Advanced Waveform Simulation for Seismic Monitoring
2008-09-01
velocity model. The method separates the main arrivals of the regional waveform into 5 windows: Pnl (vertical and radial components), Rayleigh (vertical and...ranges out to 10°, including extensive observations of crustal thinning and thickening and various Pnl complexities. Broadband modeling in 1D, 2D...existing models perform in predicting the various regional phases, Rayleigh waves, Love waves, and Pnl waves. Previous events from this Basin-and-Range
ADVANCED WAVEFORM SIMULATION FOR SEISMIC MONITORING EVENTS
Helmberger, D; Tromp, J; Rodgers, A
2007-07-16
Comprehensive test ban monitoring in terms of location and discrimination has progressed significantly in recent years. However, the characterization of sources and the estimation of low yields remains a particular challenge. As the recent Korean shot demonstrated, we can probably expect to have a small set of teleseismic, far-regional and high-frequency regional data to analyze in estimating the yield of an event. Since stacking helps to bring signals out of the noise, it becomes useful to conduct comparable analyses on neighboring events, earthquakes in this case. If these auxiliary events have accurate moments and source descriptions, we have a means of directly comparing effective source strengths. Although we will rely on modeling codes, 1D, 2D, and 3D, we will also apply a broadband calibration procedure to use longer periods (P>5s) waveform data to calibrate short-period (P between .5 to 2 Hz) and high-frequency (P between 2 to 10 Hz) as path specify station corrections from well-known regional sources. We have expanded our basic Cut-and-Paste (CAP) methodology to include not only timing shifts but also amplitude (f) corrections at recording sites. The name of this method was derived from source inversions that allow timing shifts between 'waveform segments' (or cutting the seismogram up and re-assembling) to correct for crustal variation. For convenience, we will refer to these f-dependent refinements as CAP+ for (SP) and CAP++ for still higher frequency. These methods allow the retrieval of source parameters using only P-waveforms where radiation patterns are obvious as demonstrated in this report and are well suited for explosion P-wave data. The method is easily extended to all distances because it uses Green's function although there may be some changes required in t* to adjust for offsets between local vs. teleseismic distances. In short, we use a mixture of model-dependent and empirical corrections to tackle the path effects. Although
The development of advanced spread spectrum LFM waveforms for enhanced SAR and GMTI
Kirk, John C.; Darden, Scott; Majumder, Uttam K.; Minardi, Michael J.; Bell, Mark R.
2016-05-01
Advanced spread spectrum linear frequency modulated (LFM) waveforms are being developed for advanced capability synthetic aperture radar (SAR) and ground moving target indication (GMTI) applications. We have demonstrated by analysis and simulation the feasibility of these new type waveforms and are now in the process of implementing them in hardware. The basic approach is to combine a traditional LFM radar waveform with a direct sequence spread spectrum (DSSS) waveform, and then on receive to de-spread the return and capture the resultant LFM return for traditional matched filter processing and enhanced SAR and GMTI. We show the analysis, simulation and some preliminary hardware results.
Reconstructing core-collapse supernovae waveforms with advanced era interferometers
McIver, Jessica; LIGO Scientific Collaboration
2015-04-01
Among of the wide range of potentially interesting astrophysical sources for Advanced LIGO and Advanced Virgo are galactic core-collapse supernovae. Although detectable core-collapse supernovae have a low expected rate (a few per century, or less) these signals would yield a wealth of new physics in the form of many messengers. Of particular interest is the insight into the explosion mechanism driving core-collapse supernovae that can be gleaned from the reconstructed gravitational wave signal. A well-reconstructed waveform will allow us to assess the likelihood of different explosion models, perform model selection, and potentially map unexpected features to new physics. This talk will present a study evaluating the current performance of the reconstruction of core-collapse supernovae gravitational wave signals. We used simulated waveforms modeled after different explosion mechanisms that we first injected into fake strain data re-colored to the expected Advanced LIGO/Virgo noise curves and then reconstructed using the pipelines Coherent Waveburst 2G and BayesWave. We will discuss the impact of these results on our ability to accurately reconstruct core-collapse supernovae signals, and by extension, other potential astrophysical generators of rich, complex waveforms.
Advances in waveform-agile sensing for tracking
Sira, Sandeep Prasad
2009-01-01
Recent advances in sensor technology and information processing afford a new flexibility in the design of waveforms for agile sensing. Sensors are now developed with the ability to dynamically choose their transmit or receive waveforms in order to optimize an objective cost function. This has exposed a new paradigm of significant performance improvements in active sensing: dynamic waveform adaptation to environment conditions, target structures, or information features. The manuscript provides a review of recent advances in waveform-agile sensing for target tracking applications. A dynamic wav
Waveform interative techniques for device transient simulation on parallel machines
Lumsdaine, A. [Univ. of Notre Dame, IN (United States); Reichelt, M.W. [Massachusetts Institute of Technology, Cambridge, MA (United States)
1993-12-31
In this paper we describe our experiences with parallel implementations of several different waveform algorithms for performing transient simulation of semiconductor devices. Because of their inherent computation and communication structure, waveform methods are well suited to MIMD-type parallel machines having a high communication latency - such as a cluster of workstations. Experimental results using pWORDS, a parallel waveform-based device transient simulation program, in conjunction with PVM running on a cluster of eight workstations demonstrate that parallel waveform techniques are an efficient and faster alternative to standard simulation algorithms.
Gravitational waveforms for neutron star binaries from binary black hole simulations
Barkett, Kevin; Haas, Roland; Ott, Christian D; Bernuzzi, Sebastiano; Brown, Duncan A; Szilágyi, Béla; Kaplan, Jeffrey D; Lippuner, Jonas; Muhlberger, Curran D; Foucart, Francois; Duez, Matthew D
2015-01-01
Gravitational waves from binary neutron star (BNS) and black-hole/neutron star (BHNS) inspirals are primary sources for detection by the Advanced Laser Interferometer Gravitational-Wave Observatory. The tidal forces acting on the neutron stars induce changes in the phase evolution of the gravitational waveform, and these changes can be used to constrain the nuclear equation of state. Current methods of generating BNS and BHNS waveforms rely on either computationally challenging full 3D hydrodynamical simulations or approximate analytic solutions. We introduce a new method for computing inspiral waveforms for BNS/BHNS systems by adding the post-Newtonian (PN) tidal effects to full numerical simulations of binary black holes (BBHs), effectively replacing the non-tidal terms in the PN expansion with BBH results. Comparing a waveform generated with this method against a full hydrodynamical simulation of a BNS inspiral yields a phase difference of $<1$ radian over $\\sim 15$ orbits. The numerical phase accuracy ...
Global and local waveform simulations using the VERCE platform
Garth, Thomas; Saleh, Rafiq; Spinuso, Alessandro; Gemund, Andre; Casarotti, Emanuele; Magnoni, Federica; Krischner, Lion; Igel, Heiner; Schlichtweg, Horst; Frank, Anton; Michelini, Alberto; Vilotte, Jean-Pierre; Rietbrock, Andreas
2017-04-01
In recent years the potential to increase resolution of seismic imaging by full waveform inversion has been demonstrated on a range of scales from basin to continental scales. These techniques rely on harnessing the computational power of large supercomputers, and running large parallel codes to simulate the seismic wave field in a three-dimensional geological setting. The VERCE platform is designed to make these full waveform techniques accessible to a far wider spectrum of the seismological community. The platform supports the two widely used spectral element simulation programs SPECFEM3D Cartesian, and SPECFEM3D globe, allowing users to run a wide range of simulations. In the SPECFEM3D Cartesian implementation the user can run waveform simulations on a range of pre-loaded meshes and velocity models for specific areas, or upload their own velocity model and mesh. In the new SPECFEM3D globe implementation, the user will be able to select from a number of continent scale model regions, or perform waveform simulations for the whole earth. Earthquake focal mechanisms can be downloaded within the platform, for example from the GCMT catalogue, or users can upload their own focal mechanism catalogue through the platform. The simulations can be run on a range of European supercomputers in the PRACE network. Once a job has been submitted and run through the platform, the simulated waveforms can be manipulated or downloaded for further analysis. The misfit between the simulated and recorded waveforms can then be calculated through the platform through three interoperable workflows, for raw-data access (FDSN) and caching, pre-processing and finally misfit. The last workflow makes use of the Pyflex analysis software. In addition, the VERCE platform can be used to produce animations of waveform propagation through the velocity model, and synthetic shakemaps. All these data-products are made discoverable and re-usable thanks to the VERCE data and metadata management layer. We
Waveform design and diversity for advanced radar systems
Gini, Fulvio
2012-01-01
In recent years, various algorithms for radar signal design, that rely heavily upon complicated processing and/or antenna architectures, have been suggested. These techniques owe their genesis to several factors, including revolutionary technological advances (new flexible waveform generators, high speed signal processing hardware, digital array radar technology, etc.) and the stressing performance requirements, often imposed by defence applications in areas such as airborne early warning and homeland security.Increasingly complex operating scenarios calls for sophisticated algorithms with the
Simulation of Full-Waveform Laser Altimeter Echowaveform
Lv, Y.; Tong, X. H.; Liu, S. J.; Xie, H.; Luan, K. F.; Liu, J.
2016-06-01
Change of globe surface height is an important factor to study human living environment. The Geoscience Laser Altimeter System (GLAS) on ICESat is the first laser-ranging instrument for continuous global observations of the Earth. In order to have a comprehensive understanding of full-waveform laser altimeter, this study simulated the operating mode of ICESat and modeled different terrains' (platform terrain, slope terrain, and artificial terrain) echo waveforms based on the radar equation. By changing the characteristics of the system and the targets, numerical echo waveforms can be achieved. Hereafter, we mainly discussed the factors affecting the amplitude and size (width) of the echoes. The experimental results implied that the slope of the terrain, backscattering coefficient and reflectivity, target height, target position in the footprint and area reacted with the pulse all can affect the energy distribution of the echo waveform and the receiving time. Finally, Gaussian decomposition is utilized to decompose the echo waveform. From the experiment, it can be noted that the factors which can affect the echo waveform and by this way we can know more about large footprint full-waveform satellite laser altimeter.
Advanced waveform decomposition for high-speed videoendoscopy analysis.
Ikuma, Takeshi; Kunduk, Melda; McWhorter, Andrew J
2013-05-01
This article presents a novel approach to analyze nonperiodic vocal fold behavior of high-speed videoendoscopy (HSV) data. Although HSV can capture true vibrational motions of the vocal folds, its clinical advantage over the videostroboscopy has not widely been accepted. One of the key advantages of the HSV over the videostroboscopy is its ability to capture vocal folds' nonperiodic behavior, which is more prominent in pathological vocal folds. However, such nonperiodicity in the HSV data has not been fully explored quantitatively beyond simple perturbation analysis. This article presents an advanced waveform modeling and decomposition technique for HSV-based waveforms. Waveforms are modeled to have three components: harmonic signal, deterministic nonharmonic signal, and random nonharmonic signal. This decomposition is motivated by the fact that voice disorders introduce signal content that is nonharmonic but carries deterministic quality such as subharmonic or modulating content. The proposed model is aimed to isolate such disordered behaviors as deterministic nonharmonic signal and quantify them. In addition to the model, the article outlines model parameter estimation procedures and a family of harmonics-to-noise ratio (HNR) parameters. The proposed HNR parameters include harmonics-to-deterministic-noise ratio (HDNR) and harmonics-to-random-noise ratio. A preliminary study demonstrates the effectiveness of the extended model and its HNR parameters. Vocal folds with and without benign lesions (Nwith = 13; Nwithout = 20) were studied with HSV glottal area waveforms. All three HNR parameters significantly distinguished the disordered condition, and the HDNR reported the largest effect size (Cohen's d = 2.04).
Gravitational waveforms for neutron star binaries from binary black hole simulations
Barkett, Kevin; Scheel, Mark; Haas, Roland; Ott, Christian; Bernuzzi, Sebastiano; Brown, Duncan; Szilagyi, Bela; Kaplan, Jeffrey; Lippuner, Jonas; Muhlberger, Curran; Foucart, Francois; Duez, Matthew
2016-03-01
Gravitational waves from binary neutron star (BNS) and black-hole/neutron star (BHNS) inspirals are primary sources for detection by the Advanced Laser Interferometer Gravitational-Wave Observatory. The tidal forces acting on the neutron stars induce changes in the phase evolution of the gravitational waveform, and these changes can be used to constrain the nuclear equation of state. Current methods of generating BNS and BHNS waveforms rely on either computationally challenging full 3D hydrodynamical simulations or approximate analytic solutions. We introduce a new method for computing inspiral waveforms for BNS/BHNS systems by adding the post-Newtonian (PN) tidal effects to full numerical simulations of binary black holes (BBHs), effectively replacing the non-tidal terms in the PN expansion with BBH results. Comparing a waveform generated with this method against a full hydrodynamical simulation of a BNS inspiral yields a phase difference of < 1 radian over ~ 15 orbits. The numerical phase accuracy required of BNS simulations to measure the accuracy of the method we present here is estimated as a function of the tidal deformability parameter λ.
Waveform simulation of predominant periods in Osaka basin
Petukhin, A.; Tsurugi, M.
2016-12-01
Predominant period of strong ground motions is an important parameter in earthquake engineering practice. Resonance at predominant period may result in collapse of building. Usually, predominant periods are associated with the soil resonances. However, considering that strong ground motions are composed from source, path and site effects, predominant periods are affected by source and propagation path too. From another side, 3D basin interferences may amplify quite different periods, depending on site location relatively to the basin edges and independently on the soil depth. Moreover, constructive or destructive interference of waves from different asperities of a large source may enhance or diminish amplitudes at a particular predominant period respectively. In this study, to demonstrate variations of predominant periods due to complicated effects above, we simulated wavefield snapshots and waveforms at a few representative sites of Osaka basin, Japan. Seismic source is located in Nankai trough, hosting anticipated M9 earthquake. 3D velocity structure is combined from JIVSM velocity structure (Koketsu et al., 2012) and Osaka basin structure of Iwaki and Iwata, 2011. 3D-FDM method is used to simulate waveforms. Simulation results confirm some previous results that due to elongated elliptical shape of Osaka basin, interference effects are strong and peak amplitudes has characteristic stripped pattern elongated in parallel to the long axis of basin. We demonstrate that predominant periods have similar pattern and value of predominant period may strongly depend on the location of site and azimuthal orientation of waveform component.
Simulation of droplet transfer process and current waveform control of CO2 arc welding
无
2001-01-01
A simulation system used in the arc welding short-circuit transfer process and current waveform control process was developed in this paper. The simulation results are basically consistent with welding technical experiments. The simulation system can be used to simulate and test the current waveform control parameters with welding variables. By this simulation system, the influence regularities of the current waveform control parameters in the CO2 arc welding droplet short-circuit transfer process can be got. Moreover, the basic mode of real-time current waveform control can be also established by the simulation testing.
Federal Laboratory Consortium — The Advanced Simulation Center consists of 10 individual facilities which provide missile and submunition hardware-in-the-loop simulation capabilities. The following...
Preliminary performance analysis of the advanced pulse compression noise radar waveform
Govoni, Mark A.; Moyer, Lee R.
2012-06-01
Noise radar systems encounter target fluctuation behavior similar to that of conventional systems. For noise radar systems, however, the fluctuations are not only dictated by target composition and geometry, but also by the non-uniform power envelope of their random transmit signals. This third dependency is of interest and serves as the basis for the preliminary analysis conducted in this manuscript. General conclusions are drawn on the implications of having a random power envelope and the impacts it could have on both the transmit and receive processes. Using an advanced pulse compression noise (APCN) radar waveform as the constituent signal, a computer simulation aids in quantifying potential losses and the impacts they might have on the detection performance of a real radar system.
Accuracy of Binary Black Hole Waveform Models for Advanced LIGO
Kumar, Prayush; Fong, Heather; Barkett, Kevin; Bhagwat, Swetha; Afshari, Nousha; Chu, Tony; Brown, Duncan; Lovelace, Geoffrey; Pfeiffer, Harald; Scheel, Mark; Szilagyi, Bela; Simulating Extreme Spacetimes (SXS) Team
2016-03-01
Coalescing binaries of compact objects, such as black holes and neutron stars, are the primary targets for gravitational-wave (GW) detection with Advanced LIGO. Accurate modeling of the emitted GWs is required to extract information about the binary source. The most accurate solution to the general relativistic two-body problem is available in numerical relativity (NR), which is however limited in application due to computational cost. Current searches use semi-analytic models that are based in post-Newtonian (PN) theory and calibrated to NR. In this talk, I will present comparisons between contemporary models and high-accuracy numerical simulations performed using the Spectral Einstein Code (SpEC), focusing at the questions: (i) How well do models capture binary's late-inspiral where they lack a-priori accurate information from PN or NR, and (ii) How accurately do they model binaries with parameters outside their range of calibration. These results guide the choice of templates for future GW searches, and motivate future modeling efforts.
Microwave dynamic large signal waveform characterization of advanced InGaP HBT for power amplifiers
Zhao Lixin; Jin Zhi; Liu Xinyu
2009-01-01
In wireless mobile communications and wireless local area networks (WLAN), advanced lnGaP HBT with power amplifiers are key components. In this paper, the microwave large signal dynamic waveform characteristics of an advanced InGaP HBT are investigated experimentally for 5.8 GHz power amplifier applications. The microwave large signal waveform distortions at various input power levels, especially at large signal level, are investigated and the reasons are analyzed. The output power saturation is also explained. These analyses will be useful for power amplifier designs.
Yang Lijun; Feng Shengqiang; Dong Tianshun; Li Huan
2007-01-01
A simulation model is introduced about the non-linearity process of short-circuiting transfer in CO2 arc welding for displaying the interaction between the inverter power source and welding arc under waveform control. In the simulation model, the feedback signals of current and voltage are taken respectively at the different phase in a short circuit periodic time and applied to the PWM(pulse width modulation) module in a model of inverter power source to control the output of power source. The simulation operation about the dynamic process of CO2 short-circuiting transfer welding is implemented on the founded simulation model with a peak arc current of 400 A and a peak voltage of 35 V, producing the dynamic arc waveforms which can embody the effect of inverter harmonic wave. The simulating waveforms are close to that of welding experiments.
Alfieri, Luisa
2015-12-01
Power quality (PQ) disturbances are becoming an important issue in smart grids (SGs) due to the significant economic consequences that they can generate on sensible loads. However, SGs include several distributed energy resources (DERs) that can be interconnected to the grid with static converters, which lead to a reduction of the PQ levels. Among DERs, wind turbines and photovoltaic systems are expected to be used extensively due to the forecasted reduction in investment costs and other economic incentives. These systems can introduce significant time-varying voltage and current waveform distortions that require advanced spectral analysis methods to be used. This paper provides an application of advanced parametric methods for assessing waveform distortions in SGs with dispersed generation. In particular, the Standard International Electrotechnical Committee (IEC) method, some parametric methods (such as Prony and Estimation of Signal Parameters by Rotational Invariance Technique (ESPRIT)), and some hybrid methods are critically compared on the basis of their accuracy and the computational effort required.
:,; Abbott, B P; Abbott, R; Abbott, T; Abernathy, M R; Accadia, T; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Affeldt, C; Agathos, M; Aggarwal, N; Aguiar, O D; Ain, A; Ajith, P; Alemic, A; Allen, B; Allocca, A; Amariutei, D; Andersen, M; Anderson, R; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C; Areeda, J; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Austin, L; Aylott, B E; Babak, S; Baker, P T; Ballardin, G; Ballmer, S W; Barayoga, J C; Barbet, M; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Bauchrowitz, J; Bauer, Th S; Behnke, B; Bejger, M; Beker, M G; Belczynski, C; Bell, A S; Bell, C; Bergmann, G; Bersanetti, D; Bertolini, A; Betzwieser, J; Beyersdorf, P T; Bilenko, I A; Billingsley, G; Birch, J; Biscans, S; Bitossi, M; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Bloemen, S; Blom, M; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bond, C; Bondu, F; Bonelli, L; Bonnand, R; Bork, R; Born, M; Boschi, V; Bose, Sukanta; Bosi, L; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Brooks, A F; Brown, D A; Brown, D D; Brückner, F; Buchman, S; Bulik, T; Bulten, H J; Buonanno, A; Burman, R; Buskulic, D; Buy, C; Cadonati, L; Cagnoli, G; Bustillo, J Calderón; Calloni, E; Camp, J B; Campsie, P; Cannon, K C; Canuel, B; Cao, J; Capano, C D; Carbognani, F; Carbone, L; Caride, S; Castiglia, A; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Celerier, C; Cella, G; Cepeda, C; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, X; Chen, Y; Chincarini, A; Chiummo, A; Cho, H S; Chow, J; Christensen, N; Chu, Q; Chua, S S Y; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P -F; Colla, A; Collette, C; Colombini, M; Cominsky, L; Constancio, M; Conte, A; Cook, D; Corbitt, T R; Cordier, M; Cornish, N; Corpuz, A; Corsi, A; Costa, C A; Coughlin, M W; Coughlin, S; Coulon, J -P; Countryman, S; Couvares, P; Coward, D M; Cowart, M; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Dahl, K; Canton, T Dal; Damjanic, M; Danilishin, S L; D'Antonio, S; Danzmann, K; Dattilo, V; Daveloza, H; Davier, M; Davies, G S; Daw, E J; Day, R; Dayanga, T; Debreczeni, G; Degallaix, J; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Dhurandhar, S; Díaz, M; Di Fiore, L; Di Lieto, A; Di Palma, I; Di Virgilio, A; Donath, A; Donovan, F; Dooley, K L; Doravari, S; Dossa, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Dwyer, S; Eberle, T; Edo, T; Edwards, M; Effler, A; Eggenstein, H; Ehrens, P; Eichholz, J; Eikenberry, S S; Endrőczi, G; Essick, R; Etzel, T; Evans, M; Evans, T; Factourovich, M; Fafone, V; Fairhurst, S; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fehrmann, H; Fejer, M M; Feldbaum, D; Feroz, F; Ferrante, I; Ferrini, F; Fidecaro, F; Finn, L S; Fiori, I; Fisher, R P; Flaminio, R; Fournier, J -D; Franco, S; Frasca, S; Frasconi, F; Frede, M; Frei, Z; Freise, A; Frey, R; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gair, J; Gammaitoni, L; Gaonkar, S; Garufi, F; Gehrels, N; Gemme, G; Genin, E; Gennai, A; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, C; Gleason, J; Goetz, E; Goetz, R; Gondan, L; González, G; Gordon, N; Gorodetsky, M L; Gossan, S; Goßler, S; Gouaty, R; Gräf, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greenhalgh, R J S; Gretarsson, A M; Groot, P; Grote, H; Grover, K; Grunewald, S; Guidi, G M; Guido, C; Gushwa, K; Gustafson, E K; Gustafson, R; Hammer, D; Hammond, G; Hanke, M; Hanks, J; Hanna, C; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Hart, M; Hartman, M T; Haster, C -J; Haughian, K; Heidmann, A; Heintze, M; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Heptonstall, A W; Heurs, M; Hewitson, M; Hild, S; Hoak, D; Hodge, K A; Holt, K; Hooper, S; Hopkins, P; Hosken, D J; Hough, J; Howell, E J; Hu, Y; Hughey, B; Husa, S; Huttner, S H; Huynh, M; Huynh-Dinh, T; Ingram, D R; Inta, R; Isogai, T; Ivanov, A; Iyer, B R; Izumi, K; Jacobson, M; James, E; Jang, H; Jaranowski, P; Ji, Y; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalmus, P; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karlen, J; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, H; Kawabe, K; Kawazoe, F; Kéfélian, F; Keiser, G M; Keitel, D; Kelley, D B; Kells, W; Khalaidovski, A; Khalili, F Y; Khazanov, E A; Kim, C; Kim, K; Kim, N; Kim, N G; Kim, Y -M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Klimenko, S; Kline, J; Koehlenbeck, S; Kokeyama, K; Kondrashov, V; Koranda, S; Korth, W Z; Kowalska, I; Kozak, D B; Kremin, A; Kringel, V; Krishnan, B; Królak, A; Kuehn, G; Kumar, A; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Kwee, P; Landry, M; Lantz, B; Larson, S; Lasky, P D; Lawrie, C; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C -H; Lee, H K; Lee, H M; Lee, J; Leonardi, M; Leong, J R; Roux, A Le; Leroy, N; Letendre, N; Levin, Y; Levine, B; Lewis, J; Li, T G F; Libbrecht, K; Libson, A; Lin, A C; Littenberg, T B; Litvine, V; Lockerbie, N A; Lockett, V; Lodhia, D; Loew, K; Logue, J; Lombardi, A L; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J; Lubinski, M J; Lück, H; Luijten, E; Lundgren, A P; Lynch, R; Ma, Y; Macarthur, J; Macdonald, E P; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magana-Sandoval, F; Mageswaran, M; Maglione, C; Mailand, K; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Manca, G M; Mandel, I; Mandic, V; Mangano, V; Mangini, N; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A; Maros, E; Marque, J; Martelli, F; Martin, I W; Martin, R M; Martinelli, L; Martynov, D; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Matichard, F; Matone, L; Matzner, R A; Mavalvala, N; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McGuire, S C; McIntyre, G; McIver, J; McLin, K; Meacher, D; Meadors, G D; Mehmet, M; Meidam, J; Meinders, M; Melatos, A; Mendell, G; Mercer, R A; Meshkov, S; Messenger, C; Meyers, P; Miao, H; Michel, C; Mikhailov, E E; Milano, L; Milde, S; Miller, J; Minenkov, Y; Mingarelli, C M F; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moe, B; Moesta, P; Mohan, M; Mohapatra, S R P; Moraru, D; Moreno, G; Morgado, N; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Mukherjee, S; Mullavey, A; Munch, J; Murphy, D; Murray, P G; Mytidis, A; Nagy, M F; Kumar, D Nanda; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nelemans, G; Neri, I; Neri, M; Newton, G; Nguyen, T; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Ochsner, E; O'Dell, J; Oelker, E; Oh, J J; Oh, S H; Ohme, F; Oppermann, P; O'Reilly, B; O'Shaughnessy, R; Osthelder, C; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Padilla, C; Pai, A; Palashov, O; Palomba, C; Pan, H; Pan, Y; Pankow, C; Paoletti, F; Paoletti, R; Papa, M A; Paris, H; Pasqualetti, A; Passaquieti, R; Passuello, D; Pedraza, M; Penn, S; Perreca, A; Phelps, M; Pichot, M; Pickenpack, M; Piergiovanni, F; Pierro, V; Pinard, L; Pinto, I M; Pitkin, M; Poeld, J; Poggiani, R; Poteomkin, A; Powell, J; Prasad, J; Premachandra, S; Prestegard, T; Price, L R; Prijatelj, M; Privitera, S; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Qin, J; Quetschke, V; Quintero, E; Quiroga, G; Quitzow-James, R; Raab, F J; Rabeling, D S; Rácz, I; Radkins, H; Raffai, P; Raja, S; Rajalakshmi, G; Rakhmanov, M; Ramet, C; Ramirez, K; Rapagnani, P; Raymond, V; Re, V; Read, J; Reed, C M; Regimbau, T; Reid, S; Reitze, D H; Rhoades, E; Ricci, F; Riles, K; Robertson, N A; Robinet, F; Rocchi, A; Rodruck, M; Rolland, L; Rollins, J G; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Salemi, F; Sammut, L; Sandberg, V; Sanders, J R; Sannibale, V; Santiago-Prieto, I; Saracco, E; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Savage, R; Scheuer, J; Schilling, R; Schnabel, R; Schofield, R M S; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Shaddock, D; Shah, S; Shahriar, M S; Shaltev, M; Shapiro, B; Shawhan, P; Shoemaker, D H; Sidery, T L; Siellez, K; Siemens, X; Sigg, D; Simakov, D; Singer, A; Singer, L; Singh, R; Sintes, A M; Slagmolen, B J J; Slutsky, J; Smith, J R; Smith, M; Smith, R J E; Smith-Lefebvre, N D; Son, E J; Sorazu, B; Souradeep, T; Sperandio, L; Staley, A; Stebbins, J; Steinlechner, J; Steinlechner, S; Stephens, B C; Steplewski, S; Stevenson, S; Stone, R; Stops, D; Strain, K A; Straniero, N; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Susmithan, S; Sutton, P J; Swinkels, B; Tacca, M; Talukder, D; Tanner, D B; Tarabrin, S P; Taylor, R; ter Braack, A P M; Thirugnanasambandam, M P; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, V; Tokmakov, K V; Tomlinson, C; Toncelli, A; Tonelli, M; Torre, O; Torres, C V; Torrie, C I; Travasso, F; Traylor, G; Tse, M; Ugolini, D; Unnikrishnan, C S; Urban, A L; Urbanek, K; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; Brand, J F J van den; Broeck, C Van Den; van der Putten, S; van der Sluys, M V; van Heijningen, J; van Veggel, A A; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Verma, S S; Vetrano, F; Viceré, A; Vincent-Finley, R; Vinet, J -Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Vousden, W D; Vyachanin, S P; Wade, A; Wade, L; Wade, M; Walker, M; Wallace, L; Wang, M; Wang, X; Ward, R L; Was, M; Weaver, B; Wei, L -W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Wessels, P; West, M; Westphal, T; Wette, K; Whelan, J T; Whitcomb, S E; White, D J; Whiting, B F; Wiesner, K; Wilkinson, C; Williams, K; Williams, L; Williams, R; Williams, T; Williamson, A R; Willis, J L; Willke, B; Wimmer, M; Winkler, W; Wipf, C C; Wiseman, A G; Wittel, H; Woan, G; Worden, J; Yablon, J; Yakushin, I; Yamamoto, H; Yancey, C C; Yang, H; Yang, Z; Yoshida, S; Yvert, M; Zadrożny, A; Zanolin, M; Zendri, J -P; Zhang, Fan; Zhang, L; Zhao, C; Zhu, X J; Zucker, M E; Zuraw, S; Zweizig, J; Boyle, M; Brügmann, B; Buchman, L T; Campanelli, M; Chu, T; Etienne, Z B; Hannam, M; Healy, J; Hinder, I; Kidder, L E; Laguna, P; Liu, Y T; London, L; Lousto, C O; Lovelace, G; MacDonald, I; Marronetti, P; Mösta, P; Müller, D; Mundim, B C; Nakano, H; Paschalidis, V; Pekowsky, L; Pollney, D; Pfeiffer, H P; Ponce, M; Pürrer, M; Reifenberger, G; Reisswig, C; Santamaría, L; Scheel, M A; Shapiro, S L; Shoemaker, D; Sopuerta, C F; Sperhake, U; Szilágyi, B; Taylor, N W; Tichy, W; Tsatsin, P; Zlochower, Y
2014-01-01
The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave astrophysics communities. The purpose of NINJA is to study the ability to detect gravitational waves emitted from merging binary black holes and recover their parameters with next-generation gravitational-wave observatories. We report here on the results of the second NINJA project, NINJA-2, which employs 60 complete binary black hole hybrid waveforms consisting of a numerical portion modelling the late inspiral, merger, and ringdown stitched to a post-Newtonian portion modelling the early inspiral. In a "blind injection challenge" similar to that conducted in recent LIGO and Virgo science runs, we added 7 hybrid waveforms to two months of data recolored to predictions of Advanced LIGO and Advanced Virgo sensitivity curves during their first observing runs. The resulting data was analyzed by gravitational-wave detection algorithms and 6 of the waveforms were recovered w...
Oltean, Gabriel; Ivanciu, Laura-Nicoleta
2016-01-01
The design and verification of complex electronic systems, especially the analog and mixed-signal ones, prove to be extremely time consuming tasks, if only circuit-level simulations are involved. A significant amount of time can be saved if a cost effective solution is used for the extensive analysis of the system, under all conceivable conditions. This paper proposes a data-driven method to build fast to evaluate, but also accurate metamodels capable of generating not-yet simulated waveforms as a function of different combinations of the parameters of the system. The necessary data are obtained by early-stage simulation of an electronic control system from the automotive industry. The metamodel development is based on three key elements: a wavelet transform for waveform characterization, a genetic algorithm optimization to detect the optimal wavelet transform and to identify the most relevant decomposition coefficients, and an artificial neuronal network to derive the relevant coefficients of the wavelet transform for any new parameters combination. The resulted metamodels for three different waveform families are fully reliable. They satisfy the required key points: high accuracy (a maximum mean squared error of 7.1x10-5 for the unity-based normalized waveforms), efficiency (fully affordable computational effort for metamodel build-up: maximum 18 minutes on a general purpose computer), and simplicity (less than 1 second for running the metamodel, the user only provides the parameters combination). The metamodels can be used for very efficient generation of new waveforms, for any possible combination of dependent parameters, offering the possibility to explore the entire design space. A wide range of possibilities becomes achievable for the user, such as: all design corners can be analyzed, possible worst-case situations can be investigated, extreme values of waveforms can be discovered, sensitivity analyses can be performed (the influence of each parameter on the
Oltean, Gabriel; Ivanciu, Laura-Nicoleta
2016-01-01
The design and verification of complex electronic systems, especially the analog and mixed-signal ones, prove to be extremely time consuming tasks, if only circuit-level simulations are involved. A significant amount of time can be saved if a cost effective solution is used for the extensive analysis of the system, under all conceivable conditions. This paper proposes a data-driven method to build fast to evaluate, but also accurate metamodels capable of generating not-yet simulated waveforms as a function of different combinations of the parameters of the system. The necessary data are obtained by early-stage simulation of an electronic control system from the automotive industry. The metamodel development is based on three key elements: a wavelet transform for waveform characterization, a genetic algorithm optimization to detect the optimal wavelet transform and to identify the most relevant decomposition coefficients, and an artificial neuronal network to derive the relevant coefficients of the wavelet transform for any new parameters combination. The resulted metamodels for three different waveform families are fully reliable. They satisfy the required key points: high accuracy (a maximum mean squared error of 7.1x10-5 for the unity-based normalized waveforms), efficiency (fully affordable computational effort for metamodel build-up: maximum 18 minutes on a general purpose computer), and simplicity (less than 1 second for running the metamodel, the user only provides the parameters combination). The metamodels can be used for very efficient generation of new waveforms, for any possible combination of dependent parameters, offering the possibility to explore the entire design space. A wide range of possibilities becomes achievable for the user, such as: all design corners can be analyzed, possible worst-case situations can be investigated, extreme values of waveforms can be discovered, sensitivity analyses can be performed (the influence of each parameter on the
Gabriel Oltean
Full Text Available The design and verification of complex electronic systems, especially the analog and mixed-signal ones, prove to be extremely time consuming tasks, if only circuit-level simulations are involved. A significant amount of time can be saved if a cost effective solution is used for the extensive analysis of the system, under all conceivable conditions. This paper proposes a data-driven method to build fast to evaluate, but also accurate metamodels capable of generating not-yet simulated waveforms as a function of different combinations of the parameters of the system. The necessary data are obtained by early-stage simulation of an electronic control system from the automotive industry. The metamodel development is based on three key elements: a wavelet transform for waveform characterization, a genetic algorithm optimization to detect the optimal wavelet transform and to identify the most relevant decomposition coefficients, and an artificial neuronal network to derive the relevant coefficients of the wavelet transform for any new parameters combination. The resulted metamodels for three different waveform families are fully reliable. They satisfy the required key points: high accuracy (a maximum mean squared error of 7.1x10-5 for the unity-based normalized waveforms, efficiency (fully affordable computational effort for metamodel build-up: maximum 18 minutes on a general purpose computer, and simplicity (less than 1 second for running the metamodel, the user only provides the parameters combination. The metamodels can be used for very efficient generation of new waveforms, for any possible combination of dependent parameters, offering the possibility to explore the entire design space. A wide range of possibilities becomes achievable for the user, such as: all design corners can be analyzed, possible worst-case situations can be investigated, extreme values of waveforms can be discovered, sensitivity analyses can be performed (the influence of each
Rashidinejad, Amir; Weiner, Andrew M
2015-01-01
This paper reviews recent advances in photonic-assisted radio-frequency arbitrary waveform generation (RF-AWG), with emphasis on programmable ultrabroadband microwave and millimeter-wave waveforms. The key enabling components in these techniques are programmable optical pulse shaping, frequency-to-time mapping via dispersive propagation, and high-speed photodetection. The main advantages and challenges of several different photonic RF-AWG schemes are discussed. We further review some proof-of-concept demonstrations of ultrabroadband RF-AWG applications, including high-resolution ranging and ultrabroadband non-line-of-sight channel compensation. Finally, we present recent progress toward RF-AWG with increased time aperture and time-bandwidth product.
Montecchia, F; Guerrisi, M; Canichella, A
2007-03-01
The present paper describes the functional features of an advanced lung ventilation system (ALVS) properly designed for the optimization of conventional dual-controlled ventilation (DCV), i.e. with pressure-controlled ventilation with ensured tidal or minute volume. Considering the particular clinical conditions of patients treated with controlled ventilation the analysis and synthesis of ALVS control have been performed assuming a linear respiratory mechanics. Moreover, new airways pressure waveforms with more physiological shape can be tested on simulators of respiratory system in order to evaluate their clinical application. This is obtained through the implementation of a compensation procedure making the desired airways pressure waveform independent on patient airways resistance and lung compliance variations along with a complete real-time monitoring of respiratory system parameters leading the ventilator setting. The experimental results obtained with a lung simulator agree with the theoretical ones and show that ALVS performance is useful for the research activity aiming at the improvement of both diagnostic evaluation and therapeutic outcome relative to mechanical ventilation treatments.
Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Alemic, A.; Allen, B.; Allocca, A.; Amariutei, D.; Andersen, M.; Anderson, R.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Austin, L.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barbet, M.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bauchrowitz, J.; Bauer, Th S.; Behnke, B.; Bejger, M.; Beker, M. G.; Belczynski, C.; Bell, A. S.; Bell, C.; Bergmann, G.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bloemen, S.; Blom, M.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, Sukanta; Bosi, L.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Buchman, S.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burman, R.; Buskulic, D.; Buy, C.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castiglia, A.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Celerier, C.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C.; Colombini, M.; Cominsky, L.; Constancio, M., Jr.; Conte, A.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corpuz, A.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coughlin, S.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; Debreczeni, G.; Degallaix, J.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Donath, A.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dossa, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dwyer, S.; Eberle, T.; Edo, T.; Edwards, M.; Effler, A.; Eggenstein, H.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endrőczi, G.; Essick, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Feroz, F.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gair, J.; Gammaitoni, L.; Gaonkar, S.; Garufi, F.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, C.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Gräf, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Groot, P.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hart, M.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Hooper, S.; Hopkins, P.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hu, Y.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Iyer, B. R.; Izumi, K.; Jacobson, M.; James, E.; Jang, H.; Jaranowski, P.; Ji, Y.
2014-06-01
The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave (GW) astrophysics communities. The purpose of NINJA is to study the ability to detect GWs emitted from merging binary black holes (BBH) and recover their parameters with next-generation GW observatories. We report here on the results of the second NINJA project, NINJA-2, which employs 60 complete BBH hybrid waveforms consisting of a numerical portion modelling the late inspiral, merger, and ringdown stitched to a post-Newtonian portion modelling the early inspiral. In a ‘blind injection challenge’ similar to that conducted in recent Laser Interferometer Gravitational Wave Observatory (LIGO) and Virgo science runs, we added seven hybrid waveforms to two months of data recoloured to predictions of Advanced LIGO (aLIGO) and Advanced Virgo (AdV) sensitivity curves during their first observing runs. The resulting data was analysed by GW detection algorithms and 6 of the waveforms were recovered with false alarm rates smaller than 1 in a thousand years. Parameter-estimation algorithms were run on each of these waveforms to explore the ability to constrain the masses, component angular momenta and sky position of these waveforms. We find that the strong degeneracy between the mass ratio and the BHs’ angular momenta will make it difficult to precisely estimate these parameters with aLIGO and AdV. We also perform a large-scale Monte Carlo study to assess the ability to recover each of the 60 hybrid waveforms with early aLIGO and AdV sensitivity curves. Our results predict that early aLIGO and AdV will have a volume-weighted average sensitive distance of 300 Mpc (1 Gpc) for 10M⊙ + 10M⊙ (50M⊙ + 50M⊙) BBH coalescences. We demonstrate that neglecting the component angular momenta in the waveform models used in matched-filtering will result in a reduction in sensitivity for systems with large component angular momenta. This
Dietrich, Tim
2014-01-01
We reexamine the gravitational collapse of rotating neutron stars to black holes by new 3+1 numerical relativity simulations employing the Z4c formulation of Einstein equations, the moving puncture gauge conditions, and a conservative mesh refinement scheme or the general relativistic hydrodynamics. The end state of the collapse is compared to the vacuum spacetime resulting from the evolution of spinning puncture initial data. Using a local analysis for the metric fields, we demonstrate that the two spacetimes atually agree. Gravitational waveforms are analyzed in some detail. We connect the emission of radiation to the collapse dynamics using simplified spacetime diagrams, and discuss the similarity of the waveform structure with the one of black hole perturbation theory.
Dzulkarnain, Ahmad Aidil Arafat; Wan Mhd Pandi, Wan Mahirah; Wilson, Wayne J; Bradley, Andrew P; Sapian, Faizah
2014-08-01
To determine if a computer simulation can be used to improve the ability of audiology students to analyse ABR waveforms. A pretest-posttest, quasi-experimental design was used. All participants completed a pretraining examination of their ability to analyse ABR waveforms, eight hours of ABR analysis training over eight weeks using one of three training modes-manual, simulator or combined manual and simulator training, and a posttraining examination of their ability to analyse ABR waveforms. Fourteen third-year audiology students (13 female, one male, aged 21 to 22 years) participated in this study. Participants who completed the manual or the combined manual and simulator training achieved significantly higher normalized gain scores on their ABR waveform analysis examinations compared to those who completed the simulator training (p audiology students to analyse ABR waveforms were driven primarily by the manual training. The minimal improvements seen in the students who received the simulator training suggest that face-to-face instruction could be required to enhance the ability of audiology students to analyse ABR waveforms.
Advanced analysis of complex seismic waveforms to characterize the subsurface Earth structure
Jia, Tianxia
2011-12-01
in seismic active zones. SPAC analysis of microtremors provides an efficient way to estimate Vs structure. Compared with other Vs estimating methods, SPAC is noninvasive and does not require any active sources, and therefore, it is especially useful in big cities. I applied SPAC method in two urban areas. The first is the historic city, Charleston, South Carolina, where high levels of seismic hazard lead to great public concern. Accurate Vs information, therefore, is critical for seismic site classification and site response studies. The second SPAC study is in Manhattan, New York City, where depths of high velocity contrast and soil-to-bedrock are different along the island. The two experiments show that Vs structure could be estimated with good accuracy using SPAC method compared with borehole and other techniques. SPAC is proved to be an effective technique for Vs estimation in urban areas. One important issue in seismology is the inversion of subsurface structures from surface recordings of seismograms. My third project focuses on solving this complex geophysical inverse problems, specifically, surface wave phase velocity dispersion curve inversion for shear wave velocity. In addition to standard linear inversion, I developed advanced inversion techniques including joint inversion using borehole data as constrains, nonlinear inversion using Monte Carlo, and Simulated Annealing algorithms. One innovative way of solving the inverse problem is to make inference from the ensemble of all acceptable models. The statistical features of the ensemble provide a better way to characterize the Earth model.
Derzsi, Aranka; Lafleur, Trevor; Booth, Jean-Paul; Korolov, Ihor; Donkó, Zoltán
2016-02-01
We report experimental and particle-based kinetic simulation studies of low-pressure capacitively coupled oxygen plasmas driven by tailored voltage waveforms that consist of up to four harmonics of base frequency 13.56 MHz. Experimentally determined values of DC self-bias and electrical power deposition, as well as flux density and flux-energy distribution of the positive ions at the grounded electrode are compared with simulation data for a wide range of operating conditions. Very good agreement is found for self-bias and flux-energy distribution of the positive ions at the electrodes, while a fair agreement is reached for discharge power and ion flux data. The simulated spatial and temporal behaviour of the electric field, electron density, electron power absorption, ionization rate and mean electron energy shows a transition between sheath expansion heating and drift-ambipolar discharge modes, induced by changing either the number of harmonics comprising the excitation waveform or the gas pressure. The simulations indicate that under our experimental conditions the plasma operates at high electronegativity, and also reveal the crucial role of {{\\text{O}}2}≤ft({{a}1}{{Δ }g}\\right) singlet metastable molecules in establishing discharge behavior via the fast destruction of negative ions within the bulk plasma.
CFC+: Improved dynamics and gravitational waveforms from relativistic core collapse simulations
Cerdá-Durán, P; Dimmelmeier, H; Font, J A; Ibáñez, J M; Müller, E; Schäfer, G
2004-01-01
Core collapse supernovae are a promising source of detectable gravitational waves. Most of the existing (multidimensional) numerical simulations of core collapse in general relativity have been done using approximations of the Einstein field equations. As recently shown by Dimmelmeier et al (2002a,b), one of the most interesting such approximation is the so-called conformal flatness condition (CFC) of Isenberg, Wilson and Mathews. Building on this previous work we present here new results from numerical simulations of relativistic rotational core collapse in axisymmetry, aiming at improving the dynamics and the gravitational waveforms. The computer code used for these simulations evolves the coupled system of metric and fluid equations using the 3+1 formalism, specialized to a new framework for the gravitational field equations which we call CFC+. In this approach we add new degrees of freedom to the original CFC equations, which extend them by terms of second post-Newtonian order. The corrections for CFC+ ar...
Optimizing spinning time-domain gravitational waveforms for Advanced LIGO data analysis
Devine, Caleb; McWilliams, Sean T
2016-01-01
The Spinning Effective One Body-Numerical Relativity (SEOBNR) series of gravitational wave approximants are among the best available for Advanced LIGO data analysis. Unfortunately, SEOBNR codes as they currently exist within LALSuite are generally too slow to be directly useful for standard Markov-Chain Monte Carlo-based parameter estimation (PE). Reduced-Order Models (ROMs) of SEOBNR have been developed for this purpose, but there is no known way to make ROMs of the full eight-dimensional intrinsic parameter space more efficient for PE than the SEOBNR codes directly. So as a proof of principle, we have sped up the original LALSuite SEOBNRv2 approximant code, which models waveforms from aligned-spin systems, by about 280x. Our optimized code shortens the timescale for conducting PE with this approximant to months, assuming a purely serial analysis, so that even modest parallelization combined with our optimized code will make running the full PE pipeline with SEOBNR codes directly a realistic possibility. A n...
Optimizing spinning time-domain gravitational waveforms for advanced LIGO data analysis
Devine, Caleb; Etienne, Zachariah B.; McWilliams, Sean T.
2016-06-01
The spinning effective-one-body-numerical relativity (SEOBNR) series of gravitational wave approximants are among the best available for advanced LIGO data analysis. Unfortunately, SEOBNR codes as they currently exist within LALSuite are generally too slow to be directly useful for standard Markov-chain Monte Carlo-based parameter estimation (PE). Reduced-order models (ROMs) of SEOBNR have been developed for this purpose, but there is no known way to make ROMs of the full eight-dimensional intrinsic parameter space more efficient for PE than the SEOBNR codes directly. So as a proof of principle, we have sped up the original LALSuite SEOBNRv2 approximant code, which models waveforms from aligned-spin systems, by nearly 300x. Our optimized code shortens the timescale for conducting PE with this approximant to months, assuming a purely serial analysis, so that even modest parallelization combined with our optimized code will make running the full PE pipeline with SEOBNR codes directly a realistic possibility. A number of our SEOBNRv2 optimizations have already been applied to SEOBNRv3, a new approximant capable of modeling sources with all eight (precessing) intrinsic degrees of freedom. We anticipate that once all of our optimizations have been applied to SEOBNRv3, a similar speed-up may be achieved.
BER Performance Simulation of Generalized MC DS-CDMA System with Time-Limited Blackman Chip Waveform
I. Develi
2010-09-01
Full Text Available Multiple access interference encountered in multicarrier direct sequence-code division multiple access (MC DS-CDMA is the most important difficulty that depends mainly on the correlation properties of the spreading sequences as well as the shape of the chip waveforms employed. In this paper, bit error rate (BER performance of the generalized MC DS-CDMA system that employs time-limited Blackman chip waveform is presented for Nakagami-m fading channels. Simulation results show that the use of Blackman chip waveform can improve the BER performance of the generalized MC DS-CDMA system, as compared to the performances achieved by using timelimited chip waveforms in the literature.
Dayanga, Waduthanthree Thilina
Albert Einstein's general theory of relativity predicts the existence of gravitational waves (GWs). Direct detection of GWs will provide enormous amount of new information about physics, astronomy and cosmology. Scientists around the world are currently working towards the first direct detection of GWs. The global network of ground-based GW detectors are currently preparing for their first advanced detector Science runs. In this thesis we focus on detection of GWs from compact binary coalescence (CBC) systems. Ability to accurately model CBC GW waveforms makes them the most promising source for the first direct detection of GWs. In this thesis we try to address several challenges associated with detecting CBC signals buried in ground-based GW detector data for past and future searches. Data analysis techniques we employ to detect GW signals assume detector noise is Gaussian and stationary. However, in reality, detector data is neither Gaussian nor stationary. To estimate the performance loss due to these features, we compare the efficiencies of detecting CBC signals in simulated Gaussian and real data. Additionally, we also demonstrate the effectiveness of multi-detector signal based consistency tests such ad null-stream. Despite, non-Gaussian and non-stationary features of real detector data, with effective data quality studies and signal-based vetoes we can approach the performance of Gaussian and stationary data. As we are moving towards advanced detector era, it is important to be prepared for future CBC searches. In this thesis we investigate the performances of non-spinning binary black hole (BBH) searches in simulated Gaussian using advanced detector noise curves predicted for 2015--2016. In the same study, we analyze the GW detection probabilities of latest pN-NR hybrid waveforms submitted to second version of Numerical Injection Analysis (NINJA-2) project. The main motivation for this study is to understand the ability to detect realistic BBH signals of
Afanasiev, M.; Pratt, R. G.; Kamei, R.; McDowell, G.
2012-12-01
Crosshole seismic tomography has been used by Vale to provide geophysical images of mineralized massive sulfides in the Eastern Deeps deposit at Voisey's Bay, Labrador, Canada. To date, these data have been processed using traveltime tomography, and we seek to improve the resolution of these images by applying acoustic Waveform Tomography. Due to the computational cost of acoustic waveform modelling, local descent algorithms are employed in Waveform Tomography; due to non-linearity an initial model is required which predicts first-arrival traveltimes to within a half-cycle of the lowest frequency used. Because seismic velocity anisotropy can be significant in hardrock settings, the initial model must quantify the anisotropy in order to meet the half-cycle criterion. In our case study, significant velocity contrasts between the target massive sulfides and the surrounding country rock led to difficulties in generating an accurate anisotropy model through traveltime tomography, and our starting model for Waveform Tomography failed the half-cycle criterion at large offsets. We formulate a new, semi-global approach for finding the best-fit 1-D elliptical anisotropy model using simulated annealing. Through random perturbations to Thompson's ɛ parameter, we explore the L2 norm of the frequency-domain phase residuals in the space of potential anisotropy models: If a perturbation decreases the residuals, it is always accepted, but if a perturbation increases the residuals, it is accepted with the probability P = exp(-(Ei-E)/T). This is the Metropolis criterion, where Ei is the value of the residuals at the current iteration, E is the value of the residuals for the previously accepted model, and T is a probability control parameter, which is decreased over the course of the simulation via a preselected cooling schedule. Convergence to the global minimum of the residuals is guaranteed only for infinitely slow cooling, but in practice good results are obtained from a variety
Buonanno, Alessandra; Pfeiffer, Harald P; Scheel, Mark A; Buchman, Luisa T; Kidder, Lawrence E
2009-01-01
We calibrate the effective-one-body (EOB) model to an accurate numerical simulation of an equal-mass, non-spinning binary black-hole coalescence produced by the Caltech-Cornell collaboration. Aligning the EOB and numerical waveforms at low frequency over a time interval of ~1000M, and taking into account the uncertainties in the numerical simulation, we investigate the significance and degeneracy of the EOB adjustable parameters during inspiral, plunge and merger, and determine the minimum number of EOB adjustable parameters that achieves phase and amplitude agreements on the order of the numerical error. We find that phase and fractional amplitude differences between the numerical and EOB values of the dominant gravitational wave mode h_{22} can be reduced to 0.02 radians and 2%, respectively, until a time 26 M before merger, and to 0.1 radians and 10%, at a time 16M after merger (during ringdown), respectively. Using LIGO, Enhanced LIGO and Advanced LIGO noise curves, we find that the overlap between the EO...
Advances in social simulation 2015
Verbrugge, Rineke; Flache, Andreas; Roo, Gert; Hoogduin, Lex; Hemelrijk, Charlotte
2017-01-01
This book highlights recent developments in the field, presented at the Social Simulation 2015 conference in Groningen, The Netherlands. It covers advances both in applications and methods of social simulation. Societal issues addressed range across complexities in economic systems, opinion dynamics and civil violence, changing mobility patterns, different land-use, transition in the energy system, food production and consumption, ecosystem management and historical processes. Methodological developments cover how to use empirical data in validating models in general, formalization of behavioral theory in agent behavior, construction of artificial populations for experimentation, replication of models, and agent-based models that can be run in a web browser. Social simulation is a rapidly evolving field. Social scientists are increasingly interested in social simulation as a tool to tackle the complex non-linear dynamics of society. Furthermore, the software and hardware tools available for social simulation ...
Real and Simulated Waveform Recording LIDAR Data in Boreal Juvenile Forest Vegetation
Hovi, A.; Korpela, I.
2013-05-01
Airborne small-footprint LiDAR is replacing field measurements in regional-level forest inventories, but auxiliary field work is still required for the optimal management of young stands. Waveform (WF) recording sensors can provide a more detailed description of the vegetation compared to discrete return (DR) systems. Furthermore, knowing the shape of the signal facilitates comparisons between real data and those obtained with simulation tools. We performed a quantitative validation of a Monte Carlo ray tracing (MCRT) -based LiDAR simulator against real data and used simulations and empirical data to study the WF recording LiDAR for the classification of boreal juvenile forest vegetation. Geometric-optical models of three common species were used as input for the MCRT model. Simulated radiometric and geometric WF features were in good agreement with the real data, and interspecies differences were preserved. We used the simulator to study the effects of sensor parameters on species classification performance. An increase in footprint size improved the classification accuracy up to a certain footprint size, while the emitted pulse width and the WF sampling rate had minor effects. Analyses on empirical data showed small improvement in performance compared to existing studies, when classifying seedling stand vegetation to four operational classes. The results on simulator validation serve as a basis for the future use of simulation models e.g. in LiDAR survey planning or in the simulation of synthetic training data, while the empirical findings clarify the potential of WF LiDAR data in the inventory chain for the operational forest management planning in Finland.
SPIDYAN, a MATLAB library for simulating pulse EPR experiments with arbitrary waveform excitation.
