WorldWideScience

Sample records for advancing biomedicinethrough structured

  1. The National Center for Biomedical Ontology: Advancing Biomedicinethrough Structured Organization of Scientific Knowledge

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, Daniel L.; Lewis, Suzanna E.; Mungall, Chris J.; Misra,Sima; Westerfield, Monte; Ashburner, Michael; Sim, Ida; Chute,Christopher G.; Solbrig, Harold; Storey, Margaret-Anne; Smith, Barry; Day-Richter, John; Noy, Natalya F.; Musen, Mark A.

    2006-01-23

    The National Center for Biomedical Ontology (http://bioontology.org) is a consortium that comprises leading informaticians, biologists, clinicians, and ontologists funded by the NIH Roadmap to develop innovative technology and methods that allow scientists to record, manage, and disseminate biomedical information and knowledge in machine-processable form. The goals of the Center are: (1) to help unify the divergent and isolated efforts in ontology development by promoting high quality open-source, standards-based tools to create, manage, and use ontologies, (2) to create new software tools so that scientists can use ontologies to annotate and analyze biomedical data, (3) to provide a national resource for the ongoing evaluation, integration, and evolution of biomedical ontologies and associated tools and theories in the context of driving biomedical projects (DBPs), and (4) to disseminate the tools and resources of the Center and to identify, evaluate, and communicate best practices of ontology development to the biomedical community. The Center is working toward these objectives by providing tools to develop ontologies and to annotate experimental data, and by developing resources to integrate and relate existing ontologies as well as by creating repositories of biomedical data that are annotated using those ontologies. The Center is providing training workshops in ontology design, development, and usage, and is also pursuing research in ontology evaluation, quality, and use of ontologies to promote scientific discovery. Through the research activities within the Center, collaborations with the DBPs, and interactions with the biomedical community, our goal is to help scientists to work more effectively in the e-science paradigm, enhancing experiment design, experiment execution, data analysis, information synthesis, hypothesis generation and testing, and understand human disease.

  2. Advanced structural inorganic chemistry

    CERN Document Server

    Li, Wai-Kee; Mak, Thomas C W

    2008-01-01

    An English edition of a textbook based on teaching at the final year undergraduate and graduate level. It presents structure and bonding, generalizations of structural trends, crystallographic data, as well as highlights from the recent literature.

  3. Large floating structures technological advances

    CERN Document Server

    Wang, BT

    2015-01-01

    This book surveys key projects that have seen the construction of large floating structures or have attained detailed conceptual designs. This compilation of key floating structures in a single volume captures the innovative features that mark the technological advances made in this field of engineering, and will provide a useful reference for ideas, analysis, design, and construction of these unique and emerging urban projects to offshore and marine engineers, urban planners, architects and students.

  4. Deployable truss structure advanced technology

    Science.gov (United States)

    Dyer, J. E.; Dudeck, M. P.

    1986-01-01

    The 5-meter technology antenna program demonstrated the overall feasibility of integrating a mesh reflector surface with a deployable truss structure to achieve a precision surface contour compatible with future, high-performance antenna requirements. Specifically, the program demonstrated: the feasibility of fabricating a precision, edge-mounted, deployable, tetrahedral truss structure; the feasibility of adjusting a truss-supported mesh reflector contour to a surface error less than 10 mils rms; and good RF test performance, which correlated well with analytical predictions. Further analysis and testing (including flight testing) programs are needed to fully verify all the technology issues, including structural dynamics, thermodynamics, control, and on-orbit RF performance, which are associated with large, deployable, truss antenna structures.

  5. Beam structures classical and advanced theories

    CERN Document Server

    Carrera, Erasmo; Petrolo, Marco

    2011-01-01

    Beam theories are exploited worldwide to analyze civil, mechanical, automotive, and aerospace structures. Many beam approaches have been proposed during the last centuries by eminent scientists such as Euler, Bernoulli, Navier, Timoshenko, Vlasov, etc.  Most of these models are problem dependent: they provide reliable results for a given problem, for instance a given section and cannot be applied to a different one. Beam Structures: Classical and Advanced Theories proposes a new original unified approach to beam theory that includes practically all classical and advanced models for be

  6. Advances in structure research by diffraction methods

    CERN Document Server

    Brill, R

    1970-01-01

    Advances in Structure Research by Diffraction Methods reviews advances in the use of diffraction methods in structure research. Topics covered include the dynamical theory of X-ray diffraction, with emphasis on Ewald waves in theory and experiment; dynamical theory of electron diffraction; small angle scattering; and molecular packing. This book is comprised of four chapters and begins with an overview of the dynamical theory of X-ray diffraction, especially in terms of how it explains all the absorption and propagation properties of X-rays at the Bragg setting in a perfect crystal. The next

  7. Advances in structure research by diffraction methods

    CERN Document Server

    Hoppe, W

    1974-01-01

    Advances in Structure Research by Diffraction Methods: Volume 5 presents discussions on application of diffraction methods in structure research. The book provides the aspects of structure research using various diffraction methods. The text contains 2 chapters. Chapter 1 reviews the general theory and experimental methods used in the study of all types of amorphous solid, by both X-ray and neutron diffraction, and the detailed bibliography of work on inorganic glasses. The second chapter discusses electron diffraction, one of the major methods of determining the structures of molecules in the

  8. Advanced structural equation modeling issues and techniques

    CERN Document Server

    Marcoulides, George A

    2013-01-01

    By focusing primarily on the application of structural equation modeling (SEM) techniques in example cases and situations, this book provides an understanding and working knowledge of advanced SEM techniques with a minimum of mathematical derivations. The book was written for a broad audience crossing many disciplines, assumes an understanding of graduate level multivariate statistics, including an introduction to SEM.

  9. Structural materials challenges for advanced reactor systems

    Science.gov (United States)

    Yvon, P.; Carré, F.

    2009-03-01

    Key technologies for advanced nuclear systems encompass high temperature structural materials, fast neutron resistant core materials, and specific reactor and power conversion technologies (intermediate heat exchanger, turbo-machinery, high temperature electrolytic or thermo-chemical water splitting processes, etc.). The main requirements for the materials to be used in these reactor systems are dimensional stability under irradiation, whether under stress (irradiation creep or relaxation) or without stress (swelling, growth), an acceptable evolution under ageing of the mechanical properties (tensile strength, ductility, creep resistance, fracture toughness, resilience) and a good behavior in corrosive environments (reactor coolant or process fluid). Other criteria for the materials are their cost to fabricate and to assemble, and their composition could be optimized in order for instance to present low-activation (or rapid desactivation) features which facilitate maintenance and disposal. These requirements have to be met under normal operating conditions, as well as in incidental and accidental conditions. These challenging requirements imply that in most cases, the use of conventional nuclear materials is excluded, even after optimization and a new range of materials has to be developed and qualified for nuclear use. This paper gives a brief overview of various materials that are essential to establish advanced systems feasibility and performance for in pile and out of pile applications, such as ferritic/martensitic steels (9-12% Cr), nickel based alloys (Haynes 230, Inconel 617, etc.), oxide dispersion strengthened ferritic/martensitic steels, and ceramics (SiC, TiC, etc.). This article gives also an insight into the various natures of R&D needed on advanced materials, including fundamental research to investigate basic physical and chemical phenomena occurring in normal and accidental operating conditions, lab-scale tests to characterize candidate materials

  10. Predicting Career Advancement with Structural Equation Modelling

    Science.gov (United States)

    Heimler, Ronald; Rosenberg, Stuart; Morote, Elsa-Sofia

    2012-01-01

    Purpose: The purpose of this paper is to use the authors' prior findings concerning basic employability skills in order to determine which skills best predict career advancement potential. Design/methodology/approach: Utilizing survey responses of human resource managers, the employability skills showing the largest relationships to career…

  11. Advanced Data Structure and Geographic Information Systems

    Science.gov (United States)

    Peuquet, D. (Principal Investigator)

    1984-01-01

    The current state of the art in specified areas of Geographic Information Systems GIS technology is examined. Study of the question of very large, efficient, heterogeneous spatial databases is required in order to explore the potential application of remotely sensed data for studying the long term habitability of the Earth. Research includes a review of spatial data structures and storage, development of operations required by GIS, and preparation of a testbed system to compare Vaster data structure with NASA's Topological Raster Structure.

  12. Advanced analysis for structural steel building design

    Institute of Scientific and Technical Information of China (English)

    Wai Fah CHEN

    2008-01-01

    The 2005 AISC LRFD Specifications for Structural Steel Buildings are making it possible for designers to recognize explicitly the structural resistance provided within the elastic and inelastic ranges of beha-vior and up to the maximum load limit state. There is an increasing awareness of the need for practical second-order analysis approaches for a direct determination of overall structural system response. This paper attempts to present a simple, concise and reasonably comprehens-ive introduction to some of the theoretical and practical approaches which have been used in the traditional and modern processes of design of steel building structures.

  13. Predicting RNA structure: advances and limitations.

    Science.gov (United States)

    Hofacker, Ivo L; Lorenz, Ronny

    2014-01-01

    RNA secondary structures can be predicted using efficient algorithms. A widely used software package implementing a large number of computational methods is the ViennaRNA Package. This chapter describes how to use programs from the ViennaRNA Package to perform common tasks such as prediction of minimum free-energy structures, suboptimal structures, or base pairing probabilities, and generating secondary structure plots with reliability annotation. Moreover, we present recent methods to assess the folding kinetics of an RNA via 2D projections of the energy landscape, identification of local minima and energy barriers, or simulation of RNA folding as a Markov process.

  14. C-SiC Honeycomb for Advanced Flight Structures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed project is to manufacture a C-SiC honeycomb structure to use as a high temperature material in advanced aircraft, spacecraft and industrial...

  15. Advanced finite element method in structural engineering

    CERN Document Server

    Long, Yu-Qiu; Long, Zhi-Fei

    2009-01-01

    This book systematically introduces the research work on the Finite Element Method completed over the past 25 years. Original theoretical achievements and their applications in the fields of structural engineering and computational mechanics are discussed.

  16. Linking advanced fracture models to structural analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chiesa, Matteo

    2001-07-01

    Shell structures with defects occur in many situations. The defects are usually introduced during the welding process necessary for joining different parts of the structure. Higher utilization of structural materials leads to a need for accurate numerical tools for reliable prediction of structural response. The direct discretization of the cracked shell structure with solid finite elements in order to perform an integrity assessment of the structure in question leads to large size problems, and makes such analysis infeasible in structural application. In this study a link between local material models and structural analysis is outlined. An ''ad hoc'' element formulation is used in order to connect complex material models to the finite element framework used for structural analysis. An improved elasto-plastic line spring finite element formulation, used in order to take cracks into account, is linked to shell elements which are further linked to beam elements. In this way one obtain a global model of the shell structure that also accounts for local flexibilities and fractures due to defects. An important advantage with such an approach is a direct fracture mechanics assessment e.g. via computed J-integral or CTOD. A recent development in this approach is the notion of two-parameter fracture assessment. This means that the crack tip stress tri-axiality (constraint) is employed in determining the corresponding fracture toughness, giving a much more realistic capacity of cracked structures. The present thesis is organized in six research articles and an introductory chapter that reviews important background literature related to this work. Paper I and II address the performance of shell and line spring finite elements as a cost effective tool for performing the numerical calculation needed to perform a fracture assessment. In Paper II a failure assessment, based on the testing of a constraint-corrected fracture mechanics specimen under tension, is

  17. Advances on surface structural determination by LEED.

    Science.gov (United States)

    Soares, Edmar A; de Castilho, Caio M C; de Carvalho, Vagner E

    2011-08-03

    In the last 40 years, low energy electron diffraction (LEED) has proved to be the most reliable quantitative technique for surface structural determination. In this review, recent developments related to the theory that gives support to LEED structural determination are discussed under a critical analysis of the main theoretical approximation-the muffin-tin calculation. The search methodologies aimed at identifying the best matches between theoretical and experimental intensity versus voltage curves are also considered, with the most recent procedures being reviewed in detail.

  18. Advances on surface structural determination by LEED

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Edmar A; De Carvalho, Vagner E [Departamento de Fisica, ICEX, Universidade Federal de Minas Gerais, 31270-090, Belo Horizonte, MG (Brazil); De Castilho, Caio M C, E-mail: edmar@fisica.ufmg.br [Grupo de Fisica de SuperfIcies e Materiais, Instituto de Fisica and Instituto Nacional de Ciencia e Tecnologia em Energia e Ambiente (CIENAM)INCT-E and A, Universidade Federal da Bahia, Campus Universitario da Federacao, 40170-115, Salvador, BA (Brazil)

    2011-08-03

    In the last 40 years, low energy electron diffraction (LEED) has proved to be the most reliable quantitative technique for surface structural determination. In this review, recent developments related to the theory that gives support to LEED structural determination are discussed under a critical analysis of the main theoretical approximation-the muffin-tin calculation. The search methodologies aimed at identifying the best matches between theoretical and experimental intensity versus voltage curves are also considered, with the most recent procedures being reviewed in detail. (topical review)

  19. Advances in Seabed Liquefaction and its Implications for Marine Structures

    DEFF Research Database (Denmark)

    Sumer, B. Mutlu

    2013-01-01

    A review is presented of recent advances in seabed liquefaction and its implications for marine structures. The review is organized in seven sections: Residual liquefaction, including the sequence of liquefaction, mathematical modelling, centrifuge modelling and comparison with standard wave-flum......-flume results; Momentary liquefaction; Floatation of buried pipelines; Sinking of pipelines and marine objects; Liquefaction at gravity structures; Stability of rock berms in liquefied soils; and Impact of seismic-induced liquefaction.......A review is presented of recent advances in seabed liquefaction and its implications for marine structures. The review is organized in seven sections: Residual liquefaction, including the sequence of liquefaction, mathematical modelling, centrifuge modelling and comparison with standard wave...

  20. Advances in hadronic structure from Lattice QCD

    Science.gov (United States)

    Constantinou, Martha

    2017-01-01

    Understanding nucleon structure is considered a milestone of hadronic physics and new facilities are planned devoted to its study. A future Electron-Ion-Collider proposed by the scientific community will greatly deepen our knowledge on the fundamental constituents of the visible world. To achieve this goal, a synergy between the experimental and theoretical sectors is imperative, and Lattice QCD is in a unique position to provide input from first principle calculations. In this talk we will discuss recent progress in nucleon structure from Lattice QCD, focusing on the evaluation of matrix elements using state-of-the-art simulations with pion masses at their physical value. The axial form factors, electromagnetic radii, the quark momentum fraction and the spin content of the nucleon will be discussed. We will also highlight quantities that may guide New Physics searches, such as the scalar and tensor charges. Finally, we will give updates on a new direct approach to compute quark parton distributions functions on the lattice.

  1. Code qualification of structural materials for AFCI advanced recycling reactors.

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Li, M.; Majumdar, S.; Nanstad, R.K.; Sham, T.-L. (Nuclear Engineering Division); (ORNL)

    2012-05-31

    This report summarizes the further findings from the assessments of current status and future needs in code qualification and licensing of reference structural materials and new advanced alloys for advanced recycling reactors (ARRs) in support of Advanced Fuel Cycle Initiative (AFCI). The work is a combined effort between Argonne National Laboratory (ANL) and Oak Ridge National Laboratory (ORNL) with ANL as the technical lead, as part of Advanced Structural Materials Program for AFCI Reactor Campaign. The report is the second deliverable in FY08 (M505011401) under the work package 'Advanced Materials Code Qualification'. The overall objective of the Advanced Materials Code Qualification project is to evaluate key requirements for the ASME Code qualification and the Nuclear Regulatory Commission (NRC) approval of structural materials in support of the design and licensing of the ARR. Advanced materials are a critical element in the development of sodium reactor technologies. Enhanced materials performance not only improves safety margins and provides design flexibility, but also is essential for the economics of future advanced sodium reactors. Code qualification and licensing of advanced materials are prominent needs for developing and implementing advanced sodium reactor technologies. Nuclear structural component design in the U.S. must comply with the ASME Boiler and Pressure Vessel Code Section III (Rules for Construction of Nuclear Facility Components) and the NRC grants the operational license. As the ARR will operate at higher temperatures than the current light water reactors (LWRs), the design of elevated-temperature components must comply with ASME Subsection NH (Class 1 Components in Elevated Temperature Service). However, the NRC has not approved the use of Subsection NH for reactor components, and this puts additional burdens on materials qualification of the ARR. In the past licensing review for the Clinch River Breeder Reactor Project (CRBRP

  2. Advanced accelerator and mm-wave structure research at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Simakov, Evgenya Ivanovna [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-22

    This document outlines acceleration projects and mm-wave structure research performed at LANL. The motivation for PBG research is described first, with reference to couplers for superconducting accelerators and structures for room-temperature accelerators and W-band TWTs. These topics are then taken up in greater detail: PBG structures and the MIT PBG accelerator; SRF PBG cavities at LANL; X-band PBG cavities at LANL; and W-band PBG TWT at LANL. The presentation concludes by describing other advanced accelerator projects: beam shaping with an Emittance Exchanger, diamond field emitter array cathodes, and additive manufacturing of novel accelerator structures.

  3. Advanced analysis and design for fire safety of steel structures

    CERN Document Server

    Li, Guoqiang

    2013-01-01

    Advanced Analysis and Design for Fire Safety of Steel Structures systematically presents the latest findings on behaviours of steel structural components in a fire, such as the catenary actions of restrained steel beams, the design methods for restrained steel columns, and the membrane actions of concrete floor slabs with steel decks. Using a systematic description of structural fire safety engineering principles, the authors illustrate the important difference between behaviours of an isolated structural element and the restrained component in a complete structure under fire conditions. The book will be an essential resource for structural engineers who wish to improve their understanding of steel buildings exposed to fires. It is also an ideal textbook for introductory courses in fire safety for master’s degree programs in structural engineering, and is excellent reading material for final-year undergraduate students in civil engineering and fire safety engineering. Furthermore, it successfully bridges th...

  4. Recent Advances In Optimization Of Aerospace Structures And Engines

    Science.gov (United States)

    Rao*, J. S.

    Optimization theories have been well advanced during the last few decades; however when it came to handle real life engineering structures it has been always time consuming and approximate when the structure geometry is highly complex. Design of Experiments has helped in understanding the influence of size and shape parameters on achieving a specified objective function with required constraints and a suitable analysis platform, but has its limitations in arriving at the final optimal solution. There are several commercial codes that addressed this need to handle large size structures subjected to dynamic loads. Most advanced tools in this category are Altair OptiStruct and Altair HyperStudy available in Altair HyperWorks suite. Application of these tools in achieving optimum solutions for linear advanced aircraft structures for minimization of weight are first explained. The application of these tools for globally elastic and locally plastic nonlinear structures to reduce local plastic strains and achieve higher life under dynamic loads will then be discussed.

  5. The use of advanced computer simulation in structural design

    Energy Technology Data Exchange (ETDEWEB)

    Field, C.J.; Mole, A. [Arup, San Fransisco, CA (United States); Arkinstall, M. [Arup, Sydney (Australia)

    2005-07-01

    The benefits that can be gained from the application of advanced numerical simulation in building design were discussed. A review of current practices in structural engineering was presented along with an illustration of a range of international project case studies. Structural engineers use analytical methods to evaluate both static and dynamic loads. Structural design is prescribed by a range of building codes, depending on location, building type and loading, but often, buildings do not fit well within the codes, particularly if one wants to take advantage of new technologies and developments in design that are not covered by the code. Advanced simulation refers to the use of mathematical modeling to complex problems to allow a wider consideration of building types and conditions that can be designed reliably using standard practices. Advanced simulation is used to address virtual testing and prototyping, verifying innovative design ideas, forensic engineering, and design optimization. The benefits of advanced simulation include enhanced creativity, improved performance, cost savings, risk management, sustainable design solutions, and better communication. The following 5 case studies illustrated the value gained by using advanced simulation as an integral part of the design process: the earthquake resistant Maison Hermes in Tokyo; the seismic resistant braces known as the Unbonded Brace for use in the United States; a simulation of the existing Disney Museum to evaluate its capacity to resist earthquakes; simulation of the MIT Brain and Cognitive Science Project to evaluate the effect of different foundation types on the vibration entering the building; and, the Beijing Aquatic Center whose design was streamlined by optimized structural analysis. It was suggested that industry should encourage the transfer of technology from other professions and should try to collaborate towards a global building model to construct buildings in a more efficient manner. 7 refs

  6. Differently Structured Advance Organizers Lead to Different Initial Schemata and Learning Outcomes

    Science.gov (United States)

    Gurlitt, Johannes; Dummel, Sebastian; Schuster, Silvia; Nuckles, Matthias

    2012-01-01

    Does the specific structure of advance organizers influence learning outcomes? In the first experiment, 48 psychology students were randomly assigned to three differently structured advance organizers: a well-structured, a well-structured and key-concept emphasizing, and a less structured advance organizer. These were followed by a sorting task, a…

  7. NATO Advanced Research Workshop on Vectorization of Advanced Methods for Molecular Electronic Structure

    CERN Document Server

    1984-01-01

    That there have been remarkable advances in the field of molecular electronic structure during the last decade is clear not only to those working in the field but also to anyone else who has used quantum chemical results to guide their own investiga­ tions. The progress in calculating the electronic structures of molecules has occurred through the truly ingenious theoretical and methodological developments that have made computationally tractable the underlying physics of electron distributions around a collection of nuclei. At the same time there has been consider­ able benefit from the great advances in computer technology. The growing sophistication, declining costs and increasing accessibi­ lity of computers have let theorists apply their methods to prob­ lems in virtually all areas of molecular science. Consequently, each year witnesses calculations on larger molecules than in the year before and calculations with greater accuracy and more com­ plete information on molecular properties. We can surel...

  8. Overview of an Advanced Hypersonic Structural Concept Test Program

    Science.gov (United States)

    Stephens, Craig A.; Hudson, Larry D.; Piazza, Anthony

    2007-01-01

    This viewgraph presentation provides an overview of hypersonics M&S advanced structural concepts development and experimental methods. The discussion on concepts development includes the background, task objectives, test plan, and current status of the C/SiC Ruddervator Subcomponent Test Article (RSTA). The discussion of experimental methods examines instrumentation needs, sensors of interest, and examples of ongoing efforts in the development of extreme environment sensors.

  9. A formal structure for advanced automatic flight-control systems

    Science.gov (United States)

    Meyer, G.; Cicolani, L. S.

    1975-01-01

    Techniques were developed for the unified design of multimode, variable authority automatic flight-control systems for powered-lift STOL and VTOL aircraft. A structure for such systems is developed to deal with the strong nonlinearities inherent in this class of aircraft, to admit automatic coupling with advanced air traffic control, and to admit a variety of active control tasks. The aircraft being considered is the augmentor wing jet STOL research aircraft.

  10. Preface: Advanced Thin Film Developments and Nano Structures

    Institute of Scientific and Technical Information of China (English)

    Ray Y.Lin

    2005-01-01

    @@ In this special issue, we invited a few leading materials researchers to present topics in thin films, coatings, and nano structures. Readers will find most recent developments in topics, including recent advances in hard, tough, and low friction nanocomposite coatings; thin films for coating nanomaterials; electroless plating of silver thin films on porous Al2O3 substrate; CrN/Nano Cr interlayer coatings; nano-structured carbide derived carbon (CDC) films and their tribology; predicting interdiffusion in high-temperature coatings; gallium-catalyzed silica nanowire growth; and corrosion protection properties of organofunctional silanes. Authors are from both national laboratories and academia.

  11. Code qualification of structural materials for AFCI advanced recycling reactors.

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Li, M.; Majumdar, S.; Nanstad, R.K.; Sham, T.-L. (Nuclear Engineering Division); (ORNL)

    2012-05-31

    This report summarizes the further findings from the assessments of current status and future needs in code qualification and licensing of reference structural materials and new advanced alloys for advanced recycling reactors (ARRs) in support of Advanced Fuel Cycle Initiative (AFCI). The work is a combined effort between Argonne National Laboratory (ANL) and Oak Ridge National Laboratory (ORNL) with ANL as the technical lead, as part of Advanced Structural Materials Program for AFCI Reactor Campaign. The report is the second deliverable in FY08 (M505011401) under the work package 'Advanced Materials Code Qualification'. The overall objective of the Advanced Materials Code Qualification project is to evaluate key requirements for the ASME Code qualification and the Nuclear Regulatory Commission (NRC) approval of structural materials in support of the design and licensing of the ARR. Advanced materials are a critical element in the development of sodium reactor technologies. Enhanced materials performance not only improves safety margins and provides design flexibility, but also is essential for the economics of future advanced sodium reactors. Code qualification and licensing of advanced materials are prominent needs for developing and implementing advanced sodium reactor technologies. Nuclear structural component design in the U.S. must comply with the ASME Boiler and Pressure Vessel Code Section III (Rules for Construction of Nuclear Facility Components) and the NRC grants the operational license. As the ARR will operate at higher temperatures than the current light water reactors (LWRs), the design of elevated-temperature components must comply with ASME Subsection NH (Class 1 Components in Elevated Temperature Service). However, the NRC has not approved the use of Subsection NH for reactor components, and this puts additional burdens on materials qualification of the ARR. In the past licensing review for the Clinch River Breeder Reactor Project (CRBRP

  12. CISM International Advanced School on Stability Problems of Steel Structures

    CERN Document Server

    Skaloud, M

    1992-01-01

    This volume strives to give complete information about the main aspect of the stability behaviour of steel structures and their members. In following this objective, the volume presents a complete scientific background (profiting from the fact that the authors of the individual parts of the publication have personally been very active in the corresponding field of research for an extended period of time now), but also establishes recommendations, procedures and formulae for practical design. The significance of the volume may be seen in its challenging current concepts of stability analysis, encouraging progress in the field and thereby establishing an advanced basis for more reliable and economical design.

  13. On the Mechanical Behavior of Advanced Composite Material Structures

    Science.gov (United States)

    Vinson, Jack

    During the period between 1993 and 2004, the author, as well as some colleagues and graduate students, had the honor to be supported by the Office of Naval Research to conduct research in several aspects of the behavior of structures composed of composite materials. The topics involved in this research program were numerous, but all contributed to increasing the understanding of how various structures that are useful for marine applications behaved. More specifically, the research topics focused on the reaction of structures that were made of fiber reinforced polymer matrix composites when subjected to various loads and environmental conditions. This included the behavior of beam, plate/panel and shell structures. It involved studies that are applicable to fiberglass, graphite/carbon and Kevlar fibers imbedded in epoxy, polyester and other polymeric matrices. Unidirectional, cross-ply, angle ply, and woven composites were involved, both in laminated, monocoque as well as in sandwich constructions. Mid-plane symmetric as well as asymmetric laminates were studied, the latter involving bending-stretching coupling and other couplings that only can be achieved with advanced composite materials. The composite structures studied involved static loads, dynamic loading, shock loading as well as thermal and hygrothermal environments. One major consideration was determining the mechanical properties of composite materials subjected to high strain rates because the mechanical properties vary so significantly as the strain rate increases. A considerable number of references are cited for further reading and study for those interested.

  14. The use of advanced materials in space structure applications

    Science.gov (United States)

    Eaton, D. C. G.; Slachmuylders, E. J.

    The last decade has seen the Space applications of composite materials become almost commonplace in the construction of configurations requiring high stiffness and/or dimensional stability, particularly in the field of antennas. As experience has been accumulated, applications for load carrying structures utilizing the inherent high specific strength/stiffness of carbon fibres have become more frequent. Some typical examples of these and their design development criteria are reviewed. As these structures and the use of new plastic matrices emerge, considerable attention has to be given to establishing essential integrity control requirements from both safety and cost aspects. The advent of manned European space flight places greater emphasis on such requirements. Attention is given to developments in the fields of metallic structures with discussion of the advantages and disadvantages of their application. The design and development of hot structures, thermal protection systems and air-breathing engines for future launch vehicles necessitates the use of the emerging metal/matrix and other advanced materials. Some of their important features are outlined. Means of achieving such objectives by greater harmonization within Europe are emphasized. Typical examples of on-going activities to promote such collaboration are described.

  15. Applications for thermal NDT on advanced composites in aerospace structures

    Science.gov (United States)

    Baughman, Steve R.

    1998-03-01

    Following several years of investigating active thermal imaging techniques, Lockheed Martin Aeronautical Systems Company (LMASC) has introduced a portable, time-dependent thermography (TDT) system into the production inspection environment. Originally pursued as a rapid, non-contacting, nondestructive evaluation (NDE) tool for inspecting large surface areas, the TDT system has proven most useful as a rapid verification tool on advanced composite assemblies. TDT is a relatively new NDE methodology as compared to conventional ultrasonic and radiography testing. SEveral technical issues are being addressed as confidence in the system's capabilities increase. These include inspector training and certification, system sensitivity assessments, and test results interpretation. Starting in 1991, LMASC began a beta-site evaluation of a prototype TDT system developed by the Institute of Manufacturing Research at Wayne State University. This prototype was the forerunner of the current production system, which is offered commercially as a fully integrated thermal NDE system. Applications investigated to data include quality assurance of advanced aerospace composite structures/assemblies for disbonds/voids between skin and core. TDT has a number of advantages over traditional NDT methods. The process of acquiring thermal images is fast, and can decrease inspection time required to locate suspect areas. The system also holds promise for depot level inspections due to its portability. This paper describes a systematic approach to implementing TDT into the production inspection arena.

  16. Modelling of advanced structural materials for GEN IV reactors

    Science.gov (United States)

    Samaras, M.; Hoffelner, W.; Victoria, M.

    2007-09-01

    The choice of suitable materials and the assessment of long-term materials damage are key issues that need to be addressed for the safe and reliable performance of nuclear power plants. Operating conditions such as high temperatures, irradiation and a corrosive environment degrade materials properties, posing the risk of very expensive or even catastrophic plant damage. Materials scientists are faced with the scientific challenge to determine the long-term damage evolution of materials under service exposure in advanced plants. A higher confidence in life-time assessments of these materials requires an understanding of the related physical phenomena on a range of scales from the microscopic level of single defect damage effects all the way up to macroscopic effects. To overcome lengthy and expensive trial-and-error experiments, the multiscale modelling of materials behaviour is a promising tool, bringing new insights into the fundamental understanding of basic mechanisms. This paper presents the multiscale modelling methodology which is taking root internationally to address the issues of advanced structural materials for Gen IV reactors.

  17. Advances in biomimetic regeneration of elastic matrix structures.

    Science.gov (United States)

    Sivaraman, Balakrishnan; Bashur, Chris A; Ramamurthi, Anand

    2012-10-01

    Elastin is a vital component of the extracellular matrix, providing soft connective tissues with the property of elastic recoil following deformation and regulating the cellular response via biomechanical transduction to maintain tissue homeostasis. The limited ability of most adult cells to synthesize elastin precursors and assemble them into mature crosslinked structures has hindered the development of functional tissue-engineered constructs that exhibit the structure and biomechanics of normal native elastic tissues in the body. In diseased tissues, the chronic overexpression of proteolytic enzymes can cause significant matrix degradation, to further limit the accumulation and quality (e.g., fiber formation) of newly deposited elastic matrix. This review provides an overview of the role and importance of elastin and elastic matrix in soft tissues, the challenges to elastic matrix generation in vitro and to regenerative elastic matrix repair in vivo, current biomolecular strategies to enhance elastin deposition and matrix assembly, and the need to concurrently inhibit proteolytic matrix disruption for improving the quantity and quality of elastogenesis. The review further presents biomaterial-based options using scaffolds and nanocarriers for spatio-temporal control over the presentation and release of these biomolecules, to enable biomimetic assembly of clinically relevant native elastic matrix-like superstructures. Finally, this review provides an overview of recent advances and prospects for the application of these strategies to regenerating tissue-type specific elastic matrix structures and superstructures.

  18. Light Water Reactor Sustainability Program Advanced Seismic Soil Structure Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Bolisetti, Chandrakanth [Idaho National Lab. (INL), Idaho Falls, ID (United States); Coleman, Justin Leigh [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-06-01

    Risk calculations should focus on providing best estimate results, and associated insights, for evaluation and decision-making. Specifically, seismic probabilistic risk assessments (SPRAs) are intended to provide best estimates of the various combinations of structural and equipment failures that can lead to a seismic induced core damage event. However, in some instances the current SPRA approach has large uncertainties, and potentially masks other important events (for instance, it was not the seismic motions that caused the Fukushima core melt events, but the tsunami ingress into the facility). SPRA’s are performed by convolving the seismic hazard (this is the estimate of all likely damaging earthquakes at the site of interest) with the seismic fragility (the conditional probability of failure of a structure, system, or component given the occurrence of earthquake ground motion). In this calculation, there are three main pieces to seismic risk quantification, 1) seismic hazard and nuclear power plants (NPPs) response to the hazard, 2) fragility or capacity of structures, systems and components (SSC), and 3) systems analysis. Two areas where NLSSI effects may be important in SPRA calculations are, 1) when calculating in-structure response at the area of interest, and 2) calculation of seismic fragilities (current fragility calculations assume a lognormal distribution for probability of failure of components). Some important effects when using NLSSI in the SPRA calculation process include, 1) gapping and sliding, 2) inclined seismic waves coupled with gapping and sliding of foundations atop soil, 3) inclined seismic waves coupled with gapping and sliding of deeply embedded structures, 4) soil dilatancy, 5) soil liquefaction, 6) surface waves, 7) buoyancy, 8) concrete cracking and 9) seismic isolation The focus of the research task presented here-in is on implementation of NLSSI into the SPRA calculation process when calculating in-structure response at the area

  19. Advanced methods of continuum mechanics for materials and structures

    CERN Document Server

    Aßmus, Marcus

    2016-01-01

    This volume presents a collection of contributions on advanced approaches of continuum mechanics, which were written to celebrate the 60th birthday of Prof. Holm Altenbach. The contributions are on topics related to the theoretical foundations for the analysis of rods, shells and three-dimensional solids, formulation of constitutive models for advanced materials, as well as development of new approaches to the modeling of damage and fractures.

  20. Antwerp Advanced Study Institute on Electronic Structure, Dynamics and Quantum Structural Properties of Condensed Matter

    CERN Document Server

    Camp, Piet

    1985-01-01

    The 1984 Advanced Study Institute on "Electronic Structure, Dynamics and Quantum Structural Properties of Condensed Matter" took place at the Corsendonk Conference Center, close to the City of Antwerpen, from July 16 till 27, 1984. This NATO Advanced Study Institute was motivated by the research in my Institute, where, in 1971, a project was started on "ab-initio" phonon calculations in Silicon. I~ is my pleasure to thank several instances and people who made this ASI possible. First of all, the sponsor of the Institute, the NATO Scientific Committee. Next, the co-sponsors: Agfa-Gevaert, Bell Telephone Mfg. Co. N.V., C & A, Esso Belgium·, CDC Belgium, Janssens Pharmaceutica, Kredietbank and the Scientific Office of the U.S. Army. Special thanks are due to Dr. P. Van Camp and Drs. H. Nachtegaele, who, over several months, prepared the practical aspects of the ASI with the secretarial help of Mrs. R.-M. Vandekerkhof. I also like to. thank Mrs. M. Cuyvers who prepared and organized the subject and material ...

  1. In-Situ Investigation of Advanced Structural Coatings and Composites

    Science.gov (United States)

    Ustundag, Ersan

    2003-01-01

    The premise of this project is a comprehensive study that involves the in-situ characterization of advanced coatings and composites by employing both neutron and x-ray diffraction techniques in a complementary manner. The diffraction data would then be interpreted and used in developing or validating advanced micromechanics models with life prediction capability. In the period covered by this report, basic work was conducted to establish the experimental conditions for various specimens and techniques. In addition, equipment was developed that will allow the in-situ studies under a range of conditions (stress, temperature, atmosphere, etc.).

  2. Dynamics Assessment of Advanced Single-Phase PLL Structures

    DEFF Research Database (Denmark)

    Golestan, Saeed; Monfarad, Mohammad; Freijedo, Francisco D.;

    2013-01-01

    , and desired performance under frequency-varying and harmonically distorted grid conditions. Despite the wide acceptance and use of these two advanced PLLs, no comprehensive design guidelines to fine-tune their parameters have been reported yet. Through a detailed mathematical analysis it is shown...

  3. Advanced vectorial simulation of VCSELs with nano structures invited paper

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper

    2009-01-01

    The single-mode properties and design issues of three vertical-cavity surface-emitting laser (VCSEL) structures incorporating nano structures are rigorously investigated. Nano structuring enables to deliver selective pumping or loss to the fundamental mode as well as stabilizing the output...... polarization state. Comparison of three vectorial simulation methods reveals that the modal expansion method is suitable for treating the nano structured VCSEL designs....

  4. Advanced Technologies for Structural and Functional Optical Coherence Tomography

    Science.gov (United States)

    2015-01-07

    bidirectional laser Doppler velocimetry (BLDV) combined with fundus photography is one of the most well suited methods for quantitative TRBF measurement...interventions or predict treatment outcomes. In another set of studies, we continued advancing the state of the art of the endoscopic OCT technology by...visualization by means of single-exposure speckle photography ," Optics Communications, vol. 37, pp. 326-330, 1981. [127] R. Bonner and R. Nossal, "Model for

  5. Preface: Special Topic Section on Advanced Electronic Structure Methods for Solids and Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Michaelides, Angelos, E-mail: angelos.michaelides@ucl.ac.uk [London Centre for Nanotechnology and Department of Chemistry, University College London, London (United Kingdom); Martinez, Todd J. [Department of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305, USA and SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Alavi, Ali [Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany and Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (United Kingdom); Kresse, Georg [Faculty of Physics and Center for Computational Materials Science, Department of Physics, University of Vienna, Sensengasse 8/12, A-1090 Vienna (Austria); Manby, Frederick R. [Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom)

    2015-09-14

    This Special Topic section on Advanced Electronic Structure Methods for Solids and Surfaces contains a collection of research papers that showcase recent advances in the high accuracy prediction of materials and surface properties. It provides a timely snapshot of a growing field that is of broad importance to chemistry, physics, and materials science.

  6. FAA/NASA International Symposium on Advanced Structural Integrity Methods for Airframe Durability and Damage Tolerance

    Science.gov (United States)

    Harris, Charles E. (Editor)

    1994-01-01

    International technical experts in durability and damage tolerance of metallic airframe structures were assembled to present and discuss recent research findings and the development of advanced design and analysis methods, structural concepts, and advanced materials. The symposium focused on the dissemination of new knowledge and the peer-review of progress on the development of advanced methodologies. Papers were presented on: structural concepts for enhanced durability, damage tolerance, and maintainability; new metallic alloys and processing technology; fatigue crack initiation and small crack effects; fatigue crack growth models; fracture mechanics failure, criteria for ductile materials; structural mechanics methodology for residual strength and life prediction; development of flight load spectra for design and testing; and advanced approaches to resist corrosion and environmentally assisted fatigue.

  7. Cladding and Structural Materials for Advanced Nuclear Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Was, G S; Allen, T R; Ila, D; C,; Levi,; Morgan, D; Motta, A; Wang, L; Wirth, B

    2011-06-30

    The goal of this consortium is to address key materials issues in the most promising advanced reactor concepts that have yet to be resolved or that are beyond the existing experience base of dose or burnup. The research program consists of three major thrusts: 1) high-dose radiation stability of advanced fast reactor fuel cladding alloys, 2) irradiation creep at high temperature, and 3) innovative cladding concepts embodying functionally-graded barrier materials. This NERI-Consortium final report represents the collective efforts of a large number of individuals over a period of three and a half years and included 9 PIs, 4 scientists, 3 post-docs and 12 students from the seven participating institutions and 8 partners from 5 national laboratories and 3 industrial institutions (see table). University participants met semi-annually and participants and partners met annually for meetings lasting 2-3 days and designed to disseminate and discuss results, update partners, address outstanding issues and maintain focus and direction toward achieving the objectives of the program. The participants felt that this was a highly successful program to address broader issues that can only be done by the assembly of a range of talent and capabilities at a more substantial funding level than the traditional NERI or NEUP grant. As evidence of the success, this group, collectively, has published 20 articles in archival journals and made 57 presentations at international conferences on the results of this consortium.

  8. Structural Dynamics Testing of Advanced Stirling Convertor Components

    Science.gov (United States)

    Oriti, Salvatore M.; Williams, Zachary Douglas

    2013-01-01

    NASA Glenn Research Center has been supporting the development of Stirling energy conversion for use in space. Lockheed Martin has been contracted by the Department of Energy to design and fabricate flight-unit Advanced Stirling Radioisotope Generators, which utilize Sunpower, Inc., free-piston Advanced Stirling Convertors. The engineering unit generator has demonstrated conversion efficiency in excess of 20 percent, offering a significant improvement over existing radioisotope-fueled power systems. NASA Glenn has been supporting the development of this generator by developing the convertors through a technology development contract with Sunpower, and conducting research and experiments in a multitude of areas, such as high-temperature material properties, organics testing, and convertor-level extended operation. Since the generator must undergo launch, several launch simulation tests have also been performed at the convertor level. The standard test sequence for launch vibration exposure has consisted of workmanship and flight acceptance levels. Together, these exposures simulate what a flight convertor will experience. Recently, two supplementary tests were added to the launch vibration simulation activity. First was a vibration durability test of the convertor, intended to quantify the effect of vibration levels up to qualification level in both the lateral and axial directions. Second was qualification-level vibration of several heater heads with small oxide inclusions in the material. The goal of this test was to ascertain the effect of the inclusions on launch survivability to determine if the heater heads were suitable for flight.

  9. Structural advances for the major facilitator superfamily (MFS) transporters.

    Science.gov (United States)

    Yan, Nieng

    2013-03-01

    The major facilitator superfamily (MFS) is one of the largest groups of secondary active transporters conserved from bacteria to humans. MFS proteins selectively transport a wide spectrum of substrates across biomembranes and play a pivotal role in multiple physiological processes. Despite intense investigation, only seven MFS proteins from six subfamilies have been structurally elucidated. These structures were captured in distinct states during a transport cycle involving alternating access to binding sites from either side of the membrane. This review discusses recent progress in MFS structure analysis and focuses on the molecular basis for substrate binding, co-transport coupling, and alternating access.

  10. Application of Advanced Radiation Shielding Materials to Inflatable Structures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This innovation is a weight-optimized, inflatable structure that incorporates radiation shielding materials into its construction, for use as a habitation module or...

  11. Advanced fiber-composite hybrids--A new structural material

    Science.gov (United States)

    Chamis, C. C.; Lark, R. F.; Sullivan, T. L.

    1974-01-01

    Introduction of metal foil as part of matrix and fiber composite, or ""sandwich'', improves strength and stiffness for multidirectional loading, improves resistance to cyclic loading, and improves impact and erosion resistance of resultant fiber-composite hybrid structure.

  12. Advanced Computational Dynamics Simulation of Protective Structures Research

    Science.gov (United States)

    2008-04-01

    conditions. The earliest in-depth investigation of the arching action theory of unreinforced masonry walls was carried out by McDowell et al...Arching Action Theory of Masonry Walls”, Journal of Structural Division, Proceedings of ASCE, Paper 915, 1-18. Moradi, L. (2003). “Constitutive...E.L., McKee, K.E., ASCE, A.M., Sevin, E. (1956). “Arching Action Theory of Masonry Walls”, Journal of Structural Division, Proceedings of ASCE

  13. Advances in structural mechanics of Chinese ancient architectures

    Institute of Scientific and Technical Information of China (English)

    Maohong YU; Yoshiya ODA; Dongping FANG; Junhai ZHAO

    2008-01-01

    Chinese ancient architectures are valuable heritage of ancient culture of China. Many historical building have been preserved up to now. The researches on the structural mechanics of ancient architectures show the different aspects of structure and mechanics. Systematical studies on the structural mechanics of ancient architectures have been carried out at Xi'an Jiaotong University since 1982. It is related with the need of repair of some national preservation relics in Xi'an. These studies include: 1) Ancient wooden structures including three national preservation relics Arrow Tower at North City Gate, City Tower at East City Gate, and Baogao Temple in Ningbao, Zhejiang province. 2) Ancient tall masonry building, the Big Goose Pagoda and Small Goose Pagoda in Xi'an. 3) Mechanical characteristics of ancient soil under foundation and city wall; the influence of caves in and under the ancient City Wall on the stability of the wall. 4) The typical Chinese ancient building at the center of city: the Bell Tower and Drum tower. 5) The behavior of Dou-Gong and Joggle joint of Chinese ancient wooden structure. 6) The mechanical behavior of ancient soils under complex stress state. A new systematical strength theory, the unified strength theory, is used to analyze the stability of ancient city wall in Xi'an and foundation of tall pagoda built in Tang dynasty. These researches also concern differential settlements of Arrow Tower and resistance to earthquake of these historical architecture heritages. Some other studies are also introduced. This paper gives a summary of these researches. Preservation and research are nowadays an essential requirement for the famous monuments, buildings, towers and others. Our society is more and more conscious of this necessity, which involves increasing activities of restoration, and then sometimes also of repair, mechanical strengthening and seismic retrofitting. Many historical buildings have in fact problems of structural strength and

  14. Molecular and structural advances in tissue factor-dependent coagulation.

    Science.gov (United States)

    Kirchhofer, D; Banner, D W

    1997-11-01

    The tissue factor:factor VIIa (TF-F.VIIa) complex is considered the physiological initiator of blood coagulation. Besides its role in normal hemostasis, this enzyme complex has been found to play an important role in various thrombotic disorders and thus has become an attractive target for the development of new anticoagulants. Recently, significant progress has been made in regard to structural and molecular aspects of TF-VIIa-initiated coagulation. A rather complete picture on how tissue factor binds to factor VIIa has emerged and is discussed in detail in this review. Also, the combined data of the TF-F.VIIa crystal structure, of naturally occurring F.VII variants, and of mutagenesis studies provide a framework to discuss molecular aspects of the tissue factor-mediated enhancement of F.VIIa catalytic efficiency and the recognition of macromolecular substrates. F.VIIa as a member of the serine protease family has an active site homologous to other coagulation factors. The release of the coordinates of the crystal structures of F.X and F.IX, together with the earlier determined thrombin structure, now allows a detailed comparison of these active centers with respect to the development of specific and potent active site inhibitors. This structural and molecular information about the TF-F.VIIa complex and other coagulation enzymes adds to our understanding of blood coagulation and should further the development of new classes of anticoagulants. (Trends Cardiovasc Med 1997;7:316-324). © 1997, Elsevier Science Inc.

  15. Advances in metaheuristic algorithms for optimal design of structures

    CERN Document Server

    Kaveh, A

    2014-01-01

    This book presents efficient metaheuristic algorithms for optimal design of structures. Many of these algorithms are developed by the author and his colleagues, consisting of Democratic Particle Swarm Optimization, Charged System Search, Magnetic Charged System Search, Field of Forces Optimization, Dolphin Echolocation Optimization, Colliding Bodies Optimization, Ray Optimization. These are presented together with algorithms which were developed by other authors and have been successfully applied to various optimization problems. These consist of Particle Swarm Optimization, Big Bang-Big Crunch Algorithm, Cuckoo Search Optimization, Imperialist Competitive Algorithm, and Chaos Embedded Metaheuristic Algorithms. Finally a multi-objective optimization method is presented to solve large-scale structural problems based on the Charged System Search algorithm. The concepts and algorithms presented in this book are not only applicable to optimization of skeletal structures and finite element models, but can equally ...

  16. Advances in metaheuristic algorithms for optimal design of structures

    CERN Document Server

    Kaveh, A

    2017-01-01

    This book presents efficient metaheuristic algorithms for optimal design of structures. Many of these algorithms are developed by the author and his colleagues, consisting of Democratic Particle Swarm Optimization, Charged System Search, Magnetic Charged System Search, Field of Forces Optimization, Dolphin Echolocation Optimization, Colliding Bodies Optimization, Ray Optimization. These are presented together with algorithms which were developed by other authors and have been successfully applied to various optimization problems. These consist of Particle Swarm Optimization, Big Bang-Big Crunch Algorithm, Cuckoo Search Optimization, Imperialist Competitive Algorithm, and Chaos Embedded Metaheuristic Algorithms. Finally a multi-objective optimization method is presented to solve large-scale structural problems based on the Charged System Search algorithm. The concepts and algorithms presented in this book are not only applicable to optimization of skeletal structures and finite element models, but can equally ...

  17. Data analysis of asymmetric structures advanced approaches in computational statistics

    CERN Document Server

    Saito, Takayuki

    2004-01-01

    Data Analysis of Asymmetric Structures provides a comprehensive presentation of a variety of models and theories for the analysis of asymmetry and its applications and provides a wealth of new approaches in every section. It meets both the practical and theoretical needs of research professionals across a wide range of disciplines and  considers data analysis in fields such as psychology, sociology, social science, ecology, and marketing. In seven comprehensive chapters this guide details theories, methods, and models for the analysis of asymmetric structures in a variety of disciplines and presents future opportunities and challenges affecting research developments and business applications.

  18. Recent Advances in Bidirectional Modeling and Structural Control

    Directory of Open Access Journals (Sweden)

    Satyam Paul

    2016-01-01

    estimation of velocity and position from acceleration signals, and optimal placement of the sensors and control devices. The importance of control devices and its applications to minimize bidirectional vibrations has been illustrated. Finally, the applications of structural control systems in real buildings and their performance have been reviewed.

  19. Comparison of Suspended Solid Separation in Advanced Storm Overflow Structures

    DEFF Research Database (Denmark)

    Larsen, Torben; Sørensen, Morten Steen

    1990-01-01

    This paper describes a laboratory investigation of the separation of suspended solids in a circular weir overflow and a vortex separator. The basic idea is to evaluate the efficiency of a vortical flow in the overflow chamber, and to compare these results with other overflow structures....

  20. Advanced numerical design for economical cathodic protection for concrete structures

    NARCIS (Netherlands)

    Polder, R.B.; Peelen, W.H.A.

    2008-01-01

    Concrete structures under aggressive load may suffer chloride induced reinforcement corrosion, in particular with increasing age. Due to high monetary and societal cost (non-availability), replacement is often undesirable. Durable repair is necessary, e.g. by Cathodic Protection (CP). CP involves an

  1. Advances in Nanophotonics: Active Photonic Crystal Structures and Devices

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher

    The nanostructuring of optical materials may significantly alter their optical and optoelectronic properties. Structuring on a length scale well below the wavelength of light may create new artificial atoms (quantum dots) or new effective media (metamaterials) that may be designed to have (optical...

  2. Advanced Applications of Structural Equation Modeling in Counseling Psychology Research

    Science.gov (United States)

    Martens, Matthew P.; Haase, Richard F.

    2006-01-01

    Structural equation modeling (SEM) is a data-analytic technique that allows researchers to test complex theoretical models. Most published applications of SEM involve analyses of cross-sectional recursive (i.e., unidirectional) models, but it is possible for researchers to test more complex designs that involve variables observed at multiple…

  3. Advanced structural analysis of nanoporous materials by thermal response measurements.

    Science.gov (United States)

    Oschatz, Martin; Leistner, Matthias; Nickel, Winfried; Kaskel, Stefan

    2015-04-07

    Thermal response measurements based on optical adsorption calorimetry are presented as a versatile tool for the time-saving and profound characterization of the pore structure of porous carbon-based materials. This technique measures the time-resolved temperature change of an adsorbent during adsorption of a test gas. Six carbide and carbon materials with well-defined nanopore architecture including micro- and/or mesopores are characterized by thermal response measurements based on n-butane and carbon dioxide as the test gases. With this tool, the pore systems of the model materials can be clearly distinguished and accurately analyzed. The obtained calorimetric data are correlated with the adsorption/desorption isotherms of the materials. The pore structures can be estimated from a single experiment due to different adsorption enthalpies/temperature increases in micro- and mesopores. Adsorption/desorption cycling of n-butane at 298 K/1 bar with increasing desorption time allows to determine the pore structure of the materials in more detail due to different equilibration times. Adsorption of the organic test gas at selected relative pressures reveals specific contributions of particular pore systems to the increase of the temperature of the samples and different adsorption mechanisms. The use of carbon dioxide as the test gas at 298 K/1 bar provides detailed insights into the ultramicropore structure of the materials because under these conditions the adsorption of this test gas is very sensitive to the presence of pores smaller than 0.7 nm.

  4. Advanced structural design for precision radial velocity instruments

    Science.gov (United States)

    Baldwin, Dan; Szentgyorgyi, Andrew; Barnes, Stuart; Bean, Jacob; Ben-Ami, Sagi; Brennan, Patricia; Budynkiewicz, Jamie; Chun, Moo-Young; Conroy, Charlie; Crane, Jeffrey D.; Epps, Harland; Evans, Ian; Evans, Janet; Foster, Jeff; Frebel, Anna; Gauron, Thomas; Guzman, Dani; Hare, Tyson; Jang, Bi-Ho; Jang, Jeong-Gyun; Jordan, Andres; Kim, Jihun; Kim, Kang-Min; Mendes de Oliveira, Claudia; Lopez-Morales, Mercedes; McCracken, Kenneth; McMuldroch, Stuart; Miller, Joseph; Mueller, Mark; Oh, Jae Sok; Ordway, Mark; Park, Byeong-Gon; Park, Chan; Park, Sung-Joon; Paxson, Charles; Phillips, David; Plummer, David; Podgorski, William; Seifahrt, Andreas; Stark, Daniel; Steiner, Joao; Uomoto, Alan; Walsworth, Ronald; Yu, Young-Sam

    2016-07-01

    The GMT-Consortium Large Earth Finder (G-CLEF) is an echelle spectrograph with precision radial velocity (PRV) capability that will be a first light instrument for the Giant Magellan Telescope (GMT). G-CLEF has a PRV precision goal of 40 cm/sec (10 cm/s for multiple measurements) to enable detection of Earth-like exoplanets in the habitable zones of sun-like stars1. This precision is a primary driver of G-CLEF's structural design. Extreme stability is necessary to minimize image motions at the CCD detectors. Minute changes in temperature, pressure, and acceleration environments cause structural deformations, inducing image motions which degrade PRV precision. The instrument's structural design will ensure that the PRV goal is achieved under the environments G-CLEF will be subjected to as installed on the GMT azimuth platform, including: Millikelvin (0.001 °K) thermal soaks and gradients 10 millibar changes in ambient pressure Changes in acceleration due to instrument tip/tilt and telescope slewing Carbon fiber/cyanate composite was selected for the optical bench structure in order to meet performance goals. Low coefficient of thermal expansion (CTE) and high stiffness-to-weight are key features of the composite optical bench design. Manufacturability and serviceability of the instrument are also drivers of the design. In this paper, we discuss analyses leading to technical choices made to minimize G-CLEF's sensitivity to changing environments. Finite element analysis (FEA) and image motion sensitivity studies were conducted to determine PRV performance under operational environments. We discuss the design of the optical bench structure to optimize stiffness-to-weight and minimize deformations due to inertial and pressure effects. We also discuss quasi-kinematic mounting of optical elements and assemblies, and optimization of these to ensure minimal image motion under thermal, pressure, and inertial loads expected during PRV observations.

  5. Advanced instrumentation for acousto-ultrasonic based structural health monitoring

    Science.gov (United States)

    Smithard, Joel; Galea, Steve; van der Velden, Stephen; Powlesland, Ian; Jung, George; Rajic, Nik

    2016-04-01

    Structural health monitoring (SHM) systems using structurally-integrated sensors potentially allow the ability to inspect for damage in aircraft structures on-demand and could provide a basis for the development of condition-based maintenance approaches for airframes. These systems potentially offer both substantial cost savings and performance improvements over conventional nondestructive inspection (NDI). Acousto-ultrasonics (AU), using structurallyintegrated piezoelectric transducers, offers a promising basis for broad-field damage detection in aircraft structures. For these systems to be successfully applied in the field the hardware for AU excitation and interrogation needs to be easy to use, compact, portable, light and, electrically and mechanically robust. Highly flexible and inexpensive instrumentation for basic background laboratory investigations is also required to allow researchers to tackle the numerous scientific and engineering issues associated with AU based SHM. The Australian Defence Science and Technology Group (DST Group) has developed the Acousto Ultrasonic Structural health monitoring Array Module (AUSAM+), a compact device for AU excitation and interrogation. The module, which has the footprint of a typical current generation smart phone, provides autonomous control of four send and receive piezoelectric elements, which can operate in pitch-catch or pulse-echo modes and can undertake electro-mechanical impedance measurements for transducer and structural diagnostics. Modules are designed to operate synchronously with other units, via an optical link, to accommodate larger transducer arrays. The module also caters for fibre optic sensing of acoustic waves with four intensity-based optical inputs. Temperature and electrical resistance strain gauge inputs as well as external triggering functionality are also provided. The development of a Matlab hardware object allows users to easily access the full hardware functionality of the device and

  6. International Workshop on Advanced Dynamics and Model Based Control of Structures and Machines

    CERN Document Server

    Belyaev, Alexander; Krommer, Michael

    2017-01-01

    The papers in this volume present and discuss the frontiers in the mechanics of controlled machines and structures. They are based on papers presented at the International Workshop on Advanced Dynamics and Model Based Control of Structures and Machines held in Vienna in September 2015. The workshop continues a series of international workshops held in Linz (2008) and St. Petersburg (2010).

  7. Advances in structural studies of viruses by Raman spectroscopy

    Science.gov (United States)

    Towse, Stacy A.; Benevides, James M.; Thomas, George J., Jr.

    1991-05-01

    Assembly of an icosahedral capsid from a single species of coat protein subunit requires different subunit conformations at different lattice positions . In the double-stranded DNA bacteriophage P22 formation of correctly dimensioned capsids is mediated by interactions between subunits of coat and scaffolding proteins . We have employed Raman spectroscopy to investigate the specific intrasubunit conformations and intersubunit interactions required to close icosahedral shells which are competent to package the P22 genome . Preliminary results from coat protein subunits polymerized to form capsids in the presence and absence of the scaffolding protein indicate different distributions of subunit secondary structure for these two assembly conditions . The difference in structure affects a small portion of the coat subunit (z2 . 3 or 10 of 430 amino acid residues per subunit) and involves a transition from a-helix in the scaffoldassembled shell to B-strand in particles assembled without scaffold mediation . The secondary structure change is accompanied by changes in specific amino acid side chains indicative of a greater variety of side chain environments for particles assembled without scaffolding protein . The detection of small changes in protein structure is facilitated by recent developments in instrumentation and progress in the assignment of protein Raman bands to specific configurational states. Application of this methodology to the bacteriophage P22 tailspike protein has also permitted characterization of differences in thermal unfolding pathways of the wild-type protein and temperature-sensitive-folding mutant . Similar methods applied to mature icosahedral bacteriophages (P22 and TI) which package a double-stranded DNA chromosome reveal subtle but definitive perturbations to dsDNA conformation in the packaged state. 1.

  8. Advances on statistical/thermodynamical models for unpolarized structure functions

    Science.gov (United States)

    Trevisan, Luis A.; Mirez, Carlos; Tomio, Lauro

    2013-03-01

    During the eights and nineties many statistical/thermodynamical models were proposed to describe the nucleons' structure functions and distribution of the quarks in the hadrons. Most of these models describe the compound quarks and gluons inside the nucleon as a Fermi / Bose gas respectively, confined in a MIT bag[1] with continuous energy levels. Another models considers discrete spectrum. Some interesting features of the nucleons are obtained by these models, like the sea asymmetries ¯d/¯u and ¯d-¯u.

  9. Modern quantum chemistry introduction to advanced electronic structure theory

    CERN Document Server

    Szabo, Attila

    1996-01-01

    The aim of this graduate-level textbook is to present and explain, at other than a superficial level, modem ab initio approaches to the calculation of the electronic structure and properties of molecules. The first three chapters contain introductory material culminating in a thorough discussion of the Hartree-Fock approximation.The remaining four chapters describe a variety of more sophisticated approaches, which improve upon this approximation.Among the highlights of the seven chapters are (1) a review of the mathematics (mostly matrix algebra) required for the rest of the book, (2) an intr

  10. Advanced ultrasonic testing of complex shaped composite structures

    Science.gov (United States)

    Dolmatov, D.; Zhvyrblya, V.; Filippov, G.; Salchak, Y.; Sedanova, E.

