WorldWideScience

Sample records for advanced wavefront measurement

  1. Advanced wavefront measurement and analysis of laser system modeling

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, C.R.; Auerback, J.M. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    High spatial resolution measurements of the reflected or transmitted wavefronts of large aperture optical components used in high peak power laser systems is now possible. These measurements are produced by phase shifting interferometry. The wavefront data is in the form of 3-D phase maps that reconstruct the wavefront shape. The emphasis of this work is on the characterization of wavefront features in the mid-spatial wavelength range (from 0.1 to 10.0 mm) and has been accomplished for the first time. Wavefront structure from optical components with spatial wavelengths in this range are of concern because their effects in high peak power laser systems. At high peak power, this phase modulation can convert to large magnitude intensity modulation by non-linear processes. This can lead to optical damage. We have developed software to input the measured phase map data into beam propagation codes in order to model this conversion process. We are analyzing this data to: (1) Characterize the wavefront structure produced by current optical components, (2) Refine our understanding of laser system performance, (3) Develop a database from which future optical component specifications can be derived.

  2. Wavefront Measurement for Laser-Guiding Diagnostic

    International Nuclear Information System (INIS)

    Shiraishi, S.; Gonsalves, A.J.; Lin, C.; Nakamura, K.; Osterhoff, J.; Sokollik, T.; van Tilborg, J.; Geddes, C.G.R.; Schroeder, C.B.; Toth, Cs.; Esarey, E.; Leemans, W.P.

    2010-01-01

    The wavefront of a short laser pulse after interaction in a laser-plasma accelerator (LPA) was measured to diagnose laser-guiding quality. Experiments were performed on a 100 TW class laser at the LOASIS facility of LBNL using a hydrogenfilled capillary discharge waveguide. Laser-guiding with a pre-formed plasma channel allows the laser pulse to propagate over many Rayleigh lengths at high intensity and is crucial to accelerate electrons to the highest possible energy. Efficient coupling of laser energy into the plasma is realized when the laser and the channel satisfy a matched guiding condition, in which the wavefront remains flat within the channel. Using a wavefront sensor, the laser-guiding quality was diagnosed based on the wavefront of the laser pulse exiting the plasma channel. This wavefront diagnostic will contribute to achieving controlled, matched guiding in future experiments.

  3. Wavefront measurement of plastic lenses for mobile-phone applications

    Science.gov (United States)

    Huang, Li-Ting; Cheng, Yuan-Chieh; Wang, Chung-Yen; Wang, Pei-Jen

    2016-08-01

    In camera lenses for mobile-phone applications, all lens elements have been designed with aspheric surfaces because of the requirements in minimal total track length of the lenses. Due to the diffraction-limited optics design with precision assembly procedures, element inspection and lens performance measurement have become cumbersome in the production of mobile-phone cameras. Recently, wavefront measurements based on Shack-Hartmann sensors have been successfully implemented on injection-molded plastic lens with aspheric surfaces. However, the applications of wavefront measurement on small-sized plastic lenses have yet to be studied both theoretically and experimentally. In this paper, both an in-house-built and a commercial wavefront measurement system configured on two optics structures have been investigated with measurement of wavefront aberrations on two lens elements from a mobile-phone camera. First, the wet-cell method has been employed for verifications of aberrations due to residual birefringence in an injection-molded lens. Then, two lens elements of a mobile-phone camera with large positive and negative power have been measured with aberrations expressed in Zernike polynomial to illustrate the effectiveness in wavefront measurement for troubleshooting defects in optical performance.

  4. The size effect of searching window for measuring wavefront of laser beam

    International Nuclear Information System (INIS)

    Park, Seung Kyu; Baik, Sung Hoon; Lim, Chang Hwan; Kim, Jung Cheol; Yi, Seung Jun; Ra, Sung Woong

    2003-01-01

    We investigated the size effect of the searching window for measuring of a laser beam using a Shack-Hartmann sensor. The shapes of spot images on an acquired wavefront image by using a Shack-Hartmann sensor are usually imbalanced. Also, the distributed intensity pattern of each spot image is varied according to successively acquired wavefront image. We studied on the optimized size of searching window to get wavefront with high measurement resolution. We experimented on the various size effect of searching window on an acquired wavefront image to get fine wavefront information using a Shack-Hartmann sensor. As the experimental results, we proposed the optimum size of searching window to measure improved wavefront.

  5. Advanced Imaging Optics Utilizing Wavefront Coding.

    Energy Technology Data Exchange (ETDEWEB)

    Scrymgeour, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Boye, Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Adelsberger, Kathleen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-06-01

    Image processing offers a potential to simplify an optical system by shifting some of the imaging burden from lenses to the more cost effective electronics. Wavefront coding using a cubic phase plate combined with image processing can extend the system's depth of focus, reducing many of the focus-related aberrations as well as material related chromatic aberrations. However, the optimal design process and physical limitations of wavefront coding systems with respect to first-order optical parameters and noise are not well documented. We examined image quality of simulated and experimental wavefront coded images before and after reconstruction in the presence of noise. Challenges in the implementation of cubic phase in an optical system are discussed. In particular, we found that limitations must be placed on system noise, aperture, field of view and bandwidth to develop a robust wavefront coded system.

  6. Wavefront Measurement in Ophthalmology

    Science.gov (United States)

    Molebny, Vasyl

    Wavefront sensing or aberration measurement in the eye is a key problem in refractive surgery and vision correction with laser. The accuracy of these measurements is critical for the outcome of the surgery. Practically all clinical methods use laser as a source of light. To better understand the background, we analyze the pre-laser techniques developed over centuries. They allowed new discoveries of the nature of the optical system of the eye, and many served as prototypes for laser-based wavefront sensing technologies. Hartmann's test was strengthened by Platt's lenslet matrix and the CCD two-dimensional photodetector acquired a new life as a Hartmann-Shack sensor in Heidelberg. Tscherning's aberroscope, invented in France, was transformed into a laser device known as a Dresden aberrometer, having seen its reincarnation in Germany with Seiler's help. The clinical ray tracing technique was brought to life by Molebny in Ukraine, and skiascopy was created by Fujieda in Japan. With the maturation of these technologies, new demands now arise for their wider implementation in optometry and vision correction with customized contact and intraocular lenses.

  7. Advances in detector technologies for visible and infrared wavefront sensing

    Science.gov (United States)

    Feautrier, Philippe; Gach, Jean-Luc; Downing, Mark; Jorden, Paul; Kolb, Johann; Rothman, Johan; Fusco, Thierry; Balard, Philippe; Stadler, Eric; Guillaume, Christian; Boutolleau, David; Destefanis, Gérard; Lhermet, Nicolas; Pacaud, Olivier; Vuillermet, Michel; Kerlain, Alexandre; Hubin, Norbert; Reyes, Javier; Kasper, Markus; Ivert, Olaf; Suske, Wolfgang; Walker, Andrew; Skegg, Michael; Derelle, Sophie; Deschamps, Joel; Robert, Clélia; Vedrenne, Nicolas; Chazalet, Frédéric; Tanchon, Julien; Trollier, Thierry; Ravex, Alain; Zins, Gérard; Kern, Pierre; Moulin, Thibaut; Preis, Olivier

    2012-07-01

    The purpose of this paper is to give an overview of the state of the art wavefront sensor detectors developments held in Europe for the last decade. The success of the next generation of instruments for 8 to 40-m class telescopes will depend on the ability of Adaptive Optics (AO) systems to provide excellent image quality and stability. This will be achieved by increasing the sampling, wavelength range and correction quality of the wave front error in both spatial and time domains. The modern generation of AO wavefront sensor detectors development started in the late nineties with the CCD50 detector fabricated by e2v technologies under ESO contract for the ESO NACO AO system. With a 128x128 pixels format, this 8 outputs CCD offered a 500 Hz frame rate with a readout noise of 7e-. A major breakthrough has been achieved with the recent development by e2v technologies of the CCD220. This 240x240 pixels 8 outputs EMCCD (CCD with internal multiplication) has been jointly funded by ESO and Europe under the FP6 programme. The CCD220 and the OCAM2 camera that operates the detector are now the most sensitive system in the world for advanced adaptive optics systems, offering less than 0.2 e readout noise at a frame rate of 1500 Hz with negligible dark current. Extremely easy to operate, OCAM2 only needs a 24 V power supply and a modest water cooling circuit. This system, commercialized by First Light Imaging, is extensively described in this paper. An upgrade of OCAM2 is foreseen to boost its frame rate to 2 kHz, opening the window of XAO wavefront sensing for the ELT using 4 synchronized cameras and pyramid wavefront sensing. Since this major success, new developments started in Europe. One is fully dedicated to Natural and Laser Guide Star AO for the E-ELT with ESO involvement. The spot elongation from a LGS Shack Hartman wavefront sensor necessitates an increase of the pixel format. Two detectors are currently developed by e2v. The NGSD will be a 880x840 pixels CMOS

  8. Automatic centroid detection and surface measurement with a digital Shack–Hartmann wavefront sensor

    International Nuclear Information System (INIS)

    Yin, Xiaoming; Zhao, Liping; Li, Xiang; Fang, Zhongping

    2010-01-01

    With the breakthrough of manufacturing technologies, the measurement of surface profiles is becoming a big issue. A Shack–Hartmann wavefront sensor (SHWS) provides a promising technology for non-contact surface measurement with a number of advantages over interferometry. The SHWS splits the incident wavefront into many subsections and transfers the distorted wavefront detection into the centroid measurement. So the accuracy of the centroid measurement determines the accuracy of the SHWS. In this paper, we have presented a new centroid measurement algorithm based on an adaptive thresholding and dynamic windowing method by utilizing image-processing techniques. Based on this centroid detection method, we have developed a digital SHWS system which can automatically detect centroids of focal spots, reconstruct the wavefront and measure the 3D profile of the surface. The system has been tested with various simulated and real surfaces such as flat surfaces, spherical and aspherical surfaces as well as deformable surfaces. The experimental results demonstrate that the system has good accuracy, repeatability and immunity to optical misalignment. The system is also suitable for on-line applications of surface measurement

  9. The measurement and analysis of wavefront structure from large aperture ICF optics

    International Nuclear Information System (INIS)

    Wolfe, C.R.; Lawson, J.K.

    1995-01-01

    This paper discusses the techniques, developed over the past year, for high spatial resolution measurement and analysis of the transmitted and/or reflected wavefront of large aperture ICF optical components. Parts up to 400 mm x 750 mm have been measured and include: laser slabs, windows, KDP crystals and lenses. The measurements were performed using state-of-the-art commercial phase shifting interferometers at a wavelength of 633 μm. Both 1 and 2-D Fourier analysis have been used to characterize the wavefront; specifically the Power Spectral Density, (PSD), function was calculated. The PSDs of several precision optical components will be shown. The PSD(V) is proportional to the (amplitude) 2 of components of the Fourier frequency spectrum. The PSD describes the scattered intensity and direction as a function of scattering angle in the wavefront. The capability of commercial software is limited to 1-D Fourier analysis only. We are developing our own 2-D analysis capability in support of work to revise specifications for NIF optics. 2-D analysis uses the entire wavefront phase map to construct 2D PSD functions. We have been able to increase the signal-to-noise relative to 1-D and can observe very subtle wavefront structure

  10. Wavefront-guided versus wavefront-optimized laser in situ keratomileusis: contralateral comparative study.

    Science.gov (United States)

    Padmanabhan, Prema; Mrochen, Michael; Basuthkar, Subam; Viswanathan, Deepa; Joseph, Roy

    2008-03-01

    To compare the outcomes of wavefront-guided and wavefront-optimized treatment in fellow eyes of patients having laser in situ keratomileusis (LASIK) for myopia. Medical and Vision Research Foundation, Tamil Nadu, India. This prospective comparative study comprised 27 patients who had wavefront-guided LASIK in 1 eye and wavefront-optimized LASIK in the fellow eye. The Hansatome (Bausch & Lomb) was used to create a superior-hinged flap and the Allegretto laser (WaveLight Laser Technologie AG), for photoablation. The Allegretto wave analyzer was used to measure ocular wavefront aberrations and the Functional Acuity Contrast Test chart, to measure contrast sensitivity before and 1 month after LASIK. The refractive and visual outcomes and the changes in aberrations and contrast sensitivity were compared between the 2 treatment modalities. One month postoperatively, 92% of eyes in the wavefront-guided group and 85% in the wavefront-optimized group had uncorrected visual acuity of 20/20 or better; 93% and 89%, respectively, had a postoperative spherical equivalent refraction of +/-0.50 diopter. The differences between groups were not statistically significant. Wavefront-guided LASIK induced less change in 18 of 22 higher-order Zernike terms than wavefront-optimized LASIK, with the change in positive spherical aberration the only statistically significant one (P= .01). Contrast sensitivity improved at the low and middle spatial frequencies (not statistically significant) and worsened significantly at high spatial frequencies after wavefront-guided LASIK; there was a statistically significant worsening at all spatial frequencies after wavefront-optimized LASIK. Although both wavefront-guided and wavefront-optimized LASIK gave excellent refractive correction results, the former induced less higher-order aberrations and was associated with better contrast sensitivity.

  11. Asymmetric wavefront aberrations and pupillary shapes induced by electrical stimulation of ciliary nerve in cats measured with compact wavefront aberrometer.

    Directory of Open Access Journals (Sweden)

    Suguru Miyagawa

    Full Text Available To investigate the changes in the wavefront aberrations and pupillary shape in response to electrical stimulation of the branches of the ciliary nerves in cats. Seven eyes of seven cats were studied under general anesthesia. Trains of monophasic pulses (current, 0.1 to 1.0 mA; duration, 0.5 ms/phase; frequency, 5 to 40 Hz were applied to the lateral or medial branch of the short ciliary nerve near the posterior pole of the eye. A pair of electrodes was hooked onto one or both branch of the short ciliary nerve. The electrodes were placed about 5 mm from the scleral surface. The wavefront aberrations were recorded continuously for 2 seconds before, 8 seconds during, and for 20 seconds after the electrical stimulation. The pupillary images were simultaneously recorded during the stimulation period. Both the wavefront aberrations and the pupillary images were obtained 10 times/sec with a custom-built wavefront aberrometer. The maximum accommodative amplitude was 1.19 diopters (D produced by electrical stimulation of the short ciliary nerves. The latency of the accommodative changes was very short, and the accommodative level gradually increased up to 4 seconds and reached a plateau. When only one branch of the ciliary nerve was stimulated, the pupil dilated asymmetrically, and the oblique astigmatism and one of the asymmetrical wavefront terms was also altered. Our results showed that the wavefront aberrations and pupillary dilations can be measured simultaneously and serially with a compact wavefront aberrometer. The asymmetric pupil dilation and asymmetric changes of the wavefront aberrations suggest that each branch of the ciliary nerve innervates specific segments of the ciliary muscle and dilator muscle of the pupil.

  12. Manipulations of Wavefront Propagation: Useful Methods and Applications for Interferometric Measurements and Scanning

    Directory of Open Access Journals (Sweden)

    Avi Karsenty

    2017-01-01

    Full Text Available Phase measurements obtained by high-coherence interferometry are restricted by the 2π ambiguity, to height differences smaller than λ/2. A further restriction in most interferometric systems is for focusing the system on the measured object. We present two methods that overcome these restrictions. In the first method, different segments of a measured wavefront are digitally propagated and focused locally after measurement. The divergent distances, by which the diverse segments of the wavefront are propagated in order to achieve a focused image, provide enough information so as to resolve the 2π ambiguity. The second method employs an interferogram obtained by a spectrum constituting a small number of wavelengths. The magnitude of the interferogram’s modulations is utilized to resolve the 2π ambiguity. Such methods of wavefront propagation enable several applications such as focusing and resolving the 2π ambiguity, as described in the article.

  13. Effective wavefront aberration measurement of spectacle lenses in as-worn status

    Science.gov (United States)

    Jia, Zhigang; Xu, Kai; Fang, Fengzhou

    2018-04-01

    An effective wavefront aberration analysis method for measuring spectacle lenses in as-worn status was proposed and verified using an experimental apparatus based on an eye rotation model. Two strategies were employed to improve the accuracy of measurement of the effective wavefront aberrations on the corneal sphere. The influences of three as-worn parameters, the vertex distance, pantoscopic angle, and face form angle, together with the eye rotation and corresponding incident beams, were objectively and quantitatively obtained. The experimental measurements of spherical single vision and freeform progressive addition lenses demonstrate the accuracy and validity of the proposed method and experimental apparatus, which provide a potential means of achieving supernormal vision correction with customization and personalization in optimizing the as-worn status-based design of spectacle lenses and evaluating their manufacturing and imaging qualities.

  14. Longitudinal measurements of luminance and chromatic contrast sensitivity: comparison between wavefront-guided LASIK and contralateral PRK for myopia.

    Science.gov (United States)

    Barboni, Mirella Telles Salgueiro; Feitosa-Santana, Claudia; Barreto Junior, Jackson; Lago, Marcos; Bechara, Samir Jacob; Alves, Milton Ruiz; Ventura, Dora Fix

    2013-10-01

    The present study aimed to compare the postoperative contrast sensitivity functions between wavefront-guided LASIK eyes and their contralateral wavefront-guided PRK eyes. The participants were 11 healthy subjects (mean age=32.4 ± 6.2 years) who had myopic astigmatism. The spatial contrast sensitivity functions were measured before and three times after the surgery. Psycho and a Cambridge graphic board (VSG 2/4) were used to measure luminance, red-green, and blue-yellow spatial contrast sensitivity functions (from 0.85 to 13.1 cycles/degree). Longitudinal analysis and comparison between surgeries were performed. There was no significant contrast sensitivity change during the one-year follow-up measurements neither for LASIK nor for PRK eyes. The comparison between procedures showed no differences at 12 months postoperative. The present data showed similar contrast sensitivities during one-year follow-up of wave-front guided refractive surgeries. Moreover, one year postoperative data showed no differences in the effects of either wavefront-guided LASIK or wavefront-guided PRK on the luminance and chromatic spatial contrast sensitivity functions.

  15. Measuring and modeling intraocular light scatter with Shack-Hartmann wavefront sensing and the effects of nuclear cataract on the measurement of wavefront error

    Science.gov (United States)

    Donnelly, William J., III

    Purpose. The purpose of this research is to determine if Shack/Hartmann (S/H) wavefront sensing (SHWS) can be used to objectively quantify ocular forward scatter. Methods. Patient S/H images from an study of nuclear cataract were analyzed to extract scattering data by examining characteristics of the lenslet point spread functions. Physical and computer eye models with simulated cataract were developed to control variables and to test the underlying assumptions for using SHWS to measure aberrations and light scatter from nuclear cataract. Results. (1) For patients with nuclear opalescence (NO) >=2.5, forward scatter metrics in a multiple regression analysis account for 33% of variance in Mesopic Low Contrast acuity. Prediction of visual acuity was improved by employing a multiple regression analysis that included both backscatter and forward scatter metrics (R2 = 51%) for Mesopic High Contrast acuity. (2) The physical and computer models identified areas of instrument noise (e.g., stray light and unwanted reflections) improving the design of a second generation SHWS for measuring both wavefront error and scatter. (3) Exposure time had the most influence on, and pupil size had negligible influence on forward scatter metrics. Scatter metric MAX_SD predicted changes in simulated cataract up to R2 = 92%. There were small but significant differences (alpha = 0.05) between 1.5-pass and 1-pass wavefront measurements inclusive of variable simulated nuclear cataract and exposure; however, these differences were not visually significant. Improvements to the SHWS imaging hardware, software, and test protocol were implemented in a second generation SHWS to be used in a longitudinal cataract study. Conclusions. Forward light scatter in real eyes can be quantified using a SHWS. In the presence of clinically significant nuclear opalescence, forward scatter metrics predicted acuity better than the LOCS III NO backscatter metric. The superiority of forward scatter metrics over back

  16. Measurement and statistical analysis of the wavefront distortions induced by atmospheric turbulence using two-channel moiré deflectometry

    International Nuclear Information System (INIS)

    Dashti, Mohsen; Rasouli, Saifollah

    2012-01-01

    Recently, an adjustable, high-sensitivity, wide dynamic range, two-channel wavefront sensor based on moiré deflectometry was proposed by Rasouli et al (2010 Opt. Express 18 23906). In this work we have used this sensor on a telescope for measuring turbulence-induced wavefront distortions. A slightly divergent laser beam passes through turbulent ground level atmosphere and enters the telescope’s aperture. The laser beam is collimated behind the telescope’s focal point by means of a collimator and the beam enters the wavefront sensor. First, from deviations in the moiré fringes we calculate the two orthogonal components of the angle of arrival at each location across the wavefront. The deviations have been deduced in successive frames which allows evolution of the wavefront shape and Fried’s seeing parameter r 0 to be determined. Mainly, statistical analysis of the reconstructed wavefront distortions are presented. The achieved accuracy in the measurements and comparison between the measurements and the theoretical models are presented. Owing to the use of the sensor on a telescope, and using sub-pixel accuracy for the measurement of the moiré fringe displacements, the sensitivity of the measurements is improved by more than one order of magnitude. In this work we have achieved a minimum measurable angle of arrival fluctuations equal to 3.7 × 10 −7 rad or 0.07 arc s. Besides, because of the large area of the telescope’s aperture, a high spatial resolution is achieved in detecting the spatial perturbations of the atmospheric turbulence. (paper)

  17. Sparse aperture differential piston measurements using the pyramid wave-front sensor

    Science.gov (United States)

    Arcidiacono, Carmelo; Chen, Xinyang; Yan, Zhaojun; Zheng, Lixin; Agapito, Guido; Wang, Chaoyan; Zhu, Nenghong; Zhu, Liyun; Cai, Jianqing; Tang, Zhenghong

    2016-07-01

    In this paper we report on the laboratory experiment we settled in the Shanghai Astronomical Observatory (SHAO) to investigate the pyramid wave-front sensor (WFS) ability to measure the differential piston on a sparse aperture. The ultimate goal is to verify the ability of the pyramid WFS work in close loop to perform the phasing of the primary mirrors of a sparse Fizeau imaging telescope. In the experiment we installed on the optical bench we performed various test checking the ability to flat the wave-front using a deformable mirror and to measure the signal of the differential piston on a two pupils setup. These steps represent the background from which we start to perform full close loop operation on multiple apertures. These steps were also useful to characterize the achromatic double pyramids (double prisms) manufactured in the SHAO optical workshop.

  18. X-ray pulse wavefront metrology using speckle tracking

    International Nuclear Information System (INIS)

    Berujon, Sebastien; Ziegler, Eric; Cloetens, Peter

    2015-01-01

    The theoretical description and experimental implementation of a speckle-tracking-based instrument which permits the characterisation of X-ray pulse wavefronts. An instrument allowing the quantitative analysis of X-ray pulsed wavefronts is presented and its processing method explained. The system relies on the X-ray speckle tracking principle to accurately measure the phase gradient of the X-ray beam from which beam optical aberrations can be deduced. The key component of this instrument, a semi-transparent scintillator emitting visible light while transmitting X-rays, allows simultaneous recording of two speckle images at two different propagation distances from the X-ray source. The speckle tracking procedure for a reference-less metrology mode is described with a detailed account on the advanced processing schemes used. A method to characterize and compensate for the imaging detector distortion, whose principle is also based on speckle, is included. The presented instrument is expected to find interest at synchrotrons and at the new X-ray free-electron laser sources under development worldwide where successful exploitation of beams relies on the availability of an accurate wavefront metrology

  19. Comparison between iterative wavefront control algorithm and direct gradient wavefront control algorithm for adaptive optics system

    International Nuclear Information System (INIS)

    Cheng Sheng-Yi; Liu Wen-Jin; Chen Shan-Qiu; Dong Li-Zhi; Yang Ping; Xu Bing

    2015-01-01

    Among all kinds of wavefront control algorithms in adaptive optics systems, the direct gradient wavefront control algorithm is the most widespread and common method. This control algorithm obtains the actuator voltages directly from wavefront slopes through pre-measuring the relational matrix between deformable mirror actuators and Hartmann wavefront sensor with perfect real-time characteristic and stability. However, with increasing the number of sub-apertures in wavefront sensor and deformable mirror actuators of adaptive optics systems, the matrix operation in direct gradient algorithm takes too much time, which becomes a major factor influencing control effect of adaptive optics systems. In this paper we apply an iterative wavefront control algorithm to high-resolution adaptive optics systems, in which the voltages of each actuator are obtained through iteration arithmetic, which gains great advantage in calculation and storage. For AO system with thousands of actuators, the computational complexity estimate is about O(n 2 ) ∼ O(n 3 ) in direct gradient wavefront control algorithm, while the computational complexity estimate in iterative wavefront control algorithm is about O(n) ∼ (O(n) 3/2 ), in which n is the number of actuators of AO system. And the more the numbers of sub-apertures and deformable mirror actuators, the more significant advantage the iterative wavefront control algorithm exhibits. (paper)

  20. Chirped pulse digital holography for measuring the sequence of ultrafast optical wavefronts

    Science.gov (United States)

    Karasawa, Naoki

    2018-04-01

    Optical setups for measuring the sequence of ultrafast optical wavefronts using a chirped pulse as a reference wave in digital holography are proposed and analyzed. In this method, multiple ultrafast object pulses are used to probe the temporal evolution of ultrafast phenomena and they are interfered with a chirped reference wave to record a digital hologram. Wavefronts at different times can be reconstructed separately from the recorded hologram when the reference pulse can be treated as a quasi-monochromatic wave during the pulse width of each object pulse. The feasibility of this method is demonstrated by numerical simulation.

  1. Coded Shack-Hartmann Wavefront Sensor

    KAUST Repository

    Wang, Congli

    2016-12-01

    Wavefront sensing is an old yet fundamental problem in adaptive optics. Traditional wavefront sensors are limited to time-consuming measurements, complicated and expensive setup, or low theoretically achievable resolution. In this thesis, we introduce an optically encoded and computationally decodable novel approach to the wavefront sensing problem: the Coded Shack-Hartmann. Our proposed Coded Shack-Hartmann wavefront sensor is inexpensive, easy to fabricate and calibrate, highly sensitive, accurate, and with high resolution. Most importantly, using simple optical flow tracking combined with phase smoothness prior, with the help of modern optimization technique, the computational part is split, efficient, and parallelized, hence real time performance has been achieved on Graphics Processing Unit (GPU), with high accuracy as well. This is validated by experimental results. We also show how optical flow intensity consistency term can be derived, using rigor scalar diffraction theory with proper approximation. This is the true physical law behind our model. Based on this insight, Coded Shack-Hartmann can be interpreted as an illumination post-modulated wavefront sensor. This offers a new theoretical approach for wavefront sensor design.

  2. Measurement of wavefront structure from large aperture optical components by phase shifting interferometry

    International Nuclear Information System (INIS)

    Wolfe, C.R.; Lawson, J.K.; Kellam, M.; Maney, R.T.; Demiris, A.

    1995-01-01

    This paper discusses the results of high spatial resolution measurement of the transmitted or reflected wavefront of optical components using phase shifting interferometry with a wavelength of 6328 angstrom. The optical components studied range in size from approximately 50 mm x 100 mm to 400 mm x 750 mm. Wavefront data, in the form of 3-D phase maps, have been obtained for three regimes of scale length: ''micro roughness'', ''mid-spatial scale'', and ''optical figure/curvature.'' Repetitive wavefront structure has been observed with scale lengths from 10 mm to 100 mm. The amplitude of this structure is typically λ/100 to λ/20. Previously unobserved structure has been detected in optical materials and on the surfaces of components. We are using this data to assist in optimizing laser system design, to qualify optical components and fabrication processes under study in our component development program

  3. A modified phase diversity wavefront sensor with a diffraction grating

    International Nuclear Information System (INIS)

    Luo Qun; Huang Lin-Hai; Gu Nai-Ting; Rao Chang-Hui

    2012-01-01

    The phase diversity wavefront sensor is one of the tools used to estimate wavefront aberration, and it is often used as a wavefront sensor in adaptive optics systems. However, the performance of the traditional phase diversity wavefront sensor is limited by the accuracy and dynamic ranges of the intensity distribution at the focus and defocus positions of the CCD camera. In this paper, a modified phase diversity wavefront sensor based on a diffraction grating is proposed to improve the ability to measure the wavefront aberration with larger amplitude and higher spatial frequency. The basic principle and the optics construction of the proposed method are also described in detail. The noise propagation property of the proposed method is also analysed by using the numerical simulation method, and comparison between the diffraction grating phase diversity wavefront sensor and the traditional phase diversity wavefront sensor is also made. The simulation results show that the diffraction grating phase diversity wavefront sensor can obviously improve the ability to measure the wavefront aberration, especially the wavefront aberration with larger amplitude and higher spatial frequency

  4. Whole eye wavefront aberrations in Mexican male subjects.

    Science.gov (United States)

    Cantú, Roberto; Rosales, Marco A; Tepichín, Eduardo; Curioca, Andrée; Montes, Victor; Bonilla, Julio

    2004-01-01

    To analyze the characteristics, incidence, and appearance of wavefront aberrations in undilated, normal, unoperated eyes. Eighty-eight eyes of 44 healthy male Mexican subjects (mean age 25.32 years, range 18 to 36 yr) were divided into three groups based on uncorrected visual acuity of greater than or equal to 20/20, 20/30, or 20/40. UCVA measurements were obtained using an Acuity Max computer screen chart. Wavefront aberrations were measured with the Nidek OPD-Scan ARK 10000, Ver. 1.11b. All measurements were carried out at the same center by the same technician during a single session, following manufacturer instructions. Background illumination was 3 Lux. Wavefront aberration measurements for each group were statistically analyzed using StatView; an average eye was characterized and the resulting aberrations were simulated using MATLAB. We obtained wavefront aberration maps for the 20/20 undilated normal unoperated eyes for total, low, and high order aberration coefficients. Wavefront maps for right eyes were practically the same as those for left eyes. Higher aberrations did not contribute substantially to total wavefront analysis. Average aberrations of this "normal eye" will be used as criteria to decide the necessity of wavefront-guided ablation in our facilities. We will focus on the nearly zero average of high order aberrations in this normal whole eye as a reference to be matched.

  5. Intraocular straylight and contrast sensitivity after contralateral wavefront-guided LASIK and wavefront-guided PRK for myopia.

    Science.gov (United States)

    Barreto, Jackson; Barboni, Mirella T S; Feitosa-Santana, Claudia; Sato, João R; Bechara, Samir J; Ventura, Dora F; Alves, Milton Ruiz

    2010-08-01

    To compare intraocular straylight measurements and contrast sensitivity after wavefront-guided LASIK (WFG LASIK) in one eye and wavefront-guided photorefractive keratectomy (WFG PRK) in the fellow eye for myopia and myopic astigmatism correction. A prospective, randomized study of 22 eyes of 11 patients who underwent simultaneous WFG LASIK and WFG PRK (contralateral eye). Both groups were treated with the NIDEK Advanced Vision Excimer Laser System, and a microkeratome was used for flap creation in the WFG LASIK group. High and low contrast visual acuity, wavefront analysis, contrast sensitivity, and retinal straylight measurements were performed preoperatively and at 3, 6, and 12 months postoperatively. A third-generation straylight meter, C-Quant (Oculus Optikgeräte GmbH), was used for measuring intraocular straylight. Twelve months postoperatively, mean uncorrected distance visual acuity was -0.06 +/- 0.07 logMAR in the WFG LASIK group and -0.10 +/- 0.10 logMAR in the WFG PRK group. Mean preoperative intraocular straylight was 0.94 +/- 0.12 logs for the WFG LASIK group and 0.96 +/- 0.11 logs for the WFG PRK group. After 12 months, the mean straylight value was 1.01 +/- 0.1 log s for the WFG LASIK group and 0.97 +/- 0.12 log s for the WFG PRK group. No difference was found between techniques after 12 months (P = .306). No significant difference in photopic and mesopic contrast sensitivity between groups was noted. Intraocular straylight showed no statistically significant increase 1 year after WFG LASIK and WFG PRK. Higher order aberrations increased significantly after surgery for both groups. Nevertheless, WFG LASIK and WFG PRK yielded excellent visual acuity and contrast sensitivity performance without significant differences between techniques.

  6. Wavefront measurement using computational adaptive optics.

    Science.gov (United States)

    South, Fredrick A; Liu, Yuan-Zhi; Bower, Andrew J; Xu, Yang; Carney, P Scott; Boppart, Stephen A

    2018-03-01

    In many optical imaging applications, it is necessary to correct for aberrations to obtain high quality images. Optical coherence tomography (OCT) provides access to the amplitude and phase of the backscattered optical field for three-dimensional (3D) imaging samples. Computational adaptive optics (CAO) modifies the phase of the OCT data in the spatial frequency domain to correct optical aberrations without using a deformable mirror, as is commonly done in hardware-based adaptive optics (AO). This provides improvement of image quality throughout the 3D volume, enabling imaging across greater depth ranges and in highly aberrated samples. However, the CAO aberration correction has a complicated relation to the imaging pupil and is not a direct measurement of the pupil aberrations. Here we present new methods for recovering the wavefront aberrations directly from the OCT data without the use of hardware adaptive optics. This enables both computational measurement and correction of optical aberrations.

  7. Comparison between iterative wavefront control algorithm and direct gradient wavefront control algorithm for adaptive optics system

    Science.gov (United States)

    Cheng, Sheng-Yi; Liu, Wen-Jin; Chen, Shan-Qiu; Dong, Li-Zhi; Yang, Ping; Xu, Bing

    2015-08-01

    Among all kinds of wavefront control algorithms in adaptive optics systems, the direct gradient wavefront control algorithm is the most widespread and common method. This control algorithm obtains the actuator voltages directly from wavefront slopes through pre-measuring the relational matrix between deformable mirror actuators and Hartmann wavefront sensor with perfect real-time characteristic and stability. However, with increasing the number of sub-apertures in wavefront sensor and deformable mirror actuators of adaptive optics systems, the matrix operation in direct gradient algorithm takes too much time, which becomes a major factor influencing control effect of adaptive optics systems. In this paper we apply an iterative wavefront control algorithm to high-resolution adaptive optics systems, in which the voltages of each actuator are obtained through iteration arithmetic, which gains great advantage in calculation and storage. For AO system with thousands of actuators, the computational complexity estimate is about O(n2) ˜ O(n3) in direct gradient wavefront control algorithm, while the computational complexity estimate in iterative wavefront control algorithm is about O(n) ˜ (O(n)3/2), in which n is the number of actuators of AO system. And the more the numbers of sub-apertures and deformable mirror actuators, the more significant advantage the iterative wavefront control algorithm exhibits. Project supported by the National Key Scientific and Research Equipment Development Project of China (Grant No. ZDYZ2013-2), the National Natural Science Foundation of China (Grant No. 11173008), and the Sichuan Provincial Outstanding Youth Academic Technology Leaders Program, China (Grant No. 2012JQ0012).

  8. Wavefront error sensing for LDR

    Science.gov (United States)

    Tubbs, Eldred F.; Glavich, T. A.

    1988-01-01

    Wavefront sensing is a significant aspect of the LDR control problem and requires attention at an early stage of the control system definition and design. A combination of a Hartmann test for wavefront slope measurement and an interference test for piston errors of the segments was examined and is presented as a point of departure for further discussion. The assumption is made that the wavefront sensor will be used for initial alignment and periodic alignment checks but that it will not be used during scientific observations. The Hartmann test and the interferometric test are briefly examined.

  9. Model wavefront sensor for adaptive confocal microscopy

    Science.gov (United States)

    Booth, Martin J.; Neil, Mark A. A.; Wilson, Tony

    2000-05-01

    A confocal microscope permits 3D imaging of volume objects by the inclusion of a pinhole in the detector path which eliminates out of focus light. This configuration is however very sensitive to aberrations induced by the specimen or the optical system and would therefore benefit from an adaptive optics approach. We present a wavefront sensor capable of measuring directly the Zernike components of an aberrated wavefront and show that it is particularly applicable to the confocal microscope since only those wavefronts originating in the focal region contribute to the measured aberration.

  10. Implementation of a Wavefront-Sensing Algorithm

    Science.gov (United States)

    Smith, Jeffrey S.; Dean, Bruce; Aronstein, David

    2013-01-01

    A computer program has been written as a unique implementation of an image-based wavefront-sensing algorithm reported in "Iterative-Transform Phase Retrieval Using Adaptive Diversity" (GSC-14879-1), NASA Tech Briefs, Vol. 31, No. 4 (April 2007), page 32. This software was originally intended for application to the James Webb Space Telescope, but is also applicable to other segmented-mirror telescopes. The software is capable of determining optical-wavefront information using, as input, a variable number of irradiance measurements collected in defocus planes about the best focal position. The software also uses input of the geometrical definition of the telescope exit pupil (otherwise denoted the pupil mask) to identify the locations of the segments of the primary telescope mirror. From the irradiance data and mask information, the software calculates an estimate of the optical wavefront (a measure of performance) of the telescope generally and across each primary mirror segment specifically. The software is capable of generating irradiance data, wavefront estimates, and basis functions for the full telescope and for each primary-mirror segment. Optionally, each of these pieces of information can be measured or computed outside of the software and incorporated during execution of the software.

  11. CMOS optical centroid processor for an integrated Shack-Hartmann wavefront sensor

    OpenAIRE

    Pui, Boon Hean

    2004-01-01

    A Shack Hartmann wavefront sensor is used to detect the distortion of light in an optical wavefront. It does this by sampling the wavefront with an array of lenslets and measuring the displacement of focused spots from reference positions. These displacements are linearly related to the local wavefront tilts from which the entire wavefront can be reconstructed. In most Shack Hartmann wavefront sensors, a CCD is used to sample the entire wavefront, typically at a rate of 25 to 60 Hz, and a who...

  12. Experimental Validation of Advanced Dispersed Fringe Sensing (ADFS) Algorithm Using Advanced Wavefront Sensing and Correction Testbed (AWCT)

    Science.gov (United States)

    Wang, Xu; Shi, Fang; Sigrist, Norbert; Seo, Byoung-Joon; Tang, Hong; Bikkannavar, Siddarayappa; Basinger, Scott; Lay, Oliver

    2012-01-01

    Large aperture telescope commonly features segment mirrors and a coarse phasing step is needed to bring these individual segments into the fine phasing capture range. Dispersed Fringe Sensing (DFS) is a powerful coarse phasing technique and its alteration is currently being used for JWST.An Advanced Dispersed Fringe Sensing (ADFS) algorithm is recently developed to improve the performance and robustness of previous DFS algorithms with better accuracy and unique solution. The first part of the paper introduces the basic ideas and the essential features of the ADFS algorithm and presents the some algorithm sensitivity study results. The second part of the paper describes the full details of algorithm validation process through the advanced wavefront sensing and correction testbed (AWCT): first, the optimization of the DFS hardware of AWCT to ensure the data accuracy and reliability is illustrated. Then, a few carefully designed algorithm validation experiments are implemented, and the corresponding data analysis results are shown. Finally the fiducial calibration using Range-Gate-Metrology technique is carried out and a <10nm or <1% algorithm accuracy is demonstrated.

  13. Deep Tissue Wavefront Estimation for Sensorless Aberration Correction

    Directory of Open Access Journals (Sweden)

    Ibrahimovic Emina

    2015-01-01

    Full Text Available The multiple light scattering in biological tissues limits the measurement depth for traditional wavefront sensor. The attenuated ballistic light and the background noise caused by the diffuse light give low signal to noise ratio for wavefront measurement. To overcome this issue, we introduced a wavefront estimation method based on a ray tracing algorithm to overcome this issue. With the knowledge of the refractive index of the medium, the wavefront is estimated by calculating optical path length of rays from the target inside of the samples. This method can provide not only the information of spherical aberration from the refractive-index mismatch between the medium and biological sample but also other aberrations caused by the irregular interface between them. Simulations based on different configurations are demonstrated in this paper.

  14. Wavefront-Guided and Wavefront-Optimised Laser Treatments

    Directory of Open Access Journals (Sweden)

    Canan Aslı Utine

    2012-12-01

    Full Text Available Optical aberrations of the eye are the errors of the optical system that limit the resolution, contrast and amount of detail in the image formed on the retina. Wavefront technology allows us to measure these optical aberrations, calculate mathematically, and transfer this information into excimer laser system to perform customized treatment on the cornea. Two treatment algorithms developed to create low aberration-corneal profile are wavefront-optimised (WF-O and wavefront-guided (WF-G treatments. WF-O treatment, aims not to increase the existing spherical aberration while treatment is based on manifest refractive error as in conventional laser treatments. By increasing the number of laser spots applied peripherally in order to optimize the corneal asphericity, the preoperative central:peripheral keratometry ratio is preserved and optic zone shrinkage is prevented. On the other hand, WF-G treatment is based on aberrometry measurements and aims to correct the existing high-order aberrations in the eye. Thus, retinal image with high spatial details can be achieved. However, presence of postoperative defocus can abolish the successful results obtained with WF-G treatment. Clinical randomized controlled trials showed that in patients with preoperative RMS value of <0.3 μm, higher order aberration outcomes are similar after WF-G and WF-O treatments, but WF-G treatment yields better results when it is ≥0.4 μm. In normal eyes, very limited visual advantage can be achieved with WF-G treatment and preservation of asphericity value with WF-O treatment carries greater importance. On the other hand, in case of high astigmatism or higher order aberrations other than spherical aberration, decreasing aberrations with WF-G treatment becomes more important. In this study, we aimed to make a comparative analysis of characteristics and outcomes of the two treatment algorithms. (Turk J Ophthalmol 2012; 42: 474-8

  15. Correlations between corneal and total wavefront aberrations

    Science.gov (United States)

    Mrochen, Michael; Jankov, Mirko; Bueeler, Michael; Seiler, Theo

    2002-06-01

    Purpose: Corneal topography data expressed as corneal aberrations are frequently used to report corneal laser surgery results. However, the optical image quality at the retina depends on all optical elements of the eye such as the human lens. Thus, the aim of this study was to investigate the correlations between the corneal and total wavefront aberrations and to discuss the importance of corneal aberrations for representing corneal laser surgery results. Methods: Thirty three eyes of 22 myopic subjects were measured with a corneal topography system and a Tschernig-type wavefront analyzer after the pupils were dilated to at least 6 mm in diameter. All measurements were centered with respect to the line of sight. Corneal and total wavefront aberrations were calculated up to the 6th Zernike order in the same reference plane. Results: Statistically significant correlations (p the corneal and total wavefront aberrations were found for the astigmatism (C3,C5) and all 3rd Zernike order coefficients such as coma (C7,C8). No statistically significant correlations were found for all 4th to 6th order Zernike coefficients except for the 5th order horizontal coma C18 (p equals 0.003). On average, all Zernike coefficients for the corneal aberrations were found to be larger compared to Zernike coefficients for the total wavefront aberrations. Conclusions: Corneal aberrations are only of limited use for representing the optical quality of the human eye after corneal laser surgery. This is due to the lack of correlation between corneal and total wavefront aberrations in most of the higher order aberrations. Besides this, the data present in this study yield towards an aberration balancing between corneal aberrations and the optical elements within the eye that reduces the aberration from the cornea by a certain degree. Consequently, ideal customized ablations have to take both, corneal and total wavefront aberrations, into consideration.

  16. Wavefront reconstruction using computer-generated holograms

    Science.gov (United States)

    Schulze, Christian; Flamm, Daniel; Schmidt, Oliver A.; Duparré, Michael

    2012-02-01

    We propose a new method to determine the wavefront of a laser beam, based on modal decomposition using computer-generated holograms (CGHs). Thereby the beam under test illuminates the CGH with a specific, inscribed transmission function that enables the measurement of modal amplitudes and phases by evaluating the first diffraction order of the hologram. Since we use an angular multiplexing technique, our method is innately capable of real-time measurements of amplitude and phase, yielding the complete information about the optical field. A measurement of the Stokes parameters, respectively of the polarization state, provides the possibility to calculate the Poynting vector. Two wavefront reconstruction possibilities are outlined: reconstruction from the phase for scalar beams and reconstruction from the Poynting vector for inhomogeneously polarized beams. To quantify single aberrations, the reconstructed wavefront is decomposed into Zernike polynomials. Our technique is applied to beams emerging from different kinds of multimode optical fibers, such as step-index, photonic crystal and multicore fibers, whereas in this work results are exemplarily shown for a step-index fiber and compared to a Shack-Hartmann measurement that serves as a reference.

  17. Measurement of the wave-front aberration of the eye by a fast psychophysical procedure

    International Nuclear Information System (INIS)

    He, J.C.; Marcos, S.; Webb, R.H.; Burns, S.A.

    1998-01-01

    We used a fast psychophysical procedure to determine the wave-front aberrations of the human eye in vivo. We measured the angular deviation of light rays entering the eye at different pupillary locations by aligning an image of a point source entering the pupil at different locations to the image of a fixation cross entering the pupil at a fixed location. We fitted the data to a Zernike series to reconstruct the wave-front aberrations of the pupil. With this technique the repeatability of the measurement of the individual coefficients was 0.019 μm. The standard deviation of the overall wave-height estimation across the pupil is less than 0.3 μm. Since this technique does not require the administration of pharmacological agents to dilate the pupil, we were able to measure the changes in the aberrations of the eye during accommodation. We found that administration of even a mild dilating agent causes a change in the aberration structure of the eye. copyright 1998 Optical Society of America

  18. Measurement range of phase retrieval in optical surface and wavefront metrology

    International Nuclear Information System (INIS)

    Brady, Gregory R.; Fienup, James R.

    2009-01-01

    Phase retrieval employs very simple data collection hardware and iterative algorithms to determine the phase of an optical field. We have derived limitations on phase retrieval, as applied to optical surface and wavefront metrology, in terms of the speed of beam (i.e., f-number or numerical aperture) and amount of aberration using arguments based on sampling theory and geometrical optics. These limitations suggest methodologies for expanding these ranges by increasing the complexity of the measurement arrangement, the phase-retrieval algorithm, or both. We have simulated one of these methods where a surface is measured at unusual conjugates

  19. Combined shearing interferometer and hartmann wavefront sensor

    International Nuclear Information System (INIS)

    Hutchin, R. A.

    1985-01-01

    A sensitive wavefront sensor combining attributes of both a Hartmann type of wavefront sensor and an AC shearing interferometer type of wavefront sensor. An incident wavefront, the slope of which is to be detected, is focussed to first and second focal points at which first and second diffraction gratings are positioned to shear and modulate the wavefront, which then diverges therefrom. The diffraction patterns of the first and second gratings are positioned substantially orthogonal to each other to shear the wavefront in two directions to produce two dimensional wavefront slope data for the AC shearing interferometer portion of the wavefront sensor. First and second dividing optical systems are positioned in the two diverging wavefronts to divide the sheared wavefront into an array of subapertures and also to focus the wavefront in each subaperture to a focal point. A quadrant detector is provided for each subaperture to detect the position of the focal point therein, which provides a first indication, in the manner of a Hartmann wavefront sensor, of the local wavefront slope in each subaperture. The total radiation in each subaperture, as modulated by the diffraction grating, is also detected by the quadrant detector which produces a modulated output signal representative thereof, the phase of which relative to modulation by the diffraction grating provides a second indication of the local wavefront slope in each subaperture, in the manner of an AC shearing interferometer wavefront sensor. The data from both types of sensors is then combined by long term averaging thereof to provide an extremely sensitive wavefront sensor

  20. Beam geometry, alignment, and wavefront aberration effects on interferometric differential wavefront sensing

    International Nuclear Information System (INIS)

    Yu, Xiangzhi; Gillmer, S R; Ellis, J D

    2015-01-01

    Heterodyne interferometry is a widely accepted methodology with high resolution in many metrology applications. As a functionality enhancement, differential wavefront sensing (DWS) enables simultaneous measurement of displacement, pitch, and yaw using a displacement interferometry system and a single beam incident on a plane mirror target. The angular change is measured using a weighted phase average between symmetrically adjacent quadrant photodiode pairs. In this paper, we present an analytical model to predict the scaling of differential phase signals based on fundamental Gaussian beams. Several numerical models are presented to discuss the effects of physical beam parameters, detector size, system alignment errors, and beam wavefront aberrations on the DWS technique. The results of our modeling predict rotational scaling factors and a usable linear range. Furthermore, experimental results show the analytically predicted scaling factor is in good agreement with empirical calibration. Our three degree-of-freedom interferometer can achieve a resolution of 0.4 nm in displacement and 0.2 μrad in pitch and yaw simultaneously. (paper)

  1. Identified state-space prediction model for aero-optical wavefronts

    Science.gov (United States)

    Faghihi, Azin; Tesch, Jonathan; Gibson, Steve

    2013-07-01

    A state-space disturbance model and associated prediction filter for aero-optical wavefronts are described. The model is computed by system identification from a sequence of wavefronts measured in an airborne laboratory. Estimates of the statistics and flow velocity of the wavefront data are shown and can be computed from the matrices in the state-space model without returning to the original data. Numerical results compare velocity values and power spectra computed from the identified state-space model with those computed from the aero-optical data.

  2. Wavefront-error evaluation by mathematical analysis of experimental Foucault-test data

    Science.gov (United States)

    Wilson, R. G.

    1975-01-01

    The diffraction theory of the Foucault test provides an integral formula expressing the complex amplitude and irradiance distribution in the Foucault pattern of a test mirror (lens) as a function of wavefront error. Recent literature presents methods of inverting this formula to express wavefront error in terms of irradiance in the Foucault pattern. The present paper describes a study in which the inversion formulation was applied to photometric Foucault-test measurements on a nearly diffraction-limited mirror to determine wavefront errors for direct comparison with ones determined from scatter-plate interferometer measurements. The results affirm the practicability of the Foucault test for quantitative wavefront analysis of very small errors, and they reveal the fallacy of the prevalent belief that the test is limited to qualitative use only. Implications of the results with regard to optical testing and the potential use of the Foucault test for wavefront analysis in orbital space telescopes are discussed.

  3. Wavefront sensing with all-digital Stokes measurements

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2014-09-25

    Full Text Available to wavefront sensing [8] based on Stokes polarimetry which makes use of the amplitude and phase relationship between orthogonal states of polarization. With our approach a field of interest is generated by encoding an appropriate hologram on a spatial light... modulator (SLM). Since SLMs are diffraction-inefficient, we can exploit the amplitude relationship between the orthogonal polarization states allowing the execution of Stokes polarimetry of the co-linear superposition of the reference beam and the beam...

  4. The wavefront of the radio signal emitted by cosmic ray air showers

    Energy Technology Data Exchange (ETDEWEB)

    Apel, W.D.; Bekk, K.; Blümer, J.; Bozdog, H.; Daumiller, K.; Doll, P.; Engel, R. [Institut für Kernphysik, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Arteaga-Velázquez, J.C. [Instituto de Física y Matemáticas, Universidad Michoacana, Edificio C-3, Cd. Universitaria, C.P. 58040 Morelia, Michoacán (Mexico); Bähren, L.; Falcke, H. [ASTRON, Oude Hoogeveensedijk 4, 7991 PD Dwingeloo (Netherlands); Bertaina, M.; Cantoni, E.; Chiavassa, A.; Pierro, F. Di [Dipartimento di Fisica, Università degli Studi di Torino, Via Giuria 1, 10125 Torino (Italy); Biermann, P.L. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn (Germany); Brancus, I.M. [National Institute of Physics and Nuclear Engineering, Str. Reactorului no. 30, P.O. Box MG-6, Bucharest-Magurele (Romania); De Souza, V. [Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador São-Carlense 400, Pq. Arnold Schmidt, São Carlos (Brazil); Fuchs, B. [Institut für Experimentelle Kernphysik, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Gemmeke, H. [Institut für Prozessdatenverarbeitung und Elektronik, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Grupen, C., E-mail: frank.schroeder@kit.edu [Faculty of Natural Sciences and Engineering, Universität Siegen, Walter-Flex-Straße 3, 57072 Siegen (Germany); and others

    2014-09-01

    Analyzing measurements of the LOPES antenna array together with corresponding CoREAS simulations for more than 300 measured events with energy above 10{sup 17} eV and zenith angles smaller than 45{sup o}, we find that the radio wavefront of cosmic-ray air showers is of approximately hyperbolic shape. The simulations predict a slightly steeper wavefront towards East than towards West, but this asymmetry is negligible against the measurement uncertainties of LOPES. At axis distances ∼> 50 m, the wavefront can be approximated by a simple cone. According to the simulations, the cone angle is clearly correlated with the shower maximum. Thus, we confirm earlier predictions that arrival time measurements can be used to study the longitudinal shower development, but now using a realistic wavefront. Moreover, we show that the hyperbolic wavefront is compatible with our measurement, and we present several experimental indications that the cone angle is indeed sensitive to the shower development. Consequently, the wavefront can be used to statistically study the primary composition of ultra-high energy cosmic rays. At LOPES, the experimentally achieved precision for the shower maximum is limited by measurement uncertainties to approximately 140 g/c {sup 2}. But the simulations indicate that under better conditions this method might yield an accuracy for the atmospheric depth of the shower maximum, X{sub max}, better than 30 g/c {sup 2}. This would be competitive with the established air-fluorescence and air-Cherenkov techniques, where the radio technique offers the advantage of a significantly higher duty-cycle. Finally, the hyperbolic wavefront can be used to reconstruct the shower geometry more accurately, which potentially allows a better reconstruction of all other shower parameters, too.

  5. Alignment error of mirror modules of advanced telescope for high-energy astrophysics due to wavefront aberrations

    Science.gov (United States)

    Zocchi, Fabio E.

    2017-10-01

    One of the approaches that is being tested for the integration of the mirror modules of the advanced telescope for high-energy astrophysics x-ray mission of the European Space Agency consists in aligning each module on an optical bench operated at an ultraviolet wavelength. The mirror module is illuminated by a plane wave and, in order to overcome diffraction effects, the centroid of the image produced by the module is used as a reference to assess the accuracy of the optical alignment of the mirror module itself. Among other sources of uncertainty, the wave-front error of the plane wave also introduces an error in the position of the centroid, thus affecting the quality of the mirror module alignment. The power spectral density of the position of the point spread function centroid is here derived from the power spectral density of the wave-front error of the plane wave in the framework of the scalar theory of Fourier diffraction. This allows the defining of a specification on the collimator quality used for generating the plane wave starting from the contribution to the error budget allocated for the uncertainty of the centroid position. The theory generally applies whenever Fourier diffraction is a valid approximation, in which case the obtained result is identical to that derived by geometrical optics considerations.

  6. A study on high speed wavefront control algorithm for an adaptive optics system

    International Nuclear Information System (INIS)

    Park, Seung Kyu; Baik, Sung Hoon; Kim, Cheol Jung; Seo, Young Seok

    2000-01-01

    We developed a high speed control algorithm and system for measuring and correcting the wavefront distortions based on Windows operating system. To get quickly the information of wavefront distortion from the Hartman spot image, we preprocessed the image to remove background noises and extracted the centroid position by finding the center of weights. We moved finely the centroid position with sub-pixel resolution repeatedly to get the wavefront information with more enhanced resolution. We designed a differential data communication driver and an isolated analog driver to have robust system control. As the experimental results, the measurement resolution of the wavefront was 0.05 pixels and correction speed was 5Hz

  7. A database of wavefront measurements for laser system modeling, optical component development and fabrication process qualification

    International Nuclear Information System (INIS)

    Wolfe, C.R.; Lawson, J.K.; Aikens, D.M.; English, R.E.

    1995-01-01

    In the second half of the 1990's, LLNL and others anticipate designing and beginning construction of the National Ignition Facility (NIF). The NIF will be capable of producing the worlds first laboratory scale fusion ignition and bum reaction by imploding a small target. The NIF will utilize approximately 192 simultaneous laser beams for this purpose. The laser will be capable of producing a shaped energy pulse of at least 1.8 million joules (MJ) with peak power of at least 500 trillion watts (TV). In total, the facility will require more than 7,000 large optical components. The performance of a high power laser of this kind can be seriously degraded by the presence of low amplitude, periodic modulations in the surface and transmitted wavefronts of the optics used. At high peak power, these phase modulations can convert into large intensity modulations by non-linear optical processes. This in turn can lead to loss in energy on target via many well known mechanisms. In some cases laser damage to the optics downstream of the source of the phase modulation can occur. The database described here contains wavefront phase maps of early prototype optical components for the NIF. It has only recently become possible to map the wavefront of these large aperture components with high spatial resolution. Modem large aperture static fringe and phase shifting interferometers equipped with large area solid state detectors have made this possible. In a series of measurements with these instruments, wide spatial bandwidth can be detected in the wavefront

  8. Correcting the wavefront aberration of membrane mirror based on liquid crystal spatial light modulator

    Science.gov (United States)

    Yang, Bin; Wei, Yin; Chen, Xinhua; Tang, Minxue

    2014-11-01

    Membrane mirror with flexible polymer film substrate is a new-concept ultra lightweight mirror for space applications. Compared with traditional mirrors, membrane mirror has the advantages of lightweight, folding and deployable, low cost and etc. Due to the surface shape of flexible membrane mirror is easy to deviate from the design surface shape, it will bring wavefront aberration to the optical system. In order to solve this problem, a method of membrane mirror wavefront aberration correction based on the liquid crystal spatial light modulator (LCSLM) will be studied in this paper. The wavefront aberration correction principle of LCSLM is described and the phase modulation property of a LCSLM is measured and analyzed firstly. Then the membrane mirror wavefront aberration correction system is designed and established according to the optical properties of a membrane mirror. The LCSLM and a Hartmann-Shack sensor are used as a wavefront corrector and a wavefront detector, respectively. The detected wavefront aberration is calculated and converted into voltage value on LCSLM for the mirror wavefront aberration correction by programming in Matlab. When in experiment, the wavefront aberration of a glass plane mirror with a diameter of 70 mm is measured and corrected for verifying the feasibility of the experiment system and the correctness of the program. The PV value and RMS value of distorted wavefront are reduced and near diffraction limited optical performance is achieved. On this basis, the wavefront aberration of the aperture center Φ25 mm in a membrane mirror with a diameter of 200 mm is corrected and the errors are analyzed. It provides a means of correcting the wavefront aberration of membrane mirror.

  9. Wavefront Derived Refraction and Full Eye Biometry in Pseudophakic Eyes.

    Directory of Open Access Journals (Sweden)

    Xinjie Mao

    Full Text Available To assess wavefront derived refraction and full eye biometry including ciliary muscle dimension and full eye axial geometry in pseudophakic eyes using spectral domain OCT equipped with a Shack-Hartmann wavefront sensor.Twenty-eight adult subjects (32 pseudophakic eyes having recently undergone cataract surgery were enrolled in this study. A custom system combining two optical coherence tomography systems with a Shack-Hartmann wavefront sensor was constructed to image and monitor changes in whole eye biometry, the ciliary muscle and ocular aberration in the pseudophakic eye. A Badal optical channel and a visual target aligning with the wavefront sensor were incorporated into the system for measuring the wavefront-derived refraction. The imaging acquisition was performed twice. The coefficients of repeatability (CoR and intraclass correlation coefficient (ICC were calculated.Images were acquired and processed successfully in all patients. No significant difference was detected between repeated measurements of ciliary muscle dimension, full-eye biometry or defocus aberration. The CoR of full-eye biometry ranged from 0.36% to 3.04% and the ICC ranged from 0.981 to 0.999. The CoR for ciliary muscle dimensions ranged from 12.2% to 41.6% and the ICC ranged from 0.767 to 0.919. The defocus aberrations of the two measurements were 0.443 ± 0.534 D and 0.447 ± 0.586 D and the ICC was 0.951.The combined system is capable of measuring full eye biometry and refraction with good repeatability. The system is suitable for future investigation of pseudoaccommodation in the pseudophakic eye.

  10. Wavefront division digital holography

    Science.gov (United States)

    Zhang, Wenhui; Cao, Liangcai; Li, Rujia; Zhang, Hua; Zhang, Hao; Jiang, Qiang; Jin, Guofan

    2018-05-01

    Digital holography (DH), mostly Mach-Zehnder configuration based, belongs to non-common path amplitude splitting interference imaging whose stability and fringe contrast are environmental sensitive. This paper presents a wavefront division DH configuration with both high stability and high-contrast fringes benefitting from quasi common path wavefront-splitting interference. In our proposal, two spherical waves with similar curvature coming from the same wavefront are used, which makes full use of the physical sampling capacity of the detectors. The interference fringe spacing can be adjusted flexibly for both in-line and off-axis mode due to the independent modulation to these two waves. Only a few optical elements, including the mirror-beam splitter interference component, are used without strict alignments, which makes it robust and easy-to-implement. The proposed wavefront division DH promotes interference imaging physics into the practical and miniaturized a step forward. The feasibility of this method is proved by the imaging of a resolution target and a water flea.

  11. Phase-preserving wavefront amplification at 590 nm by stimulated Raman scattering

    Science.gov (United States)

    Wick, D. V.; Gruneisen, M. T.; Peterson, P. R.

    1998-03-01

    This paper presents an experimental demonstration of high-gain optical-wavefront amplification by stimulated Raman scattering near the D 1 resonance in atomic sodium vapor. Single-pass weak-field gain of nearly 400 is achieved with only 800 mW of pump power. Through judicious focusing, the weak wavefront is confined to the central region of the focused pump wave where saturation of the dispersion profile minimizes phase distortions due to self-focusing effects. Phase-preserving amplification is demonstrated by interferometric measurements of an amplified TEM 00 wavefront.

  12. Accuracy of Shack-Hartmann wavefront sensor using a coherent wound fibre image bundle

    Science.gov (United States)

    Zheng, Jessica R.; Goodwin, Michael; Lawrence, Jon

    2018-03-01

    Shack-Hartmannwavefront sensors using wound fibre image bundles are desired for multi-object adaptive optical systems to provide large multiplex positioned by Starbugs. The use of a large-sized wound fibre image bundle provides the flexibility to use more sub-apertures wavefront sensor for ELTs. These compact wavefront sensors take advantage of large focal surfaces such as the Giant Magellan Telescope. The focus of this paper is to study the wound fibre image bundle structure defects effect on the centroid measurement accuracy of a Shack-Hartmann wavefront sensor. We use the first moment centroid method to estimate the centroid of a focused Gaussian beam sampled by a simulated bundle. Spot estimation accuracy with wound fibre image bundle and its structure impact on wavefront measurement accuracy statistics are addressed. Our results show that when the measurement signal-to-noise ratio is high, the centroid measurement accuracy is dominated by the wound fibre image bundle structure, e.g. tile angle and gap spacing. For the measurement with low signal-to-noise ratio, its accuracy is influenced by the read noise of the detector instead of the wound fibre image bundle structure defects. We demonstrate this both with simulation and experimentally. We provide a statistical model of the centroid and wavefront error of a wound fibre image bundle found through experiment.

  13. Measurement of nonlinear refractive index and ionization rates in air using a wavefront sensor.

    Science.gov (United States)

    Schwarz, Jens; Rambo, Patrick; Kimmel, Mark; Atherton, Briggs

    2012-04-09

    A wavefront sensor has been used to measure the Kerr nonlinear focal shift of a high intensity ultrashort pulse beam in a focusing beam geometry while accounting for the effects of plasma-defocusing. It is shown that plasma-defocusing plays a major role in the nonlinear focusing dynamics and that measurements of Kerr nonlinearity and ionization are coupled. Furthermore, this coupled effect leads to a novel way that measures the laser ionization rates in air under atmospheric conditions as well as Kerr nonlinearity. The measured nonlinear index n₂ compares well with values found in the literature and the measured ionization rates could be successfully benchmarked to the model developed by Perelomov, Popov, and Terentev (PPT model) [Sov. Phys. JETP 50, 1393 (1966)].

  14. Optimization of scanning strategy of digital Shack-Hartmann wavefront sensing.

    Science.gov (United States)

    Guo, Wenjiang; Zhao, Liping; Li, Xiang; Chen, I-Ming

    2012-01-01

    In the traditional Shack-Hartmann wavefront sensing (SHWS) system, a lenslet array with a bigger configuration is desired to achieve a higher lateral resolution. However, practical implementation limits the configuration and this parameter is contradicted with the measurement range. We have proposed a digital scanning technique by making use of the high flexibility of a spatial light modulator to sample the reflected wavefront [X. Li, L. P. Zhao, Z. P. Fang, and C. S. Tan, "Improve lateral resolution in wavefront sensing with digital scanning technique," in Asia-Pacific Conference of Transducers and Micro-Nano Technology (2006)]. The lenslet array pattern is programmed to laterally scan the whole aperture. In this paper, the methodology to optimize the scanning step for the purpose of form measurement is proposed. The correctness and effectiveness are demonstrated in numerical simulation and experimental investigation. © 2012 Optical Society of America

  15. Partial coherence and imperfect optics at a synchrotron radiation source modeled by wavefront propagation

    Science.gov (United States)

    Laundy, David; Alcock, Simon G.; Alianelli, Lucia; Sutter, John P.; Sawhney, Kawal J. S.; Chubar, Oleg

    2014-09-01

    A full wave propagation of X-rays from source to sample at a storage ring beamline requires simulation of the electron beam source and optical elements in the beamline. The finite emittance source causes the appearance of partial coherence in the wave field. Consequently, the wavefront cannot be treated exactly with fully coherent wave propagation or fully incoherent ray tracing. We have used the wavefront code Synchrotron Radiation Workshop (SRW) to perform partially coherent wavefront propagation using a parallel computing cluster at the Diamond Light Source. Measured mirror profiles have been used to correct the wavefront for surface errors.

  16. Coronagraphic Wavefront Control for the ATLAST-9.2m Telescope

    Science.gov (United States)

    Lyon, RIchard G.; Oegerle, William R.; Feinberg, Lee D.; Bolcar, Matthew R.; Dean, Bruce H.; Mosier, Gary E.; Postman, Marc

    2010-01-01

    The Advanced Technology for Large Aperture Space Telescope (ATLAST) concept was assessed as one of the NASA Astrophysics Strategic Mission Concepts (ASMC) studies. Herein we discuss the 9.2-meter diameter segmented aperture version and its wavefront sensing and control (WFSC) with regards to coronagraphic detection and spectroscopic characterization of exoplanets. The WFSC would consist of at least two levels of sensing and control: (i) an outer coarser level of sensing and control to phase and control the segments and secondary mirror in a manner similar to the James Webb Space Telescope but operating at higher temporal bandwidth, and (ii) an inner, coronagraphic instrument based, fine level of sensing and control for both amplitude and wavefront errors operating at higher temporal bandwidths. The outer loop would control rigid-body actuators on the primary and secondary mirrors while the inner loop would control one or more segmented deformable mirror to suppress the starlight within the coronagraphic field-of view. Herein we discuss the visible nulling coronagraph (VNC) and the requirements it levies on wavefront sensing and control and show the results of closed-loop simulations to assess performance and evaluate the trade space of system level stability versus control bandwidth.

  17. Coronagraphic wavefront control for the ATLAST 9.2m telescope

    Science.gov (United States)

    Lyon, Richard G.; Oegerle, William R.; Feinberg, Lee D.; Bolcar, Matthew R.; Dean, Bruce H.; Mosier, Gary E.; Postman, Marc

    2010-07-01

    The Advanced Technology for Large Aperture Space Telescope (ATLAST) concept was assessed as one of the NASA Astrophysics Strategic Mission Concepts (ASMC) studies. Herein we discuss the 9.2-meter diameter segmented aperture version and its wavefront sensing and control (WFSC) with regards to coronagraphic detection and spectroscopic characterization of exoplanets. The WFSC would consist of at least two levels of sensing and control: (i) an outer coarser level of sensing and control to phase and control the segments and secondary mirror in a manner similar to the James Webb Space Telescope but operating at higher temporal bandwidth, and (ii) an inner, coronagraphic instrument based, fine level of sensing and control for both amplitude and wavefront errors operating at higher temporal bandwidths. The outer loop would control rigid-body actuators on the primary and secondary mirrors while the inner loop would control one or more segmented deformable mirror to suppress the starlight within the coronagraphic field-of-view. Herein we discuss the visible nulling coronagraph (VNC) and the requirements it levies on wavefront sensing and control and show the results of closed-loop simulations to assess performance and evaluate the trade space of system level stability versus control bandwidth.

  18. Correction of the wavefront using the irradiance transport equation

    Science.gov (United States)

    García, M.; Granados, F.; Cornejo, A.

    2008-07-01

    The correction of the wavefront in optical systems implies the use of wavefront sensors, software, and auxiliary optical systems. We propose evaluated the wavefront using the fact that the wavefront and its intensity are related in the mathematical expression the irradiance transport equation (ITE)

  19. Iterative wave-front reconstruction in the Fourier domain.

    Science.gov (United States)

    Bond, Charlotte Z; Correia, Carlos M; Sauvage, Jean-François; Neichel, Benoit; Fusco, Thierry

    2017-05-15

    The use of Fourier methods in wave-front reconstruction can significantly reduce the computation time for large telescopes with a high number of degrees of freedom. However, Fourier algorithms for discrete data require a rectangular data set which conform to specific boundary requirements, whereas wave-front sensor data is typically defined over a circular domain (the telescope pupil). Here we present an iterative Gerchberg routine modified for the purposes of discrete wave-front reconstruction which adapts the measurement data (wave-front sensor slopes) for Fourier analysis, fulfilling the requirements of the fast Fourier transform (FFT) and providing accurate reconstruction. The routine is used in the adaptation step only and can be coupled to any other Wiener-like or least-squares method. We compare simulations using this method with previous Fourier methods and show an increase in performance in terms of Strehl ratio and a reduction in noise propagation for a 40×40 SPHERE-like adaptive optics system. For closed loop operation with minimal iterations the Gerchberg method provides an improvement in Strehl, from 95.4% to 96.9% in K-band. This corresponds to ~ 40 nm improvement in rms, and avoids the high spatial frequency errors present in other methods, providing an increase in contrast towards the edge of the correctable band.

  20. [Monochromatic aberration in accommodation. Dynamic wavefront analysis].

