determined by the subsequent accretion of unbound gas from the clump. Competitive accretion models interpret brown dwarfs and free-floating planets as protostars ejected from star-forming clumps before they have accreted much mass; key predictions of this model are that such objects should lack disks, have high velocity dispersions, form more frequently in denser clumps, and that the mean stellar mass should vary within the Galaxy. Here we derive the rate of competitive accretion as a function of the star-forming environment, based partly on simulation, and determine in what types of environments competitive accretion can occur. We show that no observed star-forming region can undergo significant competitive accretion, and that the simulations that show competitive accretion do so because the assumed properties differ from those determined by observation. Our result shows that stars form by gravitational collapse, and explains why observations have failed to confirm predictions of the competitive accretion model.

  5. Experimental study of ice accretion effects on aerodynamic performance of an NACA 23012 airfoil

    Directory of Open Access Journals (Sweden)

    Sohrab Gholamhosein Pouryoussefi

    2016-06-01

    Full Text Available In this paper, the effects of icing on an NACA 23012 airfoil have been studied. Experiments were applied on the clean airfoil, runback ice, horn ice, and spanwise ridge ice at a Reynolds number of 0.6 × 106 over angles of attack from −8° to 20°, and then results are compared. Generally, it is found that ice accretion on the airfoil can contribute to formation of a flow separation bubble on the upper surface downstream from the leading edge. In addition, it is made clear that spanwise ridge ice provides the greatest negative effect on the aerodynamic performance of the airfoil. In this case, the stall angle drops about 10° and the maximum lift coefficient reduces about 50% which is hazardous for an airplane. While horn ice leads to a stall angle drop of about 4° and a maximum lift coefficient reduction to 21%, runback ice has the least effect on the flow pattern around the airfoil and the aerodynamic coefficients so as the stall angle decreases 2° and the maximum lift reduces about 8%.

  6. Modeling erosion and sedimentation coupled with hydrological and overland flow processes at the watershed scale

    Science.gov (United States)

    Kim, Jongho; Ivanov, Valeriy Y.; Katopodes, Nikolaos D.

    2013-09-01

    A novel two-dimensional, physically based model of soil erosion and sediment transport coupled to models of hydrological and overland flow processes has been developed. The Hairsine-Rose formulation of erosion and deposition processes is used to account for size-selective sediment transport and differentiate bed material into original and deposited soil layers. The formulation is integrated within the framework of the hydrologic and hydrodynamic model tRIBS-OFM, Triangulated irregular network-based, Real-time Integrated Basin Simulator-Overland Flow Model. The integrated model explicitly couples the hydrodynamic formulation with the advection-dominated transport equations for sediment of multiple particle sizes. To solve the system of equations including both the Saint-Venant and the Hairsine-Rose equations, the finite volume method is employed based on Roe's approximate Riemann solver on an unstructured grid. The formulation yields space-time dynamics of flow, erosion, and sediment transport at fine scale. The integrated model has been successfully verified with analytical solutions and empirical data for two benchmark cases. Sensitivity tests to grid resolution and the number of used particle sizes have been carried out. The model has been validated at the catchment scale for the Lucky Hills watershed located in southeastern Arizona, USA, using 10 events for which catchment-scale streamflow and sediment yield data were available. Since the model is based on physical laws and explicitly uses multiple types of watershed information, satisfactory results were obtained. The spatial output has been analyzed and the driving role of topography in erosion processes has been discussed. It is expected that the integrated formulation of the model has the promise to reduce uncertainties associated with typical parameterizations of flow and erosion processes. A potential for more credible modeling of earth-surface processes is thus anticipated.

  7. Accretion by rotating magnetic neutron stars. III. Accretion torques and period changes in pulsating X-ray sources

    International Nuclear Information System (INIS)

    Ghosh, P.; Lamb, F.K.

    1979-01-01

    We use the solutions of the two-dimensional hydromagnetic equations obtained previously to calculate the torque on a magnetic neutron star accreting from a Keplerian disk. We find that the magnetic coupling between the star and the plasma outside the inner edge of the disk is appreciable. As a result of this coupling the spin-up torque on fast rotators is substantially less than that on slow rotators; for sufficiently high stellar angular velocities or sufficiently low accretion rates this coupling dominates that de to the plasma and the magnetic field at the inner edge of the disk, braking the star's rotation even while accretion, and hence X-ray emission, continues.We apply these results to pulsating X-ray sources, and show that the observed secular spin-up rates of all the sources in which this rate has been measured can be accounted for quantitatively if one assumes that these sources are accreting from Keplerian disks and have magnetic moments approx.10 29 --10 32 gauss cm 3 . The reduction of the torque on fast rotators provides a natural explanation of the spin-up rate of Her X-1, which is much below that expected for slow rotators. We show further that a simple relation between the secular spin-up rate : P and the quantity PL/sup 3/7/ adequately represents almost all the observational data, P and L being the pulse period and the luminosity of the source, respectively. This ''universal'' relation enables one to estimate any one of the parameters P, P, and L for a given source if the other two are known. We show that the short-term period fluctuations observed in Her X-1, Cen X-3, Vela X-1, and X Per can be accounted for quite naturally as consequences of torque variations caused by fluctuations in the mass transfer rate. We also indicate how the spin-down torque at low luminosities found here may account for the paradoxical existence of a large number of long-period sources with short spin-up time scales

  8. Diffusion time scales and accretion in the sun

    International Nuclear Information System (INIS)

    Michaud, G.