    2016-06-01

    Due to the wide application of composite materials it is necessary to develop unconventional quality control techniques. One of the methods that can be used for this purpose is ultrasonic tomography. In this article an application of a robotic ultrasonic system is considered. Precise positioning of the robotic scanner and path generating are defined as ones of the most important aspects. This study proposes a non-contact calibration method of a robotic ultrasonic system. Path of the scanner requires a 3D model of controlled objects which are created in accordance with the proposed algorithm. The suggested techniques are based on implementation of structured light method.

  11. Cost - The challenge for advanced materials and structures

    Science.gov (United States)

    Davis, John G., Jr.; Freeman, William T., Jr.; Siddiqi, Shahid

    1992-01-01

    Information is presented on the cost of various aircraft structures, together with methods for predicting and reducing cost. The need for the development of cost models, and of a comparative cost algorithm which could function as an engineering design tool to evaluate different design concepts, is emphasized. Efforts are underway to develop cost models that establish building-block unit cell elements that represent different material forms, geometric shapes, fabrication processes, and methods of assembly, with the purpose of expressing cost per pound or labor per pound data, with physical design and manufacture variables that a designer can visualize.

  12. Advanced structural optimization of a heliostat with cantilever arms

    Science.gov (United States)

    Bogdanov, Dimitar; Zlatanov, Hristo

    2016-05-01

    The weight of the support structure of heliostats, CPV and PV trackers is important cost element of a solar plant and reducing it will improve the economic viability of a solar project. Heliostats with rectangular area (1 to 5 in 1 m² steps; 5 to 150 in 5 m² steps) and aspect ratios (0.5, 1.0, 1.2, 1.5, 2.0) were investigated under various winds speeds (0, 5 to 100 in 5 m/s steps), wind direction (0 to 180° in 15° steps) and elevation positions (0 to 90° in 10° steps). Each load case was run with three different cantilever arms. The inclination angle of the chords and bracings was chosen so as to fulfill the geometrical boundary condition. Stress and buckling validations were performed according to Eurocode. The results of research carried out can be used to determine the specific weight of a heliostat in kg/m² as a function of the wind speed, tracker area and tracker aspect ratio. Future work should investigate the impact of using cold formed structural hollow sections and cross sections with thinner wall thickness which is not part of EN 10210.

  13. A high phase advance damped and detuned structure for the main linacs of CLIC

    CERN Document Server

    Khan, Vasim; Jones, Roger M; Wuensch, Walter; Grudiev, A

    2010-01-01

    The main accelerating structures for the CLIC are designed to operate at an average accelerating gradient of 100 MV/m. The accelerating frequency has been optimised to 11.994 GHz with a phase advance of 2π/3 [1] of the main accelerating mode. The moderately damped and detuned structure (DDS) design [2-3] is being studied as an alternative to the strongly damped WDS design [1]. Both these designs are based on the nominal accelerating phase advance. Here we explore high phase advance (HPA) structures in which the group velocity of the rf fields is reduced compared to that of standard (2π/3) structures. The electrical breakdown strongly depends on the fundamental mode group velocity. Hence it is expected that electrical breakdown is less likely to occur in the HPA structures. We report on a study of both the fundamental and dipole modes in a CLIC_DDS_ HPA structure, designed to operate at 5π/6 phase advance per cell. Higher order dipole modes in both the standard and HPA structures are also studied.

  14. Structural Source of the Trap of ICT Advancement - Lessons from World ICT Top Leaders

    OpenAIRE

    2014-01-01

    In light of the significant consequence of the trap of dramatic advancement of information and communication technology (ICT) in the global economy, both nations and firms that have been compelling their productivity decline. This resulted in great stagnation of ICT advanced economies and therefore its structural sources were analyzed. Based on an empirical analysis tracing, the trend in marginal productivity of ICT and its subsequent prices among the top ICT leaders in the ...

  15. Advance in orientation microscopy: quantitative analysis of nanocrystalline structures.

    Science.gov (United States)

    Seyring, Martin; Song, Xiaoyan; Rettenmayr, Markus

    2011-04-26

    The special properties of nanocrystalline materials are generally accepted to be a consequence of the high density of planar defects (grain and twin boundaries) and their characteristics. However, until now, nanograin structures have not been characterized with similar detail and statistical relevance as coarse-grained materials, due to the lack of an appropriate method. In the present paper, a novel method based on quantitative nanobeam diffraction in transmission electron microscopy (TEM) is presented to determine the misorientation of adjacent nanograins and subgrains. Spatial resolution of twin boundaries is substantially higher than that observed in bright-field images in the TEM; small angle grain boundaries are prominent; there is an obvious dependence of the grain boundary characteristics on grain size distribution and mean grain size.

  16. Advanced density matrix renormalization group method for nuclear structure calculations

    CERN Document Server

    Legeza, Ö; Poves, A; Dukelsky, J

    2015-01-01

    We present an efficient implementation of the Density Matrix Renormalization Group (DMRG) algorithm that includes an optimal ordering of the proton and neutron orbitals and an efficient expansion of the active space utilizing various concepts of quantum information theory. We first show how this new DMRG methodology could solve a previous $400$ KeV discrepancy in the ground state energy of $^{56}$Ni. We then report the first DMRG results in the $pf+g9/2$ shell model space for the ground $0^+$ and first $2^+$ states of $^{64}$Ge which are benchmarked with reference data obtained from Monte Carlo shell model. The corresponding correlation structure among the proton and neutron orbitals is determined in terms of the two-orbital mutual information. Based on such correlation graphs we propose several further algorithmic improvement possibilities that can be utilized in a new generation of tensor network based algorithms.

  17. Advanced density matrix renormalization group method for nuclear structure calculations

    Science.gov (United States)

    Legeza, Ã.-.; Veis, L.; Poves, A.; Dukelsky, J.

    2015-11-01

    We present an efficient implementation of the Density Matrix Renormalization Group (DMRG) algorithm that includes an optimal ordering of the proton and neutron orbitals and an efficient expansion of the active space utilizing various concepts of quantum information theory. We first show how this new DMRG methodology could solve a previous 400 keV discrepancy in the ground state energy of 56Ni. We then report the first DMRG results in the p f +g 9 /2 shell model space for the ground 0+ and first 2+ states of 64Ge which are benchmarked with reference data obtained from a Monte Carlo shell model. The corresponding correlation structure among the proton and neutron orbitals is determined in terms of two-orbital mutual information. Based on such correlation graphs we propose several further algorithmic improvement possibilities that can be utilized in a new generation of tensor network based algorithms.

  18. Project on strengthening of structures using advanced composites

    Directory of Open Access Journals (Sweden)

    Recuero, A.

    1997-12-01

    Full Text Available Restoration, strengthening and rehabilitation of buildings becomes one of the more interesting aspects of the use of composites. Construction industry has not yet accepted the wide structural use of these new materials because it does not know the advantages of composites in comparison with traditional materials, such as concrete or steel. Engineers involved in design and construction are conservative and resist to changes. They require codes and specifications, what makes that an entity should lead the use of the new material or technology. At present, the experience needed to prepare those codes does not exist. Experimental tests and successful cases are necessary for the acceptance of these materials in construction. A project is presented, with the aim to provide the experimental basis, needed to update design codes and standards, and the technology for the use of these new composites in building and civil structures strengthening, taking actual pathology, quality and durability into account, as well as urban aesthetics. Research specialists in composites, structural analysis and testing, and in structural pathology, as well as composites and adhesives manufacturers and users, designers and final users will co-work in this project. This will allow that all relevant aspects of the problem be considered.

    La restauración, refuerzo o rehabilitación de estructuras resulta ser uno de los campos de aplicación de mayor interés y más directamente relacionado con los nuevos materiales compuestos. La Industria de la Construcción no ha aceptado aún el uso estructural extenso de los nuevos materiales compuestos porque todavía no conoce bien sus ventajas respecto a los materiales tradicionales, tales como el hormigón o el acero. Los profesionales implicados en el proyecto y en la ejecución de obras suelen ser conservadores y resistirse a los cambios. Para aceptar un nuevo material requieren disponer de normativa relativa a la nueva

  19. Advancements in 3D Structural Analysis of Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Siler, Drew L [Nevada Bureau of Mines and Geology, University of Nevada, Reno; Faulds, James E [Nevada Bureau of Mines and Geology, University of Nevada, Reno; Mayhew, Brett [Nevada Bureau of Mines and Geology, University of Nevada, Reno; McNamara, David [Department of Geothermal Science, GNS Science, NZ

    2013-06-23

    Robust geothermal activity in the Great Basin, USA is a product of both anomalously high regional heat flow and active fault-controlled extension. Elevated permeability associated with some fault systems provides pathways for circulation of geothermal fluids. Constraining the local-scale 3D geometry of these structures and their roles as fluid flow conduits is crucial in order to mitigate both the costs and risks of geothermal exploration and to identify blind (no surface expression) geothermal resources. Ongoing studies have indicated that much of the robust geothermal activity in the Great Basin is associated with high density faulting at structurally complex fault intersection/interaction areas, such as accommodation/transfer zones between discrete fault systems, step-overs or relay ramps in fault systems, intersection zones between faults with different strikes or different senses of slip, and horse-tailing fault terminations. These conceptualized models are crucial for locating and characterizing geothermal systems in a regional context. At the local scale, however, pinpointing drilling targets and characterizing resource potential within known or probable geothermal areas requires precise 3D characterization of the system. Employing a variety of surface and subsurface data sets, we have conducted detailed 3D geologic analyses of two Great Basin geothermal systems. Using EarthVision (Dynamic Graphics Inc., Alameda, CA) we constructed 3D geologic models of both the actively producing Brady’s geothermal system and a ‘greenfield’ geothermal prospect at Astor Pass, NV. These 3D models allow spatial comparison of disparate data sets in 3D and are the basis for quantitative structural analyses that can aid geothermal resource assessment and be used to pinpoint discrete drilling targets. The relatively abundant data set at Brady’s, ~80 km NE of Reno, NV, includes 24 wells with lithologies interpreted from careful analysis of cuttings and core, a 1

  20. Innovative tissue engineering structures through advanced manufacturing technologies.

    Science.gov (United States)

    Ciardelli, Gianluca; Chiono, Valeria; Cristallini, Caterina; Barbani, Niccoletta; Ahluwalia, Arti; Vozzi, Giovanni; Previti, Antonino; Tantussi, Giovanni; Giusti, Paolo

    2004-04-01

    Awide range of rapid prototyping (RP) techniques for the construction of three-dimensional (3-D) scaffolds for tissue engineering has been recently developed. In this study, we report and compare two methods for the fabrication of poly-(epsilon-caprolactone) and poly-(epsilon-caprolactone)-poly-(oxyethylene)-poly-(epsilon-caprolactone) copolymer scaffolds. The first technique is based on the use of a microsyringe and a computer-controlled three-axis micropositioner, which regulates motor speed and position. Polymer solutions are extruded through the needle of the microsyringe by the application of a constant pressure of 10-300 mm Hg, resulting in controlled polymer deposition of 5-600 microm lateral dimensions. The second method utilises the heating energy of a laser beam to sinter polymer microparticles according to computer-guided geometries. Materials may be fed either as dry powder or slurry of microparticles. Both powder granulometry and laser working parameters influence resolution (generally 300 microm x 700 microm), accuracy of sintering and surface and bulk properties of the final structures. The two RP methods allow the fabrication of 3-D scaffolds with a controlled architecture, providing a powerful means to study cell response to an environment similar to that found

  1. An advanced machining simulation environment employing workpiece structural analysis

    Directory of Open Access Journals (Sweden)

    A.A. Becker

    2006-04-01

    Full Text Available Purpose: The study aims to reduce the surface dimensional error due to the part deflection during the machining of thin wall structures, thus, reduce machining costs and lead times by producing “right first time” components.Design/methodology/approach: The proposed simulation environment involves a data model, an analytical force prediction model, a material removal model and an FE analysis commercial software package. It focuses on the development of the simulation environment with a multi-level machining error compensation approach.Findings: The developed simulation environment can predict and reduce the form error, which is a limitation of the existing approaches.Research limitations/implications: The energy consumption, temperature change and residual stress are not studied in this research.Practical implications: The developed method provides a platform to deliver new functionality for machining process simulation. The convergence of the proposed integrated system can be achieved quickly after only a few iterations, which makes the methodology reliable and efficient.Originality/value: The study offers an opportunity to satisfy tight tolerances, eliminate hand-finishing processes and assure part-to-part accuracy at the right first time, which is a limitation of previous approaches.

  2. Advanced Design of Composite Steel-Concrete Structural element

    Directory of Open Access Journals (Sweden)

    Dr. D. R. Panchal

    2014-07-01

    Full Text Available Composite framing system consisting of steel beams acting interactively with metal deck-concrete slab and concrete encased composite columns, has been as a viable alternative to the conventional steel or reinforced concrete system in the high-rise construction. However, in Indian context, it is comparatively new and no appropriate design codes are available for the same. Complications in the analysis and design of composite structures have led numerous researchers to develop simplified methods so as to eliminate a number of large scale tests needed for the design. In the present work, a simplified method of composite slabs, beams and columns design is used and software is developed with pre- and post- processing facilities in VB.NET. All principal design checks are incorporated in the software. The full and partial shear connection and the requirement for transverse reinforcement are also considered. To facilitate direct selection of steel section, a database is prepared and is available at the back end with the properties of all standard steel sections. Screen shots are included in the paper to illustrate the method employed for selecting the appropriate section and shear connectors and thus to verify the design adequacy.

  3. Structural level characterization of base oils using advanced analytical techniques

    KAUST Repository

    Hourani, Nadim

    2015-05-21

    Base oils, blended for finished lubricant formulations, are classified by the American Petroleum Institute into five groups, viz., groups I-V. Groups I-III consist of petroleum based hydrocarbons whereas groups IV and V are made of synthetic polymers. In the present study, five base oil samples belonging to groups I and III were extensively characterized using high performance liquid chromatography (HPLC), comprehensive two-dimensional gas chromatography (GC×GC), and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) equipped with atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) sources. First, the capabilities and limitations of each analytical technique were evaluated, and then the availed information was combined to reveal compositional details on the base oil samples studied. HPLC showed the overwhelming presence of saturated over aromatic compounds in all five base oils. A similar trend was further corroborated using GC×GC, which yielded semiquantitative information on the compound classes present in the samples and provided further details on the carbon number distributions within these classes. In addition to chromatography methods, FT-ICR MS supplemented the compositional information on the base oil samples by resolving the aromatics compounds into alkyl- and naphtheno-subtituted families. APCI proved more effective for the ionization of the highly saturated base oil components compared to APPI. Furthermore, for the detailed information on hydrocarbon molecules FT-ICR MS revealed the presence of saturated and aromatic sulfur species in all base oil samples. The results presented herein offer a unique perspective into the detailed molecular structure of base oils typically used to formulate lubricants. © 2015 American Chemical Society.

  4. Advanced welding for closed structure. Pt. 3 The thermal approach

    Energy Technology Data Exchange (ETDEWEB)

    Sacripanti, A.; Bonanno, G.; Paoloni, M.; Sagratella, G. [ENEA Centro Ricerche Casaccia, Rome (Italy). Dipt. Innovazione; Arborino, A.; Varesi, R.; Antonucci, A. [DUNE, (Italy)

    1999-07-01

    This report describes the activities developed for the European Contract BRITE AWCS III to study the use of thermal sensing techniques to obtain an accurate detection of the internal reinforcement of the closed steel structures employed in the shipbuilding industry. After a description of the methods, normally developed in Russia, about the techniques and problems, for the thermal testing of materials in the conventional approach, a new thermal detector was utilized, a new bolometric thermo camera is introduced with a special software for the on line image analysis, there are also shown the experimental tests and results. The obtained conclusion shows that the thermal non destructive testing techniques with the new detector should be useful to assemble a complete sensing system with one ultrasonic head. [Italian] Questo rapporto descrive le attivita' sperimentali sviluppate nell'ambito del contratto europeo BRITE AWCS III, in cui si sono utilizzate tecniche termiche per ottenere un preciso rilevamento dei rinforzi interni di strutture metalliche chiuse utilizzate nell'industria delle costruzioni navali. Dopo la descrizione dei metodi sviluppati essenzialmente in Russia, circa le tecniche e i problemi riguardanti il testing termico dei materiali, e' stato introdotto un approccio innovativo basato su un nuovo sensore: una termocamera bolometrica connessa con un software dedicato per l'analisi online del setto; vengono inoltre mostrati i risultati sperimentali ottenuti. Le conclusioni ottenute mostrano che nel nuovo approccio, il testing termico non distruttivo dovrebbe essere utile per assemblare un sistema sensoriale completo che utilizzi anche un sensore di tipo ultrasonico.

  5. Advanced Ceramic Matrix Composites with Multifunctional and Hybrid Structures

    Science.gov (United States)

    Singh, Mrityunjay; Morscher, Gregory N.

    2004-01-01

    Ceramic matrix composites are leading candidate materials for a number of applications in aeronautics, space, energy, and nuclear industries. Potential composite applications differ in their requirements for thickness. For example, many space applications such as "nozzle ramps" or "heat exchangers" require very thin (structures whereas turbine blades would require very thick parts (> or = 1 cm). Little is known about the effect of thickness on stress-strain behavior or the elevated temperature tensile properties controlled by oxidation diffusion. In this study, composites consisting of woven Hi-Nicalon (trademark) fibers a carbon interphase and CVI SiC matrix were fabricated with different numbers of plies and thicknesses. The effect of thickness on matrix crack formation, matrix crack growth and diffusion kinetics will be discussed. In another approach, hybrid fiber-lay up concepts have been utilized to "alloy" desirable properties of different fiber types for mechanical properties, thermal stress management, and oxidation resistance. Such an approach has potential for the C(sub I)-SiC and SiC(sub f)-SiC composite systems. CVI SiC matrix composites with different stacking sequences of woven C fiber (T300) layers and woven SiC fiber (Hi-Nicalon (trademark)) layers were fabricated. The results will be compared to standard C fiber reinforced CVI SiC matrix and Hi-Nicalon reinforced CVI SiC matrix composites. In addition, shear properties of these composites at different temperatures will also be presented. Other design and implementation issues will be discussed along with advantages and benefits of using these materials for various components in high temperature applications.

  6. Basic and Advanced Bayesian Structural Equation Modeling With Applications in the Medical and Behavioral Sciences

    CERN Document Server

    Lee, Sik-Yum

    2012-01-01

    This book provides clear instructions to researchers on how to apply Structural Equation Models (SEMs) for analyzing the inter relationships between observed and latent variables. Basic and Advanced Bayesian Structural Equation Modeling introduces basic and advanced SEMs for analyzing various kinds of complex data, such as ordered and unordered categorical data, multilevel data, mixture data, longitudinal data, highly non-normal data, as well as some of their combinations. In addition, Bayesian semiparametric SEMs to capture the true distribution of explanatory latent variables are introduce

  7. Materials and structural aspects of advanced gas-turbine helicopter engines

    Science.gov (United States)

    Freche, J. C.; Acurio, J.

    1979-01-01

    The key to improved helicopter gas turbine engine performance lies in the development of advanced materials and advanced structural and design concepts. The modification of the low temperature components of helicopter engines (such as the inlet particle separator), the introduction of composites for use in the engine front frame, the development of advanced materials with increased use-temperature capability for the engine hot section, can result in improved performance and/or decreased engine maintenance cost. A major emphasis in helicopter engine design is the ability to design to meet a required lifetime. This, in turn, requires that the interrelated aspects of higher operating temperatures and pressures, cooling concepts, and environmental protection schemes be integrated into component design. The major material advances, coatings, and design life-prediction techniques pertinent to helicopter engines are reviewed; the current state-of-the-art is identified; and when appropriate, progress, problems, and future directions are assessed.

  8. Fuel, Structural Material and Coolant for an Advanced Fast Micro-Reactor

    Science.gov (United States)

    Do Nascimento, J. A.; Duimarães, L. N. F.; Ono, S.

    The use of nuclear reactors in space, seabed or other Earth hostile environment in the future is a vision that some Brazilian nuclear researchers share. Currently, the USA, a leader in space exploration, has as long-term objectives the establishment of a permanent Moon base and to launch a manned mission to Mars. A nuclear micro-reactor is the power source chosen to provide energy for life support, electricity for systems, in these missions. A strategy to develop an advanced micro-reactor technologies may consider the current fast reactor technologies as back-up and the development of advanced fuel, structural and coolant materials. The next generation reactors (GEN-IV) for terrestrial applications will operate with high output temperature to allow advanced conversion cycle, such as Brayton, and hydrogen production, among others. The development of an advanced fast micro-reactor may create a synergy between the GEN-IV and space reactor technologies. Considering a set of basic requirements and materials properties this paper discusses the choice of advanced fuel, structural and coolant materials for a fast micro-reactor. The chosen candidate materials are: nitride, oxide as back-up, for fuel, lead, tin and gallium for coolant, ferritic MA-ODS and Mo alloys for core structures. The next step will be the neutronic and burnup evaluation of core concepts with this set of materials.

  9. Structural Change in Advanced Nations : A New Set of Stylised Facts

    NARCIS (Netherlands)

    Jorgenson, D.W.; Timmer, Marcel

    2010-01-01

    We provide new evidence on patterns of structural change in advanced economies, reconsidering the stylised facts put forward by Kaldor (1967), Kuznets (1971) and Maddison (1980). Since 1980 the services sector has overwhelmingly predominated in the economic activity of the European Union, Japan and

  10. Structural Change in Advanced Nations : A New Set of Stylised Facts

    NARCIS (Netherlands)

    Jorgenson, Dale W.; Timmer, Marcel P.

    2011-01-01

    We provide new evidence on patterns of structural change in advanced economies, reconsidering the stylised facts put forward by Kaldor (1963), Kuznets (1971), and Maddison (1980). Since 1980, the services sector has overwhelmingly predominated in the economic activity of the European Union, Japan, a

  11. An examination of the elastic structural response of the Advanced Neutron Source fuel plates

    Energy Technology Data Exchange (ETDEWEB)

    Swinson, W.F.; Luttrell, C.R.; Yahr, G.T.

    1994-09-01

    Procedures for evaluating the elastic structural response of the Advanced Neutron Source (ANS) fuel plates to coolant flow and to temperature variations are presented in this report. Calculations are made that predict the maximum deflection and the maximum stress for a representative plate from the upper and from the lower fuel elements.

  12. Advances in HDS catalysts design: relation between catalyst structure and feed composition

    NARCIS (Netherlands)

    Kagami, Narinobu

    2006-01-01

    The aim of this work is to propose a better understanding of ultra deep HDS for diesel, to contribute to the development of advanced catalysts. The characterization of catalyst structure was examined by XRD, TPR, TPS and Raman spectroscopy. The ranking of catalytic activities were tested using vario

  13. OOFEM — an Object-oriented Simulation Tool for Advanced Modeling of Materials and Structures

    OpenAIRE

    Bořek Patzák

    2012-01-01

    The aim of this paper is to describe the object-oriented design of the finite element based simulation code. The overall, object-oriented structure is described, and the role of the fundamental classes is discussed. The paper discusses the advanced parallel, adaptive, and multiphysics capabilities of the OOFEM code, and illustrates them on the basis of selected examples.

  14. OOFEM — an Object-oriented Simulation Tool for Advanced Modeling of Materials and Structures

    Directory of Open Access Journals (Sweden)

    Bořek Patzák

    2012-01-01

    Full Text Available The aim of this paper is to describe the object-oriented design of the finite element based simulation code. The overall, object-oriented structure is described, and the role of the fundamental classes is discussed. The paper discusses the advanced parallel, adaptive, and multiphysics capabilities of the OOFEM code, and illustrates them on the basis of selected examples.

  15. Study of advanced composite structural design concepts for an arrow wing supersonic cruise configuration, task 3

    Science.gov (United States)

    1978-01-01

    A structural design study was conducted to assess the relative merits of structural concepts using advanced composite materials for an advanced supersonic aircraft cruising at Mach 2.7. The configuration and structural arrangement developed during Task I and II of the study, was used as the baseline configuration. Allowable stresses and strains were established for boron and advanced graphite fibers based on projected fiber properties available in the next decade. Structural concepts were designed and analyzed using graphite polyimide and boron polyimide, applied to stiffened panels and conventional sandwich panels. The conventional sandwich panels were selected as the structural concept to be used on the wing structure. The upper and lower surface panels of the Task I arrow wing were redesigned using high-strength graphite polyimide sandwich panels over the titanium spars and ribs. The ATLAS computer system was used as the basis for stress analysis and resizing the surface panels using the loads from the Task II study, without adjustment for change in aeroelastic deformation. The flutter analysis indicated a decrease in the flutter speed compared to the baseline titanium wing design. The flutter analysis indicated a decrease in the flutter speed compared to the baseline titanium wing design. The flutter speed was increased to that of the titanium wing, with a weight penalty less than that of the metallic airplane.

  16. Comparison of two matrix data structures for advanced CSM testbed applications

    Science.gov (United States)

    Regelbrugge, M. E.; Brogan, F. A.; Nour-Omid, B.; Rankin, C. C.; Wright, M. A.

    1989-01-01

    The first section describes data storage schemes presently used by the Computational Structural Mechanics (CSM) testbed sparse matrix facilities and similar skyline (profile) matrix facilities. The second section contains a discussion of certain features required for the implementation of particular advanced CSM algorithms, and how these features might be incorporated into the data storage schemes described previously. The third section presents recommendations, based on the discussions of the prior sections, for directing future CSM testbed development to provide necessary matrix facilities for advanced algorithm implementation and use. The objective is to lend insight into the matrix structures discussed and to help explain the process of evaluating alternative matrix data structures and utilities for subsequent use in the CSM testbed.

  17. Multi-Beam Interference Advances and Applications: Nano-Electronics, Photonic Crystals, Metamaterials, Subwavelength Structures, Optical Trapping, and Biomedical Structures

    Directory of Open Access Journals (Sweden)

    Thomas K. Gaylord

    2011-06-01

    Full Text Available Research in recent years has greatly advanced the understanding and capabilities of multi-beam interference (MBI. With this technology it is now possible to generate a wide range of one-, two-, and three-dimensional periodic optical-intensity distributions at the micro- and nano-scale over a large length/area/volume. These patterns may be used directly or recorded in photo-sensitive materials using multi-beam interference lithography (MBIL to accomplish subwavelength patterning. Advances in MBI and MBIL and a very wide range of applications areas including nano-electronics, photonic crystals, metamaterials, subwavelength structures, optical trapping, and biomedical structures are reviewed and put into a unified perspective.

  18. Structural Framework for Flight: NASA's Role in Development of Advanced Composite Materials for Aircraft and Space Structures

    Science.gov (United States)

    Tenney, Darrel R.; Davis, John G., Jr.; Johnston, Norman J.; Pipes, R. Byron; McGuire, Jack F.

    2011-01-01

    This serves as a source of collated information on Composite Research over the past four decades at NASA Langley Research Center, and is a key reference for readers wishing to grasp the underlying principles and challenges associated with developing and applying advanced composite materials to new aerospace vehicle concepts. Second, it identifies the major obstacles encountered in developing and applying composites on advanced flight vehicles, as well as lessons learned in overcoming these obstacles. Third, it points out current barriers and challenges to further application of composites on future vehicles. This is extremely valuable for steering research in the future, when new breakthroughs in materials or processing science may eliminate/minimize some of the barriers that have traditionally blocked the expanded application of composite to new structural or revolutionary vehicle concepts. Finally, a review of past work and identification of future challenges will hopefully inspire new research opportunities and development of revolutionary materials and structural concepts to revolutionize future flight vehicles.

  19. Lagrangian Particle Hydrodynamics for Fluid Structure Collision Analysis in Advanced Aerostructures

    Science.gov (United States)

    Bayandor, Javid

    2008-11-01

    One of the key aerostructure certification criteria pertaining to the design phase, particularly in advanced structural concepts, addresses fluid-structure crash scenarios such as aircraft ditching on the water surface and bird-strike. Destructive trials on full-scale aerospace prototypes to evaluate damage sustained during fluid-structure collisions are extremely costly. Therefore, efforts have been made to numerically model such events with sufficient accuracy to significantly reduce the minimum number of tests required for design approval procedures. This presentation identifies the simulation strategies adopted using the Lagrangian particle hydrodynamics methodology in pursuit of such an investigation.

  20. Advances in Structural Geology and Tectonics in the Late 20th Century: A Review

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Based on analyses of the share of documents of structural geology and tectonics in the GeoRef system over 100 years in the last century, and the historical change of international (31 years) and domestic (16 years) document counts of various topics in structural geology and tectonics, the position of structural geology and tectonics in the geosciences is evaluated and the major advaces in fields of plate tectonics, continental dynamics and global dynamics are reviewed. Our attention mainly focuses on the advances in studies of structural analysis, deformation mechanisms and rheology of rocks,contractional tectonics and late- and post-orogenic extensional collapse in orogens, large-scale strikeslip faults and indentation-extrusion tectonics, active tectonics and natural hazards. The relationships of structural geology and tectonics with petrology and geochronology are also discussed in terms of intersection of scientific disciplines. Finally, some suggestions are proposed for the further development of structural geology and tectonics in China.

  1. Structural analysis of advanced polymeric foams by means of high resolution X-ray computed tomography

    Science.gov (United States)

    Nacucchi, M.; De Pascalis, F.; Scatto, M.; Capodieci, L.; Albertoni, R.

    2016-06-01

    Advanced polymeric foams with enhanced thermal insulation and mechanical properties are used in a wide range of industrial applications. The properties of a foam strongly depend upon its cell structure. Traditionally, their microstructure has been studied using 2D imaging systems based on optical or electron microscopy, with the obvious disadvantage that only the surface of the sample can be analysed. To overcome this shortcoming, the adoption of X-ray micro-tomography imaging is here suggested to allow for a complete 3D, non-destructive analysis of advanced polymeric foams. Unlike metallic foams, the resolution of the reconstructed structural features is hampered by the low contrast in the images due to weak X-ray absorption in the polymer. In this work an advanced methodology based on high-resolution and low-contrast techniques is used to perform quantitative analyses on both closed and open cells foams. Local structural features of individual cells such as equivalent diameter, sphericity, anisotropy and orientation are statistically evaluated. In addition, thickness and length of the struts are determined, underlining the key role played by the achieved resolution. In perspective, the quantitative description of these structural features will be used to evaluate the results of in situ mechanical and thermal test on foam samples.

  2. Advanced BCD technology with vertical DMOS based on a semi-insulation structure

    Science.gov (United States)

    Kui, Ma; Xinghua, Fu; Jiexin, Lin; Fashun, Yang

    2016-07-01

    A new semi-insulation structure in which one isolated island is connected to the substrate was proposed. Based on this semi-insulation structure, an advanced BCD technology which can integrate a vertical device without extra internal interconnection structure was presented. The manufacturing of the new semi-insulation structure employed multi-epitaxy and selectively multi-doping. Isolated islands are insulated with the substrate by reverse-biased PN junctions. Adjacent isolated islands are insulated by isolation wall or deep dielectric trenches. The proposed semi-insulation structure and devices fixed in it were simulated through two-dimensional numerical computer simulators. Based on the new BCD technology, a smart power integrated circuit was designed and fabricated. The simulated and tested results of Vertical DMOS, MOSFETs, BJTs, resistors and diodes indicated that the proposed semi-insulation structure is reasonable and the advanced BCD technology is validated. Project supported by the National Natural Science Foundation of China (No. 61464002), the Science and Technology Fund of Guizhou Province (No. Qian Ke He J Zi [2014]2066), and the Dr. Fund of Guizhou University (No. Gui Da Ren Ji He Zi (2013)20Hao).

  3. Advances in Computational Fluid-Structure Interaction and Flow Simulation Conference

    CERN Document Server

    Takizawa, Kenji

    2016-01-01

    This contributed volume celebrates the work of Tayfun E. Tezduyar on the occasion of his 60th birthday. The articles it contains were born out of the Advances in Computational Fluid-Structure Interaction and Flow Simulation (AFSI 2014) conference, also dedicated to Prof. Tezduyar and held at Waseda University in Tokyo, Japan on March 19-21, 2014. The contributing authors represent a group of international experts in the field who discuss recent trends and new directions in computational fluid dynamics (CFD) and fluid-structure interaction (FSI). Organized into seven distinct parts arranged by thematic topics, the papers included cover basic methods and applications of CFD, flows with moving boundaries and interfaces, phase-field modeling, computer science and high-performance computing (HPC) aspects of flow simulation, mathematical methods, biomedical applications, and FSI. Researchers, practitioners, and advanced graduate students working on CFD, FSI, and related topics will find this collection to be a defi...

  4. Fibre Optic Sensors for Structural Health Monitoring of Aircraft Composite Structures: Recent Advances and Applications.

    Science.gov (United States)

    Di Sante, Raffaella

    2015-07-30

    In-service structural health monitoring of composite aircraft structures plays a key role in the assessment of their performance and integrity. In recent years, Fibre Optic Sensors (FOS) have proved to be a potentially excellent technique for real-time in-situ monitoring of these structures due to their numerous advantages, such as immunity to electromagnetic interference, small size, light weight, durability, and high bandwidth, which allows a great number of sensors to operate in the same system, and the possibility to be integrated within the material. However, more effort is still needed to bring the technology to a fully mature readiness level. In this paper, recent research and applications in structural health monitoring of composite aircraft structures using FOS have been critically reviewed, considering both the multi-point and distributed sensing techniques.

  5. Fibre Optic Sensors for Structural Health Monitoring of Aircraft Composite Structures: Recent Advances and Applications

    Directory of Open Access Journals (Sweden)

    Raffaella Di Sante

    2015-07-01

    Full Text Available In-service structural health monitoring of composite aircraft structures plays a key role in the assessment of their performance and integrity. In recent years, Fibre Optic Sensors (FOS have proved to be a potentially excellent technique for real-time in-situ monitoring of these structures due to their numerous advantages, such as immunity to electromagnetic interference, small size, light weight, durability, and high bandwidth, which allows a great number of sensors to operate in the same system, and the possibility to be integrated within the material. However, more effort is still needed to bring the technology to a fully mature readiness level. In this paper, recent research and applications in structural health monitoring of composite aircraft structures using FOS have been critically reviewed, considering both the multi-point and distributed sensing techniques.

  6. Advances in Atomic Structure Calculations%原子结构计算的进展

    Institute of Scientific and Technical Information of China (English)

    Charlotte Froese Fischer

    2007-01-01

    Correlation and relativistic effects are both needed for accurate atomic structure calculations of energy levels and their atomic properties. For transition probabilities of radiative transitions between low-lying levels of an atom or ion, accurate wave functions for the outer region of are required. For lighter atoms, relativistic effects can be included through the Breit-Pauli approximation. This paper outlines the advances in the treatment of correlation and describes the current state of Breit-Pauli calculations for complex systems.

  7. Advances in Design and Fabrication of Free-Form Reciprocal Structures

    DEFF Research Database (Denmark)

    Parigi, Dario

    2016-01-01

    The paper presents the advances in design and fabrication of free-form Reciprocal Structures, and their application a during a one-week long workshop with the students of the 1st semester of the Master of Science in Architecture and Design, fall 2015, at Aalborg University. Two new factors were...... introduced and tested: a new version of the software Reciprocalizer, and an evolution of the Reciprocalizer Robot. The workshop didactic framework Performance Aided/Assisted Design (PAD) is presented....

  8. Summary of SMIRT20 Preconference Topical Workshop – Identifying Structural Issues in Advanced Reactors

    Energy Technology Data Exchange (ETDEWEB)

    William Richins; Stephen Novascone; Cheryl O' Brien

    2009-08-01

    Summary of SMIRT20 Preconference Topical Workshop – Identifying Structural Issues in Advanced Reactors William Richins1, Stephen Novascone1, and Cheryl O’Brien1 1Idaho National Laboratory, US Dept. of Energy, Idaho Falls, Idaho, USA, e-mail: William.Richins@inl.gov The Idaho National Laboratory (INL, USA) and IASMiRT sponsored an international forum Nov 5-6, 2008 in Porvoo, Finland for nuclear industry, academic, and regulatory representatives to identify structural issues in current and future advanced reactor design, especially for extreme conditions and external threats. The purpose of this Topical Workshop was to articulate research, engineering, and regulatory Code development needs. The topics addressed by the Workshop were selected to address critical industry needs specific to advanced reactor structures that have long lead times and can be the subject of future SMiRT technical sessions. The topics were; 1) structural/materials needs for extreme conditions and external threats in contemporary (Gen. III) and future (Gen. IV and NGNP) advanced reactors and 2) calibrating simulation software and methods that address topic 1 The workshop discussions and research needs identified are presented. The Workshop successfully produced interactive discussion on the two topics resulting in a list of research and technology needs. It is recommended that IASMiRT communicate the results of the discussion to industry and researchers to encourage new ideas and projects. In addition, opportunities exist to retrieve research reports and information that currently exists, and encourage more international cooperation and collaboration. It is recommended that IASMiRT continue with an off-year workshop series on select topics.

  9. Evaluation of Advanced Composite Structures Technologies for Application to NASA's Vision for Space Exploration

    Science.gov (United States)

    Tenney, Darrel R.

    2008-01-01

    AS&M performed a broad assessment survey and study to establish the potential composite materials and structures applications and benefits to the Constellation Program Elements. Trade studies were performed on selected elements to determine the potential weight or performance payoff from use of composites. Weight predictions were made for liquid hydrogen and oxygen tanks, interstage cylindrical shell, lunar surface access module, ascent module liquid methane tank, and lunar surface manipulator. A key part of this study was the evaluation of 88 different composite technologies to establish their criticality to applications for the Constellation Program. The overall outcome of this study shows that composites are viable structural materials which offer from 20% to 40% weight savings for many of the structural components that make up the Major Elements of the Constellation Program. NASA investment in advancing composite technologies for space structural applications is an investment in America's Space Exploration Program.

  10. Recent advances in the structural molecular biology of Ets transcription factors: interactions, interfaces and inhibition.

    Science.gov (United States)

    Cooper, Christopher D O; Newman, Joseph A; Gileadi, Opher

    2014-02-01

    The Ets family of eukaryotic transcription factors is based around the conserved Ets DNA-binding domain. Although their DNA-binding selectivity is biochemically and structurally well characterized, structures of homodimeric and ternary complexes point to Ets domains functioning as versatile protein-interaction modules. In the present paper, we review the progress made over the last decade to elucidate the structural mechanisms involved in modulation of DNA binding and protein partner selection during dimerization. We see that Ets domains, although conserved around a core architecture, have evolved to utilize a variety of interaction surfaces and binding mechanisms, reflecting Ets domains as dynamic interfaces for both DNA and protein interaction. Furthermore, we discuss recent advances in drug development for inhibition of Ets factors, and the roles structural biology can play in their future.

  11. NATO Advanced Study Institute on Electronic Structure of Polymers and Molecular Crystals

    CERN Document Server

    Ladik, János

    1975-01-01

    The NATO Advanced Study Institute on "Electronic Structure of Polymers and Molecular Crystals" was held at the Facultes Universi­ taires de Namur (F.U.N.) from September 1st till September 14th, 1974. We wish to express our appreciation to the NATO Scientific Affairs Division whose generous support made this Institute possible and to the Facultes Universitaires de Namur and the Societe Chimique de Belgique which provided fellowships and travel grants to a number of students. This volume contains the main lectures about the basic principles of the field and about different recent developments of the theory of the electronic structure of polymers and molecular crystals. The school started with the presentation of the basic SCF-LCAO theory of the electronic structure of periodic polymers and molecular crystals (contributions by Ladik, Andre & Delhalle) showing how a combination of quantum chemical and solid state physical methods can provide band structures for these systems. The numerical aspects of these ...

  12. Fabrication and evaluation of advanced titanium structural panels for supersonic cruise aircraft

    Science.gov (United States)

    Payne, L.

    1977-01-01

    Flightworthy primary structural panels were designed, fabricated, and tested to investigate two advanced fabrication methods for titanium alloys. Skin-stringer panels fabricated using the weldbraze process, and honeycomb-core sandwich panels fabricated using a diffusion bonding process, were designed to replace an existing integrally stiffened shear panel on the upper wing surface of the NASA YF-12 research aircraft. The investigation included ground testing and Mach 3 flight testing of full-scale panels, and laboratory testing of representative structural element specimens. Test results obtained on full-scale panels and structural element specimens indicate that both of the fabrication methods investigated are suitable for primary structural applications on future civil and military supersonic cruise aircraft.

  13. Monitoring Structural Health of Different Types of Bridges Using Advanced Multi-Temporal InSAR

    Science.gov (United States)

    Qin, Xiaoqiong; Liao, Mingsheng; Yang, Mengshi; Zhang, Lu; Balz, Timo

    2016-08-01

    Since the bridges paly a significance role in national economic development and transportation safety, the structure health and safety of bridges aroused a lot of concern in society and become a hotspot research in earth observation and civil engineering. However, the materials degradation and environmental stresses increase may destroy the structure of bridges and pose significant risks to public safety and quality of life. This highlighted the importance of developing effective structure health monitoring strategies to reflect the current status of bridges and identify structural problems. In this work, an advanced multi-temporal InSAR technique is introduced into deformation monitoring of bridges. We focus on analysis the distribution of PSs, distinction of stable and unstable parts and recognition temporal-spatial deformation characteristics at the scale of single bridge through the examples of different types of bridges in Tianjin and Shanghai.

  14. Study of advanced composite structural design concepts for an arrow wing supersonic cruise configuration

    Science.gov (United States)

    Turner, M. J.; Grande, D. L.

    1978-01-01

    Based on estimated graphite and boron fiber properties, allowable stresses and strains were established for advanced composite materials. Stiffened panel and conventional sandwich panel concepts were designed and analyzed, using graphite/polyimide and boron/polyimide materials. The conventional sandwich panel was elected as the structural concept for the modified wing structure. Upper and lower surface panels of the arrow wing structure were then redesigned, using high strength graphite/polyimide sandwich panels, retaining the titanium spars and ribs from the prior study. The ATLAS integrated analysis and design system was used for stress analysis and automated resizing of surface panels. Flutter analysis of the hybrid structure showed a significant decrease in flutter speed relative to the titanium wing design. The flutter speed was increased to that of the titanium design by selective increase in laminate thickness and by using graphite fibers with properties intermediate between high strength and high modulus values.

  15. High-Temperature Structures, Adhesives, and Advanced Thermal Protection Materials for Next-Generation Aeroshell Design

    Science.gov (United States)

    Collins, Timothy J.; Congdon, William M.; Smeltzer, Stanley S.; Whitley, Karen S.

    2005-01-01

    The next generation of planetary exploration vehicles will rely heavily on robust aero-assist technologies, especially those that include aerocapture. This paper provides an overview of an ongoing development program, led by NASA Langley Research Center (LaRC) and aimed at introducing high-temperature structures, adhesives, and advanced thermal protection system (TPS) materials into the aeroshell design process. The purpose of this work is to demonstrate TPS materials that can withstand the higher heating rates of NASA's next generation planetary missions, and to validate high-temperature structures and adhesives that can reduce required TPS thickness and total aeroshell mass, thus allowing for larger science payloads. The effort described consists of parallel work in several advanced aeroshell technology areas. The areas of work include high-temperature adhesives, high-temperature composite materials, advanced ablator (TPS) materials, sub-scale demonstration test articles, and aeroshell modeling and analysis. The status of screening test results for a broad selection of available higher-temperature adhesives is presented. It appears that at least one (and perhaps a few) adhesives have working temperatures ranging from 315-400 C (600-750 F), and are suitable for TPS-to-structure bondline temperatures that are significantly above the traditional allowable of 250 C (482 F). The status of mechanical testing of advanced high-temperature composite materials is also summarized. To date, these tests indicate the potential for good material performance at temperatures of at least 600 F. Application of these materials and adhesives to aeroshell systems that incorporate advanced TPS materials may reduce aeroshell TPS mass by 15% - 30%. A brief outline is given of work scheduled for completion in 2006 that will include fabrication and testing of large panels and subscale aeroshell test articles at the Solar-Tower Test Facility located at Kirtland AFB and operated by Sandia

  16. Health Assessment of Large Two Dimensional Structures Using Limited Information: Recent Advances

    Directory of Open Access Journals (Sweden)

    Ajoy Kumar Das

    2012-01-01

    Full Text Available Some recent advances of a recently developed structural health assessment procedure proposed by the research team at the University of Arizona, commonly known as generalized iterative least-squares extended Kalman filter with unknown input (GILS-EKF-UI are presented. The procedure is a finite elements-based time-domain system-identification technique. It can assess structural health at the element level using only limited number of noise-contaminated responses. With the help of examples, it is demonstrated that the structure can be excited by multiple loadings simultaneously. The method can identify defects in various stages of degradation in single or multiple members and also relatively less severe defect. The defective element(s need not be in the substructure, but the defect detection capability increases if the defect spot is close to the substructure. Two alternatives are suggested to locate defect spot more accurately within a defective element. The paper advances several areas of GILS-EKF-UI to assess health of large structural systems.

  17. Advances and trends in structural and solid mechanics; Proceedings of the Symposium, Washington, DC, October 4-7, 1982

    Science.gov (United States)

    Noor, A. K. (Editor); Housner, J. M.

    1983-01-01

    The mechanics of materials and material characterization are considered, taking into account micromechanics, the behavior of steel structures at elevated temperatures, and an anisotropic plasticity model for inelastic multiaxial cyclic deformation. Other topics explored are related to advances and trends in finite element technology, classical analytical techniques and their computer implementation, interactive computing and computational strategies for nonlinear problems, advances and trends in numerical analysis, database management systems and CAD/CAM, space structures and vehicle crashworthiness, beams, plates and fibrous composite structures, design-oriented analysis, artificial intelligence and optimization, contact problems, random waves, and lifetime prediction. Earthquake-resistant structures and other advanced structural applications are also discussed, giving attention to cumulative damage in steel structures subjected to earthquake ground motions, and a mixed domain analysis of nuclear containment structures using impulse functions.

  18. Sorbent Structural Impacts Due to Humidity on Carbon Dioxide Removal Sorbents for Advanced Exploration Systems

    Science.gov (United States)

    Watson, David; Knox, James C.; West, Phillip; Stanley, Christine M.; Bush, Richard

    2015-01-01

    The Life Support Systems Project (LSSP) under the Advanced Exploration Systems (AES) program builds upon the work performed under the AES Atmosphere Resource Recovery and Environmental Monitoring (ARREM) project focusing on the numerous technology development areas. The CO2 removal and associated air drying development efforts are focused on improving the current state-of-the-art system on the International Space Station (ISS) utilizing fixed beds of sorbent pellets by seeking more robust pelletized sorbents, evaluating structured sorbents, and examining alternate bed configurations to improve system efficiency and reliability. A component of the CO2 removal effort encompasses structural stability testing of existing and emerging sorbents. Testing will be performed on dry sorbents and sorbents that have been conditioned to three humidity levels. This paper describes the sorbent structural stability screening efforts in support of the LSS Project within the AES Program.

  19. Proteopedia: Exciting Advances in the 3D Encyclopedia of Biomolecular Structure

    Science.gov (United States)

    Prilusky, Jaime; Hodis, Eran; Sussman, Joel L.

    Proteopedia is a collaborative, 3D web-encyclopedia of protein, nucleic acid and other structures. Proteopedia ( http://www.proteopedia.org ) presents 3D biomolecule structures in a broadly accessible manner to a diverse scientific audience through easy-to-use molecular visualization tools integrated into a wiki environment that anyone with a user account can edit. We describe recent advances in the web resource in the areas of content and software. In terms of content, we describe a large growth in user-added content as well as improvements in automatically-generated content for all PDB entry pages in the resource. In terms of software, we describe new features ranging from the capability to create pages hidden from public view to the capability to export pages for offline viewing. New software features also include an improved file-handling system and availability of biological assemblies of protein structures alongside their asymmetric units.

  20. Topology Optimization and Robotic Fabrication of Advanced Timber Space-frame Structures

    DEFF Research Database (Denmark)

    Søndergaard, Asbjørn; Amir, Oded; Eversmann, Phillip

    2016-01-01

    This paper presents a novel method for integrated topology optimization and fabrication of advanced timber space-frame structures. The method, developed in research collaboration between ETH Zürich, Aarhus School of Architecture and Israel Institute of Technology, entails the coupling of truss......-based topology optimization with digital procedures for rationalization and robotic assembly of bespoke timber members, through a procedural, cross-application workflow. Through this, a direct chaining of optimization and robotic fabrication is established, in which optimization data is driving subsequent...... processes solving timber joint intersections, robotically controlling member prefabrication, and spatial robotic assembly of the optimized timber structures. The implication of this concept is studied through pilot fabrication and load-testing of a full scale prototype structure....

  1. Development and comparison of advanced reduced-basis methods for the transient structural analysis of unconstrained structures

    Science.gov (United States)

    Mcgowan, David M.; Bostic, Susan W.; Camarda, Charles J.

    1993-01-01

    The development of two advanced reduced-basis methods, the force derivative method and the Lanczos method, and two widely used modal methods, the mode displacement method and the mode acceleration method, for transient structural analysis of unconstrained structures is presented. Two example structural problems are studied: an undamped, unconstrained beam subject to a uniformly distributed load which varies as a sinusoidal function of time and an undamped high-speed civil transport aircraft subject to a normal wing tip load which varies as a sinusoidal function of time. These example problems are used to verify the methods and to compare the relative effectiveness of each of the four reduced-basis methods for performing transient structural analyses on unconstrained structures. The methods are verified with a solution obtained by integrating directly the full system of equations of motion, and they are compared using the number of basis vectors required to obtain a desired level of accuracy and the associated computational times as comparison criteria.

  2. Assessment of modular construction for safety-related structures at advanced nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Braverman, J.; Morante, R.; Hofmayer, C.

    1997-03-01

    Modular construction techniques have been successfully used in a number of industries, both domestically and internationally. Recently, the use of structural modules has been proposed for advanced nuclear power plants. The objective in utilizing modular construction is to reduce the construction schedule, reduce construction costs, and improve the quality of construction. This report documents the results of a program which evaluated the proposed use of modular construction for safety-related structures in advanced nuclear power plant designs. The program included review of current modular construction technology, development of licensing review criteria for modular construction, and initial validation of currently available analytical techniques applied to concrete-filled steel structural modules. The program was conducted in three phases. The objective of the first phase was to identify the technical issues and the need for further study in order to support NRC licensing review activities. The two key findings were the need for supplementary review criteria to augment the Standard Review Plan and the need for verified design/analysis methodology for unique types of modules, such as the concrete-filled steel module. In the second phase of this program, Modular Construction Review Criteria were developed to provide guidance for licensing reviews. In the third phase, an analysis effort was conducted to determine if currently available finite element analysis techniques can be used to predict the response of concrete-filled steel modules.

  3. Advanced glycation end products induce differential structural modifications and fibrillation of albumin

    Science.gov (United States)

    Awasthi, Saurabh; Sankaranarayanan, Kamatchi; Saraswathi, N. T.

    2016-06-01

    Glycation induced amyloid fibrillation is fundamental to the development of many neurodegenerative and cardiovascular complications. Excessive non-enzymatic glycation in conditions such as hyperglycaemia results in the increased accumulation of advanced glycation end products (AGEs). AGEs are highly reactive pro-oxidants, which can lead to the activation of inflammatory pathways and development of oxidative stress. Recently, the effect of non-enzymatic glycation on protein structure has been the major research area, but the role of specific AGEs in such structural alteration and induction of fibrillation remains undefined. In this study, we determined the specific AGEs mediated structural modifications in albumin mainly considering carboxymethyllysine (CML), carboxyethyllysine (CEL), and argpyrimidine (Arg-P) which are the major AGEs formed in the body. We studied the secondary structural changes based on circular dichroism (CD) and spectroscopic analysis. The AGEs induced fibrillation was determined by Congo red binding and examination of scanning and transmission electron micrographs. The amyloidogenic regions in the sequence of BSA were determined using FoldAmyloid. It was observed that CEL modification of BSA leads to the development of fibrillar structures, which was evident from both secondary structure changes and TEM analysis.

  4. A study on the utilization of advanced composites in commercial aircraft wing structure: Executive summary

    Science.gov (United States)

    Watts, D. J.

    1978-01-01

    The overall wing study objectives are to study and plan the effort by commercial transport aircraft manufacturers to accomplish the transition from current conventional materials and practices to extensive use of advanced composites in wings of aircraft that will enter service in the 1985-1990 time period. Specific wing study objectives are to define the technology and data needed to support an aircraft manufacturer's commitment to utilize composites primary wing structure in future production aircraft and to develop plans for a composite wing technology program which will provide the needed technology and data.

  5. Optical Far-IR Wave Generation - State-of-the-Art and Advanced Device Structures

    DEFF Research Database (Denmark)

    Krozer, Viktor; Leone, B.; Roskos, H.

    2004-01-01

    A recent study initiated by the European Space Agency aimed at identifying the most promising technologies to significantly improve on the generation of coherent electromagnetic radiation in the THz regime. The desired improvements include, amongst others, higher output powers and efficiencies...... and experimental results selected for medium to short term development. These technologies include advanced p-i-n photomixer with superlattice structures and, THz quantum cascade lasers. Recent results achieved in these fields will be put into the potential perspective for the respective technology in the future....

  6. Cash-In-Advance Constraints in a Schumpeterian Growth Model with an Endogenous Market Structure

    OpenAIRE

    Chien-Yu Huang; Juin-Jen Chang; Lei Ji

    2013-01-01

    This paper explores the macro effects of monetary policy in a Schumpeterian growth model with an endogenous market structure and distinct cash-in-advance (CIA) constraints on consumption, production, and two distinct types of R&D investment - in-house R&D and entry investment. We show that the CIA constraints work through various channels and the effects of monetary policy depend on the strength of each channel. Although ination seems like a uniform tax imposed on the whole economy, an identi...

  7. Advanced topics on rotor blade full-scale structural fatigue testing and requirements

    DEFF Research Database (Denmark)

    Berring, Peter; Fedorov, Vladimir; Belloni, Federico

    further developed since then. Structures in composite materials are generally difficult and time consuming to test for fatigue resistance. Therefore, several methods for testing of blades have been developed and exist today. Those methods are presented in [1]. This report deals with more advanced topics...... for fatigue testing of wind turbine blades. One challenge is how to fatigue test blades under realistic conditions. In order to study this topic a finite element based multibody formulation using the floating frame of reference approach is used to study fatigue loading under different external conditions...

  8. Advancements of In-Flight Mass Moment of Inertia and Structural Deflection Algorithms for Satellite Attitude Simulators

    Science.gov (United States)

    2015-03-26

    ADVANCEMENTS OF IN-FLIGHT MASS MOMENT OF INERTIA AND STRUCTURAL DEFLECTION ALGORITHMS FOR SATELLITE ATTITUDE SIMULATORS DISSERTATION Jonathan W...Government. AFIT-ENY-DS-15-M-261 ADVANCEMENTS OF IN-FLIGHT MASS MOMENT OF INERTIA AND STRUCTURAL DEFLECTION ALGORITHMS FOR SATELLITE ATTITUDE ...SATELLITE ATTITUDE SIMULATORS AFIT-ENY-DS-15-M-261 Abstract Experimental satellite attitude simulators have long been used to test and analyze control

  9. Application of holographic interferometry for analysis of the dynamic and modal characteristics of an advanced exotic metal airfoil structure

    Science.gov (United States)

    Fein, Howard

    1999-03-01

    Holographic Interferometry has been successfully employed to characterize the materials and behavior of diverse types of structures under stress. Specialized variations of this technology have also been applied to define dynamic and vibration related structural behavior. Such applications of holographic technique offer some of the most effective methods of modal and dynamic analysis available. Real-time dynamic testing of the modal and mechanical behavior of aerodynamic control and airfoil structures for advanced aircraft has always required advanced instrumentation for data collection in either actual flight test or wind-tunnel simulations. Advanced optical holography techniques are alternate methods which result in actual full-field behavioral data on the ground in a noninvasive environment. These methods offer significant insight in both the development and subsequent operational test and modeling of advanced exotic metal control structures and their integration with total vehicle system dynamics. Structures and materials can be analyzed with very low amplitude excitation and the resultant data can be used to adjust the accuracy mathematically derived structural and behavioral models. Holographic Interferometry offers a powerful tool to aid in the developmental engineering of exotic metal structures for high stress applications. Advanced Titanium alloy is a significant example of these sorts of materials which has found continually increased use in advanced aerodynamic, undersea, and other highly mobil platforms. Aircraft applications in particular must consider environments where extremes in vibration and impulsive mechanical stress can affect both operation and structural stability. These considerations present ideal requisites for analysis using advanced holographic methods in the initial design and test of structures made with such advanced materials. Holographic techniques are nondestructive, real- time, and definitive in allowing the identification of

  10. Advancements in sensing and perception using structured lighting techniques :an LDRD final report.

    Energy Technology Data Exchange (ETDEWEB)

    Novick, David Keith; Padilla, Denise D.; Davidson, Patrick A. Jr. (.; .); Carlson, Jeffrey J.

    2005-09-01

    This report summarizes the analytical and experimental efforts for the Laboratory Directed Research and Development (LDRD) project entitled ''Advancements in Sensing and Perception using Structured Lighting Techniques''. There is an ever-increasing need for robust, autonomous ground vehicles for counterterrorism and defense missions. Although there has been nearly 30 years of government-sponsored research, it is undisputed that significant advancements in sensing and perception are necessary. We developed an innovative, advanced sensing technology for national security missions serving the Department of Energy, the Department of Defense, and other government agencies. The principal goal of this project was to develop an eye-safe, robust, low-cost, lightweight, 3D structured lighting sensor for use in broad daylight outdoor applications. The market for this technology is wide open due to the unavailability of such a sensor. Currently available laser scanners are slow, bulky and heavy, expensive, fragile, short-range, sensitive to vibration (highly problematic for moving platforms), and unreliable for outdoor use in bright sunlight conditions. Eye-safety issues are a primary concern for currently available laser-based sensors. Passive, stereo-imaging sensors are available for 3D sensing but suffer from several limitations : computationally intensive, require a lighted environment (natural or man-made light source), and don't work for many scenes or regions lacking texture or with ambiguous texture. Our approach leveraged from the advanced capabilities of modern CCD camera technology and Center 6600's expertise in 3D world modeling, mapping, and analysis, using structured lighting. We have a diverse customer base for indoor mapping applications and this research extends our current technology's lifecycle and opens a new market base for outdoor 3D mapping. Applications include precision mapping, autonomous navigation, dexterous

  11. Sensor-Only System Identification for Structural Health Monitoring of Advanced Aircraft

    Science.gov (United States)

    Kukreja, Sunil L.; Bernstein, Dennis S.

    2012-01-01

    Environmental conditions, cyclic loading, and aging contribute to structural wear and degradation, and thus potentially catastrophic events. The challenge of health monitoring technology is to determine incipient changes accurately and efficiently. This project addresses this challenge by developing health monitoring techniques that depend only on sensor measurements. Since actively controlled excitation is not needed, sensor-to-sensor identification (S2SID) provides an in-flight diagnostic tool that exploits ambient excitation to provide advance warning of significant changes. S2SID can subsequently be followed up by ground testing to localize and quantify structural changes. The conceptual foundation of S2SID is the notion of a pseudo-transfer function, where one sensor is viewed as the pseudo-input and another is viewed as the pseudo-output, is approach is less restrictive than transmissibility identification and operational modal analysis since no assumption is made about the locations of the sensors relative to the excitation.