    Science.gov (United States)

    Fritzsch, M; Dawczynski, J; Jurkutat, S; Vollandt, R; Strobel, J

    2011-06-01

    Monochromatic aberrations may influence the visual acuity of the eye. They are not stable and can be affected by different factors. The subject of the following paper is the dynamic investigation of the changes in wavefront aberration with accommodation. Dynamic measurement of higher and lower order aberrations was performed with a WASCA Wavefront Analyzer (Carl-Zeiss-Meditec) and a specially constructed target device for aligning objects in far and near distances on 25 subjects aged from 15 to 27 years old. Wavefront aberrations showed some significant changes in accommodation. In addition to the characteristic sphere reaction accompanying miosis and changes in horizontal prism (Z(1) (1)) in the sense of a convergence movement of the eyeball also occurred. Furthermore defocus rose (Z(2) (0)) and astigmatism (Z(2) (-2)) changed. In higher-order aberrations a decrease in coma-like Zernike polynomials (Z(3) (-1), Z(3) (1)) was found. The most obvious change appeared in spherical aberration (Z(4) (0)) which increased and changed from positive to negative. In addition the secondary astigmatism (Z(4) (-2)) and quadrafoil (Z(4) (4)) rise also increased. The total root mean square (RMS), as well as the higher-order aberrations (RMS-HO) significantly increased in accommodation which is associated with a theoretical reduction of visual acuity. An analysis of the influence of pupil size on aberrations showed significant increases in defocus, spherical aberration, quadrafoil, RMS and RMS HO by increasing pupil diameter. By accommodation-associated miosis, the growing aberrations are partially compensated by focusing on near objects. Temporal analysis of the accommodation process with dynamic wavefront analysis revealed significant delays in pupil response and changing of prism in relation to the sphere reaction. In accommodation to near objects a discrete time ahead of third order aberrations in relation to the sphere response was found. Using dynamic wavefront measurement

  1. High precision wavefront control in point spread function engineering for single emitter localization

    Science.gov (United States)

    Siemons, M.; Hulleman, C. N.; Thorsen, R. Ø.; Smith, C. S.; Stallinga, S.

    2018-04-01

    Point Spread Function (PSF) engineering is used in single emitter localization to measure the emitter position in 3D and possibly other parameters such as the emission color or dipole orientation as well. Advanced PSF models such as spline fits to experimental PSFs or the vectorial PSF model can be used in the corresponding localization algorithms in order to model the intricate spot shape and deformations correctly. The complexity of the optical architecture and fit model makes PSF engineering approaches particularly sensitive to optical aberrations. Here, we present a calibration and alignment protocol for fluorescence microscopes equipped with a spatial light modulator (SLM) with the goal of establishing a wavefront error well below the diffraction limit for optimum application of complex engineered PSFs. We achieve high-precision wavefront control, to a level below 20 m$\\lambda$ wavefront aberration over a 30 minute time window after the calibration procedure, using a separate light path for calibrating the pixel-to-pixel variations of the SLM, and alignment of the SLM with respect to the optical axis and Fourier plane within 3 $\\mu$m ($x/y$) and 100 $\\mu$m ($z$) error. Aberrations are retrieved from a fit of the vectorial PSF model to a bead $z$-stack and compensated with a residual wavefront error comparable to the error of the SLM calibration step. This well-calibrated and corrected setup makes it possible to create complex `3D+$\\lambda$' PSFs that fit very well to the vectorial PSF model. Proof-of-principle bead experiments show precisions below 10~nm in $x$, $y$, and $\\lambda$, and below 20~nm in $z$ over an axial range of 1 $\\mu$m with 2000 signal photons and 12 background photons.

  2. The Infrared Imaging Spectrograph (IRIS) for TMT: multi-tiered wavefront measurements and novel mechanical design

    Science.gov (United States)

    Dunn, Jennifer; Andersen, David; Chapin, Edward; Reshetov, Vlad; Wierzbicki, Ramunas; Herriot, Glen; Chalmer, Dean; Isbrucker, Victor; Larkin, James E.; Moore, Anna M.; Suzuki, Ryuji

    2016-08-01

    The InfraRed Imaging Spectrograph (IRIS) will be the first light adaptive optics instrument on the Thirty Meter Telescope (TMT). IRIS is being built by a collaboration between Caltech, the University of California, NAOJ and NRC Herzberg. In this paper we present novel aspects of the Support Structure, Rotator and On-Instrument Wavefront Sensor systems being developed at NRC Herzberg. IRIS is suspended from the bottom port of the Narrow Field Infrared Adaptive Optics System (NFIRAOS), and provides its own image de-rotation to compensate for sidereal rotation of the focal plane. This arrangement is a challenge because NFIRAOS is designed to host two other science instruments, which imposes strict mass requirements on IRIS. As the mechanical design of all elements has progressed, we have been tasked with keeping the instrument mass under seven tonnes. This requirement has resulted in a mass reduction of 30 percent for the support structure and rotator compared to the most recent IRIS designs. To accomplish this goal, while still being able to withstand earthquakes, we developed a new design with composite materials. As IRIS is a client instrument of NFIRAOS, it benefits from NFIRAOS's superior AO correction. IRIS plays an important role in providing this correction by sensing low-order aberrations with three On-Instrument Wavefront Sensors (OIWFS). The OIWFS consists of three independently positioned natural guide star wavefront sensor probe arms that patrol a 2-arcminute field of view. We expect tip-tilt measurements from faint stars within the IRIS imager focal plane will further stabilize the delivered image quality. We describe how the use of On-Detector Guide Windows (ODGWs) in the IRIS imaging detector can be incorporated into the AO correction. In this paper, we present our strategies for acquiring and tracking sources with this complex AO system, and for mitigating and measuring the various potential sources of image blur and misalignment due to properties of

  3. Multigrid preconditioned conjugate-gradient method for large-scale wave-front reconstruction.

    Science.gov (United States)

    Gilles, Luc; Vogel, Curtis R; Ellerbroek, Brent L

    2002-09-01

    We introduce a multigrid preconditioned conjugate-gradient (MGCG) iterative scheme for computing open-loop wave-front reconstructors for extreme adaptive optics systems. We present numerical simulations for a 17-m class telescope with n = 48756 sensor measurement grid points within the aperture, which indicate that our MGCG method has a rapid convergence rate for a wide range of subaperture average slope measurement signal-to-noise ratios. The total computational cost is of order n log n. Hence our scheme provides for fast wave-front simulation and control in large-scale adaptive optics systems.

  4. Transmitted wavefront testing with large dynamic range based on computer-aided deflectometry

    Science.gov (United States)

    Wang, Daodang; Xu, Ping; Gong, Zhidong; Xie, Zhongmin; Liang, Rongguang; Xu, Xinke; Kong, Ming; Zhao, Jun

    2018-06-01

    The transmitted wavefront testing technique is demanded for the performance evaluation of transmission optics and transparent glass, in which the achievable dynamic range is a key issue. A computer-aided deflectometric testing method with fringe projection is proposed for the accurate testing of transmitted wavefronts with a large dynamic range. Ray tracing of the modeled testing system is carried out to achieve the virtual ‘null’ testing of transmitted wavefront aberrations. The ray aberration is obtained from the ray tracing result and measured slope, with which the test wavefront aberration can be reconstructed. To eliminate testing system modeling errors, a system geometry calibration based on computer-aided reverse optimization is applied to realize accurate testing. Both numerical simulation and experiments have been carried out to demonstrate the feasibility and high accuracy of the proposed testing method. The proposed testing method can achieve a large dynamic range compared with the interferometric method, providing a simple, low-cost and accurate way for the testing of transmitted wavefronts from various kinds of optics and a large amount of industrial transmission elements.

  5. Comparison of wavefront aberrations under cycloplegic, scotopic and photopic conditions using WaveScan

    Directory of Open Access Journals (Sweden)

    Rong Fan

    2012-04-01

    Full Text Available PURPOSE: To evaluate the differences of wavefront aberrations under cycloplegic, scotopic and photopic conditions. METHODS: A total of 174 eyes of 105 patients were measured using the wavefront sensor (WaveScan® 3.62 under different pupil conditions: cycloplegic 8.58 ± 0.54 mm (6.4 mm - 9.5 mm, scotopic 7.53 ± 0.69 mm (5.7 mm - 9.1 mm and photopic 6.08 ± 1.14 mm (4.1 mm - 8.8 mm. The pupil diameter, standard Zernike coefficients, root mean square of higher-order aberrations and dominant aberrations were compared between cycloplegic and scotopic conditions, and between scotopic and photopic conditions. RESULTS: The pupil diameter was 7.53 ± 0.69 mm under the scotopic condition, which reached the requirement of about 6.5 mm optical zone design in the wavefront-guided surgery and prevented measurement error due to the pupil centroid shift caused by mydriatics. Pharmacological pupil dilation induced increase of standard Zernike coefficients Z3-3, Z4(0 and Z5-5. The higher-order aberrations, third-order aberration, fourth-order aberration, fifth-order aberration, sixth-order aberration, and spherical aberration increased statistically significantly, compared to the scotopic condition (P<0.010. When the scotopic condition shifted to the photopic condition, the standard Zernike coefficients Z4(0, Z4², Z6-4, Z6-2, Z6² decreased and all the higher-order aberrations decreased statistically significantly (P<0.010, demonstrating that accommodative miosis can significantly improve vision under the photopic condition. Under the three conditions, the vertical coma aberration appears the most frequently within the dominant aberrations without significant effect by pupil size variance, and the proportion of spherical aberrations decreased with the decrease of the pupil size. CONCLUSIONS: The wavefront aberrations are significantly different under cycloplegic, scotopic and photopic conditions. Using the wavefront sensor (VISX WaveScan to measure scotopic

  6. Closed-loop focal plane wavefront control with the SCExAO instrument

    Science.gov (United States)

    Martinache, Frantz; Jovanovic, Nemanja; Guyon, Olivier

    2016-09-01

    Aims: This article describes the implementation of a focal plane based wavefront control loop on the high-contrast imaging instrument SCExAO (Subaru Coronagraphic Extreme Adaptive Optics). The sensor relies on the Fourier analysis of conventional focal-plane images acquired after an asymmetric mask is introduced in the pupil of the instrument. Methods: This absolute sensor is used here in a closed-loop to compensate for the non-common path errors that normally affects any imaging system relying on an upstream adaptive optics system.This specific implementation was used to control low-order modes corresponding to eight zernike modes (from focus to spherical). Results: This loop was successfully run on-sky at the Subaru Telescope and is used to offset the SCExAO deformable mirror shape used as a zero-point by the high-order wavefront sensor. The paper details the range of errors this wavefront-sensing approach can operate within and explores the impact of saturation of the data and how it can be bypassed, at a cost in performance. Conclusions: Beyond this application, because of its low hardware impact, the asymmetric pupil Fourier wavefront sensor (APF-WFS) can easily be ported in a wide variety of wavefront sensing contexts, for ground- as well space-borne telescopes, and for telescope pupils that can be continuous, segmented or even sparse. The technique is powerful because it measures the wavefront where it really matters, at the level of the science detector.

  7. Design and realization of adaptive optical principle system without wavefront sensing

    Science.gov (United States)

    Wang, Xiaobin; Niu, Chaojun; Guo, Yaxing; Han, Xiang'e.

    2018-02-01

    In this paper, we focus on the performance improvement of the free space optical communication system and carry out the research on wavefront-sensorless adaptive optics. We use a phase only liquid crystal spatial light modulator (SLM) as the wavefront corrector. The optical intensity distribution of the distorted wavefront is detected by a CCD. We develop a wavefront controller based on ARM and a software based on the Linux operating system. The wavefront controller can control the CCD camera and the wavefront corrector. There being two SLMs in the experimental system, one simulates atmospheric turbulence and the other is used to compensate the wavefront distortion. The experimental results show that the performance quality metric (the total gray value of 25 pixels) increases from 3037 to 4863 after 200 iterations. Besides, it is demonstrated that our wavefront-sensorless adaptive optics system based on SPGD algorithm has a good performance in compensating wavefront distortion.

  8. A zonal wavefront sensor with multiple detector planes

    Science.gov (United States)

    Pathak, Biswajit; Boruah, Bosanta R.

    2018-03-01

    A conventional zonal wavefront sensor estimates the wavefront from the data captured in a single detector plane using a single camera. In this paper, we introduce a zonal wavefront sensor which comprises multiple detector planes instead of a single detector plane. The proposed sensor is based on an array of custom designed plane diffraction gratings followed by a single focusing lens. The laser beam whose wavefront is to be estimated is incident on the grating array and one of the diffracted orders from each grating is focused on the detector plane. The setup, by employing a beam splitter arrangement, facilitates focusing of the diffracted beams on multiple detector planes where multiple cameras can be placed. The use of multiple cameras in the sensor can offer several advantages in the wavefront estimation. For instance, the proposed sensor can provide superior inherent centroid detection accuracy that can not be achieved by the conventional system. It can also provide enhanced dynamic range and reduced crosstalk performance. We present here the results from a proof of principle experimental arrangement that demonstrate the advantages of the proposed wavefront sensing scheme.

  9. Military target task performance after wavefront-guided (WFG) and wavefront-optimized (WFO) photorefractive keratectomy (PRK)

    Science.gov (United States)

    Maurer, Tana; Deaver, Dawne; Howell, Christopher; Moyer, Steve; Nguyen, Oanh; Mueller, Greg; Ryan, Denise; Sia, Rose K.; Stutzman, Richard; Pasternak, Joseph; Bower, Kraig

    2014-06-01

    Major decisions regarding life and death are routinely made on the modern battlefield, where visual function of the individual soldier can be of critical importance in the decision-making process. Glasses in the combat environment have considerable disadvantages: degradation of short term visual performance can occur as dust and sweat accumulate on lenses during a mission or patrol; long term visual performance can diminish as lenses become increasingly scratched and pitted; during periods of intense physical trauma, glasses can be knocked off the soldier's face and lost or broken. Although refractive surgery offers certain benefits on the battlefield when compared to wearing glasses, it is not without potential disadvantages. As a byproduct of refractive surgery, elevated optical aberrations can be induced, causing decreases in contrast sensitivity and increases in the symptoms of glare, halos, and starbursts. Typically, these symptoms occur under low light level conditions, the same conditions under which most military operations are initiated. With the advent of wavefront aberrometry, we are now seeing correction not only of myopia and astigmatism but of other, smaller optical aberrations that can cause the above symptoms. In collaboration with the Warfighter Refractive Eye Surgery Program and Research Center (WRESP-RC) at Fort Belvoir and Walter Reed National Military Medical Center (WRNMMC), the overall objective of this study is to determine the impact of wavefront guided (WFG) versus wavefront-optimized (WFO) photorefractive keratectomy (PRK) on military task visual performance. Psychophysical perception testing was conducted before and after surgery to measure each participant's performance regarding target detection and identification using thermal imagery. The results are presented here.

  10. Derivation of preliminary specifications for transmitted wavefront and surface roughness for large optics used in inertial confinement fusion

    International Nuclear Information System (INIS)

    Aikens, D.; Roussel, A.; Bray, M.

    1995-01-01

    In preparation for beginning the design of the Nation Ignition Facility (NIF) in the United States and the Laser Mega-Joule (LMJ) in France, the authors are in the process of deriving new specifications for the large optics required for these facilities. Traditionally, specifications for transmitted wavefront and surface roughness of large ICF optics have been based on parameters which were easily measured during the early 1980's, such as peak-to-valley wavefront error (PV) and root-mean-square (RMS) surface roughness, as well as wavefront gradients in terms of waves per cm. While this was convenient from a fabrication perspective, since the specifications could be easily interpreted by fabricators in terms which were understood and conventionally measurable, it did not accurately reflect the requirements of the laser system. For the NIF and LMJ laser systems, the authors use advances in metrology and interferometry and an enhanced understanding of laser system performance to derive specifications which are based on power spectral densities (PSD's.) Such requirements can more accurately reflect the requirements of the laser system for minimizing the amplitude of mid- and high-spatial frequency surface and transmitted wavefront errors, while not over constraining the fabrication in terms of low spatial frequencies, such as residual coma or astigmatism, which are typically of a very large amplitude compared to periodic errors. In order to study the effect of changes in individual component tolerances, it is most useful to have a model capable of simulating real behavior. The basis of this model is discussed in this paper, outlining the general approach to the open-quotes theoreticalclose quotes study of ICF optics specifications, and an indication of the type of specification to be expected will be shown, based upon existing ICF laser optics

  11. Wavefront sensorless adaptive optics ophthalmoscopy in the human eye

    Science.gov (United States)

    Hofer, Heidi; Sredar, Nripun; Queener, Hope; Li, Chaohong; Porter, Jason

    2011-01-01

    Wavefront sensor noise and fidelity place a fundamental limit on achievable image quality in current adaptive optics ophthalmoscopes. Additionally, the wavefront sensor ‘beacon’ can interfere with visual experiments. We demonstrate real-time (25 Hz), wavefront sensorless adaptive optics imaging in the living human eye with image quality rivaling that of wavefront sensor based control in the same system. A stochastic parallel gradient descent algorithm directly optimized the mean intensity in retinal image frames acquired with a confocal adaptive optics scanning laser ophthalmoscope (AOSLO). When imaging through natural, undilated pupils, both control methods resulted in comparable mean image intensities. However, when imaging through dilated pupils, image intensity was generally higher following wavefront sensor-based control. Despite the typically reduced intensity, image contrast was higher, on average, with sensorless control. Wavefront sensorless control is a viable option for imaging the living human eye and future refinements of this technique may result in even greater optical gains. PMID:21934779

  12. X-ray digital wavefront sensor development

    International Nuclear Information System (INIS)

    Idir, Mourad; Fricker, Sebastien; Modi, Mohammed H.; Potier, Jonathan

    2010-01-01

    Phase contrast imaging (PCI) is a wavefront sensing method that uses a series of intensity images to reconstruct the wavefront. The lateral resolution of PCI is limited mainly by the resolution of the intensity images. PCI provides a simple and efficient technique for characterizing X-ray mirrors. A simulation experiment was conducted to demonstrate the performances of PCI. The results of these experiments have shown the feasibility and potential performances of this method. The use of phase retrieval presents opportunities for greatly simplifying the techniques and apparatus used for characterizing optical surfaces and systems, particularly aspherical surfaces. This paper addresses the design, implementation and performances of an integrated at wavelength digital wavefront sensor.

  13. Image system analysis of human eye wave-front aberration on the basis of HSS

    Science.gov (United States)

    Xu, Ancheng

    2017-07-01

    Hartmann-Shack sensor (HSS) has been used in objective measurement of human eye wave-front aberration, but the research on the effects of sampling point size on the accuracy of the result has not been reported. In this paper, point spread function (PSF) of the whole system mathematical model was obtained via measuring the optical imaging system structure of human eye wave-front aberration measurement. The impact of Airy spot size on the accuracy of system was analyzed. Statistics study show that the geometry of Airy spot size of the ideal light source sent from eye retina formed on the surface of HSS is far smaller than the size of the HSS sample point image used in the experiment. Therefore, the effect of Airy spot on the precision of the system can be ignored. This study theoretically and experimentally justifies the reliability and accuracy of human eye wave-front aberration measurement based on HSS.

  14. Wavefront compensation applied to AVLIS laser systems

    International Nuclear Information System (INIS)

    Gonsiorowski, T.; Wirth, A.

    1995-01-01

    The efficiency of an AVLIS system depends upon the power density and uniformity of the laser system. Because of wavefront aberrations the realized beam quality is not ideal. Wavefront compensation provides a means to improve beam quality and system efficiency. (author)

  15. Measuring aberrations in the rat brain by coherence-gated wavefront sensing using a Linnik interferometer.

    Science.gov (United States)

    Wang, Jinyu; Léger, Jean-François; Binding, Jonas; Boccara, A Claude; Gigan, Sylvain; Bourdieu, Laurent

    2012-10-01

    Aberrations limit the resolution, signal intensity and achievable imaging depth in microscopy. Coherence-gated wavefront sensing (CGWS) allows the fast measurement of aberrations in scattering samples and therefore the implementation of adaptive corrections. However, CGWS has been demonstrated so far only in weakly scattering samples. We designed a new CGWS scheme based on a Linnik interferometer and a SLED light source, which is able to compensate dispersion automatically and can be implemented on any microscope. In the highly scattering rat brain tissue, where multiply scattered photons falling within the temporal gate of the CGWS can no longer be neglected, we have measured known defocus and spherical aberrations up to a depth of 400 µm.

  16. Wavefront-ray grid FDTD algorithm

    OpenAIRE

    ÇİYDEM, MEHMET

    2016-01-01

    A finite difference time domain algorithm on a wavefront-ray grid (WRG-FDTD) is proposed in this study to reduce numerical dispersion of conventional FDTD methods. A FDTD algorithm conforming to a wavefront-ray grid can be useful to take into account anisotropy effects of numerical grids since it features directional energy flow along the rays. An explicit and second-order accurate WRG-FDTD algorithm is provided in generalized curvilinear coordinates for an inhomogeneous isotropic medium. Num...

  17. Wavefront Control and Image Restoration with Less Computing

    Science.gov (United States)

    Lyon, Richard G.

    2010-01-01

    PseudoDiversity is a method of recovering the wavefront in a sparse- or segmented- aperture optical system typified by an interferometer or a telescope equipped with an adaptive primary mirror consisting of controllably slightly moveable segments. (PseudoDiversity should not be confused with a radio-antenna-arraying method called pseudodiversity.) As in the cases of other wavefront- recovery methods, the streams of wavefront data generated by means of PseudoDiversity are used as feedback signals for controlling electromechanical actuators of the various segments so as to correct wavefront errors and thereby, for example, obtain a clearer, steadier image of a distant object in the presence of atmospheric turbulence. There are numerous potential applications in astronomy, remote sensing from aircraft and spacecraft, targeting missiles, sighting military targets, and medical imaging (including microscopy) through such intervening media as cells or water. In comparison with prior wavefront-recovery methods used in adaptive optics, PseudoDiversity involves considerably simpler equipment and procedures and less computation. For PseudoDiversity, there is no need to install separate metrological equipment or to use any optomechanical components beyond those that are already parts of the optical system to which the method is applied. In Pseudo- Diversity, the actuators of a subset of the segments or subapertures are driven to make the segments dither in the piston, tilt, and tip degrees of freedom. Each aperture is dithered at a unique frequency at an amplitude of a half wavelength of light. During the dithering, images on the focal plane are detected and digitized at a rate of at least four samples per dither period. In the processing of the image samples, the use of different dither frequencies makes it possible to determine the separate effects of the various dithered segments or apertures. The digitized image-detector outputs are processed in the spatial

  18. Visual optics under the wavefront perspective

    Directory of Open Access Journals (Sweden)

    Sidney Júlio Faria-E-Sousa

    2014-08-01

    Full Text Available Some intriguing concepts of visual optics cannot be explained by ray tracing. However, they can be clarified using wavefront formalism. Its main advantage is in the use of the concept of vergence, which is very helpful in interpreting the optical phenomena involved in the neutralization of the ametropias. In this line of thinking, the major role of a lens is in the creation of a new light source (the image point that orientates the refracted waves. Once the nature and position of this source is known, one can easily predict the behavior of the wavefronts. The formalism also allows for an easier understanding on how wavefronts relate to light rays and on how algebraic signs are assigned to optical distances.

  19. Wavefront propagation from one plane to another with the use of Zernike polynomials and Taylor monomials.

    Science.gov (United States)

    Dai, Guang-ming; Campbell, Charles E; Chen, Li; Zhao, Huawei; Chernyak, Dimitri

    2009-01-20

    In wavefront-driven vision correction, ocular aberrations are often measured on the pupil plane and the correction is applied on a different plane. The problem with this practice is that any changes undergone by the wavefront as it propagates between planes are not currently included in devising customized vision correction. With some valid approximations, we have developed an analytical foundation based on geometric optics in which Zernike polynomials are used to characterize the propagation of the wavefront from one plane to another. Both the boundary and the magnitude of the wavefront change after the propagation. Taylor monomials were used to realize the propagation because of their simple form for this purpose. The method we developed to identify changes in low-order aberrations was verified with the classical vertex correction formula. The method we developed to identify changes in high-order aberrations was verified with ZEMAX ray-tracing software. Although the method may not be valid for highly irregular wavefronts and it was only proven for wavefronts with low-order or high-order aberrations, our analysis showed that changes in the propagating wavefront are significant and should, therefore, be included in calculating vision correction. This new approach could be of major significance in calculating wavefront-driven vision correction whether by refractive surgery, contact lenses, intraocular lenses, or spectacles.

  20. Differences between wavefront and subjective refraction for infrared light.

    Science.gov (United States)

    Teel, Danielle F W; Jacobs, Robert J; Copland, James; Neal, Daniel R; Thibos, Larry N

    2014-10-01

    To determine the accuracy of objective wavefront refractions for predicting subjective refractions for monochromatic infrared light. Objective refractions were obtained with a commercial wavefront aberrometer (COAS, Wavefront Sciences). Subjective refractions were obtained for 30 subjects with a speckle optometer validated against objective Zernike wavefront refractions on a physical model eye (Teel et al., Design and validation of an infrared Badal optometer for laser speckle, Optom Vis Sci 2008;85:834-42). Both instruments used near-infrared (NIR) radiation (835 nm for COAS, 820 nm for the speckle optometer) to avoid correction for ocular chromatic aberration. A 3-mm artificial pupil was used to reduce complications attributed to higher-order ocular aberrations. For comparison with paraxial (Seidel) and minimum root-mean-square (Zernike) wavefront refractions, objective refractions were also determined for a battery of 29 image quality metrics by computing the correcting lens that optimizes retinal image quality. Objective Zernike refractions were more myopic than subjective refractions for 29 of 30 subjects. The population mean discrepancy was -0.26 diopters (D) (SEM = 0.03 D). Paraxial (Seidel) objective refractions tended to be hyperopically biased (mean discrepancy = +0.20 D, SEM = 0.06 D). Refractions based on retinal image quality were myopically biased for 28 of 29 metrics. The mean bias across all 31 measures was -0.24 D (SEM = 0.03). Myopic bias of objective refractions was greater for eyes with brown irises compared with eyes with blue irises. Our experimental results are consistent with the hypothesis that reflected NIR light captured by the aberrometer originates from scattering sources located posterior to the entrance apertures of cone photoreceptors, near the retinal pigment epithelium. The larger myopic bias for brown eyes suggests that a greater fraction of NIR light is reflected from choroidal melanin in brown eyes compared with blue eyes.

  1. MORPHOLOGICAL DESCRIPTIONS USING THREE-DIMENSIONAL WAVEFRONTS

    Directory of Open Access Journals (Sweden)

    Jean Serra

    2011-05-01

    Full Text Available The present study deals with the analysis of three-dimensional binary objects whose structure is not obvious nor generally clearly visible. Our approach is illustrated through three examples taken from biological microscopy. In one of our examples, we need to extract the osteocytes contained in sixty confocal sections. The cells are not numerous, but are characterized by long branches, hence they will be separated using a directional wavefront The two other objects are more complex and will be analysed by means of a spherical wavefront In the first case, a kidney of a rat embryo, the tissue grows like a tree, where we want to detect the branches, their extremities,and their spatial arrangement. The wavefront method enables us to define precisely branches and extremities, and gives flexible algorithms. The last example deals with the embryonic growth of the chicken shinbone. The central part of the bone (or shaft is structured as a series of nested cylinders following the same axis, and connected by more or less long bridges. Using wavefronts, we show that it is possible to separate the cylinders,and to extract and count the bridges that connect them.

  2. Tomographic flow cytometry assisted by intelligent wavefronts analysis

    Science.gov (United States)

    Merola, F.; Memmolo, P.; Miccio, L.; Mugnano, M.; Ferraro, P.

    2017-06-01

    High-throughput single-cell analysis is a challenging target for implementing advanced biomedical applications. An excellent candidate for this aim is label-free tomographic phase microscopy. However, in-line tomography is very difficult to be implemented in practice, as it requires complex setup for rotating the sample and/or illuminate the cell along numerous directions [1]. We exploit random rolling of cells while they are flowing along a microfluidic channel demonstrating that it is possible to obtain in-line phase-contrast tomography by adopting strategies for intelligent wavefronts analysis thus obtaining complete retrieval of both 3D-position and orientation of rotating cells [2]. Thus, by numerical wavefront analysis a-priori knowledge of such information is no longer needed. This approach makes continuos-flow cyto-tomography suitable for practical operation in real-world, single-cell analysis and with substantial simplification of the optical system avoiding any mechanical/optical scanning of light source. Demonstration is given for different classes of biosamples, red-blood-cells (RBCs), diatom algae and fibroblast cells [3]. Accurate characterization of each type of cells is reported despite their very different nature and materials content, thus showing the proposed method can be extended, by adopting two alternate strategies of wavefront-analysis, to many classes of cells. In particular, for RBCs we furnish important parameters as 3D morphology, Corpuscular Hemoglobin (CH), Volume (V), and refractive index (RI) for each single cell in the total population [3]. This could open a new route in blood disease diagnosis, for example for the isolation and characterization of "foreign" cells in the blood stream, the so called Circulating Tumor Cells (CTC), early manifestation of metastasis.

  3. Adaptive thresholding and dynamic windowing method for automatic centroid detection of digital Shack-Hartmann wavefront sensor

    International Nuclear Information System (INIS)

    Yin Xiaoming; Li Xiang; Zhao Liping; Fang Zhongping

    2009-01-01

    A Shack-Hartmann wavefront sensor (SWHS) splits the incident wavefront into many subsections and transfers the distorted wavefront detection into the centroid measurement. The accuracy of the centroid measurement determines the accuracy of the SWHS. Many methods have been presented to improve the accuracy of the wavefront centroid measurement. However, most of these methods are discussed from the point of view of optics, based on the assumption that the spot intensity of the SHWS has a Gaussian distribution, which is not applicable to the digital SHWS. In this paper, we present a centroid measurement algorithm based on the adaptive thresholding and dynamic windowing method by utilizing image processing techniques for practical application of the digital SHWS in surface profile measurement. The method can detect the centroid of each focal spot precisely and robustly by eliminating the influence of various noises, such as diffraction of the digital SHWS, unevenness and instability of the light source, as well as deviation between the centroid of the focal spot and the center of the detection area. The experimental results demonstrate that the algorithm has better precision, repeatability, and stability compared with other commonly used centroid methods, such as the statistical averaging, thresholding, and windowing algorithms.

  4. Dynamic wavefront creation for processing units using a hybrid compactor

    Energy Technology Data Exchange (ETDEWEB)

    Puthoor, Sooraj; Beckmann, Bradford M.; Yudanov, Dmitri

    2018-02-20

    A method, a non-transitory computer readable medium, and a processor for repacking dynamic wavefronts during program code execution on a processing unit, each dynamic wavefront including multiple threads are presented. If a branch instruction is detected, a determination is made whether all wavefronts following a same control path in the program code have reached a compaction point, which is the branch instruction. If no branch instruction is detected in executing the program code, a determination is made whether all wavefronts following the same control path have reached a reconvergence point, which is a beginning of a program code segment to be executed by both a taken branch and a not taken branch from a previous branch instruction. The dynamic wavefronts are repacked with all threads that follow the same control path, if all wavefronts following the same control path have reached the branch instruction or the reconvergence point.

  5. JWFront: Wavefronts and Light Cones for Kerr Spacetimes

    Science.gov (United States)

    Frutos Alfaro, Francisco; Grave, Frank; Müller, Thomas; Adis, Daria

    2015-04-01

    JWFront visualizes wavefronts and light cones in general relativity. The interactive front-end allows users to enter the initial position values and choose the values for mass and angular momentum per unit mass. The wavefront animations are available in 2D and 3D; the light cones are visualized using the coordinate systems (t, x, y) or (t, z, x). JWFront can be easily modified to simulate wavefronts and light cones for other spacetime by providing the Christoffel symbols in the program.

  6. Asymmetric cryptography based on wavefront sensing.

    Science.gov (United States)

    Peng, Xiang; Wei, Hengzheng; Zhang, Peng

    2006-12-15

    A system of asymmetric cryptography based on wavefront sensing (ACWS) is proposed for the first time to our knowledge. One of the most significant features of the asymmetric cryptography is that a trapdoor one-way function is required and constructed by analogy to wavefront sensing, in which the public key may be derived from optical parameters, such as the wavelength or the focal length, while the private key may be obtained from a kind of regular point array. The ciphertext is generated by the encoded wavefront and represented with an irregular array. In such an ACWS system, the encryption key is not identical to the decryption key, which is another important feature of an asymmetric cryptographic system. The processes of asymmetric encryption and decryption are formulized mathematically and demonstrated with a set of numerical experiments.

  7. Transmitted wavefront error of a volume phase holographic grating at cryogenic temperature.

    Science.gov (United States)

    Lee, David; Taylor, Gordon D; Baillie, Thomas E C; Montgomery, David

    2012-06-01

    This paper describes the results of transmitted wavefront error (WFE) measurements on a volume phase holographic (VPH) grating operating at a temperature of 120 K. The VPH grating was mounted in a cryogenically compatible optical mount and tested in situ in a cryostat. The nominal root mean square (RMS) wavefront error at room temperature was 19 nm measured over a 50 mm diameter test aperture. The WFE remained at 18 nm RMS when the grating was cooled. This important result demonstrates that excellent WFE performance can be obtained with cooled VPH gratings, as required for use in future cryogenic infrared astronomical spectrometers planned for the European Extremely Large Telescope.

  8. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Measurement of wavefront distortions by the method of aperture sounding with spatially separated channels

    Science.gov (United States)

    Prilepskiy, Boris V.; Alikhanov, Alexey N.; Berchenko, Evgeniy A.; Kiselev, Vladimir Yu; Narusbek, Ernest A.; Filatov, Aleksander S.

    2005-08-01

    Features of the formation of signals in wavefront sensors with the single-frequency light wave phase modulation and spatial separation of control channels are considered. Analysis is performed for sensors in which phase modulation is governed by a controlled element located in the pupil of the optical system of a sensor or in the focal plane of the objective of this system. Peculiarities of the signal formation for a tilted wavefront are considered separately for internal points of the exit pupil in the case of light wave phase modulation in the pupil. It is shown that a signal at the modulation frequency in these wavefront sensors for points located far from the pupil boundaries is determined by the wavefront curvature.

  9. Focal plane based wavefront sensing with random DM probes

    Science.gov (United States)

    Pluzhnik, Eugene; Sirbu, Dan; Belikov, Ruslan; Bendek, Eduardo; Dudinov, Vladimir N.

    2017-09-01

    An internal coronagraph with an adaptive optical system for wavefront control is being considered for direct imaging of exoplanets with upcoming space missions and concepts, including WFIRST, HabEx, LUVOIR, EXCEDE and ACESat. The main technical challenge associated with direct imaging of exoplanets is to control of both diffracted and scattered light from the star so that even a dim planetary companion can be imaged. For a deformable mirror (DM) to create a dark hole with 10-10 contrast in the image plane, wavefront errors must be accurately measured on the science focal plane detector to ensure a common optical path. We present here a method that uses a set of random phase probes applied to the DM to obtain a high accuracy wavefront estimate even for a dynamically changing optical system. The presented numerical simulations and experimental results show low noise sensitivity, high reliability, and robustness of the proposed approach. The method does not use any additional optics or complex calibration procedures and can be used during the calibration stage of any direct imaging mission. It can also be used in any optical experiment that uses a DM as an active optical element in the layout.

  10. WFIRST: Managing Telescope Wavefront Stability to Meet Coronagraph Performance

    Science.gov (United States)

    Noecker, Martin; Poberezhskiy, Ilya; Kern, Brian; Krist, John; WFIRST System Engineering Team

    2018-01-01

    The WFIRST coronagraph instrument (CGI) needs a stable telescope and active wavefront control to perform coronagraph science with an expected sensitivity of 8x10-9 in the exoplanet-star flux ratio (SNR=10) at 200 milliarcseconds angular separation. With its subnanometer requirements on the stability of its input wavefront error (WFE), the CGI employs a combination of pointing and wavefront control loops and thermo-mechanical stability to meet budget allocations for beam-walk and low-order WFE, which enable stable starlight speckles on the science detector that can be removed by image subtraction. We describe the control strategy and the budget framework for estimating and budgeting the elements of wavefront stability, and the modeling strategy to evaluate it.

  11. Wavefront sensing in space: flight demonstration II of the PICTURE sounding rocket payload

    Science.gov (United States)

    Douglas, Ewan S.; Mendillo, Christopher B.; Cook, Timothy A.; Cahoy, Kerri L.; Chakrabarti, Supriya

    2018-01-01

    A NASA sounding rocket for high-contrast imaging with a visible nulling coronagraph, the Planet Imaging Concept Testbed Using a Rocket Experiment (PICTURE) payload, has made two suborbital attempts to observe the warm dust disk inferred around Epsilon Eridani. The first flight in 2011 demonstrated a 5 mas fine pointing system in space. The reduced flight data from the second launch, on November 25, 2015, presented herein, demonstrate active sensing of wavefront phase in space. Despite several anomalies in flight, postfacto reduction phase stepping interferometer data provide insight into the wavefront sensing precision and the system stability for a portion of the pupil. These measurements show the actuation of a 32 × 32-actuator microelectromechanical system deformable mirror. The wavefront sensor reached a median precision of 1.4 nm per pixel, with 95% of samples between 0.8 and 12.0 nm per pixel. The median system stability, including telescope and coronagraph wavefront errors other than tip, tilt, and piston, was 3.6 nm per pixel, with 95% of samples between 1.2 and 23.7 nm per pixel.

  12. A wavefront analyzer for terahertz time-domain spectrometers

    DEFF Research Database (Denmark)

    Abraham, E.; Brossard, M.; Fauche, P.

    2017-01-01

    the terahertz wavefront and calculate its Zernike coefficients. In particular, we especially show that the focus spot of the spectrometer suffers from optical aberrations such as remaining defocus, first and second order astigmatisms, as well as spherical aberration. This opens a route to wavefront correction...

  13. Measurement of M2-Curve for Asymmetric Beams by Self-Referencing Interferometer Wavefront Sensor

    Directory of Open Access Journals (Sweden)

    Yongzhao Du

    2016-11-01

    Full Text Available For asymmetric laser beams, the values of beam quality factor M x 2 and M y 2 are inconsistent if one selects a different coordinate system or measures beam quality with different experimental conditionals, even when analyzing the same beam. To overcome this non-uniqueness, a new beam quality characterization method named as M2-curve is developed. The M2-curve not only contains the beam quality factor M x 2 and M y 2 in the x-direction and y-direction, respectively; but also introduces a curve of M x α 2 versus rotation angle α of coordinate axis. Moreover, we also present a real-time measurement method to demonstrate beam propagation factor M2-curve with a modified self-referencing Mach-Zehnder interferometer based-wavefront sensor (henceforth SRI-WFS. The feasibility of the proposed method is demonstrated with the theoretical analysis and experiment in multimode beams. The experimental results showed that the proposed measurement method is simple, fast, and a single-shot measurement procedure without movable parts.

  14. The AOLI Non-Linear Curvature Wavefront Sensor: High sensitivity reconstruction for low-order AO

    Science.gov (United States)

    Crass, Jonathan; King, David; Mackay, Craig

    2013-12-01

    Many adaptive optics (AO) systems in use today require bright reference objects to determine the effects of atmospheric distortions on incoming wavefronts. This requirement is because Shack Hartmann wavefront sensors (SHWFS) distribute incoming light from reference objects into a large number of sub-apertures. Bright natural reference objects occur infrequently across the sky leading to the use of laser guide stars which add complexity to wavefront measurement systems. The non-linear curvature wavefront sensor as described by Guyon et al. has been shown to offer a significant increase in sensitivity when compared to a SHWFS. This facilitates much greater sky coverage using natural guide stars alone. This paper describes the current status of the non-linear curvature wavefront sensor being developed as part of an adaptive optics system for the Adaptive Optics Lucky Imager (AOLI) project. The sensor comprises two photon-counting EMCCD detectors from E2V Technologies, recording intensity at four near-pupil planes. These images are used with a reconstruction algorithm to determine the phase correction to be applied by an ALPAO 241-element deformable mirror. The overall system is intended to provide low-order correction for a Lucky Imaging based multi CCD imaging camera. We present the current optical design of the instrument including methods to minimise inherent optical effects, principally chromaticity. Wavefront reconstruction methods are discussed and strategies for their optimisation to run at the required real-time speeds are introduced. Finally, we discuss laboratory work with a demonstrator setup of the system.

  15. Control algorithms and applications of the wavefront sensorless adaptive optics

    Science.gov (United States)

    Ma, Liang; Wang, Bin; Zhou, Yuanshen; Yang, Huizhen

    2017-10-01

    Compared with the conventional adaptive optics (AO) system, the wavefront sensorless (WFSless) AO system need not to measure the wavefront and reconstruct it. It is simpler than the conventional AO in system architecture and can be applied to the complex conditions. Based on the analysis of principle and system model of the WFSless AO system, wavefront correction methods of the WFSless AO system were divided into two categories: model-free-based and model-based control algorithms. The WFSless AO system based on model-free-based control algorithms commonly considers the performance metric as a function of the control parameters and then uses certain control algorithm to improve the performance metric. The model-based control algorithms include modal control algorithms, nonlinear control algorithms and control algorithms based on geometrical optics. Based on the brief description of above typical control algorithms, hybrid methods combining the model-free-based control algorithm with the model-based control algorithm were generalized. Additionally, characteristics of various control algorithms were compared and analyzed. We also discussed the extensive applications of WFSless AO system in free space optical communication (FSO), retinal imaging in the human eye, confocal microscope, coherent beam combination (CBC) techniques and extended objects.

  16. Wavefront-Error Performance Characterization for the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) Science Instruments

    Science.gov (United States)

    Aronstein, David L.; Smith, J. Scott; Zielinski, Thomas P.; Telfer, Randal; Tournois, Severine C.; Moore, Dustin B.; Fienup, James R.

    2016-01-01

    The science instruments (SIs) comprising the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) were tested in three cryogenic-vacuum test campaigns in the NASA Goddard Space Flight Center (GSFC)'s Space Environment Simulator (SES). In this paper, we describe the results of optical wavefront-error performance characterization of the SIs. The wavefront error is determined using image-based wavefront sensing (also known as phase retrieval), and the primary data used by this process are focus sweeps, a series of images recorded by the instrument under test in its as-used configuration, in which the focal plane is systematically changed from one image to the next. High-precision determination of the wavefront error also requires several sources of secondary data, including 1) spectrum, apodization, and wavefront-error characterization of the optical ground-support equipment (OGSE) illumination module, called the OTE Simulator (OSIM), 2) plate scale measurements made using a Pseudo-Nonredundant Mask (PNRM), and 3) pupil geometry predictions as a function of SI and field point, which are complicated because of a tricontagon-shaped outer perimeter and small holes that appear in the exit pupil due to the way that different light sources are injected into the optical path by the OGSE. One set of wavefront-error tests, for the coronagraphic channel of the Near-Infrared Camera (NIRCam) Longwave instruments, was performed using data from transverse translation diversity sweeps instead of focus sweeps, in which a sub-aperture is translated andor rotated across the exit pupil of the system.Several optical-performance requirements that were verified during this ISIM-level testing are levied on the uncertainties of various wavefront-error-related quantities rather than on the wavefront errors themselves. This paper also describes the methodology, based on Monte Carlo simulations of the wavefront-sensing analysis of focus-sweep data, used to establish the

  17. Manipulating Acoustic Wavefront by Inhomogeneous Impedance and Steerable Extraordinary Reflection

    Science.gov (United States)

    Zhao, Jiajun; Li, Baowen; Chen, Zhining; Qiu, Cheng-Wei

    2013-08-01

    We unveil the connection between the acoustic impedance along a flat surface and the reflected acoustic wavefront, in order to empower a wide wariety of novel applications in acoustic community. Our designed flat surface can generate double reflections: the ordinary reflection and the extraordinary one whose wavefront is manipulated by the proposed impedance-governed generalized Snell's law of reflection (IGSL). IGSL is based on Green's function and integral equation, instead of Fermat's principle for optical wavefront manipulation. Remarkably, via the adjustment of the designed specific acoustic impedance, extraordinary reflection can be steered for unprecedented acoustic wavefront while that ordinary reflection can be surprisingly switched on or off. The realization of the complex discontinuity of the impedance surface has been proposed using Helmholtz resonators.

  18. Wavefront Sensing for WFIRST with a Linear Optical Model

    Science.gov (United States)

    Jurling, Alden S.; Content, David A.

    2012-01-01

    In this paper we develop methods to use a linear optical model to capture the field dependence of wavefront aberrations in a nonlinear optimization-based phase retrieval algorithm for image-based wavefront sensing. The linear optical model is generated from a ray trace model of the system and allows the system state to be described in terms of mechanical alignment parameters rather than wavefront coefficients. This approach allows joint optimization over images taken at different field points and does not require separate convergence of phase retrieval at individual field points. Because the algorithm exploits field diversity, multiple defocused images per field point are not required for robustness. Furthermore, because it is possible to simultaneously fit images of many stars over the field, it is not necessary to use a fixed defocus to achieve adequate signal-to-noise ratio despite having images with high dynamic range. This allows high performance wavefront sensing using in-focus science data. We applied this technique in a simulation model based on the Wide Field Infrared Survey Telescope (WFIRST) Intermediate Design Reference Mission (IDRM) imager using a linear optical model with 25 field points. We demonstrate sub-thousandth-wave wavefront sensing accuracy in the presence of noise and moderate undersampling for both monochromatic and polychromatic images using 25 high-SNR target stars. Using these high-quality wavefront sensing results, we are able to generate upsampled point-spread functions (PSFs) and use them to determine PSF ellipticity to high accuracy in order to reduce the systematic impact of aberrations on the accuracy of galactic ellipticity determination for weak-lensing science.

  19. High order dark wavefront sensing simulations

    Science.gov (United States)

    Ragazzoni, Roberto; Arcidiacono, Carmelo; Farinato, Jacopo; Viotto, Valentina; Bergomi, Maria; Dima, Marco; Magrin, Demetrio; Marafatto, Luca; Greggio, Davide; Carolo, Elena; Vassallo, Daniele

    2016-07-01

    Dark wavefront sensing takes shape following quantum mechanics concepts in which one is able to "see" an object in one path of a two-arm interferometer using an as low as desired amount of light actually "hitting" the occulting object. A theoretical way to achieve such a goal, but in the realm of wavefront sensing, is represented by a combination of two unequal beams interferometer sharing the same incoming light, and whose difference in path length is continuously adjusted in order to show different signals for different signs of the incoming perturbation. Furthermore, in order to obtain this in white light, the path difference should be properly adjusted vs the wavelength used. While we incidentally describe how this could be achieved in a true optomechanical setup, we focus our attention to the simulation of a hypothetical "perfect" dark wavefront sensor of this kind in which white light compensation is accomplished in a perfect manner and the gain is selectable in a numerical fashion. Although this would represent a sort of idealized dark wavefront sensor that would probably be hard to match in the real glass and metal, it would also give a firm indication of the maximum achievable gain or, in other words, of the prize for achieving such device. Details of how the simulation code works and first numerical results are outlined along with the perspective for an in-depth analysis of the performances and its extension to more realistic situations, including various sources of additional noise.

  20. Iterative-Transform Phase Diversity: An Object and Wavefront Recovery Algorithm

    Science.gov (United States)

    Smith, J. Scott

    2011-01-01

    Presented is a solution for recovering the wavefront and an extended object. It builds upon the VSM architecture and deconvolution algorithms. Simulations are shown for recovering the wavefront and extended object from noisy data.

  1. Ultra-high resolution coded wavefront sensor

    KAUST Repository

    Wang, Congli

    2017-06-08

    Wavefront sensors and more general phase retrieval methods have recently attracted a lot of attention in a host of application domains, ranging from astronomy to scientific imaging and microscopy. In this paper, we introduce a new class of sensor, the Coded Wavefront Sensor, which provides high spatio-temporal resolution using a simple masked sensor under white light illumination. Specifically, we demonstrate megapixel spatial resolution and phase accuracy better than 0.1 wavelengths at reconstruction rates of 50 Hz or more, thus opening up many new applications from high-resolution adaptive optics to real-time phase retrieval in microscopy.

  2. Integrated Wavefront Corrector, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — One of the critical issues for NASA missions requiring high contrast astrophysical imaging such as Terrestrial Planet Finder (TPF) is wavefront control. Without use...

  3. Geometry of fast magnetosonic rays, wavefronts and shock waves

    Energy Technology Data Exchange (ETDEWEB)

    Núñez, Manuel, E-mail: mnjmhd@am.uva.es

    2016-11-25

    Fast magnetosonic waves in a two-dimensional plasma are studied in the geometrical optics approximation. The geometry of rays and wavefronts influences decisively the formation and ulterior evolution of shock waves. It is shown that the curvature of the curve where rays start and the angle between rays and wavefronts are the main parameters governing a wide variety of possible outcomes. - Highlights: • Magnetosonic waves are studied in a genuinely multidimensional setting. • Curvature and the angle between rays and wavefronts are the main parameters. • Shock waves may exist or not, depending on initial conditions. • Both velocity and shape of those waves present a large variety of possible outcomes.

  4. X-ray wavefront characterization using a rotating shearing interferometer technique.

    Science.gov (United States)

    Wang, Hongchang; Sawhney, Kawal; Berujon, Sébastien; Ziegler, Eric; Rutishauser, Simon; David, Christian

    2011-08-15

    A fast and accurate method to characterize the X-ray wavefront by rotating one of the two gratings of an X-ray shearing interferometer is described and investigated step by step. Such a shearing interferometer consists of a phase grating mounted on a rotation stage, and an absorption grating used as a transmission mask. The mathematical relations for X-ray Moiré fringe analysis when using this device are derived and discussed in the context of the previous literature assumptions. X-ray beam wavefronts without and after X-ray reflective optical elements have been characterized at beamline B16 at Diamond Light Source (DLS) using the presented X-ray rotating shearing interferometer (RSI) technique. It has been demonstrated that this improved method allows accurate calculation of the wavefront radius of curvature and the wavefront distortion, even when one has no previous information on the grating projection pattern period, magnification ratio and the initial grating orientation. As the RSI technique does not require any a priori knowledge of the beam features, it is suitable for routine characterization of wavefronts of a wide range of radii of curvature. © 2011 Optical Society of America

  5. Sorting method to extend the dynamic range of the Shack-Hartmann wave-front sensor

    International Nuclear Information System (INIS)

    Lee, Junwon; Shack, Roland V.; Descour, Michael R.

    2005-01-01

    We propose a simple and powerful algorithm to extend the dynamic range of a Shack-Hartmann wave-front sensor. In a conventional Shack-Hartmann wave-front sensor the dynamic range is limited by the f-number of a lenslet, because the focal spot is required to remain in the area confined by the single lenslet. The sorting method proposed here eliminates such a limitation and extends the dynamic range by tagging each spot in a special sequence. Since the sorting method is a simple algorithm that does not change the measurement configuration, there is no requirement for extra hardware, multiple measurements, or complicated algorithms. We not only present the theory and a calculation example of the sorting method but also actually implement measurement of a highly aberrated wave front from nonrotational symmetric optics

  6. Manufacturing and testing of wavefront filters for DARWIN

    Science.gov (United States)

    Flatscher, R.; Artjushenko, V.; Sakharova, T.; Pereira do Carmo, Joao

    2017-11-01

    Wavefront filtering is mandatory in the realisation of nulling interferometers with high star light suppression capability required to detect extrasolar planets, such as the one foreseen for the ESA Darwin mission. This paper presents the design, manufacturing, and test results of single mode fibres to be used as wavefront filters in mid-infrared range. Fibres made from chalcogenide glass and silver halide crystals were produced. The first class can serve as wavefront filters up to a wavelength of 11 microns, while silver halide fibres can be used over the full Darwin wavelength range from 6.5 to 18 micron. The chalcogenide glass fibres were drawn by double crucible method whereas polycrystalline fibres from silver halides were fabricated by multiple extrusion from a crystalline preform. Multi-layer AR-coatings for fibre ends were developed and environmentally tested for both types of fibres. Special fibre facet polishing procedures were established, in particular for the soft silver halide fibre ends. Cable design and assembly process were also developed, including termination by SMA-connectors with ceramic ferrules and fibre protection by loose PEEK-tubings to prevent excessive bending and chemical attacks for fibres. The wavefront filtering capability of the fibres was demonstrated on a high quality Mach-Zehnder interferometer. Two different groups of laser sources were used to measure the wavefront filtering of the fibres by using a CO-laser for testing in the lower sub-band and a CO2-laser to check the upper sub-band. Measurements of the fibres far field intensity distribution and transmission were performed for numerous cable samples. Single mode behaviour was observed in more than 25 silver halide fibre cables before AR-coating of their ends, while after that 17 cables were compliant with all technical requirements. Residual cladding modes existing in short single mode fibres were effectively removed by applying of a proper absorbing jacket to the fibre

  7. Multi-optical-axis measurement of freeform progressive addition lenses using a Hartmann-Shack wavefront sensor

    Science.gov (United States)

    Xiang, Huazhong; Guo, Hang; Fu, Dongxiang; Zheng, Gang; Zhuang, Songlin; Chen, JiaBi; Wang, Cheng; Wu, Jie

    2018-05-01

    To precisely measure the whole-surface characterization of freeform progressive addition lenses (PALs), considering the multi-optical-axis conditions is becoming particularly important. Spherical power and astigmatism (cylinder) measurements for freeform PALs, using a Hartmann-Shack wavefront sensor (HSWFS) are proposed herein. Conversion formulas for the optical performance results were provided as HSWFS Zernike polynomial expansions. For each selected zone, the studied PALs were placed and tilted to simulate the multi-optical-axis conditions. The results of two tested PALs were analyzed using MATLAB programs and represented as contour plots of the spherical equivalent and cylinder of the whole-surface. The proposed experimental setup can provide a high accuracy as well as a possibility of choosing 12 lines and positions of 193 measurement zones on the entire surface. This approach to PAL analysis is potentially an efficient and useful method to objectively evaluate the optical performances, in which the full lens surface is defined and expressed as the contour plots of power in different regions (i.e., the distance region, progressive region, and near region) of the lens for regions of interest.

  8. Wavefront-sensor-induced beam size error: physical mechanism, sensitivity-analysis and correction method

    NARCIS (Netherlands)

    Koek, W.D.; Zwet, E.J. van

    2015-01-01

    When using a commonly-used quadri-wave lateral shearing interferometer wavefront sensor (QWLSI WFS) for beam size measurements on a high power CO2 laser, artefacts have been observed in the measured irradiance distribution. The grating in the QWLSI WFS not only generates the diffracted first orders

  9. An Optical Wavefront Sensor Based on a Double Layer Microlens Array

    Directory of Open Access Journals (Sweden)

    Hsiang-Chun Wei

    2011-10-01

    Full Text Available In order to determine light aberrations, Shack-Hartmann optical wavefront sensors make use of microlens arrays (MLA to divide the incident light into small parts and focus them onto image planes. In this paper, we present the design and fabrication of long focal length MLA with various shapes and arrangements based on a double layer structure for optical wavefront sensing applications. A longer focal length MLA could provide high sensitivity in determining the average slope across each microlens under a given wavefront, and spatial resolution of a wavefront sensor is increased by numbers of microlenses across a detector. In order to extend focal length, we used polydimethysiloxane (PDMS above MLA on a glass substrate. Because of small refractive index difference between PDMS and MLA interface (UV-resin, the incident light is less refracted and focused in further distance. Other specific focal lengths could also be realized by modifying the refractive index difference without changing the MLA size. Thus, the wavefront sensor could be improved with better sensitivity and higher spatial resolution.

  10. Parallel-Computing Architecture for JWST Wavefront-Sensing Algorithms

    Science.gov (United States)

    2011-09-01

    results due to the increasing cost and complexity of each test. 2. ALGORITHM OVERVIEW Phase retrieval is an image-based wavefront-sensing...broadband illumination problems we have found that hand-tuning the right matrix sizes can account for a speedup of 86x faster. This comes from hand-picking...Wavefront Sensing and Control”. Proceedings of SPIE (2007) vol. 6687 (08). [5] Greenhouse, M. A., Drury , M. P., Dunn, J. L., Glazer, S. D., Greville, E

  11. A video Hartmann wavefront diagnostic that incorporates a monolithic microlens array

    International Nuclear Information System (INIS)

    Toeppen, J.S.; Bliss, E.S.; Long, T.W.; Salmon, J.T.

    1991-07-01

    we have developed a video Hartmann wavefront sensor that incorporates a monolithic array of microlenses as the focusing elements. The sensor uses a monolithic array of photofabricated lenslets. Combined with a video processor, this system reveals local gradients of the wavefront at a video frame rate of 30 Hz. Higher bandwidth is easily attainable with a camera and video processor that have faster frame rates. When used with a temporal filter, the reconstructed wavefront error is less than 1/10th wave

  12. An Efficient Pipeline Wavefront Phase Recovery for the CAFADIS Camera for Extremely Large Telescopes

    Directory of Open Access Journals (Sweden)

    Eduardo Magdaleno

    2009-12-01

    Full Text Available In this paper we show a fast, specialized hardware implementation of the wavefront phase recovery algorithm using the CAFADIS camera. The CAFADIS camera is a new plenoptic sensor patented by the Universidad de La Laguna (Canary Islands, Spain: international patent PCT/ES2007/000046 (WIPO publication number WO/2007/082975. It can simultaneously measure the wavefront phase and the distance to the light source in a real-time process. The pipeline algorithm is implemented using Field Programmable Gate Arrays (FPGA. These devices present architecture capable of handling the sensor output stream using a massively parallel approach and they are efficient enough to resolve several Adaptive Optics (AO problems in Extremely Large Telescopes (ELTs in terms of processing time requirements. The FPGA implementation of the wavefront phase recovery algorithm using the CAFADIS camera is based on the very fast computation of two dimensional fast Fourier Transforms (FFTs. Thus we have carried out a comparison between our very novel FPGA 2D-FFTa and other implementations.

  13. Rapid and highly integrated FPGA-based Shack-Hartmann wavefront sensor for adaptive optics system

    Science.gov (United States)

    Chen, Yi-Pin; Chang, Chia-Yuan; Chen, Shean-Jen

    2018-02-01

    In this study, a field programmable gate array (FPGA)-based Shack-Hartmann wavefront sensor (SHWS) programmed on LabVIEW can be highly integrated into customized applications such as adaptive optics system (AOS) for performing real-time wavefront measurement. Further, a Camera Link frame grabber embedded with FPGA is adopted to enhance the sensor speed reacting to variation considering its advantage of the highest data transmission bandwidth. Instead of waiting for a frame image to be captured by the FPGA, the Shack-Hartmann algorithm are implemented in parallel processing blocks design and let the image data transmission synchronize with the wavefront reconstruction. On the other hand, we design a mechanism to control the deformable mirror in the same FPGA and verify the Shack-Hartmann sensor speed by controlling the frequency of the deformable mirror dynamic surface deformation. Currently, this FPGAbead SHWS design can achieve a 266 Hz cyclic speed limited by the camera frame rate as well as leaves 40% logic slices for additionally flexible design.

  14. Traveling wavefront solutions to nonlinear reaction-diffusion-convection equations

    Science.gov (United States)

    Indekeu, Joseph O.; Smets, Ruben

    2017-08-01

    Physically motivated modified Fisher equations are studied in which nonlinear convection and nonlinear diffusion is allowed for besides the usual growth and spread of a population. It is pointed out that in a large variety of cases separable functions in the form of exponentially decaying sharp wavefronts solve the differential equation exactly provided a co-moving point source or sink is active at the wavefront. The velocity dispersion and front steepness may differ from those of some previously studied exact smooth traveling wave solutions. For an extension of the reaction-diffusion-convection equation, featuring a memory effect in the form of a maturity delay for growth and spread, also smooth exact wavefront solutions are obtained. The stability of the solutions is verified analytically and numerically.

  15. Traveling wavefront solutions to nonlinear reaction-diffusion-convection equations

    International Nuclear Information System (INIS)

    Indekeu, Joseph O; Smets, Ruben

    2017-01-01

    Physically motivated modified Fisher equations are studied in which nonlinear convection and nonlinear diffusion is allowed for besides the usual growth and spread of a population. It is pointed out that in a large variety of cases separable functions in the form of exponentially decaying sharp wavefronts solve the differential equation exactly provided a co-moving point source or sink is active at the wavefront. The velocity dispersion and front steepness may differ from those of some previously studied exact smooth traveling wave solutions. For an extension of the reaction-diffusion-convection equation, featuring a memory effect in the form of a maturity delay for growth and spread, also smooth exact wavefront solutions are obtained. The stability of the solutions is verified analytically and numerically. (paper)

  16. Object-oriented wavefront correction in an asymmetric amplifying high-power laser system

    Science.gov (United States)

    Yang, Ying; Yuan, Qiang; Wang, Deen; Zhang, Xin; Dai, Wanjun; Hu, Dongxia; Xue, Qiao; Zhang, Xiaolu; Zhao, Junpu; Zeng, Fa; Wang, Shenzhen; Zhou, Wei; Zhu, Qihua; Zheng, Wanguo

    2018-05-01

    An object-oriented wavefront control method is proposed aiming for excellent near-field homogenization and far-field distribution in an asymmetric amplifying high-power laser system. By averaging the residual errors of the propagating beam, smaller pinholes could be employed on the spatial filters to improve the beam quality. With this wavefront correction system, the laser performance of the main amplifier system in the Shen Guang-III laser facility has been improved. The residual wavefront aberration at the position of each pinhole is below 2 µm (peak-to-valley). For each pinhole, 95% of the total laser energy is enclosed within a circle whose diameter is no more than six times the diffraction limit. At the output of the main laser system, the near-field modulation and contrast are 1.29% and 7.5%, respectively, and 95% of the 1ω (1053 nm) beam energy is contained within a 39.8 µrad circle (6.81 times the diffraction limit) under a laser fluence of 5.8 J cm-2. The measured 1ω focal spot size and near-field contrast are better than the design values of the Shen Guang-III laser facility.

  17. Wavefront sensing and adaptive control in phased array of fiber collimators

    Science.gov (United States)

    Lachinova, Svetlana L.; Vorontsov, Mikhail A.

    2011-03-01

    A new wavefront control approach for mitigation of atmospheric turbulence-induced wavefront phase aberrations in coherent fiber-array-based laser beam projection systems is introduced and analyzed. This approach is based on integration of wavefront sensing capabilities directly into the fiber-array transmitter aperture. In the coherent fiber array considered, we assume that each fiber collimator (subaperture) of the array is capable of precompensation of local (onsubaperture) wavefront phase tip and tilt aberrations using controllable rapid displacement of the tip of the delivery fiber at the collimating lens focal plane. In the technique proposed, this tip and tilt phase aberration control is based on maximization of the optical power received through the same fiber collimator using the stochastic parallel gradient descent (SPGD) technique. The coordinates of the fiber tip after the local tip and tilt aberrations are mitigated correspond to the coordinates of the focal-spot centroid of the optical wave backscattered off the target. Similar to a conventional Shack-Hartmann wavefront sensor, phase function over the entire fiber-array aperture can then be retrieved using the coordinates obtained. The piston phases that are required for coherent combining (phase locking) of the outgoing beams at the target plane can be further calculated from the reconstructed wavefront phase. Results of analysis and numerical simulations are presented. Performance of adaptive precompensation of phase aberrations in this laser beam projection system type is compared for various system configurations characterized by the number of fiber collimators and atmospheric turbulence conditions. The wavefront control concept presented can be effectively applied for long-range laser beam projection scenarios for which the time delay related with the double-pass laser beam propagation to the target and back is compared or even exceeds the characteristic time of the atmospheric turbulence change

  18. High-resolution wavefront control of high-power laser systems

    International Nuclear Information System (INIS)

    Brase, J.; Brown, C.; Carrano, C.; Kartz, M.; Olivier, S.; Pennington, D.; Silva, D.

    1999-01-01

    Nearly every new large-scale laser system application at LLNL has requirements for beam control which exceed the current level of available technology. For applications such as inertial confinement fusion, laser isotope separation, laser machining, and laser the ability to transport significant power to a target while maintaining good beam quality is critical. There are many ways that laser wavefront quality can be degraded. Thermal effects due to the interaction of high-power laser or pump light with the internal optical components or with the ambient gas are common causes of wavefront degradation. For many years, adaptive optics based on thing deformable glass mirrors with piezoelectric or electrostrictive actuators have be used to remove the low-order wavefront errors from high-power laser systems. These adaptive optics systems have successfully improved laser beam quality, but have also generally revealed additional high-spatial-frequency errors, both because the low-order errors have been reduced and because deformable mirrors have often introduced some high-spatial-frequency components due to manufacturing errors. Many current and emerging laser applications fall into the high-resolution category where there is an increased need for the correction of high spatial frequency aberrations which requires correctors with thousands of degrees of freedom. The largest Deformable Mirrors currently available have less than one thousand degrees of freedom at a cost of approximately $1M. A deformable mirror capable of meeting these high spatial resolution requirements would be cost prohibitive. Therefore a new approach using a different wavefront control technology is needed. One new wavefront control approach is the use of liquid-crystal (LC) spatial light modulator (SLM) technology for the controlling the phase of linearly polarized light. Current LC SLM technology provides high-spatial-resolution wavefront control, with hundreds of thousands of degrees of freedom, more

  19. Wavefront optimized nonlinear microscopy of ex vivo human retinas

    Science.gov (United States)

    Gualda, Emilio J.; Bueno, Juan M.; Artal, Pablo

    2010-03-01

    A multiphoton microscope incorporating a Hartmann-Shack (HS) wavefront sensor to control the ultrafast laser beam's wavefront aberrations has been developed. This instrument allowed us to investigate the impact of the laser beam aberrations on two-photon autofluorescence imaging of human retinal tissues. We demonstrated that nonlinear microscopy images are improved when laser beam aberrations are minimized by realigning the laser system cavity while wavefront controlling. Nonlinear signals from several human retinal anatomical features have been detected for the first time, without the need of fixation or staining procedures. Beyond the improved image quality, this approach reduces the required excitation power levels, minimizing the side effects of phototoxicity within the imaged sample. In particular, this may be important to study the physiology and function of the healthy and diseased retina.

  20. Adaptable Diffraction Gratings With Wavefront Transformation

    Science.gov (United States)

    Iazikov, Dmitri; Mossberg, Thomas W.; Greiner, Christoph M.

    2010-01-01

    Diffraction gratings are optical components with regular patterns of grooves, which angularly disperse incoming light by wavelength. Traditional diffraction gratings have static planar, concave, or convex surfaces. However, if they could be made so that they can change the surface curvature at will, then they would be able to focus on particular segments, self-calibrate, or perform fine adjustments. This innovation creates a diffraction grating on a deformable surface. This surface could be bent at will, resulting in a dynamic wavefront transformation. This allows for self-calibration, compensation for aberrations, enhancing image resolution in a particular area, or performing multiple scans using different wavelengths. A dynamic grating gives scientists a new ability to explore wavefronts from a variety of viewpoints.

  1. Wavefront analysis for plenoptic camera imaging

    International Nuclear Information System (INIS)

    Luan Yin-Sen; Xu Bing; Yang Ping; Tang Guo-Mao

    2017-01-01

    The plenoptic camera is a single lens stereo camera which can retrieve the direction of light rays while detecting their intensity distribution. In this paper, to reveal more truths of plenoptic camera imaging, we present the wavefront analysis for the plenoptic camera imaging from the angle of physical optics but not from the ray tracing model of geometric optics. Specifically, the wavefront imaging model of a plenoptic camera is analyzed and simulated by scalar diffraction theory and the depth estimation is redescribed based on physical optics. We simulate a set of raw plenoptic images of an object scene, thereby validating the analysis and derivations and the difference between the imaging analysis methods based on geometric optics and physical optics are also shown in simulations. (paper)

  2. Wave optics modeling of real-time holographic wavefront compensation systems using OSSim

    Science.gov (United States)

    Carbon, Margarita A.; Guthals, Dennis M.; Logan, Jerry D.

    2005-08-01

    OSSim (Optical System Simulation) is a wave-optics, time-domain simulation toolbox with both optical and data processing components developed for adaptive optics (AO) systems. Diffractive wavefront control elements have recently been added that accurately model optically and electrically addressed spatial light modulators as real time holographic (RTH) devices in diffractive wavefront control systems. The developed RTH toolbox has found multiple applications for a variety of Boeing programs in solving problems of AO system analysis and design. Several complex diffractive wavefront control systems have been modeled for compensation of static and dynamic aberrations such as imperfect segmented primary mirrors and atmospheric and boundary layer turbulence. The results of OSSim simulations of RTH wavefront compensation show very good agreement with available experimental data.

  3. Wavefront control of the Large Optics Test and Integration Site (LOTIS) 6.5m Collimator

    Energy Technology Data Exchange (ETDEWEB)

    West, Steven C.; Bailey, Samuel H.; Burge, James H.; Cuerden, Brian; Hagen, Jeff; Martin, Hubert M.; Tuell, Michael T.

    2010-06-20

    The LOTIS Collimator provides scene projection within a 6.5m diameter collimated beam used for optical testing research in air and vacuum. Diffraction-limited performance (0.4 to 5{mu}m wavelength) requires active wavefront control of the alignment and primary mirror shape. A hexapod corrects secondary mirror alignment using measurements from collimated sources directed into the system with nine scanning pentaprisms. The primary mirror shape is controlled with 104 adjustable force actuators based on figure measurements from a center-of-curvature test. A variation of the Hartmann test measures slopes by monitoring the reflections from 36 small mirrors bonded to the optical surface of the primary mirror. The Hartmann source and detector are located at the f/15 Cassegrain focus. Initial operation has demonstrated a closed-loop 110nmrms wavefront error in ambient air over the 6.5mcollimated beam.

  4. Phase Diversity Wavefront Sensing for Control of Space Based Adaptive Optics Systems

    National Research Council Canada - National Science Library

    Schgallis, Richard J

    2007-01-01

    Phase Diversity Wavefront Sensing (PD WFS) is a wavefront reconstruction technique used in adaptive optics, which takes advantage of the curvature conjugating analog physical properties of a deformable mirror (MMDM or Bi-morph...

  5. [Comparison of ocular modulation transfer function measurements by ray tracing wavefront technology and double-pass system].