Pribitzer, Stephan; Doll, Andrin; Jeschke, Gunnar
2016-02-01
Frequency-swept chirp pulses, created with arbitrary waveform generators (AWGs), can achieve inversion over a range of several hundreds of MHz. Such passage pulses provide defined flip angles and increase sensitivity. The fact that spectra are not excited at once, but single transitions are passed one after another, can cause new effects in established pulse EPR sequences. We developed a MATLAB library for simulation of pulse EPR, which is especially suited for modeling spin dynamics in ultra-wideband (UWB) EPR experiments, but can also be used for other experiments and NMR. At present the command line controlled SPin DYnamics ANalysis (SPIDYAN) package supports one-spin and two-spin systems with arbitrary spin quantum numbers. By providing the program with appropriate spin operators and Hamiltonian matrices any spin system is accessible, with limits set only by available memory and computation time. Any pulse sequence using rectangular and linearly or variable-rate frequency-swept chirp pulses, including phase cycling can be quickly created. To keep track of spin evolution the user can choose from a vast variety of detection operators, including transition selective operators. If relaxation effects can be neglected, the program solves the Liouville-von Neumann equation and propagates spin density matrices. In the other cases SPIDYAN uses the quantum mechanical master equation and Liouvillians for propagation. In order to consider the resonator response function, which on the scale of UWB excitation limits bandwidth, the program includes a simple RLC circuit model. Another subroutine can compute waveforms that, for a given resonator, maintain a constant critical adiabaticity factor over the excitation band. Computational efficiency is enhanced by precomputing propagator lookup tables for the whole set of AWG output levels. The features of the software library are discussed and demonstrated with spin-echo and population transfer simulations.
Chang Kyu Sung
2016-01-01
Full Text Available Purpose: The goal of this study was to evaluate the effect of vascular compliance, resistance, and pulse rate on the resistive index (RI by using an electrical circuit model to simulate renal blood flow. Methods: In order to analyze the renal arterial Doppler waveform, we modeled the renal blood-flow circuit with an equivalent simple electrical circuit containing resistance, inductance, and capacitance. The relationships among the impedance, resistance, and compliance of the circuit were derived from well-known equations, including Kirchhoff’s current law for alternating current circuits. Simulated velocity-time profiles for pulsatile flow were generated using Mathematica (Wolfram Research and the influence of resistance, compliance, and pulse rate on waveforms and the RI was evaluated. Results: Resistance and compliance were found to alter the waveforms independently. The impedance of the circuit increased with increasing proximal compliance, proximal resistance, and distal resistance. The impedance decreased with increasing distal compliance. The RI of the circuit decreased with increasing proximal compliance and resistance. The RI increased with increasing distal compliance and resistance. No positive correlation between impedance and the RI was found. Pulse rate was found to be an extrinsic factor that also influenced the RI. Conclusion: This simulation study using an electrical circuit model led to a better understanding of the renal arterial Doppler waveform and the RI, which may be useful for interpreting Doppler findings in various clinical settings.
Sung, Chang Kyu [Dept. of Radiology, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul (Korea, Republic of); Han, Bong Soo [Dept. of Radiological Science, College of Health Science, Yonsei University, Wonju (Korea, Republic of); Kim, Seung Hyup [Dept. of Radiology, Institute of Radiation Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul (Korea, Republic of)
2016-01-15
The goal of this study was to evaluate the effect of vascular compliance, resistance, and pulse rate on the resistive index (RI) by using an electrical circuit model to simulate renal blood flow. In order to analyze the renal arterial Doppler waveform, we modeled the renal blood-flow circuit with an equivalent simple electrical circuit containing resistance, inductance, and capacitance. The relationships among the impedance, resistance, and compliance of the circuit were derived from well-known equations, including Kirchhoff’s current law for alternating current circuits. Simulated velocity-time profiles for pulsatile flow were generated using Mathematica (Wolfram Research) and the influence of resistance, compliance, and pulse rate on waveforms and the RI was evaluated. Resistance and compliance were found to alter the waveforms independently. The impedance of the circuit increased with increasing proximal compliance, proximal resistance, and distal resistance. The impedance decreased with increasing distal compliance. The RI of the circuit decreased with increasing proximal compliance and resistance. The RI increased with increasing distal compliance and resistance. No positive correlation between impedance and the RI was found. Pulse rate was found to be an extrinsic factor that also influenced the RI. This simulation study using an electrical circuit model led to a better understanding of the renal arterial Doppler waveform and the RI, which may be useful for interpreting Doppler findings in various clinical settings.
Anil Kumar Sharma; Dipankar Pal
2010-01-01
In this paper the current mode approach called “Current Conveyor (CCII+)” has been incorporated to design and simulate the circuit for producing two amplitude matched anti-phase sine waveforms which are frequently used in various communication and instrumentation systems. PSpice simulation has been used to depict the output waveforms. The power supply used is ±2.5 V which can be easily incorporated with CMOS IC technology. The designed circuit has been simulated at variousfrequency ranges and...
Anil Kumar Sharma,
2010-08-01
Full Text Available In this paper the current mode approach called “Current Conveyor (CCII+” has been incorporated to design and simulate the circuit for producing two amplitude matched anti-phase sine waveforms which are frequently used in various communication and instrumentation systems. PSpice simulation has been used to depict the output waveforms. The power supply used is ±2.5 V which can be easily incorporated with CMOS IC technology. The designed circuit has been simulated at variousfrequency ranges and the waveforms are obtained after the circuit is optimized.
Pope, Jason E; Falowski, Steven; Deer, Tim R
2015-07-01
In recent years, software development has been key to the next generation of neuromodulation devices. In this review, we will describe the new strategies for electrical waveform delivery for spinal cord stimulation. A systematic literature review was performed using bibliographic databases, limited to the English language and human data, between 2010 and 2014. The literature search yielded three articles on burst stimulation and four articles on high-frequency stimulation. High-frequency and burst stimulation may offer advantages over tonic stimulation, as data suggest improved patient tolerance, comparable increase in function and possible success with a subset of patients refractory to tonic spinal cord stimulation. High-frequency and burst stimulation are new ways to deliver energy to the spinal cord that may offer advantages over tonic stimulation. These may offer new salvage strategies to mitigate spinal cord stimulation failure and improve cost-effectiveness by reducing explant rate.
Gastellu-Etchegorry, Jean-Philippe; Yin, Tiangang; Lauret, Nicolas; Grau, Eloi; Rubio, Jeremy; Cook, Bruce D.; Morton, Douglas C.; Sun, Guoqing
2016-01-01
Light Detection And Ranging (LiDAR) provides unique data on the 3-D structure of atmosphere constituents and the Earth's surface. Simulating LiDAR returns for different laser technologies and Earth scenes is fundamental for evaluating and interpreting signal and noise in LiDAR data. Different types of models are capable of simulating LiDAR waveforms of Earth surfaces. Semi-empirical and geometric models can be imprecise because they rely on simplified simulations of Earth surfaces and light interaction mechanisms. On the other hand, Monte Carlo ray tracing (MCRT) models are potentially accurate but require long computational time. Here, we present a new LiDAR waveform simulation tool that is based on the introduction of a quasi-Monte Carlo ray tracing approach in the Discrete Anisotropic Radiative Transfer (DART) model. Two new approaches, the so-called "box method" and "Ray Carlo method", are implemented to provide robust and accurate simulations of LiDAR waveforms for any landscape, atmosphere and LiDAR sensor configuration (view direction, footprint size, pulse characteristics, etc.). The box method accelerates the selection of the scattering direction of a photon in the presence of scatterers with non-invertible phase function. The Ray Carlo method brings traditional ray-tracking into MCRT simulation, which makes computational time independent of LiDAR field of view (FOV) and reception solid angle. Both methods are fast enough for simulating multi-pulse acquisition. Sensitivity studies with various landscapes and atmosphere constituents are presented, and the simulated LiDAR signals compare favorably with their associated reflectance images and Laser Vegetation Imaging Sensor (LVIS) waveforms. The LiDAR module is fully integrated into DART, enabling more detailed simulations of LiDAR sensitivity to specific scene elements (e.g., atmospheric aerosols, leaf area, branches, or topography) and sensor configuration for airborne or satellite LiDAR sensors.
O'Clock, George D; Lee, Yong Wan; Lee, Jongwon; Warwick, Warren J
2010-07-01
High-frequency chest compression (HFCC) can be used as a therapeutic intervention to assist in the transport and clearance of mucus and enhance water secretion for cystic fibrosis patients. An HFCC pump-vest and half chest-lung simulation, with 23 lung generations, has been developed using inertance, compliance, viscous friction relationships, and Newton's second law. The simulation has proven to be useful in studying the effects of parameter variations and nonlinear effects on HFCC system performance and pulmonary system response. The simulation also reveals HFCC waveform structure and intensity changes in various segments of the pulmonary system. The HFCC system simulation results agree with measurements, indicating that the HFCC energy transport mechanism involves a mechanically induced pulsation or vibration waveform with average velocities in the lung that are dependent upon small air displacements over large areas associated with the vest-chest interface. In combination with information from lung physiology, autopsies and a variety of other lung modeling efforts, the results of the simulation can reveal a number of therapeutic implications.
Advanced circuit simulation using Multisim workbench
Báez-López, David; Cervantes-Villagómez, Ofelia Delfina
2012-01-01
Multisim is now the de facto standard for circuit simulation. It is a SPICE-based circuit simulator which combines analog, discrete-time, and mixed-mode circuits. In addition, it is the only simulator which incorporates microcontroller simulation in the same environment. It also includes a tool for printed circuit board design.Advanced Circuit Simulation Using Multisim Workbench is a companion book to Circuit Analysis Using Multisim, published by Morgan & Claypool in 2011. This new book covers advanced analyses and the creation of models and subcircuits. It also includes coverage of transmissi
Verifying Slab-Induced Waveform Effects beneath Central Taiwan by Three-dimensional Simulations
Huang, Yu-Ting; Zaho, Li; Chen, Po-fei; Chiao, Ling-Yun
2013-04-01
The Taiwan Island is a result of the convergence between the Eurasia and Philippine Sea plates. To what extent the east-dipping Eurasian slab extends northward beneath central Taiwan and the geometry of the slab east of Taiwan are important issues for understanding the geodynamics of the regional tectonics. However, structures in the upper mantle beneath Taiwan are poorly constrained in regional as well as global tomography models. The TAiwan Integrated GEodynamic Research (TAIGER) project deployed several well designed temporary arrays, and the broadband teleseismic data from stations along a north-south transect across Taiwan has been utilized to examine patterns of the first P waveform variations. The P waveforms observed in central Taiwan are generally characterized by earlier arrival times, reduced amplitudes, and broadened pulse widths relative to those observed in northern Taiwan, indicating the existence of a deep slab beneath central Taiwan. In this study, to verify those observations, we invoke the spectral-element method (SEM) to calculate the synthetic seismogram for the same dataset. Results for the 1D velocity model show that in central Taiwan the observed P waveforms have earlier arrival times, reduced amplitudes, and broadened pulse widths relative to the P waves in 1D model. We then invoke a hybrid model in which we use a regional 3D model as the background and introduce two slabs - an east-dipping slab south of Taiwan and a north-northwest-dipping slab offshore northeast Taiwan - with a suite of different slab configurations to determine the best velocity model that fits the previous observations.
Suwarno
2011-01-01
Partial discharge（PD） is one of the most important phenomenon in high voltage insulations. In most cases, the appearance of partial discharges is related to insulation defects. Understanding partial discharges is important for diagnosis on insulation condition. Corona discharges appear when extremely high electric field appears on the conductor surface exceeding the electric field strength of the gas. The high electric field may occur at around protrusion with very sharp tip. This paper reported a holistic approach of corona discharge investigation. The needle--plane electrode system was used. The medium between the electrodes was air. The needle was made from steel with radius of curvature of 3 μm （Ogura needle）. Sinusoidal as well as triangular applied voltages were used. The waveform of the corona discharges was measured using a digital oscilloscope. The corona discharge pulses were measured using a phase--re- solved PD measurement system. The system was able to measure the magnitude （q） and phase angle position （9） of each PD pulses, as well as the number of discharge pulses （n）. The role of applied voltage was investigated using phase--resolved analysis of corona discharge pulses through pulse sequence, pulse magnitude and pulse number analy- sis. Experimental results indicated that corona discharge current waveform was an impulse with rise time of about several ns and the impulse width of about 100 ns. The Fast Fourier Transform analysis indicated that the corona discharge current waveform had several spectrum peaks at frequency of 7.8 MHz, 85.9 MHz, 109.4 MHz and 195.3 MHz. The experimental results also showed that discharge pulses were concentrated around the peak of applied voltage for both sinusoidal and triangular voltages. The discharge magnitude, as well as its probability of occurrence, was strongly dependent on the instantaneous applied voltage. The shape of φn, as well as φ-q-n PD patterns, were strongly reflected by the shape
Saito, T.; Fukuyama, E.; Kim, S.
2016-12-01
Rupture scenarios of anticipated huge earthquakes based on earthquake physics and observational records should be useful for the hazard evaluation of future disastrous earthquakes. Hok et al. (2011, JGR) proposed possible dynamic rupture scenarios of anticipated Nankai-Tonankai huge earthquakes, southwest Japan using estimated slip deficit distribution and an appropriate fault friction law. These scenarios are quite useful to study the details of the wave propagation as well as potential earthquake and tsunami hazard (e.g. Kim et al. 2016, EPS). The objective in this study is to synthesize seismic and tsunami waveforms of the anticipated huge earthquakes, which could be useful for the future hazard assessment. We propose a method of synthesizing the waveforms, in particular, in the region of offshore focal area where seismic waves, ocean acoustic waves, and tsunamis simultaneously exist, which makes the wavefield very complicated. We calculated the seismic and tsunami waveforms caused by a dynamic rupture of huge earthquakes (Mw 8.5) southwestern Japan. There are two kinds of tsunami observations: ocean bottom pressure gauges detect tsunami as pressure change at the sea bottom and GPS tsunami gauges measure tsunami as vertical displacement at the sea surface. Our simulation results indicated that both tsunami records are significantly contaminated by seismic waves in a few minutes after the earthquake occurrence. The tsunami and seismic waves have different excitation mechanisms: seismic wave excitation strongly depends on the time scale of the rupture (moment rate), while tsunami excitation is determined by the static parameters (fault geometry and seismic moment). Therefore, for a reliable tsunami prediction, it is important to analyze observed tsunami records excluding the seismic waves that behave like tsunami near the source area.
2.5D real waveform and real noise simulation of receiver functions in 3D models
Schiffer, Christian; Jacobsen, B. H.; Balling, N.
There are several reasons why a real-data receiver function differs from the theoretical receiver function in a 1D model representing the stratification under the seismometer. Main reasons are ambient noise, spectral deficiencies in the impinging P-waveform, and wavefield propagation in laterally...... seismometer is simulated individually through the following steps: A 2D section is extracted from the 3D model along the direction towards the hypocentre. A properly slanted plane or curved impulsive wavefront is propagated through this 2D section, resulting in noise free and spectrally complete synthetic...... seismometer data. The real vertical component signal is taken as a proxy of the real impingent wavefield, so by convolution and subsequent addition of real ambient noise recorded just before the P-arrival we get synthetic vertical and horizontal component data which very closely match the spectral signal...
Engdahl, Eric, R.; Bergman, Eric, A.; Myers, Stephen, C.; Ryall, Floriana
2009-06-19
A new catalog of seismicity at magnitudes above 2.5 for the period 1923-2008 in the Iran region is assembled from arrival times reported by global, regional, and local seismic networks. Using in-country data we have formed new events, mostly at lower magnitudes that were not previously included in standard global earthquake catalogs. The magnitude completeness of the catalog varies strongly through time, complete to about magnitude 4.2 prior to 1998 and reaching a minimum of about 3.6 during the period 1998-2005. Of the 25,722 events in the catalog, most of the larger events have been carefully reviewed for proper phase association, especially for depth phases and to eliminate outlier readings, and relocated. To better understand the quality of the data set of arrival times reported by Iranian networks that are central to this study, many waveforms for events in Iran have been re-picked by an experienced seismic analyst. Waveforms at regional distances in this region are often complex. For many events this makes arrival time picks difficult to make, especially for smaller magnitude events, resulting in reported times that can be substantially improved by an experienced analyst. Even when the signal/noise ratio is large, re-picking can lead to significant differences. Picks made by our analyst are compared with original picks made by the regional networks. In spite of the obvious outliers, the median (-0.06 s) and spread (0.51 s) are small, suggesting that reasonable confidence can be placed in the picks reported by regional networks in Iran. This new catalog has been used to assess focal depth distributions throughout Iran. A principal result of this study is that the geographic pattern of depth distributions revealed by the relatively small number of earthquakes (~167) with depths constrained by waveform modeling (+/- 4 km) are now in agreement with the much larger number of depths (~1229) determined using reanalysis of ISC arrival-times (+/-10 km), within their
Advances in Intelligent Modelling and Simulation Simulation Tools and Applications
Oplatková, Zuzana; Carvalho, Marco; Kisiel-Dorohinicki, Marek
2012-01-01
The human capacity to abstract complex systems and phenomena into simplified models has played a critical role in the rapid evolution of our modern industrial processes and scientific research. As a science and an art, Modelling and Simulation have been one of the core enablers of this remarkable human trace, and have become a topic of great importance for researchers and practitioners. This book was created to compile some of the most recent concepts, advances, challenges and ideas associated with Intelligent Modelling and Simulation frameworks, tools and applications. The first chapter discusses the important aspects of a human interaction and the correct interpretation of results during simulations. The second chapter gets to the heart of the analysis of entrepreneurship by means of agent-based modelling and simulations. The following three chapters bring together the central theme of simulation frameworks, first describing an agent-based simulation framework, then a simulator for electrical machines, and...
Optoelectronic Devices Advanced Simulation and Analysis
Piprek, Joachim
2005-01-01
Optoelectronic devices transform electrical signals into optical signals and vice versa by utilizing the sophisticated interaction of electrons and light within micro- and nano-scale semiconductor structures. Advanced software tools for design and analysis of such devices have been developed in recent years. However, the large variety of materials, devices, physical mechanisms, and modeling approaches often makes it difficult to select appropriate theoretical models or software packages. This book presents a review of devices and advanced simulation approaches written by leading researchers and software developers. It is intended for scientists and device engineers in optoelectronics, who are interested in using advanced software tools. Each chapter includes the theoretical background as well as practical simulation results that help to better understand internal device physics. The software packages used in the book are available to the public, on a commercial or noncommercial basis, so that the interested r...
Maciejewski, Michał; Schöps, Sebastian; Auchmann, Bernhard; Bortot, Lorenzo; Prioli, Marco; Verweij, Arjan P.
In this paper we present the co-simulation of a PID class power converter controller and an electrical circuit by means of the waveform relaxation technique. The simulation of the controller model is characterized by a fixed-time stepping scheme reflecting its digital implementation, whereas a circuit simulation usually employs an adaptive time stepping scheme in order to account for a wide range of time constants within the circuit model. In order to maintain the characteristic of both models as well as to facilitate model replacement, we treat them separately by means of input/output relations and propose an application of a waveform relaxation algorithm. Furthermore, the maximum and minimum number of iterations of the proposed algorithm are mathematically analyzed. The concept of controller/circuit coupling is illustrated by an example of the co-simulation of a PI power converter controller and a model of the main dipole circuit of the Large Hadron Collider.
Comparing numerical and analytic approximate gravitational waveforms
Afshari, Nousha; Lovelace, Geoffrey; SXS Collaboration
2016-03-01
A direct observation of gravitational waves will test Einstein's theory of general relativity under the most extreme conditions. The Laser Interferometer Gravitational-Wave Observatory, or LIGO, began searching for gravitational waves in September 2015 with three times the sensitivity of initial LIGO. To help Advanced LIGO detect as many gravitational waves as possible, a major research effort is underway to accurately predict the expected waves. In this poster, I will explore how the gravitational waveform produced by a long binary-black-hole inspiral, merger, and ringdown is affected by how fast the larger black hole spins. In particular, I will present results from simulations of merging black holes, completed using the Spectral Einstein Code (black-holes.org/SpEC.html), including some new, long simulations designed to mimic black hole-neutron star mergers. I will present comparisons of the numerical waveforms with analytic approximations.
Assessing Accuracy of Waveform Models against Numerical Relativity Waveforms
Pürrer, Michael; LVC Collaboration
2016-03-01
We compare currently available phenomenological and effective-one-body inspiral-merger-ringdown models for gravitational waves (GW) emitted from coalescing black hole binaries against a set of numerical relativity waveforms from the SXS collaboration. Simplifications are used in the construction of some waveform models, such as restriction to spins aligned with the orbital angular momentum, no inclusion of higher harmonics in the GW radiation, no modeling of eccentricity and the use of effective parameters to describe spin precession. In contrast, NR waveforms provide us with a high fidelity representation of the ``true'' waveform modulo small numerical errors. To focus on systematics we inject NR waveforms into zero noise for early advanced LIGO detector sensitivity at a moderately optimistic signal-to-noise ratio. We discuss where in the parameter space the above modeling assumptions lead to noticeable biases in recovered parameters.
Advancing Material Models for Automotive Forming Simulations
Vegter, H.; An, Y.; ten Horn, C. H. L. J.; Atzema, E. H.; Roelofsen, M. E.
2005-08-01
Simulations in automotive industry need more advanced material models to achieve highly reliable forming and springback predictions. Conventional material models implemented in the FEM-simulation models are not capable to describe the plastic material behaviour during monotonic strain paths with sufficient accuracy. Recently, ESI and Corus co-operate on the implementation of an advanced material model in the FEM-code PAMSTAMP 2G. This applies to the strain hardening model, the influence of strain rate, and the description of the yield locus in these models. A subsequent challenge is the description of the material after a change of strain path. The use of advanced high strength steels in the automotive industry requires a description of plastic material behaviour of multiphase steels. The simplest variant is dual phase steel consisting of a ferritic and a martensitic phase. Multiphase materials also contain a bainitic phase in addition to the ferritic and martensitic phase. More physical descriptions of strain hardening than simple fitted Ludwik/Nadai curves are necessary. Methods to predict plastic behaviour of single-phase materials use a simple dislocation interaction model based on the formed cells structures only. At Corus, a new method is proposed to predict plastic behaviour of multiphase materials have to take hard phases into account, which deform less easily. The resulting deformation gradients create geometrically necessary dislocations. Additional micro-structural information such as morphology and size of hard phase particles or grains is necessary to derive the strain hardening models for this type of materials. Measurements available from the Numisheet benchmarks allow these models to be validated. At Corus, additional measured values are available from cross-die tests. This laboratory test can attain critical deformations by large variations in blank size and processing conditions. The tests are a powerful tool in optimising forming simulations
LISA parameter estimation using numerical merger waveforms
Thorpe, J I; McWilliams, S T; Kelly, B J; Fahey, R P; Arnaud, K; Baker, J G, E-mail: James.I.Thorpe@nasa.go [NASA Goddard Space Flight Center, 8800 Greenbelt Rd, Greenbelt, MD 20771 (United States)
2009-05-07
Recent advances in numerical relativity provide a detailed description of the waveforms of coalescing massive black hole binaries (MBHBs), expected to be the strongest detectable LISA sources. We present a preliminary study of LISA's sensitivity to MBHB parameters using a hybrid numerical/analytic waveform for equal-mass, non-spinning holes. The Synthetic LISA software package is used to simulate the instrument response, and the Fisher information matrix method is used to estimate errors in the parameters. Initial results indicate that inclusion of the merger signal can significantly improve the precision of some parameter estimates. For example, the median parameter errors for an ensemble of systems with total redshifted mass of 10{sup 6} M{sub o-dot} at a redshift of z approx 1 were found to decrease by a factor of slightly more than two for signals with merger as compared to signals truncated at the Schwarzchild ISCO.
LISA parameter estimation using numerical merger waveforms
Thorpe, J I; Kelly, B J; Fahey, R P; Arnaud, K; Baker, J G
2008-01-01
Recent advances in numerical relativity provide a detailed description of the waveforms of coalescing massive black hole binaries (MBHBs), expected to be the strongest detectable LISA sources. We present a preliminary study of LISA's sensitivity to MBHB parameters using a hybrid numerical/analytic waveform for equal-mass, non-spinning holes. The Synthetic LISA software package is used to simulate the instrument response and the Fisher information matrix method is used to estimate errors in the parameters. Initial results indicate that inclusion of the merger signal can significantly improve the precision of some parameter estimates. For example, the median parameter errors for an ensemble of systems with total redshifted mass of one million Solar masses at a redshift of one were found to decrease by a factor of slightly more than two for signals with merger as compared to signals truncated at the Schwarzchild ISCO.
Biomass Estimation for Individual Trees using Waveform LiDAR
Wang, K.; Kumar, P.; Dutta, D.
2015-12-01
Vegetation biomass information is important for many ecological models that include terrestrial vegetation in their simulations. Biomass has strong influences on carbon, water, and nutrient cycles. Traditionally biomass estimation requires intensive, and often destructive, field measurements. However, with advances in technology, airborne LiDAR has become a convenient tool for acquiring such information on a large scale. In this study, we use infrared full waveform LiDAR to estimate biomass information for individual trees in the Sangamon River basin in Illinois, USA. During this process, we also develop automated geolocation calibration algorithms for raw waveform LiDAR data. In the summer of 2014, discrete and waveform LiDAR data were collected over the Sangamon River basin. Field measurements commonly used in biomass equations such as diameter at breast height and total tree height were also taken for four sites across the basin. Using discrete LiDAR data, individual trees are delineated. For each tree, a voxelization methods is applied to all waveforms associated with the tree to result in a pseudo-waveform. By relating biomass extrapolated using field measurements from a training set of trees to waveform metrics for each corresponding tree, we are able to estimate biomass on an individual tree basis. The results can be especially useful as current models increase in resolution.
Advanced numerical simulation of collapsible earth dams
De Farias, M.M.; Cordao Neto, M.P. [Brasilia Univ., Federal District (Brazil). Dept. of Civil and Environmental Engineering
2010-12-15
This paper discussed a systematic methodology for the hydromechanical coupled numerical analysis of earth dams constructed with unsaturated collapsible soil. Every design stage was considered, including construction, reservoir filling, and advance of saturation front until the steady-state flow condition is attained. A transient analysis of safety factors applicable to 3-dimensional conditions was presented, giving consideration to unsaturated materials and the interrelation between hydraulic and mechanical phenomena by solving equilibrium and continuity conditions at the same time. The finite element method was used to formulate equilibrium and continuity conditions for both soil skeleton and pore water, which necessitated a realistic mechanical model for the stress-strain-suction relation in unsaturated porous material and adequate constitutive models related to water flow and storage, giving special consideration to imposing appropriate boundary conditions for each simulation stage. The methodology was applied to the analysis of earth dams composed of soils at optimum, dry of optimum, and mixed compaction conditions. The dry section simulated dams constructed using poorly compacted, dry material, which are prone to collapse. By strategically placing the optimum materials in the areas of the earth fill that are most stressed, the mixed section could be designed less expensively with the same or better performance as the homogenous section at optimum conditions. The coupled analysis provides a higher safety factor than uncoupled analysis and a realistic picture of end-of-construction pore pressure distribution. The simulation of reservoir filling and saturation front advance permitted clear identification of the initialization, development, and evolution of internal failure mechanisms. 21 refs., 6 tabs., 19 figs.
Software Framework for Advanced Power Plant Simulations
John Widmann; Sorin Munteanu; Aseem Jain; Pankaj Gupta; Mark Moales; Erik Ferguson; Lewis Collins; David Sloan; Woodrow Fiveland; Yi-dong Lang; Larry Biegler; Michael Locke; Simon Lingard; Jay Yun
2010-08-01
This report summarizes the work accomplished during the Phase II development effort of the Advanced Process Engineering Co-Simulator (APECS). The objective of the project is to develop the tools to efficiently combine high-fidelity computational fluid dynamics (CFD) models with process modeling software. During the course of the project, a robust integration controller was developed that can be used in any CAPE-OPEN compliant process modeling environment. The controller mediates the exchange of information between the process modeling software and the CFD software. Several approaches to reducing the time disparity between CFD simulations and process modeling have been investigated and implemented. These include enabling the CFD models to be run on a remote cluster and enabling multiple CFD models to be run simultaneously. Furthermore, computationally fast reduced-order models (ROMs) have been developed that can be 'trained' using the results from CFD simulations and then used directly within flowsheets. Unit operation models (both CFD and ROMs) can be uploaded to a model database and shared between multiple users.
Full Waveform Inversion Using Waveform Sensitivity Kernels
Schumacher, Florian; Friederich, Wolfgang
2013-04-01
We present a full waveform inversion concept for applications ranging from seismological to enineering contexts, in which the steps of forward simulation, computation of sensitivity kernels, and the actual inversion are kept separate of each other. We derive waveform sensitivity kernels from Born scattering theory, which for unit material perturbations are identical to the Born integrand for the considered path between source and receiver. The evaluation of such a kernel requires the calculation of Green functions and their strains for single forces at the receiver position, as well as displacement fields and strains originating at the seismic source. We compute these quantities in the frequency domain using the 3D spectral element code SPECFEM3D (Tromp, Komatitsch and Liu, 2008) and the 1D semi-analytical code GEMINI (Friederich and Dalkolmo, 1995) in both, Cartesian and spherical framework. We developed and implemented the modularized software package ASKI (Analysis of Sensitivity and Kernel Inversion) to compute waveform sensitivity kernels from wavefields generated by any of the above methods (support for more methods is planned), where some examples will be shown. As the kernels can be computed independently from any data values, this approach allows to do a sensitivity and resolution analysis first without inverting any data. In the context of active seismic experiments, this property may be used to investigate optimal acquisition geometry and expectable resolution before actually collecting any data, assuming the background model is known sufficiently well. The actual inversion step then, can be repeated at relatively low costs with different (sub)sets of data, adding different smoothing conditions. Using the sensitivity kernels, we expect the waveform inversion to have better convergence properties compared with strategies that use gradients of a misfit function. Also the propagation of the forward wavefield and the backward propagation from the receiver
Crowd Simulation and Its Applications：Recent Advances
徐明亮; 蒋浩; 金小刚; 邓志刚
2014-01-01
This article surveys the state-of-the-art crowd simulation techniques and their selected applications, with its focus on our recent research advances in this rapidly growing research field. We first give a categorized overview on the mainstream methodologies of crowd simulation. Then, we describe our recent research advances on crowd evacuation, pedestrian crowds, crowd formation, traffic simulation, and swarm simulation. Finally, we offer our viewpoints on open crowd simulation research challenges and point out potential future directions in this field.
Suitability of post-Newtonian/numerical-relativity hybrid waveforms for gravitational wave detectors
MacDonald, Ilana; Nissanke, Samaya; Pfeiffer, Harald P, E-mail: macdonald@astro.utoronto.ca [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, Ontario M5S 3H8 (Canada)
2011-07-07
This paper presents a study of the sufficient accuracy of post-Newtonian and numerical relativity waveforms for the most demanding usage case: parameter estimation of strong sources in advanced gravitational wave detectors. For black hole binaries, these detectors require accurate waveform models which can be constructed by fusing an analytical post-Newtonian inspiral waveform with a numerical relativity merger-ringdown waveform. We perform a comprehensive analysis of errors that enter such 'hybrid waveforms'. We find that the post-Newtonian waveform must be aligned with the numerical relativity waveform to exquisite accuracy, about 1/100 of a gravitational wave cycle. Phase errors in the inspiral phase of the numerical relativity simulation must be controlled to {approx}< 0.1 rad. (These numbers apply to moderately optimistic estimates about the number of GW sources; exceptionally strong signals require even smaller errors.) The dominant source of error arises from the inaccuracy of the investigated post-Newtonian Taylor approximants. Using our error criterion, even at 3.5th post-Newtonian order, hybridization has to be performed significantly before the start of the longest currently available numerical waveforms which cover 30 gravitational wave cycles. The current investigation is limited to the equal-mass, zero-spin case and does not take into account calibration errors of the gravitational wave detectors.
Advanced Modeling, Simulation and Analysis (AMSA) Capability Roadmap Progress Review
Antonsson, Erik; Gombosi, Tamas
2005-01-01
Contents include the following: NASA capability roadmap activity. Advanced modeling, simulation, and analysis overview. Scientific modeling and simulation. Operations modeling. Multi-special sensing (UV-gamma). System integration. M and S Environments and Infrastructure.
TNO-ADVANCE: a modular powertrain simulation and design tool
Venne, J.W.C. van de; Smokers, R.T.M.
2000-01-01
To support its activities in the field of conventional and hybrid vehicles, TNO has developed ADVANCE, a modular simulation tool for the design and evaluation of advanced powertrains. In this paper the various features and the potential of ADVANCE are described and illustrated by means of three case
Precision Casting via Advanced Simulation and Manufacturing
1997-01-01
A two-year program was conducted to develop and commercially implement selected casting manufacturing technologies to enable significant reductions in the costs of castings, increase the complexity and dimensional accuracy of castings, and reduce the development times for delivery of high quality castings. The industry-led R&D project was cost shared with NASA's Aerospace Industry Technology Program (AITP). The Rocketdyne Division of Boeing North American, Inc. served as the team lead with participation from Lockheed Martin, Ford Motor Company, Howmet Corporation, PCC Airfoils, General Electric, UES, Inc., University of Alabama, Auburn University, Robinson, Inc., Aracor, and NASA-LeRC. The technical effort was organized into four distinct tasks. The accomplishments reported herein. Task 1.0 developed advanced simulation technology for core molding. Ford headed up this task. On this program, a specialized core machine was designed and built. Task 2.0 focused on intelligent process control for precision core molding. Howmet led this effort. The primary focus of these experimental efforts was to characterize the process parameters that have a strong impact on dimensional control issues of injection molded cores during their fabrication. Task 3.0 developed and applied rapid prototyping to produce near net shape castings. Rocketdyne was responsible for this task. CAD files were generated using reverse engineering, rapid prototype patterns were fabricated using SLS and SLA, and castings produced and evaluated. Task 4.0 was aimed at developing technology transfer. Rocketdyne coordinated this task. Casting related technology, explored and evaluated in the first three tasks of this program, was implemented into manufacturing processes.
Error analysis of numerical gravitational waveforms from coalescing binary black holes
Fong, Heather; Chu, Tony; Kumar, Prayush; Pfeiffer, Harald; Boyle, Michael; Hemberger, Daniel; Kidder, Lawrence; Scheel, Mark; Szilagyi, Bela; SXS Collaboration
2016-03-01
The Advanced Laser Interferometer Gravitational-wave Observatory (Advanced LIGO) has finished a successful first observation run and will commence its second run this summer. Detection of compact object binaries utilizes matched-filtering, which requires a vast collection of highly accurate gravitational waveforms. This talk will present a set of about 100 new aligned-spin binary black hole simulations. I will discuss their properties, including a detailed error analysis, which demonstrates that the numerical waveforms are sufficiently accurate for gravitational wave detection purposes, as well as for parameter estimation purposes.
Cannon, Kipp; Hanna, Chad; Keppel, Drew; Pfeiffer, Harald
2012-01-01
Matched-filtering for the identification of compact object mergers in gravitational-wave antenna data involves the comparison of the data stream to a bank of template gravitational waveforms. Typically the template bank is constructed from phenomenological waveform models since these can be evaluated for an arbitrary choice of physical parameters. Recently it has been proposed that singular value decomposition (SVD) can be used to reduce the number of templates required for detection. As we show here, another benefit of SVD is its removal of biases from the phenomenological templates along with a corresponding improvement in their ability to represent waveform signals obtained from numerical relativity (NR) simulations. Using these ideas, we present a method that calibrates a reduced SVD basis of phenomenological waveforms against NR waveforms in order to construct a new waveform approximant with improved accuracy and faithfulness compared to the original phenomenological model. The new waveform family is giv...
Simulation of advanced ultrasound systems using Field II
Jensen, Jørgen Arendt
2004-01-01
impulse responses is explained. A simulation example for a synthetic aperture spread spectrum flow systems is described. It is shown how the advanced coded excitation can be set up, and how the simulation can be parallelized to reduce the simulation time from 17 months to 391 hours using a 32 CPU Linux...
Safety Assessment of Advanced Imaging Sequences II: Simulations
Jensen, Jørgen Arendt
2016-01-01
An automatic approach for simulating the emitted pressure, intensity, and MI of advanced ultrasound imaging sequences is presented. It is based on a linear simulation of pressure fields using Field II, and it is hypothesized that linear simulation can attain the needed accuracy for predicting...
Virtual Environments for Advanced Trainers and Simulators
Jense, G.J.; Kuijper, F.
1993-01-01
Virtual environment technology is expected to make a big impact on future training and simulation systems. Direct stimulation of human senses (eyesight, auditory, tactile) and new paradigms for user input will improve the realism of simulations and thereby the effectiveness of training systems.
Virtual Environments for Advanced Trainers and Simulators
Jense, G.J.; Kuijper, F.
1993-01-01
Virtual environment technology is expected to make a big impact on future training and simulation systems. Direct stimulation of human senses (eyesight, auditory, tactile) and new paradigms for user input will improve the realism of simulations and thereby the effectiveness of training systems. Afte
Hybrid and Electric Advanced Vehicle Systems Simulation
Beach, R. F.; Hammond, R. A.; Mcgehee, R. K.
1985-01-01
Predefined components connected to represent wide variety of propulsion systems. Hybrid and Electric Advanced Vehicle System (HEAVY) computer program is flexible tool for evaluating performance and cost of electric and hybrid vehicle propulsion systems. Allows designer to quickly, conveniently, and economically predict performance of proposed drive train.
ADVANCE, a modular vehicle simulation environment in MATLAB/SIMULINK
Eelkema, J.; Vink, W.; Tillaart, E. van den
2002-01-01
This paper presents the development of a hybrid electric powertrain test platform. In the development process use has been made of ADVANCE, a modular vehicle simulation environment in MATLAB/Simulink. The background, philosophy, and the concept of the ADVANCE tool are discussed and a brief introduct
ADVANCE, a modular vehicle simulation environment in MATLAB/SIMULINK
Eelkema, J.; Vink, W.; Tillaart, E. van den
2002-01-01
This paper presents the development of a hybrid electric powertrain test platform. In the development process use has been made of ADVANCE, a modular vehicle simulation environment in MATLAB/Simulink. The background, philosophy, and the concept of the ADVANCE tool are discussed and a brief
Simulator design for advanced ISDN satellite design and experiments
Pepin, Gerald R.
1992-01-01
This simulation design task completion report documents the simulation techniques associated with the network models of both the Interim Service ISDN (integrated services digital network) Satellite (ISIS) and the Full Service ISDN Satellite (FSIS) architectures. The ISIS network model design represents satellite systems like the Advanced Communication Technology Satellite (ACTS) orbiting switch. The FSIS architecture, the ultimate aim of this element of the Satellite Communications Applications Research (SCAR) program, moves all control and switching functions on-board the next generation ISDN communication satellite. The technical and operational parameters for the advanced ISDN communications satellite design will be obtained from the simulation of ISIS and FSIS engineering software models for their major subsystems. Discrete events simulation experiments will be performed with these models using various traffic scenarios, design parameters and operational procedures. The data from these simulations will be used to determine the engineering parameters for the advanced ISDN communications satellite.
Predicting Performance in Technical Preclinical Dental Courses Using Advanced Simulation.
Gottlieb, Riki; Baechle, Mary A; Janus, Charles; Lanning, Sharon K
2017-01-01
The aim of this study was to investigate whether advanced simulation parameters, such as simulation exam scores, number of student self-evaluations, time to complete the simulation, and time to complete self-evaluations, served as predictors of dental students' preclinical performance. Students from three consecutive classes (n=282) at one U.S. dental school completed advanced simulation training and exams within the first four months of their dental curriculum. The students then completed conventional preclinical instruction and exams in operative dentistry (OD) and fixed prosthodontics (FP) courses, taken during the first and second years of dental school, respectively. Two advanced simulation exam scores (ASES1 and ASES2) were tested as predictors of performance in the two preclinical courses based on final course grades. ASES1 and ASES2 were found to be predictors of OD and FP preclinical course grades. Other advanced simulation parameters were not significantly related to grades in the preclinical courses. These results highlight the value of an early psychomotor skills assessment in dentistry. Advanced simulation scores may allow early intervention in students' learning process and assist in efficient allocation of resources such as faculty coverage and tutor assignment.
Simple Waveforms, Simply Described
Baker, John G.
2008-01-01
Since the first Lazarus Project calculations, it has been frequently noted that binary black hole merger waveforms are 'simple.' In this talk we examine some of the simple features of coalescence and merger waveforms from a variety of binary configurations. We suggest an interpretation of the waveforms in terms of an implicit rotating source. This allows a coherent description, of both the inspiral waveforms, derivable from post-Newtonian(PN) calculations, and the numerically determined merger-ringdown. We focus particularly on similarities in the features of various Multipolar waveform components Generated by various systems. The late-time phase evolution of most L these waveform components are accurately described with a sinple analytic fit. We also discuss apparent relationships among phase and amplitude evolution. Taken together with PN information, the features we describe can provide an approximate analytic description full coalescence wavefoRms. complementary to other analytic waveforns approaches.
Advanced Simulation and Computing Business Plan
Rummel, E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2015-07-09
To maintain a credible nuclear weapons program, the National Nuclear Security Administration’s (NNSA’s) Office of Defense Programs (DP) needs to make certain that the capabilities, tools, and expert staff are in place and are able to deliver validated assessments. This requires a complete and robust simulation environment backed by an experimental program to test ASC Program models. This ASC Business Plan document encapsulates a complex set of elements, each of which is essential to the success of the simulation component of the Nuclear Security Enterprise. The ASC Business Plan addresses the hiring, mentoring, and retaining of programmatic technical staff responsible for building the simulation tools of the nuclear security complex. The ASC Business Plan describes how the ASC Program engages with industry partners—partners upon whom the ASC Program relies on for today’s and tomorrow’s high performance architectures. Each piece in this chain is essential to assure policymakers, who must make decisions based on the results of simulations, that they are receiving all the actionable information they need.
Interactive visualization to advance earthquake simulation
Kellogg, L.H.; Bawden, G.W.; Bernardin, T.; Billen, M.; Cowgill, E.; Hamann, B.; Jadamec, M.; Kreylos, O.; Staadt, O.; Sumner, D.
2008-01-01
The geological sciences are challenged to manage and interpret increasing volumes of data as observations and simulations increase in size and complexity. For example, simulations of earthquake-related processes typically generate complex, time-varying data sets in two or more dimensions. To facilitate interpretation and analysis of these data sets, evaluate the underlying models, and to drive future calculations, we have developed methods of interactive visualization with a special focus on using immersive virtual reality (VR) environments to interact with models of Earth's surface and interior. Virtual mapping tools allow virtual "field studies" in inaccessible regions. Interactive tools allow us to manipulate shapes in order to construct models of geological features for geodynamic models, while feature extraction tools support quantitative measurement of structures that emerge from numerical simulation or field observations, thereby enabling us to improve our interpretation of the dynamical processes that drive earthquakes. VR has traditionally been used primarily as a presentation tool, albeit with active navigation through data. Reaping the full intellectual benefits of immersive VR as a tool for scientific analysis requires building on the method's strengths, that is, using both 3D perception and interaction with observed or simulated data. This approach also takes advantage of the specialized skills of geological scientists who are trained to interpret, the often limited, geological and geophysical data available from field observations. ?? Birkhaueser 2008.
Kaneko, Nobu-hisa; Maruyama, Michitaka; Urano, Chiharu; Kiryu, Shogo
2012-01-01
A method of AC waveform synthesis with quantum-mechanical accuracy has been developed on the basis of the Josephson effect in national metrology institutes, not only for its scientific interest but its potential benefit to industries. In this paper, we review the development of Josephson arbitrary waveform synthesizers based on the two types of Josephson junction array and their distinctive driving methods. We also discuss a new operation technique with multibit delta-sigma modulation and a thermometer code, which possibly enables the generation of glitch-free waveforms with high voltage levels. A Josephson junction array for this method has equally weighted branches that are operated by thermometer-coded bias current sources with multibit delta-sigma conversion.
Tanioka, Yuichiro
2017-04-01
After tsunami disaster due to the 2011 Tohoku-oki great earthquake, improvement of the tsunami forecast has been an urgent issue in Japan. National Institute of Disaster Prevention is installing a cable network system of earthquake and tsunami observation (S-NET) at the ocean bottom along the Japan and Kurile trench. This cable system includes 125 pressure sensors (tsunami meters) which are separated by 30 km. Along the Nankai trough, JAMSTEC already installed and operated the cable network system of seismometers and pressure sensors (DONET and DONET2). Those systems are the most dense observation network systems on top of source areas of great underthrust earthquakes in the world. Real-time tsunami forecast has depended on estimation of earthquake parameters, such as epicenter, depth, and magnitude of earthquakes. Recently, tsunami forecast method has been developed using the estimation of tsunami source from tsunami waveforms observed at the ocean bottom pressure sensors. However, when we have many pressure sensors separated by 30km on top of the source area, we do not need to estimate the tsunami source or earthquake source to compute tsunami. Instead, we can initiate a tsunami simulation from those dense tsunami observed data. Observed tsunami height differences with a time interval at the ocean bottom pressure sensors separated by 30 km were used to estimate tsunami height distribution at a particular time. In our new method, tsunami numerical simulation was initiated from those estimated tsunami height distribution. In this paper, the above method is improved and applied for the tsunami generated by the 2011 Tohoku-oki great earthquake. Tsunami source model of the 2011 Tohoku-oki great earthquake estimated using observed tsunami waveforms, coseimic deformation observed by GPS and ocean bottom sensors by Gusman et al. (2012) is used in this study. The ocean surface deformation is computed from the source model and used as an initial condition of tsunami
Process simulation for advanced composites production
Allendorf, M.D.; Ferko, S.M.; Griffiths, S. [Sandia National Labs., Livermore, CA (United States)] [and others
1997-04-01
The objective of this project is to improve the efficiency and lower the cost of chemical vapor deposition (CVD) processes used to manufacture advanced ceramics by providing the physical and chemical understanding necessary to optimize and control these processes. Project deliverables include: numerical process models; databases of thermodynamic and kinetic information related to the deposition process; and process sensors and software algorithms that can be used for process control. Target manufacturing techniques include CVD fiber coating technologies (used to deposit interfacial coatings on continuous fiber ceramic preforms), chemical vapor infiltration, thin-film deposition processes used in the glass industry, and coating techniques used to deposit wear-, abrasion-, and corrosion-resistant coatings for use in the pulp and paper, metals processing, and aluminum industries.
Interoperable Technologies for Advanced Petascale Simulations
Li, Xiaolin [SUNY at Stony Brook
2013-01-14
Our final report on the accomplishments of ITAPS at Stony Brook during period covered by the research award includes component service, interface service and applications. On the component service, we have designed and implemented a robust functionality for the Lagrangian tracking of dynamic interface. We have migrated the hyperbolic, parabolic and elliptic solver from stage-wise second order toward global second order schemes. We have implemented high order coupling between interface propagation and interior PDE solvers. On the interface service, we have constructed the FronTier application programer's interface (API) and its manual page using doxygen. We installed the FronTier functional interface to conform with the ITAPS specifications, especially the iMesh and iMeshP interfaces. On applications, we have implemented deposition and dissolution models with flow and implemented the two-reactant model for a more realistic precipitation at the pore level and its coupling with Darcy level model. We have continued our support to the study of fluid mixing problem for problems in inertial comfinement fusion. We have continued our support to the MHD model and its application to plasma liner implosion in fusion confinement. We have simulated a step in the reprocessing and separation of spent fuels from nuclear power plant fuel rods. We have implemented the fluid-structure interaction for 3D windmill and parachute simulations. We have continued our collaboration with PNNL, BNL, LANL, ORNL, and other SciDAC institutions.
Blackman, Jonathan; Field, Scott; Galley, Chad; Hemberger, Daniel; Scheel, Mark; Schmidt, Patricia; Smith, Rory; SXS Collaboration Collaboration
2016-03-01
We are now in the advanced detector era of gravitational wave astronomy, and the merger of two black holes (BHs) is one of the most promising sources of gravitational waves that could be detected on earth. To infer the BH masses and spins, the observed signal must be compared to waveforms predicted by general relativity for millions of binary configurations. Numerical relativity (NR) simulations can produce accurate waveforms, but are prohibitively expensive to use for parameter estimation. Other waveform models are fast enough but may lack accuracy in portions of the parameter space. Numerical relativity surrogate models attempt to rapidly predict the results of a NR code with a small or negligible modeling error, after being trained on a set of input waveforms. Such surrogate models are ideal for parameter estimation, as they are both fast and accurate, and have already been built for the case of non-spinning BHs. Using 250 input waveforms, we build a surrogate model for waveforms from the Spectral Einstein Code (SpEC) for a subspace of precessing systems.
Safety Assessment of Advanced Imaging Sequences II: Simulations
Jensen, Jørgen Arendt
2016-01-01
An automatic approach for simulating the emitted pressure, intensity, and MI of advanced ultrasound imaging sequences is presented. It is based on a linear simulation of pressure fields using Field II, and it is hypothesized that linear simulation can attain the needed accuracy for predicting...... and Ita.3 closely matches that for the measurement, and simulations can therefore be used to select the region for measuring the intensities, resulting in a significant reduction in measurement time. It can validate emission sequences by showing symmetry of emitted pressure fields, focal position...
The use of advanced computer simulation in structural design
Field, C.J.; Mole, A. [Arup, San Fransisco, CA (United States); Arkinstall, M. [Arup, Sydney (Australia)
2005-07-01
The benefits that can be gained from the application of advanced numerical simulation in building design were discussed. A review of current practices in structural engineering was presented along with an illustration of a range of international project case studies. Structural engineers use analytical methods to evaluate both static and dynamic loads. Structural design is prescribed by a range of building codes, depending on location, building type and loading, but often, buildings do not fit well within the codes, particularly if one wants to take advantage of new technologies and developments in design that are not covered by the code. Advanced simulation refers to the use of mathematical modeling to complex problems to allow a wider consideration of building types and conditions that can be designed reliably using standard practices. Advanced simulation is used to address virtual testing and prototyping, verifying innovative design ideas, forensic engineering, and design optimization. The benefits of advanced simulation include enhanced creativity, improved performance, cost savings, risk management, sustainable design solutions, and better communication. The following 5 case studies illustrated the value gained by using advanced simulation as an integral part of the design process: the earthquake resistant Maison Hermes in Tokyo; the seismic resistant braces known as the Unbonded Brace for use in the United States; a simulation of the existing Disney Museum to evaluate its capacity to resist earthquakes; simulation of the MIT Brain and Cognitive Science Project to evaluate the effect of different foundation types on the vibration entering the building; and, the Beijing Aquatic Center whose design was streamlined by optimized structural analysis. It was suggested that industry should encourage the transfer of technology from other professions and should try to collaborate towards a global building model to construct buildings in a more efficient manner. 7 refs
Periodic, pseudonoise waveforms for multifunction coherent ladar.
Dierking, Matthew P; Duncan, Bradley D
2010-04-01
We report the use of periodic, pseudonoise waveforms in a multifunction coherent ladar system. We exploit the Doppler sensitivity of these waveforms, as well as agile processing, to enable diverse ladar functions, including high range resolution imaging, macro-Doppler imaging, synthetic aperture ladar, and range-resolved micro-Doppler imaging. We present analytic expressions and simulations demonstrating the utility of pseudonoise waveforms for each of the ladar modes. We also discuss a laboratory pseudonoise ladar system that was developed to demonstrate range compression and range-resolved micro-Doppler imaging, as well as the phase recovery common to each of the coherent modes.
Quirk, Kevin J.; Srinivasan, Meera
2012-01-01
The minimum-shift-keying (MSK) radar waveform is formed by periodically extending a waveform that separately modulates the in-phase and quadrature- phase components of the carrier with offset pulse-shaped pseudo noise (PN) sequences. To generate this waveform, a pair of periodic PN sequences is each passed through a pulse-shaping filter with a half sinusoid impulse response. These shaped PN waveforms are then offset by half a chip time and are separately modulated on the in-phase and quadrature phase components of an RF carrier. This new radar waveform allows an increase in radar resolution without the need for additional spectrum. In addition, it provides self-interference suppression and configurable peak sidelobes. Compared strictly on the basis of the expressions for delay resolution, main-lobe bandwidth, effective Doppler bandwidth, and peak ambiguity sidelobe, it appears that bi-phase coded (BPC) outperforms the new MSK waveform. However, a radar waveform must meet certain constraints imposed by the transmission and reception of the modulation, as well as criteria dictated by the observation. In particular, the phase discontinuity of the BPC waveform presents a significant impediment to the achievement of finer resolutions in radar measurements a limitation that is overcome by using the continuous phase MSK waveform. The phase continuity, and the lower fractional out-of-band power of MSK, increases the allowable bandwidth compared with BPC, resulting in a factor of two increase in the range resolution of the radar. The MSK waveform also has been demonstrated to have an ambiguity sidelobe structure very similar to BPC, where the sidelobe levels can be decreased by increasing the length of the m-sequence used in its generation. This ability to set the peak sidelobe level is advantageous as it allows the system to be configured to a variety of targets, including those with a larger dynamic range. Other conventionally used waveforms that possess an even greater
Bustos, Cesar; Sandeen, Ben; Chennakesavalu, Shriram; Littenberg, Tyson; Farr, Ben; Kalogera, Vassiliki
2016-01-01
Gravitational Waves (GWs) were predicted by Einstein's Theory of General Relativity as ripples in space-time that propagate outward from a source. Strong GW sources consist of compact binary systems such as Binary Neutron Stars (BNS) or Binary Black Holes (BBHs) that experience orbital shrinkage (inspiral) and eventual merger. Indirect evidence for the existence of GWs has been obtained through radio pulsar studies in BNS systems. A study of BBHs and other compact objects has limitations in the electromagnetic spectrum, therefore direct detections of GWs will open a new window into their nature. The effort targeting direct GWs detection is anchored on the development of a detector known as Advanced LIGO (Laser Interferometer Gravitational Wave Observation). Although detecting GW sources represents an anticipated breakthrough in physics, making GW astrophysics a reality critically relies on our ability to determine and measure the physical parameters associated with GW sources. We use Markov Chain Monte Carlo (MCMC) simulations on high-performance computing clusters for parameter estimation on high dimensional spaces (GW sources - 15 parameters). The quality of GW parameter estimation greatly depends on having the best possible knowledge of the expected waveform. Unfortunately, BBH GW production is very complex and our best waveforms are not valid across the full parameter space. With large-scale simulations we examine quantitatively the limitations of these waveforms in terms of extracting the astrophysical properties of BBH GW sources. We find that current waveforms are inadequate for BBH of unequal masses and demonstrate that improved waveforms are critically needed.