  12. Advances in Rosetta structure prediction for difficult molecular-replacement problems

    Energy Technology Data Exchange (ETDEWEB)

    DiMaio, Frank, E-mail: dimaio@u.washington.edu [University of Washington, UW Box 357350, Seattle, WA 98195 (United States)

    2013-11-01

    Modeling advances using Rosetta structure prediction to aid in solving difficult molecular-replacement problems are discussed. Recent work has shown the effectiveness of structure-prediction methods in solving difficult molecular-replacement problems. The Rosetta protein structure modeling suite can aid in the solution of difficult molecular-replacement problems using templates from 15 to 25% sequence identity; Rosetta refinement guided by noisy density has consistently led to solved structures where other methods fail. In this paper, an overview of the use of Rosetta for these difficult molecular-replacement problems is provided and new modeling developments that further improve model quality are described. Several variations to the method are introduced that significantly reduce the time needed to generate a model and the sampling required to improve the starting template. The improvements are benchmarked on a set of nine difficult cases and it is shown that this improved method obtains consistently better models in less running time. Finally, strategies for best using Rosetta to solve difficult molecular-replacement problems are presented and future directions for the role of structure-prediction methods in crystallography are discussed.

  13. The Effects of Gravity on Combustion and Structure Formation During Synthesis of Advanced Materials

    Science.gov (United States)

    Varma, A.; Pelekh, A.; Mukasyan, A.

    1999-01-01

    Combustion in a variety of heterogeneous systems, leading to the synthesis of advanced materials, is characterized by high temperatures (2000-3500 K) and heating rates (up to 10(exp 6) K/s) at and ahead of the reaction front. These high temperatures generate liquids and gases which are subject to gravity-driven flow. The removal of such gravitational effects is likely to provide increased control of the reaction front, with a consequent improvement in control of the microstructure of the synthesized products. Thus, microgravity experiments can lead to major advances in the understanding of fundamental aspects of combustion and structure formation under the extreme conditions of the combustion synthesis wave. In addition, the specific features of microgravity environment allow one to produce unique materials, which cannot be obtained under terrestrial conditions. The general goals of the current research are: 1) to improve the understanding of fundamental phenomena taking place during combustion of heterogeneous systems, 2) to use low-gravity experiments for insight into the physics and chemistry of materials synthesis processes, and 3) based on the obtained knowledge, to optimize processing conditions for synthesis of advanced materials with desired microstructures and properties. This research follows logically from the results of investigations we have conducted in the framework of our previous grant on gravity influence on combustion synthesis (CS) of gasless systems. Prior work, by others and by us, has clearly demonstrated that gravity plays an important role during combustion synthesis of materials. The immediate tasks for the future are to quantitatively identify the nature of observed effects, and to create accurate local kinetic models of the processes, which can lead to a control of the microstructure and properties of the synthesized materials. In summary, this is the value of the proposed research. Based on our prior work, we focus on the fundamental

  14. NATO Advanced Research Workshop on Thin Film Growth Techniques for Low-Dimensional Structures

    CERN Document Server

    Parkin, S; Dobson, P; Neave, J; Arrott, A

    1987-01-01

    This work represents the account of a NATO Advanced Research Workshop on "Thin Film Growth Techniques for Low Dimensional Structures", held at the University of Sussex, Brighton, England from 15-19 Sept. 1986. The objective of the workshop was to review the problems of the growth and characterisation of thin semiconductor and metal layers. Recent advances in deposition techniques have made it possible to design new material which is based on ultra-thin layers and this is now posing challenges for scientists, technologists and engineers in the assessment and utilisation of such new material. Molecular beam epitaxy (MBE) has become well established as a method for growing thin single crystal layers of semiconductors. Until recently, MBE was confined to the growth of III-V compounds and alloys, but now it is being used for group IV semiconductors and II-VI compounds. Examples of such work are given in this volume. MBE has one major advantage over other crystal growth techniques in that the structure of the growi...

  15. The Advanced Camera for Surveys General Catalog: Structural Parameters for Approximately Half a Million Galaxies

    CERN Document Server

    Griffith, Roger L; Newman, Jeffrey A; Moustakas, Leonidas A; Stern, Daniel; Comerford, Julia M; Davis, Marc; Lotz, Jennifer M; Barden, Marco; Conselice, Christopher J; Capak, Peter L; Faber, S M; Kirkpatrick, J Davy; Koekemoer, Anton M; Koo, David C; Noeske, Kai G; Scoville, Nick; Sheth, Kartik; Shopbell, Patrick; Willmer, Christopher N A; Weiner, Benjamin

    2012-01-01

    We present the Advanced Camera for Surveys General Catalog (ACS-GC), a photometric and morphological database using publicly available data obtained with the Advanced Camera for Surveys (ACS) instrument on the Hubble Space Telescope. The goal of the ACS-GC database is to provide a large statistical sample of galaxies with reliable structural and distance measurements to probe the evolution of galaxies over a wide range of look-back times. The ACS-GC includes over 490,000 astronomical sources (stars + galaxies) derived from the AEGIS, COSMOS, GEMS, and GOODS surveys. Galapagos was used to construct photometric (SExtractor) and morphological (Galfit) catalogs. The analysis assumes a single S\\'ersic model for each object to derive quantitative structural parameters. We include publicly available redshifts from the DEEP2, COMBO-17, TKRS, PEARS, ACES, CFHTLS,and zCOSMOS surveys to supply redshifts (spectroscopic and photometric) for a considerable fraction (~71%) of the imaging sample. The ACS-GC includes color po...

  16. Chromium-modified a-C films with advanced structural, mechanical and corrosive-resistant characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Ming, Miao Yi [International Chinese-Belarusian scientific laboratory on vacuum-plasma technology, Nanjing University of Science and Technology, Nanjing 210094 (China); Francisk Skorina Gomel State University, Gomel 246019 (Belarus); Jiang, Xiaohong, E-mail: jxh0668@sina.com [International Chinese-Belarusian scientific laboratory on vacuum-plasma technology, Nanjing University of Science and Technology, Nanjing 210094 (China); Francisk Skorina Gomel State University, Gomel 246019 (Belarus); Piliptsou, D.G., E-mail: pdg_@mail.ru [International Chinese-Belarusian scientific laboratory on vacuum-plasma technology, Nanjing University of Science and Technology, Nanjing 210094 (China); Francisk Skorina Gomel State University, Gomel 246019 (Belarus); Zhuang, Yuzhao; Rogachev, A.V.; Rudenkov, A.S. [International Chinese-Belarusian scientific laboratory on vacuum-plasma technology, Nanjing University of Science and Technology, Nanjing 210094 (China); Francisk Skorina Gomel State University, Gomel 246019 (Belarus); Balmakou, A. [Faculty of Material Science and Technology, Slovak University of Technology, Trnava 91724 (Slovakia)

    2016-08-30

    Highlights: • Influence of the chromium interlayer on the structure and mechanical properties of a-C:Cr films. • Residual stress and wear of a-C:Cr and Cr/a-C varies due to their phase and surface morphology. • Chromium-modified a-C films with advanced structural, mechanical and corrosive-resistant characteristics. - Abstract: To improve structural, mechanical and chemical properties of diamond-like carbon films, we developed amorphous carbon chromium-modified composite films fabricated by means of cathode magnetic filtered arc deposition. The properties were analyzed by Raman spectroscopy, X-ray photoelectron spectroscopy and atomic force microscopy for the purpose of the structure characterization, elemental analysis and topology examination. Moreover, we also assessed residual stress, the coefficient of friction, hardness, the elastic modulus and corrosion parameters through X-ray double-crystal surface profilometry, tribo-testing, nanoindenter-testing, as well as contact angle measurements and potentiodynamic polarization analysis. As a result of a comparative analysis, we revealed a substantial improvement in the characteristics of developed composite films in comparison with amorphous carbon films. For example, Cr-modification is resulted, in greater integrated performance, toughness and corrosion resistance; the residual stress was reduced substantially.

  17. Study of flutter related computational procedures for minimum weight structural sizing of advanced aircraft

    Science.gov (United States)

    Oconnell, R. F.; Hassig, H. J.; Radovcich, N. A.

    1976-01-01

    Results of a study of the development of flutter modules applicable to automated structural design of advanced aircraft configurations, such as a supersonic transport, are presented. Automated structural design is restricted to automated sizing of the elements of a given structural model. It includes a flutter optimization procedure; i.e., a procedure for arriving at a structure with minimum mass for satisfying flutter constraints. Methods of solving the flutter equation and computing the generalized aerodynamic force coefficients in the repetitive analysis environment of a flutter optimization procedure are studied, and recommended approaches are presented. Five approaches to flutter optimization are explained in detail and compared. An approach to flutter optimization incorporating some of the methods discussed is presented. Problems related to flutter optimization in a realistic design environment are discussed and an integrated approach to the entire flutter task is presented. Recommendations for further investigations are made. Results of numerical evaluations, applying the five methods of flutter optimization to the same design task, are presented.

  18. A hybrid method for damage detection and quantification in advanced X-COR composite structures

    Science.gov (United States)

    Neerukatti, Rajesh Kumar; Rajadas, Abhishek; Borkowski, Luke; Chattopadhyay, Aditi; Huff, Daniel W.

    2016-04-01

    Advanced composite structures, such as foam core carbon fiber reinforced polymer composites, are increasingly being used in applications which require high strength, high in-plane and flexural stiffness, and low weight. However, the presence of in situ damage due to manufacturing defects and/or service conditions can complicate the failure mechanisms and compromise their strength and reliability. In this paper, the capability of detecting damages such as delaminations and foam-core separations in X-COR composite structures using non-destructive evaluation (NDE) and structural health monitoring (SHM) techniques is investigated. Two NDE techniques, flash thermography and low frequency ultrasonics, were used to detect and quantify the damage size and locations. Macro fiber composites (MFCs) were used as actuators and sensors to study the interaction of Lamb waves with delaminations and foam-core separations. The results indicate that both flash thermography and low frequency ultrasonics were capable of detecting damage in X-COR sandwich structures, although low frequency ultrasonic methods were capable of detecting through thickness damages more accurately than flash thermography. It was also observed that the presence of foam-core separations significantly changes the wave behavior when compared to delamination, which complicates the use of wave based SHM techniques. Further, a wave propagation model was developed to model the wave interaction with damages at different locations on the X-COR sandwich plate.

  19. A Study of the Utilization of Advanced Composites in Fuselage Structures of Commercial Aircraft

    Science.gov (United States)

    Watts, D. J.; Sumida, P. T.; Bunin, B. L.; Janicki, G. S.; Walker, J. V.; Fox, B. R.

    1985-01-01

    A study was conducted to define the technology and data needed to support the introduction of advanced composites in the future production of fuselage structure in large transport aircraft. Fuselage structures of six candidate airplanes were evaluated for the baseline component. The MD-100 was selected on the basis of its representation of 1990s fuselage structure, an available data base, its impact on the schedule and cost of the development program, and its availability and suitability for flight service evaluation. Acceptance criteria were defined, technology issues were identified, and a composite fuselage technology development plan, including full-scale tests, was identified. The plan was based on composite materials to be available in the mid to late 1980s. Program resources required to develop composite fuselage technology are estimated at a rough order of magnitude to be 877 man-years exclusive of the bird strike and impact dynamic test components. A conceptual composite fuselage was designed, retaining the basic MD-100 structural arrangement for doors, windows, wing, wheel wells, cockpit enclosure, major bulkheads, etc., resulting in a 32 percent weight savings.

  20. An Overview of Combustion Mechanisms and Flame Structures for Advanced Solid Propellants

    Science.gov (United States)

    Beckstead, M. W.

    2000-01-01

    Ammonium perchlorate (AP) and cyclotretamethylenetetranitramine (HMX) are two solid ingredients often used in modern solid propellants. Although these two ingredients have very similar burning rates as monopropellants, they lead to significantly different characteristics when combined with binders to form propellants. Part of the purpose of this paper is to relate the observed combustion characteristics to the postulated flame structures and mechanisms for AP and HMX propellants that apparently lead to these similarities and differences. For AP composite, the primary diffusion flame is more energetic than the monopropellant flame, leading to an increase in burning rate over the monopropellant rate. In contrast the HMX primary diffusion flame is less energetic than the HMX monopropellant flame and ultimately leads to a propellant rate significantly less than the monopropellant rate in composite propellants. During the past decade the search for more energetic propellants and more environmentally acceptable propellants is leading to the development of propellants based on ingredients other than AP and HMX. The objective of this paper is to utilize the more familiar combustion characteristics of AP and HMX containing propellants to project the combustion characteristics of propellants made up of more advanced ingredients. The principal conclusion reached is that most advanced ingredients appear to burn by combustion mechanisms similar to HMX containing propellants rather than AP propellants.

  1. Advanced system identification techniques for wind turbine structures with special emphasis on modal parameters

    Energy Technology Data Exchange (ETDEWEB)

    Bialasiewicz, J.T.

    1995-06-01

    The goal of this research is to develop advanced system identification techniques that can be used to accurately measure the frequency response functions of a wind-turbine structure immersed in wind noise. To allow for accurate identification, the authors have developed a special test signal called the Pseudo-Random Binary Sequence (PRBS). The Matlab program that generates this signal allows the user to interactively tailor its parameters for the frequency range of interest based on the response of the wind turbine under test. By controlling NREL`s Mobile Hydraulic Shaker System, which is attached to the wind turbine structure, the PRBS signal produces the wide-band excitation necessary to perform system identification in the presence of wind noise. The techniques presented here will enable researchers to obtain modal parameters from an operating wind turbine, including frequencies, damping coefficients, and mode shapes. More importantly, the algorithms they have developed and tested (so far using input-output data from a simulated structure) permit state-space representation of the system under test, particularly the modal state space representation. This is the only system description that reveals the internal behavior the system, such as the interaction between the physical parameters, and which, in contrast to transfer functions, is valid for non-zero initial conditions.

  2. Study on utilization of advanced composites in commercial aircraft wing structures. Volume 1: Executive summary

    Science.gov (United States)

    Sakata, I. F.; Ostrom, R. B.; Cardinale, S. V.

    1978-01-01

    The effort required by commercial transport manufacturers to accomplish the transition from current construction materials and practices to extensive use of composites in aircraft wings was investigated. The engineering and manufacturing disciplines which normally participate in the design, development, and production of an aircraft were employed to ensure that all of the factors that would enter a decision to commit to production of a composite wing structure were addressed. A conceptual design of an advanced technology reduced energy aircraft provided the framework for identifying and investigating unique design aspects. A plan development effort defined the essential technology needs and formulated approaches for effecting the required wing development. The wing development program plans, resource needs, and recommendations are summarized.

  3. Advances in the monitoring of geo-structure subjected to climate loading

    Directory of Open Access Journals (Sweden)

    Tarantino Alessandro

    2016-01-01

    Full Text Available The paper presents results achieved within the project MAGIC, a project funded by the European Commission under the Marie-Curie Industry Academia Partnerships and Pathways (IAPP scheme. The project MAGIC aims to advance the state-of-the art in the monitoring of geo-structures subjected to climate loading by filling some of the gaps in current monitoring technologies. The project involves a partnership between academic and industrial partners to boost knowledge transfer and promote the development of ‘industrial’ instruments and services. The paper presents developments concerning the measurement of pore-water tension (suction in excess of 100 kPa and the integration of geotechnical and geophysical monitoring.

  4. Glutamine Synthetase in Legumes: Recent Advances in Enzyme Structure and Functional Genomics

    Directory of Open Access Journals (Sweden)

    Marco Betti

    2012-06-01

    Full Text Available Glutamine synthetase (GS is the key enzyme involved in the assimilation of ammonia derived either from nitrate reduction, N2 fixation, photorespiration or asparagine breakdown. A small gene family is encoding for different cytosolic (GS1 or plastidic (GS2 isoforms in legumes. We summarize here the recent advances carried out concerning the quaternary structure of GS, as well as the functional relationship existing between GS2 and processes such as nodulation, photorespiration and water stress, in this latter case by means of proline production. Functional genomic analysis using GS2-minus mutant reveals the key role of GS2 in the metabolic control of the plants and, more particularly, in carbon metabolism.

  5. Advanced imaging techniques for assessment of structure, composition and function in biofilm systems.

    Science.gov (United States)

    Neu, Thomas R; Manz, Bertram; Volke, Frank; Dynes, James J; Hitchcock, Adam P; Lawrence, John R

    2010-04-01

    Scientific imaging represents an important and accepted research tool for the analysis and understanding of complex natural systems. Apart from traditional microscopic techniques such as light and electron microscopy, new advanced techniques have been established including laser scanning microscopy (LSM), magnetic resonance imaging (MRI) and scanning transmission X-ray microscopy (STXM). These new techniques allow in situ analysis of the structure, composition, processes and dynamics of microbial communities. The three techniques open up quantitative analytical imaging possibilities that were, until a few years ago, impossible. The microscopic techniques represent powerful tools for examination of mixed environmental microbial communities usually encountered in the form of aggregates and films. As a consequence, LSM, MRI and STXM are being used in order to study complex microbial biofilm systems. This mini review provides a short outline of the more recent applications with the intention to stimulate new research and imaging approaches in microbiology.

  6. Multiscale Modeling of Advanced Materials for Damage Prediction and Structural Health Monitoring

    Science.gov (United States)

    Borkowski, Luke

    Advanced aerospace materials, including fiber reinforced polymer and ceramic matrix composites, are increasingly being used in critical and demanding applications, challenging the current damage prediction, detection, and quantification methodologies. Multiscale computational models offer key advantages over traditional analysis techniques and can provide the necessary capabilities for the development of a comprehensive virtual structural health monitoring (SHM) framework. Virtual SHM has the potential to drastically improve the design and analysis of aerospace components through coupling the complementary capabilities of models able to predict the initiation and propagation of damage under a wide range of loading and environmental scenarios, simulate interrogation methods for damage detection and quantification, and assess the health of a structure. A major component of the virtual SHM framework involves having micromechanics-based multiscale composite models that can provide the elastic, inelastic, and damage behavior of composite material systems under mechanical and thermal loading conditions and in the presence of microstructural complexity and variability. Quantification of the role geometric and architectural variability in the composite microstructure plays in the local and global composite behavior is essential to the development of appropriate scale-dependent unit cells and boundary conditions for the multiscale model. Once the composite behavior is predicted and variability effects assessed, wave-based SHM simulation models serve to provide knowledge on the probability of detection and characterization accuracy of damage present in the composite. The research presented in this dissertation provides the foundation for a comprehensive SHM framework for advanced aerospace materials. The developed models enhance the prediction of damage formation as a result of ceramic matrix composite processing, improve the understanding of the effects of architectural and

  7. Characteristics of sandwich-type structural elements built of advanced composite materials from three dimensional fabrics

    Directory of Open Access Journals (Sweden)

    Castejón, L.

    1997-12-01

    Full Text Available Sandwich-type structures have proved to be alternatives of great success for several fields of application, and specially in the building sector. This is due to their outstanding properties of .specific rigidity and strength against bending loads and other range of advantages like fatigue and impact resistance, attainment of flat and smooth surfaces, high electric and thermal insulation, design versatility and some others. However, traditional sandwich structures present problems like their tendency towards delamination, stress concentrations in bores or screwed Joints, and pre resistance. These problems are alleviated thanks to the use of new sandwich structures built using three dimensional structures of advanced composite materials, maintaining the present advantages for more traditional sandwich structures. At this rate, these new structures can be applied in several areas where conventional sandwich structures used to be like walls, partitions, floor and ceiling structures, domes, vaults and dwellings, but with greater success.

    Las estructuras tipo sándwich han demostrado ser alternativas de gran éxito para diversos campos de aplicación y, en concreto, en el sector de la construcción, listo es gracias a sus excelentes propiedades de rigidez y resistencia específica frente a cargas de flexión y otra larga lista de ventajas, a la que pertenecen, por ejemplo, su buena resistencia a fatiga, resistencia al impacto, obtención de superficies lisas y suaves, elevado aislamiento térmico y eléctrico, versatilidad de diseño y otras. Sin embargo, las estructuras sándwich, tradicionales presentan una problemática consistente en su tendencia a la delaminación, concentraciones de tensiones ¿aparecidas ante la existencia de agujeros o uniones atornilladas y resistencia al fuego. Estos problemas son pifiados gracias a la aplicación de estructuras novedosas tipo sándwich, construidas a partir de tejidos tridimensionales de materiales

  8. Mechanistic Studies of Combustion and Structure Formation During Synthesis of Advanced Materials

    Science.gov (United States)

    Varma, A.; Lau, C.; Mukasyan, A. S.

    2001-01-01

    Combustion in a variety of heterogeneous systems, leading to the synthesis of advanced materials, is characterized by high temperatures (2000-3500 K) and heating rates (up to 10(exp 6) K/s) at and ahead of the reaction front. These high temperatures generate liquids and gases which are subject to gravity-driven flow. The removal of such gravitational effects is likely to provide increased control of the reaction front, with a consequent improvement in control of the microstructure of the synthesized products. Thus, microgravity (mu-g) experiments lead to major advances in the understanding of fundamental aspects of combustion and structure formation under the extreme conditions of the combustion synthesis (CS) wave. In addition, the specific features of microgravity environment allow one to produce unique materials, which cannot be obtained under terrestrial conditions. The current research is a logic continuation of our previous work on investigations of the fundamental phenomena of combustion and structure formation that occur at the high temperatures achieved in a CS wave. Our research is being conducted in three main directions: 1) Microstructural Transformations during Combustion Synthesis of Metal-Ceramic Composites. The studies are devoted to the investigation of particle growth during CS of intermetallic-ceramic composites, synthesized from nickel, aluminum, titanium, and boron metal reactants. To determine the mechanisms of particle growth, the investigation varies the relative amount of components in the initial mixture to yield combustion wave products with different ratios of solid and liquid phases, under 1g and mu-g conditions; 2) Mechanisms of Heat Transfer during Reactions in Heterogeneous Media. Specifically, new phenomena of gasless combustion wave propagation in heterogeneous media with porosity higher than that achievable in normal gravity conditions, are being studied. Two types of mixtures are investigated: clad powders, where contact between

  9. Recent Advances in Organic Photovoltaics: Device Structure and Optical Engineering Optimization on the Nanoscale.

    Science.gov (United States)

    Luo, Guoping; Ren, Xingang; Zhang, Su; Wu, Hongbin; Choy, Wallace C H; He, Zhicai; Cao, Yong

    2016-03-23

    Organic photovoltaic (OPV) devices, which can directly convert absorbed sunlight to electricity, are stacked thin films of tens to hundreds of nanometers. They have emerged as a promising candidate for affordable, clean, and renewable energy. In the past few years, a rapid increase has been seen in the power conversion efficiency of OPV devices toward 10% and above, through comprehensive optimizations via novel photoactive donor and acceptor materials, control of thin-film morphology on the nanoscale, device structure developments, and interfacial and optical engineering. The intrinsic problems of short exciton diffusion length and low carrier mobility in organic semiconductors creates a challenge for OPV designs for achieving optically thick and electrically thin device structures to achieve sufficient light absorption and efficient electron/hole extraction. Recent advances in the field of OPV devices are reviewed, with a focus on the progress in device architecture and optical engineering approaches that lead to improved electrical and optical characteristics in OPV devices. Successful strategies are highlighted for light wave distribution, modulation, and absorption promotion inside the active layer of OPV devices by incorporating periodic nanopatterns/nanostructures or incorporating metallic nanomaterials and nanostructures.

  10. Collagen modifications in postmenopausal osteoporosis: advanced glycation endproducts may affect bone volume, structure and quality.

    Science.gov (United States)

    Willett, Thomas L; Pasquale, Julia; Grynpas, Marc D

    2014-09-01

    The classic model of postmenopausal osteoporosis (PM-OP) starts with the depletion of estrogen, which in turn stimulates imbalanced bone remodeling, resulting in loss of bone mass/volume. Clinically, this leads to fractures because of structural weakness. Recent work has begun to provide a more complete picture of the mechanisms of PM-OP involving oxidative stress and collagen modifications known as advanced glycation endproducts (AGEs). On one hand, AGEs may drive imbalanced bone remodeling through signaling mediated by the receptor for AGEs (RAGE), stimulating resorption and inhibiting formation. On the other hand, AGEs are associated with degraded bone material quality. Oxidative stress promotes the formation of AGEs, inhibits normal enzymatically derived crosslinking and can degrade collagen structure, thereby reducing fracture resistance. Notably, there are multiple positive feedback loops that can exacerbate the mechanisms of PM-OP associated with oxidative stress and AGEs. Anti-oxidant therapies may have the potential to inhibit the oxidative stress based mechanisms of this disease.

  11. Crystal structure, magnetic properties and advances in hexaferrites: A brief review

    Science.gov (United States)

    Jotania, Rajshree

    2014-10-01

    Hexaferrites are hard magnetic materials and specifically ferri-magnetic oxides with hexagonal magnetoplumbite type crystallographic structure. Hexagonal ferrites are used as permanent magnets, high-density perpendicular and magneto-optical recording media, and microwave devices like resonance isolators, filters, circulators, phase shifters because of their high magnetic permeability, high electrical resistivity and moderable permittivity. In addition to these; hexagonal ferrites have excellent chemical stability, mechanical hardness and low eddy current loss at high frequencies. The preparation of hexaferrites is a complicated process. Various experimental techniques like standard ceramic techniques, solvent free synthesis route, co precipitation, salt-melt, ion exchange, sol-gel, citrate synthesis, hydrothermal synthesis, spray drying, water-in-oil microemulsion, reverse micelle etc are used to prepare hexaferrite materials. Structural, dielectric and magnetic properties, crystallite size of hexaferrites depend upon nature of substituted ions, method of preparation, sintering temperature and time. The recent interest is nanotechnology, the development of hexaferrite fibres and composites with carbon nano tubes (CNT). Magnetic properties of some doped and un-doped hexaferrites are discussed here. Recent advances in hexaferrites also highlighted in present paper.

  12. PREFACE: International Conference on Advanced Structural and Functional Materials Design 2008

    Science.gov (United States)

    Kakeshita, Tomoyuki

    2009-07-01

    The Ministry of Education, Culture, Sports, Science and Technology of Japan started the Priority Assistance for the Formation of Worldwide Renowned Centers of Research - Global COE Program. This program is based on the competitive principle where a third party evaluation decides which program to support and to give priority support to the formation of world-class centers of research. Our program Center of Excellence for Advanced Structural and Functional Materials Design was selected as one of 13 programs in the field of Chemistry and Materials Science. This center is composed of two materials-related Departments in the Graduate School of Engineering: Materials and Manufacturing Science and Adaptive Machine Systems, and 4 Research Institutes: Center for Atomic and Molecular Technologies, Welding and Joining Research Institute, Institute of Scientific and Industrial Research and Research Center for Ultra-High Voltage Electron Microscopy. Recently, materials research, particularly that of metallic materials, has specialized only in individual elemental characteristics and narrow specialty fields, and there is a feeling that the original role of materials research has been forgotten. The 6 educational and research organizations which make up the COE program cooperatively try to develop new advanced structural and functional materials and achieve technological breakthrough for their fabrication processes from electronic, atomic, microstructural and morphological standpoints, focusing on their design and application: development of high performance structural materials such as space plane and turbine blades operating under a severe environment, new fabrication and assembling methods for electronic devices, development of evaluation technique for materials reliability, and development of new biomaterials for regeneration of biological hard tissues. The aim of this international conference was to report the scientific progress in our Global COE program and also to discuss

  13. Recent advancements in the electromechanical (E/M) impedance method for structural health monitoring and NDE

    Science.gov (United States)

    Giurgiutiu, Victor; Rogers, Craig A.

    1998-07-01

    The emerging electro-mechanical impedance technology has high potential for in-situ health monitoring and NDE of structural systems and complex machinery. At first, the fundamental principles of the electro-mechanical impedance method are briefly reviewed and ways for practical implementation are highlighted. The equations of piezo- electric material response are given, and the coupled electro-mechanical impedance of a piezo-electric wafer transducer as affixed to the monitored structure is discussed. Due to the high frequency operation of this NDE method, wave propagation phenomena are identified as the primary coupling method between the structural substrate and the piezo-electric wafer transducer. Attention is then focused on several recent advancements that have extended the electro-mechanical impedance method into new areas of applications and/or have developed its underlying principles. US Army Construction Engineering Research Laboratory used the electro-mechanical impedance method to monitor damage development in composite overlaid civil infrastructure specimens under full-scale static testing. A simplified E/M impedance measuring technique was employed at the Polytechnic University of Madrid, Spain, to detect damage in GFRP composite specimens. The development of miniaturized `bare-bones' impedance analyzer equipment that could be easily packaged into transponder-size dimensions is being studied at the University of South Carolina. US Army Research Laboratory developed novel piezo-composite film transducers for embedment into composite structures. Disbond gauges for monitoring the structural joints of adhesively bonded rotor blades have been studies in the Mechanical Engineering Department at the University of South Carolina. These recent developments accentuate the importance and benefits of using the electro-mechanical impedance method for on-line health monitoring and damage detection in a variety of applications. Further investigation of the electro

  14. Development of damped metal-matrix composites for advanced structural applications. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Updike, C.A.; Bhagat, R.B.

    1990-04-01

    The development of damped metal matrix composite structures for advanced applications has been investigated by the use of two different approaches: (1) the development of metal matrix composites with high intrinsic damping compared to that of the matrix material, and (2) the development of coated metal matrix composites with high structural damping compared to that of the composite substrates. The two different approaches are analyzed in terms of their potential for improved damping and feasibility for structural applications. Damping was measured by the transverse vibration of free-free beams using the bandwidth technique by a laser vibrometer under ambient conditions. The damping measurements were made over a wide range of frequencies (.7 kHz to 25.6 kHz) at low strain amplitudes (10 to the -10 power to 10 to the -7 power). Materials investigated for their tensile stiffness, strength, and damping performance include mechanically alloyed (MA) Aluminum-Magnesium, SiC(p)/Aluminum-Copper (MA), SiC(p)/AL, AL2O3(p)/AL, SiC(W)/AL, planar random Gr/AL, unidirectional Gr/AL and unidirectional SiC(Nicalon)/AL composites. The effects of coatings of high damping metals (nitinol and incramute) on 6061-T6 AL and AL2O3(p)/AL substrates have also been studied. The AL-Mg (MA), SiC(p)/AL (MA), SiC(W)/AL and th AL2O3(p)/AL composites show no significant improvement in damping compared with that of the 6061-T6 AL.

  15. Advancements in the Quantification of the Crystal Structure of ZNS Materials Produced in Variable Gravity

    Science.gov (United States)

    Castillo, Martin

    2016-07-01

    Screens and displays consume tremendous amounts of power. Global trends to significantly consume less power and increase battery life have led to the reinvestigation of electroluminescent materials. The state of the art in ZnS materials has not been furthered in the past 30 years and there is much potential in improving electroluminescent properties of these materials with advanced processing techniques. Self-propagating high temperature synthesis (SHS) utilises a rapid exothermic process involving high energy and nonlinearity coupled with a high cooling rate to produce materials formed outside of normal equilibrium boundaries thus possessing unique properties. The elimination of gravity during this process allows capillary forces to dominate mixing of the reactants which results in a superior and enhanced homogeneity in the product materials. ZnS type materials have been previously conducted in reduced gravity and normal gravity. It has been claimed in literature that a near perfect phases of ZnS wurtzite was produced. Although, the SHS of this material is possible at high pressures, there has been no quantitative information on the actual crystal structures and lattice parameters that were produced in this work. Utilising this process with ZnS doped with Cu, Mn, or rare earth metals such as Eu and Pr leads to electroluminescence properties, thus making this an attractive electroluminescent material. The work described here will revisit the synthesis of ZnS via high pressure SHS and will re-examine the work performed in both normal gravity and in reduced gravity within the ZARM drop tower facility. Quantifications in the lattice parameters, crystal structures, and phases produced will be presented to further explore the unique structure-property performance relationships produced from the SHS of ZnS materials.

  16. Advanced analysis of complex seismic waveforms to characterize the subsurface Earth structure

    Science.gov (United States)

    Jia, Tianxia

    2011-12-01

    in seismic active zones. SPAC analysis of microtremors provides an efficient way to estimate Vs structure. Compared with other Vs estimating methods, SPAC is noninvasive and does not require any active sources, and therefore, it is especially useful in big cities. I applied SPAC method in two urban areas. The first is the historic city, Charleston, South Carolina, where high levels of seismic hazard lead to great public concern. Accurate Vs information, therefore, is critical for seismic site classification and site response studies. The second SPAC study is in Manhattan, New York City, where depths of high velocity contrast and soil-to-bedrock are different along the island. The two experiments show that Vs structure could be estimated with good accuracy using SPAC method compared with borehole and other techniques. SPAC is proved to be an effective technique for Vs estimation in urban areas. One important issue in seismology is the inversion of subsurface structures from surface recordings of seismograms. My third project focuses on solving this complex geophysical inverse problems, specifically, surface wave phase velocity dispersion curve inversion for shear wave velocity. In addition to standard linear inversion, I developed advanced inversion techniques including joint inversion using borehole data as constrains, nonlinear inversion using Monte Carlo, and Simulated Annealing algorithms. One innovative way of solving the inverse problem is to make inference from the ensemble of all acceptable models. The statistical features of the ensemble provide a better way to characterize the Earth model.

  17. Structural Benchmark Creep Testing for the Advanced Stirling Convertor Heater Head

    Science.gov (United States)

    Krause, David L.; Kalluri, Sreeramesh; Bowman, Randy R.; Shah, Ashwin R.

    2008-01-01

    The National Aeronautics and Space Administration (NASA) has identified the high efficiency Advanced Stirling Radioisotope Generator (ASRG) as a candidate power source for use on long duration Science missions such as lunar applications, Mars rovers, and deep space missions. For the inherent long life times required, a structurally significant design limit for the heater head component of the ASRG Advanced Stirling Convertor (ASC) is creep deformation induced at low stress levels and high temperatures. Demonstrating proof of adequate margins on creep deformation and rupture for the operating conditions and the MarM-247 material of construction is a challenge that the NASA Glenn Research Center is addressing. The combined analytical and experimental program ensures integrity and high reliability of the heater head for its 17-year design life. The life assessment approach starts with an extensive series of uniaxial creep tests on thin MarM-247 specimens that comprise the same chemistry, microstructure, and heat treatment processing as the heater head itself. This effort addresses a scarcity of openly available creep properties for the material as well as for the virtual absence of understanding of the effect on creep properties due to very thin walls, fine grains, low stress levels, and high-temperature fabrication steps. The approach continues with a considerable analytical effort, both deterministically to evaluate the median creep life using nonlinear finite element analysis, and probabilistically to calculate the heater head s reliability to a higher degree. Finally, the approach includes a substantial structural benchmark creep testing activity to calibrate and validate the analytical work. This last element provides high fidelity testing of prototypical heater head test articles; the testing includes the relevant material issues and the essential multiaxial stress state, and applies prototypical and accelerated temperature profiles for timely results in a

  18. Advanced Deployable Shell-Based Composite Booms for Small Satellite Structural Applications Including Solar Sails

    Science.gov (United States)

    Fernandez, Juan M.

    2017-01-01

    State of the art deployable structures are mainly being designed for medium to large size satellites. The lack of reliable deployable structural systems for low cost, small volume, rideshare-class spacecraft severely constrains the potential for using small satellite platforms for affordable deep space science and exploration precursor missions that could be realized with solar sails. There is thus a need for reliable, lightweight, high packaging efficiency deployable booms that can serve as the supporting structure for a wide range of small satellite systems including solar sails for propulsion. The National Air and Space Administration (NASA) is currently investing in the development of a new class of advanced deployable shell-based composite booms to support future deep space small satellite missions using solar sails. The concepts are being designed to: meet the unique requirements of small satellites, maximize ground testability, permit the use of low-cost manufacturing processes that will benefit scalability, be scalable for use as elements of hierarchical structures (e.g. trusses), allow long duration storage, have high deployment reliability, and have controlled deployment behavior and predictable deployed dynamics. This paper will present the various rollable boom concepts that are being developed for 5-20 m class size deployable structures that include solar sails with the so-called High Strain Composites (HSC) materials. The deployable composite booms to be presented are being developed to expand the portfolio of available rollable booms for small satellites and maximize their length for a given packaged volume. Given that solar sails are a great example of volume and mass optimization, the booms were designed to comply with nominal solar sail system requirements for 6U CubeSats, which are a good compromise between those of smaller form factors (1U, 2U and 3U CubeSats) and larger ones (12 U and 27 U future CubeSats, and ESPA-class microsatellites). Solar

  19. Comparison of advanced cutting techniques on hardox 500 steel material and the effect of structural properties of the material

    Directory of Open Access Journals (Sweden)

    L. Dahil

    2014-07-01

    Full Text Available Purpose of this study is to determine the most advantageous cutting method for a better competition chance. By presenting high hardness, high strength and superior toughness Hardox 500 steel. This sample was cut by plasma, laser, wire erosion and abrasive water jet (AWJ methods from advanced cutting technologies. By taking micro structure photos of surface of the sample cut by different cutting methods, effects of different cutting methods on metallurgical structure of material were compared.

  20. Advances in functional and structural imaging of the human lung using proton MRI.

    Science.gov (United States)

    Miller, G Wilson; Mugler, John P; Sá, Rui C; Altes, Talissa A; Prisk, G Kim; Hopkins, Susan R

    2014-12-01

    The field of proton lung MRI is advancing on a variety of fronts. In the realm of functional imaging, it is now possible to use arterial spin labeling (ASL) and oxygen-enhanced imaging techniques to quantify regional perfusion and ventilation, respectively, in standard units of measurement. By combining these techniques into a single scan, it is also possible to quantify the local ventilation-perfusion ratio, which is the most important determinant of gas-exchange efficiency in the lung. To demonstrate potential for accurate and meaningful measurements of lung function, this technique was used to study gravitational gradients of ventilation, perfusion, and ventilation-perfusion ratio in healthy subjects, yielding quantitative results consistent with expected regional variations. Such techniques can also be applied in the time domain, providing new tools for studying temporal dynamics of lung function. Temporal ASL measurements showed increased spatial-temporal heterogeneity of pulmonary blood flow in healthy subjects exposed to hypoxia, suggesting sensitivity to active control mechanisms such as hypoxic pulmonary vasoconstriction, and illustrating that to fully examine the factors that govern lung function it is necessary to consider temporal as well as spatial variability. Further development to increase spatial coverage and improve robustness would enhance the clinical applicability of these new functional imaging tools. In the realm of structural imaging, pulse sequence techniques such as ultrashort echo-time radial k-space acquisition, ultrafast steady-state free precession, and imaging-based diaphragm triggering can be combined to overcome the significant challenges associated with proton MRI in the lung, enabling high-quality three-dimensional imaging of the whole lung in a clinically reasonable scan time. Images of healthy and cystic fibrosis subjects using these techniques demonstrate substantial promise for non-contrast pulmonary angiography and detailed

  1. Resin Flow of an Advanced Grid-Stiffened Composite Structure in the Co-Curing Process

    Science.gov (United States)

    Huang, Qizhong; Ren, Mingfa; Chen, Haoran

    2013-06-01

    The soft-mold aided co-curing process which cures the skin part and ribs part simultaneously was introduced for reducing the cost of advanced grid-stiffened composite structure (AGS). The co-curing process for a typical AGS, preformed by the prepreg AS4/3501-6, was simulated by a finite element program incorporated with the user-subroutines `thermo-chemical' module and the `chemical-flow' module. The variations of temperature, cure degree, resin pressure and fiber volume fraction of the AGS were predicted. It shows that the uniform distributions of temperature, cure degree and viscosity in the AGS would be disturbed by the unique geometrical pattern of AGS. There is an alternation in distribution of resin pressure at the interface between ribs and skin, and the duration time of resin flow is sensitive to the thickness of the AGS. To obtain a desired AGS, the process parameters of the co-curing process should be determined by the geometry of an AGS and the kinds of resin.

  2. Structural and functional brain changes beyond visual system in patients with advanced glaucoma.

    Science.gov (United States)

    Frezzotti, Paolo; Giorgio, Antonio; Motolese, Ilaria; De Leucio, Alessandro; Iester, Michele; Motolese, Eduardo; Federico, Antonio; De Stefano, Nicola

    2014-01-01

    In order to test the hypothesis that in primary open angle glaucoma (POAG), an important cause of irreversible blindness, a spreading of neurodegeneration occurs through the brain, we performed multimodal MRI and subsequent whole-brain explorative voxelwise analyses in 13 advanced POAG patients and 12 age-matched normal controls (NC). Altered integrity (decreased fractional anisotropy or increased diffusivities) of white matter (WM) tracts was found not only along the visual pathway of POAG but also in nonvisual WM tracts (superior longitudinal fascicle, anterior thalamic radiation, corticospinal tract, middle cerebellar peduncle). POAG patients also showed brain atrophy in both visual cortex and other distant grey matter (GM) regions (frontoparietal cortex, hippocampi and cerebellar cortex), decreased functional connectivity (FC) in visual, working memory and dorsal attention networks and increased FC in visual and executive networks. In POAG, abnormalities in structure and FC within and outside visual system correlated with visual field parameters in the poorer performing eyes, thus emphasizing their clinical relevance. Altogether, this represents evidence that a vision disorder such as POAG can be considered a widespread neurodegenerative condition.

  3. Advances and trends in structures and dynamics; Proceedings of the Symposium, Washington, DC, October 22-25, 1984

    Science.gov (United States)

    Noor, A. K. (Editor); Hayduk, R. J. (Editor)

    1985-01-01

    Among the topics discussed are developments in structural engineering hardware and software, computation for fracture mechanics, trends in numerical analysis and parallel algorithms, mechanics of materials, advances in finite element methods, composite materials and structures, determinations of random motion and dynamic response, optimization theory, automotive tire modeling methods and contact problems, the damping and control of aircraft structures, and advanced structural applications. Specific topics covered include structural design expert systems, the evaluation of finite element system architectures, systolic arrays for finite element analyses, nonlinear finite element computations, hierarchical boundary elements, adaptive substructuring techniques in elastoplastic finite element analyses, automatic tracking of crack propagation, a theory of rate-dependent plasticity, the torsional stability of nonlinear eccentric structures, a computation method for fluid-structure interaction, the seismic analysis of three-dimensional soil-structure interaction, a stress analysis for a composite sandwich panel, toughness criterion identification for unidirectional composite laminates, the modeling of submerged cable dynamics, and damping synthesis for flexible spacecraft structures.

  4. Multi-Beam Interference Advances and Applications: Nano-Electronics, Photonic Crystals, Metamaterials, Subwavelength Structures, Optical Trapping, and Biomedical Structures

    OpenAIRE

    Thomas K. Gaylord; Guy M. Burrow

    2011-01-01

    Research in recent years has greatly advanced the understanding and capabilities of multi-beam interference (MBI). With this technology it is now possible to generate a wide range of one-, two-, and three-dimensional periodic optical-intensity distributions at the micro- and nano-scale over a large length/area/volume. These patterns may be used directly or recorded in photo-sensitive materials using multi-beam interference lithography (MBIL) to accomplish subwavelength patterning. Advances in...

  5. Right person, right skills, right job: the contribution of objective structured clinical examinations in advancing staff nurse experts.

    Science.gov (United States)

    Mitchell, Marion; Strube, Petra; Vaux, Amanda; West, Nicky; Auditore, Anthony

    2013-10-01

    Recruitment processes need to discriminate among candidates to ensure that the right person with the right skills is selected for advancement opportunities. An innovative recruitment process using an objective structured clinical examination grounded in best practice guidelines resulted in improved recruitment practices for senior nursing clinical expert roles. Candidates' skills, knowledge, and attitudes in the areas of patient focus, clinical expertise, teamwork, and leadership were assessed using a clinical simulation. Candidates achieving advancement were assessed at 6 months to validate the efficacy of the process.

  6. Advanced Differential Radar Interferometry (A-DInSAR) as integrative tool for a structural geological analysis

    Science.gov (United States)

    Crippa, B.; Calcagni, L.; Rossi, G.; Sternai, P.

    2009-04-01

    Advanced Differential SAR interferometry (A-DInSAR) is a technique monitoring large-coverage surface deformations using a stack of interferograms generated from several complex SLC SAR images, acquired over the same target area at different times. In this work are described the results of a procedure to calculate terrain motion velocity on highly correlated pixels (E. Biescas, M. Crosetto, M. Agudo, O. Monserrat e B. Crippa: Two Radar Interferometric Approaches to Monitor Slow and Fast Land Deformation, 2007) in two area Gemona - Friuli, Northern Italy, Pollino - Calabria, Southern Italy, and, furthermore, are presented some consideration, based on successful examples of the present analysis. The choice of these pixels whose displacement velocity is calculated depends on the dispersion index value (DA) or using coherence values along the stack interferograms. A-DInSAR technique allows to obtain highly reliable velocity values of the vertical displacement. These values concern the movement of minimum surfaces of about 80m2 at the maximum resolution and the minimum velocity that can be recognized is of the order of mm/y. Because of the high versatility of the technology, because of the large dimensions of the area that can be analyzed (of about 10000Km2) and because of the high precision and reliability of the results obtained, we think it is possible to exploit radar interferometry to obtain some important information about the structural context of the studied area, otherwise very difficult to recognize. Therefore we propose radar interferometry as a valid investigation tool whose results must be considered as an important integration of the data collected in fieldworks.

  7. Recent advances in electronic structure theory and their influence on the accuracy of ab initio potential energy surfaces

    Science.gov (United States)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1989-01-01

    Recent advances in electronic structure theory and the availability of high speed vector processors have substantially increased the accuracy of ab initio potential energy surfaces. The recently developed atomic natural orbital approach for basis set contraction has reduced both the basis set incompleteness and superposition errors in molecular calculations. Furthermore, full CI calculations can often be used to calibrate a CASSCF/MRCI approach that quantitatively accounts for the valence correlation energy. These computational advances also provide a vehicle for systematically improving the calculations and for estimating the residual error in the calculations. Calculations on selected diatomic and triatomic systems will be used to illustrate the accuracy that currently can be achieved for molecular systems. In particular, the F + H2 yields HF + H potential energy hypersurface is used to illustrate the impact of these computational advances on the calculation of potential energy surfaces.

  8. NSF/ESF Workshop on Smart Structures and Advanced Sensors, Santorini Island, Greece, June 26-28, 2005: Structural Actuation and Adaptation Working Group

    Science.gov (United States)

    Figueroa, Fernando; Tomizuka, Masayoshi; Bergman, Lawrence; Carpenter, Bernie; Salzano, Carmine; Bairrao, rogerio; Deraemaker, Arnaud; Magonette, Georges; Rodellar, Jose; Kadirkamanathan, Visaken

    2005-01-01

    This document is a result of discussions that took place during the workshop. It describes current state of research and development (R&D) in the areas of structural actuation and adaptation in the context of smart structures and advanced sensors (SS&AS), and provides an outlook to guide future R&D efforts to develop technologies needed to build SS&AS. The discussions took place among the members of the Structural Actuation and Adaptation Working Group, as well as in general sessions including all four working groups. Participants included members of academia, industry, and government from the US and Europe, and representatives from China, Japan, and Korea.

  9. Biotemplated Nano-Structured Materials for Advanced Li-ion Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has identified a critical need for pioneering advances in battery technology to give high performance, low-weight, durable and long-life power sources for...

  10. Fundamental Advances in Inverse Mechanics Towards Self-Aware and Intrinsically Adaptable Structural Systems

    Science.gov (United States)

    2014-11-30

    parameters and objectives was considered. As shown in Figure 2, the smart link consisted of a 20mm ⇥ 5mm ⇥ 1mm homogeneous rectangular prism composed...Date 06/30/2014 Abstract The objective of this project was to advance computational methods for solving inverse problems related to smart morphable...peer-reviewed journal publications, then Dist. A. 13. SUPPLEMENTARY NOTES 14. ABSTRACT The objective of this project was to advance computational

  11. Recent Advances on the Use of Structural Biology for the Design of Novel Envelope Immunogens of HIV-1

    OpenAIRE

    Xiang, Shi-Hua

    2013-01-01

    Many efforts have been made in the worldwide quest for a prophylactic HIV vaccine to end the AIDS pandemic, but none has yet succeeded. The lessons learned have repeatedly informed us that the traditional or conventional approaches directly using the pathogens or subunits will not be sufficient for an effective HIV/AIDS vaccine. Recent advances in structure-based technology have shown some promise in the quest for a better immunogen in HIV vaccine development. According to the basic binding s...

  12. Dynamics and Control of Orbiting Space Structures NASA Advanced Design Program (ADP)

    Science.gov (United States)

    Cruse, T. A.

    1996-01-01

    The report summarizes the advanced design program in the mechanical engineering department at Vanderbilt University for the academic years 1994-1995 and 1995-1996. Approximately 100 students participated in the two years of the subject grant funding. The NASA-oriented design projects that were selected included lightweight hydrogen propellant tank for the reusable launch vehicle, a thermal barrier coating test facility, a piezoelectric motor for space antenna control, and a lightweight satellite for automated materials processing. The NASA supported advanced design program (ADP) has been a success and a number of graduates are working in aerospace and are doing design.

  13. Proceedings of the 182nd basic science seminar (The workshop on neutron structural biology ) 'New frontiers of structural biology advanced by solution scattering'

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Satoru (ed.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    182nd advanced science seminar (the workshop on neutron structural biology) was held in February 9-10, 2000 at Tokai. Thirty-six participants from universities, research institutes, and private companies took part in the workshop, and total of 24 lectures were given. This proceedings collects abstracts, the figures and tables, which the speakers used in their lectures. The proceedings contains two reviews from the point of view of x-ray and neutron scatterings, and six subjects (21 papers) including neutron and x-ray scattering in the era of structure genomics, structural changes detected with solution scattering, a new way in structural biology opened by neutron crystallography and neutron scattering, x-ray sources and detectors, simulation and solution scattering, and neutron sources and detectors. (Kazumata, Y.)

  14. Multi-damage detection with embedded ultrasonic structural radar algorithm using piezoelectric wafer active sensors through advanced signal processing

    Science.gov (United States)

    Yu, Lingyu; Giurgiutiu, Victor

    2005-05-01

    The embedded ultrasonic structural radar (EUSR) algorithm was developed by using piezoelectric wafer active sensor (PWAS) array to detect defects within a large area of a thin-plate specimen. EUSR has been verified to be effective for detecting a single crack either at a broadside or at an offside position. In this research, advanced signal processing techniques were included to enhance inspection image quality and detect multiple damage. The signal processing methods include discrete wavelet transform for signal denoising, short-time Fourier transform and continuous wavelet transform for time-frequency analysis, continuous wavelet transform for frequency filtering, and Hilbert transform for envelope extraction. All these signal processing modules were implemented by developing a graphical user-friendly interface program in LabVIEW. The paper starts with an introduction of embedded ultrasonic structural radar algorithm, followed with the theoretical aspect of the phased array signal processing method. Then, the mathematical algorithms for advanced signal processing are introduced. In the end, laboratory experimental results are presented to show how efficiently the improved EUSR works. The results are analyzed and EUSR is concluded to have been improved by using the advanced signal processing techniques. The improvements include: 1) EUSR is able to provide better image of the specimen under monitoring; 2) it is able to detect multi-damage such as several cracks; 3) it is able to identify different damage types.

  15. Recent advances in computational predictions of NMR parameters for the structure elucidation of carbohydrates: methods and limitations.

    Science.gov (United States)

    Toukach, Filip V; Ananikov, Valentine P

    2013-11-07

    All living systems are comprised of four fundamental classes of macromolecules--nucleic acids, proteins, lipids, and carbohydrates (glycans). Glycans play a unique role of joining three principal hierarchical levels of the living world: (1) the molecular level (pathogenic agents and vaccine recognition by the immune system, metabolic pathways involving saccharides that provide cells with energy, and energy accumulation via photosynthesis); (2) the nanoscale level (cell membrane mechanics, structural support of biomolecules, and the glycosylation of macromolecules); (3) the microscale and macroscale levels (polymeric materials, such as cellulose, starch, glycogen, and biomass). NMR spectroscopy is the most powerful research approach for getting insight into the solution structure and function of carbohydrates at all hierarchical levels, from monosaccharides to oligo- and polysaccharides. Recent progress in computational procedures has opened up novel opportunities to reveal the structural information available in the NMR spectra of saccharides and to advance our understanding of the corresponding biochemical processes. The ability to predict the molecular geometry and NMR parameters is crucial for the elucidation of carbohydrate structures. In the present paper, we review the major NMR spectrum simulation techniques with regard to chemical shifts, coupling constants, relaxation rates and nuclear Overhauser effect prediction applied to the three levels of glycomics. Outstanding development in the related fields of genomics and proteomics has clearly shown that it is the advancement of research tools (automated spectrum analysis, structure elucidation, synthesis, sequencing and amplification) that drives the large challenges in modern science. Combining NMR spectroscopy and the computational analysis of structural information encoded in the NMR spectra reveals a way to the automated elucidation of the structure of carbohydrates.

  16. An approach to knowledge structuring for advanced phases of the Technical and Management Information System (TMIS)

    Science.gov (United States)

    Goranson, H. T.

    1986-01-01

    The Technical and Management Information System (TMIS) must employ on enlightened approach to its object structure, but basic issues in conceptual structuring remain to be resolved. Sirius outlines the necessary agenda and reports on progress toward solutions.

  17. Advanced Durability and Damage Tolerance Design and Analysis Methods for Composite Structures: Lessons Learned from NASA Technology Development Programs

    Science.gov (United States)

    Harris, Charles E.; Starnes, James H., Jr.; Shuart, Mark J.

    2003-01-01

    Aerospace vehicles are designed to be durable and damage tolerant. Durability is largely an economic life-cycle design consideration whereas damage tolerance directly addresses the structural airworthiness (safety) of the vehicle. However, both durability and damage tolerance design methodologies must address the deleterious effects of changes in material properties and the initiation and growth of microstructural damage that may occur during the service lifetime of the vehicle. Durability and damage tolerance design and certification requirements are addressed for commercial transport aircraft and NASA manned spacecraft systems. The state-of-the-art in advanced design and analysis methods is illustrated by discussing the results of several recently completed NASA technology development programs. These programs include the NASA Advanced Subsonic Technology Program demonstrating technologies for large transport aircraft and the X-33 hypersonic test vehicle demonstrating technologies for a single-stage-to-orbit space launch vehicle.

  18. Recent Advances in Optimal Design of Structures from a Reliability Point of View

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle; Sørensen, John Dalsgaard

    1987-01-01

    Structural optimisation and structural reliability theory are considered. Both of these areas have developed during the last two decades from being of purely theoretical interest to areas useful in practical design. The main elements of structural reliability theory are described in the second......-Christensen and Baker[4] and Madsen et al.[5]. Next a heuristic method, the so-called ß-unzipping method[6] is mentioned. This method can be used to estimate the reliability of a structural system if some modelling assumptions are fulfilled. In the third section some elements of structural optimisation theory...

  19. Advanced solid-state NMR techniques for characterization of membrane protein structure and dynamics: Application to Anabaena Sensory Rhodopsin

    Science.gov (United States)

    Ward, Meaghan E.; Brown, Leonid S.; Ladizhansky, Vladimir

    2015-04-01

    Studies of the structure, dynamics, and function of membrane proteins (MPs) have long been considered one of the main applications of solid-state NMR (SSNMR). Advances in instrumentation, and the plethora of new SSNMR methodologies developed over the past decade have resulted in a number of high-resolution structures and structural models of both bitopic and polytopic α-helical MPs. The necessity to retain lipids in the sample, the high proportion of one type of secondary structure, differential dynamics, and the possibility of local disorder in the loop regions all create challenges for structure determination. In this Perspective article we describe our recent efforts directed at determining the structure and functional dynamics of Anabaena Sensory Rhodopsin, a heptahelical transmembrane (7TM) protein. We review some of the established and emerging methods which can be utilized for SSNMR-based structure determination, with a particular focus on those used for ASR, a bacterial protein which shares its 7TM architecture with G-protein coupled receptors.

  20. Advanced solid-state NMR techniques for characterization of membrane protein structure and dynamics: application to Anabaena Sensory Rhodopsin.

    Science.gov (United States)

    Ward, Meaghan E; Brown, Leonid S; Ladizhansky, Vladimir

    2015-04-01

    Studies of the structure, dynamics, and function of membrane proteins (MPs) have long been considered one of the main applications of solid-state NMR (SSNMR). Advances in instrumentation, and the plethora of new SSNMR methodologies developed over the past decade have resulted in a number of high-resolution structures and structural models of both bitopic and polytopic α-helical MPs. The necessity to retain lipids in the sample, the high proportion of one type of secondary structure, differential dynamics, and the possibility of local disorder in the loop regions all create challenges for structure determination. In this Perspective article we describe our recent efforts directed at determining the structure and functional dynamics of Anabaena Sensory Rhodopsin, a heptahelical transmembrane (7TM) protein. We review some of the established and emerging methods which can be utilized for SSNMR-based structure determination, with a particular focus on those used for ASR, a bacterial protein which shares its 7TM architecture with G-protein coupled receptors.

  1. Structure and properties of advanced fine grained steels produced using novel thermal treatments

    OpenAIRE

    Vuorinen, Esa

    2012-01-01

    Fine grained advanced steels exhibit favourable mechanical properties for applications requiring high strength, ductility and impact toughness. These properties result from a microstructure containing a fine distribution of several phases including ferrite, austenite, martensite and bainite. The bainite phase is in the form of fine lamellas of ferrite and carbon-enriched austenite which due to proper control of the chemical composition is lacking the nanometre scaled carbides associated with ...

  2. Recent Advances in Energy Harvesting Technologies for Structural Health Monitoring Applications

    OpenAIRE

    Joseph Davidson; Changki Mo

    2014-01-01

    This paper reviews recent developments in energy harvesting technologies for structural health monitoring applications. Many industries have a great deal of interest in obtaining technology that can be used to monitor the health of machinery and structures. In particular, the need for autonomous monitoring of structures has been ever-increasing in recent years. Autonomous SHM systems typically include embedded sensors, data acquisition, wireless communication, and energy harvesting systems. A...

  3. Recent advances in structural control research and applications in China mainland

    Institute of Scientific and Technical Information of China (English)

    吕西林; 赵斌

    2003-01-01

    The recent developments of theoretical research, model tests and engineering applications of structural control in mainland China are reviewed in this paper. It includes seismic isolation, passive energy dissipation, active and semi-active control, smart materials and smart structural systems. It can be seen that passive control methods, such as seismic isolation and energy dissipation methods, have developed into the mature stage in China. At the same time, great progress has been made in active and semi-active control, and smart actuators or smart dampers and smart structural systems. Finally, some future research initiatives for structural control in civil engineering are suggested.

  4. Advances in structural and functional analysis of membrane proteins by electron crystallography.

    Science.gov (United States)

    Wisedchaisri, Goragot; Reichow, Steve L; Gonen, Tamir

    2011-10-12

    Electron crystallography is a powerful technique for the study of membrane protein structure and function in the lipid environment. When well-ordered two-dimensional crystals are obtained the structure of both protein and lipid can be determined and lipid-protein interactions analyzed. Protons and ionic charges can be visualized by electron crystallography and the protein of interest can be captured for structural analysis in a variety of physiologically distinct states. This review highlights the strengths of electron crystallography and the momentum that is building up in automation and the development of high throughput tools and methods for structural and functional analysis of membrane proteins by electron crystallography.