    1977-01-01

    It is thought that surface abundances in the Sun could be due largely to accretion either of comets or grains, and it has been suggested that if surface convection zones were smaller than is usually indicated by model calculations, accretion would be especially important. Unless the zone immediately below the surface convection zone is sufficiently stable for diffusion to be important, other transport processes, such as turbulence and meridional circulation, more efficient than diffusion, will tend to homogenise the Sun. Diffusion is the slowest of the transport processes and will become important when other transport processes become inoperative. Using diffusion theory the minimum mass of the convection zone can be determined in order that transport processes at the bottom of the zone are not to influence abundances in the convection zone. If diffusion time scales are shorter than the life of the star (Sun) diffusion will modify the abundances in the convection zone. The mass in the convection zone for which diffusion time scales are equal to the life of the star on the main sequence then determines the minimum mass in the convection zone that justifies neglect of transport processes at the bottom of the convection zone. It is calculated here that, for the Sun, this mass is between 3 x 10 -3 and 10 -2 solar mass, and a general explosion is derived for the diffusion time scale as a function of the mass of the convection zone. (U.K.)

  9. Water Masers and Accretion Disks in Galactic Nuclei

    Science.gov (United States)

    Greenhill, L. J.

    2005-12-01

    There are over 50 sources of H2O maser emission in type-2 active galactic nuclei, a large fraction discovered in the last two years. Interferometer maps of water masers are presently the only means by which structures ⪉ 1 pc from massive black holes can be mapped directly, which is particularly important for type-2 systems because edge-on orientation and obscuration complicate study by other means. Investigations of several sources have demonstrated convincingly that the maser emission traces warped accretion disks 0.1 to 1 pc from central engines of order 106-108 M⊙. The same may be true for almost half the known (but unmapped) sources, based on spectral characteristics consistent with emission from edge-on accretion disks. Mapping these sources is a high priority. Study of most recently discovered masers requires long baseline arrays that include 100-m class apertures and would benefit from aggregate bit rates on the order of 1 gigabit per second. The Square Kilometer Array should provide an order of magnitude boost in mapping sensitivity, but outrigger antennas will be needed to achieve necesssary angular resolutions, as may be space-borne antennas.

  10. Steepest descent method for set-valued locally accretive mappings

    International Nuclear Information System (INIS)

    Chidume, C.E.

    1993-05-01

    Let E be a real q-uniformly smooth Banach space. Suppose T is a set-valued locally strongly accretive map with open domain D(T) in E and that 0 is an element of Tx has a solution x* in D(T). Then there exists a neighbourhood B in D(T) of x* and a real number r 1 >0 such that for any r>r 1 and some real sequence {c n }, any initial guess x 1 is an element of B and any single-valued selection T 0 of T, the sequence {x n } generated from x 1 by x n+1 =x n -c n T 0 x n , n≥1, remains in D(T) and converges strongly to x* with ||x n -x*|| O(n -(q-1)/ q). A related result deals with iterative approximation of a solution of the equation f is an element of x+Ax when A is a locally accretive map. Our theorems generalize important known results and resolve a problem of interest. (author). 39 refs

  11. RADIO TRANSIENTS FROM ACCRETION-INDUCED COLLAPSE OF WHITE DWARFS

    International Nuclear Information System (INIS)

    Moriya, Takashi J.

    2016-01-01

    We investigate observational properties of accretion-induced collapse (AIC) of white dwarfs (WDs) in radio frequencies. If AIC is triggered by accretion from a companion star, a dense circumstellar medium can be formed around the progenitor system. Then, the ejecta from AIC collide with the dense circumstellar medium, creating a strong shock. The strong shock can produce synchrotron emission that can be observed in radio frequencies. Even if AIC occurs as a result of WD mergers, we argue that AIC may cause fast radio bursts (FRBs) if a certain condition is satisfied. If AIC forms neutron stars (NSs) that are so massive that rotation is required to support themselves (i.e., supramassive NSs), the supramassive NSs may immediately lose their rotational energy by the r-mode instability and collapse to black holes. If the collapsing supramassive NSs are strongly magnetized, they may emit FRBs, as previously proposed. The AIC radio transients from single-degenerate systems may be detected in future radio transient surveys like the Very Large Array Sky Survey or the Square Kilometer Array transient survey. Because AIC has been proposed as a source of gravitational waves (GWs), GWs from AIC may be accompanied by radio-bright transients that can be used to confirm the AIC origin of observed GWs.