Georgia Tech Catalog of Gravitational Waveforms
Jani, Karan; Clark, James A; London, Lionel; Laguna, Pablo; Shoemaker, Deirdre
2016-01-01
This paper introduces a catalog of gravitational waveforms from the bank of simulations by the numerical relativity effort at Georgia Tech. Currently, the catalog consists of 452 distinct waveforms from more than 600 binary black hole simulations: 128 of the waveforms are from binaries with black hole spins aligned with the orbital angular momentum, and 324 are from precessing binary black hole systems. The waveforms from binaries with non-spinning black holes have mass-ratios $q = m_1/m_2 \\le 15$, and those with precessing, spinning black holes have $q \\le 8$. The waveforms expand a moderate number of orbits in the late inspiral, the burst during coalescence, and the ring-down of the final black hole. Examples of waveforms in the catalog matched against the widely used approximate models are presented. In addition, predictions of the mass and spin of the final black hole by phenomenological fits are tested against the results from the simulation bank. The role of the catalog in interpreting the GW150914 even...
Georgia tech catalog of gravitational waveforms
Jani, Karan; Healy, James; Clark, James A.; London, Lionel; Laguna, Pablo; Shoemaker, Deirdre
2016-10-01
This paper introduces a catalog of gravitational waveforms from the bank of simulations by the numerical relativity effort at Georgia Tech. Currently, the catalog consists of 452 distinct waveforms from more than 600 binary black hole simulations: 128 of the waveforms are from binaries with black hole spins aligned with the orbital angular momentum, and 324 are from precessing binary black hole systems. The waveforms from binaries with non-spinning black holes have mass-ratios q = m 1/m 2 ≤ 15, and those with precessing, spinning black holes have q ≤ 8. The waveforms expand a moderate number of orbits in the late inspiral, the burst during coalescence, and the ring-down of the final black hole. Examples of waveforms in the catalog matched against the widely used approximate models are presented. In addition, predictions of the mass and spin of the final black hole by phenomenological fits are tested against the results from the simulation bank. The role of the catalog in interpreting the GW150914 event and future massive binary black-hole search in LIGO is discussed. The Georgia Tech catalog is publicly available at einstein.gatech.edu/catalog.
Advanced computer graphic techniques for laser range finder (LRF) simulation
Bedkowski, Janusz; Jankowski, Stanislaw
2008-11-01
This paper show an advanced computer graphic techniques for laser range finder (LRF) simulation. The LRF is the common sensor for unmanned ground vehicle, autonomous mobile robot and security applications. The cost of the measurement system is extremely high, therefore the simulation tool is designed. The simulation gives an opportunity to execute algorithm such as the obstacle avoidance[1], slam for robot localization[2], detection of vegetation and water obstacles in surroundings of the robot chassis[3], LRF measurement in crowd of people[1]. The Axis Aligned Bounding Box (AABB) and alternative technique based on CUDA (NVIDIA Compute Unified Device Architecture) is presented.
Tagoshi, Hideyuki; Pai, Archana; Arun, K G
2014-01-01
We investigate the effects of using the {\\it full} waveform (FWF) over the conventional {\\it restricted} waveform (RWF) of the inspiral signal from a coalescing compact binary (CCB) system in extracting the parameters of the source, using a global network of second generation interferometric detectors. We study a hypothetical population of (1.4-10)$M_\\odot$ NS-BH binaries (uniformly distributed and oriented in the sky) by employing the full post-Newtonian waveforms, which not only include contributions from various harmonics other than the dominant one (quadrupolar mode) but also the post-Newtonian amplitude corrections associated with each harmonic, of the inspiral signal expected from this system. It is expected that the GW detector network consisting of the two LIGO detectors and a Virgo detector will be joined by KAGRA and by proposed LIGO-India. We study the problem of parameter estimation with all 16 possible detector configurations. Comparing medians of error distributions obtained using FWFs with thos...
Doroshenko, V M; Cotter, R J
1996-01-01
The stored waveform inverse Fourier transform (SWIFT) technique is used for broadband excitation of ions in an ion-trap mass spectrometer to perform mass-selective accumulation, isolation, and fragmentation of peptide ions formed by matrix-assisted laser desorption/ionization. Unit mass resolution is achieved for isolation of ions in the range of m/z up to 1300 using a two-step isolation technique with stretched-in-time narrow band SWIFT pulses at the second stage. The effect of 'stretched-in-time' waveforms is similar to that observed previously for mass-scan-rate reduction. The asymmetry phenomenon resulting from the stretched ion-trap electrode geometry is observed during application of normal and time-reversed waveforms and is similar to the asymmetry effects observed for forward and reverse mass scans in the resonance ejection mode. Mass-selective accumulation of ions from multiple laser shots was accomplished using a method described earlier that involves increasing the trapping voltage during ion introduction for more efficient trapping of ions.
Gasification CFD Modeling for Advanced Power Plant Simulations
Zitney, S.E.; Guenther, C.P.
2005-09-01
In this paper we have described recent progress on developing CFD models for two commercial-scale gasifiers, including a two-stage, coal slurry-fed, oxygen-blown, pressurized, entrained-flow gasifier and a scaled-up design of the PSDF transport gasifier. Also highlighted was NETL’s Advanced Process Engineering Co-Simulator for coupling high-fidelity equipment models with process simulation for the design, analysis, and optimization of advanced power plants. Using APECS, we have coupled the entrained-flow gasifier CFD model into a coal-fired, gasification-based FutureGen power and hydrogen production plant. The results for the FutureGen co-simulation illustrate how the APECS technology can help engineers better understand and optimize gasifier fluid dynamics and related phenomena that impact overall power plant performance.
Design of pulse waveform for waveform division multiple access UWB wireless communication system.
Yin, Zhendong; Wang, Zhirui; Liu, Xiaohui; Wu, Zhilu
2014-01-01
A new multiple access scheme, Waveform Division Multiple Access (WDMA) based on the orthogonal wavelet function, is presented. After studying the correlation properties of different categories of single wavelet functions, the one with the best correlation property will be chosen as the foundation for combined waveform. In the communication system, each user is assigned to different combined orthogonal waveform. Demonstrated by simulation, combined waveform is more suitable than single wavelet function to be a communication medium in WDMA system. Due to the excellent orthogonality, the bit error rate (BER) of multiuser with combined waveforms is so close to that of single user in a synchronous system. That is to say, the multiple access interference (MAI) is almost eliminated. Furthermore, even in an asynchronous system without multiuser detection after matched filters, the result is still pretty ideal and satisfactory by using the third combination mode that will be mentioned in the study.
Sparse Frequency Waveform Design for Radar-Embedded Communication
Chaoyun Mai
2016-01-01
Full Text Available According to the Tag application with function of covert communication, a method for sparse frequency waveform design based on radar-embedded communication is proposed. Firstly, sparse frequency waveforms are designed based on power spectral density fitting and quasi-Newton method. Secondly, the eigenvalue decomposition of the sparse frequency waveform sequence is used to get the dominant space. Finally the communication waveforms are designed through the projection of orthogonal pseudorandom vectors in the vertical subspace. Compared with the linear frequency modulation waveform, the sparse frequency waveform can further improve the bandwidth occupation of communication signals, thus achieving higher communication rate. A certain correlation exists between the reciprocally orthogonal communication signals samples and the sparse frequency waveform, which guarantees the low SER (signal error rate and LPI (low probability of intercept. The simulation results verify the effectiveness of this method.
Simulation training in neurosurgery: advances in education and practice
Konakondla, Sanjay; Fong, Reginald; Schirmer, Clemens M
2017-01-01
The current simulation technology used for neurosurgical training leaves much to be desired. Significant efforts are thoroughly exhausted in hopes of developing simulations that translate to give learners the “real-life” feel. Though a respectable goal, this may not be necessary as the application for simulation in neurosurgical training may be most useful in early learners. The ultimate uniformly agreeable endpoint of improved outcome and patient safety drives these investments. We explore the development, availability, educational taskforces, cost burdens and the simulation advancements in neurosurgical training. The technologies can be directed at achieving early resident milestones placed by the Accreditation Council for Graduate Medical Education. We discuss various aspects of neurosurgery disciplines with specific technologic advances of simulation software. An overview of the scholarly landscape of the recent publications in the realm of medical simulation and virtual reality pertaining to neurologic surgery is provided. We analyze concurrent concept overlap between PubMed headings and provide a graphical overview of the associations between these terms. PMID:28765716
Workflows for Full Waveform Inversions
Boehm, Christian; Krischer, Lion; Afanasiev, Michael; van Driel, Martin; May, Dave A.; Rietmann, Max; Fichtner, Andreas
2017-04-01
Despite many theoretical advances and the increasing availability of high-performance computing clusters, full seismic waveform inversions still face considerable challenges regarding data and workflow management. While the community has access to solvers which can harness modern heterogeneous computing architectures, the computational bottleneck has fallen to these often manpower-bounded issues that need to be overcome to facilitate further progress. Modern inversions involve huge amounts of data and require a tight integration between numerical PDE solvers, data acquisition and processing systems, nonlinear optimization libraries, and job orchestration frameworks. To this end we created a set of libraries and applications revolving around Salvus (http://salvus.io), a novel software package designed to solve large-scale full waveform inverse problems. This presentation focuses on solving passive source seismic full waveform inversions from local to global scales with Salvus. We discuss (i) design choices for the aforementioned components required for full waveform modeling and inversion, (ii) their implementation in the Salvus framework, and (iii) how it is all tied together by a usable workflow system. We combine state-of-the-art algorithms ranging from high-order finite-element solutions of the wave equation to quasi-Newton optimization algorithms using trust-region methods that can handle inexact derivatives. All is steered by an automated interactive graph-based workflow framework capable of orchestrating all necessary pieces. This naturally facilitates the creation of new Earth models and hopefully sparks new scientific insights. Additionally, and even more importantly, it enhances reproducibility and reliability of the final results.
Integration of Advanced Simulation and Visualization for Manufacturing Process Optimization
Zhou, Chenn; Wang, Jichao; Tang, Guangwu; Moreland, John; Fu, Dong; Wu, Bin
2016-05-01
The integration of simulation and visualization can provide a cost-effective tool for process optimization, design, scale-up and troubleshooting. The Center for Innovation through Visualization and Simulation (CIVS) at Purdue University Northwest has developed methodologies for such integration with applications in various manufacturing processes. The methodologies have proven to be useful for virtual design and virtual training to provide solutions addressing issues on energy, environment, productivity, safety, and quality in steel and other industries. In collaboration with its industrial partnerships, CIVS has provided solutions to companies, saving over US38 million. CIVS is currently working with the steel industry to establish an industry-led Steel Manufacturing Simulation and Visualization Consortium through the support of National Institute of Standards and Technology AMTech Planning Grant. The consortium focuses on supporting development and implementation of simulation and visualization technologies to advance steel manufacturing across the value chain.
Advanced Simulation and Computing FY17 Implementation Plan, Version 0
McCoy, Michel [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Archer, Bill [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hendrickson, Bruce [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wade, Doug [National Nuclear Security Administration (NNSA), Washington, DC (United States). Office of Advanced Simulation and Computing and Institutional Research and Development; Hoang, Thuc [National Nuclear Security Administration (NNSA), Washington, DC (United States). Computational Systems and Software Environment
2016-08-29
The Stockpile Stewardship Program (SSP) is an integrated technical program for maintaining the safety, surety, and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational capabilities to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources that support annual stockpile assessment and certification, study advanced nuclear weapons design and manufacturing processes, analyze accident scenarios and weapons aging, and provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balance of resource, including technical staff, hardware, simulation software, and computer science solutions. ASC is now focused on increasing predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (sufficient resolution, dimensionality, and scientific details), and quantifying critical margins and uncertainties. Resolving each issue requires increasingly difficult analyses because the aging process has progressively moved the stockpile further away from the original test base. Where possible, the program also enables the use of high performance computing (HPC) and simulation tools to address broader national security needs, such as foreign nuclear weapon assessments and counter nuclear terrorism.
Requirements for advanced simulation of nuclear reactor and chemicalseparation plants.
Palmiotti, G.; Cahalan, J.; Pfeiffer, P.; Sofu, T.; Taiwo, T.; Wei,T.; Yacout, A.; Yang, W.; Siegel, A.; Insepov, Z.; Anitescu, M.; Hovland,P.; Pereira, C.; Regalbuto, M.; Copple, J.; Willamson, M.
2006-12-11
This report presents requirements for advanced simulation of nuclear reactor and chemical processing plants that are of interest to the Global Nuclear Energy Partnership (GNEP) initiative. Justification for advanced simulation and some examples of grand challenges that will benefit from it are provided. An integrated software tool that has its main components, whenever possible based on first principles, is proposed as possible future approach for dealing with the complex problems linked to the simulation of nuclear reactor and chemical processing plants. The main benefits that are associated with a better integrated simulation have been identified as: a reduction of design margins, a decrease of the number of experiments in support of the design process, a shortening of the developmental design cycle, and a better understanding of the physical phenomena and the related underlying fundamental processes. For each component of the proposed integrated software tool, background information, functional requirements, current tools and approach, and proposed future approaches have been provided. Whenever possible, current uncertainties have been quoted and existing limitations have been presented. Desired target accuracies with associated benefits to the different aspects of the nuclear reactor and chemical processing plants were also given. In many cases the possible gains associated with a better simulation have been identified, quantified, and translated into economical benefits.
Advances in Simulation of Wave Interactions with Extended MHD Phenomena
Batchelor, Donald B [ORNL; D' Azevedo, Eduardo [ORNL; Bateman, Glenn [ORNL; Bernholdt, David E [ORNL; Bonoli, P. [Massachusetts Institute of Technology (MIT); Bramley, Randall B [ORNL; Breslau, Joshua [ORNL; Elwasif, Wael R [ORNL; Foley, S. [Indiana University; Jaeger, Erwin Frederick [ORNL; Jardin, S. C. [Princeton Plasma Physics Laboratory (PPPL); Klasky, Scott A [ORNL; Kruger, Scott E [ORNL; Ku, Long-Poe [ORNL; McCune, Douglas [Princeton Plasma Physics Laboratory (PPPL); Ramos, J. [Massachusetts Institute of Technology (MIT); Schissel, David P [ORNL; Schnack, Dalton D [ORNL
2009-01-01
The Integrated Plasma Simulator (IPS) provides a framework within which some of the most advanced, massively-parallel fusion modeling codes can be interoperated to provide a detailed picture of the multi-physics processes involved in fusion experiments. The presentation will cover four topics: (1) recent improvements to the IPS, (2) application of the IPS for very high resolution simulations of ITER scenarios, (3) studies of resistive and ideal MHD stability in tokamak discharges using IPS facilities, and (4) the application of RF power in the electron cyclotron range of frequencies to control slowly growing MHD modes in tokamaks and initial evaluations of optimized location for RF power deposition.
Advances in Simulation of Wave Interaction with Extended MHD Phenomena
Batchelor, Donald B [ORNL; Abla, Gheni [ORNL; D' Azevedo, Ed F [ORNL; Bateman, Glenn [Lehigh University, Bethlehem, PA; Bernholdt, David E [ORNL; Berry, Lee A [ORNL; Bonoli, P. [Massachusetts Institute of Technology (MIT); Bramley, R [Indiana University; Breslau, Joshua [ORNL; Chance, M. [Princeton Plasma Physics Laboratory (PPPL); Chen, J. [Princeton Plasma Physics Laboratory (PPPL); Choi, M. [General Atomics; Elwasif, Wael R [ORNL; Foley, S. [Indiana University; Fu, GuoYong [Princeton Plasma Physics Laboratory (PPPL); Harvey, R. W. [CompX, Del Mar, CA; Jaeger, Erwin Frederick [ORNL; Jardin, S. C. [Princeton Plasma Physics Laboratory (PPPL); Jenkins, T [University of Wisconsin; Keyes, David E [Columbia University; Klasky, Scott A [ORNL; Kruger, Scott [Tech-X Corporation; Ku, Long-Poe [Princeton Plasma Physics Laboratory (PPPL); Lynch, Vickie E [ORNL; McCune, Douglas [Princeton Plasma Physics Laboratory (PPPL); Ramos, J. [Massachusetts Institute of Technology (MIT); Schissel, D. [General Atomics; Schnack, [University of Wisconsin; Wright, J. [Massachusetts Institute of Technology (MIT)
2009-01-01
The Integrated Plasma Simulator (IPS) provides a framework within which some of the most advanced, massively-parallel fusion modeling codes can be interoperated to provide a detailed picture of the multi-physics processes involved in fusion experiments. The presentation will cover four topics: 1) recent improvements to the IPS, 2) application of the IPS for very high resolution simulations of ITER scenarios, 3) studies of resistive and ideal MHD stability in tokamk discharges using IPS facilities, and 4) the application of RF power in the electron cyclotron range of frequencies to control slowly growing MHD modes in tokamaks and initial evaluations of optimized location for RF power deposition.
Advances in simulation of wave interactions with extended MHD phenomena
Batchelor, D; D' Azevedo, E; Bernholdt, D E; Berry, L; Elwasif, W; Jaeger, E [Oak Ridge National Laboratory (United States); Abla, G; Choi, M [General Atomics (United States); Bateman, G [Lehigh University (United States); Bonoli, P [Plasma Science and Fusion Center, Massachusetts Institute of Technology (United States); Bramley, R; Foley, S [Indiana University (United States); Breslau, J; Chance, M; Chen, J; Fu, G; Jardin, S [Princeton Plasma Physics Laboratory (United States); Harvey, R [CompX International (United States); Jenkins, T [University of Wisconsin (United States); Keyes, D, E-mail: batchelordb@ornl.go [Columbia University (United States)
2009-07-01
The Integrated Plasma Simulator (IPS) provides a framework within which some of the most advanced, massively-parallel fusion modeling codes can be interoperated to provide a detailed picture of the multi-physics processes involved in fusion experiments. The presentation will cover four topics: 1) recent improvements to the IPS, 2) application of the IPS for very high resolution simulations of ITER scenarios, 3) studies of resistive and ideal MHD stability in tokamk discharges using IPS facilities, and 4) the application of RF power in the electron cyclotron range of frequencies to control slowly growing MHD modes in tokamaks and initial evaluations of optimized location for RF power deposition.
Preface to advances in numerical simulation of plasmas
Parker, Scott E.; Chacon, Luis
2016-10-01
This Journal of Computational Physics Special Issue, titled "Advances in Numerical Simulation of Plasmas," presents a snapshot of the international state of the art in the field of computational plasma physics. The articles herein are a subset of the topics presented as invited talks at the 24th International Conference on the Numerical Simulation of Plasmas (ICNSP), August 12-14, 2015 in Golden, Colorado. The choice of papers was highly selective. The ICNSP is held every other year and is the premier scientific meeting in the field of computational plasma physics.
Hybrid and electric advanced vehicle systems (heavy) simulation
Hammond, R. A.; Mcgehee, R. K.
1981-01-01
A computer program to simulate hybrid and electric advanced vehicle systems (HEAVY) is described. It is intended for use early in the design process: concept evaluation, alternative comparison, preliminary design, control and management strategy development, component sizing, and sensitivity studies. It allows the designer to quickly, conveniently, and economically predict the performance of a proposed drive train. The user defines the system to be simulated using a library of predefined component models that may be connected to represent a wide variety of propulsion systems. The development of three models are discussed as examples.
无
2001-01-01
The DSP Based Waveform Generator is used for CSR Control system to control special controlled objects, such as the pulsed power supply for magnets, RF system, injection and extraction synchronization, global CSR synchronization etc. This intelligent controller based on 4800 MIPS DSP and 256M SDRAM technology will supply highly stable and highly accurate reference waveform used by the power supply of magnets. The specifications are as follows:
On estimating the phase of a periodic waveform in additive Gaussian noise, part 3
Rauch, L. L.
1991-01-01
Motivated by advances in signal processing technology that support more complex algorithms, researchers have taken a new look at the problem of estimating the phase and other parameters of a nearly periodic waveform in additive Gaussian noise, based on observation during a given time interval. Parts 1 and 2 are very briefly reviewed. In part 3, the actual performances of some of the highly nonlinear estimation algorithms of parts 1 and 2 are evaluated by numerical simulation using Monte Carlo techniques.
Griffin, Maurice; Sugawara, Glen
1995-02-01
A system for storing an arbitrary waveform on nonvolatile random access memory (NVRAM) device and generating an analog signal using the NVRAM device is described. A central processing unit is used to synthesize an arbitrary waveform and create a digital representation of the waveform and transfer the digital representation to a microprocessor which, in turn, writes the digital data into an NVRAM device which has been mapped into a portion of the microprocessor address space. The NVRAM device is removed from address space and placed into an independent waveform generation unit. In the waveform generation unit, an address clock provides an address timing signal and a cycle clock provides a transmit signal. Both signals are applied to an address generator. When both signals are present, the address generator generates and transmits to the NVRAM device a new address for each cycle of the address timing signal. In response to each new address generated, the NVRAM devices provides a digital output which is applied to a digital to analog converter. The converter produces a continuous analog output which is smoothed by a filter to produce the arbitrary waveform.
Esper, Stephen A; Pinsky, Michael R
2014-12-01
The bedside measurement of continuous arterial pressure values from waveform analysis has been routinely available via indwelling arterial catheterization for >50 years. Invasive blood pressure monitoring has been utilized in critically ill patients, in both the operating room and critical care units, to facilitate rapid diagnoses of cardiovascular insufficiency and monitor response to treatments aimed at correcting abnormalities before the consequences of either hypo- or hypertension are seen. Minimally invasive techniques to estimate cardiac output (CO) have gained increased appeal. This has led to the increased interest in arterial waveform analysis to provide this important information, as it is measured continuously in many operating rooms and intensive care units. Arterial waveform analysis also allows for the calculation of many so-called derived parameters intrinsically created by this pulse pressure profile. These include estimates of left ventricular stroke volume (SV), CO, vascular resistance, and during positive-pressure breathing, SV variation, and pulse pressure variation. This article focuses on the principles of arterial waveform analysis and their determinants, components of the arterial system, and arterial pulse contour. It will also address the advantage of measuring real-time CO by the arterial waveform and the benefits to measuring SV variation. Arterial waveform analysis has gained a large interest in the overall assessment and management of the critically ill and those at a risk of hemodynamic deterioration.
Seismic waveform modeling over cloud
Luo, Cong; Friederich, Wolfgang
2016-04-01
With the fast growing computational technologies, numerical simulation of seismic wave propagation achieved huge successes. Obtaining the synthetic waveforms through numerical simulation receives an increasing amount of attention from seismologists. However, computational seismology is a data-intensive research field, and the numerical packages usually come with a steep learning curve. Users are expected to master considerable amount of computer knowledge and data processing skills. Training users to use the numerical packages, correctly access and utilize the computational resources is a troubled task. In addition to that, accessing to HPC is also a common difficulty for many users. To solve these problems, a cloud based solution dedicated on shallow seismic waveform modeling has been developed with the state-of-the-art web technologies. It is a web platform integrating both software and hardware with multilayer architecture: a well designed SQL database serves as the data layer, HPC and dedicated pipeline for it is the business layer. Through this platform, users will no longer need to compile and manipulate various packages on the local machine within local network to perform a simulation. By providing users professional access to the computational code through its interfaces and delivering our computational resources to the users over cloud, users can customize the simulation at expert-level, submit and run the job through it.
Simulating Full-Waveform LIDAR
2009-09-01
Retrieved September 8, 2008, from http://home.iitk.ac.in/~blohani/LiDARSchool2008/downloads.html Rautiainen, M., & Stenberg , P. (2005). Application...Meetings of COSPAR: Space Research XII, 1, 219–233. Smolander, S., & Stenberg , P. (2005). Simple parameterizations of the radiation budget of uniform...broadleaved and coniferous canopies. Remote Sensing of Environment, 94, 355–363. Stenberg , P. (2007). Simple analytical formula for calculating
Windowing Waveform Relaxation of Initial Value Problems
Yao-lin Jiang
2006-01-01
We present a windowing technique of waveform relaxation for dynamic systems. An effective estimation on window length is derived by an iterative error expression provided here. Relaxation processes can be speeded up if one takes the windowing technique in advance. Numerical experiments are given to further illustrate the theoretical analysis.
Advanced simulation study on bunch gap transient effect
Kobayashi, Tetsuya; Akai, Kazunori
2016-06-01
Bunch phase shift along the train due to a bunch gap transient is a concern in high-current colliders. In KEKB operation, the measured phase shift along the train agreed well with a simulation and a simple analytical form in most part of the train. However, a rapid phase change was observed at the leading part of the train, which was not predicted by the simulation or by the analytical form. In order to understand the cause of this observation, we have developed an advanced simulation, which treats the transient loading in each of the cavities of the three-cavity system of the accelerator resonantly coupled with energy storage (ARES) instead of the equivalent single cavities used in the previous simulation, operating in the accelerating mode. In this paper, we show that the new simulation reproduces the observation, and clarify that the rapid phase change at the leading part of the train is caused by a transient loading in the three-cavity system of ARES. KEKB is being upgraded to SuperKEKB, which is aiming at 40 times higher luminosity than KEKB. The gap transient in SuperKEKB is investigated using the new simulation, and the result shows that the rapid phase change at the leading part of the train is much larger due to higher beam currents. We will also present measures to mitigate possible luminosity reduction or beam performance deterioration due to the rapid phase change caused by the gap transient.
Advanced studies on Simulation Methodologies for very Complicated Fracture Phenomena
Nishioka, Toshihisa
2010-06-01
Although nowadays, computational techniques are well developed, for Extremely Complicated Fracture Phenomena, they are still very difficult to simulate, for general engineers, researchers. To overcome many difficulties in those simulations, we have developed not only Simulation Methodologies but also theoretical basis and concepts. We sometimes observe extremely complicated fracture patterns, especially in dynamic fracture phenomena such as dynamic crack branching, kinking, curving, etc. For examples, although the humankind, from primitive men to modern scientists such as Albert Einstein had watched the post-mortem patterns of dynamic crack branching, the governing condition for the onset of the phenomena had been unsolved until our experimental study. From in these studies, we found the governing condition of dynamic crack bifurcation, as follows. When the total energy flux per unit time into a propagating crack tip reaches the material crack resistance, the crack braches into two cracks [total energy flux criterion]. The crack branches many times whenever the criterion is satisfied. Furthermore, the complexities also arise due to their time-dependence and/or their-deformation dependence. In order to make it possible to simulate such extremely complicated fracture phenomena, we developed many original advanced computational methods and technologies. These are (i)moving finite element method based on Delaunay automatic triangulation (MFEMBOAT), path independent,(ii) equivalent domain integral expression of the dynamic J integral associated with a continuous auxiliary function,(iii) Mixed phase path-prediction mode simulation, (iv) implicit path prediction criterion. In this paper, these advanced computational methods are thoroughly explained together with successful comparison with the experimental results. Since multiple dynamic crack branching phenomena may be most complicated fracture due to complicated fracture paths, and its time dependence (transient), this
Sebastian, Anil; Syed, Farhatullah; Perry, Donna; Balamurugan, Vinayagapriya; Colthurst, James; Chaudhry, Iskander H; Bayat, Ardeshir
2011-11-01
We previously demonstrated the beneficial effect of a novel electrical stimulation (ES) waveform, degenerate wave (DW) on skin fibroblasts, and now hypothesize that DW can enhance cutaneous wound healing in vivo. Therefore, a punch biopsy was taken from the upper arm of 20 volunteers on day 0 and repeated on day 14 (NSD14). A contralateral upper arm biopsy was taken on day 0 and treated with DW for 14 days prior to a repeat biopsy on day 14 (ESD14). A near-completed inflammatory stage of wound healing in ESD14, compared to NSD14 was demonstrated by up-regulation of interleukin-10 and vasoactive intestinal peptide using quantitative real time polymerase chain reaction and down-regulation of CD3 by immunohistochemistry (IHC) (p advanced remodeling phase.
A Simulation Tool for Downlink Long Term Evolution-advanced
Huda Adibah Mohd Ramli
2014-11-01
Full Text Available Long Term Evolution-Advanced (LTE-A is an emerging mobile cellular system envisaged to provide better quality of multimedia applications. Packet scheduling becomes paramount as the LTE-A delivers multimedia applications using packet switching technology. Given that LTE-A is a new technology, its ability to satisfy the Quality of Service (QoS requirements of multimedia applications demands further performance study. At present, a number of LTE-A simulators are available. However, these simulators in general are too specific in nature or their source codes are not publicly accessible for the research communities. As such, this study presents a novel simulation tool to assist the research communities to study the downlink LTE-A and further optimize packet scheduling performance. This simulation tool accurately models the downlink LTE-A taking user mobility, carrier aggregation, packet scheduling and other aspects that are relevant to the research communities into consideration. The efficacy of the simulation tool is validated through performance study of a number of well-known packet scheduling algorithms.
Designing waveforms for temporal encoding using a frequency sampling method
Gran, Fredrik; Jensen, Jørgen Arendt
2007-01-01
, the amplitude spectrum of the transmitted waveform can be optimized, such that most of the energy is transmitted where the transducer has large amplification. To test the design method, a waveform was designed for a BK8804 linear array transducer. The resulting nonlinear frequency modulated waveform...... for the linear frequency modulated signal) were tested for both waveforms in simulation with respect to the Doppler frequency shift occurring when probing moving objects. It was concluded that the Doppler effect of moving targets does not significantly degrade the filtered output. Finally, in vivo measurements...
Platform for Postprocessing Waveform-Based NDE
Roth, Don
2008-01-01
Taking advantage of the similarities that exist among all waveform-based non-destructive evaluation (NDE) methods, a common software platform has been developed containing multiple- signal and image-processing techniques for waveforms and images. The NASA NDE Signal and Image Processing software has been developed using the latest versions of LabVIEW, and its associated Advanced Signal Processing and Vision Toolkits. The software is useable on a PC with Windows XP and Windows Vista. The software has been designed with a commercial grade interface in which two main windows, Waveform Window and Image Window, are displayed if the user chooses a waveform file to display. Within these two main windows, most actions are chosen through logically conceived run-time menus. The Waveform Window has plots for both the raw time-domain waves and their frequency- domain transformations (fast Fourier transform and power spectral density). The Image Window shows the C-scan image formed from information of the time-domain waveform (such as peak amplitude) or its frequency-domain transformation at each scan location. The user also has the ability to open an image, or series of images, or a simple set of X-Y paired data set in text format. Each of the Waveform and Image Windows contains menus from which to perform many user actions. An option exists to use raw waves obtained directly from scan, or waves after deconvolution if system wave response is provided. Two types of deconvolution, time-based subtraction or inverse-filter, can be performed to arrive at a deconvolved wave set. Additionally, the menu on the Waveform Window allows preprocessing of waveforms prior to image formation, scaling and display of waveforms, formation of different types of images (including non-standard types such as velocity), gating of portions of waves prior to image formation, and several other miscellaneous and specialized operations. The menu available on the Image Window allows many further image
Compressive full waveform lidar
Yang, Weiyi; Ke, Jun
2017-05-01
To avoid high bandwidth detector, fast speed A/D converter, and large size memory disk, a compressive full waveform LIDAR system, which uses a temporally modulated laser instead of a pulsed laser, is studied in this paper. Full waveform data from NEON (National Ecological Observatory Network) are used. Random binary patterns are used to modulate the source. To achieve 0.15 m ranging resolution, a 100 MSPS A/D converter is assumed to make measurements. SPIRAL algorithm with canonical basis is employed when Poisson noise is considered in the low illuminated condition.
Waveform information from quantum mechanical entropy
Funkhouser, Scott; Suski, William; Winn, Andrew
2016-06-01
Although the entropy of a given signal-type waveform is technically zero, it is nonetheless desirable to use entropic measures to quantify the associated information. Several such prescriptions have been advanced in the literature but none are generally successful. Here, we report that the Fourier-conjugated `total entropy' associated with quantum-mechanical probabilistic amplitude functions (PAFs) is a meaningful measure of information in non-probabilistic real waveforms, with either the waveform itself or its (normalized) analytic representation acting in the role of the PAF. Detailed numerical calculations are presented for both adaptations, showing the expected informatic behaviours in a variety of rudimentary scenarios. Particularly noteworthy are the sensitivity to the degree of randomness in a sequence of pulses and potential for detection of weak signals.
Advanced simulations of optical transition and diffraction radiation
T. Aumeyr
2015-04-01
Full Text Available Charged particle beam diagnostics is a key task in modern and future accelerator installations. The diagnostic tools are practically the “eyes” of the operators. The precision and resolution of the diagnostic equipment are crucial to define the performance of the accelerator. Transition and diffraction radiation (TR and DR are widely used for electron beam parameter monitoring. However, the precision and resolution of those devices are determined by how well the production, transport and detection of these radiation types are understood. This paper reports on simulations of TR and DR spatial-spectral characteristics using the physical optics propagation (POP mode of the Zemax advanced optics simulation software. A good consistency with theory is demonstrated. Also, realistic optical system alignment issues are discussed.
Benchmarking of Advanced Control Strategies for a Simulated Hydroelectric System
Finotti, S.; Simani, S.; Alvisi, S.; Venturini, M.
2017-01-01
This paper analyses and develops the design of advanced control strategies for a typical hydroelectric plant during unsteady conditions, performed in the Matlab and Simulink environments. The hydraulic system consists of a high water head and a long penstock with upstream and downstream surge tanks, and is equipped with a Francis turbine. The nonlinear characteristics of hydraulic turbine and the inelastic water hammer effects were considered to calculate and simulate the hydraulic transients. With reference to the control solutions addressed in this work, the proposed methodologies rely on data-driven and model-based approaches applied to the system under monitoring. Extensive simulations and comparisons serve to determine the best solution for the development of the most effective, robust and reliable control tool when applied to the considered hydraulic system.
Study on advancement of in vivo counting using mathematical simulation
Kinase, S
2003-01-01
To obtain an assessment of the committed effective dose, individual monitoring for the estimation of intakes of radionuclides is required. For individual monitoring of exposure to intakes of radionuclides, direct measurement of radionuclides in the body - in vivo counting- is very useful. To advance in a precision in vivo counting which fulfills the requirements of ICRP 1990 recommendations, some problems, such as the investigation of uncertainties in estimates of body burdens by in vivo counting, and the selection of the way to improve the precision, have been studied. In the present study, a calibration technique for in vivo counting application using Monte Carlo simulation was developed. The advantage of the technique is that counting efficiency can be obtained for various shapes and sizes that are very difficult to change for phantoms. To validate the calibration technique, the response functions and counting efficiencies of a whole-body counter installed in JAERI were evaluated using the simulation and m...
WFCatalog: A catalogue for seismological waveform data
Trani, Luca; Koymans, Mathijs; Atkinson, Malcolm; Sleeman, Reinoud; Filgueira, Rosa
2017-09-01
This paper reports advances in seismic waveform description and discovery leading to a new seismological service and presents the key steps in its design, implementation and adoption. This service, named WFCatalog, which stands for waveform catalogue, accommodates features of seismological waveform data. Therefore, it meets the need for seismologists to be able to select waveform data based on seismic waveform features as well as sensor geolocations and temporal specifications. We describe the collaborative design methods and the technical solution showing the central role of seismic feature catalogues in framing the technical and operational delivery of the new service. Also, we provide an overview of the complex environment wherein this endeavour is scoped and the related challenges discussed. As multi-disciplinary, multi-organisational and global collaboration is necessary to address today's challenges, canonical representations can provide a focus for collaboration and conceptual tools for agreeing directions. Such collaborations can be fostered and formalised by rallying intellectual effort into the design of novel scientific catalogues and the services that support them. This work offers an example of the benefits generated by involving cross-disciplinary skills (e.g. data and domain expertise) from the early stages of design, and by sustaining the engagement with the target community throughout the delivery and deployment process.
Processing Waveforms as Trees for Pattern Recognition.
1986-05-01
patterns (after Ganong (15]) 5.7 ECG Classification As in the previous example, waveforms were simulated with additive colored gaussian noise. In order to...Principles and Techniques- (AAPG Course Note Series 13), Amer. Assoc. Pet. Geol., Tulsa, OK,p. 86, (1984). [15] W. F. Ganong , Review of Medical Physiology. Lange, Los Altos, CA. pp. 393-408, (1973). /
Advanced Techniques for Simulating the Behavior of Sand
Clothier, M.; Bailey, M.
2009-12-01
research is to simulate the look and behavior of sand, this work will go beyond simple particle collision. In particular, we can continue to use our parallel algorithms not only on single particles but on particle “clumps” that consist of multiple combined particles. Since sand is typically not spherical in nature, these particle “clumps” help to simulate the coarse nature of sand. In a simulation environment, multiple combined particles could be used to simulate the polygonal and granular nature of sand grains. Thus, a diversity of sand particles can be generated. The interaction between these particles can then be parallelized using GPU hardware. As such, this research will investigate different graphics and physics techniques and determine the tradeoffs in performance and visual quality for sand simulation. An enhanced sand model through the use of high performance computing and GPUs has great potential to impact research for both earth and space scientists. Interaction with JPL has provided an opportunity for us to refine our simulation techniques that can ultimately be used for their vehicle simulator. As an added benefit of this work, advancements in simulating sand can also benefit scientists here on earth, especially in regard to understanding landslides and debris flows.
A Virtual Engineering Framework for Simulating Advanced Power System
Mike Bockelie; Dave Swensen; Martin Denison; Stanislav Borodai
2008-06-18
In this report is described the work effort performed to provide NETL with VE-Suite based Virtual Engineering software and enhanced equipment models to support NETL's Advanced Process Engineering Co-simulation (APECS) framework for advanced power generation systems. Enhancements to the software framework facilitated an important link between APECS and the virtual engineering capabilities provided by VE-Suite (e.g., equipment and process visualization, information assimilation). Model enhancements focused on improving predictions for the performance of entrained flow coal gasifiers and important auxiliary equipment (e.g., Air Separation Units) used in coal gasification systems. In addition, a Reduced Order Model generation tool and software to provide a coupling between APECS/AspenPlus and the GE GateCycle simulation system were developed. CAPE-Open model interfaces were employed where needed. The improved simulation capability is demonstrated on selected test problems. As part of the project an Advisory Panel was formed to provide guidance on the issues on which to focus the work effort. The Advisory Panel included experts from industry and academics in gasification, CO2 capture issues, process simulation and representatives from technology developers and the electric utility industry. To optimize the benefit to NETL, REI coordinated its efforts with NETL and NETL funded projects at Iowa State University, Carnegie Mellon University and ANSYS/Fluent, Inc. The improved simulation capabilities incorporated into APECS will enable researchers and engineers to better understand the interactions of different equipment components, identify weaknesses and processes needing improvement and thereby allow more efficient, less expensive plants to be developed and brought on-line faster and in a more cost-effective manner. These enhancements to APECS represent an important step toward having a fully integrated environment for performing plant simulation and engineering
SCA Waveform Development for Space Telemetry
Mortensen, Dale J.; Kifle, Multi; Hall, C. Steve; Quinn, Todd M.
2004-01-01
The NASA Glenn Research Center is investigating and developing suitable reconfigurable radio architectures for future NASA missions. This effort is examining software-based open-architectures for space based transceivers, as well as common hardware platform architectures. The Joint Tactical Radio System's (JTRS) Software Communications Architecture (SCA) is a candidate for the software approach, but may need modifications or adaptations for use in space. An in-house SCA compliant waveform development focuses on increasing understanding of software defined radio architectures and more specifically the JTRS SCA. Space requirements put a premium on size, mass, and power. This waveform development effort is key to evaluating tradeoffs with the SCA for space applications. Existing NASA telemetry links, as well as Space Exploration Initiative scenarios, are the basis for defining the waveform requirements. Modeling and simulations are being developed to determine signal processing requirements associated with a waveform and a mission-specific computational burden. Implementation of the waveform on a laboratory software defined radio platform is proceeding in an iterative fashion. Parallel top-down and bottom-up design approaches are employed.
Investigations and advanced concepts on gyrotron interaction modeling and simulations
Avramidis, K. A.
2015-12-01
In gyrotron theory, the interaction between the electron beam and the high frequency electromagnetic field is commonly modeled using the slow variables approach. The slow variables are quantities that vary slowly in time in comparison to the electron cyclotron frequency. They represent the electron momentum and the high frequency field of the resonant TE modes in the gyrotron cavity. For their definition, some reference frequencies need to be introduced. These include the so-called averaging frequency, used to define the slow variable corresponding to the electron momentum, and the carrier frequencies, used to define the slow variables corresponding to the field envelopes of the modes. From the mathematical point of view, the choice of the reference frequencies is, to some extent, arbitrary. However, from the numerical point of view, there are arguments that point toward specific choices, in the sense that these choices are advantageous in terms of simulation speed and accuracy. In this paper, the typical monochromatic gyrotron operation is considered, and the numerical integration of the interaction equations is performed by the trajectory approach, since it is the fastest, and therefore it is the one that is most commonly used. The influence of the choice of the reference frequencies on the interaction simulations is studied using theoretical arguments, as well as numerical simulations. From these investigations, appropriate choices for the values of the reference frequencies are identified. In addition, novel, advanced concepts for the definitions of these frequencies are addressed, and their benefits are demonstrated numerically.
Nettleship, Ian (University of Pittsburgh, Pittsburgh, PA); Hinklin, Thomas; Holcomb, David Joseph; Tandon, Rajan; Arguello, Jose Guadalupe, Jr. (,; .); Dempsey, James Franklin; Ewsuk, Kevin Gregory; Neilsen, Michael K.; Lanagan, Michael (Pennsylvania State University, University Park, PA)
2007-07-01
An interdisciplinary team of scientists and engineers having broad expertise in materials processing and properties, materials characterization, and computational mechanics was assembled to develop science-based modeling/simulation technology to design and reproducibly manufacture high performance and reliable, complex microelectronics and microsystems. The team's efforts focused on defining and developing a science-based infrastructure to enable predictive compaction, sintering, stress, and thermomechanical modeling in ''real systems'', including: (1) developing techniques to and determining materials properties and constitutive behavior required for modeling; (2) developing new, improved/updated models and modeling capabilities, (3) ensuring that models are representative of the physical phenomena being simulated; and (4) assessing existing modeling capabilities to identify advances necessary to facilitate the practical application of Sandia's predictive modeling technology.
Waveform Analysis of AE in Composites
Prosser, William H.
1998-01-01
Advanced, waveform based acoustic emission (AE) techniques have been developed to evaluate damage mechanisms in the testing of composite materials. This approach, more recently referred to as Modal AE, provides an enhanced capability to discriminate and eliminate noise signals from those generated by damage mechanisms. Much more precise source location can also be obtained in comparison to conventional, threshold crossing arrival time determination techniques. Two successful examples of the application of Modal AE are presented in this work. In the first, the initiation of transverse matrix cracking in cross-ply, tensile coupons was monitored. In these tests, it was documented that the same source mechanism, matrix cracking, can produce widely different AE signal amplitudes dependent on laminate stacking sequence and thickness. These results, taken together with well known propagation effects of attenuation and dispersion of AE signals in composite laminates, cast further doubt on the validity of simple amplitude or amplitude distribution analysis for AE source determination. For the second example, delamination propagation in composite ring specimens was monitored. Pressurization of these composite rings is used to simulate the stresses in a composite rocket motor case. AE signals from delamination propagation were characterized by large amplitude flexural plate mode components which have long signal durations because of the large dispersion of this mode.
Study on advancement of in vivo counting using mathematical simulation
Kinase, Sakae [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
2003-05-01
To obtain an assessment of the committed effective dose, individual monitoring for the estimation of intakes of radionuclides is required. For individual monitoring of exposure to intakes of radionuclides, direct measurement of radionuclides in the body - in vivo counting- is very useful. To advance in a precision in vivo counting which fulfills the requirements of ICRP 1990 recommendations, some problems, such as the investigation of uncertainties in estimates of body burdens by in vivo counting, and the selection of the way to improve the precision, have been studied. In the present study, a calibration technique for in vivo counting application using Monte Carlo simulation was developed. The advantage of the technique is that counting efficiency can be obtained for various shapes and sizes that are very difficult to change for phantoms. To validate the calibration technique, the response functions and counting efficiencies of a whole-body counter installed in JAERI were evaluated using the simulation and measurements. Consequently, the calculations are in good agreement with the measurements. The method for the determination of counting efficiency curves as a function of energy was developed using the present technique and a physiques correction equation was derived from the relationship between parameters of correction factor and counting efficiencies of the JAERI whole-body counter. The uncertainties in body burdens of {sup 137}Cs estimated with the JAERI whole-body counter were also investigated using the Monte Carlo simulation and measurements. It was found that the uncertainties of body burdens estimated with the whole-body counter are strongly dependent on various sources of uncertainty such as radioactivity distribution within the body and counting statistics. Furthermore, the evaluation method of the peak efficiencies of a Ge semi-conductor detector was developed by Monte Carlo simulation for optimum arrangement of Ge semi-conductor detectors for
TID Simulation of Advanced CMOS Devices for Space Applications
Sajid, Muhammad
2016-07-01
This paper focuses on Total Ionizing Dose (TID) effects caused by accumulation of charges at silicon dioxide, substrate/silicon dioxide interface, Shallow Trench Isolation (STI) for scaled CMOS bulk devices as well as at Buried Oxide (BOX) layer in devices based on Silicon-On-Insulator (SOI) technology to be operated in space radiation environment. The radiation induced leakage current and corresponding density/concentration electrons in leakage current path was presented/depicted for 180nm, 130nm and 65nm NMOS, PMOS transistors based on CMOS bulk as well as SOI process technologies on-board LEO and GEO satellites. On the basis of simulation results, the TID robustness analysis for advanced deep sub-micron technologies was accomplished up to 500 Krad. The correlation between the impact of technology scaling and magnitude of leakage current with corresponding total dose was established utilizing Visual TCAD Genius program.
Advanced simulation of windmills in electric power supply
Akhmatov, Vladislav; Knudsen, Hans; Nielsen, Arne Hejde
2000-01-01
-connected windmills as a part of realistic electrical grid models. That means an arbitrary number of wind farms or single windmills within an arbitrary network configuration. The windmill model may be applied to study of electric power system stability and of power quality as well. It is found that a grid......-connected windmill operates as a low-pass filter, whereby two following observations are made: 1. interaction between the electrical grid and the mechanical systems of grid-connected windmills is given by a low frequency oscillation as the result of disturbances in the electric grid; 2. flicker, which is commonly......An advanced model of a grid-connected windmill is set up where the windmill is a complex electro-mechanical system. The windmill model is implemented as a standardised component in the dynamic simulation tool, PSS/E, which makes it possible to investigate dynamic behaviour of grid...
Bohé, Alejandro; Taracchini, Andrea; Buonanno, Alessandra; Babak, Stanislav; Harry, Ian W; Hinder, Ian; Ossokine, Serguei; Pürrer, Michael; Raymond, Vivien; Chu, Tony; Fong, Heather; Kumar, Prayush; Pfeiffer, Harald P; Boyle, Michael; Hemberger, Daniel A; Kidder, Lawrence E; Lovelace, Geoffrey; Scheel, Mark A; Szilágyi, Béla
2016-01-01
We improve the accuracy of the effective-one-body (EOB) waveforms that were employed during the first observing run of Advanced LIGO for binaries of spinning, nonprecessing black holes by calibrating them to a set of 141 numerical-relativity (NR) waveforms. The NR simulations expand the domain of calibration towards larger mass ratios and spins, as compared to the previous EOBNR model. Merger-ringdown waveforms computed in black-hole perturbation theory for Kerr spins close to extremal provide additional inputs to the calibration. For the inspiral-plunge phase, we use a Markov-chain Monte Carlo algorithm to efficiently explore the calibration space. For the merger-ringdown phase, we fit the NR signals with phenomenological formulae. After extrapolation of the calibrated model to arbitrary mass ratios and spins, the (dominant-mode) EOBNR waveforms have faithfulness --- at design Advanced-LIGO sensitivity --- above $99\\%$ against all the NR waveforms, including 16 additional waveforms used for validation, when ...
Simulated Interactive Research Experiments as Educational Tools for Advanced Science
Tomandl, Mathias; Mieling, Thomas; Losert-Valiente Kroon, Christiane M.; Hopf, Martin; Arndt, Markus
2015-09-01
Experimental research has become complex and thus a challenge to science education. Only very few students can typically be trained on advanced scientific equipment. It is therefore important to find new tools that allow all students to acquire laboratory skills individually and independent of where they are located. In a design-based research process we have investigated the feasibility of using a virtual laboratory as a photo-realistic and scientifically valid representation of advanced scientific infrastructure to teach modern experimental science, here, molecular quantum optics. We found a concept based on three educational principles that allows undergraduate students to become acquainted with procedures and concepts of a modern research field. We find a significant increase in student understanding using our Simulated Interactive Research Experiment (SiReX), by evaluating the learning outcomes with semi-structured interviews in a pre/post design. This suggests that this concept of an educational tool can be generalized to disseminate findings in other fields.
Simulated Interactive Research Experiments as Educational Tools for Advanced Science
Tomandl, Mathias; Mieling, Thomas; Losert-Valiente Kroon, Christiane M.; Hopf, Martin; Arndt, Markus
2015-01-01
Experimental research has become complex and thus a challenge to science education. Only very few students can typically be trained on advanced scientific equipment. It is therefore important to find new tools that allow all students to acquire laboratory skills individually and independent of where they are located. In a design-based research process we have investigated the feasibility of using a virtual laboratory as a photo-realistic and scientifically valid representation of advanced scientific infrastructure to teach modern experimental science, here, molecular quantum optics. We found a concept based on three educational principles that allows undergraduate students to become acquainted with procedures and concepts of a modern research field. We find a significant increase in student understanding using our Simulated Interactive Research Experiment (SiReX), by evaluating the learning outcomes with semi-structured interviews in a pre/post design. This suggests that this concept of an educational tool can be generalized to disseminate findings in other fields. PMID:26370627
Simulated Interactive Research Experiments as Educational Tools for Advanced Science.
Tomandl, Mathias; Mieling, Thomas; Losert-Valiente Kroon, Christiane M; Hopf, Martin; Arndt, Markus
2015-09-15
Experimental research has become complex and thus a challenge to science education. Only very few students can typically be trained on advanced scientific equipment. It is therefore important to find new tools that allow all students to acquire laboratory skills individually and independent of where they are located. In a design-based research process we have investigated the feasibility of using a virtual laboratory as a photo-realistic and scientifically valid representation of advanced scientific infrastructure to teach modern experimental science, here, molecular quantum optics. We found a concept based on three educational principles that allows undergraduate students to become acquainted with procedures and concepts of a modern research field. We find a significant increase in student understanding using our Simulated Interactive Research Experiment (SiReX), by evaluating the learning outcomes with semi-structured interviews in a pre/post design. This suggests that this concept of an educational tool can be generalized to disseminate findings in other fields.
Hybridizing Gravitationl Waveforms of Inspiralling Binary Neutron Star Systems
Cullen, Torrey; LIGO Collaboration
2016-03-01
Gravitational waves are ripples in space and time and were predicted to be produced by astrophysical systems such as binary neutron stars by Albert Einstein. These are key targets for Laser Interferometer and Gravitational Wave Observatory (LIGO), which uses template waveforms to find weak signals. The simplified template models are known to break down at high frequency, so I wrote code that constructs hybrid waveforms from numerical simulations to accurately cover a large range of frequencies. These hybrid waveforms use Post Newtonian template models at low frequencies and numerical data from simulations at high frequencies. They are constructed by reading in existing Post Newtonian models with the same masses as simulated stars, reading in the numerical data from simulations, and finding the ideal frequency and alignment to ``stitch'' these waveforms together.
Quantum optical waveform conversion
Kielpinski, D; Wiseman, HM
2010-01-01
Currently proposed architectures for long-distance quantum communication rely on networks of quantum processors connected by optical communications channels [1,2]. The key resource for such networks is the entanglement of matter-based quantum systems with quantum optical fields for information transmission. The optical interaction bandwidth of these material systems is a tiny fraction of that available for optical communication, and the temporal shape of the quantum optical output pulse is often poorly suited for long-distance transmission. Here we demonstrate that nonlinear mixing of a quantum light pulse with a spectrally tailored classical field can compress the quantum pulse by more than a factor of 100 and flexibly reshape its temporal waveform, while preserving all quantum properties, including entanglement. Waveform conversion can be used with heralded arrays of quantum light emitters to enable quantum communication at the full data rate of optical telecommunications.
Enabling Advanced Modeling and Simulations for Fuel-Flexible Combustors
Heinz Pitsch
2010-05-31
The overall goal of the present project is to enable advanced modeling and simulations for the design and optimization of fuel-flexible turbine combustors. For this purpose we use a high-fidelity, extensively-tested large-eddy simulation (LES) code and state-of-the-art models for premixed/partially-premixed turbulent combustion developed in the PI's group. In the frame of the present project, these techniques are applied, assessed, and improved for hydrogen enriched premixed and partially premixed gas-turbine combustion. Our innovative approaches include a completely consistent description of flame propagation, a coupled progress variable/level set method to resolve the detailed flame structure, and incorporation of thermal-diffusion (non-unity Lewis number) effects. In addition, we have developed a general flamelet-type transformation holding in the limits of both non-premixed and premixed burning. As a result, a model for partially premixed combustion has been derived. The coupled progress variable/level method and the general flamelet tranformation were validated by LES of a lean-premixed low-swirl burner that has been studied experimentally at Lawrence Berkeley National Laboratory. The model is extended to include the non-unity Lewis number effects, which play a critical role in fuel-flexible combustor with high hydrogen content fuel. More specifically, a two-scalar model for lean hydrogen and hydrogen-enriched combustion is developed and validated against experimental and direct numerical simulation (DNS) data. Results are presented to emphasize the importance of non-unity Lewis number effects in the lean-premixed low-swirl burner of interest in this project. The proposed model gives improved results, which shows that the inclusion of the non-unity Lewis number effects is essential for accurate prediction of the lean-premixed low-swirl flame.
The advanced computational testing and simulation toolkit (ACTS)
Drummond, L.A.; Marques, O.