  5. Advanced structures for grid Synchronization of power converters in distributed generation applications

    DEFF Research Database (Denmark)

    Luna, A.; Rocabert, J.; Candela, I.;

    2012-01-01

    . This paper analyzes and compares the synchronization capability of three advanced synchronization systems: the Decoupled Double Synchronous Reference Frame-Phase-Locked Loop, the Dual Second Order Generalized Integgrator- Phase-Locked Loop and the Three-Phase Enhanced Phase-Locked Loop, designed to work...... contributed to enhance their response under faulty and distorted scenarios, and hence to fulfill these requirements. In order to achieve satisfactory results it is necessary to count on accurate and fast grid voltage synchronization algorithms, which are able to work under unbalanced and distorted conditions...... under such conditions. Its response will be analyzed with respect the synchronization needs that can be extracted from the standards....

  6. Structural analysis and manufacture for the vacuum vessel of experimental advanced superconducting tokamak (EAST) device

    Energy Technology Data Exchange (ETDEWEB)

    Song Yuntao [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Anhui, Hefei 230031 (China)]. E-mail: songyt@ipp.ac.cn; Yao Damao [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Anhui, Hefei 230031 (China); Wu Songata [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Anhui, Hefei 230031 (China); Weng Peide [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Anhui, Hefei 230031 (China)

    2006-02-15

    The experimental advanced superconducting tokamak (EAST) is an advanced steady-state plasma physics experimental device, which has been approved by the Chinese government and is being constructed as the Chinese national nuclear fusion research project. The vacuum vessel, that is one of the key components, will have to withstand not only the electromagnetic force due to the plasma disruption and the Halo current, but also the pressure of boride water and the thermal stress due to the 250 deg. C baking out by the hot pressure nitrogen gas, or the 100 deg. C hot wall during plasma operation. This paper is a report of the mechanical analyses of the vacuum vessel. According to the allowable stress criteria of American Society of Mechanical Engineers, Boiler and Pressure Vessel Committee (ASME), the maximum integrated stress intensity on the vacuum vessel is 396 MPa, less than the allowable design stress intensity 3S {sub m} (441 MPa). At the same time, some key R and D issues are presented, which include supporting system, bellows and the assembly of the whole vacuum vessel.

  7. Recent Advances in the Inverted Planar Structure of Perovskite Solar Cells.

    Science.gov (United States)

    Meng, Lei; You, Jingbi; Guo, Tzung-Fang; Yang, Yang

    2016-01-19

    Inorganic-organic hybrid perovskite solar cells research could be traced back to 2009, and initially showed 3.8% efficiency. After 6 years of efforts, the efficiency has been pushed to 20.1%. The pace of development was much faster than that of any type of solar cell technology. In addition to high efficiency, the device fabrication is a low-cost solution process. Due to these advantages, a large number of scientists have been immersed into this promising area. In the past 6 years, much of the research on perovskite solar cells has been focused on planar and mesoporous device structures employing an n-type TiO2 layer as the bottom electron transport layer. These architectures have achieved champion device efficiencies. However, they still possess unwanted features. Mesoporous structures require a high temperature (>450 °C) sintering process for the TiO2 scaffold, which will increase the cost and also not be compatible with flexible substrates. While the planar structures based on TiO2 (regular structure) usually suffer from a large degree of J-V hysteresis. Recently, another emerging structure, referred to as an "inverted" planar device structure (i.e., p-i-n), uses p-type and n-type materials as bottom and top charge transport layers, respectively. This structure derived from organic solar cells, and the charge transport layers used in organic photovoltaics were successfully transferred into perovskite solar cells. The p-i-n structure of perovskite solar cells has shown efficiencies as high as 18%, lower temperature processing, flexibility, and, furthermore, negligible J-V hysteresis effects. In this Account, we will provide a comprehensive comparison of the mesoporous and planar structures, and also the regular and inverted of planar structures. Later, we will focus the discussion on the development of the inverted planar structure of perovskite solar cells, including film growth, band alignment, stability, and hysteresis. In the film growth part, several

  8. Controlling the structure and rheology of TEMPO-oxidized cellulose in zinc chloride aqueous suspensions for fabricating advanced nanopaper

    Science.gov (United States)

    Wang, Sha; Zhang, Xin; Hu, Liangbing; Briber, Robert; Wang, Howard; Zhong, Linxin

    Due to its abundance, low-cost, biocompatibility and renewability, cellulose has become an attractive candidate as a functional material for various advanced applications. A key to novel applications is the control of the structure and rheology of suspensions of fibrous cellulose. Among many different approaches of preparing cellulose suspensions, zinc chloride addition to aqueous suspensions is regarded an effective practice. In this study, effects of ZnCl2 concentration on TEMPO-oxidized cellulose (TOC) nanofiber suspensions have been investigated. Highly-transparent cellulose nanofiber suspension can be rapidly obtained by dissolving TOC in 65 wt.% zinc chloride aqueous solutions at room temperature, whereas a transparent zinc ion cross-linked TOC gel could be obtained with zinc chloride concentration as low as 10 wt. %. The structural and rheological characteristics of TOC/ZnCl2 suspensions have been measured to correlate to the performance of thetransparent and flexible nanocellulose paper subsequently produced via vacuum filtration or wet-casting processes.

  9. The Analysis and Structuring of the Causes Impeding the Introduction of Advanced Technologies for Exchange Grain Trading

    Directory of Open Access Journals (Sweden)

    Vinnychenko Olena V

    2015-03-01

    Full Text Available In the article the main causes impeding the development and introduction of advanced technologies for grain trading on commodity exchanges in Ukraine have been identified and structured. The generalization of existing shortcomings in operation of the domestic commodity exchanges has served the basis for the model, within which there were built: a directed graph of correlations between the above mentioned shortcomings in the operation of exchanges, the matrix of dependency and reachability. The causes have been identified and structured, the main ones being determined, which, in turn, makes it possible to carry out the correct sequence of actions and emphasize the primary issues requiring priority solutions at making management decisions in order to promote the grain exchange market. The suggested approach clearly shows the correlation between the existing causes and sequence of their elimination.

  10. Study on utilization of advanced composites in commercial aircraft wing structures, volume 2

    Science.gov (United States)

    Sakata, I. F.; Ostrom, R. B.

    1978-01-01

    A plan is defined for a composite wing development effort which will assist commercial transport manufacturers in reaching a level of technology readiness where the utilization of composite wing structure is a cost competitive option for a new aircraft production plan. The recommended development effort consists of two programs: a joint government/industry material development program and a wing structure development program. Both programs are described in detail.

  11. Recent Advances in Electrochemical Biosensors Based on Fullerene-C60 Nano-Structured Platforms.

    Science.gov (United States)

    Pilehvar, Sanaz; De Wael, Karolien

    2015-11-23

    Nanotechnology is becoming increasingly important in the field of (bio)sensors. The performance and sensitivity of biosensors is greatly improved with the integration of nanomaterials into their construction. Since its first discovery, fullerene-C60 has been the object of extensive research. Its unique and favorable characteristics of easy chemical modification, conductivity, and electrochemical properties has led to its tremendous use in (bio)sensor applications. This paper provides a concise review of advances in fullerene-C60 research and its use as a nanomaterial for the development of biosensors. We examine the research work reported in the literature on the synthesis, functionalization, approaches to nanostructuring electrodes with fullerene, and outline some of the exciting applications in the field of (bio)sensing.

  12. Recent Advances in Electrochemical Biosensors Based on Fullerene-C60 Nano-Structured Platforms

    Directory of Open Access Journals (Sweden)

    Sanaz Pilehvar

    2015-11-01

    Full Text Available Nanotechnology is becoming increasingly important in the field of (biosensors. The performance and sensitivity of biosensors is greatly improved with the integration of nanomaterials into their construction. Since its first discovery, fullerene-C60 has been the object of extensive research. Its unique and favorable characteristics of easy chemical modification, conductivity, and electrochemical properties has led to its tremendous use in (biosensor applications. This paper provides a concise review of advances in fullerene-C60 research and its use as a nanomaterial for the development of biosensors. We examine the research work reported in the literature on the synthesis, functionalization, approaches to nanostructuring electrodes with fullerene, and outline some of the exciting applications in the field of (biosensing.

  13. Recent Advances in Unconventional Lithography for Challenging 3D Hierarchical Structures and Their Applications

    Directory of Open Access Journals (Sweden)

    Jong Uk Kim

    2016-01-01

    Full Text Available In nanoscience and nanotechnology, nanofabrication is critical. Among the required processes for nanofabrication, lithography is one of core issues. Although conventional photolithography with recent remarkable improvement has contributed to the industry during the past few decades, fabrication of 3-dimensional (3D nanostructure is still challenging. In this review, we summarize recent advances for the construction of 3D nanostructures by unconventional lithography and the combination of two top-down approaches or top-down and bottom-up approaches. We believe that the 3D hierarchical nanostructures described here will have a broad range of applications having adaptable levels of functional integration of precisely controlled nanoarchitectures that are required by not only academia, but also industry.

  14. Advanced Structural Determination of Diterpene Esters Using Molecular Modeling and NMR Spectroscopy.

    Science.gov (United States)

    Nothias-Scaglia, Louis-Félix; Gallard, Jean-François; Dumontet, Vincent; Roussi, Fanny; Costa, Jean; Iorga, Bogdan I; Paolini, Julien; Litaudon, Marc

    2015-10-23

    Three new jatrophane esters (1-3) were isolated from Euphorbia amygdaloides ssp. semiperfoliata, including an unprecedented macrocyclic jatrophane ester bearing a hemiketal substructure, named jatrohemiketal (3). The chemical structures of compounds 1-3 and their relative configurations were determined by spectroscopic analysis. The absolute configuration of compound 3 was determined unambiguously through an original strategy combining NMR spectroscopy and molecular modeling. Conformational search calculations were performed for the four possible diastereomers 3a-3d differing in their C-6 and C-9 stereocenters, and the lowest energy conformer was used as input structure for geometry optimization. The prediction of NMR parameters ((1)H and (13)C chemical shifts and (1)H-(1)H coupling constants) by density functional theory (DFT) calculations allowed identifying the most plausible diastereomer. Finally, the stereostructure of 3 was solved by comparison of the structural features obtained by molecular modeling for 3a-3d with NMR-derived data (the values of dihedral angles deduced from the vicinal proton-proton coupling constants ((3)JHH) and interproton distances determined by ROESY). The methodology described herein provides an efficient way to solve or confirm structural elucidation of new macrocyclic diterpene esters, in particular when no crystal structure is available.

  15. Recent Advances in Heliogyro Solar Sail Structural Dynamics, Stability, and Control Research

    Science.gov (United States)

    Wilkie, W. Keats; Warren, Jerry E.; Horta, Lucas G.; Lyle, Karen H.; Juang, Jer-Nan; Gibbs, S. Chad; Dowell, Earl H.; Guerrant, Daniel V.; Lawrence, Dale

    2015-01-01

    Results from recent NASA sponsored research on the structural dynamics, stability, and control characteristics of heliogyro solar sails are summarized. Specific areas under investigation include coupled nonlinear finite element analysis of heliogyro membrane blade with solar radiation pressure effects, system identification of spinning membrane structures, and solarelastic stability analysis of heliogyro solar sails, including stability during blade deployment. Recent results from terrestrial 1-g blade dynamics and control experiments on "rope ladder" membrane blade analogs, and small-scale in vacuo system identification experiments with hanging and spinning high-aspect ratio membranes will also be presented. A low-cost, rideshare payload heliogyro technology demonstration mission concept is used as a mission context for these heliogyro structural dynamics and solarelasticity investigations, and is also described. Blade torsional dynamic response and control are also shown to be significantly improved through the use of edge stiffening structural features or inclusion of modest tip masses to increase centrifugal stiffening of the blade structure. An output-only system identification procedure suitable for on-orbit blade dynamics investigations is also developed and validated using ground tests of spinning sub-scale heliogyro blade models. Overall, analytical and experimental investigations to date indicate no intractable stability or control issues for the heliogyro solar sail concept.

  16. Dynamic Behavior of Hybrid APM (Advanced Pore Morphology Foam and Aluminum Foam Filled Structures

    Directory of Open Access Journals (Sweden)

    Joerg Weise

    2012-06-01

    Full Text Available The aim of this work is to evaluate the effect of different densities of hybrid aluminum polymer foam on the frequency behavior of a foam filled steel structure with different ratios between steel and foam masses. The foam filled structure is composed of three steel tubes with a welded flange at both ends bolted together to form a portal grounded by its free ends. Structure, internal and ground constraints have been designed and manufactured in order to minimize nonlinear effects and to guarantee optimal constraint conditions. Mode shapes and frequencies were verified with finite elements models (FEM to be in the range of experimental modal analysis, considering the frequency measurement range limits for instrumented hammer and accelerometer. Selected modes have been identified with suitable modal parameters extraction techniques. Each structure has been tested before and after filling, in order to compute the percentage variation of modal parameters. Two different densities of hybrid aluminum polymer foam have been tested and compared with structures filled with aluminum foams produced using the powder compact melting technique. All the foam fillings were able to suppress high frequency membrane modes which results in a reduction of environmental noise and an increase in performance of the components. Low frequency modes show an increase in damping ratio only when small thickness steel frames are filled with either Hybrid APM or Alulight foam.

  17. Recent Advances in Energy Harvesting Technologies for Structural Health Monitoring Applications

    Directory of Open Access Journals (Sweden)

    Joseph Davidson

    2014-01-01

    Full Text Available This paper reviews recent developments in energy harvesting technologies for structural health monitoring applications. Many industries have a great deal of interest in obtaining technology that can be used to monitor the health of machinery and structures. In particular, the need for autonomous monitoring of structures has been ever-increasing in recent years. Autonomous SHM systems typically include embedded sensors, data acquisition, wireless communication, and energy harvesting systems. Among all of these components, this paper focuses on the energy harvesting technologies. Since low-power sensors and wireless communications are used in newer SHM systems, a number of researchers have recently investigated techniques to extract energy from the local environment to power these stand-alone systems. Ambient energy sources include vibration, thermal gradients, solar, wind, pressure, etc. If the structure has a rich enough loading, then it may be possible to extract the needed power directly from the structure itself. Harvesting energy using piezoelectric materials by converting applied stress to electricity is most common. Other methods to harvest energy such as electromagnetic, magnetostrictive, or thermoelectric generator are also reviewed. Lastly, an energy harvester with frequency tuning capability is demonstrated.

  18. Direct methods for limit and shakedown analysis of structures advanced computational algorithms and material modelling

    CERN Document Server

    Pisano, Aurora; Weichert, Dieter

    2015-01-01

    Articles in this book examine various materials and how to determine directly the limit state of a structure, in the sense of limit analysis and shakedown analysis. Apart from classical applications in mechanical and civil engineering contexts, the book reports on the emerging field of material design beyond the elastic limit, which has further industrial design and technological applications. Readers will discover that “Direct Methods” and the techniques presented here can in fact be used to numerically estimate the strength of structured materials such as composites or nano-materials, which represent fruitful fields of future applications.   Leading researchers outline the latest computational tools and optimization techniques and explore the possibility of obtaining information on the limit state of a structure whose post-elastic loading path and constitutive behavior are not well defined or well known. Readers will discover how Direct Methods allow rapid and direct access to requested information in...

  19. Recent advances in structure of progestins and their binding to progesterone receptors.

    Science.gov (United States)

    Cabeza, Marisa; Heuze, Yvonne; Sánchez, Araceli; Garrido, Mariana; Bratoeff, Eugene

    2015-02-01

    The role of progesterone in women's cancers as well as the knowledge of the progesterone receptor (PR) structure has prompted the design of different therapies. The aim of this review is to describe the basic structure of PR agonists and antagonists as well as the recent treatments for illness associated with the progesterone receptor. The rational design for potent and effective drugs for the treatment of female cancer must consider the structural changes of the androgen and progestogen skeleton which are an indicator of their activity as progestins or antiprogestins. The presence of a hydroxyl group at C-17 in the progesterone skeleton brings about a loss of progestational activity whereas acetylation induces a progestational effect. The incorporation of an ethynyl functional group to the testosterone framework results in a loss of androgenic activity with a concomitant enhancement of the progestational effect. On the other hand, an ester function at C-3 of dehydroepiandrosterone skeleton induces partial antagonism to the PR.

  20. Effect of interface structure on mechanical properties of advanced composite materials.

    Science.gov (United States)

    Gan, Yong X

    2009-11-25

    This paper deals with the effect of interface structures on the mechanical properties of fiber reinforced composite materials. First, the background of research, development and applications on hybrid composite materials is introduced. Second, metal/polymer composite bonded structures are discussed. Then, the rationale is given for nanostructuring the interface in composite materials and structures by introducing nanoscale features such as nanopores and nanofibers. The effects of modifying matrices and nano-architecturing interfaces on the mechanical properties of nanocomposite materials are examined. A nonlinear damage model for characterizing the deformation behavior of polymeric nanocomposites is presented and the application of this model to carbon nanotube-reinforced and reactive graphite nanotube-reinforced epoxy composite materials is shown.

  1. Advances in computational dynamics of particles, materials and structures a unified approach

    CERN Document Server

    Har, Jason

    2012-01-01

    Computational methods for the modeling and simulation of the dynamic response and behavior of particles, materials and structural systems have had a profound influence on science, engineering and technology. Complex science and engineering applications dealing with complicated structural geometries and materials that would be very difficult to treat using analytical methods have been successfully simulated using computational tools. With the incorporation of quantum, molecular and biological mechanics into new models, these methods are poised to play an even bigger role in the future. Ad

  2. Innovative fabrication processing of advanced composite materials concepts for primary aircraft structures

    Science.gov (United States)

    Kassapoglou, Christos; Dinicola, Al J.; Chou, Jack C.

    1992-01-01

    The autoclave based THERM-X(sub R) process was evaluated by cocuring complex curved panels with frames and stiffeners. The process was shown to result in composite parts of high quality with good compaction at sharp radius regions and corners of intersecting parts. The structural properties of the postbuckled panels fabricated were found to be equivalent to those of conventionally tooled hand laid-up parts. Significant savings in bagging time over conventional tooling were documented. Structural details such as cocured shear ties and embedded stiffener flanges in the skin were found to suppress failure modes such as failure at corners of intersecting members and skin stiffeners separation.

  3. New Analytical Methods for the Surface/ Interface and the Micro-Structures in Advanced Nanocomposite Materials by Synchrotron Radiation

    Directory of Open Access Journals (Sweden)

    K. Nakamae

    2010-12-01

    Full Text Available Analytical methods of surface/interface structure and micro-structure in advanced nanocomposite materials by using the synchrotron radiation are introduced. Recent results obtained by the energy-tunable and highly collimated brilliant X-rays, in-situ wide angle/small angle X-ray diffraction with high accuracy are reviewed. It is shown that small angle X-ray scattering is one of the best methods to characterize nanoparticle dispersibility, filler aggregate/agglomerate structures and in-situ observation of hierarchical structure deformation in filled rubber under cyclic stretch. Grazing Incidence(small and wide angle X-ray Scattering are powerful to analyze the sintering process of metal nanoparticle by in-situ observation as well as the orientation of polymer molecules and crystalline orientation at very thin surface layer (ca 7nm of polymer film. While the interaction and conformation of adsorbed molecule at interface can be investigated by using high energy X-ray XPS with Enough deep position (ca 9 micron m.

  4. Near minimum-time maneuvers of the advanced space structures technology research experiment (ASTREX) test article: Theory and experiments

    Science.gov (United States)

    Vadali, Srinivas R.; Carter, Michael T.

    1994-01-01

    The Phillips Laboratory at the Edwards Air Force Base has developed the Advanced Space Structures Technology Research Experiment (ASTREX) facility to serve as a testbed for demonstrating the applicability of proven theories to the challenges of spacecraft maneuvers and structural control. This report describes the work performed on the ASTREX test article by Texas A&M University under contract NAS119373 as a part of the Control-Structure Interaction (CSI) Guest Investigator Program. The focus of this work is on maneuvering the ASTREX test article with compressed air thrusters that can be throttled, while attenuating structural excitation. The theoretical foundation for designing the near minimum-time thrust commands is based on the generation of smooth, parameterized optimal open-loop control profiles, and the determination of control laws for final position regulation and tracking using Lyapunov stability theory. Details of the theory, mathematical modeling, model updating, and compensation for the presence of 'real world' effects are described and the experimental results are presented. The results show an excellent match between theory and experiments.

  5. Recent Advances in Exopolysaccharides from Paenibacillus spp.: Production, Isolation, Structure, and Bioactivities

    Directory of Open Access Journals (Sweden)

    Tzu-Wen Liang

    2015-04-01

    Full Text Available This review provides a comprehensive summary of the most recent developments of various aspects (i.e., production, purification, structure, and bioactivity of the exopolysaccharides (EPSs from Paenibacillus spp. For the production, in particular, squid pen waste was first utilized successfully to produce a high yield of inexpensive EPSs from Paenibacillus sp. TKU023 and P. macerans TKU029. In addition, this technology for EPS production is prevailing because it is more environmentally friendly. The Paenibacillus spp. EPSs reported from various references constitute a structurally diverse class of biological macromolecules with different applications in the broad fields of pharmacy, cosmetics and bioremediation. The EPS produced by P. macerans TKU029 can increase in vivo skin hydration and may be a new source of natural moisturizers with potential value in cosmetics. However, the relationships between the structures and activities of these EPSs in many studies are not well established. The contents and data in this review will serve as useful references for further investigation, production, structure and application of Paenibacillus spp. EPSs in various fields.

  6. Advancing Scientific Reasoning in Upper Elementary Classrooms: Direct Instruction Versus Task Structuring

    NARCIS (Netherlands)

    Lazonder, A.W.; Wiskerke-Drost, Sjanou

    2015-01-01

    Several studies found that direct instruction and task structuring can effectively promote children’s ability to design unconfounded experiments. The present study examined whether the impact of these interventions extends to other scientific reasoning skills by comparing the inquiry activities of 5

  7. Constraint-based Hybrid Cellular Automaton Topology Optimization for Advanced Lightweight Blast Resistant Structure Development

    Science.gov (United States)

    2011-11-01

    the desired model. 20 5. References 1. Goetz, J. C.; Tan, H.; Renaud, J. E.; Tovar , A. Structural Topology Optimization for Blast Mitigation...Stander, N. A Topology Optimization Tool for LS-DYNA Users: LS- OPT/Topology. The 7th European LS-DYNA Conference, 2009. 10. Tovar , A.; Patel, N

  8. NMR Studies of Structure-Reactivity Relationships in Carbonyl Reduction: A Collaborative Advanced Laboratory Experiment

    Science.gov (United States)

    Marincean, Simona; Smith, Sheila R.; Fritz, Michael; Lee, Byung Joo; Rizk, Zeinab

    2012-01-01

    An upper-division laboratory project has been developed as a collaborative investigation of a reaction routinely taught in organic chemistry courses: the reduction of carbonyl compounds by borohydride reagents. Determination of several trends regarding structure-activity relationship was possible because each student contributed his or her results…

  9. The Possibilities and Limits of the Structure-Agency Dialectic in Advancing Science for All

    Science.gov (United States)

    Gutiérrez, Kris D.; Calabrese Barton, Angela

    2015-01-01

    In this special issue, the structure-agency dialectic is used to shift the analytic frame in science education from focusing on youth as in need of remediation to rethinking new arrangements, tools, and forms of assistance and participation in support of youth learning science. This shift from "fixing" the individual to re-mediating and…

  10. Preparation of advanced porous structures by stereolithography for application in tissue engineering

    NARCIS (Netherlands)

    Melchels, Ferry Petrus Wilhelmus

    2010-01-01

    Stereolithography is a solid freeform fabrication technique, with which computer-designed objects can be automatically fabricated from photo-curable polymer resins in a layer-by-layer manner. In tissue engineering, there is a need for porous structures with well-defined external geometries and inte

  11. A structured review of health utility measures and elicitation in advanced/metastatic breast cancer

    Directory of Open Access Journals (Sweden)

    Hao Y

    2016-06-01

    Full Text Available Yanni Hao,1 Verena Wolfram,2 Jennifer Cook2 1Novartis Pharmaceuticals, East Hanover, NJ, USA; 2Adelphi Values, Bollington, UK Background: Health utilities are increasingly incorporated in health economic evaluations. Different elicitation methods, direct and indirect, have been established in the past. This study examined the evidence on health utility elicitation previously reported in advanced/metastatic breast cancer and aimed to link these results to requirements of reimbursement bodies. Methods: Searches were conducted using a detailed search strategy across several electronic databases (MEDLINE, EMBASE, Cochrane Library, and EconLit databases, online sources (Cost-effectiveness Analysis Registry and the Health Economics Research Center, and web sites of health technology assessment (HTA bodies. Publications were selected based on the search strategy and the overall study objectives. Results: A total of 768 publications were identified in the searches, and 26 publications, comprising 18 journal articles and eight submissions to HTA bodies, were included in the evidence review. Most journal articles derived utilities from the European Quality of Life Five-Dimensions questionnaire (EQ-5D. Other utility measures, such as the direct methods standard gamble (SG, time trade-off (TTO, and visual analog scale (VAS, were less frequently used. Several studies described mapping algorithms to generate utilities from disease-specific health-related quality of life (HRQOL instruments such as European Organization for Research and Treatment of Cancer Quality of Life Questionnaire – Core 30 (EORTC QLQ-C30, European Organization for Research and Treatment of Cancer Quality of Life Questionnaire – Breast Cancer 23 (EORTC QLQ-BR23, Functional Assessment of Cancer Therapy – General questionnaire (FACT-G, and Utility-Based Questionnaire-Cancer (UBQ-C; most used EQ-5D as the reference. Sociodemographic factors that affect health utilities, such as age, sex

  12. Design and fabrication of advanced fiber alignment structures for field-installable fiber connectors

    Science.gov (United States)

    Van Erps, Jürgen; Vervaeke, Michael; Sánchez Martínez, Alberto; Beri, Stefano; Debaes, Christof; Watté, Jan; Thienpont, Hugo

    2012-06-01

    Fiber-To-The-Home (FTTH) networks have been adopted as a potential replacement of traditional electrical connections for the 'last mile' transmission of information at bandwidths over 1Gb/s. However, the success and adoption of optical access networks critically depend on the quality and reliability of connections between optical fibers. In particular a further reduction of insertion loss of field-installable connectors must be achieved without a significant increase in component cost. This requires precise alignment of fibers that can differ in terms of ellipticity, eccentricity or diameter and seems hardly achievable using today's widespread ferrule-based alignment systems. Novel low-cost structures for bare fiber alignment with outstanding positioning accuracies are strongly desired as they would allow reducing loss beyond the level achievable with ferrule-bore systems. However, the realization of such alignment system is challenging as it should provide sufficient force to position the fiber with sub-micron accuracy required in positioning the fiber. In this contribution we propose, design and prototype a bare-fiber alignment system which makes use of deflectable/compressible micro-cantilevers. Such cantilevers behave as springs and provide self-centering functionality to the structure. Simulations of the mechanical properties of the cantilevers are carried out in order to get an analytical approximation and a mathematical model of the spring constant and stress in the structure. Elastic constants of the order of 104 to 105N/m are found out to be compatible with a proof stress of 70 MPa. Finally a first self-centering structure is prototyped in PMMA using our Deep Proton Writing technology. The spring constants of the fabricated cantilevers are in the range of 4 to 6 × 104N/m and the stress is in the range 10 to 20 MPa. These self-centering structures have the potential to become the basic building blocks for a new generation of field-installable connectors.

  13. Recent advances on host plants and expression cassettes' structure and function in plant molecular pharming.

    Science.gov (United States)

    Makhzoum, Abdullah; Benyammi, Roukia; Moustafa, Khaled; Trémouillaux-Guiller, Jocelyne

    2014-04-01

    Plant molecular pharming is a promising system to produce important recombinant proteins such as therapeutic antibodies, pharmaceuticals, enzymes, growth factors, and vaccines. The system provides an interesting alternative method to the direct extraction of proteins from inappropriate source material while offering the possibility to overcome problems related to product safety and source availability. Multiple factors including plant hosts, genes of interest, expression vector cassettes, and extraction and purification techniques play important roles in the plant molecular pharming. Plant species, as a biosynthesis platform, are a crucial factor in achieving high yields of recombinant protein in plant. The choice of recombinant gene and its expression strategy is also of great importance in ensuring a high amount of the recombinant proteins. Many studies have been conducted to improve expression, accumulation, and purification of the recombinant protein from molecular pharming systems. Re-engineered vectors and expression cassettes are also pivotal tools in enhancing gene expression at the transcription and translation level, and increasing protein accumulation, stability, retention and targeting of specific organelles. In this review, we report recent advances and strategies of plant molecular pharming while focusing on the choice of plant hosts and the role of some molecular pharming elements and approaches: promoters, codon optimization, signal sequences, and peptides used for upstream design, purification and downstream processing.

  14. Advancements in the behavioral modeling of fuel elements and related structures

    Energy Technology Data Exchange (ETDEWEB)

    Billone, M.C.; Montgomery, R.O.; Rashid, Y.R.; Head, J.L. (Argonne National Lab., IL (USA); ANATECH Research Corp., San Diego, CA (USA); Royal Naval Coll., Greenwich (UK))

    1989-01-01

    An important aspect of the design and analysis of nuclear reactors is the ability to predict the behavior of fuel elements in the adverse environment of a reactor system. By understanding the thermomechanical behavior of the different materials which constitute a nuclear fuel element, analysis and predictions can be made regarding the integrity and reliability of fuel element designs. The SMiRT conference series, through the division on fuel elements and the post-conference seminars on fuel element modeling, provided technical forums for the international participation in the exchange of knowledge concerning the thermomechanical modeling of fuel elements. This paper discusses the technical advances in the behavioral modeling of fuel elements presented at the SMiRT conference series since its inception in 1971. Progress in the areas of material properties and constitutive relationships, modeling methodologies, and integral modeling approaches was reviewed and is summarized in light of their impact on the thermomechanical modeling of nuclear fuel elements. 34 refs., 5 tabs.

  15. Calculation of a Tunnel Cross Section Subjected to Fire – with a New Advanced Transient Concrete Model for Reinforced Structures

    Directory of Open Access Journals (Sweden)

    U. Schneider

    2009-01-01

    Full Text Available The paper presents the structural application of a new thermal induced strain model for concrete – the TIS-Model. An advanced transient concrete model (ATCM is applied with the material model of the TIS-Model. The non-linear model comprises thermal strain, elastic strain, plastic strain and transient temperature strains, and load history modelling of restraint concrete structures subjected to fire.The calculations by finite element analysis (FEA were done using the SAFIR structural code. The FEA software was basically new with respect to the material modelling derived to use the new TIS-Model (as a transient model considers thermal induced strain. The equations of the ATCM consider a lot of capabilities, especially for considering irreversible effects of temperature on some material properties. By considering the load history during heating up, increasing load bearing capacity may be obtained due to higher stiffness of the concrete. With this model, it is possible to apply the thermal-physical behaviour of material laws for calculation of structures under extreme temperature conditions.A tunnel cross section designed and built by the cut and cover method is calculated with a tunnel fire curve. The results are compared with the results of a calculation with the model of the Eurocode 2 (EC2-Model. The effect of load history in highly loaded structures under fire load will be investigated.A comparison of this model with the ordinary calculation system of Eurocode 2 (EC2 shows that a better evaluation of the safety level was achieved with the new model. This opens a space for optimizing concrete structure design with transient temperature conditions up to 1000 °C. 

  16. IMPACT OF ENERGY GROUP STRUCTURE ON NUCLEAR DATA TARGET ACCURACY REQUIREMENTS FOR ADVANCED REACTOR SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    G. Palmiotti; M. Salvatores; H. Hiruta

    2011-06-01

    A target accuracy assessment study using both a fine and a broad energy structure has shown that less stringent nuclear data accuracy requirements are needed for the latter energy structure. However, even though a reduction is observed, still the requirements will be very difficult to be met unless integral experiments are also used to reduce nuclear data uncertainties. Target accuracy assessment is the inverse problem of the uncertainty evaluation. To establish priorities and target accuracies on data uncertainty reduction, a formal approach can be adopted by defining target accuracy on design parameters and finding out required accuracy on data in order to meet them. In fact, the unknown uncertainty data requirements can be obtained by solving a minimization problem where the sensitivity coefficients in conjunction with the constraints on the integral parameters provide the needed quantities for finding the solutions.

  17. Anomalously high lifetimes measured by quasi-steady-state photoconductance in advanced solar cell structures

    Science.gov (United States)

    Juhl, Mattias; Chan, Catherine; Abbott, Malcolm D.; Trupke, Thorsten

    2013-12-01

    Quasi-Steady-State Photoconductance is widely used in photovoltaics industry to measure the effective minority carrier lifetime of silicon wafers, a key material parameter affecting final solar cell efficiency. When interpreting photoconductance based lifetime measurements, it is important to account for various artefacts that can cause an over-estimation of the carrier lifetime, such as minority carrier trapping. This paper provides experimental evidence for another artefact in photoconductance lifetime measurements, affecting samples that have a conductive layer that is interrupted by lines of the opposite polarity doping, forming laterally alternating regions of p/n doping. This structure often appears in the emitter region of samples used to monitor the lifetime of interdigitated back contact cells. The cause of this artefact is linked to a reduction in the measured dark conductance. Experimental data are presented that suggest this is due to the formation of a phototransistor type structure on the samples surface, resulting in variations in conductivity under different illumination levels.

  18. Chromium-modified a-C films with advanced structural, mechanical and corrosive-resistant characteristics

    Science.gov (United States)

    Ming, Miao Yi; Jiang, Xiaohong; Piliptsou, D. G.; Zhuang, Yuzhao; Rogachev, A. V.; Rudenkov, A. S.; Balmakou, A.

    2016-08-01

    To improve structural, mechanical and chemical properties of diamond-like carbon films, we developed amorphous carbon chromium-modified composite films fabricated by means of cathode magnetic filtered arc deposition. The properties were analyzed by Raman spectroscopy, X-ray photoelectron spectroscopy and atomic force microscopy for the purpose of the structure characterization, elemental analysis and topology examination. Moreover, we also assessed residual stress, the coefficient of friction, hardness, the elastic modulus and corrosion parameters through X-ray double-crystal surface profilometry, tribo-testing, nanoindenter-testing, as well as contact angle measurements and potentiodynamic polarization analysis. As a result of a comparative analysis, we revealed a substantial improvement in the characteristics of developed composite films in comparison with amorphous carbon films. For example, Cr-modification is resulted, in greater integrated performance, toughness and corrosion resistance; the residual stress was reduced substantially.

  19. Advanced functional and sequential statistical time series methods for damage diagnosis in mechanical structures

    OpenAIRE

    2012-01-01

    The past 30 years have witnessed major developments in vibration based damage detection and identification, also collectively referred to as damage diagnosis. Moreover, the past 10 years have seen a rapid increase in the amount of research related to Structural Health Monitoring (SHM) as quantified by the significant escalation in papers published on this subject. Thus, the increased interest in this engineering field and its associated potential constitute the main motive for this thesis. ...

  20. Advancing viral RNA structure prediction: measuring the thermodynamics of pyrimidine-rich internal loops.

    Science.gov (United States)

    Phan, Andy; Mailey, Katherine; Sakai, Jessica; Gu, Xiaobo; Schroeder, Susan J

    2017-02-17

    Accurate thermodynamic parameters improve RNA structure predictions and thus accelerate understanding of RNA function and the identification of RNA drug binding sites. Many viral RNA structures, such as internal ribosome entry sites, have internal loops and bulges that are potential drug target sites. Current models used to predict internal loops are biased towards small, symmetric purine loops, and thus poorly predict asymmetric, pyrimidine-rich loops with more than 6 nucleotides that occur frequently in viral RNA. This paper presents new thermodynamic data for 40 pyrimidine loops, many of which can form UU or protonated CC base pairs. Protonated cytosine and uracil base pairs stabilize asymmetric internal loops. Accurate prediction rules are presented that account for all thermodynamic measurements of RNA asymmetric internal loops. New loop initiation terms for loops with more than 6 nucleotides are presented that do not follow previous assumptions that increasing asymmetry destabilizes loops. Since the last 2004 update, 126 new loops with asymmetry or sizes greater than 2x2 have been measured (Mathews 2004). These new measurements significantly deepen and diversify the thermodynamic database for RNA. These results will help better predict internal loops that are larger, pyrimidine-rich, and occur within viral structures such as internal ribosome entry sites.

  1. Hypervelocity impact testing of advanced materials and structures for micrometeoroid and orbital debris shielding

    Science.gov (United States)

    Ryan, Shannon; Christiansen, Eric L.

    2013-02-01

    A series of 66 hypervelocity impact experiments have been performed to assess the potential of various materials (aluminium, titanium, copper, stainless steel, nickel, nickel/chromium, reticulated vitreous carbon, silver, ceramic, aramid, ceramic glass, and carbon fibre) and structures (monolithic plates, open-cell foam, flexible fabrics, rigid meshes) for micrometeoroid and orbital debris (MMOD) shielding. Arranged in various single-, double-, and triple-bumper configurations, screening tests were performed with 0.3175 cm diameter Al2017-T4 spherical projectiles at nominally 6.8 km/s and normal incidence. The top performing shields were identified through target damage assessments and their respective weight. The top performing candidate shield at the screening test condition was found to be a double-bumper configuration with a 0.25 mm thick Al3003 outer bumper, 6.35 mm thick 40 PPI aluminium foam inner bumper, and 1.016 mm thick Al2024-T3 rear wall (equal spacing between bumpers and rear wall). In general, double-bumper candidates with aluminium plate outer bumpers and foam inner bumpers were consistently found to be amongst the top performers. For this impact condition, potential weight savings of at least 47% over conventional all-aluminium Whipple shields are possible by utilizing the investigated materials and structures. The results of this study identify materials and structures of interest for further, more in-depth, impact investigations.

  2. Challenges, applications, and recent advances of protein-ligand docking in structure-based drug design.

    Science.gov (United States)

    Grinter, Sam Z; Zou, Xiaoqin

    2014-07-11

    The docking methods used in structure-based virtual database screening offer the ability to quickly and cheaply estimate the affinity and binding mode of a ligand for the protein receptor of interest, such as a drug target. These methods can be used to enrich a database of compounds, so that more compounds that are subsequently experimentally tested are found to be pharmaceutically interesting. In addition, like all virtual screening methods used for drug design, structure-based virtual screening can focus on curated libraries of synthesizable compounds, helping to reduce the expense of subsequent experimental verification. In this review, we introduce the protein-ligand docking methods used for structure-based drug design and other biological applications. We discuss the fundamental challenges facing these methods and some of the current methodological topics of interest. We also discuss the main approaches for applying protein-ligand docking methods. We end with a discussion of the challenging aspects of evaluating or benchmarking the accuracy of docking methods for their improvement, and discuss future directions.

  3. Active optical system for advanced 3D surface structuring by laser remelting

    Science.gov (United States)

    Pütsch, O.; Temmler, A.; Stollenwerk, J.; Willenborg, E.; Loosen, P.

    2015-03-01

    Structuring by laser remelting enables completely new possibilities for designing surfaces since material is redistributed but not wasted. In addition to technological advantages, cost and time benefits yield from shortened process times, the avoidance of harmful chemicals and the elimination of subsequent finishing steps such as cleaning and polishing. The functional principle requires a completely new optical machine technology that maintains the spatial and temporal superposition and manipulation of three different laser beams emitted from two laser sources of different wavelength. The optical system has already been developed and demonstrated for the processing of flat samples of hot and cold working steel. However, since particularly the structuring of 3D-injection molds represents an application example of high innovation potential, the optical system has to take into account the elliptical beam geometry that occurs when the laser beams irradiate a curved surface. To take full advantage of structuring by remelting for the processing of 3D surfaces, additional optical functionality, called EPS (elliptical pre-shaping) has to be integrated into the existing set-up. The development of the beam shaping devices not only requires the analysis of the mechanisms of the beam projection but also a suitable optical design. Both aspects are discussed in this paper.

  4. Analysis of liquid penetration in paper structures by advanced imaging techniques

    Science.gov (United States)

    Arthur, Beth Ann

    Ink penetration in paper is influenced by the structure of the interfiber and intrafiber void spaces and the surface characteristics of the fibers. This dissertation describes new techniques to determine the influence of the fiber surfaces and the cell wall internal structure on ink spreading and penetration. The location and penetration of ink is demonstrated by optical, scanning electron, confocal laser scanning, and transmission electron (TEM) microscopy methods. Ink penetration, as determined by each of these methods, is compared. The hemicelluloses of the fiber's internal void surfaces can be determined by immunochemical labeling in conjunction with TEM imaging. It is demonstrated through the use of primary monoclonal antibodies with specificity for hemicelluloses with a secondary colloidal gold marker. This technique provides a way to visualize the location of hemicelluloses inside the cell wall and on the surfaces of nanopores. Combining paper structure with fluid spreading and wicking models can identify the influence of fiber surfaces and the cell wall on drop absorption. Ink spreading coefficients for such modeling are determined through a series of designed experiments (DoE) and comparisons to a theoretical sessile drop. Application: Microscopic techniques used to determine biological and physical locations in plants on a fibrous level also can be used to study ink diffusion, water uptake, and other characteristics of fibrous material. Key Words: Immunolableing of hemicelluloses, DoE, drop spread modeling, ink diffusion.

  5. SiC lightweight telescopes for advanced space applications. II - Structures technology

    Science.gov (United States)

    Anapol, Michael I.; Hadfield, Peter; Tucker, Theodore

    1992-01-01

    A critical technology area for lightweight SiC-based telescope systems is the structural integrity and thermal stability over spaceborne environmental launch and thermal operating conditions. Note, it is highly desirable to have an inherently athermal design of both SiC mirrors and structure. SSG has developed an 8 inch diameter SiC telescope system for brassboard level optical and thermal testing. The brassboard telescope has demonstrated less than 0.2 waves P-V in the visible wavefront change over +50 C to -200 C temperature range. SSG has also fabricated a SiC truss structural assembly and successfully qualified this hardware at environmental levels greater than 3 times higher than normal Delta, Titan, and ARIES launch loads. SSG is currently developing two SiC telescopes; an 20 cm diameter off-axis 3 mirror re-imaging and a 60 cm aperture on-axis 3 mirror re-imager. Both hardware developments will be tested to flight level environmental, optical, and thermal specifications.

  6. Challenges, Applications, and Recent Advances of Protein-Ligand Docking in Structure-Based Drug Design

    Directory of Open Access Journals (Sweden)

    Sam Z. Grinter

    2014-07-01

    Full Text Available The docking methods used in structure-based virtual database screening offer the ability to quickly and cheaply estimate the affinity and binding mode of a ligand for the protein receptor of interest, such as a drug target. These methods can be used to enrich a database of compounds, so that more compounds that are subsequently experimentally tested are found to be pharmaceutically interesting. In addition, like all virtual screening methods used for drug design, structure-based virtual screening can focus on curated libraries of synthesizable compounds, helping to reduce the expense of subsequent experimental verification. In this review, we introduce the protein-ligand docking methods used for structure-based drug design and other biological applications. We discuss the fundamental challenges facing these methods and some of the current methodological topics of interest. We also discuss the main approaches for applying protein-ligand docking methods. We end with a discussion of the challenging aspects of evaluating or benchmarking the accuracy of docking methods for their improvement, and discuss future directions.

  7. Advanced scanning transmission stereo electron microscopy of structural and functional engineering materials

    Energy Technology Data Exchange (ETDEWEB)

    Agudo Jacome, L., E-mail: leonardo.agudo@bam.de [Institut fuer Werkstoffe, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany); Eggeler, G., E-mail: gunther.eggeler@ruhr-uni-bochum.de [Institut fuer Werkstoffe, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany); Dlouhy, A., E-mail: dlouhy@ipm.cz [Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Zizkova 22, 616 62 Brno (Czech Republic)

    2012-11-15

    Stereo transmission electron microscopy (TEM) provides a 3D impression of the microstructure in a thin TEM foil. It allows to perform depth and TEM foil thickness measurements and to decide whether a microstructural feature lies inside of a thin foil or on its surface. It allows appreciating the true three-dimensional nature of dislocation configurations. In the present study we first review some basic elements of classical stereo TEM. We then show how the method can be extended by working in the scanning transmission electron microscope (STEM) mode of a modern analytical 200 kV TEM equipped with a field emission gun (FEG TEM) and a high angle annular dark field (HAADF) detector. We combine two micrographs of a stereo pair into one anaglyph. When viewed with special colored glasses the anaglyph provides a direct and realistic 3D impression of the microstructure. Three examples are provided which demonstrate the potential of this extended stereo TEM technique: a single crystal Ni-base superalloy, a 9% Chromium tempered martensite ferritic steel and a NiTi shape memory alloy. We consider the effect of camera length, show how foil thicknesses can be measured, and discuss the depth of focus and surface effects. -- Highlights: Black-Right-Pointing-Pointer The advanced STEM/HAADF diffraction contrast is extended to 3D stereo-imaging. Black-Right-Pointing-Pointer The advantages of the new technique over stereo-imaging in CTEM are demonstrated. Black-Right-Pointing-Pointer The new method allows foil thickness measurements in a broad range of conditions. Black-Right-Pointing-Pointer We show that features associated with ion milling surface damage can be beneficial for appreciating 3D features of the microstructure.

  8. [Implementation of bedside training and advanced objective structured clinical examination (OSCE) trial to learn and confirm about pharmacy clinical skills].

    Science.gov (United States)

    Tokunaga, Jin; Takamura, Norito; Ogata, Kenji; Setoguchi, Nao; Sato, Keizo

    2013-01-01

    Bedside training for fourth-year students, as well as seminars in hospital pharmacy (vital sign seminars) for fifth-year students at the Department of Pharmacy of Kyushu University of Health and Welfare have been implemented using patient training models and various patient simulators. The introduction of simulation-based pharmaceutical education, where no patients are present, promotes visually, aurally, and tactilely simulated learning regarding the evaluation of vital signs and implementation of physical assessment when disease symptoms are present or adverse effects occur. A patient simulator also promotes the creation of training programs for emergency and critical care, with which basic as well as advanced life support can be practiced. In addition, an advanced objective structured clinical examination (OSCE) trial has been implemented to evaluate skills regarding vital signs and physical assessments. Pharmacists are required to examine vital signs and conduct physical assessment from a pharmaceutical point of view. The introduction of these pharmacy clinical skills will improve the efficacy of drugs, work for the prevention or early detection of adverse effects, and promote the appropriate use of drugs. It is considered that simulation-based pharmaceutical education is essential to understand physical assessment, and such education will ideally be applied and developed according to on-site practices.

  9. Advances in the Development and Application of Computational Methodologies for Structural Modeling of G-Protein Coupled Receptors

    Science.gov (United States)

    Mobarec, Juan Carlos

    2009-01-01

    Background Despite the large amount of experimental data accumulated in the past decade on G-protein coupled receptor (GPCR) structure and function, understanding of the molecular mechanisms underlying GPCR signaling is still far from being complete, thus impairing the design of effective and selective pharmaceuticals. Objective Understanding of GPCR function has been challenged even further by more recent experimental evidence that several of these receptors are organized in the cell membrane as homo- or hetero-oligomers, and that they may exhibit unique pharmacological properties. Given the complexity of these new signaling systems, researcher’s efforts are turning increasingly to molecular modeling, bioinformatics and computational simulations for mechanistic insights of GPCR functional plasticity. Methods We review here current advances in the development and application of computational approaches to improve prediction of GPCR structure and dynamics, thus enhancing current understanding of GPCR signaling. Results/Conclusions Models resulting from use of these computational approaches further supported by experiments are expected to help elucidate the complex allosterism that propagates through GPCR complexes, ultimately aiming at successful structure-based rational drug design. PMID:19672320

  10. Improving the crash behavior of structural components made of advanced high strength steel by local heat treatment

    Science.gov (United States)

    Conrads, L.; Daamen, M.; Hirt, G.; Bambach, M.

    2016-11-01

    High manganese TWIP steel belongs to the second generation of advanced high strength steels. During the production of strip material, the microstructure and hence the mechanical properties of TWIP steel can be adapted to the specific needs of crash relevant structures. Whereas typically the whole steel strip is heat-treated after cold rolling, a local heat treatment can be applied to tailor the properties accordingly. In this work, a method is presented to identify a suitable process window for the local laser heat treatment of TWIP steel. The material is strain hardened and afterwards heat-treated at various temperatures for a short time. The influence of the respective heat treatment on microstructure and mechanical properties is evaluated and the most appropriate heat treatment is then reproduced using laser heating. To verify the effect of a local laser heat treatment at a structural component, crash boxes with different heat treatment patterns were produced and tested. The dynamic crash tests show that the local heat treatment can be used to improve the crash behavior of structural components. In addition, their deformation path can be influenced by using adapted heat treatment patterns and the crash behavior can be controlled.

  11. Task 6.3 -- Engineering performance of advanced structural materials. Semi-annual report, January 1--June 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, J.P.; Kay, J.; Nowok, J.W.; Schuster, M.

    1997-08-01

    SiC sublimes without melting at temperatures over 2,000 C. This makes SiC difficult to use in the fabrication of large structures, because pieces made from SiC cannot be joined together in the same way that metals can be welded. Therefore, the size of the monolithic ceramic structures that can be manufactured are limited by the size of the sintering furnaces (approximately 10 feet for sintered alpha silicon carbide). In order to make larger objects such as heat exchangers, many small ceramic pieces must be fused or joined. In addition, repair of the objects will require the use of field joining techniques. At present, no joining techniques for high-temperature structural ceramics are routinely available. The objective of this work at the Energy and Environmental Research Center (EERC) is to develop a patentable technique for joining large silicon based advanced ceramics in the field. The key to developing a successful technique will be the use of reactive joining compounds to lower the joining temperature but without leaving continuous channels of unreacted compounds that can weaken the joint or be conduits for corrosion at temperatures over 1,400 C. Special efforts will be made in this project to transfer the developed technologies to the materials industry via licensing agreements through the EERC Foundation.

  12. [Advances in Parvovirus Non-structural Protein NS1 Induced Apoptosis].

    Science.gov (United States)

    Tu, Mengyu; Liu, Fei; Chen, Shun; Wang, Mingshu; Cheng, Anchun

    2015-11-01

    Until now, more than seventeen parvovirus have been reported which can infect mammals and poultries. The infected cells appeared different properties of apoptosis and death, present a typical cytopathic effect. NS1 is a major nonstructural protein of parvovirus, with a conservative structure and function, which plays an important role in the viral life cycle. In addition to the influence on viral replication, the NS1 also participates in apoptosis induced by viruses. Parvovirus induced apoptosis which is mainly mediated by mitochondrial pathway, this review summarized the latest research progresses of parvovirus induced apoptosis.

  13. Carbon Nanotubes Advanced Topics in the Synthesis, Structure, Properties and Applications

    CERN Document Server

    Jorio, Ado; Dresselhaus, Mildred S

    2008-01-01

    The carbon nanotubes field has evolved substantially since the publication of the bestseller "Carbon Nanotubes: Synthesis, Structure, Properties and Applications". The present volume builds on the generic aspects of the aforementioned book, which emphasizes the fundamentals, with the new volume emphasizing areas that have grown rapidly since the first volume, guiding future directions where research is needed and highlighting applications. The volume also includes an emphasis on areas like graphene, other carbon-like and other tube-like materials because these fields are likely to affect and influence developments in nanotubes in the next 5 years.

  14. Computational Benefits Using an Advanced Concatenation Scheme Based on Reduced Order Models for RF Structures

    CERN Document Server

    Heller, Johann; Van Rienen, Ursula; 10.1016/j.phpro.2015.11.060

    2015-01-01

    The computation of electromagnetic fields and parameters derived thereof for lossless radio frequency (RF) structures filled with isotropic media is an important task for the design and operation of particle accelerators. Unfortunately, these computations are often highly demanding with regard to computational effort. The entire computational demand of the problem can be reduced using decomposition schemes in order to solve the field problems on standard workstations. This paper presents one of the first detailed comparisons between the recently proposed state-space concatenation approach (SSC) and a direct computation for an accelerator cavity with coupler-elements that break the rotational symmetry.

  15. Controlled fabrication of advanced functional structures on the nanoscale by means of electron beam-induced processing

    Science.gov (United States)

    Schmidt, Sebastian W.; Foucher, Johann; Penzkofer, Christian; Irmer, Bernd

    2013-05-01

    The controlled deposition of materials by means of electron beam induced processing (EBIP) is a well-established patterning method, which allows for the fabrication of nanostructures with high spatial resolution in a highly precise and flexible manner. Applications range from the production of ultrathin coatings and nanoscaled conductivity probes to super sharp atomic force microscopy (AFM) tips, to name but a few. The latter are typically deposited at the very end of silicon or silicon-nitride tips, which are fabricated with MEMS technologies. EBIP therefore provides the unique ability to converge MEMS to NEMS in a highly controllable way, and thus represents an encouraging opportunity to refine or even develop further MEMS-based features with advanced functionality and applicability. In this paper, we will present and discuss exemplary application solutions, where we successfully applied EBIP to overcome dimensional and/or functional limitations. We therefore show the fabrication stability and accuracy of "T-like-shaped" AFM tips made from high density, diamond-like carbon (HDC/DLC) for the investigation of undercut structures on the base of CDR30-EBD tips. Such aggressive CD-AFM tip dimensions are mandatory to fulfill ITRS requirements for the inspection of sub-28nm nodes, but are unattainable with state-of-art Si-based MEMS technologies today. In addition to that, we demonstrate the ability of EBIP to realize field enhancement in sensor applications and the fabrication of cold field emitters (CFE). For example: applying the EBIP approach allows for the production of CFEs, which are characterized by considerably enhanced imaging resolution compared to standard thermal field emitters and stable operation properties at room temperature without the need for periodic cathode flashing - unlike typical CFEs. Based on these examples, we outline the strong capabilities of the EBIP approach to further downscale functional structures in order to meet future demands in the

  16. Advances in Chemical and Structural Characterization of Concretion with Implications for Modeling Marine Corrosion

    Science.gov (United States)

    Johnson, Donald L.; DeAngelis, Robert J.; Medlin, Dana J.; Carr, James D.; Conlin, David L.

    2014-05-01

    The Weins number model and concretion equivalent corrosion rate methodology were developed as potential minimum-impact, cost-effective techniques to determine corrosion damage on submerged steel structures. To apply the full potential of these technologies, a detailed chemical and structural characterization of the concretion (hard biofouling) that transforms into iron bearing minerals is required. The fractions of existing compounds and the quantitative chemistries are difficult to determine from x-ray diffraction. Environmental scanning electron microscopy was used to present chemical compositions by means of energy-dispersive spectroscopy (EDS). EDS demonstrates the chemical data in mapping format or in point or selected area chemistries. Selected-area EDS data collection at precise locations is presented in terms of atomic percent. The mechanism of formation and distribution of the iron-bearing mineral species at specific locations will be presented. Based on water retention measurements, porosity in terms of void volume varies from 15 v/o to 30 v/o (vol.%). The void path displayed by scanning electron microscopy imaging illustrates the tortuous path by which oxygen migrates in the water phase within the concretion from seaside to metalside.

  17. Advances in research on structural characterisation of agricultural products using atomic force microscopy.

    Science.gov (United States)

    Liu, Dongli; Cheng, Fang

    2011-03-30

    Atomic force microscopy (AFM) has many unique features compared with other conventional microscopies, such as high magnification with high resolution, minimal sample preparation, acquiring 2D and 3D images at the same time, observing ongoing processes directly, the possibility of manipulating macromolecules, etc. As a nanotechnology tool, AFM has been used to investigate the nanostructure of materials in many fields. This mini-review focuses mainly on its latest application to characterise the macromolecular nanostructure and surface topography of agricultural products. First the fundamentals of AFM are briefly explained. Then the macromolecular nanostructure information on agricultural products from AFM images is introduced by exploring the structure-function relationship in three aspects: agricultural product processing, agricultural product ripening and storage, and genetic and environmental factors. The surface topography characterisation of agricultural products using AFM is also discussed. The results reveal that AFM could be a powerful nanotechnology tool to acquire a deeper understanding of the mechanisms of structure and quality variations of agricultural products, which could be instructive in improving processing and storage technologies, and AFM is also helpful to reveal the essential nature of a product at nanoscale.

  18. Cuttlebone-like V2O5 Nanofibre Scaffolds – Advances in Structuring Cellular Solids

    Science.gov (United States)

    Knöller, Andrea; Runčevski, Tomče; Dinnebier, Robert E.; Bill, Joachim; Burghard, Zaklina

    2017-02-01

    The synthesis of ceramic materials combining high porosity and permeability with good mechanical stability is challenging, as optimising the latter requires compromises regarding the first two properties. Nonetheless, significant progress can be made in this direction by taking advantage of the structural design principles evolved by nature. Natural cellular solids achieve good mechanical stability via a defined hierarchical organisation of the building blocks they are composed of. Here, we report the first synthetic, ceramic-based scaffold whose architecture closely mimics that of cuttlebone –a structural biomaterial whose porosity exceeds that of most other natural cellular solids, whilst preserving an excellent mechanical strength. The nanostructured, single-component scaffold, obtained by ice-templated assembly of V2O5 nanofibres, features a highly sophisticated and elaborate architecture of equally spaced lamellas, which are regularly connected by pillars as lamella support. It displays an unprecedented porosity of 99.8 %, complemented by an enhanced mechanical stability. This novel bioinspired, functional material not only displays mechanical characteristics similar to natural cuttlebone, but the multifunctionality of the V2O5 nanofibres also renders possible applications, including catalysts, sensors and electrodes for energy storage.

  19. NATO Advanced Study Institute on the Physics of Structurally Disordered Solids

    CERN Document Server

    1976-01-01

    Structurally disordered solids are characterized by their lack of spatial order that is evidenced by the great variety of ordered solids. The former class of materials is commonly termed amorphous or glassy, the latter crystalline. However, both classes share, many of the other physical properties of solids, e. g. , me­ chanical stability, resistance to shear stress, etc. The traditional macroscopic distinction between the crystalline and the glassy states is that while the former has a fixed melting point, the latter does not. However, with the availability and production of a large number of materials in both crystalline and amorphous states, and their easy inter-convertability, simple de­ finitions are not possible or at best imprecise. For the present purpose, it is sufficient to say that in contrast to the crystalline state, in which the posi­ tions of atoms are fixed into adefinite structure, ex­ cept for small thermal vibrations, the amorphous state of the same material displays varying degrees of ...

  20. NATO Advanced Study Institute on Structural Theory of Automata, Semigroups and Universal Algebra

    CERN Document Server

    Rosenberg, Ivo; Goldstein, Martin

    2005-01-01

    Several of the contributions to this volume bring forward many mutually beneficial interactions and connections between the three domains of the title. Developing them was the main purpose of the NATO ASI summerschool held in Montreal in 2003. Although some connections, for example between semigroups and automata, were known for a long time, developing them and surveying them in one volume is novel and hopefully stimulating for the future. Another aspect is the emphasis on the structural theory of automata that studies ways to contstruct big automata from small ones. The volume also has contributions on top current research or surveys in the three domains. One contribution even links clones of universal algebra with the computational complexity of computer science. Three contributions introduce the reader to research in the former East block.

  1. Thermal Properties of Oxides With Magnetoplumbite Structure for Advanced Thermal Barrier Coatings

    Science.gov (United States)

    Bansal, Narottam P.; Zhu, Dongming; Eslamloo-Grami, Maryam

    2007-01-01

    Oxides having magnetoplumbite structure are promising candidate materials for applications as high temperature thermal barrier coatings because of their high thermal stability, high thermal expansion, and low thermal conductivity. In this study, powders of LaMgAl11O19, GdMgAl11O19, SmMgAl11O19, and Gd0.7Yb0.3MgAl11O19 magnetoplumbite oxides were synthesized by citric acid sol-gel method and hot pressed into disk specimens. The thermal expansion coefficients (CTE) of these oxide materials were measured from room temperature to 1500 C. The average CTE value was found to be approx.9.6x10(exp -6)/C. Thermal conductivity of these magnetoplumbite-based oxide materials was also evaluated using steady-state laser heat flux test method. The effects of doping on thermal properties were also examined. Thermal conductivity of the doped Gd0.7Yb0.3MgAl11O19 composition was found to be lower than that of the undoped GdMgAl11O19. In contrast, thermal expansion coefficient was found to be independent of the oxide composition and appears to be controlled by the magnetoplumbite crystal structure. Thermal conductivity testing of LaMgAl11O19 and LaMnAl11O19 magnetoplumbite oxide coatings plasma sprayed on NiCrAlY/Rene N5 superalloy substrates indicated resistance of these coatings to sintering even at temperatures as high as 1600 C.