  12. RADIO TRANSIENTS FROM ACCRETION-INDUCED COLLAPSE OF WHITE DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Moriya, Takashi J., E-mail: takashi.moriya@nao.ac.jp [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, National Institutes of Natural Sciences, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2016-10-20

    We investigate observational properties of accretion-induced collapse (AIC) of white dwarfs (WDs) in radio frequencies. If AIC is triggered by accretion from a companion star, a dense circumstellar medium can be formed around the progenitor system. Then, the ejecta from AIC collide with the dense circumstellar medium, creating a strong shock. The strong shock can produce synchrotron emission that can be observed in radio frequencies. Even if AIC occurs as a result of WD mergers, we argue that AIC may cause fast radio bursts (FRBs) if a certain condition is satisfied. If AIC forms neutron stars (NSs) that are so massive that rotation is required to support themselves (i.e., supramassive NSs), the supramassive NSs may immediately lose their rotational energy by the r-mode instability and collapse to black holes. If the collapsing supramassive NSs are strongly magnetized, they may emit FRBs, as previously proposed. The AIC radio transients from single-degenerate systems may be detected in future radio transient surveys like the Very Large Array Sky Survey or the Square Kilometer Array transient survey. Because AIC has been proposed as a source of gravitational waves (GWs), GWs from AIC may be accompanied by radio-bright transients that can be used to confirm the AIC origin of observed GWs.

  13. Formation of massive seed black holes via collisions and accretion

    Science.gov (United States)

    Boekholt, T. C. N.; Schleicher, D. R. G.; Fellhauer, M.; Klessen, R. S.; Reinoso, B.; Stutz, A. M.; Haemmerlé, L.

    2018-05-01

    Models aiming to explain the formation of massive black hole seeds, and in particular the direct collapse scenario, face substantial difficulties. These are rooted in rather ad hoc and fine-tuned initial conditions, such as the simultaneous requirements of extremely low metallicities and strong radiation backgrounds. Here, we explore a modification of such scenarios where a massive primordial star cluster is initially produced. Subsequent stellar collisions give rise to the formation of massive (104-105 M⊙) objects. Our calculations demonstrate that the interplay among stellar dynamics, gas accretion, and protostellar evolution is particularly relevant. Gas accretion on to the protostars enhances their radii, resulting in an enhanced collisional cross-section. We show that the fraction of collisions can increase from 0.1 to 1 per cent of the initial population to about 10 per cent when compared to gas-free models or models of protostellar clusters in the local Universe. We conclude that very massive objects can form in spite of initial fragmentation, making the first massive protostellar clusters viable candidate birth places for observed supermassive black holes.

  14. The diversity of quasars unified by accretion and orientation.

    Science.gov (United States)

    Shen, Yue; Ho, Luis C

    2014-09-11

    Quasars are rapidly accreting supermassive black holes at the centres of massive galaxies. They display a broad range of properties across all wavelengths, reflecting the diversity in the physical conditions of the regions close to the central engine. These properties, however, are not random, but form well-defined trends. The dominant trend is known as 'Eigenvector 1', in which many properties correlate with the strength of optical iron and [O III] emission. The main physical driver of Eigenvector 1 has long been suspected to be the quasar luminosity normalized by the mass of the hole (the 'Eddington ratio'), which is an important parameter of the black hole accretion process. But a definitive proof has been missing. Here we report an analysis of archival data that reveals that the Eddington ratio indeed drives Eigenvector 1. We also find that orientation plays a significant role in determining the observed kinematics of the gas in the broad-line region, implying a flattened, disk-like geometry for the fast-moving clouds close to the black hole. Our results show that most of the diversity of quasar phenomenology can be unified using two simple quantities: Eddington ratio and orientation.

  15. Thin accretion disks around cold Bose-Einstein condensate stars

    Energy Technology Data Exchange (ETDEWEB)

    Danila, Bogdan [Babes-Bolyai University, Department of Physics, Cluj-Napoca (Romania); Harko, Tiberiu [University College London, Department of Mathematics, London (United Kingdom); Kovacs, Zoltan

    2015-05-15

    Due to their superfluid properties some compact astrophysical objects, like neutron or quark stars, may contain a significant part of their matter in the form of a Bose-Einstein condensate (BEC). Observationally distinguishing between neutron/quark stars and BEC stars is a major challenge for this latter theoretical model. An observational possibility of indirectly distinguishing BEC stars from neutron/quark stars is through the study of the thin accretion disks around compact general relativistic objects. In the present paper, we perform a detailed comparative study of the electromagnetic and thermodynamic properties of the thin accretion disks around rapidly rotating BEC stars, neutron stars and quark stars, respectively. Due to the differences in the exterior geometry, the thermodynamic and electromagnetic properties of the disks (energy flux, temperature distribution, equilibrium radiation spectrum, and efficiency of energy conversion) are different for these classes of compact objects. Hence in this preliminary study we have pointed out some astrophysical signatures that may allow one to observationally discriminate between BEC stars and neutron/quark stars. (orig.)