2002-05-21
During the past decades there has been a continuous growth in the number of physical and societal problems that have been successfully studied and solved by means of computational modeling and simulation. Distinctively, a number of these are important scientific problems ranging in scale from the atomic to the cosmic. For example, ionization is a phenomenon as ubiquitous in modern society as the glow of fluorescent lights and the etching on silicon computer chips; but it was not until 1999 that researchers finally achieved a complete numerical solution to the simplest example of ionization, the collision of a hydrogen atom with an electron. On the opposite scale, cosmologists have long wondered whether the expansion of the Universe, which began with the Big Bang, would ever reverse itself, ending the Universe in a Big Crunch. In 2000, analysis of new measurements of the cosmic microwave background radiation showed that the geometry of the Universe is flat, and thus the Universe will continue expanding forever. Both of these discoveries depended on high performance computer simulations that utilized computational tools included in the Advanced Computational Testing and Simulation (ACTS) Toolkit. The ACTS Toolkit is an umbrella project that brought together a number of general purpose computational tool development projects funded and supported by the U.S. Department of Energy (DOE). These tools, which have been developed independently, mainly at DOE laboratories, make it easier for scientific code developers to write high performance applications for parallel computers. They tackle a number of computational issues that are common to a large number of scientific applications, mainly implementation of numerical algorithms, and support for code development, execution and optimization. The ACTS Toolkit Project enables the use of these tools by a much wider community of computational scientists, and promotes code portability, reusability, reduction of duplicate efforts
Enabling Advanced Modeling and Simulations for Fuel-Flexible Combustors
Pitsch, Heinz
2010-05-31
The overall goal of the present project is to enable advanced modeling and simulations for the design and optimization of fuel-flexible turbine combustors. For this purpose we use a high fidelity, extensively-tested large-eddy simulation (LES) code and state-of-the-art models for premixed/partially-premixed turbulent combustion developed in the PI's group. In the frame of the present project, these techniques are applied, assessed, and improved for hydrogen enriched premixed and partially premixed gas-turbine combustion. Our innovative approaches include a completely consistent description of flame propagation; a coupled progress variable/level set method to resolve the detailed flame structure, and incorporation of thermal-diffusion (non-unity Lewis number) effects. In addition, we have developed a general flamelet-type transformation holding in the limits of both non-premixed and premixed burning. As a result, a model for partially premixed combustion has been derived. The coupled progress variable/level method and the general flamelet transformation were validated by LES of a lean-premixed low-swirl burner that has been studied experimentally at Lawrence Berkeley National Laboratory. The model is extended to include the non-unity Lewis number effects, which play a critical role in fuel-flexible combustor with high hydrogen content fuel. More specifically, a two-scalar model for lean hydrogen and hydrogen-enriched combustion is developed and validated against experimental and direct numerical simulation (DNS) data. Results are presented to emphasize the importance of non-unity Lewis number effects in the lean-premixed low-swirl burner of interest in this project. The proposed model gives improved results, which shows that the inclusion of the non-unity Lewis number effects is essential for accurate prediction of the lean-premixed low-swirl flame.
Waveform Design for Wireless Power Transfer
Clerckx, Bruno; Bayguzina, Ekaterina
2016-12-01
Far-field Wireless Power Transfer (WPT) has attracted significant attention in recent years. Despite the rapid progress, the emphasis of the research community in the last decade has remained largely concentrated on improving the design of energy harvester (so-called rectenna) and has left aside the effect of transmitter design. In this paper, we study the design of transmit waveform so as to enhance the DC power at the output of the rectenna. We derive a tractable model of the non-linearity of the rectenna and compare with a linear model conventionally used in the literature. We then use those models to design novel multisine waveforms that are adaptive to the channel state information (CSI). Interestingly, while the linear model favours narrowband transmission with all the power allocated to a single frequency, the non-linear model favours a power allocation over multiple frequencies. Through realistic simulations, waveforms designed based on the non-linear model are shown to provide significant gains (in terms of harvested DC power) over those designed based on the linear model and over non-adaptive waveforms. We also compute analytically the theoretical scaling laws of the harvested energy for various waveforms as a function of the number of sinewaves and transmit antennas. Those scaling laws highlight the benefits of CSI knowledge at the transmitter in WPT and of a WPT design based on a non-linear rectenna model over a linear model. Results also motivate the study of a promising architecture relying on large-scale multisine multi-antenna waveforms for WPT. As a final note, results stress the importance of modeling and accounting for the non-linearity of the rectenna in any system design involving wireless power.
Van den Broeck, C; Broeck, Chris Van Den; Sengupta, Anand S.
2006-01-01
We study the phenomenological consequences of amplitude-corrected post-Newtonian (PN) gravitational waveforms, as opposed to the more commonly used restricted PN waveforms, for the quasi-circular, adiabatic inspiral of compact binary objects. In the case of initial detectors it has been shown that the use of amplitude-corrected waveforms for detection templates would lead to significantly lower signal-to-noise ratios (SNRs) than those suggested by simulations based exclusively on restricted waveforms. We further elucidate the origin of the effect by an in-depth analytic treatment. The discussion is extended to advanced detectors, where new features emerge. Non-restricted waveforms are linear combinations of harmonics in the orbital phase, and in the frequency domain the $k$th harmonic is cut off at $k f_{LSO}$, with $f_{LSO}$ the orbital frequency at the last stable orbit. As a result, with non-restricted templates it is possible to achieve sizeable signal-to-noise ratios in cases where the dominant harmonic ...
Simulation of hybrid vehicle propulsion with an advanced battery model
Nallabolu, S.; Kostetzer, L.; Rudnyi, E. [CADFEM GmbH, Grafing (Germany); Geppert, M.; Quinger, D. [LION Smart GmbH, Frieding (Germany)
2011-07-01
In the recent years there has been observed an increasing concern about global warming and greenhouse gas emissions. In addition to the environmental issues the predicted scarcity of oil supplies and the dramatic increase in oil price puts new demands on vehicle design. As a result energy efficiency and reduced emission have become one of main selling point for automobiles. Hybrid electric vehicles (HEV) have therefore become an interesting technology for the governments and automotive industries. HEV are more complicated compared to conventional vehicles due to the fact that these vehicles contain more electrical components such as electric machines, power electronics, electronic continuously variable transmissions (CVT), and embedded powertrain controllers. Advanced energy storage devices and energy converters, such as Li-ion batteries, ultracapacitors, and fuel cells are also considered. A detailed vehicle model used for an energy flow analysis and vehicle performance simulation is necessary. Computer simulation is indispensible to facilitate the examination of the vast hybrid electric vehicle design space with the aim to predict the vehicle performance over driving profiles, estimate fuel consumption and the pollution emissions. There are various types of mathematical models and simulators available to perform system simulation of vehicle propulsion. One of the standard methods to model the complete vehicle powertrain is ''backward quasistatic modeling''. In this method vehicle subsystems are defined based on experiential models in the form of look-up tables and efficiency maps. The interaction between adjacent subsystems of the vehicle is defined through the amount of power flow. Modeling the vehicle subsystems like motor, engine, gearbox and battery is under this technique is based on block diagrams. The vehicle model is applied in two case studies to evaluate the vehicle performance and fuel consumption. In the first case study the affect
ADVANCED TECHNIQUES FOR RESERVOIR SIMULATION AND MODELING OF NONCONVENTIONAL WELLS
Louis J. Durlofsky; Khalid Aziz
2004-08-20
Nonconventional wells, which include horizontal, deviated, multilateral and ''smart'' wells, offer great potential for the efficient management of oil and gas reservoirs. These wells are able to contact larger regions of the reservoir than conventional wells and can also be used to target isolated hydrocarbon accumulations. The use of nonconventional wells instrumented with downhole inflow control devices allows for even greater flexibility in production. Because nonconventional wells can be very expensive to drill, complete and instrument, it is important to be able to optimize their deployment, which requires the accurate prediction of their performance. However, predictions of nonconventional well performance are often inaccurate. This is likely due to inadequacies in some of the reservoir engineering and reservoir simulation tools used to model and optimize nonconventional well performance. A number of new issues arise in the modeling and optimization of nonconventional wells. For example, the optimal use of downhole inflow control devices has not been addressed for practical problems. In addition, the impact of geological and engineering uncertainty (e.g., valve reliability) has not been previously considered. In order to model and optimize nonconventional wells in different settings, it is essential that the tools be implemented into a general reservoir simulator. This simulator must be sufficiently general and robust and must in addition be linked to a sophisticated well model. Our research under this five year project addressed all of the key areas indicated above. The overall project was divided into three main categories: (1) advanced reservoir simulation techniques for modeling nonconventional wells; (2) improved techniques for computing well productivity (for use in reservoir engineering calculations) and for coupling the well to the simulator (which includes the accurate calculation of well index and the modeling of multiphase flow
Signal waveform detection with statistical automaton for internet and web service streaming.
Tseng, Kuo-Kun; Ji, Yuzhu; Liu, Yiming; Huang, Nai-Lun; Zeng, Fufu; Lin, Fang-Ying
2014-01-01
In recent years, many approaches have been suggested for Internet and web streaming detection. In this paper, we propose an approach to signal waveform detection for Internet and web streaming, with novel statistical automatons. The system records network connections over a period of time to form a signal waveform and compute suspicious characteristics of the waveform. Network streaming according to these selected waveform features by our newly designed Aho-Corasick (AC) automatons can be classified. We developed two versions, that is, basic AC and advanced AC-histogram waveform automata, and conducted comprehensive experimentation. The results confirm that our approach is feasible and suitable for deployment.
Signal Waveform Detection with Statistical Automaton for Internet and Web Service Streaming
Kuo-Kun Tseng
2014-01-01
Full Text Available In recent years, many approaches have been suggested for Internet and web streaming detection. In this paper, we propose an approach to signal waveform detection for Internet and web streaming, with novel statistical automatons. The system records network connections over a period of time to form a signal waveform and compute suspicious characteristics of the waveform. Network streaming according to these selected waveform features by our newly designed Aho-Corasick (AC automatons can be classified. We developed two versions, that is, basic AC and advanced AC-histogram waveform automata, and conducted comprehensive experimentation. The results confirm that our approach is feasible and suitable for deployment.
Analysis of LFM-waveform Libraries for Cognitive Tracking Maneuvering Targets
Wang Hongyan
2016-01-01
Full Text Available Based on the idea of the waveform agility in cognitive radars，the waveform libraries for maneuvering target tracking are discussed. LFM-waveform libraries are designed according to different combinations of chirp parameters and FrFT rotation angles. By applying the interact multiple model (IMM algorithm in tracking maneuvering targets, transmitted waveform is called real time from the LFM-waveform libraries. The waveforms are selected from the library according to the criterion of maximum mutual information between the current state of knowledge of the model and the measurement. Simulation results show that waveform library containing certain amount LFM-waveforms can improve the performance of cognitive tracking radar.
尹文也; 何伟基; 顾国华; 陈钱
2014-01-01
To reconstruct the target shape distribution in the distance, full waveform analysis algorithm is utilized by extracting and analyzing the number of the peaks, the time of the peak maximum and other parameters. A novel fast full waveform analysis algorithm (simulated tempering Markov chain Monte Carlo algorithm, STMCMC) is proposed, which is able to process the waveform data automatically. For the different types of the parameters, simulated tempering strategy and the Metropolis strategy are presented. In simulated tempering strategy, due to the demand of speed or accuracy, active intervention tempering is used to control the process of solving the vector parameters. On the other hand, the Metropolis strategy is adopted for non-vector parameters to reduce computation amount. Both the strategies are based on Markov chain algorithm, and meanwhile can hold the convergence of the Markov chain, which makes the STMCMC algorithm robust.%针对传统的全波形分析方法不能快速自动处理全波形数据的缺点，提出了一种模拟回火马尔可夫链蒙特卡罗全波形分析法，用于求解全波形数据中的波峰数和峰值位置等参量。该方法采用Metropolis更新策略求解波峰数量和噪声两个参量，以达到快速求解的目的；而峰值位置和波峰幅值则采用改进的模拟回火策略求解，通过添加的主动干预回火步骤实现对参量更新过程的有效探测，以满足对速度或运算收敛性的要求。模拟回火马尔可夫链蒙特卡罗全波形分析方法以马尔可夫算法为基础，仍保持马氏链的收敛性，从而保证本方法具有良好的鲁棒性，实现对全波形数据的自动化处理。
Full waveform inversion for ultrasonic flaw identification
Seidl, Robert; Rank, Ernst
2017-02-01
Ultrasonic Nondestructive Testing is concerned with detecting flaws inside components without causing physical damage. It is possible to detect flaws using ultrasound measurements but usually no additional details about the flaw like position, dimension or orientation are available. The information about these details is hidden in the recorded experimental signals. The idea of full waveform inversion is to adapt the parameters of an initial simulation model of the undamaged specimen by minimizing the discrepancy between these simulated signals and experimentally measured signals of the flawed specimen. Flaws in the structure are characterized by a change or deterioration in the material properties. Commonly, full waveform inversion is mostly applied in seismology on a larger scale to infer mechanical properties of the earth. We propose to use acoustic full waveform inversion for structural parameters to visualize the interior of the component. The method is adapted to US NDT by combining multiple similar experiments on the test component as the typical small amount of sensors is not sufficient for a successful imaging. It is shown that the combination of simulations and multiple experiments can be used to detect flaws and their position, dimension and orientation in emulated simulation cases.
On the accuracy and precision of numerical waveforms: effect of waveform extraction methodology
Chu, Tony; Fong, Heather; Kumar, Prayush; Pfeiffer, Harald P.; Boyle, Michael; Hemberger, Daniel A.; Kidder, Lawrence E.; Scheel, Mark A.; Szilagyi, Bela
2016-08-01
We present a new set of 95 numerical relativity simulations of non-precessing binary black holes (BBHs). The simulations sample comprehensively both black-hole spins up to spin magnitude of 0.9, and cover mass ratios 1-3. The simulations cover on average 24 inspiral orbits, plus merger and ringdown, with low initial orbital eccentricities e\\lt {10}-4. A subset of the simulations extends the coverage of non-spinning BBHs up to mass ratio q = 10. Gravitational waveforms at asymptotic infinity are computed with two independent techniques: extrapolation and Cauchy characteristic extraction. An error analysis based on noise-weighted inner products is performed. We find that numerical truncation error, error due to gravitational wave extraction, and errors due to the Fourier transformation of signals with finite length of the numerical waveforms are of similar magnitude, with gravitational wave extraction errors dominating at noise-weighted mismatches of ˜ 3× {10}-4. This set of waveforms will serve to validate and improve aligned-spin waveform models for gravitational wave science.
AN ADVANCED LEAKAGE SCHEME FOR NEUTRINO TREATMENT IN ASTROPHYSICAL SIMULATIONS
Perego, A. [Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstraße 2, D-64289 Darmstadt (Germany); Cabezón, R. M. [Physics Department, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Käppeli, R., E-mail: albino.perego@physik.tu-darmstadt.de [Seminar for Applied Mathematics, ETH Zürich, Rämistrasse 101, 8092 Zürich (Switzerland)
2016-04-15
We present an Advanced Spectral Leakage (ASL) scheme to model neutrinos in the context of core-collapse supernovae (CCSNe) and compact binary mergers. Based on previous gray leakage schemes, the ASL scheme computes the neutrino cooling rates by interpolating local production and diffusion rates (relevant in optically thin and thick regimes, respectively) separately for discretized values of the neutrino energy. Neutrino trapped components are also modeled, based on equilibrium and timescale arguments. The better accuracy achieved by the spectral treatment allows a more reliable computation of neutrino heating rates in optically thin conditions. The scheme has been calibrated and tested against Boltzmann transport in the context of Newtonian spherically symmetric models of CCSNe. ASL shows a very good qualitative and a partial quantitative agreement for key quantities from collapse to a few hundreds of milliseconds after core bounce. We have proved the adaptability and flexibility of our ASL scheme, coupling it to an axisymmetric Eulerian and to a three-dimensional smoothed particle hydrodynamics code to simulate core collapse. Therefore, the neutrino treatment presented here is ideal for large parameter-space explorations, parametric studies, high-resolution tests, code developments, and long-term modeling of asymmetric configurations, where more detailed neutrino treatments are not available or are currently computationally too expensive.
An Advanced Leakage Scheme for Neutrino Treatment in Astrophysical Simulations
Perego, A.; Cabezón, R. M.; Käppeli, R.
2016-04-01
We present an Advanced Spectral Leakage (ASL) scheme to model neutrinos in the context of core-collapse supernovae (CCSNe) and compact binary mergers. Based on previous gray leakage schemes, the ASL scheme computes the neutrino cooling rates by interpolating local production and diffusion rates (relevant in optically thin and thick regimes, respectively) separately for discretized values of the neutrino energy. Neutrino trapped components are also modeled, based on equilibrium and timescale arguments. The better accuracy achieved by the spectral treatment allows a more reliable computation of neutrino heating rates in optically thin conditions. The scheme has been calibrated and tested against Boltzmann transport in the context of Newtonian spherically symmetric models of CCSNe. ASL shows a very good qualitative and a partial quantitative agreement for key quantities from collapse to a few hundreds of milliseconds after core bounce. We have proved the adaptability and flexibility of our ASL scheme, coupling it to an axisymmetric Eulerian and to a three-dimensional smoothed particle hydrodynamics code to simulate core collapse. Therefore, the neutrino treatment presented here is ideal for large parameter-space explorations, parametric studies, high-resolution tests, code developments, and long-term modeling of asymmetric configurations, where more detailed neutrino treatments are not available or are currently computationally too expensive.
Waveform Selectivity at the Same Frequency
Wakatsuchi, Hiroki; Anzai, Daisuke; Rushton, Jeremiah J.; Gao, Fei; Kim, Sanghoon; Sievenpiper, Daniel F.
2015-01-01
Electromagnetic properties depend on the composition of materials, i.e. either angstrom scales of molecules or, for metamaterials, subwavelength periodic structures. Each material behaves differently in accordance with the frequency of an incoming electromagnetic wave due to the frequency dispersion or the resonance of the periodic structures. This indicates that if the frequency is fixed, the material always responds in the same manner unless it has nonlinearity. However, such nonlinearity is controlled by the magnitude of the incoming wave or other bias. Therefore, it is difficult to distinguish different incoming waves at the same frequency. Here we present a new concept of circuit-based metasurfaces to selectively absorb or transmit specific types of waveforms even at the same frequency. The metasurfaces, integrated with schottky diodes as well as either capacitors or inductors, selectively absorb short or long pulses, respectively. The two types of circuit elements are then combined to absorb or transmit specific waveforms in between. This waveform selectivity gives us another degree of freedom to control electromagnetic waves in various fields including wireless communications, as our simulation reveals that the metasurfaces are capable of varying bit error rates in response to different waveforms. PMID:25866071
Turinsky, Paul J.; Kothe, Douglas B.
2016-05-01
The Consortium for the Advanced Simulation of Light Water Reactors (CASL), the first Energy Innovation Hub of the Department of Energy, was established in 2010 with the goal of providing modeling and simulation (M&S) capabilities that support and accelerate the improvement of nuclear energy's economic competitiveness and the reduction of spent nuclear fuel volume per unit energy, and all while assuring nuclear safety. To accomplish this requires advances in M&S capabilities in radiation transport, thermal-hydraulics, fuel performance and corrosion chemistry. To focus CASL's R&D, industry challenge problems have been defined, which equate with long standing issues of the nuclear power industry that M&S can assist in addressing. To date CASL has developed a multi-physics "core simulator" based upon pin-resolved radiation transport and subchannel (within fuel assembly) thermal-hydraulics, capitalizing on the capabilities of high performance computing. CASL's fuel performance M&S capability can also be optionally integrated into the core simulator, yielding a coupled multi-physics capability with untapped predictive potential. Material models have been developed to enhance predictive capabilities of fuel clad creep and growth, along with deeper understanding of zirconium alloy clad oxidation and hydrogen pickup. Understanding of corrosion chemistry (e.g., CRUD formation) has evolved at all scales: micro, meso and macro. CFD R&D has focused on improvement in closure models for subcooled boiling and bubbly flow, and the formulation of robust numerical solution algorithms. For multiphysics integration, several iterative acceleration methods have been assessed, illuminating areas where further research is needed. Finally, uncertainty quantification and data assimilation techniques, based upon sampling approaches, have been made more feasible for practicing nuclear engineers via R&D on dimensional reduction and biased sampling. Industry adoption of CASL's evolving M
Electronics via waveform analysis
Craig, Edwin C
1993-01-01
The author believes that a good basic understanding of electronics can be achieved by detailed visual analyses of the actual voltage waveforms present in selected circuits. The voltage waveforms included in this text were photographed using a 35-rrun camera in an attempt to make the book more attractive. This book is intended for the use of students with a variety of backgrounds. For this reason considerable material has been placed in the Appendix for those students who find it useful. The Appendix includes many basic electricity and electronic concepts as well as mathematical derivations that are not vital to the understanding of the circuit being discussed in the text at that time. Also some derivations might be so long that, if included in the text, it could affect the concentration of the student on the circuit being studied. The author has tried to make the book comprehensive enough so that a student could use it as a self-study course, providing one has access to adequate laboratory equipment.
The Vienna LTE-advanced simulators up and downlink, link and system level simulation
Rupp, Markus; Taranetz, Martin
2016-01-01
This book introduces the Vienna Simulator Suite for 3rd-Generation Partnership Project (3GPP)-compatible Long Term Evolution-Advanced (LTE-A) simulators and presents applications to demonstrate their uses for describing, designing, and optimizing wireless cellular LTE-A networks. Part One addresses LTE and LTE-A link level techniques. As there has been high demand for the downlink (DL) simulator, it constitutes the central focus of the majority of the chapters. This part of the book reports on relevant highlights, including single-user (SU), multi-user (MU) and single-input-single-output (SISO) as well as multiple-input-multiple-output (MIMO) transmissions. Furthermore, it summarizes the optimal pilot pattern for high-speed communications as well as different synchronization issues. One chapter is devoted to experiments that show how the link level simulator can provide input to a testbed. This section also uses measurements to present and validate fundamental results on orthogonal frequency division multiple...
TNO-ADVANCE: a modular power train simulation and design tool
Venne, J.W.C. van de; Hendriksen, P.; Smokers, R.T.M.; Verkiel, M.
1998-01-01
To support its activities in the field of conventional and hybrid vehicles, TNO has developed ADVANCE, a modular simulation tool for the design and evaluation of advanced power trains. In this paper the various features and the potential of ADVANCE are described and illustrated by means of two case
TNO-ADVANCE: a modular power train simulation and design tool
Venne, J.W.C. van de; Hendriksen, P.; Smokers, R.T.M.; Verkiel, M.
1998-01-01
To support its activities in the field of conventional and hybrid vehicles, TNO has developed ADVANCE, a modular simulation tool for the design and evaluation of advanced power trains. In this paper the various features and the potential of ADVANCE are described and illustrated by means of two case
Advanced Simulation Capability for Environmental Management (ASCEM) Phase II Demonstration
Freshley, M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hubbard, S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Flach, G. [Savannah River National Lab. (SRNL), Aiken, SC (United States); Freedman, V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Agarwal, D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Andre, B. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bott, Y. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chen, X. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Davis, J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Faybishenko, B. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gorton, I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Murray, C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Moulton, D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Meyer, J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rockhold, M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Shoshani, A. [LBNL; Steefel, C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wainwright, H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Waichler, S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
2012-09-28
In 2009, the National Academies of Science (NAS) reviewed and validated the U.S. Department of Energy Office of Environmental Management (EM) Technology Program in its publication, Advice on the Department of Energy’s Cleanup Technology Roadmap: Gaps and Bridges. The NAS report outlined prioritization needs for the Groundwater and Soil Remediation Roadmap, concluded that contaminant behavior in the subsurface is poorly understood, and recommended further research in this area as a high priority. To address this NAS concern, the EM Office of Site Restoration began supporting the development of the Advanced Simulation Capability for Environmental Management (ASCEM). ASCEM is a state-of-the-art scientific approach that uses an integration of toolsets for understanding and predicting contaminant fate and transport in natural and engineered systems. The ASCEM modeling toolset is modular and open source. It is divided into three thrust areas: Multi-Process High Performance Computing (HPC), Platform and Integrated Toolsets, and Site Applications. The ASCEM toolsets will facilitate integrated approaches to modeling and site characterization that enable robust and standardized assessments of performance and risk for EM cleanup and closure activities. During fiscal year 2012, the ASCEM project continued to make significant progress in capabilities development. Capability development occurred in both the Platform and Integrated Toolsets and Multi-Process HPC Simulator areas. The new Platform and Integrated Toolsets capabilities provide the user an interface and the tools necessary for end-to-end model development that includes conceptual model definition, data management for model input, model calibration and uncertainty analysis, and model output processing including visualization. The new HPC Simulator capabilities target increased functionality of process model representations, toolsets for interaction with the Platform, and model confidence testing and verification for
Optimizing defibrillation waveforms for ICDs.
Kroll, Mark W; Swerdlow, Charles D
2007-04-01
While no simple electrical descriptor provides a good measure of defibrillation efficacy, the waveform parameters that most directly influence defibrillation are voltage and duration. Voltage is a critical parameter for defibrillation because its spatial derivative defines the electrical field that interacts with the heart. Similarly, waveform duration is a critical parameter because the shock interacts with the heart for the duration of the waveform. Shock energy is the most often cited metric of shock strength and an ICD's capacity to defibrillate, but it is not a direct measure of shock effectiveness. Despite the physiological complexities of defibrillation, a simple approach in which the heart is modeled as passive resistor-capacitor (RC) network has proved useful for predicting efficient defibrillation waveforms. The model makes two assumptions: (1) The goal of both a monophasic shock and the first phase of a biphasic shock is to maximize the voltage change in the membrane at the end of the shock for a given stored energy. (2) The goal of the second phase of a biphasic shock is to discharge the membrane back to the zero potential, removing the charge deposited by the first phase. This model predicts that the optimal waveform rises in an exponential upward curve, but such an ascending waveform is difficult to generate efficiently. ICDs use electronically efficient capacitive-discharge waveforms, which require truncation for effective defibrillation. Even with optimal truncation, capacitive-discharge waveforms require more voltage and energy to achieve the same membrane voltage than do square waves and ascending waveforms. In ICDs, the value of the shock output capacitance is a key intermediary in establishing the relationship between stored energy-the key determinant of ICD size-and waveform voltage as a function of time, the key determinant of defibrillation efficacy. The RC model predicts that, for capacitive-discharge waveforms, stored energy is minimized
Magnetic Field Gradient Waveform Monitoring for Magnetic Resonance
Han, Hui
Linear magnetic field gradients have played a central role in Magnetic Resonance Imaging (MRI) since Fourier Transform MRI was proposed three decades ago. Their primary function is to encode spatial information into MR signals. Magnetic field gradients are also used to sensitize the image contrast to coherent and/or incoherent motion, to selectively enhance an MR signal, and to minimize image artifacts. Modern MR imaging techniques increasingly rely on the implementation of complex gradient waveforms for the manipulation of spin dynamics. However, gradient system infidelities caused by eddy currents, gradient amplifier imperfections and group delays, often result in image artifacts and other errors (e.g., phase and intensity errors). This remains a critical problem for a wide range of MRI techniques on modern commercial systems, but is of particular concern for advanced MRI pulse sequences. Measuring the real magnetic field gradients, i.e., characterizing eddy currents, is critical to addressing and remedying this problem. Gradient measurement and eddy current calibration are therefore a general topic of importance to the science of MRI. The Magnetic Field Gradient Monitor (MFGM) idea was proposed and developed specifically to meet these challenges. The MFGM method is the heart of this thesis. MFGM methods permit a variety of magnetic field gradient problems to be investigated and systematically remedied. Eddy current effects associated with MR compatible metallic pressure vessels were analyzed, simulated, measured and corrected. The appropriate correction of eddy currents may enable most MR/MRI applications with metallic pressure vessels. Quantitative imaging (1D/2D) with model pressure vessels was successfully achieved by combining image reconstruction with MFGM determined gradient waveform behaviour. Other categories of MR applications with metallic vessels, including diffusion measurement and spin echo SPI T2 mapping, cannot be realized solely by MFGM guided
Ermishkin, V. V.; Kolesnikov, V. A.; Lukoshkova, E. V.; Sonina, R. S.
2013-04-01
The impedance cardiography (ICG) is widely used for beat-to-beat noninvasive evaluation of the left ventricular stroke volume and contractility. It implies the correct determination of the ejection start and end points and the amplitudes of certain peaks in the differentiated impedance cardiogram. An accurate identification of ejection onset by ICG is often problematic, especially in the cardiologic patients, due to peculiar waveforms. Using a simple theoretical model, we tested the hypothesis that two major processes are responsible for the formation of impedance systolic wave: (1) the changes in the heart geometry and surrounding vessels produced by ventricular contraction, which occur during the isovolumic phase and precede ejection, and (2) expansion of aorta and adjacent arteries during the ejection phase. The former process initiates the preejection wave WpE and the latter triggers the ejection wave WEj. The model predicts a potential mechanism of generating the abnormal shapes of dZ/dt due to the presence of preejection waves and explains the related errors in ICG time and amplitude parameters. An appropriate decomposition method is a promising way to avoid the masking effects of these waves and a further step to correct determination of the onset of ejection and the corresponding peak amplitudes from 'pathologically shaped' ICG signals.
Tohyama, Mikio
2015-01-01
What is this sound? What does that sound indicate? These are two questions frequently heard in daily conversation. Sound results from the vibrations of elastic media and in daily life provides informative signals of events happening in the surrounding environment. In interpreting auditory sensations, the human ear seems particularly good at extracting the signal signatures from sound waves. Although exploring auditory processing schemes may be beyond our capabilities, source signature analysis is a very attractive area in which signal-processing schemes can be developed using mathematical expressions. This book is inspired by such processing schemes and is oriented to signature analysis of waveforms. Most of the examples in the book are taken from data of sound and vibrations; however, the methods and theories are mostly formulated using mathematical expressions rather than by acoustical interpretation. This book might therefore be attractive and informative for scientists, engineers, researchers, and graduat...
Shin, Chang Soo; Park, Keun Pil [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of); Suh, Jung Hee; Hyun, Byung Koo; Shin, Sung Ryul [Seoul National University, Seoul (Korea, Republic of)
1995-12-01
The seismic reflection exploration technique which is one of the geophysical methods for oil exploration became effectively to image the subsurface structure with rapid development of computer. However, the imagining of subsurface based on the conventional data processing is almost impossible to obtain the information on physical properties of the subsurface such as velocity and density. Since seismic data are implicitly function of velocities of subsurface, it is necessary to develop the inversion method that can delineate the velocity structure using seismic topography and waveform inversion. As a tool to perform seismic inversion, seismic forward modeling program using ray tracing should be developed. In this study, we have developed the algorithm that calculate the travel time of the complex geologic structure using shooting ray tracing by subdividing the geologic model into blocky structure having the constant velocity. With the travel time calculation, the partial derivatives of travel time can be calculated efficiently without difficulties. Since the current ray tracing technique has a limitation to calculate the travel times for extremely complex geologic model, our aim in the future is to develop the powerful ray tracer using the finite element technique. After applying the pseudo waveform inversion to the seismic data of Korea offshore, we can obtain the subsurface velocity model and use the result in bring up the quality of the seismic data processing. If conventional seismic data processing and seismic interpretation are linked with this inversion technique, the high quality of seismic data processing can be expected to image the structure of the subsurface. Future research area is to develop the powerful ray tracer of ray tracing which can calculate the travel times for the extremely complex geologic model. (author). 39 refs., 32 figs., 2 tabs.
Xiaoxia Shang; Patrick Chazette
2015-01-01
In order to study forests at the global scale, a detailed link budget for a lidar system onboard satellite is presented. It is based on an original approach coupling airborne lidar observations and an end-to-end simulator. The simulator is initialized by airborne lidar measurements performed over temperate and tropical forests on the French territory, representing a wide range of forests ecosystems. Considering two complementary wavelengths of 355 and 1064 nm, the end-to-end simulator compute...
Turinsky, Paul J., E-mail: turinsky@ncsu.edu [North Carolina State University, PO Box 7926, Raleigh, NC 27695-7926 (United States); Kothe, Douglas B., E-mail: kothe@ornl.gov [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831-6164 (United States)
2016-05-15
The Consortium for the Advanced Simulation of Light Water Reactors (CASL), the first Energy Innovation Hub of the Department of Energy, was established in 2010 with the goal of providing modeling and simulation (M&S) capabilities that support and accelerate the improvement of nuclear energy's economic competitiveness and the reduction of spent nuclear fuel volume per unit energy, and all while assuring nuclear safety. To accomplish this requires advances in M&S capabilities in radiation transport, thermal-hydraulics, fuel performance and corrosion chemistry. To focus CASL's R&D, industry challenge problems have been defined, which equate with long standing issues of the nuclear power industry that M&S can assist in addressing. To date CASL has developed a multi-physics “core simulator” based upon pin-resolved radiation transport and subchannel (within fuel assembly) thermal-hydraulics, capitalizing on the capabilities of high performance computing. CASL's fuel performance M&S capability can also be optionally integrated into the core simulator, yielding a coupled multi-physics capability with untapped predictive potential. Material models have been developed to enhance predictive capabilities of fuel clad creep and growth, along with deeper understanding of zirconium alloy clad oxidation and hydrogen pickup. Understanding of corrosion chemistry (e.g., CRUD formation) has evolved at all scales: micro, meso and macro. CFD R&D has focused on improvement in closure models for subcooled boiling and bubbly flow, and the formulation of robust numerical solution algorithms. For multiphysics integration, several iterative acceleration methods have been assessed, illuminating areas where further research is needed. Finally, uncertainty quantification and data assimilation techniques, based upon sampling approaches, have been made more feasible for practicing nuclear engineers via R&D on dimensional reduction and biased sampling. Industry adoption of CASL
Waveform Catalog, Extreme Mass Ratio Binary (Capture)
National Aeronautics and Space Administration — Numerically-generated gravitational waveforms for circular inspiral into Kerr black holes. These waveforms were developed using Scott Hughes' black hole perturbation...
Advanced Waveform Research Methods for GERESS Recordings
1992-04-15
Rev 2.89) Prev fbeid bV AN’.i % td 139 T 298- t01 Afterow year of opeion it is found that GERESS is the most sensitive staon in Central Europe for...TABLE 2-1: BUTTERWORTH BAND-PASS FILTERS FILTER fL f11 ORDER [Hz) [ HzJ BPOI 0.5 1.0 3 BP02 0.7 2.0 3 BPO3 1.0 2.0 3 BPO4 1.5 3.0 3 BPO5 2.0 4.0 3 BPO6...6 8 10 12 Frequency [ Hzj SNRG CD - COMPARISON 16 .......... 14 1 2 10 ’ 6 mom J 4 0 2 ............. . . .. . .. 0 2 4 6 3 I 12 Frequency [lizi Figure
Advanced Waveform Research Methods for Geress Recordings
1993-04-15
24 2.6 Pre-Amplifier and A/D-Converter 24 2.7 Seismometer Generator Constant 25 2.8 Shaking Table Experiments 27 2.9 Electrical Excitation 29 2.10...January 1992- December 1992 Michael L. Jost 1.1 General The German Experimental Seismic System (GERESS) is a cooperative research program of Southern...hen Messung am GERESS Array im November 1992, BGR internal report GoldenK P., E. T. Herrin, and C. Hayward (1991). Development of an intelligent
Advances in Computational Social Science and Social Simulation
2014-01-01
Aquesta conferència és la celebració conjunta de la "10th Artificial Economics Conference AE", la "10th Conference of the European Social Simulation Association ESSA" i la "1st Simulating the Past to Understand Human History SPUHH". Conferència organitzada pel Laboratory for Socio-Historical Dynamics Simulation (LSDS-UAB) de la Universitat Autònoma de Barcelona. Readers will find results of recent research on computational social science and social simulation economics, management, so...
Niall, Keith K
2010-01-01
Vision and Displays for Military and Security Applications presents recent advances in projection technologies and associated simulation technologies for military and security applications. Specifically, this book covers night vision simulation, semi-automated methods in photogrammetry, and the development and evaluation of high-resolution laser projection technologies for simulation. Topics covered include: advances in high-resolution projection, advances in image generation, geographic modeling, and LIDAR imaging, as well as human factors research for daylight simulation and for night vision devices. This title is ideal for optical engineers, simulator users and manufacturers, geomatics specialists, human factors researchers, and for engineers working with high-resolution display systems. It describes leading-edge methods for human factors research, and it describes the manufacture and evaluation of ultra-high resolution displays to provide unprecedented pixel density in visual simulation.
The European seismological waveform framework EIDA
Trani, Luca; Koymans, Mathijs; Quinteros, Javier; Heinloo, Andres; Euchner, Fabian; Strollo, Angelo; Sleeman, Reinoud; Clinton, John; Stammler, Klaus; Danecek, Peter; Pedersen, Helle; Ionescu, Constantin; Pinar, Ali; Evangelidis, Christos
2017-04-01
The ORFEUS1 European Integrated Data Archive (EIDA2) federates (currently) 11 major European seismological data centres into a common organisational and operational framework which offers: (a) transparent and uniform access tools, advanced services and products for seismological waveform data; (b) a platform for establishing common policies for the curation of seismological waveform data and the description of waveform data by standardised quality metrics; (c) proper attribution and citation (e.g. data ownership). After its establishment in 2013, EIDA has been collecting and distributing seamlessly large amounts of seismological data and products to the research community and beyond. A major task of EIDA is the on-going improvement of the services, tools and products portfolio in order to meet the increasingly demanding users' requirements. At present EIDA is entering a new operational phase and will become the reference infrastructure for seismological waveform data in the pan-European infrastructure for solid-Earth science: EPOS (European Plate Observing System)3. The EIDA Next Generation developments, initiated within the H2020 project EPOS-IP, will provide a new infrastructure that will support the seismological and multidisciplinary EPOS community facilitating interoperability in a broader context. EIDA NG comprises a number of new services and products e.g.: Routing Service, Authentication Service, WFCatalog, Mediator, Station Book and more in the near future. In this contribution we present the current status of the EIDA NG developments and provide an overview of the usage of the new services and their impact on the user community. 1 www.orfeus-eu.org/ 2 www.orfeus-eu.org/eida/eida.html 3 www.epos-ip.org
Zhang, D. L.
2013-01-01
To increase the illumination of the subsurface and to eliminate the dependency of FWI on the source wavelet, we propose multiples waveform inversion (MWI) that transforms each hydrophone into a virtual point source with a time history equal to that of the recorded data. These virtual sources are used to numerically generate downgoing wavefields that are correlated with the backprojected surface-related multiples to give the migration image. Since the recorded data are treated as the virtual sources, knowledge of the source wavelet is not required, and the subsurface illumination is greatly enhanced because the entire free surface acts as an extended source compared to the radiation pattern of a traditional point source. Numerical tests on the Marmousi2 model show that the convergence rate and the spatial resolution of MWI is, respectively, faster and more accurate then FWI. The potential pitfall with this method is that the multiples undergo more than one roundtrip to the surface, which increases attenuation and reduces spatial resolution. This can lead to less resolved tomograms compared to conventional FWI. The possible solution is to combine both FWI and MWI in inverting for the subsurface velocity distribution.
PHASIM, an advanced phased array antenna software simulator
Keizer, W.P.M.N.
2000-01-01
A sophisticated phased array simulator software package for the design and analysis of planar phased array antennas is presented. This package can accurately simulate the far-field characteristics of a large variety of planar phased array configurations in both the frequency and time domain. The sim
ALICES: advanced software engineering workshop for real-time simulators
Noel, A.; Rouault, G. [Tractebel, Brussels (Belgium)
1997-12-01
The ALICES software workshop is presently being applied for the development of a multifunctional simulator for Belgium`s Tihange-1 nuclear power unit. This will be the best validation for all the functions included in the tools. It is believed that ALICES will permit the development of quality realtime simulators at a significantly lower price.
On the accuracy and precision of numerical waveforms: Effect of waveform extraction methodology
Chu, Tony; Kumar, Prayush; Pfeiffer, Harald P; Boyle, Michael; Hemberger, Daniel A; Kidder, Lawrence E; Scheel, Mark A; Szilagyi, Bela
2015-01-01
We present a new set of 95 numerical relativity simulations of non-precessing binary black holes (BBHs). The simulations sample comprehensively both black-hole spins up to spin magnitude of 0.9, and cover mass ratios 1 to 3. The simulations cover on average 24 inspiral orbits, plus merger and ringdown, with low initial orbital eccentricities $e<10^{-4}$. A subset of the simulations extends the coverage of non-spinning BBHs up to mass ratio $q=10$. Gravitational waveforms at asymptotic infinity are computed with two independent techniques, extrapolation, and Cauchy characteristic extraction. An error analysis based on noise-weighted inner products is performed. We find that numerical truncation error, error due to gravitational wave extraction, and errors due to the finite length of the numerical waveforms are of similar magnitude, with gravitational wave extraction errors somewhat dominating at noise-weighted mismatches of $\\sim 3\\times 10^{-4}$. This set of waveforms will serve to validate and improve ali...
A prototype effective-one-body model for non-precessing spinning inspiral-merger-ringdown waveforms
Taracchini, Andrea; Buonanno, Alessandra; Barausse, Enrico; Boyle, Michael; Chu, Tony; Lovelace, Geoffrey; Pfeiffer, Harald P; Scheel, Mark A
2012-01-01
We first use five non-spinning and two mildly spinning (chi_i \\simeq -0.44, +0.44) numerical-relativity waveforms of black-hole binaries and calibrate an effective-one-body (EOB) model for non-precessing spinning binaries, notably its dynamics and the dominant (2,2) gravitational-wave mode. Then, we combine the above results with recent outcomes of small-mass-ratio simulations produced by the Teukolsky equation and build a prototype EOB model for detection purposes, which is capable of generating inspiral-merger-ringdown waveforms for non-precessing spinning black-hole binaries with any mass ratio and individual black-hole spins -1 \\leq chi_i \\lesssim 0.7. We compare the prototype EOB model to two equal-mass highly spinning numerical-relativity waveforms of black holes with spins chi_i = -0.95, +0.97, which were not available at the time the EOB model was calibrated. In the case of Advanced LIGO we find that the mismatch between prototype-EOB and numerical-relativity waveforms is always smaller than 0.003 for...
Fast Prediction and Evaluation of Gravitational Waveforms Using Surrogate Models
Scott E. Field
2014-07-01
Full Text Available We propose a solution to the problem of quickly and accurately predicting gravitational waveforms within any given physical model. The method is relevant for both real-time applications and more traditional scenarios where the generation of waveforms using standard methods can be prohibitively expensive. Our approach is based on three offline steps resulting in an accurate reduced order model in both parameter and physical dimensions that can be used as a surrogate for the true or fiducial waveform family. First, a set of m parameter values is determined using a greedy algorithm from which a reduced basis representation is constructed. Second, these m parameters induce the selection of m time values for interpolating a waveform time series using an empirical interpolant that is built for the fiducial waveform family. Third, a fit in the parameter dimension is performed for the waveform’s value at each of these m times. The cost of predicting L waveform time samples for a generic parameter choice is of order O(mL+mc_{fit} online operations, where c_{fit} denotes the fitting function operation count and, typically, m≪L. The result is a compact, computationally efficient, and accurate surrogate model that retains the original physics of the fiducial waveform family while also being fast to evaluate. We generate accurate surrogate models for effective-one-body waveforms of nonspinning binary black hole coalescences with durations as long as 10^{5}M, mass ratios from 1 to 10, and for multiple spherical harmonic modes. We find that these surrogates are more than 3 orders of magnitude faster to evaluate as compared to the cost of generating effective-one-body waveforms in standard ways. Surrogate model building for other waveform families and models follows the same steps and has the same low computational online scaling cost. For expensive numerical simulations of binary black hole coalescences, we thus anticipate extremely large speedups in
C, Subba Rami Reddy; M, Surya Kalavathi
2011-01-01
This paper introduces an Integrated fuzzy logic controller (IFLC) for brushless dc (BLDC) motor drives using advanced simulation model and presents a comparative study of performances of PID controller and IFLC...
Cubuk-Sabuncu, Yesim; Taymaz, Tuncay; Fichtner, Andreas
2016-04-01
We present a 3D radially anisotropic velocity model of the crust and uppermost mantle structure beneath the Sea of Marmara and surroundings based on the full waveform inversion method. The intense seismic activity and crustal deformation are observed in the Northwest Turkey due to transition tectonics between the strike-slip North Anatolian Fault (NAF) and the extensional Aegean region. We have selected and simulated complete waveforms of 62 earthquakes (Mw > 4.0) occurred during 2007-2015, and recorded at (Δ DAD). The spectral-element solver of the wave equation, SES3D algorithm, is used to simulate seismic wave propagation in 3D spherical coordinates (Fichtner, 2009). The Large Scale Seismic Inversion Framework (LASIF) workflow tool is also used to perform full seismic waveform inversion (Krischer et al., 2015). The initial 3D Earth model is implemented from the multi-scale seismic tomography study of Fichtner et al. (2013). Discrepancies between the observed and simulated synthetic waveforms are determined using the time-frequency misfits which allows a separation between phase and amplitude information (Fichtner et al., 2008). The conjugate gradient optimization method is used to iteratively update the initial Earth model when minimizing the misfit. The inversion is terminated after 19 iterations since no further advances are observed in updated models. Our analysis revealed shear wave velocity variations of the shallow and deeper crustal structure beneath western Turkey down to depths of ~35-40 km. Low shear wave velocity anomalies are observed in the upper and mid crustal depths beneath major fault zones located in the study region. Low velocity zones also tend to mark the outline of young volcanic areas. Our final 3D Earth model is tested using forward wave simulations of earthquakes (M ≥ 3.7) that were not used during the inversion process. The comparison of observed and synthetic seismograms, calculated by initial and final models, showed significant
Binary Black Holes: Mergers, Dynamics, and Waveforms
Centrella, Joan
2007-04-01
The final merger of two black holes is expected to be the strongest gravitational wave source for ground-based interferometers such as LIGO, VIRGO, and GEO600, as well as the space-based interferometer LISA. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will focus on new simulations that are revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, data analysis, and astrophysics.
Simple model of complete precessing black-hole-binary gravitational waveforms.
Hannam, Mark; Schmidt, Patricia; Bohé, Alejandro; Haegel, Leïla; Husa, Sascha; Ohme, Frank; Pratten, Geraint; Pürrer, Michael
2014-10-10
The construction of a model of the gravitational-wave (GW) signal from generic configurations of spinning-black-hole binaries, through inspiral, merger, and ringdown, is one of the most pressing theoretical problems in the buildup to the era of GW astronomy. We present the first such model in the frequency domain, PhenomP, which captures the basic phenomenology of the seven-dimensional parameter space of binary configurations with only three key physical parameters. Two of these (the binary's mass ratio and an effective total spin parallel to the orbital angular momentum, which determines the inspiral rate) define an underlying nonprecessing-binary model. The nonprecessing-binary waveforms are then twisted up with approximate expressions for the precessional motion, which require only one additional physical parameter, an effective precession spin, χ(p). All other parameters (total mass, sky location, orientation and polarization, and initial phase) can be specified trivially. The model is constructed in the frequency domain, which will be essential for efficient GW searches and source measurements. We have tested the model's fidelity for GW applications by comparison against hybrid post-Newtonian-numerical-relativity waveforms at a variety of configurations--although we did not use these numerical simulations in the construction of the model. Our model can be used to develop GW searches, to study the implications for astrophysical measurements, and as a simple conceptual framework to form the basis of generic-binary waveform modeling in the advanced-detector era.
Pitz, William J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McNenly, Matt J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Whitesides, Russell [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mehl, Marco [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Killingsworth, Nick J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Westbrook, Charles K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2015-12-17
Predictive chemical kinetic models are needed to represent next-generation fuel components and their mixtures with conventional gasoline and diesel fuels. These kinetic models will allow the prediction of the effect of alternative fuel blends in CFD simulations of advanced spark-ignition and compression-ignition engines. Enabled by kinetic models, CFD simulations can be used to optimize fuel formulations for advanced combustion engines so that maximum engine efficiency, fossil fuel displacement goals, and low pollutant emission goals can be achieved.
STRS Compliant FPGA Waveform Development
Nappier, Jennifer; Downey, Joseph
2008-01-01
The Space Telecommunications Radio System (STRS) Architecture Standard describes a standard for NASA space software defined radios (SDRs). It provides a common framework that can be used to develop and operate a space SDR in a reconfigurable and reprogrammable manner. One goal of the STRS Architecture is to promote waveform reuse among multiple software defined radios. Many space domain waveforms are designed to run in the special signal processing (SSP) hardware. However, the STRS Architecture is currently incomplete in defining a standard for designing waveforms in the SSP hardware. Therefore, the STRS Architecture needs to be extended to encompass waveform development in the SSP hardware. A transmit waveform for space applications was developed to determine ways to extend the STRS Architecture to a field programmable gate array (FPGA). These extensions include a standard hardware abstraction layer for FPGAs and a standard interface between waveform functions running inside a FPGA. Current standards were researched and new standard interfaces were proposed. The implementation of the proposed standard interfaces on a laboratory breadboard SDR will be presented.
Advanced Algebraic Multigrid Solvers for Subsurface Flow Simulation
Chen, Meng-Huo
2015-09-13
In this research we are particularly interested in extending the robustness of multigrid solvers to encounter complex systems related to subsurface reservoir applications for flow problems in porous media. In many cases, the step for solving the pressure filed in subsurface flow simulation becomes a bottleneck for the performance of the simulator. For solving large sparse linear system arising from MPFA discretization, we choose multigrid methods as the linear solver. The possible difficulties and issues will be addressed and the corresponding remedies will be studied. As the multigrid methods are used as the linear solver, the simulator can be parallelized (although not trivial) and the high-resolution simulation become feasible, the ultimately goal which we desire to achieve.
Le Blanc, Katya Lee [Idaho National Lab. (INL), Idaho Falls, ID (United States); Spielman, Zachary Alexander [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rice, Brandon Charles [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2016-04-01
This report describes the installation of two advanced control room technologies, an advanced alarm system and a computerized procedure system, into the Human Systems Simulation Laboratory (HSSL). Installation of these technologies enables future phases of this research by providing a platform to systematically evaluate the effect of these technologies on operator and plant performance.
Advanced Thermal Simulator Testing: Thermal Analysis and Test Results
Bragg-Sitton, Shannon M.; Dickens, Ricky; Dixon, David; Reid, Robert; Adams, Mike; Davis, Joe
2008-01-01
Work at the NASA Marshall Space Flight Center seeks to develop high fidelity, electrically heated thermal simulators that represent fuel elements in a nuclear reactor design to support non-nuclear testing applicable to the development of a space nuclear power or propulsion system. Comparison between the fuel pins and thermal simulators is made at the outer fuel clad surface, which corresponds to the outer sheath surface in the thermal simulator. The thermal simulators that are currently being tested correspond to a SNAP derivative reactor design that could be applied for Lunar surface power. These simulators are designed to meet the geometric and power requirements of a proposed surface power reactor design, accommodate testing of various axial power profiles, and incorporate imbedded instrumentation. This paper reports the results of thermal simulator analysis and testing in a bare element configuration, which does not incorporate active heat removal, and testing in a water-cooled calorimeter designed to mimic the heat removal that would be experienced in a reactor core.
Within-footprint roughness measurements using ICESat/GLAS waveform and LVIS elevation
Li, Xiaolu; Xu, Kai; Xu, Lijun
2016-12-01
The surface roughness is an important characteristic over an ice sheet or glacier, since it is an identification of boundary-layer meteorology and is an important limiter on the accuracy of surface-height measurements. In this paper, we propose a simulation method to derive the within-footprint roughness (called simulation-derived roughness) using ICESat/GLAS echo waveform, laser vegetation imaging sensor (LVIS) elevations, and laser profile array (LPA) images of ICESat/GLAS. By dividing the within-footprint surface into several elements, a simulation echo waveform can be obtained as the sum of the elementary pulses reflected from each surface element. The elevation of the surface elements, which is utilized to get the return time of the elementary pulses, is implemented based on an LVIS interpolated elevation using a radial basis function (RBF) neural network. The intensity of the elementary pulses can be obtained from the thresholded LPA images. Based on the return time and the intensity of the elementary pulses, we used the particle swarm optimization (PSO) method to approximate the simulation waveform to the ICESat/GLAS echo waveform. The full width at half maximum) (FWHM) of the elementary pulse was extracted from the simulation waveform for estimating the simulation-derived roughness. By comparing with the elevation-derived roughness (derived from the elevation) and the waveform-derived roughness (derived from the ICESat/GLAS waveform), the proposed algorithm can exclude the slope effect from waveform width broadening for describing the roughness of the surface elements.
Effects of Forest Disturbances on Forest Structural Parameters Retrieval from Lidar Waveform Data
Ranson, K, Lon; Sun, G.
2011-01-01
The effect of forest disturbance on the lidar waveform and the forest biomass estimation was demonstrated by model simulation. The results show that the correlation between stand biomass and the lidar waveform indices changes when the stand spatial structure changes due to disturbances rather than the natural succession. This has to be considered in developing algorithms for regional or global mapping of biomass from lidar waveform data.
Advanced SAR simulator with multi-beam interferometric capabilities
Reppucci, Antonio; Márquez, José; Cazcarra, Victor; Ruffini, Giulio
2014-10-01
State of the art simulations are of great interest when designing a new instrument, studying the imaging mechanisms due to a given scenario or for inversion algorithm design as they allow to analyze and understand the effects of different instrument configurations and targets compositions. In the framework of the studies about a new instruments devoted to the estimation of the ocean surface movements using Synthetic Aperture Radar along-track interferometry (SAR-ATI) an End-to-End simulator has been developed. The simulator, built in a high modular way to allow easy integration of different processing-features, deals with all the basic operations involved in an end to end scenario. This includes the computation of the position and velocity of the platform (airborne/spaceborne) and the geometric parameters defining the SAR scene, the surface definition, the backscattering computation, the atmospheric attenuation, the instrument configuration, and the simulation of the transmission/reception chains and the raw data. In addition, the simulator provides a inSAR processing suit and a sea surface movement retrieval module. Up to four beams (each one composed by a monostatic and a bistatic channel) can be activated. Each channel provides raw data and SLC images with the possibility of choosing between Strip-map and Scansar modes. Moreover, the software offers the possibility of radiometric sensitivity analysis and error analysis due atmospheric disturbances, instrument-noise, interferogram phase-noise, platform velocity and attitude variations. In this paper, the architecture and the capabilities of this simulator will be presented. Meaningful simulation examples will be shown.
Full waveform modelling and misfit calculation using the VERCE platform
Garth, Thomas; Spinuso, Alessandro; Casarotti, Emanuele; Magnoni, Federica; Krischner, Lion; Igel, Heiner; Schwichtenberg, Horst; Frank, Anton; Vilotte, Jean-Pierre; Rietbrock, Andreas
2016-04-01
In recent years the increasing resolution of seismic imagining by full waveform inversion has opened new research perspectives and practices. These methods rely on harnessing the computational power of large supercomputers and new storage capabilities, to run large parallel codes to simulate the seismic wave field in three-dimensional geological settings. The VERCE platform is designed to make these full waveform techniques accessible to a far wider spectrum of the seismological community. VERCE empowers a broad base of seismology researchers to harvest the new opportunities provided by well-established high-performance wave simulation codes such as SPECFEM3D. It meets a range of seismic research needs by eliminating the technical difficulties associated with using these codes, allowing users to focus on their research questions. VERCE delivers this power to seismologists through its science gateway, supporting wave simulation codes on each of the provided computing resources. Users can design their waveform simulation scenarios making use of a library of pre-loaded meshes and velocity models, and services for selecting earthquake focal mechanisms, seismic stations and recorded waveforms from existing catalogues, such as the GCMT catalogue, and FDSN data sources. They can also supply their own mesh, velocity model, earthquake catalogue and seismic observations. They can submit the simulations onto different computing resources, where VERCE provides codes that are tuned and supported for those resources. The simulations can currently be run on a range of European supercomputers in the PRACE network, including superMUC at LRZ, GALILEO at CINECA and on selected resources like Drachenfels at SCAI and within the EGI network. The gateway automates and looks after all these stages, but supplies seismologists with a provenance system that allows them to manage a large series of runs, review progress, and explore the results. The platform automates misfit analysis between
Szilagyi, Bela; Buonanno, Alessandra; Taracchini, Andrea; Pfeiffer, Harald P; Scheel, Mark A; Chu, Tony; Kidder, Lawrence E; Pan, Yi
2015-01-01
We present the first numerical-relativity simulation of a compact-object binary whose gravitational waveform is long enough to cover the entire frequency band of advanced gravitational-wave detectors, such as LIGO, Virgo and KAGRA, for mass ratio 7 and total mass as low as $45.5\\,M_\\odot$. We find that effective-one-body models, either uncalibrated or calibrated against substantially shorter numerical-relativity waveforms at smaller mass ratios, reproduce our new waveform remarkably well, with a negligible loss in detection rate due to modeling error. In contrast, post-Newtonian inspiral waveforms and existing calibrated phenomenological inspiral-merger-ringdown waveforms display greater disagreement with our new simulation. The disagreement varies substantially depending on the specific post-Newtonian approximant used.