    Science.gov (United States)

    Qiao, Liya; Cai, Xiaogu; Wan, Xiuhua; Guan, Zheng; Xiong, Ying; Lin, Zhong; Zhang, Ye; Tan, Jiaxuan; Wang, Ningli

    2015-01-01

    To compare the agreement of the ocular modulation transfer function (MTF) measured by double-pass system and ray tracing wavefront aberrometry, and to analyze the correlations of two MTFs with the visual acuity and contrast sensitivity function results. Comparative study. Subjects with no ocular diseases were consecutively enrolled in an epidemic study field located at the Dongyangzhuang Health Center, Yongnian County, Handan City, Hebei Province, China. After comprehensive ophthalmic examinations, the mean values of subtracted lower order aberration MTF at 5, 10, 15, 20, 25, and 30 cycle/degree(c/d) spatial frequencies were obtained with a double-pass system (optical quality analysis system II, OQAS II system) and a ray tracing wavefront aberrometer (iTrace visual function analyzer, iTrace system) in the 4.0 mm and 6.0 mm pupil after dilation, respectively. Paired-sample t test and Bland-Altman analysis were used to compare the difference and agreement of MTFs obtained with two instruments. Correlation analysis was preformed between two MTF measurement results and subjective visual quality including visual acuity and contrast sensitivity function. Two hundred and fifty-one healthy eyes of 163 subjects were enrolled, aged 30 to 60, mean (44.1 ± 9.7) years, including 139 eyes of 81 males and 112 eyes of 82 females. The mean value of MTF at 5, 10, 15, 20.25, 30 c/d obtained by iTrace in 4.0 mm pupil were 0.730 ± 0.138, 0.431 ± 0.159, 0.262 ± 0.120, 0.169 ± 0.078, 0.118 ± 0.053, 0.094 ± 0.043. The value obtained by OQASII were 0.347 ± 0.123, 0.162 ± 0.086, 0.072 ± 0.049, 0.042 ± 0.033, 0.026 ± 0.022, 0.017 ± 0.022, The result of iTrace were all significant higher than OQAS in both 4mm(t = 38.72, 28.03, 27.32, 27.59, 29.23, 28.96, P < 0.01) and 6.0 mm(t = 4.60, 3.19, 9.34, 13.41, 16.96, 20.24, P < 0.01)pupil diameter. The iTrace-OQAS II MTF difference was smaller in the 6.0 mm pupil. Bland-Altman analysis indicated that the agreement of two instruments was

  6. Hough transform used on the spot-centroiding algorithm for the Shack-Hartmann wavefront sensor

    Science.gov (United States)

    Chia, Chou-Min; Huang, Kuang-Yuh; Chang, Elmer

    2016-01-01

    An approach to the spot-centroiding algorithm for the Shack-Hartmann wavefront sensor (SHWS) is presented. The SHWS has a common problem, in that while measuring high-order wavefront distortion, the spots may exceed each of the subapertures, which are used to restrict the displacement of spots. This artificial restriction may limit the dynamic range of the SHWS. When using the SHWS to measure adaptive optics or aspheric lenses, the accuracy of the traditional spot-centroiding algorithm may be uncertain because the spots leave or cross the confined area of the subapertures. The proposed algorithm combines the Hough transform with an artificial neural network, which requires no confined subapertures, to increase the dynamic range of the SHWS. This algorithm is then explored in comprehensive simulations and the results are compared with those of the existing algorithm.

  7. On distributed wavefront reconstruction for large-scale adaptive optics systems.

    Science.gov (United States)

    de Visser, Cornelis C; Brunner, Elisabeth; Verhaegen, Michel

    2016-05-01

    The distributed-spline-based aberration reconstruction (D-SABRE) method is proposed for distributed wavefront reconstruction with applications to large-scale adaptive optics systems. D-SABRE decomposes the wavefront sensor domain into any number of partitions and solves a local wavefront reconstruction problem on each partition using multivariate splines. D-SABRE accuracy is within 1% of a global approach with a speedup that scales quadratically with the number of partitions. The D-SABRE is compared to the distributed cumulative reconstruction (CuRe-D) method in open-loop and closed-loop simulations using the YAO adaptive optics simulation tool. D-SABRE accuracy exceeds CuRe-D for low levels of decomposition, and D-SABRE proved to be more robust to variations in the loop gain.

  8. 5-D interpolation with wave-front attributes

    Science.gov (United States)

    Xie, Yujiang; Gajewski, Dirk

    2017-11-01

    Most 5-D interpolation and regularization techniques reconstruct the missing data in the frequency domain by using mathematical transforms. An alternative type of interpolation methods uses wave-front attributes, that is, quantities with a specific physical meaning like the angle of emergence and wave-front curvatures. In these attributes structural information of subsurface features like dip and strike of a reflector are included. These wave-front attributes work on 5-D data space (e.g. common-midpoint coordinates in x and y, offset, azimuth and time), leading to a 5-D interpolation technique. Since the process is based on stacking next to the interpolation a pre-stack data enhancement is achieved, improving the signal-to-noise ratio (S/N) of interpolated and recorded traces. The wave-front attributes are determined in a data-driven fashion, for example, with the Common Reflection Surface (CRS method). As one of the wave-front-attribute-based interpolation techniques, the 3-D partial CRS method was proposed to enhance the quality of 3-D pre-stack data with low S/N. In the past work on 3-D partial stacks, two potential problems were still unsolved. For high-quality wave-front attributes, we suggest a global optimization strategy instead of the so far used pragmatic search approach. In previous works, the interpolation of 3-D data was performed along a specific azimuth which is acceptable for narrow azimuth acquisition but does not exploit the potential of wide-, rich- or full-azimuth acquisitions. The conventional 3-D partial CRS method is improved in this work and we call it as a wave-front-attribute-based 5-D interpolation (5-D WABI) as the two problems mentioned above are addressed. Data examples demonstrate the improved performance by the 5-D WABI method when compared with the conventional 3-D partial CRS approach. A comparison of the rank-reduction-based 5-D seismic interpolation technique with the proposed 5-D WABI method is given. The comparison reveals that

  9. Ultra-high resolution coded wavefront sensor

    KAUST Repository

    Wang, Congli; Dun, Xiong; Fu, Qiang; Heidrich, Wolfgang

    2017-01-01

    Wavefront sensors and more general phase retrieval methods have recently attracted a lot of attention in a host of application domains, ranging from astronomy to scientific imaging and microscopy. In this paper, we introduce a new class of sensor

  10. Athermalization of infrared dual field optical system based on wavefront coding

    Science.gov (United States)

    Jiang, Kai; Jiang, Bo; Liu, Kai; Yan, Peipei; Duan, Jing; Shan, Qiu-sha

    2017-02-01

    Wavefront coding is a technology which combination of the optical design and digital image processing. By inserting a phase mask closed to the pupil plane of the optical system the wavefront of the system is re-modulated. And the depth of focus is extended consequently. In reality the idea is same as the athermalization theory of infrared optical system. In this paper, an uncooled infrared dual field optical system with effective focal as 38mm/19mm, F number as 1.2 of both focal length, operating wavelength varying from 8μm to 12μm was designed. A cubic phase mask was used at the pupil plane to re-modulate the wavefront. Then the performance of the infrared system was simulated with CODEV as the environment temperature varying from -40° to 60°. MTF curve of the optical system with phase mask are compared with the outcome before using phase mask. The result show that wavefront coding technology can make the system not sensitive to thermal defocus, and then realize the athermal design of the infrared optical system.

  11. High-speed single-shot optical focusing through dynamic scattering media with full-phase wavefront shaping

    Science.gov (United States)

    Hemphill, Ashton S.; Shen, Yuecheng; Liu, Yan; Wang, Lihong V.

    2017-11-01

    In biological applications, optical focusing is limited by the diffusion of light, which prevents focusing at depths greater than ˜1 mm in soft tissue. Wavefront shaping extends the depth by compensating for phase distortions induced by scattering and thus allows for focusing light through biological tissue beyond the optical diffusion limit by using constructive interference. However, due to physiological motion, light scattering in tissue is deterministic only within a brief speckle correlation time. In in vivo tissue, this speckle correlation time is on the order of milliseconds, and so the wavefront must be optimized within this brief period. The speed of digital wavefront shaping has typically been limited by the relatively long time required to measure and display the optimal phase pattern. This limitation stems from the low speeds of cameras, data transfer and processing, and spatial light modulators. While binary-phase modulation requiring only two images for the phase measurement has recently been reported, most techniques require at least three frames for the full-phase measurement. Here, we present a full-phase digital optical phase conjugation method based on off-axis holography for single-shot optical focusing through scattering media. By using off-axis holography in conjunction with graphics processing unit based processing, we take advantage of the single-shot full-phase measurement while using parallel computation to quickly reconstruct the phase map. With this system, we can focus light through scattering media with a system latency of approximately 9 ms, on the order of the in vivo speckle correlation time.

  12. In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography.

    Science.gov (United States)

    Wong, Kevin S K; Jian, Yifan; Cua, Michelle; Bonora, Stefano; Zawadzki, Robert J; Sarunic, Marinko V

    2015-02-01

    Wavefront sensorless adaptive optics optical coherence tomography (WSAO-OCT) is a novel imaging technique for in vivo high-resolution depth-resolved imaging that mitigates some of the challenges encountered with the use of sensor-based adaptive optics designs. This technique replaces the Hartmann Shack wavefront sensor used to measure aberrations with a depth-resolved image-driven optimization algorithm, with the metric based on the OCT volumes acquired in real-time. The custom-built ultrahigh-speed GPU processing platform and fast modal optimization algorithm presented in this paper was essential in enabling real-time, in vivo imaging of human retinas with wavefront sensorless AO correction. WSAO-OCT is especially advantageous for developing a clinical high-resolution retinal imaging system as it enables the use of a compact, low-cost and robust lens-based adaptive optics design. In this report, we describe our WSAO-OCT system for imaging the human photoreceptor mosaic in vivo. We validated our system performance by imaging the retina at several eccentricities, and demonstrated the improvement in photoreceptor visibility with WSAO compensation.

  13. Extended use of two crossed Babinet compensators for wavefront sensing in adaptive optics

    Science.gov (United States)

    Paul, Lancelot; Kumar Saxena, Ajay

    2010-12-01

    An extended use of two crossed Babinet compensators as a wavefront sensor for adaptive optics applications is proposed. This method is based on the lateral shearing interferometry technique in two directions. A single record of the fringes in a pupil plane provides the information about the wavefront. The theoretical simulations based on this approach for various atmospheric conditions and other errors of optical surfaces are provided for better understanding of this method. Derivation of the results from a laboratory experiment using simulated atmospheric conditions demonstrates the steps involved in data analysis and wavefront evaluation. It is shown that this method has a higher degree of freedom in terms of subapertures and on the choice of detectors, and can be suitably adopted for real-time wavefront sensing for adaptive optics.

  14. Phase shift extraction and wavefront retrieval from interferograms with background and contrast fluctuations

    International Nuclear Information System (INIS)

    Liu, Qian; Wang, Yang; He, Jianguo; Ji, Fang

    2015-01-01

    The fluctuations of background and contrast cause measurement errors in the phase-shifting technique. To extract the phase shifts from interferograms with background and contrast fluctuations, an iterative algorithm is represented. The phase shifts and wavefront phase are calculated in two individual steps with the least-squares method. The fluctuation factors are determined when the phase shifts are calculated, and the fluctuations are compensated when the wavefront phase is calculated. The advantage of the algorithm lies in its ability to extract phase shifts from interferograms with background and contrast fluctuations converging stably and rapidly. Simulations and experiments verify the effectiveness and reliability of the proposed algorithm. The convergence accuracy and speed are demonstrated by the simulation results. The experiment results show its ability for suppressing phase retrieval errors. (paper)

  15. The AOLI low-order non-linear curvature wavefront sensor: laboratory and on-sky results

    Science.gov (United States)

    Crass, Jonathan; King, David; MacKay, Craig

    2014-08-01

    Many adaptive optics (AO) systems in use today require the use of bright reference objects to determine the effects of atmospheric distortions. Typically these systems use Shack-Hartmann Wavefront sensors (SHWFS) to distribute incoming light from a reference object between a large number of sub-apertures. Guyon et al. evaluated the sensitivity of several different wavefront sensing techniques and proposed the non-linear Curvature Wavefront Sensor (nlCWFS) offering improved sensitivity across a range of orders of distortion. On large ground-based telescopes this can provide nearly 100% sky coverage using natural guide stars. We present work being undertaken on the nlCWFS development for the Adaptive Optics Lucky Imager (AOLI) project. The wavefront sensor is being developed as part of a low-order adaptive optics system for use in a dedicated instrument providing an AO corrected beam to a Lucky Imaging based science detector. The nlCWFS provides a total of four reference images on two photon-counting EMCCDs for use in the wavefront reconstruction process. We present results from both laboratory work using a calibration system and the first on-sky data obtained with the nlCWFS at the 4.2 metre William Herschel Telescope, La Palma. In addition, we describe the updated optical design of the wavefront sensor, strategies for minimising intrinsic effects and methods to maximise sensitivity using photon-counting detectors. We discuss on-going work to develop the high speed reconstruction algorithm required for the nlCWFS technique. This includes strategies to implement the technique on graphics processing units (GPUs) and to minimise computing overheads to obtain a prior for a rapid convergence of the wavefront reconstruction. Finally we evaluate the sensitivity of the wavefront sensor based upon both data and low-photon count strategies.

  16. Performance analysis of multidimensional wavefront algorithms with application to deterministic particle transport

    International Nuclear Information System (INIS)

    Hoisie, A.; Lubeck, O.; Wasserman, H.

    1998-01-01

    The authors develop a model for the parallel performance of algorithms that consist of concurrent, two-dimensional wavefronts implemented in a message passing environment. The model, based on a LogGP machine parameterization, combines the separate contributions of computation and communication wavefronts. They validate the model on three important supercomputer systems, on up to 500 processors. They use data from a deterministic particle transport application taken from the ASCI workload, although the model is general to any wavefront algorithm implemented on a 2-D processor domain. They also use the validated model to make estimates of performance and scalability of wavefront algorithms on 100-TFLOPS computer systems expected to be in existence within the next decade as part of the ASCI program and elsewhere. In this context, the authors analyze two problem sizes. Their model shows that on the largest such problem (1 billion cells), inter-processor communication performance is not the bottleneck. Single-node efficiency is the dominant factor

  17. Linear-constraint wavefront control for exoplanet coronagraphic imaging systems

    Science.gov (United States)

    Sun, He; Eldorado Riggs, A. J.; Kasdin, N. Jeremy; Vanderbei, Robert J.; Groff, Tyler Dean

    2017-01-01

    A coronagraph is a leading technology for achieving high-contrast imaging of exoplanets in a space telescope. It uses a system of several masks to modify the diffraction and achieve extremely high contrast in the image plane around target stars. However, coronagraphic imaging systems are very sensitive to optical aberrations, so wavefront correction using deformable mirrors (DMs) is necessary to avoid contrast degradation in the image plane. Electric field conjugation (EFC) and Stroke minimization (SM) are two primary high-contrast wavefront controllers explored in the past decade. EFC minimizes the average contrast in the search areas while regularizing the strength of the control inputs. Stroke minimization calculates the minimum DM commands under the constraint that a target average contrast is achieved. Recently in the High Contrast Imaging Lab at Princeton University (HCIL), a new linear-constraint wavefront controller based on stroke minimization was developed and demonstrated using numerical simulation. Instead of only constraining the average contrast over the entire search area, the new controller constrains the electric field of each single pixel using linear programming, which could led to significant increases in speed of the wavefront correction and also create more uniform dark holes. As a follow-up of this work, another linear-constraint controller modified from EFC is demonstrated theoretically and numerically and the lab verification of the linear-constraint controllers is reported. Based on the simulation and lab results, the pros and cons of linear-constraint controllers are carefully compared with EFC and stroke minimization.

  18. Broadband manipulation of acoustic wavefronts by pentamode metasurface

    International Nuclear Information System (INIS)

    Tian, Ye; Wei, Qi; Cheng, Ying; Xu, Zheng; Liu, Xiaojun

    2015-01-01

    An acoustic metasurface with a sub-wavelength thickness can manipulate acoustic wavefronts freely by the introduction of abrupt phase variation. However, the existence of a narrow bandwidth and a low transmittance limits further applications. Here, we present a broadband and highly transparent acoustic metasurface based on a frequency-independent generalized acoustic Snell's law and pentamode metamaterials. The proposal employs a gradient velocity to redirect refracted waves and pentamode metamaterials to improve impedance matching between the metasurface and the background medium. Excellent wavefront manipulation based on the metasurface is further demonstrated by anomalous refraction, generation of non-diffracting Bessel beam, and sub-wavelength flat focusing

  19. Focusing light through dynamical samples using fast continuous wavefront optimization.

    Science.gov (United States)

    Blochet, B; Bourdieu, L; Gigan, S

    2017-12-01

    We describe a fast continuous optimization wavefront shaping system able to focus light through dynamic scattering media. A micro-electro-mechanical system-based spatial light modulator, a fast photodetector, and field programmable gate array electronics are combined to implement a continuous optimization of a wavefront with a single-mode optimization rate of 4.1 kHz. The system performances are demonstrated by focusing light through colloidal solutions of TiO 2 particles in glycerol with tunable temporal stability.

  20. Grazing Incidence Wavefront Sensing and Verification of X-Ray Optics Performance

    Science.gov (United States)

    Saha, Timo T.; Rohrbach, Scott; Zhang, William W.

    2011-01-01

    Evaluation of interferometrically measured mirror metrology data and characterization of a telescope wavefront can be powerful tools in understanding of image characteristics of an x-ray optical system. In the development of soft x-ray telescope for the International X-Ray Observatory (IXO), we have developed new approaches to support the telescope development process. Interferometrically measuring the optical components over all relevant spatial frequencies can be used to evaluate and predict the performance of an x-ray telescope. Typically, the mirrors are measured using a mount that minimizes the mount and gravity induced errors. In the assembly and mounting process the shape of the mirror segments can dramatically change. We have developed wavefront sensing techniques suitable for the x-ray optical components to aid us in the characterization and evaluation of these changes. Hartmann sensing of a telescope and its components is a simple method that can be used to evaluate low order mirror surface errors and alignment errors. Phase retrieval techniques can also be used to assess and estimate the low order axial errors of the primary and secondary mirror segments. In this paper we describe the mathematical foundation of our Hartmann and phase retrieval sensing techniques. We show how these techniques can be used in the evaluation and performance prediction process of x-ray telescopes.

  1. Electro-optic spatial decoding on the spherical-wavefront Coulomb fields of plasma electron sources.

    Science.gov (United States)

    Huang, K; Esirkepov, T; Koga, J K; Kotaki, H; Mori, M; Hayashi, Y; Nakanii, N; Bulanov, S V; Kando, M

    2018-02-13

    Detections of the pulse durations and arrival timings of relativistic electron beams are important issues in accelerator physics. Electro-optic diagnostics on the Coulomb fields of electron beams have the advantages of single shot and non-destructive characteristics. We present a study of introducing the electro-optic spatial decoding technique to laser wakefield acceleration. By placing an electro-optic crystal very close to a gas target, we discovered that the Coulomb field of the electron beam possessed a spherical wavefront and was inconsistent with the previously widely used model. The field structure was demonstrated by experimental measurement, analytic calculations and simulations. A temporal mapping relationship with generality was derived in a geometry where the signals had spherical wavefronts. This study could be helpful for the applications of electro-optic diagnostics in laser plasma acceleration experiments.

  2. Performance analysis of coherent free space optical communications with sequential pyramid wavefront sensor

    Science.gov (United States)

    Liu, Wei; Yao, Kainan; Chen, Lu; Huang, Danian; Cao, Jingtai; Gu, Haijun

    2018-03-01

    Based-on the previous study on the theory of the sequential pyramid wavefront sensor (SPWFS), in this paper, the SPWFS is first applied to the coherent free space optical communications (FSOC) with more flexible spatial resolution and higher sensitivity than the Shack-Hartmann wavefront sensor, and with higher uniformity of intensity distribution and much simpler than the pyramid wavefront sensor. Then, the mixing efficiency (ME) and the bit error rate (BER) of the coherent FSOC are analyzed during the aberrations correction through numerical simulation with binary phase shift keying (BPSK) modulation. Finally, an experimental AO system based-on SPWFS is setup, and the experimental data is used to analyze the ME and BER of homodyne detection with BPSK modulation. The results show that the AO system based-on SPWFS can increase ME and decrease BER effectively. The conclusions of this paper provide a new method of wavefront sensing for designing the AO system for a coherent FSOC system.

  3. Performance and scalability analysis of teraflop-scale parallel architectures using multidimensional wavefront applications

    International Nuclear Information System (INIS)

    Hoisie, A.; Lubeck, O.; Wasserman, H.

    1998-01-01

    The authors develop a model for the parallel performance of algorithms that consist of concurrent, two-dimensional wavefronts implemented in a message passing environment. The model, based on a LogGP machine parameterization, combines the separate contributions of computation and communication wavefronts. They validate the model on three important supercomputer systems, on up to 500 processors. They use data from a deterministic particle transport application taken from the ASCI workload, although the model is general to any wavefront algorithm implemented on a 2-D processor domain. They also use the validated model to make estimates of performance and scalability of wavefront algorithms on 100-TFLOPS computer systems expected to be in existence within the next decade as part of the ASCI program and elsewhere. In this context, they analyze two problem sizes. The model shows that on the largest such problem (1 billion cells), inter-processor communication performance is not the bottleneck. Single-node efficiency is the dominant factor

  4. Stability of therapeutic retreatment of corneal wavefront customized ablation with the SCHWIND CAM: 4-year data.

    Science.gov (United States)

    Aslanides, Ioannis M; Kolli, Sai; Padroni, Sara; Padron, Sara; Arba Mosquera, Samuel

    2012-05-01

    To evaluate the long-term outcomes of aspheric corneal wavefront ablation profiles for excimer laser retreatment. Eighteen eyes that had previously undergone LASIK or photorefractive keratectomy (PRK) were retreated with LASIK using the corneal wavefront ablation profile. Custom Ablation Manager (SCHWIND eye-tech-solutions, Kleinostheim, Germany) software and the ESIRIS flying spot excimer laser system (SCHWIND) were used to perform the ablations. Refractive outcomes and wavefront data are reported up to 4 years after retreatment. Pre- and postoperative data were compared with Student t tests and (multivariate) correlation tests. P<.05 was considered statistically significant. A bilinear correlation of various postoperative wavefront aberrations versus planned correction and preoperative aberration was performed. Mean manifest refraction spherical equivalent (MRSE) before retreatment was -0.38±1.85 diopters (D) and -0.09±0.22 D at 6 months and -0.10±0.38 D at 4 years postoperatively. The reduction in MRSE was statistically significant at both postoperative time points (P<.005). Postoperative aberrations were statistically lower (spherical aberration P<.05; coma P<.005; root-mean-square higher order aberration P<.0001) at 4 years postoperatively. Distribution of the postoperative uncorrected distance visual acuity (P<.0001) and corrected distance visual acuity (P<.01) were statistically better than preoperative values. Aspheric corneal wavefront customization with the ESIRIS yields visual, optical, and refractive results comparable to those of other wavefront-guided customized techniques for the correction of myopia and myopic astigmatism. The corneal wavefront customized approach shows its strength in cases where abnormal optical systems are expected. Systematic wavefront customized corneal ablation appears safe and efficacious for retreatment cases. Copyright 2012, SLACK Incorporated.

  5. Zonal wavefront sensing using a grating array printed on a polyester film

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, Biswajit; Boruah, Bosanta R., E-mail: brboruah@iitg.ernet.in [Department of Physics, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 (India); Kumar, Suraj [Department of Applied Sciences, Gauhati University, Guwahati, Assam 781014 (India)

    2015-12-15

    In this paper, we describe the development of a zonal wavefront sensor that comprises an array of binary diffraction gratings realized on a transparent sheet (i.e., polyester film) followed by a focusing lens and a camera. The sensor works in a manner similar to that of a Shack-Hartmann wavefront sensor. The fabrication of the array of gratings is immune to certain issues associated with the fabrication of the lenslet array which is commonly used in zonal wavefront sensing. Besides the sensing method offers several important advantages such as flexible dynamic range, easy configurability, and option to enhance the sensing frame rate. Here, we have demonstrated the working of the proposed sensor using a proof-of-principle experimental arrangement.

  6. Zonal wavefront sensing using a grating array printed on a polyester film

    Science.gov (United States)

    Pathak, Biswajit; Kumar, Suraj; Boruah, Bosanta R.

    2015-12-01

    In this paper, we describe the development of a zonal wavefront sensor that comprises an array of binary diffraction gratings realized on a transparent sheet (i.e., polyester film) followed by a focusing lens and a camera. The sensor works in a manner similar to that of a Shack-Hartmann wavefront sensor. The fabrication of the array of gratings is immune to certain issues associated with the fabrication of the lenslet array which is commonly used in zonal wavefront sensing. Besides the sensing method offers several important advantages such as flexible dynamic range, easy configurability, and option to enhance the sensing frame rate. Here, we have demonstrated the working of the proposed sensor using a proof-of-principle experimental arrangement.

  7. X-ray active mirror coupled with a Hartmann wavefront sensor

    International Nuclear Information System (INIS)

    Idir, Mourad; Mercere, Pascal; Modi, Mohammed H.; Dovillaire, Guillaume; Levecq, Xavier; Bucourt, Samuel; Escolano, Lionel; Sauvageot, Paul

    2010-01-01

    This paper reports on the design and performances of a test prototype active X-ray mirror (AXM) which has been designed and manufactured in collaboration with the French Small and Medium Enterprise mechanical company ISP System for the national French storage ring SOLEIL. Coupled with this active X-ray mirror and also in collaboration with another French Small and Medium Enterprise (Imagine Optic) a lot of efforts have been done in order to design and fabricate a wavefront X-ray analyzer based on the Hartmann principle (Hartman wavefront sensor, HWS).

  8. Transformation of a Plane Wavefront in Hemispherical Lenses Made of Leuco-Sapphire

    Science.gov (United States)

    Vetrov, V. N.; Ignatenkov, B. A.; Yakobson, V. E.

    2018-01-01

    An algorithm for wavefront calculation of ordinary and extraordinary waves after propagation through hemispherical components made of a uniaxial crystal is developed. The influence of frequency dispersion of n o and n e , as well as change in the direction of the optic axis of the crystal, on extraordinary wavefront in hemispheres made of from leuco-sapphire and a plastically deformed analog thereof is determined.

  9. Wavefront picking for 3D tomography and full-waveform inversion

    KAUST Repository

    AlTheyab, Abdullah

    2016-09-08

    We have developed an efficient approach for picking firstbreak wavefronts on coarsely sampled time slices of 3D shot gathers. Our objective was to compute a smooth initial velocity model for multiscale full-waveform inversion (FWI). Using interactive software, first-break wavefronts were geometrically modeled on time slices with a minimal number of picks. We picked sparse time slices, performed traveltime tomography, and then compared the predicted traveltimes with the data in-between the picked slices. The picking interval was refined with iterations until the errors in traveltime predictions fell within the limits necessary to avoid cycle skipping in early arrivals FWI. This approach was applied to a 3D ocean-bottom-station data set. Our results indicate that wavefront picking has 28% fewer data slices to pick compared with picking traveltimes in shot gathers. In addition, by using sparse time samples for picking, data storage is reduced by 88%, and therefore allows for a faster visualization and quality control of the picks. Our final traveltime tomogram is sufficient as a starting model for early arrival FWI. © 2016 Society of Exploration Geophysicists.

  10. Wavefront improvement in an end-pumped high-power Nd:YAG zigzag slab laser.

    Science.gov (United States)

    Shin, Jae Sung; Cha, Yong-Ho; Lim, Gwon; Kim, Yonghee; Kwon, Seong-Ouk; Cha, Byung Heon; Lee, Hyeon Cheor; Kim, Sangin; Koh, Kwang Uoong; Kim, Hyun Tae

    2017-08-07

    Techniques for wavefront improvement in an end-pumped Nd:YAG zigzag slab laser amplifier were proposed and demonstrated experimentally. First, a study on the contact materials was conducted to improve the heat transfer between the slab and cooling blocks and to increase the cooling uniformity. Among many attempts, only the use of silicon oil showed an improvement in the wavefront. Thus, the appropriate silicone oil was applied to the amplifier as a contact material. In addition, the wavefront compensation method using a glass rod array was also applied to the amplifier. A very low wavefront distortion was obtained through the use of a silicone-oil contact and glass rod array. The variance of the optical path difference for the entire beam height was 3.87 μm at a pump power of 10.6 kW, and that for the 80% section was 1.69 μm. The output power from the oscillator was 3.88 kW, which means the maximum output extracted from the amplifier at a pump power of 10.6 kW.

  11. Predicting crystalline lens fall caused by accommodation from changes in wavefront error

    Science.gov (United States)

    He, Lin; Applegate, Raymond A.

    2011-01-01

    PURPOSE To illustrate and develop a method for estimating crystalline lens decentration as a function of accommodative response using changes in wavefront error and show the method and limitations using previously published data (2004) from 2 iridectomized monkey eyes so that clinicians understand how spherical aberration can induce coma, in particular in intraocular lens surgery. SETTINGS College of Optometry, University of Houston, Houston, USA. DESIGN Evaluation of diagnostic test or technology. METHODS Lens decentration was estimated by displacing downward the wavefront error of the lens with respect to the limiting aperture (7.0 mm) and ocular first surface wavefront error for each accommodative response (0.00 to 11.00 diopters) until measured values of vertical coma matched previously published experimental data (2007). Lens decentration was also calculated using an approximation formula that only included spherical aberration and vertical coma. RESULTS The change in calculated vertical coma was consistent with downward lens decentration. Calculated downward lens decentration peaked at approximately 0.48 mm of vertical decentration in the right eye and approximately 0.31 mm of decentration in the left eye using all Zernike modes through the 7th radial order. Calculated lens decentration using only coma and spherical aberration formulas was peaked at approximately 0.45 mm in the right eye and approximately 0.23 mm in the left eye. CONCLUSIONS Lens fall as a function of accommodation was quantified noninvasively using changes in vertical coma driven principally by the accommodation-induced changes in spherical aberration. The newly developed method was valid for a large pupil only. PMID:21700108

  12. High-QE fast-readout wavefront sensor with analog phase reconstruction

    Science.gov (United States)

    Baker, Jeffrey T.; Loos, Gary C.; Restaino, Sergio R.; Percheron, Isabelle; Finkner, Lyle G.

    1998-09-01

    The contradiction inherent in high temporal bandwidth adaptive optics wavefront sensing at low-light-levels (LLL) has driven many researchers to consider the use of high bandwidth high quantum efficiency (QE) CCD cameras with the lowest possible readout noise levels. Unfortunately, the performance of these relatively expensive and low production volume devices in the photon counting regime is inevitably limited by readout noise, no matter how arbitrarily close to zero that specification may be reduced. Our alternative approach is to optically couple a new and relatively inexpensive Ultra Blue Gen III image intensifier to an also relatively inexpensive high bandwidth CCD camera with only moderate QE and high rad noise. The result is a high bandwidth broad spectral response image intensifier with a gain of 55,000 at 560 nm. Use of an appropriately selected lenslet array together with coupling optics generates 16 X 16 Shack-Hartmann type subapertures on the image intensifier photocathode, which is imaged onto the fast CCD camera. An integral A/D converter in the camera sends the image data pixel by pixel to a computer data acquisition system for analysis, storage and display. Timing signals are used to decode which pixel is being rad out and the wavefront is calculated in an analog fashion using a least square fit to both x and y tilt data for all wavefront sensor subapertures. Finally, we present system level performance comparisons of these new concept wavefront sensors versus the more standard low noise CCD camera based designs in the low-light-level limit.

  13. Spatial-temporal-covariance-based modeling, analysis, and simulation of aero-optics wavefront aberrations.

    Science.gov (United States)

    Vogel, Curtis R; Tyler, Glenn A; Wittich, Donald J

    2014-07-01

    We introduce a framework for modeling, analysis, and simulation of aero-optics wavefront aberrations that is based on spatial-temporal covariance matrices extracted from wavefront sensor measurements. Within this framework, we present a quasi-homogeneous structure function to analyze nonhomogeneous, mildly anisotropic spatial random processes, and we use this structure function to show that phase aberrations arising in aero-optics are, for an important range of operating parameters, locally Kolmogorov. This strongly suggests that the d5/3 power law for adaptive optics (AO) deformable mirror fitting error, where d denotes actuator separation, holds for certain important aero-optics scenarios. This framework also allows us to compute bounds on AO servo lag error and predictive control error. In addition, it provides us with the means to accurately simulate AO systems for the mitigation of aero-effects, and it may provide insight into underlying physical processes associated with turbulent flow. The techniques introduced here are demonstrated using data obtained from the Airborne Aero-Optics Laboratory.

  14. Wavefront control performance modeling with WFIRST shaped pupil coronagraph testbed

    Science.gov (United States)

    Zhou, Hanying; Nemati, Bijian; Krist, John; Cady, Eric; Kern, Brian; Poberezhskiy, Ilya

    2017-09-01

    NASA's WFIRST mission includes a coronagraph instrument (CGI) for direct imaging of exoplanets. Significant improvement in CGI model fidelity has been made recently, alongside a testbed high contrast demonstration in a simulated dynamic environment at JPL. We present our modeling method and results of comparisons to testbed's high order wavefront correction performance for the shaped pupil coronagraph. Agreement between model prediction and testbed result at better than a factor of 2 has been consistently achieved in raw contrast (contrast floor, chromaticity, and convergence), and with that comes good agreement in contrast sensitivity to wavefront perturbations and mask lateral shear.

  15. Generation of Optical Vortex Arrays Using Single-Element Reversed-Wavefront Folding Interferometer

    Directory of Open Access Journals (Sweden)

    Brijesh Kumar Singh

    2012-01-01

    Full Text Available Optical vortex arrays have been generated using simple, novel, and stable reversed-wavefront folding interferometer. Two new interferometric configurations were used for generating a variety of optical vortex lattices. In the first interferometric configuration one cube beam splitter (CBS was used in one arm of Mach-Zehnder interferometer for splitting and combining the collimated beam, and one mirror of another arm is replaced by second CBS. At the output of interferometer, three-beam interference gives rise to optical vortex arrays. In second interferometric configuration, a divergent wavefront was made incident on a single CBS which splits and combines wavefronts leading to the generation of vortex arrays due to four-beam interference. It was found that the orientation and structure of the optical vortices can be stably controlled by means of changing the rotation angle of CBS.

  16. Optimal Shack-Hartmann Wavefront Sensing For Low-Light-Levels

    National Research Council Canada - National Science Library

    Solomon, Christopher

    1997-01-01

    .... He will analyze the sensitivity gains achievable in shack-hartmann wavefront sensors using bayesian estimators and compare the results with those achieved using a standard least squares approach...

  17. Space-Variant Post-Filtering for Wavefront Curvature Correction in Polar-Formatted Spotlight-Mode SAR Imagery

    Energy Technology Data Exchange (ETDEWEB)

    DOREN,NEALL E.

    1999-10-01

    Wavefront curvature defocus effects occur in spotlight-mode SAR imagery when reconstructed via the well-known polar-formatting algorithm (PFA) under certain imaging scenarios. These include imaging at close range, using a very low radar center frequency, utilizing high resolution, and/or imaging very large scenes. Wavefront curvature effects arise from the unrealistic assumption of strictly planar wavefronts illuminating the imaged scene. This dissertation presents a method for the correction of wavefront curvature defocus effects under these scenarios, concentrating on the generalized: squint-mode imaging scenario and its computational aspects. This correction is accomplished through an efficient one-dimensional, image domain filter applied as a post-processing step to PF.4. This post-filter, referred to as SVPF, is precalculated from a theoretical derivation of the wavefront curvature effect and varies as a function of scene location. Prior to SVPF, severe restrictions were placed on the imaged scene size in order to avoid defocus effects under these scenarios when using PFA. The SVPF algorithm eliminates the need for scene size restrictions when wavefront curvature effects are present, correcting for wavefront curvature in broadside as well as squinted collection modes while imposing little additional computational penalty for squinted images. This dissertation covers the theoretical development, implementation and analysis of the generalized, squint-mode SVPF algorithm (of which broadside-mode is a special case) and provides examples of its capabilities and limitations as well as offering guidelines for maximizing its computational efficiency. Tradeoffs between the PFA/SVPF combination and other spotlight-mode SAR image formation techniques are discussed with regard to computational burden, image quality, and imaging geometry constraints. It is demonstrated that other methods fail to exhibit a clear computational advantage over polar-formatting in conjunction

  18. Non-uniform dispersion of the source-sink relationship alters wavefront curvature.

    Directory of Open Access Journals (Sweden)

    Lucia Romero

    Full Text Available The distribution of cellular source-sink relationships plays an important role in cardiac propagation. It can lead to conduction slowing and block as well as wave fractionation. It is of great interest to unravel the mechanisms underlying evolution in wavefront geometry. Our goal is to investigate the role of the source-sink relationship on wavefront geometry using computer simulations. We analyzed the role of variability in the microscopic source-sink relationship in driving changes in wavefront geometry. The electrophysiological activity of a homogeneous isotropic tissue was simulated using the ten Tusscher and Panfilov 2006 action potential model and the source-sink relationship was characterized using an improved version of the Romero et al. safety factor formulation (SFm2. Our simulations reveal that non-uniform dispersion of the cellular source-sink relationship (dispersion along the wavefront leads to alterations in curvature. To better understand the role of the source-sink relationship in the process of wave formation, the electrophysiological activity at the initiation of excitation waves in a 1D strand was examined and the source-sink relationship was characterized using the two recently updated safety factor formulations: the SFm2 and the Boyle-Vigmond (SFVB definitions. The electrophysiological activity at the initiation of excitation waves was intimately related to the SFm2 profiles, while the SFVB led to several counterintuitive observations. Importantly, with the SFm2 characterization, a critical source-sink relationship for initiation of excitation waves was identified, which was independent of the size of the electrode of excitation, membrane excitability, or tissue conductivity. In conclusion, our work suggests that non-uniform dispersion of the source-sink relationship alters wavefront curvature and a critical source-sink relationship profile separates wave expansion from collapse. Our study reinforces the idea that the

  19. BER Analysis of Coherent Free-Space Optical Communication Systems with a Focal-Plane-Based Wavefront Sensor

    Science.gov (United States)

    Cao, Jingtai; Zhao, Xiaohui; Liu, Wei; Gu, Haijun

    2018-03-01

    A wavefront sensor is one of most important units for an adaptive optics system. Based on our previous works, in this paper, we discuss the bit-error-rate (BER) performance of coherent free space optical communication systems with a focal-plane-based wavefront sensor. Firstly, the theory of a focal-plane-based wavefront sensor is given. Then the relationship between the BER and the mixing efficiency with a homodyne receiver is discussed on the basis of binary-phase-shift-keying (BPSK) modulation. Finally, the numerical simulation results are shown that the BER will be decreased obviously after aberrations correction with the focal-plane-based wavefront sensor. In addition, the BER will decrease along with increasing number of photons received within a single bit. These analysis results will provide a reference for the design of the coherent Free space optical communication (FSOC) system.

  20. Receding-horizon adaptive contyrol of aero-optical wavefronts

    NARCIS (Netherlands)

    Tesch, J.; Gibson, S.; Verhaegen, M.

    2013-01-01

    A new method for adaptive prediction and correction of wavefront errors in adaptive optics (AO) is introduced. The new method is based on receding-horizon control design and an adaptive lattice filter. Experimental results presented illustrate the capability of the new adaptive controller to predict

  1. 110 °C range athermalization of wavefront coding infrared imaging systems

    Science.gov (United States)

    Feng, Bin; Shi, Zelin; Chang, Zheng; Liu, Haizheng; Zhao, Yaohong

    2017-09-01

    110 °C range athermalization is significant but difficult for designing infrared imaging systems. Our wavefront coding athermalized infrared imaging system adopts an optical phase mask with less manufacturing errors and a decoding method based on shrinkage function. The qualitative experiments prove that our wavefront coding athermalized infrared imaging system has three prominent merits: (1) working well over a temperature range of 110 °C; (2) extending the focal depth up to 15.2 times; (3) achieving a decoded image being approximate to its corresponding in-focus infrared image, with a mean structural similarity index (MSSIM) value greater than 0.85.

  2. Dynamic wavefront sensing and correction with low-cost twisted nematic spatial light modulators

    International Nuclear Information System (INIS)

    Duran, Vicente; Climent, Vicent; Lancis, Jesus; Tajahuerce, Enrique; Bara, Salvador; Arines, Justo; Ares, Jorge; Andres, Pedro; Jaroszewicz, Zbigniew

    2010-01-01

    Off-the-shelf twisted nematic liquid crystal displays (TNLCDs) show some interesting features such as high spatial resolution, easy handling, wide availability, and low cost. We describe a compact adaptive optical system using just one TNLCD to measure and compensate optical aberrations. The current system operates at a frame rate of the order of 10 Hz with a four level codification scheme. Wavefront estimation is performed through conventional Hartmann-Shack sensing architecture. The system has proved to work properly with a maximum rms aberration of 0.76 microns and wavefront gradient of 50 rad/mm at a wavelength of 514 nm. These values correspond to typical aberrations found in human eyes. The key of our approach is careful characterization and optimization of the TNLCD for phase-only modulation. For this purpose, we exploit the so-called retarder-rotator approach for twisted nematic liquid crystal cells. The optimization process has been successfully applied to SLMs working either in transmissive or in reflective mode, even when light depolarization effects are observed.

  3. Study on the properties of infrared wavefront coding athermal system under several typical temperature gradient distributions

    Science.gov (United States)

    Cai, Huai-yu; Dong, Xiao-tong; Zhu, Meng; Huang, Zhan-hua

    2018-01-01

    Wavefront coding for athermal technique can effectively ensure the stability of the optical system imaging in large temperature range, as well as the advantages of compact structure and low cost. Using simulation method to analyze the properties such as PSF and MTF of wavefront coding athermal system under several typical temperature gradient distributions has directive function to characterize the working state of non-ideal temperature environment, and can effectively realize the system design indicators as well. In this paper, we utilize the interoperability of data between Solidworks and ZEMAX to simplify the traditional process of structure/thermal/optical integrated analysis. Besides, we design and build the optical model and corresponding mechanical model of the infrared imaging wavefront coding athermal system. The axial and radial temperature gradients of different degrees are applied to the whole system by using SolidWorks software, thus the changes of curvature, refractive index and the distance between the lenses are obtained. Then, we import the deformation model to ZEMAX for ray tracing, and obtain the changes of PSF and MTF in optical system. Finally, we discuss and evaluate the consistency of the PSF (MTF) of the wavefront coding athermal system and the image restorability, which provides the basis and reference for the optimal design of the wavefront coding athermal system. The results show that the adaptability of single material infrared wavefront coding athermal system to axial temperature gradient can reach the upper limit of temperature fluctuation of 60°C, which is much higher than that of radial temperature gradient.

  4. Atmospheric turbulence temperature on the laser wavefront properties

    Science.gov (United States)

    Contreras López, J. C.; Ballesteros Díaz, A.; Tíjaro Rojas, O. J.; Torres Moreno, Y.

    2017-06-01

    Temperature is a physical magnitude that if is higher, the refractive index presents more important random fluctuations, which produce a greater distortion in the wavefront and thus a displacement in its centroid. To observe the effect produced by the turbulent medium strongly influenced by temperature on propagation laser beam, we experimented with two variable and controllable temperature systems designed as optical turbulence generators (OTG): a Turbulator and a Parallelepiped glass container. The experimental setup use three CMOS cameras and four temperature sensors spatially distributed to acquire synchronously information of the laser beam wavefront and turbulence temperature, respectively. The acquired information was analyzed with MATLAB® software tool, that it allows to compute the position, in terms of the evolution time, of the laser beam center of mass and their deviations produced by different turbulent conditions generated inside the two manufactured systems. The results were reflected in the statistical analysis of the centroid shifting.

  5. Atmospheric turbulence temperature on the laser wavefront properties

    International Nuclear Information System (INIS)

    López, J C Contreras; Rojas, O J Tíjaro; Díaz, A Ballesteros; Moreno, Y Torres

    2017-01-01

    Temperature is a physical magnitude that if is higher, the refractive index presents more important random fluctuations, which produce a greater distortion in the wavefront and thus a displacement in its centroid. To observe the effect produced by the turbulent medium strongly influenced by temperature on propagation laser beam, we experimented with two variable and controllable temperature systems designed as optical turbulence generators (OTG): a Turbulator and a Parallelepiped glass container. The experimental setup use three CMOS cameras and four temperature sensors spatially distributed to acquire synchronously information of the laser beam wavefront and turbulence temperature, respectively. The acquired information was analyzed with MATLAB® software tool, that it allows to compute the position, in terms of the evolution time, of the laser beam center of mass and their deviations produced by different turbulent conditions generated inside the two manufactured systems. The results were reflected in the statistical analysis of the centroid shifting. (paper)

  6. Advanced in-flight measurement techniques

    CERN Document Server

    Lawson, Nicholas; Jentink, Henk; Kompenhans, Jürgen

    2013-01-01

    The book presents a synopsis of the main results achieved during the 3 year EU-project "Advanced Inflight Measurement Techniques (AIM)" which applied advanced image based measurement techniques to industrial flight testing. The book is intended to be not only an overview on the AIM activities but also a guide on the application of advanced optical measurement techniques for future flight testing. Furthermore it is a useful guide for engineers in the field of experimental methods and flight testing who face the challenge of a future requirement for the development of highly accurate non-intrusive in-flight measurement techniques.

  7. Correlator optical wavefront sensor COWS

    Science.gov (United States)

    1991-02-01

    This report documents the significant upgrades and improvements made to the correlator optical wavefront sensor (COWS) optical bench during this phase of the program. Software for the experiment was reviewed and documented. Flowcharts showing the program flow are included as well as documentation for programs which were written to calculate and display Zernike polynomials. The system was calibrated and aligned and a series of experiments to determine the optimum settings for the input and output MOSLM polarizers were conducted. In addition, design of a simple aberration generation is included.

  8. A hybrid system for beam steering and wavefront control

    Science.gov (United States)

    Nikulin, Vladimir V.

    2004-06-01

    Performance of long-range mobile laser systems operating within Earth's atmosphere is generally limited by several factors. Movement of the communicating platforms, such as aircraft, terrain vehicles, etc., complemented by mechanical vibrations, is the main cause of pointing errors. In addition, atmospheric turbulence causes changes of the refractive index along the propagation path that lead to phase distortions (aberrations), thus creating random redistribution of optical energy in the spatial domain. The combined effect of these factors leads to an increased bit-error probability under adverse operation conditions. While traditional approaches provide separate treatment of these problems, suggesting the development of high-bandwidth beam steering systems to perform tracking and jitter rejection, and wavefront control for the mitigation of atmospheric effects, the two tasks could be integrated. In this paper we present a hybrid laser beam steering/wavefront control system comprising an electrically addressed spatial light modulator (SLM) installed on the Omni-Wrist sensor mount platform. The function of the Omni-Wrist is to provide coarse steering over a wide range of pointing angles, while the purpose of the SLM is twofold: it performs wavefront correction and fine steering. The control law for the Omni-Wrist is synthesized using the decentralized approach that provides independent access to the azimuth and declination channels, while the algorithm for calculating the required phase profile for the SLM is optimization-based. This paper presents the control algorithms, the approach to coordinating the operation of the both systems and the simulation results.

  9. Clinical outcomes of wavefront-guided laser in situ keratomileusis: 6-month follow-up.

    Science.gov (United States)

    Aizawa, Daisuke; Shimizu, Kimiya; Komatsu, Mari; Ito, Misae; Suzuki, Masanobu; Ohno, Koji; Uozato, Hiroshi

    2003-08-01

    To evaluate the clinical outcomes 6 months after wavefront-guided laser in situ keratomileusis (LASIK) for myopia in Japan. Department of Ophthalmology, Sanno Hospital, Tokyo, Japan. This prospective study comprised 22 eyes of 12 patients treated with wavefront-guided LASIK who were available for evaluation at 6 months. The mean patient age was 31.2 years +/- 8.4 (SD) (range 23 to 50 years), and the mean preoperative spherical equivalent refraction was -7.30 +/- 2.72 diopters (D) (range -2.75 to -11.88 D). In all cases, preoperative wavefront analysis was performed with a Hartmann-Shack aberrometer and the Technolas 217z flying-spot excimer laser system (Bausch & Lomb) was used with 1.0 mm and 2.0 mm spot sizes and an active eye tracker with a 120 Hz tracking rate. The clinical outcomes of wavefront-guided LASIK were evaluated in terms of safety, efficacy, predictability, stability, complications, and preoperative and postoperative aberrations. At 6 months, 10 eyes had no change in best spectacle-correct visual acuity and 10 gained 1 or more lines. The safety index was 1.11 and the efficacy index, 0.82. Slight undercorrections were observed in highly myopic eyes. In all eyes, the postoperative refraction tended slightly toward myopia for 3 months and stabilized after that. No complication such as epithelial ingrowth, diffuse lamellar keratitis, or infection was observed. Comparison of the preoperative and postoperative aberrations showed that 2nd-order aberrations decreased and higher-order aberrations increased. In the 3rd order, aberrations increased in the high-myopia group (-6.0 D or worse) and decreased in the low to moderate-myopia group (better than -6.0 D). Wavefront-guided LASIK was a good option for refractive surgery, although a longer follow-up in a larger study is required.

  10. Beam quality management by periodic reproduction of wavefront aberrations in end-pumped Nd:YVO4 laser amplifiers.

    Science.gov (United States)

    Liu, Bin; Liu, Chong; Shen, Lifeng; Wang, Chunhua; Ye, Zhibin; Liu, Dong; Xiang, Zhen

    2016-04-18

    A method for beam quality management is presented in a master oscillator power amplifier (MOPA) using Nd:YVO4 as the gain medium by extra-cavity periodic reproduction of wavefront aberrations. The wavefront aberration evolution of the intra-cavity beams is investigated for both symmetrical and asymmetrical resonators. The wavefront aberration reproduction process is successfully realized outside the cavity in four-stage amplifiers. In the MOPA with a symmetrical oscillator, the laser power increases linearly and the beam quality hardly changes. In the MOPA with an asymmetrical oscillator, the beam quality is deteriorated after the odd-stage amplifier and is improved after the even-stage amplifier. The wavefront aberration reproduction during the extra-cavity beam propagation in the amplifiers is equivalent to that during the intra-cavity propagation. This solution helps to achieve the effective beam quality management in laser amplifier chains.

  11. Study of wavefront aberration in DR patients with different degree of dry eye

    Directory of Open Access Journals (Sweden)

    Jin-Ran Fang

    2018-05-01

    Full Text Available AIM: To compare the changes of wavefront aberrations in patients with diabetic retinopathy(DRand with different degrees of dry eye and to explore the reasons of visual quality decline in them. METHODS: We randomly selected 40 eyes in our hospital for treatment with DR and varying degrees of dry eye, and 40 eyes of normal control group. Topcon KR-1W visual quality analyzer was used to record the mean square the total high order corneal aberration, spherical aberration, comatic aberration and trefoil aberration of cornea with pupil diameters of 4mm and 6mm. Analysis of variance were used to compare the wavefront aberrations and the aberration values in the control group and in patients with diabetic retinopathy and with different degrees of dry eye. RESULTS: For 4mm and 6mm pupil diameters, nondiabetic retinopathy(NDRwith dry eye group, the nonproliferative diabetic retinopathy(NPDRwith dry eye group and proliferative diabetic retinopathy(PDRdry eye group had significantly increased tHOA, coma and trefoil compared with the contrast group(PPCONCLUSION: Dry eye of diabetic retinopathy with different degrees is closely related to the increase of wavefront aberration. Increased wavefront aberration may be one of the reasons to reduced visual quality in patients with diabetic retinopathy and with dry eye, and provide the basis for the decline of visual function of diabetic patients with dry eye.

  12. High speed real-time wavefront processing system for a solid-state laser system

    Science.gov (United States)

    Liu, Yuan; Yang, Ping; Chen, Shanqiu; Ma, Lifang; Xu, Bing

    2008-03-01

    A high speed real-time wavefront processing system for a solid-state laser beam cleanup system has been built. This system consists of a core2 Industrial PC (IPC) using Linux and real-time Linux (RT-Linux) operation system (OS), a PCI image grabber, a D/A card. More often than not, the phase aberrations of the output beam from solid-state lasers vary fast with intracavity thermal effects and environmental influence. To compensate the phase aberrations of solid-state lasers successfully, a high speed real-time wavefront processing system is presented. Compared to former systems, this system can improve the speed efficiently. In the new system, the acquisition of image data, the output of control voltage data and the implementation of reconstructor control algorithm are treated as real-time tasks in kernel-space, the display of wavefront information and man-machine conversation are treated as non real-time tasks in user-space. The parallel processing of real-time tasks in Symmetric Multi Processors (SMP) mode is the main strategy of improving the speed. In this paper, the performance and efficiency of this wavefront processing system are analyzed. The opened-loop experimental results show that the sampling frequency of this system is up to 3300Hz, and this system can well deal with phase aberrations from solid-state lasers.

  13. Construction of the prototype of an optical system for measurement of small wavefront distortion of laser radiation in optical elements: proposal for the ISTC project

    Science.gov (United States)

    Potemkin, A.; Malshakov, Anatoly; Makarov, Alexandr; Krotov, V. A.; Kulikov, Stanislav M.; Sukharev, Stanislav A.

    1999-07-01

    Technique testing of quality the transparent component of optical devices with application of self-focusing effect is offered. In measurement of small wavefront distortions a method of comparison of laser beam parameters before and after passage of a tested optical element is used. With the purpose of increase of sensitivity it is offered for overcoming negative diffraction action to use self-focusing effect of probe beam. Application of self-focusing effect allows to reach sensitivity no less than (lambda) /600 and in future up to (lambda) /3000. On simple samples experimental checks of a method are made.

  14. Hybrid wavefront sensing and image correction algorithm for imaging through turbulent media

    Science.gov (United States)

    Wu, Chensheng; Robertson Rzasa, John; Ko, Jonathan; Davis, Christopher C.

    2017-09-01

    It is well known that passive image correction of turbulence distortions often involves using geometry-dependent deconvolution algorithms. On the other hand, active imaging techniques using adaptive optic correction should use the distorted wavefront information for guidance. Our work shows that a hybrid hardware-software approach is possible to obtain accurate and highly detailed images through turbulent media. The processing algorithm also takes much fewer iteration steps in comparison with conventional image processing algorithms. In our proposed approach, a plenoptic sensor is used as a wavefront sensor to guide post-stage image correction on a high-definition zoomable camera. Conversely, we show that given the ground truth of the highly detailed image and the plenoptic imaging result, we can generate an accurate prediction of the blurred image on a traditional zoomable camera. Similarly, the ground truth combined with the blurred image from the zoomable camera would provide the wavefront conditions. In application, our hybrid approach can be used as an effective way to conduct object recognition in a turbulent environment where the target has been significantly distorted or is even unrecognizable.

  15. Improved Visualization of Gastrointestinal Slow Wave Propagation Using a Novel Wavefront-Orientation Interpolation Technique.

    Science.gov (United States)

    Mayne, Terence P; Paskaranandavadivel, Niranchan; Erickson, Jonathan C; OGrady, Gregory; Cheng, Leo K; Angeli, Timothy R

    2018-02-01

    High-resolution mapping of gastrointestinal (GI) slow waves is a valuable technique for research and clinical applications. Interpretation of high-resolution GI mapping data relies on animations of slow wave propagation, but current methods remain as rudimentary, pixelated electrode activation animations. This study aimed to develop improved methods of visualizing high-resolution slow wave recordings that increases ease of interpretation. The novel method of "wavefront-orientation" interpolation was created to account for the planar movement of the slow wave wavefront, negate any need for distance calculations, remain robust in atypical wavefronts (i.e., dysrhythmias), and produce an appropriate interpolation boundary. The wavefront-orientation method determines the orthogonal wavefront direction and calculates interpolated values as the mean slow wave activation-time (AT) of the pair of linearly adjacent electrodes along that direction. Stairstep upsampling increased smoothness and clarity. Animation accuracy of 17 human high-resolution slow wave recordings (64-256 electrodes) was verified by visual comparison to the prior method showing a clear improvement in wave smoothness that enabled more accurate interpretation of propagation, as confirmed by an assessment of clinical applicability performed by eight GI clinicians. Quantitatively, the new method produced accurate interpolation values compared to experimental data (mean difference 0.02 ± 0.05 s) and was accurate when applied solely to dysrhythmic data (0.02 ± 0.06 s), both within the error in manual AT marking (mean 0.2 s). Mean interpolation processing time was 6.0 s per wave. These novel methods provide a validated visualization platform that will improve analysis of high-resolution GI mapping in research and clinical translation.

  16. Optical Performance of Breadboard Amon-Ra Imaging Channel Instrument for Deep Space Albedo Measurement

    Directory of Open Access Journals (Sweden)

    Won Hyun Park

    2007-03-01

    Full Text Available The AmonRa instrument, the primary payload of the international EARTHSHINE mission, is designed for measurement of deep space albedo from L1 halo orbit. We report the optical design, tolerance analysis and the optical performance of the breadborad AmonRa imaging channel instrument optimized for the mission science requirements. In particular, an advanced wavefront feedback process control technique was used for the instrumentation process including part fabrication, system alignment and integration. The measured performances for the complete breadboard system are the RMS 0.091 wave(test wavelength: 632.8 nm in wavefront error, the ensquared energy of 61.7%(in 14 μ m and the MTF of 35.3%(Nyquist frequency: 35.7 mm^{-1} at the center field. These resulting optical system performances prove that the breadboard AmonRa instrument, as built, satisfies the science requirements of the EARTHSHINE mission.

  17. Wavefront modulation of water surface wave by a metasurface

    International Nuclear Information System (INIS)

    Sun Hai-Tao; Cheng Ying; Liu Xiao-Jun; Wang Jing-Shi

    2015-01-01

    We design a planar metasurface to modulate the wavefront of a water surface wave (WSW) on a deep sub-wavelength scale. The metasurface is composed of an array of coiling-up-space units with specially designed parameters, and can take on the work of steering the wavefront when it is pierced into water. Like their acoustic counterparts, the modulation of WSW is ascribed to the gradient phase shift of the coiling-up-space units, which can be perfectly tuned by changing the coiling plate length and channel number inside the units. According to the generalized Snell’s law, negative refraction and ‘driven’ surface mode of WSW are also demonstrated at certain incidences. Specially, the transmitted WSW could be efficiently guided out by linking a symmetrically-corrugated channel in ‘driven’ surface mode. This work may have potential applications in water wave energy extraction and coastal protection. (paper)

  18. Wavefront error budget development for the Thirty Meter Telescope laser guide star adaptive optics system

    Science.gov (United States)

    Gilles, Luc; Wang, Lianqi; Ellerbroek, Brent

    2008-07-01

    This paper describes the modeling effort undertaken to derive the wavefront error (WFE) budget for the Narrow Field Infrared Adaptive Optics System (NFIRAOS), which is the facility, laser guide star (LGS), dual-conjugate adaptive optics (AO) system for the Thirty Meter Telescope (TMT). The budget describes the expected performance of NFIRAOS at zenith, and has been decomposed into (i) first-order turbulence compensation terms (120 nm on-axis), (ii) opto-mechanical implementation errors (84 nm), (iii) AO component errors and higher-order effects (74 nm) and (iv) tip/tilt (TT) wavefront errors at 50% sky coverage at the galactic pole (61 nm) with natural guide star (NGS) tip/tilt/focus/astigmatism (TTFA) sensing in J band. A contingency of about 66 nm now exists to meet the observatory requirement document (ORD) total on-axis wavefront error of 187 nm, mainly on account of reduced TT errors due to updated windshake modeling and a low read-noise NGS wavefront sensor (WFS) detector. A detailed breakdown of each of these top-level terms is presented, together with a discussion on its evaluation using a mix of high-order zonal and low-order modal Monte Carlo simulations.

  19. Wavefront correction for static and dynamic aberrations to within 1 second of the system shot in the NIF Beamlet demonstration facility

    International Nuclear Information System (INIS)

    Hartley, R.; Kartz, M.; Behrendt, W.

    1996-10-01

    The laser wavefront of the NIF Beamlet demonstration system is corrected for static aberrations with a wavefront control system. The system operates closed loop with a probe beam prior to a shot and has a loop bandwidth of about 3 Hz. However, until recently the wavefront control system was disabled several minutes prior to the shot to allow time to manually reconfigure its attenuators and probe beam insertion mechanism to shot mode. Thermally-induced dynamic variations in gas density in the Beamlet main beam line produce significant wavefront error. After about 5-8 seconds, the wavefront error has increased to a new, higher level due to turbulence- induced aberrations no longer being corrected- This implies that there is a turbulence-induced aberration noise bandwidth of less than one Hertz, and that the wavefront controller could correct for the majority of turbulence-induced aberration (about one- third wave) by automating its reconfiguration to occur within one second of the shot, This modification was recently implemented on Beamlet; we call this modification the t 0 -1 system

  20. Describing the Corneal Shape after Wavefront-Optimized Photorefractive Keratectomy

    NARCIS (Netherlands)

    de Jong, Tim; Wijdh, Robert H. J.; Koopmans, Steven A.; Jansonius, Nomdo M.

    2014-01-01

    PURPOSE: To develop a procedure for describing wavefront-optimized photorefractive keratectomy (PRK) corneas and to characterize PRK-induced changes in shape. METHODS: We analyzed preoperative and postoperative corneal elevation data of 41 eyes of 41 patients (mean [±SD] age, 38 [±11] years) who

  1. Development of remote vibration measurement technique through turbulent media

    Energy Technology Data Exchange (ETDEWEB)

    Baik, Sung Hoon; Chung, Chin Man; Kim, Min Suk; Park, Seung Kyu; Chung, Heung Jone

    2002-12-01

    The effect of wavefront distortion of laser beam of a LDV(Laser Doppler Vibrometer) in the turbulence media was investigated for application of adaptive optics to LDV. The high-speed tip/tilt adaptive optics system and closed-loop steering algorithm were developed for real-time correction of the direction fluctuation of the laser beam of LDV. The measuring performance of the LDV was improved when the steering system was applied to LDV at the vibration frequency range of 10 Hz - 30 Hz. The high-speed Shack-Hartmann wavefront sensor(400 Hz) was developed to measure the performance of the LDV due to wavefront distortion. The wavefront distortion due to the turbulence media induced low visibility and degraded the performance of the vibrometer. From the experiments, when the wavefront distortion is above 2 wavelengths in the cross section of the laser beam(dia. 20 mm), the vibration signal from laser vibrometer was severely degraded. When the wavefront distortion is smaller than one wave, the vibration signal was good. From the this research, high-speed closed-loop tip/tilt control technique of the laser beam was developed and applied to the laser metrology area. In the future, the adaptive optics system for wavefront correction will be applied to other research area.

  2. Wavefront reversal in a copper vapor active medium

    Energy Technology Data Exchange (ETDEWEB)

    Bunkin, F.V.; Savranskii, V.V.; Shafeev, G.A.

    1981-09-01

    Wavefront reversal in the resonator of a copper vapor laser was observed. The frequencies of the signal and reversed waves were the same. The dependence of the reversed signal power on the input signal power had a threshold. Photographs were obtained of the reconstructed image of an object when a distorting phase plate was inserted in the resonator.

  3. Wavefront error measurement of the concave ellipsoidal mirrors of the METIS coronagraph on ESA Solar Orbiter mission

    Science.gov (United States)

    Sandri, P.

    2017-12-01

    The paper describes the alignment technique developed for the wavefront error measurement of ellipsoidal mirrors presenting a central hole. The achievement of a good alignment with a classic setup at the finite conjugates when mirrors are uncoated cannot be based on the identification and materialization at naked eye of the retro-reflected spot by the mirror under test as the intensity of the retro-reflected spot results to be ≈1E-3 of the intensity of the injected laser beam of the interferometer. We present the technique developed for the achievement of an accurate alignment in the setup at the finite conjugate even in condition of low intensity based on the use of an autocollimator adjustable in focus position and a small polished flat surface on the rear side of the mirror. The technique for the alignment has successfully been used for the optical test of the concave ellipsoidal mirrors of the METIS coronagraph of the ESA Solar Orbiter mission. The presented method results to be advantageous in terms of precision and of time saving also when the mirrors are reflective coated and integrated into their mechanical hardware.

  4. Wavefront picking for 3D tomography and full-waveform inversion

    KAUST Repository

    AlTheyab, Abdullah; Schuster, Gerard T.

    2016-01-01

    We have developed an efficient approach for picking firstbreak wavefronts on coarsely sampled time slices of 3D shot gathers. Our objective was to compute a smooth initial velocity model for multiscale full-waveform inversion (FWI). Using

  5. Development of a hard x-ray wavefront sensor for the EuXFEL

    Science.gov (United States)

    Berujon, Sebastien; Ziegler, Eric; Cojocaru, Ruxandra; Martin, Thierry

    2017-05-01

    We present developments on a hard X-ray wavefront sensing instrument for characterizing and monitoring the beam of the European X-ray Free Electron Lasers (EuXFEL). The pulsed nature of the intense X-ray beam delivered by this new class of facility gives rise to strong challenges for the optics and their diagnostic. In the frame of the EUCALL project Work Package 7, we are developing a sensor able to observe the beam in the X-ray energy range [8-40] keV without altering it. The sensor is based on the speckle tracking principle and employs two semi-transparent optics optimized such that their X-ray absorption is reduced. Furthermore, this instrument requires a scattering object with small random features placed in the beam and two cameras to record images of the beam at two different propagation distances. The analysis of the speckle pattern and its distortion from one image to the other allows absolute or differential wavefront recovery from pulse to pulse. Herein, we introduce the stakes and challenges of wavefront sensing at an XFEL source and explain the strategies adopted to fulfil the high requirements set by such a source.

  6. H2-optimal control of an adaptive optics system : Part I, data-driven modeling of the wavefront disturbance

    NARCIS (Netherlands)

    Hinnen, K.; Verhaegen, M.; Doelman, N.

    2005-01-01

    Even though the wavefront distortion introduced by atmospheric turbulence is a dynamic process, its temporal evolution is usually neglected in the adaptive optics (AO) control design. Most AO control systems consider only the spatial correlation in a separate wavefront reconstruction step. By

  7. Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens.

    Science.gov (United States)

    Bonora, Stefano; Jian, Yifan; Zhang, Pengfei; Zam, Azhar; Pugh, Edward N; Zawadzki, Robert J; Sarunic, Marinko V

    2015-08-24

    Adaptive optics is rapidly transforming microscopy and high-resolution ophthalmic imaging. The adaptive elements commonly used to control optical wavefronts are liquid crystal spatial light modulators and deformable mirrors. We introduce a novel Multi-actuator Adaptive Lens that can correct aberrations to high order, and which has the potential to increase the spread of adaptive optics to many new applications by simplifying its integration with existing systems. Our method combines an adaptive lens with an imaged-based optimization control that allows the correction of images to the diffraction limit, and provides a reduction of hardware complexity with respect to existing state-of-the-art adaptive optics systems. The Multi-actuator Adaptive Lens design that we present can correct wavefront aberrations up to the 4th order of the Zernike polynomial characterization. The performance of the Multi-actuator Adaptive Lens is demonstrated in a wide field microscope, using a Shack-Hartmann wavefront sensor for closed loop control. The Multi-actuator Adaptive Lens and image-based wavefront-sensorless control were also integrated into the objective of a Fourier Domain Optical Coherence Tomography system for in vivo imaging of mouse retinal structures. The experimental results demonstrate that the insertion of the Multi-actuator Objective Lens can generate arbitrary wavefronts to correct aberrations down to the diffraction limit, and can be easily integrated into optical systems to improve the quality of aberrated images.

  8. Prototype of a laser guide star wavefront sensor for the Extremely Large Telescope

    Science.gov (United States)

    Patti, M.; Lombini, M.; Schreiber, L.; Bregoli, G.; Arcidiacono, C.; Cosentino, G.; Diolaiti, E.; Foppiani, I.

    2018-06-01

    The new class of large telescopes, like the future Extremely Large Telescope (ELT), are designed to work with a laser guide star (LGS) tuned to a resonance of atmospheric sodium atoms. This wavefront sensing technique presents complex issues when applied to big telescopes for many reasons, mainly linked to the finite distance of the LGS, the launching angle, tip-tilt indetermination and focus anisoplanatism. The implementation of a laboratory prototype for the LGS wavefront sensor (WFS) at the beginning of the phase study of MAORY (Multi-conjugate Adaptive Optics Relay) for ELT first light has been indispensable in investigating specific mitigation strategies for the LGS WFS issues. This paper presents the test results of the LGS WFS prototype under different working conditions. The accuracy within which the LGS images are generated on the Shack-Hartmann WFS has been cross-checked with the MAORY simulation code. The experiments show the effect of noise on centroiding precision, the impact of LGS image truncation on wavefront sensing accuracy as well as the temporal evolution of the sodium density profile and LGS image under-sampling.

  9. Layer-oriented multigrid wavefront reconstruction algorithms for multi-conjugate adaptive optics

    Science.gov (United States)

    Gilles, Luc; Ellerbroek, Brent L.; Vogel, Curtis R.

    2003-02-01

    Multi-conjugate adaptive optics (MCAO) systems with 104-105 degrees of freedom have been proposed for future giant telescopes. Using standard matrix methods to compute, optimize, and implement wavefront control algorithms for these systems is impractical, since the number of calculations required to compute and apply the reconstruction matrix scales respectively with the cube and the square of the number of AO degrees of freedom. In this paper, we develop an iterative sparse matrix implementation of minimum variance wavefront reconstruction for telescope diameters up to 32m with more than 104 actuators. The basic approach is the preconditioned conjugate gradient method, using a multigrid preconditioner incorporating a layer-oriented (block) symmetric Gauss-Seidel iterative smoothing operator. We present open-loop numerical simulation results to illustrate algorithm convergence.

  10. Clinical Outcomes of SMILE With a Triple Centration Technique and Corneal Wavefront-Guided Transepithelial PRK in High Astigmatism.

    Science.gov (United States)

    Jun, Ikhyun; Kang, David Sung Yong; Reinstein, Dan Z; Arba-Mosquera, Samuel; Archer, Timothy J; Seo, Kyoung Yul; Kim, Tae-Im

    2018-03-01

    To comparatively investigate the clinical outcomes, vector parameters, and corneal aberrations of small incision lenticule extraction (SMILE) with a triple centration technique and corneal wavefront-guided transepithelial photorefractive keratectomy (PRK) for the correction of high astigmatism. This retrospective, comparative case series study included 89 eyes (89 patients) that received treatment for myopia with high astigmatism (≥ 2.50 diopters) using SMILE with a triple centration technique (SMILE group; 45 eyes) and corneal wavefront-guided transepithelial PRK (transepithelial PRK group; 44 eyes). Visual acuity measurement, manifest refraction, slit-lamp examination, autokeratometry, corneal topography, and evaluation of corneal wavefront aberration were performed preoperatively and at 1, 3, and 6 months after surgery. The safety, efficacy, vector parameters, and corneal aberrations at 6 months after surgery were compared between the two groups. At 6 months after surgery, the transepithelial PRK and SMILE groups exhibited comparable mean uncorrected distance visual acuities (-0.06 ± 0.07 and -0.05 ± 0.07 logMAR, respectively), safety, efficacy, and predictability of refractive and visual outcomes. There was a slight but statistically significant difference in the correction index between the transepithelial PRK and SMILE groups (0.96 ± 0.11 and 0.91 ± 0.10, respectively). Whereas the transepithelial PRK group exhibited increased corneal spherical aberration and significantly reduced corneal coma and trefoil, no changes in aberrometric values were noted in the SMILE group. Both SMILE with a triple centration technique and corneal wavefront-guided transepithelial PRK are effective and provide predictable outcomes for the correction of high myopic astigmatism, although slight undercorrection was observed in the SMILE group. The triple centration technique was helpful in astigmatism correction by SMILE. [J Refract Surg. 2018;34(3):156-163.]. Copyright 2018

  11. Semiconductor sensor for optically measuring polarization rotation of optical wavefronts using rare earth iron garnets

    Science.gov (United States)

    Duncan, Paul G.