  2. Dispersing perylene diimide/SWCNT hybrids: structural insights at the molecular level and fabricating advanced materials.

    Science.gov (United States)

    Tsarfati, Yael; Strauss, Volker; Kuhri, Susanne; Krieg, Elisha; Weissman, Haim; Shimoni, Eyal; Baram, Jonathan; Guldi, Dirk M; Rybtchinski, Boris

    2015-06-17

    The unique properties of carbon nanotubes (CNT) are advantageous for emerging applications. Yet, the CNT insolubility hampers their potential. Approaches based on covalent and noncovalent methodologies have been tested to realize stable dispersions of CNTs. Noncovalent approaches are of particular interest as they preserve the CNT's structures and properties. We report on hybrids, in which perylene diimide (PDI) amphiphiles are noncovalently immobilized onto single wall carbon nanotubes (SWCNT). The resulting hybrids were dispersed and exfoliated both in water and organic solvents in the presence of two different PDI derivatives, PP2b and PP3a. The dispersions were investigated using cryogenic transmission electron microscopy (cryo-TEM), providing unique structural insights into the exfoliation. A helical arrangement of PP2b assemblies on SWCNTs dominates in aqueous dispersions, while a single layer of PP2b and PP3a was found on SWCNTs in organic dispersions. The dispersions were probed by steady-state and time-resolved spectroscopies, revealing appreciable charge redistribution in the ground state, and an efficient electron transfer from SWCNTs to PDIs in the excited state. We also fabricated hybrid materials from the PP2b/SWCNT dispersions. A supramolecular membrane was prepared from aqueous dispersions and used for size-selective separation of gold nanoparticles. Hybrid buckypaper films were prepared from the organic dispersions. In the latter, high conductivity results from enhanced electronic communication and favorable morphology within the hybrid material. Our findings shed light onto SWCNT/dispersant molecular interactions, and introduce a versatile approach toward universal solution processing of SWCNT-based materials.

  3. Advancing User Supports with a Structured How-To Knowledge Base for Earth Science Data

    Science.gov (United States)

    Shen, Suhung; Acker, James G.; Lynnes, Christopher S.; Beaty, Tammy; Lighty, Luther; Kempler, Steven J.

    2016-01-01

    It is a challenge to access and process fast growing Earth science data from satellites and numerical models, which may be archived in very different data format and structures. NASA data centers, managed by the Earth Observing System Data and Information System (EOSDIS), have developed a rich and diverse set of data services and tools with features intended to simplify finding, downloading, and working with these data. Although most data services and tools have user guides, many users still experience difficulties with accessing or reading data due to varying levels of familiarity with data services, tools, and/or formats. A type of structured online document, data recipe, were created in beginning 2013 by Goddard Earth Science Data and Information Services Center (GES DISC). A data recipe is the How-To document created by using the fixed template, containing step-by-step instructions with screenshots and examples of accessing and working with real data. The recipes has been found to be very helpful, especially to first-time-users of particular data services, tools, or data products. Online traffic to the data recipe pages is significant to some recipes. In 2014, the NASA Earth Science Data System Working Group (ESDSWG) for data recipes was established, aimed to initiate an EOSDIS-wide campaign for leveraging the distributed knowledge within EOSDIS and its user communities regarding their respective services and tools. The ESDSWG data recipe group started with inventory and analysis of existing EOSDIS-wide online help documents, and provided recommendations and guidelines and for writing and grouping data recipes. This presentation will overview activities of creating How-To documents at GES DISC and ESDSWG. We encourage feedback and contribution from users for improving the data How-To knowledge base.

  4. Advanced Magnetic Resonance Imaging techniques to probe muscle structure and function

    Science.gov (United States)

    Malis, Vadim

    Structural and functional Magnetic Resonance Imaging (MRI) studies of skeletal muscle allow the elucidation of muscle physiology under normal and pathological conditions. Continuing on the efforts of the Muscle Imaging and Modeling laboratory, the focus of the thesis is to (i) extend and refine two challenging imaging modalities: structural imaging using Diffusion Tensor Imaging (DTI) and functional imaging based on Velocity Encoded Phase Contrast Imaging (VE-PC) and (ii) apply these methods to explore age related structure and functional differences of the gastrocnemius muscle. Diffusion Tensor Imaging allows the study of tissue microstructure as well as muscle fiber architecture. The images, based on an ultrafast single shot Echo Planar Imaging (EPI) sequence, suffer from geometric distortions and low signal to noise ratio. A processing pipeline was developed to correct for distortions and to improve image Signal to Noise Ratio (SNR). DTI acquired on a senior and young cohort of subjects were processed through the pipeline and differences in DTI derived indices and fiber architecture between the two cohorts were explored. The DTI indices indicated that at the microstructural level, fiber atrophy was accompanied with a reduction in fiber volume fraction. At the fiber architecture level, fiber length and pennation angles decreased with age that potentially contribute to the loss of muscle force with age. Velocity Encoded Phase Contrast imaging provides tissue (e.g. muscle) velocity at each voxel which allows the study of strain and Strain Rate (SR) under dynamic conditions. The focus of the thesis was to extract 2D strain rate tensor maps from the velocity images and apply the method to study age related differences. The tensor mapping can potentially provide unique information on the extracellular matrix and lateral transmission the role of these two elements has recently emerged as important determinants of force loss with age. In the cross sectional study on

  5. In-situ Spectroscopic and Structural Studies of Electrode Materials for Advanced Battery Applications

    Energy Technology Data Exchange (ETDEWEB)

    Daniel A Scherson

    2013-03-14

    Techniques have been developed and implemented to gain insight into fundamental factors that affect the performance of electrodes in Li and Li-ion batteries and other energy storage devices. These include experimental strategies for monitoring the Raman scattering spectra of single microparticles of carbon and transition metal oxides as a function of their state of charge. Measurements were performed in electrolytes of direct relevance to Li and Li-Ion batteries both in the static and dynamic modes. In addition, novel strategies were devised for performing conventional experiments in ultrahigh vacuum environments under conditions which eliminate effects associated with presence of impurities, using ultrapure electrolytes, both of the polymeric and ionic liquid type that display no measurable vapor pressure. Also examined was the reactivity of conventional non aqueous solvent toward ultrapure Li films as monitored in ultrahigh vacuum with external reflection Fourier transform infrared spectroscopy. Also pursued were efforts toward developing applying Raman-scattering for monitoring the flow of charge of a real Li ion battery. Such time-resolved, spatially-resolved measurements are key to validating the results of theoretical simulations involving real electrode structures.

  6. Raman spectroscopy as an advanced structural nanoprobe for conjugated molecular semiconductors

    Science.gov (United States)

    Wood, Sebastian; Razzell Hollis, Joseph; Kim, Ji-Seon

    2017-02-01

    Raman spectroscopy has emerged as a powerful and important characterisation tool for probing molecular semiconducting materials. The useful optoelectronic properties of these materials arise from the delocalised π-electron density in the conjugated core of the molecule, which also results in large Raman scattering cross-sections and a strong coupling between its electronic states and vibrational modes. For this reason, Raman spectroscopy offers a unique insight into the properties of molecular semiconductors, including: chemical structure, molecular conformation, molecular orientation, and fundamental photo- and electro-chemical processes—all of which are critically important to the performance of a wide range of optical and electronic organic semiconductor devices. Experimentally, Raman spectroscopy is non-intrusive, non-destructive, and requires no special sample preparation, and so is suitable for a wide range of in situ measurements, which are particularly relevant to issues of thermal and photochemical stability. Here we review the development of the family of Raman spectroscopic techniques, which have been applied to the study of conjugated molecular semiconductors. We consider the suitability of each technique for particular circumstances, and the unique insights it can offer, with a particular focus on the significance of these measurements for the continuing development of stable, high performance organic electronic devices.

  7. Hierarchical micro-lamella-structured 3D porous copper current collector coated with tin for advanced lithium-ion batteries

    Science.gov (United States)

    Park, Hyeji; Um, Ji Hyun; Choi, Hyelim; Yoon, Won-Sub; Sung, Yung-Eun; Choe, Heeman

    2017-03-01

    A Novel 3D porous Sn-Cu architecture is prepared as an anode material for use in an advanced lithium-ion battery. Micro-lamellar-structured 3D porous Cu foam, which is electroless-plated with Sn as an active material, is used as anode current collector. Compared to Sn-coated Cu foil, the 3D Sn-Cu foam exhibits superior Li-ion capacity and stable capacity retention, demonstrating the advantage of 3D porous architecture by preserving its structural integrity. In addition, the effect of heat-treatment after Sn plating is investigated. Sn/Sn6Cu5 and SnO2/Cu10Sn3 were formed on and in the 3D Sn-Cu foam under the heat-treatment at 150 °C and 500 °C, respectively. The development of Cu10Sn3 in the 3D Sn-Cu foam heat-treated at 500 °C can be a key factor for the enhanced cyclic stability because the Cu10Sn3 inactively reacts with Li-ion and alleviates the volume expansion of SnO2 as an inactive matrix.

  8. Large-Deformation Curling Actuators Based on Carbon Nanotube Composite: Advanced-Structure Design and Biomimetic Application.

    Science.gov (United States)

    Chen, Luzhuo; Weng, Mingcen; Zhou, Zhiwei; Zhou, Yi; Zhang, Lingling; Li, Jiaxin; Huang, Zhigao; Zhang, Wei; Liu, Changhong; Fan, Shoushan

    2015-12-22

    In recent years, electroactive polymers have been developed as actuator materials. As an important branch of electroactive polymers, electrothermal actuators (ETAs) demonstrate potential applications in the fields of artificial muscles, biomimetic devices, robotics, and so on. Large-shape deformation, low-voltage-driven actuation, and ultrafast fabrication are critical to the development of ETA. However, a simultaneous optimization of all of these advantages has not been realized yet. Practical biomimetic applications are also rare. In this work, we introduce an ultrafast approach to fabricate a curling actuator based on a newly designed carbon nanotube and polymer composite, which completely realizes all of the above required advantages. The actuator shows an ultralarge curling actuation with a curvature greater than 1.0 cm(-1) and bending angle larger than 360°, even curling into a tubular structure. The driving voltage is down to a low voltage of 5 V. The remarkable actuation is attributed not only to the mismatch in the coefficients of thermal expansion but also to the mechanical property changes of materials during temperature change. We also construct an S-shape actuator to show the possibility of building advanced-structure actuators. A weightlifting walking robot is further designed that exhibits a fast-moving motion while lifting a sample heavier than itself, demonstrating promising biomimetic applications.

  9. Parameterization Improvements and Functional and Structural Advances in Version 4 of the Community Land Model

    Directory of Open Access Journals (Sweden)

    Andrew G. Slater

    2011-05-01

    Full Text Available The Community Land Model is the land component of the Community Climate System Model. Here, we describe a broad set of model improvements and additions that have been provided through the CLM development community to create CLM4. The model is extended with a carbon-nitrogen (CN biogeochemical model that is prognostic with respect to vegetation, litter, and soil carbon and nitrogen states and vegetation phenology. An urban canyon model is added and a transient land cover and land use change (LCLUC capability, including wood harvest, is introduced, enabling study of historic and future LCLUC on energy, water, momentum, carbon, and nitrogen fluxes. The hydrology scheme is modified with a revised numerical solution of the Richards equation and a revised ground evaporation parameterization that accounts for litter and within-canopy stability. The new snow model incorporates the SNow and Ice Aerosol Radiation model (SNICAR - which includes aerosol deposition, grain-size dependent snow aging, and vertically-resolved snowpack heating –– as well as new snow cover and snow burial fraction parameterizations. The thermal and hydrologic properties of organic soil are accounted for and the ground column is extended to ~50-m depth. Several other minor modifications to the land surface types dataset, grass and crop optical properties, atmospheric forcing height, roughness length and displacement height, and the disposition of snow-capped runoff are also incorporated.Taken together, these augmentations to CLM result in improved soil moisture dynamics, drier soils, and stronger soil moisture variability. The new model also exhibits higher snow cover, cooler soil temperatures in organic-rich soils, greater global river discharge, and lower albedos over forests and grasslands, all of which are improvements compared to CLM3.5. When CLM4 is run with CN, the mean biogeophysical simulation is slightly degraded because the vegetation structure is prognostic rather

  10. Advances in 3D cell culture technologies enabling tissue-like structures to be created in vitro.

    Science.gov (United States)

    Knight, Eleanor; Przyborski, Stefan

    2015-12-01

    Research in mammalian cell biology often relies on developing in vitro models to enable the growth of cells in the laboratory to investigate a specific biological mechanism or process under different test conditions. The quality of such models and how they represent the behavior of cells in real tissues plays a critical role in the value of the data produced and how it is used. It is particularly important to recognize how the structure of a cell influences its function and how co-culture models can be used to more closely represent the structure of real tissue. In recent years, technologies have been developed to enhance the way in which researchers can grow cells and more readily create tissue-like structures. Here we identify the limitations of culturing mammalian cells by conventional methods on two-dimensional (2D) substrates and review the popular approaches currently available that enable the development of three-dimensional (3D) tissue models in vitro. There are now many ways in which the growth environment for cultured cells can be altered to encourage 3D cell growth. Approaches to 3D culture can be broadly categorized into scaffold-free or scaffold-based culture systems, with scaffolds made from either natural or synthetic materials. There is no one particular solution that currently satisfies all requirements and researchers must select the appropriate method in line with their needs. Using such technology in conjunction with other modern resources in cell biology (e.g. human stem cells) will provide new opportunities to create robust human tissue mimetics for use in basic research and drug discovery. Application of such models will contribute to advancing basic research, increasing the predictive accuracy of compounds, and reducing animal usage in biomedical science.

  11. Modeling investigation of the stability and irradiation-induced evolution of nanoscale precipitates in advanced structural materials

    Energy Technology Data Exchange (ETDEWEB)

    Wirth, Brian [Univ. of Tennessee, Knoxville, TN (United States)

    2015-04-08

    Materials used in extremely hostile environment such as nuclear reactors are subject to a high flux of neutron irradiation, and thus vast concentrations of vacancy and interstitial point defects are produced because of collisions of energetic neutrons with host lattice atoms. The fate of these defects depends on various reaction mechanisms which occur immediately following the displacement cascade evolution and during the longer-time kinetically dominated evolution such as annihilation, recombination, clustering or trapping at sinks of vacancies, interstitials and their clusters. The long-range diffusional transport and evolution of point defects and self-defect clusters drive a microstructural and microchemical evolution that are known to produce degradation of mechanical properties including the creep rate, yield strength, ductility, or fracture toughness, and correspondingly affect material serviceability and lifetimes in nuclear applications. Therefore, a detailed understanding of microstructural evolution in materials at different time and length scales is of significant importance. The primary objective of this work is to utilize a hierarchical computational modeling approach i) to evaluate the potential for nanoscale precipitates to enhance point defect recombination rates and thereby the self-healing ability of advanced structural materials, and ii) to evaluate the stability and irradiation-induced evolution of such nanoscale precipitates resulting from enhanced point defect transport to and annihilation at precipitate interfaces. This project will utilize, and as necessary develop, computational materials modeling techniques within a hierarchical computational modeling approach, principally including molecular dynamics, kinetic Monte Carlo and spatially-dependent cluster dynamics modeling, to identify and understand the most important physical processes relevant to promoting the “selfhealing” or radiation resistance in advanced materials containing

  12. White South Africans' Reactions to Black Advancement: A Two-Sample Confirmatory Investigation of the Structure of Attitude Using an Analogy to the Multitrait-Multimethod Design.

    Science.gov (United States)

    Taylor, Terence R.; Chemel, Charles S.

    1991-01-01

    A questionnaire measuring affective, conative, and cognitive responses to 3 aspects of Black advancement in the workplace was administered to 128 White English-speaking and 140 Afrikaans-speaking South Africans. Results of confirmatory, single-group, and multigroup analyses of the data indicate that the structures were very similar across the…

  13. Changes in trade structure. Impacts of overseas advance on Japanese manufactures; Nihon kigyo no kaigai shinshutsu ni tomonau boeki kozo no henka. Seizogyo ni tsuite no jissho bunseki

    Energy Technology Data Exchange (ETDEWEB)

    Hoshino, Y.; Hattori, T. [Central Research Institute of Electric Power Industry, Tokyo (Japan)

    1997-06-01

    The trend of overseas advance on recent Japanese manufactures and the change in trade structure were analyzed for each district and industry type to examine the impact of overseas advance on the trade structure. The rate of overseas production in the manufacturing industry significantly increased from 2.9% in 1980 to 8.6% in 1994. The spot manufacturer corporation that advanced into Asia has been recently activating the industrial trade. With the overseas advance of manufacturers, the trade in the same industry type has been growing prosperous between Japan and Asia. In the trade structure, the role of East Asia and capital goods has been rapidly expanding in weight. A remarkable change in structure is in progress. The income elasticities of exports vary depending on the district and item. The income elasticities of imports do not vary depending on the district more than for exports. The chemical product, iron steel, and electric machinery exports to Asia, and the general machinery exports to North America have a high export induced effect. The electric machinery imports from Asia have a high re-import effect. In 1990 to 1994, 79% of its trade surplus is caused by overseas production effects, and 27% by income effects. 7 refs., 8 figs., 18 tabs.

  14. TTT diagram and phase structure control of 2/4 functional epoxy blends used in advanced composites

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ming; AN Xuefeng; TANG Bangming; YI Xiaosu

    2007-01-01

    A 2/4 functional epoxy blend system (DGEBA/TGMDA) cured with 4,4'-diamino diphenyl sulphone (DDS) was used as the raw material in this research.Round disk compression mode DMA (dynamic mechanical analyzer) was employed to study the gelation at the different temperatures, and the relationship between gel-time (tgel) and temperature was obtained.The cure kinetics was studied by dynamic DSC (differential scanning calorimetry) analysis,and the parame-ters of the cure reaction were obtained to establish a phenom-enological model.The relationship between glass transition temperature (Tg) and cure degree (α) was analyzed by an iso-thermal plus dynamic DSC method based on the DiBenedetto equation,which gave a mathematical description of Tg as a function of both time and temperature.Characteristic tem- peratures such as Tgo,gelTg and Tg∞ were also determined.The cure degree at gelation turned out to be 0.4539,while the tem-perature at which vitrification line and gel line transected was found to be 70.2℃.The time-temperature-transition (TTT) diagram was plotted based on the work above,which served as a tool for process optimization in the manufacture of advanced composites.A new cure procedure of this practical thermosetting system was extracted from the TTT diagram by prolonging the pre-gel time to restrict the diffusion ability and the flow ability of the solution.The final phase structure was proved by SEM to be ex-situ phase morphology com-pared with the traditional in-situ phase structure by exerting different cure procedures.

  15. Recent Advances and Achievements in Nanomaterial-Based, and Structure Switchable Aptasensing Platforms for Ochratoxin A Detection

    Directory of Open Access Journals (Sweden)

    Jean Louis Marty

    2013-11-01

    Full Text Available Aptamer-based bioreceptors that can easily adopt their surroundings have captured the attention of scientists from a wide spectrum of domains in designing highly sensitive, selective and structure switchable sensing assays. Through elaborate design and chemical functionalization, numerous aptamer-based assays have been developed that can switch their conformation upon incubation with target analyte, resulting in an enhanced output signal. To further lower the detection limits to picomolar levels, nanomaterials have attracted great interest in the design of aptamer-based sensing platforms. Associated to their unique properties, nanomaterials offer great promise for numerous aptasensing applications. This review will discuss current research activities in the aptasensing with typical example of detection of ochratoxin A (OTA. OTA, a secondary fungal metabolite, contaminates a variety of food commodities, and has several toxicological effects such as nephrotoxic, hepatotoxic, neurotoxic, teratogenic and immunotoxic activities. The review will introduce advances made in the methods of integrating nanomaterials in aptasensing, and will discuss current conformational switchable design strategies in aptasensor fabrication methodologies.

  16. Core Structure Elements Architectures to Facilitate Construction and Secure Interconnection of Mobile Services Frameworks and Advanced IAM Systems

    Science.gov (United States)

    Karantjias, Athanasios; Polemi, Nineta

    The impressing penetration rates of electronic and mobile networks provide the unique opportunity to organizations to provide advanced e/m-services, accelerating their entrance in the digital society, and strengthening their fundamental structure. Service Oriented Architectures (SOAs) is an acknowledged promising technology to overcome the complexity inherent to the communication among multiple e-business actors across organizational domains. Nevertheless, the need for more privacy-aware transactions raises specific challenges that SOAs need to address, including the problems of managing identities and ensuring privacy in the e/m-environment. This article presents a targeted, user-centric scalable and federated Identity Management System (IAM), calledSecIdAM, and a mobile framework for building privacy-aware, interoperable, and secure mobile applications with respect to the way that the trust relationship among the involved entities, users and SOAs, is established. Finally, it analyzes a user-transparent m-process for obtaining an authentication and authorization token, issued from the SecIdAM as integrated in the IST European programme SWEB for the public sector.

  17. Advanced Polymer Network Structures

    Science.gov (United States)

    2016-02-01

    Std. Z39.18 Approved for public release; distribution is unlimited. iii Contents List of Figures iv List of Tables v 1. Introduction 1 2...unlimited. v black and blue lines correspond to the single network composed of the first (system 10) and second networks (system 11), respectively...aggregation also contributes significantly to the tensile behavior, where the H- and comb - polymers with long spikes have a considerably higher

  18. Comprehensive Peptide Ion Structure Studies Using Ion Mobility Techniques: Part 1. An Advanced Protocol for Molecular Dynamics Simulations and Collision Cross-Section Calculation

    Science.gov (United States)

    Ghassabi Kondalaji, Samaneh; Khakinejad, Mahdiar; Tafreshian, Amirmahdi; J. Valentine, Stephen

    2017-02-01

    Collision cross-section (CCS) measurements with a linear drift tube have been utilized to study the gas-phase conformers of a model peptide (acetyl-PAAAAKAAAAKAAAAKAAAAK). Extensive molecular dynamics (MD) simulations have been conducted to derive an advanced protocol for the generation of a comprehensive pool of in-silico structures; both higher energy and more thermodynamically stable structures are included to provide an unbiased sampling of conformational space. MD simulations at 300 K are applied to the in-silico structures to more accurately describe the gas-phase transport properties of the ion conformers including their dynamics. Different methods used previously for trajectory method (TM) CCS calculation employing the Mobcal software [1] are evaluated. A new method for accurate CCS calculation is proposed based on clustering and data mining techniques. CCS values are calculated for all in-silico structures, and those with matching CCS values are chosen as candidate structures. With this approach, more than 300 candidate structures with significant structural variation are produced; although no final gas-phase structure is proposed here, in a second installment of this work, gas-phase hydrogen deuterium exchange data will be utilized as a second criterion to select among these structures as well as to propose relative populations for these ion conformers. Here the need to increase conformer diversity and accurate CCS calculation is demonstrated and the advanced methods are discussed.

  19. Final Report on "Development and Testing of Advanced Accelerator Structures and Technologies at 11.424 GHz"

    Energy Technology Data Exchange (ETDEWEB)

    Gold, Steven H. [Naval Research Laboratory

    2013-10-13

    This is the final report on the research program ?Development and Testing of Advanced Accelerator Structures and Technologies at 11.424 GHz,? which was carried out by the Naval Research Laboratory (NRL) under Interagency Agreement DE?AI02?01ER41170 with the Department of Energy. The period covered by this report is 15 July 2010 ? 14 July 2013. The program included two principal tasks. Task 1 involved a study of the key physics issues related to the use of high gradient dielectric-loaded accelerating (DLA) structures in rf linear accelerators and was carried out in collaboration with Argonne National Laboratory (ANL) and Euclid Techlabs LLC. Task 2 involved a study of high power active microwave pulse compressors and was carried out in collaboration with Omega-P, Inc. and the Institute of Applied Physics of the Russian Academy of Sciences in Nizhny Novgorod. The studies under Task 1 were focused on rf-induced multipactor and breakdown in externally driven DLA structures at the 200-ns timescale. Suppression of multipactor and breakdown are essential to the practical application of dielectric structures in rf linear accelerators. The structures that were studied were developed by ANL and Euclid Techlabs and their performance was evaluated at high power in the X-band Magnicon Laboratory at NRL. Three structures were designed, fabricated, and tested, and the results analyzed in the first two years of the program: a clamped quartz traveling-wave (TW) structure, a externally copper-coated TW structure, and an externally copper-coated dielectric standing-wave (SW) structure. These structures showed that rf breakdown could be largely eliminated by eliminating dielectric joints in the structures, but that the multipactor loading was omnipresent. In the third year of the program, the focus of the program was on multipactor suppression using a strong applied axial magnetic field, as proposed by Chang et al. [C. Chang et al., J. Appl. Phys. 110, 063304 (2011).], and a

  20. Advanced FeCrAl ODS steels for high-temperature structural applications in energy generation systems

    Directory of Open Access Journals (Sweden)

    Pimentel, G.

    2012-08-01

    Full Text Available Technologies and means for developing biomass plant with higher energy conversion efficiencies are essential in order to implement the commitment to renewable biomass energy generation. Advanced, indirect Combined Cycle Gas Turbine (CCGT systems offer overall biomass energy conversion efficiencies of 45 % and above, compared with the 35 % efficiency of conventional biomass steam plant. However to attain this efficiency in CCGT operation it will be necessary to develop a heat exchanger capable of gas operating temperatures and pressures of around 1100 °C and 15-30 bar, respectively, for entry heating the gas turbine working fluid. ODS ferritic steels is the kind of advance material to deal with this challenge, however work to optimize the coarse grain microstructure to improve creep hoop strength needs to be done. In this sense, this paper reports the recrystallisation behaviour of PM 2000 oxide dispersion strengthened ferritic alloy which was cold deformed after hot-rolling and extrusion. The results can be interpreted if it is assumed that anything which makes the microstructure heterogeneous, stimulates recrystallisation. In this sense, larger strain gradients lead to more refined and more isotropic grain structures. The combination of these results with finite element modeling are used to interpret the role of residual shear stresses on the development of recrystallized grain structure.

    Las tecnologías y medios para desarrollar plantas de biomasa con alta eficiencia en la conversión de energía son esenciales para asentar la biomasa como una fuente de energía renovable. Los sistemas de turbinas de gas de ciclo combinado (CCGT permiten elevar la eficiencia de las plantas de biomasa del 35 % actual al 45 %. Sin embargo, para conseguir estos niveles de eficiencia en la conversión de energía, el intercambiador de calor de la caldera debe trabajar en condiciones extremas de temperatura (por encima de 1100 °C y presión (en torno a 15

  1. Synchrotron-based and globar-sourced molecular (micro)spectroscopy contributions to advances in new hulless barley (with structure alteration) research on molecular structure, molecular nutrition, and nutrient delivery.

    Science.gov (United States)

    Yang, Ling; Yu, Peiqiang

    2017-01-02

    This paper aimed to review synchrotron-based and globar-sourced molecular infrared (micro)spectroscopy contributions to advances in new hulless barley (with structure alteration) research on molecular structure, molecular nutrition, and nutrient delivery in ruminants. It reviewed recent progress in barley varieties, its utilization for animal and human, inherent structure features and chemical make-up, evaluation and research methodology, breeding progress, rumen degradation, and intestinal digestion. The emphasis of this review was focused on the effect of alteration of carbohydrate traits of newly developed hulless barley on molecular structure changes and nutrient delivery and quantification of the relationship between molecular structure features and changes and truly absorbed nutrient supply to ruminants. This review provides an insight into how inherent structure changes on a molecular basis affect nutrient utilization and availability in ruminants.

  2. Using an Advanced Computational Laboratory Experiment to Extend and Deepen Physical Chemistry Students' Understanding of Atomic Structure

    Science.gov (United States)

    Hoffman, Gary G.

    2015-01-01

    A computational laboratory experiment is described, which involves the advanced study of an atomic system. The students use concepts and techniques typically covered in a physical chemistry course but extend those concepts and techniques to more complex situations. The students get a chance to explore the study of atomic states and perform…

  3. RNA FRABASE 2.0: an advanced web-accessible database with the capacity to search the three-dimensional fragments within RNA structures

    Directory of Open Access Journals (Sweden)

    Wasik Szymon

    2010-05-01

    Full Text Available Abstract Background Recent discoveries concerning novel functions of RNA, such as RNA interference, have contributed towards the growing importance of the field. In this respect, a deeper knowledge of complex three-dimensional RNA structures is essential to understand their new biological functions. A number of bioinformatic tools have been proposed to explore two major structural databases (PDB, NDB in order to analyze various aspects of RNA tertiary structures. One of these tools is RNA FRABASE 1.0, the first web-accessible database with an engine for automatic search of 3D fragments within PDB-derived RNA structures. This search is based upon the user-defined RNA secondary structure pattern. In this paper, we present and discuss RNA FRABASE 2.0. This second version of the system represents a major extension of this tool in terms of providing new data and a wide spectrum of novel functionalities. An intuitionally operated web server platform enables very fast user-tailored search of three-dimensional RNA fragments, their multi-parameter conformational analysis and visualization. Description RNA FRABASE 2.0 has stored information on 1565 PDB-deposited RNA structures, including all NMR models. The RNA FRABASE 2.0 search engine algorithms operate on the database of the RNA sequences and the new library of RNA secondary structures, coded in the dot-bracket format extended to hold multi-stranded structures and to cover residues whose coordinates are missing in the PDB files. The library of RNA secondary structures (and their graphics is made available. A high level of efficiency of the 3D search has been achieved by introducing novel tools to formulate advanced searching patterns and to screen highly populated tertiary structure elements. RNA FRABASE 2.0 also stores data and conformational parameters in order to provide "on the spot" structural filters to explore the three-dimensional RNA structures. An instant visualization of the 3D RNA

  4. Advanced FeCrAl ODS steels for high-temperature structural applications in energy generation systems

    OpenAIRE

    Pimentel, G.; Capdevila, C.; M.J. Bartolomé; Chao, J.; Serrano, M.; García-Junceda, A.; Campos, M; Torralba, J. M.; Aldazábal, J.

    2012-01-01

    Technologies and means for developing biomass plant with higher energy conversion efficiencies are essential in order to implement the commitment to renewable biomass energy generation. Advanced, indirect Combined Cycle Gas Turbine (CCGT) systems offer overall biomass energy conversion efficiencies of 45 % and above, compared with the 35 % efficiency of conventional biomass steam plant. However to attain this efficiency in CCGT operation it will be necessary to develop a heat exchanger capabl...

  5. Advanced data structures for the interpretation of image and cartographic data in geo-based information systems

    Science.gov (United States)

    Peuquet, D. J.

    1986-01-01

    A growing need to usse geographic information systems (GIS) to improve the flexibility and overall performance of very large, heterogeneous data bases was examined. The Vaster structure and the Topological Grid structure were compared to test whether such hybrid structures represent an improvement in performance. The use of artificial intelligence in a geographic/earth sciences data base context is being explored. The architecture of the Knowledge Based GIS (KBGIS) has a dual object/spatial data base and a three tier hierarchial search subsystem. Quadtree Spatial Spectra (QTSS) are derived, based on the quadtree data structure, to generate and represent spatial distribution information for large volumes of spatial data.

  6. An advanced OBP-based payload operating in an asynchronous network for future data relay satellites utilising CCSDS-standard data structures

    Science.gov (United States)

    Grant, M.; Vernucci, A.

    1991-01-01

    A possible Data Relay Satellite System (DRSS) topology and network architecture is introduced. An asynchronous network concept, whereby each link (Inter-orbit, Inter-satellite, Feeder) is allowed to operate on its own clock, without causing loss of information, in conjunction with packet data structures, such as those specified by the CCSDS for advanced orbiting systems is discussed. A matching OBP payload architecture is described, highlighting the advantages provided by the OBP-based concept and then giving some indications on the OBP mass/power requirements.

  7. Advances in the Study of the Structures and Bioactivities of Metabolites Isolated from Mangrove-Derived Fungi in the South China Sea

    Directory of Open Access Journals (Sweden)

    Yong-Hong Zhu

    2013-09-01

    Full Text Available Many metabolites with novel structures and biological activities have been isolated from the mangrove fungi in the South China Sea, such as anthracenediones, xyloketals, sesquiterpenoids, chromones, lactones, coumarins and isocoumarin derivatives, xanthones, and peroxides. Some compounds have anticancer, antibacterial, antifungal and antiviral properties, but the biosynthesis of these compounds is still limited. This review summarizes the advances in the study of secondary metabolites from the mangrove-derived fungi in the South China Sea, and their biological activities reported between 2008 and mid-2013.

  8. Advances in the study of the structures and bioactivities of metabolites isolated from mangrove-derived fungi in the South China Sea.

    Science.gov (United States)

    Wang, Xin; Mao, Zhi-Gang; Song, Bing-Bing; Chen, Chun-Hua; Xiao, Wei-Wei; Hu, Bin; Wang, Ji-Wen; Jiang, Xiao-Bing; Zhu, Yong-Hong; Wang, Hai-Jun

    2013-09-30

    Many metabolites with novel structures and biological activities have been isolated from the mangrove fungi in the South China Sea, such as anthracenediones, xyloketals, sesquiterpenoids, chromones, lactones, coumarins and isocoumarin derivatives, xanthones, and peroxides. Some compounds have anticancer, antibacterial, antifungal and antiviral properties, but the biosynthesis of these compounds is still limited. This review summarizes the advances in the study of secondary metabolites from the mangrove-derived fungi in the South China Sea, and their biological activities reported between 2008 and mid-2013.

  9. A proof-of-concept implementation of a unit-based advanced practice registered nurse (APRN) role: structural empowerment, role clarity and team effectiveness.

    Science.gov (United States)

    Feistritzer, Nancye R; Jones, Pam O

    2014-03-01

    The quest for decreased cost of care and improved outcomes has created the need for highly effective clinical roles and teams. This article describes the role of a unit-based advanced practice registered nurse (APRN) within a proof-of-concept implementation of a new care delivery model, the Vanderbilt Anticipatory Care Team. Role clarity is central to both structural empowerment of the APRN and team effectiveness. A modified PeaceHealth Team Development Measure tool measured baseline role clarity as a component of overall team effectiveness. A role description for the unit-based APRN based on a comprehensive assessment of the proof-of-concept unit is provided.

  10. Characterisation of the micro- and nanoscale structure of new creep-resistant steels for use in advanced USC steam power plants

    Energy Technology Data Exchange (ETDEWEB)

    Zielinska-Lipiec, A.; Czyrska-Filemonowicz, A. [AGH University of Science & Technology, Krakow (Poland)

    2007-05-15

    The microstructure in the as received condition and after long-term creep exposure (up to about 57000 h at 600 and 650{sup o}C of the martensitic 9-12% chromium steels (P92, P91, E911, CB6) developed for advanced ultra supercritical coal-fired power plants has been investigated. Using analytical TEM statistical quantitative analyses were undertaken to determine the micro- and nanoscale structure parameters (dislocation density within the subgrains, the width of the martensite laths/subgrains and the particles parameters). Results of the TEM analyses reveal significant influence of a microstructure after initial heat treatment on the creep strength.

  11. Employing a Structured Interface to Advance Primary Students' Communicative Competence in a Text-Based Computer Mediated Environment

    Science.gov (United States)

    Chiu, Chiung-Hui; Wu, Chiu-Yi; Hsieh, Sheng-Jieh; Cheng, Hsiao-Wei; Huang, Chung-Kai

    2013-01-01

    This study investigated whether a structured communication interface fosters primary students' communicative competence in a synchronous typewritten computer-mediated collaborative learning environment. The structured interface provided a set of predetermined utterance patterns for elementary students to use or imitate to develop communicative…

  12. Impact of Surgical Evaluation of Additional Cine Magnetic Resonance Imaging for Advanced Thymoma with Infiltration of Adjacent Structures: The Thoracic Surgeon's View.

    Science.gov (United States)

    Ried, Michael; Hnevkovsky, Stefanie; Neu, Reiner; von Süßkind-Schwendi, Marietta; Götz, Andrea; Hamer, Okka W; Schalke, Berthold; Hofmann, Hans-Stefan

    2017-04-01

    Background Preoperative radiological assessment is important for clarification of surgical operability for advanced thymic tumors. Objective was to determine the feasibility of magnetic resonance imaging (MRI) with cine sequences for evaluation of cardiovascular tumor invasion. Patients and Methods This prospective study included patients with advanced thymoma, who underwent surgical resection. All patients received preoperative computed tomography (CT) scan and cine MRI. Results Tumor infiltration was surgically confirmed in the pericardium (n = 12), myocardium (n = 1), superior caval vein (SCV; n = 3), and aorta (n = 2). A macroscopic complete resection was possible in 10 patients, whereas 2 patients with aortic or myocardial tumor invasion had R2 resection. The positive predictive value (PPV) was 50% for cine MRI compared with 0% for CT scan regarding myocardial tumor infiltration. The PPV for tumor infiltration of the aorta was 50%, with a higher sensitivity for the CT scan (100 vs. 50%). Infiltration of the SCV could be detected slightly better with cine MRI (PPV 75 vs. 66.7%). Conclusion Cine MRI seems to improve the accuracy of preoperative staging of advanced thymoma regarding infiltration of cardiovascular structures and supports the surgical approach.

  13. Recent advances in functional region prediction by using structural and evolutionary information - Remaining problems and future extensions.

    Science.gov (United States)

    Nemoto, Wataru; Saito, Akira; Oikawa, Hayato

    2013-01-01

    Structural genomics projects have solved many new structures with unknown functions. One strategy to investigate the function of a structure is to computationally find the functionally important residues or regions on it. Therefore, the development of functional region prediction methods has become an important research subject. An effective approach is to use a method employing structural and evolutionary information, such as the evolutionary trace (ET) method. ET ranks the residues of a protein structure by calculating the scores for relative evolutionary importance, and locates functionally important sites by identifying spatial clusters of highly ranked residues. After ET was developed, numerous ET-like methods were subsequently reported, and many of them are in practical use, although they require certain conditions. In this mini review, we first introduce the remaining problems and the recent improvements in the methods using structural and evolutionary information. We then summarize the recent developments of the methods. Finally, we conclude by describing possible extensions of the evolution- and structure-based methods.

  14. RECENT ADVANCES IN FUNCTIONAL REGION PREDICTION BY USING STRUCTURAL AND EVOLUTIONARY INFORMATION – REMAINING PROBLEMS AND FUTURE EXTENSIONS

    Directory of Open Access Journals (Sweden)

    Wataru Nemoto

    2013-08-01

    Full Text Available Structural genomics projects have solved many new structures with unknown functions. One strategy to investigate the function of a structure is to computationally find the functionally important residues or regions on it. Therefore, the development of functional region prediction methods has become an important research subject. An effective approach is to use a method employing structural and evolutionary information, such as the evolutionary trace (ET method. ET ranks the residues of a protein structure by calculating the scores for relative evolutionary importance, and locates functionally important sites by identifying spatial clusters of highly ranked residues. After ET was developed, numerous ET-like methods were subsequently reported, and many of them are in practical use, although they require certain conditions. In this mini review, we first introduce the remaining problems and the recent improvements in the methods using structural and evolutionary information. We then summarize the recent developments of the methods. Finally, we conclude by describing possible extensions of the evolution- and structure-based methods.

  15. Computer Simulation Techniques for Molecular Structure of Coal for Advanced Coal Conversion Technology; Sekitan kodo henkan no tameno bunshikozo shimyureshon

    Energy Technology Data Exchange (ETDEWEB)

    Takanohashi, Toshimasa [Energy Resources Dept., Tokyo (Japan). Fundamental Research Div.; Nakamura, Kazuo [Osaka Gas Corp., Osaka (Japan). Fundamental Research Laboratories; Iino, Masashi [Tohoku University, Miyagi (Japan), Institute for Chemical Reaction Science

    1999-02-25

    Coal has complex chemical structure consisting of various bond types and the details are still not well understood. Recently, in addition to improvements of analytical techniques, molecular modeling and simulation techniques by using powerful computers and software have greatly developed and it has become possible to apply them to complex structure such as coal. Knowledge of coal's molecular structure is important for the understanding of various coal properties and reactivities under several conditions. In this paper, a new tool, i.e., molecular modeling technique of coal's macromolecular structure and dynamic simulation of coal properties, is introduced and the future applications of this technique will be outlined. (author)

  16. Recent Advances on the Understanding of Structural and Composition Evolution of LMR Cathode for Li ion Batteries

    Directory of Open Access Journals (Sweden)

    Pengfei eYan

    2015-06-01

    Full Text Available Lithium-rich, magnesium-rich (LMR cathode materials have been regarded as very promising for lithium (Li-ion battery applications. However, their practical application is still limited by several barriers such as their limited electrochemical stability and rate capability. In this work, we present recent progress on the understanding of structural and compositional evolution of LMR cathode materials, with an emphasis being placed on the correlation between structural/chemical evolution and electrochemical properties. In particular, using Li[Li0.2Ni0.2Mn0.6]O2 as a typical example, we clearly illustrate the structural characteristics of pristine materials and their dependence on the material-processing history, cycling-induced structural degradation/chemical partition, and their correlation with electrochemical performance degradation. The fundamental understanding that resulted from this work may also guide the design and preparation of new cathode materials based on the ternary system of transitional metal oxides.

  17. Advanced Developments of Electron Spin Labeling as High-Resolution Sensors of Protein Structure and Conformational Switching

    Science.gov (United States)

    2007-11-02

    Myoglobin (Myb) and Cellular Retinol Binding Protein (CRBP) were prepared, and the corresponding EPR spectra analyzed by simulation techniques. In...unprecedented level of sophistication in interpretation of the EPR spectra of labeled proteins, and establish the feasibility of separating structural and...protein as well as local structure, but to date the level of interpretation has been largely qualitative and it has not been possible to separate the

  18. Towards advanced structural analysis of iron oxide clusters on the surface of γ-Al2O3 using EXAFS

    Science.gov (United States)

    Boubnov, Alexey; Roppertz, Andreas; Kundrat, Matthew D.; Mangold, Stefan; Reznik, Boris; Jacob, Christoph R.; Kureti, Sven; Grunwaldt, Jan-Dierk

    2016-11-01

    Iron oxide centres are structurally investigated in 0.1% Fe/γ-Al2O3, which is known as highly active catalyst, for instance in the oxidation of CO. The sample was characterised by using X-ray absorption spectroscopy (XAS) in terms of X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), Mössbauer spectroscopy, X-ray diffraction (XRD) and transmission electron microscopy (TEM). These analyses evidenced high dispersion of the iron oxide entities without significant presence of bulk-like aggregates associated with the low Fe content of the catalyst. A library of structural models of Al2O3-supported surface Fe was created as input for EXAFS fitting. Additionally, several model structures of Fe substituting Al ions in bulk γ-Al2O3 were created with optimised geometry based on density-functional theory (DFT) calculations. From EXAFS refinement of the best 8 out of 24 models, it was found that the trivalent Fe ions are coordinated by 4-5 oxygen atoms and are located on octahedral lattice sites of the exposed surfaces of γ-Al2O3. These iron oxide species exist mainly as a mixture of monomeric and binuclear species and due to the low concentration represent suitable model systems as alternative to single crystal systems for structure-function relationships.

  19. Ethylene Glycol Intercalated Cobalt/Nickel Layered Double Hydroxide Nanosheet Assemblies with Ultrahigh Specific Capacitance: Structural Design and Green Synthesis for Advanced Electrochemical Storage.

    Science.gov (United States)

    Wang, Changhui; Zhang, Xiong; Xu, Zhongtang; Sun, Xianzhong; Ma, Yanwei

    2015-09-09

    Because of the rapid depletion of fossil fuels and severe environmental pollution, more advanced energy-storage systems need to possess dramatically improved performance and be produced on a large scale with high efficiency while maintaining low-enough costs to ensure the higher and wider requirements. A facile, energy-saving process was successfully adopted for the synthesis of ethylene glycol intercalated cobalt/nickel layered double hydroxide (EG-Co/Ni LDH) nanosheet assembly variants with higher interlayer distance and tunable transitional-metal composition. At an optimized starting Co/Ni ratio of 1, the nanosheet assemblies display a three-dimensional, spongelike network, affording a high specific surface area with advantageous mesopore structure in 2-5 nm containing large numbers of about 1.2 nm micropores for promoting electrochemical reaction. An unprecedented electrochemical performance was achieved, with a specific capacitance of 4160 F g(-1) at a discharge current density of 1 A g(-1) and of 1313 F g(-1) even at 50 A g(-1), as well as excellent cycling ability. The design and optimization of EG-Co/Ni LDH nanosheets in compositions, structures, and performances, in conjunction with the easy and relatively "green" synthetic process, will play a pivotal role in meeting the needs of large-scale manufacture and widespread application for advanced electrochemical storage.

  20. The role and structure of the multidisciplinary team in the management of advanced Parkinson's disease with a focus on the use of levodopa-carbidopa intestinal gel.

    Science.gov (United States)

    Pedersen, Stephen W; Suedmeyer, Martin; Liu, Louis W C; Domagk, Dirk; Forbes, Alison; Bergmann, Lars; Onuk, Koray; Yegin, Ashley; van Laar, Teus

    2017-01-01

    A multidisciplinary team (MDT) approach is increasingly recommended in Parkinson's disease (PD) treatment guidelines, but no standard of care exists for such an approach, and the guidelines do not provide clarification on how it should be implemented. This paper reviews evidence of MDT interventions in people with PD and provides expert clinical perspectives for an MDT approach, with a focus on advanced PD and levodopa-carbidopa intestinal gel (carbidopa-levodopa enteral suspension in the USA). The key recommendations are to enable the best possible treatment of people with PD locally by facilitating a close structured collaboration of different health care professionals working in a fixed network structure; to refer people with PD to established MDT centers in a timely manner; to establish regular meetings for the MDT enabling interdisciplinary exchange and learning; to optimize individual treatment and carefully evaluate available treatment options; to ensure treatment decisions are agreed jointly between people with PD, their caregivers, family, and health care professional; and to include specialists outside of neurology from adjuvant medical departments as necessary when implementing advanced therapies.

  1. Report on the workshop "Decay spectroscopy at CARIBU: advanced fuel cycle applications, nuclear structure and astrophysics". 14-16 April 2011, Argonne National Laboratory, USA.

    Energy Technology Data Exchange (ETDEWEB)

    Kondev, F.; Carpenter, M.P.; Chowdhury, P.; Clark, J.A.; Lister, C.J.; Nichols, A.L.; Swewryniak, D. (Nuclear Engineering Division); (Univ. of Massachusetts); (Univ. of Surrey)

    2011-10-06

    A workshop on 'Decay Spectroscopy at CARIBU: Advanced Fuel Cycle Applications, Nuclear Structure and Astrophysics' will be held at Argonne National Laboratory on April 14-16, 2011. The aim of the workshop is to discuss opportunities for decay studies at the Californium Rare Isotope Breeder Upgrade (CARIBU) of the ATLAS facility with emphasis on advanced fuel cycle (AFC) applications, nuclear structure and astrophysics research. The workshop will consist of review and contributed talks. Presentations by members of the local groups, outlining the status of relevant in-house projects and availabile equipment, will also be organized. time will also be set aside to discuss and develop working collaborations for future decay studies at CARIBU. Topics of interest include: (1) Decay data of relevance to AFC applications with emphasis on reactor decay heat; (2) Discrete high-resolution gamma-ray spectroscopy following radioactive decya and related topics; (3) Calorimetric studies of neutron-rich fission framgents using Total ABsorption Gamma-Ray Spectrometry (TAGS) technique; (4) Beta-delayed neutron emissions and related topics; and (5) Decay data needs for nuclear astrophysics.

  2. Advanced Microanalysis Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Microanalysis Facility fully integrates capabilities for chemical and structural analysis of electronic materials and devices for the U.S. Army and DoD....

  3. Advanced Light Source (ALS)

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Light Source (ALS), a world leader in soft x-ray science, generates light in the wavelengths needed for examining the atomic and electronic structure of...

  4. Advanced Magnetic Resonance Techniques for the Structural Characterization of Aminoxyl Radicals and Their Inorganic-Organic Nanocomposite Systems.

    Science.gov (United States)

    Eckert, Hellmut

    2016-11-15

    Electron and nuclear spins are extremely sensitive probes of their local structural and dynamic surroundings. Their Zeeman energy levels are modified by different types of local magnetic and electric fields created by their structural environment, which influence their magnetic resonance condition. For this reason, electron spin resonance (ESR) and nuclear magnetic resonance (NMR) spectroscopies have become extremely powerful tools of structural analysis, which are being widely used for the structural characterization of complex solids. Following a brief introduction into the basic theoretical foundations the most commonly used techniques and their application towards the structural characterization of paramagnetic solids based on aminoxyl radicals and their inorganic-organic nanocomposites will be described. Both ESR and NMR observables are useful for monitoring intermolecular interactions between unpaired electron spins, which are particularly important for the design of organically based ferromagnetic systems. ESR and NMR methods based on this effect can be used for monitoring the synthesis of polynitroxides and for evaluating the catalytic function of aminoxyl intercalation compounds. Finally, the sensitivity of ESR signals to motional dynamics can be exploited for characterizing molecule-surface interactions in nanocomposite systems. In the context of the latter work recently developed signal enhancement strategies are described, using polarization transfer from electron spins to nuclear spins for NMR spectroscopic detection.

  5. Advances in structure-function relationships of tyrosinase from Agaricus bisporus - investigation on heat-induced conformational changes.

    Science.gov (United States)

    Ioniţă, Elena; Aprodu, Iuliana; Stănciuc, Nicoleta; Râpeanu, Gabriela; Bahrim, Gabriela

    2014-08-01

    A combination of fluorescence spectroscopic measurements, inactivation kinetics and in silico prediction was used in the present study to investigate the heat induced behaviour of tyrosinase from Agaricus bisporus. The phase diagram indicated the existence of at least two distinct species induced by the temperature increase up to 75°C. Regardless of calcium ion presence, the fluorescence intensity results suggest that tyrosinase tends to form aggregates after 10min at 75°C. The quenching experiments using acrylamide and iodide demonstrate a more flexible conformation of tyrosinase at higher temperature. Detailed insights into tyrosinase structure after performing molecular dynamics simulations, suggest important structural rearrangements of the protein with the temperature increase. The copper coordinating His(94) residue was predicted to be involved in salt bridge formation with Glu(98), therefore causing significant alteration of the substrate binding site with increasing temperature. These significant changes in tyrosinase structure at temperatures over 60°C might lead to enzyme inactivation.

  6. Preface to the special issue on recent advances of deep structure,seismic anisotropy and seismotectonics in China

    Institute of Scientific and Technical Information of China (English)

    Dongping Wei; Fenglin Niu; Yuan Gao; Xuzhang Shen

    2012-01-01

    A workshop on crustal structure and seismotectonics was held on the Chinese Teacher's Day,the September 10th of 2011,in the city Lanzhou,China.Scientists and graduate students from Chinese Academy of Sciences,China Earthquake Administration,Chinese Academy of Geological Sciences,and Japan Agency for Marine-Earth Science and Technology delivered over 20 oral presentations,with topics covering crustal and upper mantle structure,seismic anisotropy,recent earthquakes and seismotectonics,and earthquake predictions.The presentations were followed by an intensive discussion on fundamental processes in shaping the Chinese mainland as well as in nucleating earthquakes.

  7. Multiparametric computer-aided differential diagnosis of Alzheimer’s disease and frontotemporal dementia using structural and advanced MRI

    NARCIS (Netherlands)

    E.E. Bron (Esther); M. Smits (Marion); J.M. Papma (Janne); R.M.E. Steketee (Rebecca); R. Meijboom (Rozanna); M. de Groot (Mirthe); J.C. van Swieten (John); W.J. Niessen (Wiro); S.K. Klein (Stefan)

    2016-01-01

    textabstractObjectives: To investigate the added diagnostic value of arterial spin labelling (ASL) and diffusion tensor imaging (DTI) to structural MRI for computer-aided classification of Alzheimer's disease (AD), frontotemporal dementia (FTD), and controls. Methods: This retrospective study used M

  8. Phenolics from Garcinia mangostana Inhibit Advanced Glycation Endproducts Formation: Effect on Amadori Products, Cross-Linked Structures and Protein Thiols

    Directory of Open Access Journals (Sweden)

    Hossam M. Abdallah

    2016-02-01

    Full Text Available Accumulation of Advanced Glycation Endproducts (AGEs in body tissues plays a major role in the development of diabetic complications. Here, the inhibitory effect of bioactive metabolites isolated from fruit hulls of Garcinia mangostana on AGE formation was investigated through bio-guided approach using aminoguanidine (AG as a positive control. Including G. mangostana total methanol extract (GMT in the reaction mixture of bovine serum albumin (BSA and glucose or ribose inhibited the fluorescent and non-fluorescent AGEs formation in a dose dependent manner. The bioassay guided fractionation of GMT revealed isolation of four bioactive constituents from the bioactive fraction; which were identified as: garcimangosone D (1, aromadendrin-8-C-glucopyranoside (2, epicatechin (3, and 2,3′,4,5′,6-pentahydroxybenzophenone (4. All the tested compounds significantly inhibited fluorescent and non-fluorescent AGEs formation in a dose dependent manner whereas compound 3 (epicatechin was found to be the most potent. In search for the level of action, addition of GMT, and compounds 2–4 inhibited fructosamine (Amadori product and protein aggregation formation in both glucose and ribose. To explore the mechanism of action, it was found that addition of GMT and only compound (3 to reaction mixture increased protein thiol in both glucose and ribose while compounds 1, 2 and 4 only increased thiol in case of ribose. In conclusion, phenolic compounds 1–4 inhibited AGEs formation at the levels of Amadori product and protein aggregation formation through saving protein thiol.

  9. Brazilian Network on Global Climate Change Research (Rede CLIMA: structure, scientific advances and future prospects Brazilian Network on Global Climate Change Research (Rede CLIMA: structure, scientific advances and future prospects

    Directory of Open Access Journals (Sweden)

    Eduardo Moraes Arraut

    2013-01-01

    Full Text Available In order to create the necessary scientific knowledge for Brazil to understand and deal with the causes and consequences of climate change, the federal government created, in 2007, the Brazilian Network on Global Climate Change Research (Rede CLIMA. Rede CLIMA needs to discuss issues, pose questions, develop methodologies and technological products, find answers, and suggest solutions that are relevant to society. In its first phase, it focused mainly on providing infrastructure and consolidating the sub-networks. Several scientific advances were also achieved, a selection of which are presented in sections focusing on climate modelling, agriculture, energy and water, human development and mobility, biodiversity and ecosystem services, and human health. Now, in its second phase, the objective is to straighten collaboration between sub-networks by means of interdisciplinary projects. It is argued that in order to succeed the Network needs to foster research whose merit is measured not exclusively by academic production.A fim de criar o conhecimento científico necessário para o Brasil entender e lidar com as causas e consequências das mudanças climáticas, o governo federal criou, em 2007, a Rede Brasileira de Pesquisa em Mudanças Climáticas Globais (Rede CLIMA. A Rede CLIMA precisa discutir questões, fazer perguntas, desenvolver metodologias e produtos tecnológicos, encontrar respostas e sugerir soluções que sejam relevantes para a sociedade. Em sua primeira fase, a Rede concentrou-se em fornecer infraestrutura e consolidar suas sub-redes. Houve também vários avanços científicos, alguns dos quais são apresentados em seções focadas em modelagem climática, agricultura, energia e água, desenvolvimento e mobilidade humana, biodiversidade e serviços dos ecossistemas, e saúde humana. Agora, em sua segunda fase, o objetivo é estabelecer colaborações entre sub-redes por meio de projetos interdisciplinares. Argumenta-se que, para

  10. Arginine deiminase: recent advances in discovery, crystal structure, and protein engineering for improved properties as an anti-tumor drug.

    Science.gov (United States)

    Han, Rui-Zhi; Xu, Guo-Chao; Dong, Jin-Jun; Ni, Ye

    2016-06-01

    Arginine deiminase (ADI) is an important arginine-degrading enzyme with wide applications, in particular as an anti-cancer agent for the therapy of arginine-auxotrophic tumors. In recent years, novel ADIs with excellent properties have been identified from various organisms, and crystal structures of ADI were investigated. To satisfy the requirements of potential therapeutic applications, protein engineering has been performed to improve the activity and properties of ADIs. In this mini-review, we systematically summarized the latest progress on identification and crystal structure of ADIs, and protein engineering strategies for improved enzymatic properties, such as pH optimum, K m and k cat values, and thermostability. We also outlined the PEGylation of ADI for improved circulating half-life and immunogenicity, as well as their performance in clinical trials. Finally, perspectives on extracellular secretion and property improvement of ADI were discussed.

  11. Advanced Single-Polymer Nanofiber-Reinforced Composite - Towards Next Generation Ultralight Superstrong/Tough Structural Material

    Science.gov (United States)

    2015-04-29

    and cheaper than synthesis and processing of carbon nanotubes ; issues with stress transfer and imperfect structure of CNT fibers and yarns continue to...trade-off. Spider silk is one natural material providing exceptionally high toughness at high strength. In addition, several recent carbon nanotube ...continuous nanofibers in this study outperformed most existing and developmental carbon nanotube - based fibers in terms of toughness. The best recorded

  12. Synthesis, antimicrobial activity and advances in structure-activity relationships (SARs) of novel tri-substituted thiazole derivatives.

    Science.gov (United States)

    Reddy, Guda Mallikarjuna; Garcia, Jarem Raul; Reddy, Vemulapati Hanuman; de Andrade, Ageo Meier; Camilo, Alexandre; Pontes Ribeiro, Renan Augusto; de Lazaro, Sergio Ricardo

    2016-11-10

    Trisubstituted thiazoles were synthesized and studied for their antimicrobial activity and supported by theoretical calculations. In addition, MIC, MBC and MFC were also tested. Moreover, the present study was analyzed to scrutinize comprehensive structure-activity relationships. In fact, LUMO orbital energy and orbital orientation was reliable to explain their antibacterial and antifungal assay. Amongst the tested compounds, tri-methyl-substituted thiazole compound showed higher antimicrobial activity and low MIC value due to highest LUMO energy.

  13. Designing and simulation smart multifunctional continuous logic device as a basic cell of advanced high-performance sensor systems with MIMO-structure

    Science.gov (United States)

    Krasilenko, Vladimir G.; Nikolskyy, Aleksandr I.; Lazarev, Alexander A.

    2015-01-01

    We have proposed a design and simulation of hardware realizations of smart multifunctional continuous logic devices (SMCLD) as advanced basic cells of the sensor systems with MIMO- structure for images processing and interconnection. The SMCLD realize function of two-valued, multi-valued and continuous logics with current inputs and current outputs. Such advanced basic cells realize function nonlinear time-pulse transformation, analog-to-digital converters and neural logic. We showed advantages of such elements. It's have a number of advantages: high speed and reliability, simplicity, small power consumption, high integration level. The conception of construction of SMCLD consists in the use of a current mirrors realized on 1.5μm technology CMOS transistors. Presence of 50÷70 transistors, 1 PD and 1 LED makes the offered circuits quite compact. The simulation results of NOT, MIN, MAX, equivalence (EQ), normalize summation, averaging and other functions, that implemented SMCLD, showed that the level of logical variables can change from 0.1μA to 10μA for low-power consumption variants. The SMCLD have low power consumption <1mW and processing time about 1÷11μS at supply voltage 2.4÷3.3V.