Design and Testing of Space Telemetry SCA Waveform
Mortensen, Dale J.; Handler, Louis M.; Quinn, Todd M.
2006-01-01
A Software Communications Architecture (SCA) Waveform for space telemetry is being developed at the NASA Glenn Research Center (GRC). The space telemetry waveform is implemented in a laboratory testbed consisting of general purpose processors, field programmable gate arrays (FPGAs), analog-to-digital converters (ADCs), and digital-to-analog converters (DACs). The radio hardware is integrated with an SCA Core Framework and other software development tools. The waveform design is described from both the bottom-up signal processing and top-down software component perspectives. Simulations and model-based design techniques used for signal processing subsystems are presented. Testing with legacy hardware-based modems verifies proper design implementation and dynamic waveform operations. The waveform development is part of an effort by NASA to define an open architecture for space based reconfigurable transceivers. Use of the SCA as a reference has increased understanding of software defined radio architectures. However, since space requirements put a premium on size, mass, and power, the SCA may be impractical for today s space ready technology. Specific requirements for an SCA waveform and other lessons learned from this development are discussed.
Development of Advanced Models for 3D Photocathode PIC Simulations
Dimitrov, Dimitre; Cary, John R; Feldman, Donald; Jensen, Kevin; Messmer, Peter; Stoltz, Peter
2005-01-01
Codes for simulating photocathode electron guns invariably assume the emission of an idealized electron distribution from the cathode, regardless of the particular particle emission model that is implemented. The output of such simulations, a relatively clean and smooth distribution with very little variation as a function of the azimuthal angle, is inconsistent with the highly irregular and asymmetric electron bunches seen in experimental diagnostics. To address this problem, we have implemented a recently proposed theoretical model* that takes into account detailed solid-state physics of photocathode materials in the VORPAL particle-in-cell code.** Initial results from 3D simulations with this model and future research directions will be presented and discussed.
Advancements on the simulation of the micro injection moulding process
Marhöfer, David Maximilian; Tosello, Guido; Hansen, Hans Nørgaard;
2013-01-01
injection molding, because they are developed for macro plastic parts and they are therefore limited in the capability of modeling the polymer flow in micro cavities properly. However, new opportunities for improved accuracy have opened up due to current developments of the simulation technology. Hence, new......Process simulations are applied in micro injection molding with the same purpose as in conventional injection molding: aiming at optimization and support of the design of mold, inserts, plastic products, and the process itself. Available software packages are however not well suited for micro...... strategies and aspects for comprehensive simulation models which provide more precise results for micro injection molding are discussed. Modeling and meshing recommendations are presented, leading to a multi-scale mesh of all relevant units in the injection molding process. The implementation of the process...
Advanced Beam-Dynamics Simulation Tools for RIA
Garnett, Robert; Crandall, Kenneth; Ostroumov, Peter; Qiang, Ji; Ryne, Robert D; Wangler, Thomas; York, Richard; Zhao, Qiang
2005-01-01
Understanding beam losses is important for the high-intensity RIA driver linac. Small fractional beam losses can produce radioactivation of the beamline components that can prevent or hinder hands-on maintenance, reducing facility availability. Operational and alignment errors in the RIA driver linac can lead to beam losses caused by irreversible beam-emittance growth and halo formation. We are developing multiparticle beam-dynamics simulation codes for RIA driver-linac simulations extending from the low-energy beam transport (LEBT) line to the end of the linac. These codes run on the NERSC parallel supercomputing platforms at LBNL, which allow us to run simulations with large numbers of macroparticles for the beam-loss calculations. The codes have the physics capabilities needed for RIA, including transport and acceleration of multiple-charge-state beams, and beam-line elements such as high-voltage platforms within the linac, interdigital accelerating structures, charge-stripper foils, and capabilities for h...
Advances of Simulation and Expertise Capabilities in CIVA Platform
Le Ber, L.; Calmon, P.; Sollier, Th.; Mahaut, S.; Benoist, Ph.
2006-03-01
Simulation is more and more widely used by the different actors of industrial NDT. The French Atomic Energy Commission (CEA) launched the development of expertise software for NDT named CIVA which, at its beginning, only contained ultrasonic models from CEA laboratories. CIVA now includes Eddy current simulation tools while present work aims at facilitating integration of algorithms and models from different laboratories and to include X-ray modeling. This communication gives an overview of existing CIVA capabilities and its evolution towards an integration platform.
Maucec, M.; Rigollet, C.
2004-01-01
The performance of a detection system based on the pulsed fast/thermal neutron analysis technique was assessed using Monte Carlo simulations. The aim was to develop and implement simulation methods, to support and advance the data analysis techniques of the characteristic gamma-ray spectra, potentia
Advanced Techniques for Reservoir Simulation and Modeling of Non-Conventional Wells
Durlofsky, Louis J.
2000-08-28
This project targets the development of (1) advanced reservoir simulation techniques for modeling non-conventional wells; (2) improved techniques for computing well productivity (for use in reservoir engineering calculations) and well index (for use in simulation models), including the effects of wellbore flow; and (3) accurate approaches to account for heterogeneity in the near-well region.
Xiaoxia Shang
2015-04-01
Full Text Available In order to study forests at the global scale, a detailed link budget for a lidar system onboard satellite is presented. It is based on an original approach coupling airborne lidar observations and an end-to-end simulator. The simulator is initialized by airborne lidar measurements performed over temperate and tropical forests on the French territory, representing a wide range of forests ecosystems. Considering two complementary wavelengths of 355 and 1064 nm, the end-to-end simulator computes the performance of spaceborne lidar systems for different orbits. The analysis is based on forest structural (tree top height, quadratic mean canopy height and optical (forest optical thickness parameters. Although an ultraviolet lidar appears to be a good candidate for airborne measurements, our results show that the limited energy is not favorable for spaceborne missions with such a wavelength. A near infrared wavelength at 1064 nm is preferable, requiring ~100 mJ laser emitted energy, which is in agreement with current and future spaceborne missions involving a lidar. We find that the signal-to-noise ratio at the ground level to extract both the structural and optical parameters of forests must be larger than 10. Hence, considering the presence of clouds and aerosols in the atmosphere and assuming a stationary forest, a good detection probability of 99% can be reached when 4 or 5 satellite revisits are considered for a lidar system onboard the ISS or ICESat, respectively. This concerns ~90% of forest covers observed from the lidar, which have an optical thickness less than 3.
Advanced Simulation and Computing Co-Design Strategy
Ang, James A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hoang, Thuc T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kelly, Suzanne M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); McPherson, Allen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Neely, Rob [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-11-01
This ASC Co-design Strategy lays out the full continuum and components of the co-design process, based on what we have experienced thus far and what we wish to do more in the future to meet the program’s mission of providing high performance computing (HPC) and simulation capabilities for NNSA to carry out its stockpile stewardship responsibility.
Advanced Dynamically Adaptive Algorithms for Stochastic Simulations on Extreme Scales
Xiu, Dongbin [Univ. of Utah, Salt Lake City, UT (United States)
2017-03-03
The focus of the project is the development of mathematical methods and high-performance computational tools for stochastic simulations, with a particular emphasis on computations on extreme scales. The core of the project revolves around the design of highly efficient and scalable numerical algorithms that can adaptively and accurately, in high dimensional spaces, resolve stochastic problems with limited smoothness, even containing discontinuities.
An advanced machining simulation environment employing workpiece structural analysis
A.A. Becker
2006-04-01
Full Text Available Purpose: The study aims to reduce the surface dimensional error due to the part deflection during the machining of thin wall structures, thus, reduce machining costs and lead times by producing “right first time” components.Design/methodology/approach: The proposed simulation environment involves a data model, an analytical force prediction model, a material removal model and an FE analysis commercial software package. It focuses on the development of the simulation environment with a multi-level machining error compensation approach.Findings: The developed simulation environment can predict and reduce the form error, which is a limitation of the existing approaches.Research limitations/implications: The energy consumption, temperature change and residual stress are not studied in this research.Practical implications: The developed method provides a platform to deliver new functionality for machining process simulation. The convergence of the proposed integrated system can be achieved quickly after only a few iterations, which makes the methodology reliable and efficient.Originality/value: The study offers an opportunity to satisfy tight tolerances, eliminate hand-finishing processes and assure part-to-part accuracy at the right first time, which is a limitation of previous approaches.
Recent advances in the simulation of particle-laden flows
Harting, J.D.R.; Frijters, M.; Ramaioli, Marco; Wolf, D.E.; Luding, S.
2014-01-01
A substantial number of algorithms exists for the simulation of moving particles suspended in fluids. However, finding the best method to address a particular physical problem is often highly non-trivial and depends on the properties of the particles and the involved fluid(s) together. In this repor
Cross-Cultural Simulation to Advance Student Inquiry
Inglis, Sue; Sammon, Sheila; Justice, Christopher; Cuneo, Carl; Miller, Stefania; Rice, James; Roy, Dale; Warry, Wayne
2004-01-01
This article reviews how and why the authors have used the cross-cultural simulation BAFA BAFA in a 1st-year social sciences inquiry course on social identity. The article discusses modifications made to Shirts's original script for BAFA BAFA, how the authors conduct the postsimulation debriefing, key aspects of the student-written reflection of…
Advancing Simulation Reusability - Report on NATO MSG-042 Findings
Reif, B.M.; Wharton, W.D.; Gonzalez-Godoy, S.; McGlynn, L.; San Jose, A.; Elliot, R.; Franzen, S.; Lecenq, X.; Huiskamp, W.; Edmondson, D.
2007-01-01
In many cases, the training and decision support needs of military users are urgent; operations cannot wait and missions have to be accomplished. Simulators, wargames scenarios and experiments should be ready 'yesterday'. New kinds of operations, environments, tactics, equipment and force configurat
Advancing Simulation Reusability - Report on NATO MSG-042 Findings
Reif, B.M.; Wharton, W.D.; Gonzalez-Godoy, S.; McGlynn, L.; San Jose, A.; Elliot, R.; Franzen, S.; Lecinq, X.; Huiskamp, W.; Edmondson, D.
2006-01-01
In many cases, the training and decision support needs of military users are urgent; operations can not wait and missions have to be accomplished. Simulators, wargames scenarios and experiments should be ready 'yesterday'. New kinds of operations, environments, tactics, equipment and force configura
Development of a Motion System for an Advanced Sailing Simulator
Mulder, F.A.; Verlinden, J.C.
2013-01-01
To train competitive sailing in a virtual setting, motion of the boat as well as haptic feedback of the sail lines is essential. When discussing virtual environments (VEs) the concept of presence is often used. In this study we develop a sailing simulator motion system to research what factors contr
Full Seismic Waveform Inversion for the Japanese Islands
Žukauskaitė, Saulė; Steptoe, Hamish; Fichtner, Andreas
2015-04-01
We present a seismic tomography model for the Japanese archipelago obtained using full waveform inversion and adjoint methods. A credible seismic velocity model is essential for the Japan region as a means to further our understanding of earthquake source mechanics by allowing for more accurate seismic source inversion, to benefit seismic hazard assessment as well as early warning systems, and to comprehend the complexity of the tectonic setting. The study area covers the Japanese islands, Taiwan, Korean peninsula, easternmost parts of China and Russia, Sakhalin and the majority of the Kuril Islands chain. The domain extends down into the mantle transition zone. We choose 58 earthquakes of magnitudes Mw5.0 - 6.9 distributed across the model domain as uniformly as possible. The data are obtained from several seismic networks in the area, namely F-net in Japan, BATS in Taiwan, South Korean National Earthquake Network and several stations from each China National Seismic Network, New China Digital Seismograph Network, Global Seismograph Network and Korean Seismic Network made available by IRIS Data Management Center. To facilitate full waveform inversion the forward problem is solved numerically using the spectral element method (SEM), which comes with the geometric flexibility of the finite-elements method and the accuracy of the spectral methods. Owing to the SEM and the advance in High Performance Computing we are able to perform numerical simulations of seismic waves in realistic 3D heterogeneous visco-elastic structures. Differences between the calculated and the real waveforms are quantified using the time-frequency misfits (Fichtner et al., 2008), which allow us to explore the temporal evolution of the frequency content of the data with no need to identify specific seismic phases. We use adjoint methods as an effective means to obtain sensitivity kernels and ultimately gradients, required for iterative gradient-based minimisation techniques. The obtained model
Pepin, Gerard R.
1992-01-01
The simulation development associated with the network models of both the Interim Service Integrated Services Digital Network (ISDN) Satellite (ISIS) and the Full Service ISDN Satellite (FSIS) architectures is documented. The ISIS Network Model design represents satellite systems like the Advanced Communications Technology Satellite (ACTS) orbiting switch. The FSIS architecture, the ultimate aim of this element of the Satellite Communications Applications Research (SCAR) Program, moves all control and switching functions on-board the next generation ISDN communications satellite. The technical and operational parameters for the advanced ISDN communications satellite design will be obtained from the simulation of ISIS and FSIS engineering software models for their major subsystems. Discrete event simulation experiments will be performed with these models using various traffic scenarios, design parameters, and operational procedures. The data from these simulations will be used to determine the engineering parameters for the advanced ISDN communications satellite.
SIMEX: Simulation of Experiments at Advanced Light Sources
Fortmann-Grote, C; Briggs, R; Bussmann, M; Buzmakov, A; Garten, M; Grund, A; Hübl, A; Hauff, S; Joy, A; Jurek, Z; Loh, N D; Rüter, T; Samoylova, L; Santra, R; Schneidmiller, E A; Sharma, A; Wing, M; Yakubov, S; Yoon, C H; Yurkov, M V; Ziaja, B; Mancuso, A P
2016-01-01
Realistic simulations of experiments at large scale photon facilities, such as optical laser laboratories, synchrotrons, and free electron lasers, are of vital importance for the successful preparation, execution, and analysis of these experiments investigating ever more complex physical systems, e.g. biomolecules, complex materials, and ultra-short lived states of highly excited matter. Traditional photon science modelling takes into account only isolated aspects of an experiment, such as the beam propagation, the photon-matter interaction, or the scattering process, making idealized assumptions about the remaining parts, e.g.\\ the source spectrum, temporal structure and coherence properties of the photon beam, or the detector response. In SIMEX, we have implemented a platform for complete start-to-end simulations, following the radiation from the source, through the beam transport optics to the sample or target under investigation, its interaction with and scattering from the sample, and its registration in...
Use of simulators for validation of advanced plant monitoring systems
Uytterhoeven, G.; Vlaminck, M. De [Belgatom, Brussels (Belgium); Javaux, D. [Cognitive Ergonomics Work-Psychology Department, University of Liege, Sart-Tilman (Belgium)
1999-07-01
This paper describes how the full-scope nuclear power plant simulator of Doel (Belgium) was used to assess Situation Awareness for the validation of a process monitoring and supervision system, named DIMOS. The method (derived from a method originally developed for the aerospace industry) has been adapted and applied to compare the efficiency of two versions of the monitoring system: Alarm-masking and non alarm-masking versions of DIMOS have been analysed in their ability to support Situation Awareness, to improve performance and to fulfil the satisfaction of operators. Both normal power plant operating conditions and abnormal operating conditions were simulated and a large number of power plant operators were involved in the evaluation. The paper focuses on the rationale behind the 'Situation Awareness' evaluation, the experiment environment and the results regarding the added value of the alarm masking version of the monitoring system. (author)
Advanced Dynamically Adaptive Algorithms for Stochastic Simulations on Extreme Scales
Xiu, Dongbin [Purdue Univ., West Lafayette, IN (United States)
2016-06-21
The focus of the project is the development of mathematical methods and high-performance com- putational tools for stochastic simulations, with a particular emphasis on computations on extreme scales. The core of the project revolves around the design of highly e cient and scalable numer- ical algorithms that can adaptively and accurately, in high dimensional spaces, resolve stochastic problems with limited smoothness, even containing discontinuities.
Advanced vectorial simulation of VCSELs with nano structures invited paper
Chung, Il-Sug; Mørk, Jesper
2009-01-01
The single-mode properties and design issues of three vertical-cavity surface-emitting laser (VCSEL) structures incorporating nano structures are rigorously investigated. Nano structuring enables to deliver selective pumping or loss to the fundamental mode as well as stabilizing the output...... polarization state. Comparison of three vectorial simulation methods reveals that the modal expansion method is suitable for treating the nano structured VCSEL designs....
Advances in the numerical simulation of 3D FSW processes
Agelet de Saracibar Bosch, Carlos; Chiumenti, Michèle; Cervera Ruiz, Miguel; Dialami, Narges; Santiago, Diego de; Lombera, Guillermo
2011-01-01
This work deals with the computational modeling and numerical simulation of 3D Friction Stir Welding (FSW) processes. Eulerian and ALE formulations have been used to solve the quasi-static thermal transient governing equations. Mixed P2/P1/P2+SUPG and subgrid-scale stabilized P1/P1/P1 velocity/pressure/temperature elements have been implemented. Norton-Hoff and Sheppard-Wright rigid thermoplastic material models have been considered. Computational visualization techniques using tracers have b...
ADVANCES IN COMPREHENSIVE GYROKINETIC SIMULATIONS OF TRANSPORT IN TOKAMAKS
WALTZ RE; CANDY J; HINTON FL; ESTRADA-MILA C; KINSEY JE
2004-10-01
A continuum global gyrokinetic code GYRO has been developed to comprehensively simulate core turbulent transport in actual experimental profiles and enable direct quantitative comparisons to the experimental transport flows. GYRO not only treats the now standard ion temperature gradient (ITG) mode turbulence, but also treats trapped and passing electrons with collisions and finite {beta}, equilibrium ExB shear stabilization, and all in real tokamak geometry. Most importantly the code operates at finite relative gyroradius ({rho}{sub *}) so as to treat the profile shear stabilization and nonlocal effects which can break gyroBohm scaling. The code operates in either a cyclic flux-tube limit (which allows only gyroBohm scaling) or a globally with physical profile variation. Rohm scaling of DIII-D L-mode has been simulated with power flows matching experiment within error bars on the ion temperature gradient. Mechanisms for broken gyroBohm scaling, neoclassical ion flows embedded in turbulence, turbulent dynamos and profile corrugations, plasma pinches and impurity flow, and simulations at fixed flow rather than fixed gradient are illustrated and discussed.
Simulation of an advanced techniques of ion propulsion Rocket system
Bakkiyaraj, R.
2016-07-01
The ion propulsion rocket system is expected to become popular with the development of Deuterium,Argon gas and Hexagonal shape Magneto hydrodynamic(MHD) techniques because of the stimulation indirectly generated the power from ionization chamber,design of thrust range is 1.2 N with 40 KW of electric power and high efficiency.The proposed work is the study of MHD power generation through ionization level of Deuterium gas and combination of two gaseous ions(Deuterium gas ions + Argon gas ions) at acceleration stage.IPR consists of three parts 1.Hexagonal shape MHD based power generator through ionization chamber 2.ion accelerator 3.Exhaust of Nozzle.Initially the required energy around 1312 KJ/mol is carrying out the purpose of deuterium gas which is changed to ionization level.The ionized Deuterium gas comes out from RF ionization chamber to nozzle through MHD generator with enhanced velocity then after voltage is generated across the two pairs of electrode in MHD.it will produce thrust value with the help of mixing of Deuterium ion and Argon ion at acceleration position.The simulation of the IPR system has been carried out by MATLAB.By comparing the simulation results with the theoretical and previous results,if reaches that the proposed method is achieved of thrust value with 40KW power for simulating the IPR system.
Advanced simulation model for IPM motor drive with considering phase voltage and stator inductance
Lee, Dong-Myung; Park, Hyun-Jong; Lee, Ju
2016-10-01
This paper proposes an advanced simulation model of driving system for Interior Permanent Magnet (IPM) BrushLess Direct Current (BLDC) motors driven by 120-degree conduction method (two-phase conduction method, TPCM) that is widely used for sensorless control of BLDC motors. BLDC motors can be classified as SPM (Surface mounted Permanent Magnet) and IPM motors. Simulation model of driving system with SPM motors is simple due to the constant stator inductance regardless of the rotor position. Simulation models of SPM motor driving system have been proposed in many researches. On the other hand, simulation models for IPM driving system by graphic-based simulation tool such as Matlab/Simulink have not been proposed. Simulation study about driving system of IPMs with TPCM is complex because stator inductances of IPM vary with the rotor position, as permanent magnets are embedded in the rotor. To develop sensorless scheme or improve control performance, development of control algorithm through simulation study is essential, and the simulation model that accurately reflects the characteristic of IPM is required. Therefore, this paper presents the advanced simulation model of IPM driving system, which takes into account the unique characteristic of IPM due to the position-dependent inductances. The validity of the proposed simulation model is validated by comparison to experimental and simulation results using IPM with TPCM control scheme.
An advanced leakage scheme for neutrino treatment in astrophysical simulations
Perego, Albino; Käppeli, Roger
2015-01-01
We present an Advanced Spectral Leakage (ASL) scheme to model neutrinos in the context of core-collapse supernovae and compact binary mergers. Based on previous gray leakage schemes, the ASL scheme computes the neutrino cooling rates by interpolating local production and diffusion rates (relevant in optically thin and thick regimes, respectively), separately for discretized values of the neutrino energy. Neutrino trapped components are also modeled, based on equilibrium and timescale arguments. The better accuracy achieved by the spectral treatment allows a more reliable computation of neutrino heating rates in optically thin conditions. The scheme has been calibrated and tested against Boltzmann transport in the context of Newtonian spherically symmetric models of core-collapse supernovae. ASL shows a very good qualitative and a partial quantitative agreement, for key quantities from collapse to a few hundreds of milliseconds after core bounce. We have proved the adaptability and flexibility of our ASL schem...
Advanced visualization technology for terascale particle accelerator simulations
Ma, K-L; Schussman, G.; Wilson, B.; Ko, K.; Qiang, J.; Ryne, R.
2002-11-16
This paper presents two new hardware-assisted rendering techniques developed for interactive visualization of the terascale data generated from numerical modeling of next generation accelerator designs. The first technique, based on a hybrid rendering approach, makes possible interactive exploration of large-scale particle data from particle beam dynamics modeling. The second technique, based on a compact texture-enhanced representation, exploits the advanced features of commodity graphics cards to achieve perceptually effective visualization of the very dense and complex electromagnetic fields produced from the modeling of reflection and transmission properties of open structures in an accelerator design. Because of the collaborative nature of the overall accelerator modeling project, the visualization technology developed is for both desktop and remote visualization settings. We have tested the techniques using both time varying particle data sets containing up to one billion particle s per time step and electromagnetic field data sets with millions of mesh elements.
Computational modeling, optimization and manufacturing simulation of advanced engineering materials
2016-01-01
This volume presents recent research work focused in the development of adequate theoretical and numerical formulations to describe the behavior of advanced engineering materials. Particular emphasis is devoted to applications in the fields of biological tissues, phase changing and porous materials, polymers and to micro/nano scale modeling. Sensitivity analysis, gradient and non-gradient based optimization procedures are involved in many of the chapters, aiming at the solution of constitutive inverse problems and parameter identification. All these relevant topics are exposed by experienced international and inter institutional research teams resulting in a high level compilation. The book is a valuable research reference for scientists, senior undergraduate and graduate students, as well as for engineers acting in the area of computational material modeling.
Fast and efficient evaluation of gravitational waveforms via reduced-order spline interpolation
Galley, Chad R
2016-01-01
Numerical simulations of merging black hole binaries produce the most accurate gravitational waveforms. The availability of hundreds of these numerical relativity (NR) waveforms, often containing many higher spherical harmonic modes, allows one to study many aspects of gravitational waves. Amongst these are the response of data analysis pipelines, the calibration of semi-analytical models, the building of reduced-order surrogates, the estimation of the parameters of detected gravitational waves, and the composition of public catalogs of NR waveform data. The large number of generated NR waveforms consequently requires efficient data storage and handling, especially since many more waveforms will be generated at an increased rate in the forthcoming years. In addition, gravitational wave data analyses often require the NR waveforms to be interpolated and uniformly resampled at high sampling rates. Previously, this resulted in very large data files (up to $\\sim$ several GB) in memory-intensive operations, which ...
A Denoising Method for LiDAR Full-Waveform Data
Xudong Lai
2015-01-01
Full Text Available Decomposition of LiDAR full-waveform data can not only enhance the density and positioning accuracy of a point cloud, but also provide other useful parameters, such as pulse width, peak amplitude, and peak position which are important information for subsequent processing. Full-waveform data usually contain some random noises. Traditional filtering algorithms always cause distortion in the waveform. λ/μ filtering algorithm is based on Mean Shift method. It can smooth the signal iteratively and will not cause any distortion in the waveform. In this paper, an improved λ/μ filtering algorithm is proposed, and several experiments on both simulated waveform data and real waveform data are implemented to prove the effectiveness of the proposed algorithm.
Advanced Computation Dynamics Simulation of Protective Structures Research
2013-02-01
workmanship, water- cement ratio, and curing conditions. Most of these parameters are not fixed and are determined in the field by the mason. Also, bond usually...type Portland or Mortar Cement (psi) Masonry cement (psi) M or S N M or S N Normal to bed joint Ungrouted 33 25 20 12 Fully Grouted 86 84 81 77...multi-wythe walls that were fully grouted and had a brick veneer filled with a foam insulated cavity. He simulated the grout and CMU with a single
Recent Advances in the Numerical Simulations of Binary Black Holes
Marronetti, Pedro
2011-01-01
Since the breakthrough papers from 2005/2006, the field of numerical relativity has experienced a growth spurt that took the two-body problem in general relativity from the category of "really-hard-problems" to the realm of "things-we-know-how-to-do". Simulations of binary black holes in circular orbits, the holy grail of numerical relativity, are now tractable problems that lead to some of the most spectacular results in general relativity in recent years. We cover here some of the latest achievements and highlight the field's next challenges.
Microwave Processing of Simulated Advanced Nuclear Fuel Pellets
D.E. Clark; D.C. Folz
2010-08-29
Throughout the three-year project funded by the Department of Energy (DOE) and lead by Virginia Tech (VT), project tasks were modified by consensus to fit the changing needs of the DOE with respect to developing new inert matrix fuel processing techniques. The focus throughout the project was on the use of microwave energy to sinter fully stabilized zirconia pellets using microwave energy and to evaluate the effectiveness of techniques that were developed. Additionally, the research team was to propose fundamental concepts as to processing radioactive fuels based on the effectiveness of the microwave process in sintering the simulated matrix material.
Electric and plug-in hybrid vehicles advanced simulation methodologies
Varga, Bogdan Ovidiu; Moldovanu, Dan; Iclodean, Calin
2015-01-01
This book is designed as an interdisciplinary platform for specialists working in electric and plug-in hybrid electric vehicles powertrain design and development, and for scientists who want to get access to information related to electric and hybrid vehicle energy management, efficiency and control. The book presents the methodology of simulation that allows the specialist to evaluate electric and hybrid vehicle powertrain energy flow, efficiency, range and consumption. The mathematics behind each electric and hybrid vehicle component is explained and for each specific vehicle the powertrain
Enhanced Injection Molding Simulation of Advanced Injection Molds
Béla Zink
2017-02-01
Full Text Available The most time-consuming phase of the injection molding cycle is cooling. Cooling efficiency can be enhanced with the application of conformal cooling systems or high thermal conductivity copper molds. The conformal cooling channels are placed along the geometry of the injection-molded product, and thus they can extract more heat and heat removal is more uniform than in the case of conventional cooling systems. In the case of copper mold inserts, cooling channels are made by drilling and heat removal is facilitated by the high thermal conductivity coefficient of copper, which is several times that of steel. Designing optimal cooling systems is a complex process; a proper design requires injection molding simulations, but the accuracy of calculations depends on how precise the input parameters and boundary conditions are. In this study, three cooling circuit designs and three mold materials (Ampcoloy 940, 1.2311 (P20 steel, and MS1 steel were used and compared using numerical methods. The effect of different mold designs and materials on cooling efficiency were examined using calculated and measured results. The simulation model was adjusted to the measurement results by considering the joint gap between the mold inserts.
Simulation models and designs for advanced Fischer-Tropsch technology
Choi, G.N.; Kramer, S.J.; Tam, S.S. [Bechtel Corp., San Francisco, CA (United States)
1995-12-31
Process designs and economics were developed for three grass-roots indirect Fischer-Tropsch coal liquefaction facilities. A baseline and an alternate upgrading design were developed for a mine-mouth plant located in southern Illinois using Illinois No. 6 coal, and one for a mine-mouth plane located in Wyoming using Power River Basin coal. The alternate design used close-coupled ZSM-5 reactors to upgrade the vapor stream leaving the Fischer-Tropsch reactor. ASPEN process simulation models were developed for all three designs. These results have been reported previously. In this study, the ASPEN process simulation model was enhanced to improve the vapor/liquid equilibrium calculations for the products leaving the slurry bed Fischer-Tropsch reactors. This significantly improved the predictions for the alternate ZSM-5 upgrading design. Another model was developed for the Wyoming coal case using ZSM-5 upgrading of the Fischer-Tropsch reactor vapors. To date, this is the best indirect coal liquefaction case. Sensitivity studies showed that additional cost reductions are possible.
Advanced solid elements for sheet metal forming simulation
Mataix, Vicente; Rossi, Riccardo; Oñate, Eugenio; Flores, Fernando G.
2016-08-01
The solid-shells are an attractive kind of element for the simulation of forming processes, due to the fact that any kind of generic 3D constitutive law can be employed without any additional hypothesis. The present work consists in the improvement of a triangular prism solid-shell originally developed by Flores[2, 3]. The solid-shell can be used in the analysis of thin/thick shell, undergoing large deformations. The element is formulated in total Lagrangian formulation, and employs the neighbour (adjacent) elements to perform a local patch to enrich the displacement field. In the original formulation a modified right Cauchy-Green deformation tensor (C) is obtained; in the present work a modified deformation gradient (F) is obtained, which allows to generalise the methodology and allows to employ the Pull-Back and Push-Forwards operations. The element is based in three modifications: (a) a classical assumed strain approach for transverse shear strains (b) an assumed strain approach for the in-plane components using information from neighbour elements and (c) an averaging of the volumetric strain over the element. The objective is to use this type of elements for the simulation of shells avoiding transverse shear locking, improving the membrane behaviour of the in-plane triangle and to handle quasi-incompressible materials or materials with isochoric plastic flow.
Scholbrock, Andrew K [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Muljadi, Eduard [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gevorgian, Vahan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Scholbrock, Andrew K [National Renewable Energy Laboratory (NREL), Golden, CO (United States)
2017-08-09
In this paper, we focus on the temporary frequency support effect provided by wind turbine generators (WTGs) through the inertial response. With the implemented inertial control methods, the WTG is capable of increasing its active power output by releasing parts of the stored kinetic energy when the frequency excursion occurs. The active power can be boosted temporarily above the maximum power points, but the rotor speed deceleration follows and an active power output deficiency occurs during the restoration of rotor kinetic energy. In this paper, we evaluate and compare the inertial response induced by two distinct inertial control methods using advanced simulation. In the first stage, the proposed inertial control methods are analyzed in offline simulation. Using an advanced wind turbine simulation program, FAST with TurbSim, the response of the researched wind turbine is comprehensively evaluated under turbulent wind conditions, and the impact on the turbine mechanical components are assessed. In the second stage, the inertial control is deployed on a real 600-kW wind turbine, the three-bladed Controls Advanced Research Turbine, which further verifies the inertial control through a hardware-in-the-loop simulation. Various inertial control methods can be effectively evaluated based on the proposed two-stage simulation platform, which combines the offline simulation and real-time hardware-in-the-loop simulation. The simulation results also provide insights in designing inertial control for WTGs.
Waveform-dependent absorbing metasurfaces
Wakatsuchi, Hiroki; Rushton, Jeremiah J; Sievenpiper, Daniel F
2014-01-01
We present the first use of a waveform-dependent absorbing metasurface for high-power pulsed surface currents. The new type of nonlinear metasurface, composed of circuit elements including diodes, is capable of storing high power pulse energy to dissipate it between pulses, while allowing propagation of small signals. Interestingly, the absorbing performance varies for high power pulses but not for high power continuous waves (CWs), since the capacitors used are fully charged up. Thus, the waveform dependence enables us to distinguish various signal types (i.e. CW or pulse) even at the same frequency, which potentially creates new kinds of microwave technologies and applications.
NATO Advanced Study Institute on Advances in the Computer Simulations of Liquid Crystals
Zannoni, Claudio
2000-01-01
Computer simulations provide an essential set of tools for understanding the macroscopic properties of liquid crystals and of their phase transitions in terms of molecular models. While simulations of liquid crystals are based on the same general Monte Carlo and molecular dynamics techniques as are used for other fluids, they present a number of specific problems and peculiarities connected to the intrinsic properties of these mesophases. The field of computer simulations of anisotropic fluids is interdisciplinary and is evolving very rapidly. The present volume covers a variety of techniques and model systems, from lattices to hard particle and Gay-Berne to atomistic, for thermotropics, lyotropics, and some biologically interesting liquid crystals. Contributions are written by an excellent panel of international lecturers and provides a timely account of the techniques and problems in the field.
Classification of Pulse Waveforms Using Edit Distance with Real Penalty
Zhang Dongyu
2010-01-01
Full Text Available Abstract Advances in sensor and signal processing techniques have provided effective tools for quantitative research in traditional Chinese pulse diagnosis (TCPD. Because of the inevitable intraclass variation of pulse patterns, the automatic classification of pulse waveforms has remained a difficult problem. In this paper, by referring to the edit distance with real penalty (ERP and the recent progress in -nearest neighbors (KNN classifiers, we propose two novel ERP-based KNN classifiers. Taking advantage of the metric property of ERP, we first develop an ERP-induced inner product and a Gaussian ERP kernel, then embed them into difference-weighted KNN classifiers, and finally develop two novel classifiers for pulse waveform classification. The experimental results show that the proposed classifiers are effective for accurate classification of pulse waveform.
Advanced Wear Simulation for Bulk Metal Forming Processes
Behrens Bernd-Arno
2016-01-01
Full Text Available In the recent decades the finite element method has become an essential tool for the cost-efficient virtual process design in the metal forming sector in order to counter the constantly increasing quality standards, particularly from the automotive industry as well as intensified international competition in the forging industry. An optimized process design taking precise tool wear prediction into account is a way to increase the cost-efficiency of the bulk metal forming processes. The main objective of the work presented in this paper is a modelling algorithm, which allows predicting die wear with respect to a geometry update during the forming simulation. Changes in the contact area caused by geometry update lead to the different die wear distribution. It primarily concerns the die areas, which undergo high thermal and mechanical loads.
Advanced wellbore thermal simulator GEOTEMP2 user manual
Mondy, L.A.; Duda, L.E.
1984-11-01
GEOTEMP2 is a wellbore thermal simulator computer code designed for geothermal drilling and production applications. The code treats natural and forced convection and conduction within the wellbore and heat conduction within the surrounding rock matrix. A variety of well operations can be modeled including injection, production, forward, and reverse circulation with gas or liquid, gas or liquid drilling, and two-phase steam injection and production. Well completion with several different casing sizes and cement intervals can be modeled. The code allows variables suchas flow rate to change with time enabling a realistic treatment of well operations. This user manual describes the input required to properly operate the code. Ten sample problems are included which illustrate all the code options. Complete listings of the code and the output of each sample problem are provided.
Szilágyi, Béla; Blackman, Jonathan; Buonanno, Alessandra; Taracchini, Andrea; Pfeiffer, Harald P; Scheel, Mark A; Chu, Tony; Kidder, Lawrence E; Pan, Yi
2015-07-17
We present the first numerical-relativity simulation of a compact-object binary whose gravitational waveform is long enough to cover the entire frequency band of advanced gravitational-wave detectors, such as LIGO, Virgo, and KAGRA, for mass ratio 7 and total mass as low as 45.5M_{⊙}. We find that effective-one-body models, either uncalibrated or calibrated against substantially shorter numerical-relativity waveforms at smaller mass ratios, reproduce our new waveform remarkably well, with a negligible loss in detection rate due to modeling error. In contrast, post-Newtonian inspiral waveforms and existing calibrated phenomenological inspiral-merger-ringdown waveforms display greater disagreement with our new simulation. The disagreement varies substantially depending on the specific post-Newtonian approximant used.
Littenberg, Tyson; LIGO Scientific Collaboration
2016-03-01
The BayesWave burst detection and characterization algorithm was used during the first Advanced LIGO observing run as a follow-up analysis to candidate transient gravitational wave events. Among the BayesWave data products are robust reconstructed waveforms and probability density functions for metrics such as duration, bandwidth, etc. used to characterize the waveforms. We will demonstrate how the waveform metrics can be used to infer the astrophysical nature of a gravitational wave source, and present the status of BayesWave studies from the first advanced LIGO observing run.
Design and Test of Advanced Thermal Simulators for an Alkali Metal-Cooled Reactor Simulator
Garber, Anne E.; Dickens, Ricky E.
2011-01-01
The Early Flight Fission Test Facility (EFF-TF) at NASA Marshall Space Flight Center (MSFC) has as one of its primary missions the development and testing of fission reactor simulators for space applications. A key component in these simulated reactors is the thermal simulator, designed to closely mimic the form and function of a nuclear fuel pin using electric heating. Continuing effort has been made to design simple, robust, inexpensive thermal simulators that closely match the steady-state and transient performance of a nuclear fuel pin. A series of these simulators have been designed, developed, fabricated and tested individually and in a number of simulated reactor systems at the EFF-TF. The purpose of the thermal simulators developed under the Fission Surface Power (FSP) task is to ensure that non-nuclear testing can be performed at sufficiently high fidelity to allow a cost-effective qualification and acceptance strategy to be used. Prototype thermal simulator design is founded on the baseline Fission Surface Power reactor design. Recent efforts have been focused on the design, fabrication and test of a prototype thermal simulator appropriate for use in the Technology Demonstration Unit (TDU). While designing the thermal simulators described in this paper, effort were made to improve the axial power profile matching of the thermal simulators. Simultaneously, a search was conducted for graphite materials with higher resistivities than had been employed in the past. The combination of these two efforts resulted in the creation of thermal simulators with power capacities of 2300-3300 W per unit. Six of these elements were installed in a simulated core and tested in the alkali metal-cooled Fission Surface Power Primary Test Circuit (FSP-PTC) at a variety of liquid metal flow rates and temperatures. This paper documents the design of the thermal simulators, test program, and test results.
Methodological advances: using greenhouses to simulate climate change scenarios.
Morales, F; Pascual, I; Sánchez-Díaz, M; Aguirreolea, J; Irigoyen, J J; Goicoechea, N; Antolín, M C; Oyarzun, M; Urdiain, A
2014-09-01
Human activities are increasing atmospheric CO2 concentration and temperature. Related to this global warming, periods of low water availability are also expected to increase. Thus, CO2 concentration, temperature and water availability are three of the main factors related to climate change that potentially may influence crops and ecosystems. In this report, we describe the use of growth chamber - greenhouses (GCG) and temperature gradient greenhouses (TGG) to simulate climate change scenarios and to investigate possible plant responses. In the GCG, CO2 concentration, temperature and water availability are set to act simultaneously, enabling comparison of a current situation with a future one. Other characteristics of the GCG are a relative large space of work, fine control of the relative humidity, plant fertirrigation and the possibility of light supplementation, within the photosynthetic active radiation (PAR) region and/or with ultraviolet-B (UV-B) light. In the TGG, the three above-mentioned factors can act independently or in interaction, enabling more mechanistic studies aimed to elucidate the limiting factor(s) responsible for a given plant response. Examples of experiments, including some aimed to study photosynthetic acclimation, a phenomenon that leads to decreased photosynthetic capacity under long-term exposures to elevated CO2, using GCG and TGG are reported.
Computer simulation of an advanced combustor for clean coal technology
Chang, S.L.; Lottes, S.A.
1992-01-01
Magnetohydrodynamic (MHD) power generation is a clean coal technology because of its higher thermal efficiency and lower pollutant emission. Argonne National Laboratory used a comprehensive integral combustion computer code to aid the development of a TRW's second stage combustor for MHD power generation. The integral combustion code is a computer code for two-phase, two-dimensional, steady state, turbulent, and reacting flows, based on mass, momentum, and energy conservation laws for multiple gas species and solid particles of variable sizes. In the MHD second stage combustor, opposed jets of oxidizer are injected into a confined cross-stream coal gas flow laden with seed particles. The performance of the downstream MHD power generation channel depends mainly on the degree and the uniformity of gas ionization, which, in turn, depends on the uniformity of temperature and seed vapor distributions leaving the combustor. The simulation provides in-depth information of flow, combustion, and heat transfer patterns in the combustor, which is used to predict ranges of combustor operating conditions for optimum performance of the MHD system.
Computer simulation of an advanced combustor for clean coal technology
Chang, S.L.; Lottes, S.A.
1992-09-01
Magnetohydrodynamic (MHD) power generation is a clean coal technology because of its higher thermal efficiency and lower pollutant emission. Argonne National Laboratory used a comprehensive integral combustion computer code to aid the development of a TRW`s second stage combustor for MHD power generation. The integral combustion code is a computer code for two-phase, two-dimensional, steady state, turbulent, and reacting flows, based on mass, momentum, and energy conservation laws for multiple gas species and solid particles of variable sizes. In the MHD second stage combustor, opposed jets of oxidizer are injected into a confined cross-stream coal gas flow laden with seed particles. The performance of the downstream MHD power generation channel depends mainly on the degree and the uniformity of gas ionization, which, in turn, depends on the uniformity of temperature and seed vapor distributions leaving the combustor. The simulation provides in-depth information of flow, combustion, and heat transfer patterns in the combustor, which is used to predict ranges of combustor operating conditions for optimum performance of the MHD system.
Advanced numerical methods and software approaches for semiconductor device simulation
CAREY,GRAHAM F.; PARDHANANI,A.L.; BOVA,STEVEN W.
2000-03-23
In this article the authors concisely present several modern strategies that are applicable to drift-dominated carrier transport in higher-order deterministic models such as the drift-diffusion, hydrodynamic, and quantum hydrodynamic systems. The approaches include extensions of upwind and artificial dissipation schemes, generalization of the traditional Scharfetter-Gummel approach, Petrov-Galerkin and streamline-upwind Petrov Galerkin (SUPG), entropy variables, transformations, least-squares mixed methods and other stabilized Galerkin schemes such as Galerkin least squares and discontinuous Galerkin schemes. The treatment is representative rather than an exhaustive review and several schemes are mentioned only briefly with appropriate reference to the literature. Some of the methods have been applied to the semiconductor device problem while others are still in the early stages of development for this class of applications. They have included numerical examples from the recent research tests with some of the methods. A second aspect of the work deals with algorithms that employ unstructured grids in conjunction with adaptive refinement strategies. The full benefits of such approaches have not yet been developed in this application area and they emphasize the need for further work on analysis, data structures and software to support adaptivity. Finally, they briefly consider some aspects of software frameworks. These include dial-an-operator approaches such as that used in the industrial simulator PROPHET, and object-oriented software support such as those in the SANDIA National Laboratory framework SIERRA.
State of the Art Assessment of Simulation in Advanced Materials Development
Wise, Kristopher E.
2008-01-01
Advances in both the underlying theory and in the practical implementation of molecular modeling techniques have increased their value in the advanced materials development process. The objective is to accelerate the maturation of emerging materials by tightly integrating modeling with the other critical processes: synthesis, processing, and characterization. The aims of this report are to summarize the state of the art of existing modeling tools and to highlight a number of areas in which additional development is required. In an effort to maintain focus and limit length, this survey is restricted to classical simulation techniques including molecular dynamics and Monte Carlo simulations.
Jo, Sunhwan; Cheng, Xi; Islam, Shahidul M; Huang, Lei; Rui, Huan; Zhu, Allen; Lee, Hui Sun; Qi, Yifei; Han, Wei; Vanommeslaeghe, Kenno; MacKerell, Alexander D; Roux, Benoît; Im, Wonpil
2014-01-01
CHARMM-GUI, http://www.charmm-gui.org, is a web-based graphical user interface to prepare molecular simulation systems and input files to facilitate the usage of common and advanced simulation techniques. Since it is originally developed in 2006, CHARMM-GUI has been widely adopted for various purposes and now contains a number of different modules designed to setup a broad range of simulations including free energy calculation and large-scale coarse-grained representation. Here, we describe functionalities that have recently been integrated into CHARMM-GUI PDB Manipulator, such as ligand force field generation, incorporation of methanethiosulfonate spin labels and chemical modifiers, and substitution of amino acids with unnatural amino acids. These new features are expected to be useful in advanced biomolecular modeling and simulation of proteins.
Autocorrelation Properties of OFDM Timing Synchronization Waveforms Employing Pilot Subcarriers
Oktay Üreten
2009-01-01
Full Text Available We investigate the autocorrelation properties of timing synchronization waveforms that are generated by embedded frequency domain pilot tones in orthogonal frequency division multiplex (OFDM systems. The waveforms are composed by summing a selected number of OFDM subcarriers such that the autocorrelation function (ACF of the resulting time waveform has desirable sidelobe behavior. Analytical expressions for the periodic and aperiodic ACF sidelobe energy are derived. Sufficient conditions for minimum and maximum aperiodic ACF sidelobe energy for a given number of pilot tones are presented. Several useful properties of the pilot design problem, such as invariance under transformations and equivalence of complementary sets are demonstrated analytically. Pilot tone design discussion is expanded to the ACF sidelobe peak minimization problem by including various examples and simulation results obtained from a genetic search algorithm.
Autocorrelation Properties of OFDM Timing Synchronization Waveforms Employing Pilot Subcarriers
Taşcıoğlu Selçuk
2009-01-01
Full Text Available Abstract We investigate the autocorrelation properties of timing synchronization waveforms that are generated by embedded frequency domain pilot tones in orthogonal frequency division multiplex (OFDM systems. The waveforms are composed by summing a selected number of OFDM subcarriers such that the autocorrelation function (ACF of the resulting time waveform has desirable sidelobe behavior. Analytical expressions for the periodic and aperiodic ACF sidelobe energy are derived. Sufficient conditions for minimum and maximum aperiodic ACF sidelobe energy for a given number of pilot tones are presented. Several useful properties of the pilot design problem, such as invariance under transformations and equivalence of complementary sets are demonstrated analytically. Pilot tone design discussion is expanded to the ACF sidelobe peak minimization problem by including various examples and simulation results obtained from a genetic search algorithm.
An MSK Waveform for Radar Applications
Quirk, Kevin J.; Srinivasan, Meera
2009-01-01
We introduce a minimum shift keying (MSK) waveform developed for use in radar applications. This waveform is characterized in terms of its spectrum, autocorrelation, and ambiguity function, and is compared with the conventionally used bi-phase coded (BPC) radar signal. It is shown that the MSK waveform has several advantages when compared with the BPC waveform, and is a better candidate for deep-space radar imaging systems such as NASA's Goldstone Solar System Radar.
Radar Waveform Design in Active Communications Channel
Ric A. Romero; Shepherd, Kevin D.
2013-01-01
In this paper, we investigate spectrally adaptive radar transmit waveform design and its effects on an active communication system. We specifically look at waveform design for point targets. The transmit waveform is optimized by accounting for the modulation spectrum of the communication system while trying to efficiently use the remaining spectrum. With the use of spectrally-matched radar waveform, we show that the SER detection performance of the communication system ...
Effects of waveform model systematics on the interpretation of GW150914
Abbott, B P; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Ananyeva, A; Anderson, S B; Anderson, W G; Appert, S; Arai, K; Araya, M C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Avila-Alvarez, A; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Beer, C; Bejger, M; Belahcene, I; Belgin, M; Bell, A S; Berger, B K; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Billman, C R; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blackman, J; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Boer, M; Bogaert, G; Bohe, A; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Brunett, S; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Bustillo, J Calder'on; Callister, T A; Calloni, E; Camp, J B; Cannon, K C; Cao, H; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Diaz, J Casanueva; Casentini, C; Caudill, S; Cavagli`a, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Baiardi, L Cerboni; Cerretani, G; Cesarini, E; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Cheeseboro, B D; Chen, H Y; Chen, Y; Cheng, H -P; Chincarini, A; Chiummo, A; Chmiel, T; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, A J K; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Cocchieri, C; Coccia, E; Cohadon, P -F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conti, L; Cooper, S J; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J -P; Countryman, S T; Couvares, P; Covas, P B; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Creighton, J D E; Creighton, T D; Cripe, J; Crowder, S G; Cullen, T J; Cumming, A; Cunningham, L; Cuoco, E; Canton, T Dal; Danilishin, S L; D'Antonio, S; Danzmann, K; Dasgupta, A; Costa, C F Da Silva; Dattilo, V; Dave, I; Davier, M; Davies, G S; Davis, D; Daw, E J; Day, B; Day, R; De, S; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Del'eglise, S; Del Pozzo, W; Denker, T; Dent, T; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Devenson, J; Devine, R C; Dhurandhar, S; D'iaz, M C; Di Fiore, L; Di Giovanni, M; Di Girolamo, T; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Doctor, Z; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Dorrington, I; Douglas, R; 'Alvarez, M Dovale; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H -B; Ehrens, P; Eichholz, J; Eikenberry, S S; Eisenstein, R A; Essick, R C; Etienne, Z; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Farinon, S; Farr, B; Farr, W M; Fauchon-Jones, E J; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Galiana, A Fern'andez; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fong, H; Forsyth, S S; Fournier, J -D; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fries, E M; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H; Gadre, B U; Gaebel, S M; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gaur, G; Gayathri, V; Gehrels, N; Gemme, G; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghonge, S; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; Gonz'alez, G; Castro, J M Gonzalez; Gopakumar, A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Grado, A; Graef, C; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C -J; Haughian, K; Healy, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Henry, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hofman, D; Holt, K; Holz, D E; Hopkins, P; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J -M; Isi, M; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jani, K; Jaranowski, P; Jawahar, S; Jim'enez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Junker, J; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Karvinen, K S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; K'ef'elian, F; Keitel, D; Kelley, D B; Kennedy, R; Key, J S; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, Chunglee; Kim, J C; Kim, Whansun; Kim, W; Kim, Y -M; Kimbrell, S J; King, E J; King, P J; Kirchhoff, R; Kissel, J S; Klein, B; Kleybolte, L; Klimenko, S; Koch, P; Koehlenbeck, S M; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kr"amer, C; Kringel, V; Krishnan, B; Kr'olak, A; Kuehn, G; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lang, R N; Lange, J; Lantz, B; Lanza, R K; Lartaux-Vollard, A; Lasky, P D; Laxen, M; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lehmann, J; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Li, T G F; Libson, A; Littenberg, T B; Liu, J; Lockerbie, N A; Lombardi, A L; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lovelace, G; L"uck, H; Lundgren, A P; Lynch, R; Ma, Y; Macfoy, S; Machenschalk, B; MacInnis, M; Macleod, D M; Magana-Sandoval, F; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; M'arka, S; M'arka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martynov, D V; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Mastrogiovanni, S; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McGrath, C; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McRae, T; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E L; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Metzdorff, R; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, A L; Miller, A; Miller, B B; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mours, B; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Muniz, E A M; Murray, P G; Mytidis, A; Napier, K; Nardecchia, I; Naticchioni, L; Nelemans, G; Nelson, T J N; Neri, M; Nery, M; Neunzert, A; Newport, J M; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Noack, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Overmier, H; Owen, B J; Pace, A E; Page, J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perez, C J; Perreca, A; Perri, L M; Pfeiffer, H P; Phelps, M; Piccinni, O J; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poe, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Pratt, J W W; Predoi, V; Prestegard, T; Prijatelj, M; Principe, M; Privitera, S; Prodi, G A; Prokhorov, L G; Puncken, O; Punturo, M; Puppo, P; P"urrer, M; Qi, H; Qin, J; Qiu, S; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Rhoades, E; Ricci, F; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romie, J H; Rosi'nska, D; Rowan, S; R"udiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Sakellariadou, M; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sampson, L M; Sanchez, E J; Sandberg, V; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Scheuer, J; Schmidt, E; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Sch"onbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Schwalbe, S G; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Setyawati, Y; Shaddock, D A; Shaffer, T J; Shahriar, M S; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sieniawska, M; Sigg, D; Silva, A D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, B; Smith, J R; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Spencer, A P; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stevenson, S P; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strigin, S E; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sunil, S; Sutton, P J; Swinkels, B L; Szczepa'nczyk, M J; Tacca, M; Talukder, D; Tanner, D B; T'apai, M; Taracchini, A; Taylor, R; Theeg, T; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thrane, E; Tippens, T; Tiwari, S; Tiwari, V; Tokmakov, K V; Toland, K; Tomlinson, C; Tonelli, M; Tornasi, Z; Torrie, C I; T"oyr"a, D; Travasso, F; Traylor, G; Trifir`o, D; Trinastic, J; Tringali, M C; Trozzo, L; Tse, M; Tso, R; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; Brand, J F J van den; Broeck, C Van Den; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Varma, V; Vass, S; Vas'uth, M; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Venugopalan, G; Verkindt, D; Vetrano, F; Vicer'e, A; Viets, A D; Vinciguerra, S; Vine, D J; Vinet, J -Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D V; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, Y; Ward, R L; Warner, J; Was, M; Watchi, J; Weaver, B; Wei, L -W; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Wessels, P; Westphal, T; Wette, K; Whelan, J T; Whiting, B F; Whittle, C; Williams, D; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Woehler, J; Worden, J; Wright, J L; Wu, D S; Wu, G; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, Hang; Yu, Haocun; Yvert, M; zny, A Zadro; Zangrando, L; Zanolin, M; Zendri, J -P; Zevin, M; Zhang, L; Zhang, M; Zhang, T; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, S J; Zhu, X J; Zucker, M E; Zweizig, J; Boyle, M; Chu, T; Hemberger, D; Hinder, I; Kidder, L E; Ossokine, S; Scheel, M; Szilagyi, B; Teukolsky, S; Vano-Vinuales, A
2016-01-01
Parameter estimates of GW150914 were obtained using Bayesian inference, based on three semi-analytic waveform models for binary black hole coalescences. These waveform models differ from each other in their treatment of black hole spins, and all three models make some simplifying assumptions, notably to neglect sub-dominant waveform harmonic modes and orbital eccentricity. Furthermore, while the models are calibrated to agree with waveforms obtained by full numerical solutions of Einstein's equations, any such calibration is accurate only to some non-zero tolerance and is limited by the accuracy of the underlying phenomenology, availability, quality, and parameter-space coverage of numerical simulations. This paper complements the original analyses of GW150914 with an investigation of the effects of possible systematic errors in the waveform models on estimates of its source parameters. To test for systematic errors we repeat the original Bayesian analyses on mock signals from numerical simulations of a serie...