    2002-01-01

    Described are the design of a rare earth iron garnet sensor element, optical methods of interrogating the sensor element, methods of coupling the optical sensor element to a waveguide, and an optical and electrical processing system for monitoring the polarization rotation of a linearly polarized wavefront undergoing external modulation due to magnetic field or electrical current fluctuation. The sensor element uses the Faraday effect, an intrinsic property of certain rare-earth iron garnet materials, to rotate the polarization state of light in the presence of a magnetic field. The sensor element may be coated with a thin-film mirror to effectively double the optical path length, providing twice the sensitivity for a given field strength or temperature change. A semiconductor sensor system using a rare earth iron garnet sensor element is described.

  12. Higher-Order Wavefront Aberrations for Populations of Young Emmetropes and Myopes

    Directory of Open Access Journals (Sweden)

    Jinhua Bao

    2009-01-01

    Conclusions: Human eyes have systematical higher order aberrations in population, and factors that cause bilateral symmetry of wavefront aberrations between the right and left eyes made important contribution to the systematical aberrations.

  13. Spectral and Wavefront Error Performance of WFIRST/AFTA Prototype Filters

    Science.gov (United States)

    Quijada, Manuel; Seide, Laurie; Marx, Cathy; Pasquale, Bert; McMann, Joseph; Hagopian, John; Dominguez, Margaret; Gong, Qian; Morey, Peter

    2016-01-01

    The Cycle 5 design baseline for the Wide-Field Infrared Survey Telescope Astrophysics Focused Telescope Assets (WFIRSTAFTA) instrument includes a single wide-field channel (WFC) instrument for both imaging and slit-less spectroscopy. The only routinely moving part during scientific observations for this wide-field channel is the element wheel (EW) assembly. This filter-wheel assembly will have 8 positions that will be populated with 6 bandpass filters, a blank position, and a Grism that will consist of a three-element assembly to disperse the full field with an undeviated central wavelength for galaxy redshift surveys. All filter elements in the EW assembly will be made out of fused silica substrates (110 mm diameter) that will have the appropriate bandpass coatings according to the filter designations (Z087, Y106, J129, H158, F184, W149 and Grism). This paper presents and discusses the performance (including spectral transmission and reflectedtransmitted wavefront error measurements) of a subset of bandpass filter coating prototypes that are based on the WFC instrument filter compliment. The bandpass coating prototypes that are tested in this effort correspond to the Z087, W149, and Grism filter elements. These filter coatings have been procured from three different vendors to assess the most challenging aspects in terms of the in-band throughput, out of band rejection (including the cut-on and cutoff slopes), and the impact the wavefront error distortions of these filter coatings will have on the imaging performance of the de-field channel in the WFIRSTAFTA observatory.

  14. Enhancing the performance of the light field microscope using wavefront coding.

    Science.gov (United States)

    Cohen, Noy; Yang, Samuel; Andalman, Aaron; Broxton, Michael; Grosenick, Logan; Deisseroth, Karl; Horowitz, Mark; Levoy, Marc

    2014-10-06

    Light field microscopy has been proposed as a new high-speed volumetric computational imaging method that enables reconstruction of 3-D volumes from captured projections of the 4-D light field. Recently, a detailed physical optics model of the light field microscope has been derived, which led to the development of a deconvolution algorithm that reconstructs 3-D volumes with high spatial resolution. However, the spatial resolution of the reconstructions has been shown to be non-uniform across depth, with some z planes showing high resolution and others, particularly at the center of the imaged volume, showing very low resolution. In this paper, we enhance the performance of the light field microscope using wavefront coding techniques. By including phase masks in the optical path of the microscope we are able to address this non-uniform resolution limitation. We have also found that superior control over the performance of the light field microscope can be achieved by using two phase masks rather than one, placed at the objective's back focal plane and at the microscope's native image plane. We present an extended optical model for our wavefront coded light field microscope and develop a performance metric based on Fisher information, which we use to choose adequate phase masks parameters. We validate our approach using both simulated data and experimental resolution measurements of a USAF 1951 resolution target; and demonstrate the utility for biological applications with in vivo volumetric calcium imaging of larval zebrafish brain.

  15. Travelling wavefronts of a generalized Fisher equation with spatio-temporal delay

    International Nuclear Information System (INIS)

    Jin Chunhua; Yin Jingxue; Wang Yifu

    2009-01-01

    We discuss a generalized Fisher equation with a convolution term which introduces a time-delay in the nonlinearity. Special attention is paid to the existence and the asymptotic behavior of travelling wavefronts connecting two uniform steady states.

  16. Optically sensitive Medipix2 detector for adaptive optics wavefront sensing

    CERN Document Server

    Vallerga, John; Tremsina, Anton; Siegmund, Oswald; Mikulec, Bettina; Clark, Allan G; CERN. Geneva

    2005-01-01

    A new hybrid optical detector is described that has many of the attributes desired for the next generation adaptive optics (AO) wavefront sensors. The detector consists of a proximity focused microchannel plate (MCP) read out by multi-pixel application specific integrated circuit (ASIC) chips developed at CERN ("Medipix2") with individual pixels that amplify, discriminate and count input events. The detector has 256 x 256 pixels, zero readout noise (photon counting), can be read out at 1 kHz frame rates and is abutable on 3 sides. The Medipix2 readout chips can be electronically shuttered down to a temporal window of a few microseconds with an accuracy of 10 ns. When used in a Shack-Hartmann style wavefront sensor, a detector with 4 Medipix chips should be able to centroid approximately 5000 spots using 7 x 7 pixel sub-apertures resulting in very linear, off-null error correction terms. The quantum efficiency depends on the optical photocathode chosen for the bandpass of interest.

  17. Optically sensitive Medipix2 detector for adaptive optics wavefront sensing

    International Nuclear Information System (INIS)

    Vallerga, John; McPhate, Jason; Tremsin, Anton; Siegmund, Oswald; Mikulec, Bettina; Clark, Allan

    2005-01-01

    A new hybrid optical detector is described that has many of the attributes desired for the next generation adaptive optics (AO) wavefront sensors. The detector consists of a proximity focused microchannel plate (MCP) read out by multi-pixel application specific integrated circuit (ASIC) chips developed at CERN ('Medipix2') with individual pixels that amplify, discriminate and count input events. The detector has 256x256 pixels, zero readout noise (photon counting), can be read out at 1 kHz frame rates and is abutable on 3 sides. The Medipix2 readout chips can be electronically shuttered down to a temporal window of a few microseconds with an accuracy of 10 ns. When used in a Shack-Hartmann style wavefront sensor, a detector with 4 Medipix chips should be able to centroid approximately 5000 spots using 7x7 pixel sub-apertures resulting in very linear, off-null error correction terms. The quantum efficiency depends on the optical photocathode chosen for the bandpass of interest

  18. Manipulation of plasmonic wavefront and light–matter interaction in metallic nanostructures: A brief review

    International Nuclear Information System (INIS)

    Li Jia-Fang; Li Zhi-Yuan

    2014-01-01

    The control and application of surface plasmons (SPs), is introduced with particular emphasis on the manipulation of the plasmonic wavefront and light–matter interaction in metallic nanostructures. We introduce a direct design methodology called the surface wave holography method and show that it can be readily employed for wave-front shaping of near-infrared light through a subwavelength hole, it can also be used for designing holographic plasmonic lenses for SPs with complex wavefronts in the visible band. We also discuss several issues of light–matter interaction in plasmonic nanostructures. We show theoretically that amplification of SPs can be achieved in metal nanoparticles incorporated with gain media, leading to a giant reduction of surface plasmon resonance linewidth and enhancement of local electric field intensity. We present an all-analytical semiclassical theory to evaluate spaser performance in a plasmonic nanocavity incorporated with gain media described by the four-level atomic model. We experimentally demonstrate amplified spontaneous emission of SP polaritons and their amplification at the interface between a silver film and a polymer film doped with dye molecules. We discuss various aspects of microscopic and macroscopic manipulation of fluorescent radiation from gold nanorod hybrid structures in a system of either a single nanoparticle or an aligned group of nanoparticles. The findings reported and reviewed here could help others explore various approaches and schemes to manipulate plasmonic wavefront and light–matter interaction in metallic nanostructures for potential applications, such as optical displays, information integration, and energy harvesting technologies. (topical review - plasmonics and metamaterials)

  19. Least-squares wave-front reconstruction of Shack-Hartmann sensors and shearing interferometers using multigrid techniques

    International Nuclear Information System (INIS)

    Baker, K.L.

    2005-01-01

    This article details a multigrid algorithm that is suitable for least-squares wave-front reconstruction of Shack-Hartmann and shearing interferometer wave-front sensors. The algorithm detailed in this article is shown to scale with the number of subapertures in the same fashion as fast Fourier transform techniques, making it suitable for use in applications requiring a large number of subapertures and high Strehl ratio systems such as for high spatial frequency characterization of high-density plasmas, optics metrology, and multiconjugate and extreme adaptive optics systems

  20. Preconditioned conjugate gradient wave-front reconstructors for multiconjugate adaptive optics

    Science.gov (United States)

    Gilles, Luc; Ellerbroek, Brent L.; Vogel, Curtis R.

    2003-09-01

    Multiconjugate adaptive optics (MCAO) systems with 104-105 degrees of freedom have been proposed for future giant telescopes. Using standard matrix methods to compute, optimize, and implement wave-front control algorithms for these systems is impractical, since the number of calculations required to compute and apply the reconstruction matrix scales respectively with the cube and the square of the number of adaptive optics degrees of freedom. We develop scalable open-loop iterative sparse matrix implementations of minimum variance wave-front reconstruction for telescope diameters up to 32 m with more than 104 actuators. The basic approach is the preconditioned conjugate gradient method with an efficient preconditioner, whose block structure is defined by the atmospheric turbulent layers very much like the layer-oriented MCAO algorithms of current interest. Two cost-effective preconditioners are investigated: a multigrid solver and a simpler block symmetric Gauss-Seidel (BSGS) sweep. Both options require off-line sparse Cholesky factorizations of the diagonal blocks of the matrix system. The cost to precompute these factors scales approximately as the three-halves power of the number of estimated phase grid points per atmospheric layer, and their average update rate is typically of the order of 10-2 Hz, i.e., 4-5 orders of magnitude lower than the typical 103 Hz temporal sampling rate. All other computations scale almost linearly with the total number of estimated phase grid points. We present numerical simulation results to illustrate algorithm convergence. Convergence rates of both preconditioners are similar, regardless of measurement noise level, indicating that the layer-oriented BSGS sweep is as effective as the more elaborated multiresolution preconditioner.

  1. Preconditioned conjugate gradient wave-front reconstructors for multiconjugate adaptive optics.

    Science.gov (United States)

    Gilles, Luc; Ellerbroek, Brent L; Vogel, Curtis R

    2003-09-10

    Multiconjugate adaptive optics (MCAO) systems with 10(4)-10(5) degrees of freedom have been proposed for future giant telescopes. Using standard matrix methods to compute, optimize, and implement wavefront control algorithms for these systems is impractical, since the number of calculations required to compute and apply the reconstruction matrix scales respectively with the cube and the square of the number of adaptive optics degrees of freedom. We develop scalable open-loop iterative sparse matrix implementations of minimum variance wave-front reconstruction for telescope diameters up to 32 m with more than 10(4) actuators. The basic approach is the preconditioned conjugate gradient method with an efficient preconditioner, whose block structure is defined by the atmospheric turbulent layers very much like the layer-oriented MCAO algorithms of current interest. Two cost-effective preconditioners are investigated: a multigrid solver and a simpler block symmetric Gauss-Seidel (BSGS) sweep. Both options require off-line sparse Cholesky factorizations of the diagonal blocks of the matrix system. The cost to precompute these factors scales approximately as the three-halves power of the number of estimated phase grid points per atmospheric layer, and their average update rate is typically of the order of 10(-2) Hz, i.e., 4-5 orders of magnitude lower than the typical 10(3) Hz temporal sampling rate. All other computations scale almost linearly with the total number of estimated phase grid points. We present numerical simulation results to illustrate algorithm convergence. Convergence rates of both preconditioners are similar, regardless of measurement noise level, indicating that the layer-oriented BSGS sweep is as effective as the more elaborated multiresolution preconditioner.

  2. Refractive outcomes of intraoperative wavefront aberrometry versus optical biometry alone for intraocular lens power calculation

    Directory of Open Access Journals (Sweden)

    Zina Zhang

    2017-01-01

    Full Text Available Purpose: To compare the outcomes of intraoperative wavefront aberrometry versus optical biometry alone for intraocular lens (IOL power calculation in eyes undergoing cataract surgery with monofocal IOL implantation. Methods: Preoperative data were obtained with the IOLMaster. Intraoperative aphakic measurements and IOL power calculations were obtained in some patients with the optiwave refractive analysis (ORA system. Analysis was performed to determine the accuracy of monofocal IOL power prediction and postoperative manifest refraction at 1 month of the ORA versus IOLMaster. Results: Two hundred and ninety-five eyes reviewed, 61 had only preoperative IOLMaster measurements and 234 had both IOLMaster and ORA measurements. Of these 234 eyes, 6 were excluded, 107 had the same recommended IOL power by ORA and IOLMaster. Sixty-four percent of these eyes were within ±0.5D. 95 eyes had IOL power implantation based on ORA instead of IOLMaster. Seventy percent of these eyes were within ±0.5D of target refraction. 26 eyes had IOL power chosen based on IOLMaster predictions instead of ORA. Sixty-five percent were within ±0.5D. In the group with IOLMaster without ORA measurements, 80% of eyes were within ±0.5D of target refraction. The absolute error was statistically smaller in those eyes where the ORA and IOLMaster recommended the same IOL power based on preoperative target refraction compared to instances in which IOL selection was based on ORA or IOLMaster alone. Neither prediction errors were statistically different between the ORA and IOLMaster alone. Conclusion: Intraoperative wavefront aberrometry with the ORA system provides postoperative refractive results comparable to conventional biometry with the IOLMaster for monofocal IOL selection.

  3. Wave-front reversal in a copper-vapor active medium

    Energy Technology Data Exchange (ETDEWEB)

    Bunkin, F.V.; Savranskii, V.V.; Shafeev, G.A.

    1981-09-01

    The implementation of wave-front reversal in a copper-vapor laser resonator is reported. The frequencies of the signal wave and the reversed wave are the same, and the dependence of reversed-signal power on input-signal power has a threshold character. Photographs of the reconstructed object image upon insertion of a distorting phase plate into the resonator are presented.

  4. Study of wavefront error and polarization of a side mounted infrared window

    Science.gov (United States)

    Liu, Jiaguo; Li, Lin; Hu, Xinqi; Yu, Xin

    2008-03-01

    The wavefront error and polarization of a side mounted infrared window made of ZnS are studied. The Infrared windows suffer from temperature gradient and stress during their launch process. Generally, the gradient in temperature changes the refractive index of the material whereas stress produces deformation and birefringence. In this paper, a thermal finite element analysis (FEA) of an IR window is presented. For this purpose, we employed an FEA program Ansys to obtain the time-varying temperature field. The deformation and stress of the window are derived from a structural FEA with the aerodynamic force and the temperature field previously obtained as being the loads. The deformation, temperature field, stress field, ray tracing and Jones Calculus are used to calculate the wavefront error and the change of polarization state.

  5. Authentication via wavefront-shaped optical responses

    Science.gov (United States)

    Eilers, Hergen; Anderson, Benjamin R.; Gunawidjaja, Ray

    2018-02-01

    Authentication/tamper-indication is required in a wide range of applications, including nuclear materials management and product counterfeit detection. State-of-the-art techniques include reflective particle tags, laser speckle authentication, and birefringent seals. Each of these passive techniques has its own advantages and disadvantages, including the need for complex image comparisons, limited flexibility, sensitivity to environmental conditions, limited functionality, etc. We have developed a new active approach to address some of these short-comings. The use of an active characterization technique adds more flexibility and additional layers of security over current techniques. Our approach uses randomly-distributed nanoparticles embedded in a polymer matrix (tag/seal) which is attached to the item to be secured. A spatial light modulator is used to adjust the wavefront of a laser which interacts with the tag/seal, and a detector is used to monitor this interaction. The interaction can occur in various ways, including transmittance, reflectance, fluorescence, random lasing, etc. For example, at the time of origination, the wavefront-shaped reflectance from a tag/seal can be adjusted to result in a specific pattern (symbol, words, etc.) Any tampering with the tag/seal would results in a disturbance of the random orientation of the nanoparticles and thus distort the reflectance pattern. A holographic waveplate could be inserted into the laser beam for verification. The absence/distortion of the original pattern would then indicate that tampering has occurred. We have tested the tag/seal's and authentication method's tamper-indicating ability using various attack methods, including mechanical, thermal, and chemical attacks, and have verified our material/method's robust tamper-indicating ability.

  6. Design and implementation of a scene-dependent dynamically selfadaptable wavefront coding imaging system

    Science.gov (United States)

    Carles, Guillem; Ferran, Carme; Carnicer, Artur; Bosch, Salvador

    2012-01-01

    A computational imaging system based on wavefront coding is presented. Wavefront coding provides an extension of the depth-of-field at the expense of a slight reduction of image quality. This trade-off results from the amount of coding used. By using spatial light modulators, a flexible coding is achieved which permits it to be increased or decreased as needed. In this paper a computational method is proposed for evaluating the output of a wavefront coding imaging system equipped with a spatial light modulator, with the aim of thus making it possible to implement the most suitable coding strength for a given scene. This is achieved in an unsupervised manner, thus the whole system acts as a dynamically selfadaptable imaging system. The program presented here controls the spatial light modulator and the camera, and also processes the images in a synchronised way in order to implement the dynamic system in real time. A prototype of the system was implemented in the laboratory and illustrative examples of the performance are reported in this paper. Program summaryProgram title: DynWFC (Dynamic WaveFront Coding) Catalogue identifier: AEKC_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKC_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 10 483 No. of bytes in distributed program, including test data, etc.: 2 437 713 Distribution format: tar.gz Programming language: Labview 8.5 and NI Vision and MinGW C Compiler Computer: Tested on PC Intel ® Pentium ® Operating system: Tested on Windows XP Classification: 18 Nature of problem: The program implements an enhanced wavefront coding imaging system able to adapt the degree of coding to the requirements of a specific scene. The program controls the acquisition by a camera, the display of a spatial light modulator

  7. Conical wavefronts in optics and tomography

    International Nuclear Information System (INIS)

    Soroko, L.M.

    1990-01-01

    A wide range of techniques in which the information is transferred by conical (nonspherical and nonplanar) wave fronts is considered. This is the first summary of papers published in the field of mesooptics and optical tomography. After the introduction into the new branch of modern optics - mesooptics -the properties of conical wavefronts are treated in detail. Some possible applications of mesooptics in science and technology are considered. The long history of mesooptics treated in the last chapter of this review lecture goes from the early stage of our Universe, gravitational lens, first publications in the last century and up-to-date innovations in optics, mesooptics and optical tomography. 3 refs

  8. Wavefront reconstruction in digital off-axis holography via sparse coding of amplitude and absolute phase.

    Science.gov (United States)

    Katkovnik, V; Shevkunov, I A; Petrov, N V; Egiazarian, K

    2015-05-15

    This work presents the new method for wavefront reconstruction from a digital hologram recorded in off-axis configuration. The main feature of the proposed algorithm is a good ability for noise filtration due to the original formulation of the problem taking into account the presence of noise in the recorded intensity distribution and the sparse phase and amplitude reconstruction approach with the data-adaptive block-matching 3D technique. Basically, the sparsity assumes that low dimensional models can be used for phase and amplitude approximations. This low dimensionality enables strong suppression of noisy components and accurate revealing of the main features of the signals of interest. The principal point is that dictionaries of these sparse models are not known in advance and reconstructed from given noisy observations in a multiobjective optimization procedure. We show experimental results demonstrating the effectiveness of our approach.

  9. Technology Advancement of the Visible Nulling Coronagraph

    Science.gov (United States)

    Lyon, Richard G.; Clampin, Mark; Petrone, Peter; Thompson, Patrick; Bolcar, Matt; Madison, Timothy; Woodruff, Robert; Noecker, Charley; Kendrick, Steve

    2010-01-01

    The critical high contrast imaging technology for the Extrasolar Planetary Imaging Coronagraph (EPIC) mission concept is the visible nulling coronagraph (VNC). EPIC would be capable of imaging jovian planets, dust/debris disks, and potentially super-Earths and contribute to answering how bright the debris disks are for candidate stars. The contrast requirement for EPIC is 10(exp 9) contrast at 125 milli-arseconds inner working angle. To advance the VNC technology NASA/Goddard Space Flight Center, in collaboration with Lockheed-Martin, previously developed a vacuum VNC testbed, and achieved narrowband and broadband suppression of the core of the Airy disk. Recently our group was awarded a NASA Technology Development for Exoplanet Missions to achieve two milestones: (i) 10(exp 8) contrast in narrowband light, and, (ii) 10(ecp 9) contrast in broader band light; one milestone per year, and both at 2 Lambda/D inner working angle. These will be achieved with our 2nd generation testbed known as the visible nulling testbed (VNT). It contains a MEMS based hex-packed segmented deformable mirror known as the multiple mirror array (MMA) and coherent fiber bundle, i.e. a spatial filter array (SFA). The MMA is in one interferometric arm and works to set the wavefront differences between the arms to zero. Each of the MMA segments is optically mapped to a single mode fiber of the SFA, and the SFA passively cleans the sub-aperture wavefront error leaving only piston, tip and tilt error to be controlled. The piston degree of freedom on each segment is used to correct the wavefront errors, while the tip/tilt is used to simultaneously correct the amplitude errors. Thus the VNT controls both amplitude and wavefront errors with a single MMA in closed-loop in a vacuum tank at approx.20 Hz. Herein we will discuss our ongoing progress with the VNT.

  10. Two-years results of small-incision lenticule extraction and wavefront-guided laser in situ keratomileusis for Myopia.

    Science.gov (United States)

    Kobashi, Hidenaga; Kamiya, Kazutaka; Igarashi, Akihito; Takahashi, Masahide; Shimizu, Kimiya

    2018-03-01

    To compare the 2-years visual and refractive outcomes between small-incision lenticule extraction (SMILE) and wavefront-guided laser in situ keratomileusis (LASIK) in eyes with myopia and myopic astigmatism. Our retrospective case-control study examined 30 eyes of 30 patients with the manifest refraction spherical equivalent (MRSE) of -3.71 ± 1.83 dioptres (D) who underwent SMILE and 30 eyes of 30 patients with MRSE of -3.81 ± 1.40 D who underwent wavefront-guided LASIK. We assessed the 2-years clinical outcomes. Logarithm of the minimal angle of resolution (LogMAR)-corrected distance visual acuity (CDVA) was -0.23 ± 0.07 in the SMILE group and -0.24 ± 0.07 in the wavefront-guided LASIK group 2 years postoperatively (p = 0.82). Logarithm of the minimal angle of resolution-uncorrected distance visual acuity (UDVA) was -0.18 ± 0.09 and -0.15 ± 0.11 (p = 0.30, respectively). In the SMILE and wavefront-guided LASIK groups 2 years postoperatively, 100% and 73% of eyes, respectively, were within 0.5 D of the prompted MRSE correction (p = 0.005). Changes in the MRSE of -0.10 ± 0.30 D and -0.23 ± 0.51 D occurred from 3 months to 2 years (p = 0.40, respectively). We found a significant correlation between myopic regression and the changes in the keratometric readings from 3 months to 2 years after wavefront-guided LASIK (r = -0.48, p = 0.002), but not after SMILE (r = -0.004, p = 0.90). Small-incision lenticule extraction offers better refractive outcomes than wavefront-guided LASIK during a 2-years follow-up for the correction of myopia and myopic astigmatism. © 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  11. Large-surface-area diamond (111) crystal plates for applications in high-heat-load wavefront-preserving X-ray crystal optics.

    Science.gov (United States)

    Stoupin, Stanislav; Antipov, Sergey; Butler, James E; Kolyadin, Alexander V; Katrusha, Andrey

    2016-09-01

    Fabrication and results of high-resolution X-ray topography characterization of diamond single-crystal plates with large surface area (10 mm × 10 mm) and (111) crystal surface orientation for applications in high-heat-load X-ray crystal optics are reported. The plates were fabricated by laser-cutting of the (111) facets of diamond crystals grown using high-pressure high-temperature methods. The intrinsic crystal quality of a selected 3 mm × 7 mm crystal region of one of the studied samples was found to be suitable for applications in wavefront-preserving high-heat-load crystal optics. Wavefront characterization was performed using sequential X-ray diffraction topography in the pseudo plane wave configuration and data analysis using rocking-curve topography. The variations of the rocking-curve width and peak position measured with a spatial resolution of 13 µm × 13 µm over the selected region were found to be less than 1 µrad.

  12. Measurement accuracy of a stressed contact lens during its relaxation period

    Science.gov (United States)

    Compertore, David C.; Ignatovich, Filipp V.

    2018-02-01

    We examine the dioptric power and transmitted wavefront of a contact lens as it releases its handling stresses. Handling stresses are introduced as part of the contact lens loading process and are common across all contact lens measurement procedures and systems. The latest advances in vision correction require tighter quality control during the manufacturing of the contact lenses. The optical power of contact lenses is one of the critical characteristics for users. Power measurements are conducted in the hydrated state, where the lens is resting inside a solution-filled glass cuvette. In a typical approach, the contact lens must be subject to long settling times prior to any measurements. Alternatively, multiple measurements must be averaged. Apart from potential operator dependency of such approach, it is extremely time-consuming, and therefore it precludes higher rates of testing. Comprehensive knowledge about the settling process can be obtained by monitoring multiple parameters of the lens simultaneously. We have developed a system that combines co-aligned a Shack-Hartmann transmitted wavefront sensor and a time-domain low coherence interferometer to measure several optical and physical parameters (power, cylinder power, aberrations, center thickness, sagittal depth, and diameter) simultaneously. We monitor these parameters during the stress relaxation period and show correlations that can be used by manufacturers to devise methods for improved quality control procedures.

  13. Spherical aberration and other higher-order aberrations in the human eye : from summary wave-front analysis data to optical variables relevant to visual perception

    NARCIS (Netherlands)

    Jansonius, Nomdo M.

    Wave-front analysis data from the human eye are commonly presented using the aberration coefficient c(4)(0) (primary spherical aberration) together with an overall measure of all higher-order aberrations. If groups of subjects are compared, however, the relevance of an observed difference cannot

  14. Implementation and on-sky results of an optimal wavefront controller for the MMT NGS adaptive optics system

    Science.gov (United States)

    Powell, Keith B.; Vaitheeswaran, Vidhya

    2010-07-01

    The MMT observatory has recently implemented and tested an optimal wavefront controller for the NGS adaptive optics system. Open loop atmospheric data collected at the telescope is used as the input to a MATLAB based analytical model. The model uses nonlinear constrained minimization to determine controller gains and optimize the system performance. The real-time controller performing the adaptive optics close loop operation is implemented on a dedicated high performance PC based quad core server. The controller algorithm is written in C and uses the GNU scientific library for linear algebra. Tests at the MMT confirmed the optimal controller significantly reduced the residual RMS wavefront compared with the previous controller. Significant reductions in image FWHM and increased peak intensities were obtained in J, H and K-bands. The optimal PID controller is now operating as the baseline wavefront controller for the MMT NGS-AO system.

  15. [Cyclorotation of the eye in wavefront-guided LASIK using a static eyetracker with iris recognition].

    Science.gov (United States)

    Kohnen, T; Kühne, C; Cichocki, M; Strenger, A

    2007-01-01

    Centration of the ablation zone decisively influences the result of wavefront-guided LASIK. Cyclorotation of the eye occurs as the patient changes from the sitting position during aberrometry to the supine position during laser surgery and may lead to induction of lower and higher order aberrations. Twenty patients (40 eyes) underwent wavefront-guided LASIK (B&L 217z 100 excimer laser) with a static eyetracker driven by iris recognition (mean preoperative SE: -4.72+/-1.45 D; range: -1.63 to -7.00 D). The iris patterns of the patients' eyes were memorized during aberrometry and after flap creation. The mean absolute value of the measured cyclorotation was -1.5+/-4.2 degrees (range: -11.0 to 6.9 degrees ). The mean cyclorotation was 3.5+/-2.7 masculine (range: 0.1 to 11.0 degrees ). In 65% of all eyes cyclorotation was >2 masculine. A static eyetracker driven by iris recognition demonstrated that cyclorotation of up to 11 degrees may occur in myopic and myopic astigmatic eyes when changing from a sitting to a supine position. Use of static eyetrackers with iris recognition may provide a more precise positioning of the ablation profile as they detect and compensate cyclorotation.

  16. Wavefront correction system based on an equilateral triangular arrangement of actuators

    International Nuclear Information System (INIS)

    Salmon, J.T.; Bergum, J.W.; Kartz, M.W.; Presta, R.W.; Swift, C.D.

    1993-02-01

    Atomic Vapor Laser Isotope Separation (AVLIS) requires the copropagation of multiple beams at different wavelengths and at average powers exceeding 1 kW. Although mirror coatings are used that absorb less than one part in 10 5 , the beams still suffer from thermally induced phase distortions, both in the dye amplifiers and in transmissive optics, such as beam combiners and vacuum windows. These aberrations are 2nd-order and 3rd-order and can reach 5 waves peak-to-valley (p-v), which causes the beam to distort and break up when propagated over large distances. The magnitude of the aberrations scales with power, with time constants on the order of 30 seconds. Previous adaptive systems that have been developed corrected these thermally induced phase distortions of both 2nd-order and 3rd-order; however, these systems had limited spatial resolution and in some cases marginal stability. The authors have developed a new adaptive optics system where both the actuators of the deformable mirror and the lenslets of the Hartmann sensor are arranged with centers at the vertices of equilateral triangles. The wavefront sensor is a video Hartmann sensor that also uses an equilateral array of lenslets. The controller hardware uses a VME bus. The design minimizes the generation of reflected wavefronts higher than first order across each lenslet for large excursions of actuators from positions where the mirror is flat and, thus maximizes the precision of the slopes measured by the Hartmann sensor. The design is also immune to the waffle mode that is present in the reconstructors of adaptive optics systems where actuators are arranged in a square array

  17. Spectral and Wavefront Error Performance of WFIRST-AFTA Bandpass Filter Coating Prototypes

    Science.gov (United States)

    Quijada, Manuel A.; Seide, Laurie; Pasquale, Bert A.; McMann, Joseph C.; Hagopian, John G.; Dominguez, Margaret Z.; Gong, Quian; Marx, Catherine T.

    2016-01-01

    The Cycle 5 design baseline for the Wide-Field Infrared Survey Telescope Astrophysics Focused Telescope Assets (WFIRST/AFTA) instrument includes a single wide-field channel (WFC) instrument for both imaging and slit-less spectroscopy. The only routinely moving part during scientific observations for this wide-field channel is the element wheel (EW) assembly. This filter-wheel assembly will have 8 positions that will be populated with 6 bandpass filters, a blank position, and a Grism that will consist of a three-element assembly to disperse the full field with an undeviated central wavelength for galaxy redshift surveys. All filter elements in the EW assembly will be made out of fused silica substrates (110 mm diameter) that will have the appropriate bandpass coatings according to the filter designations (Z087, Y106, J129, H158, F184, W149 and Grism). This paper presents and discusses the performance (including spectral transmission and reflected/transmitted wavefront error measurements) of a subset of bandpass filter coating prototypes that are based on the WFC instrument filter compliment. The bandpass coating prototypes that are tested in this effort correspond to the Z087, W149, and Grism filter elements. These filter coatings have been procured from three different vendors to assess the most challenging aspects in terms of the in-band throughput, out of band rejection (including the cut-on and cutoff slopes), and the impact the wavefront error distortions of these filter coatings will have on the imaging performance of the wide-field channel in the WFIRST/AFTA observatory.

  18. Corneal-Wavefront guided transepithelial photorefractive keratectomy after corneal collagen cross linking in keratoconus

    Directory of Open Access Journals (Sweden)

    Massimo Camellin

    2017-01-01

    Conclusions: Corneal-Wavefront guided transepithelial PRK ablation profiles after conventional CXL yields to good visual, optical, and refractive results. These treatments are safe and efficacious for the correction of refracto-therapeutic problems in keratoconic patients.

  19. Optimizing a Water Simulation based on Wavefront Parameter Optimization

    OpenAIRE

    Lundgren, Martin

    2017-01-01

    DICE, a Swedish game company, wanted a more realistic water simulation. Currently, most large scale water simulations used in games are based upon ocean simulation technology. These techniques falter when used in other scenarios, such as coastlines. In order to produce a more realistic simulation, a new one was created based upon the water simulation technique "Wavefront Parameter Interpolation". This technique involves a rather extensive preprocess that enables ocean simulations to have inte...

  20. Efficient irregular wavefront propagation algorithms on Intel® Xeon Phi™

    Science.gov (United States)

    Gomes, Jeremias M.; Teodoro, George; de Melo, Alba; Kong, Jun; Kurc, Tahsin; Saltz, Joel H.

    2016-01-01

    We investigate the execution of the Irregular Wavefront Propagation Pattern (IWPP), a fundamental computing structure used in several image analysis operations, on the Intel® Xeon Phi™ co-processor. An efficient implementation of IWPP on the Xeon Phi is a challenging problem because of IWPP’s irregularity and the use of atomic instructions in the original IWPP algorithm to resolve race conditions. On the Xeon Phi, the use of SIMD and vectorization instructions is critical to attain high performance. However, SIMD atomic instructions are not supported. Therefore, we propose a new IWPP algorithm that can take advantage of the supported SIMD instruction set. We also evaluate an alternate storage container (priority queue) to track active elements in the wavefront in an effort to improve the parallel algorithm efficiency. The new IWPP algorithm is evaluated with Morphological Reconstruction and Imfill operations as use cases. Our results show performance improvements of up to 5.63× on top of the original IWPP due to vectorization. Moreover, the new IWPP achieves speedups of 45.7× and 1.62×, respectively, as compared to efficient CPU and GPU implementations. PMID:27298591

  1. Efficient irregular wavefront propagation algorithms on Intel® Xeon Phi™.

    Science.gov (United States)

    Gomes, Jeremias M; Teodoro, George; de Melo, Alba; Kong, Jun; Kurc, Tahsin; Saltz, Joel H

    2015-10-01

    We investigate the execution of the Irregular Wavefront Propagation Pattern (IWPP), a fundamental computing structure used in several image analysis operations, on the Intel ® Xeon Phi ™ co-processor. An efficient implementation of IWPP on the Xeon Phi is a challenging problem because of IWPP's irregularity and the use of atomic instructions in the original IWPP algorithm to resolve race conditions. On the Xeon Phi, the use of SIMD and vectorization instructions is critical to attain high performance. However, SIMD atomic instructions are not supported. Therefore, we propose a new IWPP algorithm that can take advantage of the supported SIMD instruction set. We also evaluate an alternate storage container (priority queue) to track active elements in the wavefront in an effort to improve the parallel algorithm efficiency. The new IWPP algorithm is evaluated with Morphological Reconstruction and Imfill operations as use cases. Our results show performance improvements of up to 5.63 × on top of the original IWPP due to vectorization. Moreover, the new IWPP achieves speedups of 45.7 × and 1.62 × , respectively, as compared to efficient CPU and GPU implementations.

  2. Measurement of wavefront aberrations in cortex and peripheral nerve using a two-photon excitation guidestar

    Science.gov (United States)

    Futia, Gregory L.; Fontaine, Arjun; McCullough, Connor; Ozbay, Baris N.; George, Nickolas M.; Caldwell, John; Restrepo, Diego; Weir, Richard; Gibson, Emily A.

    2018-02-01

    Neural-machine interfaces using optogenetics are of interest due to their minimal invasiveness and potential for parallel read in and read out of activity. One possible biological target for such an interface is the peripheral nerve, where axonlevel imaging or stimulation could greatly improve interfacing with artificial limbs or enable neuron/fascicle level neuromodulation in the vagus nerve. Two-photon imaging has been successful in imaging brain activity using genetically encoded calcium or voltage indicators, but in the peripheral nerve, this is severely limited by scattering and aberrations from myelin. We employ a Shack-Hartman wavefront sensor and two-photon excitation guidestar to quantify optical scattering and aberrations in peripheral nerves and cortex. The sciatic and vagus nerves, and cortex from a ChAT-Cre ChR-eYFP transgenic mouse were excised and imaged directly. In peripheral nerves, defocus was the strongest aberration followed by astigmatism and coma. Peripheral nerve had orders of magnitude higher aberration compared with cortex. These results point to the potential of adaptive optics for increasing the depth of two-photon access into peripheral nerves.

  3. Wavefront coherence area for predicting visual acuity of post-PRK and post-PARK refractive surgery patients

    Science.gov (United States)

    Garcia, Daniel D.; van de Pol, Corina; Barsky, Brian A.; Klein, Stanley A.

    1999-06-01

    Many current corneal topography instruments (called videokeratographs) provide an `acuity index' based on corneal smoothness to analyze expected visual acuity. However, post-refractive surgery patients often exhibit better acuity than is predicted by such indices. One reason for this is that visual acuity may not necessarily be determined by overall corneal smoothness but rather by having some part of the cornea able to focus light coherently onto the fovea. We present a new method of representing visual acuity by measuring the wavefront aberration, using principles from both ray and wave optics. For each point P on the cornea, we measure the size of the associated coherence area whose optical path length (OPL), from a reference plane to P's focus, is within a certain tolerance of the OPL for P. We measured the topographies and vision of 62 eyes of patients who had undergone the corneal refractive surgery procedures of photorefractive keratectomy (PRK) and photorefractive astigmatic keratectomy (PARK). In addition to high contrast visual acuity, our vision tests included low contrast and low luminance to test the contribution of the PRK transition zone. We found our metric for visual acuity to be better than all other metrics at predicting the acuity of low contrast and low luminance. However, high contrast visual acuity was poorly predicted by all of the indices we studied, including our own. The indices provided by current videokeratographs sometimes fail for corneas whose shape differs from simple ellipsoidal models. This is the case with post-PRK and post-PARK refractive surgery patients. Our alternative representation that displays the coherence area of the wavefront has considerable advantages, and promises to be a better predictor of low contrast and low luminance visual acuity than current shape measures.

  4. Twisted speckle entities inside wave-front reversal mirrors

    International Nuclear Information System (INIS)

    Okulov, A. Yu

    2009-01-01

    The previously unknown property of the optical speckle pattern reported. The interference of a speckle with the counterpropagating phase-conjugated (PC) speckle wave produces a randomly distributed ensemble of a twisted entities (ropes) surrounding optical vortex lines. These entities appear in a wide range of a randomly chosen speckle parameters inside the phase-conjugating mirrors regardless to an internal physical mechanism of the wave-front reversal. These numerically generated interference patterns are relevant to the Brillouin PC mirrors and to a four-wave mixing PC mirrors based upon laser trapped ultracold atomic cloud.

  5. SEG Advances in Rotational Seismic Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Pierson, Robert; Laughlin, Darren; Brune, Bob

    2016-10-17

    Significant advancements in the development of sensors to enable rotational seismic measurements have been achieved. Prototypes are available now to support experiments that help validate the utility of rotational seismic measurements.

  6. Wavefront cellular learning automata.

    Science.gov (United States)

    Moradabadi, Behnaz; Meybodi, Mohammad Reza

    2018-02-01

    This paper proposes a new cellular learning automaton, called a wavefront cellular learning automaton (WCLA). The proposed WCLA has a set of learning automata mapped to a connected structure and uses this structure to propagate the state changes of the learning automata over the structure using waves. In the WCLA, after one learning automaton chooses its action, if this chosen action is different from the previous action, it can send a wave to its neighbors and activate them. Each neighbor receiving the wave is activated and must choose a new action. This structure for the WCLA is necessary in many dynamic areas such as social networks, computer networks, grid computing, and web mining. In this paper, we introduce the WCLA framework as an optimization tool with diffusion capability, study its behavior over time using ordinary differential equation solutions, and present its accuracy using expediency analysis. To show the superiority of the proposed WCLA, we compare the proposed method with some other types of cellular learning automata using two benchmark problems.

  7. Wavefront cellular learning automata

    Science.gov (United States)

    Moradabadi, Behnaz; Meybodi, Mohammad Reza

    2018-02-01

    This paper proposes a new cellular learning automaton, called a wavefront cellular learning automaton (WCLA). The proposed WCLA has a set of learning automata mapped to a connected structure and uses this structure to propagate the state changes of the learning automata over the structure using waves. In the WCLA, after one learning automaton chooses its action, if this chosen action is different from the previous action, it can send a wave to its neighbors and activate them. Each neighbor receiving the wave is activated and must choose a new action. This structure for the WCLA is necessary in many dynamic areas such as social networks, computer networks, grid computing, and web mining. In this paper, we introduce the WCLA framework as an optimization tool with diffusion capability, study its behavior over time using ordinary differential equation solutions, and present its accuracy using expediency analysis. To show the superiority of the proposed WCLA, we compare the proposed method with some other types of cellular learning automata using two benchmark problems.

  8. Wavefront-guided laser in situ keratomileusis (Lasik) versus wavefront-guided photorefractive keratectomy (Prk): a prospective randomized eye-to-eye comparison (an American Ophthalmological Society thesis).

    Science.gov (United States)

    Manche, Edward E; Haw, Weldon W

    2011-12-01

    To compare the safety and efficacy of wavefront-guided laser in situ keratomileusis (LASIK) vs photorefractive keratectomy (PRK) in a prospective randomized clinical trial. A cohort of 68 eyes of 34 patients with -0.75 to -8.13 diopters (D) of myopia (spherical equivalent) were randomized to receive either wavefront-guided PRK or LASIK in the fellow eye using the VISX CustomVue laser. Patients were evaluated at 1 day, 1 week, and months 1, 3, 6, and 12. At 1 month, uncorrected visual acuity (UCVA), best spectacle-corrected visual acuity (BSCVA), 5% and 25% contrast sensitivity, induction of higher-order aberrations (HOAs), and subjective symptoms of vision clarity, vision fluctuation, ghosting, and overall self-assessment of vision were worse (PPRK group. By 3 months, these differences had resolved (P>0.05). At 1 year, mean spherical equivalent was reduced 94% to -0.27 ± 0.31 D in the LASIK group and reduced 96% to -0.17 ± 0.41 D in the PRK group. At 1 year, 91% of eyes were within ±0.50 D and 97 % were within ±1.0 D in the PRK group. At 1 year, 88% of eyes were within ±0.50 D and 97% were within ±1.0 D in the LASIK group. At 1 year, 97% of eyes in the PRK group and 94% of eyes in the LASIK group achieved an UCVA of 20/20 or better (P=0.72). Refractive stability was achieved in both PRK and LASIK groups after 1 month. There were no intraoperative or postoperative flap complications in the LASIK group. There were no instances of corneal haze in the PRK group. Wavefront-guided LASIK and PRK are safe and effective at reducing myopia. At 1 month postoperatively, LASIK demonstrates an advantage over PRK in UCVA, BSCVA, low-contrast acuity, induction of total HOAs, and several subjective symptoms. At postoperative month 3, these differences between PRK and LASIK results had resolved.

  9. Optimal control strategy to reduce the temporal wavefront error in AO systems

    NARCIS (Netherlands)

    Doelman, N.J.; Hinnen, K.J.G.; Stoffelen, F.J.G.; Verhaegen, M.H.

    2004-01-01

    An Adaptive Optics (AO) system for astronomy is analysed from a control point of view. The focus is put on the temporal error. The AO controller is identified as a feedback regulator system, operating in closed-loop with the aim of rejecting wavefront disturbances. Limitations on the performance of

  10. Fusion of adaptive beam steering and optimization-based wavefront control for laser communications in atmosphere

    Science.gov (United States)

    Nikulin, Vladimir V.

    2005-10-01

    The performance of mobile laser communication systems operating within Earth's atmosphere is generally limited by the pointing errors due to movement of the platforms and mechanical vibrations. In addition, atmospheric turbulence causes changes of the refractive index along the propagation path, creating random redistribution of the optical energy in the spatial domain. Under adverse conditions these effects lead to increased bit error rate. While traditional approaches provide separate treatment of these problems, suggesting high-bandwidth beam steering systems for tracking and wavefront control for the mitigation of atmospheric effects, the two tasks can be integrated. This paper presents a hybrid laser beam-steering-wavefront-control system comprising an electrically addressed spatial light modulator (SLM) installed on the Omni-Wrist sensor mount. The function of the Omni-Wrist is to provide coarse steering over a wide range of pointing angles, while that of the SLM is twofold: wavefront correction and fine steering. The control law for the Omni-Wrist is synthesized using a decentralized approach that provides independent access to the azimuth and declination channels; calculation of the required phase profile for the SLM is optimization-based. This paper presents the control algorithms, the approach to coordinating the operation of the two systems, and the results.

  11. Active wavefront control challenges of the NASA Large Deployable Reflector (LDR)

    Science.gov (United States)

    Meinel, Aden B.; Meinel, Marjorie P.; Manhart, Paul K.; Hochberg, Eric B.

    1989-01-01

    The 20-m Large Deployable Reflector will have a segmented primary mirror. Achieving diffraction-limited performance at 50 microns requires correction for the errors of tilt and piston of the primary mirror. This correction can be obtained in two ways, the use of an active primary or a correction at a demagnified pupil of the primary. A critical requirement is the means for measurement of the wavefront error and maintaining phasing during the observation of objects that may be too faint for determining the error. Absolute phasing can only be determined using a cooperative source. Maintenance of phasing can be done with an on-board source. A number of options are being explored as discussed below. The many issues concerning the assessment and control of an active segmented mirror will be addressed with an early construction of the Precision Segmented Reflector testbed.

  12. Active wavefront control challenges of the NASA Large Deployable Reflector (LDR)

    Science.gov (United States)

    Meinel, Aden B.; Meinel, Marjorie P.; Manhart, Paul K.; Hochberg, Eric B.

    1989-09-01

    The 20-m Large Deployable Reflector will have a segmented primary mirror. Achieving diffraction-limited performance at 50 microns requires correction for the errors of tilt and piston of the primary mirror. This correction can be obtained in two ways, the use of an active primary or a correction at a demagnified pupil of the primary. A critical requirement is the means for measurement of the wavefront error and maintaining phasing during the observation of objects that may be too faint for determining the error. Absolute phasing can only be determined using a cooperative source. Maintenance of phasing can be done with an on-board source. A number of options are being explored as discussed below. The many issues concerning the assessment and control of an active segmented mirror will be addressed with an early construction of the Precision Segmented Reflector testbed.

  13. Construction of the Advanced Technology Solar Telescope

    Science.gov (United States)

    Rimmele, T. R.; Keil, S.; McMullin, J.; Knölker, M.; Kuhn, J. R.; Goode, P. R.; Rosner, R.; Casini, R.; Lin, H.; Tritschler, A.; Wöger, F.; ATST Team

    2012-12-01

    The 4m Advance Technology Solar Telescope (ATST) will be the most powerful solar telescope and the world's leading ground-based resource for studying solar magnetism that controls the solar wind, flares, coronal mass ejections and variability in the Sun's output. The project has entered its construction phase. Major subsystems have been contracted. As its highest priority science driver ATST shall provide high resolution and high sensitivity observations of the dynamic solar magnetic fields throughout the solar atmosphere, including the corona at infrared wavelengths. With its 4m aperture, ATST will resolve features at 0.″03 at visible wavelengths and obtain 0.″1 resolution at the magnetically highly sensitive near infrared wavelengths. A high order adaptive optics system delivers a corrected beam to the initial set of state-of-the-art, facility class instrumentation located in the Coudé laboratory facility. The initial set of first generation instruments consists of five facility class instruments, including imagers and spectro-polarimeters. The high polarimetric sensitivity and accuracy required for measurements of the illusive solar magnetic fields place strong constraints on the polarization analysis and calibration. Development and construction of a four-meter solar telescope presents many technical challenges, including thermal control of the enclosure, telescope structure and optics and wavefront control. A brief overview of the science goals and observational requirements of the ATST will be given, followed by a summary of the design status of the telescope and its instrumentation, including design status of major subsystems, such as the telescope mount assembly, enclosure, mirror assemblies, and wavefront correction

  14. Efficient Terahertz Wide-Angle NUFFT-Based Inverse Synthetic Aperture Imaging Considering Spherical Wavefront

    Directory of Open Access Journals (Sweden)

    Jingkun Gao

    2016-12-01

    Full Text Available An efficient wide-angle inverse synthetic aperture imaging method considering the spherical wavefront effects and suitable for the terahertz band is presented. Firstly, the echo signal model under spherical wave assumption is established, and the detailed wavefront curvature compensation method accelerated by 1D fast Fourier transform (FFT is discussed. Then, to speed up the reconstruction procedure, the fast Gaussian gridding (FGG-based nonuniform FFT (NUFFT is employed to focus the image. Finally, proof-of-principle experiments are carried out and the results are compared with the ones obtained by the convolution back-projection (CBP algorithm. The results demonstrate the effectiveness and the efficiency of the presented method. This imaging method can be directly used in the field of nondestructive detection and can also be used to provide a solution for the calculation of the far-field RCSs (Radar Cross Section of targets in the terahertz regime.

  15. Correlation between Post-LASIK Starburst Symptom and Ocular Wavefront Aberrations

    Science.gov (United States)

    Liu, Yong-Ji; Mu, Guo-Guang; Wang, Zhao-Qi; Wang-Yan

    2006-06-01

    Monochromatic aberrations in post laser in-situ keratomileusis (LASIK) eyes are measured. The data are categorized into reference group and starburst group according to the visual symptoms. Statistic analysis has been made to find the correlation between the ocular wavefront aberrations and the starburst symptom. The rms aberrations of the 3rd and 4th orders for the starburst group are significantly larger than those for the reference group. The starburst symptom shows a strong correlation with vertical coma, total coma, spherical aberrations. For 3-mm pupil size and 5.8-mm pupil size, the modulation transfer function (MTF) of the starburst group are lower than those of the reference group, but their visual acuities are close. MTF and PSF analyses are made for two groups, and the results are consistent with the statistical analysis, which means the difference between the two groups is mainly due to the third- and fourth-order Zernike aberrations.

  16. Advancements in the Interferometric Measurements of Real Time Finishing Birefringent Filter's Crystal Plates

    International Nuclear Information System (INIS)

    Gan, Ma; Kushtal, Gi; Skomorovsky, Vi; Domyshev, Gn; Sadokhin, Vp

    2006-01-01

    The finishing of birefringent plates consists of two processes: polishing and evaluation of a surface, which have been performed separately till now. The purpose of this work is achieving of high accuracy of the evaluation and machining of the plane-parallel plates from birefringent crystals, in particular of crystal plates of birefringent filters during their finishing. The developed process combines evaluation and polishing in an interactive way. We have found modes of treatment, shape of polisher, have designed interferometer, with a mirror arranged in polisher. Visual checking of optical thickness comparatively with reference plate was carried out using the interference fringes of equal birefringence, and checking of an optical wedge - by interference rings of an equal inclination. The automated processing of TV camera interference fringes was impossible, because of gaps of interference fringes on polishing cells above the mirror. Therefore a special software was developed for processing of a complex fringe pattern interferogram. Software FastInterf uses furrier analysis technique which allows to process an interferogram with multiply gaps. Interferograms are registered by a high resolution TV camera (1280 x1024). Automatic processing of a fringe interferogram using FastInterf software takes less then one second. The influence of gaps is excluded, and the flat field is taken into account. Software provides full 3D surface and wavefront maps. Aberration analysis of a wavefront gives information on thickness of a plate comparatively with a reference one, optical wedge of plate and azimuth of an inclination of wave front. Moreover, software provides a control of surface quality. The measuring device, features of the software are described and process of interferometric evaluation during polishing is illustrated

  17. Method and apparatus for wavefront sensing

    Science.gov (United States)

    Bahk, Seung-Whan

    2018-03-20

    A method for performing optical wavefront sensing includes providing an amplitude transmission mask having a light input side, a light output side, and an optical transmission axis passing from the light input side to the light output side. The amplitude transmission mask is characterized by a checkerboard pattern having a square unit cell of size .LAMBDA.. The method also includes directing an incident light field having a wavelength $ \\lamda $ to be incident on the light input side and propagating the incident light field through the amplitude transmission mask. The method further includes producing a plurality of diffracted light fields on the light output side and detecting, at a detector disposed a distance L from the amplitude transmission mask, an interferogram associated with the plurality of diffracted light fields.

  18. Laboratory simulation of atmospheric turbulence induced optical wavefront distortion

    Science.gov (United States)

    Taylor, Travis Shane

    1999-11-01

    Many creative approaches have been taken in the past for simulating the effect that atmospheric turbulence has on optical beams. Most of the experimental architectures have been complicated and consisted of many optical elements as well as moving components. These techniques have shown a modicum of success; however, they are not completely controllable or predictable. A benchtop technique for experimentally producing one important effect that atmospheric turbulence has on optical beams (phase distortion) is presented here. The system is completely controllable and predictable while accurately representing the statistical nature of the problem. Previous experimentation in optical processing through turbulent media has demonstrated that optical wavefront distortions can be produced via spatial light modulating (SLM) devices, and most turbulence models and experimental results indicate that turbulence can be represented as a phase fluctuation. The amplitude distributions in the resulting far field are primarily due to propagation of the phase. Operating a liquid crystal television (LCTV) in the ``phase- mostly'' mode, a phase fluctuation type model for turbulence is utilized in the present investigation, and a real-time experiment for demonstrating the effects was constructed. For an optical system to simulate optical wavefront distortions due to atmospheric turbulence, the following are required: (1)An optical element that modulates the phasefront of an optical beam (2)A model and a technique for generating spatially correlated turbulence simulating distributions (3)Hardware and software for displaying and manipulating the information addressing the optical phase modulation device The LCTV is ideal for this application. When operated in the ``phase-mostly'' mode some LCTVs can modulate the phasefront of an optical beam by as much as 2π and an algorithm for generating spatially correlated phase screens can be constructed via mathematical modeling software such as

  19. Simple method based on intensity measurements for characterization of aberrations from micro-optical components.

    Science.gov (United States)

    Perrin, Stephane; Baranski, Maciej; Froehly, Luc; Albero, Jorge; Passilly, Nicolas; Gorecki, Christophe

    2015-11-01

    We report a simple method, based on intensity measurements, for the characterization of the wavefront and aberrations produced by micro-optical focusing elements. This method employs the setup presented earlier in [Opt. Express 22, 13202 (2014)] for measurements of the 3D point spread function, on which a basic phase-retrieval algorithm is applied. This combination allows for retrieval of the wavefront generated by the micro-optical element and, in addition, quantification of the optical aberrations through the wavefront decomposition with Zernike polynomials. The optical setup requires only an in-motion imaging system. The technique, adapted for the optimization of micro-optical component fabrication, is demonstrated by characterizing a planoconvex microlens.

  20. High-resolution wavefront shaping with a photonic crystal fiber for multimode fiber imaging

    NARCIS (Netherlands)

    Amitonova, L. V.; Descloux, A.; Petschulat, J.; Frosz, M. H.; Ahmed, G.; Babic, F.; Jiang, X.; Mosk, A. P.; Russell, P. S. J.; Pinkse, P.W.H.

    2016-01-01

    We demonstrate that a high-numerical-aperture photonic crystal fiber allows lensless focusing at an unparalleled res- olution by complex wavefront shaping. This paves the way toward high-resolution imaging exceeding the capabilities of imaging with multi-core single-mode optical fibers. We analyze

  1. Wavefront-guided versus standard laser in situ keratomileusis to correct low to moderate myopia.

    NARCIS (Netherlands)

    Nuijts, R.M.; Nabar, V.A.; Hament, W.J.; Eggink, F.A.G.J.

    2002-01-01

    To evaluate the 6-month refractive outcomes of wavefront-guided laser in situ keratomileusis (LASIK) (Zyoptix, Bausch & Lomb) versus standard LASIK (PlanoScan, Bausch & Lomb).Department of Ophthalmology, University Hospital Maastricht, Maastricht, The Netherlands.In a prospective randomized study,

  2. Towards Fast Reverse Time Migration Kernels using Multi-threaded Wavefront Diamond Tiling

    KAUST Repository

    Malas, T.

    2015-09-13

    Today’s high-end multicore systems are characterized by a deep memory hierarchy, i.e., several levels of local and shared caches, with limited size and bandwidth per core. The ever-increasing gap between the processor and memory speed will further exacerbate the problem and has lead the scientific community to revisit numerical software implementations to better suit the underlying memory subsystem for performance (data reuse) as well as energy efficiency (data locality). The authors propose a novel multi-threaded wavefront diamond blocking (MWD) implementation in the context of stencil computations, which represents the core operation for seismic imaging in oil industry. The stencil diamond formulation introduces temporal blocking for high data reuse in the upper cache levels. The wavefront optimization technique ensures data locality by allowing multiple threads to share common adjacent point stencil. Therefore, MWD is able to take up the aforementioned challenges by alleviating the cache size limitation and releasing pressure from the memory bandwidth. Performance comparisons are shown against the optimized 25-point stencil standard seismic imaging scheme using spatial and temporal blocking and demonstrate the effectiveness of MWD.

  3. Design of pre-optics for laser guide star wavefront sensor for the ELT

    Science.gov (United States)

    Muslimov, Eduard; Dohlen, Kjetil; Neichel, Benoit; Hugot, Emmanuel

    2017-12-01

    In the present paper, we consider the optical design of a zoom system for the active refocusing in laser guide star wavefront sensors. The system is designed according to the specifications coming from the Extremely Large Telescope (ELT)-HARMONI instrument, the first-light, integral field spectrograph for the European (E)-ELT. The system must provide a refocusing of the laser guide as a function of telescope pointing and large decentring of the incoming beam. The system considers four moving lens groups, each of them being a doublet with one aspherical surface. The advantages and shortcomings of such a solution in terms of the component displacements and complexity of the surfaces are described in detail. It is shown that the system can provide the median value of the residual wavefront error of 13.8-94.3 nm and the maximum value <206 nm, while the exit pupil distortion is 0.26-0.36% for each of the telescope pointing directions.

  4. Research on a wavefront aberration calculation method for a laser energy gradient attenuator

    International Nuclear Information System (INIS)

    Dong, Tingting; Han, Xu; Chen, Chi; Fu, Yuegang; Li, Ming

    2013-01-01

    When a laser energy gradient attenuator is working, there is an inhomogeneous temperature distribution in the whole of the glass because of the non-uniform light energy absorption. This will lead to optical performance reduction. An integrated opto-thermal–mechanical method is proposed to calculate the wavefront aberration for analysis of the thermal effect of the system. Non-sequential optical analysis is used for computing the absorbed energy distribution. The finite element analysis program solves the temperature distribution and the deformations of nodes on the surfaces. An interface routine is created to fit the surface shape and the index field, and extended Zernike polynomials are introduced to get a higher fitting precision. Finally, the parameters are imported to the CodeV optical design program automatically, and the user defined gradient index material is ray traced to obtain the wavefront aberration. The method can also be used in other optical systems for thermal effect analysis. (letter)

  5. Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing, double-pass and psychophysics

    Science.gov (United States)

    Vinas, Maria; Dorronsoro, Carlos; Cortes, Daniel; Pascual, Daniel; Marcos, Susana

    2015-01-01

    Longitudinal Chromatic Aberration (LCA) influences the optical quality of the eye. However, the reported LCA varies across studies, likely associated to differences in the measurement techniques. We present LCA measured in subjects using wavefront sensing, double-pass retinal images, and psychophysical methods with a custom-developed polychromatic Adaptive Optics system in a wide spectral range (450-950 nm), with control of subjects’ natural aberrations. LCA measured psychophysically was significantly higher than that from reflectometric techniques (1.51 D vs 1.00 D in the 488-700 nm range). Ours results indicate that the presence of natural aberrations is not the cause for the discrepancies across techniques. PMID:25798317

  6. Advancing spaceborne tools for the characterization of planetary ionospheres and circumstellar environments

    Science.gov (United States)

    Douglas, Ewan Streets

    . Laboratory operations of the PICTURE coronagraph achieved the high-contrast imaging sensitivity necessary to test for the predicted warm circumstellar belt around Epsilon Eridani. Interferometric wavefront measurements of calibration target Beta Orionis recorded during the second test flight in November 2015 demonstrate the first active wavefront sensing with a piezoelectric mirror stage and activation of a micromachine deformable mirror in space. These two studies advance our "close-to-home'' knowledge of atmospheres and move exoplanetary studies closer to detailed measurements of atmospheres outside our solar system.

  7. Statistical measurement of power spectrum density of large aperture optical component

    International Nuclear Information System (INIS)

    Xu Jiancheng; Xu Qiao; Chai Liqun

    2010-01-01

    According to the requirement of ICF, a method based on statistical theory has been proposed to measure the power spectrum density (PSD) of large aperture optical components. The method breaks the large-aperture wavefront into small regions, and obtains the PSD of the large-aperture wavefront by weighted averaging of the PSDs of the regions, where the weight factor is each region's area. Simulation and experiment demonstrate the effectiveness of the proposed method. They also show that, the obtained PSDs of the large-aperture wavefront by statistical method and sub-aperture stitching method fit well, when the number of small regions is no less than 8 x 8. The statistical method is not sensitive to translation stage's errors and environment instabilities, thus it is appropriate for PSD measurement during the process of optical fabrication. (authors)

  8. Efficient irregular wavefront propagation algorithms on Intel® Xeon Phi™

    OpenAIRE

    Gomes, Jeremias M.; Teodoro, George; de Melo, Alba; Kong, Jun; Kurc, Tahsin; Saltz, Joel H.

    2015-01-01

    We investigate the execution of the Irregular Wavefront Propagation Pattern (IWPP), a fundamental computing structure used in several image analysis operations, on the Intel® Xeon Phi™ co-processor. An efficient implementation of IWPP on the Xeon Phi is a challenging problem because of IWPP’s irregularity and the use of atomic instructions in the original IWPP algorithm to resolve race conditions. On the Xeon Phi, the use of SIMD and vectorization instructions is critical to attain high perfo...

  9. Performance analysis of large-scale applications based on wavefront algorithms

    International Nuclear Information System (INIS)

    Hoisie, A.; Lubeck, O.; Wasserman, H.

    1998-01-01

    The authors introduced a performance model for parallel, multidimensional, wavefront calculations with machine performance characterized using the LogGP framework. The model accounts for overlap in the communication and computation components. The agreement with experimental data is very good under a variety of model sizes, data partitioning, blocking strategies, and on three different parallel architectures. Using the model, the authors analyzed performance of a deterministic transport code on a hypothetical 100 Tflops future parallel system of interest to ASCI

  10. SU-G-IeP4-09: Method of Human Eye Aberration Measurement Using Plenoptic Camera Over Large Field of View

    International Nuclear Information System (INIS)

    Lv, Yang; Wang, Ruixing; Ma, Haotong; Zhang, Xuanzhe; Ning, Yu; Xu, Xiaojun

    2016-01-01

    Purpose: The measurement based on Shack-Hartmann wave-front sensor(WFS), obtaining both the high and low order wave-front aberrations simultaneously and accurately, has been applied in the detection of human eyes aberration in recent years. However, Its application is limited by the small field of view (FOV), slight eye movement leads the optical bacon image exceeds the lenslet array which result in uncertain detection error. To overcome difficulties of precise eye location, the capacity of detecting eye wave-front aberration over FOV much larger than simply a single conjugate Hartmann WFS accurately and simultaneously is demanded. Methods: Plenoptic camera’s lenslet array subdivides the aperture light-field in spatial frequency domain, capture the 4-D light-field information. Data recorded by plenoptic cameras can be used to extract the wave-front phases associated to the eyes aberration. The corresponding theoretical model and simulation system is built up in this article to discuss wave-front measurement performance when utilizing plenoptic camera as wave-front sensor. Results: The simulation results indicate that the plenoptic wave-front method can obtain both the high and low order eyes wave-front aberration with the same accuracy as conventional system in single visual angle detectionand over FOV much larger than simply a single conjugate Hartmann systems. Meanwhile, simulation results show that detection of eye aberrations wave-front in different visual angle can be achieved effectively and simultaneously by plenoptic method, by both point and extended optical beacon from the eye. Conclusion: Plenoptic wave-front method possesses the feasibility in eye aberrations wave-front detection. With larger FOV, the method can effectively reduce the detection error brought by imprecise eye location and simplify the eye aberrations wave-front detection system comparing with which based on Shack-Hartmann WFS. Unique advantage of the plenoptic method lies in obtaining

  11. SU-G-IeP4-09: Method of Human Eye Aberration Measurement Using Plenoptic Camera Over Large Field of View

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Yang; Wang, Ruixing; Ma, Haotong; Zhang, Xuanzhe; Ning, Yu; Xu, Xiaojun [College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha (China)

    2016-06-15

    Purpose: The measurement based on Shack-Hartmann wave-front sensor(WFS), obtaining both the high and low order wave-front aberrations simultaneously and accurately, has been applied in the detection of human eyes aberration in recent years. However, Its application is limited by the small field of view (FOV), slight eye movement leads the optical bacon image exceeds the lenslet array which result in uncertain detection error. To overcome difficulties of precise eye location, the capacity of detecting eye wave-front aberration over FOV much larger than simply a single conjugate Hartmann WFS accurately and simultaneously is demanded. Methods: Plenoptic camera’s lenslet array subdivides the aperture light-field in spatial frequency domain, capture the 4-D light-field information. Data recorded by plenoptic cameras can be used to extract the wave-front phases associated to the eyes aberration. The corresponding theoretical model and simulation system is built up in this article to discuss wave-front measurement performance when utilizing plenoptic camera as wave-front sensor. Results: The simulation results indicate that the plenoptic wave-front method can obtain both the high and low order eyes wave-front aberration with the same accuracy as conventional system in single visual angle detectionand over FOV much larger than simply a single conjugate Hartmann systems. Meanwhile, simulation results show that detection of eye aberrations wave-front in different visual angle can be achieved effectively and simultaneously by plenoptic method, by both point and extended optical beacon from the eye. Conclusion: Plenoptic wave-front method possesses the feasibility in eye aberrations wave-front detection. With larger FOV, the method can effectively reduce the detection error brought by imprecise eye location and simplify the eye aberrations wave-front detection system comparing with which based on Shack-Hartmann WFS. Unique advantage of the plenoptic method lies in obtaining

  12. Simulation of a plane wavefront propagating in cardiac tissue using a cellular automata model

    International Nuclear Information System (INIS)

    Barbosa, Carlos R Hall

    2003-01-01

    We present a detailed description of a cellular automata model for the propagation of action potential in a planar cardiac tissue, which is very fast and easy to use. The model incorporates anisotropy in the electrical conductivity and a spatial variation of the refractory time. The transmembrane potential distribution is directly derived from the cell states, and the intracellular and extracellular potential distributions are calculated for the particular case of a plane wavefront. Once the potential distributions are known, the associated current densities are calculated by Ohm's law, and the magnetic field is determined at a plane parallel to the cardiac tissue by applying the law of Biot and Savart. The results obtained for propagation speed and for magnetic field amplitude with the cellular automata model are compared with values predicted by the bidomain formulation, for various angles between wavefront propagation and fibre direction, characterizing excellent agreement between the models

  13. Wavefront Propagation and Fuzzy Based Autonomous Navigation

    Directory of Open Access Journals (Sweden)

    Adel Al-Jumaily

    2005-06-01

    Full Text Available Path planning and obstacle avoidance are the two major issues in any navigation system. Wavefront propagation algorithm, as a good path planner, can be used to determine an optimal path. Obstacle avoidance can be achieved using possibility theory. Combining these two functions enable a robot to autonomously navigate to its destination. This paper presents the approach and results in implementing an autonomous navigation system for an indoor mobile robot. The system developed is based on a laser sensor used to retrieve data to update a two dimensional world model of therobot environment. Waypoints in the path are incorporated into the obstacle avoidance. Features such as ageing of objects and smooth motion planning are implemented to enhance efficiency and also to cater for dynamic environments.

  14. Amplification and Attenuation across USArray using Ambient Noise Wavefront Tracking

    KAUST Repository

    Bowden, Daniel C.

    2017-11-15

    As seismic travel-time tomography continues to be refined using data from the vast USArray dataset, it is advantageous to also exploit the amplitude information carried by seismic waves. We use ambient noise cross correlation to make observations of surface-wave amplification and attenuation at shorter periods (8 – 32 seconds) than can be observed with only traditional teleseismic earthquake sources. We show that the wavefront tracking approach of [Lin et al., 2012a] can be successfully applied to ambient noise correlations, yielding results quite similar to those from earthquake observations at periods of overlap. This consistency indicates that the wavefront tracking approach is viable for use with ambient noise correlations, despite concerns of the inhomogeneous and unknown distribution of noise sources. The resulting amplification and attenuation maps correlate well with known tectonic and crustal structure; at the shortest periods, our amplification and attenuation maps correlate well with surface geology and known sedimentary basins, while our longest period amplitudes are controlled by crustal thickness and begin to probe upper mantle materials. These amplification and attenuation observations are sensitive to crustal materials in different ways than travel-time observations and may be used to better constrain temperature or density variations. We also value them as an independent means of describing the lateral variability of observed Rayleigh-wave amplitudes without the need for 3D tomographic inversions.

  15. Study on Measurement of Advanced Manufacturing: Case by China

    Directory of Open Access Journals (Sweden)

    She Jinghuai

    2017-01-01

    Full Text Available This article has built a system of China's Advanced Manufacturing measurement indicators. By applying the datum from 2004 to 2013, we estimate the level of development and current status of China’s Advanced Manufacturing (AM, and evaluate the measurement results by establishing Hierarchical Linear Model (HLM. We confirmed that China's Advanced Manufacturing is in the rapid development trend. And due to the difference of initial conditions in Advanced Manufacturing development there is a greater imbalance. In contrast, a region with poor initial condition of has a relatively fast development speed.

  16. Betatron phase advance measurement at SPEAR

    International Nuclear Information System (INIS)

    Morton, P.L.; Pellegrin, J.L.; Raubenheimer, T.; Ross, M.