  16. Boundary Between Stable and Unstable Regimes of Accretion

    Directory of Open Access Journals (Sweden)

    Blinova A. A.

    2014-01-01

    Full Text Available We investigated the boundary between stable and unstable regimes of accretion and its dependence on different parameters. Simulations were performed using a “cubed sphere" code with high grid resolution (244 grid points in the azimuthal direction, which is twice as high as that used in our earlier studies. We chose a very low viscosity value, with alpha-parameter α=0.02. We observed from the simulations that the boundary strongly depends on the ratio between magnetospheric radius rm (where the magnetic stress in the magnetosphere matches the matter stress in the disk and corotation radius rcor (where the Keplerian velocity in the disk is equal to the angular velocity of the star. For a small misalignment angle of the dipole field, Θ = 5°, accretion is unstable if rcor/rm> 1.35, and is stable otherwise. In cases of a larger misalignment angle of the dipole, Θ = 20°, instability occurs at slightly larger values, rcor/rm> 1.41

  17. Ringed Accretion Disks: Evolution of Double Toroidal Configurations

    Energy Technology Data Exchange (ETDEWEB)

    Pugliese, D.; Stuchlík, Z., E-mail: daniela.pugliese@fpf.slu.cz, E-mail: zdenek.stuchlik@physics.cz [Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo náměstí 13, CZ-74601 Opava (Czech Republic)

    2017-04-01

    We investigate ringed accretion disks composed of two tori (rings) orbiting on the equatorial plane of a central supermassive Kerr black hole. We discuss the emergence of the instability phases of each ring of the macro-configuration (ringed disk) according to the Paczynski violation of mechanical equilibrium. In the full general relativistic treatment, we consider the effects of the geometry of the Kerr spacetimes relevant to the characterization of the evolution of these configurations. The discussion of ring stability in different spacetimes enables us to identify particular classes of central Kerr attractors depending on their dimensionless spin. As a result of this analysis, we set constraints on the evolutionary schemes of the ringed disks relative to the torus morphology and on their rotation relative to the central black hole and to each other. The dynamics of the unstable phases of this system is significant for the high-energy phenomena related to accretion onto supermassive black holes in active galactic nuclei and the extremely energetic phenomena in quasars, which could be observed in their X-ray emission.

  18. ON THE LAMPPOST MODEL OF ACCRETING BLACK HOLES

    Energy Technology Data Exchange (ETDEWEB)

    Niedźwiecki, Andrzej; Szanecki, Michał [Łódź University, Department of Physics, Pomorska 149/153, 90-236 Łódź (Poland); Zdziarski, Andrzej A. [Centrum Astronomiczne im. M. Kopernika, Bartycka 18, 00-716 Warszawa (Poland)

    2016-04-10

    We study the lamppost model, in which the X-ray source in accreting black hole (BH) systems is located on the rotation axis close to the horizon. We point out a number of inconsistencies in the widely used lamppost model relxilllp, e.g., neglecting the redshift of the photons emitted by the lamppost that are directly observed. They appear to invalidate those model fitting results for which the source distances from the horizon are within several gravitational radii. Furthermore, if those results were correct, most of the photons produced in the lamppost would be trapped by the BH, and the luminosity generated in the source as measured at infinity would be much larger than that observed. This appears to be in conflict with the observed smooth state transitions between the hard and soft states of X-ray binaries. The required increase of the accretion rate and the associated efficiency reduction also present a problem for active galactic nuclei. Then, those models imply the luminosity measured in the local frame is much higher than that produced in the source and measured at infinity, due to the additional effects of time dilation and redshift, and the electron temperature is significantly higher than that observed. We show that these conditions imply that the fitted sources would be out of the e{sup ±} pair equilibrium. On the other hand, the above issues pose relatively minor problems for sources at large distances from the BH, where relxilllp can still be used.