Blackman, Jonathan; Galley, Chad R; Szilagyi, Bela; Scheel, Mark A; Tiglio, Manuel; Hemberger, Daniel A
2015-01-01
Simulating a binary black hole coalescence by solving Einstein's equations is computationally expensive, requiring days to months of supercomputing time. In this paper, we construct an accurate and fast-to-evaluate surrogate model for numerical relativity (NR) waveforms from non-spinning binary black hole coalescences with mass ratios from $1$ to $10$ and durations corresponding to about $15$ orbits before merger. Our surrogate, which is built using reduced order modeling techniques, is distinct from traditional modeling efforts. We find that the full multi-mode surrogate model agrees with waveforms generated by NR to within the numerical error of the NR code. In particular, we show that our modeling strategy produces surrogates which can correctly predict NR waveforms that were {\\em not} used for the surrogate's training. For all practical purposes, then, the surrogate waveform model is equivalent to the high-accuracy, large-scale simulation waveform but can be evaluated in a millisecond to a second dependin...
Advanced Flight Simulator: Utilization in A-10 Conversion and Air-to-Surface Attack Training.
1981-01-01
CLASSIFIC.TION OF THIS PAGE(1Whl Data Emiterd) Item 20 (Continued) -" blocks of instruction on the Advanced Simulator for Pilot Training ( ASPT ). The first...training, the transfer of training from the ASPT to the A-10 is nearly 100 percent. therefore, in the early phases of AiS training, one simulator... ASPT ) could be suitably modified, an alternative to initially dangerous and expensive aircraft training would exist which also offered considerable
Advances in Constitutive and Failure Models for Sheet Forming Simulation
Yoon, Jeong Whan; Stoughton, Thomas B.
2016-08-01
Non-Associated Flow Rule (Non-AFR) can be used as a convenient way to account for anisotropic material response in metal deformation processes, making it possible for example, to eliminate the problem of the anomalous yielding in equibiaxial tension that is mistakenly attributed to limitations of the quadratic yield function, but may instead be attributed to the Associated Flow Rule (AFR). Seeing as in Non-AFR based models two separate functions can be adopted for yield and plastic potential, there is no constraint to which models are used to describe each of them. In this work, the flexible combination of two different yield criteria as yield function and plastic potential under Non-AFR is proposed and evaluated. FE simulations were carried so as to verify the accuracy of the material directionalities predicted using these constitutive material models. The stability conditions for non-associated flow connected with the prediction of yield point elongation are also reviewed. Anisotropic distortion hardening is further incorporated under non-associated flow. It has been found that anisotropic hardening makes the noticeable improvements for both earing and spring-back predictions. This presentation is followed by a discussion of the topic of the forming limit & necking, the evidence in favor of stress analysis, and the motivation for the development of a new type of forming limit diagram based on the polar effective plastic strain (PEPS) diagram. In order to connect necking to fracture in metals, the stress-based necking limit is combined with a stress- based fracture criterion in the principal stress, which provides an efficient method for the analysis of necking and fracture limits. The concept for the PEPS diagram is further developed to cover the path-independent PEPS fracture which is compatible with the stress-based fracture approach. Thus this fracture criterion can be utilized to describe the post-necking behavior and to cover nonlinear strain-path. Fracture
Breast ultrasound computed tomography using waveform inversion with source encoding
Wang, Kun; Matthews, Thomas; Anis, Fatima; Li, Cuiping; Duric, Neb; Anastasio, Mark A.
2015-03-01
Ultrasound computed tomography (USCT) holds great promise for improving the detection and management of breast cancer. Because they are based on the acoustic wave equation, waveform inversion-based reconstruction methods can produce images that possess improved spatial resolution properties over those produced by ray-based methods. However, waveform inversion methods are computationally demanding and have not been applied widely in USCT breast imaging. In this work, source encoding concepts are employed to develop an accelerated USCT reconstruction method that circumvents the large computational burden of conventional waveform inversion methods. This method, referred to as the waveform inversion with source encoding (WISE) method, encodes the measurement data using a random encoding vector and determines an estimate of the speed-of-sound distribution by solving a stochastic optimization problem by use of a stochastic gradient descent algorithm. Computer-simulation studies are conducted to demonstrate the use of the WISE method. Using a single graphics processing unit card, each iteration can be completed within 25 seconds for a 128 × 128 mm2 reconstruction region. The results suggest that the WISE method maintains the high spatial resolution of waveform inversion methods while significantly reducing the computational burden.
Generating nonlinear FM chirp waveforms for radar.
Doerry, Armin Walter
2006-09-01
Nonlinear FM waveforms offer a radar matched filter output with inherently low range sidelobes. This yields a 1-2 dB advantage in Signal-to-Noise Ratio over the output of a Linear FM waveform with equivalent sidelobe filtering. This report presents design and implementation techniques for Nonlinear FM waveforms.
Sensitivity of the gradient oscillatory number to flow input waveform shapes.
Shimogonya, Yuji; Kumamaru, Hiroshige; Itoh, Kazuhiro
2012-04-05
The sensitivity of the gradient oscillatory number (GON), which is a potential hemodynamic indicator for cerebral aneurysm initiation, to flow input waveform shapes was examined by performing computational fluid dynamics (CFD) simulations of an anatomical model of a human internal carotid artery under three different waveform shape conditions. The local absolute variation (standard deviation) and relative variation (coefficient of variation) of the GON calculations for three waveform shapes were computed to quantify the variation in GON due to waveform shape changes. For all waveform shapes, an elevated GON was evident at a known aneurysm site, albeit occurring at additional sites. No significant differences were observed among the qualitative GON distributions derived using the three different waveform shapes. These results suggest that the GON is largely insensitive to the variability in flow input waveform shapes. The quantitative analysis revealed that GON displays an improved relative variation over a relatively high GON range. We therefore conclude that it is reasonable to use assumed flow input waveform shapes as a substitute for individual real waveform shapes for the detection of possible GON elevations of individual clinical cases in large-scale studies, where the higher values of GON are of primary interest.
Matched-filtering and parameter estimation of ringdown waveforms
Berti, Emanuele; Cardoso, Vitor; Cavaglia, Marco
2007-01-01
Using recent results from numerical relativity simulations of non-spinning binary black hole mergers we revisit the problem of detecting ringdown waveforms and of estimating the source parameters, considering both LISA and Earth-based interferometers. We find that Advanced LIGO and EGO could detect intermediate-mass black holes of mass up to about 1000 solar masses out to a luminosity distance of a few Gpc. For typical multipolar energy distributions, we show that the single-mode ringdown templates presently used for ringdown searches in the LIGO data stream can produce a significant event loss (> 10% for all detectors in a large interval of black hole masses) and very large parameter estimation errors on the black hole's mass and spin. We estimate that more than 10^6 templates would be needed for a single-stage multi-mode search. Therefore, we recommend a "two stage" search to save on computational costs: single-mode templates can be used for detection, but multi-mode templates or Prony methods should be use...
Sadideen, Hazim; Wilson, David; Moiemen, Naiem; Kneebone, Roger
2014-01-01
Educational theory highlights the importance of contextualized simulation for effective learning. We explored this concept in a burns scenario in a novel, low-cost, high-fidelity, portable, immersive simulation environment (referred to as distributed simulation). This contextualized simulation/distributed simulation combination was named "The Burns Suite" (TBS). A pediatric burn resuscitation scenario was selected after high trainee demand. It was designed on Advanced Trauma and Life Support and Emergency Management of Severe Burns principles and refined using expert opinion through cognitive task analysis. TBS contained "realism" props, briefed nurses, and a simulated patient. Novices and experts were recruited. Five-point Likert-type questionnaires were developed for face and content validity. Cronbach's α was calculated for scale reliability. Semistructured interviews captured responses for qualitative thematic analysis allowing for data triangulation. Twelve participants completed TBS scenario. Mean face and content validity ratings were high (4.6 and 4.5, respectively; range, 4-5). The internal consistency of questions was high. Qualitative data analysis revealed that participants felt 1) the experience was "real" and they were "able to behave as if in a real resuscitation environment," and 2) TBS "addressed what Advanced Trauma and Life Support and Emergency Management of Severe Burns didn't" (including the efficacy of incorporating nontechnical skills). TBS provides a novel, effective simulation tool to significantly advance the delivery of burns education. Recreating clinical challenge is crucial to optimize simulation training. This low-cost approach also has major implications for surgical education, particularly during increasing financial austerity. Alternative scenarios and/or procedures can be recreated within TBS, providing a diverse educational immersive simulation experience.
OOFEM — an Object-oriented Simulation Tool for Advanced Modeling of Materials and Structures
Bořek Patzák
2012-01-01
The aim of this paper is to describe the object-oriented design of the finite element based simulation code. The overall, object-oriented structure is described, and the role of the fundamental classes is discussed. The paper discusses the advanced parallel, adaptive, and multiphysics capabilities of the OOFEM code, and illustrates them on the basis of selected examples.
OOFEM — an Object-oriented Simulation Tool for Advanced Modeling of Materials and Structures
Bořek Patzák
2012-01-01
Full Text Available The aim of this paper is to describe the object-oriented design of the finite element based simulation code. The overall, object-oriented structure is described, and the role of the fundamental classes is discussed. The paper discusses the advanced parallel, adaptive, and multiphysics capabilities of the OOFEM code, and illustrates them on the basis of selected examples.
Advances in thermal hydraulic and neutronic simulation for reactor analysis and safety
Tentner, A.M.; Blomquist, R.N.; Canfield, T.R.; Ewing, T.F.; Garner, P.L.; Gelbard, E.M.; Gross, K.C.; Minkoff, M.; Valentin, R.A.
1993-03-01
This paper describes several large-scale computational models developed at Argonne National Laboratory for the simulation and analysis of thermal-hydraulic and neutronic events in nuclear reactors and nuclear power plants. The impact of advanced parallel computing technologies on these computational models is emphasized.
Development of advanced driver assistance systems with vehicle hardware-in-the-loop simulations
Gietelink, O.J.; Ploeg, J.; Schutter, B.de; Verhaegen, M.
2006-01-01
This paper presents a new method for the design and validation of advanced driver assistance systems (ADASs). With vehicle hardware-in-the-loop (VEHIL) simulations, the development process, and more specifically the validation phase, of intelligent vehicles is carried out safer, cheaper, and is more
A catalog of 171 high-quality binary black-hole simulations for gravitational-wave astronomy
Mroue, Abdul H; Szilagyi, Bela; Pfeiffer, Harald P; Boyle, Michael; Hemberger, Daniel A; Kidder, Lawrence E; Lovelace, Geoffrey; Ossokine, Sergei; Taylor, Nicholas W; Zenginoglu, Anil; Buchman, Luisa T; Chu, Tony; Foley, Evan; Giesler, Matthew; Owen, Robert; Teukolsky, Saul A
2013-01-01
Coalescing binary black holes are a primary science target of ground-based gravitational-wave detectors, which require detailed knowledge of the expected waveforms to maximize detections and our understanding of the waves' sources. This paper presents a catalog of numerical binary black- hole simulations that represents a major advance toward the application of numerical relativity to gravitational-wave data analysis. Specifically, the catalog contains 171 numerical simulations that maintain the high accuracy required for matched filtering while following more orbits (up to 33) than previous simulations. A larger number of orbits allows a more reliable connection to approximate analytical waveforms, which are used to extend numerical waveforms to span the entire frequency range of a detector. The catalog contains 91 precessing binaries, providing the most comprehensive survey of precessing systems to date, and includes waveforms with black-hole spins up to 0.97, mass ratios up to 8, and orbital eccentricities...
Waveform model of a laser altimeter for an elliptical Gaussian beam.
Yue, Ma; Mingwei, Wang; Guoyuan, Li; Xiushan, Lu; Fanlin, Yang
2016-03-10
The current waveform model of a laser altimeter is based on the Gaussian laser beam of the fundamental mode, whose cross section is a circular spot, whereas some of the cross sections of Geoscience Laser Altimeter System lasers are closer to elliptical spots. Based on the expression of the elliptical Gaussian beam and the waveform theory of laser altimeters, the primary parameters of an echo waveform were derived. In order to examine the deduced expressions, a laser altimetry waveform simulator and waveform processing software were programmed and improved under the circumstance of an elliptical Gaussian beam. The result shows that all the biases between the theoretical and simulated waveforms were less than 0.5%, and the derived model of an elliptical spot is universal and can also be used for the conventional circular spot. The shape of the waveforms is influenced by the ellipticity of the laser spot, the target slope, and the "azimuth angle" between the major axis and the slope direction. This article provides the waveform theoretical basis of a laser altimeter under an elliptical Gaussian beam.
Why Waveform Correlation Sometimes Fails
Carmichael, J.
2015-12-01
Waveform correlation detectors used in explosion monitoring scan noisy geophysical data to test two competing hypotheses: either (1) an amplitude-scaled version of a template waveform is present, or, (2) no signal is present at all. In reality, geophysical wavefields that are monitored for explosion signatures include waveforms produced by non-target sources that are partially correlated with the waveform template. Such signals can falsely trigger correlation detectors, particularly at low thresholds required to monitor for smaller target explosions. This challenge is particularly formidable when monitoring known test sites for seismic disturbances, since uncatalogued natural seismicity is (generally) more prevalent at lower magnitudes, and could be mistaken for small explosions. To address these challenges, we identify real examples in which correlation detectors targeting explosions falsely trigger on both site-proximal earthquakes (Figure 1, below) and microseismic "noise". Motivated by these examples, we quantify performance loss when applying these detectors, and re-evaluate the correlation-detector's hypothesis test. We thereby derive new detectors from more general hypotheses that admit unknown background seismicity, and apply these to real data. From our treatment, we derive "rules of thumb'' for proper template and threshold selection in heavily cluttered signal environments. Last, we answer the question "what is the probability of falsely detecting an earthquake collocated at a test site?", using correlation detectors that include explosion-triggered templates. Figure Top: An eight-channel data stream (black) recorded from an earthquake near a mine. Red markers indicate a detection. Middle: The correlation statistic computed by scanning the template against the data stream at top. The red line indicates the threshold for event declaration, determined by a false-alarm on noise probability constraint, as computed from the signal-absent distribution using
van der Wiel, S E; Küttner Magalhães, R; Rocha Gonçalves, Carla Rolanda; Dinis-Ribeiro, M; Bruno, M J; Koch, A D
2016-06-01
Simulator-based gastrointestinal endoscopy training has gained acceptance over the last decades and has been extensively studied. Several types of simulators have been validated and it has been demonstrated that the use of simulators in the early training setting accelerates the learning curve in acquiring basic skills. Current GI endoscopy simulators lack the degree of realism that would be necessary to provide training to achieve full competency or to be applicable in certification. Virtual Reality and mechanical simulators are commonly used in basic flexible endoscopy training, whereas ex vivo and in vivo models are used in training the most advanced endoscopic procedures. Validated models for the training of more routine therapeutic interventions like polypectomy, EMR, stenting and haemostasis are lacking or scarce and developments in these areas should be encouraged.
Phenomenological gravitational waveforms from spinning coalescing binaries
Sturani, R; Cadonati, L; Guidi, G M; Healy, J; Shoemaker, D; Vicere', A
2010-01-01
An accurate knowledge of the coalescing binary gravitational waveform is crucial for match filtering techniques, which are currently used in the observational searches performed by the LIGO-Virgo collaboration. Following an earlier paper by the same authors we expose the construction of analytical phenomenological waveforms describing the signal sourced by generically spinning binary systems. The gap between the initial inspiral part of the waveform, described by spin-Taylor approximants, and its final ring-down part, described by damped exponentials, is bridged by a phenomenological phase calibrated by comparison with the dominant spherical harmonic mode of a set of waveforms including both numerical and phenomenological waveforms of a different type. All waveforms considered describe equal mass systems with dimension-less spin magnitudes equal to 0.6. The noise-weighted overlap integral between numerical and phenomenological waveforms ranges between 0.93 and 0.98 for a wide span of mass values.
Advances in the simulation and automated measurement of well-sorted granular material: 1. Simulation
Daniel Buscombe,; Rubin, David M.
2012-01-01
1. In this, the first of a pair of papers which address the simulation and automated measurement of well-sorted natural granular material, a method is presented for simulation of two-phase (solid, void) assemblages of discrete non-cohesive particles. The purpose is to have a flexible, yet computationally and theoretically simple, suite of tools with well constrained and well known statistical properties, in order to simulate realistic granular material as a discrete element model with realistic size and shape distributions, for a variety of purposes. The stochastic modeling framework is based on three-dimensional tessellations with variable degrees of order in particle-packing arrangement. Examples of sediments with a variety of particle size distributions and spatial variability in grain size are presented. The relationship between particle shape and porosity conforms to published data. The immediate application is testing new algorithms for automated measurements of particle properties (mean and standard deviation of particle sizes, and apparent porosity) from images of natural sediment, as detailed in the second of this pair of papers. The model could also prove useful for simulating specific depositional structures found in natural sediments, the result of physical alterations to packing and grain fabric, using discrete particle flow models. While the principal focus here is on naturally occurring sediment and sedimentary rock, the methods presented might also be useful for simulations of similar granular or cellular material encountered in engineering, industrial and life sciences.
Synchronous Generator Model Parameter Estimation Based on Noisy Dynamic Waveforms
Berhausen, Sebastian; Paszek, Stefan
2016-01-01
In recent years, there have occurred system failures in many power systems all over the world. They have resulted in a lack of power supply to a large number of recipients. To minimize the risk of occurrence of power failures, it is necessary to perform multivariate investigations, including simulations, of power system operating conditions. To conduct reliable simulations, the current base of parameters of the models of generating units, containing the models of synchronous generators, is necessary. In the paper, there is presented a method for parameter estimation of a synchronous generator nonlinear model based on the analysis of selected transient waveforms caused by introducing a disturbance (in the form of a pseudorandom signal) in the generator voltage regulation channel. The parameter estimation was performed by minimizing the objective function defined as a mean square error for deviations between the measurement waveforms and the waveforms calculated based on the generator mathematical model. A hybrid algorithm was used for the minimization of the objective function. In the paper, there is described a filter system used for filtering the noisy measurement waveforms. The calculation results of the model of a 44 kW synchronous generator installed on a laboratory stand of the Institute of Electrical Engineering and Computer Science of the Silesian University of Technology are also given. The presented estimation method can be successfully applied to parameter estimation of different models of high-power synchronous generators operating in a power system.
Reduced order model for binary neutron star waveforms with tidal interactions
Lackey, Benjamin; Bernuzzi, Sebastiano; Galley, Chad
2016-03-01
Observations of inspiralling binary neutron star (BNS) systems with Advanced LIGO can be used to determine the unknown neutron-star equation of state by measuring the phase shift in the gravitational waveform due to tidal interactions. Unfortunately, this requires computationally efficient waveform models for use in parameter estimation codes that typically require 106-107 sequential waveform evaluations, as well as accurate waveform models with phase errors less than 1 radian over the entire inspiral to avoid systematic errors in the measured tidal deformability. The effective one body waveform model with l = 2 , 3, and 4 tidal multipole moments is currently the most accurate model for BNS systems, but takes several minutes to evaluate. We develop a reduced order model of this waveform by constructing separate orthonormal bases for the amplitude and phase evolution. We find that only 10-20 bases are needed to reconstruct any BNS waveform with a starting frequency of 10 Hz. The coefficients of these bases are found with Chebyshev interpolation over the waveform parameter space. This reduced order model has maximum errors of 0.2 radians, and results in a speedup factor of more than 103, allowing parameter estimation codes to run in days to weeks rather than decades.
Zhai, Xue; Fei, Cheng-Wei; Choy, Yat-Sze; Wang, Jian-Jun
2017-01-01
To improve the accuracy and efficiency of computation model for complex structures, the stochastic model updating (SMU) strategy was proposed by combining the improved response surface model (IRSM) and the advanced Monte Carlo (MC) method based on experimental static test, prior information and uncertainties. Firstly, the IRSM and its mathematical model were developed with the emphasis on moving least-square method, and the advanced MC simulation method is studied based on Latin hypercube sampling method as well. And then the SMU procedure was presented with experimental static test for complex structure. The SMUs of simply-supported beam and aeroengine stator system (casings) were implemented to validate the proposed IRSM and advanced MC simulation method. The results show that (1) the SMU strategy hold high computational precision and efficiency for the SMUs of complex structural system; (2) the IRSM is demonstrated to be an effective model due to its SMU time is far less than that of traditional response surface method, which is promising to improve the computational speed and accuracy of SMU; (3) the advanced MC method observably decrease the samples from finite element simulations and the elapsed time of SMU. The efforts of this paper provide a promising SMU strategy for complex structure and enrich the theory of model updating.
Redonnet, S.; Ben Khelil, S.; Bulté, J.; Cunha, G.
2017-09-01
With the objective of aircraft noise mitigation, we here address the numerical characterization of the aeroacoustics by a simplified nose landing gear (NLG), through the use of advanced simulation and signal processing techniques. To this end, the NLG noise physics is first simulated through an advanced hybrid approach, which relies on Computational Fluid Dynamics (CFD) and Computational AeroAcoustics (CAA) calculations. Compared to more traditional hybrid methods (e.g. those relying on the use of an Acoustic Analogy), and although it is used here with some approximations made (e.g. design of the CFD-CAA interface), the present approach does not rely on restrictive assumptions (e.g. equivalent noise source, homogeneous propagation medium), which allows to incorporate more realism into the prediction. In a second step, the outputs coming from such CFD-CAA hybrid calculations are processed through both traditional and advanced post-processing techniques, thus offering to further investigate the NLG's noise source mechanisms. Among other things, this work highlights how advanced computational methodologies are now mature enough to not only simulate realistic problems of airframe noise emission, but also to investigate their underlying physics.
Integrating Biosystem Models Using Waveform Relaxation
Stephen Baigent
2008-12-01
Full Text Available Modelling in systems biology often involves the integration of component models into larger composite models. How to do this systematically and efficiently is a significant challenge: coupling of components can be unidirectional or bidirectional, and of variable strengths. We adapt the waveform relaxation (WR method for parallel computation of ODEs as a general methodology for computing systems of linked submodels. Four test cases are presented: (i a cascade of unidirectionally and bidirectionally coupled harmonic oscillators, (ii deterministic and stochastic simulations of calcium oscillations, (iii single cell calcium oscillations showing complex behaviour such as periodic and chaotic bursting, and (iv a multicellular calcium model for a cell plate of hepatocytes. We conclude that WR provides a flexible means to deal with multitime-scale computation and model heterogeneity. Global solutions over time can be captured independently of the solution techniques for the individual components, which may be distributed in different computing environments.
The Osseus platform: a prototype for advanced web-based distributed simulation
Franceschini, Derrick; Riecken, Mark
2016-05-01
Recent technological advances in web-based distributed computing and database technology have made possible a deeper and more transparent integration of some modeling and simulation applications. Despite these advances towards true integration of capabilities, disparate systems, architectures, and protocols will remain in the inventory for some time to come. These disparities present interoperability challenges for distributed modeling and simulation whether the application is training, experimentation, or analysis. Traditional approaches call for building gateways to bridge between disparate protocols and retaining interoperability specialists. Challenges in reconciling data models also persist. These challenges and their traditional mitigation approaches directly contribute to higher costs, schedule delays, and frustration for the end users. Osseus is a prototype software platform originally funded as a research project by the Defense Modeling & Simulation Coordination Office (DMSCO) to examine interoperability alternatives using modern, web-based technology and taking inspiration from the commercial sector. Osseus provides tools and services for nonexpert users to connect simulations, targeting the time and skillset needed to successfully connect disparate systems. The Osseus platform presents a web services interface to allow simulation applications to exchange data using modern techniques efficiently over Local or Wide Area Networks. Further, it provides Service Oriented Architecture capabilities such that finer granularity components such as individual models can contribute to simulation with minimal effort.
Editorial: Advances in Health Education Applying E-Learning, Simulations and Distance Technologies
Andre W. Kushniruk
2011-03-01
Full Text Available This special issue of the KM&EL international journal is dedicated to coverage of novel advances in health professional education applying e-Learning, simulations and distance education technologies. Modern healthcare is beginning to be transformed through the emergence of new information technologies and rapid advances in health informatics. Advances such as electronic health record systems (EHRs, clinical decision support systems and other advanced information systems such as public health surveillance systems are rapidly being deployed worldwide. The education of health professionals such as medical, nursing and allied health professionals will require an improved understanding of these technologies and how they will transform their healthcare practice. However, currently there is a lack of integration of knowledge and skills related to such technology in health professional education. In this issue of the journal we present articles that describe a set of novel approaches to integrating essential health information technology into the education of health professionals, as well as the use of advanced information technologies and e-Learning approaches for improving health professional education. The approaches range from use of simulations to development of novel Web-based platforms for allowing students to interact with the technologies and healthcare practices that are rapidly changing healthcare.
FY05-FY06 Advanced Simulation and Computing Implementation Plan, Volume 2
Baron, A L
2004-07-19
The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the safety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with future non-nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program will require the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear weapon design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable stockpile life extension programs and the resolution of significant finding investigations (SFIs). This requires a balanced system of technical staff, hardware, simulation software, and computer science solutions.
Garth, Thomas; Rietbrock, Andreas; Hicks, Steve; Fuenzalida Velasco, Amaya; Casarotti, Emanuele; Spinuso, Alessandro
2015-04-01
The VERCE platform is an online portal that allows full waveform simulations to be run for any region where a suitable velocity model exists. We use this facility to simulate the waveforms from aftershock earthquakes from the 2014 Pisagua earthquake, and 2010 Maule earthquake that occurred at the subduction zone mega thrust in Northern and Central Chile respectively. Simulations are performed using focal mechanisms from both global earthquake catalogues, and regional earthquake catalogues. The VERCE platform supports specFEM Cartesian, and simulations are run using meshes produced by CUBIT. The full waveform modelling techniques supported on the VERCE platform are used to test the validity of a number of subduction zone velocity models from the Chilean subduction zone. For the Maule earthquake we use a 2D and 3D travel time tomography model of the rupture area (Hicks et al. 2011; 2014). For the Pisagua earthquake we test a 2D/3D composite velocity model based on tomographic studies of the region (e.g. Husen et al. 2000, Contreyes-Reyes et al. 2012) and slab1.0 (Hayes et al. 2012). Focal mechanisms from the cGMT catalogue and local focal mechanisms calculated using ISOLA (e.g. Agurto et al. 2012) are used in the simulations. The waveforms produced are directly compared to waveforms recorded on the temporary deployment for the Maule earthquake aftershocks, and waveforms recorded on the IPOC network for the Pisagua earthquake aftershocks. This work demonstrates how the VERCE platform allows waveforms from the full 3D simulations to be easily produced, allowing us to quantify the validity of both the velocity model and the source mechanisms. These simulations therefore provide an independent test of the velocity models produced synthetically and by travel time tomography studies. Initial results show that the waveform is reasonably well reproduced in the 0.05 - 0.25 frequency band using a refined 3D travel time tomography, and locally calculated focal mechanisms.
Mikóczi, Balázs; Forgács, Péter; Vasúth, Mátyás
2015-08-01
The inspiral and merger of supermassive black hole binary systems with high orbital eccentricity are among the promising sources of the advanced gravitational wave observatories. In this paper we compute gravitational waveforms in the frequency domain to the first post-Newtonian order, emitted by compact binary systems with arbitrary eccentricity. Our results are fully analytic, ready-to-use expressions of the waveforms in terms of a suitable generalization of Hansen coefficients known from celestial mechanics. Secular terms induced by the eccentricity are eliminated by introducing a suitable phase shift. The obtained waveforms have a rather simple structure, greatly facilitating their use in applications.
Simulation Neurotechnologies for Advancing Brain Research: Parallelizing Large Networks in NEURON.
Lytton, William W; Seidenstein, Alexandra H; Dura-Bernal, Salvador; McDougal, Robert A; Schürmann, Felix; Hines, Michael L
2016-10-01
Large multiscale neuronal network simulations are of increasing value as more big data are gathered about brain wiring and organization under the auspices of a current major research initiative, such as Brain Research through Advancing Innovative Neurotechnologies. The development of these models requires new simulation technologies. We describe here the current use of the NEURON simulator with message passing interface (MPI) for simulation in the domain of moderately large networks on commonly available high-performance computers (HPCs). We discuss the basic layout of such simulations, including the methods of simulation setup, the run-time spike-passing paradigm, and postsimulation data storage and data management approaches. Using the Neuroscience Gateway, a portal for computational neuroscience that provides access to large HPCs, we benchmark simulations of neuronal networks of different sizes (500-100,000 cells), and using different numbers of nodes (1-256). We compare three types of networks, composed of either Izhikevich integrate-and-fire neurons (I&F), single-compartment Hodgkin-Huxley (HH) cells, or a hybrid network with half of each. Results show simulation run time increased approximately linearly with network size and decreased almost linearly with the number of nodes. Networks with I&F neurons were faster than HH networks, although differences were small since all tested cells were point neurons with a single compartment.
Advanced simulation technology for etching process design for CMOS device applications
Kuboi, Nobuyuki; Fukasawa, Masanaga; Tatsumi, Tetsuya
2016-07-01
Plasma etching is a critical process for the realization of high performance in the next generation of CMOS devices. To predict and control fluctuations in the etching properties accurately during mass production, it is essential that etching process simulation technology considers fluctuations in the plasma chamber wall conditions, the effects of by-products on the critical dimensions, the Si recess dependence on the wafer open area ratio and local pattern structure, and the time-dependent plasma-induced damage distribution associated with the three-dimensional feature scale profile at the 100 nm level. This consideration can overcome the issues with conventional simulations performed under the assumed ideal conditions, which are not accurate enough for practical process design. In this article, these advanced process simulation technologies are reviewed, and, from the results of suitable process simulations, a new etching system that automatically controls the etching properties is proposed to enable stable CMOS device fabrication with high yields.
Bohé, Alejandro; Shao, Lijing; Taracchini, Andrea; Buonanno, Alessandra; Babak, Stanislav; Harry, Ian W.; Hinder, Ian; Ossokine, Serguei; Pürrer, Michael; Raymond, Vivien; Chu, Tony; Fong, Heather; Kumar, Prayush; Pfeiffer, Harald P.; Boyle, Michael; Hemberger, Daniel A.; Kidder, Lawrence E.; Lovelace, Geoffrey; Scheel, Mark A.; Szilágyi, Béla
2017-02-01
We improve the accuracy of the effective-one-body (EOB) waveforms that were employed during the first observing run of Advanced LIGO for binaries of spinning, nonprecessing black holes by calibrating them to a set of 141 numerical-relativity (NR) waveforms. The NR simulations expand the domain of calibration toward larger mass ratios and spins, as compared to the previous EOBNR model. Merger-ringdown waveforms computed in black-hole perturbation theory for Kerr spins close to extremal provide additional inputs to the calibration. For the inspiral-plunge phase, we use a Markov-chain Monte Carlo algorithm to efficiently explore the calibration space. For the merger-ringdown phase, we fit the NR signals with phenomenological formulae. After extrapolation of the calibrated model to arbitrary mass ratios and spins, the (dominant-mode) EOBNR waveforms have faithfulness—at design Advanced-LIGO sensitivity—above 99% against all the NR waveforms, including 16 additional waveforms used for validation, when maximizing only on initial phase and time. This implies a negligible loss in event rate due to modeling for these binary configurations. We find that future NR simulations at mass ratios ≳4 and double spin ≳0.8 will be crucial to resolving discrepancies between different ways of extrapolating waveform models. We also find that some of the NR simulations that already exist in such region of parameter space are too short to constrain the low-frequency portion of the models. Finally, we build a reduced-order version of the EOBNR model to speed up waveform generation by orders of magnitude, thus enabling intensive data-analysis applications during the upcoming observation runs of Advanced LIGO.
Advanced Simulation & Computing FY15 Implementation Plan Volume 2, Rev. 0.5
McCoy, Michel [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Archer, Bill [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Matzen, M. Keith [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2014-09-16
The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources that support annual stockpile assessment and certification, study advanced nuclear weapons design and manufacturing processes, analyze accident scenarios and weapons aging, and provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balance of resource, including technical staff, hardware, simulation software, and computer science solutions. As the program approaches the end of its second decade, ASC is intently focused on increasing predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (sufficient resolution, dimensionality, and scientific details), quantify critical margins and uncertainties, and resolve increasingly difficult analyses needed for the SSP. Where possible, the program also enables the use of high-performance simulation and computing tools to address broader national security needs, such as foreign nuclear weapon assessments and counternuclear terrorism.
Lucisano, Karen E; Talbot, Laura A
2012-02-01
We studied the current literature on human patient simulation for preparing anesthesia and other healthcare providers for advanced airway management. A systematic review was conducted of articles published between 1990 and 2009 on advanced airway management for patients undergoing anesthesia and patients who are not. The search used 4 electronic databases: Cumulative Index to Nursing & Allied Health Literature, MEDLINE, PsycINFO, and Web of Science. We included 34 articles in the analysis; 15 were experimental or quasi-experimental designs, 8 descriptive studies and reports, and 11 analyses of equipment or technique evaluations using simulation. The majority of the studies included simulation education evaluation for a variety of medical, nursing, and allied health providers and students. Only 6 studies addressed the use of simulation as an educational or evaluation tool to enhance training of anesthesia providers in difficult airway management. Those studies included analyses of different types of training and the perceived value of simulated training, and evaluations of equipment. Few studies have analyzed the effects of this modality on trainer skills and patient safety. There is a clear need for well-designed studies to examine these effects.
CAPE-OPEN Integration for Advanced Process Engineering Co-Simulation
Zitney, S.E.
2006-11-01
This paper highlights the use of the CAPE-OPEN (CO) standard interfaces in the Advanced Process Engineering Co-Simulator (APECS) developed at the National Energy Technology Laboratory (NETL). The APECS system uses the CO unit operation, thermodynamic, and reaction interfaces to provide its plug-and-play co-simulation capabilities, including the integration of process simulation with computational fluid dynamics (CFD) simulation. APECS also relies heavily on the use of a CO COM/CORBA bridge for running process/CFD co-simulations on multiple operating systems. For process optimization in the face of multiple and some time conflicting objectives, APECS offers stochastic modeling and multi-objective optimization capabilities developed to comply with the CO software standard. At NETL, system analysts are applying APECS to a wide variety of advanced power generation systems, ranging from small fuel cell systems to commercial-scale power plants including the coal-fired, gasification-based FutureGen power and hydrogen production plant.
Radev, Dimitar; Lokshina, Izabella
2010-11-01
The paper examines self-similar (or fractal) properties of real communication network traffic data over a wide range of time scales. These self-similar properties are very different from the properties of traditional models based on Poisson and Markov-modulated Poisson processes. Advanced fractal models of sequentional generators and fixed-length sequence generators, and efficient algorithms that are used to simulate self-similar behavior of IP network traffic data are developed and applied. Numerical examples are provided; and simulation results are obtained and analyzed.
Advanced Simulation and Computing FY07-08 Implementation Plan Volume 2
Kusnezov, D; Hale, A; McCoy, M; Hopson, J
2006-06-22
The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the safety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future nonnuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program will require the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear-weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable Stockpile Life Extension Programs (SLEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional simulation environment while maintaining the support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model from
Advanced Simulation and Computing FY08-09 Implementation Plan Volume 2 Revision 0
McCoy, M; Kusnezov, D; Bikkel, T; Hopson, J
2007-04-25
The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the safety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future nonnuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear-weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable Stockpile Life Extension Programs (SLEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional simulation environment while maintaining the support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model from one
Advanced Simulation and Computing FY09-FY10 Implementation Plan, Volume 2, Revision 0.5
Meisner, R; Hopson, J; Peery, J; McCoy, M
2008-10-07
The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future non-nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC)1 is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model from one
Advanced Simulation and Computing FY09-FY10 Implementation Plan Volume 2, Rev. 1
Kissel, L
2009-04-01
The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future non-nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model from one that
Advanced Simulation and Computing FY08-09 Implementation Plan, Volume 2, Revision 0.5
Kusnezov, D; Bickel, T; McCoy, M; Hopson, J
2007-09-13
The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future non-nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC)1 is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear-weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable Stockpile Life Extension Programs (SLEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional simulation environment while maintaining the support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model from
Advanced Simulation & Computing FY09-FY10 Implementation Plan Volume 2, Rev. 0
Meisner, R; Perry, J; McCoy, M; Hopson, J
2008-04-30
The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the safety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future nonnuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC)1 is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear-weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable Stockpile Life Extension Programs (SLEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional simulation environment while maintaining the support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model from one
Advanced Simulation and Computing FY10-11 Implementation Plan Volume 2, Rev. 0
Carnes, B
2009-06-08
The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future non-nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model from one that
Advanced Simulation and Computing Fiscal Year 2011-2012 Implementation Plan, Revision 0
McCoy, M; Phillips, J; Hpson, J; Meisner, R
2010-04-22
The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future non-nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering (D&E) programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model
Advanced Simulation and Computing FY10-FY11 Implementation Plan Volume 2, Rev. 0.5
Meisner, R; Peery, J; McCoy, M; Hopson, J
2009-09-08
The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future non-nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering (D&E) programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model
Modelling Sensor and Target effects on LiDAR Waveforms
Rosette, J.; North, P. R.; Rubio, J.; Cook, B. D.; Suárez, J.
2010-12-01
The aim of this research is to explore the influence of sensor characteristics and interactions with vegetation and terrain properties on the estimation of vegetation parameters from LiDAR waveforms. This is carried out using waveform simulations produced by the FLIGHT radiative transfer model which is based on Monte Carlo simulation of photon transport (North, 1996; North et al., 2010). The opportunities for vegetation analysis that are offered by LiDAR modelling are also demonstrated by other authors e.g. Sun and Ranson, 2000; Ni-Meister et al., 2001. Simulations from the FLIGHT model were driven using reflectance and transmittance properties collected from the Howland Research Forest, Maine, USA in 2003 together with a tree list for a 200m x 150m area. This was generated using field measurements of location, species and diameter at breast height. Tree height and crown dimensions of individual trees were calculated using relationships established with a competition index determined for this site. Waveforms obtained by the Laser Vegetation Imaging Sensor (LVIS) were used as validation of simulations. This provided a base from which factors such as slope, laser incidence angle and pulse width could be varied. This has enabled the effect of instrument design and laser interactions with different surface characteristics to be tested. As such, waveform simulation is relevant for the development of future satellite LiDAR sensors, such as NASA’s forthcoming DESDynI mission (NASA, 2010), which aim to improve capabilities of vegetation parameter estimation. ACKNOWLEDGMENTS We would like to thank scientists at the Biospheric Sciences Branch of NASA Goddard Space Flight Center, in particular to Jon Ranson and Bryan Blair. This work forms part of research funded by the NASA DESDynI project and the UK Natural Environment Research Council (NE/F021437/1). REFERENCES NASA, 2010, DESDynI: Deformation, Ecosystem Structure and Dynamics of Ice. http
Advances in Computational Fluid-Structure Interaction and Flow Simulation Conference
Takizawa, Kenji
2016-01-01
This contributed volume celebrates the work of Tayfun E. Tezduyar on the occasion of his 60th birthday. The articles it contains were born out of the Advances in Computational Fluid-Structure Interaction and Flow Simulation (AFSI 2014) conference, also dedicated to Prof. Tezduyar and held at Waseda University in Tokyo, Japan on March 19-21, 2014. The contributing authors represent a group of international experts in the field who discuss recent trends and new directions in computational fluid dynamics (CFD) and fluid-structure interaction (FSI). Organized into seven distinct parts arranged by thematic topics, the papers included cover basic methods and applications of CFD, flows with moving boundaries and interfaces, phase-field modeling, computer science and high-performance computing (HPC) aspects of flow simulation, mathematical methods, biomedical applications, and FSI. Researchers, practitioners, and advanced graduate students working on CFD, FSI, and related topics will find this collection to be a defi...
Accuracy of a decision aid for advance care planning: simulated end-of-life decision making.
Levi, Benjamin H; Heverley, Steven R; Green, Michael J
2011-01-01
Advance directives have been criticized for failing to help physicians make decisions consistent with patients' wishes. This pilot study sought to determine if an interactive, computer-based decision aid that generates an advance directive can help physicians accurately translate patients' wishes into treatment decisions. We recruited 19 patient-participants who had each previously created an advance directive using a computer-based decision aid, and 14 physicians who had no prior knowledge of the patient-participants. For each advance directive, three physicians were randomly assigned to review the advance directive and make five to six treatment decisions for each of six (potentially) end-of-life clinical scenarios. From the three individual physicians' responses, a "consensus physician response" was generated for each treatment decision (total decisions = 32). This consensus response was shared with the patient whose advance directive had been reviewed, and she/he was then asked to indicate how well the physician translated his/her wishes into clinical decisions. Patient-participants agreed with the consensus physician responses 84 percent (508/608) of the time, including 82 percent agreement on whether to provide mechanical ventilation, and 75 percent on decisions about cardiopulmonary resuscitation (CPR). Across the six vignettes, patient-participants' rating of how well physicians translated their advance directive into medical decisions was 8.4 (range = 6.5-10, where 1 = extremely poorly, and 10 = extremely well). Physicians' overall rating of their confidence at accurately translating patients' wishes into clinical decisions was 7.8 (range = 6.1-9.3, 1 = not at all confident, 10 = extremely confident). For simulated cases, a computer-based decision aid for advance care planning can help physicians more confidently make end-of-life decisions that patients will endorse.
Fractal characteristics for binary noise radar waveform
Li, Bing C.
2016-05-01
Noise radars have many advantages over conventional radars and receive great attentions recently. The performance of a noise radar is determined by its waveforms. Investigating characteristics of noise radar waveforms has significant value for evaluating noise radar performance. In this paper, we use binomial distribution theory to analyze general characteristics of binary phase coded (BPC) noise waveforms. Focusing on aperiodic autocorrelation function, we demonstrate that the probability distributions of sidelobes for a BPC noise waveform depend on the distances of these sidelobes to the mainlobe. The closer a sidelobe to the mainlobe, the higher the probability for this sidelobe to be a maximum sidelobe. We also develop Monte Carlo framework to explore the characteristics that are difficult to investigate analytically. Through Monte Carlo experiments, we reveal the Fractal relationship between the code length and the maximum sidelobe value for BPC waveforms, and propose using fractal dimension to measure noise waveform performance.
A marked point process for modeling lidar waveforms.
Mallet, Clément; Lafarge, Florent; Roux, Michel; Soergel, Uwe; Bretar, Frédéric; Heipke, Christian
2010-12-01
Lidar waveforms are 1-D signals representing a train of echoes caused by reflections at different targets. Modeling these echoes with the appropriate parametric function is useful to retrieve information about the physical characteristics of the targets. This paper presents a new probabilistic model based upon a marked point process which reconstructs the echoes from recorded discrete waveforms as a sequence of parametric curves. Such an approach allows to fit each mode of a waveform with the most suitable function and to deal with both, symmetric and asymmetric, echoes. The model takes into account a data term, which measures the coherence between the models and the waveforms, and a regularization term, which introduces prior knowledge on the reconstructed signal. The exploration of the associated configuration space is performed by a reversible jump Markov chain Monte Carlo (RJMCMC) sampler coupled with simulated annealing. Experiments with different kinds of lidar signals, especially from urban scenes, show the high potential of the proposed approach. To further demonstrate the advantages of the suggested method, actual laser scans are classified and the results are reported.
Visualization and analysis of lidar waveform data
Olsen, Richard C.; Metcalf, Jeremy P.
2017-05-01
LiDAR waveform analysis is a relatively new activity in the area of laser scanning. The work described here is an exploration of a different approach to visualization and analysis, following the structure that has evolved for the analysis of imaging spectroscopy data (hyperspectral imaging). The waveform data are transformed into 3-dimensional data structures that provide xy position information, and a z-coordinate, which is the digitized waveform. This allows for representation of the data in spatial and waveform space, the extraction of characteristic spectra, and the development of regions of interest. This representation allows for the application of standard spectral classification tools such as the maximum likelihood classifier.
Spectral mismatch and solar simulator quality factor in advanced LED solar simulators
Scherff, Maximilian L. D.; Nutter, Jason; Fuss-Kailuweit, Peter; Suthues, Jörn; Brammer, Torsten
2017-08-01
Solar cell simulators based on light emitting diodes (LED) have the potential to achieve a large potential market share in the next years. As advantages they can provide a short and long time stable spectrum, which fits very well to the global AM1.5g reference spectrum. This guarantees correct measurements during the flashes and throughout the light engines’ life span, respectively. Furthermore, a calibration with a solar cell type of different spectral response (SR) as well as the production of solar cells with varying SR in between two calibrations does not affect the correctness of the measurement result. A high quality 21 channel LED solar cell spectrum is compared to former study comprising a standard modified xenon spectrum light source. It is shown, that the spectrum of the 21-channel-LED light source performs best for all examined cases.
PMT waveform modeling at the Daya Bay experiment
S(o)ren JETTER; Dan DWYER; JIANG Wen-Qi; LIU Da-Wei; WANG Yi-Fang; WANG Zhi-Min; WEN Liang-Jian
2012-01-01
Detailed measurements of Hamamatsu R5912 photomultiplier signals are presented,including the single photoelectron charge response,waveform shape,nonlinearity,saturation,overshoot,oscillation,prepulsing,and afterpulsing.The results were used to build a detailed model of the PMT signal characteristics over a wide range of light intensities.Including the PMT model in simulated Daya Bay particle interactions shows no significant systematic effects that are detrimental to the experimental sensitivity.
Maxwell, Whitney D; Mohorn, Phillip L; Haney, Jason S; Phillips, Cynthia M; Lu, Z Kevin; Clark, Kimberly; Corboy, Alex; Ragucci, Kelly R
2016-10-25
Objective. To assess the impact of an advanced cardiac life support (ACLS) simulation on pharmacy student confidence and knowledge. Design. Third-year pharmacy students participated in a simulation experience that consisted of team roles training, high-fidelity ACLS simulations, and debriefing. Students completed a pre/postsimulation confidence and knowledge assessment. Assessment. Overall, student knowledge assessment scores and student confidence scores improved significantly. Student confidence and knowledge changes from baseline were not significantly correlated. Conversely, a significant, weak positive correlation between presimulation studying and both presimulation confidence and presimulation knowledge was discovered. Conclusions. Overall, student confidence and knowledge assessment scores in ACLS significantly improved from baseline; however, student confidence and knowledge were not significantly correlated.
Technical Basis for Physical Fidelity of NRC Control Room Training Simulators for Advanced Reactors
Minsk, Brian S.; Branch, Kristi M.; Bates, Edward K.; Mitchell, Mark R.; Gore, Bryan F.; Faris, Drury K.
2009-10-09
The objective of this study is to determine how simulator physical fidelity influences the effectiveness of training the regulatory personnel responsible for examination and oversight of operating personnel and inspection of technical systems at nuclear power reactors. It seeks to contribute to the U.S. Nuclear Regulatory Commission’s (NRC’s) understanding of the physical fidelity requirements of training simulators. The goal of the study is to provide an analytic framework, data, and analyses that inform NRC decisions about the physical fidelity requirements of the simulators it will need to train its staff for assignment at advanced reactors. These staff are expected to come from increasingly diverse educational and experiential backgrounds.
Beam Loss Simulation and Collimator System Configurations for the Advanced Photon Source Upgrade
Xiao, A.; Borland, M.
2017-06-25
The proposed multi-bend achromat lattice for the Advanced Photon Source upgrade (APS-U) has a design emittance of less than 70 pm. The Touschek loss rate is high: compared with the current APS ring, which has an average beam lifetime ~ 10 h, the simulated beam lifetime for APS-U is only ~2 h when operated in the high flux mode (I=200 mA in 48 bunches). An additional consequence of the short lifetime is that injection must be more frequent, which provides another potential source of particle loss. In order to provide information for the radiation shielding system evaluation and to avoid particle loss in sensitive locations around the ring (for example, insertion device straight sections), simulations of the detailed beam loss distribution have been performed. Several possible collimation configurations have been simulated and compared.
Advanced char burnout models for the simulation of pulverized coal fired boilers
T. Severin; S. Wirtz; V. Scherer [Ruhr-University, Bochum (Germany). Institute of Energy Plant Technology (LEAT)
2005-07-01
The numerical simulation of coal combustion processes is widely used as an efficient means to predict burner or system behaviour. In this paper an approach to improve CFD simulations of pulverized coal fired boilers with advanced coal combustion models is presented. In simple coal combustion models, first order Arrhenius rate equations are used for devolatilization and char burnout. The accuracy of such simple models is sufficient for the basic aspects of heat release. The prediction of carbon-in-ash is one aspect of special interest in the simulation of pulverized coal fired boilers. To determine the carbon-in-ash levels in the fly ash of coal fired furnaces, the char burnout model has to be more detailed. It was tested, in how far changing operating conditions affect the carbon-in-ash prediction of the simulation. To run several test cases in a short time, a simplified cellnet model was applied. To use a cellnet model for simulations of pulverized coal fired boilers, it was coupled with a Lagrangian particle model, used in CFD simulations, too. 18 refs., 5 figs., 5 tabs.
Goldstone Solar System Radar Waveform Generator
Quirk, Kevin J.; Patawaran, Ferze D.; Nguyen, Danh H.; Nguyen, Huy
2012-01-01
Due to distances and relative motions among the transmitter, target object, and receiver, the time-base between any transmitted and received signal will undergo distortion. Pre-distortion of the transmitted signal to compensate for this time-base distortion allows reception of an undistorted signal. In most radar applications, an arbitrary waveform generator (AWG) would be used to store the pre-calculated waveform and then play back this waveform during transmission. The Goldstone Solar System Radar (GSSR), however, has transmission durations that exceed the available memory storage of such a device. A waveform generator capable of real-time pre-distortion of a radar waveform to a given time-base distortion function is needed. To pre-distort the transmitted signal, both the baseband radar waveform and the RF carrier must be modified. In the GSSR, this occurs at the up-conversion mixing stage to an intermediate frequency (IF). A programmable oscillator (PO) is used to generate the IF along with a time-varying phase component that matches the time-base distortion of the RF carrier. This serves as the IF input to the waveform generator where it is mixed with a baseband radar waveform whose time-base has been distorted to match the given time-base distortion function producing the modulated IF output. An error control feedback loop is used to precisely control the time-base distortion of the baseband waveform, allowing its real-time generation. The waveform generator produces IF modulated radar waveforms whose time-base has been pre-distorted to match a given arbitrary function. The following waveforms are supported: continuous wave (CW), frequency hopped (FH), binary phase code (BPC), and linear frequency modulation (LFM). The waveform generator takes as input an IF with a time varying phase component that matches the time-base distortion of the carrier. The waveform generator supports interconnection with deep-space network (DSN) timing and frequency standards, and
On Optimal Truncated Biharmonic Current Waveforms for Class-F and Inverse Class-F Power Amplifiers
Anamarija Juhas
2017-01-01
Full Text Available In this paper, two-parameter families of periodic current waveforms for class-F and inverse class-F power amplifiers (PAs are considered. These waveforms are obtained by truncating cosine waveforms composed of dc component and fundamental and either second (k=2 or third (k=3 harmonic. In each period, waveforms are truncated to become zero outside of a prescribed interval (so-called conduction angle. The considered families of waveforms include both discontinuous and continuous waveforms. Fourier series expansion of truncated waveform contains an infinite number of harmonics, although a number of harmonics may be missing. Taking into account common assumptions that for class-F PA the third (n=3 harmonic is missing in current waveform and for inverse class-F PA the second (n=2 harmonic is missing in current waveform, we consider the following four cases: (i n=k=3, (ii n=3, k=2, (iii n=k=2, and (iv n=2, k=3. We show that, in each of these cases, current waveform enabling maximal efficiency (optimal waveform of class-F and inverse class-F PA is continuous for all conduction angles of practical interest. Furthermore, we provide closed-form expressions for parameters of optimal current waveforms and maximal efficiency of class-F (inverse class-F PA in terms of conduction angle only. Two case studies of practical interest for PA design, involving suboptimal current waveforms, along with the results of nonlinear simulation of inverse class-F PA, are also presented.
Leveraging waveform complexity for confident detection of gravitational waves
Kanner, Jonah B; Cornish, Neil; Millhouse, Meg; Xhakaj, Enia; Salemi, Francesco; Drago, Marco; Vedovato, Gabriele; Klimenko, Sergey
2016-01-01
The recent completion of Advanced LIGO suggests that gravitational waves (GWs) may soon be directly observed. Past searches for gravitational-wave transients have been impacted by transient noise artifacts, known as glitches, introduced into LIGO data due to instrumental and environmental effects. In this work, we explore how waveform complexity, instead of signal-to-noise ratio, can be used to rank event candidates and distinguish short duration astrophysical signals from glitches. We test this framework using a new hierarchical pipeline that directly compares the Bayesian evidence of explicit signal and glitch models. The hierarchical pipeline is shown to have strong performance, and in particular, allows high-confidence detections of a range of waveforms at realistic signal-to-noise ratio with a two detector network.
Leveraging waveform complexity for confident detection of gravitational waves
Kanner, Jonah B.; Littenberg, Tyson B.; Cornish, Neil; Millhouse, Meg; Xhakaj, Enia; Salemi, Francesco; Drago, Marco; Vedovato, Gabriele; Klimenko, Sergey
2016-01-01
The recent completion of Advanced LIGO suggests that gravitational waves may soon be directly observed. Past searches for gravitational-wave transients have been impacted by transient noise artifacts, known as glitches, introduced into LIGO data due to instrumental and environmental effects. In this work, we explore how waveform complexity, instead of signal-to-noise ratio, can be used to rank event candidates and distinguish short duration astrophysical signals from glitches. We test this framework using a new hierarchical pipeline that directly compares the Bayesian evidence of explicit signal and glitch models. The hierarchical pipeline is shown to perform well and, in particular, to allow high-confidence detections of a range of waveforms at a realistic signal-to-noise ratio with a two-detector network.
Advanced virtual energy simulation training and research: IGCC with CO2 capture power plant
Zitney, S.; Liese, E.; Mahapatra, P.; Bhattacharyya, D.; Provost, G.