    1987-02-01

    There are many reasons to determine the betatron phase advance between two azimuthal positions in a circular accelerator or storage ring. We have measured the betatron phase advance between various pairs of azimuthal points in the SPEAR Storage Ring by two different methods. The first method is to excite a steady state coherent betatron oscillation with a network analyzer. The second method is to excite a free coherent betatron oscillation with an impulse kick, and to digitally sample the transverse position of the beam at the pickup stations. The results of these digital samples are Fourier analyzed with a computer to obtain the phase advance. The second method is discussed, and the experimental results compared to theory

  17. Betatron phase advance measurement at SPEAR

    International Nuclear Information System (INIS)

    Morton, P.L.; Pellegrin, J.L.; Raubenheimer, T.; Ross, M.

    1987-01-01

    There are many reasons to determine the betatron phase advance between two azimuthal positions in a circular accelerator or storage ring. The authors measured the betatron phase advance between various pairs of azimuthal points in the SPEAR Storage Ring by two different methods. The first method is to excite a steady state coherent betatron oscillation with a network analyzer. The second method is to excite a free coherent betatron oscillation with an impulse kick, and to digitally sample the transverse position of the beam at the pickup stations. The results of these digital samples are Fourier analyzed with a computer to obtain the phase advance. The second method is discussed, and the experimental results compared to theory

  18. Precise starshade stationkeeping and pointing with a Zernike wavefront sensor

    Science.gov (United States)

    Bottom, Michael; Martin, Stefan; Seubert, Carl; Cady, Eric; Zareh, Shannon Kian; Shaklan, Stuart

    2017-09-01

    Starshades, large occulters positioned tens of thousands of kilometers in front of space telescopes, offer one of the few paths to imaging and characterizing Earth-like extrasolar planets. However, for a starshade to generate a sufficiently dark shadow on the telescope, the two must be coaligned to just 1 meter laterally, even at these large separations. The principal challenge to achieving this level of control is in determining the position of the starshade with respect to the space telescope. In this paper, we present numerical simulations and laboratory results demonstrating that a Zernike wavefront sensor coupled to a WFIRST-type telescope is able to deliver the stationkeeping precision required, by measuring light outside of the science wavelengths. The sensor can determine the starshade lateral position to centimeter level in seconds of open shutter time for stars brighter than eighth magnitude, with a capture range of 10 meters. We discuss the potential for fast (ms) tip/tilt pointing control at the milli-arcsecond level by illuminating the sensor with a laser mounted on the starshade. Finally, we present early laboratory results.

  19. SMILE and Wavefront-Guided LASIK Out-Compete Other Refractive Surgeries in Ameliorating the Induction of High-Order Aberrations in Anterior Corneal Surface

    OpenAIRE

    Ye, Min-jie; Liu, Cai-yuan; Liao, Rong-feng; Gu, Zheng-yu; Zhao, Bing-ying; Liao, Yi

    2016-01-01

    Purpose. To compare the change of anterior corneal higher-order aberrations (HOAs) after laser in situ keratomileusis (LASIK), wavefront-guided LASIK with iris registration (WF-LASIK), femtosecond laser-assisted laser in situ keratomileusis (FS-LASIK), and small incision lenticule extraction (SMILE). Methods. In a prospective study, 82 eyes underwent LASIK, 119 eyes underwent WF-LASIK, 88 eyes underwent FS-LASIK, and 170 eyes underwent SMILE surgery. HOAs were measured with Pentacam device pr...

  20. Nonlinear differential equations for the wavefront surface at arbitrary Hartmann-plane distances.

    Science.gov (United States)

    Téllez-Quiñones, Alejandro; Malacara-Doblado, Daniel; Flores-Hernández, Ricardo; Gutiérrez-Hernández, David A; León-Rodríguez, Miguel

    2016-03-20

    In the Hartmann test, a wave aberration function W is estimated from the information of the spot diagram drawn in an observation plane. The distance from a reference plane to the observation plane, the Hartmann-plane distance, is typically chosen as z=f, where f is the radius of a reference sphere. The function W and the transversal aberrations {X,Y} calculated at the plane z=f are related by two well-known linear differential equations. Here, we propose two nonlinear differential equations to denote a more general relation between W and the transversal aberrations {U,V} calculated at any arbitrary Hartmann-plane distance z=r. We also show how to directly estimate the wavefront surface w from the information of {U,V}. The use of arbitrary r values could improve the reliability of the measurements of W, or w, when finding difficulties in adequate ray identification at z=f.

  1. TRL-6 for JWST Wavefront Sensing and Control

    Science.gov (United States)

    Feinberg, Lee; Dean, Bruce; Smith, Scott; Aronstein, David; Shiri, Ron; Lyon, Rick; Hayden, Bill; Bowers, Chuck; Acton, D. Scott; Shields, Duncan; hide

    2007-01-01

    NASA's Technology Readiness Level (TRL)-6 is documented for the James Webb Space Telescope (JWST) Wavefront Sensing and Control (WFSC) subsystem. The WFSC subsystem is needed to align the Optical Telescope Element (OTE) after all deployments have occurred, and achieves that requirement through a robust commissioning sequence consisting of unique commissioning algorithms, all of which are part of the WFSC algorithm suite. This paper identifies the technology need, algorithm heritage, describes the finished TRL-6 design platform, and summarizes the TRL-6 test results and compliance. Additionally, the performance requirements needed to satisfy JWST science goals as well as the criterion that relate to the TRL-6 Testbed Telescope (TBT) performance requirements are discussed

  2. Impacto da análise do "wavefront" na refratometria de pacientes com ceratocone Impact of the wavefront analysis in refraction of keratoconus patients

    Directory of Open Access Journals (Sweden)

    Renato Ambrósio Junior

    2010-10-01

    Full Text Available OBJETIVO: Verificar se a aberrometria ocular total (análise da frente de onda ou wavefront possibilita a melhora na acuidade visual corrigida (AVc com lentes esfero-cilíndricas, obtida com a refratometria manifesta em casos de ceratocone com algum grau de intolerância ao uso de lentes de contato. MÉTODOS: Os prontuários de 46 pacientes (89 olhos referidos com diagnóstico de ceratocone e intolerantes ao uso de lentes de contato, submetidos ao exame de aberrometria ocular total seguido de refração manifesta, foram estudados de forma retrospectiva. A AVc (logMAR com a correção existente antes do exame foi comparada com a obtida com a nova refração manifesta, realizada, considerando-se os dados objetivos da aberrometria. O teste não-paramétrico de Wilcoxon para amostras pareadas foi utilizado para verificação de diferenças estatisticamente significantes na AVc. RESULTADOS: Houve uma melhora estatisticamente significante na AVc com a nova refração manifesta (pOBJECTIVE: To verify if the total ocular aberrometry (wavefront analysis facilitates manifest refraction and improvement in best spectacle distance corrected visual acuity (BSCDVA with sphero-cylindrical lenses, in keratoconus cases with some degree of contact lenses intolerance. METHODS: Retrospective chart review of 46 patients (89 eyes referred with keratoconus and contact lenses intolerance was performed. Ocular aberrometry with ray tracing was followed by manifest refraction. BSCDVA (logMAR with the previous correction was compared with the one obtained based on the wavefront auto-refraction. The nonparametric test of Wilcoxon for paired samples was used to test statistically significant differences in BSCDVA. RESULTS: There was a statistically significant improvement in BSCDVA with the new manifest refraction (p <0,0001. The average BSCDVA changed from 0,37 or 20/47 (varying between 1,3 and 0; standard deviation [SD] = 0,25 with previous refraction to 0,23 or 20

  3. Advanced ultrasonic technology for natural gas measurement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-11-15

    In recent years, due to rising environmental and safety concerns, increasing commodity prices, and operational inefficiencies, a paradigm shift has been taking place with respect to gas measurement. The price of natural gas depends on the location, time of the year, and type of consumer. There is wide uncertainty associated with an orifice meter. This paper presents the use of advanced ultrasonic technology for the measurement of natural gas. For many years, multi-path ultrasonic meters with intelligent sensor technology have been used for gas measurement. This paper gives the various applications of ultrasonic technology along with their advantages and a draws a comparison with orifice meters. From the study it can be concluded that extensive advances in the use of ultrasonic technology for gas measurement have widened the areas of application and that varying frequencies combined with sealed transducer designs make it possible to measure atmospheric and sour gas in custody transfer process control and flaring accurately.

  4. Correlation Wave-Front Sensing Algorithms for Shack-Hartmann-Based Adaptive Optics using a Point Source

    International Nuclear Information System (INIS)

    Poynee, L A

    2003-01-01

    Shack-Hartmann based Adaptive Optics system with a point-source reference normally use a wave-front sensing algorithm that estimates the centroid (center of mass) of the point-source image 'spot' to determine the wave-front slope. The centroiding algorithm suffers for several weaknesses. For a small number of pixels, the algorithm gain is dependent on spot size. The use of many pixels on the detector leads to significant propagation of read noise. Finally, background light or spot halo aberrations can skew results. In this paper an alternative algorithm that suffers from none of these problems is proposed: correlation of the spot with a ideal reference spot. The correlation method is derived and a theoretical analysis evaluates its performance in comparison with centroiding. Both simulation and data from real AO systems are used to illustrate the results. The correlation algorithm is more robust than centroiding, but requires more computation

  5. Advances in near-infrared measurements

    CERN Document Server

    Patonay, Gabor

    1991-01-01

    Advances in Near-Infrared Measurements, Volume 1 provides an overview of near-infrared spectroscopy. The book is comprised of six chapters that tackle various areas of near-infrared measurement. Chapter 1 discusses remote monitoring techniques in near-infrared spectroscopy with an emphasis on fiber optics. Chapter 2 covers the applications of fibers using Raman techniques, and Chapter 3 tackles the difficulties associated with near-infrared data analysis. The subsequent chapters present examples of the capabilities of near-infrared spectroscopy from various research groups. The text wi

  6. Manipulation of wavefront using helical metamaterials.

    Science.gov (United States)

    Yang, Zhenyu; Wang, Zhaokun; Tao, Huan; Zhao, Ming

    2016-08-08

    Helical metamaterials, a kind of 3-dimensional structure, has relatively strong coupling effect among the helical nano-wires. Therefore, it is expected to be a good candidate for generating phase shift and controlling wavefront with high efficiency. In this paper, using the finite-difference time-domain (FDTD) method, we studied the phase shift properties in the helical metamaterials. It is found that the phase shift occurs for both transmitted and reflected light waves. And the maximum of reflection coefficients can reach over 60%. In addition, the phase shift (φ) is dispersionless in the range of 600 nm to 860 nm, that is, it is only dominated by the initial angle (θ) of the helix. The relationship between them is φ = ± 2θ. Using Jones calculus we give a further explanation for these properties. Finally, by arranging the helixes in an array with a constant phase gradient, the phenomenon of anomalous refraction was also observed in a broad wavelength range.

  7. Advancements in the Interferometric Measurements of Real Time Finishing Birefringent Filter's Crystal Plates

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Ma [State Optical Institute, Birzhevaya linia, 12 St. Petersburg (Russian Federation); Kushtal, Gi; Skomorovsky, Vi; Domyshev, Gn; Sadokhin, Vp [Institute of Solar-Terrestrial Physics Siberian Branch of Russian Academy of Sciences, 126 Lermontova Str., PO 4026, 664033, Irkutsk (Russian Federation)

    2006-10-15

    The finishing of birefringent plates consists of two processes: polishing and evaluation of a surface, which have been performed separately till now. The purpose of this work is achieving of high accuracy of the evaluation and machining of the plane-parallel plates from birefringent crystals, in particular of crystal plates of birefringent filters during their finishing. The developed process combines evaluation and polishing in an interactive way. We have found modes of treatment, shape of polisher, have designed interferometer, with a mirror arranged in polisher. Visual checking of optical thickness comparatively with reference plate was carried out using the interference fringes of equal birefringence, and checking of an optical wedge - by interference rings of an equal inclination. The automated processing of TV camera interference fringes was impossible, because of gaps of interference fringes on polishing cells above the mirror. Therefore a special software was developed for processing of a complex fringe pattern interferogram. Software FastInterf uses furrier analysis technique which allows to process an interferogram with multiply gaps. Interferograms are registered by a high resolution TV camera (1280 x1024). Automatic processing of a fringe interferogram using FastInterf software takes less then one second. The influence of gaps is excluded, and the flat field is taken into account. Software provides full 3D surface and wavefront maps. Aberration analysis of a wavefront gives information on thickness of a plate comparatively with a reference one, optical wedge of plate and azimuth of an inclination of wave front. Moreover, software provides a control of surface quality. The measuring device, features of the software are described and process of interferometric evaluation during polishing is illustrated.

  8. Modeling of light-emitting diode wavefronts for the optimization of transmission holograms.

    Science.gov (United States)

    Karthaus, Daniela; Giehl, Markus; Sandfuchs, Oliver; Sinzinger, Stefan

    2017-06-20

    The objective of applying transmission holograms in automotive headlamp systems requires the adaptation of holograms to divergent and polychromatic light sources like light-emitting diodes (LEDs). In this paper, four different options to describe the scalar light waves emitted by a typical automotive LED are regarded. This includes a new approach to determine the LED's wavefront from interferometric measurements. Computer-generated holograms are designed considering the different LED approximations and recorded into a photopolymer. The holograms are reconstructed with the LED and the resulting images are analyzed to evaluate the quality of the wave descriptions. In this paper, we show that our presented new approach leads to better results in comparison to other wave descriptions. The enhancement is evaluated by the correlation between reconstructed and ideal images. In contrast to the next best approximation, a spherical wave, the correlation coefficient increased by 0.18% at 532 nm, 1.69% at 590 nm, and 0.75% at 620 nm.

  9. HIGH-SPEED IMAGING AND WAVEFRONT SENSING WITH AN INFRARED AVALANCHE PHOTODIODE ARRAY

    Energy Technology Data Exchange (ETDEWEB)

    Baranec, Christoph; Atkinson, Dani; Hall, Donald; Jacobson, Shane; Chun, Mark [Institute for Astronomy, University of Hawai‘i at Mānoa, Hilo, HI 96720-2700 (United States); Riddle, Reed [Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Law, Nicholas M., E-mail: baranec@hawaii.edu [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255 (United States)

    2015-08-10

    Infrared avalanche photodiode (APD) arrays represent a panacea for many branches of astronomy by enabling extremely low-noise, high-speed, and even photon-counting measurements at near-infrared wavelengths. We recently demonstrated the use of an early engineering-grade infrared APD array that achieves a correlated double sampling read noise of 0.73 e{sup −} in the lab, and a total noise of 2.52 e{sup −} on sky, and supports simultaneous high-speed imaging and tip-tilt wavefront sensing with the Robo-AO visible-light laser adaptive optics (AO) system at the Palomar Observatory 1.5 m telescope. Here we report on the improved image quality simultaneously achieved at visible and infrared wavelengths by using the array as part of an image stabilization control loop with AO-sharpened guide stars. We also discuss a newly enabled survey of nearby late M-dwarf multiplicity, as well as future uses of this technology in other AO and high-contrast imaging applications.

  10. Adapting Wave-front Algorithms to Efficiently Utilize Systems with Deep Communication Hierarchies

    International Nuclear Information System (INIS)

    Kerbyson, Darren J.; Lang, Michael; Pakin, Scott

    2011-01-01

    Large-scale systems increasingly exhibit a differential between intra-chip and inter-chip communication performance especially in hybrid systems using accelerators. Processor cores on the same socket are able to communicate at lower latencies, and with higher bandwidths, than cores on different sockets either within the same node or between nodes. A key challenge is to efficiently use this communication hierarchy and hence optimize performance. We consider here the class of applications that contains wavefront processing. In these applications data can only be processed after their upstream neighbors have been processed. Similar dependencies result between processors in which communication is required to pass boundary data downstream and whose cost is typically impacted by the slowest communication channel in use. In this work we develop a novel hierarchical wave-front approach that reduces the use of slower communications in the hierarchy but at the cost of additional steps in the parallel computation and higher use of on-chip communications. This tradeoff is explored using a performance model. An implementation using the Reverse-acceleration programming model on the petascale Roadrunner system demonstrates a 27% performance improvement at full system-scale on a kernel application. The approach is generally applicable to large-scale multi-core and accelerated systems where a differential in system communication performance exists.

  11. Extending the Capture Volume of an Iris Recognition System Using Wavefront Coding and Super-Resolution.

    Science.gov (United States)

    Hsieh, Sheng-Hsun; Li, Yung-Hui; Tien, Chung-Hao; Chang, Chin-Chen

    2016-12-01

    Iris recognition has gained increasing popularity over the last few decades; however, the stand-off distance in a conventional iris recognition system is too short, which limits its application. In this paper, we propose a novel hardware-software hybrid method to increase the stand-off distance in an iris recognition system. When designing the system hardware, we use an optimized wavefront coding technique to extend the depth of field. To compensate for the blurring of the image caused by wavefront coding, on the software side, the proposed system uses a local patch-based super-resolution method to restore the blurred image to its clear version. The collaborative effect of the new hardware design and software post-processing showed great potential in our experiment. The experimental results showed that such improvement cannot be achieved by using a hardware-or software-only design. The proposed system can increase the capture volume of a conventional iris recognition system by three times and maintain the system's high recognition rate.

  12. Wavefront-guided laser-assisted subepithelial keratectomy in low myopia, myopic astigmatism and high myopia

    Directory of Open Access Journals (Sweden)

    Seyed Javad Hashemian

    2015-02-01

    Full Text Available AIM: To compare the safety, efficacy, predictability, stability and complications of wavefront-guided laser-assisted subepithelial keratectomy(LASEKin low myopia, myopic astigmatism and high myopia correction.METHODS: A retrospective analysis of 416 eyes were assigned to 3 groups: 159 eyes with low myopia(LMand mean refractive spherical equivalent(MRSEof -3.68±1.33 dioptre(D; 161 eyes with myopic astigmatism(MAand MRSE of -5.99±2.24D and mean cylinder of 2.41±1.07D; and 96 eyes with high myopia(HMand MRSE of -7.41±0.80D. After an epithelial flap creation, a wavefront-based excimer laser ablation was performed. Safety, efficacy, predictability and stability were evaluated at day 10, 2, 6 and 12mo postoperatively.RESULTS:At 12mo, the MRSE was -0.36±0.31D in LM group, 0.15±0.41D in MA group and 0.58±0.68D in HM group. The uncorrected visual acuity(UCVAwas 20/20 in 90.60% of patients in LM group, 78.90% in MA group and 67% in HM group. Efficacy indices were 0.98, 1.04 and 0.92 in LM, MA and HM groups, respectively. Safety indices were 1.00, 1.07 and 1.05 in LM, MA and HM respectively. Five eyes(3.1%in the LM group gained 1 line. Forty-four eyes(27.3%in MA gained 1-3 lines and eighteen eyes(19.2%of HM group gained 1-2 lines of BSCVA. Only 2 eyes in LM group developed corneal haze. There were not statistically significant differences in efficacy and safety indices amongst three groups. CONCLUSION: Wavefront-guided LASEK is an effective and safe procedure for the treatment of LM, MA, and HM.although in myopic astigmatism the predictability, efficacy and safety indices had been better.

  13. Using wavefront coding technique as an optical encryption system: reliability analysis and vulnerabilities assessment

    Science.gov (United States)

    Konnik, Mikhail V.

    2012-04-01

    Wavefront coding paradigm can be used not only for compensation of aberrations and depth-of-field improvement but also for an optical encryption. An optical convolution of the image with the PSF occurs when a diffractive optical element (DOE) with a known point spread function (PSF) is placed in the optical path. In this case, an optically encoded image is registered instead of the true image. Decoding of the registered image can be performed using standard digital deconvolution methods. In such class of optical-digital systems, the PSF of the DOE is used as an encryption key. Therefore, a reliability and cryptographic resistance of such an encryption method depends on the size and complexity of the PSF used for optical encoding. This paper gives a preliminary analysis on reliability and possible vulnerabilities of such an encryption method. Experimental results on brute-force attack on the optically encrypted images are presented. Reliability estimation of optical coding based on wavefront coding paradigm is evaluated. An analysis of possible vulnerabilities is provided.

  14. Objective lens simultaneously optimized for pupil ghosting, wavefront delivery and pupil imaging

    Science.gov (United States)

    Olczak, Eugene G (Inventor)

    2011-01-01

    An objective lens includes multiple optical elements disposed between a first end and a second end, each optical element oriented along an optical axis. Each optical surface of the multiple optical elements provides an angle of incidence to a marginal ray that is above a minimum threshold angle. This threshold angle minimizes pupil ghosts that may enter an interferometer. The objective lens also optimizes wavefront delivery and pupil imaging onto an optical surface under test.

  15. Evaluation of the True Wavefront Aberrations in Eyes Implanted With a Rotationally Asymmetric Multifocal Intraocular Lens.

    Science.gov (United States)

    Akondi, Vyas; Pérez-Merino, Pablo; Martinez-Enriquez, Eduardo; Dorronsoro, Carlos; Alejandre, Nicolás; Jiménez-Alfaro, Ignacio; Marcos, Susana

    2017-04-01

    Standard evaluation of aberrations from wavefront slope measurements in patients implanted with a rotationally asymmetric multifocal intraocular lens (IOL), the Lentis Mplus (Oculentis GmbH, Berlin, Germany), results in large magnitude primary vertical coma, which is attributed to the intrinsic IOL design. The new proposed method analyzes aberrometry data, allowing disentangling the IOL power pupillary distribution from the true higher order aberrations of the eye. The new method of wavefront reconstruction uses retinal spots obtained at both the near and far foci. The method was tested using ray tracing optical simulations in a computer eye model virtually implanted with the Lentis Mplus IOL, with a generic cornea or with anterior segment geometry obtained from custom quantitative spectral-domain optical coherence tomography in a real patient. The method was applied to laser ray tracing aberrometry data at near and far fixation obtained in a patient implanted with the Lentis Mplus IOL. Higher order aberrations evaluated from simulated and real retinal spot diagrams following the new reconstruction approach matched the nominal aberrations (approximately 98%). Previously reported primary vertical coma in patients implanted with this IOL lost significance with the application of the proposed reconstruction. Custom analysis of ray tracing-based retinal spot diagrams allowed decoupling of the true higher order aberrations of the patient's eye from the power pupillary distribution of a rotationally asymmetric multifocal IOL, therefore providing the appropriate phase map to accurately evaluate through-focus optical quality. [J Refract Surg. 2017;33(4):257-265.]. Copyright 2017, SLACK Incorporated.

  16. Evaluation of iris recognition system for wavefront-guided laser in situ keratomileusis for myopic astigmatism.

    Science.gov (United States)

    Ghosh, Sudipta; Couper, Terry A; Lamoureux, Ecosse; Jhanji, Vishal; Taylor, Hugh R; Vajpayee, Rasik B

    2008-02-01

    To evaluate the visual and refractive outcomes of wavefront-guided laser in situ keratomileusis (LASIK) using an iris recognition system for the correction of myopic astigmatism. Centre for Eye Research Australia, Melbourne Excimer Laser Research Group, and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia. A comparative analysis of wavefront-guided LASIK was performed with an iris recognition system (iris recognition group) and without iris recognition (control group). The main parameters were uncorrected visual acuity (UCVA), best spectacle-corrected visual acuity, amount of residual cylinder, manifest spherical equivalent (SE), and the index of success using the Alpins method of astigmatism analysis 1 and 3 months postoperatively. A P value less than 0.05 was considered statistically significant. Preoperatively, the mean SE was -4.32 diopters (D) +/- 1.59 (SD) in the iris recognition group (100 eyes) and -4.55 +/- 1.87 D in the control group (98 eyes) (P = .84). At 3 months, the mean SE was -0.05 +/- 0.21 D and -0.20 +/- 0.40 D, respectively (P = .001), and an SE within +/-0.50 D of emmetropia was achieved in 92.0% and 85.7% of eyes, respectively (P = .07). At 3 months, the UCVA was 20/20 or better in 90.0% and 76.5% of eyes, respectively. A statistically significant difference in the amount of astigmatic correction was seen between the 2 groups (P = .00 and P = .01 at 1 and 3 months, respectively). The index of success was 98.0% in the iris recognition group and 81.6% in the control group (P = .03). Iris recognition software may achieve better visual and refractive outcomes in wavefront-guided LASIK for myopic astigmatism.

  17. Tunable wavefront coded imaging system based on detachable phase mask: Mathematical analysis, optimization and underlying applications

    Science.gov (United States)

    Zhao, Hui; Wei, Jingxuan

    2014-09-01

    The key to the concept of tunable wavefront coding lies in detachable phase masks. Ojeda-Castaneda et al. (Progress in Electronics Research Symposium Proceedings, Cambridge, USA, July 5-8, 2010) described a typical design in which two components with cosinusoidal phase variation operate together to make defocus sensitivity tunable. The present study proposes an improved design and makes three contributions: (1) A mathematical derivation based on the stationary phase method explains why the detachable phase mask of Ojeda-Castaneda et al. tunes the defocus sensitivity. (2) The mathematical derivations show that the effective bandwidth wavefront coded imaging system is also tunable by making each component of the detachable phase mask move asymmetrically. An improved Fisher information-based optimization procedure was also designed to ascertain the optimal mask parameters corresponding to specific bandwidth. (3) Possible applications of the tunable bandwidth are demonstrated by simulated imaging.

  18. Technique for the focal-length measurement of positive lenses using Fizeau interferometry

    International Nuclear Information System (INIS)

    Pavan Kumar, Yeddanapudi; Chatterjee, Sanjib

    2009-01-01

    We present what we believe is a new technique for the focal-length measurement of positive lenses using Fizeau interferometery. The technique utilizes the Gaussian lens equation. The image distance is measured interferometrically in terms of the radius of curvature of the image-forming wavefront emerging from the lens. The radii of curvature of the image-forming wavefronts corresponding to two different axial object positions of known separation are measured. The focal length of the lens is determined by solving the equations obtained using the Gaussian lens equation for the two object positions. Results obtained for a corrected doublet lens of a nominal focal length of 200.0 mm with a measurement uncertainty of ±2.5% is presented

  19. Tool to estimate optical metrics from summary wave-front analysis data in the human eye

    NARCIS (Netherlands)

    Jansonius, Nomdo M.

    Purpose Studies in the field of cataract and refractive surgery often report only summary wave-front analysis data data that are too condensed to allow for a retrospective calculation of metrics relevant to visual perception. The aim of this study was to develop a tool that can be used to estimate

  20. Avaliação de desempenho e consumo energético para configurações de Wavefront pools de uma GPU AMD

    Directory of Open Access Journals (Sweden)

    Ariel Gustavo Zuquello

    2016-07-01

    Full Text Available O uso de sistemas heterogêneos CPU-GPU para atender à crescente demanda por aplicações com grande paralelismo de dados resulta na necessidade de estudar e avaliar tais arquiteturas para melhorá-las continuamente. Neste artigo foram feitas simulações da execução de uma suíte de benchmark em uma GPU AMD ATI RadeonTM HD 7970, de modo a avaliar o impacto sobre o desempenho e o consumo energético quando alterado o número de Wavefront Pools presentes em cada compute unit da GPU, que é 4 por padrão. O resultado mais significante evidencia um aumento de velocidade de cerca de 5,7% para a configuração com duas Wavefront Pools em conjunto com um aumento no consumo de energia de cerca de 5,1%. Todavia, as outras configurações avaliadas também representam opções para diferentes tipos de necessidades, conforme a categoria de demanda computacional.Palavras-chave: Sistemas heterogêneos. Simulações. Desempenho.Performance evaluation and energy consumption for settings of Wavefront pools of a GPU AMDAbstractThe use of CPU-GPU heterogeneous systems to meet the growing demand for applications with large data parallelism results in the need to study and evaluate these architectures in order to improve them continuously. In this paper we made simulations of running a benchmark suite on an AMD GPU ATI RadeonTM HD 7970 in order to assess the impact on performance and power consumption when tuning the number of Wavefront Pools present in each GPU compute unit, which is 4 by default. The most significant result shows a speedup of about 5.7% for configuration with two Wavefront Pools in conjunction with an increase of about 5.1% in the energy consumption. However, the other evaluated configuration also represent options for different kinds of needs, according to   the  computational demand.Keyworks: Heterogeneous systems. Simulation. Performance.

  1. The great advances in radiation measurements

    International Nuclear Information System (INIS)

    Brodsky, A.

    2002-01-01

    The title of this banquet talk was selected to entertain conferees with recollections of major advances in dosimetry that have stimulated appetites for scientific progress. Recalling over fifty years of use of dosimetric instruments and concepts in the 1950-2000 era leads to an appreciation of many advances in solid state dosimetry, which others here know well and pursue vigorously. This author has been mainly a user, admirer, and interpreter of the fundamental methods of dose measurement. These advances have allowed ease of application in radiation protection and medical physics, for determining current routine and accidental exposures to workers, and for precise radiotherapeutic dose delivery. In more recent years, advances in identifying means of locating selective depositions of energy in various materials are providing ways of retrospectively assessing doses to tissue that were deposited many years ago. These methods also will allow development of quantitative theories of radiation damage once the lesions of interest are identified through further advances in molecular genetics. Yet, reflections on the past fifty years lead to increasing appreciation of the enormous achievements of our predecessors in the 1900-1950 period. Therefore, this presentation emphasises methods used by the author and some of his data interpretations during his 52-year career, with some examination of the earlier origin of some of these methods. (author)

  2. Evaluating noise performance of the IUCAA sidecar drive electronics controller (ISDEC) based system for TMT on-instrument wavefront sensing (OIWFS) application

    Science.gov (United States)

    Burse, Mahesh; Chattopadhyay, Sabyasachi; Ramaprakash, A. N.; Sinha, Sakya; Prabhudesai, Swapnil; Punnadi, Sujit; Chordia, Pravin; Kohok, Abhay

    2016-07-01

    As a part of a design study for the On-Instrument Low Order Wave-front Sensor (OIWFS) for the TMT Infra-Red Imaging Spectrograph (IRIS), we recently evaluated the noise performance of a detector control system consisting of IUCAA SIDECAR DRIVE ELECRONICS CONTROLLER (ISDEC), SIDECAR ASIC and HAWAII-2RG (H2RG) MUX. To understand and improve the performance of this system to serve as a near infrared wavefront sensor, we implemented new read out modes like multiple regions of interest with differential multi-accumulate readout schemes for the HAWAII-2RG (H2RG) detector. In this system, the firmware running in SIDECAR ASIC programs the detector for ROI readout, reads the detector, processes the detector output and writes the digitized data into its internal memory. ISDEC reads the digitized data from ASIC, performs the differential multi-accumulate operations and then sends the processed data to a PC over a USB interface. A special loopback board was designed and used to measure and reduce the noise from SIDECAR ASIC DC biases2. We were able to reduce the mean r.m.s read noise of this system down to 1-2 e. for any arbitrary window frame of 4x4 size at frame rates below about 200 Hz.

  3. De-Dopplerization of Acoustic Measurements

    Science.gov (United States)

    2017-08-10

    accurate measurement of aircraft location to resample the time signal to account for the compression and expansion of acoustic wavefronts. Correcting...AFRL-RH-WP-TR-2017-0043 DE-DOPPLERIZATION OF ACOUSTIC MEASUREMENTS Frank Mobley, PhD 711 HPW/RHCB Wright-Patterson AFB OH...TITLE AND SUBTITLE DE-DOPPLERIZATION OF ACOUSTIC MEASUREMENTS 5a. CONTRACT NUMBER In-House 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER

  4. Wavefronts, light rays and caustic of a circular wave reflected by an arbitrary smooth curve

    International Nuclear Information System (INIS)

    Marciano-Melchor, Magdalena; Silva-Ortigoza, Ramón; Montiel-Piña, Enrique; Román-Hernández, Edwin; Santiago-Santiago, José Guadalupe; Silva-Ortigoza, Gilberto; Rosado, Alfonso; Suárez-Xique, Román

    2011-01-01

    The aim of the present work is to obtain expressions for both the wavefront train and the caustic associated with the light rays reflected by an arbitrary smooth curve after being emitted by a point light source located at an arbitrary position in the two-dimensional free space. To this end, we obtain an expression for the k-function associated with the general integral of Stavroudis to the eikonal equation that describes the evolution of the reflected light rays. The caustic is computed by using the definitions of the critical and caustic sets of the two-dimensional map that describes the evolution of an arbitrary wavefront associated with the general integral. The general results are applied to circular and parabolic mirrors. The main motivation to carry out this research is to establish, in future work, the caustic touching theorem in a two-dimensional optical medium and to study the diffraction problem by using the k-function concept. Both problems are important in the computation of the image of an arbitrary object under reflection and refraction

  5. Photon counting arrays for AO wavefront sensors

    CERN Document Server

    Vallerga, J; McPhate, J; Mikulec, Bettina; Clark, Allan G; Siegmund, O; CERN. Geneva

    2005-01-01

    Future wavefront sensors for AO on large telescopes will require a large number of pixels and must operate at high frame rates. Unfortunately for CCDs, there is a readout noise penalty for operating faster, and this noise can add up rather quickly when considering the number of pixels required for the extended shape of a sodium laser guide star observed with a large telescope. Imaging photon counting detectors have zero readout noise and many pixels, but have suffered in the past with low QE at the longer wavelengths (>500 nm). Recent developments in GaAs photocathode technology, CMOS ASIC readouts and FPGA processing electronics have resulted in noiseless WFS detector designs that are competitive with silicon array detectors, though at ~40% the QE of CCDs. We review noiseless array detectors and compare their centroiding performance with CCDs using the best available characteristics of each. We show that for sub-aperture binning of 6x6 and greater that noiseless detectors have a smaller centroid error at flu...

  6. Measuring the relativistic perigee advance with satellite laser ranging

    CERN Document Server

    Iorio, L; Pavlis, E C

    2002-01-01

    The pericentric advance of a test body by a central mass is one of the classical tests of general relativity. Today, this effect is measured with radar ranging by the perihelion shift of Mercury and other planets in the gravitational field of the Sun, with a relative accuracy of the order of 10 sup - sup 2 -10 sup - sup 3. In this paper, we explore the possibility of a measurement of the pericentric advance in the gravitational field of Earth by analysing the laser-ranged data of some orbiting, or proposed, laser-ranged geodetic satellites. Such a measurement of the perigee advance would place limits on hypothetical, very weak, Yukawa-type components of the gravitational interaction with a finite range of the order of 10 sup 4 km. Thus, we show that, at the present level of knowledge of the orbital perturbations, the relative accuracy, achievable with suitably combined orbital elements of LAGEOS and LAGEOS II, is of the order of 10 sup - sup 3. With the corresponding measured value of (2 + 2 gamma - beta)/3, ...

  7. Numerical evaluation of the intensity transport equation for well-known wavefronts and intensity distributions

    Science.gov (United States)

    Campos-García, Manuel; Granados-Agustín, Fermín.; Cornejo-Rodríguez, Alejandro; Estrada-Molina, Amilcar; Avendaño-Alejo, Maximino; Moreno-Oliva, Víctor Iván.

    2013-11-01

    In order to obtain a clearer interpretation of the Intensity Transport Equation (ITE), in this work, we propose an algorithm to solve it for some particular wavefronts and its corresponding intensity distributions. By simulating intensity distributions in some planes, the ITE is turns into a Poisson equation with Neumann boundary conditions. The Poisson equation is solved by means of the iterative algorithm SOR (Simultaneous Over-Relaxation).

  8. The magnet measurement facility for the Advanced Photon Source

    International Nuclear Information System (INIS)

    Kim, S.H.; Doose, C.; Hogrefe, R.; Kim, K.; Merl, R.

    1993-01-01

    A magnet measurement facility has been developed to measure the prototype and production magnets for the Advance Photon Source. The measurement facility is semi-automatic in measurement control and data analysis. One dipole system and three rotating coil measurement systems for quadrupole and sextupole magnets and corresponding probe coils are described

  9. Advances in the Surface Renewal Flux Measurement Method

    Science.gov (United States)

    Shapland, T. M.; McElrone, A.; Paw U, K. T.; Snyder, R. L.

    2011-12-01

    The measurement of ecosystem-scale energy and mass fluxes between the planetary surface and the atmosphere is crucial for understanding geophysical processes. Surface renewal is a flux measurement technique based on analyzing the turbulent coherent structures that interact with the surface. It is a less expensive technique because it does not require fast-response velocity measurements, but only a fast-response scalar measurement. It is therefore also a useful tool for the study of the global cycling of trace gases. Currently, surface renewal requires calibration against another flux measurement technique, such as eddy covariance, to account for the linear bias of its measurements. We present two advances in the surface renewal theory and methodology that bring the technique closer to becoming a fully independent flux measurement method. The first advance develops the theory of turbulent coherent structure transport associated with the different scales of coherent structures. A novel method was developed for identifying the scalar change rate within structures at different scales. Our results suggest that for canopies less than one meter in height, the second smallest coherent structure scale dominates the energy and mass flux process. Using the method for resolving the scalar exchange rate of the second smallest coherent structure scale, calibration is unnecessary for surface renewal measurements over short canopies. This study forms the foundation for analysis over more complex surfaces. The second advance is a sensor frequency response correction for measuring the sensible heat flux via surface renewal. Inexpensive fine-wire thermocouples are frequently used to record high frequency temperature data in the surface renewal technique. The sensible heat flux is used in conjunction with net radiation and ground heat flux measurements to determine the latent heat flux as the energy balance residual. The robust thermocouples commonly used in field experiments

  10. Front-End Electronics for Verification Measurements: Performance Evaluation and Viability of Advanced Tamper Indicating Measures

    International Nuclear Information System (INIS)

    Smith, E.; Conrad, R.; Morris, S.; Ramuhalli, P.; Sheen, D.; Schanfein, M.; Ianakiev, K.; Browne, M.; Svoboda, J.

    2015-01-01

    The International Atomic Energy Agency (IAEA) continues to expand its use of unattended, remotely monitored measurement systems. An increasing number of systems and an expanding family of instruments create challenges in terms of deployment efficiency and the implementation of data authentication measures. A collaboration between Pacific Northwest National Laboratory (PNNL), Idaho National Laboratory (INL), and Los Alamos National Laboratory (LANL) is working to advance the IAEA's capabilities in these areas. The first objective of the project is to perform a comprehensive evaluation of a prototype front-end electronics package, as specified by the IAEA and procured from a commercial vendor. This evaluation begins with an assessment against the IAEA's original technical specifications and expands to consider the strengths and limitations over a broad range of important parameters that include: sensor types, cable types, and the spectrum of industrial electromagnetic noise that can degrade signals from remotely located detectors. A second objective of the collaboration is to explore advanced tamper-indicating (TI) measures that could help to address some of the long-standing data authentication challenges with IAEA's unattended systems. The collaboration has defined high-priority tampering scenarios to consider (e.g., replacement of sensor, intrusion into cable), and drafted preliminary requirements for advanced TI measures. The collaborators are performing independent TI investigations of different candidate approaches: active time-domain reflectometry (PNNL), passive noise analysis (INL), and pulse-by-pulse analysis and correction (LANL). The initial investigations focus on scenarios where new TI measures are retrofitted into existing IAEA UMS deployments; subsequent work will consider the integration of advanced TI methods into new IAEA UMS deployments where the detector is separated from the front-end electronics. In this paper, project progress

  11. Wavefront Tilt And Beam Walk Correction For A Pulsed Laser System

    Science.gov (United States)

    Bartosewcz, Mike; Tyburski, Joe

    1986-05-01

    The Lockheed Beam Alignment Assembly (BAA) is designed to be a space qualifiable, long life, low bandwidth beam stabilization system. The BAA will stabilize a wandering pulsed laser beam with an input beam tilt of ±750 microradians and translation of ±2.5 mm by two orders of magnitude at the bandwidth of interest. A bandwidth of three hertz was selected to remove laser and optical train thermal drifts and launch induced strain effects. The lambda over twenty RMS wavefront will be maintained in the optics at full power under vacuum test, to demonstrate space qualifiability and optical performance.

  12. Enhanced wavefront reconstruction by random phase modulation with a phase diffuser

    DEFF Research Database (Denmark)

    Almoro, Percival F; Pedrini, Giancarlo; Gundu, Phanindra Narayan

    2011-01-01

    propagation in free space. The presentation of this technique is carried out using two setups. In the first setup, a diffuser plate is placed at the image plane of a metallic test object. The benefit of randomizing the phase of the object wave is the enhanced intensity recording due to high dynamic range...... of the diffusely scattered beam. The use of demagnification optics will also allow the investigations of relatively large objects. In the second setup, a transparent object is illuminated using a wavefront with random phase and constant amplitude by positioning the phase diffuser close to the object. The benefit...

  13. Saturation of backward stimulated scattering of laser in kinetic regime: Wavefront bowing, trapped particle modulational instability, and trapped particle self-focusing of plasma waves

    International Nuclear Information System (INIS)

    Yin, L.; Albright, B. J.; Bowers, K. J.; Daughton, W.; Rose, H. A.

    2008-01-01

    Backward stimulated Raman and Brillouin scattering (SRS and SBS) of laser are examined in the kinetic regime using particle-in-cell simulations. The SRS reflectivity measured as a function of the laser intensity in a single hot spot from two-dimensional (2D) simulations shows a sharp onset at a threshold laser intensity and a saturated level at higher intensities, as obtained previously in Trident experiments [D. S. Montgomery et al., Phys. Plasmas 9, 2311 (2002)]. In these simulations, wavefront bowing of electron plasma waves (ion acoustic waves) due to the trapped particle nonlinear frequency shift, which increases with laser intensity, is observed in the SRS (SBS) regime for the first time. Self-focusing from trapped particle modulational instability (TPMI) [H. A. Rose, Phys. Plasmas 12, 12318 (2005)] is shown to occur in both two- and three-dimensional SRS simulations. The key physics underlying nonlinear saturation of SRS is identified as a combination of wavefront bowing, TPMI, and self-focusing of electron plasma waves. The wavefront bowing marks the beginning of SRS saturation and self-focusing alone is sufficient to terminate the SRS reflectivity, both effects resulting from cancellation of the source term for SRS and from greatly increased dissipation rate of the electron plasm waves. Ion acoustic wave bowing also contributes to the SBS saturation. Velocity diffusion by transverse modes and rapid loss of hot electrons in regions of small transverse extent formed from self-focusing lead to dissipation of the wave energy and an increase in the Landau damping rate in spite of strong electron trapping that reduces Landau damping initially. The ranges of wavelength and growth rate associated with transverse breakup of the electron-plasma wave are also examined in 2D speckle simulations as well as in 2D periodic systems from Bernstein-Greene-Kruskal equilibrium and are compared with theory predictions

  14. Wave-optical evaluation of interference fringes and wavefront phase in a hard-x-ray beam totally reflected by mirror optics.

    Science.gov (United States)

    Yamauchi, Kazuto; Yamamura, Kazuya; Mimura, Hidekazu; Sano, Yasuhisa; Saito, Akira; Endo, Katsuyoshi; Souvorov, Alexei; Yabashi, Makina; Tamasaku, Kenji; Ishikawa, Tetsuya; Mori, Yuzo

    2005-11-10

    The intensity flatness and wavefront shape in a coherent hard-x-ray beam totally reflected by flat mirrors that have surface bumps modeled by Gaussian functions were investigated by use of a wave-optical simulation code. Simulated results revealed the necessity for peak-to-valley height accuracy of better than 1 nm at a lateral resolution near 0.1 mm to remove high-contrast interference fringes and appreciable wavefront phase errors. Three mirrors that had different surface qualities were tested at the 1 km-long beam line at the SPring-8/Japan Synchrotron Radiation Research Institute. Interference fringes faded when the surface figure was corrected below the subnanometer level to a spatial resolution close to 0.1 mm, as indicated by the simulated results.

  15. Optimization of Broadband Wavefront Correction at the Princeton High Contrast Imaging Laboratory

    Science.gov (United States)

    Groff, Tyler Dean; Kasdin, N.; Carlotti, A.

    2011-01-01

    Wavefront control for imaging of terrestrial planets using coronagraphic techniques requires improving the performance of the wavefront control techniques to expand the correction bandwidth and the size of the dark hole over which it is effective. At the Princeton High Contrast Imaging Laboratory we have focused on increasing the search area using two deformable mirrors (DMs) in series to achieve symmetric correction by correcting both amplitude and phase aberrations. Here we are concerned with increasing the bandwidth of light over which this correction is effective so we include a finite bandwidth into the optimization problem to generate a new stroke minimization algorithm. This allows us to minimize the actuator stroke on the DMs given contrast constraints at multiple wavelengths which define a window over which the dark hole will persist. This windowed stroke minimization algorithm is written in such a way that a weight may be applied to dictate the relative importance of the outer wavelengths to the central wavelength. In order to supply the estimates at multiple wavelengths a functional relationship to a central estimation wavelength is formed. Computational overhead and new experimental results of this windowed stroke minimization algorithm are discussed. The tradeoff between symmetric correction and achievable bandwidth is compared to the observed contrast degradation with wavelength in the experimental results. This work is supported by NASA APRA Grant #NNX09AB96G. The author is also supported under an NESSF Fellowship.

  16. Measurement and modeling of advanced coal conversion processes

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G.; Smoot, L.D.; Brewster, B.S. (Advanced Fuel Research, Inc., East Hartford, CT (United States) Brigham Young Univ., Provo, UT (United States))

    1991-01-01

    The overall objective of this program is the development of predictive capability for the design, scale up, simulation, control and feedstock evaluation in advanced coal conversion devices. This program will merge significant advances made in measuring and quantitatively describing the mechanisms in coal conversion behavior. Comprehensive computer codes for mechanistic modeling of entrained-bed gasification. Additional capabilities in predicting pollutant formation will be implemented and the technology will be expanded to fixed-bed reactors.

  17. Refractive Outcomes, Contrast Sensitivity, HOAs, and Patient Satisfaction in Moderate Myopia: Wavefront-Optimized Versus Tissue-Saving PRK.

    Science.gov (United States)

    Nassiri, Nader; Sheibani, Kourosh; Azimi, Abbas; Khosravi, Farinaz Mahmoodi; Heravian, Javad; Yekta, Abasali; Moghaddam, Hadi Ostadi; Nassiri, Saman; Yasseri, Mehdi; Nassiri, Nariman

    2015-10-01

    To compare refractive outcomes, contrast sensitivity, higher-order aberrations (HOAs), and patient satisfaction after photorefractive keratectomy for correction of moderate myopia with two methods: tissue saving versus wavefront optimized. In this prospective, comparative study, 152 eyes (80 patients) with moderate myopia with and without astigmatism were randomly divided into two groups: the tissue-saving group (Technolas 217z Zyoptix laser; Bausch & Lomb, Rochester, NY) (76 eyes of 39 patients) or the wavefront-optimized group (WaveLight Allegretto Wave Eye-Q laser; Alcon Laboratories, Inc., Fort Worth, TX) (76 eyes of 41 patients). Preoperative and 3-month postoperative refractive outcomes, contrast sensitivity, HOAs, and patient satisfaction were compared between the two groups. The mean spherical equivalent was -4.50 ± 1.02 diopters. No statistically significant differences were detected between the groups in terms of uncorrected and corrected distance visual acuity and spherical equivalent preoperatively and 3 months postoperatively. No statistically significant differences were seen in the amount of preoperative to postoperative contrast sensitivity changes between the two groups in photopic and mesopic conditions. HOAs and Q factor increased in both groups postoperatively (P = .001), with the tissue-saving method causing more increases in HOAs (P = .007) and Q factor (P = .039). Patient satisfaction was comparable between both groups. Both platforms were effective in correcting moderate myopia with or without astigmatism. No difference in refractive outcome, contrast sensitivity changes, and patient satisfaction between the groups was observed. Postoperatively, the tissue-saving method caused a higher increase in HOAs and Q factor compared to the wavefront-optimized method, which could be due to larger optical zone sizes in the tissue-saving group. Copyright 2015, SLACK Incorporated.

  18. An experimental apparatus for diffraction-limites soft x-ray nanofocusing

    Energy Technology Data Exchange (ETDEWEB)

    Merthe, Daniel; Goldberg, Kenneth; Yashchuk, Valeriy; Yuan, Sheng; McKinney, Wayne; Celestre, Richard; Mochi, Iacopo; Macdougall, James; Morrison, Gregory; Rakawa, Senajith; Anderson, Erik; Smith, Brian; Domning, Edward; Warwick, Tony; Padmore, Howard

    2011-10-21

    Realizing the experimental potential of high-brightness, next generation synchrotron and free-electron laser light sources requires the development of reflecting x-ray optics capable of wavefront preservation and high-resolution nano-focusing. At the Advanced Light Source (ALS) beamline 5.3.1, we are developing broadly applicable, high-accuracy, in situ, at-wavelength wavefront measurement techniques to surpass 100-nrad slope measurement accuracy for diffraction-limited Kirkpatrick-Baez (KB) mirrors. The at-wavelength methodology we are developing relies on a series of wavefront-sensing tests with increasing accuracy and sensitivity, including scanning-slit Hartmann tests, grating-based lateral shearing interferometry, and quantitative knife-edge testing. We describe the original experimental techniques and alignment methodology that have enabled us to optimally set a bendable KB mirror to achieve a focused, FWHM spot size of 150 nm, with 1 nm (1.24 keV) photons at 3.7 mrad numerical aperture. The predictions of wavefront measurement are confirmed by the knife-edge testing.The side-profiled elliptically bent mirror used in these one-dimensional focusing experiments was originally designed for a much different glancing angle and conjugate distances. This work demonstrates that high-accuracy, at-wavelength wavefront-slope feedback can be used to optimize the pitch, roll, and mirror-bending forces in situ, using procedures that are deterministic and repeatable.

  19. Comparison of optical quality after implantable collamer lens implantation and wavefront-guided laser in situ keratomileusis.

    Science.gov (United States)

    Liu, Hong-Ting; Zhou, Zhou; Luo, Wu-Qiang; He, Wen-Jing; Agbedia, Owhofasa; Wang, Jiang-Xia; Huang, Jian-Zhong; Gao, Xin; Kong, Min; Li, Min; Li, Li

    2018-01-01

    To compare the optical quality after implantation of implantable collamer lens (ICL) and wavefront-guided laser in situ keratomileusis (WG-LASIK). The study included 40 eyes of 22 patients with myopia who accepted ICL implantation and 40 eyes of 20 patients with myopia who received WG-LASIK. Before surgery and three months after surgery, the objective scattering index (OSI), the values of modulation transfer function (MTF) cutoff frequency, Strehl ratio, and the Optical Quality Analysis System (OQAS) values (OVs) were accessed. The higher order aberrations (HOAs) data including coma, trefoil, spherical, 2 nd astigmatism and tetrafoil were also obtained. For patients with pupil size LASIK group, significant improvements in visual acuities were found postoperatively, with a significant reduction in spherical equivalent ( P LASIK group, the OSI significantly increased from 0.68±0.43 preoperatively to 0.91±0.53 postoperatively (Wilcoxon signed ranks test, P =0.000). None of the mean MTF cutoff frequency, Strehl ratio, OVs showed statistically significant changes in both ICL and WG-LASIK groups. In the ICL group, there were no statistical differences in the total HOAs for either 4 mm-pupil or 6 mm-pupil. In the WG-LASIK group, the HOA parameters increased significantly at 4 mm-pupil. The total ocular HOAs, coma, spherical and 2 nd astigmatism were 0.12±0.06, 0.06±0.03, 0.00±0.03, 0.02±0.01, respectively. After the operation, these values were increased into 0.16±0.07, 0.08±0.05, -0.04±0.04, 0.03±0.01 respectively (Wilcoxon signed ranks test, all P LASIK group. ICL implantation has a less disturbance to optical quality than WG-LASIK. The OQAS is a valuable complementary measurement to the wavefront aberrometers in evaluating the optical quality.

  20. Comparison of the effects of cylindrical correction with and without iris recognition technology in wavefront laser-assisted in situ keratomileusis.

    Science.gov (United States)

    Wang, Tsung-Jen; Lin, Yu-Huang; Chang, David C-K; Chou, Hsiu-Chu; Wang, I-Jong

    2012-04-01

      To analyse the magnitude of cylindrical corrections over which cyclotorsion compensation with iris recognition (IR) technology is beneficial during wavefront laser-assisted in situ keratomileusis.   A retrospectively comparative case series.   Fifty-four eyes that underwent wavefront laser-assisted in situ keratomileusis without IR (non-IR group) and 53 eyes that underwent wavefront laser-assisted in situ keratomileusis with IR (IR group) were recruited.   Subgroup analysis based on baseline astigmatism were: a low degree of astigmatism (≥1.00 D to <2.00 D), a moderate degree of astigmatism (≥2.00 D to <3.00 D) and a high degree of astigmatism (≥3.00 D).   Vector and non-vector analyses were used for comparison.   The mean cylinder was -1.89 ± 0.76 D in the non-IR group and -2.00 ± 0.77 D in the IR group. Postoperatively, 38 eyes (74.50%) in the IR group and 31 eyes (57.50%) in the non-IR group were within ± 0.50 D of the target induced astigmatism vector (P = 0.063). The difference vector was 0.49 ± 0.28 in the IR group and 0.63 ± 0.40 in the non-IR group (P = 0.031). In the analysis of subgroups, the magnitude of error was significantly lower in the moderate IR subgroup than that of the moderate non-IR subgroup (P = 0.034). Furthermore, the moderate IR subgroup had a lower mean difference vector (P = 0.0078) and a greater surgically induced astigmatism (P = 0.036) than those of the moderate non-IR group.   Wavefront laser-assisted in situ keratomileusis for the treatment of astigmatism using IR technology was effective and accurate for the treatment of myopic astigmatism. © 2011 The Authors. Clinical and Experimental Ophthalmology © 2011 Royal Australian and New Zealand College of Ophthalmologists.

  1. Photoinjector beam quality improvement by shaping the wavefront of a drive laser with oblique incidence

    International Nuclear Information System (INIS)

    He Zhigang; Wang Xiaohui; Jia Qika

    2012-01-01

    To increase the quantum efficiency (QE) of a copper photocathode and reduce the thermal emittance of an electron beam, a drive laser with oblique incidence was adopted in a BNL type photocathode rf gun. The disadvantageous effects on the beam quality caused by oblique incidence were analyzed qualitatively. A simple way to solve the problems through wavefront shaping was introduced and the beam quality was improved. (authors)

  2. Compensation of X-ray mirror shape-errors using refractive optics

    Energy Technology Data Exchange (ETDEWEB)

    Sawhney, Kawal, E-mail: Kawal.sawhney@diamond.ac.uk; Laundy, David; Pape, Ian [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Dhamgaye, Vishal [Indus Synchrotrons Utilisation Division, Raja Ramanna Centre for Advanced Technology, Indore 452012 (India)

    2016-08-01

    Focusing of X-rays to nanometre scale focal spots requires high precision X-ray optics. For nano-focusing mirrors, height errors in the mirror surface retard or advance the X-ray wavefront and after propagation to the focal plane, this distortion of the wavefront causes blurring of the focus resulting in a limit on the spatial resolution. We describe here the implementation of a method for correcting the wavefront that is applied before a focusing mirror using custom-designed refracting structures which locally cancel out the wavefront distortion from the mirror. We demonstrate in measurements on a synchrotron radiation beamline a reduction in the size of the focal spot of a characterized test mirror by a factor of greater than 10 times. This technique could be used to correct existing synchrotron beamline focusing and nanofocusing optics providing a highly stable wavefront with low distortion for obtaining smaller focus sizes. This method could also correct multilayer or focusing crystal optics allowing larger numerical apertures to be used in order to reduce the diffraction limited focal spot size.

  3. Advanced, Analytic, Automated (AAA) Measurement of Engagement during Learning

    Science.gov (United States)

    D'Mello, Sidney; Dieterle, Ed; Duckworth, Angela

    2017-01-01

    It is generally acknowledged that engagement plays a critical role in learning. Unfortunately, the study of engagement has been stymied by a lack of valid and efficient measures. We introduce the advanced, analytic, and automated (AAA) approach to measure engagement at fine-grained temporal resolutions. The AAA measurement approach is grounded in…

  4. Analysis technique for controlling system wavefront error with active/adaptive optics

    Science.gov (United States)

    Genberg, Victor L.; Michels, Gregory J.

    2017-08-01

    The ultimate goal of an active mirror system is to control system level wavefront error (WFE). In the past, the use of this technique was limited by the difficulty of obtaining a linear optics model. In this paper, an automated method for controlling system level WFE using a linear optics model is presented. An error estimate is included in the analysis output for both surface error disturbance fitting and actuator influence function fitting. To control adaptive optics, the technique has been extended to write system WFE in state space matrix form. The technique is demonstrated by example with SigFit, a commercially available tool integrating mechanical analysis with optical analysis.

  5. Peak-locking centroid bias in Shack-Hartmann wavefront sensing

    Science.gov (United States)

    Anugu, Narsireddy; Garcia, Paulo J. V.; Correia, Carlos M.

    2018-05-01

    Shack-Hartmann wavefront sensing relies on accurate spot centre measurement. Several algorithms were developed with this aim, mostly focused on precision, i.e. minimizing random errors. In the solar and extended scene community, the importance of the accuracy (bias error due to peak-locking, quantization, or sampling) of the centroid determination was identified and solutions proposed. But these solutions only allow partial bias corrections. To date, no systematic study of the bias error was conducted. This article bridges the gap by quantifying the bias error for different correlation peak-finding algorithms and types of sub-aperture images and by proposing a practical solution to minimize its effects. Four classes of sub-aperture images (point source, elongated laser guide star, crowded field, and solar extended scene) together with five types of peak-finding algorithms (1D parabola, the centre of gravity, Gaussian, 2D quadratic polynomial, and pyramid) are considered, in a variety of signal-to-noise conditions. The best performing peak-finding algorithm depends on the sub-aperture image type, but none is satisfactory to both bias and random errors. A practical solution is proposed that relies on the antisymmetric response of the bias to the sub-pixel position of the true centre. The solution decreases the bias by a factor of ˜7 to values of ≲ 0.02 pix. The computational cost is typically twice of current cross-correlation algorithms.

  6. Impacto da análise do 'wavefront' na refratometria de pacientes com ceratocone

    OpenAIRE

    Ambrósio Junior,Renato; Caldas,Diogo Leitão; Silva,Renata Siqueira da; Pimentel,Leonardo Nogueira; Valbon,Bruno de Freitas

    2011-01-01

    OBJETIVO: Verificar se a aberrometria ocular total (análise da frente de onda ou 'wavefront') possibilita melhora na acuidade visual corrigida (AVc) com lentes esfero-cilíndricas, obtida com a refratometria manifesta em casos de ceratocone com algum grau de intolerância ao uso de lentes de contato. MÉTODOS: Os prontuários de 46 pacientes (89 olhos), referidos com diagnóstico de ceratocone e intolerantes ao uso de lentes de contato, submetidos ao exame de aberrometria ocular total seguido de r...

  7. Development of all solid-state, high average power ultra-short pulse laser for X-ray generation. High average power CPA system and wavefront control of ultra short laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Harayama, Sayaka; Akaoka, Katsuaki; Tei, Kazuyoku; Kato, Masaaki; Niwa, Yoshito; Maruyama, Yoichiro; Matoba, Toru; Arisawa, Takashi; Takuma, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    We developed a prototype CPA laser system which is pumped by a all solid-state Nd:YAG laser. In a preliminary experiment, the output energy of 52mJ before compression was obtained when the pumping energy was 250mJ. To compensate the wavefront distortion, an adaptive optics has been developed. By using this wavefront control system, the laser beam with the distortion of 0.15{lambda} was obtained. (author)

  8. Broadband reflected wavefronts manipulation using structured phase gradient metasurfaces

    Directory of Open Access Journals (Sweden)

    Xiao-Peng Wang

    2016-06-01

    Full Text Available Acoustic metasurface (AMS is a good candidate to manipulate acoustic waves due to special acoustic performs that cannot be realized by traditional materials. In this paper, we design the AMS by using circular-holed cubic arrays. The advantages of our AMS are easy assemble, subwavelength thickness, and low energy loss for manipulating acoustic waves. According to the generalized Snell’s law, acoustic waves can be manipulated arbitrarily by using AMS with different phase gradients. By selecting suitable hole diameter of circular-holed cube (CHC, some interesting phenomena are demonstrated by our simulations based on finite element method, such as the conversion of incoming waves into surface waves, anomalous reflections (including negative reflection, acoustic focusing lens, and acoustic carpet cloak. Our results can provide a simple approach to design AMSes and use them in wavefront manipulation and manufacturing of acoustic devices.

  9. Detectability of T Measurable diseases in advanced gastric cancer in FDG PET CT

    International Nuclear Information System (INIS)

    Oh, Sun Young; Cheon, Gi Jeong; Kim, Young Chul; Jeong, Eugene; Kim, Seung Eun; Choe, Jae Gol

    2012-01-01

    Usefulness of FDG PET CT in monitoring response in locally advanced gastric cancer has been reported. The purpose of this study was to evaluate the related factors to detect measurable diseases in advanced gastric cancer on FDG PET CT. We retrospectively reviewed 38 patients diagnosed as having advanced gastric cancer. We defined the measurable diseases when there was visualized tumor of which maximum standardized uptake value(SUVmax) was higher than 1.35*SUVmax of liver + 2*SD of liver SUV. We evaluated what kinds of factors from the clinicopathologic features were related to identifying measurable diseases. Of 38 patients with advanced gastric cancer, 18 (50%) had measurable tumors on FDG PET CT. Measurable tumors were significantly more frequent in well or moderately differentiated adenocarcinoma (70.5% vs 35.3%, p<0.05), in the tumors located at antrum or angle (66.7% vs 29.4%, p<0.05) and in the elderly group (age of 55 years old or more, 72.0% vs 8.3%, p<0.001) than the others, respectively. By multivariate analysis, age at diagnosis was the only independent predictor for the measurable disease on FDG PET CT. We found that age at diagnosis, as well as histologic types and location of tumors, were the affecting factors to detect measurable disease on FDG PET CT in patients with advanced gastric cancer. Our study suggests that elderly patients of age of 55 years old or more can frequently have T measurable disease on FDG PET CT in advanced gastric cancer and FDG PET CT will be helpful to monitor measurable disease

  10. Reducing depth induced spherical aberration in 3D widefield fluorescence microscopy by wavefront coding using the SQUBIC phase mask

    Science.gov (United States)

    Patwary, Nurmohammed; Doblas, Ana; King, Sharon V.; Preza, Chrysanthe

    2014-03-01

    Imaging thick biological samples introduces spherical aberration (SA) due to refractive index (RI) mismatch between specimen and imaging lens immersion medium. SA increases with the increase of either depth or RI mismatch. Therefore, it is difficult to find a static compensator for SA1. Different wavefront coding methods2,3 have been studied to find an optimal way of static wavefront correction to reduce depth-induced SA. Inspired by a recent design of a radially symmetric squared cubic (SQUBIC) phase mask that was tested for scanning confocal microscopy1 we have modified the pupil using the SQUBIC mask to engineer the point spread function (PSF) of a wide field fluorescence microscope. In this study, simulated images of a thick test object were generated using a wavefront encoded engineered PSF (WFEPSF) and were restored using space-invariant (SI) and depth-variant (DV) expectation maximization (EM) algorithms implemented in the COSMOS software4. Quantitative comparisons between restorations obtained with both the conventional and WFE PSFs are presented. Simulations show that, in the presence of SA, the use of the SIEM algorithm and a single SQUBIC encoded WFE-PSF can yield adequate image restoration. In addition, in the presence of a large amount of SA, it is possible to get adequate results using the DVEM with fewer DV-PSFs than would typically be required for processing images acquired with a clear circular aperture (CCA) PSF. This result implies that modification of a widefield system with the SQUBIC mask renders the system less sensitive to depth-induced SA and suitable for imaging samples at larger optical depths.

  11. Plasma channels during filamentation of a femtosecond laser pulse with wavefront astigmatism in air

    Energy Technology Data Exchange (ETDEWEB)

    Dergachev, A A; Kandidov, V P; Shlenov, S A [Lomonosov Moscow State University, Faculty of Physics, Moscow (Russian Federation); Ionin, A A; Mokrousova, D V; Seleznev, L V; Sinitsyn, D V; Sunchugasheva, E S; Shustikova, A P [P N Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2014-12-31

    We have demonstrated experimentally and numerically the possibility of controlling parameters of plasma channels formed during filamentation of a femtosecond laser pulse by introducing astigmatism in the laser beam wavefront. It is found that weak astigmatism increases the length of the plasma channel in comparison with the case of aberration-free focusing and that strong astigmatism can cause splitting of the plasma channel into two channels located one after another on the filament axis. (interaction of laser radiation with matter. laser plasma)

  12. Thermal lensing measurement from the coefficient of defocus aberration

    CSIR Research Space (South Africa)

    Bell, Teboho

    2016-03-01

    Full Text Available We measured the thermally induced lens from the coefficient of defocus aberration using a Shack-Hartmann wavefront sensor (SHWFS). As a calibration technique, we infer the focal length of standard lenses probed by a collimated Gaussian beam...

  13. Multicore-Optimized Wavefront Diamond Blocking for Optimizing Stencil Updates

    KAUST Repository

    Malas, T.

    2015-07-02

    The importance of stencil-based algorithms in computational science has focused attention on optimized parallel implementations for multilevel cache-based processors. Temporal blocking schemes leverage the large bandwidth and low latency of caches to accelerate stencil updates and approach theoretical peak performance. A key ingredient is the reduction of data traffic across slow data paths, especially the main memory interface. In this work we combine the ideas of multicore wavefront temporal blocking and diamond tiling to arrive at stencil update schemes that show large reductions in memory pressure compared to existing approaches. The resulting schemes show performance advantages in bandwidth-starved situations, which are exacerbated by the high bytes per lattice update case of variable coefficients. Our thread groups concept provides a controllable trade-off between concurrency and memory usage, shifting the pressure between the memory interface and the CPU. We present performance results on a contemporary Intel processor.

  14. Multicore-Optimized Wavefront Diamond Blocking for Optimizing Stencil Updates

    KAUST Repository

    Malas, T.; Hager, G.; Ltaief, Hatem; Stengel, H.; Wellein, G.; Keyes, David E.

    2015-01-01

    The importance of stencil-based algorithms in computational science has focused attention on optimized parallel implementations for multilevel cache-based processors. Temporal blocking schemes leverage the large bandwidth and low latency of caches to accelerate stencil updates and approach theoretical peak performance. A key ingredient is the reduction of data traffic across slow data paths, especially the main memory interface. In this work we combine the ideas of multicore wavefront temporal blocking and diamond tiling to arrive at stencil update schemes that show large reductions in memory pressure compared to existing approaches. The resulting schemes show performance advantages in bandwidth-starved situations, which are exacerbated by the high bytes per lattice update case of variable coefficients. Our thread groups concept provides a controllable trade-off between concurrency and memory usage, shifting the pressure between the memory interface and the CPU. We present performance results on a contemporary Intel processor.

  15. Thermal conductivity of molten KNO3-NaNO2 mixtures measured with wave-front shearing interferometry

    International Nuclear Information System (INIS)

    Iwadate, Yasuhiko; Kawamura, Kazutaka; Okada, Isao.

    1982-01-01

    The thermal conductivities are estimated from data obtained by wave-front shearing interferomety using available data on the density and the heat capacity. The thermal diffusivities and the thermal conductivities of molten KNO 3 -NaNO 2 mixtures increase and decrease slightly with a rise of temperature depending on the molar ratio of KNO 3 to NaNO 2 . They are expressed as linear functions of temperature as shown in Table 3. The results suggest that the ionic melts containing the ions of smaller mass have the larger thermal conductivities. The thermal conductivities of the mixture melts deviate negatively from the additivity. The validity of the proposed theories to the KNO 3 -NaNO 2 system has been studied in which the effects of mass, melting point, and density on thermal conductivity are taken into account. The formula of heat transfer proposed by Rao is best applicable to the thermal conductivity of the mixture. Our result is well expressed by the following formula, K = 2742.T sub(m)sup(1/2).rho sub(m)sup(2/3)/M sup(7/6), where K is the thermal conductivity, T sub(m) the molting point, rho sub(m) the density at T sub(m), and M the mean mass (averaged molecular weight), while the constant is 2742 instead of 2090 according to Rao. Whereas the thermal conductivity of pure alkali nitrate correlates linearly with the ultrasonic sound velocity, this relation does not hold in the molten KNO 3 -NaNO 2 mixture. The additivity rule can be applied to the sound velocity, but not to the thermal conductivity owing to its excess conductivity. (author)

  16. Measuring the relativistic perigee advance with satellite laser ranging

    International Nuclear Information System (INIS)

    Iorio, Lorenzo; Ciufolini, Ignazio; Pavlis, Erricos C

    2002-01-01

    The pericentric advance of a test body by a central mass is one of the classical tests of general relativity. Today, this effect is measured with radar ranging by the perihelion shift of Mercury and other planets in the gravitational field of the Sun, with a relative accuracy of the order of 10 -2 -10 -3 . In this paper, we explore the possibility of a measurement of the pericentric advance in the gravitational field of Earth by analysing the laser-ranged data of some orbiting, or proposed, laser-ranged geodetic satellites. Such a measurement of the perigee advance would place limits on hypothetical, very weak, Yukawa-type components of the gravitational interaction with a finite range of the order of 10 4 km. Thus, we show that, at the present level of knowledge of the orbital perturbations, the relative accuracy, achievable with suitably combined orbital elements of LAGEOS and LAGEOS II, is of the order of 10 -3 . With the corresponding measured value of (2 + 2γ - β)/3, by using η = 4β - γ - 3 from lunar laser ranging, we could get an estimate of the PPN parameters γ and β with an accuracy of the order of 10 -2 -10 -3 . Nevertheless, these accuracies would be substantially improved in the near future with the new Earth gravity field models by the CHAMP and GRACE missions. The use of the perigee of LARES (LAser RElativity Satellite), with a suitable combination of orbital residuals including also the node and the perigee of LAGEOS II, would also further improve the accuracy of the proposed measurement

  17. Wavefront correction performed by a deformable mirror of arbitrary actuator pattern within a multireflection waveguide.

    Science.gov (United States)

    Ma, Xingkun; Huang, Lei; Bian, Qi; Gong, Mali

    2014-09-10

    The wavefront correction ability of a deformable mirror with a multireflection waveguide was investigated and compared via simulations. By dividing a conventional actuator array into a multireflection waveguide that consisted of single-actuator units, an arbitrary actuator pattern could be achieved. A stochastic parallel perturbation algorithm was proposed to find the optimal actuator pattern for a particular aberration. Compared with conventional an actuator array, the multireflection waveguide showed significant advantages in correction of higher order aberrations.

  18. Measure of manufacturing performance in advanced manufacturing systems

    NARCIS (Netherlands)

    Ron, de A.J.