  14. Structural Benchmark Creep Testing for Microcast MarM-247 Advanced Stirling Convertor E2 Heater Head Test Article SN18

    Science.gov (United States)

    Krause, David L.; Brewer, Ethan J.; Pawlik, Ralph

    2013-01-01

    This report provides test methodology details and qualitative results for the first structural benchmark creep test of an Advanced Stirling Convertor (ASC) heater head of ASC-E2 design heritage. The test article was recovered from a flight-like Microcast MarM-247 heater head specimen previously used in helium permeability testing. The test article was utilized for benchmark creep test rig preparation, wall thickness and diametral laser scan hardware metrological developments, and induction heater custom coil experiments. In addition, a benchmark creep test was performed, terminated after one week when through-thickness cracks propagated at thermocouple weld locations. Following this, it was used to develop a unique temperature measurement methodology using contact thermocouples, thereby enabling future benchmark testing to be performed without the use of conventional welded thermocouples, proven problematic for the alloy. This report includes an overview of heater head structural benchmark creep testing, the origin of this particular test article, test configuration developments accomplished using the test article, creep predictions for its benchmark creep test, qualitative structural benchmark creep test results, and a short summary.

  15. The pKa Cooperative: a collaborative effort to advance structure-based calculations of pKa values and electrostatic effects in proteins.

    Science.gov (United States)

    Nielsen, Jens E; Gunner, M R; García-Moreno, Bertrand E

    2011-12-01

    The pK(a) Cooperative (http://www.pkacoop.org) was organized to advance development of accurate and useful computational methods for structure-based calculation of pK(a) values and electrostatic energies in proteins. The Cooperative brings together laboratories with expertise and interest in theoretical, computational, and experimental studies of protein electrostatics. To improve structure-based energy calculations, it is necessary to better understand the physical character and molecular determinants of electrostatic effects. Thus, the Cooperative intends to foment experimental research into fundamental aspects of proteins that depend on electrostatic interactions. It will maintain a depository for experimental data useful for critical assessment of methods for structure-based electrostatics calculations. To help guide the development of computational methods, the Cooperative will organize blind prediction exercises. As a first step, computational laboratories were invited to reproduce an unpublished set of experimental pK(a) values of acidic and basic residues introduced in the interior of staphylococcal nuclease by site-directed mutagenesis. The pK(a) values of these groups are unique and challenging to simulate owing to the large magnitude of their shifts relative to normal pK(a) values in water. Many computational methods were tested in this first Blind Prediction Challenge and critical assessment exercise. A workshop was organized in the Telluride Science Research Center to objectively assess the performance of many computational methods tested on this one extensive data set. This volume of Proteins: Structure, Function, and Bioinformatics introduces the pK(a) Cooperative, presents reports submitted by participants in the Blind Prediction Challenge, and highlights some of the problems in structure-based calculations identified during this exercise.

  16. Advances in research on structure and function of CRISPR%CRISPR结构与功能研究进展

    Institute of Scientific and Technical Information of China (English)

    杨超杰; 邱少富; 宋宏彬

    2013-01-01

    Clustered regularly interspaced short palindromic repeats (CRISPR) found in Archaea and Bacteria encode an adaptive immune system, which provides effective resistance against phages and foreign nucleic-acid elements. CRISPR is becoming a hot spot in the field of bacteriology because of the unusual structure and specific function. The research progress in the structure, classification, function, and mechanism of the CRISPR system is reviewed.%研究发现,在细菌纲和古细菌纲中发现的规律成簇间隔短回文重复序列(clustered regularly interspaced short palindromic repeat,CRISPR)构建了一种特殊的防御系统,能够有效地抵抗噬菌体和外界各种基因元件对其造成的干扰.CRISPR因其在结构上的特殊性以及功能上的特异性正逐渐成为细菌研究领域的热点.本文综述了近 年来有关CRISPR系统的作用机制、分类、结构与相关功能的研究进展.

  17. Structural features of a bituminous coal and their changes during low-temperature oxidation and loss of volatiles investigated by advanced solid-state NMR spectroscopy

    Science.gov (United States)

    Mao, J.-D.; Schimmelmann, A.; Mastalerz, Maria; Hatcher, P.G.; Li, Y.

    2010-01-01

    Quantitative and advanced 13C solid-state NMR techniques were employed to investigate (i) the chemical structure of a high volatile bituminous coal, as well as (ii) chemical structural changes of this coal after evacuation of adsorbed gases, (iii) during oxidative air exposure at room temperature, and (iv) after oxidative heating in air at 75 ??C. The solid-state NMR techniques employed in this study included quantitative direct polarization/magic angle spinning (DP/MAS) at a high spinning speed of 14 kHz, cross polarization/total sideband suppression (CP/TOSS), dipolar dephasing, CH, CH2, and CHn selection, 13C chemical shift anisotropy (CSA) filtering, two-dimensional (2D) 1H-13C heteronuclear correlation NMR (HETCOR), and 2D HETCOR with 1H spin diffusion. With spectral editing techniques, we identified methyl CCH 3, rigid and mobile methylene CCH2C, methine CCH, quaternary Cq, aromatic CH, aromatic carbons bonded to alkyls, small-sized condensed aromatic moieties, and aromatic C-O groups. With direct polarization combined with spectral-editing techniques, we quantified 11 different types of functional groups. 1H-13C 2D HETCOR NMR experiments indicated spatial proximity of aromatic and alkyl moieties in cross-linked structures. The proton spin diffusion experiments indicated that the magnetization was not equilibrated at a 1H spin diffusion time of 5 ms. Therefore, the heterogeneity in spatial distribution of different functional groups should be above 2 nm. Recoupled C-H long-range dipolar dephasing showed that the fraction of large charcoal-like clusters of polycondensed aromatic rings was relatively small. The exposure of this coal to atmospheric oxygen at room temperature for 6 months did not result in obvious chemical structural changes of the coal, whereas heating at 75 ??C in air for 10 days led to oxidation of coal and generated some COO groups. Evacuation removed most volatiles and caused a significant reduction in aliphatic signals in its DP

  18. Correlation of predicted and measured thermal stresses on an advanced aircraft structure with dissimilar materials. [hypersonic heating simulation

    Science.gov (United States)

    Jenkins, J. M.

    1979-01-01

    Additional information was added to a growing data base from which estimates of finite element model complexities can be made with respect to thermal stress analysis. The manner in which temperatures were smeared to the finite element grid points was examined from the point of view of the impact on thermal stress calculations. The general comparison of calculated and measured thermal stresses is guite good and there is little doubt that the finite element approach provided by NASTRAN results in correct thermal stress calculations. Discrepancies did exist between measured and calculated values in the skin and the skin/frame junctures. The problems with predicting skin thermal stress were attributed to inadequate temperature inputs to the structural model rather than modeling insufficiencies. The discrepancies occurring at the skin/frame juncture were most likely due to insufficient modeling elements rather than temperature problems.

  19. Efficiently Harvesting Sun Light for Silicon Solar Cells through Advanced Optical Couplers and A Radial p-n Junction Structure

    Directory of Open Access Journals (Sweden)

    Hsin-Cheng Lee

    2010-04-01

    Full Text Available Silicon-based solar cells (SCs promise to be an alternative energy source mainly due to: (1 a high efficiency-to-cost ratio, (2 the absence of environmental-degradation issues, and (3 great reliability. Transition from wafer-based to thin-film SC significantly reduces the cost of SCs, including the cost from the material itself and the fabrication process. However, as the thickness of the absorption (or the active layer decreases, the energy-conversion efficiency drops dramatically. As a consequence, we discuss here three techniques to increase the efficiency of silicon-based SCs: (1 photonic crystal (PC optical couplers and (2 plasmonic optical couplers to increase efficiency of light absorption in the SCs, and (3 a radial p-n junction structure, decomposing light absorption and diffusion path into two orthogonal directions. The detailed mechanisms and recent research progress regarding these techniques are discussed in this review article.

  20. Advanced X-Ray Inspection of Reinforced Carbon Composite Materials on the Orbiter Leading Edge Structural Subsystem (LESS)

    Science.gov (United States)

    Hernandez, Jose M.; Berry, Robert F.; Osborn, Robin; Bueno, Clifford; Osterlitz, Mark; Mills, Richard; Morris, Philip; Phalen, Robert; McNab, Jim; Thibodeaux, Tahanie; Thompson, Kyle

    2004-01-01

    The post return-to-flight (RTF) inspection methodology for the Orbiter Leading Edge Structural Subsystem (LESS) is currently being defined. Numerous NDT modalities and techniques are being explored to perform the flight-to-flight inspections of the reinforced carbon/carbon (RCC) composite material for impact damage, general loss of mass in the bulk layers, or other anomalous conditions that would pose risk to safe return upon re-entry. It is possible to have an impact upon ascent that is not visually observable on the surface, yet causes internal damage. Radiographic testing may be a useful NDT technique for such occurrences. The authors have performed radiographic tests on full-sized mock samples of LESS hardware with embedded image quality phantoms. Digitized radiographic film, computed radiography and flat panel digital real-time radiography was acquired using a GE Eresco 200 x-ray tube, and Se-75 and Yb-169 radioisotopes.

  1. Advanced demodulation technique for the extraction of tissue optical properties and structural orientation contrast in the spatial frequency domain

    Science.gov (United States)

    Nadeau, Kyle P.; Durkin, Anthony J.; Tromberg, Bruce J.

    2014-05-01

    We have developed a method for extracting spatial frequency information content from biological tissue, which is used to calculate tissue optical properties and determine tissue structural orientation. This demodulation method employs a two-dimensional Hilbert transform using a spiral phase function in Fourier space. The approach presented here allows for the determination of tissue optical properties using a single frame of data for each modulation frequency, increasing imaging speed by two to threefold versus conventional, three-phase spatial frequency domain imaging (SFDI). This new single-phase Hilbert transform approach recovers optical property and scattering orientation index values within 1% and 10% of three-phase SFDI, respectively. These results suggest that, using the Hilbert demodulation technique, SFDI data acquisition speed can be increased significantly while preserving data quality, which will help us move forward toward the implementation of a real-time SFDI platform.

  2. Pace: an advanced structure for handling multi-technique NDT; Pace: une structure avancee pour la gestion de donnees CND multitechniques

    Energy Technology Data Exchange (ETDEWEB)

    Mayos, M.; Guisnel, F.

    1995-08-01

    The growing extent and complexity of NDT data analysis has reached a stage where dedicated systems are required. In the context of a European research program, EDF participated from 1992 to 1994 in one of the first international projects in this field, TRAPPIST and, in 1993, began developing An application for the electricity generating industry, giving rise to the PACE project. The prime objective specially targets the French electricity generating industry, where PACE was to be the reference system for analysis of NDE data concerning EdF power plants. The second objective is to promote the adoption of PACE by other industrial sectors and other countries. The analysis of needs shows that the required system must be designed to analyze data from widely different sources. The PACE entry point consequently has to be a standard format compatible with geometrical data as well as those provided by NDT. The TRAPPIST format constitutes the first version of this standard and is the first step towards European standardization in this respect. Consideration of the different user modes defined for PACE led to the design of a 2-part user structure comprising a database management system (Ingres/Windows 4GL) and a display/processing tool (AVS), also usable to construct analysis scenarios. The structure of PACE is defined nd seems well suited to industrial requirements, but before it is possible to proceed further towards its adoption for actual power plant inspections, it has to be validated on a more realistic application, the eddy current and ultrasonic testing of a full-scale T-joint. This is already under way, whilst work on format standardization and industrialization preparatory procedures are proceeding in parallel. (authors). 4 refs., 6 figs.

  3. Influence of carbon nanoparticles/epoxy matrix interaction on mechanical, electrical and transport properties of structural advanced materials

    Science.gov (United States)

    Guadagno, Liberata; Naddeo, Carlo; Raimondo, Marialuigia; Barra, Giuseppina; Vertuccio, Luigi; Russo, Salvatore; Lafdi, Khalid; Tucci, Vincenzo; Spinelli, Giovanni; Lamberti, Patrizia

    2017-03-01

    The focus of this study is to design new nano-modified epoxy formulations using carbon nanofillers, such as carbon nanotubes, carbon nanofibers and graphene-based nanoparticles (CpEG), that reduce the moisture content and provide additional functional performance. The chemical structure of epoxy mixture, using a non-stoichiometric amount of hardener, exhibits unique properties in regard to the water sorption for which the equilibrium concentration of water (C eq) is reduced up to a maximum of 30%. This result, which is very relevant for several industrial applications (aeronautical, shipbuilding industries, wind turbine blades, etc), is due to a strong reduction of the polar groups and/or sites responsible to bond water molecules. All nanofillers are responsible of a second phase at lower glass transition temperature (Tg). Compared with other carbon nanofillers, functionalized graphene-based nanoparticles exhibit the best performance in the multifunctionality. The lowest moisture content, the high performance in the mechanical properties, the low electrical percolation threshold (EPT) have been all ascribed to particular arrangements of the functionalized graphene sheets embedded in the polymeric matrix. Exfoliation degree and edge carboxylated groups are responsible of self-assembled architectures which entrap part of the resin fraction hindering the interaction of water molecules with the polar sites of the resin, also favouring the EPT paths and the attractive/covalent interactions with the matrix.

  4. Recent advances in PC-Linux systems for electronic structure computations by optimized compilers and numerical libraries.

    Science.gov (United States)

    Yu, Jen-Shiang K; Yu, Chin-Hui

    2002-01-01

    One of the most frequently used packages for electronic structure research, GAUSSIAN 98, is compiled on Linux systems with various hardware configurations, including AMD Athlon (with the "Thunderbird" core), AthlonMP, and AthlonXP (with the "Palomino" core) systems as well as the Intel Pentium 4 (with the "Willamette" core) machines. The default PGI FORTRAN compiler (pgf77) and the Intel FORTRAN compiler (ifc) are respectively employed with different architectural optimization options to compile GAUSSIAN 98 and test the performance improvement. In addition to the BLAS library included in revision A.11 of this package, the Automatically Tuned Linear Algebra Software (ATLAS) library is linked against the binary executables to improve the performance. Various Hartree-Fock, density-functional theories, and the MP2 calculations are done for benchmarking purposes. It is found that the combination of ifc with ATLAS library gives the best performance for GAUSSIAN 98 on all of these PC-Linux computers, including AMD and Intel CPUs. Even on AMD systems, the Intel FORTRAN compiler invariably produces binaries with better performance than pgf77. The enhancement provided by the ATLAS library is more significant for post-Hartree-Fock calculations. The performance on one single CPU is potentially as good as that on an Alpha 21264A workstation or an SGI supercomputer. The floating-point marks by SpecFP2000 have similar trends to the results of GAUSSIAN 98 package.

  5. Anatase TiO2@C composites with porous structure as an advanced anode material for Na ion batteries

    Science.gov (United States)

    Shi, Xiaodong; Zhang, Zhian; Du, Ke; Lai, Yanqing; Fang, Jing; Li, Jie

    2016-10-01

    In this paper, we propose a facile strategy to synthesize the porous structure TiO2@C composites through a two-step method, in which the precursor of MIL-125(Ti) was firstly prepared by solvent thermal method and then calcined under inert atmosphere. When employed as anodes for Na ion batteries, TiO2@C composites can exhibit a superior cyclability with a reversible sodium storage capacity of 148 mAh g-1 at the current density 0.5 A g-1 after 500 cycles and an excellent rate performance with a capacity of 88.9 mAh g-1 even the current reached to 2.5 A g-1 due to the dispersion of anatase TiO2 throughout amorphous carbon matrix and the synergistic effect between the anatase TiO2 nanocrystals and carbon matrix, which can availably enhance the electric conductivity and alleviate the volumetric variation of TiO2 during the insertion/extraction process of Na+.

  6. Finite element analysis and cellular studies on advanced, controlled porous structures with subsurface continuity in bio-implantable titanium alloys.

    Science.gov (United States)

    Lambert, P; Ankem, S; Wyatt, Z; Ferlin, K M; Fisher, J

    2014-01-01

    Highly-porous metallic implant onlay materials (specifically those containing surface pores that intersect beneath the onlay surface) have been investigated recently for their potential to reduce bone resorption and to improve the overall stability of the implant. In the current study, sub-surface interconnectivity of high-aspect-ratio pores was created directly in the substrate of an implant material using wire electrical discharge machining (EDM). This technique was used to produce intersecting pores with diameters of 180-250 μm on a clinically relevant implant material—commercially pure (CP) Grade 4 Ti—with a very high degree of control over pore morphology. These pores resulted in no significant microstructural modification to the surrounding Ti, and the inner pore surfaces could be thermally oxidized to produce a microrough, bioactive TiO2 layer. Finite element analysis of Ti models containing these EDM-attainable intersecting pore geometries suggested they produce higher bone/implant interface strengths and lower susceptibility to stress shielding of the surrounding bone as compared with models containing simpler surface geometries. In vitro experiments using mesenchymal stem cells (MSCs) demonstrated mineralized tissue ingrowth of ∼ 300 μm into EDM-produced pores. This amount of ingrowth is expected to allow for full interlocking of mineralized tissue and implant given the proper pore structure design.

  7. Influence of carbon nanoparticles/epoxy matrix interaction on mechanical, electrical and transport properties of structural advanced materials.

    Science.gov (United States)

    Guadagno, Liberata; Naddeo, Carlo; Raimondo, Marialuigia; Barra, Giuseppina; Vertuccio, Luigi; Russo, Salvatore; Lafdi, Khalid; Tucci, Vincenzo; Spinelli, Giovanni; Lamberti, Patrizia

    2017-03-03

    The focus of this study is to design new nano-modified epoxy formulations using carbon nanofillers, such as carbon nanotubes, carbon nanofibers and graphene-based nanoparticles (CpEG), that reduce the moisture content and provide additional functional performance. The chemical structure of epoxy mixture, using a non-stoichiometric amount of hardener, exhibits unique properties in regard to the water sorption for which the equilibrium concentration of water (C eq) is reduced up to a maximum of 30%. This result, which is very relevant for several industrial applications (aeronautical, shipbuilding industries, wind turbine blades, etc), is due to a strong reduction of the polar groups and/or sites responsible to bond water molecules. All nanofillers are responsible of a second phase at lower glass transition temperature (Tg). Compared with other carbon nanofillers, functionalized graphene-based nanoparticles exhibit the best performance in the multifunctionality. The lowest moisture content, the high performance in the mechanical properties, the low electrical percolation threshold (EPT) have been all ascribed to particular arrangements of the functionalized graphene sheets embedded in the polymeric matrix. Exfoliation degree and edge carboxylated groups are responsible of self-assembled architectures which entrap part of the resin fraction hindering the interaction of water molecules with the polar sites of the resin, also favouring the EPT paths and the attractive/covalent interactions with the matrix.

  8. Advanced piezoelectric crystal Ca3TaGa3Si2O14: growth, crystal structure perfection, and acoustic properties

    Science.gov (United States)

    Roshchupkin, Dmitry; Ortega, Luc; Plotitcyna, Olga; Erko, Alexei; Zizak, Ivo; Irzhak, Dmitry; Fahrtdinov, Rashid; Buzanov, Oleg

    2014-03-01

    A five-component crystal of the lanthanum-gallium silicate family Ca3TaGa3Si2O14 (CTGS) was grown by the Czochralski method. The CTGS crystal, like the langasite crystal (La3Ga5SiO14, LGS), possesses unique temperature properties and the fewer number of the Ga atoms in the unit cell makes the density much lower and, consequently, increases the velocity of acoustic wave propagation. The unit-cell parameters were determined by the powder diffraction technique. The defects in the CTGS crystal structure were studied by X-ray topography, which enables the visualization of growth banding characteristics of crystals grown by the Czochralski method. Surface acoustic wave (SAW) propagation in the CTGS crystal was investigated by the high-resolution X-ray diffraction method on the BESSY II synchrotron radiation source. The velocities of propagation and power flow angles of SAWs in the Y- and X-cuts of the CTGS crystal were determined from the X-ray diffraction spectra.

  9. Laser machining of advanced materials

    CERN Document Server

    Dahotre, Narendra B

    2011-01-01

    Advanced materialsIntroductionApplicationsStructural ceramicsBiomaterials CompositesIntermetallicsMachining of advanced materials IntroductionFabrication techniquesMechanical machiningChemical Machining (CM)Electrical machiningRadiation machining Hybrid machiningLaser machiningIntroductionAbsorption of laser energy and multiple reflectionsThermal effectsLaser machining of structural ceramicsIntrodu

  10. Advance care directives

    Science.gov (United States)

    ... advance directive; Do-not-resuscitate - advance directive; Durable power of attorney - advance care directive; POA - advance care directive; Health care agent - advance care directive; Health care proxy - ...

  11. "Structure and dynamics in complex chemical systems: Gaining new insights through recent advances in time-resolved spectroscopies.” ACS Division of Physical Chemistry Symposium presented at the Fall National ACS Meeting in Boston, MA, August 2015

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, Daniel [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2016-09-26

    8-Session Symposium on STRUCTURE AND DYNAMICS IN COMPLEX CHEMICAL SYSTEMS: GAINING NEW INSIGHTS THROUGH RECENT ADVANCES IN TIME-RESOLVED SPECTROSCOPIES. The intricacy of most chemical, biochemical, and material processes and their applications are underscored by the complex nature of the environments in which they occur. Substantial challenges for building a global understanding of a heterogeneous system include (1) identifying unique signatures associated with specific structural motifs within the heterogeneous distribution, and (2) resolving the significance of each of multiple time scales involved in both small- and large-scale nuclear reorganization. This symposium focuses on the progress in our understanding of dynamics in complex systems driven by recent innovations in time-resolved spectroscopies and theoretical developments. Such advancement is critical for driving discovery at the molecular level facilitating new applications. Broad areas of interest include: Structural relaxation and the impact of structure on dynamics in liquids, interfaces, biochemical systems, materials, and other heterogeneous environments.

  12. Advance payments

    CERN Multimedia

    Human Resources Division

    2003-01-01

    Administrative Circular N 8 makes provision for the granting of advance payments, repayable in several monthly instalments, by the Organization to the members of its personnel. Members of the personnel are reminded that these advances are only authorized in exceptional circumstances and at the discretion of the Director-General. In view of the current financial situation of the Organization, and in particular the loans it will have to incur, the Directorate has decided to restrict the granting of such advances to exceptional or unforeseen circumstances entailing heavy expenditure and more specifically those pertaining to social issues. Human Resources Division Tel. 73962

  13. ADVANCE PAYMENTS

    CERN Multimedia

    Human Resources Division

    2002-01-01

    Administrative Circular Nº 8 makes provision for the granting of advance payments, repayable in several monthly instalments, by the Organization to the members of its personnel. Members of the personnel are reminded that these advances are only authorized in exceptional circumstances and at the discretion of the Director-General. In view of the current financial situation of the Organization, and in particular the loans it will have to incur, the Directorate has decided to restrict the granting of such advances to exceptional or unforeseen circumstances entailing heavy expenditure and more specifically those pertaining to social issues. Human Resources Division Tel. 73962

  14. The annealing effects on the micro-structure and properties of RuMoC films as seedless barrier for advanced Cu metallization

    Science.gov (United States)

    Zou, Jianxiong; Liu, Bo; Jiao, Guohua; Lu, Yuanfu; Dong, Yuming; Li, Qiran

    2016-09-01

    100 nm thick RuMoC films and 5 nm thick RuMoC films with Cu capping have been deposited on Si(111) by magnetron co-sputtering with Ru and MoC confocal targets. The samples were subsequently annealed at temperatures ranging from 450 to 650 °C in vacuum at a pressure of 3 × 10-4 Pa to study the annealing effects on the microstructures and properties of RuMoC films for advanced seedless Cu metallization applications. The sheet resistances, residual oxygen contents, and microstructures of the RuMoC films have close correlation with the doping contents of Mo and C, which can be easily controlled by the deposition power ratio of MoC versus Ru targets (DPR). When DPR was 0.5, amorphous RuMoC film (marked as RuMoC II) with low sheet resistances and residual oxygen contents was obtained. The fundamental relationship between the annealing temperatures with the microstructures and properties of the RuMoC films was investigated, and a critical temperature point was revealed at about 550 °C where the components and microstructures of the RuMoC II films changed obviously. Results indicated that below 550 °C, the RuMoC II films remained amorphous due to the well-preserved C-Ru and C-Mo bonds. However, above 550 °C, the microstructures of RuMoC II films transformed from amorphous to nano-composite structure due to the breakage of Ru-C bonds, while the supersaturated solid solution MoC segregated out along the grain boundaries of Ru, thus hindering the diffusion of Cu and O atoms. This is the main mechanism of the excellent thermal stability of the RuMoC films after annealing at high temperatures. The results indicated great prospects of amorphous RuMoC films in advanced seedless Cu metallization applications.

  15. Advanced Magnetic Nanostructures

    CERN Document Server

    Sellmyer, David

    2006-01-01

    Advanced Magnetic Nanostructures is devoted to the fabrication, characterization, experimental investigation, theoretical understanding, and utilization of advanced magnetic nanostructures. Focus is on various types of 'bottom-up' and 'top-down' artificial nanostructures, as contrasted to naturally occurring magnetic nanostructures, such as iron-oxide inclusions in magnetic rocks, and to structures such as perfect thin films. Chapter 1 is an introduction into some basic concepts, such as the definitions of basic magnetic quantities. Chapters 2-4 are devoted to the theory of magnetic nanostructures, Chapter 5 deals with the characterization of the structures, and Chapters 6-10 are devoted to specific systems. Applications of advanced magnetic nanostructures are discussed in Chapters11-15 and, finally, the appendix lists and briefly discusses magnetic properties of typical starting materials. Industrial and academic researchers in magnetism and related areas such as nanotechnology, materials science, and theore...

  16. Advanced nanoelectronics

    CERN Document Server

    Ismail, Razali

    2012-01-01

    While theories based on classical physics have been very successful in helping experimentalists design microelectronic devices, new approaches based on quantum mechanics are required to accurately model nanoscale transistors and to predict their characteristics even before they are fabricated. Advanced Nanoelectronics provides research information on advanced nanoelectronics concepts, with a focus on modeling and simulation. Featuring contributions by researchers actively engaged in nanoelectronics research, it develops and applies analytical formulations to investigate nanoscale devices. The

  17. Silicene: Recent theoretical advances

    KAUST Repository

    Lew Yan Voon, L. C.

    2016-04-14

    Silicene is a two-dimensional allotrope of silicon with a puckered hexagonal structure closely related to the structure of graphene and that has been predicted to be stable. To date, it has been successfully grown in solution (functionalized) and on substrates. The goal of this review is to provide a summary of recent theoretical advances in the properties of both free-standing silicene as well as in interaction with molecules and substrates, and of proposed device applications.

  18. AdvancED Flex 4

    CERN Document Server

    Tiwari, Shashank; Schulze, Charlie

    2010-01-01

    AdvancED Flex 4 makes advanced Flex 4 concepts and techniques easy. Ajax, RIA, Web 2.0, mashups, mobile applications, the most sophisticated web tools, and the coolest interactive web applications are all covered with practical, visually oriented recipes. * Completely updated for the new tools in Flex 4* Demonstrates how to use Flex 4 to create robust and scalable enterprise-grade Rich Internet Applications.* Teaches you to build high-performance web applications with interactivity that really engages your users.* What you'll learn Practiced beginners and intermediate users of Flex, especially

  19. Advances in the study of brain structure and function of migraine with MRI%偏头痛脑结构和功能的MRI研究进展

    Institute of Scientific and Technical Information of China (English)

    兰慧; 李康; 吕发金

    2016-01-01

    作为一原发性头痛,偏头痛表现出特征性的单侧、中、重度搏动性头痛,并且随着日常活动的增加而加剧,也常伴随恶心呕吐、畏光畏声等神经、胃肠、自主神经症状。偏头痛给患者和社会带来负担,例如增加患者的环境敏感性、造成残疾甚至丧失社会生产的能力。近年的神经影像学发现频繁的头痛发作引起了脑结构与功能的改变。该文将从MRI所显示的偏头痛脑结构与功能异常作一次回顾性分析研究。%AbstractAs an primary headache disorder, migraine is characteri zed by moderate to severe pain, which consists of unilateral and pulsating headache attacks that are typically aggravated by physical activity ,and accompanied by nausea and vomiting, photophobia, pho nophobia and other neurological, gastrointestinal, autonomic sympto-ms. Causes significant individual and societal burdens as a result of pain, such as environmental sensitivity, disability and even lost prod uctivity. Recently, advanced neuroimaging has led to an evolution in our perception of migraine pathophysiology. Numerous neuroima ging studies have detected alterations in brain structureand function in patients with migraine.In this article, we will make a retrospec tive analysis of the brain structure and function of migraine, which is shown by magnetic resonance imaging.

  20. 依赖生物素的羧化酶的结构研究进展%Advances in structural studies of biotin-dependent carboxylases

    Institute of Scientific and Technical Information of China (English)

    樊晨; 向嵩

    2013-01-01

    依赖生物素的羧化酶羧化形式多样的底物分子,在多个代谢途径中发挥重要的功能.在它们催化的反应中,生物素充当羧基转运的载体,它们的Biotin Carboxylase(BC)和CarboxylTransferase(CT)结构域催化反应的两个步骤,生物素的羧化和羧基由生物素向底物分子的转移.近期一系列对它们结构的研究揭示了BC和CT结构域催化反应的机制,也为理解羧基在反应中的转运过程提供了线索,极大地深化了对这些酶功能机理的认识.对这方面研究的近期进展做一概述.%Biotin-dependent carboxylases carboxylate a wide range of molecules, playing important roles in several metabolic pathways. In the carboxylation reactions catalyzed by these enzymes, biotin acts as a carboxyl carrier, their Biotin Carboxylase (BC) and CarboxylTransferase (CT) domains catalyze two steps of the reaction, carboxylation of biotin and transfer of the carboxyl group from biotin to the substrate molecule. Recent structural studies provided significant insights into the mechanism of the reactions catalyzed by the BC and CT domains, and the carboxyl transportation process, greatly advanced the understanding of these enzymes' function. Here we briefly summarize recent progresses in this area.

  1. Chemical structures of coal lithotypes before and after CO2 adsorption as investigated by advanced solid-state 13C nuclear magnetic resonance spectroscopy

    Science.gov (United States)

    Cao, X.; Mastalerz, Maria; Chappell, M.A.; Miller, L.F.; Li, Y.; Mao, J.

    2011-01-01

    Four lithotypes (vitrain, bright clarain, clarain, and fusain) of a high volatile bituminous Springfield Coal from the Illinois Basin were characterized using advanced solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. The NMR techniques included quantitative direct polarization/magic angle spinning (DP/MAS), cross polarization/total sideband suppression (CP/TOSS), dipolar dephasing, CHn selection, and recoupled C-H long-range dipolar dephasing techniques. The lithotypes that experienced high-pressure CO2 adsorption isotherm analysis were also analyzed to determine possible changes in coal structure as a result of CO2 saturation at high pressure and subsequent evacuation. The main carbon functionalities present in original vitrain, bright clarain, clarain and fusain were aromatic carbons (65.9%-86.1%), nonpolar alkyl groups (9.0%-28.9%), and aromatic C-O carbons (4.1%-9.5%). Among these lithotypes, aromaticity increased in the order of clarain, bright clarain, vitrain, and fusain, whereas the fraction of alkyl carbons decreased in the same order. Fusain was distinct from other three lithotypes in respect to its highest aromatic composition (86.1%) and remarkably small fraction of alkyl carbons (11.0%). The aromatic cluster size in fusain was larger than that in bright clarain. The lithotypes studied responded differently to high pressure CO2 saturation. After exposure to high pressure CO2, vitrain and fusain showed a decrease in aromaticity but an increase in the fraction of alkyl carbons, whereas bright clarain and clarain displayed an increase in aromaticity but a decrease in the fraction of alkyl carbons. Aromatic fused-rings were larger for bright clarain but smaller for fusain in the post-CO2 adsorption samples compared to the original lithotypes. These observations suggested chemical CO2-coal interactions at high pressure and the selectivity of lithotypes in response to CO2 adsorption. ?? 2011 Elsevier B.V.

  2. Advancement of the 10-species subgingival Zurich Biofilm model by examining different nutritional conditions and defining the structure of the in vitro biofilms

    Directory of Open Access Journals (Sweden)

    Ammann Thomas W

    2012-10-01

    Full Text Available Abstract Background Periodontitis is caused by a highly complex consortium of bacteria that establishes as biofilms in subgingival pockets. It is a disease that occurs worldwide and its consequences are a major health concern. Investigations in situ are not possible and the bacterial community varies greatly between patients and even within different loci. Due to the high complexity of the consortium and the availability of samples, a clear definition of the pathogenic bacteria and their mechanisms of pathogenicity are still not available. In the current study we addressed the need of a defined model system by advancing our previously described subgingival biofilm model towards a bacterial composition that reflects the one observed in diseased sites of patients and analysed the structure of these biofilms. Results We further developed the growth media by systematic variation of key components resulting in improved stability and the firm establishment of spirochetes in the 10-species subgingival Zurich biofilm model. A high concentration of heat-inactivated human serum allowed the best proliferation of the used species. Therefore we further investigated these biofilms by analysing their structure by confocal laser scanning microscopy following fluorescence in situ hybridisation. The species showed mutual interactions as expected from other studies. The abundances of all organisms present in this model were determined by microscopic counting following species-specific identification by both fluorescence in situ hybridisation and immunofluorescence. The newly integrated treponemes were the most abundant organisms. Conclusions The use of 50% of heat-inactivated human serum used in the improved growth medium resulted in significantly thicker and more stable biofilms, and the quantitative representation of the used species represents the in vivo community of periodontitis patients much closer than in biofilms grown in the two media with less or no

  3. Advanced linear algebra

    CERN Document Server

    Cooperstein, Bruce

    2015-01-01

    Advanced Linear Algebra, Second Edition takes a gentle approach that starts with familiar concepts and then gradually builds to deeper results. Each section begins with an outline of previously introduced concepts and results necessary for mastering the new material. By reviewing what students need to know before moving forward, the text builds a solid foundation upon which to progress. The new edition of this successful text focuses on vector spaces and the maps between them that preserve their structure (linear transformations). Designed for advanced undergraduate and beginning graduate stud

  4. Advances in chemical physics

    CERN Document Server

    Rice, Stuart A

    2014-01-01

    Advances in Chemical Physics is the only series of volumes available that explores the cutting edge of research in chemical physics. This is the only series of volumes available that presents the cutting edge of research in chemical physics.Includes contributions from experts in this field of research.Contains a representative cross-section of research that questions established thinking on chemical solutions.Structured with an editorial framework that makes the book an excellent supplement to an advanced graduate class in physical chemistry or chemical physics.

  5. Advanced calculus

    CERN Document Server

    Nickerson, HK; Steenrod, NE

    2011-01-01

    ""This book is a radical departure from all previous concepts of advanced calculus,"" declared the Bulletin of the American Mathematics Society, ""and the nature of this departure merits serious study of the book by everyone interested in undergraduate education in mathematics."" Classroom-tested in a Princeton University honors course, it offers students a unified introduction to advanced calculus. Starting with an abstract treatment of vector spaces and linear transforms, the authors introduce a single basic derivative in an invariant form. All other derivatives - gradient, divergent, curl,

  6. Advances in hypersonic vehicle synthesis with application to studies of advanced thermal protection system

    Science.gov (United States)

    Ardema, Mark D.

    1995-01-01

    This report summarizes the work entitled 'Advances in Hypersonic Vehicle Synthesis with Application to Studies of Advanced Thermal Protection Systems.' The effort was in two areas: (1) development of advanced methods of trajectory and propulsion system optimization; and (2) development of advanced methods of structural weight estimation. The majority of the effort was spent in the trajectory area.

  7. Advanced ferroelectricity

    CERN Document Server

    Blinc, R

    2011-01-01

    Advances in the field of ferroelectricity have implications both for basic physics and for technological applications such as memory devices, spintronic applications and electro-optic devices, as well as in acoustics, robotics, telecommunications and medicine. This book provides an account of recent developments in the field.

  8. Advances in business ICT

    CERN Document Server

    Pełech-Pilichowski, Tomasz

    2014-01-01

    Futurists and scientists alike profess the coming of a new era in the history – the knowledge era. The notion of knowledge is as old as humans’ self-consciousness, but new challenges appear. The meaning of the word “knowledge” is changing from cognitive notion to a technical term denoting a structured economic resource to be actively managed. This contributed volume is a result of vivid and extremely valuable discussions held at 3rd International Workshop on Advances in Business ICT (ABICT) in Wrocław, Poland, September 9-12, 2012. The workshop focused on Advances in Business ICT approached from a multidisciplinary perspective. It provided an international forum for scientists/experts from academia and industry to discuss and exchange current results, applications, new ideas of ongoing research and experience on all aspects of Business Intelligence. ABICT has also been an opportunity to demonstrate different ideas and tools for developing and supporting organizational creativity, as well as advances ...

  9. ADVANCEMENT & PROMOTION REVIEW: 2002

    CERN Multimedia

    2002-01-01

    Advancement, exceptional advancement and promotion decisions were made at the beginning of July, under the new career structure scheme and following the procedures published in Weekly Bulletin No. 11/2002. These decisions were included, where applicable, in the salaries for the month of July 2002. The award of the periodic step was communicated to staff by the salary shown on the July salary slip. All other decisions are communicated by separate notification. The names of staff receiving exceptional advancements or promotions will be published this year on the HR Division website and are accessible for consultation only at the following address : http://cern.ch/hr-div/internal/personnel/advlist.asp It is recalled that change of career path proposals submitted to the Technical Engineers and Administrative Careers Committee (TEACC) or to Human Resources Division are being examined with a view to preparing the latters' recommendations by the end of September 2002. Final decisions will be applied retroactivel...

  10. Advancing Leadership

    Directory of Open Access Journals (Sweden)

    Penny L. Tenuto

    2014-04-01

    Full Text Available Preparing students to become active citizens and contributors to a democratic society is premised on teaching democratic principles and modeling standards of democratic practice at all levels of education. The purpose of this integrative literature review is to establish a conceptual framework grounded in literature and a model for cultivating democratic professional practice in education (DPPE to advance leadership for school improvement. This work is presented in three parts: (a a review of historical references, reports, and legislation that culminated in increased accountability and standards in P-12 public education; (b a discussion of social patterns in education generally associated with bureaucracy versus democracy; and (c a new contribution to the literature, a model for cultivating DPPE is conceptualized to encourage leading and teaching professionals to reflect on beliefs and evaluate practices in advancing leadership for school improvement. Recommendations are included for further research.

  11. Advanced Virgo

    CERN Multimedia

    Virgo, a first-generation interferometric gravitational wave (GW) detector, located in the European Gravitational Observatory, EGO, Cascina (Pisa-Italy) and constructed by the collaboration of French and Italian institutes (CNRS and INFN) has successfully completed its long-duration data taking runs. It is now undergoing a fundamental upgrade that exploits available cutting edges technology to open an exciting new window on the universe, with the first detection of a gravitational wave signal. Advanced Virgo (AdV) is the project to upgrade the Virgo detector to a second-generation instrument. AdV will be able to scan a volume of the Universe 1000 times larger than initial Virgo. AdV will be hosted in the same infrastructures as Virgo. The Advanced VIRGO project is funded and at present carried on by a larger collaboration of institutes belonging to CNRS- France , RMKI - Hungary, INFN- Italy, Nikhef - The Netherlands Polish Academy of Science - Poland.

  12. Advanced LIGO

    OpenAIRE

    Aasi, J.; Abbott, B.; Abbott, R.; Abbott, T.; Abernathy, M; Ackley, K.; Adams, C.; Adams, T.; Addesso, P; Adhikari, R.; Adya, V.; Affeldt, C.; Aggarwal, N.; Aguiar, O.; Ain, A.

    2014-01-01

    The Advanced LIGO gravitational wave detectors are second-generation instruments designed and built for the two LIGO observatories in Hanford, WA and Livingston, LA, USA. The two instruments are identical in design, and are specialized versions of a Michelson interferometer with 4 km long arms. As in Initial LIGO, Fabry–Perot cavities are used in the arms to increase the interaction time with a gravitational wave, and power recycling is used to increase the effective laser power. Signal recyc...

  13. Advanced Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, Gordon R. [NETL

    2013-03-11

    The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

  14. A case of strong metal-support interactions: combining advanced microscopy and model systems to elucidate the atomic structure of interfaces.

    Science.gov (United States)

    Willinger, Marc G; Zhang, Wei; Bondarchuk, Oleksandr; Shaikhutdinov, Shamil; Freund, Hans-Joachim; Schlögl, Robert

    2014-06-02

    A symbiosis of advanced scanning probe and electron microscopy and a well-defined model system may provide a detailed picture of interfaces on nanostructured catalytic systems. This was demonstrated for Pt nanoparticles supported on iron oxide thin films which undergo encapsulation by supporting oxide as a result of strong metal-support interactions.

  15. Advances in microwaves 8

    CERN Document Server

    Young, Leo

    2013-01-01

    Advances in Microwaves, Volume 8 covers the developments in the study of microwaves. The book discusses the circuit forms for microwave integrated circuits; the analysis of microstrip transmission lines; and the use of lumped elements in microwave integrated circuits. The text also describes the microwave properties of ferrimagnetic materials, as well as their interaction with electromagnetic waves propagating in bounded waveguiding structures. The integration techniques useful at high frequencies; material technology for microwave integrated circuits; specific requirements on technology for d

  16. Advances in electronic materials

    CERN Document Server

    Kasper, Erich; Grimmeiss, Hermann G

    2008-01-01

    This special-topic volume, Advances in Electronic Materials, covers various fields of materials research such as silicon, silicon-germanium hetero-structures, high-k materials, III-V semiconductor alloys and organic materials, as well as nano-structures for spintronics and photovoltaics. It begins with a brief summary of the formative years of microelectronics; now the keystone of information technology. The latter remains one of the most important global technologies, and is an extremely complex subject-area. Although electronic materials are primarily associated with computers, the internet

  17. Advanced trigonometry

    CERN Document Server

    Durell, C V

    2003-01-01

    This volume will provide a welcome resource for teachers seeking an undergraduate text on advanced trigonometry, when few are readily available. Ideal for self-study, this text offers a clear, logical presentation of topics and an extensive selection of problems with answers. Contents include the properties of the triangle and the quadrilateral; equations, sub-multiple angles, and inverse functions; hyperbolic, logarithmic, and exponential functions; and expansions in power-series. Further topics encompass the special hyperbolic functions; projection and finite series; complex numbers; de Moiv

  18. Flotation advances

    Energy Technology Data Exchange (ETDEWEB)

    Clifford, D.

    1998-11-01

    This paper describes recent advances in flotation cell and mechanism design. OutoKumpu have designed larger cells, suitable for the flotation of smaller particles, with differing mechanisms for particles of different types. Froth handling is also closely controlled. Flotation cells from BQR are also described. Flotation columns are also increasingly being adopted, complementing the use of conventional flotation cells. Designs by Wemco, Multotec, VERTI-MIX, Jameson, Suedala, Quinn and Cytec are detailed, giving improvements in fine coal separation coarse particle separation, and other innovations. 8 figs., 2 tabs.

  19. Advanced calculus

    CERN Document Server

    Friedman, Avner

    2007-01-01

    This rigorous two-part treatment advances from functions of one variable to those of several variables. Intended for students who have already completed a one-year course in elementary calculus, it defers the introduction of functions of several variables for as long as possible, and adds clarity and simplicity by avoiding a mixture of heuristic and rigorous arguments.The first part explores functions of one variable, including numbers and sequences, continuous functions, differentiable functions, integration, and sequences and series of functions. The second part examines functions of several

  20. Advanced calculus

    CERN Document Server

    Widder, David V

    2012-01-01

    This classic text by a distinguished mathematician and former Professor of Mathematics at Harvard University, leads students familiar with elementary calculus into confronting and solving more theoretical problems of advanced calculus. In his preface to the first edition, Professor Widder also recommends various ways the book may be used as a text in both applied mathematics and engineering.Believing that clarity of exposition depends largely on precision of statement, the author has taken pains to state exactly what is to be proved in every case. Each section consists of definitions, theorem

  1. Advanced LIGO

    CERN Document Server

    ,

    2014-01-01

    The Advanced LIGO gravitational wave detectors are second generation instruments designed and built for the two LIGO observatories in Hanford, WA and Livingston, LA. The two instruments are identical in design, and are specialized versions of a Michelson interferometer with 4 km long arms. As in initial LIGO, Fabry-Perot cavities are used in the arms to increase the interaction time with a gravitational wave, and power recycling is used to increase the effective laser power. Signal recycling has been added in Advanced LIGO to improve the frequency response. In the most sensitive frequency region around 100 Hz, the design strain sensitivity is a factor of 10 better than initial LIGO. In addition, the low frequency end of the sensitivity band is moved from 40 Hz down to 10 Hz. All interferometer components have been replaced with improved technologies to achieve this sensitivity gain. Much better seismic isolation and test mass suspensions are responsible for the gains at lower frequencies. Higher laser power, ...

  2. Advanced LIGO

    Science.gov (United States)

    LIGO Scientific Collaboration; Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V.; Affeldt, C.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Alemic, A.; Allen, B.; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J. S.; Ashton, G.; Ast, S.; Aston, S. M.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballmer, S. W.; Barayoga, J. C.; Barbet, M.; Barclay, S.; Barish, B. C.; Barker, D.; Barr, B.; Barsotti, L.; Bartlett, J.; Barton, M. A.; Bartos, I.; Bassiri, R.; Batch, J. C.; Baune, C.; Behnke, B.; Bell, A. S.; Bell, C.; Benacquista, M.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Biwer, C.; Blackburn, J. K.; Blackburn, L.; Blair, C. D.; Blair, D.; Bock, O.; Bodiya, T. P.; Bojtos, P.; Bond, C.; Bork, R.; Born, M.; Bose, Sukanta; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Bridges, D. O.; Brinkmann, M.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchman, S.; Buikema, A.; Buonanno, A.; Cadonati, L.; Calderón Bustillo, J.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Caride, S.; Caudill, S.; Cavaglià, M.; Cepeda, C.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chen, Y.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Collette, C.; Cominsky, L.; Constancio, M., Jr.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cutler, C.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; Danzmann, K.; Dartez, L.; Dave, I.; Daveloza, H.; Davies, G. S.; Daw, E. J.; DeBra, D.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; D´ıaz, M.; Di Palma, I.; Dojcinoski, G.; Dominguez, E.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Driggers, J. C.; Du, Z.; Dwyer, S.; Eberle, T.; Edo, T.; Edwards, M.; Edwards, M.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Essick, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fairhurst, S.; Fan, X.; Fang, Q.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Ferreira, E. C.; Fisher, R. P.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fuentes-Tapia, S.; Fulda, P.; Fyffe, M.; Gair, J. R.; Gaonkar, S.; Gehrels, N.; Gergely, L. Á.; Giaime, J. A.; Giardina, K. D.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gräf, C.; Graff, P. B.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Grote, H.; Grunewald, S.; Guido, C. J.; Guo, X.; Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Hacker, J.; Hall, E. D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harry, G. M.; Harry, I. W.; Hart, M.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Hee, S.; Heintze, M.; Heinzel, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hollitt, S. E.; Holt, K.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E.; Howell, E. J.; Hu, Y. M.; Huerta, E.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Islas, G.; Isler, J. C.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacobson, M.; Jang, H.; Jawahar, S.; Ji, Y.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Ju, L.; Haris, K.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Keiser, G. M.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, C.; Kim, K.; Kim, N. G.; Kim, N.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Korobko, M.; Korth, W. Z.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Krueger, C.; Kuehn, G.; Kumar, A.; Kumar, P.; Kuo, L.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Le, J.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Leong, J. R.; Levin, Y.; Levine, B.; Lewis, J.; Li, T. G. F.; Libbrecht, K.; Libson, A.; Lin, A. C.; Littenberg, T. B.; Lockerbie, N. A.; Lockett, V.; Logue, J.; Lombardi, A. L.; Lormand, M.; Lough, J.; Lubinski, M. J.

    2015-04-01

    The Advanced LIGO gravitational wave detectors are second-generation instruments designed and built for the two LIGO observatories in Hanford, WA and Livingston, LA, USA. The two instruments are identical in design, and are specialized versions of a Michelson interferometer with 4 km long arms. As in Initial LIGO, Fabry-Perot cavities are used in the arms to increase the interaction time with a gravitational wave, and power recycling is used to increase the effective laser power. Signal recycling has been added in Advanced LIGO to improve the frequency response. In the most sensitive frequency region around 100 Hz, the design strain sensitivity is a factor of 10 better than Initial LIGO. In addition, the low frequency end of the sensitivity band is moved from 40 Hz down to 10 Hz. All interferometer components have been replaced with improved technologies to achieve this sensitivity gain. Much better seismic isolation and test mass suspensions are responsible for the gains at lower frequencies. Higher laser power, larger test masses and improved mirror coatings lead to the improved sensitivity at mid and high frequencies. Data collecting runs with these new instruments are planned to begin in mid-2015.

  3. Sedimentary and structural evolution of a Pleistocene small-scale push moraine in eastern Poland: New insight into paleoenvironmental conditions at the margin of an advancing ice lobe

    Science.gov (United States)

    Włodarski, Wojciech; Godlewska, Anna

    2016-08-01

    Recent studies of push moraines have focused on the interplay between the dynamics of ice margins and the environmental variables of the foreland into which they advance. These studies showed that the spatial distribution, geometry and style of the glaciotectonic deformation of push moraines are controlled by ice-induced stresses, the strain rate, the rheology of the deposits and hydraulic conductivity. In this work, we provide new insight into this interplay at a small spatio-temporal scale, specifically, the ancient glacial system of the Liwiec ice lobe within the younger Saalian ice sheet in eastern Poland. The paleoenvironmental variables that are analysed here refer to the dynamics of the hydrological processes that affected the patterns and sediment deposition rate on the terminoglacial fan and the resulting mechanical stratigraphy and hydraulic conductivity of the foreland. We document the progradational sequence of the fan deposits that developed as a result of the ice lobe thickening and the steepening of its stationary front. The sedimentary features of the fan, the lithology of its basement and the hydraulic conductivity of the foreland strongly influenced the geometry and kinematics of fold growth during the advance of the ice lobe. The predominance of flexural slip and the development of fractures, including fold-accommodation faults, were interpreted to be an effect of buckle folding due to horizontal shortening induced by ice advance. The partial overriding of the push moraine by the ice lobe and, thus, the submarginal conditions for deformation were inferred from the significant hinge migration and internal deformation of the strata under undrained conditions in one of the folds. The synfolding deposition pattern of the fan growth strata allowed us to suggest that the push moraine was probably formed by a sustained advance rather than surge.

  4. Composite Structures Manufacturing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Composite Structures Manufacturing Facility specializes in the design, analysis, fabrication and testing of advanced composite structures and materials for both...

  5. Deployable Composite Structures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is seeking innovative structure technologies that will advance expandable modules for orbital and surface based habitats. These secondary structures must...

  6. LTE advanced 3GPP solution for IMT-advanced

    CERN Document Server

    Holma, Harri

    2012-01-01

    From the editors of the highly successful LTE for UMTS: Evolution to LTE-Advanced, this new book examines the main technical enhancements brought by LTE-Advanced, thoroughly covering 3GPP Release 10 specifications and the main items in Release 11. Using illustrations, graphs and real-life scenarios, the authors systematically lead readers through this cutting-edge topic to provide an outlook on existing technologies as well as possible future developments. The book is structured to follow the main technical areas that will be enhanced by the LTE-Advanced specifications. The mai

  7. Prosthetic advances.

    Science.gov (United States)

    Harvey, Zach T; Potter, Benjamin K; Vandersea, James; Wolf, Erik

    2012-01-01

    Much of the current prosthetic technology is based on developments that have taken place during or directly following times of war. These developments have evolved and improved over the years, and now there are many more available options to provide a comfortable, cosmetic, and highly functional prosthesis. Even so, problems with fit and function persist. Recent developments have addressed some of the limitations faced by some military amputees. On-board microprocessor-controlled joints are making prosthetic arms and legs more responsive to environmental barriers and easier to control by the user. Advances in surgical techniques will allow more intuitive control and secure attachment to the prosthesis. As surgical techniques progress and permeate into standard practice, more sophisticated powered prosthetic devices will become commonplace, helping to restore neuromuscular loss of function. Prognoses following amputation will certainly rise, factoring into the surgeon's decision to attempt to save a limb versus perform an amputation.

  8. Advanced composite materials and processes

    Science.gov (United States)

    Baucom, Robert M.

    1991-01-01

    Composites are generally defined as two or more individual materials, which, when combined into a single material system, results in improved physical and/or mechanical properties. The freedom of choice of the starting components for composites allows the generation of materials that can be specifically tailored to meet a variety of applications. Advanced composites are described as a combination of high strength fibers and high performance polymer matrix materials. These advanced materials are required to permit future aircraft and spacecraft to perform in extended environments. Advanced composite precursor materials, processes for conversion of these materials to structures, and selected applications for composites are reviewed.

  9. Proceedings of the International Conference on Recent Advances in Structural Dynamics (3rd) Held in Southampton, England on 18-22 July 1988. Volume 2

    Science.gov (United States)

    1988-07-01

    Departraent University of Puerto Rico INTRODUCTION Satellite antennas and space stations, extensively, use large truss-beam structures. Before these structures...results of ex amp Ic ta inre d h5 both method- .r 1 t’ d , tesi cil agreement. There fore the present me thod is evideatl y all attet at c o f ,r I e thin

  10. ISAAC Advanced Composites Research Testbed

    Science.gov (United States)

    Wu, K. Chauncey; Stewart, Brian K.; Martin, Robert A.

    2014-01-01

    The NASA Langley Research Center is acquiring a state-of-art composites fabrication capability to support the Center's advanced research and technology mission. The system introduced in this paper is named ISAAC (Integrated Structural Assembly of Advanced Composites). The initial operational capability of ISAAC is automated fiber placement, built around a commercial system from Electroimpact, Inc. that consists of a multi-degree of freedom robot platform, a tool changer mechanism, and a purpose-built fiber placement end effector. Examples are presented of the advanced materials, structures, structural concepts, fabrication processes and technology development that may be enabled using the ISAAC system. The fiber placement end effector may be used directly or with appropriate modifications for these studies, or other end effectors with different capabilities may either be bought or developed with NASA's partners in industry and academia.

  11. Advanced structural materials for the suspension bridge solution of the project to establish a permanent link over the strait of Gibraltar; Materiales estructurales para la solucion puente, relacionados con el proyecto de enlace fijo a traves del estrecho de Gibraltar

    Energy Technology Data Exchange (ETDEWEB)

    Galligo Esteve, J. M.

    2015-07-01

    In 1995, the Spanish-moroccan Mixed Committee for the Gibraltar Strait Fixed Link selected the excavated tunnel solution, as preferred to the suspension bridge one. This was based on detailed scientific and technical studies. Nonetheless, further geology studies on the tunnel layout have detected sections of difficult excavation, which would entail increases in the length, the term of execution and the cost of the tunnel. Taking this into account, and due to the important technology development in bridge construction that has taken place over the last 20 years, the paper presents a state-of-the-art of the most advanced structural materials (high performance concrete, ultra-high performance concrete, suspension cables, structural steel, reinforcing and prestressing steel, stainless steel) available for an eventual reconsideration of the suspension bridge solution for the Gibraltar Strait Fixed Link. (Author)

  12. Advanced capacitors

    Science.gov (United States)

    Ennis, J. B.; Buritz, R. S.

    1984-10-01

    This report describes an experimental program to develop and test advanced dielectric materials for capacitors for airborne power systems. Five classes of capacitors were considered: high rep rate and low rep rate pulse capacitors for use in pulse-forming networks, high voltage filter capacitors, high frequency AC capacitors for series resonant inverters, and AC filter capacitors. To meet these requirements, existing dielectric materials were modified, and new materials were developed. The initial goal was to develop an improved polysulfone film with fewer imperfections that could operate at significantly higher electrical stresses. It was shown that contaminants enter the film via the resin and solvent, and that they can be partially removed. As far as developed, however, these treatments did not significantly improved the breakdown characteristics. The technique of casting films on a roughened drum was demonstrated, and found useful in preparing textured films -- the first step toward a replacement for Kraft paper. A new material, Ultem, was proposed for use in high energy density capacitors. This new polyetherimide resin has properties similar to polysulfone and polyimide, with improvement in breakdown characteristics and temperature capability. This material was selected for further study in model capacitor designs.

  13. Proceedings of the International Conference on Recent Advances in Structural Dynamics (3rd) Held in Southampton, England on 18-22 July 1988. Volume 1

    Science.gov (United States)

    1988-07-01

    with the analysis of ring stiffened cylindrical shells where the stiffening rings are considered to be discrete. One of the more popular methods of...be known by structural engineers all over the world and has maintained its popularity for over a quarter of a century. Before 1932, most structural...Seccäo Autonoma de Engenharia Mecanica Faculdade de Ciencias e Tecnologia da Universidade de Coimbra 3000 COIMBRA, PORTUGAL C.A. Mota Soares Centro de

  14. Advances in Solidification Processing

    Directory of Open Access Journals (Sweden)

    Hugo F. Lopez

    2015-08-01

    Full Text Available Melt solidification is the shortest and most viable route to obtain components, starting from the design to the finished products. Hence, a sound knowledge of the solidification of metallic materials is essential for the development of advanced structural metallic components that drive modern technological societies. As a result, there have been innumerable efforts and full conferences dedicated to this important subject [1–6]. In addition, there are various scientific journals fully devoted to investigating the various aspects which give rise to various solidification microstructures [7–9]. [...

  15. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1973-01-01

    Advances in Biomedical Engineering, Volume 3, is a collection of papers that discusses circulatory system models, linguistics in computer usage, and clinical applications on patient monitoring. One paper describes the use of comparative models of overall circulatory mechanics that include models of the cardiac pump, of the vascular systems, and of the overall systems behavior. Another paper describes a model in processing medical language data that employs an explicit semantic structure, becoming the basis for the computer-based, artificial intelligence of the system. One paper cites studies b

  16. Advanced Beamformers

    Science.gov (United States)

    2008-09-01

    adaptatif dans des systèmes à ultrasons et des sonars actifs -passifs intégrés déployant des réseaux de capteurs à plusieurs dimensions. ii DRDC...de prochaine génération et des sonars actifs et passifs intégrés. Le présent rapport porte principalement sur la mise au point d’une structure...de configurations adaptatives dans des réseaux de capteurs à deux dimensions (2D) et à trois dimensions (3D), comme des réseaux planaires

  17. Advanced fluidic handling and use of two-phase flow for high throughput structural investigation of proteins on a microfluidic sample preparation platform

    DEFF Research Database (Denmark)

    Lafleur, Josiane P.; Snakenborg, Detlef; Møller, M.

    2010-01-01

    Research on the structure of proteins can bring forth a wealth of information about biological function and can be used to better understand the processes in living cells. This paper reports a new microfluidic sample preparation system for the structural investigation of proteins by Small Angle X......-ray Scattering (SAXS). The system includes hardware and software features for precise fluidic control, synchrotron beamline control, UV absorbance measurements and automated data analysis. The precise fluidic handling capabilities are used to transport and precisely position samples as small as 500 n...