2011-01-01
In this presentation, we highlight the deployment of a real-time dynamic simulator of an integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture at the Department of Energy's (DOE) National Energy Technology Laboratory's (NETL) Advanced Virtual Energy Simulation Training and Research (AVESTARTM) Center. The Center was established as part of the DOE's accelerating initiative to advance new clean coal technology for power generation. IGCC systems are an attractive technology option, generating low-cost electricity by converting coal and/or other fuels into a clean synthesis gas mixture in a process that is efficient and environmentally superior to conventional power plants. The IGCC dynamic simulator builds on, and reaches beyond, conventional power plant simulators to merge, for the first time, a 'gasification with CO{sub 2} capture' process simulator with a 'combined-cycle' power simulator. Fueled with coal, petroleum coke, and/or biomass, the gasification island of the simulated IGCC plant consists of two oxygen-blown, downward-fired, entrained-flow, slagging gasifiers with radiant syngas coolers and two-stage sour shift reactors, followed by a dual-stage acid gas removal process for CO{sub 2} capture. The combined cycle island consists of two F-class gas turbines, steam turbine, and a heat recovery steam generator with three-pressure levels. The dynamic simulator can be used for normal base-load operation, as well as plant start-up and shut down. The real-time dynamic simulator also responds satisfactorily to process disturbances, feedstock blending and switchovers, fluctuations in ambient conditions, and power demand load shedding. In addition, the full-scope simulator handles a wide range of abnormal situations, including equipment malfunctions and failures, together with changes initiated through actions from plant field operators. By providing a comprehensive IGCC operator training system, the
The Advanced Modeling, Simulation and Analysis Capability Roadmap Vision for Engineering
Zang, Thomas; Lieber, Mike; Norton, Charles; Fucik, Karen
2006-01-01
This paper summarizes a subset of the Advanced Modeling Simulation and Analysis (AMSA) Capability Roadmap that was developed for NASA in 2005. The AMSA Capability Roadmap Team was chartered to "To identify what is needed to enhance NASA's capabilities to produce leading-edge exploration and science missions by improving engineering system development, operations, and science understanding through broad application of advanced modeling, simulation and analysis techniques." The AMSA roadmap stressed the need for integration, not just within the science, engineering and operations domains themselves, but also across these domains. Here we discuss the roadmap element pertaining to integration within the engineering domain, with a particular focus on implications for future observatory missions. The AMSA products supporting the system engineering function are mission information, bounds on information quality, and system validation guidance. The Engineering roadmap element contains 5 sub-elements: (1) Large-Scale Systems Models, (2) Anomalous Behavior Models, (3) advanced Uncertainty Models, (4) Virtual Testing Models, and (5) space-based Robotics Manufacture and Servicing Models.
Analysis of PV Advanced Inverter Functions and Setpoints under Time Series Simulation.
Seuss, John [Georgia Inst. of Technology, Atlanta, GA (United States); Reno, Matthew J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Broderick, Robert Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grijalva, Santiago [Georgia Inst. of Technology, Atlanta, GA (United States)
2016-05-01
Utilities are increasingly concerned about the potential negative impacts distributed PV may have on the operational integrity of their distribution feeders. Some have proposed novel methods for controlling a PV system's grid - tie inverter to mitigate poten tial PV - induced problems. This report investigates the effectiveness of several of these PV advanced inverter controls on improving distribution feeder operational metrics. The controls are simulated on a large PV system interconnected at several locations within two realistic distribution feeder models. Due to the time - domain nature of the advanced inverter controls, quasi - static time series simulations are performed under one week of representative variable irradiance and load data for each feeder. A para metric study is performed on each control type to determine how well certain measurable network metrics improve as a function of the control parameters. This methodology is used to determine appropriate advanced inverter settings for each location on the f eeder and overall for any interconnection location on the feeder.
Optical arbitrary waveform characterization using linear spectrograms.
Jiang, Zhi; Leaird, Daniel E; Long, Christopher M; Boppart, Stephen A; Weiner, Andrew M
2010-08-01
We demonstrate the first application of linear spectrogram methods based on electro-optic phase modulation to characterize optical arbitrary waveforms generated under spectral line-by-line control. This approach offers both superior sensitivity and self-referencing capability for retrieval of periodic high repetition rate optical arbitrary waveforms.
Digital Waveform Generator Basedon FPGA
Shoucheng Ding
2012-07-01
Full Text Available Field Programmable Gate Array (FPGA of the Cyclone II series was as the core processor of frequency meter and the Quartus II was as the development plat form. This article had designed the fully digital signal generator. It use dall-digital frequency synthesizer technology and FPGA programming implemented the three waveforms: sin wave and square wave and triangle wave. The frequency was adjustable through10- bit phase accumulator and the analog multiplier achieved amplitude modulation. Using 51soft nuclear FPGA wrote a C program and realized the in put control word. The 4 × 4 matrix keyboard inputted frequency or amplitude value and the LCD1602displayedthem. The test results show that the system has high precision, distortion and low.
Hamidreza Reihani
2015-01-01
Full Text Available Objective: In this trial, we intend to assess the effect of simulation-based education approach on advanced cardiovascular life support skills among medical students. Methods: Through convenient sampling method, 40 interns of Mashhad University of Medical Sciences in their emergency medicine rotation (from September to December 2012 participated in this study. Advanced Cardiovascular Life Support (ACLS workshops with pretest and post-test exams were performed. Workshops and checklists for pretest and post-test exams were designed according to the latest American Heart Association (AHA guidelines. Results: The total score of the students increased significantly after workshops (24.6 out of 100 to 78.6 out of 100. This demonstrates 53.9% improvement in the skills after the simulation-based education (P< 0.001. Also the mean score of each station had a significant improvement (P< 0.001. Conclusion: Pretests showed that interns had poor performance in practical clinical matters while their scientific knowledge, such as ECG interpretation was acceptable. The overall results of the study highlights that Simulation based-education approach is highly effective in Improving ACLS skills among medical students.
Yan Zhenghua
2013-11-01
Full Text Available Large scale fire tests of building external wall insulation system were conducted. In the experiment, thermal-couples were mounted to measure the insulation system surface temperature and the gas temperature inside rooms at the second and third floors. Photos were also taken during the fire tests. The measurement provides information of the ignition and fire spread of the external insulation system which consists of surface protection layer, glass fibre net, bonding thin layer, anchor and the load bearing wall. Comprehensive simulations of the fire tests were carried out using an advanced CFD fire simulation software Simtec (Simulation of Thermal Engineering Complex [1, 2], which is now released by Simtec Soft Sweden, with the turbulent flow, turbulent combustion, thermal radiation, soot formation, convective heat transfer, the fully coupled three dimensional heat transfer inside solid materials, the ‘burn-out' of the surface protection layer and the pyrolysis of the insulation layer, etc, all computed. The simulation is compared with experimental measurement for validation. The simulation well captured the burning and fire spread of the external insulation wall.
The report gives results of activities relating to the Advanced Utility Simulation Model (AUSM): sensitivity testing. comparison with a mature electric utility model, and calibration to historical emissions. The activities were aimed at demonstrating AUSM's validity over input va...
Mikóczi, Balázs; Vasúth, Mátyás
2015-01-01
The inspiral and merger of supermassive black hole binary systems with high orbital eccentricity are among the promising sources of the advanced gravitational wave observatories. In this paper we derive analytic ready-to-use first post-Newtonian eccentric waveform in Fourier domain with the use of Hansen coefficients. Introducing generic perturbations of celestial mechanics we have generalized the Hansen expansion to the first post-Newtonian order which are then used to express the waveforms. Taking into account the high eccentricity of the orbit leads to the appearance of secular terms in the waveform which are eliminated with the introduction of a phase shift. The waveforms have a systematic structure and as our main result these are expressed in a tabular form.
Johnson-McDaniel, Nathan; Ghosh, Abhirup; Ghosh, Archisman; Samajdar, Anuradha; Ajith, Parameswaran; Del Pozzo, Walter
2016-03-01
We describe a variety of self-consistent modifications of the effective-one-body framework that yield kludge modified gravity inspiral-merger-ringdown (IMR) waveforms. These waveforms do not correspond to any particular modified theory of gravity, but offer parametrized deviations from general relativity in various regimes. They can thus be used to test the performance of various gravitational wave tests of general relativity (GR). As an example, we introduce the IMR consistency test, which tests for consistency between the estimations of the final mass and spin from the inspiral and merger-ringdown portions of a binary black hole waveform. We show that for reasonable source parameters and SNRs in Advanced LIGO, this test is able to detect a deviation from GR with high confidence for certain modifications of the GR energy flux that are not constrained by observations of the double pulsar. We also consider the performance of a parameterized test of GR on these kludge modified gravity waveforms.
[Objective surgery -- advanced robotic devices and simulators used for surgical skill assessment].
Suhánszki, Norbert; Haidegger, Tamás
2014-12-01
Robotic assistance became a leading trend in minimally invasive surgery, which is based on the global success of laparoscopic surgery. Manual laparoscopy requires advanced skills and capabilities, which is acquired through tedious learning procedure, while da Vinci type surgical systems offer intuitive control and advanced ergonomics. Nevertheless, in either case, the key issue is to be able to assess objectively the surgeons' skills and capabilities. Robotic devices offer radically new way to collect data during surgical procedures, opening the space for new ways of skill parameterization. This may be revolutionary in MIS training, given the new and objective surgical curriculum and examination methods. The article reviews currently developed skill assessment techniques for robotic surgery and simulators, thoroughly inspecting their validation procedure and utility. In the coming years, these methods will become the mainstream of Western surgical education.
Joshi, Abhinaya; Lou, Xinsheng; Neuschaefer, Carl; Chaudry, Majid; Quinn, Joseph
2012-07-31
This document provides the results of the project through September 2009. The Phase I project has recently been extended from September 2009 to March 2011. The project extension will begin work on Chemical Looping (CL) Prototype modeling and advanced control design exploration in preparation for a scale-up phase. The results to date include: successful development of dual loop chemical looping process models and dynamic simulation software tools, development and test of several advanced control concepts and applications for Chemical Looping transport control and investigation of several sensor concepts and establishment of two feasible sensor candidates recommended for further prototype development and controls integration. There are three sections in this summary and conclusions. Section 1 presents the project scope and objectives. Section 2 highlights the detailed accomplishments by project task area. Section 3 provides conclusions to date and recommendations for future work.
The Nuclear Energy Advanced Modeling and Simulation Enabling Computational Technologies FY09 Report
Diachin, L F; Garaizar, F X; Henson, V E; Pope, G
2009-10-12
In this document we report on the status of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Enabling Computational Technologies (ECT) effort. In particular, we provide the context for ECT In the broader NEAMS program and describe the three pillars of the ECT effort, namely, (1) tools and libraries, (2) software quality assurance, and (3) computational facility (computers, storage, etc) needs. We report on our FY09 deliverables to determine the needs of the integrated performance and safety codes (IPSCs) in these three areas and lay out the general plan for software quality assurance to meet the requirements of DOE and the DOE Advanced Fuel Cycle Initiative (AFCI). We conclude with a brief description of our interactions with the Idaho National Laboratory computer center to determine what is needed to expand their role as a NEAMS user facility.
Simulations of Failure via Three-Dimensional Cracking in Fuel Cladding for Advanced Nuclear Fuels
Lu, Hongbing [Univ. of Texas, Austin, TX (United States); Bukkapatnam, Satish; Harimkar, Sandip; Singh, Raman; Bardenhagen, Scott
2014-01-09
Enhancing performance of fuel cladding and duct alloys is a key means of increasing fuel burnup. This project will address the failure of fuel cladding via three-dimensional cracking models. Researchers will develop a simulation code for the failure of the fuel cladding and validate the code through experiments. The objective is to develop an algorithm to determine the failure of fuel cladding in the form of three-dimensional cracking due to prolonged exposure under varying conditions of pressure, temperature, chemical environment, and irradiation. This project encompasses the following tasks: 1. Simulate 3D crack initiation and growth under instantaneous and/or fatigue loads using a new variant of the material point method (MPM); 2. Simulate debonding of the materials in the crack path using cohesive elements, considering normal and shear traction separation laws; 3. Determine the crack propagation path, considering damage of the materials incorporated in the cohesive elements to allow the energy release rate to be minimized; 4. Simulate the three-dimensional fatigue crack growth as a function of loading histories; 5. Verify the simulation code by comparing results to theoretical and numerical studies available in the literature; 6. Conduct experiments to observe the crack path and surface profile in unused fuel cladding and validate against simulation results; and 7. Expand the adaptive mesh refinement infrastructure parallel processing environment to allow adaptive mesh refinement at the 3D crack fronts and adaptive mesh merging in the wake of cracks. Fuel cladding is made of materials such as stainless steels and ferritic steels with added alloying elements, which increase stability and durability under irradiation. As fuel cladding is subjected to water, chemicals, fission gas, pressure, high temperatures, and irradiation while in service, understanding performance is essential. In the fast fuel used in advanced burner reactors, simulations of the nuclear
A graphical simulator for teaching basic and advanced MR imaging techniques
Hanson, Lars G
2007-01-01
and relaxation to advanced concepts such as stimulated echoes, spin tagging, and k-space-methods. A graphical user interface provides the user with a three-dimensional view of spin isochromates that can be manipulated by selecting radiofrequency pulses and gradient events. Even complicated sequences can...... for radiologists, radiographers, and technical staff alike, but it is notoriously challenging to explain spin dynamics by using traditional teaching tools. The author developed a freely available graphical simulator based on the Bloch equations to aid in the teaching of topics ranging from precession...
Zevin, Boris; Dedy, Nicolas J; Bonrath, Esther M; Grantcharov, Teodor P
2017-05-01
There is no comprehensive simulation-enhanced training curriculum to address cognitive, psychomotor, and nontechnical skills for an advanced minimally invasive procedure. 1) To develop and provide evidence of validity for a comprehensive simulation-enhanced training (SET) curriculum for an advanced minimally invasive procedure; (2) to demonstrate transfer of acquired psychomotor skills from a simulation laboratory to live porcine model; and (3) to compare training outcomes of SET curriculum group and chief resident group. University. This prospective single-blinded, randomized, controlled trial allocated 20 intermediate-level surgery residents to receive either conventional training (control) or SET curriculum training (intervention). The SET curriculum consisted of cognitive, psychomotor, and nontechnical training modules. Psychomotor skills in a live anesthetized porcine model in the OR was the primary outcome. Knowledge of advanced minimally invasive and bariatric surgery and nontechnical skills in a simulated OR crisis scenario were the secondary outcomes. Residents in the SET curriculum group went on to perform a laparoscopic jejunojejunostomy in the OR. Cognitive, psychomotor, and nontechnical skills of SET curriculum group were also compared to a group of 12 chief surgery residents. SET curriculum group demonstrated superior psychomotor skills in a live porcine model (56 [47-62] versus 44 [38-53], Psuperior nontechnical skills (41 [38-45] versus 31 [24-40], Ptraining group. SET curriculum group and conventional training group demonstrated equivalent knowledge (14 [12-15] versus 13 [11-15], P = 0.47). SET curriculum group demonstrated equivalent psychomotor skills in the live porcine model and in the OR in a human patient (56 [47-62] versus 63 [61-68]; P = .21). SET curriculum group demonstrated inferior knowledge (13 [11-15] versus 16 [14-16]; Psuperior nontechnical skills (41 [38-45] versus 34 [27-35], Psuperior training outcomes, compared with conventional
Advanced numerical simulation based on a non-local micromorphic model for metal forming processes
Diamantopoulou Evangelia
2016-01-01
Full Text Available An advanced numerical methodology is developed for metal forming simulation based on thermodynamically-consistent nonlocal constitutive equations accounting for various fully coupled mechanical phenomena under finite strain in the framework of micromorphic continua. The numerical implementation into ABAQUS/Explicit is made for 2D quadrangular elements thanks to the VUEL users’ subroutine. Simple examples with presence of a damaged area are made in order to show the ability of the proposed methodology to describe the independence of the solution from the space discretization.
On Simulation of Edge Stretchability of an 800MPa Advanced High Strength Steel
Pathak, Nikky; Butcher, Cliff; Worswick, Michael
2016-08-01
In the present work, the edge stretchability of advanced high strength steel (AHSS) was investigated experimentally and numerically using both a hole expansion test and a tensile specimen with a central hole. The experimental fracture strains obtained using the hole expansion and hole tension test in both reamed and sheared edge conditions were in very good agreement, suggesting the tests are equivalent for fracture characterization. Isotropic finite-element simulations of both tests were performed to compare the stress-state near the hole edge.
Simulation for CCSDS Advanced Orbiting System (AOS) with BONeS Designer
马永奎; 张中兆; 张乃通
2003-01-01
This paper describes the modeling and simulation of the protocol of CCSDS advanced orbiting systems (AOS). The network features modeled in the implementation of CCSDS AOS are to multiplex different kinds of sources into virtual channel data units (VCDUs) in the data processing module. The emphasis of this work is placed on the algorithm for commutating VCDUs into physical channels in the form of continuous data stream. The objectives of modeling CCSDS AOS protocol are to analyze the performance of this protocol when it is used to process various data.
Implementation of Pulse Radar Waveform Based on Software Radio Platform
Wang Dong; Dong Jian; Xiao Shunping
2015-01-01
Based on the frequency and phase modulated signal, the authors design some commonly-used pulse radar baseband waveform, such as linear frequency modulated waveform, nonlinear frequency modulated waveform, Costas waveform, Barker coding waveform and multi-phase coded waveform, and the authors compare their performance, such as the peak side lobe ratio, the Rayleigh resolution in time and distance resolution. Then, based on the software radio platform NI PXIe-5644R, the authors design the timin...
Neural network setpoint control of an advanced test reactor experiment loop simulation
Cordes, G.A.; Bryan, S.R.; Powell, R.H.; Chick, D.R.
1990-09-01
This report describes the design, implementation, and application of artificial neural networks to achieve temperature and flow rate control for a simulation of a typical experiment loop in the Advanced Test Reactor (ATR) located at the Idaho National Engineering Laboratory (INEL). The goal of the project was to research multivariate, nonlinear control using neural networks. A loop simulation code was adapted for the project and used to create a training set and test the neural network controller for comparison with the existing loop controllers. The results for three neural network designs are documented and compared with existing loop controller action. The neural network was shown to be as accurate at loop control as the classical controllers in the operating region represented by the training set. 9 refs., 28 figs., 2 tabs.
Saanouni, Kkemais; Labergère, Carl; Issa, Mazen; Rassineux, Alain
2010-06-01
This work proposes a complete adaptive numerical methodology which uses `advanced' elastoplastic constitutive equations coupling: thermal effects, large elasto-viscoplasticity with mixed non linear hardening, ductile damage and contact with friction, for 2D machining simulation. Fully coupled (strong coupling) thermo-elasto-visco-plastic-damage constitutive equations based on the state variables under large plastic deformation developed for metal forming simulation are presented. The relevant numerical aspects concerning the local integration scheme as well as the global resolution strategy and the adaptive remeshing facility are briefly discussed. Applications are made to the orthogonal metal cutting by chip formation and segmentation under high velocity. The interactions between hardening, plasticity, ductile damage and thermal effects and their effects on the adiabatic shear band formation including the formation of cracks are investigated.
Advanced thermal energy management: A thermal test bed and heat pipe simulation
Barile, Ronald G.
1986-01-01
Work initiated on a common-module thermal test simulation was continued, and a second project on heat pipe simulation was begun. The test bed, constructed from surplus Skylab equipment, was modeled and solved for various thermal load and flow conditions. Low thermal load caused the radiator fluid, Coolanol 25, to thicken due to its temperature avoided by using a regenerator-heat-exchanger. Other possible solutions modeled include a radiator heater and shunting heat from the central thermal bus to the radiator. Also, module air temperature can become excessive with high avionics load. A second preoject concerning advanced heat pipe concepts was initiated. A program was written which calculates fluid physical properties, liquid and vapor pressure in the evaporator and condenser, fluid flow rates, and thermal flux. The program is directed to evaluating newer heat pipe wicks and geometries, especially water in an artery surrounded by six vapor channels. Effects of temperature, groove and slot dimensions, and wick properties are reported.
3rd International Workshop on Advances in Simulation-Driven Optimization and Modeling
Leifsson, Leifur; Yang, Xin-She
2016-01-01
This edited volume is devoted to the now-ubiquitous use of computational models across most disciplines of engineering and science, led by a trio of world-renowned researchers in the field. Focused on recent advances of modeling and optimization techniques aimed at handling computationally-expensive engineering problems involving simulation models, this book will be an invaluable resource for specialists (engineers, researchers, graduate students) working in areas as diverse as electrical engineering, mechanical and structural engineering, civil engineering, industrial engineering, hydrodynamics, aerospace engineering, microwave and antenna engineering, ocean science and climate modeling, and the automotive industry, where design processes are heavily based on CPU-heavy computer simulations. Various techniques, such as knowledge-based optimization, adjoint sensitivity techniques, and fast replacement models (to name just a few) are explored in-depth along with an array of the latest techniques to optimize the...
Metering error quantification under voltage and current waveform distortion
Wang, Tao; Wang, Jia; Xie, Zhi; Zhang, Ran
2017-09-01
With integration of more and more renewable energies and distortion loads into power grid, the voltage and current waveform distortion results in metering error in the smart meters. Because of the negative effects on the metering accuracy and fairness, it is an important subject to study energy metering combined error. In this paper, after the comparing between metering theoretical value and real recorded value under different meter modes for linear and nonlinear loads, a quantification method of metering mode error is proposed under waveform distortion. Based on the metering and time-division multiplier principles, a quantification method of metering accuracy error is proposed also. Analyzing the mode error and accuracy error, a comprehensive error analysis method is presented which is suitable for new energy and nonlinear loads. The proposed method has been proved by simulation.
Strategic Plan for Nuclear Energy -- Knowledge Base for Advanced Modeling and Simulation (NE-KAMS)
Kimberlyn C. Mousseau
2011-10-01
The Nuclear Energy Computational Fluid Dynamics Advanced Modeling and Simulation (NE-CAMS) system is being developed at the Idaho National Laboratory (INL) in collaboration with Bettis Laboratory, Sandia National Laboratory (SNL), Argonne National Laboratory (ANL), Utah State University (USU), and other interested parties with the objective of developing and implementing a comprehensive and readily accessible data and information management system for computational fluid dynamics (CFD) verification and validation (V&V) in support of nuclear energy systems design and safety analysis. The two key objectives of the NE-CAMS effort are to identify, collect, assess, store and maintain high resolution and high quality experimental data and related expert knowledge (metadata) for use in CFD V&V assessments specific to the nuclear energy field and to establish a working relationship with the U.S. Nuclear Regulatory Commission (NRC) to develop a CFD V&V database, including benchmark cases, that addresses and supports the associated NRC regulations and policies on the use of CFD analysis. In particular, the NE-CAMS system will support the Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program, which aims to develop and deploy advanced modeling and simulation methods and computational tools for reliable numerical simulation of nuclear reactor systems for design and safety analysis. Primary NE-CAMS Elements There are four primary elements of the NE-CAMS knowledge base designed to support computer modeling and simulation in the nuclear energy arena as listed below. Element 1. The database will contain experimental data that can be used for CFD validation that is relevant to nuclear reactor and plant processes, particularly those important to the nuclear industry and the NRC. Element 2. Qualification standards for data evaluation and classification will be incorporated and applied such that validation data sets will result in well
Current Advances in the Computational Simulation of the Formation of Low-Mass Stars
Klein, R I; Inutsuka, S; Padoan, P; Tomisaka, K
2005-10-24
Developing a theory of low-mass star formation ({approx} 0.1 to 3 M{sub {circle_dot}}) remains one of the most elusive and important goals of theoretical astrophysics. The star-formation process is the outcome of the complex dynamics of interstellar gas involving non-linear interactions of turbulence, gravity, magnetic field and radiation. The evolution of protostellar condensations, from the moment they are assembled by turbulent flows to the time they reach stellar densities, spans an enormous range of scales, resulting in a major computational challenge for simulations. Since the previous Protostars and Planets conference, dramatic advances in the development of new numerical algorithmic techniques have been successfully implemented on large scale parallel supercomputers. Among such techniques, Adaptive Mesh Refinement and Smooth Particle Hydrodynamics have provided frameworks to simulate the process of low-mass star formation with a very large dynamic range. It is now feasible to explore the turbulent fragmentation of molecular clouds and the gravitational collapse of cores into stars self-consistently within the same calculation. The increased sophistication of these powerful methods comes with substantial caveats associated with the use of the techniques and the interpretation of the numerical results. In this review, we examine what has been accomplished in the field and present a critique of both numerical methods and scientific results. We stress that computational simulations should obey the available observational constraints and demonstrate numerical convergence. Failing this, results of large scale simulations do not advance our understanding of low-mass star formation.
Schultz, Peter Andrew
2011-12-01
The objective of the U.S. Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC) is to provide an integrated suite of computational modeling and simulation (M&S) capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive-waste storage facility or disposal repository. Achieving the objective of modeling the performance of a disposal scenario requires describing processes involved in waste form degradation and radionuclide release at the subcontinuum scale, beginning with mechanistic descriptions of chemical reactions and chemical kinetics at the atomic scale, and upscaling into effective, validated constitutive models for input to high-fidelity continuum scale codes for coupled multiphysics simulations of release and transport. Verification and validation (V&V) is required throughout the system to establish evidence-based metrics for the level of confidence in M&S codes and capabilities, including at the subcontiunuum scale and the constitutive models they inform or generate. This Report outlines the nature of the V&V challenge at the subcontinuum scale, an approach to incorporate V&V concepts into subcontinuum scale modeling and simulation (M&S), and a plan to incrementally incorporate effective V&V into subcontinuum scale M&S destined for use in the NEAMS Waste IPSC work flow to meet requirements of quantitative confidence in the constitutive models informed by subcontinuum scale phenomena.
Lee, Anthony; Yau, Christopher; Giles, Michael B; Doucet, Arnaud; Holmes, Christopher C
2010-12-01
We present a case-study on the utility of graphics cards to perform massively parallel simulation of advanced Monte Carlo methods. Graphics cards, containing multiple Graphics Processing Units (GPUs), are self-contained parallel computational devices that can be housed in conventional desktop and laptop computers and can be thought of as prototypes of the next generation of many-core processors. For certain classes of population-based Monte Carlo algorithms they offer massively parallel simulation, with the added advantage over conventional distributed multi-core processors that they are cheap, easily accessible, easy to maintain, easy to code, dedicated local devices with low power consumption. On a canonical set of stochastic simulation examples including population-based Markov chain Monte Carlo methods and Sequential Monte Carlo methods, we nd speedups from 35 to 500 fold over conventional single-threaded computer code. Our findings suggest that GPUs have the potential to facilitate the growth of statistical modelling into complex data rich domains through the availability of cheap and accessible many-core computation. We believe the speedup we observe should motivate wider use of parallelizable simulation methods and greater methodological attention to their design.
DeLaat, John C.; Paxson, Daniel E.
2008-01-01
Extensive research is being done toward the development of ultra-low-emissions combustors for aircraft gas turbine engines. However, these combustors have an increased susceptibility to thermoacoustic instabilities. This type of instability was recently observed in an advanced, low emissions combustor prototype installed in a NASA Glenn Research Center test stand. The instability produces pressure oscillations that grow with increasing fuel/air ratio, preventing full power operation. The instability behavior makes the combustor a potentially useful test bed for research into active control methods for combustion instability suppression. The instability behavior was characterized by operating the combustor at various pressures, temperatures, and fuel and air flows representative of operation within an aircraft gas turbine engine. Trends in instability behavior versus operating condition have been identified and documented, and possible explanations for the trends provided. A simulation developed at NASA Glenn captures the observed instability behavior. The physics-based simulation includes the relevant physical features of the combustor and test rig, employs a Sectored 1-D approach, includes simplified reaction equations, and provides time-accurate results. A computationally efficient method is used for area transitions, which decreases run times and allows the simulation to be used for parametric studies, including control method investigations. Simulation results show that the simulation exhibits a self-starting, self-sustained combustion instability and also replicates the experimentally observed instability trends versus operating condition. Future plans are to use the simulation to investigate active control strategies to suppress combustion instabilities and then to experimentally demonstrate active instability suppression with the low emissions combustor prototype, enabling full power, stable operation.
Improved retracking algorithm for oceanic altimeter waveforms
Lifeng Bao; Yang Lu; Yong Wang
2009-01-01
Over the deep oceans without land/ice interference, the waveforms created by the return altimeter pulse generally follow the ocean model of Brown, and the corresponding range can be properly determined using the result from an onboard tracker. In the case of com-plex altimeter waveforms corrupted due to a variety of reasons, the processor on the satellite cannot properly determine the center of the leading edge, and range observations can be in error. As an efficacious method to improve the precision of those altimeter observations with complex waveforms, waveform retracking is required to reprocess the original returning pulse. Based on basic altimeter theory and the geometric feature of altimeter waveforms, we developed a new altimeter waveform retracker, which is valid for all altimeter wave-forms once there exists a reasonable returning signal. The performances of the existing Beta-5 retracker, threshold retracker, improved threshold retracker, and the new retracker are assessed in the experimental regions (China Seas and its adjacent regions), and the improvements in the accuracy of sea surface height are investigated by the difference between retracked altimeter observations and ref-erenced geoid. The comparisons denote that the new algorithm gives the best performance in both the open ocean and coastal regions. Also, the new retracker presents a uniform performance in the whole test region. Besides, there is a significant improvement in the short-wavelength precision and the spatial resolution of sea surface height after retracking process.
Sano, Michael B.; Fan, Richard E.; Xing, Lei
2017-01-01
Irreversible electroporation (IRE) is a promising non-thermal treatment for inoperable tumors which uses short (50–100 μs) high voltage monopolar pulses to disrupt the membranes of cells within a well-defined volume. Challenges with IRE include complex treatment planning and the induction of intense muscle contractions. High frequency IRE (H-FIRE) uses bursts of ultrashort (0.25–5 μs) alternating polarity pulses to produce more predictable ablations and alleviate muscle contractions associated with IRE. However, H-FIRE generally ablates smaller volumes of tissue than IRE. This study shows that asymmetric H-FIRE waveforms can be used to create ablation volumes equivalent to standard IRE treatments. Lethal thresholds (LT) of 505 V/cm and 1316 V/cm were found for brain cancer cells when 100 μs IRE and 2 μs symmetric H-FIRE waveforms were used. In contrast, LT as low as 536 V/cm were found for 2 μs asymmetric H-FIRE waveforms. Reversible electroporation thresholds were 54% lower than LTs for symmetric waveforms and 33% lower for asymmetric waveforms indicating that waveform symmetry can be used to tune the relative sizes of reversible and irreversible ablation zones. Numerical simulations predicted that asymmetric H-FIRE waveforms are capable of producing ablation volumes which were 5.8–6.3x larger than symmetric H-FIRE waveforms indicating that in vivo investigation of asymmetric waveforms is warranted.
Schumacher, Florian; Friederich, Wolfgang; Lamara, Samir; Gutt, Phillip; Paffrath, Marcel
2015-04-01
We present a seismic full waveform inversion concept for applications ranging from seismological to enineering contexts, based on sensitivity kernels for full waveforms. The kernels are derived from Born scattering theory as the Fréchet derivatives of linearized frequency-domain full waveform data functionals, quantifying the influence of elastic earth model parameters and density on the data values. For a specific source-receiver combination, the kernel is computed from the displacement and strain field spectrum originating from the source evaluated throughout the inversion domain, as well as the Green function spectrum and its strains originating from the receiver. By storing the wavefield spectra of specific sources/receivers, they can be re-used for kernel computation for different specific source-receiver combinations, optimizing the total number of required forward simulations. In the iterative inversion procedure, the solution of the forward problem, the computation of sensitivity kernels and the derivation of a model update is held completely separate. In particular, the model description for the forward problem and the description of the inverted model update are kept independent. Hence, the resolution of the inverted model as well as the complexity of solving the forward problem can be iteratively increased (with increasing frequency content of the inverted data subset). This may regularize the overall inverse problem and optimizes the computational effort of both, solving the forward problem and computing the model update. The required interconnection of arbitrary unstructured volume and point grids is realized by generalized high-order integration rules and 3D-unstructured interpolation methods. The model update is inferred solving a minimization problem in a least-squares sense, resulting in Gauss-Newton convergence of the overall inversion process. The inversion method was implemented in the modularized software package ASKI (Analysis of Sensitivity
Waveform Fingerprinting for Efficient Seismic Signal Detection
Yoon, C. E.; OReilly, O. J.; Beroza, G. C.
2013-12-01
Cross-correlating an earthquake waveform template with continuous waveform data has proven a powerful approach for detecting events missing from earthquake catalogs. If templates do not exist, it is possible to divide the waveform data into short overlapping time windows, then identify window pairs with similar waveforms. Applying these approaches to earthquake monitoring in seismic networks has tremendous potential to improve the completeness of earthquake catalogs, but because effort scales quadratically with time, it rapidly becomes computationally infeasible. We develop a fingerprinting technique to identify similar waveforms, using only a few compact features of the original data. The concept is similar to human fingerprints, which utilize key diagnostic features to identify people uniquely. Analogous audio-fingerprinting approaches have accurately and efficiently found similar audio clips within large databases; example applications include identifying songs and finding copyrighted content within YouTube videos. In order to fingerprint waveforms, we compute a spectrogram of the time series, and segment it into multiple overlapping windows (spectral images). For each spectral image, we apply a wavelet transform, and retain only the sign of the maximum magnitude wavelet coefficients. This procedure retains just the large-scale structure of the data, providing both robustness to noise and significant dimensionality reduction. Each fingerprint is a high-dimensional, sparse, binary data object that can be stored in a database without significant storage costs. Similar fingerprints within the database are efficiently searched using locality-sensitive hashing. We test this technique on waveform data from the Northern California Seismic Network that contains events not detected in the catalog. We show that this algorithm successfully identifies similar waveforms and detects uncataloged low magnitude events in addition to cataloged events, while running to completion
Simulation of photoconductive antennas for terahertz radiation
C. A. Criollo
2015-04-01
Full Text Available Simulation of terahertz (THz emission based on PC antennas imposes a challenge to couple the semiconductor carrier phenomena, optical transport and the THz energy transport. In this paper a Multi-physics simulation for coupling these phenomena using COMSOL Multi-physics 4.3b is introduced. The main parameters of THz photoconductive (PC antenna as THz emitter have been reviewed and discussed. The results indicate the role of each parameter in the resulting photocurrent waveform and THz frequency: The radiated THz photocurrent waveform is determined by the photoconductive gap (the separation between the metallic electrodes, the incident laser illumination and the DC excitation voltage; while the THz frequency depends on the dipole length. The optimization of these parameters could enhance the emission. The simulations extend the advance of compact and cost-effective THz emitters.
Ductile damage prediction in metal forming processes: Advanced modeling and numerical simulation
Saanouni, K.
2013-05-01
This paper describes the needs required in modern virtual metal forming including both sheet and bulk metal forming of mechanical components. These concern the advanced modeling of thermo-mechanical behavior including the multiphysical phenomena and their interaction or strong coupling, as well as the associated numerical aspects using fully adaptive simulation strategies. First a survey of advanced constitutive equations accounting for the main thermomechanical phenomena as the thermo-elasto-plastic finite strains with isotropic and kinematic hardenings fully coupled with ductile damage will be presented. Only the macroscopic phenomenological approach with state variables (monoscale approach) will be discussed in the general framework of the rational thermodynamics for generalized micromorphic continua. The micro-macro (multi-scales approach) in the framework of polycrystalline inelasticity is not presented here for the sake of shortness but will be presented during the oral presentation. The main numerical aspects related to the resolution of the associated initial and boundary value problem will be outlined. A fully adaptive numerical methodology will be briefly described and some numerical examples will be given in order to show the high predictive capabilities of this adaptive methodology for virtual metal forming simulations.
Ahmadi Koorosh
2013-06-01
Full Text Available 【Abstract】Objective: Since appropriate and time-table methods in trauma care have an important impact on patients’ outcome, we evaluated the effect of Advanced Trauma Life Support (ATLS program on medical interns' performance in simulated trauma patient management. Methods: A descriptive and analytical study before and after the training was conducted on 24 randomly se-lected undergraduate medical interns from Imam Reza Hos-pital in Mashhad, Iran. On the first day, we assessed in-terns' clinical knowledge and their practical skill performance in confronting simulated trauma patients. After 2 days of ATLS training, we performed the same study and evaluated their score again on the fourth day. The two findings, pre-and post- ATLS periods, were compared through SPSS ver-sion 15.0 software. P values less than 0.05 were considered statistically significant. Results: Our findings showed that interns’ ability in all the three tasks improved after the training course. On the fourth day after training, there was a statistically significant increase in interns' clinical knowledge of ATLS procedures, the sequence of procedures and skill performance in trauma situations (P<0.001, P=0.016 and P=0.01 respectively. Conclusion: ATLS course has an important role in increasing clinical knowledge and practical skill performance of trauma care in medical interns. Key words: Advanced Trauma Life Support Care; Knowledge; Inservice training; Wounds and injuries
Wang, Kun; Anis, Fatima; Li, Cuiping; Duric, Neb; Anastasio, Mark A
2015-01-01
Ultrasound computed tomography (USCT) holds great promise for improving the detection and management of breast cancer. Because they are based on the acoustic wave equation, waveform inversion-based reconstruction methods can produce images that possess improved spatial resolution properties over those produced by ray-based methods. However, waveform inversion methods are computationally demanding and have not been applied widely in USCT breast imaging. In this work, source encoding concepts are employed to develop an accelerated USCT reconstruction method that circumvents the large computational burden of conventional waveform inversion methods. This method, referred to as the waveform inversion with source encoding (WISE) method, encodes the measurement data using a random encoding vector and determines an estimate of the sound speed distribution by solving a stochastic optimization problem by use of a stochastic gradient descent algorithm. Both computer-simulation and experimental phantom studies are conduc...
Parallel Algorithm in Surface Wave Waveform Inversion
无
2001-01-01
In Surface wave waveform inversion, we want to reconstruct 3Dshear wav e velocity structure, which calculation beyond the capability of the powerful pr esent day personal computer or even workstation. So we designed a high parallele d algorithm and carried out the inversion on Parallel computer based on the part itioned waveform inversion (PWI). It partitions the large scale optimization pro blem into a number of independent small scale problems and reduces the computati onal effort by several orders of magnitude. We adopted surface waveform inversio n with a equal block(2°×2°) discretization.
Optimal pseudorandom pulse position modulation ladar waveforms.
Fluckiger, David U; Boland, Brian F; Marcus, Eran
2015-03-20
An algorithm for generating optimal pseudorandom pulse position modulation (PRPPM) waveforms for ladar ranging is presented. Bistatic ladar systems using Geiger-mode avalanche photodiodes require detection of several pulses in order to generate sufficient target statistics to satisfy some detection decision rule. For targets with large initial range uncertainty, it becomes convenient to transmit a pulse train with large ambiguity range. One solution is to employ a PRPPM waveform. An optimal PRPPM waveform will have minimal sidelobes: equivalent to 1 or 0 counts after the pulse correlation filter (compression). This can be accomplished by generating PRPPM pulse trains with optimal or minimal sidelobe autocorrelation.
Connolly, Mark; He, Xing; Gonzalez, Nestor; Vespa, Paul; DiStefano, Joe; Hu, Xiao
2014-03-01
Due to the inaccessibility of the cranial vault, it is difficult to study cerebral blood flow dynamics directly. A mathematical model can be useful to study these dynamics. The model presented here is a novel combination of a one-dimensional fluid flow model representing the major vessels of the circle of Willis (CoW), with six individually parameterized auto-regulatory models of the distal vascular beds. This model has the unique ability to simulate high temporal resolution flow and velocity waveforms, amenable to pulse-waveform analysis, as well as sophisticated phenomena such as auto-regulation. Previous work with human patients has shown that vasodilation induced by CO2 inhalation causes 12 consistent pulse-waveform changes as measured by the morphological clustering and analysis of intracranial pressure algorithm. To validate this model, we simulated vasodilation and successfully reproduced 9 out of the 12 pulse-waveform changes. A subsequent sensitivity analysis found that these 12 pulse-waveform changes were most affected by the parameters associated with the shape of the smooth muscle tension response and vessel elasticity, providing insight into the physiological mechanisms responsible for observed changes in the pulse-waveform shape.
Bernuzzi, Sebastiano; Dietrich, Tim
2016-09-01
The theoretical modeling of gravitational waveforms from binary neutron star mergers requires precise numerical relativity simulations. Assessing convergence of the numerical data and building the error budget is currently challenging due to the low accuracy of general-relativistic hydrodynamics schemes and to the grid resolutions that can be employed in (3 +1 )-dimensional simulations. In this work, we explore the use of high-order weighted-essentially-nonoscillatory (WENO) schemes in neutron star merger simulations and investigate the accuracy of the waveforms obtained with such methods. We find that high-order WENO schemes can be robustly employed for simulating the inspiral-merger phase and they significantly improve the assessment of the waveform's error budget with respect to finite-volume methods. High-order WENO schemes can be thus efficiently used for high-quality waveform production, and in future large-scale investigations of the binary parameter space.
A complete waveform model for compact binaries on eccentric orbits
Huerta, Eliu; Agarwal, Bhanu; George, Daniel; Kumar, Prayush
2016-03-01
The detection of compact binaries with significant eccentricity in the sensitivity band of gravitational wave detectors will provide critical insights on the dynamics and formation channels of these events. In order to search for these systems and place constraints on their rates, we present an inspiral-merger-ringdown time domain waveform model that describes the GW emission from compact binaries on orbits with low to moderate values of eccentricity. We use this model to explore the detectability of these events in the context of advanced LIGO.
Time-domain hybrid method for simulating large amplitude motions of ships advancing in waves
Shukui Liu
2011-03-01
Full Text Available Typical results obtained by a newly developed, nonlinear time domain hybrid method for simulating large amplitude motions of ships advancing with constant forward speed in waves are presented. The method is hybrid in the way of combining a time-domain transient Green function method and a Rankine source method. The present approach employs a simple double integration algorithm with respect to time to simulate the free-surface boundary condition. During the simulation, the diffraction and radiation forces are computed by pressure integration over the mean wetted surface, whereas the incident wave and hydrostatic restoring forces/moments are calculated on the instantaneously wetted surface of the hull. Typical numerical results of application of the method to the seakeeping performance of a standard containership, namely the ITTC S175, are herein presented. Comparisons have been made between the results from the present method, the frequency domain 3D panel method (NEWDRIFT of NTUA-SDL and available experimental data and good agreement has been observed for all studied cases between the results of the present method and comparable other data.
Selection of Carrier Waveforms for PWM Inverter
陈国呈; 屈克庆; 许春雨; 孙承波
2003-01-01
In this paper the influence of different carrier waveforms upon the output characteristics of PWM inverter is described in detail. When a triangular carrier waveform is used in hard-switching PWM inverters, harmonics exist in the neighborhood of the output frequency of the inverter output voltage and current due to the dead time. The triangular carrier waveform used in soft-switching PWM inverter will cause difficulties in controlling resonance-trigger time, higher loss in the resonant circuit, and less utilization of the DC bus voltage. If a sawtooth carrier is used in hard-switching PWM inverter, there will be severe distortion in the current waveform. When sawtooth carriers with alternate positive and negative slopes are used in soft-switching PWM inverters, the resonancetrigger time is easy to control, and distortion in the output voltage and current caused by the dead time will not appear.
High-Voltage, Asymmetric-Waveform Generator
Beegle, Luther W.; Duong, Tuan A.; Duong, Vu A.; Kanik, Isik
2008-01-01
The shapes of waveforms generated by commercially available analytical separation devices, such as some types of mass spectrometers and differential mobility spectrometers are, in general, inadequate and result in resolution degradation in output spectra. A waveform generator was designed that would be able to circumvent these shortcomings. It is capable of generating an asymmetric waveform, having a peak amplitude as large as 2 kV and frequency of several megahertz, which can be applied to a capacitive load. In the original intended application, the capacitive load would consist of the drift plates in a differential-mobility spectrometer. The main advantage to be gained by developing the proposed generator is that the shape of the waveform is made nearly optimum for various analytical devices requiring asymmetric-waveform such as differential-mobility spectrometers. In addition, this waveform generator could easily be adjusted to modify the waveform in accordance with changed operational requirements for differential-mobility spectrometers. The capacitive nature of the load is an important consideration in the design of the proposed waveform generator. For example, the design provision for shaping the output waveform is based partly on the principle that (1) the potential (V) on a capacitor is given by V=q/C, where C is the capacitance and q is the charge stored in the capacitor; and, hence (2) the rate of increase or decrease of the potential is similarly proportional to the charging or discharging current. The proposed waveform generator would comprise four functional blocks: a sine-wave generator, a buffer, a voltage shifter, and a high-voltage switch (see Figure 1). The sine-wave generator would include a pair of operational amplifiers in a feedback configuration, the parameters of which would be chosen to obtain a sinusoidal timing signal of the desired frequency. The buffer would introduce a slight delay (approximately equal to 20 ns) but would otherwise
GRC GSFC TDRSS Waveform Metrics Report
Mortensen, Dale J.
2013-01-01
The report presents software metrics and porting metrics for the GGT Waveform. The porting was from a ground-based COTS SDR, the SDR-3000, to the CoNNeCT JPL SDR. The report does not address any of the Operating Environment (OE) software development, nor the original TDRSS waveform development at GSFC for the COTS SDR. With regard to STRS, the report presents compliance data and lessons learned.
Revealing time-unlocked brain activity from MEG measurements by common waveform estimation.
Yusuke Takeda
Full Text Available Brain activities related to cognitive functions, such as attention, occur with unknown and variable delays after stimulus onsets. Recently, we proposed a method (Common Waveform Estimation, CWE that could extract such brain activities from magnetoencephalography (MEG or electroencephalography (EEG measurements. CWE estimates spatiotemporal MEG/EEG patterns occurring with unknown and variable delays, referred to here as unlocked waveforms, without hypotheses about their shapes. The purpose of this study is to demonstrate the usefulness of CWE for cognitive neuroscience. For this purpose, we show procedures to estimate unlocked waveforms using CWE and to examine their role. We applied CWE to the MEG epochs during Go trials of a visual Go/NoGo task. This revealed unlocked waveforms with interesting properties, specifically large alpha oscillations around the temporal areas. To examine the role of the unlocked waveform, we attempted to estimate the strength of the brain activity of the unlocked waveform in various conditions. We made a spatial filter to extract the component reflecting the brain activity of the unlocked waveform, applied this spatial filter to MEG data under different conditions (a passive viewing, a simple reaction time, and Go/NoGo tasks, and calculated the powers of the extracted components. Comparing the powers across these conditions suggests that the unlocked waveforms may reflect the inhibition of the task-irrelevant activities in the temporal regions while the subject attends to the visual stimulus. Our results demonstrate that CWE is a potential tool for revealing new findings of cognitive brain functions without any hypothesis in advance.
Tsuru, T. [Tech. Research Center, Japan National Oil Corp., Tokyo (Japan)
1995-11-10
Development of software was examined for the purpose of making basic data for an advanced seismic imaging technology by obtaining a seismic exploration data from a complicated underground structural model through a numerical simulation. The result in fiscal 1994 was as follows. A dimensional division difference calculus is superior in the stability and accuracy of numerical calculation and capable of calculating by dividing into one dimensional differences. Attenuation items were added which were due to medium absorbing effect by Maxwell viscoelastic model, and simultaneously a function was added which was capable of dealing with the multi focuses and a group installation of geophones. A pseudospectral method is a kind of difference calculus for numerically solving a partial differential equation, and capable of dividing an underground structural model in lattice and calculating the field on the lattice point. The space direction is differentiated by calculating Fourier series without difference approximation; and, therefore, the number of lattice may be reduced to 2 for the maximum wave length; namely, a lattice interval may be coarsened to reduce calculation time. An improvement was made on the parallel calculation part of the program for two-dimensional analysis developed in the preceding fiscal year, enabling reduction in the calculation time. 4 figs.
Jang, C.; Wheeler, N.; Dolwick, P.; Olerud, D.; Houyoux, M. [MCNC-North Carolina Supercomputing Center, Research Triangle Park, NC (United States); Timin, B.; Lawrimore, J.; Holman, S. [North Carolina Dept. of Environment and Natural Resources, Raleigh, NC (United States). Div. of Air Quality; Jeffries, H. [Univ. of North Carolina, Chapel Hill, NC (United States). Dept. of Environmental Sciences and Engineering
1998-12-31
An advanced air quality modeling system is used to simulate the formation of photochemical oxidants, mainly ozone, over North Carolina. The objective of this modeling study is to successfully model the formation processes of ozone in North Carolina to lead to effective ozone control strategy developments for both 1-hour and 8-hour standards and eventually to address the particulate matter issue. The modeling system selected for this ongoing project is the North Carolina Supercomputing Center`s Environmental Decision Support System (EDSS), which evolved from a working prototype of EPA`s Third Generation Modeling System, or Models-3. The EDSS consists of three major modeling components : the Multiscale Air Quality SImulation Platform (MAQSIP) for chemistry/transport modeling, Mesoscale Model Version 5 (MM5) for meteorological modeling, and Sparse Matrix Operator Kernel Emissions (SMOKE) system for emission modeling. Two inner subdomains at 12-km and 4-km grid resolutions centered over Charlotte are nested inside a coarse domain at a 36-km resolution. Sixteen vertical layers with a denser grid at lower altitude are used to better resolve the mixing layer. The CB-IV chemistry mechanism with updated isoprene chemistry and radical-radical reactions is used to simulate the chemical transformations of reacting species. Preliminary results show that the MAQSIP has reasonably simulated the temporal and spatial distribution of ozone as compared to observations in the first 6-day episode during July 10--15, 1995. Improved ozone predictions are shown in the model using finer grid resolution. Various ozone sensitivity studies on the model inputs such as initial and boundary conditions and the existence of clouds are under testing. An innovative analysis tool for model evaluation and error detection, the Process Analysis method, is also applied to help understand the regulating processes that lead to formation of ozone.
Recent advances in semi-analytical scattering models for NDT simulation
Darmon, M.; Chatillon, S.; Mahaut, S.; Calmon, P.; Fradkin, L. J.; Zernov, V.
2011-01-01
For several years, CEA-LIST and partners have been developing ultrasonic simulation tools with the aim of modelling non-destructive evaluation. The existing ultrasonic modules allow us to simulate fully real ultrasonic inspection scenarios in a range of applications which requires the computation of the propagated beam, as well as its interaction with flaws. To fulfil requirements of an intensive use (for parametric studies), the choice has been made to adopt mainly analytical approximate or exact methods to model the scattering of ultrasound by flaws. The applied analytical theories (Kirchhoff and Born approximations, GTD, SOV...) were already described in previous GDR communication. Over the years, this "semi-analytical" approach has been enriched by adaptations and improvements of the existing models or by new models, in order to extend the applicability of the simulation tools. This paper is devoted to the following recent advances performed in the framework of this approach: The SOV method based on the exact analytical model for the scattering from a cylindrical cavity has been extended in 3D to account for field variations along the cylinder. This new 3D model leads to an improvement in simulation of small side-drilled holes. Concerning the geometrical theories of diffraction (GTD), subroutines for calculation of the 2D wedge diffraction coefficients (for bulk or Rayleigh incident waves) have been developed by the Waves and Fields Group and uniform corrections (UAT and UTD) are under investigation. Modelling of the contribution of the head wave and creeping wave to the echoes arising from a wedge. Numerous experimental validations of the developed models are provided. New possibilities offered by these new developments are emphasized.
Assessment of driving-related performance in chronic whiplash using an advanced driving simulator.
Takasaki, Hiroshi; Treleaven, Julia; Johnston, Venerina; Rakotonirainy, Andry; Haines, Andrew; Jull, Gwendolen
2013-11-01
Driving is often nominated as problematic by individuals with chronic whiplash associated disorders (WAD), yet driving-related performance has not been evaluated objectively. The purpose of this study was to test driving-related performance in persons with chronic WAD against healthy controls of similar age, gender and driving experience to determine if driving-related performance in the WAD group was sufficiently impaired to recommend fitness to drive assessment. Driving-related performance was assessed using an advanced driving simulator during three driving scenarios; freeway, residential and a central business district (CBD). Total driving duration was approximately 15min. Five driving tasks which could cause a collision (critical events) were included in the scenarios. In addition, the effect of divided attention (identify red dots projected onto side or rear view mirrors) was assessed three times in each scenario. Driving performance was measured using the simulator performance index (SPI) which is calculated from 12 measures. z-Scores for all SPI measures were calculated for each WAD subject based on mean values of the control subjects. The z-scores were then averaged for the WAD group. A z-score of ≤-2 indicated a driving failing grade in the simulator. The number of collisions over the five critical events was compared between the WAD and control groups as was reaction time and missed response ratio in identifying the red dots. Seventeen WAD and 26 control subjects commenced the driving assessment. Demographic data were comparable between the groups. All subjects completed the freeway scenario but four withdrew during the residential and eight during the CBD scenario because of motion sickness. All scenarios were completed by 14 WAD and 17 control subjects. Mean z-scores for the SPI over the three scenarios was statistically lower in the WAD group (-0.3±0.3; P0.05). Assessment of driving in an advanced driving simulator for approximately 15min revealed
Strategic Plan for Nuclear Energy -- Knowledge Base for Advanced Modeling and Simulation (NE-KAMS)
Rich Johnson; Kimberlyn C. Mousseau; Hyung Lee
2011-09-01
NE-KAMS knowledge base will assist computational analysts, physics model developers, experimentalists, nuclear reactor designers, and federal regulators by: (1) Establishing accepted standards, requirements and best practices for V&V and UQ of computational models and simulations, (2) Establishing accepted standards and procedures for qualifying and classifying experimental and numerical benchmark data, (3) Providing readily accessible databases for nuclear energy related experimental and numerical benchmark data that can be used in V&V assessments and computational methods development, (4) Providing a searchable knowledge base of information, documents and data on V&V and UQ, and (5) Providing web-enabled applications, tools and utilities for V&V and UQ activities, data assessment and processing, and information and data searches. From its inception, NE-KAMS will directly support nuclear energy research, development and demonstration programs within the U.S. Department of Energy (DOE), including the Consortium for Advanced Simulation of Light Water Reactors (CASL), the Nuclear Energy Advanced Modeling and Simulation (NEAMS), the Light Water Reactor Sustainability (LWRS), the Small Modular Reactors (SMR), and the Next Generation Nuclear Power Plant (NGNP) programs. These programs all involve computational modeling and simulation (M&S) of nuclear reactor systems, components and processes, and it is envisioned that NE-KAMS will help to coordinate and facilitate collaboration and sharing of resources and expertise for V&V and UQ across these programs. In addition, from the outset, NE-KAMS will support the use of computational M&S in the nuclear industry by developing guidelines and recommended practices aimed at quantifying the uncertainty and assessing the applicability of existing analysis models and methods. The NE-KAMS effort will initially focus on supporting the use of computational fluid dynamics (CFD) and thermal hydraulics (T/H) analysis for M&S of nuclear
Qilian Liang
2007-01-01
Full Text Available Automatic target recognition (ATR in target search phase is very challenging because the target range and mobility are not yet perfectly known, which results in delay-Doppler uncertainty. In this paper, we firstly perform some theoretical studies on radar sensor network (RSN design based on linear frequency modulation (LFM waveform: (1 the conditions for waveform coexistence, (2 interferences among waveforms in RSN, (3 waveform diversity in RSN. Then we apply RSN to ATR with delay-Doppler uncertainty and propose maximum-likeihood (ML ATR algorithms for fluctuating targets and nonfluctuating targets. Simulation results show that our RSN vastly reduces the ATR error compared to a single radar system in ATR with delay-Doppler uncertainty. The proposed waveform design and diversity algorithms can also be applied to active RFID sensor networks and underwater acoustic sensor networks.