    1995-01-01

    Because of the financial risks as a result of the high investments, decisions concerning investing in advanced manufacturing systems are difficult. The difficulty to decide is gained by the lack of a well-defined measure to support decisions and alarming messages from the industry concerning inverse

  19. Hartmann wavefront sensing of the corrective optics for the Hubble Space Telescope

    Science.gov (United States)

    Davila, Pam S.; Eichhorn, William L.; Wilson, Mark E.

    1994-06-01

    There is no doubt that astronomy with the `new, improved' Hubble Space Telescope will significantly advance our knowledge and understanding of the universe for years to come. The Corrective Optics Space Telescope Axial Replacement (COSTAR) was designed to restore the image quality to nearly diffraction limited performance for three of the first generation instruments; the faint object camera, the faint object spectrograph, and the Goddard high resolution spectrograph. Spectacular images have been obtained from the faint object camera after the installation of the corrective optics during the first servicing mission in December of 1993. About 85% of the light in the central core of the corrected image is contained within a circle with a diameter of 0.2 arcsec. This is a vast improvement over the previous 15 to 17% encircled energies obtained before COSTAR. Clearly COSTAR is a success. One reason for the overwhelming success of COSTAR was the ambitious and comprehensive test program conducted by various groups throughout the program. For optical testing of COSTAR on the ground, engineers at Ball Aerospace designed and built the refractive Hubble simulator to produce known amounts of spherical aberration and astigmatism at specific points in the field of view. The design goal for this refractive aberrated simulator (RAS) was to match the aberrations of the Hubble Space Telescope to within (lambda) /20 rms over the field at a wavelength of 632.8 nm. When the COSTAR optics were combined with the RAS optics, the corrected COSTAR output images were produced. These COSTAR images were recorded with a high resolution 1024 by 1024 array CCD camera, the Ball image analyzer (BIA). The image quality criteria used for assessment of COSTAR performance was encircled energy in the COSTAR focal plane. This test with the BIA was very important because it was a direct measurement of the point spread function. But it was difficult with this test to say anything quantitative about the

  20. Prototype system for phase advance measurements of LHC small beam oscillations

    CERN Document Server

    Olexa, J; Brezovic, Z; Gasior, M

    2013-01-01

    Magnet lattice parameters of the Large Hadron Collider (LHC) are measured by exciting beam transverse oscillations that allow measuring their phase advance using the beam position measurement (BPM) system. However, the BPM system requires millimetre oscillation amplitudes, with which nominal high intensity beams would cause large particle loss, dangerous for the LHC superconducting magnets. Therefore, such measurements cannot be done often, as they require special low intensity beams with important set-up time. After its first long shut-down the LHC will be equipped with new collimators with embedded BPMs, for which a new front-end electronics has been developed. Its main processing channels based on compensated diode detectors are designed for beam orbit measurement with sub-micrometre resolution. It is planned to extend this system by adding dedicated channels optimised for phase advance measurement, allowing continuous LHC optics measurement with much smaller beam excitation. This subsystem will be based o...

  1. Advanced Measuring (Instrumentation Methods for Nuclear Installations: A Review

    Directory of Open Access Journals (Sweden)

    Wang Qiu-kuan

    2012-01-01

    Full Text Available The nuclear technology has been widely used in the world. The research of measurement in nuclear installations involves many aspects, such as nuclear reactors, nuclear fuel cycle, safety and security, nuclear accident, after action, analysis, and environmental applications. In last decades, many advanced measuring devices and techniques have been widely applied in nuclear installations. This paper mainly introduces the development of the measuring (instrumentation methods for nuclear installations and the applications of these instruments and methods.

  2. An imaging method of wavefront coding system based on phase plate rotation

    Science.gov (United States)

    Yi, Rigui; Chen, Xi; Dong, Liquan; Liu, Ming; Zhao, Yuejin; Liu, Xiaohua

    2018-01-01

    Wave-front coding has a great prospect in extending the depth of the optical imaging system and reducing optical aberrations, but the image quality and noise performance are inevitably reduced. According to the theoretical analysis of the wave-front coding system and the phase function expression of the cubic phase plate, this paper analyzed and utilized the feature that the phase function expression would be invariant in the new coordinate system when the phase plate rotates at different angles around the z-axis, and we proposed a method based on the rotation of the phase plate and image fusion. First, let the phase plate rotated at a certain angle around the z-axis, the shape and distribution of the PSF obtained on the image surface remain unchanged, the rotation angle and direction are consistent with the rotation angle of the phase plate. Then, the middle blurred image is filtered by the point spread function of the rotation adjustment. Finally, the reconstruction images were fused by the method of the Laplacian pyramid image fusion and the Fourier transform spectrum fusion method, and the results were evaluated subjectively and objectively. In this paper, we used Matlab to simulate the images. By using the Laplacian pyramid image fusion method, the signal-to-noise ratio of the image is increased by 19% 27%, the clarity is increased by 11% 15% , and the average gradient is increased by 4% 9% . By using the Fourier transform spectrum fusion method, the signal-to-noise ratio of the image is increased by 14% 23%, the clarity is increased by 6% 11% , and the average gradient is improved by 2% 6%. The experimental results show that the image processing by the above method can improve the quality of the restored image, improving the image clarity, and can effectively preserve the image information.

  3. The measurement of echodirection in a phased-array radar

    NARCIS (Netherlands)

    Rijsdijk, F.B.; Spek, G.A. van der

    1978-01-01

    For a planar-array antenna with a monopulse feed horn, this study describes a simple algorithm for the determination of the direction of target echoes. Antenna pattern measurements of the array indicate that the direction sines of a received wavefront can be independently obtained with one simple

  4. Psychometric properties of three measures assessing advanced theory of mind: Evidence from people with schizophrenia.

    Science.gov (United States)

    Chen, Kuan-Wei; Lee, Shih-Chieh; Chiang, Hsin-Yu; Syu, Ya-Cing; Yu, Xiao-Xuan; Hsieh, Ching-Lin

    2017-11-01

    Patients with schizophrenia tend to have deficits in advanced Theory of Mind (ToM). The "Reading the mind in the eyes" test (RMET), the Faux Pas Task, and the Strange Stories are commonly used for assessing advanced ToM. However, most of the psychometric properties of these 3 measures in patients with schizophrenia are unknown. The aims of this study were to validate the psychometric properties of the 3 advanced ToM measures in patients with schizophrenia, including: (1) test-retest reliability; (2) random measurement error; (3) practice effect; (4) concurrent validity; and (5) ecological validity. We recruited 53 patients with schizophrenia, who completed the 3 measures twice, 4 weeks apart. The Revised Social Functioning Scale-Taiwan short version (R-SFST) was completed within 3 days of first session of assessments. We found that the intraclass correlation coefficients of the RMET, Strange Stories, and Faux Pas Task were 0.24, 0.5, and 0.76. All 3 advanced ToM measures had large random measurement error, trivial to small practice effects, poor concurrent validity, and low ecological validity. We recommend that the scores of the 3 advanced ToM measures be interpreted with caution because these measures may not provide reliable and valid results on patients' advanced ToM abilities. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. A contralateral eye study comparing apodized diffrative and full diffrative lenses: wavefront analysis and distance and near uncorrected visual acuity

    Directory of Open Access Journals (Sweden)

    Marcony Rodrigues de Santhiago

    2009-01-01

    Full Text Available PURPOSE: To evaluate intraindividual visual acuity, wavefront errors and modulation transfer functions in patients implanted with two diffractive multifocal intraocular lenses. METHODS: This prospective study examined 40 eyes of 20 cataract patients who underwent phacoemulsification and implantation of a spherical multifocal ReSTOR intraocular lens in one eye and an aspheric Tecnis ZM900 multifocal intraocular lens in the other eye. The main outcome measures, over a 3-month follow-up period, were the uncorrected photopic distance and near visual acuity and the defocus curve. The visual acuity was converted to logMAR for statistical analysis and is presented in decimal scale. The wavefront error and modulation transfer function were also evaluated in both groups. RESULTS: At the 3-month postoperative visit, the mean photopic distance uncorrected visual acuity (UCVA was 0.74 ± 0.20 in the ReSTOR group and 0.76 ± 0.22 in the Tecnis group (p=0.286. The mean near UCVA was 0.96 ± 0.10 in the ReSTOR group and 0.93 ± 0.14 in the Tecnis group (p=0.963. The binocular defocus curve showed measurements between the peaks better than 0.2 logMAR. The total aberration, higher-order aberration and coma aberration were not significantly different between the groups. The spherical aberration was significantly lower in the Tecnis group than in the ReSTOR group. (p=0.004. Both groups performed similarly for the modulation transfer function. CONCLUSION: The ReSTOR SN60D3 and Tecnis ZM 900 intraocular lenses provided similar photopic visual acuity at distance and near. The diffractive intraocular lenses studied provided a low value of coma and spherical aberrations, with the Tecnis intraocular lens having a statistically lower spherical aberration compared to the ReSTOR intraocular lens. In the 5 mm pupil diameter analyses, both intraocular lens groups showed similar modulation transfer functions.

  6. Changes in higher order aberrations after wavefront guided FS-LASIK for myopia combined with moderate to high astigmatism

    Directory of Open Access Journals (Sweden)

    Cang-Yu Guan

    2018-02-01

    Full Text Available AIM: To assess the changes in higher order aberrations after wavefront guided femtosecond laser assisted laser in situ keratomileusis(FS-LASIKfor moderate to high astigmatism. METHODS: Eighty-eight eyes of 50 myopia patients with moderate to high astigmatism were included in this prospective study. There were 51 eyes with moderate astigmatism(≥-1.50D and RESULTS: At the 3mo after operation, the mean UDVA of all eyes was above 20/20, better than before operation(PP=0.36and no eyes lost ≥2 lines of CDVA. Mean astigmstism of 85 eyes(97%was reduced below -1.00D, mean astigmatism of 70 eyes(80%was reduced below -0.50D(PPP=0.078, 0.065. The spherical aberration, secondary astigmatism and the HOA root mean square(RMSincreased from 0.19±0.06, 0.05±0.02 and 0.42±0.12, preoperatively to 0.32±0.17, 0.26±0.08 and 0.78±0.28(PCONCLUSION: Wavefront-guided FS-LASIK is a safe and effective option for the patients with moderate to high astigmstism although parts of HOAs increased.

  7. Computer-generated holograms by multiple wavefront recording plane method with occlusion culling.

    Science.gov (United States)

    Symeonidou, Athanasia; Blinder, David; Munteanu, Adrian; Schelkens, Peter

    2015-08-24

    We propose a novel fast method for full parallax computer-generated holograms with occlusion processing, suitable for volumetric data such as point clouds. A novel light wave propagation strategy relying on the sequential use of the wavefront recording plane method is proposed, which employs look-up tables in order to reduce the computational complexity in the calculation of the fields. Also, a novel technique for occlusion culling with little additional computation cost is introduced. Additionally, the method adheres a Gaussian distribution to the individual points in order to improve visual quality. Performance tests show that for a full-parallax high-definition CGH a speedup factor of more than 2,500 compared to the ray-tracing method can be achieved without hardware acceleration.

  8. Accuracy of modal wavefront estimation from eye transverse aberration measurements

    Science.gov (United States)

    Chyzh, Igor H.; Sokurenko, Vyacheslav M.

    2001-01-01

    The influence of random errors in measurement of eye transverse aberrations on the accuracy of reconstructing wave aberration as well as ametropia and astigmatism parameters is investigated. The dependence of mentioned errors on a ratio between the number of measurement points and the number of polynomial coefficients is found for different pupil location of measurement points. Recommendations are proposed for setting these ratios.

  9. Continuous shearlet frames and resolution of the wavefront set

    KAUST Repository

    Grohs, Philipp

    2010-12-04

    In recent years directional multiscale transformations like the curvelet- or shearlet transformation have gained considerable attention. The reason for this is that these transforms are-unlike more traditional transforms like wavelets-able to efficiently handle data with features along edges. The main result in Kutyniok and Labate (Trans. Am. Math. Soc. 361:2719-2754, 2009) confirming this property for shearlets is due to Kutyniok and Labate where it is shown that for very special functions ψ with frequency support in a compact conical wegde the decay rate of the shearlet coefficients of a tempered distribution f with respect to the shearlet ψ can resolve the wavefront set of f. We demonstrate that the same result can be verified under much weaker assumptions on ψ, namely to possess sufficiently many anisotropic vanishing moments. We also show how to build frames for L2(ℝ2)from any such function. To prove our statements we develop a new approach based on an adaption of the Radon transform to the shearlet structure. © 2010 Springer-Verlag.

  10. Digital Moiré based transient interferometry and its application in optical surface measurement

    Science.gov (United States)

    Hao, Qun; Tan, Yifeng; Wang, Shaopu; Hu, Yao

    2017-10-01

    Digital Moiré based transient interferometry (DMTI) is an effective non-contact testing methods for optical surfaces. In DMTI system, only one frame of real interferogram is experimentally captured for the transient measurement of the surface under test (SUT). When combined with partial compensation interferometry (PCI), DMTI is especially appropriate for the measurement of aspheres with large apertures, large asphericity or different surface parameters. Residual wavefront is allowed in PCI, so the same partial compensator can be applied to the detection of multiple SUTs. Excessive residual wavefront aberration results in spectrum aliasing, and the dynamic range of DMTI is limited. In order to solve this problem, a method based on wavelet transform is proposed to extract phase from the fringe pattern with spectrum aliasing. Results of simulation demonstrate the validity of this method. The dynamic range of Digital Moiré technology is effectively expanded, which makes DMTI prospective in surface figure error measurement for intelligent fabrication of aspheric surfaces.

  11. Phase advance and β function measurements using model-independent analysis

    OpenAIRE

    Chun-xi Wang; Vadim Sajaev; Chih-Yuan Yao

    2003-01-01

    Phase advance and β function are basic lattice functions characterizing the linear properties of an accelerator lattice. Accurate and efficient measurements of these quantities are important for commissioning and operating a machine. For rings with little coupling, we report a new method to measure these lattice functions based on the model-independent analysis technique, which uses beam histories of excited betatron oscillations measured simultaneously at a large number of beam position moni...

  12. Diamond x-ray optics: Transparent, resilient, high-resolution, and wavefront preserving

    International Nuclear Information System (INIS)

    Shvyd’ko, Yuri; Blank, Vladimir; Terentyev, Sergey

    2017-01-01

    Diamond features a unique combination of outstanding physical properties perfect for numerous x-ray optics applications, where traditional materials such as silicon fail to perform. In the last two decades, impressive progress has been achieved in synthesizing diamond with high crystalline perfection, in manufacturing efficient, resilient, high-resolution, wavefront-preserving diamond optical components, and in implementing them in cutting-edge x-ray instruments. Diamond optics are essential for tailoring x-rays to the most challenging needs of x-ray research. Furthermore, they are becoming vital for the generation of fully coherent hard x-rays by seeded x-ray free-electron lasers. In this article, we review progress in manufacturing flawless diamond crystal components and their applications in diverse x-ray optical devices, such as x-ray monochromators, beam splitters, high-reflectance backscattering mirrors, lenses, phase plates, diffraction gratings, bent-crystal spectrographs, and windows.

  13. Development of the effectiveness measure for an advanced alarm system using signal detection theory

    International Nuclear Information System (INIS)

    Park, J.K.; Choi, S.S.; Hong, J.H.; Chang, S.H.

    1997-01-01

    Since many alarms which are activated during major process deviations or accidents in nuclear power plants can result in negative effects for operators, various types of advanced alarm systems that can select important alarms for the identification of process deviation have been developed to reduce the operator's workload. However, the irrelevant selection of important alarms could distract the operator from correct identification of process deviation. Therefore, to evaluate the effectiveness of the advanced alarm system, a tradeoff between the alarm reduction rate (how many alarms are reduced?) and informativeness (how many important alarms that are conducive to identifying process deviation are provided?) of an advanced alarm system should be considered. In this paper, a new measure is proposed to evaluate the effectiveness of an advanced alarm system with regard to the identification of process deviation. Here, the effectiveness measure is the combination of informativeness measure and reduction rate, and the informativeness measure means the information processing capability performed by the advanced alarm system including wrong rejection and wrong acceptance, and it can be calculated using the signal detection theory (SDT). The effectiveness of the prototype alarm system was evaluated using the loss of coolant accident (LOCA) scenario, and the validity of the effectiveness measure was investigated from two types of the operator response, such as the identification accuracy and the operator's preference for the identification of LOCA

  14. Wavefront-guided LASIK и Wavefront-guided epilasik в коррекции миопии и миопического астигматизма

    OpenAIRE

    Костин, О.

    2010-01-01

    В статье приводится сравнительная оценка изменений аберраций высшего порядка у 20 па) циентов (40 глаз) после операций Wavefront)guided LASIK и Wavefront)guided Epi)LASIK после вы) полнения которых, не только не устраняются предоперационные аберрации высших порядков, но и индуцируются сферическая аберрация Z(4;0), а Wavefront)guided Epi)LASIK также индуциру) ет горизонтальную кому Z(3;+1)....

  15. Incidence, outcomes, and risk factors for retreatment after wavefront-optimized ablations with PRK and LASIK.

    Science.gov (United States)

    Randleman, J Bradley; White, Alfred J; Lynn, Michael J; Hu, Michelle H; Stulting, R Doyle

    2009-03-01

    To analyze and compare retreatment rates after wavefront-optimized photorefractive keratectomy (PRK) and LASIK and determine risk factors for retreatment. A retrospective chart review was performed to identify patients undergoing PRK or LASIK with the wavefront-optimized WaveLight platform from January 2005 through December 2006 targeted for a piano outcome and to determine the rate and risk factors for retreatment surgery in this population. Eight hundred fifty-five eyes were analyzed, including 70 (8.2%) eyes with hyperopic refractions and 785 (91.8%) eyes with myopic refractions. After initial treatment, 72% of eyes were 20/20 or better and 99.5% were 20/40 or better. To improve uncorrected visual acuity, 54 (6.3%) eyes had retreatments performed. No significant differences in retreatment rates were noted based on age (P = .15), sex (P = .8), eye (P = .3), PRK versus LASIK (P = 1.0), room temperature (P = .1) or humidity (P = .9), and no correlation between retreatment rate and month or season of primary surgery (P = .4). There was no correlation between degree of myopia and retreatment rate. Eyes were significantly more likely to undergo retreatment if they were hyperopic (12.8% vs 6.0%, P = .006) or had astigmatism > or = 1.00 diopter (D) (9.1% vs 5.3%, P = .04). Retreatment rate was 6.3% with the WaveLight ALLEGRETTO WAVE excimer laser. This rate was not influenced by age, sex, corneal characteristics, or environmental factors. Eyes with hyperopic refractions or astigmatism > or = 1.00 D were more likely to undergo retreatment.

  16. Magnetic measurements of the injector synchrotron magnets for the Advanced Photon Source

    International Nuclear Information System (INIS)

    Kim, S.H.; Carnegie, D.W.; Doose, C.L.; Hogrefe, R.; Kim, K.; Merl, R.; Turner, L.R.

    1993-01-01

    The magnetic measurement data of the dipole, quadrupole, and sextupole magnets for the Advanced Photon Source injector synchrotron are summarized. Magnet design and magnetic measurements of the field strength, field shape, and multipole coefficients are described

  17. Magnetic measurements of the injector synchrotron magnets for the advanced photon source

    Science.gov (United States)

    Kim, S. H.; Carnegie, D. W.; Doose, C. L.; Hogrefe, R.; Kim, K.; Merl, R.; Turner, L. R.

    1994-07-01

    The magnetic measurement data of the dipole, quadrupole, and sextupole magnets for the Advanced Photon Source injector synchrotron are summarized. Magnet design and magnetic measurements of the field strength, field shape, and multipole coefficients are described.

  18. [Comparative clinical study of wavefront-guided laser in situ keratomileusis with versus without iris recognition for myopia or myopic astigmatism].

    Science.gov (United States)

    Wang, Wei-qun; Zhang, Jin-song; Zhao, Xiao-jin

    2011-10-01

    To explore the postoperative visual acuity results of wavefront-guided LASIK with iris recognition for myopia or myopic astigmatism and the changes of higher-order aberrations and contrast sensitivity function (CSF). Series of prospective case studies, 158 eyes (85 cases) of myopia or myopic astigmatism were divided into two groups: one group underwent wavefront-guided LASIK with iris recognition (iris recognition group); another group underwent wavefront-guided LASIK treatment without iris recognition through the limbus maring point (non-iris recognition group). To comparative analyze the postoperative visual acuity, residual refraction, the RMS of higher-order aberrations and CSF of two groups. There was no statistical significance difference between two groups of the average uncorrected visual acuity (t = 0.039, 0.058, 0.898; P = 0.844, 0.810, 0.343), best corrected visual acuity (t = 0.320, 0.440, 1.515; P = 0.572, 0.507, 0.218), and residual refraction [spherical equivalent (t = 0.027, 0.215, 0.238; P = 0.869, 0.643, 0.626), spherical (t = 0.145, 0.117, 0.038; P = 0.704, 0.732, 0.845) and cylinder (t = 1.676, 1.936, 0.334; P = 0.195, 0.164, 0.563)] at postoperative 10 days, 1 month and 3 month. The security index of iris recognition group at postoperative 3 month was 1.06 and non-iris recognition group was 1.03; the efficacy index of iris recognition group is 1.01 and non-iris recognition group was 1.00. Postoperative 3 month iris recognition group 93.83% eyes and non-iris recognition group of 90.91% eyes spherical equivalent within ± 0.50 D (χ(2) = 0.479, P = 0.489), iris recognition group of 98.77% eyes and non-iris recognition group of 97.40% eyes spherical equivalent within ± 1.00 D (Fisher test, P = 0.613). There was no significance difference between the two groups of security, efficacy and predictability. Non-iris recognition group postoperative 1 month and postoperative 3 months 3-order order aberrations root mean square value (RMS) higher than the

  19. Propagation and wavefront ambiguity of linear nondiffracting beams

    Science.gov (United States)

    Grunwald, R.; Bock, M.

    2014-02-01

    Ultrashort-pulsed Bessel and Airy beams in free space are often interpreted as "linear light bullets". Usually, interconnected intensity profiles are considered a "propagation" along arbitrary pathways which can even follow curved trajectories. A more detailed analysis, however, shows that this picture gives an adequate description only in situations which do not require to consider the transport of optical signals or causality. To also cover these special cases, a generalization of the terms "beam" and "propagation" is necessary. The problem becomes clearer by representing the angular spectra of the propagating wave fields by rays or Poynting vectors. It is known that quasi-nondiffracting beams can be described as caustics of ray bundles. Their decomposition into Poynting vectors by Shack-Hartmann sensors indicates that, in the frame of their classical definition, the corresponding local wavefronts are ambiguous and concepts based on energy density are not appropriate to describe the propagation completely. For this reason, quantitative parameters like the beam propagation factor have to be treated with caution as well. For applications like communication or optical computing, alternative descriptions are required. A heuristic approach based on vector field based information transport and Fourier analysis is proposed here. Continuity and discontinuity of far field distributions in space and time are discussed. Quantum aspects of propagation are briefly addressed.

  20. Phase camera experiment for Advanced Virgo

    International Nuclear Information System (INIS)

    Agatsuma, Kazuhiro; Beuzekom, Martin van; Schaaf, Laura van der; Brand, Jo van den

    2016-01-01

    We report on a study of the phase camera, which is a frequency selective wave-front sensor of a laser beam. This sensor is utilized for monitoring sidebands produced by phase modulations in a gravitational wave (GW) detector. Regarding the operation of the GW detectors, the laser modulation/demodulation method is used to measure mirror displacements and used for the position controls. This plays a significant role because the quality of controls affect the noise level of the GW detector. The phase camera is able to monitor each sideband separately, which has a great benefit for the manipulation of the delicate controls. Also, overcoming mirror aberrations will be an essential part of Advanced Virgo (AdV), which is a GW detector close to Pisa. Especially low-frequency sidebands can be affected greatly by aberrations in one of the interferometer cavities. The phase cameras allow tracking such changes because the state of the sidebands gives information on mirror aberrations. A prototype of the phase camera has been developed and is currently tested. The performance checks are almost completed and the installation of the optics at the AdV site has started. After the installation and commissioning, the phase camera will be combined to a thermal compensation system that consists of CO 2 lasers and compensation plates. In this paper, we focus on the prototype and show some limitations from the scanner performance. - Highlights: • The phase camera is being developed for a gravitational wave detector. • A scanner performance limits the operation speed and layout design of the system. • An operation range was found by measuring the frequency response of the scanner.

  1. Phase camera experiment for Advanced Virgo

    Energy Technology Data Exchange (ETDEWEB)

    Agatsuma, Kazuhiro, E-mail: agatsuma@nikhef.nl [National Institute for Subatomic Physics, Amsterdam (Netherlands); Beuzekom, Martin van; Schaaf, Laura van der [National Institute for Subatomic Physics, Amsterdam (Netherlands); Brand, Jo van den [National Institute for Subatomic Physics, Amsterdam (Netherlands); VU University, Amsterdam (Netherlands)

    2016-07-11

    We report on a study of the phase camera, which is a frequency selective wave-front sensor of a laser beam. This sensor is utilized for monitoring sidebands produced by phase modulations in a gravitational wave (GW) detector. Regarding the operation of the GW detectors, the laser modulation/demodulation method is used to measure mirror displacements and used for the position controls. This plays a significant role because the quality of controls affect the noise level of the GW detector. The phase camera is able to monitor each sideband separately, which has a great benefit for the manipulation of the delicate controls. Also, overcoming mirror aberrations will be an essential part of Advanced Virgo (AdV), which is a GW detector close to Pisa. Especially low-frequency sidebands can be affected greatly by aberrations in one of the interferometer cavities. The phase cameras allow tracking such changes because the state of the sidebands gives information on mirror aberrations. A prototype of the phase camera has been developed and is currently tested. The performance checks are almost completed and the installation of the optics at the AdV site has started. After the installation and commissioning, the phase camera will be combined to a thermal compensation system that consists of CO{sub 2} lasers and compensation plates. In this paper, we focus on the prototype and show some limitations from the scanner performance. - Highlights: • The phase camera is being developed for a gravitational wave detector. • A scanner performance limits the operation speed and layout design of the system. • An operation range was found by measuring the frequency response of the scanner.

  2. Thermal conductivity of molten KNO/sub 3/-NaNO/sub 2/ mixtures measured with wave-front shearing interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Iwadate, Yasuhiko; Kawamura, Kazutaka [Tokyo Inst. of Tech. (Japan). Research Lab. of Nuclear Reactor; Okada, Isao

    1982-06-01

    The thermal conductivities are estimated from data obtained by wave-front shearing interferomety using available data on the density and the heat capacity. The thermal diffusivities and the thermal conductivities of molten KNO/sub 3/-NaNO/sub 2/ mixtures increase and decrease slightly with a rise of temperature depending on the molar ratio of KNO/sub 3/ to NaNO/sub 2/. They are expressed as linear functions of temperature as shown in Table 3. The results suggest that the ionic melts containing the ions of smaller mass have the larger thermal conductivities. The thermal conductivities of the mixture melts deviate negatively from the additivity. The validity of the proposed theories to the KNO/sub 3/-NaNO/sub 2/ system has been studied in which the effects of mass, melting point, and density on thermal conductivity are taken into account. The formula of heat transfer proposed by Rao is best applicable to the thermal conductivity of the mixture. Our result is well expressed by the following formula, K = 2742.T sub(m)sup(1/2).rho sub(m)sup(2/3)/M sup(7/6), where K is the thermal conductivity, T sub(m) the molting point, rho sub(m) the density at T sub(m), and M the mean mass (averaged molecular weight), while the constant is 2742 instead of 2090 according to Rao. Whereas the thermal conductivity of pure alkali nitrate correlates linearly with the ultrasonic sound velocity, this relation does not hold in the molten KNO/sub 3/-NaNO/sub 2/ mixture. The additivity rule can be applied to the sound velocity, but not to the thermal conductivity owing to its excess conductivity.

  3. Proceedings of the symposium on advanced measurement techniques and instrumentation: abstract book

    International Nuclear Information System (INIS)

    Kale, Y.B.; Kushwaha, M.; Somkuwar, S.P.; Ajayakumar, S.; Sampathkumar, R.

    2011-01-01

    In order to consolidate the existing knowledge base and further to focus on the future directions of the field of advanced measurement techniques and instrumentation, Bhabha Atomic Research Centre has organized a three-day symposium on 'Advanced Measurement Techniques and Instrumentation' at Multi Purpose Hall, Training School Hostel, Anushaktinagar, Mumbai during February 02-04, 2011. The symposium is aimed at providing a forum to discuss the emerging trends and challenges ahead in the important area of measurement science and technology. This is a unique symposium, which brings together scientists and engineers from all disciplines and provides them a platform for close interaction to exchange ideas, methodologies and expertise, which is extremely important for synergic growth of this field. The symposium consists of 27 talks, which include keynote address, plenary and invited talks, and 63 contributory papers. The abstracts of these papers are brought to you in this volume. Readers may observe that the scientific programme of the symposium covers a wide ranging issues including advanced scientific concepts in measurements, instrumentation strategies, mathematical techniques and development of devices for applications in fundamental physics, astrophysics, fusion plasmas, nuclear reactors, accelerators, environment, chemical and biological sciences, and national security. Papers relevant to INIS are indexed separately

  4. Operator’s cognitive, communicative and operative activities based workload measurement of advanced main control room

    International Nuclear Information System (INIS)

    Kim, Seunghwan; Kim, Yochan; Jung, Wondea

    2014-01-01

    Highlights: • An advanced MMIS in the advanced MCR requires new roles and tasks of operators. • A new workload evaluation framework is needed for a new MMIS environment. • This work suggests a new workload measurement approach (COCOA) for an advanced MCR. • COCOA enables 3-dimensional measurement of cognition, communication and operation. • COCOA workload evaluation of the reference plant through simulation was performed. - Abstract: An advanced man–machine interface system (MMIS) with a computer-based procedure system and high-tech control/alarm system is installed in the advanced main control room (MCR) of a nuclear power plant. Accordingly, though the task of the operators has been changed a great deal, owing to a lack of appropriate guidelines on the role allocation or communication method of the operators, operators should follow the operating strategies of conventional MCR and the problem of an unbalanced workload for each operator can be raised. Thus, it is necessary to enhance the operation capability and improve the plant safety by developing guidelines on the role definition and communication of operators in an advanced MCR. To resolve this problem, however, a method for measuring the workload according to the work execution of the operators is needed, but an applicable method is not available. In this research, we propose a COgnitive, Communicative and Operational Activities measurement approach (COCOA) to measure and evaluate the workload of operators in an advanced MCR. This paper presents the taxonomy for additional operation activities of the operators to use the computerized procedures and soft control added to an advanced MCR, which enables an integrated measurement of the operator workload in various dimensions of cognition, communication, and operation. To check the applicability of COCOA, we evaluated the operator workload of an advanced MCR of a reference power plant through simulation training experiments. As a result, the amount

  5. Ocular aberrations with ray tracing and Shack-Hartmann wave-front sensors: Does polarization play a role?

    Science.gov (United States)

    Marcos, Susana; Diaz-Santana, Luis; Llorente, Lourdes; Dainty, Chris

    2002-06-01

    Ocular aberrations were measured in 71 eyes by using two reflectometric aberrometers, employing laser ray tracing (LRT) (60 eyes) and a Shack-Hartmann wave-front sensor (S-H) (11 eyes). In both techniques a point source is imaged on the retina (through different pupil positions in the LRT or a single position in the S-H). The aberrations are estimated by measuring the deviations of the retinal spot from the reference as the pupil is sampled (in LRT) or the deviations of a wave front as it emerges from the eye by means of a lenslet array (in the S-H). In this paper we studied the effect of different polarization configurations in the aberration measurements, including linearly polarized light and circularly polarized light in the illuminating channel and sampling light in the crossed or parallel orientations. In addition, completely depolarized light in the imaging channel was obtained from retinal lipofuscin autofluorescence. The intensity distribution of the retinal spots as a function of entry (for LRT) or exit pupil (for S-H) depends on the polarization configuration. These intensity patterns show bright corners and a dark area at the pupil center for crossed polarization, an approximately Gaussian distribution for parallel polarization and a homogeneous distribution for the autofluorescence case. However, the measured aberrations are independent of the polarization states. These results indicate that the differences in retardation across the pupil imposed by corneal birefringence do not produce significant phase delays compared with those produced by aberrations, at least within the accuracy of these techniques. In addition, differences in the recorded aerial images due to changes in polarization do not affect the aberration measurements in these reflectometric aberrometers.

  6. Broadband manipulation of refracted wavefronts by gradient acoustic metasurface with V-shape structure

    Science.gov (United States)

    Lan, Jun; Li, Yifeng; Liu, Xiaozhou

    2017-12-01

    We present a space folding acoustic metasurface with a V-shaped structure, which exhibits ultra-broadband and high efficiency transmission compared to previously investigated space folding metasurfaces. The proposal employs a gradient refractive index profile to redirect the refracted wave arbitrarily and an existence of air channels with direct sound propagation to improve impedance matching between the metasurface and the background medium. As expected from frequency-independent generalized Snell's law, the demonstrated acoustic metasurface can steer refracted wavefronts at will, including anomalous refraction, non-diffracting Bessel beam, sub-wavelength flat lens, and conversion of the propagating wave into the surface wave. The designed V-shape metasurface overcomes the limitation of narrowband, which may offer potential applications in medical ultrasound imaging and broadband acoustical devices.

  7. Advanced Measurements of Silicon Carbide Ceramic Matrix Composites

    Energy Technology Data Exchange (ETDEWEB)

    Farhad Farzbod; Stephen J. Reese; Zilong Hua; Marat Khafizov; David H. Hurley

    2012-08-01

    Silicon carbide (SiC) is being considered as a fuel cladding material for accident tolerant fuel under the Light Water Reactor Sustainability (LWRS) Program sponsored by the Nuclear Energy Division of the Department of Energy. Silicon carbide has many potential advantages over traditional zirconium based cladding systems. These include high melting point, low susceptibility to corrosion, and low degradation of mechanical properties under neutron irradiation. In addition, ceramic matrix composites (CMCs) made from SiC have high mechanical toughness enabling these materials to withstand thermal and mechanical shock loading. However, many of the fundamental mechanical and thermal properties of SiC CMCs depend strongly on the fabrication process. As a result, extrapolating current materials science databases for these materials to nuclear applications is not possible. The “Advanced Measurements” work package under the LWRS fuels pathway is tasked with the development of measurement techniques that can characterize fundamental thermal and mechanical properties of SiC CMCs. An emphasis is being placed on development of characterization tools that can used for examination of fresh as well as irradiated samples. The work discuss in this report can be divided into two broad categories. The first involves the development of laser ultrasonic techniques to measure the elastic and yield properties and the second involves the development of laser-based techniques to measurement thermal transport properties. Emphasis has been placed on understanding the anisotropic and heterogeneous nature of SiC CMCs in regards to thermal and mechanical properties. The material properties characterized within this work package will be used as validation of advanced materials physics models of SiC CMCs developed under the LWRS fuels pathway. In addition, it is envisioned that similar measurement techniques can be used to provide process control and quality assurance as well as measurement of

  8. Changes in higher order aberrations after wavefront-guided PRK for correction of low to moderate myopia and myopic astigmatism: two-year follow-up.

    Science.gov (United States)

    Wigledowska-Promienska, D; Zawojska, I

    2007-01-01

    To assess efficacy, safety, and changes in higher order aberrations after wavefront-guided photorefractive keratectomy (PRK) in comparison with conventional PRK for low to moderate myopia with myopic astigmatism using a WASCA Workstation with the MEL 70 G-Scan excimer laser. A total of 126 myopic or myopic-astigmatic eyes of 112 patients were included in this retrospective study. Patients were divided into two groups: Group 1, the study group; and Group 2, the control group. Group 1 consisted of 78 eyes treated with wavefront-guided PRK. Group 2 consisted of 48 eyes treated with spherocylindrical conventional PRK. Two years postoperatively, in Group 1, 5% of eyes achieved an uncorrected visual acuity (UCVA) of 0.05; 69% achieved a UCVA of 0.00; 18% of eyes experienced enhanced visual acuity of -0.18 and 8% of -0.30. In Group 2, 8% of eyes achieved a UCVA of 0.1; 25% achieved a UCVA of 0.05; and 67% achieved a UCVA of 0.00 according to logMAR calculation method. Total higher-order root-mean square increased by a factor 1.18 for Group 1 and 1.6 for Group 2. There was a significant increase of coma by a factor 1.74 in Group 2 and spherical aberration by a factor 2.09 in Group 1 and 3.56 in Group 2. The data support the safety and effectiveness of the wavefront-guided PRK using a WASCA Workstation for correction of low to moderate refractive errors. This method reduced the number of higher order aberrations induced by excimer laser surgery and improved uncorrected and spectacle-corrected visual acuity when compared to conventional PRK.

  9. An Assessment of Wind Plant Complex Flows Using Advanced Doppler Radar Measurements

    Science.gov (United States)

    Gunter, W. S.; Schroeder, J.; Hirth, B.; Duncan, J.; Guynes, J.

    2015-12-01

    As installed wind energy capacity continues to steadily increase, the need for comprehensive measurements of wind plant complex flows to further reduce the cost of wind energy has been well advertised by the industry as a whole. Such measurements serve diverse perspectives including resource assessment, turbine inflow and power curve validation, wake and wind plant layout model verification, operations and maintenance, and the development of future advanced wind plant control schemes. While various measurement devices have been matured for wind energy applications (e.g. meteorological towers, LIDAR, SODAR), this presentation will focus on the use of advanced Doppler radar systems to observe the complex wind flows within and surrounding wind plants. Advanced Doppler radars can provide the combined advantage of a large analysis footprint (tens of square kilometers) with rapid data analysis updates (a few seconds to one minute) using both single- and dual-Doppler data collection methods. This presentation demonstrates the utility of measurements collected by the Texas Tech University Ka-band (TTUKa) radars to identify complex wind flows occurring within and nearby operational wind plants, and provide reliable forecasts of wind speeds and directions at given locations (i.e. turbine or instrumented tower sites) 45+ seconds in advance. Radar-derived wind maps reveal commonly observed features such as turbine wakes and turbine-to-turbine interaction, high momentum wind speed channels between turbine wakes, turbine array edge effects, transient boundary layer flow structures (such as wind streaks, frontal boundaries, etc.), and the impact of local terrain. Operational turbine or instrumented tower data are merged with the radar analysis to link the observed complex flow features to turbine and wind plant performance.

  10. 7th International Workshop on Advanced Optical Imaging and Metrology

    CERN Document Server

    2014-01-01

    In continuation of the FRINGE Workshop Series this Proceeding contains all contributions presented at the 7. International Workshop on Advanced Optical Imaging and Metrology. The FRINGE Workshop Series is dedicated to the presentation, discussion and dissemination of recent results in Optical Imaging and Metrology. Topics of particular interest for the 7. Workshop are: - New methods and tools for the generation, acquisition, processing, and evaluation of data in Optical Imaging and Metrology (digital wavefront engineering, computational imaging, model-based reconstruction, compressed sensing, inverse problems solution) - Application-driven technologies in Optical Imaging and Metrology (high-resolution, adaptive, active, robust, reliable, flexible, in-line, real-time) - High-dynamic range solutions in Optical Imaging and Metrology (from macro to nano) - Hybrid technologies in Optical Imaging and Metrology (hybrid optics, sensor and data fusion, model-based solutions, multimodality) - New optical sensors, imagi...

  11. Preliminary results of a high-resolution refractometer using the Hartmann-Shack wave-front sensor: part I Resultados preliminares com refratrômetro de alta resolução, usando sensor de frente de onda de Hartmann-Shack: parte I

    Directory of Open Access Journals (Sweden)

    Luis Alberto Carvalho

    2003-06-01

    Full Text Available In this project we are developing an instrument for measuring the wave-front aberrations of the human eye using the Hartmann-Shack sensor. A laser source is directed towards the eye and its diffuse reflection at the retina generates an approximately spherical wave-front inside the eye. This wave-front travels through the different components of the eye (vitreous humor, lens, aqueous humor, and cornea and then leaves the eye carrying information about the aberrations caused by these components. Outside the eye there is an optical system composed of an array of microlenses and a CCD camera. The wave-front hits the microlens array and forms a pattern of spots at the CCD plane. Image processing algorithms detect the center of mass of each spot and this information is used to calculate the exact wave-front surface using least squares approximation by Zernike polynomials. We describe here the details of the first phase of this project, i. e., the construction of the first generation of prototype instruments and preliminary results for an artificial eye calibrated with different ametropias, i. e., myopia, hyperopia and astigmatism.Neste projeto estamos desenvolvendo instrumento para medidas das aberrações de frente de onda do olho humano usando um sensor Hartmann-Shack. Uma fonte de luz laser é direcionada ao olho e sua reflexão difusa na retina gera frente de onda aproximadamente esférica dentro do olho. Esta frente de onda atravessa os diferentes componentes do olho (humor vítreo, lente, humor aquoso e córnea trazendo informações sobre as aberrações ópticas causadas por estes componentes. No meio externo ao olho existe sistema óptico formado por uma matriz de microlentes e uma câmera CCD. A frente de onda incide nesta matriz e forma um padrão aproximadamente matricial de "spots" no plano do CCD. Algoritmos de processamento de imagens são utilizados para detectar os centróides de cada "spot" e esta informação é utilizada para

  12. Improvement of correlation-based centroiding methods for point source Shack-Hartmann wavefront sensor

    Science.gov (United States)

    Li, Xuxu; Li, Xinyang; wang, Caixia

    2018-03-01

    This paper proposes an efficient approach to decrease the computational costs of correlation-based centroiding methods used for point source Shack-Hartmann wavefront sensors. Four typical similarity functions have been compared, i.e. the absolute difference function (ADF), ADF square (ADF2), square difference function (SDF), and cross-correlation function (CCF) using the Gaussian spot model. By combining them with fast search algorithms, such as three-step search (TSS), two-dimensional logarithmic search (TDL), cross search (CS), and orthogonal search (OS), computational costs can be reduced drastically without affecting the accuracy of centroid detection. Specifically, OS reduces calculation consumption by 90%. A comprehensive simulation indicates that CCF exhibits a better performance than other functions under various light-level conditions. Besides, the effectiveness of fast search algorithms has been verified.

  13. Measurement of advanced electromagnetic radiation

    OpenAIRE

    Bajlo, Darko

    2017-01-01

    For the purpose of detecting advanced electromagnetic radiation predicted by Wheeler-Feynman absorber theory for the case of incomplete absorption of retarded electromagnetic radiation, pulses in duration of 6 ns to 24 ns, wavelength from 91 cm to 200 cm where supplied to three different transmitting antennas. Detection was done with a λ/20 monopole antenna in the advanced time window at a time 2r/c before the arrival of the center of the retarded pulse. At distances ranging from 430 cm to 18...

  14. Robust remote-pumping sodium laser for advanced LIDAR and guide star applications

    Science.gov (United States)

    Ernstberger, Bernhard; Enderlein, Martin; Friedenauer, Axel; Schwerdt, Robin; Wei, Daoping; Karpov, Vladimir; Leisching, Patrick; Clements, Wallace R. L.; Kaenders, Wilhelm G.

    2015-10-01

    The performance of large ground-based optical telescopes is limited due to wavefront distortions induced by atmospheric turbulence. Adaptive optics systems using natural guide stars with sufficient brightness provide a practical way for correcting the wavefront errors by means of deformable mirrors. Unfortunately, the sky coverage of bright stars is poor and therefore the concept of laser guide stars was invented, creating an artificial star by exciting resonance fluorescence from the mesospheric sodium layer about 90 km above the earth's surface. Until now, mainly dye lasers or sumfrequency mixing of solid state lasers were used to generate laser guide stars. However, these kinds of lasers require a stationary laser clean room for operation and are extremely demanding in maintenance. Under a development contract with the European Southern Observatory (ESO) and W. M. Keck Observatory (WMKO), TOPTICA Photonics AG and its partner MPB Communications have finalized the development of a next-generation sodium guide star laser system which is available now as a commercial off-the-shelf product. The laser is based on a narrow-band diode laser, Raman fiber amplifier (RFA) technology and resonant second-harmonic generation (SHG), thus highly reliable and simple to operate and maintain. It emits > 22 W of narrow-linewidth (≈ 5 MHz) continuous-wave radiation at sodium resonance and includes a re-pumping scheme for boosting sodium return flux. Due to the SHG resonator acting as spatial mode filter and polarizer, the output is diffraction-limited with RMS wavefront error concept of line-replaceable units (LRU). A comprehensive system software, as well as an intuitive service GUI, allow for remote control and error tracking down to at least the LRU level. In case of a failure, any LRU can be easily replaced. With these fiber-based guide star lasers, TOPTICA for the first time offers a fully engineered, off-the-shelf guide star laser system for groundbased optical telescopes

  15. Comparison of optical quality after implantable collamer lens implantation and wavefront-guided laser in situ keratomileusis

    Directory of Open Access Journals (Sweden)

    Hong-Ting Liu

    2018-04-01

    , all P<0.05. At 6 mm-pupil, the induction of total HOAs was not statistically significant in the WG-LASIK group. CONCLUSION: ICL implantation has a less disturbance to optical quality than WG-LASIK. The OQAS is a valuable complementary measurement to the wavefront aberrometers in evaluating the optical quality.

  16. Real-time wavefront correction system using a zonal deformable mirror and a Hartmann sensor

    International Nuclear Information System (INIS)

    Salmon, J.T.; Bliss, E.S.; Long, T.W.; Orham, E.L.; Presta, R.W.; Swift, C.D.; Ward, R.S.

    1991-07-01

    We have developed an adaptive optics system that corrects up to five waves of 2nd-order and 3rd-order aberrations in a high-power laser beam to less than 1/10th wave RMS. The wavefront sensor is a Hartmann sensor with discrete lenses and position-sensitive photodiodes; the deformable mirror uses piezoelectric actuators with feedback from strain gauges bonded to the stacks. The controller hardware uses a VME bus. The system removes thermally induced aberrations generated in the master-oscillator-power-amplifier chains of a dye laser, as well as aberrations generated in beam combiners and vacuum isolation windows for average output powers exceeding 1 kW. The system bandwidth is 1 Hz, but higher bandwidths are easily attainable

  17. Apparent increase in the thickness of superconducting particles at low temperatures measured by electron holography.

    Science.gov (United States)

    Hirsch, J E

    2013-10-01

    We predict that superconducting particles will show an apparent increase in thickness at low temperatures when measured by electron holography. This will result not from a real thickness increase, rather from an increase in the mean inner potential sensed by the electron wave traveling through the particle, originating in expansion of the electronic wavefunction of the superconducting electrons and resulting negative charge expulsion from the interior to the surface of the superconductor, giving rise to an increase in the phase shift of the electron wavefront going through the sample relative to the wavefront going through vacuum. The temperature dependence of the observed phase shifts will yield valuable new information on the physics of the superconducting state of metals. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Advanced, Analytic, Automated (AAA) Measurement of Engagement During Learning.

    Science.gov (United States)

    D'Mello, Sidney; Dieterle, Ed; Duckworth, Angela

    2017-01-01

    It is generally acknowledged that engagement plays a critical role in learning. Unfortunately, the study of engagement has been stymied by a lack of valid and efficient measures. We introduce the advanced, analytic, and automated (AAA) approach to measure engagement at fine-grained temporal resolutions. The AAA measurement approach is grounded in embodied theories of cognition and affect, which advocate a close coupling between thought and action. It uses machine-learned computational models to automatically infer mental states associated with engagement (e.g., interest, flow) from machine-readable behavioral and physiological signals (e.g., facial expressions, eye tracking, click-stream data) and from aspects of the environmental context. We present15 case studies that illustrate the potential of the AAA approach for measuring engagement in digital learning environments. We discuss strengths and weaknesses of the AAA approach, concluding that it has significant promise to catalyze engagement research.

  19. Zyoptix wavefront-guided versus standard photorefractive keratectomy (PRK) in low and moderate myopia: randomized controlled 6-month study.

    Science.gov (United States)

    Mastropasqua, L; Toto, L; Zuppardi, E; Nubile, M; Carpineto, P; Di Nicola, M; Ballone, E

    2006-01-01

    To evaluate the refractive and aberrometric outcome of wavefront-guided photorefractive keratectomy (PRK) compared to standard PRK in myopic patients. Fifty-six eyes of 56 patients were included in the study and were randomly divided into two groups. The study group consisted of 28 eyes with a mean spherical equivalent (SE) of -2.25+/-0.76 diopters (D) (range: -1.5 to -3.5 D) treated with wavefront-guided PRK using the Zywave ablation profile and the Bausch & Lomb Technolas 217z excimer laser (Zyoptix system) and the control group included 28 eyes with a SE of -2.35+/-1.01 D (range: -1.5 to -3.5 D) treated with standard PRK (PlanoScan ablation) using the same laser. A Zywave aberrometer was used to analyze and calculate the root-mean-square (RMS) of total high order aberrations (HOA) and Zernike coefficients of third and fourth order before and after (over a 6-month follow-up period) surgery in both groups. Preoperative and postoperative SE, un-corrected visual acuity (UCVA), and best-corrected visual acuity (BCVA) were evaluated in all cases. There was a high correlation between achieved and intended correction. The differences between the two treatment groups were not statistically significant for UCVA, BCVA, or SE cycloplegic refraction . Postoperatively the RMS value of high order aberrations was raised in both groups. At 6-month control, on average it increased by a factor of 1.17 in the Zyoptix PRK group and 1.54 in the PlanoScan PRK group (p=0.22). In the Zyoptix group there was a decrease of coma aberration, while in the PlanoScan group this third order aberration increased. The difference between postoperative and preoperative values between the two groups was statistically significant for coma aberration (p=0.013). No statistically significant difference was observed for spherical-like aberration between the two groups. In the study group eyes with a low amount of preoperative aberrations (HOA RMS lower than the median value; PRK is as safe and

  20. Recent advances in measurements of the nuclear level density

    International Nuclear Information System (INIS)

    John, Bency

    2007-01-01

    A short review of recent advances in measurements of the nuclear level density is given. First results of the inverse level density parameter - angular momentum correlation in a number of nuclei around Z∼50 shell region at an excitation energy around 0.3 MeV/nucleon are presented. Significant variations observed over and above the expected shell corrections are discussed in context of the emerging trends in microscopic calculations of the nuclear level density. (author)

  1. Pump depletion limited evolution of the relativistic plasma wave-front in a forced laser-wakefield accelerator

    International Nuclear Information System (INIS)

    Fang, F; Clayton, C E; Marsh, K A; Pak, A E; Ralph, J E; Joshi, C; Lopes, N C

    2009-01-01

    In a forced laser-wakefield accelerator experiment (Malka et al 2002 Science 298 1596) where the length of the pump laser pulse is a few plasma periods long, the leading edge of the laser pulse undergoes frequency downshifting and head erosion as the laser energy is transferred to the wake. Therefore, after some propagation distance, the group velocity of the leading edge of the pump pulse-and thus of the driven electron plasma wave-will slow down. This can have implications for the dephasing length of the accelerated electrons and therefore needs to be understood experimentally. We have carried out an experimental investigation where we have measured the velocity v f of the 'wave-front' of the plasma wave driven by a nominally 50 fs (full width half maximum), intense (a 0 ≅ 1), 0.815 μm laser pulse. To determine the speed of the wave front, time- and space-resolved refractometry, interferometry and Thomson scattering were used. Although a laser pulse propagating through a relatively low-density plasma (n e = 1.3 x 10 19 cm -3 ) showed no measurable changes in v f over 1.3 mm (and no accelerated electrons), a high-density plasma (n e = 5 x 10 19 cm -3 ) generated accelerated electrons and showed a continuous change in v f as the laser pulse propagated through the plasma. Possible causes and consequences of the observed v f evolution are discussed.

  2. Analysis of Fringe Field Formed Inside LDA Measurement Volume Using Compact Two Hololens Imaging Systems

    Science.gov (United States)

    Ghosh, Abhijit; Nirala, A. K.; Yadav, H. L.

    2018-03-01

    We have designed and fabricated four LDA optical setups consisting of aberration compensated four different compact two hololens imaging systems. We have experimentally investigated and realized a hololens recording geometry which is interferogram of converging spherical wavefront with mutually coherent planar wavefront. Proposed real time monitoring and actual fringe field analysis techniques allow complete characterizations of fringes formed at measurement volume and permit to evaluate beam quality, alignment and fringe uniformity with greater precision. After experimentally analyzing the fringes formed at measurement volume by all four imaging systems, it is found that fringes obtained using compact two hololens imaging systems get improved both qualitatively and quantitatively compared to that obtained using conventional imaging system. Results indicate qualitative improvement of non-uniformity in fringe thickness and micro intensity variations perpendicular to the fringes, and quantitative improvement of 39.25% in overall average normalized standard deviations of fringe width formed by compact two hololens imaging systems compare to that of conventional imaging system.

  3. Reliability and validity of advanced theory-of-mind measures in middle childhood and adolescence.

    Science.gov (United States)

    Hayward, Elizabeth O; Homer, Bruce D

    2017-09-01

    Although theory-of-mind (ToM) development is well documented for early childhood, there is increasing research investigating changes in ToM reasoning in middle childhood and adolescence. However, the psychometric properties of most advanced ToM measures for use with older children and adolescents have not been firmly established. We report on the reliability and validity of widely used, conventional measures of advanced ToM with this age group. Notable issues with both reliability and validity of several of the measures were evident in the findings. With regard to construct validity, results do not reveal a clear empirical commonality between tasks, and, after accounting for comprehension, developmental trends were evident in only one of the tasks investigated. Statement of contribution What is already known on this subject? Second-order false belief tasks have acceptable internal consistency. The Eyes Test has poor internal consistency. Validity of advanced theory-of-mind tasks is often based on the ability to distinguish clinical from typical groups. What does this study add? This study examines internal consistency across six widely used advanced theory-of-mind tasks. It investigates validity of tasks based on comprehension of items by typically developing individuals. It further assesses construct validity, or commonality between tasks. © 2017 The British Psychological Society.

  4. JWST Wavefront Sensing and Control: Operations Plans, Demonstrations, and Status

    Science.gov (United States)

    Perrin, Marshall; Acton, D. Scott; Lajoie, Charles-Philippe; Knight, J. Scott; Myers, Carey; Stark, Chris; JWST Wavefront Sensing & Control Team

    2018-01-01

    After JWST launches and unfolds in space, its telescope optics will be aligned through a complex series of wavefront sensing and control (WFSC) steps to achieve diffraction-limited performance. This iterative process will comprise about half of the observatory commissioning time (~ 3 out of 6 months). We summarize the JWST WFSC process, schedule, and expectations for achieved performance, and discuss our team’s activities to prepare for an effective & efficient telescope commissioning. During the recently-completed OTIS cryo test at NASA JSC, WFSC demonstrations showed the flight-like operation of the entire JWST active optics and WFSC system from end to end, including all hardware and software components. In parallel, the same test data were processed through the JWST Mission Operations Center at STScI to demonstrate the readiness of ground system components there (such as the flight operations system, data pipelines, archives, etc). Moreover, using the Astronomer’s Proposal Tool (APT), the entire telescope commissioning program has been implemented, reviewed, and is ready for execution. Between now and launch our teams will continue preparations for JWST commissioning, including further rehearsals and testing, to ensure a successful alignment of JWST’s telescope optics.

  5. Prevalence of advanced adenomas in small and diminutive colon polyps using direct measurement of size.

    Science.gov (United States)

    Tsai, Franklin C; Strum, Williamson B

    2011-08-01

    Most studies reporting polyp size use visual estimates. Determining the prevalence of advanced histology based on direct measurement of polyp size may help guide the management of polyps found at optical colonoscopy (OC) and CT colonography (CTC). We designed a large, prospective study to assess the prevalence of advanced adenomas based on direct measurement of polyp size by a certified pathologists' assistant as reported in the pathology report. Patients between 40 and 89 years of age who presented for screening colonoscopy were included in our study. Advanced adenomas were defined as ≥10 mm or ≥25% villous features, high grade dysplasia or cancer. Polyps were divided by size into three groups: diminutive (≤5 mm), small (6-9 mm) and large (≥10 mm). If more than one adenoma was present, the most advanced was used for analysis. We evaluated 6,905 consecutive patients referred for colonoscopy between January 2005 and December 2006. Of the 4,967 who met the inclusion criteria, the mean age was 58.8 and consisted of 59% women. Overall, 930 (18.7%) had an adenoma; 248 (5%) were advanced adenomas including 8 (0.16%) cancers. Of 89 polyps≥10 mm, 76 (85%) had advanced histology; of 247 polyps 6-9 mm, 67 (27%) were advanced; of 1,025 polyps ≤5 mm, 105 (10%) were advanced. Thus, 172 of 248 (69%) patients with advanced adenomas had small or diminutive adenomas. Our data indicate the majority (69%) of advanced adenomas are advanced adenomas (10%). These findings may help guide the management of sub-centimeter colon polyps found by OC or CTC.

  6. Ultra-high accuracy optical testing: creating diffraction-limited short-wavelength optical systems

    International Nuclear Information System (INIS)

    Goldberg, Kenneth A.; Naulleau, Patrick P.; Rekawa, Senajith B.; Denham, Paul E.; Liddle, J. Alexander; Gullikson, Eric M.; Jackson, KeithH.; Anderson, Erik H.; Taylor, John S.; Sommargren, Gary E.; Chapman, Henry N.; Phillion, Donald W.; Johnson, Michael; Barty, Anton; Soufli, Regina; Spiller, Eberhard A.; Walton, Christopher C.; Bajt, Sasa

    2005-01-01

    Since 1993, research in the fabrication of extreme ultraviolet (EUV) optical imaging systems, conducted at Lawrence Berkeley National Laboratory (LBNL) and Lawrence Livermore National Laboratory (LLNL), has produced the highest resolution optical systems ever made. We have pioneered the development of ultra-high-accuracy optical testing and alignment methods, working at extreme ultraviolet wavelengths, and pushing wavefront-measuring interferometry into the 2-20-nm wavelength range (60-600 eV). These coherent measurement techniques, including lateral shearing interferometry and phase-shifting point-diffraction interferometry (PS/PDI) have achieved RMS wavefront measurement accuracies of 0.5-1-(angstrom) and better for primary aberration terms, enabling the creation of diffraction-limited EUV optics. The measurement accuracy is established using careful null-testing procedures, and has been verified repeatedly through high-resolution imaging. We believe these methods are broadly applicable to the advancement of short-wavelength optical systems including space telescopes, microscope objectives, projection lenses, synchrotron beamline optics, diffractive and holographic optics, and more. Measurements have been performed on a tunable undulator beamline at LBNL's Advanced Light Source (ALS), optimized for high coherent flux; although many of these techniques should be adaptable to alternative ultraviolet, EUV, and soft x-ray light sources. To date, we have measured nine prototype all-reflective EUV optical systems with NA values between 0.08 and 0.30 (f/6.25 to f/1.67). These projection-imaging lenses were created for the semiconductor industry's advanced research in EUV photolithography, a technology slated for introduction in 2009-13. This paper reviews the methods used and our program's accomplishments to date

  7. Advanced haptic sensor for measuring human skin conditions

    Science.gov (United States)

    Tsuchimi, Daisuke; Okuyama, Takeshi; Tanaka, Mami

    2010-01-01

    This paper is concerned with the development of a tactile sensor using PVDF (Polyvinylidene Fluoride) film as a sensory receptor of the sensor to evaluate softness, smoothness, and stickiness of human skin. Tactile sense is the most important sense in the sensation receptor of the human body along with eyesight, and we can examine skin condition quickly using these sense. But, its subjectivity and ambiguity make it difficult to quantify skin conditions. Therefore, development of measurement device which can evaluate skin conditions easily and objectively is demanded by dermatologists, cosmetic industries, and so on. In this paper, an advanced haptic sensor system that can measure multiple information of skin condition in various parts of human body is developed. The applications of the sensor system to evaluate softness, smoothness, and stickiness of skin are investigated through two experiments.

  8. Proceedings of the OECD/CSNI specialist meeting on advanced instrumentation and measurement techniques

    Energy Technology Data Exchange (ETDEWEB)

    Lehner, J [comp.

    1998-09-01

    In the last few years, tremendous advances in the local instrumentation technology for two-phase flow have been accomplished by the applications of new sensor techniques, optical or beam methods and electronic technology. The detailed measurements gave new insight to the true nature of local mechanisms of interfacial transfer between phases, interfacial structure and two-phase flow turbulent transfers. These new developments indicate that more accurate and reliable two-phase flow models can be obtained, if focused experiments are designed and performed by utilizing this advanced instrumentation. The purpose of this Specialist Meeting on Advanced Instrumentation and Measurement Techniques was to review the recent instrumentation developments and the relation between thermal-hydraulic codes and instrumentation capabilities. Four specific objectives were identified for this meeting: bring together international experts on instrumentation, experiments, and modeling; review recent developments in multiphase flow instrumentation; discuss the relation between modeling needs and instrumentation capabilities, and discuss future directions for instrumentation development, modeling, and experiments.

  9. Proceedings of the OECD/CSNI specialist meeting on advanced instrumentation and measurement techniques

    International Nuclear Information System (INIS)

    Lehner, J.

    1998-09-01

    In the last few years, tremendous advances in the local instrumentation technology for two-phase flow have been accomplished by the applications of new sensor techniques, optical or beam methods and electronic technology. The detailed measurements gave new insight to the true nature of local mechanisms of interfacial transfer between phases, interfacial structure and two-phase flow turbulent transfers. These new developments indicate that more accurate and reliable two-phase flow models can be obtained, if focused experiments are designed and performed by utilizing this advanced instrumentation. The purpose of this Specialist Meeting on Advanced Instrumentation and Measurement Techniques was to review the recent instrumentation developments and the relation between thermal-hydraulic codes and instrumentation capabilities. Four specific objectives were identified for this meeting: bring together international experts on instrumentation, experiments, and modeling; review recent developments in multiphase flow instrumentation; discuss the relation between modeling needs and instrumentation capabilities, and discuss future directions for instrumentation development, modeling, and experiments

  10. Novel Detecting Methods of Shack-Hartmann Wavefront Sensor at Low Light Levels

    International Nuclear Information System (INIS)

    Zhang, A; Rao, C H; Zhang, Y D; Jiang, W H

    2006-01-01

    A study of novel detecting methods of Shack-Hartmann wavefront sensor at low light levels has been made. Three methods of images processing before slope estimating are presented: Linear Enhancing (LE), Exponential Enhancing (EE) and Fourier Spectrum Filtering (FSF). The idea of LE method is to time the image intensity with a special coefficient before slope estimation. The image points are powered by a selected exponent in EE method. The FSF method is based on the spectrum difference between signal and noise. Most of noise spectrum is filtered and the noise is restrained. The simulated and experimental results show that the LE method does not work effectively, and the other two methods can improve the slope estimation when the Signal-to-noise ratio is higher than 3.0. When the Signal-to-noise ratio is less than 3.0, especially when it is less than 1.0, the FSF is the only method that can overcome the readout noise of the CCD detector

  11. Technology development for the Advanced Technology Large Aperture Space Telescope (ATLAST) as a candidate large UV-Optical-Infrared (LUVOIR) surveyor

    Science.gov (United States)

    Bolcar, Matthew R.; Balasubramanian, Kunjithapatham; Clampin, Mark; Crooke, Julie; Feinberg, Lee; Postman, Marc; Quijada, Manuel; Rauscher, Bernard; Redding, David; Rioux, Norman; Shaklan, Stuart; Stahl, H. Philip; Stahle, Carl; Thronson, Harley

    2015-09-01

    The Advanced Technology Large Aperture Space Telescope (ATLAST) team has identified five key technologies to enable candidate architectures for the future large-aperture ultraviolet/optical/infrared (LUVOIR) space observatory envisioned by the NASA Astrophysics 30-year roadmap, Enduring Quests, Daring Visions. The science goals of ATLAST address a broad range of astrophysical questions from early galaxy and star formation to the processes that contributed to the formation of life on Earth, combining general astrophysics with direct-imaging and spectroscopy of habitable exoplanets. The key technologies are: internal coronagraphs, starshades (or external occulters), ultra-stable large-aperture telescopes, detectors, and mirror coatings. Selected technology performance goals include: 1x10-10 raw contrast at an inner working angle of 35 milli-arcseconds, wavefront error stability on the order of 10 pm RMS per wavefront control step, autonomous on-board sensing and control, and zero-read-noise single-photon detectors spanning the exoplanet science bandpass between 400 nm and 1.8 μm. Development of these technologies will provide significant advances over current and planned observatories in terms of sensitivity, angular resolution, stability, and high-contrast imaging. The science goals of ATLAST are presented and flowed down to top-level telescope and instrument performance requirements in the context of a reference architecture: a 10-meter-class, segmented aperture telescope operating at room temperature (~290 K) at the sun-Earth Lagrange-2 point. For each technology area, we define best estimates of required capabilities, current state-of-the-art performance, and current Technology Readiness Level (TRL) - thus identifying the current technology gap. We report on current, planned, or recommended efforts to develop each technology to TRL 5.

  12. REVIEW ARTICLE: Emission measurement techniques for advanced powertrains

    Science.gov (United States)

    Adachi, Masayuki

    2000-10-01

    Recent developments in high-efficiency low-emission powertrains require the emission measurement technologies to be able to detect regulated and unregulated compounds with very high sensitivity and a fast response. For example, levels of a variety of nitrogen compounds and sulphur compounds should be analysed in real time in order to develop aftertreatment systems to decrease emission of NOx for the lean burning powertrains. Also, real-time information on the emission of particulate matter for the transient operation of diesel engines and direct injection gasoline engines is invaluable. The present paper reviews newly introduced instrumentation for such emission measurement that is demanded for the developments in advanced powertrain systems. They include Fourier transform infrared spectroscopy, mass spectrometry and fast response flame ionization detection. In addition, demands and applications of the fuel reformer developments for fuel cell electric vehicles are discussed. Besides the detection methodologies, sample handling techniques for the measurement of concentrations emitted from low emission vehicles for which the concentrations of the pollutants are significantly lower than the concentrations present in ambient air, are also described.

  13. Zernike phase spatial filter for measuring the aberrations

    OpenAIRE

    Svetlana N. Khonina; Victor V. Kotlyar; Dmitriy V. Kirsh

    2015-01-01

    To measure directly the wavefront aberration coefficients, we propose to use the multi8order diffractive element fitted with the set of Zernike polynomials. Polynomials of lowest degree describe defocusing (ametropy) and astigmatism. Coefficients of highest degree correspond to the spherical aberration of oblique rays that occurs as a consequence of misalignment of the crystalline lens and foveola, as well as deflection at the periphery of the crystalline lens. Mul^order elements allow severa...

  14. BRIEF COMMUNICATIONS: Compensation of phase distortions in a single-transit wavefront-reversal system with a degenerate four-photon interaction

    Science.gov (United States)

    Barashkov, M. S.; Matveev, I. N.; Petnikova, V. M.; Umnov, A. F.; Ustinov, N. D.; Shuvalov, Vladimir V.

    1982-11-01

    A proposal is made for a system designed to compensate phase distortions in a wavefront-reversal system in which some part of the signal radiation is deflected to pass through a spatial frequency filter and then acts as the pump; the remainder of such radiation acts as the signal. It is shown that a suitable selection of the pass band of the filter can ensure compensation of large-scale phase inhomogeneities in the system and can enable reconstruction of a small-scale structure of an object.

  15. Dynamic Aperture Measurements at the Advanced Light Source

    International Nuclear Information System (INIS)

    Decking, W.; Robin, D.

    1999-01-01

    A large dynamic aperture for a storage ring is of importance for long lifetimes and a high injection efficiency. Measurements of the dynamic aperture of the third generation synchrotron light source Advanced Light Source (ALS) using beam excitation with kicker magnets are presented. The experiments were done for various accelerator conditions, allowing us to investigate the influence of different working points, chromaticities, insertion devices, etc.. The results are compared both with tracking calculations and a simple model for the dynamic aperture yielding good agreements. This gives us confidence in the predictability of the nonlinear accelerator model. This is especially important for future ALS upgrades as well as new storage ring designs

  16. Measurable difference in Cherenkov light between gamma and hadron induced EAS

    Energy Technology Data Exchange (ETDEWEB)

    Cabot, H.; Meynadier, Ch. [Universite de Perpignan, Groupe de Physique Fondamentale, Perpignan (France); Sobczynska, D. [Experimental Physics Department, University of Lodz, Lodz (Poland); Szabelska, B. [Soltan Institute for Nuclear Studies, Lodz (Poland); Szabelski, J. [Universite de Perpignan, Groupe de Physique Fondamentale, Perpignan (France)]|[Soltan Institute for Nuclear Studies, Lodz (Poland); Wibig, T. [Experimental Physics Department, University of Lodz, Lodz (Poland)

    1997-12-31

    We describe the possibly measurable difference in the Cherenkov light component of EAS induced by en electromagnetic particle (i.e. e{sup +}, e{sup -} or {gamma}) and induced by a hadron (i.e. proton or heavier nuclei) in TeV range. The method can be applied in experiments which use wavefront sampling method of EAS Cherenkov light detection (e.g. THEMISTOCLE, ASGAT). (author) 16 refs, 9 figs

  17. Taking Poseidon's Measure from Space: Advances in our Understanding of the Ocean

    Science.gov (United States)

    Avery, S. K.

    2017-12-01

    In many ways the ocean defines our planet and makes it livable. It provides marine resources and ecosystem services that are critical to a sustainable society. Today we understand that there is a growing need to predict, manage, and adapt to changes on our planet - changes that occur not only in the atmosphere but also in the ocean. Over the last 40 years remarkable advances in measuring key ocean quantities have been made - through the development of new satellite technologies and successful missions as well as through in-situ observing systems enabled by advances in robotics, communications, navigation, and sensors. Ocean science (and atmospheric science) is a science of numbers, imaging, and numerical models. Predictability of the ocean is tied to the scale of variability in space and time. Satellite observations have spectacularly showed us the incredible structure and variability of the ocean. It has been the combination of satellites and in-situ sensors that have allowed us to advance understanding and prediction. This presentation will highlight some of the key scientific advances that have been enabled by satellites.

  18. Enabling Super-Nyquist Wavefront Control on WFIRST

    Science.gov (United States)

    Bendek, Eduardo; Belikov, Ruslan; Sirbu, Dan; Shaklan, Stuart B.; Eldorado Riggs, A. J.