  19. Reynolds-averaged Navier-Stokes based ice accretion for aircraft wings

    Science.gov (United States)

    Lashkajani, Kazem Hasanzadeh

    remeshing and field smoothing. The new coupling is fully automated and capable of multi-step ice accretion simulations via a quasi-steady approach. In addition, the framework allows for flow analysis and aerodynamic performance prediction of the iced airfoils. The convergence of the quasi-steady algorithm is verified and identifies the need for an order of magnitude increase in the number of multi-time steps in icing simulations to achieve solver independent solutions. Second, a Multi-Block Navier-Stokes code, NSMB, is coupled with the CANICE2D icing framework. Attention is paid to the roughness implementation of the ONERA roughness model within the Spalart-Allmaras turbulence model, and to the convergence of the steady and quasi-steady iterative procedure. Effects of uniform surface roughness in quasi-steady ice accretion simulation are analyzed through different validation test cases. The results of CANICE2D-NS show good agreement with experimental data both in terms of predicted ice shapes as well as aerodynamic analysis of predicted and experimental ice shapes. Third, an efficient single-block structured Navier-Stokes CFD code, NSCODE, is coupled with the CANICE2D-NS icing framework. Attention is paid to the roughness implementation of the Boeing model within the Spalart-Allmaras turbulence model, and to acceleration of the convergence of the steady and quasi-steady iterative procedures. Effects of uniform surface roughness in quasi-steady ice accretion simulation are analyzed through different validation test cases, including code to code comparisons with the same framework coupled with the NSMB Navier-Stokes solver. The efficiency of the J-multigrid approach to solve the flow equations on complex iced geometries is demonstrated. Since it was noted in all these calculations that the ICEM-CFD grid generation package produced a number of issues such as inefficient mesh quality and smoothing deficiencies (notably grid shocks), a fourth study proposes a new mesh generation

  20. In situ accretion of gaseous envelopes on to planetary cores embedded in evolving protoplanetary discs

    Science.gov (United States)

    Coleman, Gavin A. L.; Papaloizou, John C. B.; Nelson, Richard P.

    2017-09-01

    The core accretion hypothesis posits that planets with significant gaseous envelopes accreted them from their protoplanetary discs after the formation of rocky/icy cores. Observations indicate that such exoplanets exist at a broad range of orbital radii, but it is not known whether they accreted their envelopes in situ, or originated elsewhere and migrated to their current locations. We consider the evolution of solid cores embedded in evolving viscous discs that undergo gaseous envelope accretion in situ with orbital radii in the range 0.1-10 au. Additionally, we determine the long-term evolution of the planets that had no runaway gas accretion phase after disc dispersal. We find the following. (I) Planets with 5 M⊕ cores never undergo runaway accretion. The most massive envelope contained 2.8 M⊕ with the planet orbiting at 10 au. (II) Accretion is more efficient on to 10 M⊕ and 15 M⊕ cores. For orbital radii ap ≥ 0.5 au, 15 M⊕ cores always experienced runaway gas accretion. For ap ≥ 5 au, all but one of the 10 M⊕ cores experienced runaway gas accretion. No planets experienced runaway growth at ap = 0.1 au. (III) We find that, after disc dispersal, planets with significant gaseous envelopes cool and contract on Gyr time-scales, the contraction time being sensitive to the opacity assumed. Our results indicate that Hot Jupiters with core masses ≲15 M⊕ at ≲0.1 au likely accreted their gaseous envelopes at larger distances and migrated inwards. Consistently with the known exoplanet population, super-Earths and mini-Neptunes at small radii during the disc lifetime, accrete only modest gaseous envelopes.

  1. Insights into Earth's Accretion and Mantle Structure from Neon and Xenon in Icelandic Basalt (Invited)

    Science.gov (United States)

    Mukhopadhyay, S.

    2010-12-01

    The noble gases provide important constraints for planet accretion models and understanding mantle structure and dynamics. Recent work based on continental well gases indicate that the MORB source 20Ne/22Ne ratio is similar to the Ne-B component in chondrites [1,2]. However, ratios higher than Ne-B have been reported in plume-derived Devonian rocks form the Kola Peninsula [3]. Here I report high-precision noble gas data in an Icelandic basaltic glass that demonstrate plumes have a different 20Ne/22Ne ratio than the MORB source. The highest measured 20Ne/22Ne ratio from Iceland is ~12.9, very similar to values in the Kola plume, but quite distinct from the convecting upper mantle as constrained from the well gases [1,2]. Hence, the Icelandic and Kola plume data indicate that OIBs and MORBs have different 20Ne/22Ne ratios. Since 20Ne/22Ne ratios in the mantle cannot change, Earth must have accreted volatiles from at least two separate reservoirs. The differences in 20Ne/22Ne ratios between OIBs and MORBs further indicate that early heterogeneities in the Earth’s mantle have not been wiped away by 4.5 Gyrs of mantle convection, placing strong constraints on mixing and mass flow in the mantle. The requirement of limited direct mixing between plumes and MORB source is supported by 129Xe, formed through radioactive decay of now extinct 129I. Combined He, Ne, and Xe measurements demonstrate that the Iceland plume has a lower 129Xe/130Xe ratio than MORBs because it evolved with a I/Xe ratio distinct from the MORB source and not because of recycled atmosphere (which has low 129/130Xe) in the plume source. Since 129I became extinct 80 Myrs after solar system formation, limited mixing between plume and MORB source is a stringent requirement. Additionally, the high-precision Xe measurements reveal for the first time that the Iceland plume source has significantly higher proportion of plutonium derived fission xenon than MORBs, requiring the plume source to be less degassed