  18. Advanced NDT&E Techniques for Aero-materials and Structures in China%我国航空材料和结构先进无损检测技术之应用与发展

    Institute of Scientific and Technical Information of China (English)

    刘松平; 刘菲菲; 郭恩明; 李乐刚; 史俊伟

    2013-01-01

    This paper was focused on the review of advanced NDT&E techniques for aero-materials and structures (AMS) because of the increasingly much high importance of NDT&E and the developments and applications of new advanced AMS.The new progress and practical applications of advanced NDT&E techniques for aero-raw materials,light-weight metal structures and composite materials,etc.,were summarized.Multi-channel ultrasonic automated scanning technique with high resolution is very effective for reliable NDT of aero-tubes.High resolution and high sensitivity ultrasonic method and PUDE provide powerful approaches for NDT&E of lightweight metal structures,such as solid state,electronic beam,TLP,braze and laser welded structures.The advanced automated ultrasonic scanning imaging technique,whose resolution and dead-zone can reach a single ply (approximately 0.125 mm),brings the very practical robust ability in fast NDT&E of aero-composite materials and large-scale structures.Its efficiency of NDT for large-scale structures can be increased 20 times compared with traditional single-channel ultrasonic scanning technique.The visual NDT&E techniques with high resolution,sensitivity,detectability and flexibility as well as reliability are the appreciate methods for aero-AMS at the present and in the future.%针对现代航空产品及其制造工艺等特点,结合航空材料结构工艺制造过程及缺陷成因与特征,以航空原材料、轻质金属结构和复合材料为例,通过对典型技术案例的研究与应用结果,介绍了先进航空材料和结构无损检测技术的新进展与应用,浅析了先进航空材料和结构无损检测现状与问题及发展趋势.分析指出,检测的灵敏度、分辨率、可靠性、可检性和充足的试验积累与验证是现代航空材料和结构无损检测技术的核心和应用基础,快速可靠、高灵敏度、高分辨率的可视化成像检测技术是今后先进航空材料和结构无损检测的重要发展方向.

  19. Grid integration of electric-powered vehicles in existing and future energy supply structures. Advances in systems analyses 1. Final report; Netzintegration von Fahrzeugen mit elektrifizierten Antriebssystemen in bestehende und zukuenftige Energieversorgungsstrukturen. Advances in System Analyses 1. Endbericht

    Energy Technology Data Exchange (ETDEWEB)

    Linssen, Jochen; Bickert, Stefan; Hennings, Wilfried [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Energie- und Klimaforschung, Systemforschung und Technologische Entwicklung (IEK-STE)] [and others

    2012-07-01

    The research project examines whether a fleet of vehicles with electric propulsion system (xEV) can be integrated into existing and future energy supply systems for effective integration of fluctuating power production as well as for energy storage. A multi-sectoral, system-wide scenario analysis is performed to evaluate the grid integration of electric vehicles. The effect of an xEV fleet and the impacts of various battery charging scenarios, including the option of feeding power back into the grid, are addressed by detailed technical and economic models and summarized by an energy system model. The suitability of different powertrain concepts is analysed, giving consideration to their individual applications by users. Based on the results of a German nationwide survey of mobility patterns and analyses of 47 test subjects, individual driving profiles for private cars are drawn up and stored in a database. They are used as input for the vehicle energy model. This model calculates the energy requirements of different xEV concepts and facilitates optimized powertrain design and battery sizing for the respective applications. The results show that if the batteries are charged overnight it is possible to cover a major fraction of daily driving distances by electric power. Additional charging during the day does not significantly improve this fraction. The auxiliaries have a greater influence on the vehicle's energy demand than individual driving patterns. Battery lifetime is extended by recharging the battery as required and preferably as late as possible before the next trip. In most cases, using the batteries for grid services reduces battery lifetime and leads to higher specific costs. Models of the transmission grid and typical distribution grids are developed. It is shown that charging one million xEV in 2020 and six million in 2030 (as envisaged by the German Federal Government) is technically feasible without major structural modifications of the

  20. Grid integration of electric-powered vehicles in existing and future energy supply structures. Advances in systems analyses 1. Final report; Netzintegration von Fahrzeugen mit elektrifizierten Antriebssystemen in bestehende und zukuenftige Energieversorgungsstrukturen. Advances in System Analyses 1. Endbericht

    Energy Technology Data Exchange (ETDEWEB)

    Linssen, Jochen; Bickert, Stefan; Hennings, Wilfried [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Energie- und Klimaforschung, Systemforschung und Technologische Entwicklung (IEK-STE)] [and others

    2012-07-01

    The research project examines whether a fleet of vehicles with electric propulsion system (xEV) can be integrated into existing and future energy supply systems for effective integration of fluctuating power production as well as for energy storage. A multi-sectoral, system-wide scenario analysis is performed to evaluate the grid integration of electric vehicles. The effect of an xEV fleet and the impacts of various battery charging scenarios, including the option of feeding power back into the grid, are addressed by detailed technical and economic models and summarized by an energy system model. The suitability of different powertrain concepts is analysed, giving consideration to their individual applications by users. Based on the results of a German nationwide survey of mobility patterns and analyses of 47 test subjects, individual driving profiles for private cars are drawn up and stored in a database. They are used as input for the vehicle energy model. This model calculates the energy requirements of different xEV concepts and facilitates optimized powertrain design and battery sizing for the respective applications. The results show that if the batteries are charged overnight it is possible to cover a major fraction of daily driving distances by electric power. Additional charging during the day does not significantly improve this fraction. The auxiliaries have a greater influence on the vehicle's energy demand than individual driving patterns. Battery lifetime is extended by recharging the battery as required and preferably as late as possible before the next trip. In most cases, using the batteries for grid services reduces battery lifetime and leads to higher specific costs. Models of the transmission grid and typical distribution grids are developed. It is shown that charging one million xEV in 2020 and six million in 2030 (as envisaged by the German Federal Government) is technically feasible without major structural modifications of the

  1. Tailored novolak resins for advanced photoresists by a two-step procedure: new insight into the molecular structure is achieved by coupling GPC and MALDI-TOF-MS

    Science.gov (United States)

    Reuther, Freimut; Krueger, Ralph-Peter; Schulz, Guenter; Baehr, Guenther; Westerwelle, Ulrich; Gruetzner, Gabi

    2000-06-01

    Synthesis and structure of novolaks continue to be investigated due to their significant influence on the performance of photoresists. Previously a two-step procedure was reported which enables the manufacturer to vary the monomer composition and order in novolak molecules in a wide range which then allows for the tailoring of the resin properties. Recent reinvestigation of the molecular structure of these novolaks applying gel permeation chromatography and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry has given very interesting new insight into the molecular structure of the two-step synthesis novolaks. Coupling of the two analytical methods provides a new powerful tool to get detailed information on the molecular architecture which cannot be deduced by other methods. Three species of novolak chains have been found. This analytical approach can generally be applied to explore the structure of novolaks made of monomers differing in their molar masses. Using the two- step novolaks high resolution positive and negative tone photoresists for MEMS applications and lift-off processes, respectively, with high alkaline and etch resistance can be produced.

  2. Research Advances: Less Expensive and More Convenient Gaucher's Disease Treatment; Structural Loop Regions: Key to Multidrug-Resistance Transporters?; New Method Identifies Proteins in Old Artwork

    Science.gov (United States)

    King, Angela G.

    2006-01-01

    The X-ray structure of EmrD, a multidrug transporter protein from Escherichia coli, common bacteria known to cause several food-borne illnesses was determined by scientists at The Scripps Research Institute. The hydrophobic residues in the EmrD internal cavity are likely to contribute to the general mechanism transporting various compounds through…

  3. Advanced worker protection system

    Energy Technology Data Exchange (ETDEWEB)

    Caldwell, B.; Duncan, P.; Myers, J.

    1995-12-01

    The Department of Energy (DOE) is in the process of defining the magnitude and diversity of Decontamination and Decommissioning (D&D) obligations at its numerous sites. The DOE believes that existing technologies are inadequate to solve many challenging problems such as how to decontaminate structures and equipment cost effectively, what to do with materials and wastes generated, and how to adequately protect workers and the environment. Preliminary estimates show a tremendous need for effective use of resources over a relatively long period (over 30 years). Several technologies are being investigated which can potentially reduce D&D costs while providing appropriate protection to DOE workers. The DOE recognizes that traditional methods used by the EPA in hazardous waste site clean up activities are insufficient to provide the needed protection and worker productivity demanded by DOE D&D programs. As a consequence, new clothing and equipment which can adequately protect workers while providing increases in worker productivity are being sought for implementation at DOE sites. This project will result in the development of an Advanced Worker Protection System (AWPS). The AWPS will be built around a life support backpack that uses liquid air to provide cooling as well as breathing gas to the worker. The backpack will be combined with advanced protective garments, advanced liquid cooling garment, respirator, communications, and support equipment to provide improved worker protection, simplified system maintenance, and dramatically improve worker productivity through longer duration work cycles. Phase I of the project has resulted in a full scale prototype Advanced Worker Protection Ensemble (AWPE, everything the worker will wear), with sub-scale support equipment, suitable for integrated testing and preliminary evaluation. Phase II will culminate in a full scale, certified, pre-production AWPS and a site demonstration.

  4. Design and Evaluation of a Three Dimensionally Ordered Macroporous Structure within a Highly Patterned Cylindrical Sn-Ni Electrode for Advanced Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Yongcheng Jin

    2013-01-01

    Full Text Available A 3-dimensionally ordered macroporous (3DOM structure within a highly patterned cylindrical Sn-Ni alloy electrode was tailored by using various monodispersed polystyrene (PS templates via a colloidal crystal templating process coupled with an electroplating process. The pore size and the wall thickness in the “inverse opal” 3DOM structure were increased with increasing the size of the PS template beads used in this study. The electrochemical performance of prepared electrodes was examined in order to reveal the correlation between the rate capability and the 3DOM structure. Except the electrode with 1.2 μm pores, the discharge capacities gradually decreased with increasing the current density, showing a capacity conservation ratio of 87% for the electrode with 0.5 μm pores and that of 84% for the electrode with 3.0 μm pores when the current density increased from 0.05 mA cm−2 to 2.0 mA cm−2. The reason for this difference is attributed to the fact that the wall thickness of less than 0.5 μm in the electrode with 1.2 μm pores has a short Li+ diffusion distance in solid-state walls. In addition, it is expected that high regularity of 3DOM structure plays a great role on rate capability. Consequently, the 3DOM structure prepared from 1.2 μm PS template beads was favorable for improving the rate capability.

  5. Development of improved processing and evaluation methods for high reliability structural ceramics for advanced heat engine applications Phase II. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Pujari, V.J.; Tracey, D.M.; Foley, M.R. [and others

    1996-02-01

    The research program had as goals the development and demonstration of significant improvements in processing methods, process controls, and nondestructive evaluation (NDE) which can be commercially implemented to produce high reliability silicon nitride components for advanced heat engine applications at temperatures to 1370{degrees}C. In Phase I of the program a process was developed that resulted in a silicon nitride - 4 w% yttria HIP`ed material (NCX 5102) that displayed unprecedented strength and reliability. An average tensile strength of 1 GPa and a strength distribution following a 3-parameter Weibull distribution were demonstrated by testing several hundred buttonhead tensile specimens. The Phase II program focused on the development of methodology for colloidal consolidation producing green microstructure which minimizes downstream process problems such as drying, shrinkage, cracking, and part distortion during densification. Furthermore, the program focused on the extension of the process to gas pressure sinterable (GPS) compositions. Excellent results were obtained for the HIP composition processed for minimal density gradients, both with respect to room-temperature strength and high-temperature creep resistance. Complex component fabricability of this material was demonstrated by producing engine-vane prototypes. Strength data for the GPS material (NCX-5400) suggest that it ranks very high relative to other silicon nitride materials in terms of tensile/flexure strength ratio, a measure of volume quality. This high quality was derived from the closed-loop colloidal process employed in the program.

  6. Advanced analytical methods for the structure elucidation of polystyrene-b-poly(n-butyl acrylate) block copolymers prepared by reverse iodine transfer polymerisation

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Trevor Gavin; Pfukwa, Helen; Pasch, Harald, E-mail: hpasch@sun.ac.za

    2015-09-10

    Reverse iodine transfer polymerisation (RITP) is a living radical polymerisation technique that has shown to be feasible in synthesising segmented styrene-acrylate copolymers. Polymers synthesised via RITP are typically only described regarding their bulk properties using nuclear magnetic resonance spectroscopy and size exclusion chromatography. To fully understand the complex composition of the polymerisation products and the RITP reaction mechanism, however, it is necessary to use a combination of advanced analytical methods. In the present RITP procedure, polystyrene was synthesised first and then used as a macroinitiator to synthesise polystyrene-block-poly(n-butyl acrylate) (PS-b-PBA) block copolymers. For the first time, these PS-b-PBA block copolymers were analysed by a combination of SEC, in situ{sup 1}H NMR and HPLC. {sup 1}H NMR was used to determine the copolymer composition and the end group functionality of the samples, while SEC and HPLC were used to confirm the formation of block copolymers. Detailed information on the living character of the RITP process was obtained. - Highlights: • Comprehensive analysis of novel block copolymers. • Polymers were prepared for the first time by reverse iodine transfer polymerisation. • Combination of SEC, NMR, kinetic NMR, HPLC and comprehensive 2D-HPLC was used. • Detailed information about complex molecular composition and polymerisation kinetics was obtained.

  7. Optical properties of advanced materials

    CERN Document Server

    Kajikawa, Kotaro

    2013-01-01

    In the last decade, optically functionalized materials have developed rapidly, from bulk matters to structured forms. Now we have a rich variety of attractive advanced materials. They are applied to optical and electrical devices that support the information communication technology in the mid 21-th century. Accordingly, it is quite important to have a broad knowledge of the optical properties of advanced materials for students, scientists and engineers working in optics and related fields. This book is designed to teach fundamental optical properties of such advanced materials effectively. These materials have their own peculiarities which are very interesting in modern optical physics and also for applications because the concepts of optical properties are quite different from those in conventional optical materials. Hence each chapter starts to review the basic concepts of the materials briefly and proceeds to the practical use. The important topics covered in this book include:  quantum structures of sem...

  8. Towards advanced structural analysis of iron oxide clusters on the surface of γ-Al{sub 2}O{sub 3} using EXAFS

    Energy Technology Data Exchange (ETDEWEB)

    Boubnov, Alexey [Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Kaiserstr. 12, D-76131 Karlsruhe (Germany); Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Roppertz, Andreas [Institute of Energy Process Engineering and Chemical Engineering, Chair of Reaction Engineering, Technical University of Freiberg, Fuchsmuehlenweg 9, D-09599 Freiberg (Germany); Kundrat, Matthew D. [Center for Functional Nanostructures and Institute of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstr. 12, D-76131 Karlsruhe (Germany); Mangold, Stefan [Institut für Beschleunigerphysik und Technologie (IBPT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Reznik, Boris [Institute of Applied Geosciences, Karlsruhe Institute of Technology, Kaiserstr. 12, D-76131 Karlsruhe (Germany); Jacob, Christoph R. [Center for Functional Nanostructures and Institute of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstr. 12, D-76131 Karlsruhe (Germany); Institute of Physical and Theoretical Chemistry, TU Braunschweig, Hans-Sommer-Str. 10, D-38106 Braunschweig (Germany); Kureti, Sven [Institute of Energy Process Engineering and Chemical Engineering, Chair of Reaction Engineering, Technical University of Freiberg, Fuchsmuehlenweg 9, D-09599 Freiberg (Germany); Grunwaldt, Jan-Dierk, E-mail: grunwaldt@kit.edu [Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Kaiserstr. 12, D-76131 Karlsruhe (Germany); Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany)

    2016-11-15

    Highlights: • Analysis of isolated and oligomeric FeOx (x = 4, 5) on Al{sub 2}O{sub 3} by XANES and EXAFS. • Iron is trivalent and is mainly located at octahedral lattice sites of Al{sub 2}O{sub 3}. • Low Fe loading (0.1%) guarantees high dispersion of catalytically active iron sites. • Surface Fe-cluster on Al{sub 2}O{sub 3} and DFT-optimised Fe-doped Al{sub 2}O{sub 3} as input models for EXAFS. • Interactions of iron with support are well-accounted for using realistic models. - Abstract: Iron oxide centres are structurally investigated in 0.1% Fe/γ-Al{sub 2}O{sub 3}, which is known as highly active catalyst, for instance in the oxidation of CO. The sample was characterised by using X-ray absorption spectroscopy (XAS) in terms of X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), Mössbauer spectroscopy, X-ray diffraction (XRD) and transmission electron microscopy (TEM). These analyses evidenced high dispersion of the iron oxide entities without significant presence of bulk-like aggregates associated with the low Fe content of the catalyst. A library of structural models of Al{sub 2}O{sub 3}-supported surface Fe was created as input for EXAFS fitting. Additionally, several model structures of Fe substituting Al ions in bulk γ-Al{sub 2}O{sub 3} were created with optimised geometry based on density-functional theory (DFT) calculations. From EXAFS refinement of the best 8 out of 24 models, it was found that the trivalent Fe ions are coordinated by 4–5 oxygen atoms and are located on octahedral lattice sites of the exposed surfaces of γ-Al{sub 2}O{sub 3}. These iron oxide species exist mainly as a mixture of monomeric and binuclear species and due to the low concentration represent suitable model systems as alternative to single crystal systems for structure-function relationships.

  9. Structural and electrical properties of Ag grid/poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) coatings for diode application through advanced printing technology.

    Science.gov (United States)

    Duraisamy, Navaneethan; Ponniah, Ganeshthangaraj; Jo, Jeongdai; Choi, Kyung-Hyun

    2013-08-01

    This paper is focused on printed techniques for the fabrication of hybrid structure of silver (Ag) grid/poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonate) (PEDOT:PSS) on polyethylene terepthalate (PET) as a flexible substrate. Ag grid has been printed on PET substrate by using gravure offset printing process, followed by PEDOT:PSS thin film deposition on Ag grid through electrohydrodynamic atomization (EHDA) technique. The important parameters for achieving uniform hybrid structure of Ag grid/PEDOT:PSS through printed techniques have been clearly discussed. Field emission scanning electron microscope studies revealed the uniformity of printed Ag grid with homogeneous deposition of PEDOT:PSS on Ag grid. The optical properties of Ag grid/PEDOT:PSS were measured by UV-visible spectroscopy, which showed nearly 80-82% of transparency in the visible region and it was nearly same as PEDOT:PSS thin film on PET substrate. Current-voltage (I-V) analysis of fabricated hybrid device by using printed Ag grid/PEDOT:PSS as a bottom electrode showed good rectifying behavior with possible interfacial mechanisms. Capacitance-voltage (C-V) analysis was carried over different frequencies. These results suggest that fabrication of hybrid structure through printed techniques will play a significant role in mass production of printed electronic devices for commercial application by using flexible substrate.

  10. 嗜盐蛋白高级结构对其稳定性的影响%Influence of Advanced Structures on Protein Halophilic Stability

    Institute of Scientific and Technical Information of China (English)

    张光亚

    2012-01-01

    选择30对具有晶体结构的嗜盐和非嗜盐同源蛋白,通过计算氨基酸所处的结构状态,找出二者在统计学上具有显著差异的氨基酸.研究结果表明:在总的氨基酸组成上,嗜盐蛋白中天冬氨酸含量更多,而苯丙氨酸和赖氨酸含量显著较少.在不同二级结构区域,β-折叠中两种蛋白氨基酸组成差异最大;而在不同溶剂可及表面,两种蛋白在分别表面氨基酸组成差异最大,嗜盐蛋白表面酸性氨基酸显著较多,而碱性氨基酸则较少;48种高级结构结构参数中有4种存在显著差异,这4种结构参数都与可及性表面积有关.%To investigate the structural distribution responsible for protein halophilicity is of great significance for understanding the stability of halophilic protein and would help to develop a practical strategy for designing halophilic proteins. A systematic comparative analysis of 30 pairs of halophilic and non-halophilic proteins was reported. The residue structural states based on secondary structure and solvent accessibility were considered for analyzing the structural patterns of single amino acids. The statistical test revealed that higher frequency in overall of Asp at the expense of Phe and Lys, higher frequency in exposed state of acid amino acids at the expense of alkaline amino acids. The β-sheet and the exposed surface were the regions showed great differences. Among the 48 structure parameters, there were four parameters which showed significant difference between the two kinds of proteins. Interestingly, the four parameters were all related with the accessible surface area.

  11. Development of improved processing and evaluation methods for high reliability structural ceramics for advanced heat engine applications, Phase 1. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Pujari, V.K.; Tracey, D.M.; Foley, M.R.; Paille, N.I.; Pelletier, P.J.; Sales, L.C.; Wilkens, C.A.; Yeckley, R.L. [Norton Co., Northboro, MA (United States)

    1993-08-01

    The program goals were to develop and demonstrate significant improvements in processing methods, process controls and non-destructive evaluation (NDE) which can be commercially implemented to produce high reliability silicon nitride components for advanced heat engine applications at temperatures to 1,370{degrees}C. The program focused on a Si{sub 3}N{sub 4}-4% Y{sub 2}O{sub 3} high temperature ceramic composition and hot-isostatic-pressing as the method of densification. Stage I had as major objectives: (1) comparing injection molding and colloidal consolidation process routes, and selecting one route for subsequent optimization, (2) comparing the performance of water milled and alcohol milled powder and selecting one on the basis of performance data, and (3) adapting several NDE methods to the needs of ceramic processing. The NDE methods considered were microfocus X-ray radiography, computed tomography, ultrasonics, NMR imaging, NMR spectroscopy, fluorescent liquid dye penetrant and X-ray diffraction residual stress analysis. The colloidal consolidation process route was selected and approved as the forming technique for the remainder of the program. The material produced by the final Stage II optimized process has been given the designation NCX 5102 silicon nitride. According to plan, a large number of specimens were produced and tested during Stage III to establish a statistically robust room temperature tensile strength database for this material. Highlights of the Stage III process demonstration and resultant database are included in the main text of the report, along with a synopsis of the NCX-5102 aqueous based colloidal process. The R and D accomplishments for Stage I are discussed in Appendices 1--4, while the tensile strength-fractography database for the Stage III NCX-5102 process demonstration is provided in Appendix 5. 4 refs., 108 figs., 23 tabs.

  12. Advances on the interaction between tea catechins and plasma proteins: structure-affinity relationship, influence on antioxidant activity, and molecular docking aspects.

    Science.gov (United States)

    Cao, Hui; Shi, Yujun; Chen, Xiaoqing

    2013-05-01

    Tea materials are widely consumed beverages in the world and are a rich source of dietary polyphenols. Catechins found in tea show excellent antioxidant potential, which is beneficial for many diseases such as cancers and cardiovascular diseases. These Tea catechins can interact with plasma proteins to form soluble or insoluble complexes, which are responsible for their bioactivities in vivo. However, there is little review published recently which focused on tea catechins-plasma protein interaction (TcPI), despite numerous articles have appeared in this field. This review summarizes the recent trend in TcPI studies focusing on metabolism, structure-affinity relationship, influence on antioxidant activity, and molecular docking aspects.

  13. Oxide-Free Bonding of III-V-Based Material on Silicon and Nano-Structuration of the Hybrid Waveguide for Advanced Optical Functions

    Directory of Open Access Journals (Sweden)

    Konstantinos Pantzas

    2015-10-01

    Full Text Available Oxide-free bonding of III-V-based materials for integrated optics is demonstrated on both planar Silicon (Si surfaces and nanostructured ones, using Silicon on Isolator (SOI or Si substrates. The hybrid interface is characterized electrically and mechanically. A hybrid InP-on-SOI waveguide, including a bi-periodic nano structuration of the silicon guiding layer is demonstrated to provide wavelength selective transmission. Such an oxide-free interface associated with the nanostructured design of the guiding geometry has great potential for both electrical and optical operation of improved hybrid devices.

  14. Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Liby, Alan L [ORNL; Rogers, Hiram [ORNL

    2013-10-01

    The goal of this activity was to carry out program implementation and technical projects in support of the ARRA-funded Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program of the DOE Advanced Manufacturing Office (AMO) (formerly the Industrial Technologies Program (ITP)). The work was organized into eight projects in four materials areas: strategic materials, structural materials, energy storage and production materials, and advanced/field/transient processing. Strategic materials included work on titanium, magnesium and carbon fiber. Structural materials included work on alumina forming austentic (AFA) and CF8C-Plus steels. The advanced batteries and production materials projects included work on advanced batteries and photovoltaic devices. Advanced/field/transient processing included work on magnetic field processing. Details of the work in the eight projects are available in the project final reports which have been previously submitted.

  15. Advanced in Structure, Extract and Application of Keratins%角蛋白的分子构成、提取及应用

    Institute of Scientific and Technical Information of China (English)

    贾如琰; 何玉凤; 王荣民; 李芳蓉; 王艳

    2008-01-01

      The sources, composition and structures of keratin were introduced. The pattern, macroscopic structures and composition of hairs and feather were discussed too. The methods for extracting keratin from hairs and feather were summarized. The typical chemical methods are acid-base hydrolysis, reduction and oxidation. The molecular weight and yield of keratin were analyzed. The keratin and its derivatives were applied to feed, hairdressing and medicine. Its applications in materials and biomedicine have also been developing.%  介绍了角蛋白的来源、分类、化学组成与分子结构,以及毛发的宏观形态、微观结构及组成。目前从毛发和羽毛中提取角蛋白常用机械法、化学法和生物法等,其中化学法又可分为酸碱水解法、还原法、氧化法等,分析了各提取方法在提取率、分子量等方面的差异。除水解产物用作饲料外,由于自身特殊的结构和性能,使得角蛋白在生物相容材料、纺丝材料等等方面的应用受到关注。

  16. Advancing the Parameter-elevation Regressions on Independent Slopes Model (PRISM) to Accommodate Atmospheric River Influences Using a Hierarchical Estimation Structure

    Science.gov (United States)

    Hsu, C.; Cifelli, R.; Zamora, R. J.; Schneider, T.

    2014-12-01

    The PRISM monthly climatology has been widely used by various agencies for diverse purposes. In the River Forecast Centers (RFCs), the PRISM monthly climatology is used to support tasks such as QPE, or quality control of point precipitation observation, and fine tune QPFs. Validation studies by forecasters and researchers have shown that interpolation involving PRISM climatology can effectually reduce the estimation bias for the locations where moderate or little orographic phenomena occur. However, many studies have pointed out limitations in PRISM monthly climatology. These limitations are especially apparent in storm events with fast-moving wet air masses or with storm tracks that are different from climatology. In order to upgrade PRISM climatology so it possesses the capability to characterize the climatology of storm events, it is critical to integrate large-scale atmospheric conditions with the original PRISM predictor variables and to simulate them at a temporal resolution higher than monthly. To this end, a simple, flexible, and powerful framework for precipitation estimation modeling that can be applied to very large data sets is thus developed. In this project, a decision tree based estimation structure was developed to perform the aforementioned variable integration work. Three Atmospheric River events (ARs) were selected to explore the hierarchical relationships among these variables and how these relationships shape the event-based precipitation distribution pattern across California. Several atmospheric variables, including vertically Integrated Vapor Transport (IVT), temperature, zonal wind (u), meridional wind (v), and omega (ω), were added to enhance the sophistication of the tree-based structure in estimating precipitation. To develop a direction-based climatology, the directions the ARs moving over the Pacific Ocean were also calculated and parameterized within the tree estimation structure. The results show that the involvement of the

  17. Jatrophane diterpenes as modulators of multidrug resistance. Advances of structure-activity relationships and discovery of the potent lead pepluanin A.

    Science.gov (United States)

    Corea, Gabriella; Fattorusso, Ernesto; Lanzotti, Virginia; Motti, Riccardo; Simon, Pierre-Noël; Dumontet, Charles; Di Pietro, Attilio

    2004-02-12

    From the whole plant of Euphorbia peplus L., five new diterpenes based on a jatrophane skeleton (pepluanins A-E, 1-5) were isolated, together with two known analogues (6 and 7), which served to divulge in detail the structure-activity relationships within this class of P-glycoprotein inhibitors. The results revealed the importance of substitutions on the medium-sized ring (carbons 8, 9, 14, and 15). In particular, the activity is collapsed by the presence of a free hydroxyl at C-8, while it increases with a carbonyl at C-14, an acetoxyl at C-9, and a free hydroxyl at C-15. The most potent compound of the series, pepluanin A, showed a very high activity for a jatrophane diterpene, outperforming cyclosporin A by a factor of at least 2 in the inhibition of Pgp-mediated daunomycin transport.

  18. Proposed and existing passive and inherent safety-related structures, systems, and components (building blocks) for advanced light-water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, C.W.; Moses, D.L.; Lewis, E.B.; Gibson, R.; Pearson, R.; Reich, W.J.; Murphy, G.A.; Staunton, R.H.; Kohn, W.E.

    1989-10-01

    A nuclear power plant is composed of many structures, systems, and components (SSCs). Examples include emergency core cooling systems, feedwater systems, and electrical systems. The design of a reactor consists of combining various SSCs (building blocks) into an integrated plant design. A new reactor design is the result of combining old SSCs in new ways or use of new SSCs. This report identifies, describes, and characterizes SSCs with passive and inherent features that can be used to assure safety in light-water reactors. Existing, proposed, and speculative technologies are described. The following approaches were used to identify the technologies: world technical literature searches, world patent searches, and discussions with universities, national laboratories and industrial vendors. 214 refs., 105 figs., 26 tabs.

  19. Effect of yield to tensile (Y/T) ratio on the structural integrity of offshore pipeline: advanced engineering assessment using limit state design approach

    Energy Technology Data Exchange (ETDEWEB)

    Malatesta, G.; Mannucci, G.; Demofonti, G. [Centro Sviluppo Materiali S.p.A., Rome (Italy); Cumino, G. [TenarisDalmine (Italy); Izquierdo, A.; Tivelli, M. [Tenaris Group (Mexico); Quintanilla, H. [TENARIS Group (Mexico). TAMSA

    2005-07-01

    Nowadays specifications require strict Yield to Tensile ratio limitation, nevertheless a fully accepted engineering assessment of its influence on pipeline integrity is still lacking. Probabilistic analysis based on structural reliability approach (Limit State Design) aimed at quantifying the Y/T ratio influence on failure probabilities of offshore pipelines was made. In particular, Tenaris seamless pipe data were used as input for the probabilistic failure analysis. The LSD approach has been applied to two actual deep water design cases that have been on purpose selected, and the most relevant failure modes have been considered. Main result of the work is that the quantitative effect of the Y/T ratio on failure probabilities of a deep water pipeline resulted not so big as expected; it has a minor effect, especially when failure modes are governed by Y only. (author)

  20. Research advances on engineering structural seismic safety of nuclear power plant%核电厂工程结构抗震研究进展

    Institute of Scientific and Technical Information of China (English)

    孔宪京; 林皋

    2013-01-01

      当前以及今后相当长一段时期,核电都将是中国积极发展的能源形式之一,保障核电安全是确保核电工程建设顺利实施和安全运营的关键。然而,中国幅员广阔,地质条件差异大,海域自然条件复杂;同时,中国地震活动范围广、强度大、频度高,基于标准化设计的核电工程结构在建设过程中面临着诸多问题。尤其是2011年日本大地震导致的福岛核电事故的教训,对核电工程的抗震安全提出了新的问题。结合大连理工大学十几年来在解决我国核电工程结构抗震安全中的关键问题,以及在“地震作用下核电厂工程结构的功能失效机理及抗震安全评价”研究中所取得若干进展进行综述性介绍,主要包括核岛地基抗震适应性研究和核岛安全相关工程结构抗震防灾研究。%Nuclear power is one of energy resources that China will vigorously develop for a long term from now on. The issue of nuclear power security guarantee is a key to ensure the smooth implementation and the safe operation of the nuclear power plant construction. However,because of the vast territory of China,the great differences in geological conditions and the complex natural conditions of ocean,as well as a wide range of seis-mic activity,high strength and high frequency of earthquakes in China,nuclear power buildings based on cur-rent standardized design methods are facing problems. Moreover,the lessons of the 2011 Fukushima nuclear ac-cident due to destructive earthquake come out new problems to Chinese seismic safety of nuclear power engineer-ing. In this paper,by combining engineering practice in recent years of nuclear power engineering seismic safety evaluation of the Dalian University of Technology,the key issues and the research methods in the structural seis-mic safety of Chinese nuclear power projects and some progress made by the Dalian University of Technology in the study of

  1. Systematic structure modifications of multitarget prostate cancer drug candidate galeterone to produce novel androgen receptor down-regulating agents as an approach to treatment of advanced prostate cancer.

    Science.gov (United States)

    Purushottamachar, Puranik; Godbole, Abhijit M; Gediya, Lalji K; Martin, Marlena S; Vasaitis, Tadas S; Kwegyir-Afful, Andrew K; Ramalingam, Senthilmurugan; Ates-Alagoz, Zeynep; Njar, Vincent C O

    2013-06-27

    As part of our program to explore the influence of small structural modifications of our drug candidate 3β-(hydroxy)-17-(1H-benzimidazol-1-yl)androsta-5,16-diene (galeterone, 5) on the modulation of the androgen receptor (AR), we have prepared and evaluated a series of novel C-3, C-16, and C-17 analogues. Using structure activity analysis, we established that the benzimidazole moiety at C-17 is essential and optimal and also that hydrophilic and heteroaromatic groups at C-3 enhance both antiproliferative (AP) and AR degrading (ARD) activities. The most potent antiproliferative compounds were 3β-(1H-imidazole-1-carboxylate)-17-(1H-benzimidazol-1-yl)androsta-5,16-diene (47), 3-((EZ)-hydroximino)-17-(1H-benzimidazol-1-yl)androsta-4,16-diene (36), and 3β-(pyridine-4-carboxylate)-17-(1H-benzimidazol-1-yl)androsta-5,16-diene (43), with GI50 values of 0.87, 1.91, and 2.57 μM, respectively. Compared to 5, compound 47 was 4- and 8-fold more potent with respect to AP and ARD activities, respectively. Importantly, we also discovered that our compounds, including 5, 36, 43, and 47, could degrade both full-length and truncated ARs in CWR22rv1 human prostate cancer cells. With these activities, they have potential for development as new drugs for the treatment of all forms of prostate cancer.

  2. Advanced Aerospace Materials by Design

    Science.gov (United States)

    Srivastava, Deepak; Djomehri, Jahed; Wei, Chen-Yu

    2004-01-01

    The advances in the emerging field of nanophase thermal and structural composite materials; materials with embedded sensors and actuators for morphing structures; light-weight composite materials for energy and power storage; and large surface area materials for in-situ resource generation and waste recycling, are expected to :revolutionize the capabilities of virtually every system comprising of future robotic and :human moon and mars exploration missions. A high-performance multiscale simulation platform, including the computational capabilities and resources of Columbia - the new supercomputer, is being developed to discover, validate, and prototype next generation (of such advanced materials. This exhibit will describe the porting and scaling of multiscale 'physics based core computer simulation codes for discovering and designing carbon nanotube-polymer composite materials for light-weight load bearing structural and 'thermal protection applications.

  3. Nanotechnology for Advanced Imaging and Detectors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Our first objective is that of nanostructured devices for advanced light detection.  Our periodic structures exhibit absorptive (nano-antenna) and reflective...

  4. NATO Advanced Study Institute on Advanced Physical Oceanographic Numerical Modelling

    CERN Document Server

    1986-01-01

    This book is a direct result of the NATO Advanced Study Institute held in Banyuls-sur-mer, France, June 1985. The Institute had the same title as this book. It was held at Laboratoire Arago. Eighty lecturers and students from almost all NATO countries attended. The purpose was to review the state of the art of physical oceanographic numerical modelling including the parameterization of physical processes. This book represents a cross-section of the lectures presented at the ASI. It covers elementary mathematical aspects through large scale practical aspects of ocean circulation calculations. It does not encompass every facet of the science of oceanographic modelling. We have, however, captured most of the essence of mesoscale and large-scale ocean modelling for blue water and shallow seas. There have been considerable advances in modelling coastal circulation which are not included. The methods section does not include important material on phase and group velocity errors, selection of grid structures, advanc...

  5. Advanced piezoelectric crystal Ca{sub 3}TaGa{sub 3}Si{sub 2}O{sub 14}: growth, crystal structure perfection, and acoustic properties

    Energy Technology Data Exchange (ETDEWEB)

    Roshchupkin, Dmitry; Plotitcyna, Olga; Irzhak, Dmitry; Fahrtdinov, Rashid [Russian Academy of Sciences, Institute of Microelectronics Technology and High-Purity Materials, Chernogolovka, Moscow District (Russian Federation); Ortega, Luc [Universite Paris-Sud, CNRS, UMR 8502, Laboratoire de Physique des Solides, Orsay Cedex (France); Erko, Alexei; Zizak, Ivo [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Institute for Nanometre Optics and Technology, Berlin (Germany); Buzanov, Oleg [FOMOS Materials Co., Moscow (Russian Federation)

    2014-03-15

    A five-component crystal of the lanthanum-gallium silicate family Ca{sub 3}TaGa{sub 3}Si{sub 2}O{sub 14} (CTGS) was grown by the Czochralski method. The CTGS crystal, like the langasite crystal (La{sub 3}Ga{sub 5}SiO{sub 14}, LGS), possesses unique temperature properties and the fewer number of the Ga atoms in the unit cell makes the density much lower and, consequently, increases the velocity of acoustic wave propagation. The unit-cell parameters were determined by the powder diffraction technique. The defects in the CTGS crystal structure were studied by X-ray topography, which enables the visualization of growth banding characteristics of crystals grown by the Czochralski method. Surface acoustic wave (SAW) propagation in the CTGS crystal was investigated by the high-resolution X-ray diffraction method on the BESSY II synchrotron radiation source. The velocities of propagation and power flow angles of SAWs in the Y- and X-cuts of the CTGS crystal were determined from the X-ray diffraction spectra. (orig.)

  6. Global environment assessment survey by advancing the energy demand and supply structure. 4; Energy jukyu kozo kodoka chikyu kankyo eikyo chosa. 4

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    To investigate the energy demand and supply structure in Japan, the international trend of approaches to global warming problems and the mitigation options to global warming in the energy related sectors have been surveyed. For the United Nations Framework Convention on Climate Change, an Ad-hoc Group has discussed relevant topics after the 1st conference of the Parties. Meetings of the Group primarily focused on what objectives to set for the reduction of greenhouse gas (GHG) emissions in and in and after 2000. IPCC completed their Technical Paper in November 1996 in which technologies and measures to reduce GHG emissions and to enhance GHG sinks were analyzed and evaluated in various aspects. This Paper discusses about each sector of institutional buildings sector, transport sector, industrial sector, and energy supply sector. Especially, in the energy supply sector, promising approaches to reduce future emission include more efficient conversion of fossil fuels, switching to low-carbon fossil fuels, decarbonization of flue gas and fuels, CO2 storage, switching to nuclear energy, and switching to renewable sources of energy. 5 refs., 2 figs., 14 tabs.

  7. Advances in Structure and Function of CRISPR in Salmonel l a%沙门菌 CRISPR 的结构与功能研究进展

    Institute of Scientific and Technical Information of China (English)

    蔡银强; 李求春; 陶静; 蒋道军; 潘志明; 焦新安

    2015-01-01

    近年发现沙门菌中恒定地存在两个CRISPR(clustered regularly interspaced short palindromic repeats)位点,利用他们,沙门菌不仅能抵御外源质粒和噬菌体的入侵,还能介导自身短期的表型变化以及长期亚类的进化。同时由于其结构的多样性,使之广泛应用于沙门菌分型和进化的研究。简要综述了沙门菌CRISPR系统的基本结构、作用机制和功能及其在沙门菌分型和进化应用方面的研究进展。%The discovery in recent years that there are always two CRISPR (clustered regularly interspaced short palindromic repeats) loci located in Salmonella genome ,with which Salmonella can fight against ex‐otic plasmid ,phages and mediate short -term phenotype changes and long -term sublineage evolution . Besides ,it was widely applied to typing and evolutionary studies of Salmonella due to the multiple struc‐tures of the CRISPRs .In this review ,the basic structure ,mechanism ,and function of CRISPR of Salmo‐nella as well as the research progress of CRISPR on typing and evolution of Salmonella were introduced .

  8. Heat resistant reduced activation 12% Cr steel of 16Cr12W2VTaB type-advanced structural material for fusion and fast breeder power reactors

    Science.gov (United States)

    Ioltukhovskiy, A. G.; Leonteva-Smirnova, M. V.; Solonin, M. I.; Chernov, V. M.; Golovanov, V. N.; Shamardin, V. K.; Bulanova, T. M.; Povstyanko, A. V.; Fedoseev, A. E.

    2002-12-01

    Heat resistant 12% Cr steels of the 16Cr12W2VTaB type (12Cr-2W-V-Ta-B-0.16C) provide a reduced activation material that can be used as a structural material for fusion and fast breeder reactors. The composition under study meets scientific and engineering requirements and has an optimal base element composition to provide a δ-ferrite content of no more than 20%. It also has a minimum quantity of low melting impurity elements and non-metallic inclusions. Short-term tensile properties for the steel tested to 700 °C are provided after the standard heat treatment (normalization, temper). Rupture strength and creep properties for the steel depending on the initial heat treatment conditions are also given. The microstructural stability of the 16Cr12W2VTaB type steel at temperatures up to 650 °C is predicted to be good, and the properties of the steel after irradiation in BOR-60 are demonstrated.

  9. Heat resistant reduced activation 12% Cr steel of 16Cr12W2VTaB type-advanced structural material for fusion and fast breeder power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ioltukhovskiy, A.G. E-mail: iral@bochvar.ru; Leonteva-Smirnova, M.V.; Solonin, M.I.; Chernov, V.M.; Golovanov, V.N.; Shamardin, V.K.; Bulanova, T.M.; Povstyanko, A.V.; Fedoseev, A.E

    2002-12-01

    Heat resistant 12% Cr steels of the 16Cr12W2VTaB type (12Cr-2W-V-Ta-B-0.16C) provide a reduced activation material that can be used as a structural material for fusion and fast breeder reactors. The composition under study meets scientific and engineering requirements and has an optimal base element composition to provide a {delta}-ferrite content of no more than 20%. It also has a minimum quantity of low melting impurity elements and non-metallic inclusions. Short-term tensile properties for the steel tested to 700 deg. C are provided after the standard heat treatment (normalization, temper). Rupture strength and creep properties for the steel depending on the initial heat treatment conditions are also given. The microstructural stability of the 16Cr12W2VTaB type steel at temperatures up to 650 deg. C is predicted to be good, and the properties of the steel after irradiation in BOR-60 are demonstrated.

  10. Structural and electrical characteristics of ALD-HfO2/n-Si gate stack with SiON interfacial layer for advanced CMOS technology

    Science.gov (United States)

    Gupta, Richa; Rajput, Renu; Prasher, Rakesh; Vaid, Rakesh

    2016-09-01

    We report the fabrication of an ultra-thin silicon oxynitride (SiON) as an interfacial layer (IL) for n-Si/ALD-HfO2 gate stack with reduced leakage current. The XRD, AFM, FTIR, FESEM and EDAX characterizations have been performed for structural and morphological studies. Electrical parameters such as dielectric constant (K), interface trap density (Dit), leakage current density (J), effective oxide charge (Qeff), barrier height (Φbo), ideality factor (ƞ), breakdown-voltage (Vbr) and series resistance (Rs) were extracted through C-V, G-V and I-V measurements. The determined values of K, Dit, J, Qeff, Φbo, ƞ, Vbr and Rs are 14.4, 0.5 × 10 11 eV-1 cm-2, 2.2 × 10-9 A/cm2, 0.3 × 1013 cm-2, 0.42, 2.1, -0.33 and 14.5 MΩ respectively. SiON growth prior to HfO2 deposition has curtailed the problem of high leakage current density and interfacial traps due to sufficient amount of N2 incorporated at the interface.

  11. Structural changes of noble metal catalysts during ignition and extinction of the partial oxidation of methane studied by advanced QEXAFS techniques

    DEFF Research Database (Denmark)

    Grunwaldt, Jan-Dierk; Beier, M.; Kimmerle, B.

    2009-01-01

    -significantly faster than during the extinction of the reaction. The dynamic behavior of the catalysts was dependent on the flow conditions and the respective noble metal component(s). Higher reaction gas flow led to a faster ignition process. While the ignition over Pt-Rh/Al2O3 occurred at lower temperature than over...... Pt/Al2O3, the structural changes during ignition were significantly faster in the latter case. The rate of reduction of the catalyst during ignition was also dependent on the axial position in the fixed-bed. The spectroscopic results provide important insight into the ignition and extinction behavior......The dynamics of the ignition and extinction of the catalytic partial oxidation (CPO) of methane to hydrogen and carbon monoxide over Pt-Rh/Al2O3 and Pt/Al2O3 were studied in the subsecond timescale using quick-EXAFS with a novel cam-driven X-ray monochromator employing Si(111) and Si(311) crystals...

  12. A Hybrid Solid-State NMR and Electron Microscopy Structure-Determination Protocol for Engineering Advanced para-Crystalline Optical Materials.

    Science.gov (United States)

    Thomas, Brijith; Rombouts, Jeroen; Oostergetel, Gert T; Gupta, Karthick B S S; Buda, Francesco; Lammertsma, Koop; Orru, Romano; de Groot, Huub J M

    2017-01-24

    Hybrid magic-angle spinning (MAS) NMR spectroscopy and TEM were demonstrated for de novo structure determination of para-crystalline materials with a bioinspired fused naphthalene diimide (NDI)-salphen-phenazine prototype light-harvesting compound. Starting from chiral building blocks with C2 molecular symmetry, the asymmetric unit was determined by MAS NMR spectroscopy, index low-resolution TEM diffraction data, and resolve reflection conditions, and for the first time the ability to determine the space group from reciprocal space data using this hybrid approach was shown. Transfer of molecular C2 symmetry into P2/c packing symmetry provided a connection across length scales to overcome both lack of long-range order and missing diffraction-phase information. Refinement with heteronuclear distance constraints confirmed the racemic P2/c packing that was scaffolded by molecular recognition of salphen zinc in a pseudo-octahedral environment with bromide and with alkyl chains folding along the phenazine. The NDI light-harvesting stacks ran orthogonal to the intermolecular electric dipole moment present in the solid. Finally, the orientation of flexible lamellae on an electrode surface was determined.

  13. Advanced stitching technology

    Science.gov (United States)

    Scardino, Frank L.

    1992-01-01

    In the design of textile composites, the selection of materials and constructional techniques must be matched with product performance, productivity, and cost requirements. Constructional techniques vary. A classification of various textile composite systems is given. In general, the chopped fiber system is not suitable for structural composite applications because of fiber discontinuity, uncontrolled fiber orientation and a lack of fiber integration or entanglement. Linear filament yarn systems are acceptable for structural components which are exposed to simple tension in their applications. To qualify for more general use as structural components, filament yarn systems must be multi-directionally positioned. With the most sophisticated filament winding and laying techniques, however, the Type 2 systems have limited potential for general load-bearing applications because of a lack of filament integration or entanglement, which means vulnerability to splitting and delamination among filament layers. The laminar systems (Type 3) represented by a variety of simple fabrics (woven, knitted, braided and nonwoven) are especially suitable for load-bearing panels in flat form and for beams in a roled up to wound form. The totally integrated, advanced fabric system (Type 4) are thought to be the most reliable for general load-bearing applications because of fiber continuity and because of controlled multiaxial fiber orientation and entanglement. Consequently, the risk of splitting and delamination is minimized and practically omitted. Type 4 systems can be woven, knitted, braided or stitched through with very special equipment. Multiaxial fabric technologies are discussed.

  14. 采用地震勘探法超前探测矿区隐伏导水构造%Advance Detection of Mine Concealed Water Flowing Structure by Seismic Prospecting Method

    Institute of Scientific and Technical Information of China (English)

    黄晓容

    2016-01-01

    Fengfeng Coal Mining Area has complicated hydro-geological conditions and is threatened by water flood, so an urgent problem to be solved is to investigate and handle the concealed structures in the working face and their hydraulic conductivity. Advance detection was carried out on the concealed structures such as the small faults in front of 182311 working face in a mine in Fengfeng Mining Area, it was found out through investigations that there was an obvious wave-resistance abnormally at the place about 49 m in front of the working face, the exploratory boring proved that there was an abnormal water flowing zone at the place 50 m in front of the face, the actual revelation was a small fault with the throw of 0. 8 m, and the advance detection results were basically consistent with actual situation. This detection can provide technical support for the grouting reconstruction and reinforcement and the elimination of water inrush hazard in the water flowing structural zone.%峰峰矿区矿井水文地质条件复杂,受水害威胁大,对工作面底板隐伏构造及导水性的排查和处理是其亟待解决的问题。采用地震勘探法,对峰峰矿区某矿182311工作面前方小断层等隐伏导水构造进行了超前探测,查明在工作面前方约49 m位置存在明显波阻抗异常,通过钻探验证,其前方50 m见一导水异常区,实际揭露为落差0.8 m的小断层,超前探测结果与实际情况基本相符。可为导水构造地段进行注浆改造、加固处理,消除突水隐患提供技术保障。

  15. Buildings for advanced technology

    CERN Document Server

    Teague, E; Murday, James

    2015-01-01

    This book deals with the design and construction of buildings for nanoscale science and engineering research. The information provided in this book is useful for designing and constructing buildings for such advanced technologies as nanotechnology, nanoelectronics and biotechnology. The book outlines the technology challenges unique to each of the building environmental challenges outlined below and provides best practices and examples of engineering approaches to address them: • Establishing and maintaining critical environments: temperature, humidity, and pressure • Structural vibration isolation • Airborne vibration isolation (acoustic noise) • Isolation of mechanical equipment-generated vibration/acoustic noise • Cost-effective power conditioning • Grounding facilities for low electrical interference • Electromagnetic interference (EMI)/Radio frequency interference (RFI) isolation • Airborne particulate contamination • Airborne organic and chemical contamination • Environment, safety a...

  16. Advances in solar sailing

    CERN Document Server

    Third International Symposium on Solar Sailing

    2014-01-01

    Hosted by the Advanced Space Concepts Laboratory within the department of Mechanical and Aerospace Engineering of the University of Strathclyde, the third International Symposium on Solar Sailing was held in McCance Building at 16 Richmond Street, Glasgow, between 11 and 13 June 2013. The symposium attracted over 90 delegates from19 different counties, bringing together international experts from across the globe to discuss funded solar sail flight programs alongside on-going technology development and testing programs. The symposium also provided a forum for the discussion of enabling technologies, new application concepts, materials and structural concepts, space environmental effects, dynamics, navigation, control, and much more. This volume contains the unabridged symposium proceedings, in the gathered experts own words. As symposium chair, I thank our partners at Scottish Enterprise and L’Garde, Inc., the symposium’s gold sponsor, for their support in realising this symposium.

  17. Advanced adhesives in electronics

    CERN Document Server

    Bailey, C

    2011-01-01

    Adhesives are widely used in the manufacture of electronic devices to act as passive and active components. Recently there has been considerable interest in the use of conductive adhesives. This book reviews key types of conductive adhesives, processing methods, properties and the way they can be modelled as well as potential applications.$bAdhesives for electronic applications serve important functional and structural purposes in electronic components and packaging, and have developed significantly over the last few decades. Advanced adhesives in electronics reviews recent developments in adhesive joining technology, processing and properties. The book opens with an introduction to adhesive joining technology for electronics. Part one goes on to cover different types of adhesive used in electronic systems, including thermally conductive adhesives, isotropic and anisotropic conductive adhesives and underfill adhesives for flip-chip applications. Part two focuses on the properties and processing of electronic ...

  18. Advances in nanosized zeolites

    Science.gov (United States)

    Mintova, Svetlana; Gilson, Jean-Pierre; Valtchev, Valentin

    2013-07-01

    This review highlights recent developments in the synthesis of nanosized zeolites. The strategies available for their preparation (organic-template assisted, organic-template free, and alternative procedures) are discussed. Major breakthroughs achieved by the so-called zeolite crystal engineering and encompass items such as mastering and using the physicochemical properties of the precursor synthesis gel/suspension, optimizing the use of silicon and aluminium precursor sources, the rational use of organic templates and structure-directing inorganic cations, and careful adjustment of synthesis conditions (temperature, pressure, time, heating processes from conventional to microwave and sonication) are addressed. An on-going broad and deep fundamental understanding of the crystallization process, explaining the influence of all variables of this complex set of reactions, underpins an even more rational design of nanosized zeolites with exceptional properties. Finally, the advantages and limitations of these methods are addressed with particular attention to their industrial prospects and utilization in existing and advanced applications.

  19. Nanotechnological Basis for Advanced Sensors

    CERN Document Server

    Reithmaier, Johann Peter; Kulisch, Wilhelm; Popov, Cyril; Petkov, Plamen

    2011-01-01

    Bringing together experts from 15 countries, this book is based on the lectures and contributions of the NATO Advanced Study Institute on “Nanotechnological Basis for Advanced Sensors” held in Sozopol, Bulgaria, 30 May - 11 June, 2010. It gives a broad overview on this topic, and includes articles on: techniques for preparation and characterization of sensor materials; different types of nanoscaled materials for sensor applications, addressing both their structure (nanoparticles, nanocomposites, nanostructured films, etc.) and chemical nature (carbon-based, oxides, glasses, etc.); and on advanced sensors that exploit nanoscience and nanotechnology. In addition, the volume represents an interdisciplinary approach with authors coming from diverse fields such as physics, chemistry, engineering, materials science and biology. A particular strength of the book is its combination of longer papers, introducing the basic knowledge on a certain topic, and brief contributions highlighting special types of sensors a...

  20. Research Advances in Mechanical Behavior of Nano Switch Structure%纳米开关结构的力学行为研究进展

    Institute of Scientific and Technical Information of China (English)

    杨帆

    2016-01-01

    Nano-switches are the fundamental building blocks of nano devices such as nano-electromechanical system (NEMS), nano-computers and nano-robots. For the advantages of small volume, light weight, low power consumption, high resonant frequency and short response time, nano-switches are now developed for general use as structural components in micro nano devices. Owing to the greatly increasing ratio of surface area to volume, their physical, chemical and mechanical properties display evident size dependence, which are clearly distinct from their macroscopic counterparts. This article reviews recent investigation concerning the responses of nano-switch-es. Future research needs are highlighted.%纳米开关结构是纳米机电系统以及未来纳米计算机、纳米机器人的重要控制元件,它具有体积小、重量轻、功耗低、谐振频率高、响应时间短等优点,在亚微米器件中有着潜在的应用前景。随着纳米开关结构尺寸的减小,材料最外层表面原子所占的比例大幅度增加,比表面积、比表面能也迅速增加,呈现出显著的尺寸相关性,其物理、化学、力学性能与宏观物体有所不同。本文对纳米机械开关结构的力学行为研究现状进行了评述,集中讨论了纳米机械开关的典型力学行为研究,涉及各种边界条件下纳米机械开关结构受电、机载荷作用的情况,并提出需要进一步研究的方向。

  1. Advancement and testing of analysis techniques for the determination of the structural dynamic behavior of containment structures. Final report; Weiterentwicklung und Erprobung von Analysemethoden zur Bestimmung des strukturdynamischen Verhaltens von Containmentstukturen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Sievers, Juergen; Bahr, Ludwig; Arndt, Jens; Heckoetter, Christian; Grebner, Hans

    2014-11-15

    Within the framework of project RS1197, analysis methods have been further developed and tested for the determination of the structural dynamic loading and the maximum load-bearing capacity of containment structures with a focus on the quantification of safety margins against failures due to loads resulting from selected internal and external hazards. The analyses comprised a model containment structure of prestressed reinforced concrete under internal pressure loading until reaching failure pressure, an outer containment structure made of reinforced concrete under local impact loads that may occur during a targeted aircraft crash, and a steel containment under local peak loads from internal pressure and temperature loads due to core melt scenarios with a local hydrogen combustion. GRS participated in the international ''Standard Problem Exercise 3'' on the issue ''Performance of Containment Vessel under Severe Accident Conditions''. Together with the cooperation partners, aspects of the global containment behaviour were considered based on the example of the Sandia 1:4 model containment of prestressed concrete, which was loaded by rising internal pressure until failure. Complex analysis models were developed, calculating the behaviour of the prestressing tendons under consideration of the frictional contact with the cladding tubes. Compared with corresponding measurement values, the analysis results show that the stresses near the tensioning device and the deformation of the inner surface can be realistically modelled as a function of the internal pressure. In the experiment, global structural failure of the containment model was caused by tendon rupture at about 3.64 times the design pressure. With the developed analysis models of a generic structure of an outer reinforced concrete containment, simulations were carried out for various aircraft crash scenarios as contact problems with explicit impactor simulation. For this

  2. Advances in Research of the Structure and Browning Mechanism of Polyphenol Oxidase%多酚氧化酶结构及褐变机理研究进展

    Institute of Scientific and Technical Information of China (English)

    刘芳; 赵金红; 朱明慧; 甘芝霖; 倪元颖

    2015-01-01

    Polyphenol oxidases (PPO, EC.1.10.3.1), found in bacteria, fungi and plants, belongs to the class of type 3 copper proteins that catalyze the oxidation of o-diphenols (catechols) to the corresponding o-quinones in the presence of oxygen. o-Quinones will then undergo spontaneous polymerization, which produces melanin, the pigment with high molecular weight and dark in color. It is believed to be the primary response for the deleterious browning of many fruits and vegetables. Although lots of research on the properties and the inhibition of its activity has been done, its structure (especially the structure of the active center) and the mechanism of browning was unclear. The present review attempts to highlight the recent advances in research of the structure and the mechanism of browning.%多酚氧化酶(polyphenol oxidase,PPO,EC.1.10.3.1)是动物、植物、真菌体内普遍存在的一类铜结合酶。在有氧条件下,PPO果蔬原料中的内源性多酚物质氧化为醌类物质,醌类物质聚合产生黑色素,是引起果蔬褐变的主要因素。多酚氧化酶的催化性质及活性抑制方面已经做了大量研究,取得了一定成果。但其结构(尤其是活性中心的结构)与褐变机理一直未研究清楚,本文综述了多酚氧化酶结构及褐变机理方面的研究进展,为这方面的研究工作提供参考。

  3. Processamento de laminados de compósitos poliméricos avançados com bordas moldadas Processing of advanced structural polymeric composite laminates with molded edges

    Directory of Open Access Journals (Sweden)

    Geraldo M. Cândido

    2000-03-01

    Full Text Available Técnicas que contribuem para melhorar a qualidade dos compósitos produzidos por laminação manual e cura em autoclave e/ou visando à redução no custo de processamento têm sido intensamente pesquisadas. Uma das maneiras de se obter esse ganho de produtividade é eliminar operações de usinagem da borda por meio da técnica de fabricação de laminados com bordas moldadas. Neste trabalho é apresentada uma revisão da tecnologia de fabricação de peças estruturais de compósitos poliméricos avançados, com ênfase na produção de laminados com bordas moldadas. Exemplos deste tipo de acabamento são mostrados utilizando laminados cruzados simétricos [(0,90/0]s e [(0,90/90]s, fabricados com fita unidirecional contínua e tecido bidirecional de carbono, pré-impregnados com resina epóxi. O arranjo de fibras e resina na região da borda livre de todos os corpos-de-prova foi analisado usando um microscópio óptico. Foi observado que as fibras longitudinais (a 0° podem se mover lateralmente na direção da borda moldada sob ação da pressão aplicada durante a cura. Bolsas de resina pura podem ser formadas nessa região dependendo da seqüência de empilhamento do laminado.Manufacturing techniques that improve the quality and/or reduce the cost of advanced composites structures produced by vacuum bag and cure in autoclave have been intensely investigated. One way to obtain a gain in productivity is to produce laminates with molded edges. This work presents a literature review of the fabrication process of structural parts of advanced polymeric composites, with emphasis in the manufacturing of laminates with molded edges. As an example of this type of edge finishing, symmetric cross ply laminates [(0,90/0]s and [(0,90/90]s were manufactured with pre-impregnated unidirectional tape and fabric. The arrangement of fibers and resin near the free edge of all specimens were analyzed using an optical microscope. It was observed that

  4. Advances in magnetic resonance 4

    CERN Document Server

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 4 deals with the relaxation, irradiation, and other dynamical effects that is specific to systems having resolved structure in their magnetic resonance spectra. This book discusses the anisotropic rotation of molecules in liquids by NMR quadrupolar relaxation; rotational diffusion constants; alternating linewidth effect; and theoretical formulations of the problem. The line shapes in high-resolution NMR; matrix representations of the equations of motion; matrix representations of the equations of motion; and intramolecular hydrogen bonds are also delibera

  5. Advances in magnetic resonance 10

    CERN Document Server

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 10, presents a variety of contributions to the theory and practice of magnetic resonance. The book contains three chapters that examine superoperators in magnetic resonance; ultrasonically modulated paramagnetic resonance; and the utility of electron paramagnetic resonance (EPR) and electron-nuclear double-resonance (ENDOR) techniques for studying low-frequency modes of atomic fluctuations and their significance for understanding the mechanism of structural phase transitions in solids.