    2018-01-01

    A large fraction of sun-like stars is contained in Binary systems. Within 10pc there are 70 FGK stars from which, 43 belong to a multi-star system, and 28 of them have companion leak that is greater than 1e-9 contrast assuming typical Hubble-quality space optics. Currently, those binary stars are not included in the WFIRST-CGI target list, but they could be observed if high-contrast imaging around binary star systems using WFIRST is possible, increasing by 70% the number of possible FGK targets for the mission. The Multi-Star Wavefront Control (MSWC) algorithm can be used to suppress the companion star leakage. If the targets have angular separations larger than the Nyquist controllable region of the Deformable Mirror the MSWC must operate in its Super-Nyquist (SN) mode. This mode requires a target star replica within the SN region in order to provide the energy, and coherent light necessary to null speckles at SN angular separations. For the case of WFIRST, about half of the targets that can be observed using MSWC have angular separations larger than the Nyquist controllable region of the 48x48 actuator Deformable Mirror (DM) to be used. Here, we discuss multiple alternatives to generate those PSF replicas with minimal or no impact to the WFIRST Coronagraph instrument such as 1) the addition of a movable diffractive pupil mounted of the Shape Pupil wheel. 2) Design of a modified Shape Pupil design able to create a dark zone and at the same time diffract a small fraction of the starlight on the SN region. 3) Predict the minimum residual quilting on Xinetics DM that would allow observing a given target.

  19. Advances in measuring ocean salinity with an optical sensor

    International Nuclear Information System (INIS)

    Menn, M Le; De Bougrenet de la Tocnaye, J L; Grosso, P; Delauney, L; Podeur, C; Brault, P; Guillerme, O

    2011-01-01

    Absolute salinity measurement of seawater has become a key issue in thermodynamic models of the oceans. One of the most direct ways is to measure the seawater refractive index which is related to density and can therefore be related to the absolute salinity. Recent advances in high resolution position sensitive devices enable us to take advantage of small beam deviation measurements using refractometers. This paper assesses the advantages of such technology with respect to the current state-of-the-art technology. In particular, we present the resolution dependence on refractive index variations and derive the limits of such a solution for designing seawater sensors well suited for coastal and deep-sea applications. Particular attention has been paid to investigate the impact of environmental parameters, such as temperature and pressure, on an optical sensor, and ways to mitigate or compensate them have been suggested here. The sensor has been successfully tested in a pressure tank and in open oceans 2000 m deep

  20. Advanced Electric and Magnetic Material Models for FDTD Electromagnetic Codes

    CERN Document Server

    Poole, Brian R; Nelson, Scott D

    2005-01-01

    The modeling of dielectric and magnetic materials in the time domain is required for pulse power applications, pulsed induction accelerators, and advanced transmission lines. For example, most induction accelerator modules require the use of magnetic materials to provide adequate Volt-sec during the acceleration pulse. These models require hysteresis and saturation to simulate the saturation wavefront in a multipulse environment. In high voltage transmission line applications such as shock or soliton lines the dielectric is operating in a highly nonlinear regime, which requires nonlinear models. Simple 1-D models are developed for fast parameterization of transmission line structures. In the case of nonlinear dielectrics, a simple analytic model describing the permittivity in terms of electric field is used in a 3-D finite difference time domain code (FDTD). In the case of magnetic materials, both rate independent and rate dependent Hodgdon magnetic material models have been implemented into 3-D FDTD codes an...

  1. ADVANCED ELECTRIC AND MAGNETIC MATERIAL MODELS FOR FDTD ELECTROMAGNETIC CODES

    Energy Technology Data Exchange (ETDEWEB)

    Poole, B R; Nelson, S D; Langdon, S

    2005-05-05

    The modeling of dielectric and magnetic materials in the time domain is required for pulse power applications, pulsed induction accelerators, and advanced transmission lines. For example, most induction accelerator modules require the use of magnetic materials to provide adequate Volt-sec during the acceleration pulse. These models require hysteresis and saturation to simulate the saturation wavefront in a multipulse environment. In high voltage transmission line applications such as shock or soliton lines the dielectric is operating in a highly nonlinear regime, which require nonlinear models. Simple 1-D models are developed for fast parameterization of transmission line structures. In the case of nonlinear dielectrics, a simple analytic model describing the permittivity in terms of electric field is used in a 3-D finite difference time domain code (FDTD). In the case of magnetic materials, both rate independent and rate dependent Hodgdon magnetic material models have been implemented into 3-D FDTD codes and 1-D codes.

  2. ADVANCED ELECTRIC AND MAGNETIC MATERIAL MODELS FOR FDTD ELECTROMAGNETIC CODES

    International Nuclear Information System (INIS)

    Poole, B R; Nelson, S D; Langdon, S

    2005-01-01

    The modeling of dielectric and magnetic materials in the time domain is required for pulse power applications, pulsed induction accelerators, and advanced transmission lines. For example, most induction accelerator modules require the use of magnetic materials to provide adequate Volt-sec during the acceleration pulse. These models require hysteresis and saturation to simulate the saturation wavefront in a multipulse environment. In high voltage transmission line applications such as shock or soliton lines the dielectric is operating in a highly nonlinear regime, which require nonlinear models. Simple 1-D models are developed for fast parameterization of transmission line structures. In the case of nonlinear dielectrics, a simple analytic model describing the permittivity in terms of electric field is used in a 3-D finite difference time domain code (FDTD). In the case of magnetic materials, both rate independent and rate dependent Hodgdon magnetic material models have been implemented into 3-D FDTD codes and 1-D codes

  3. An accurate optical design method for synchrotron radiation beamlines with wave-front aberration theory

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xiaojiang, E-mail: slsyxj@nus.edu.sg; Diao, Caozheng; Breese, Mark B. H. [Singapore Synchrotron Light Source, National University of Singapore, Singapore 117603 (Singapore)

    2016-07-27

    An aberration calculation method which was developed by Lu [1] can treat individual aberration term precisely. Spectral aberration is the linear sum of these aberration terms, and the aberrations of multi-element systems also can be calculated correctly when the stretching ratio, defined herein, is unity. Evaluation of focusing mirror-grating systems which are optimized according to Lu’s method, along with the Light Path Function (LPF) and the Spot Diagram method (SD) are discussed to confirm the advantage of Lu’s methodology. Lu’s aberration terms are derived from a precise wave-front treatment, whereas the terms of the power series expansion of the light path function do not yield an accurate sum of the aberrations. Moreover, Lu’s aberration terms can be individually optimized. This is not possible with the analytical spot diagram formulae.

  4. Induced Higher-order aberrations after Laser In Situ Keratomileusis (LASIK) Performed with Wavefront-Guided IntraLase Femtosecond Laser in moderate to high Astigmatism.

    Science.gov (United States)

    Al-Zeraid, Ferial M; Osuagwu, Uchechukwu L

    2016-03-22

    Wavefront-guided Laser-assisted in situ keratomileusis (LASIK) is a widespread and effective surgical treatment for myopia and astigmatic correction but whether it induces higher-order aberrations remains controversial. The study was designed to evaluate the changes in higher-order aberrations after wavefront-guided ablation with IntraLase femtosecond laser in moderate to high astigmatism. Twenty-three eyes of 15 patients with moderate to high astigmatism (mean cylinder, -3.22 ± 0.59 dioptres) aged between 19 and 35 years (mean age, 25.6 ± 4.9 years) were included in this prospective study. Subjects with cylinder ≥ 1.5 and ≤2.75 D were classified as moderate astigmatism while high astigmatism was ≥3.00 D. All patients underwent a femtosecond laser-enabled (150-kHz IntraLase iFS; Abbott Medical Optics Inc) wavefront-guided ablation. Uncorrected (UDVA), corrected (CDVA) distance visual acuity in logMAR, keratometry, central corneal thickness (CCT) and higher-order aberrations (HOAs) over a 6 mm pupil, were assessed before and 6 months, postoperatively. The relationship between postoperative change in HOA and preoperative mean spherical equivalent refraction, mean astigmatism, and postoperative CCT were tested. At the last follow-up, the mean UDVA was increased (P < 0.0001) but CDVA remained unchanged (P = 0.48) and no eyes lost ≥2 lines of CDVA. Mean spherical equivalent refraction was reduced (P < 0.0001) and was within ±0.50 D range in 61% of eyes. The average corneal curvature was flatter by 4 D and CCT was reduced by 83 μm (P < 0.0001, for all), postoperatively. Coma aberrations remained unchanged (P = 0.07) while the change in trefoil (P = 0.047) postoperatively, was not clinically significant. The 4th order HOAs (spherical aberration and secondary astigmatism) and the HOA root mean square (RMS) increased from -0.18 ± 0.07 μm, 0.04 ± 0.03 μm and 0.47 ± 0.11 μm, preoperatively, to 0.33 ± 0

  5. Comparison and analysis of FDA reported visual outcomes of the three latest platforms for LASIK: wavefront guided Visx iDesign, topography guided WaveLight Allegro Contoura, and topography guided Nidek EC-5000 CATz

    Directory of Open Access Journals (Sweden)

    Moshirfar M

    2017-01-01

    , respectively. Conclusion: FDA data for the three platforms shows all three were excellent with respect to efficacy, safety, accuracy, and stability. However, there are some differences between the platforms with certain outcome measurements. Overall, patients using all three lasers showed significant improvements in primary and secondary visual outcomes after LASIK surgery. Keywords: wavefront-guided, topography-guided, LASIK, wavefront optimized

  6. Methods for measuring the spectral reflectivity of advanced materials at high temperature

    International Nuclear Information System (INIS)

    Salikhov, T.P.; Kan, V.V.

    1993-01-01

    For investigation in the domain of advanced materials as well as for new technologies there is an urgent need for knowledge of the spectral reflectivity of the materials specially at high temperatures. However the methods available are mostly intended for measuring the model materials with specular or diffuse reflection surface. This is not quite correct since advanced materials have mixed specular diffuse reflection surfaces. New methods for reflectivity measurements of materials in the visible, near and middle infrared range at high temperature, regardless of surface texture, have been developed. The advantages of the methods proposed are as flows: (a) the facility of performing the reflectivity measurements for materials with mixed specular diffuse reflectance; (b) wide spectral range 0,38-8 micro m; (c) wide temperature range 300-3000 K; (d) high accuracy and rapid measurements. The methods are based on the following principals (i) Diffuse irradiation of the sample surface and the use of Helkholtz reciprocity principle to determine the directional hemispherical reflectivity ii) Pulse polychromatic probing of the sample by additional light source. The first principle excludes the influence of the angular reflection distribution of sample surface on data obtained. The second principle gives the possibility of simultaneous measurements of the reflectivity. The second principle gives the possibility of simultaneous measurements of the reflectivity in wide spectral range. On the basis of these principles for high temperature reflectometers have been developed and discussed here. (author)

  7. Advanced density profile reflectometry; the state-of-the-art and measurement prospects for ITER

    Science.gov (United States)

    Doyle, E. J.

    2006-10-01

    Dramatic progress in millimeter-wave technology has allowed the realization of a key goal for ITER diagnostics, the routine measurement of the plasma density profile from millimeter-wave radar (reflectometry) measurements. In reflectometry, the measured round-trip group delay of a probe beam reflected from a plasma cutoff is used to infer the density distribution in the plasma. Reflectometer systems implemented by UCLA on a number of devices employ frequency-modulated continuous-wave (FM-CW), ultrawide-bandwidth, high-resolution radar systems. One such system on DIII-D has routinely demonstrated measurements of the density profile over a range of electron density of 0-6.4x10^19,m-3, with ˜25 μs time and ˜4 mm radial resolution, meeting key ITER requirements. This progress in performance was made possible by multiple advances in the areas of millimeter-wave technology, novel measurement techniques, and improved understanding, including: (i) fast sweep, solid-state, wide bandwidth sources and power amplifiers, (ii) dual polarization measurements to expand the density range, (iii) adaptive radar-based data analysis with parallel processing on a Unix cluster, (iv) high memory depth data acquisition, and (v) advances in full wave code modeling. The benefits of advanced system performance will be illustrated using measurements from a wide range of phenomena, including ELM and fast-ion driven mode dynamics, L-H transition studies and plasma-wall interaction. The measurement capabilities demonstrated by these systems provide a design basis for the development of the main ITER profile reflectometer system. This talk will explore the extent to which these reflectometer system designs, results and experience can be translated to ITER, and will identify what new studies and experimental tests are essential.

  8. Holographic wavefront characterization of a frequency-tripled high-peak-power neodymium:glass laser

    International Nuclear Information System (INIS)

    Kessler, T.J.

    1984-01-01

    Near-field amplitude and phase distributions from a high-peak-power, frequency converted Nd:glass laser (lambda = 351 nm) have been holographically recorded on silver-halide emulsions. Conventionally, the absence of a suitable reference beam forces one to use some type of shearing interferometry to obtain phasefront information, while the near-field and far-field distributions are recorded as intensity profiles. In this study, a spatially filtered, locally generated reference beam was created to holographically store the complex amplitude distribution of the pulsed laser beam, while reconstruction of the original wavefront was achieved with a continuous-wave laser. Reconstructed near-field and quasi-far-field intensity distributions closely resembled those obtained from conventional techniques, and accurate phasefront reconstruction was achieved. Furthermore, several two-beam interferometric techniques, not practicable with a high-peak-power laser, have been successfully implemented on a continuous-wave reconstruction of the pulsed laser beam. 46 refs., 40 figs., 1 tab

  9. Ultra-high accuracy optical testing: creating diffraction-limitedshort-wavelength optical systems

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Kenneth A.; Naulleau, Patrick P.; Rekawa, Senajith B.; Denham, Paul E.; Liddle, J. Alexander; Gullikson, Eric M.; Jackson, KeithH.; Anderson, Erik H.; Taylor, John S.; Sommargren, Gary E.; Chapman,Henry N.; Phillion, Donald W.; Johnson, Michael; Barty, Anton; Soufli,Regina; Spiller, Eberhard A.; Walton, Christopher C.; Bajt, Sasa

    2005-08-03

    Since 1993, research in the fabrication of extreme ultraviolet (EUV) optical imaging systems, conducted at Lawrence Berkeley National Laboratory (LBNL) and Lawrence Livermore National Laboratory (LLNL), has produced the highest resolution optical systems ever made. We have pioneered the development of ultra-high-accuracy optical testing and alignment methods, working at extreme ultraviolet wavelengths, and pushing wavefront-measuring interferometry into the 2-20-nm wavelength range (60-600 eV). These coherent measurement techniques, including lateral shearing interferometry and phase-shifting point-diffraction interferometry (PS/PDI) have achieved RMS wavefront measurement accuracies of 0.5-1-{angstrom} and better for primary aberration terms, enabling the creation of diffraction-limited EUV optics. The measurement accuracy is established using careful null-testing procedures, and has been verified repeatedly through high-resolution imaging. We believe these methods are broadly applicable to the advancement of short-wavelength optical systems including space telescopes, microscope objectives, projection lenses, synchrotron beamline optics, diffractive and holographic optics, and more. Measurements have been performed on a tunable undulator beamline at LBNL's Advanced Light Source (ALS), optimized for high coherent flux; although many of these techniques should be adaptable to alternative ultraviolet, EUV, and soft x-ray light sources. To date, we have measured nine prototype all-reflective EUV optical systems with NA values between 0.08 and 0.30 (f/6.25 to f/1.67). These projection-imaging lenses were created for the semiconductor industry's advanced research in EUV photolithography, a technology slated for introduction in 2009-13. This paper reviews the methods used and our program's accomplishments to date.

  10. Advancing High Contrast Adaptive Optics

    Science.gov (United States)

    Ammons, M.; Poyneer, L.; GPI Team

    2014-09-01

    A long-standing challenge has been to directly image faint extrasolar planets adjacent to their host suns, which may be ~1-10 million times brighter than the planet. Several extreme AO systems designed for high-contrast observations have been tested at this point, including SPHERE, Magellan AO, PALM-3000, Project 1640, NICI, and the Gemini Planet Imager (GPI, Macintosh et al. 2014). The GPI is the world's most advanced high-contrast adaptive optics system on an 8-meter telescope for detecting and characterizing planets outside of our solar system. GPI will detect a previously unstudied population of young analogs to the giant planets of our solar system and help determine how planetary systems form. GPI employs a 44x44 woofer-tweeter adaptive optics system with a Shack-Hartmann wavefront sensor operating at 1 kHz. The controller uses Fourier-based reconstruction and modal gains optimized from system telemetry (Poyneer et al. 2005, 2007). GPI has an apodized Lyot coronal graph to suppress diffraction and a near-infrared integral field spectrograph for obtaining planetary spectra. This paper discusses current performance limitations and presents the necessary instrumental modifications and sensitivity calculations for scenarios related to high-contrast observations of non-sidereal targets.

  11. Final Technical Report: Advanced Measurement and Analysis of PV Derate Factors.

    Energy Technology Data Exchange (ETDEWEB)

    King, Bruce Hardison [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Burton, Patrick D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hansen, Clifford [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Christian Birk [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    The Advanced Measurement and Analysis of PV Derate Factors project focuses on improving the accuracy and reducing the uncertainty of PV performance model predictions by addressing a common element of all PV performance models referred to as “derates”. Widespread use of “rules of thumb”, combined with significant uncertainty regarding appropriate values for these factors contribute to uncertainty in projected energy production.

  12. Cross-check of ex-situ and in-situ metrology of a bendable temperature stabilized KB mirror

    International Nuclear Information System (INIS)

    Yuan Sheng; Goldberg, Kenneth A.; Yashchuk, Valeriy V.; Celestre, Richard; McKinney, Wayne R.; Morrison, Gregory; Macdougall, James; Mochi, Iacopo; Warwick, Tony

    2011-01-01

    At the Advanced Light Source (ALS), we are developing broadly applicable, high-accuracy, in-situ, at-wavelength wavefront slope measurement techniques for Kirkpatrick-Baez (KB) mirror nano-focusing. In this paper, we report an initial cross-check of ex-situ and in-situ metrology of a bendable temperature stabilized KB mirror. This cross-check provides a validation of the in-situ shearing interferometry, currently under development at the ALS.

  13. Measurement and modeling of advanced coal conversion processes. Annual report, October 1990--September 1991

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G.; Smoot, L.D.; Brewster, B.S. [Advanced Fuel Research, Inc., East Hartford, CT (United States)]|[Brigham Young Univ., Provo, UT (United States)

    1991-12-31

    The overall objective of this program is the development of predictive capability for the design, scale up, simulation, control and feedstock evaluation in advanced coal conversion devices. This program will merge significant advances made in measuring and quantitatively describing the mechanisms in coal conversion behavior. Comprehensive computer codes for mechanistic modeling of entrained-bed gasification. Additional capabilities in predicting pollutant formation will be implemented and the technology will be expanded to fixed-bed reactors.

  14. Statistical learning methods for aero-optic wavefront prediction and adaptive-optic latency compensation

    Science.gov (United States)

    Burns, W. Robert

    Since the early 1970's research in airborne laser systems has been the subject of continued interest. Airborne laser applications depend on being able to propagate a near diffraction-limited laser beam from an airborne platform. Turbulent air flowing over the aircraft produces density fluctuations through which the beam must propagate. Because the index of refraction of the air is directly related to the density, the turbulent flow imposes aberrations on the beam passing through it. This problem is referred to as Aero-Optics. Aero-Optics is recognized as a major technical issue that needs to be solved before airborne optical systems can become routinely fielded. This dissertation research specifically addresses an approach to mitigating the deleterious effects imposed on an airborne optical system by aero-optics. A promising technology is adaptive optics: a feedback control method that measures optical aberrations and imprints the conjugate aberrations onto an outgoing beam. The challenge is that it is a computationally-difficult problem, since aero-optic disturbances are on the order of kilohertz for practical applications. High control loop frequencies and high disturbance frequencies mean that adaptive-optic systems are sensitive to latency in sensors, mirrors, amplifiers, and computation. These latencies build up to result in a dramatic reduction in the system's effective bandwidth. This work presents two variations of an algorithm that uses model reduction and data-driven predictors to estimate the evolution of measured wavefronts over a short temporal horizon and thus compensate for feedback latency. The efficacy of the two methods are compared in this research, and evaluated against similar algorithms that have been previously developed. The best version achieved over 75% disturbance rejection in simulation in the most optically active flow region in the wake of a turret, considerably outperforming conventional approaches. The algorithm is shown to be

  15. Advanced Active-Magnetic-Bearing Thrust-Measurement System

    Science.gov (United States)

    Imlach, Joseph; Kasarda, Mary; Blumber, Eric

    2008-01-01

    An advanced thrust-measurement system utilizes active magnetic bearings to both (1) levitate a floating frame in all six degrees of freedom and (2) measure the levitation forces between the floating frame and a grounded frame. This system was developed for original use in measuring the thrust exerted by a rocket engine mounted on the floating frame, but can just as well be used in other force-measurement applications. This system offers several advantages over prior thrust-measurement systems based on mechanical support by flexures and/or load cells: The system includes multiple active magnetic bearings for each degree of freedom, so that by selective use of one, some, or all of these bearings, it is possible to test a given article over a wide force range in the same fixture, eliminating the need to transfer the article to different test fixtures to obtain the benefit of full-scale accuracy of different force-measurement devices for different force ranges. Like other active magnetic bearings, the active magnetic bearings of this system include closed-loop control subsystems, through which the stiffness and damping characteristics of the magnetic bearings can be modified electronically. The design of the system minimizes or eliminates cross-axis force-measurement errors. The active magnetic bearings are configured to provide support against movement along all three orthogonal Cartesian axes, and such that the support along a given axis does not produce force along any other axis. Moreover, by eliminating the need for such mechanical connections as flexures used in prior thrust-measurement systems, magnetic levitation of the floating frame eliminates what would otherwise be major sources of cross-axis forces and the associated measurement errors. Overall, relative to prior mechanical-support thrust-measurement systems, this system offers greater versatility for adaptation to a variety of test conditions and requirements. The basic idea of most prior active

  16. Numerical tilting compensation in microscopy based on wavefront sensing using transport of intensity equation method

    Science.gov (United States)

    Hu, Junbao; Meng, Xin; Wei, Qi; Kong, Yan; Jiang, Zhilong; Xue, Liang; Liu, Fei; Liu, Cheng; Wang, Shouyu

    2018-03-01

    Wide-field microscopy is commonly used for sample observations in biological research and medical diagnosis. However, the tilting error induced by the oblique location of the image recorder or the sample, as well as the inclination of the optical path often deteriorates the imaging quality. In order to eliminate the tilting in microscopy, a numerical tilting compensation technique based on wavefront sensing using transport of intensity equation method is proposed in this paper. Both the provided numerical simulations and practical experiments prove that the proposed technique not only accurately determines the tilting angle with simple setup and procedures, but also compensates the tilting error for imaging quality improvement even in the large tilting cases. Considering its simple systems and operations, as well as image quality improvement capability, it is believed the proposed method can be applied for tilting compensation in the optical microscopy.

  17. Advanced quantitative measurement methodology in physics education research

    Science.gov (United States)

    Wang, Jing

    The ultimate goal of physics education research (PER) is to develop a theoretical framework to understand and improve the learning process. In this journey of discovery, assessment serves as our headlamp and alpenstock. It sometimes detects signals in student mental structures, and sometimes presents the difference between expert understanding and novice understanding. Quantitative assessment is an important area in PER. Developing research-based effective assessment instruments and making meaningful inferences based on these instruments have always been important goals of the PER community. Quantitative studies are often conducted to provide bases for test development and result interpretation. Statistics are frequently used in quantitative studies. The selection of statistical methods and interpretation of the results obtained by these methods shall be connected to the education background. In this connecting process, the issues of educational models are often raised. Many widely used statistical methods do not make assumptions on the mental structure of subjects, nor do they provide explanations tailored to the educational audience. There are also other methods that consider the mental structure and are tailored to provide strong connections between statistics and education. These methods often involve model assumption and parameter estimation, and are complicated mathematically. The dissertation provides a practical view of some advanced quantitative assessment methods. The common feature of these methods is that they all make educational/psychological model assumptions beyond the minimum mathematical model. The purpose of the study is to provide a comparison between these advanced methods and the pure mathematical methods. The comparison is based on the performance of the two types of methods under physics education settings. In particular, the comparison uses both physics content assessments and scientific ability assessments. The dissertation includes three

  18. Performance of an Advanced Stirling Convertor Based on Heat Flux Sensor Measurements

    Science.gov (United States)

    Wilson, Dcott D.

    2012-01-01

    The U.S. Department of Energy (DOE) and Lockheed Martin Space Systems Company (LMSSC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. This generator would use two highefficiency Advanced Stirling Convertors (ASCs), developed by Sunpower, Inc., and NASA Glenn Research Center. The ASCs convert thermal energy from a radioisotope heat source into electricity. As part of ground testing of these ASCs, different operating conditions are used to simulate expected mission conditions. These conditions require achieving a particular operating frequency, hot-end and cold-end temperatures, and specified electrical power output for a given heat input. It is difficult to measure heat input to Stirling convertors due to the complex geometries of the hot components, temperature limits of sensor materials, and invasive integration of sensors. A thin-film heat flux sensor was used to directly measure heat input to an ASC. The effort succeeded in designing and fabricating unique sensors, which were integrated into a Stirling convertor ground test and exposed to test temperatures exceeding 700 C in air for 10,000 hr. Sensor measurements were used to calculate thermal efficiency for ASC-E (Engineering Unit) #1 and #4. The post-disassembly condition of the sensors is also discussed.

  19. ADVANCING THE FUNDAMENTAL UNDERSTANDING AND SCALE-UP OF TRISO FUEL COATERS VIA ADVANCED MEASUREMENT AND COMPUTATIONAL TECHNIQUES

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Pratim; Al-Dahhan, Muthanna

    2012-11-01

    to advance the fundamental understanding of the hydrodynamics by systematically investigating the effect of design and operating variables, to evaluate the reported dimensionless groups as scaling factors, and to establish a reliable scale-up methodology for the TRISO fuel particle spouted bed coaters based on hydrodynamic similarity via advanced measurement and computational techniques. An additional objective is to develop an on-line non-invasive measurement technique based on gamma ray densitometry (i.e. Nuclear Gauge Densitometry) that can be installed and used for coater process monitoring to ensure proper performance and operation and to facilitate the developed scale-up methodology. To achieve the objectives set for the project, the work will use optical probes and gamma ray computed tomography (CT) (for the measurements of solids/voidage holdup cross-sectional distribution and radial profiles along the bed height, spouted diameter, and fountain height) and radioactive particle tracking (RPT) (for the measurements of the 3D solids flow field, velocity, turbulent parameters, circulation time, solids lagrangian trajectories, and many other of spouted bed related hydrodynamic parameters). In addition, gas dynamic measurement techniques and pressure transducers will be utilized to complement the obtained information. The measurements obtained by these techniques will be used as benchmark data to evaluate and validate the computational fluid dynamic (CFD) models (two fluid model or discrete particle model) and their closures. The validated CFD models and closures will be used to facilitate the developed methodology for scale-up, design and hydrodynamic similarity. Successful execution of this work and the proposed tasks will advance the fundamental understanding of the coater flow field and quantify it for proper and safe design, scale-up, and performance. Such achievements will overcome the barriers to AGR applications and will help assure that the US maintains

  20. Advances in measuring techniques for turbine cooling test rigs - Status report

    Science.gov (United States)

    Pollack, F. G.

    1974-01-01

    Instrumentation development pertaining to turbine cooling research has resulted in the design and testing of several new systems. Pressure measurements on rotating components are being made with a rotating system incorporating ten miniature transducers and a slip-ring assembly. The system has been tested successfully up to speeds of 9000 rpm. An advanced system development combining pressure transducer and thermocouple signals is also underway. Thermocouple measurements on rotating components are transferred off the shaft by a 72-channel rotating data system. Thermocouple data channels are electronically processed on board and then removed from the shaft in the form of a digital serial train by one winding of a rotary transformer.

  1. Advanced distillation curve measurements for corrosive fluids: Application to two crude oils

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Starkey Ott; Beverly L. Smith; Thomas J. Bruno [National Institute of Standards and Technology, Boulder, CO (United States). Physical and Chemical Properties Division

    2008-10-15

    We have recently introduced several important improvements in the measurement of distillation curves for complex fluids. The modifications include a composition-explicit data channel for each distillate fraction (for both qualitative and quantitative analysis) and corrosivity assessment of each distillate fraction. The composition-explicit information is achieved with a new sampling approach that allows precise qualitative as well as quantitative analyses of each fraction, on the fly. We have applied the new method to a variety of fluids, including simple n-alkanes, rocket propellant, gasoline, jet fuels, and a hydrocarbon fluid made corrosive with dissolved hydrogen sulfide. In the current contribution, we present the application of the advanced distillation curve method to two samples of crude oil. A primary motivation behind the work is to precisely measure the distillation curves of these oils using our advanced distillation apparatus; these low uncertainty measurements of true thermodynamic state points can be used for equation of state development and differentiation of crude oil samples. Then, the information content of each distillation was extended much further by use of the composition-explicit data channel: gas chromatography-mass spectrometry (GC-MS), infrared spectrophotometry (IR), gas chromatography with sulfur chemiluminescence detection (GC-SCD), and the copper strip corrosion test (CSCT) were used for each distillate volume fraction sampled. Consequently, for each volume fraction of crude oil distillate sampled, we can address the composition, quantitate the total sulfur content, and measure the corrosivity. 39 refs., 6 figs., 2 tabs.

  2. Measurement and modeling of out-of-field doses from various advanced post-mastectomy radiotherapy techniques

    Science.gov (United States)

    Yoon, Jihyung; Heins, David; Zhao, Xiaodong; Sanders, Mary; Zhang, Rui

    2017-12-01

    More and more advanced radiotherapy techniques have been adopted for post-mastectomy radiotherapies (PMRT). Patient dose reconstruction is challenging for these advanced techniques because they increase the low out-of-field dose area while the accuracy of out-of-field dose calculations by current commercial treatment planning systems (TPSs) is poor. We aim to measure and model the out-of-field radiation doses from various advanced PMRT techniques. PMRT treatment plans for an anthropomorphic phantom were generated, including volumetric modulated arc therapy with standard and flattening-filter-free photon beams, mixed beam therapy, 4-field intensity modulated radiation therapy (IMRT), and tomotherapy. We measured doses in the phantom where the TPS calculated doses were lower than 5% of the prescription dose using thermoluminescent dosimeters (TLD). The TLD measurements were corrected by two additional energy correction factors, namely out-of-beam out-of-field (OBOF) correction factor K OBOF and in-beam out-of-field (IBOF) correction factor K IBOF, which were determined by separate measurements using an ion chamber and TLD. A simple analytical model was developed to predict out-of-field dose as a function of distance from the field edge for each PMRT technique. The root mean square discrepancies between measured and calculated out-of-field doses were within 0.66 cGy Gy-1 for all techniques. The IBOF doses were highly scattered and should be evaluated case by case. One can easily combine the measured out-of-field dose here with the in-field dose calculated by the local TPS to reconstruct organ doses for a specific PMRT patient if the same treatment apparatus and technique were used.

  3. Measurement of eye aberrations in a speckle field

    International Nuclear Information System (INIS)

    Larichev, A V; Ivanov, P V; Iroshnikov, N G; Shmalgauzen, V I

    2001-01-01

    The influence of speckles on the performance of a Shark-Hartmann wavefront sensor is investigated in the eye aberration studies. The dependence of the phase distortion measurement error on the characteristic speckle size is determined experimentally. Scanning of the reference source was used to suppress the speckle structure of the laser beam scattered by the retina. The technique developed by us made it possible to study the time dependence of the human eye aberrations with a resolution of 30 ms. (laser applications and other topics in quantum electronics)

  4. Advances in Children's Rights and Children's Well-Being Measurement: Implications for School Psychologists

    Science.gov (United States)

    Kosher, Hanita; Jiang, Xu; Ben-Arieh, Asher; Huebner, E. Scott

    2014-01-01

    Recent years have brought important changes to the profession of school psychology, influenced by larger social, scientific, and political trends. These trends include the emergence of children's rights agenda and advances in children's well-being measurement. During these years, a growing public attention and commitment to the notion of…

  5. Computation of misalignment and primary mirror astigmatism figure error of two-mirror telescopes

    Science.gov (United States)

    Gu, Zhiyuan; Wang, Yang; Ju, Guohao; Yan, Changxiang

    2018-01-01

    Active optics usually uses the computation models based on numerical methods to correct misalignments and figure errors at present. These methods can hardly lead to any insight into the aberration field dependencies that arise in the presence of the misalignments. An analytical alignment model based on third-order nodal aberration theory is presented for this problem, which can be utilized to compute the primary mirror astigmatic figure error and misalignments for two-mirror telescopes. Alignment simulations are conducted for an R-C telescope based on this analytical alignment model. It is shown that in the absence of wavefront measurement errors, wavefront measurements at only two field points are enough, and the correction process can be completed with only one alignment action. In the presence of wavefront measurement errors, increasing the number of field points for wavefront measurements can enhance the robustness of the alignment model. Monte Carlo simulation shows that, when -2 mm ≤ linear misalignment ≤ 2 mm, -0.1 deg ≤ angular misalignment ≤ 0.1 deg, and -0.2 λ ≤ astigmatism figure error (expressed as fringe Zernike coefficients C5 / C6, λ = 632.8 nm) ≤0.2 λ, the misaligned systems can be corrected to be close to nominal state without wavefront testing error. In addition, the root mean square deviation of RMS wavefront error of all the misaligned samples after being corrected is linearly related to wavefront testing error.

  6. Synchronisation of the LHC Betatron Coupling and Phase Advance Measurement System

    CERN Document Server

    Gasior, M

    2014-01-01

    The new LHC Diode ORbit and OScillation (DOROS) system will provide beam position readings with submicrometre resolution and at the same time will be able to perform measurements of local betatron coupling and beam phase advance with micrometre beam excitation. The oscillation sub-system employs gain-controlled RF amplifiers, shared with the orbit system, and followed by dedicated diode detectors to demodulate the beam oscillation signals into the kHz frequency range, subsequently digitized by multi-channel 24-bit ADCs. The digital signals are processed in each front-end with an FPGA and the results of reduced throughput are sent using an Ethernet protocol to a common concentrator, together with the orbit data. The phase advance calculation between multiple Beam Position Monitors (BPMs) requires that all DOROS front-ends have a common phase reference. This paper presents methods used to generate such a reference and to maintain a stable synchronous sampling on all system front-ends. The performance of the DOR...

  7. Validation of an advanced analytical procedure applied to the measurement of environmental radioactivity.

    Science.gov (United States)

    Thanh, Tran Thien; Vuong, Le Quang; Ho, Phan Long; Chuong, Huynh Dinh; Nguyen, Vo Hoang; Tao, Chau Van

    2018-04-01

    In this work, an advanced analytical procedure was applied to calculate radioactivity in spiked water samples in a close geometry gamma spectroscopy. It included MCNP-CP code in order to calculate the coincidence summing correction factor (CSF). The CSF results were validated by a deterministic method using ETNA code for both p-type HPGe detectors. It showed that a good agreement for both codes. Finally, the validity of the developed procedure was confirmed by a proficiency test to calculate the activities of various radionuclides. The results of the radioactivity measurement with both detectors using the advanced analytical procedure were received the ''Accepted'' statuses following the proficiency test. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Quantization analysis of speckle intensity measurements for phase retrieval

    DEFF Research Database (Denmark)

    Maallo, Anne Margarette S.; Almoro, Percival F.; Hanson, Steen Grüner

    2010-01-01

    Speckle intensity measurements utilized for phase retrieval (PR) are sequentially taken with a digital camera, which introduces quantization error that diminishes the signal quality. Influences of quantization on the speckle intensity distribution and PR are investigated numerically...... and experimentally in the static wavefront sensing setup. Resultsshowthat 3 to 4 bits are adequate to represent the speckle intensities and yield acceptable reconstructions at relatively fast convergence rates. Computer memory requirements may be eased down by 2.4 times if a 4 bit instead of an 8 bit camera is used...

  9. Further development of the Dynamic Control Assemblies Worth Measurement Method for Advanced Reactivity Computers

    International Nuclear Information System (INIS)

    Petenyi, V.; Strmensky, C.; Jagrik, J.; Minarcin, M.; Sarvaic, I.

    2005-01-01

    The dynamic control assemblies worth measurement technique is a quick method for validation of predicted control assemblies worth. The dynamic control assemblies worth measurement utilize space-time corrections for the measured out of core ionization chamber readings calculated by DYN 3D computer code. The space-time correction arising from the prompt neutron density redistribution in the measured ionization chamber reading can be directly applied in the advanced reactivity computer. The second correction concerning the difference of spatial distribution of delayed neutrons can be calculated by simulation the measurement procedure by dynamic version of the DYN 3D code. In the paper some results of dynamic control assemblies worth measurement applied for NPP Mochovce are presented (Authors)

  10. Broadband and high efficiency all-dielectric metasurfaces for wavefront steering with easily obtained phase shift

    Science.gov (United States)

    Yang, Hui; Deng, Yan

    2017-12-01

    All-dielectric metasurfaces for wavefront deflecting and optical vortex generating with broadband and high efficiency are demonstrated. The unit cell of the metasurfaces is optimized to function as a half wave-plate with high polarization conversion efficiency (94%) and transmittance (94.5%) at the telecommunication wavelength. Under such a condition, we can get rid of the complicated parameter sweep process for phase shift selecting. Hence, a phase coverage ranges from 0 to 2 π can be easily obtained by introducing the Pancharatnam-Berry phase. Metasurfaces composed of the two pre-designed super cells are demonstrated for optical beam deflecting and vortex beam generating. It is found that the metasurfaces with more phase shift sampling points (small phase shift increment) exhibit better performance. Moreover, optical vortex beams can be generated by the designed metasurfaces within a wavelength range of 200 nm. These results will provide a viable route for designing broadband and high efficiency devices related to phase modulation.

  11. Final Report for SERDP Project RC-1649: Advanced Chemical Measurements of Smoke from DoD-prescribed Burns

    Science.gov (United States)

    T.J. Johnson; R.J. Yokelson; S.K. Akagi; I.R. Burling; D.R. Weise; S.P. Urbanski; C.E. Stockwell; J. Reardon; E.N. Lincoln; L.T.M. Profeta; A. Mendoza; M.D.W. Schneider; R.L. Sams; S.D. Williams; C.E. Wold; D.W.T. Griffith; M. Cameron; J.B. Gilman; C. Warneke; J.M. Roberts; P. Veres; W.C. Kuster; J de Gouw

    2014-01-01

    Project RC-1649, "Advanced Chemical Measurement of Smoke from DoD-prescribed Burns" was undertaken to use advanced instrumental techniques to study in detail the particulate and vapor-phase chemical composition of the smoke that results from prescribed fires used as a land management tool on DoD bases, particularly bases in the southeastern U.S. The statement...

  12. An accelerated hologram calculation using the wavefront recording plane method and wavelet transform

    Science.gov (United States)

    Arai, Daisuke; Shimobaba, Tomoyoshi; Nishitsuji, Takashi; Kakue, Takashi; Masuda, Nobuyuki; Ito, Tomoyoshi

    2017-06-01

    Fast hologram calculation methods are critical in real-time holography applications such as three-dimensional (3D) displays. We recently proposed a wavelet transform-based hologram calculation called WASABI. Even though WASABI can decrease the calculation time of a hologram from a point cloud, it increases the calculation time with increasing propagation distance. We also proposed a wavefront recoding plane (WRP) method. This is a two-step fast hologram calculation in which the first step calculates the superposition of light waves emitted from a point cloud in a virtual plane, and the second step performs a diffraction calculation from the virtual plane to the hologram plane. A drawback of the WRP method is in the first step when the point cloud has a large number of object points and/or a long distribution in the depth direction. In this paper, we propose a method combining WASABI and the WRP method in which the drawbacks of each can be complementarily solved. Using a consumer CPU, the proposed method succeeded in performing a hologram calculation with 2048 × 2048 pixels from a 3D object with one million points in approximately 0.4 s.

  13. Computational wavelength resolution for in-line lensless holography: phase-coded diffraction patterns and wavefront group-sparsity

    Science.gov (United States)

    Katkovnik, Vladimir; Shevkunov, Igor; Petrov, Nikolay V.; Egiazarian, Karen

    2017-06-01

    In-line lensless holography is considered with a random phase modulation at the object plane. The forward wavefront propagation is modelled using the Fourier transform with the angular spectrum transfer function. The multiple intensities (holograms) recorded by the sensor are random due to the random phase modulation and noisy with Poissonian noise distribution. It is shown by computational experiments that high-accuracy reconstructions can be achieved with resolution going up to the two thirds of the wavelength. With respect to the sensor pixel size it is a super-resolution with a factor of 32. The algorithm designed for optimal superresolution phase/amplitude reconstruction from Poissonian data is based on the general methodology developed for phase retrieval with a pixel-wise resolution in V. Katkovnik, "Phase retrieval from noisy data based on sparse approximation of object phase and amplitude", http://www.cs.tut.fi/ lasip/DDT/index3.html.

  14. Analysis of insertion device magnet measurements for the Advanced Light Source

    International Nuclear Information System (INIS)

    Marks, S.; Humphries, D.; Kincaid, B.M.; Schlueter, R.; Wang, C.

    1993-07-01

    The Advanced Light Source (ALS), which is currently being commissioned at Lawrence Berkeley Laboratory, is a third generation light source designed to produce XUV radiation of unprecedented brightness. To meet the high brightness goal the storage ring has been designed for very small electron beam emittance and the undulators installed in the ALS are built to a high degree of precision. The allowable magnetic field errors are driven by electron beam and radiation requirements. Detailed magnetic measurements and adjustments are performed on each undulator to qualify it for installation in the ALS. The first two ALS undulators, IDA and IDB, have been installed. This paper describes the program of measurements, data analysis, and adjustments carried out for these two devices. Calculations of the radiation spectrum, based upon magnetic measurements, are included. Final field integral distributions are also shown. Good field integral uniformity has been achieved using a novel correction scheme, which is also described

  15. Refractive optics to compensate x-ray mirror shape-errors

    Science.gov (United States)

    Laundy, David; Sawhney, Kawal; Dhamgaye, Vishal; Pape, Ian

    2017-08-01

    Elliptically profiled mirrors operating at glancing angle are frequently used at X-ray synchrotron sources to focus X-rays into sub-micrometer sized spots. Mirror figure error, defined as the height difference function between the actual mirror surface and the ideal elliptical profile, causes a perturbation of the X-ray wavefront for X- rays reflecting from the mirror. This perturbation, when propagated to the focal plane results in an increase in the size of the focused beam. At Diamond Light Source we are developing refractive optics that can be used to locally cancel out the wavefront distortion caused by figure error from nano-focusing elliptical mirrors. These optics could be used to correct existing optical components on synchrotron radiation beamlines in order to give focused X-ray beam sizes approaching the theoretical diffraction limit. We present our latest results showing measurement of the X-ray wavefront error after reflection from X-ray mirrors and the translation of the measured wavefront into a design for refractive optical elements for correction of the X-ray wavefront. We show measurement of the focused beam with and without the corrective optics inserted showing reduction in the size of the focus resulting from the correction to the wavefront.

  16. High precision wavefront control in point spread function engineering for single emitter localization

    NARCIS (Netherlands)

    Siemons, M.E.; Thorsen, R.Ø; Smith, C.S.; Stallinga, S.

    2018-01-01

    Point spread function (PSF) engineering is used in single emitter localization to measure the emitter position in 3D and possibly other parameters such as the emission color or dipole orientation as well. Advanced PSF models such as spline fits to experimental PSFs or the vectorial PSF model can

  17. Efficacy and toxicity in brain tumor treatment - quantitative Measurements using advanced MRI

    DEFF Research Database (Denmark)

    Ravn, Søren

    2016-01-01

    From the clinical introduction in the 1980s, MRI has grown to become an indispensable brain imaging modality, mainly due to its excellent ability to visualize soft tissues. Morphologically, T1- and T2-weighted brain tumor MRI have been part of routine diagnostic radiology for more than two decades...... with the introduction of magnets with higher field strength. Ongoing technical development has enabled a change from semiquantitative measurements to a true quantitative approach. This step is expected to have a great impact on the treatment of brain tumor patients in the future. The aim of this Ph.D. dissertation...... was to explore how different advanced MRI techniques could contribute to a higher degree of individualized treatment of brain tumor patients. The thesis is based on three studies in which advanced MRI is used to evaluate the possible role of fMRI in presurgical planning, Diffusion Tensor Imaging (DTI...

  18. Development of an instrument to measure self-efficacy in caregivers of people with advanced cancer.

    Science.gov (United States)

    Ugalde, Anna; Krishnasamy, Meinir; Schofield, Penelope

    2013-06-01

    Informal caregivers of people with advanced cancer experience many negative impacts as a result of their role. There is a lack of suitable measures specifically designed to assess their experience. This study aimed to develop a new measure to assess self-efficacy in caregivers of people with advanced cancer. The development and testing of the new measure consisted of four separate, sequential phases: generation of issues, development of issues into items, pilot testing and field testing. In the generation of issues, 17 caregivers were interviewed to generate data. These data were analysed to generate codes, which were then systematically developed into items to construct the instrument. The instrument was pilot tested with 14 health professionals and five caregivers. It was then administered to a large sample for field testing to establish the psychometric properties, with established measures including the Brief Cope and the Family Appraisals for Caregiving Questionnaire for Palliative Care. Ninety-four caregivers completed the questionnaire booklet to establish the factor structure, reliability and validity. The factor analysis resulted in a 21-item, four-factor instrument, with the subscales being termed Resilience, Self-Maintenance, Emotional Connectivity and Instrumental Caregiving. The test-retest reliability and internal consistency were both excellent, ranging from 0.73 to 0.85 and 0.81 to 0.94, respectively. Six convergent and divergent hypotheses were made, and five were supported. This study has developed a new instrument to assess self-efficacy in caregivers of people with advanced cancer. The result is a four-factor, 21-item instrument with demonstrated reliability and validity. Copyright © 2012 John Wiley & Sons, Ltd.

  19. Fiscal 1999 research report. Research on photonic measurement and processing technology (Development of advanced maintenance technology for power plant facilities); 1999 nendo foton keisoku kako gijutsu seika hokokusho. Hatsuden shisetsuyo kokino maintenance gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This report summarizes the fiscal 1999 research result on R and D of measurement technology, laser welding and surface treatment technology, and generation technology of photon beam, for improvement of the quality and maintenance efficiency for power plant facilities. In the study on fabrication of functional micro-composite circuits, the equipment for forming circuits on substrates by carrying particles with gas was developed whose geometric standard deviation is 1.17 for 26nm particles. In the study on gas concentration measurement technology, development of the variable-wavelength laser beam source for measurement, fabrication of thin films by epitaxial growth equipment, and computer simulation of sensitivities for quantum IR photo- detectors were promoted. In the study on photon wavefront compensation device technology, the technology for fabricating such device with (411)A surface orientations and asymmetric quantum well structures was developed. In the study on high-sensitivity detection technology using short- wavelength photon, to develop a high-energy resolution fluorescent X-ray detector, favorable electric properties of superconducting X-ray detecting devices were confirmed at nearly 0.1K. (NEDO)

  20. Development of a nuclear emergency preparedness support system. MEASURES and its advanced edition

    International Nuclear Information System (INIS)

    Hara, Tomohiro; Nakatsuka, Shigehiro; Watanabe, Osami; Adachi, Takeshi

    2007-01-01

    We have developed a new nuclear emergency preparedness support system for a micro scale area, called the advanced edition of MEASURES. The system simulates atmospheric dispersion of radioactive material quickly and accurately, using an airflow database and a dispersion model. It takes less than 15 minutes for 12-hour simulation, on a personal computer. The user can operate the system by GUI. (author)

  1. Metrology measurements for large-aperture VPH gratings

    Science.gov (United States)

    Zheng, Jessica R.; Gers, Luke; Heijmans, Jeroen

    2013-09-01

    The High Efficiency and Resolution Multi Element Spectrograph (HERMES) for the Australian Astronomical Observatory (AAO) uses four large aperture, high angle of incidence volume phase holographic gratings (VPHG) for high resolution `Galactic archaeology' spectroscopy. The large clear aperture, the high diffraction efficiency, the line frequency homogeneity, and mosaic alignment made manufacturing and testing challenging. We developed new metrology systems at the AAO to verify the performance of these VPH gratings. The measured diffraction efficiencies and line frequency of the VPH gratings received so far meet the vendor's provided data. The wavefront quality for the Blue VPH grating is good but the Green and Red VPH gratings need to be post polishing.

  2. Characterisation of advanced windows. Determination of thermal properties by measurements

    Energy Technology Data Exchange (ETDEWEB)

    Duer, K.

    2001-04-01

    This report describes work carried out with the aim of facilitating a full energy performance characterisation of advanced windows and glazings by means of measurements. The energy performance of windows and glazings are characterised by two parameters: The thermal transmittance (U-value) and the total solar energy transmittance (g-value) and methods to determine these two parameters by measurements have been investigated. This process has included the improvement of existing equipment and existing measuring methods as well as the development of new measuring equipment and new methods of measuring and data treatment. Measurements of the thermal transmittance of windows and glazings in a guarded hot box have been investigated. The calibration and measuring procedures for determining the U-values of facade windows were analysed and a suggestion for a new calibration and measuring procedure for determining the U-values of roof windows in a guarded hot box was elaborated. The accuracy of the guarded hot box measurements was examined by comparisons to measurements in a hot-plate device and excellent agreement between the results was obtained. Analysis showed that the expected uncertainty in the U-value measurement is about 5% for a specimen with a U-value of 1.75 W/m{sup 2}K. The U-values of three different windows were measured in two separate round robin tests applying two different calibration procedures. The windows U-values where ranging from 1.1 to 2.5 W/m{sup 2}K and all measured results were within the expected uncertainties of the measurements. On the basis of the investigations on hot box measurements a high degree of confidence in the measurement accuracy and the measuring procedure of the guarded hot box at the Department of Buildings and Energy has been obtained. Indoor g-value measurements in a calorimetric test facility (the METSET) mounted in a solar simulator have been investigated and a number of problems regarding these measurements have been

  3. Three-year results of small incision lenticule extraction and wavefront-guided femtosecond laser-assisted laser in situ keratomileusis for correction of high myopia and myopic astigmatism.

    Science.gov (United States)

    Xia, Li-Kun; Ma, Jing; Liu, He-Nan; Shi, Ce; Huang, Qing

    2018-01-01

    To compare and calculate the 3-year refractive results, higher-order aberrations (HOAs), contrast sensitivity (CS) and dry eye parameters after small incision lenticule extraction (SMILE) and wavefront-guided femtosecond laser-assisted laser in situ keratomileusis (FS-LASIK) for correction of high myopia and myopic astigmatism. In this prospective, non-randomized comparative study, 78 eyes with spherical equivalent (SE) of -8.11±1.09 diopters (D) received a SMILE surgery, and 65 eyes with SE of -8.05±1.12 D received a wavefront-guided FS-LASIK surgery with the VisuMax femtosecond laser (Carl Zeiss Meditec, Jena, Germany) for flap cutting. Visual acuity, manifest refraction, CS, HOAs, ocular surface disease index (OSDI) and tear break-up time (TBUT) were evaluated during a 3-year follow-up. The difference of uncorrected distance visual acuity (UDVA) postoperatively was achieved at 1mo and at 3mo, whereas the difference of the mean UDVA between two groups at 3y were not statistically significant ( t =-1.59, P =0.13). The postoperative change of SE was 0.89 D in the FS-LASIK group ( t =5.76, P =0.00), and 0.14 D in the SMILE group ( t =0.54, P =0.59) from 1mo to 3y after surgery. At 3-year postoperatively, both HOAs and spherical aberrations in the SMILE group were obviously less than those in the FS-LASIK group ( P =0.00), but the coma root mean square (RMS) was higher in the SMILE group (0.59±0.26) than in the FS-LASIK group (0.29±0.14, P =0.00). The mesopic CS values between two groups were not statistically significant at 3y postoperatively. Compared with the FS-LASIK group, lower OSDI scores and longer TBUT values were found in the SMILE group at 1mo and 3mo postoperatively. With regard to safety, no eye lost any line of CDVA in both groups at 3y after surgery. Both SMILE and wavefront-guided FS-LASIK procedures provide good visual outcomes. Both procedures are effective and safe, but SMILE surgery achieve more stable long-term refractive outcome and better

  4. Measurement of specimen-induced aberrations of biological samples using phase stepping interferometry.

    Science.gov (United States)

    Schwertner, M; Booth, M J; Neil, M A A; Wilson, T

    2004-01-01

    Confocal or multiphoton microscopes, which deliver optical sections and three-dimensional (3D) images of thick specimens, are widely used in biology. These techniques, however, are sensitive to aberrations that may originate from the refractive index structure of the specimen itself. The aberrations cause reduced signal intensity and the 3D resolution of the instrument is compromised. It has been suggested to correct for aberrations in confocal microscopes using adaptive optics. In order to define the design specifications for such adaptive optics systems, one has to know the amount of aberrations present for typical applications such as with biological samples. We have built a phase stepping interferometer microscope that directly measures the aberration of the wavefront. The modal content of the wavefront is extracted by employing Zernike mode decomposition. Results for typical biological specimens are presented. It was found for all samples investigated that higher order Zernike modes give only a small contribution to the overall aberration. Therefore, these higher order modes can be neglected in future adaptive optics sensing and correction schemes implemented into confocal or multiphoton microscopes, leading to more efficient designs.

  5. Objective quality of vision in presbyopic and non-presbyopic patients after pseudoaccommodative advanced surface ablation.

    Science.gov (United States)

    Cantú, Roberto; Rosales, Marco A; Tepichín, Eduardo; Curioca, Andrée; Montes, Víctor; Ramirez-Zavaleta, J Gustavo

    2005-01-01

    To analyze the objective quality of vision at 6 months postoperatively after pseudoaccommodative (presbyopic) advanced surface ablation (PASA). The study comprised 62 eyes of 35 patients with 6-month follow-up that underwent primary or secondary treatments using PASA. Pre- and postoperative results of distance and near uncorrected visual acuity (UCVA), spherical aberration (coefficient of the Z12 Zernike polynomial), and the asphericity (Q) index were reviewed. The corresponding wavefront maps (total, low, and high order aberrations) and the corresponding point spread function and modulation transfer function (MTF) were also calculated. Our results show that PASA improves distance and near mean UCVA, increases negative spherical aberration and negative asphericity index, and improves the corresponding MTF. Pseudoaccommodative advanced surface ablation is a promising approach for the surgical correction of presbyopia with distance refractive error (myopia and hyperopia with or without astigmatism). This PASA technique could theoretically be used in non-presbyopic patients with refractive error or post cataract patients with monofocal intraocular lenses. The increase in negative spherical aberration and asphericity/eccentricity index seems to increase the depth of focus of the eye, improving the near vision and compensating the age-related lens changes. Rather than creating a multifocal cornea, PASA appears to create an improved aspheric (prolate) ablation profile.

  6. A Wavefront Division Polarimeter for the Measurements of Solute Concentrations in Solutions

    Directory of Open Access Journals (Sweden)

    Sergio Calixto

    2017-12-01

    Full Text Available Polarimeters are useful instruments that measure concentrations of optically active substances in a given solution. The conventional polarimetric principle consists of measuring the rotation angle of linearly polarized light. Here, we present a novel polarimeter based on the study of interference patterns. A Mach–Zehnder interferometer with linearly polarized light at the input is used. One beam passes through the liquid sample and the other is a reference beam. As the linearly polarized sample beam propagates through the optically active solution the vibration plane of the electric field will rotate. As a result, the visibility of the interference pattern at the interferometer output will decrease. Fringe contrast will be maximum when both beams present a polarization perpendicular to the plane of incidence. However, minimum visibility is obtained when, after propagation through the sample the polarization of the sample beam is oriented parallel to the plane of incidence. By using different solute concentrations, a calibration plot is obtained showing the behavior of visibility.

  7. Agricultural support measures of advanced countries and food insecurity in developing countries

    OpenAIRE

    Herrmann, Michael

    2006-01-01

    Many developing nations, especially the least developed countries, are subjected to recurrent spells of food insecurity. In order to understand food insecurity in these countries it is necessary to consider not only immediate or trigger-causes of food crises, but also its underlying or systemic causes. This paper argues that the agricultural support measures of advanced countries may act as a systemic cause for food insecurity in developing countries. While the import of subsidized foods by d...

  8. Initial time-resolved particle beam profile measurements at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Yang, B.X.; Lumpkin, A.H.

    1995-01-01

    The commissioning of the 7-GeV Advanced Photon Source (APS) storage ring began in early 1995. Characterization of the stored particle beam properties involved time-resolved transverse and longitudinal profile measurements using optical synchrotron radiation (OSR) monitors. Early results include the observation of the beam on a single turn, measurements of the transverse beam sizes after damping using a 100 μs integration time (σ x ∼ 150 ± 25 μm, σ γ ∼ 65 ± 25 μm, depending on vertical coupling), and measurement of the bunch length (σ τ ∼ 25 to 55 ps, depending on the charge per bunch). The results are consistent with specifications and predictions based on the 8.2 nm-rad natural emittance, the calculated lattice parameters, and vertical coupling less than 10%. The novel, single-element focusing mirror for the photon transport line and the dual-sweep streak camera techniques which allow turn-by-turn measurements will also be presented. The latter measurements are believed to be the first of their kind on a storage ring in the USA

  9. Apparent increase in the thickness of superconducting particles at low temperatures measured by electron holography

    International Nuclear Information System (INIS)

    Hirsch, J.E.

    2013-01-01

    We predict that superconducting particles will show an apparent increase in thickness at low temperatures when measured by electron holography. This will result not from a real thickness increase, rather from an increase in the mean inner potential sensed by the electron wave traveling through the particle, originating in expansion of the electronic wavefunction of the superconducting electrons and resulting negative charge expulsion from the interior to the surface of the superconductor, giving rise to an increase in the phase shift of the electron wavefront going through the sample relative to the wavefront going through vacuum. The temperature dependence of the observed phase shifts will yield valuable new information on the physics of the superconducting state of metals. - Highlights: • A new property of superconducting particles is predicted. • Electron holography will show an apparent increase in thickness at low temperatures. • This will result from a predicted increase in the mean inner potential. • This will originate in expulsion of electrons from the interior to the surface. • This is not predicted by the conventional BCS theory of superconductivity

  10. Imaging and image restoration of an on-axis three-mirror Cassegrain system with wavefront coding technology.

    Science.gov (United States)

    Guo, Xiaohu; Dong, Liquan; Zhao, Yuejin; Jia, Wei; Kong, Lingqin; Wu, Yijian; Li, Bing

    2015-04-01

    Wavefront coding (WFC) technology is adopted in the space optical system to resolve the problem of defocus caused by temperature difference or vibration of satellite motion. According to the theory of WFC, we calculate and optimize the phase mask parameter of the cubic phase mask plate, which is used in an on-axis three-mirror Cassegrain (TMC) telescope system. The simulation analysis and the experimental results indicate that the defocused modulation transfer function curves and the corresponding blurred images have a perfect consistency in the range of 10 times the depth of focus (DOF) of the original TMC system. After digital image processing by a Wiener filter, the spatial resolution of the restored images is up to 57.14 line pairs/mm. The results demonstrate that the WFC technology in the TMC system has superior performance in extending the DOF and less sensitivity to defocus, which has great value in resolving the problem of defocus in the space optical system.

  11. Making a measurable difference in advanced Huntington disease care.

    Science.gov (United States)

    Moskowitz, Carol Brown; Rao, Ashwini K

    2017-01-01

    Neurologists' role in the care of people with advanced Huntington disease (HD) (total functional capacity speech and language pathology), behavioral and psychiatric professionals for problem-solving strategies, which must be reviewed with direct care staff before implementation; (3) encourage and support qualitative and quantitative interdisciplinary research studies, and randomized controlled studies of nonpharmacologic interventions; and (4) assist in the development of meaningful measures to further document what works to provide a good quality of life for the patient and family and a comfortable thoughtful approach to a good death. Collaborative models of care depend on: (1) clear communication; (2) ongoing education and support programs; with (3) pharmacologic and rehabilitation interventions, always in the context of respect for the person with HD, a preservation of the individuals' dignity, autonomy, and individual preferences. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Laser beam complex amplitude measurement by phase diversity.

    Science.gov (United States)

    Védrenne, Nicolas; Mugnier, Laurent M; Michau, Vincent; Velluet, Marie-Thérèse; Bierent, Rudolph

    2014-02-24

    The control of the optical quality of a laser beam requires a complex amplitude measurement able to deal with strong modulus variations and potentially highly perturbed wavefronts. The method proposed here consists in an extension of phase diversity to complex amplitude measurements that is effective for highly perturbed beams. Named camelot for Complex Amplitude MEasurement by a Likelihood Optimization Tool, it relies on the acquisition and processing of few images of the beam section taken along the optical path. The complex amplitude of the beam is retrieved from the images by the minimization of a Maximum a Posteriori error metric between the images and a model of the beam propagation. The analytical formalism of the method and its experimental validation are presented. The modulus of the beam is compared to a measurement of the beam profile, the phase of the beam is compared to a conventional phase diversity estimate. The precision of the experimental measurements is investigated by numerical simulations.

  13. Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for Column CO2 Measurements

    Science.gov (United States)

    Campbell, J. F.; Lin, B.; Obland, M. D.; Liu, Z.; Kooi, S. A.; Fan, T. F.; Nehrir, A. R.; Meadows, B.; Browell, E. V.

    2016-12-01

    Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for Column CO2 MeasurementsJoel F. Campbell1, Bing Lin1, Michael D. Obland1, Zhaoyan Liu1, Susan Kooi2, Tai-Fang Fan2, Amin R. Nehrir1, Byron Meadows1, Edward V. Browell31NASA Langley Research Center, Hampton, VA 23681 2SSAI, NASA Langley Research Center, Hampton, VA 23681 3STARSS-II Affiliate, NASA Langley Research Center, Hampton, VA 23681 AbstractGlobal and regional atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission and the Atmospheric Carbon and Transport (ACT) - America project are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space and airborne platforms to meet the ASCENDS and ACT-America science measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud returns. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby minimizing bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new sub-meter hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. These techniques are used in a new data processing

  14. The low-order wavefront control system for the PICTURE-C mission: high-speed image acquisition and processing

    Science.gov (United States)

    Hewawasam, Kuravi; Mendillo, Christopher B.; Howe, Glenn A.; Martel, Jason; Finn, Susanna C.; Cook, Timothy A.; Chakrabarti, Supriya

    2017-09-01

    The Planetary Imaging Concept Testbed Using a Recoverable Experiment - Coronagraph (PICTURE-C) mission will directly image debris disks and exozodiacal dust around nearby stars from a high-altitude balloon using a vector vortex coronagraph. The PICTURE-C low-order wavefront control (LOWC) system will be used to correct time-varying low-order aberrations due to pointing jitter, gravity sag, thermal deformation, and the gondola pendulum motion. We present the hardware and software implementation of the low-order ShackHartmann and reflective Lyot stop sensors. Development of the high-speed image acquisition and processing system is discussed with the emphasis on the reduction of hardware and computational latencies through the use of a real-time operating system and optimized data handling. By characterizing all of the LOWC latencies, we describe techniques to achieve a framerate of 200 Hz with a mean latency of ˜378 μs

  15. Measuring death-related anxiety in advanced cancer: preliminary psychometrics of the Death and Dying Distress Scale.

    Science.gov (United States)

    Lo, Christopher; Hales, Sarah; Zimmermann, Camilla; Gagliese, Lucia; Rydall, Anne; Rodin, Gary

    2011-10-01

    The alleviation of distress associated with death and dying is a central goal of palliative care, despite the lack of routine measurement of this outcome. In this study, we introduce the Death and Dying Distress Scale (DADDS), a new, brief measure we have developed to assess death-related anxiety in advanced cancer and other palliative populations. We describe its preliminary psychometrics based on a sample of 33 patients with advanced or metastatic cancer. The DADDS broadly captures distress about the loss of time and opportunity, the process of death and dying, and its impact on others. The initial version of the scale has a one-factor structure and good internal reliability. Dying and death-related distress was positively associated with depression and negatively associated with spiritual, emotional, physical, and functional well-being, providing early evidence of construct validity. This distress was relatively common, with 45% of the sample scoring in the upper reaches of the scale, suggesting that the DADDS may be a relevant outcome for palliative intervention. We conclude by presenting a revised 15-item version of the scale for further study in advanced cancer and other palliative populations.

  16. Selective corneal optical aberration (SCOA) for customized ablation

    Science.gov (United States)

    Jean, Benedikt J.; Bende, Thomas

    2001-06-01

    Wavefront analysis still have some technical problems which may be solved within the next years. There are some limitations to use wavefront as a diagnostic tool for customized ablation alone. An ideal combination would be wavefront and topography. Meanwhile Selective Corneal Aberration is a method to visualize the optical quality of a measured corneal surface. It is based on a true measured 3D elevation information of a video topometer. Thus values can be interpreted either using Zernike polynomials or visualized as a so called color coded surface quality map. This map gives a quality factor (corneal aberration) for each measured point of the cornea.

  17. On radiation emission from a microbunched beam with wavefront tilt and its experimental observation

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2017-06-15

    In this paper we compare experimental observations and theory of radiation emission from a microbunched beam with microbunching wavefront tilt with respect to the direction of motion. The theory refers to the work of T. Tanaka, H. Kitamura, and T. Shintake (2004), which predicts, in this case, exponential suppression of coherent radiation along the kicked direction. The observations refer to a recent experiment performed at the LCLS, where a microbunched beam was kicked by a bend and sent to a radiator undulator. The experiment resulted in the emission of strong coherent radiation that had its maximum along the kicked direction of motion, when the undulator parameter was detuned to a value larger than the nominal one. We first analyze the theory in detail, and we confirm the correctness of its derivation according to the conventional theory of radiation emission from charged particles. Subsequently, we look for possible peculiarities in the experiment, which may not be modeled by the theory. We show that only spurious effects are not accounted for. We conclude that the experiment defies explanation in terms of the conventional theory of radiation emission.

  18. On radiation emission from a microbunched beam with wavefront tilt and its experimental observation

    Science.gov (United States)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2018-03-01

    In this paper we compare experimental observations and theory of radiation emission from a microbunched beam with microbunching wavefront tilt with respect to the direction of motion. The theory refers to the work Tanaka et al. (2004) , which predicts, in this case, exponential suppression of coherent radiation along the kicked direction. The observations refer to a recent experiment performed at the LCLS (Nuhn et al., 2015; Lutman etal., 2016), where a microbunched beam was kicked by a bend and sent to a radiator undulator. The experiment resulted in the emission of strong coherent radiation that had its maximum along the kicked direction of motion, when the undulator parameter was detuned to a value larger than the nominal one. We first analyze the theory in detail, and we confirm the correctness of its derivation according to the conventional theory of radiation emission from charged particles. Subsequently, we look for possible peculiarities in the experiment, which may not be modeled by the theory. We show that only spurious effects are not accounted for. We conclude that the experiment defies explanation in terms of the conventional theory of radiation emission.

  19. Clinical evaluation comparing the fit of all-ceramic crowns obtained from silicone and digital intraoral impressions based on wavefront sampling technology.

    Science.gov (United States)

    Pradíes, Guillermo; Zarauz, Cristina; Valverde, Arelhys; Ferreiroa, Alberto; Martínez-Rus, Francisco

    2015-02-01

    The aim of this study was to compare the fit of ceramic crowns fabricated from conventional silicone impressions with the fit of ceramic crowns fabricated from intraoral digital impressions. Twenty-five participants with 30 posterior teeth with a prosthetic demand were selected for the study. Two crowns were made for each preparation. One crown was fabricated from an intraoral digital impression system (IDI group) and the other crown was fabricated from a conventional two-step silicone impression (CI group). To replicate the interface between the crown and the preparation, each crown was cemented on its corresponding clinical preparation with ultra-flow silicone. Each crown was embedded in acrylic resin to stabilise the registered interface and then cut in 2mm thick slices in a buco-lingual orientation. The internal gap was determined as the vertical distance from the internal surface of the crown to the prepared tooth surface at four points (marginal gap, axial gap, crest gap, and occlusal fossa gap) using stereomicroscopy with a magnification of 40×. Data was analysed by using Wilcoxon signed rank test (α=0.05). Internal adaptation values were significantly affected by the impression technique (p=0.001). Mean marginal gap was 76.33 ± 65.32 μm for the crowns of the IDI group and 91.46 ± 72.17 μm for the CI group. All-ceramic crowns fabricated from intraoral digital impressions with wavefront sampling technology demonstrated better internal fit than crowns manufactured from silicone impressions. Impressions obtained from an intraoral digital scanner based on wavefront sampling technology can be used for manufacturing ceramic crowns in the normal clinical practice with better results than conventional impressions with elastomers. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Measured performance of 12 demonstation projects - IEA Task 13 "advanced solar low energy buildings"

    DEFF Research Database (Denmark)

    Thomsen, Kirsten Engelund; Schultz, Jørgen Munthe; Poel, Bart

    2005-01-01

    This paper presents the results obtained from measurements and experiences gained from interviews on 12 advanced solar low energy houses designed and built as part of the IEA Solar Heating and Cooling Programme – Task 13. Three years after the IEA Task 13 formally ended, the results were collected...... climate conditions are compared and differences explained. Special innovative installations and systems are de-scribed and evaluated. In general the measured energy consumption was higher than the expected values due to user influence and unforeseen technical problems but still an energy saving of 60...

  1. Advanced Nuclear Measurements - Sensitivity Analysis Emerging Safeguards, Problems and Proliferation Risk

    International Nuclear Information System (INIS)

    Dreicer, J.S.

    1999-01-01

    During the past year this component of the Advanced Nuclear Measurements LDRD-DR has focused on emerging safeguards problems and proliferation risk by investigating problems in two domains. The first is related to the analysis, quantification, and characterization of existing inventories of fissile materials, in particular, the minor actinides (MA) formed in the commercial fuel cycle. Understanding material forms and quantities helps identify and define future measurement problems, instrument requirements, and assists in prioritizing safeguards technology development. The second problem (dissertation research) has focused on the development of a theoretical foundation for sensor array anomaly detection. Remote and unattended monitoring or verification of safeguards activities is becoming a necessity due to domestic and international budgetary constraints. However, the ability to assess the trustworthiness of a sensor array has not been investigated. This research is developing an anomaly detection methodology to assess the sensor array

  2. Tunnel Face Stability and the Effectiveness of Advance Drainage Measures in Water-Bearing Ground of Non-uniform Permeability

    Science.gov (United States)

    Zingg, Sara; Anagnostou, Georg

    2018-01-01

    Non-uniform permeability may result in complex hydraulic head fields with potentially very high hydraulic gradients close to the tunnel face, which may be adverse for stability depending on the ground strength. Pore pressure relief by drainage measures in advance of the tunnel excavation improves stability, but the effectiveness of drainage boreholes may be low in the case of alternating aquifers and aquitards. This paper analyses the effects of hydraulic heterogeneity and advance drainage quantitatively by means of limit equilibrium computations that take account of the seepage forces acting upon the ground in the vicinity the tunnel face. The piezometric field is determined numerically by means of steady-state, three-dimensional seepage flow analyses considering the heterogeneous structure of the ground and a typical advance drainage scheme consisting of six axial boreholes drilled from the tunnel face. A suite of stability analyses was carried out covering a wide range of heterogeneity scales. The computational results show the effect of the orientation, thickness, location, number and permeability ratio of aquifers and aquitards and provide valuable indications about potentially critical situations, the effectiveness of advance drainage and the adequate arrangement of drainage boreholes. The paper shows that hydraulic heterogeneity results in highly variable face behaviour, even if the shear strength of the ground is constant along the alignment, but ground behaviour is considerably less variable in the presence of advance drainage measures.