  2. Study of high energy emissions from stellar mass accreting holes

    International Nuclear Information System (INIS)

    Cadolle-Bel, Marion

    2006-01-01

    The present work is dedicated to the study of various X-ray binary Systems harbouring accreting stellar mass black holes (or candidates) associated in X-ray binary Systems mainly through the spectral and timing properties of the high energy 3 keV"-"1 MeV emission, sometimes completed by observations performed in radio, near-infrared and optical. The first part is devoted to accretion physics phenomena and the challenges of understanding the X-ray/gamma emission produced with the modeling of such high energy processes. Then I will define in a second part the instruments on board INTEGRAL and the way coded masked aperture is employed. In a third part, I will develop the standard data reduction analysis and my own contribution in improving the usual software before detailing the specific informatics tools I have developed for my own analysis. In the fourth part I will turn towards the deep analysis and interpretations I have performed on several black hole X-ray binary Systems chosen properly: the persistent black hole source Cygnus X-1 which has been studied since several years and surprised us by a high-energy excess detected; two new transient sources which provide interesting information, XTE J1720-318 located in the galactic bulge and SWIFT J1753.5-0127, probably situated in the halo. I will also detail my work on H 1743-322, recently identified by INTEGRAL as the HEAO source discovered in 1977, and on three (almost) persistent micro-quasars with superluminal jets, 1E 1740.7-2942, GRS 1758-258 and GRS 1915+105. I will analyze for each source spectral parameter evolutions and their links with each other during state transitions. I will then discuss the presence of two different X/gamma-ray emitting media with a relatively changing geometry. While establishing a cyclic order for the different variability classes of GRS 1915+105 observed during ten years, I will propose an interpretation for such behaviour, compatible with the theoretical predictions of the

  3. MHD Simulations of Magnetized Stars in the Propeller Regime of Accretion

    Directory of Open Access Journals (Sweden)

    Lii Patrick

    2014-01-01

    Full Text Available Accreting magnetized stars may be in the propeller regime of disc accretion in which the angular velocity of the stellar magnetosphere exceeds that of the inner disc. In these systems, the stellar magnetosphere acts as a centrifugal barrier and inhibits matter accretion onto the rapidly rotating star. Instead, the matter accreting through the disc accumulates at the disc-magnetosphere interface where it picks up angular momentum and is ejected from the system as a wide-angled outflow which gradually collimates at larger distances from the star. If the ejection rate is lower than the accretion rate, the matter will accumulate at the boundary faster than it can be ejected; in this case, accretion onto the star proceeds through an episodic accretion instability in which the episodes of matter accumulation are followed by a brief episode of simultaneous ejection and accretion of matter onto the star. In addition to the matter dominated wind component, the propeller outflow also exhibits a well-collimated, magnetically-dominated Poynting jet which transports energy and angular momentum away from the star. The propeller mechanism may explain some of the weakly-collimated jets and winds observed around some T Tauri stars as well as the episodic variability present in their light curves. It may also explain some of the quasi-periodic variability observed in cataclysmic variables, millisecond pulsars and other magnetized stars.

  4. Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion

    DEFF Research Database (Denmark)

    Johansen, Anders; Mac Low, Mordecai-Mark; Lacerda, Pedro

    2015-01-01

    of asteroids can result from gas drag–assisted accretion of chondrules. The largest planetesimals of a population with a characteristic radius of 100 km undergo runaway accretion of chondrules within ~3 My, forming planetary embryos up to Mars’s size along with smaller asteroids whose size distribution matches...

  5. Effects of Black Hole Spin on the Limit-Cycle Behaviour of Accretion ...

    Indian Academy of Sciences (India)

    We present a spatially 1.5-dimensional, time-dependent numerical study of accretion disks around Kerr black holes. Our study focuses on the limit-cycle behavior of thermally unstable accretion disks. We find that maximal luminosity may be a more appropriate probe of black hole spin than the cycle duration and influence ...

  6. An ultraluminous X-ray source powered by an accreting neutron star

    DEFF Research Database (Denmark)

    Bachetti, M.; Harrison, F. A.; Walton, D. J.

    2014-01-01

    the Eddington limit for a 1.4-solar-mass object, or more than ten times brighter than any known accreting pulsar. This implies that neutron stars may not be rare in the ultraluminous X-ray population, and it challenges physical models for the accretion of matter onto magnetized compact objects....