  6. Advanced Neutron Source (ANS) Project

    Science.gov (United States)

    Campbell, J. H.

    1992-01-01

    This report discusses the following about the Advanced Neutron Source: Project Management; Research and Development; Fuel Development; Corrosion Loop Tests and Analyses; Thermal-Hydraulic Loop Tests; Reactor Control and Shutdown Concepts; Critical and Subcritical Experiments; Material Data, Structural Tests, and Analysis; Cold-Source Development; Beam Tube, Guide, and Instrument Development; Hot-Source Development; Neutron Transport and Shielding; I & C Research and Development; Design; and Safety.

  7. Advances in forefoot trauma.

    Science.gov (United States)

    Clements, J Randolph; Schopf, Robert

    2013-07-01

    Forefoot traumas, particularly involving the metatarsals, are commonly occurring injuries. There have been several advances in management of these injuries. These advances include updates in operative technique, internal fixation options, plating constructs, and external fixation. In addition, the advances of soft tissue management have improved outcomes. This article outlines these injuries and provides an update on techniques, principles, and understanding of managing forefoot trauma.

  8. Assurance Technology Challenges of Advanced Space Systems

    Science.gov (United States)

    Chern, E. James

    2004-01-01

    The initiative to explore space and extend a human presence across our solar system to revisit the moon and Mars post enormous technological challenges to the nation's space agency and aerospace industry. Key areas of technology development needs to enable the endeavor include advanced materials, structures and mechanisms; micro/nano sensors and detectors; power generation, storage and management; advanced thermal and cryogenic control; guidance, navigation and control; command and data handling; advanced propulsion; advanced communication; on-board processing; advanced information technology systems; modular and reconfigurable systems; precision formation flying; solar sails; distributed observing systems; space robotics; and etc. Quality assurance concerns such as functional performance, structural integrity, radiation tolerance, health monitoring, diagnosis, maintenance, calibration, and initialization can affect the performance of systems and subsystems. It is thus imperative to employ innovative nondestructive evaluation methodologies to ensure quality and integrity of advanced space systems. Advancements in integrated multi-functional sensor systems, autonomous inspection approaches, distributed embedded sensors, roaming inspectors, and shape adaptive sensors are sought. Concepts in computational models for signal processing and data interpretation to establish quantitative characterization and event determination are also of interest. Prospective evaluation technologies include ultrasonics, laser ultrasonics, optics and fiber optics, shearography, video optics and metrology, thermography, electromagnetics, acoustic emission, x-ray, data management, biomimetics, and nano-scale sensing approaches for structural health monitoring.

  9. 乳酸菌胞外多糖的结构及功能特性研究进展%Research advances on structure and function of exopolysaccharides produced by lactic acid bacteria

    Institute of Scientific and Technical Information of China (English)

    田政; 王辑; 郑喆; 杨贞耐

    2013-01-01

      The exopolysaccharides (EPSs) produced by lactic acid bacteria were natural biological poly-mers with many special functions such as improvement of textural characteristics of fermented dairy products and beneficial health effects for human beings. EPSs of lactic bacteria had been extensively and thoroughly studied with respects to the structure and function, as well as their relations. This paper reviewed the research advances on the EPS types, chemical composition, structure and function, in order to provide references for further research and development of functional foods related to the EPSs of lactic acid bacteria.%  乳酸菌胞外多糖是一种天然的高分子聚合物,具有诸多功能特性,如改善发酵乳的质构特性及对人体的多种健康作用等。许多学者对乳酸菌胞外多糖的结构和功能特性及其构效关系进行了广泛而深入的研究。本文综述了有关乳酸菌胞外多糖的种类、化学组成、结构和功能等方面的研究进展,以期为乳酸菌胞外多糖及相关功能食品的进一步研究开发提供参考。

  10. Advanced detection technology of Rayleigh wave for detection of abnormal geological structure in excavation face%瑞利波技术超前探测掘进工作面构造异常

    Institute of Scientific and Technical Information of China (English)

    李胜; 祁晓鑫; 李军文

    2015-01-01

    In the front of excavation face, there exist abnormal geological structures such as fault, karst cave, col-lapsed pillars and aquifer, which usually bring about hazards like “pervious to water” and “roof fall” etc. How to accurately and effectively detect the geological structure in the front of excavation face has became a problem ur-gently needed to solve during production in coal mine. TYR (D) Rayleigh wave detector was adopted in advanced detection in driving face 7603 of Wuyang mine. The collected data were processed and analyzed, the conclusion is basically consistent with the engineering verification, thus obtaining good application effect.%掘进工作面前方存在断层、溶洞、陷落柱、含水层等地质构造,常常导致透水、冒顶等灾害性事故。采用YTR(D)瑞利波探测仪对山西潞安集团五阳煤矿7603掘进工作面进行超前探测,并对现场采集的数据进行处理和分析。结果显示,2个测点共发现9处异常区,通过后期工程验证,有7处探测异常区与实际揭露的结果基本一致,探测与实际揭露异常区域位置误差均在4m以内。

  11. Advanced High Temperature Structural Honeycomb TPS Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this NASA Phase I SBIR program, MATECH proposes to leverage successfully developed laboratory and pilot scale manufacturing technologies to produce low cost...

  12. Advanced Structural Characterization of Organic Thin Films

    DEFF Research Database (Denmark)

    Gu, Yun

    of small molecule and polymer layers is indicated by Flory- Huggins theory for the triisopropylsilylethynl pentacene (TIPS-PEN) and polystyrene blend films. In order to investigate the phase separated layers in the ink-jet printed films, we propose a method to measure diraction Bragg peaks by X......-ray standing waves. A preliminary experiment has been shown and the results imply a three-layer TIPS-PEN/PS/TIPS-PEN segregated film. In the last part of the thesis, the time-resolved X-ray diffraction is applied to the study ferroelectric capacitors of copolymer(vinylidene fluoride-trifluoroethylene) (P...

  13. Advances in Nanocarbon Metals: Fine Structure

    Science.gov (United States)

    2015-03-01

    necessary to improve the performance and stability of Cu covetic films grown by PLD. Slides 60–81 present our results on Cu covetic films. We have... improved properties over the base metal from which it is generated. After the conversion process, the C is highly stable, despite its form not being...from Third Millennium Materials, LLC. Pieces of the bulk material were used as targets for the film deposition. The attached PowerPoint presentation

  14. Advanced Metallic Air Vehicle Structure Program

    Science.gov (United States)

    1974-06-01

    At-. . S REMOE LMINATORIS YO HIC4rMESS .9Q!Oe L4aD 1A7 TOKMS Fit% VOID SEQO TO VILL VOID o tFILVD i- ---I -SICRM 45 SAO 4 PLAC S I.LtLOIS RIF 572Z5902...creating a heavy globular underbead and severe underfill on the face of the weld. Weld parameters that were investigated include variations of voltage

  15. Semantic structures advances in natural language processing

    CERN Document Server

    Waltz, David L

    2014-01-01

    Natural language understanding is central to the goals of artificial intelligence. Any truly intelligent machine must be capable of carrying on a conversation: dialogue, particularly clarification dialogue, is essential if we are to avoid disasters caused by the misunderstanding of the intelligent interactive systems of the future. This book is an interim report on the grand enterprise of devising a machine that can use natural language as fluently as a human. What has really been achieved since this goal was first formulated in Turing's famous test? What obstacles still need to be overcome?

  16. Center for Advanced Electrical and Structural Polymers

    Science.gov (United States)

    1993-10-15

    Kapton. Films of TPI, PEI ( Ultem 6000), and blends of these materials having 50 and 80 percent by weight of TPI were produced. These films were yellowish...when blended with PEI. The second year’s effort resulted in the following conclusions: " Blends of Aurum 450X. -v ith Ultem 6000 are miscible over...the composition range studied (up to 50% Ultem ). 0 Crystallization is inhibited in the 80/20 TPI/PEI blend and virtually absent in the 50/50 blend. The

  17. Advances in chemical physics

    CERN Document Server

    Rice, Stuart A

    2012-01-01

    The Advances in Chemical Physics series-the cutting edge of research in chemical physics The Advances in Chemical Physics series provides the chemical physics and physical chemistry fields with a forum for critical, authoritative evaluations of advances in every area of the discipline. Filled with cutting-edge research reported in a cohesive manner not found elsewhere in the literature, each volume of the Advances in Chemical Physics series presents contributions from internationally renowned chemists and serves as the perfect supplement to any advanced graduate class devoted to the study o

  18. Advances in chemical physics

    CERN Document Server

    Rice, Stuart A

    2012-01-01

    The Advances in Chemical Physics series-the cutting edge of research in chemical physics The Advances in Chemical Physics series provides the chemical physics field with a forum for critical, authoritative evaluations of advances in every area of the discipline. Filled with cutting-edge research reported in a cohesive manner not found elsewhere in the literature, each volume of the Advances in Chemical Physics series serves as the perfect supplement to any advanced graduate class devoted to the study of chemical physics. This volume explores: Quantum Dynamical Resonances in Ch

  19. ACR-700 advanced technologies

    Energy Technology Data Exchange (ETDEWEB)

    Tapping, R.L.; Turner, C.W. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Yu, S.K.W. [Atomic Energy of Canada Limited, Mississauga, Ontario (Canada); Olmstead, R.; Speranzini, R.A. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2004-12-01

    A successful advanced reactor plant will have optimized economics including reduced operating and maintenance costs, improved performance, and enhanced safety. Incorporating improvements based on advanced technologies ensures cost, safety and operational competitiveness of the ACR-700. These advanced technologies include modern configuration management; construction technologies; operational technology for the control centre and information systems for plant monitoring and analysis. This paper summarizes the advanced technologies used to achieve construction and operational improvements to enhance plant economic competitiveness, advances in the operational technology used for reactor control, and presents the development of the Smart CANDU suite of tools and its application to existing operating reactors and to the ACR-700. (author)

  20. Advances in chemical Physics

    CERN Document Server

    Rice, Stuart A

    2011-01-01

    The Advances in Chemical Physics series-the cutting edge of research in chemical physics The Advances in Chemical Physics series provides the chemical physics and physical chemistry fields with a forum for critical, authoritative evaluations of advances in every area of the discipline. Filled with cutting-edge research reported in a cohesive manner not found elsewhere in the literature, each volume of the Advances in Chemical Physics series offers contributions from internationally renowned chemists and serves as the perfect supplement to any advanced graduate class devoted to the study of che

  1. Advances in chemical physics

    CERN Document Server

    Rice, Stuart A

    2011-01-01

    The Advances in Chemical Physics series-the cutting edge of research in chemical physics The Advances in Chemical Physics series provides the chemical physics and physical chemistry fields with a forum for critical, authoritative evaluations of advances in every area of the discipline. Filled with cutting-edge research reported in a cohesive manner not found elsewhere in the literature, each volume of the Advances in Chemical Physics series offers contributions from internationally renowned chemists and serves as the perfect supplement to any advanced graduate class devoted to the study of che

  2. Some Lower Valence Vanadium Fluorides: Their Crystal Distortions, Domain Structures, Modulated Structures, Ferrimagnetism, and Composition Dependence.

    Science.gov (United States)

    Hong, Y. S.; And Others

    1980-01-01

    Describes some contemporary concepts unique to the structure of advanced solids, i.e., their crystal distortions, domain structures, modulated structures, ferrimagnetism, and composition dependence. (Author/CS)

  3. Advanced worker protection system

    Energy Technology Data Exchange (ETDEWEB)

    Caldwell, B.; Duncan, P.; Myers, J. [Oceaneering Space Systems, Houston, TX (United States)

    1995-10-01

    The Department of Energy (DOE) is in the process of defining the magnitude and diversity of Decontamination and Decommissioning (D&D) obligations at its numerous sites. The DOE believes that existing technologies are inadequate to solve many challenging problems such as how to decontaminate structures and equipment cost effectively, what to do with materials and wastes generated, and how to adequately protect workers and the environment. Preliminary estimates show a tremendous need for effective use of resources over a relatively long period (over 30 years). Several technologies are being investigated which can potentially reduce D&D costs while providing appropriate protection to DOE workers. The DOE recognizes that traditional methods used by the EPA in hazardous waste site clean up activities are insufficient to provide the needed protection and worker productivity demanded by DOE D&D programs. As a consequence, new clothing and equipment which can adequately protect workers while providing increases in worker productivity are being sought for implementation at DOE sites. This project describes the development of an Advanced Worker Protection System (AWPS) which will include a life-support backpack with liquid air for cooling and as a supply of breathing gas, protective clothing, respirators, communications, and support equipment.

  4. Advance Care Planning.

    Science.gov (United States)

    Stallworthy, Elizabeth J

    2013-04-16

    Advance care planning should be available to all patients with chronic kidney disease, including end-stage kidney disease on renal replacement therapy. Advance care planning is a process of patient-centred discussion, ideally involving family/significant others, to assist the patient to understand how their illness might affect them, identify their goals and establish how medical treatment might help them to achieve these. An Advance Care Plan is only one useful outcome from the Advance Care Planning process, the education of patient and family around prognosis and treatment options is likely to be beneficial whether or not a plan is written or the individual loses decision making capacity at the end of life. Facilitating Advance Care Planning discussions requires an understanding of their purpose and communication skills which need to be taught. Advance Care Planning needs to be supported by effective systems to enable the discussions and any resulting Plans to be used to aid subsequent decision making.

  5. Advancing Ethical Neuroscience Research.

    Science.gov (United States)

    Borah, B Rashmi; Strand, Nicolle K; Chillag, Kata L

    2016-12-01

    As neuroscience research advances, researchers, clinicians, and other stakeholders will face a host of ethical challenges. The Presidential Commission for the Study of Bioethical Issues (Bioethics Commission) has published two reports that provide recommendations on how to advance research endeavors ethically. The commission addressed, among other issues, how to prioritize different types of neuroscience research and how to include research participants who have impaired consent capacity. The Bioethics Commission's recommendations provide a foundation for ethical guidelines as neuroscience research advances and progresses.

  6. Advances in Applied Mechanics

    OpenAIRE

    2014-01-01

    Advances in Applied Mechanics draws together recent significant advances in various topics in applied mechanics. Published since 1948, Advances in Applied Mechanics aims to provide authoritative review articles on topics in the mechanical sciences, primarily of interest to scientists and engineers working in the various branches of mechanics, but also of interest to the many who use the results of investigations in mechanics in various application areas, such as aerospace, chemical, civil, en...

  7. Research in Structural Protein VP2 of Porcine Parvovirus and Advance in Vaccine of Porcine Parvovirus%猪细小病毒结构蛋白VP2及其疫苗的研究进展

    Institute of Scientific and Technical Information of China (English)

    焦茂兴; 郭春和; 黄毓茂

    2011-01-01

    Porcine parvovirus (PPV) is one of the important pathogens causing porcine reproductive syndrome. The virus exists everywhere in the world and epidemics locally,and it has caused a huge economic losses to the reproduce and development of porcine. As a result, it is very important to prevent PPV. The PPV VP2 protein, the major capsid protein of the PPV, can be assembled into virus-like particles, induce strong antibody responses against PPV and be used as vectors for delivery of het-erologous epitopes. For these reasons, the research of the VP2 is critically important to the development of the new-type vaccine in PPV. In this paper, the newest research in structural protein VP2 of PPV and advance in vaccine of PPV were reviewed.%猪细小病毒(porcine parvovirus,PPV)是引起母猪繁殖障碍性疾病的主要病原之一,该病毒在世界范围内广泛存在并呈地方性流行,给生猪的繁殖、发展带来了巨大的经济损失,故防制猪细小病毒病非常重要.PPV VP2蛋白是病毒粒子的主要衣壳蛋白,在体外能自我装配成病毒样颗粒,并能刺激机体产生抗PPV中和抗体,且可作为抗原转运载体,所以研究VP2对PPV新型疫苗研制至关重要.文章综述了猪细小病毒结构蛋白VP2及其疫苗的研究进展.

  8. Advanced Photon Source (APS)

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Photon Source (APS) at the U.S. Department of Energy's Argonne National Laboratoryprovides this nation's (in fact, this hemisphere's) brightest storage...

  9. Advanced Simulation Center

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Simulation Center consists of 10 individual facilities which provide missile and submunition hardware-in-the-loop simulation capabilities. The following...

  10. Advanced Chemistry Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Description/History: Chemistry laboratory The Advanced Chemistry Laboratory (ACL) is a unique facility designed for working with the most super toxic compounds known...

  11. Advanced Manufacturing Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Manufacturing Laboratory at the University of Maryland provides the state of the art facilities for realizing next generation products and educating the...

  12. 水电站垫层蜗壳结构研究和应用的现状和发展%Advance in research and application of spiral case structure with a membrane in hydroelectric power plant

    Institute of Scientific and Technical Information of China (English)

    张启灵; 伍鹤皋

    2012-01-01

    The development in the research and application of spiral case structure with a membrane(SC- SM) in hydroelectric power plant, is summarized. It is indicated that SCSM is the trend in development of selecting the embedding type for spiral case. Two significant advances are pointed out: the joint stressing of spiral case and surrounding concrete, the sliding friction between them. The nonlinear mechanical behav- ior of membrane material as a factor influencing significantly the SCSM research should be considered in the future. The influences of membrane's material and space property on the structural performances of SC- SM are respectively stated, and on that basis the existing problems of the SCSM research are concluded. Fi- nally, it is suggested that the of concepte control should be the focus of research in SCSM and the mem- brane could be regarded as a controlling measure. To explore the theory and measure for controlling the structural performances of spiral case structure from the viewpoint of effect of membrance should be the im- portant topics of research in this field.%结合我国水电站垫层蜗壳结构工程应用的发展近况,介绍了近年来垫层蜗壳结构设计理念的转变,指出了直埋一垫层组合方案将成为未来水电站蜗壳埋设方式选择的发展趋势。总结了垫层蜗壳结构研究发展中取得的两个重要进展——钢蜗壳与外围混凝土联合受力、钢蜗壳与外围混凝土之间滑动摩擦,指出考虑垫层材料的非线性力学性能将是垫层蜗壳结构研究的发展趋势。分别阐述了垫层材料属性和空间属性对蜗壳结构受力特性的影响,在此基础上,归纳了垫层蜗壳结构研究存在的问题,最终提出未来的垫层蜗壳结构研究应强调“控制”的研究理念,视垫层为“控制工具”,以全新的视角看待垫层的作用,探求控制蜗壳结构受力特性的理论与方法。

  13. Advances in dental materials.

    Science.gov (United States)

    Fleming, Garry J P

    2014-05-01

    The dental market is replete with new resorative materials marketed on the basis of novel technological advances in materials chemistry, bonding capability or reduced operator time and/or technique sensitivity. This paper aims to consider advances in current materials, with an emphasis on their role in supporting contemporary clinical practice.

  14. Advanced Naval Vehicle Structural Loads Criteria and Structural Characteristics

    Science.gov (United States)

    1976-08-01

    cushionborne operational conditions. The recommended fatigue safety factor of 2.00 is in terms of cycles. Thus, for example, an SES hull or waterjet ...be designed to withstand the pressures and loads caused by pounding in severe sea states. Supercritical hulls which have demonstrably lower

  15. Advanced lipoxidation end-products.

    Science.gov (United States)

    Pamplona, Reinald

    2011-06-30

    Chemical and nonenzymatic molecular modifications induced by reactive carbonyl species (RCS) generated by peroxidation of membrane phospholipids acyl chains play a dual role as signaling molecules and as mediators of the aging process. Cytotoxic effects of RCS are due to their capacity to react with cellular constituents, forming advanced lipoxidation end-products (ALEs). Reactive carbonyl compounds are stable and can diffuse within or even escape from the cell and attack targets far from the site of formation. The consequent loss of function and structural integrity of modified biomolecules can have a wide range of downstream functional consequences and may be the cause of subsequent cellular dysfunctions and tissue damage.

  16. Advances in natural language processing.

    Science.gov (United States)

    Hirschberg, Julia; Manning, Christopher D

    2015-07-17

    Natural language processing employs computational techniques for the purpose of learning, understanding, and producing human language content. Early computational approaches to language research focused on automating the analysis of the linguistic structure of language and developing basic technologies such as machine translation, speech recognition, and speech synthesis. Today's researchers refine and make use of such tools in real-world applications, creating spoken dialogue systems and speech-to-speech translation engines, mining social media for information about health or finance, and identifying sentiment and emotion toward products and services. We describe successes and challenges in this rapidly advancing area.

  17. Advances in photovoltaics pt.3

    CERN Document Server

    Willeke, Gerhard P

    2014-01-01

    This volume is the third of a set of seven on the topic of photovoltaics. Solar cell-related technologies covered here include: ribbon silicon; heterojunction crystalline silicon; wafer equivalent crystalline silicon; and other advanced silicon solar cell structures and processes. Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. Originally widely known as the ""Willardson and Beer"" Series, it has succeeded in publishing numerous landmark volumes and chapters. The series publishes timely, highly relevant v

  18. Advanced C and C++ compiling

    CERN Document Server

    Stevanovic, Milan

    2014-01-01

    Learning how to write C/C++ code is only the first step. To be a serious programmer, you need to understand the structure and purpose of the binary files produced by the compiler: object files, static libraries, shared libraries, and, of course, executables.Advanced C and C++ Compiling explains the build process in detail and shows how to integrate code from other developers in the form of deployed libraries as well as how to resolve issues and potential mismatches between your own and external code trees.With the proliferation of open source, understanding these issues is increasingly the res

  19. A course in advanced calculus

    CERN Document Server

    Borden, Robert S

    1997-01-01

    This remarkable undergraduate-level text offers a study in calculus that simultaneously unifies the concepts of integration in Euclidean space while at the same time giving students an overview of other areas intimately related to mathematical analysis. The author achieves this ambitious undertaking by shifting easily from one related subject to another. Thus, discussions of topology, linear algebra, and inequalities yield to examinations of innerproduct spaces, Fourier series, and the secret of Pythagoras. Beginning with a look at sets and structures, the text advances to such topics as lim

  20. ESL intermediate/advanced writing

    CERN Document Server

    Munoz Page, Mary Ellen; Jaskiewicz, Mary

    2011-01-01

    Master ESL (English as a Second Language) Writing with the study guide designed for non-native speakers of English. Skill-building lessons relevant to today's topics help ESL students write complete sentences, paragraphs, and even multi-paragraph essays. It's perfect for classroom use or self-guided writing preparation.DETAILS- Intermediate drills for improving skills with parallel structure, mood, correct shifting errors & dangling participles- Advanced essay drills focusing on narrative, descriptive, process, reaction, comparison and contrast- Superb preparation for students taking the TOEFL

  1. Advanced diffusion processes and phenomena

    CERN Document Server

    Öchsner, Andreas; Belova, Irina

    2014-01-01

    This topical volume on Advanced Diffusion Processes and Phenomena addresses diffusion in a wider sense of not only mass diffusion but also heat diffusion in fluids and solids. Both diffusion phenomena play an important role in the characterization of engineering materials and corresponding structures. Understanding these different transport phenomena at many levels, from atomistic to macro, has therefore long attracted the attention of many researchers in materials science and engineering and related disciplines. The present topical volume captures a representative cross-section of some of the

  2. Advanced Topics in Information Retrieval

    CERN Document Server

    Melucci, Massimo

    2011-01-01

    Information retrieval is the science concerned with the effective and efficient retrieval of documents starting from their semantic content. It is employed to fulfill some information need from a large number of digital documents. Given the ever-growing amount of documents available and the heterogeneous data structures used for storage, information retrieval has recently faced and tackled novel applications. In this book, Melucci and Baeza-Yates present a wide-spectrum illustration of recent research results in advanced areas related to information retrieval. Readers will find chapters on e.g

  3. The impact of emerging technologies on an advanced supersonic transport

    Science.gov (United States)

    Driver, C.; Maglieri, D. J.

    1986-01-01

    The effects of advances in propulsion systems, structure and materials, aerodynamics, and systems on the design and development of supersonic transport aircraft are analyzed. Efficient propulsion systems with variable-cycle engines provide the basis for improved propulsion systems; the propulsion efficienies of supersonic and subsonic engines are compared. Material advances consist of long-life damage-tolerant structures, advanced material development, aeroelastic tailoring, and low-cost fabrication. Improvements in the areas of aerodynamics and systems are examined. The environmental problems caused by engine emissions, airport noise, and sonic boom are studied. The characteristics of the aircraft designed to include these technical advances are described.

  4. Advanced materials for energy storage.

    Science.gov (United States)

    Liu, Chang; Li, Feng; Ma, Lai-Peng; Cheng, Hui-Ming

    2010-02-23

    Popularization of portable electronics and electric vehicles worldwide stimulates the development of energy storage devices, such as batteries and supercapacitors, toward higher power density and energy density, which significantly depends upon the advancement of new materials used in these devices. Moreover, energy storage materials play a key role in efficient, clean, and versatile use of energy, and are crucial for the exploitation of renewable energy. Therefore, energy storage materials cover a wide range of materials and have been receiving intensive attention from research and development to industrialization. In this Review, firstly a general introduction is given to several typical energy storage systems, including thermal, mechanical, electromagnetic, hydrogen, and electrochemical energy storage. Then the current status of high-performance hydrogen storage materials for on-board applications and electrochemical energy storage materials for lithium-ion batteries and supercapacitors is introduced in detail. The strategies for developing these advanced energy storage materials, including nanostructuring, nano-/microcombination, hybridization, pore-structure control, configuration design, surface modification, and composition optimization, are discussed. Finally, the future trends and prospects in the development of advanced energy storage materials are highlighted.

  5. Applications of Advanced Solid-State NMR Techniques in Studying the Structure and Dynamics of Polymers%先进固体 NMR 技术研究高分子结构与动力学

    Institute of Scientific and Technical Information of China (English)

    张荣纯; 孙平川

    2012-01-01

    With the advances in NMR theories and spectrometer hardware technology, NMR is playing an increasingly important role in studying multi-scale structure and dynamics of polymers. In this paper, the newest developments in solid-state 1H and 13C NMR techniques and their applications in the studies of polymer structures and dynamics were reviewed. High-resolution solid-state 1H NMR techniques, such as multiple-pulse and fast magic angle spinning (MAS) , have made it possible to determine the chemical structures of polymers and to detect the intra- and inter-polymer interactions effectively. Taking advantages of through-bond (/ coupling) and through-space (dipolar coupling) interactions, two dimensional heteronuclear correlation NMR experiments now can be used to resolve the microstructures of complex polymer chains. The recoupling techniques allow dipolar interactions and chemical shift anisotropy to be observed under MAS conditions, thus enabling simultaneous detection of high-resolution 1H or 13C signals and quasi-static anisotropic interactions. The domain sizes and interphase thickness in multiphase polymers and miscibility in polymer blends can now be determined effectively using the dipolar filter techniques. In the dynamics studies, it is now possible to obtain information on local fast motions of a single bond and super-slow chain dynamics by efficient suppression of spin-diffusion among protons and recoupling of chemical shift anisotropy. In summary, the advanced solid-state NMR techniques have enabled detailed studies on polymer microstructure, phase separation and dynamic behavior at different time and length scales, and on the relationship between the microstructure and macroscopic properties of polymers.%随着固体NMR理论和谱仪硬件技术的不断发展,近年来固体NMR技术在高分子多尺度结构与动力学研究领域中正发挥着越来越重要的作用.多脉冲及高速魔角旋转(MAS)等质子高分辨技术的发展使得

  6. Advanced electron microscopy for advanced materials.

    Science.gov (United States)

    Van Tendeloo, Gustaaf; Bals, Sara; Van Aert, Sandra; Verbeeck, Jo; Van Dyck, Dirk

    2012-11-08

    The idea of this Review is to introduce newly developed possibilities of advanced electron microscopy to the materials science community. Over the last decade, electron microscopy has evolved into a full analytical tool, able to provide atomic scale information on the position, nature, and even the valency atoms. This information is classically obtained in two dimensions (2D), but can now also be obtained in 3D. We show examples of applications in the field of nanoparticles and interfaces.

  7. Joining and surfacing of advanced materials

    Institute of Scientific and Technical Information of China (English)

    Andrzej Kolasa; Wladyslaw Wlosinski

    2004-01-01

    The application of advanced materials, i.e. advanced ceramics, glasses, intermetallic phases and various type of composites, not only depends on their manufacture processes including a great input of know-how, but also on their abilities for processing, among which the joining processes play an important role. The uses of advanced materials are changing rapidly, with a major emphasis on technical applications, especially the components of machines, apparatus and technical devices expected to withstand very heavy exploitation conditions. Furthermore,these materials are becoming more complex, in terms of being strengthened and toughened by transformation processes as well as by the addition of other ceramic or metallic materials including nanomaterials. The successful use of advanced materials requires the development of equally advanced joining materials, processes and technology. Some selected examples of results of joining advanced materials with the use of various procedures as well as surface modification of structural components with the use of advanced materials obtained in the Welding Engineering Department of Warsaw University of Technology, Poland, are presented.

  8. Recent advances in imaging technologies in dentistry

    Institute of Scientific and Technical Information of China (English)

    Naseem; Shah; Nikhil; Bansal; Ajay; Logani

    2014-01-01

    Dentistry has witnessed tremendous advances in all its branches over the past three decades. With these advances, the need for more precise diagnostic tools,specially imaging methods, have become mandatory.From the simple intra-oral periapical X-rays, advanced imaging techniques like computed tomography, cone beam computed tomography, magnetic resonance imaging and ultrasound have also found place in modern dentistry. Changing from analogue to digital radiography has not only made the process simpler and faster but also made image storage, manipulation(brightness/contrast, image cropping, etc.) and retrieval easier. The three-dimensional imaging has made the complex cranio-facial structures more accessible for examination and early and accurate diagnosis of deep seated lesions. This paper is to review current advances in imaging technology and their uses in different disciplines of dentistry.

  9. Advanced Aircraft Material

    Directory of Open Access Journals (Sweden)

    Vivek Kumar Prince

    2013-06-01

    Full Text Available There has been long debate on “advanced aircraft material” from past decades & researchers too came out with lots of new advanced material like composites and different aluminum alloys. Now days a new advancement that is in great talk is third generation Aluminum-lithium alloy. Newest Aluminum-lithium alloys are found out to have low density, higher elastic modulus, greater stiffness, greater cryogenic toughness, high resistance to fatigue cracking and improved corrosion resistance properties over the earlier used aircraft material as mentioned in Table 3 [1-5]. Comparison had been made with nowadays used composite material and is found out to be more superior then that

  10. Advanced healthcare materials

    CERN Document Server

    Tiwari, Ashutosh

    2014-01-01

    Advanced materials are attracting strong interest in the fundamental as well as applied sciences and are being extensively explored for their potential usage in a range of healthcare technological and biological applications. Advanced Healthcare Nanomaterials summarises the current status of knowledge in the fields of advanced materials for functional therapeutics, point-of-care diagnostics, translational materials, up and coming bio-engineering devices. The book highlights the key features which enable engineers to design stimuli-responsive smart nanoparticles, novel biomaterials, nan

  11. Advanced Computer Typography.

    Science.gov (United States)

    1981-12-01

    ADVANCED COMPUTER TYPOGRAPHY .(U) DEC 81 A V HERSHEY UNCLASSIFIED NPS012-81-005 M MEEEIEEEII IIUJIL15I.4 MICROCQP RE SO.JjI ON ft R NPS012-81-005...NAVAL POSTGRADUATE SCHOOL 0Monterey, California DTIC SELECTEWA APR 5 1982 B ADVANCED COMPUTER TYPOGRAPHY by A. V. HERSHEY December 1981 OApproved for...Subtitle) S. TYPE Or REPORT & PERIOD COVERED Final ADVANCED COMPUTER TYPOGRAPHY Dec 1979 - Dec 1981 S. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(s) S CONTRACT

  12. Advances in Sleep Studies

    Science.gov (United States)

    ... of this page please turn JavaScript on. Feature: Sleep Disorders Advances in Sleep Studies Past Issues / Summer 2015 ... is the director of the National Center on Sleep Disorders Research (NCSDR) in the NIH's National Heart, Lung, ...

  13. Advanced Chemistry Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Description/History: Chemistry laboratoryThe Advanced Chemistry Laboratory (ACL) is a unique facility designed for working with the most super toxic compounds known...

  14. Advanced urology nursing practice.

    Science.gov (United States)

    Crowe, Helen

    2014-03-01

    Urology nursing has developed as a specialty over the past few decades in response to several factors, workload demands being a prime reason. Nurses are taking on additional roles and activities including procedures such as cystoscopy and prostate biopsy, and running nurse-led clinics for a variety of urological conditions. Audits of advanced urological nursing practice have shown this care to be of a high standard and investigative procedures performed by these nurses match the diagnostic quality of existing services. Professional urological nursing organizations support the professional needs of these nurses, but the provision of education and training for advanced practice activities remains an unaddressed need. A range of confusing advanced urology nursing titles exists, and uncertainty regarding the roles and scope of practice for these nurses remains a concern. Acceptance and support from medical colleagues is required for the success of advanced urological nursing practice, but opinions on these roles remain divided.

  15. [Advanced resuscitation of adults

    DEFF Research Database (Denmark)

    Lippert, F.K.; Lauritsen, T.L.; Torp-Pedersen, C.

    2008-01-01

    International and European Resuscitation Council (ERC) Guidelines for Resuscitation 2005 implicate major changes in resuscitation, including new universal treatment algorithms. This brief summary of Guidelines 2005 for advanced resuscitation of adult cardiac arrest victims is based upon the ERC...

  16. Advance Payment ACO Model

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Advance Payment Model is designed for physician-based and rural providers who have come together voluntarily to give coordinated high quality care to the...

  17. Advanced Welding Concepts

    Science.gov (United States)

    Ding, Robert J.

    2010-01-01

    Four advanced welding techniques and their use in NASA are briefly reviewed in this poster presentation. The welding techniques reviewed are: Solid State Welding, Friction Stir Welding (FSW), Thermal Stir Welding (TSW) and Ultrasonic Stir Welding.

  18. Advanced Topics in Aerodynamics

    DEFF Research Database (Denmark)

    Filippone, Antonino

    1999-01-01

    "Advanced Topics in Aerodynamics" is a comprehensive electronic guide to aerodynamics,computational fluid dynamics, aeronautics, aerospace propulsion systems, design and relatedtechnology. We report data, tables, graphics, sketches,examples, results, photos, technical andscientific literature...

  19. Advanced Missile Signature Center

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Missile Signature Center (AMSC) is a national facility supporting the Missile Defense Agency (MDA) and other DoD programs and customers with analysis,...

  20. Materials for advanced packaging

    CERN Document Server

    Lu, Daniel

    2010-01-01

    Significant progress has been made in advanced packaging in recent years. Several new packaging techniques have been developed and new packaging materials have been introduced. This book provides a comprehensive overview of the recent developments in this industry, particularly in the areas of microelectronics, optoelectronics, digital health, and bio-medical applications. The book discusses established techniques, as well as emerging technologies, in order to provide readers with the most up-to-date developments in advanced packaging.

  1. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    1997-01-01

    This series describes selected advances in the area of atomic spectroscopy. It is primarily intended for the reader who has a background in atmoic spectroscopy; suitable to the novice and expert. Although a widely used and accepted method for metal and non-metal analysis in a variety of complex samples, Advances in Atomic Spectroscopy covers a wide range of materials. Each Chapter will completely cover an area of atomic spectroscopy where rapid development has occurred.

  2. Joining of advanced materials

    CERN Document Server

    Messler, Robert W

    1993-01-01

    Provides an unusually complete and readable compilation of the primary and secondary options for joining conventional materials in non-conventional ways. Provides unique coverage of adhesive bonding using both organic and inorganic adhesives, cements and mortars. Focuses on materials issues without ignoring issues related to joint design, production processing, quality assurance, process economics, and joining performance in service.Joining of advanced materials is a unique treatment of joining of both conventional and advanced metals andalloys, intermetallics, ceramics, glasses, polymers, a

  3. Advances in bistatic radar

    CERN Document Server

    Willis, Nick

    2007-01-01

    Advances in Bistatic Radar updates and extends bistatic and multistatic radar developments since publication of Willis' Bistatic Radar in 1991. New and recently declassified military applications are documented. Civil applications are detailed including commercial and scientific systems. Leading radar engineers provide expertise to each of these applications. Advances in Bistatic Radar consists of two major sections: Bistatic/Multistatic Radar Systems and Bistatic Clutter and Signal Processing. Starting with a history update, the first section documents the early and now declassified military

  4. Advances in Cancer Therapy

    OpenAIRE

    Jordan BF, Sonveaux P

    2011-01-01

    The book "Advances in Cancer Therapy" is a new addition to the Intech collection of books and aims at providing scientists and clinicians with a comprehensive overview of the state of current knowledge and latest research findings in the area of cancer therapy. For this purpose research articles, clinical investigations and review papers that are thought to improve the readers' understanding of cancer therapy developments and/or to keep them up to date with the most recent advances in this fi...

  5. Advanced Stellar Compass

    DEFF Research Database (Denmark)

    Madsen, Peter Buch; Jørgensen, John Leif; Thuesen, Gøsta;

    1997-01-01

    This document describes all interface properties for the Advanced Stellar Compass, developed for the German Research Satellite "CHAMP". Basic operations, modes, software protocol, calibration methods and closed loop test strategies are described.......This document describes all interface properties for the Advanced Stellar Compass, developed for the German Research Satellite "CHAMP". Basic operations, modes, software protocol, calibration methods and closed loop test strategies are described....

  6. Advanced Welding Applications

    Science.gov (United States)

    Ding, Robert J.

    2010-01-01

    Some of the applications of advanced welding techniques are shown in this poster presentation. Included are brief explanations of the use on the Ares I and Ares V launch vehicle and on the Space Shuttle Launch vehicle. Also included are microstructural views from four advanced welding techniques: Variable Polarity Plasma Arc (VPPA) weld (fusion), self-reacting friction stir welding (SR-FSW), conventional FSW, and Tube Socket Weld (TSW) on aluminum.

  7. Materials for advanced packaging

    CERN Document Server

    Wong, CP

    2008-01-01

    Significant progress has been made in advanced packaging in recent years. Several new packaging techniques have been developed and new packaging materials have been introduced. This book provides a comprehensive overview of the recent developments in this industry, particularly in the areas of microelectronics, optoelectronics, digital health, and bio-medical applications. The book discusses established techniques, as well as emerging technologies, in order to provide readers with the most up-to-date developments in advanced packaging.

  8. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    1995-01-01

    This series describes selected advances in the area of atomic spectroscopy. It is promarily intended for the reader who has a background in atmoic spectroscopy; suitable to the novice and expert. Although a widely used and accepted method for metal and non-metal analysis in a variety of complex samples, Advances in Atomic Spectroscopy covers a wide range of materials. Each Chapter will completely cover an area of atomic spectroscopy where rapid development has occurred.

  9. An advance triage system.

    Science.gov (United States)

    Cheung, W W H; Heeney, L; Pound, J L

    2002-01-01

    This paper describes the redesign of the triage process in an Emergency Department with the purpose of improving the patient flow and thus increasing patient satisfaction through the reduction of the overall length of stay. The process, Advance Triage, allows the triage nurse to initiate diagnostic protocols for frequently occurring medical problems based on physician-approved algorithms. With staff and physician involvement and medical specialist approval, nine Advance Triage algorithms were developed-abdominal pain, eye trauma, chest pain, gynaecological symptoms, substance abuse, orthopaedic trauma, minor trauma, paediatric fever and paediatric emergent. A comprehensive educational program was provided to the triage nurses and Advance Triage was initiated. A process was established at one year to evaluate the effectiveness of the Advance Triage System. The average length of stay was found to be 46 min less for all patients who were advance triaged with the greatest time-saving of 76 min for patients in the 'Urgent' category. The most significant saving was realized in the patient's length of stay (LOS) after the Emergency Physician assessed them because diagnostic results, available during the initial patient assessment, allowed treatment decisions to be made at that time. Advance Triage utilizes patient waiting time efficiently and increases the nurses' and physicians' job satisfaction.

  10. Advanced interaction techniques for medical models

    OpenAIRE

    Monclús, Eva

    2014-01-01

    Advances in Medical Visualization allows the analysis of anatomical structures with the use of 3D models reconstructed from a stack of intensity-based images acquired through different techniques, being Computerized Tomographic (CT) modality one of the most common. A general medical volume graphics application usually includes an exploration task which is sometimes preceded by an analysis process where the anatomical structures of interest are first identified. ...

  11. Advances in glass-ionomer cements

    OpenAIRE

    Davidson, Carel Leon

    2006-01-01

    This article describes the properties, advances and shortcomings of glass-ionomer cement as a restorative material. The adhesion of glass-ionomer to tooth structure is less technique sensitive than composite resins and its quality increases with time. Therefore glass-ionomer might turn out to the more reliable restorative material in minimal invasive dentistry based on adhesive techniques.

  12. Advances in glass-ionomer cements.

    Science.gov (United States)

    Davidson, Carel Leon

    2006-01-01

    This article describes the properties, advances and shortcomings of glass-ionomer cement as a restorative material. The adhesion of glass-ionomer to tooth structure is less technique sensitive than composite resins and its quality increases with time. Therefore glass-ionomer might turn out to the more reliable restorative material in minimal invasive dentistry based on adhesive techniques.

  13. ALPS: Advanced Learning Packages, 1978-1979.

    Science.gov (United States)

    San Juan Unified School District, Carmichael, CA.

    The document describes the ALPS (Advanced Learning Packages) program for teaching gifted students. Introductory materials provide information on teacher requirements, school requirements, ALPS teacher orientation responsibilities, orientation week, field trip procedures, gifted money available, ALPS costs, ALPS evaluations, the Structure of…

  14. Rule Reformulation at the Advanced Level.

    Science.gov (United States)

    Shelly, Sharon L.

    1993-01-01

    An inductive and interactive classroom technique to help advanced French language students reformulate simplified schemata into more useful insights into French grammar is described. It is proposed that, by developing the ability to revise continually structural hypotheses, students can expand syntactic repertories and improve long-term language…

  15. I-5/Gilman advanced technology bridge project

    Science.gov (United States)

    Lanza di Scalea, Francesco; Karbhari, Vistasp M.; Seible, Frieder

    2000-04-01

    The UCSD led I-5/Gilman Advanced Technology Bridge Project will design and construct a fully functional traffic bridge of advanced composite materials across Interstate 5 in La Jolla, California. Its objective is to demonstrate the use of advanced composite technologies developed by the aerospace industry in commercial applications to increase the life expectancy of new structures and for the rehabilitation of aging infrastructure components. The structure will be a 450 ft long, 60 ft wide cable-stayed bridge supported by a 150 ft A-frame pylon with two vehicular lanes, two bicycle lanes, pedestrian walkways and utility tunnels. The longitudinal girders and pylon will be carbon fiber shells filled with concrete. The transverse deck system will consist of hollow glass/carbon hybrid tubes and a polypropylene fiber reinforced concrete deck with an arch action. Selected cables will be composite. The bridge's structural behavior will be monitored to determine how advanced composite materials perform in civil infrastructure applications. The bridge will be instrumented to obtain performance and structural health data in real time and, where possible, in a remote fashion. The sensors applied to the bridge will include electrical resistance strain gages, fiberoptic Bragg gratings and accelerometers.

  16. First ICTP Advanced School on Cosmology

    CERN Document Server

    2015-01-01

    The purpose of the School is to present in a pedagogical way some current themes of research in cosmology, including the search for inflationary B-modes and various aspects of the Large Scale Structure. It is intended for advanced graduate students, as well as more Senior Researchers.

  17. Advanced Situation Awareness Technologies Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Situation Awareness Technologies (ASAT) will facilitate exploration of the moon surface, and other planetary bodies. ASAT will create an Advanced Situation...

  18. Psychiatric Advance Directives: Getting Started

    Science.gov (United States)

    ... More... Home Getting Started National Resource Center on Psychiatric Advance Directives - Getting Started Getting Started Psychiatric advance directives (PADs) are relatively new legal instruments ...

  19. Advanced Helicopter Structural Design Investigation. Volume I. Investigation of Advanced Structural Component Design Concepts

    Science.gov (United States)

    1976-03-01

    but the push-pull tubes will remain metal. A number of considerations were debated in selecting this system for preliminary design. The fly-by...epoxy molded item, thus saving expensive auto- clave or tool usage time. In a large production run, this not only substantially

  20. Advanced composite structural concepts and materials technologies for primary aircraft structures: Advanced material concepts

    Science.gov (United States)

    Lau, Kreisler S. Y.; Landis, Abraham L.; Chow, Andrea W.; Hamlin, Richard D.

    1993-01-01

    To achieve acceptable performance and long-term durability at elevated temperatures (350 to 600 F) for high-speed transport systems, further improvements of the high-performance matrix materials will be necessary to achieve very long-term (60,000-120,000 service hours) retention of mechanical properties and damage tolerance. This report emphasizes isoimide modification as a complementary technique to semi-interpenetrating polymer networks (SIPN's) to achieve greater processibility, better curing dynamics, and possibly enhanced thermo-mechanical properties in composites. A key result is the demonstration of enhanced processibility of isoimide-modified linear and thermo-setting polyimide systems.

  1. Recruit and ADVANCE

    Science.gov (United States)

    Rosser, Sue V.

    2007-04-01

    Beginning in 2001, the National Science Foundation launched the ADVANCE Initiative, which has now awarded more than 70 million to some thirty institutions for transformations to advance women. Results of studies on how to attract and retain women students and faculty underpinned our ADVANCE Institutional Transformation grant funded by the NSF for 3.7 million for five years, beginning in 2001. As co-principal investigator on this grant, I insured that this research informed the five major threads of the grant: 1) Four termed ADVANCE professors to mentor junior women faculty in each college; 2) Collection of MIT-Report-like data indicators to assess whether advancement of women really occurs during and after the institutional transformation undertaken through ADVANCE; 3) Family-friendly policies and practices to stop the tenure clock and provide active service, modified duties, lactation stations and day care; 4) Mini-retreats to facilitate access for tenure-track women faculty to male decision-makers and administrators for informal conversations and discussion on topics important to women faculty; 5) Removal of subtle gender, racial, and other biases in promotion and tenure. The dynamic changes resulting from the grant in quality of mentoring, new understanding of promotion and tenure, numbers of women retained and given endowed chairs, and emergence of new family friendly policies gave me hope for genuine diversification of leadership in science and technology. As the grant funding ends, the absence of NSF prestige and monitoring, coupled with a change in academic leadership at the top, provide new challenges for institutionalization, recruitment, and advancement of women into leadership positions in science and engineering.

  2. Structural Ceramics Database

    Science.gov (United States)

    SRD 30 NIST Structural Ceramics Database (Web, free access)   The NIST Structural Ceramics Database (WebSCD) provides evaluated materials property data for a wide range of advanced ceramics known variously as structural ceramics, engineering ceramics, and fine ceramics.

  3. Solar Concentrator Advanced Development Program

    Science.gov (United States)

    Knasel, Don; Ehresman, Derik

    1989-01-01

    The Solar Concentrator Advanced Development Project has successfully designed, fabricated, and tested a full scale prototypical solar dynamic concentrator for space station applications. A Truss Hexagonal Panel reflector was selected as a viable solar concentrator concept to be used for space station applications. This concentrator utilizes a modular design approach and is flexible in attainable flux profiles and assembly techniques. The detailed design of the concentrator, which included structural, thermal and optical analysis, identified the feasibility of the design and specific technologies that were required to fabricate it. The needed surface accuracy of the reflectors surface was found to be very tight, within 5 mrad RMS slope error, and results in very close tolerances for fabrication. To meet the design requirements, a modular structure composed of hexagonal panels was used. The panels, made up of graphite epoxy box beams provided the strength, stiffness and dimensional stability needed. All initial project requirements were met or exceeded by hardware demonstration. Initial testing of structural repeatability of a seven panel portion of the concentrator was followed by assembly and testing of the full nineteen panel structure. The testing, which consisted of theodolite and optical measurements over an assembly-disassembly-reassembly cycle, demonstrated that the concentrator maintained the as-built contour and optical characteristics. The facet development effort within the project, which included developing the vapor deposited reflective facet, produced a viable design with demonstrated optical characteristics that are within the project goals.

  4. Deployable Composite Structures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is seeking innovative structure technologies that will advance expandable exploration space modules and surface based habitats. To address this need CTD has...

  5. Making Advanced Computer Science Topics More Accessible through Interactive Technologies

    Science.gov (United States)

    Shao, Kun; Maher, Peter

    2012-01-01

    Purpose: Teaching advanced technical concepts in a computer science program to students of different technical backgrounds presents many challenges. The purpose of this paper is to present a detailed experimental pedagogy in teaching advanced computer science topics, such as computer networking, telecommunications and data structures using…

  6. Advanced Hydrogen Turbine Development

    Energy Technology Data Exchange (ETDEWEB)

    Marra, John [Siemens Energy, Inc., Orlando, FL (United States)

    2015-09-30

    Under the sponsorship of the U.S. Department of Energy (DOE) National Energy Technology Laboratories, Siemens has completed the Advanced Hydrogen Turbine Development Program to develop an advanced gas turbine for incorporation into future coal-based Integrated Gasification Combined Cycle (IGCC) plants. All the scheduled DOE Milestones were completed and significant technical progress was made in the development of new technologies and concepts. Advanced computer simulations and modeling, as well as subscale, full scale laboratory, rig and engine testing were utilized to evaluate and select concepts for further development. Program Requirements of: A 3 to 5 percentage point improvement in overall plant combined cycle efficiency when compared to the reference baseline plant; 20 to 30 percent reduction in overall plant capital cost when compared to the reference baseline plant; and NOx emissions of 2 PPM out of the stack. were all met. The program was completed on schedule and within the allotted budget

  7. Advanced flip chip packaging

    CERN Document Server

    Lai, Yi-Shao; Wong, CP

    2013-01-01

    Advanced Flip Chip Packaging presents past, present and future advances and trends in areas such as substrate technology, material development, and assembly processes. Flip chip packaging is now in widespread use in computing, communications, consumer and automotive electronics, and the demand for flip chip technology is continuing to grow in order to meet the need for products that offer better performance, are smaller, and are environmentally sustainable. This book also: Offers broad-ranging chapters with a focus on IC-package-system integration Provides viewpoints from leading industry executives and experts Details state-of-the-art achievements in process technologies and scientific research Presents a clear development history and touches on trends in the industry while also discussing up-to-date technology information Advanced Flip Chip Packaging is an ideal book for engineers, researchers, and graduate students interested in the field of flip chip packaging.

  8. Advanced Hydride Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Motyka, T.

    1989-01-01

    Metal hydrides have been used at the Savannah River Tritium Facilities since 1984. However, the most extensive application of metal hydride technology at the Savannah River Site is being planned for the Replacement Tritium Facility, a $140 million facility schedules for completion in 1990 and startup in 1991. In the new facility, metal hydride technology will be used to store, separate, isotopically purify, pump, and compress hydrogen isotopes. In support of the Replacement Tritium Facility, a $3.2 million, cold,'' process demonstration facility, the Advanced Hydride Laboratory began operation in November of 1987. The purpose of the Advanced Hydride Laboratory is to demonstrate the Replacement Tritium Facility's metal hydride technology by integrating the various unit operations into an overall process. This paper will describe the Advanced Hydride Laboratory, its role and its impact on the application of metal hydride technology to tritium handling.

  9. Advanced Hydride Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Motyka, T.

    1989-12-31

    Metal hydrides have been used at the Savannah River Tritium Facilities since 1984. However, the most extensive application of metal hydride technology at the Savannah River Site is being planned for the Replacement Tritium Facility, a $140 million facility schedules for completion in 1990 and startup in 1991. In the new facility, metal hydride technology will be used to store, separate, isotopically purify, pump, and compress hydrogen isotopes. In support of the Replacement Tritium Facility, a $3.2 million, ``cold,`` process demonstration facility, the Advanced Hydride Laboratory began operation in November of 1987. The purpose of the Advanced Hydride Laboratory is to demonstrate the Replacement Tritium Facility`s metal hydride technology by integrating the various unit operations into an overall process. This paper will describe the Advanced Hydride Laboratory, its role and its impact on the application of metal hydride technology to tritium handling.

  10. Advancement & Promotion Review: 2003

    CERN Multimedia

    2003-01-01

    Advancement, exceptional advancement and promotion decisions were made at the end of June, following the procedures published in Weekly Bulletin No. 13/2003. These decisions were included, where applicable, in the salaries for the month of July 2003. The award of the periodic step was communicated to staff by the salary shown on the July salary slip. All other decisions are communicated by separate notification. The names of staff receiving exceptional advancements or promotions are now published on the HR Division website and are accessible for consultation only at the following address: http://cern.ch/hr-div/internal/personnel/advlist_2003.asp It is recalled that change of career path proposals submitted to the Technical Engineers and Administrative Careers Committee (TEACC) or to Human Resources Division are being examined with a view to preparing the latters' recommendations by the end of September 2003. Final decisions will be applied retroactively to 1 July 2003. Human Resources Division Tel:...

  11. Advanced fuel chemistry for advanced engines.

    Energy Technology Data Exchange (ETDEWEB)

    Taatjes, Craig A.; Jusinski, Leonard E.; Zador, Judit; Fernandes, Ravi X.; Miller, James A.

    2009-09-01

    Autoignition chemistry is central to predictive modeling of many advanced engine designs that combine high efficiency and low inherent pollutant emissions. This chemistry, and especially its pressure dependence, is poorly known for fuels derived from heavy petroleum and for biofuels, both of which are becoming increasingly prominent in the nation's fuel stream. We have investigated the pressure dependence of key ignition reactions for a series of molecules representative of non-traditional and alternative fuels. These investigations combined experimental characterization of hydroxyl radical production in well-controlled photolytically initiated oxidation and a hybrid modeling strategy that linked detailed quantum chemistry and computational kinetics of critical reactions with rate-equation models of the global chemical system. Comprehensive mechanisms for autoignition generally ignore the pressure dependence of branching fractions in the important alkyl + O{sub 2} reaction systems; however we have demonstrated that pressure-dependent 'formally direct' pathways persist at in-cylinder pressures.

  12. Advances in high temperature chemistry 1

    CERN Document Server

    Eyring, Leroy

    2013-01-01

    Advances in High Temperature Chemistry, Volume 1 describes the complexities and special and changing characteristics of high temperature chemistry. After providing a brief definition of high temperature chemistry, this nine-chapter book goes on describing the experiments and calculations of diatomic transition metal molecules, as well as the advances in applied wave mechanics that may contribute to an understanding of the bonding, structure, and spectra of the molecules of high temperature interest. The next chapter provides a summary of gaseous ternary compounds of the alkali metals used in

  13. Advanced thermal control for spacecraft applications

    Science.gov (United States)

    Hardesty, Robert; Parker, Kelsey

    2015-09-01

    In optical systems just like any other space borne system, thermal control plays an important role. In fact, most advanced designs are plagued with volume constraints that further complicate the thermal control challenges for even the most experienced systems engineers. Peregrine will present advances in satellite thermal control based upon passive heat transfer technologies to dissipate large thermal loads. This will address the use of 700 W/m K and higher conducting products that are five times better than aluminum on a specific basis providing enabling thermal control while maintaining structural support.

  14. Advances in astronomy and astrophysics 7

    CERN Document Server

    Kopal, Zdenek

    2013-01-01

    Advances in Astronomy and Astrophysics, Volume 7 covers reviews about the advances in astronomy and astrophysics. The book presents reviews on the scattering of electrons by diatomic molecules and on Babcock's theory of the 22-year solar cycle and the latitude drift of the sunspot zone. The text then describes reviews on the structures of the terrestrial planets (Earth, Venus, Mars, Mercury) and on type III solar radio bursts. The compact and dispersed cosmic matter is also considered with regard to the search for new cosmic objects and phenomena and on the nature of the ref shift from compact

  15. High Performance Grinding and Advanced Cutting Tools

    CERN Document Server

    Jackson, Mark J

    2013-01-01

    High Performance Grinding and Advanced Cutting Tools discusses the fundamentals and advances in high performance grinding processes, and provides a complete overview of newly-developing areas in the field. Topics covered are grinding tool formulation and structure, grinding wheel design and conditioning and applications using high performance grinding wheels. Also included are heat treatment strategies for grinding tools, using grinding tools for high speed applications, laser-based and diamond dressing techniques, high-efficiency deep grinding, VIPER grinding, and new grinding wheels.

  16. Advances in catalysis

    CERN Document Server

    Jentoft, Friederike C

    2014-01-01

    Advances in Catalysis fills the gap between the journal papers and the textbooks across the diverse areas of catalysis research. For more than 60 years Advances in Catalysis has been dedicated to recording progress in the field of catalysis and providing the scientific community with comprehensive and authoritative reviews. This series is invaluable to chemical engineers and chemists working in the field of catalysis in academia or industry. Authoritative reviews written by experts in the field. Topics selected to reflect progress of the field. Insightful and critical articles, fully edite

  17. Advances in catalysis

    CERN Document Server

    Gates, Bruce C

    2012-01-01

    Advances in Catalysis fills the gap between the journal papers and the textbooks across the diverse areas of catalysis research. For more than 60 years Advances in Catalysis has been dedicated to recording progress in the field of catalysis and providing the scientific community with comprehensive and authoritative reviews. This series in invaluable to chemical engineers, physical chemists, biochemists, researchers and industrial chemists working in the fields of catalysis and materials chemistry. * In-depth, critical, state-of-the-art reviews * Comprehensive, covers of all as

  18. Advanced higher English

    CERN Document Server

    Bridges, Ann

    2016-01-01

    The only book to support the compulsory Textual Analysis component of Advanced Higher English. Written by subject experts, this book contains short extracts of prose fiction, non-fiction, poetry and drama with analysis and commentary to assist students' understanding and their ability to critically assess their reading of literature. Short writing tasks, linked to the analysis of particular techniques, help to develop aspects of creative writing skills. The Textual Analysis component forms a compulsory section of the Advanced Higher English syllabus and accounts for 20% of the final grade;

  19. Advanced router architectures

    CERN Document Server

    Kloth, Axel K

    2005-01-01

    Routers, switches, and transmission equipment form the backbone of the Internet, yet many users and service technicians do not understand how these nodes really work.Advanced Router Architectures addresses how components of advanced routers work together and how they are integrated with each other. This book provides the background behind why these building blocks perform certain functions, and how the function is implemented in general use. It offers an introduction to the subject matter that is intended to trigger deeper interest from the reader. The book explains, for example, why traffic m

  20. Advanced Surface Technology

    DEFF Research Database (Denmark)

    Møller, Per; Nielsen, Lars Pleht

    This new significant book on advanced modern surface technology in all its variations, is aimed at both teaching at engineering schools and practical application in industry. The work covers all the significant aspects of modern surface technology and also describes how new advanced techniques make......, nitriding, carbonitriding, and many other lesser-known thermochemical processes used for solving technological problems. The book is richly illustrated with pictures and figures showing how the technology creates new innovative solutions for industry and how surfaces are becoming integral to the function...