  3. Advanced high speed X-ray CT scanner for measurement and visualization of multi-phase flow

    International Nuclear Information System (INIS)

    Hori, Keiichi; Fujimoto, Tetsuro; Kawanishi, Kohei; Nishikawa, Hideo

    1998-01-01

    The development of an ultra-fast X-ray computed tomography (CT) scanner has been performed. The object of interest is in a transient or unsettled state, which makes the conventional CT scanner inappropriate. A concept of electrical switching of electron beam of X-ray generation unit is adopted to reduce the scanning time instead of a mechanical motion adopted by a conventional CT scanner. The mechanical motion is a major obstacle to improve the scanning speed. A prototype system with a scanning time of 3.6 milliseconds was developed at first. And, the feasibility was confirmed to measure the dynamic events of two-phase flow. However, faster scanning speed is generally required for the practical use in the thermalhydraulics research field. Therefore, the development of advanced type has been performed. This advanced type can operate under the scanning time of 0.5 milliseconds and is applicable for the measurement of the multi-phase flow with velocity up to 4-5 m/s. (author)

  4. Static telescope aberration measurement using lucky imaging techniques

    Science.gov (United States)

    López-Marrero, Marcos; Rodríguez-Ramos, Luis Fernando; Marichal-Hernández, José Gil; Rodríguez-Ramos, José Manuel

    2012-07-01

    A procedure has been developed to compute static aberrations once the telescope PSF has been measured with the lucky imaging technique, using a nearby star close to the object of interest as the point source to probe the optical system. This PSF is iteratively turned into a phase map at the pupil using the Gerchberg-Saxton algorithm and then converted to the appropriate actuation information for a deformable mirror having low actuator number but large stroke capability. The main advantage of this procedure is related with the capability of correcting static aberration at the specific pointing direction and without the need of a wavefront sensor.

  5. Liquid-crystal microlens array with swing and adjusting focus and constructed by dual patterned ITO-electrodes

    Science.gov (United States)

    Dai, Wanwan; Xie, Xingwang; Li, Dapeng; Han, Xinjie; Liu, Zhonglun; Wei, Dong; Xin, Zhaowei; Zhang, Xinyu; Wang, Haiwei; Xie, Changsheng

    2018-02-01

    Under the condition of existing intense turbulence, the object's wavefront may be severely distorted. So, the wavefront sensors based on the traditional microlens array (MLA) with a fixed focal length can not be used to measure the wavefront effectively. In order to obtain a larger measurement range and higher measurement accuracy, we propose a liquid-crystal microlens array (LCMLA) with needed ability of swing focus over the focal plane and further adjusting focal length, which is constructed by a dual patterned ITO electrodes. The main structure of the LCMLA is divided into two layers, which are made of glass substrate with ITO transparent electrodes. The top layer of each liquid-crystal microlens consists of four rectangular electrodes, and the bottom layer is a circular electrode. In common optical measurements performed, the operations are carried out such as adding the same signal voltage over four electrodes of each microlens to adjust the focal length of the lens cell and adding a signal voltage with different RMS amplitude to adjust the focus position on the focal plane. Experiments show that the LCMLA developed by us demonstrate a desired focal length adjustable function and dynamic swing ability, so as to indicate that the method can be used not only to measure wavefront but also correct the wavefront with strong distortion.

  6. Advancing implementation science through measure development and evaluation: a study protocol.

    Science.gov (United States)

    Lewis, Cara C; Weiner, Bryan J; Stanick, Cameo; Fischer, Sarah M

    2015-07-22

    Significant gaps related to measurement issues are among the most critical barriers to advancing implementation science. Three issues motivated the study aims: (a) the lack of stakeholder involvement in defining pragmatic measure qualities; (b) the dearth of measures, particularly for implementation outcomes; and (c) unknown psychometric and pragmatic strength of existing measures. Aim 1: Establish a stakeholder-driven operationalization of pragmatic measures and develop reliable, valid rating criteria for assessing the construct. Aim 2: Develop reliable, valid, and pragmatic measures of three critical implementation outcomes, acceptability, appropriateness, and feasibility. Aim 3: Identify Consolidated Framework for Implementation Research and Implementation Outcome Framework-linked measures that demonstrate both psychometric and pragmatic strength. For Aim 1, we will conduct (a) interviews with stakeholder panelists (N = 7) and complete a literature review to populate pragmatic measure construct criteria, (b) Q-sort activities (N = 20) to clarify the internal structure of the definition, (c) Delphi activities (N = 20) to achieve consensus on the dimension priorities, (d) test-retest and inter-rater reliability assessments of the emergent rating system, and (e) known-groups validity testing of the top three prioritized pragmatic criteria. For Aim 2, our systematic development process involves domain delineation, item generation, substantive validity assessment, structural validity assessment, reliability assessment, and predictive validity assessment. We will also assess discriminant validity, known-groups validity, structural invariance, sensitivity to change, and other pragmatic features. For Aim 3, we will refine our established evidence-based assessment (EBA) criteria, extract the relevant data from the literature, rate each measure using the EBA criteria, and summarize the data. The study outputs of each aim are expected to have a positive impact

  7. Measurement of longitudinal and rayleigh wave velocities by advanced one-sided technique in concrete

    International Nuclear Information System (INIS)

    Lee, Joon Hyun; Song, Won Joon; Popovics, J. S.; Achenbach, J. D.

    1997-01-01

    A new procedure for the advanced one-sided measurement of longitudinal wave and surface wave velocities in concrete is presented in this paper. Stress waves are generated in a consistent fashion with a DC solenoid. Two piezoelectric accelerometers are mounted on the surface of a specimen as receivers. Stress waves propagate along the surface of the specimen and are detected by the receivers. In order to reduce the large incoherent noise levels of the signals, signals are collected and manipulated by a computer program for each velocity measurement. For a known distance between the two receivers and using the measured flight times, the velocities of the longitudinal wave and the surface wave are measured. The velocities of the longitudinal wave determined by this method are compared with those measured by conventional methods on concrete, PMMA and steel.

  8. The Development of Advanced Processing and Analysis Algorithms for Improved Neutron Multiplicity Measurements

    International Nuclear Information System (INIS)

    Santi, P.; Favalli, A.; Hauck, D.; Henzl, V.; Henzlova, D.; Ianakiev, K.; Iliev, M.; Swinhoe, M.; Croft, S.; Worrall, L.

    2015-01-01

    One of the most distinctive and informative signatures of special nuclear materials is the emission of correlated neutrons from either spontaneous or induced fission. Because the emission of correlated neutrons is a unique and unmistakable signature of nuclear materials, the ability to effectively detect, process, and analyze these emissions will continue to play a vital role in the non-proliferation, safeguards, and security missions. While currently deployed neutron measurement techniques based on 3He proportional counter technology, such as neutron coincidence and multiplicity counters currently used by the International Atomic Energy Agency, have proven to be effective over the past several decades for a wide range of measurement needs, a number of technical and practical limitations exist in continuing to apply this technique to future measurement needs. In many cases, those limitations exist within the algorithms that are used to process and analyze the detected signals from these counters that were initially developed approximately 20 years ago based on the technology and computing power that was available at that time. Over the past three years, an effort has been undertaken to address the general shortcomings in these algorithms by developing new algorithms that are based on fundamental physics principles that should lead to the development of more sensitive neutron non-destructive assay instrumentation. Through this effort, a number of advancements have been made in correcting incoming data for electronic dead time, connecting the two main types of analysis techniques used to quantify the data (Shift register analysis and Feynman variance to mean analysis), and in the underlying physical model, known as the point model, that is used to interpret the data in terms of the characteristic properties of the item being measured. The current status of the testing and evaluation of these advancements in correlated neutron analysis techniques will be discussed

  9. Measuring the impact of the advanced practitioner role: a practical approach.

    Science.gov (United States)

    Neville, Lillian; Swift, Juliette

    2012-04-01

    This paper aims to illuminate difficulties in evaluating the advanced practitioner role and to offer a practical solution. The advanced practice role has been part of the workforce strategy in the Northwest of England since 2005. However capturing hard evidence of the impact of this role has been problematic. Current restrictions on resources require the provision of evidence of the value of roles and services. Critical analysis of literature has identified challenges in evaluating the advanced practice role. The case study design takes account of current policy initiatives, notably QIPP. There is no common approach to evaluating the role of advanced practitioners. The case study has the potential to be a useful tool to organise evidence of the impact of advanced practitioner roles. Advanced practitioners need to have appropriate knowledge and skills to provide evidence of the impact of their role. There is potential for this work to be applied to other roles across the NHS. Managers need to work in partnership with workforce planners and educationalists to support advanced practitioners to utilise their skills in methods of providing evidence that they do work of value. Clear strategic direction for advanced practitioners is advised as part of the workforce strategy. © 2012 Blackwell Publishing Ltd.

  10. Phase loop bandwidth measurements on the advanced photon source 352 MHz rf systems

    International Nuclear Information System (INIS)

    Horan, D.; Nassiri, A.; Schwartz, C.

    1997-01-01

    Phase loop bandwidth tests were performed on the Advanced Photon Source storage ring 352-MHz rf systems. These measurements were made using the HP3563A Control Systems Analyzer, with the rf systems running at 30 kilowatts into each of the storage ring cavities, without stored beam. An electronic phase shifter was used to inject approximately 14 degrees of stimulated phase shift into the low-level rf system, which produced measureable response voltage in the feedback loops without upsetting normal rf system operation. With the PID (proportional-integral-differential) amplifier settings at the values used during accelerator operation, the measurement data revealed that the 3-dB response for the cavity sum and klystron power-phase loops is approximately 7 kHz and 45 kHz, respectively, with the cavities the primary bandwidth-limiting factor in the cavity-sum loop. Data were taken at various PID settings until the loops became unstable. Crosstalk between the two phase loops was measured

  11. Addition of Adapted Optics towards obtaining a quantitative detection of diabetic retinopathy

    Science.gov (United States)

    Yust, Brian; Obregon, Isidro; Tsin, Andrew; Sardar, Dhiraj

    2009-04-01

    An adaptive optics system was assembled for correcting the aberrated wavefront of light reflected from the retina. The adaptive optics setup includes a superluminous diode light source, Hartmann-Shack wavefront sensor, deformable mirror, and imaging CCD camera. Aberrations found in the reflected wavefront are caused by changes in the index of refraction along the light path as the beam travels through the cornea, lens, and vitreous humour. The Hartmann-Shack sensor allows for detection of aberrations in the wavefront, which may then be corrected with the deformable mirror. It has been shown that there is a change in the polarization of light reflected from neovascularizations in the retina due to certain diseases, such as diabetic retinopathy. The adaptive optics system was assembled towards the goal of obtaining a quantitative measure of onset and progression of this ailment, as one does not currently exist. The study was done to show that the addition of adaptive optics results in a more accurate detection of neovascularization in the retina by measuring the expected changes in polarization of the corrected wavefront of reflected light.

  12. A New Computerised Advanced Theory of Mind Measure for Children with Asperger Syndrome: The ATOMIC

    Science.gov (United States)

    Beaumont, Renae B.; Sofronoff, Kate

    2008-01-01

    This study examined the ability of children with Asperger Syndrome (AS) to attribute mental states to characters in a new computerised, advanced theory of mind measure: The Animated Theory of Mind Inventory for Children (ATOMIC). Results showed that children with AS matched on IQ, verbal comprehension, age and gender performed equivalently on…

  13. Three-year results of small incision lenticule extraction and wavefront-guided femtosecond laser-assisted laser in situ keratomileusis for correction of high myopia and myopic astigmatism

    Directory of Open Access Journals (Sweden)

    Li-Kun Xia

    2018-03-01

    Full Text Available AIM: To compare and calculate the 3-year refractive results, higher-order aberrations (HOAs, contrast sensitivity (CS and dry eye parameters after small incision lenticule extraction (SMILE and wavefront-guided femtosecond laser-assisted laser in situ keratomileusis (FS-LASIK for correction of high myopia and myopic astigmatism. METHODS: In this prospective, non-randomized comparative study, 78 eyes with spherical equivalent (SE of -8.11±1.09 diopters (D received a SMILE surgery, and 65 eyes with SE of -8.05±1.12 D received a wavefront-guided FS-LASIK surgery with the VisuMax femtosecond laser (Carl Zeiss Meditec, Jena, Germany for flap cutting. Visual acuity, manifest refraction, CS, HOAs, ocular surface disease index (OSDI and tear break-up time (TBUT were evaluated during a 3-year follow-up. RESULTS: The difference of uncorrected distance visual acuity (UDVA postoperatively was achieved at 1mo and at 3mo, whereas the difference of the mean UDVA between two groups at 3y were not statistically significant (t=-1.59, P=0.13. The postoperative change of SE was 0.89 D in the FS-LASIK group (t=5.76, P=0.00, and 0.14 D in the SMILE group (t=0.54, P=0.59 from 1mo to 3y after surgery. At 3-year postoperatively, both HOAs and spherical aberrations in the SMILE group were obviously less than those in the FS-LASIK group (P=0.00, but the coma root mean square (RMS was higher in the SMILE group (0.59±0.26 than in the FS-LASIK group (0.29±0.14, P=0.00. The mesopic CS values between two groups were not statistically significant at 3y postoperatively. Compared with the FS-LASIK group, lower OSDI scores and longer TBUT values were found in the SMILE group at 1mo and 3mo postoperatively. With regard to safety, no eye lost any line of CDVA in both groups at 3y after surgery. CONCLUSION: Both SMILE and wavefront-guided FS-LASIK procedures provide good visual outcomes. Both procedures are effective and safe, but SMILE surgery achieve more stable long

  14. Biometric iris image acquisition system with wavefront coding technology

    Science.gov (United States)

    Hsieh, Sheng-Hsun; Yang, Hsi-Wen; Huang, Shao-Hung; Li, Yung-Hui; Tien, Chung-Hao

    2013-09-01

    Biometric signatures for identity recognition have been practiced for centuries. Basically, the personal attributes used for a biometric identification system can be classified into two areas: one is based on physiological attributes, such as DNA, facial features, retinal vasculature, fingerprint, hand geometry, iris texture and so on; the other scenario is dependent on the individual behavioral attributes, such as signature, keystroke, voice and gait style. Among these features, iris recognition is one of the most attractive approaches due to its nature of randomness, texture stability over a life time, high entropy density and non-invasive acquisition. While the performance of iris recognition on high quality image is well investigated, not too many studies addressed that how iris recognition performs subject to non-ideal image data, especially when the data is acquired in challenging conditions, such as long working distance, dynamical movement of subjects, uncontrolled illumination conditions and so on. There are three main contributions in this paper. Firstly, the optical system parameters, such as magnification and field of view, was optimally designed through the first-order optics. Secondly, the irradiance constraints was derived by optical conservation theorem. Through the relationship between the subject and the detector, we could estimate the limitation of working distance when the camera lens and CCD sensor were known. The working distance is set to 3m in our system with pupil diameter 86mm and CCD irradiance 0.3mW/cm2. Finally, We employed a hybrid scheme combining eye tracking with pan and tilt system, wavefront coding technology, filter optimization and post signal recognition to implement a robust iris recognition system in dynamic operation. The blurred image was restored to ensure recognition accuracy over 3m working distance with 400mm focal length and aperture F/6.3 optics. The simulation result as well as experiment validates the proposed code

  15. Accelerated Adaptive MGS Phase Retrieval

    Science.gov (United States)

    Lam, Raymond K.; Ohara, Catherine M.; Green, Joseph J.; Bikkannavar, Siddarayappa A.; Basinger, Scott A.; Redding, David C.; Shi, Fang

    2011-01-01

    The Modified Gerchberg-Saxton (MGS) algorithm is an image-based wavefront-sensing method that can turn any science instrument focal plane into a wavefront sensor. MGS characterizes optical systems by estimating the wavefront errors in the exit pupil using only intensity images of a star or other point source of light. This innovative implementation of MGS significantly accelerates the MGS phase retrieval algorithm by using stream-processing hardware on conventional graphics cards. Stream processing is a relatively new, yet powerful, paradigm to allow parallel processing of certain applications that apply single instructions to multiple data (SIMD). These stream processors are designed specifically to support large-scale parallel computing on a single graphics chip. Computationally intensive algorithms, such as the Fast Fourier Transform (FFT), are particularly well suited for this computing environment. This high-speed version of MGS exploits commercially available hardware to accomplish the same objective in a fraction of the original time. The exploit involves performing matrix calculations in nVidia graphic cards. The graphical processor unit (GPU) is hardware that is specialized for computationally intensive, highly parallel computation. From the software perspective, a parallel programming model is used, called CUDA, to transparently scale multicore parallelism in hardware. This technology gives computationally intensive applications access to the processing power of the nVidia GPUs through a C/C++ programming interface. The AAMGS (Accelerated Adaptive MGS) software takes advantage of these advanced technologies, to accelerate the optical phase error characterization. With a single PC that contains four nVidia GTX-280 graphic cards, the new implementation can process four images simultaneously to produce a JWST (James Webb Space Telescope) wavefront measurement 60 times faster than the previous code.

  16. Construction of three-dimensional tooth model by micro-computed tomography and application for data sharing.

    Science.gov (United States)

    Kato, A; Ohno, N

    2009-03-01

    The study of dental morphology is essential in terms of phylogeny. Advances in three-dimensional (3D) measurement devices have enabled us to make 3D images of teeth without destruction of samples. However, raw fundamental data on tooth shape requires complex equipment and techniques. An online database of 3D teeth models is therefore indispensable. We aimed to explore the basic methodology for constructing 3D teeth models, with application for data sharing. Geometric information on the human permanent upper left incisor was obtained using micro-computed tomography (micro-CT). Enamel, dentine, and pulp were segmented by thresholding of different gray-scale intensities. Segmented data were separately exported in STereo-Lithography Interface Format (STL). STL data were converted to Wavefront OBJ (OBJect), as many 3D computer graphics programs support the Wavefront OBJ format. Data were also applied to Quick Time Virtual Reality (QTVR) format, which allows the image to be viewed from any direction. In addition to Wavefront OBJ and QTVR data, the original CT series were provided as 16-bit Tag Image File Format (TIFF) images on the website. In conclusion, 3D teeth models were constructed in general-purpose data formats, using micro-CT and commercially available programs. Teeth models that can be used widely would benefit all those who study dental morphology.

  17. X-ray beam size measurements on the Advanced Test Accelerator

    International Nuclear Information System (INIS)

    Struve, K.W.; Chambers, F.W.; Lauer, E.J.; Slaughter, D.R.

    1986-01-01

    The electron beam size has been determined on the Advanced Test Accelerator (ATA) by intercepting the beam with a target and measuring the resulting x-ray intensity as a function of time as the target is moved through the beam. Several types of targets have been used. One is a tantalum rod which extends completely across the drift chamber. Another is a tungsten powder filled carbon crucible. Both of these probes are moved from shot to shot so that the x-ray signal intensity varies with probe position. A third is a larger tantalum disk which is inserted on beam axis to allow determining beam size on a one shot basis. The x-ray signals are detected with an MCP photomultiplier tube located at 90 0 to the beamline. It is sufficiently shielded to reject background x-rays and neutrons. The signals were digitized, recorded and later unfolded to produce plots of x-ray intensity versus probe position for several times during the pulse. The presumption that the x-ray intensity is proportional to beam current density is checked computationally. Details of the probe construction and PMT shielding, as well as sample measurements are given

  18. Measurement of the Jones matrix of liquid crystal displays using a common path interferometer

    International Nuclear Information System (INIS)

    Sarkadi, Tamás; Koppa, Pál

    2011-01-01

    We propose a robust interferometric method to measure the Jones matrix of polarization components, especially liquid crystal displays. Phase values are measured by a simple common path interferometer containing a birefringent crystal as beam splitter and a polarizer as beam combiner. This solution eliminates the sensitivity of traditional interferometric techniques to vibration, temperature variation or wavefront distortion. The proposed phase measurement method is applicable to the measurement of both spatially homogeneous and binary modulated states, thus the modulation transfer function and inter-pixel interference can also be studied. We demonstrate this technique by the measurement of a liquid crystal on silicon display. The resulting Jones matrix, as a function of displayed gray level, can be efficiently embedded in any numeric model of an optical system containing the analyzed spatial light modulator

  19. RF radiation measurement for the Advanced Photon Source (AS) personnel safety system

    International Nuclear Information System (INIS)

    Song, J.J.; Kim, J.; Otocki, R.; Zhou, J.

    1995-01-01

    The Advanced Photon Source (APS) booster and storage ring RF system consists of five 1-MW klystrons, four 5-cell cavities, and sixteen single-cell cavities. The RF power is distributed through many hundreds of feet of WR2300 waveguide with H-hybrids and circulators. In order to protect personnel from the danger of RF radiation due to loose flanges or other openings in the waveguide system, three detector systems were implemented: an RF radiation detector, a waveguide pressure switch, and a Radiax aperture detector (RAD). This paper describes RF radiation measurements on the WR 2300 waveguide system

  20. Development of an advanced Two-Micron triple-pulse IPDA lidar for carbon dioxide and water vapor measurements

    Science.gov (United States)

    Petros, Mulugeta; Refaat, Tamer F.; Singh, Upendra N.; Yu, Jirong; Antill, Charles; Remus, Ruben; Taylor, Bryant D.; Wong, Teh-Hwa; Reithmaier, Karl; Lee, Jane; Ismail, Syed; Davis, Kenneth J.

    2018-04-01

    An advanced airborne triple-pulse 2-μm integrated path differential absorption (IPDA) lidar is under development at NASA Langley Research Center that targets both carbon dioxide (CO2) and water vapor (H2O) measurements simultaneously and independently. This lidar is an upgrade to the successfully demonstrated CO2 2-μm double-pulse IPDA. Upgrades include high-energy, highrepetition rate 2-μm triple-pulse laser transmitter, innovative wavelength control and advanced HgCdTe (MCT) electron-initiated avalanche photodiode detection system. Ground testing and airborne validation plans are presented.

  1. Challenges and Approach for Making the Top End Optical Assembly for the 4-meter Advanced Technology Solar Telescope

    Science.gov (United States)

    Canzian, Blaise; Barentine, J.; Hull, T.

    2012-01-01

    L-3 Integrated Optical Systems (IOS) Division has been selected by the National Solar Observatory (NSO) to make the Top End Optical Assembly (TEOA) for the 4-meter Advanced Technology Solar Telescope (ATST) to operate at Haleakala, Maui. ATST will perform to a very high optical performance level in a difficult thermal environment. The TEOA, containing the 0.65-meter silicon carbide secondary mirror and support, mirror thermal management system, mirror positioning and fast tip-tilt system, field stop with thermally managed heat dump, thermally managed Lyot stop, safety interlock and control system, and support frame, operates in the "hot spot” at the prime focus of the ATST and so presents special challenges. In this paper, we will describe the L-3 IOS technical approach to meet these challenges, including subsystems for opto-mechanical positioning, rejected and stray light control, wavefront tip-tilt compensation, and thermal management. Key words: ATST, TEOA, L-3 IOS, thermal management, silicon carbide (SiC) mirrors, hexapods, solar astronomy

  2. Comparison of Quality Oncology Practice Initiative (QOPI) Measure Adherence Between Oncology Fellows, Advanced Practice Providers, and Attending Physicians.

    Science.gov (United States)

    Zhu, Jason; Zhang, Tian; Shah, Radhika; Kamal, Arif H; Kelley, Michael J

    2015-12-01

    Quality improvement measures are uniformly applied to all oncology providers, regardless of their roles. Little is known about differences in adherence to these measures between oncology fellows, advance practice providers (APP), and attending physicians. We investigated conformance across Quality Oncology Practice Initiative (QOPI) measures for oncology fellows, advance practice providers, and attending physicians at the Durham Veterans Affairs Medical Center (DVAMC). Using data collected from the Spring 2012 and 2013 QOPI cycles, we abstracted charts of patients and separated them based on their primary provider. Descriptive statistics and the chi-square test were calculated for each QOPI measure between fellows, advanced practice providers (APPs), and attending physicians. A total of 169 patients were reviewed. Of these, 31 patients had a fellow, 39 had an APP, and 99 had an attending as their primary oncology provider. Fellows and attending physicians performed similarly on 90 of 94 QOPI metrics. High-performing metrics included several core QOPI measures including documenting consent for chemotherapy, recommending adjuvant chemotherapy when appropriate, and prescribing serotonin antagonists when prescribing emetogenic chemotherapies. Low-performing metrics included documentation of treatment summary and taking action to address problems with emotional well-being by the second office visit. Attendings documented the plan for oral chemotherapy more often (92 vs. 63%, P=0.049). However, after the chart audit, we found that fellows actually documented the plan for oral chemotherapy 88% of the time (p=0.73). APPs and attendings performed similarly on 88 of 90 QOPI measures. The quality of oncology care tends to be similar between attendings and fellows overall; some of the significant differences do not remain significant after a second manual chart review, highlighting that the use of manual data collection for QOPI analysis is an imperfect system, and there may

  3. Capacitive divider for output voltage measurement of intense electron beam accelerator

    International Nuclear Information System (INIS)

    Ding Desheng; Yi Lingzhi; Yu Binxiong; Hong Zhiqiang; Liu Jinliang

    2012-01-01

    A kind of simple-mechanism, easy-disassembly self-integrating capacitive divider used for measuring diode output voltage of intense electron beam accelerator (IEBA) is developed. The structure of the capacitive divider is described, and the capacitance value of the capacitive divider is calculated by theoretical analysis and electromagnetic simulation. The dependence of measurement voltage on electrical parameters such as stray capacitance, earth capacitance of front resistance is obtained by PSpice simulation. Measured waveforms appear overshoot phenomenon when stray capacitance of front resistance is larger, and the wavefront will be affected when earth capacitance of front resistance is larger. The diode output voltage waveforms of intense electron beam accelerator, are measured by capacitive divider and calibrated by water resistance divider, which is accordance with that measured by a resistive divider, the division ratio is about 563007. The designed capacitive divider can be used to measure high-voltage pulse with 100 ns full width at half maximum. (authors)

  4. Measuring higher order optical aberrations of the human eye: techniques and applications

    Directory of Open Access Journals (Sweden)

    L. Alberto V. Carvalho

    2002-11-01

    Full Text Available In the present paper we discuss the development of "wave-front", an instrument for determining the lower and higher optical aberrations of the human eye. We also discuss the advantages that such instrumentation and techniques might bring to the ophthalmology professional of the 21st century. By shining a small light spot on the retina of subjects and observing the light that is reflected back from within the eye, we are able to quantitatively determine the amount of lower order aberrations (astigmatism, myopia, hyperopia and higher order aberrations (coma, spherical aberration, etc.. We have measured artificial eyes with calibrated ametropia ranging from +5 to -5 D, with and without 2 D astigmatism with axis at 45º and 90º. We used a device known as the Hartmann-Shack (HS sensor, originally developed for measuring the optical aberrations of optical instruments and general refracting surfaces in astronomical telescopes. The HS sensor sends information to a computer software for decomposition of wave-front aberrations into a set of Zernike polynomials. These polynomials have special mathematical properties and are more suitable in this case than the traditional Seidel polynomials. We have demonstrated that this technique is more precise than conventional autorefraction, with a root mean square error (RMSE of less than 0.1 µm for a 4-mm diameter pupil. In terms of dioptric power this represents an RMSE error of less than 0.04 D and 5º for the axis. This precision is sufficient for customized corneal ablations, among other applications.

  5. Nonimaging speckle interferometry for high-speed nanometer-scale position detection

    NARCIS (Netherlands)

    van Putten, E.G.; Lagendijk, Aart; Mosk, Allard

    2012-01-01

    We experimentally demonstrate a nonimaging approach to displacement measurement for complex scattering materials. By spatially controlling the wavefront of the light that incidents on the material, we concentrate the scattered light in a focus on a designated position. This wavefront acts as a

  6. Benchmarking of the PHOENIX-P/ANC [Advanced Nodal Code] advanced nuclear design system

    International Nuclear Information System (INIS)

    Nguyen, T.Q.; Liu, Y.S.; Durston, C.; Casadei, A.L.

    1988-01-01

    At Westinghouse, an advanced neutronic methods program was designed to improve the quality of the predictions, enhance flexibility in designing advanced fuel and related products, and improve design lead time. Extensive benchmarking data is presented to demonstrate the accuracy of the Advanced Nodal Code (ANC) and the PHOENIX-P advanced lattice code. Qualification data to demonstrate the accuracy of ANC include comparison of key physics parameters against a fine-mesh diffusion theory code, TORTISE. Benchmarking data to demonstrate the validity of the PHOENIX-P methodologies include comparison of physics predictions against critical experiments, isotopics measurements and measured power distributions from spatial criticals. The accuracy of the PHOENIX-P/ANC Advanced Design System is demonstrated by comparing predictions of hot zero power physics parameters and hot full power core follow against measured data from operating reactors. The excellent performance of this system for a broad range of comparisons establishes the basis for implementation of these tools for core design, licensing and operational follow of PWR [pressurized water reactor] cores at Westinghouse

  7. A prospective comparison of phakic collamer lenses and wavefront-optimized laser-assisted in situ keratomileusis for correction of myopia

    Directory of Open Access Journals (Sweden)

    Parkhurst GD

    2016-06-01

    Full Text Available Gregory D Parkhurst1,2 1Refractive Surgery Center, Carl R Darnall Army Medical Center, Fort Hood, 2Parkhurst NuVision, San Antonio, TX, USA Purpose: The aim of this study was to evaluate and compare night vision and low-luminance contrast sensitivity (CS in patients undergoing implantation of phakic collamer lenses or wavefront-optimized laser-assisted in situ keratomileusis (LASIK.Patients and methods: This is a nonrandomized, prospective study, in which 48 military personnel were recruited. Rabin Super Vision Test was used to compare the visual acuity and CS of Visian implantable collamer lens (ICL and LASIK groups under normal and low light conditions, using a filter for simulated vision through night vision goggles.Results: Preoperative mean spherical equivalent was –6.10 D in the ICL group and –6.04 D in the LASIK group (P=0.863. Three months postoperatively, super vision acuity (SVa, super vision acuity with (low-luminance goggles (SVaG, super vision contrast (SVc, and super vision contrast with (low luminance goggles (SVcG significantly improved in the ICL and LASIK groups (P<0.001. Mean improvement in SVaG at 3 months postoperatively was statistically significantly greater in the ICL group than in the LASIK group (mean change [logarithm of the minimum angle of resolution, LogMAR]: ICL =-0.134, LASIK =-0.085; P=0.032. Mean improvements in SVc and SVcG were also statistically significantly greater in the ICL group than in the LASIK group (SVc mean change [logarithm of the CS, LogCS]: ICL =0.356, LASIK =0.209; P=0.018 and SVcG mean change [LogCS]: ICL =0.390, LASIK =0.259; P=0.024. Mean improvement in SVa at 3 months was comparable in both groups (P=0.154.Conclusion: Simulated night vision improved with both ICL implantation and wavefront-optimized LASIK, but improvements were significantly greater with ICLs. These differences may be important in a military setting and may also affect satisfaction with civilian vision correction

  8. Qualification of a Null Lens Using Image-Based Phase Retrieval

    Science.gov (United States)

    Bolcar, Matthew R.; Aronstein, David L.; Hill, Peter C.; Smith, J. Scott; Zielinski, Thomas P.

    2012-01-01

    In measuring the figure error of an aspheric optic using a null lens, the wavefront contribution from the null lens must be independently and accurately characterized in order to isolate the optical performance of the aspheric optic alone. Various techniques can be used to characterize such a null lens, including interferometry, profilometry and image-based methods. Only image-based methods, such as phase retrieval, can measure the null-lens wavefront in situ - in single-pass, and at the same conjugates and in the same alignment state in which the null lens will ultimately be used - with no additional optical components. Due to the intended purpose of a Dull lens (e.g., to null a large aspheric wavefront with a near-equal-but-opposite spherical wavefront), characterizing a null-lens wavefront presents several challenges to image-based phase retrieval: Large wavefront slopes and high-dynamic-range data decrease the capture range of phase-retrieval algorithms, increase the requirements on the fidelity of the forward model of the optical system, and make it difficult to extract diagnostic information (e.g., the system F/#) from the image data. In this paper, we present a study of these effects on phase-retrieval algorithms in the context of a null lens used in component development for the Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission. Approaches for mitigation are also discussed.

  9. Resolution and drift measurements on the Advanced Photon Source beam position monitors

    International Nuclear Information System (INIS)

    Chung, Y.; Kahana, E.

    1994-01-01

    The resolution and long-term drift of the Advanced Photon Source (APS) beam position monitor (BPM) electronics were measured using the charged particle beams in the ESRF storage ring with various beam current and configurations (single bunch, 8 and 16 equally spaced bunches, and 1/3-fill). The energy of the stored electrons was 6 GeV. The integrated BPM electronics system as used for this work is capable of measuring the beam position on a turn-by-turn basis, which can be accumulated for N turns (N = 2 n , n = 1, 2, ... , 11). Estimation of the BPM resolution apart from the low-frequency beam motion was made by measuring the standard deviation in the measured beam position with different Ns. The analysis of the results indicates a BPM resolution of 18/√ N [μm] for the APS storage ring, which is equivalent to 0.07 μm/√Hz. For the miniature insertion device BPM with 2.8 times higher sensitivity, the resolution will be 0.02 μm/√Hz. The long-term drift of the BPM electronics independent of the actual beam motion was measured at 2 μm/hr, which settled after approximately 1.5 hours. This drift can be attributed mainly to the temperature effect. Comparison of the results with the laboratory measurements shows good agreement. Implication of the BPM resolution limit on the proposed global and local beam position feedback systems for the APS storage ring will also be discussed

  10. Advanced measurement and analysis of surface textures produced by micro-machining processes

    International Nuclear Information System (INIS)

    Bordatchev, Evgueni V; Hafiz, Abdullah M K

    2014-01-01

    Surface texture of a part or a product has significant effects on its functionality, physical-mechanical properties and visual appearance. In particular for miniature products, the implication of surface quality becomes critical owing to the presence of geometrical features with micro/nano-scale dimensions. Qualitative and quantitative assessments of surface texture are carried out predominantly by profile parameters, which are often insufficient to address the contribution of constituent spatial components with varied amplitudes and wavelengths. In this context, this article presents a novel approach for advanced measurement and analysis of profile average roughness (R a ) and its spatial distribution at different wavelength intervals. The applicability of the proposed approach was verified for three different surface topographies prepared by grinding, laser micro-polishing and micro-milling processes. From the measurement and analysis results, R a (λ) spatial distribution was found to be an effective measure of revealing the contributions of various spatial components within specific wavelength intervals towards formation of the entire surface profile. In addition, the approach was extended to the measurement and analysis of areal average roughness S a (λ) spatial distribution within different wavelength intervals. Besides, the proposed method was demonstrated to be a useful technique in developing a functional correlation between a manufacturing process and its corresponding surface profile. (paper)

  11. Advanced multipoles for accelerator magnets theoretical analysis and their measurement

    CERN Document Server

    Schnizer, Pierre

    2017-01-01

    This monograph presents research on the transversal beam dynamics of accelerators and evaluates and describes the respective magnetic field homogeneity.  The widely used cylindrical circular multipoles have disadvantages for elliptical apertures or curved trajectories, and the book also introduces new types of advanced multipole magnets, detailing their application, as well as the numerical data and measurements obtained. The research presented here provides more precise descriptions of the field and better estimates of the beam dynamics. Moreover, the effects of field inhomogeneity can be estimated with higher precision than before. These findings are further elaborated to demonstrate their usefulness for real magnets and accelerator set ups, showing their advantages over cylindrical circular multipoles. The research findings are complemented with data obtained from the new superconducting beam guiding magnet models (SIS100) for the FAIR (Facility for Antiproton and Ion Research) project.  Lastly, the book...

  12. Reducing the Surface Performance Requirements of a Primary Mirror by Adding a Deformable Mirror in its Optical Path

    Science.gov (United States)

    2015-12-01

    data. Of note, the interferometer compensates for the double -pass induced by single reflections off a surface by diving all measurements by 2. However...the interferometer. Since the laser reflects off the CFRP mirror only once, the CFRP wavefront measurements did not require additional double -pass...conducted with a flat mirror in the optical path. Figure 13 presents the measured wavefront error of the CFRP mirror with piston , tip and tip removed and

  13. Terahertz adaptive optics with a deformable mirror.

    Science.gov (United States)

    Brossard, Mathilde; Sauvage, Jean-François; Perrin, Mathias; Abraham, Emmanuel

    2018-04-01

    We report on the wavefront correction of a terahertz (THz) beam using adaptive optics, which requires both a wavefront sensor that is able to sense the optical aberrations, as well as a wavefront corrector. The wavefront sensor relies on a direct 2D electro-optic imaging system composed of a ZnTe crystal and a CMOS camera. By measuring the phase variation of the THz electric field in the crystal, we were able to minimize the geometrical aberrations of the beam, thanks to the action of a deformable mirror. This phase control will open the route to THz adaptive optics in order to optimize the THz beam quality for both practical and fundamental applications.

  14. Lower-hybrid absorption at the ion cyclotron harmonics

    International Nuclear Information System (INIS)

    Puri, S.

    1975-01-01

    In the presence of magnetic field gradients, the lower-hybrid wave can be absorbed through linear collisionless damping at the location of cyclotron or cyclotron harmonic resonances acting as singular turning points in the path of the advancing wave-front. (Auth.)

  15. Wavefront propagation simulations for a UV/soft x-ray beamline: Electron Spectro-Microscopy beamline at NSLS-II

    Science.gov (United States)

    Canestrari, N.; Bisogni, V.; Walter, A.; Zhu, Y.; Dvorak, J.; Vescovo, E.; Chubar, O.

    2014-09-01

    A "source-to-sample" wavefront propagation analysis of the Electron Spectro-Microscopy (ESM) UV / soft X-ray beamline, which is under construction at the National Synchrotron Light Source II (NSLS-II) in the Brookhaven National Laboratory, has been conducted. All elements of the beamline - insertion device, mirrors, variable-line-spacing gratings and slits - are included in the simulations. Radiation intensity distributions at the sample position are displayed for representative photon energies in the UV range (20 - 100 eV) where diffraction effects are strong. The finite acceptance of the refocusing mirrors is the dominating factor limiting the spatial resolution at the sample (by ~3 μm at 20 eV). Absolute estimates of the radiation flux and energy resolution at the sample are also obtained from the electromagnetic calculations. The analysis of the propagated UV range undulator radiation at different deflection parameter values demonstrates that within the beamline angular acceptance a slightly "red-shifted" radiation provides higher flux at the sample and better energy resolution compared to the on-axis resonant radiation of the fundamental harmonic.

  16. Resolution and drift measurements on the advanced photon source beam position monitor

    International Nuclear Information System (INIS)

    Chung, Y.; Kahana, E.

    1995-01-01

    The resolution and long-term drift of the Advanced Photon Source (APS) beam position monitor (BPM) electronics were measured using the charged particle beams in the ESRF storage ring with various beam current and configurations (single bunch, 8 and 16 equally spaced bunches, and 1/3-fill). The energy of the stored electrons was 6 GeV. The integrated BPM electronics system as used for this work is capable of measuring the beam position on a turn-by-turn basis, which can be accumulated for N turns (N=2 n , n=1,2,...,11) . Estimation of the BPM resolution apart from the low-frequency beam motion was made by measuring the standard deviation in the measured beam position with different Ns. The analysis of the results indicates a BPM resolution of 18/√N [μm] for the APS storage ring, which is equivalent to 0.07 μm/√Hz. For the miniature insertion device BPM with 2.8 times higher sensitivity, the resolution will be 0.02 μm/√Hz. The long-term drift of the BPM electronics independent of the actual beam motion was measured at 2 μm/hr, which settled after approximately 1.5 hours. This drift can be attributed mainly to the temperature effect. Comparison of the results with the laboratory measurements shows good agreement. Implication of the BPM resolution limit on the proposed global and local beam position feedback systems for the APS storage ring will also be discussed. copyright 1995 American Institute of Physics

  17. Advancing nursing leadership: a model for program implementation and measurement.

    Science.gov (United States)

    Omoike, Osei; Stratton, Karen M; Brooks, Beth A; Ohlson, Susan; Storfjell, Judy Lloyd

    2011-01-01

    Despite the abundant literature documenting the need for nurse management education and career development, only recently have professional standards been targeted for this group. Competency standards for nurse leaders repeatedly identify systems-level concepts including finance and budget, communication skills, strategic management, human resources management, change management, and computer technology skills. However, educational initiatives to meet these standards are still at the early stages and most nurse leaders continue to acquire knowledge and experience through "on-the-job" training. This article will illustrate the need for partnerships and collaboration between academia and hospitals to advance nursing leadership to the next century. In addition, a tool to measure the impact of a graduate certificate program in nursing administration on nurse leader competencies is presented. Overall, the certificate program has been successful in multiple ways; it has "graduated" almost 80 nurse leaders, improved participant competence in their role at the systems level, as well as providing an impetus for completion of a graduate degree post program.

  18. Advanced Instrumentation and Measurement Techniques for Near Surface Flows

    Science.gov (United States)

    Cadel, Daniel R.

    The development of aerodynamic boundary layers on wind turbine blades is an important consideration in their performance. It can be quite challenging to replicate full scale conditions in laboratory experiments, and advanced diagnostics become valuable in providing data not available from traditional means. A new variant of Doppler global velocimetry (DGV) known as cross-correlation DGV is developed to measure boundary layer profiles on a wind turbine blade airfoil in the large scale Virginia Tech Stability Wind Tunnel. The instrument provides mean velocity vectors with reduced sensitivity to external conditions, a velocity measurement range from 0 ms-1 to over 3000 ms-1, and an absolute uncertainty. Monte Carlo simulations with synthetic signals reveal that the processing routine approaches the Cramer-Rao lower bound in optimized conditions. A custom probe-beam technique is implanted to eliminate laser flare for measuring boundary layer profiles on a DU96-W-180 wind turbine airfoil model. Agreement is seen with laser Doppler velocimetry data within the uncertainty estimated for the DGV profile. Lessons learned from the near-wall flow diagnostics development were applied to a novel benchmark model problem incorporating the relevant physical mechanisms of the high amplitude periodic turbulent flow experienced by turbine blades in the field. The model problem is developed for experimentally motivated computational model development. A circular cylinder generates a periodic turbulent wake, in which a NACA 63215b airfoil with a chord Reynolds number Rec = 170,000 is embedded for a reduced frequency k = pi f c/V = 1.53. Measurements are performed with particle image velocimetry on the airfoil suction side and in highly magnified planes within the boundary layer. Outside of the viscous region, the Reynolds stress profile is consistent with the prediction of Rapid Distortion Theory (RDT), confirming that the redistribution of normal stresses is an inviscid effect. The

  19. Nonlinear hyperbolic waves in multidimensions

    CERN Document Server

    Prasad, Phoolan

    2001-01-01

    The propagation of curved, nonlinear wavefronts and shock fronts are very complex phenomena. Since the 1993 publication of his work Propagation of a Curved Shock and Nonlinear Ray Theory, author Phoolan Prasad and his research group have made significant advances in the underlying theory of these phenomena. This volume presents their results and provides a self-contained account and gradual development of mathematical methods for studying successive positions of these fronts.Nonlinear Hyperbolic Waves in Multidimensions includes all introductory material on nonlinear hyperbolic waves and the theory of shock waves. The author derives the ray theory for a nonlinear wavefront, discusses kink phenomena, and develops a new theory for plane and curved shock propagation. He also derives a full set of conservation laws for a front propagating in two space dimensions, and uses these laws to obtain successive positions of a front with kinks. The treatment includes examples of the theory applied to converging wavefronts...

  20. Validation of multigroup neutron cross sections for the Advanced Neutron Source against the FOEHN critical experimental measurements

    International Nuclear Information System (INIS)

    Smith, L.A.; Gehin, J.C.; Worley, B.A.; Renier, J.P.

    1994-01-01

    The FOEHN critical experiments were analyzed to validate the use of multigroup cross sections in the design of the Advanced Neutron Source. Eleven critical configurations were evaluated using the KENO, DORT, and VENTURE neutronics codes. Eigenvalue and power density profiles were computed and show very good agreement with measured values

  1. Advanced β-ray-induced X-ray spectrometry for non-destructive measurement of tritium retained in fusion related materials

    Energy Technology Data Exchange (ETDEWEB)

    Matsuyama, Masao, E-mail: matsu3h@ctg.u-toyama.ac.jp; Abe, Shinsuke

    2016-11-01

    Highlights: • A new measurement system to measure low-Z elements such as C and O atoms has been constructed for evaluation of tritium trapped by these elements. - Abstract: A new β-ray-induced X-ray measurement system equipped with a silicon drift detector, which was named “Advanced-BIXS”, was constructed to study in detail retention behavior of surface tritium by measurements of low energy X-rays below 1 keV such as C(K{sub α}) and O(K{sub α}) as well as high energy X-rays induced by β-rays from tritium. In this study, basic performance of the present system has been examined using various tritium-containing samples. It was seen that energy linearity, energy resolution and sensitivity were quite enough for measurements of low energy X-rays induced by β-rays. Intensity of characteristic X-rays emitted from the surface and/or bulk of a tritium-containing sample was lowered by argon used as a working gas of the Advanced-BIXS. Pressure dependence of transmittance of C(K{sub α}) and Fe(K{sub α}) was examined as examples of low and high energy X-rays, and it was able to represent by using the mass absorption coefficient in argon. It was concluded, therefore, that the present system has high potentiality for nondestructive measurements of tritium retained in surface layers and/or bulk of fusion related materials.

  2. Advancements in Root Growth Measurement Technologies and Observation Capabilities for Container-Grown Plants

    Directory of Open Access Journals (Sweden)

    Lesley A. Judd

    2015-07-01

    Full Text Available The study, characterization, observation, and quantification of plant root growth and root systems (Rhizometrics has been and remains an important area of research in all disciplines of plant science. In the horticultural industry, a large portion of the crops grown annually are grown in pot culture. Root growth is a critical component in overall plant performance during production in containers, and therefore it is important to understand the factors that influence and/or possible enhance it. Quantifying root growth has varied over the last several decades with each method of quantification changing in its reliability of measurement and variation among the results. Methods such as root drawings, pin boards, rhizotrons, and minirhizotrons initiated the aptitude to measure roots with field crops, and have been expanded to container-grown plants. However, many of the published research methods are monotonous and time-consuming. More recently, computer programs have increased in use as technology advances and measuring characteristics of root growth becomes easier. These programs are instrumental in analyzing various root growth characteristics, from root diameter and length of individual roots to branching angle and topological depth of the root architecture. This review delves into the expanding technologies involved with expertly measuring root growth of plants in containers, and the advantages and disadvantages that remain.

  3. Advancements in Root Growth Measurement Technologies and Observation Capabilities for Container-Grown Plants.

    Science.gov (United States)

    Judd, Lesley A; Jackson, Brian E; Fonteno, William C

    2015-07-03

    The study, characterization, observation, and quantification of plant root growth and root systems (Rhizometrics) has been and remains an important area of research in all disciplines of plant science. In the horticultural industry, a large portion of the crops grown annually are grown in pot culture. Root growth is a critical component in overall plant performance during production in containers, and therefore it is important to understand the factors that influence and/or possible enhance it. Quantifying root growth has varied over the last several decades with each method of quantification changing in its reliability of measurement and variation among the results. Methods such as root drawings, pin boards, rhizotrons, and minirhizotrons initiated the aptitude to measure roots with field crops, and have been expanded to container-grown plants. However, many of the published research methods are monotonous and time-consuming. More recently, computer programs have increased in use as technology advances and measuring characteristics of root growth becomes easier. These programs are instrumental in analyzing various root growth characteristics, from root diameter and length of individual roots to branching angle and topological depth of the root architecture. This review delves into the expanding technologies involved with expertly measuring root growth of plants in containers, and the advantages and disadvantages that remain.

  4. Accuracy and initial clinical experience with measurement software (advanced vessel analysis) in three-dimensional imaging

    International Nuclear Information System (INIS)

    Abe, Toshi; Hirohata, Masaru; Tanigawa, Hitoshi

    2002-01-01

    Recently, the clinical benefits of three dimensional (3D) imaging, such as 3D-CTA and 3D-DSA, in cerebro-vascular disease have been widely recognized. Software for quantitative analysis of vascular structure in 3D imaging (advanced vessel analysis: AVA) has been developed. We evaluated AVA with both phantom studies and a few clinical cases. In spiral and curvy aluminum tube phantom studies, the accuracy of diameter measurements was good in 3D images produced from data set generated by multi-detector row CT or rotational angiography. The measurement error was less than 0.03 mm on aluminum tube phantoms that were 3 mm and 5 mm in diameter. In the clinical studies, the differences of carotid artery diameter measurements between 2D-DSA and 3D-DSA was less than 0.3 mm in. The measurement of length, diameter and angle by AVA should provide useful information for planning surgical and endovascular treatments of cerebro-vascular disease. (author)

  5. Automated tune measurements in the Advanced Light Source storage ring using a LabVIEW application

    International Nuclear Information System (INIS)

    Hinkson, J.A.; Chin, M.; Kim, C.H.; Nishimura, H.

    1994-06-01

    Horizontal and vertical betatron tunes and the synchrotron tune are measured frequently during storage ring commissioning. The measurements are tedious and subject to human errors. Automating this kind of repetitive measurement is underway using LabVIEW for Windows, a software application supplied by National Instruments Corporation, that provides acquisition, graphing, and analysis of data as well as instrument control through the General Purpose Interface Bus (GPIB). We have added LabVIEW access to the Advanced Light Source (ALS) data base and control system. LabVIEW is a fast and efficient tool for accelerator commissioning and beam physics studies. Hardware used to perform tune measurements include a tracking generator (or a white noise generator), strip line electrodes for external ''citation of the beam, button monitors, and a spectrum analyzer. All three tunes are displayed simultaneously on the spectrum analyzer. Our program automatically identifies three tunes by applying and analyzing small variations and reports the results. This routine can be encapsulated in other applications, for instance, in a chromaticity measurement and correction program

  6. Recent advances in hardware and software are to improve spent fuel measurements

    International Nuclear Information System (INIS)

    Staples, P.; Beddingfield, D.H.; Lestone, J.P.; Pelowitz, D.G.; Bytchkov, M.; Starovich, Z.; Harizanov, I.; Luna-Vellejo, J.; Lavender, C.

    2001-01-01

    Vast quantities of spent fuel are available for safeguard measurements, primarily in Commonwealth of Independent States (CIS) of the former Soviet Union. This spent fuel, much of which consists of long-cooling-time material, is going to become less unique in the world safeguards arena as reprocessing projects or permanent repositories continue to be delayed or postponed. The long cooling time of many of the spent fuel assemblies being prepared for intermediate term storage in the CIS countries promotes the possibility of increased accuracy in spent fuel assays. This improvement is made possible through the process of decay of the Curium isotopes and of fission products. An important point to consider for the future that could advance safeguards measurements for reverification and inspection would be to determine what safeguards requirements should be imposed upon this 'new' class of spent fuel, Improvements in measurement capability will obviously affect the safeguards requirements. What most significantly enables this progress in spent fuel measurements is the improvement in computer processing power and software enhancements leading to user-friendly Graphical User Interfaces (GUT's). The software used for these projects significantly reduces the IAEA inspector's time expenditure for both learning and operating computer and data acquisition systems, At the same time, by standardizing the spent fuel measurements, it is possible to increase reproducibility and reliability of the measurement data. Hardware systems will be described which take advantage of the increased computer control available to enable more complex measurement scenarios. A specific example of this is the active regulation of a spent fuel neutron coincident counter's 3 He tubes high voltage, and subsequent scaling of measurement results to maintain a calibration for direct assay of the plutonium content of Fast Breeder Reactor spent fuel. The plutonium content has been successfully determined for

  7. Measurements of the fast ion distribution during neutral beam injection and ion cyclotron heating in ATF [Advanced Toroidal Facility

    International Nuclear Information System (INIS)

    Wade, M.R.; Kwon, M.; Thomas, C.E.; Colchin, R.J.; England, A.C.; Gossett, J.M.; Horton, L.D.; Isler, R.C.; Lyon, J.F.; Rasmussen, D.A.; Rayburn, T.M.; Shepard, T.D.; Bell, G.L.; Fowler, R.H.; Morris, R.N.

    1990-01-01

    A neutral particle analyzer (NPA) with horizontal and vertical scanning capability has been used to make initial measurements of the fast ion distribution during neutral beam injection (NBI) and ion cyclotron heating (ICH) on the Advanced Toroidal Facility (ATF). These measurements are presented and compared with the results of modeling codes that predict the analyzer signals during these heating processes. 6 refs., 5 figs

  8. High-speed digital holographic interferometry for vibration measurement

    International Nuclear Information System (INIS)

    Pedrini, Giancarlo; Osten, Wolfgang; Gusev, Mikhail E.

    2006-01-01

    A system based on digital holographic interferometry for the measurement of vibrations is presented. A high-power continuous laser(10 W) and a high-speed CCD camera are used. Hundreds of holograms of an object that has been subjected to dynamic deformation are recorded. The acquisition speed and the time of exposure of the detector are determined by the vibration frequency. Two methods are presented for triggering the camera in order to acquire at a given phase of the vibration. The phase of the wavefront is calculated from the recorded holograms by use of a two-dimensional digital Fourier-transform method. The deformation of the object is obtained from the phase. By combination of the deformations recorded at different times it is possible to reconstruct the vibration of the object

  9. Comparison of Higher Order Aberrations after Wavefront-guided LASIK and PRK: One Year Follow-Up Results.

    Science.gov (United States)

    Jahadi Hosseini, Seyed Hamid Reza; Abtahi, Seyed Mohammad Bagher; Khalili, Mohammad Reza

    2016-01-01

    To evaluate the changes and predictability of higher order aberrations (HOAs) after personalized laser in situ keratomileusis (LASIK) and personalized photorefractive keratectomy (PRK) for simple myopia and compound myopic astigmatism. In this prospective cross-sectional study, 100 eyes were included. A total of 50 eyes underwent personalized LASIK and 50 eyes underwent personalized PRK. Preoperative and postoperative wavefront data were compared between the two groups. The influential factors and predictability of HOAs were also assessed. Total HOA increased in the amount of 0.01 ± 0.14 μm for the 5 mm pupil ( P = 0.55) and 0.08 ± 0.22 μm for the 6 mm pupil ( P = 0.02) after PRK; however after LASIK the corresponding values for the 5 and 6 mm pupil sizes were 0.05 ± 0.12 and 0.15 ± 0.18 μm, respectively ( P PRK and LASIK groups for both 5 and 6 mm pupil sizes ( P = 0.21 and P = 0.13, respectively). Spherical aberration increased following LASIK more than following PRK ( P PRK and LASIK with no significant difference between the two groups. Change of the total HOA RMS was influenced by the preoperative values. The known influencing factors could predict nearly 50% of the changes in total HOA.

  10. Measuring and Advancing Experimental Design Ability in an Introductory Course without Altering Existing Lab Curriculum

    Directory of Open Access Journals (Sweden)

    Ryan A. Shanks

    2017-05-01

    Full Text Available Introductory biology courses provide an important opportunity to prepare students for future courses, yet existing cookbook labs, although important in their own way, fail to provide many of the advantages of semester-long research experiences. Engaging, authentic research experiences aid biology students in meeting many learning goals. Therefore, overlaying a research experience onto the existing lab structure allows faculty to overcome barriers involving curricular change. Here we propose a working model for this overlay design in an introductory biology course and detail a means to conduct this lab with minimal increases in student and faculty workloads. Furthermore, we conducted exploratory factor analysis of the Experimental Design Ability Test (EDAT and uncovered two latent factors which provide valid means to assess this overlay model’s ability to increase advanced experimental design abilities. In a pre-test/post-test design, we demonstrate significant increases in both basic and advanced experimental design abilities in an experimental and comparison group. We measured significantly higher gains in advanced experimental design understanding in students in the experimental group. We believe this overlay model and EDAT factor analysis contribute a novel means to conduct and assess the effectiveness of authentic research experiences in an introductory course without major changes to the course curriculum and with minimal increases in faculty and student workloads.

  11. Partially coherent X-ray wavefront propagation simulations including grazing-incidence focusing optics.

    Science.gov (United States)

    Canestrari, Niccolo; Chubar, Oleg; Reininger, Ruben

    2014-09-01

    X-ray beamlines in modern synchrotron radiation sources make extensive use of grazing-incidence reflective optics, in particular Kirkpatrick-Baez elliptical mirror systems. These systems can focus the incoming X-rays down to nanometer-scale spot sizes while maintaining relatively large acceptance apertures and high flux in the focused radiation spots. In low-emittance storage rings and in free-electron lasers such systems are used with partially or even nearly fully coherent X-ray beams and often target diffraction-limited resolution. Therefore, their accurate simulation and modeling has to be performed within the framework of wave optics. Here the implementation and benchmarking of a wave-optics method for the simulation of grazing-incidence mirrors based on the local stationary-phase approximation or, in other words, the local propagation of the radiation electric field along geometrical rays, is described. The proposed method is CPU-efficient and fully compatible with the numerical methods of Fourier optics. It has been implemented in the Synchrotron Radiation Workshop (SRW) computer code and extensively tested against the geometrical ray-tracing code SHADOW. The test simulations have been performed for cases without and with diffraction at mirror apertures, including cases where the grazing-incidence mirrors can be hardly approximated by ideal lenses. Good agreement between the SRW and SHADOW simulation results is observed in the cases without diffraction. The differences between the simulation results obtained by the two codes in diffraction-dominated cases for illumination with fully or partially coherent radiation are analyzed and interpreted. The application of the new method for the simulation of wavefront propagation through a high-resolution X-ray microspectroscopy beamline at the National Synchrotron Light Source II (Brookhaven National Laboratory, USA) is demonstrated.

  12. Advanced glycation end products, measured in skin, vs. HbA1c in children with type 1 diabetes mellitus

    NARCIS (Netherlands)

    Banser, Alena; Naafs, Jolanda C.; Hoorweg-Nijman, Jantine J. G.; van de Garde, Ewoudt M. W.; van der Vorst, Marja M. J.

    2016-01-01

    Background and objectiveAdvanced glycation end products (AGEs) are considered major contributors to microvascular and macrovascular complications in adult patients with diabetes mellitus. AGEs can be measured non-invasively with skin autofluorescence (sAF). The primary aim was to determine sAF

  13. Leading research in fiscal 1996. Research study on advanced measurement/analysis technology; 1996 nendo sendo kenkyu. Kodo keisoku bunseki gijutsu ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    For development of production technologies suitable for environment, safety and advanced information-oriented society by improving the flexibility of production lines, some new measurement technologies were researched. Problem solution was attempted by combining the in-situ multi-dimensional measurement technology capable of easily obtaining various 3-D information with the non-contact photon measurement technology superior in operability and sensitivity under any environment conditions. This solution requires a compact radiation source with higher brightness and wider spectral range, and a high-sensitive detector. The technology concentrating photon onto minute regions, high-efficiency transmission, and control technology of photon wave front are also necessary. Development and international standardization of a common interface is unavoidable. In addition, its network is essential for advanced use of multimedia,. In the future, the comfortable life surrounded by advanced products and multimedia, comfortable social environment, safety and resource saving will be achieved by this technology. 94 refs., 75 figs., 15 tabs.

  14. RECENT BEAM MEASUREMENTS AND NEW INSTRUMENTATION AT THE ADVANCED LIGHT SOURCE

    International Nuclear Information System (INIS)

    Sannibale, Fernando; Baptiste, Kenneth; Barry, Walter; Chin, Michael; Filippetto, Daniele; Jaegerhofer, Lukas; Julian, James; Kwiatkowski, Slawomir; Low, Raymond; Plate, David; Portmann, Gregory; Robin, David; Scarvie, Tomas; Stupakov, Gennady; Weber, Jonah; Zolotorev, Max

    2008-01-01

    The Advanced Light Source (ALS) in Berkeley was the first of the soft x-ray third generation light source ever built, and since 1993 has been in continuous and successful operation serving a large community of users in the VUV and soft x-ray community. During these years the storage ring underwent through several important upgrades that allowed maintaining the performance of this veteran facility at the forefront. The ALS beam diagnostics and instrumentation have followed a similar path of innovation and upgrade and nowadays include most of the modem and last generation devices and technologies that are commercially available and used in the recently constructed third generation light sources. In this paper we will not focus on such already widely known systems, but we will concentrate our effort in the description of some measurements techniques, instrumentation and diagnostic systems specifically developed at the ALS and used during the last few years

  15. Wavefront-guided refractive surgery results of training-surgeons Resultados das cirurgias refrativas guiadas por frentes de ondas de cirurgiões em treinamento

    Directory of Open Access Journals (Sweden)

    Iane Stillitano

    2010-08-01

    Full Text Available PURPOSE: To assess clinical outcomes and changes on higher-order aberrations (HOA after wavefront-guided laser in situ keratomileusis (LASIK and photorefractive keratectomy (PRK for correction of myopia and myopic astigmatism performed by training-surgeons. METHODS: One hundred and seventy patients had customized LASIK (207 eyes and PRK (103 eyes performed by surgeons in-training using the LADARVision 4000 (Alcon, Fort Worth, TX. Preoperative and 1, 3, 6 and 12 months postoperative data of spherical equivalent (SE, best spectacle-corrected visual acuity (BSCVA and uncorrected visual acuity (UCVA were analysed. Wavefront changes were determined using the LADARWave Hartmann-Shack wavefront aberrometer and the pupil size was scaled for 6.5 mm. RESULTS: The mean SE in the LASIK group was -3.04 ±1.07 D and in the PRK group was -1.60 ± 0.59 D. At 1-year follow-up, (80.6% (LASIK and (66.7% (PRK were within ± 0.50 D of the intended refraction. The UCVA was 20/20 or better in (58.1% (LASIK and (66.7% (PRK of the operated eyes. A statistically significant positive correlation was found between achieved versus attempted refractive correction in both groups: LASIK (r=0.975, POBJETIVO: Avaliar os resultados clínicos e mudanças nas aberrações de alta-ordem (HOA, após ceratomileuse assistida por excimer laser in situ (LASIK e ceratectomia fotorrefrativa (PRK guiados por frentes de onda para correção da miopia e astigmatismo miópico realizada por cirurgiões em treinamento. MÉTODOS: Estudo prospectivo de 170 pacientes submetidos a LASIK personalizado (207 olhos e PRK (103 olhos realizados por cirurgiões em treinamento utilizando o LADARVision 4000 (Alcon, Fort Worth, TX. Dados do equivalente esférico (SE, melhor acuidade visual corrigida (BSCVA e acuidade visual não corrigida (UCVA foram analisados no pré-operatório e com 1, 3, 6 e 12 meses de pós-operatório. As alterações de frentes de onda foram determinadas usando o aberrômetro Hartmann

  16. Advanced Dispersed Fringe Sensing Algorithm for Coarse Phasing Segmented Mirror Telescopes

    Science.gov (United States)

    Spechler, Joshua A.; Hoppe, Daniel J.; Sigrist, Norbert; Shi, Fang; Seo, Byoung-Joon; Bikkannavar, Siddarayappa A.

    2013-01-01

    Segment mirror phasing, a critical step of segment mirror alignment, requires the ability to sense and correct the relative pistons between segments from up to a few hundred microns to a fraction of wavelength in order to bring the mirror system to its full diffraction capability. When sampling the aperture of a telescope, using auto-collimating flats (ACFs) is more economical. The performance of a telescope with a segmented primary mirror strongly depends on how well those primary mirror segments can be phased. One such process to phase primary mirror segments in the axial piston direction is dispersed fringe sensing (DFS). DFS technology can be used to co-phase the ACFs. DFS is essentially a signal fitting and processing operation. It is an elegant method of coarse phasing segmented mirrors. DFS performance accuracy is dependent upon careful calibration of the system as well as other factors such as internal optical alignment, system wavefront errors, and detector quality. Novel improvements to the algorithm have led to substantial enhancements in DFS performance. The Advanced Dispersed Fringe Sensing (ADFS) Algorithm is designed to reduce the sensitivity to calibration errors by determining the optimal fringe extraction line. Applying an angular extraction line dithering procedure and combining this dithering process with an error function while minimizing the phase term of the fitted signal, defines in essence the ADFS algorithm.

  17. Final Report for SERDP Project RC-1649: Advanced Chemical Measurements of Smoke from DoD-prescribed Burns

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Timothy J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Weise, David [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lincoln, E. N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sams, Robert L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cameron, Melanie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Veres, Patrick [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Yokelson, Robert J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Urbanski, Shawn [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Profeta, Luisa T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Williams, S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gilman, Jessica [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kuster, W. C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Akagi, Sheryl [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stockwell, Chelsea E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mendoza, Albert [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wold, Cyle E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Warneke, Carsten [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); de Gouw, Joost A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Burling, Ian R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Reardon, James [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schneider, Matthew D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Griffith, David W.T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Roberts, James M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-12-17

    Objectives: Project RC-1649, “Advanced Chemical Measurement of Smoke from DoD-prescribed Burns” was undertaken to use advanced instrumental techniques to study in detail the particulate and vapor-phase chemical composition of the smoke that results from prescribed fires used as a land management tool on DoD bases, particularly bases in the southeastern U.S. The statement of need (SON) called for “(1) improving characterization of fuel consumption” and “(2) improving characterization of air emissions under both flaming and smoldering conditions with respect to volatile organic compounds, heavy metals, and reactive gases.” The measurements and fuels were from several bases throughout the southeast (Camp Lejeune, Ft. Benning, and Ft. Jackson) and were carried out in collaboration and conjunction with projects 1647 (models) and 1648 (particulates, SW bases). Technical Approach: We used an approach that featured developing techniques for measuring biomass burning emission species in both the laboratory and field and developing infrared (IR) spectroscopy in particular. Using IR spectroscopy and other methods, we developed emission factors (EF, g of effluent per kg of fuel burned) for dozens of chemical species for several common southeastern fuel types. The major measurement campaigns were laboratory studies at the Missoula Fire Sciences Laboratory (FSL) as well as field campaigns at Camp Lejeune, NC, Ft. Jackson, SC, and in conjunction with 1648 at Vandenberg AFB, and Ft. Huachuca. Comparisons and fusions of laboratory and field data were also carried out, using laboratory fuels from the same bases. Results: The project enabled new technologies and furthered basic science, mostly in the area of infrared spectroscopy, a broadband method well suited to biomass burn studies. Advances in hardware, software and supporting reference data realized a nearly 20x improvement in sensitivity and now provide quantitative IR spectra for potential detection of ~60 new

  18. Initial measurements of beam breakup instability in the advanced test accelerator

    International Nuclear Information System (INIS)

    Chong, Y.P.; Caporaso, G.T.; Struve, K.W.

    1985-01-01

    This paper reports the measurements of beam breakup (BBU) instability performed on the Advanced Test Accelerator (ATA) up to the end of February 1984. The main objective was to produce a high current usable electron beam at the ATA output. A well-known instability is BBU which arises from the accelerator cavity modes interacting with the electron beam. The dominant mode is TM130 at a frequency of approximately 785 MHz. It couples most strongly to the beam motion and has been observed to grow in the Experimental Test Accelerator (ETA), which has only eight accelerator cavities. ATA has one hundred and seventy cavities and therefore the growth of BBU is expected to be more severe. In this paper, BBU measurements are reported for ATA with beam currents of 4 to 7 kA. Analysis showed that the growth of the instability with propagation distance was as expected for the lower currents. However, the high current data showed an apparent higher growth rate than expected. An explanation for this anomaly is given in terms of a ''corkscrew'' excitation. The injector BBU noise level for a field emission brush cathode was found to be an order of magnitude lower than for a cold plasma discharge cathode. These injector rf amplitudes agree very well with values obtained using the method of differenced Btheta loops

  19. Recent BWR fuel management reactor physics advances

    International Nuclear Information System (INIS)

    Crowther, R.L.; Congdon, S.P.; Crawford, B.W.; Kang, C.M.; Martin, C.L.; Reese, A.P.; Savoia, P.J.; Specker, S.R.; Welchly, R.

    1982-01-01

    Improvements in BWR fuel management have been under development to reduce uranium and separative work (SWU) requirements and reduce fuel cycle costs, while also maintaining maximal capacity factors and high fuel reliability. Improved reactor physics methods are playing an increasingly important role in making such advances feasible. The improved design, process computer and analysis methods both increase knowledge of the thermal margins which are available to implement fuel management advance, and improve the capability to reliably and efficiently analyze and design for fuel management advances. Gamma scan measurements of the power distributions of advanced fuel assembly and advanced reactor core designs, and improved in-core instruments also are important contributors to improving 3-d predictive methods and to increasing thermal margins. This paper is an overview of the recent advances in BWR reactor physics fuel management methods, coupled with fuel management and core design advances. The reactor physics measurements which are required to confirm the predictions of performance fo fuel management advances also are summarized

  20. Optical modeling and polarization calibration for CMB measurements with ACTPol and Advanced ACTPol

    Science.gov (United States)

    Koopman, Brian; Austermann, Jason; Cho, Hsiao-Mei; Coughlin, Kevin P.; Duff, Shannon M.; Gallardo, Patricio A.; Hasselfield, Matthew; Henderson, Shawn W.; Ho, Shuay-Pwu Patty; Hubmayr, Johannes; Irwin, Kent D.; Li, Dale; McMahon, Jeff; Nati, Federico; Niemack, Michael D.; Newburgh, Laura; Page, Lyman A.; Salatino, Maria; Schillaci, Alessandro; Schmitt, Benjamin L.; Simon, Sara M.; Vavagiakis, Eve M.; Ward, Jonathan T.; Wollack, Edward J.

    2016-07-01

    array of detectors for Advanced ACTPol, the next generation upgrade to ACTPol, will be deployed in 2016. We plan to continue using both techniques and compare them to astrophysical source measurements for the Advanced ACTPol polarization calibration.