  7. COMPARING THE ACCRETION DISK EVOLUTION OF BLACK HOLE AND NEUTRON STAR X-RAY BINARIES FROM LOW TO SUPER-EDDINGTON LUMINOSITY

    International Nuclear Information System (INIS)

    Weng Shanshan; Zhang Shuangnan

    2011-01-01

    Low-mass X-ray binaries (LMXBs) are systems in which a low-mass companion transfers mass via Roche-lobe overflow onto a black hole (BH) or a weakly magnetized neutron star (NS). It is believed that both the solid surface and the magnetic field of an NS can affect the accretion flow and show some observable effects. Using the disk emission dominant data, we compare the disk evolution of the two types of systems from low luminosity to super-Eddington luminosity. As the luminosity decreases the disk in the NS LMXB 4U1608-522 begins to leave the innermost stable circular orbit (ISCO) at much higher luminosity (∼0.1 L Edd ), compared with BH LMXBs at much lower luminosity (∼0.03 L Edd ), due to the interaction between the NS magnetosphere and accretion flow. However, as the luminosity increases above a critical luminosity, the disks in BH and NS LMXBs trace the same evolutionary pattern, because the magnetosphere is restricted inside ISCO, and then both the NS surface emission and (dipole) magnetic field do not significantly affect the secular evolution of the accretion disk, which is driven by the increased radiation pressure in the inner region. We further suggest that the NS surface emission provides additional information about the accretion disk not available in BH systems. Through the observed NS surface emission, we argue that the disk thickness H/R is less than 0.3-0.4, and that the significant outflow from the inner disk edge exists at a luminosity close to Eddington luminosity.

  8. Astrophysical flows near [Formula: see text] gravity black holes.

    Science.gov (United States)

    Ahmed, Ayyesha K; Azreg-Aïnou, Mustapha; Bahamonde, Sebastian; Capozziello, Salvatore; Jamil, Mubasher

    In this paper, we study the accretion process for fluids flowing near a black hole in the context of f ( T ) teleparallel gravity. Specifically, by performing a dynamical analysis by a Hamiltonian system, we are able to find the sonic points. After that, we consider different isothermal test fluids in order to study the accretion process when they are falling onto the black hole. We find that these flows can be classified according to the equation of state and the black hole features. Results are compared in f ( T ) and f ( R ) gravity.

  9. Astrophysical flows near f(T) gravity black holes

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Ayyesha K.; Jamil, Mubasher [National University of Sciences and Technology (NUST), Department of Mathematics, School of Natural Sciences (SNS), Islamabad (Pakistan); Azreg-Ainou, Mustapha [Baskent University, Baglica Campus, Engineering Faculty, Ankara (Turkey); Bahamonde, Sebastian [University College London, Department of Mathematics, London (United Kingdom); Capozziello, Salvatore [Universita di Napoli ' ' Federico II' ' , Dipartimento di Fisica, Naples (Italy); Gran Sasso Science Institute (INFN), L' Aquila (Italy); INFN Sezione di Napoli, Naples (Italy)

    2016-05-15

    In this paper, we study the accretion process for fluids flowing near a black hole in the context of f(T) teleparallel gravity. Specifically, by performing a dynamical analysis by a Hamiltonian system, we are able to find the sonic points. After that, we consider different isothermal test fluids in order to study the accretion process when they are falling onto the black hole. We find that these flows can be classified according to the equation of state and the black hole features. Results are compared in f(T) and f(R) gravity. (orig.)

  10. The contribution of accreting black holes to the background radiation density

    International Nuclear Information System (INIS)

    Carr, B.J.

    1979-01-01

    Black holes could generate radiation as a result of accretion. The requirement that this radiation should not have a density exceeding the observed background density places an interesting limit on the number of black holes, depending on the wavelength at which the radiation is generated and the efficiency with which it is produced from accreted material. Consideration of the radiation produced in the present epoch already constrains the mass range in which black holes could have a significant cosmological density. For pregalactic black holes, which may have been accreting more rapidly in the past, the constraint could be even stronger. However, because pregalactic accretion will in general increase the matter temperature of the Universe, it is a self-limiting process. For this reason the pregalactic accretion limit is not as strong as one might naively expect and it is generally weaker than the present epoch limit. (author)

  11. How much boundary layer heating occurs in an accreting prenova white dwarf?

    International Nuclear Information System (INIS)

    Regev, O.; Shara, M.M.

    1989-01-01

    Understanding boundary layer heating is crucial in determining the thermal structure of the accreted envelope of a prenova white dwarf. The matched asymptotic expansion method was used to solve consistently for the structure of accretion disks transferring matter onto rotating white dwarfs. The fraction of accretion energy transported into prenova white dwarf envelopes was calculated. These results should be used by modelers of nova eruptions; they will produce significantly lower degeneracies and weaker explosions than expected until now. Detailed models of accretion disks and boundary layers can also be used to calculate the amount of white dwarf heating during a dwarf nova outburst. In general, such models can serve as input to model atmosphere codes to predict more realistic spectra of disk-accreting objects. 29 refs

  12. Effect of accretion on primordial black holes in Brans-Dicke theory

    International Nuclear Information System (INIS)

    Nayak, B.; Singh, L. P.; Majumdar, A. S.

    2009-01-01

    We consider the effect of accretion of radiation in the early Universe on primordial black holes in Brans-Dicke theory. The rate of growth of a primordial black hole due to accretion of radiation in Brans-Dicke theory is considerably smaller than the rate of growth of the cosmological horizon, thus making available sufficient radiation density for the black hole to accrete causally. We show that accretion of radiation by Brans-Dicke black holes overrides the effect of Hawking evaporation during the radiation dominated era. The subsequent evaporation of the black holes in later eras is further modified due to the variable gravitational 'constant', and they could survive up to longer times compared to the case of standard cosmology. We estimate the impact of accretion on modification of the constraint on their initial mass fraction obtained from the γ-ray background limit from presently evaporating primordial black holes.

  13. Whiting 1: Confirmation of its accretion by the Milky Way

    Directory of Open Access Journals (Sweden)

    Carballo-Bello Julio A.

    2017-01-01

    Full Text Available We investigate the association of Whiting 1 with the Sagittarius tidal stream by obtaining radial velocities for a sample of 101 stars observed with VIMOS. Our results reveal the presence of a component of the Sagittarius tidal stream with a radial velocity – and distance – compatible with that of the globular cluster. Therefore, we conclude that Whiting1 was formed in the interior of the Sagittarius dwarf spheroidal galaxy and later accreted by the Milky Way. In addition, our data also reveal the detection for the first time of an ancient wrap of the Sagittarius tidal stream along the same line-of-sight and at the same heliocentric distance.

  14. Accreting Double White Dwarf Binaries: Implications for LISA

    Energy Technology Data Exchange (ETDEWEB)

    Kremer, Kyle; Breivik, Katelyn; Larson, Shane L.; Kalogera, Vassiliki, E-mail: kremer@u.northwestern.edu, E-mail: katelyn.breivik@northwestern.edu, E-mail: vicky@northwestern.edu, E-mail: s.larson@northwestern.edu [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Department of Physics and Astronomy, Northwestern University 2145 Sheridan Road, Evanston, IL 60201 (United States)

    2017-09-10

    We explore the long-term evolution of mass-transferring white dwarf (WD) binaries undergoing both direct-impact and disk accretion and explore implications of such systems to gravitational-wave (GW) astronomy. We cover a broad range of initial component masses and show that these systems, the majority of which lie within the Laser Interferometer Space Antenna ( LISA ) sensitivity range, exhibit prominent negative orbital frequency evolution (chirp) for a significant fraction of their lifetimes. Using a galactic population synthesis, we predict ∼2700 of these systems will be observable with a negative chirp of 0.1 yr{sup −2} by a space-based GW detector like LISA . We also show that detections of mass-transferring double WD systems by LISA may provide astronomers with unique ways of probing the physics governing close compact object binaries.

  15. Diskoseismology: Probing accretion disks. I - Trapped adiabatic oscillations

    Science.gov (United States)

    Nowak, Michael A.; Wagoner, Robert V.

    1991-01-01

    The normal modes of acoustic oscillations within thin accretion disks which are terminated by an innermost stable orbit around a slowly rotating black hole or weakly magnetized compact neutron star are analyzed. The dominant relativistic effects which allow modes to be trapped within the inner region of the disk are approximated via a modified Newtonian potential. A general formalism is developed for investigating the adiabatic oscillations of arbitrary unperturbed disk models. The generic behavior is explored by way of an expansion of the Lagrangian displacement about the plane of symmetry and by assuming separable solutions with the same radial wavelength for the horizontal and vertical perturbations. The lowest eigenfrequencies and eigenfunctions of a particular set of radial and quadrupole modes which have minimum motion normal for the plane are obtained. These modes correspond to the standard dispersion relation of disk theory.

  16. Accreting Double White Dwarf Binaries: Implications for LISA

    Science.gov (United States)

    Kremer, Kyle; Breivik, Katelyn; Larson, Shane L.; Kalogera, Vassiliki

    2017-09-01

    We explore the long-term evolution of mass-transferring white dwarf (WD) binaries undergoing both direct-impact and disk accretion and explore implications of such systems to gravitational-wave (GW) astronomy. We cover a broad range of initial component masses and show that these systems, the majority of which lie within the Laser Interferometer Space Antenna (LISA) sensitivity range, exhibit prominent negative orbital frequency evolution (chirp) for a significant fraction of their lifetimes. Using a galactic population synthesis, we predict ˜2700 of these systems will be observable with a negative chirp of 0.1 yr-2 by a space-based GW detector like LISA. We also show that detections of mass-transferring double WD systems by LISA may provide astronomers with unique ways of probing the physics governing close compact object binaries.