C. Subba Rami Reddy
2011-07-01
Full Text Available This paper introduces an Integrated fuzzy logic controller (IFLC for brushless dc (BLDC motor drives using advanced simulation model and presents a comparative study of performances of PID controller and IFLC. The dynamic characteristics of speed and torque are effectively monitored and analyzed using the proposed model. The aim of IFLC is to obtain improved performance in terms of disturbance rejection or parameter variation than obtained using PID controller. The IFLC is constructed by using Fuzzy logic controller (FLC and PID controller. A performance comparison of the controllers is also given based on the integral of the absolute value of the error (IAE, the integral of the squared error (ISE, the integral of the time-weighted absolute error (ITAE and the integral of the time-weighted squared error (ITSE. The results show the effectiveness of the proposed controller.
Advanced Simulation and Computing Fiscal Year 2016 Implementation Plan, Version 0
McCoy, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Archer, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hendrickson, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2015-08-27
The Stockpile Stewardship Program (SSP) is an integrated technical program for maintaining the safety, surety, and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational capabilities to support these programs. The purpose of this IP is to outline key work requirements to be performed and to control individual work activities within the scope of work. Contractors may not deviate from this plan without a revised WA or subsequent IP.
Update: Advancement of Contact Dynamics Modeling for Human Spaceflight Simulation Applications
Brain, Thomas A.; Kovel, Erik B.; MacLean, John R.; Quiocho, Leslie J.
2017-01-01
Pong is a new software tool developed at the NASA Johnson Space Center that advances interference-based geometric contact dynamics based on 3D graphics models. The Pong software consists of three parts: a set of scripts to extract geometric data from 3D graphics models, a contact dynamics engine that provides collision detection and force calculations based on the extracted geometric data, and a set of scripts for visualizing the dynamics response with the 3D graphics models. The contact dynamics engine can be linked with an external multibody dynamics engine to provide an integrated multibody contact dynamics simulation. This paper provides a detailed overview of Pong including the overall approach and modeling capabilities, which encompasses force generation from contact primitives and friction to computational performance. Two specific Pong-based examples of International Space Station applications are discussed, and the related verification and validation using this new tool are also addressed.
Turinsky, Paul J.; Martin, William R.
2017-04-01
In this special issue of the Journal of Computational Physics, the research and development completed at the time of manuscript submission by the Consortium for Advanced Simulation of Light Water Reactors (CASL) is presented. CASL is the first of several Energy Innovation Hubs that have been created by the Department of Energy. The Hubs are modeled after the strong scientific management characteristics of the Manhattan Project and AT&T Bell Laboratories, and function as integrated research centers that combine basic and applied research with engineering to accelerate scientific discovery that addresses critical energy issues. Lifetime of a Hub is expected to be five or ten years depending upon performance, with CASL being granted a ten year lifetime.
Harting, Jens; Chin, Jonathan; Venturoli, Maddalena; Coveney, Peter V
2005-08-15
During the last 2.5 years, the RealityGrid project has allowed us to be one of the few scientific groups involved in the development of computational Grids. Since smoothly working production Grids are not yet available, we have been able to substantially influence the direction of software and Grid deployment within the project. In this paper, we review our results from large-scale three-dimensional lattice Boltzmann simulations performed over the last 2.5 years. We describe how the proactive use of computational steering, and advanced job migration and visualization techniques enabled us to do our scientific work more efficiently. The projects reported on in this paper are studies of complex fluid flows under shear or in porous media, as well as large-scale parameter searches, and studies of the self-organization of liquid cubic mesophases.
Virtual charge state separator as an advanced tool coupling measurements and simulations
Yaramyshev, S.; Vormann, H.; Adonin, A.; Barth, W.; Dahl, L.; Gerhard, P.; Groening, L.; Hollinger, R.; Maier, M.; Mickat, S.; Orzhekhovskaya, A.
2015-05-01
A new low energy beam transport for a multicharge uranium beam will be built at the GSI High Current Injector (HSI). All uranium charge states coming from the new ion source will be injected into GSI heavy ion high current HSI Radio Frequency Quadrupole (RFQ), but only the design ions U4 + will be accelerated to the final RFQ energy. A detailed knowledge about injected beam current and emittance for pure design U4 + ions is necessary for a proper beam line design commissioning and operation, while measurements are possible only for a full beam including all charge states. Detailed measurements of the beam current and emittance are performed behind the first quadrupole triplet of the beam line. A dedicated algorithm, based on a combination of measurements and the results of advanced beam dynamics simulations, provides for an extraction of beam current and emittance values for only the U4 + component of the beam. The proposed methods and obtained results are presented.
Simulation of Swap-Out Reliability For The Advance Photon Source Upgrade
Borland, M.
2017-06-01
The proposed upgrade of the Advanced Photon Source (APS) to a multibend-achromat lattice relies on the use of swap-out injection to accommodate the small dynamic acceptance, allow use of unusual insertion devices, and minimize collective effects at high single-bunch charge. This, combined with the short beam lifetime, will make injector reliability even more important than it is for top-up operation. We used historical data for the APS injector complex to obtain probability distributions for injector up-time and down-time durations. Using these distributions, we simulated several years of swap-out operation for the upgraded lattice for several operatingmodes. The results indicate that obtaining very high availability of beam in the storage ring will require improvements to injector reliability.
Complex Spine Pathology Simulator: An Innovative Tool for Advanced Spine Surgery Training.
Gragnaniello, Cristian; Abou-Hamden, Amal; Mortini, Pietro; Colombo, Elena V; Bailo, Michele; Seex, Kevin A; Litvack, Zachary; Caputy, Anthony J; Gagliardi, Filippo
2016-11-01
Background Technical advancements in spine surgery have made possible the treatment of increasingly complex pathologies with less morbidity. Time constraints in surgeons' training have made it necessary to develop new training models for spine pathology. Objective To describe the application of a novel compound, Stratathane resin ST-504 derived polymer (SRSDP), that can be injected at different spinal target locations to mimic spinal epidural, subdural extra-axial, and intra-axial pathologies for the use in advanced surgical training. Material and Methods Fresh-frozen thoracolumbar and cervical spine segments of human and sheep cadavers were used to study the model. SRSDP is initially liquid after mixing, allowing it to be injected into target areas where it expands and solidifies, mimicking the entire spectrum of spinal pathologies. Results Different polymer concentrations have been codified to vary adhesiveness, texture, spread capability, deformability, and radiologic visibility. Polymer injection was performed under fluoroscopic guidance through pathology-specific injection sites that avoided compromising the surgical approach for subsequent excision of the artificial lesion. Inflation of a balloon catheter of the desired size was used to displace stiff cadaveric neurovascular structures to mimic pathology-related mass effect. Conclusion The traditional cadaveric training models principally only allow surgeons to practice the surgical approach. The complex spine pathology simulator is a novel educational tool that in a user-friendly, low-cost fashion allows trainees to practice advanced technical skills in the removal of complex spine pathology, potentially shortening some of the aspects of the learning curve of operative skills that may otherwise take many years to acquire.
Deng Shuaiqi
2013-05-01
Full Text Available The high-order staggering grid Finite-Difference (FD scheme based on first-order velocity-stress elastic wave equation has been deduced. The calculation method of PML boundary condition and stability condition established in this study can be used for numerical simulation of advanced detection of elastic wave in roadway, with the obtaining of high-precision seismogram. Then we systematically analyze the polarity of vector wave field in post-source observation system. The results indicate that the relationship between the vector wave field and the polarity of direct wave is related to reflection coefficient on the interface, while the polarity relationship between horizontal and vertical components of vector wave field is related to vertical position of the interface. During data processing for advanced detection of elastic waves, the sign of the reflection coefficient on the interface ahead can be determined based on the polarity relationship between reflected wave and direct wave from the seismograms; the soft and hard rock and other geological information on both sides of the interface is thus be determined. In addition, the direction of source wave depends on polarity relationship between horizontal and vertical components of reflected wave and is used to achieve the separation of up going and down going waves.
Derzsi, Aranka; Bruneau, Bastien; Gibson, Andrew Robert; Johnson, Erik; O’Connell, Deborah; Gans, Timo; Booth, Jean-Paul; Donkó, Zoltán
2017-03-01
Low-pressure capacitively coupled radio frequency discharges operated in O2 and driven by tailored voltage waveforms are investigated experimentally and by means of kinetic simulations. Pulse-type (peaks/valleys) and sawtooth-type voltage waveforms that consist of up to four consecutive harmonics of the fundamental frequency are used to study the amplitude asymmetry effect as well as the slope asymmetry effect at different fundamental frequencies (5, 10, and 15 MHz) and at different pressures (50–700 mTorr). Values of the DC self-bias determined experimentally and spatio-temporal excitation rates derived from phase resolved optical emission spectroscopy measurements are compared with particle-in-cell/Monte Carlo collisions simulations. The spatio-temporal distributions of the excitation rate obtained from experiments are well reproduced by the simulations. Transitions of the discharge electron heating mode from the drift-ambipolar mode to the α-mode are induced by changing the number of consecutive harmonics included in the driving voltage waveform or by changing the gas pressure. Changing the number of harmonics in the waveform has a strong effect on the electronegativity of the discharge, on the generation of the DC self-bias and on the control of ion properties at the electrodes, both for pulse-type, as well as sawtooth-type driving voltage waveforms The effect of the surface quenching rate of oxygen singlet delta metastable molecules on the spatio-temporal excitation patterns is also investigated.
Optimal design of basic pulse waveforms for THSS UWB radio systems
Jia Lin; Zhang Zhongzhao
2005-01-01
Ultrawide bandwidth (UWB) radio, a very promising technique carrying information in very short basic pulses, has properties that make it a viable candidate for short-range wireless communications. In this paper, several short-pulse waveforms based on Gaussian genetic monocycle as well as Gaussian pulse waveform, as candidates of basic UWB pulse waveforms, are firstly proposed and investigated. Their spectrum characteristics, bit transmission rate (BTR), and bit error rate (BER) performance in AWGN channel using time hopping spread spectrum (THSS) and pulse position modulation (PPM) are simulated and evaluated. The numerical results are compared and show that the basic pulse waveforms determine the spectrum characteristics of UWB signals and have much effect on the performance of UWB radio system. The performance of UWB radio system achieved by the proposed basic pulse waveforms is much better than that of UWB radio system realized by other used basic pulse waveforms under the uniform conditions. Also,the polarity of these short basic pulses does not affect the performance of UWB radio system.
Flow patterns and shear stress waveforms in intracranial aneurysms: The effect of pulsatility
Sotiropoulos, Fotis; Le, Trung; Borazjani, Iman
2009-11-01
The wall shear stress on the dome of intracranial aneurysms has been hypothesized to be an important factor in aneurysm pathology and depends strongly on the hemodynamics inside the dome. The importance of patient-specific geometry on the hemodynamics of aneurysms has long been established but the significance of patient-specific inflow waveform is largely unexplored. In this work we seek to systematically investigate and quantify the effects of inflow waveform on aneurysm hemodynamics. We carry out high resolution numerical simulations for an anatomic intracranial aneurysm obtained from 3D rotational angiography (3DRA) data for various inflow waveforms. We show that both the vortex formation process and wall-shear stress dynamics on the aneurysm dome depend strongly on the characteristics of the inflow waveform. We also present preliminary evidence suggesting that a simple non-dimensional number (named the Aneurysm number), incorporating both geometry and inflow waveform effects, could be a good qualitative predictor of the general hemodynamic patterns that will arise in a given aneurysm geometry for a particular waveform.
Phase-modulated waveform design for extended target detection in the presence of clutter.
Gong, Xuhua; Meng, Huadong; Wei, Yimin; Wang, Xiqin
2011-01-01
The problem to be addressed in this paper is a phase-modulated waveform design for the detection of extended targets contaminated by signal-dependent noise (clutter) and additive noise in practical radar systems. An optimal waveform design method that leads to the energy spectral density (ESD) of signal under the maximum signal-to-clutter-and-noise ratio (SCNR) criterion is introduced first. In order to make full use of the transmission power, a novel phase-iterative algorithm is then proposed for designing the phase-modulated waveform with a constant envelope, whose ESD matches the optimal one. This method is proven to be able to achieve a small SCNR loss by minimizing the mean-square spectral distance between the optimal waveform and the designed waveform. The results of extensive simulations demonstrate that our approach provides less than 1 dB SCNR loss when the signal duration is greater than 1 μs, and outperforms the stationary phase method and other phase-modulated waveform design methods.
Phase-Modulated Waveform Design for Extended Target Detection in the Presence of Clutter
Xiqin Wang
2011-07-01
Full Text Available The problem to be addressed in this paper is a phase-modulated waveform design for the detection of extended targets contaminated by signal-dependent noise (clutter and additive noise in practical radar systems. An optimal waveform design method that leads to the energy spectral density (ESD of signal under the maximum signal-to-clutter-and-noise ratio (SCNR criterion is introduced first. In order to make full use of the transmission power, a novel phase-iterative algorithm is then proposed for designing the phase-modulated waveform with a constant envelope, whose ESD matches the optimal one. This method is proven to be able to achieve a small SCNR loss by minimizing the mean-square spectral distance between the optimal waveform and the designed waveform. The results of extensive simulations demonstrate that our approach provides less than 1 dB SCNR loss when the signal duration is greater than 1 μs, and outperforms the stationary phase method and other phase-modulated waveform design methods.
Effective-one-body waveforms for binary neutron stars using surrogate models
Lackey, Benjamin D; Galley, Chad R; Meidam, Jeroen; Broeck, Chris Van Den
2016-01-01
Gravitational-wave observations of binary neutron star systems can provide information about the masses, spins, and structure of neutron stars. However, this requires accurate and computationally efficient waveform models that take <1s to evaluate for use in Bayesian parameter estimation codes that perform 10^7 - 10^8 waveform evaluations. We present a surrogate model of a nonspinning effective-one-body waveform model with l = 2, 3, and 4 tidal multipole moments that reproduces waveforms of binary neutron star numerical simulations up to merger. The surrogate is built from compact sets of effective-one-body waveform amplitude and phase data that each form a reduced basis. We find that 12 amplitude and 7 phase basis elements are sufficient to reconstruct any binary neutron star waveform with a starting frequency of 10Hz. The surrogate has maximum errors of 3.8% in amplitude (0.04% excluding the last 100M before merger) and 0.043 radians in phase. The version implemented in the LIGO Algorithm Library takes ~...
Esmaeili-sani, Vahid, E-mail: vaheed_esmaeely80@yahoo.com [Department of Nuclear Engineering and Physics, Amirkabir University of Technology, P.O. Box 4155-4494, Tehran (Iran, Islamic Republic of); Moussavi-zarandi, Ali; Boghrati, Behzad; Afarideh, Hossein [Department of Nuclear Engineering and Physics, Amirkabir University of Technology, P.O. Box 4155-4494, Tehran (Iran, Islamic Republic of)
2012-02-01
Geophysical bore-hole data represent the physical properties of rocks, such as density and formation lithology, as a function of depth in a well. Properties of rocks are obtained from gamma ray transport logs. Transport of gamma rays, from a {sup 137}Cs point gamma source situated in a bore-hole tool, through rock media to detectors, has been simulated using a GEANT4 radiation transport code. The advanced Compton scattering concepts were used to gain better analyses about well formation. The simulation and understanding of advanced Compton scattering highly depends on how accurately the effects of Doppler broadening and Rayleigh scattering are taken into account. A Monte Carlo package that simulates the gamma-gamma well logging tools based on GEANT4 advanced low energy Compton scattering (GALECS).
Some Specific CASL Requirements for Advanced Multiphase Flow Simulation of Light Water Reactors
R. A. Berry
2010-11-01
Because of the diversity of physical phenomena occuring in boiling, flashing, and bubble collapse, and of the length and time scales of LWR systems, it is imperative that the models have the following features: • Both vapor and liquid phases (and noncondensible phases, if present) must be treated as compressible. • Models must be mathematically and numerically well-posed. • The models methodology must be multi-scale. A fundamental derivation of the multiphase governing equation system, that should be used as a basis for advanced multiphase modeling in LWR coolant systems, is given in the Appendix using the ensemble averaging method. The remainder of this work focuses specifically on the compressible, well-posed, and multi-scale requirements of advanced simulation methods for these LWR coolant systems, because without these are the most fundamental aspects, without which widespread advancement cannot be claimed. Because of the expense of developing multiple special-purpose codes and the inherent inability to couple information from the multiple, separate length- and time-scales, efforts within CASL should be focused toward development of a multi-scale approaches to solve those multiphase flow problems relevant to LWR design and safety analysis. Efforts should be aimed at developing well-designed unified physical/mathematical and high-resolution numerical models for compressible, all-speed multiphase flows spanning: (1) Well-posed general mixture level (true multiphase) models for fast transient situations and safety analysis, (2) DNS (Direct Numerical Simulation)-like models to resolve interface level phenmena like flashing and boiling flows, and critical heat flux determination (necessarily including conjugate heat transfer), and (3) Multi-scale methods to resolve both (1) and (2) automatically, depending upon specified mesh resolution, and to couple different flow models (single-phase, multiphase with several velocities and pressures, multiphase with single
Obland, M. D.; Antill, C.; Browell, E. V.; Campbell, J. F.; CHEN, S.; Cleckner, C.; Dijoseph, M. S.; Harrison, F. W.; Ismail, S.; Lin, B.; Meadows, B. L.; Mills, C.; Nehrir, A. R.; Notari, A.; Prasad, N. S.; Kooi, S. A.; Vitullo, N.; Dobler, J. T.; Bender, J.; Blume, N.; Braun, M.; Horney, S.; McGregor, D.; Neal, M.; Shure, M.; Zaccheo, T.; Moore, B.; Crowell, S.; Rayner, P. J.; Welch, W.
2013-12-01
The ASCENDS CarbonHawk Experiment Simulator (ACES) is a NASA Langley Research Center project funded by NASA's Earth Science Technology Office that seeks to advance technologies critical to measuring atmospheric column carbon dioxide (CO2) mixing ratios in support of the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. The technologies being advanced are: (1) multiple transmitter and telescope-aperture operations, (2) high-efficiency CO2 laser transmitters, (3) a high bandwidth detector and transimpedance amplifier (TIA), and (4) advanced algorithms for cloud and aerosol discrimination. The instrument architecture is being developed for ACES to operate on a high-altitude aircraft, and it will be directly scalable to meet the ASCENDS mission requirements. The above technologies are critical for developing an airborne simulator and spaceborne instrument with lower platform consumption of size, mass, and power, and with improved performance. This design employs several laser transmitters and telescope-apertures to demonstrate column CO2 retrievals with alignment of multiple laser beams in the far-field. ACES will transmit five laser beams: three from commercial lasers operating near 1.57-microns, and two from the Exelis atmospheric oxygen (O2) fiber laser amplifier system operating near 1.26-microns. The Master Oscillator Power Amplifier at 1.57-microns measures CO2 column concentrations using an Integrated-Path Differential Absorption (IPDA) lidar approach. O2 column amounts needed for calculating the CO2 mixing ratio will be retrieved using the Exelis laser system with a similar IPDA approach. The three aperture telescope design was built to meet the constraints of the Global Hawk high-altitude unmanned aerial vehicle (UAV). This assembly integrates fiber-coupled transmit collimators for all of the laser transmitters and fiber-coupled optical signals from the three telescopes to the aft optics and detector package. The detector
Reactivity Initiated Accident Simulation to Inform Transient Testing of Candidate Advanced Cladding
Brown, Nicholas R [ORNL; Wysocki, Aaron J [ORNL; Terrani, Kurt A [ORNL
2016-01-01
Abstract. Advanced cladding materials with potentially enhanced accident tolerance will yield different light water reactor performance and safety characteristics than the present zirconium-based cladding alloys. These differences are due to different cladding material properties and responses to the transient, and to some extent, reactor physics, thermal, and hydraulic characteristics. Some of the differences in reactors physics characteristics will be driven by the fundamental properties (e.g., absorption in iron for an iron-based cladding) and others will be driven by design modifications necessitated by the candidate cladding materials (e.g., a larger fuel pellet to compensate for parasitic absorption). Potential changes in thermal hydraulic limits after transition from the current zirconium-based cladding to the advanced materials will also affect the transient response of the integral fuel. This paper leverages three-dimensional reactor core simulation capabilities to inform on appropriate experimental test conditions for candidate advanced cladding materials in a control rod ejection event. These test conditions are using three-dimensional nodal kinetics simulations of a reactivity initiated accident (RIA) in a representative state-of-the-art pressurized water reactor with both nuclear-grade iron-chromium-aluminum (FeCrAl) and silicon carbide based (SiC-SiC) cladding materials. The effort yields boundary conditions for experimental mechanical tests, specifically peak cladding strain during the power pulse following the rod ejection. The impact of candidate cladding materials on the reactor kinetics behavior of RIA progression versus reference zirconium cladding is predominantly due to differences in: (1) fuel mass/volume/specific power density, (2) spectral effects due to parasitic neutron absorption, (3) control rod worth due to hardened (or softened) spectrum, and (4) initial conditions due to power peaking and neutron transport cross sections in the
E. Rajabi
2014-01-01
Full Text Available In this research a direct numerical simulation (DNS of turbulent flow is performed in a geometrically standard case like plane channel flow. Pseudo spectral (PS method is used due to geometry specifications and very high accuracy achieved despite relatively few grid points. A variable time-stepping algorithm is proposed which may reduce requirement of computational cost in simulation of such wall-bounded flow. Channel flow analysis is performed with both constant and varied time-step for 128 × 65×128 grid points. The time advancement is carried out by implicit third-order backward differentiation scheme for linear terms and explicit forward Euler for nonlinear convection term. PS method is used in Cartesian coordinates with Chebychev polynomial expansion in normal direction for one non-periodic boundary condition. Also Fourier series is employed in stream-wise and span-wise directions for two periodic boundary conditions. The friction Reynolds number is about Reτ=175 based on a friction velocity and channel half width. Standard common rotational form was chosen for discritization of nonlinear convective term of Navier-Stocks equation. The comparison is made between turbulent quantities such as the turbulent statistics, Reynolds stress, wall shear velocity, standard deviation of (u and total normalized energy of instantaneous velocities in both time-discretization methods. The results show that if final decision rests on economics, the proposed variable time-stepping algorithm will be proper choice which satisfies the accuracy and reduces the computational cost.
Advanced coal-fueled industrial cogeneration gas turbine system: Hot End Simulation Rig
Galica, M.A.
1994-02-01
This Hot End Simulation Rig (HESR) was an integral part of the overall Solar/METC program chartered to prove the technical, economic, an environmental feasibility of a coal-fueled gas turbine, for cogeneration applications. The program was to culminate in a test of a Solar Centaur Type H engine system operated on coal slurry fuel throughput the engine design operating range. This particular activity was designed to verify the performance of the Centaur Type H engine hot section materials in a coal-fired environment varying the amounts of alkali, ash, and sulfur in the coal to assess the material corrosion. Success in the program was dependent upon the satisfactory resolution of several key issues. Included was the control of hot end corrosion and erosion, necessary to ensure adequate operating life. The Hot End Simulation Rig addressed this important issue by exposing currently used hot section turbine alloys, alternate alloys, and commercially available advanced protective coating systems to a representative coal-fueled environment at turbine inlet temperatures typical of Solar`s Centaur Type H. Turbine hot end components which would experience material degradation include the transition duct from the combustor outlet to the turbine inlet, the shroud, nozzles, and blades. A ceramic candle filter vessel was included in the system as the particulate removal device for the HESR. In addition to turbine material testing, the candle material was exposed and evaluated. Long-term testing was intended to sufficiently characterize the performance of these materials for the turbine.
White, Claire [Los Alamos National Laboratory; Bloomer, Breaunnah E. [Los Alamos National Laboratory; Provis, John L. [The University of Melbourne; Henson, Neil J. [Los Alamos National Laboratory; Page, Katharine L. [Los Alamos National Laboratory
2012-05-16
With the ever increasing demands for technologically advanced structural materials, together with emerging environmental consciousness due to climate change, geopolymer cement is fast becoming a viable alternative to traditional cements due to proven mechanical engineering characteristics and the reduction in CO2 emitted (approximately 80% less CO2 emitted compared to ordinary Portland cement). Nevertheless, much remains unknown regarding the kinetics of the molecular changes responsible for nanostructural evolution during the geopolymerization process. Here, in-situ total scattering measurements in the form of X-ray pair distribution function (PDF) analysis are used to quantify the extent of reaction of metakaolin/slag alkali-activated geopolymer binders, including the effects of various activators (alkali hydroxide/silicate) on the kinetics of the geopolymerization reaction. Restricting quantification of the kinetics to the initial ten hours of reaction does not enable elucidation of the true extent of the reaction, but using X-ray PDF data obtained after 128 days of reaction enables more accurate determination of the initial extent of reaction. The synergies between the in-situ X-ray PDF data and simulations conducted by multiscale density functional theory-based coarse-grained Monte Carlo analysis are outlined, particularly with regard to the potential for the X-ray data to provide a time scale for kinetic analysis of the extent of reaction obtained from the multiscale simulation methodology.
Koorosh Ahmadi; Mohammad Sedaghat; Mahdi Safdarian; Amir Masoud Hashemian; Zahra Nezamdoust; Mohammad Vaseie; Vafa Rahimi-Movaghar
2013-01-01
Since appropriate and timetable methods in trauma care have an important impact on patients' outcome,we evaluated the effect of Advanced Trauma Life Support (ATLS) program on medical interns'performance in simulated trauma patient management.Methods:A descriptive and analytical study before and after the training was conducted on 24 randomly selected undergraduate medical interns from Imam Reza Hospital in Mashhad,Iran.On the first day,we assessed interns' clinical knowledge and their practical skill performance in confronting simulated trauma patients.After 2 days of ATLS training,we performed the same study and evaluated their score again on the fourth day.The two findings,preand post-ATLS periods,were compared through SPSS version 15.0 software.P values less than 0.05 were considered statistically significant.Results:Our findings showed that interns' ability in all the three tasks improved after the training course.On the fourth day after training,there was a statistically significant increase in interns' clinical knowledge of ATLS procedures,the sequence of procedures and skill performance in trauma situations (P＜0.001,P=0.016 and P=0.01 respectively).Conclusion:ATLS course has an important role in increasing clinical knowledge and practical skill performance of trauma care in medical interns.
Advanced Grid Simulator for Multi-Megawatt Power Converter Testing and Certification
Koralewicz, Przemyslaw; Gevorgian, Vahan; Wallen, Robb; van der Merwe, Wim; Jorg, Pieder
2017-02-16
Grid integration testing of inverter-coupled renewable energy technologies is an essential step in the qualification of renewable energy and energy storage systems to ensure the stability of the power system. New types of devices must be thoroughly tested and validated for compliance with relevant grid codes and interconnection requirements. For this purpose, highly specialized custom-made testing equipment is needed to emulate various types of realistic grid conditions that are required by certification bodies or for research purposes. For testing multi-megawatt converters, a high power grid simulator capable of creating controlled grid conditions and meeting both power quality and dynamic characteristics is needed. This paper describes the new grid simulator concept based on ABB's medium voltage ACS6000 drive technology that utilizes advanced modulation and control techniques to create an unique testing platform for various multi-megawatt power converter systems. Its performance is demonstrated utilizing the test results obtained during commissioning activities at the National Renewable Energy Laboratory in Colorado, USA.
Aligned spin neutron star-black hole mergers: a gravitational waveform amplitude model
Pannarale, Francesco; Kyutoku, Koutarou; Lackey, Benjamin D; Shibata, Masaru
2015-01-01
The gravitational radiation emitted during the merger of a black hole with a neutron star is rather similar to the radiation from the merger of two black holes when the neutron star is not tidally disrupted. When tidal disruption occurs, gravitational waveforms can be broadly classified in two groups, depending on the spatial extent of the disrupted material. Extending previous work by some of us, here we present a phenomenological model for the gravitational waveform amplitude in the frequency domain encompassing the three possible outcomes of the merger: no tidal disruption, "mild" and "strong" tidal disruption. The model is calibrated to 134 general-relativistic numerical simulations of binaries where the black hole spin is either aligned or antialigned with the orbital angular momentum. All simulations were produced using the SACRA code and piecewise polytropic neutron star equations of state. The present model can be used to determine when black-hole binary waveforms are sufficient for gravitational-wave...
Colocated MIMO Radar: Beamforming, Waveform design, and Target Parameter Estimation
Jardak, Seifallah
2014-04-01
and Doppler shift. To assess the performance of the proposed estimators, the Cramér-Rao Lower Bound (CRLB) is derived. Simulation results show that the mean square estimation error of the proposed estimators achieve the CRLB. Keywords: Collocate antennas, multiple-input multiple-output (MIMO) radar, Finite alphabet waveforms, Hermite polynomials, Reflection coefficient, Doppler, Spatial location, Cramér-Rao Lower Bound.
Dunn, H. J.
1981-01-01
A computer program for performing frequency analysis of time history data is presented. The program uses circular convolution and the fast Fourier transform to calculate power density spectrum (PDS) of time history data. The program interfaces with the advanced continuous simulation language (ACSL) so that a frequency analysis may be performed on ACSL generated simulation variables. An example of the calculation of the PDS of a Van de Pol oscillator is presented.
Photonic Arbitrary Waveform Generation Technology
2006-06-01
radar/ lidar , optical communications, and signal processing. Our key achievements are as follows: • Frequency domain based architecture using...and combining the result onto a photodetector . The derivative of the time varying voltage applied to the phase modulator determines the addition... photodetectors would also be warranted. 28 References [1] K. Nosu, “Advanced coherent lightwave technologies,” IEEE Commun. Magn,, vol. 26
Using waveform complexity in the search for transient gravitational wave events
Millhouse, Margaret; Littenberg, Tyson; Cornish, Neil; Kanner, Jonah; LIGO Collaboration
2016-03-01
Searches for short, unmodeled gravitational waves using ground based interferometers are impacted by transient noise artifacts, or ``glitches'', which can be difficult to distinguish from gravitational waves of astrophysical origin. The BayesWave algorithm presents a novel method of distinguishing glitches from short duration astrophysical signals by using waveform complexity to rank candidate events. In addition to identifying signals and glitches, BayesWave also provides robust waveform reconstruction with minimal assumptions. I will showcase the algorithm's glitch rejection capabilities, and discuss the performance of BayesWave during Advanced LIGO's first observational run.
Photonic arbitrary waveform generator based on Taylor synthesis method
Liao, Shasha; Ding, Yunhong; Dong, Jianji
2016-01-01
Arbitrary waveform generation has been widely used in optical communication, radar system and many other applications. We propose and experimentally demonstrate a silicon-on-insulator (SOI) on chip optical arbitrary waveform generator, which is based on Taylor synthesis method. In our scheme......, a Gaussian pulse is launched to some cascaded microrings to obtain first-, second- and third-order differentiations. By controlling amplitude and phase of the initial pulse and successive differentiations, we can realize an arbitrary waveform generator according to Taylor expansion. We obtain several typical...... waveforms such as square waveform, triangular waveform, flat-top waveform, sawtooth waveform, Gaussian waveform and so on. Unlike other schemes based on Fourier synthesis or frequency-to-time mapping, our scheme is based on Taylor synthesis method. Our scheme does not require any spectral disperser or large...
Photonic arbitrary waveform generator based on Taylor synthesis method.
Liao, Shasha; Ding, Yunhong; Dong, Jianji; Yan, Siqi; Wang, Xu; Zhang, Xinliang
2016-10-17
Arbitrary waveform generation has been widely used in optical communication, radar system and many other applications. We propose and experimentally demonstrate a silicon-on-insulator (SOI) on chip optical arbitrary waveform generator, which is based on Taylor synthesis method. In our scheme, a Gaussian pulse is launched to some cascaded microrings to obtain first-, second- and third-order differentiations. By controlling amplitude and phase of the initial pulse and successive differentiations, we can realize an arbitrary waveform generator according to Taylor expansion. We obtain several typical waveforms such as square waveform, triangular waveform, flat-top waveform, sawtooth waveform, Gaussian waveform and so on. Unlike other schemes based on Fourier synthesis or frequency-to-time mapping, our scheme is based on Taylor synthesis method. Our scheme does not require any spectral disperser or large dispersion, which are difficult to fabricate on chip. Our scheme is compact and capable for integration with electronics.
Krylov subspace acceleration of waveform relaxation
Lumsdaine, A.; Wu, Deyun [Univ. of Notre Dame, IN (United States)
1996-12-31
Standard solution methods for numerically solving time-dependent problems typically begin by discretizing the problem on a uniform time grid and then sequentially solving for successive time points. The initial time discretization imposes a serialization to the solution process and limits parallel speedup to the speedup available from parallelizing the problem at any given time point. This bottleneck can be circumvented by the use of waveform methods in which multiple time-points of the different components of the solution are computed independently. With the waveform approach, a problem is first spatially decomposed and distributed among the processors of a parallel machine. Each processor then solves its own time-dependent subsystem over the entire interval of interest using previous iterates from other processors as inputs. Synchronization and communication between processors take place infrequently, and communication consists of large packets of information - discretized functions of time (i.e., waveforms).
Wavelet analysis of the impedance cardiogram waveforms
Podtaev, S.; Stepanov, R.; Dumler, A.; Chugainov, S.; Tziberkin, K.
2012-12-01
Impedance cardiography has been used for diagnosing atrial and ventricular dysfunctions, valve disorders, aortic stenosis, and vascular diseases. Almost all the applications of impedance cardiography require determination of some of the characteristic points of the ICG waveform. The ICG waveform has a set of characteristic points known as A, B, E ((dZ/dt)max) X, Y, O and Z. These points are related to distinct physiological events in the cardiac cycle. Objective of this work is an approbation of a new method of processing and interpretation of the impedance cardiogram waveforms using wavelet analysis. A method of computer thoracic tetrapolar polyrheocardiography is used for hemodynamic registrations. Use of original wavelet differentiation algorithm allows combining filtration and calculation of the derivatives of rheocardiogram. The proposed approach can be used in clinical practice for early diagnostics of cardiovascular system remodelling in the course of different pathologies.
Piotr Pruski
2013-12-01
Full Text Available The paper presents the results of calculating the eigenvalues (associated with electromechanical phenomena of the state matrix of the Polish Power System model on the basis of analysis of simulated and measured instantaneous power disturbance waveforms of generating units in Łaziska Power Plant. The method for electromechanical eigenvalue calculations used in investigations consists in approximation of the instantaneous power swing waveforms in particular generating units with the use of the waveforms being a superposition of the modal components associated with the searched eigenvalues and their participation factors. The hybrid optimisation algorithm consisting of the genetic and gradient algorithms was used for computations.
Hasi Wu-Li-Ji; Lu Huan-Huan; Gong Sheng; Fu Mei-Ling; Lin Zhi-Wei; Lin Dian-Yang; He Wei-Ming
2009-01-01
This paper investigates the effect of beam divergence angle on output waveform based on stimulated Brillouin scattering optical limiting. Output waveforms in the case of different pump divergence angles are numerically simulated,and validated in a Nd:YAG seed-injected laser system. The results indicate that a small pump divergence angle can lead to good interaction between pump and Stokes, and a platform can be easily realized in the transmitted waveform.In contrast, a peak followed by the platform appears when the divergence angle becomes large.
Extraction of Vegetation Biophysical Structure from Small-Footprint Full-Waveform Lidar Signals
Romanczyk, Paul
The National Ecological Observatory Network (NEON) is a continental scale environmental monitoring initiative tasked with characterizing and understanding ecological phenomenology over a 30-year time frame. To support this mission, NEON collects ground truth measurements, such as organism counts and characterization, carbon flux measurements, etc. To spatially upscale these plot-based measurements, NEON developed an airborne observation platform (AOP), with a high-resolution visible camera, next-generation AVIRIS imaging spectrometer, and a discrete and waveform digitizing light detection and ranging (lidar) system. While visible imaging, imaging spectroscopy, and discrete lidar are relatively mature technologies, our understanding of and associated algorithm development for small-footprint full-waveform lidar are still in early stages of development. This work has as its primary aim to extend small-footprint full-waveform lidar capabilities to assess vegetation biophysical structure. In order to fully exploit waveform lidar capabilities, high fidelity geometric and radio-metric truth data are needed. Forests are structurally and spectrally complex, which makes collecting the necessary truth challenging, if not impossible. We utilize the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model, which provides an environment for radiometric simulations, in order to simulate waveform lidar signals. The first step of this research was to build a virtual forest stand based on Harvard Forest inventory data. This scene was used to assess the level of geometric fidelity necessary for small-footprint waveform lidar simulation in broadleaf forests. It was found that leaves have the largest influence on the backscattered signal and that there is little contribution to the signal from the leaf stems and twigs. From this knowledge, a number of additional realistic and abstract virtual "forest" scenes were created to aid studies assessing the ability of waveform lidar
Filter transient response to EEG waveforms.
Shirakawa, S; Smith, J R; Azumi, K
1987-01-01
The response of two types of linear filters to sinusoidal bursts was calculated to demonstrate how filters can distort EEG waveforms. Results show that the wider the filter bandwidth the less is the distortion, and for a given bandwidth, the higher the filter order the greater the distortion. The response of a linear phase filter was also calculated to demonstrate that this type of filter can also cause waveform distortion, although it is normally less than that caused by Butterworth, Tchebychev and elliptic filters.
High-Energy Optical Parametric Waveform Synthesizer
Muecke, Oliver D.; Cirmi, G.; Fang, S.; Rossi, G. M.; Chia, Shih-Hsuan; Kärtner, F. X.; Manzoni, C.; Farinello, P.; Cerullo, and G.
2014-01-01
We discuss the ongoing development of a phase-stable, multi-mJ 3-channel parametric waveform synthesizer generating a 2-octave-wide spectrum (0.52-2.4μm). After two amplification stages, the combined >125-μJ output supports 1.9-fs waveforms. First preliminary FROG-characterization results of the second-stage outputs demonstrate the feasibility to recompress all three channels simultaneously close to the Fourier limit. Energy scaling to ~2 mJ is achieved after three amplification stages. The f...
Principles of waveform diversity and design
Wicks, Michael
2011-01-01
This is the first book to discuss current and future applications of waveform diversity and design in subjects such as radar and sonar, communications systems, passive sensing, and many other technologies. Waveform diversity allows researchers and system designers to optimize electromagnetic and acoustic systems for sensing, communications, electronic warfare or combinations thereof. This book enables solutions to problems, explaining how each system performs its own particular function, as well as how it is affected by other systems and how those other systems may likewise be affected. It is
Signal processing in noise waveform radar
Kulpa, Krzysztof
2013-01-01
This book is devoted to the emerging technology of noise waveform radar and its signal processing aspects. It is a new kind of radar, which use noise-like waveform to illuminate the target. The book includes an introduction to basic radar theory, starting from classical pulse radar, signal compression, and wave radar. The book then discusses the properties, difficulties and potential of noise radar systems, primarily for low-power and short-range civil applications. The contribution of modern signal processing techniques to making noise radar practical are emphasized, and application examples
Fractal Dimension of Voice-Signal Waveforms
无
2002-01-01
The fractal dimension is one important parameter that characterizes waveforms. In this paper, we derive a new method to calculate fractal dimension of digital voice-signal waveforms. We show that fractal dimension is an efficient tool for speaker recognition or speech recognition. It can be used to identify different speakers or distinguish speech. We apply our results to Chinese speaker recognition and numerical experiment shows that fractal dimension is an efficient parameter to characterize individual Chinese speakers. We have developed a semiautomatic voiceprint analysis system based on the theory of this paper and former researches.
Seitz, R.
2013-02-26
The U.S. Department of Energy (USDOE) Office of Environmental Management (EM), Office of Soil and Groundwater, is supporting development of the Advanced Simulation Capability for Environmental Management (ASCEM). ASCEM is a state-of-the-art scientific tool and approach for understanding and predicting contaminant fate and transport in natural and engineered systems. The modular and open source high-performance computing tool facilitates integrated approaches to modeling and site characterization that enable robust and standardized assessments of performance and risk for EM cleanup and closure activities. The ASCEM project continues to make significant progress in development of computer software capabilities with an emphasis on integration of capabilities in FY12. Capability development is occurring for both the Platform and Integrated Toolsets and High-Performance Computing (HPC) Multiprocess Simulator. The Platform capabilities provide the user interface and tools for end-to-end model development, starting with definition of the conceptual model, management of data for model input, model calibration and uncertainty analysis, and processing of model output, including visualization. The HPC capabilities target increased functionality of process model representations, toolsets for interaction with Platform, and verification and model confidence testing. The Platform and HPC capabilities are being tested and evaluated for EM applications in a set of demonstrations as part of Site Applications Thrust Area activities. The Phase I demonstration focusing on individual capabilities of the initial toolsets was completed in 2010. The Phase II demonstration completed in 2012 focused on showcasing integrated ASCEM capabilities. For Phase II, the Hanford Site deep vadose zone (BC Cribs) served as an application site for an end-to-end demonstration of capabilities, with emphasis on integration and linkages between the Platform and HPC components. Other demonstrations
Bojoi, R.; Profumo, F.; Griva, G.
2002-01-01
The authors present in this paper a digital real-time hardware-in-the-loop simulation of a three-phase induction motor drive. The main real-time simulation tool is the dSPACE DS1103 PPC Controller Board which simulates the power and signal conditioning parts. The control algorithm of the virtual...... drive has been implemented on the Evaluation Board of TMS320F240 DSP. The experimental results validate this solution as a powerful tool to be used in research and advanced education. Thus, the students can put in practic the theory without spending too much time with details concerning the hardware...
LPI Radar Waveform Recognition Based on Time-Frequency Distribution.
Zhang, Ming; Liu, Lutao; Diao, Ming
2016-10-12
In this paper, an automatic radar waveform recognition system in a high noise environment is proposed. Signal waveform recognition techniques are widely applied in the field of cognitive radio, spectrum management and radar applications, etc. We devise a system to classify the modulating signals widely used in low probability of intercept (LPI) radar detection systems. The radar signals are divided into eight types of classifications, including linear frequency modulation (LFM), BPSK (Barker code modulation), Costas codes and polyphase codes (comprising Frank, P1, P2, P3 and P4). The classifier is Elman neural network (ENN), and it is a supervised classification based on features extracted from the system. Through the techniques of image filtering, image opening operation, skeleton extraction, principal component analysis (PCA), image binarization algorithm and Pseudo-Zernike moments, etc., the features are extracted from the Choi-Williams time-frequency distribution (CWD) image of the received data. In order to reduce the redundant features and simplify calculation, the features selection algorithm based on mutual information between classes and features vectors are applied. The superiority of the proposed classification system is demonstrated by the simulations and analysis. Simulation results show that the overall ratio of successful recognition (RSR) is 94.7% at signal-to-noise ratio (SNR) of -2 dB.
LPI Radar Waveform Recognition Based on Time-Frequency Distribution
Ming Zhang
2016-10-01
Full Text Available In this paper, an automatic radar waveform recognition system in a high noise environment is proposed. Signal waveform recognition techniques are widely applied in the field of cognitive radio, spectrum management and radar applications, etc. We devise a system to classify the modulating signals widely used in low probability of intercept (LPI radar detection systems. The radar signals are divided into eight types of classifications, including linear frequency modulation (LFM, BPSK (Barker code modulation, Costas codes and polyphase codes (comprising Frank, P1, P2, P3 and P4. The classifier is Elman neural network (ENN, and it is a supervised classification based on features extracted from the system. Through the techniques of image filtering, image opening operation, skeleton extraction, principal component analysis (PCA, image binarization algorithm and Pseudo–Zernike moments, etc., the features are extracted from the Choi–Williams time-frequency distribution (CWD image of the received data. In order to reduce the redundant features and simplify calculation, the features selection algorithm based on mutual information between classes and features vectors are applied. The superiority of the proposed classification system is demonstrated by the simulations and analysis. Simulation results show that the overall ratio of successful recognition (RSR is 94.7% at signal-to-noise ratio (SNR of −2 dB.
An expanded framework for the advanced computational testing and simulation toolkit
Marques, Osni A.; Drummond, Leroy A.
2003-11-09
The Advanced Computational Testing and Simulation (ACTS) Toolkit is a set of computational tools developed primarily at DOE laboratories and is aimed at simplifying the solution of common and important computational problems. The use of the tools reduces the development time for new codes and the tools provide functionality that might not otherwise be available. This document outlines an agenda for expanding the scope of the ACTS Project based on lessons learned from current activities. Highlights of this agenda include peer-reviewed certification of new tools; finding tools to solve problems that are not currently addressed by the Toolkit; working in collaboration with other software initiatives and DOE computer facilities; expanding outreach efforts; promoting interoperability, further development of the tools; and improving functionality of the ACTS Information Center, among other tasks. The ultimate goal is to make the ACTS tools more widely used and more effective in solving DOE's and the nation's scientific problems through the creation of a reliable software infrastructure for scientific computing.
Numerical simulation and performance investigation of an advanced adsorption desalination cycle
Thu, Kyaw
2013-01-01
Low temperature waste heat-driven adsorption desalination (AD) cycles offer high potential as one of the most economically viable and environmental-friendly desalination methods. This article presents the development of an advanced adsorption desalination cycle that employs internal heat recovery between the evaporator and the condenser, utilizing an encapsulated evaporator-condenser unit for effective heat transfer. A simulation model has been developed based on the actual sorption characteristics of the adsorbent-adsorbate pair, energy and mass balances applied to the components of the AD cycle. With an integrated design, the temperature in the evaporator and the vapor pressurization of the adsorber are raised due to the direct heat recovery from the condenser, resulting in the higher water production rates, typically improved by as much as three folds of the conventional AD cycle. In addition, the integrated design eliminates two pumps, namely, the condenser cooling water and the chilled water pumps, lowering the overall electricity consumption. The performance of the cycle is analyzed at assorted heat source and cooling water temperatures, and different cycle times as well as the transient heat transfer coefficients of the evaporation and condensation. © 2012 Elsevier B.V.
Petersen, Martin Nordal; Nuijts, Roeland; Bjorn, Lars Lange
2014-01-01
This article presents an advanced optical model for simulation of alien wavelengths in multi-domain and multi-vendor dense wavelength-division multiplexing networks. The model aids optical network planners with a better understanding of the non-linear effects present in dense wavelength-division ......This article presents an advanced optical model for simulation of alien wavelengths in multi-domain and multi-vendor dense wavelength-division multiplexing networks. The model aids optical network planners with a better understanding of the non-linear effects present in dense wavelength......-division multiplexing systems and better utilization of alien wavelengths in future applications. The limiting physical effects for alien wavelengths are investigated in relation to power levels, channel spacing, and other factors. The simulation results are verified through experimental setup in live multi...
Bruneau, B.; Diomede, P.; Economou, D. J.; Longo, S.; Gans, T.; O’Connell, D.; Greb, A.; Johnson, E.; Booth, J. P.
2016-01-01
Parallel plate capacitively coupled plasmas in hydrogen at relatively high pressure ( 1 Torr) are excited with tailored voltage waveforms containing up to five frequencies. Predictions of a hybrid model combining a particle-in-cell simulation with Monte Carlo collisions and a fluid model
A New Method of Designing Waveform Codebook
1998-01-01
The codebook search takes much operation quantity in CELP coder. The paper puts forward a new method redesigning the waveform codebook known, and lists the experimental data. It has been proved that the operation complexity and transmission bit rate were decreased by using the new codebook, and the synthesis speech quality was high.
Resolution analysis in full waveform inversion
Fichtner, A.; Trampert, J.
2011-01-01
We propose a new method for the quantitative resolution analysis in full seismic waveform inversion that overcomes the limitations of classical synthetic inversions while being computationally more efficient and applicable to any misfit measure. The method rests on (1) the local quadratic approximat
Seismic Waveform Inversion by Stochastic Optimization
Tristan van Leeuwen
2011-01-01
Full Text Available We explore the use of stochastic optimization methods for seismic waveform inversion. The basic principle of such methods is to randomly draw a batch of realizations of a given misfit function and goes back to the 1950s. The ultimate goal of such an approach is to dramatically reduce the computational cost involved in evaluating the misfit. Following earlier work, we introduce the stochasticity in waveform inversion problem in a rigorous way via a technique called randomized trace estimation. We then review theoretical results that underlie recent developments in the use of stochastic methods for waveform inversion. We present numerical experiments to illustrate the behavior of different types of stochastic optimization methods and investigate the sensitivity to the batch size and the noise level in the data. We find that it is possible to reproduce results that are qualitatively similar to the solution of the full problem with modest batch sizes, even on noisy data. Each iteration of the corresponding stochastic methods requires an order of magnitude fewer PDE solves than a comparable deterministic method applied to the full problem, which may lead to an order of magnitude speedup for waveform inversion in practice.
Analog circuit design designing waveform processing circuits
Feucht, Dennis
2010-01-01
The fourth volume in the set Designing Waveform-Processing Circuits builds on the previous 3 volumes and presents a variety of analog non-amplifier circuits, including voltage references, current sources, filters, hysteresis switches and oscilloscope trigger and sweep circuitry, function generation, absolute-value circuits, and peak detectors.
Platform for Post-Processing Waveform-Based NDE
Roth, Don J.
2010-01-01
Signal- and image-processing methods are commonly needed to extract information from the waves, improve resolution of, and highlight defects in an image. Since some similarity exists for all waveform-based nondestructive evaluation (NDE) methods, it would seem that a common software platform containing multiple signal- and image-processing techniques to process the waveforms and images makes sense where multiple techniques, scientists, engineers, and organizations are involved. NDE Wave & Image Processor Version 2.0 software provides a single, integrated signal- and image-processing and analysis environment for total NDE data processing and analysis. It brings some of the most useful algorithms developed for NDE over the past 20 years into a commercial-grade product. The software can import signal/spectroscopic data, image data, and image series data. This software offers the user hundreds of basic and advanced signal- and image-processing capabilities including esoteric 1D and 2D wavelet-based de-noising, de-trending, and filtering. Batch processing is included for signal- and image-processing capability so that an optimized sequence of processing operations can be applied to entire folders of signals, spectra, and images. Additionally, an extensive interactive model-based curve-fitting facility has been included to allow fitting of spectroscopy data such as from Raman spectroscopy. An extensive joint-time frequency module is included for analysis of non-stationary or transient data such as that from acoustic emission, vibration, or earthquake data.
Advanced Unsteady Turbulent Combustion Simulation Capability for Space Propulsion Systems Project
National Aeronautics and Space Administration — The innovation proposed here is a high performance, high fidelity simulation capability to enable accurate, fast and robust simulation of unsteady turbulent,...
Full-waveform data for building roof step edge localization
Słota, Małgorzata
2015-08-01
Airborne laser scanning data perfectly represent flat or gently sloped areas; to date, however, accurate breakline detection is the main drawback of this technique. This issue becomes particularly important in the case of modeling buildings, where accuracy higher than the footprint size is often required. This article covers several issues related to full-waveform data registered on building step edges. First, the full-waveform data simulator was developed and presented in this paper. Second, this article provides a full description of the changes in echo amplitude, echo width and returned power caused by the presence of edges within the laser footprint. Additionally, two important properties of step edge echoes, peak shift and echo asymmetry, were noted and described. It was shown that these properties lead to incorrect echo positioning along the laser center line and can significantly reduce the edge points' accuracy. For these reasons and because all points are aligned with the center of the beam, regardless of the actual target position within the beam footprint, we can state that step edge points require geometric corrections. This article presents a novel algorithm for the refinement of step edge points. The main distinguishing advantage of the developed algorithm is the fact that none of the additional data, such as emitted signal parameters, beam divergence, approximate edge geometry or scanning settings, are required. The proposed algorithm works only on georeferenced profiles of reflected laser energy. Another major advantage is the simplicity of the calculation, allowing for very efficient data processing. Additionally, the developed method of point correction allows for the accurate determination of points lying on edges and edge point densification. For this reason, fully automatic localization of building roof step edges based on LiDAR full-waveform data with higher accuracy than the size of the lidar footprint is feasible.
I.A.L. Groenenberg (Irene); W.C.J. Hop (Wim); J.W. Wladimiroff (Juriy)
1991-01-01
markdownabstract__Abstract__ Reproducibility of flow velocity waveform recording and analysis was studied at fetal cardiac level (ductus arteriosus, pulmonary artery and ascending aorta) in 42 normal pregnancies. The flow velocity parameters studied were the peak systolic velocity (PSV),
Dzivhani, Mulalo
2016-09-01
Full Text Available for a particular noise level and bandwidth. The following equation demonstrates how the theoretical maximum user throughput (C) that can be experienced by a UE is converted from the calculated SINR of that UE [16] as shown in equation (3); C= ðµ... will need to invest in the equipment and deploy a test-bed. However, this will require a lot of money, which can be a constrain for R&D. Network simulations such as NS-3 becomes a vital tool to setup large-scale networks and test Quality of Service...
Update on ORNL TRANSFORM Tool: Simulating Multi-Module Advanced Reactor with End-to-End I&C
Hale, Richard Edward [ORNL; Fugate, David L [ORNL; Cetiner, Sacit M [ORNL; Qualls, A L [ORNL
2015-05-01
The Small Modular Reactor (SMR) Dynamic System Modeling Tool project is in the fourth year of development. The project is designed to support collaborative modeling and study of various advanced SMR (non-light water cooled reactor) concepts, including the use of multiple coupled reactors at a single site. The focus of this report is the development of a steam generator and drum system model that includes the complex dynamics of typical steam drum systems, the development of instrumentation and controls for the steam generator with drum system model, and the development of multi-reactor module models that reflect the full power reactor innovative small module design concept. The objective of the project is to provide a common simulation environment and baseline modeling resources to facilitate rapid development of dynamic advanced reactor models; ensure consistency among research products within the Instrumentation, Controls, and Human-Machine Interface technical area; and leverage cross-cutting capabilities while minimizing duplication of effort. The combined simulation environment and suite of models are identified as the TRANSFORM tool. The critical elements of this effort include (1) defining a standardized, common simulation environment that can be applied throughout the Advanced Reactors Technology program; (2) developing a library of baseline component modules that can be assembled into full plant models using available geometry, design, and thermal-hydraulic data; (3) defining modeling conventions for interconnecting component models; and (4) establishing user interfaces and support tools to facilitate simulation development (i.e., configuration and parameterization), execution, and results display and capture.
Beleznai, Sz; Mihajlik, G; Richter, P [Department of Atomic Physics, Budapest University of Technology and Economics, 3-9.Muegyetem rkp., Budapest H-1111 (Hungary); Maros, I; Balazs, L, E-mail: beleznai@dept.phy.bme.h [GE Consumer and Industrial-Lighting, 77 Vaci ut, Budapest H-1344 (Hungary)
2010-01-13
The application of a high frequency ({approx}2.5 MHz) burst (amplitude-modulated sinusoidal) excitation voltage waveform is investigated for driving a fluorescent dielectric barrier discharge (DBD) light source. The excitation waveform presents a novel method for generating spatially stable homogeneous Xe DBD possessing a high conversion efficiency from electrical energy to VUV Xe{sub 2}{sup *} excimer radiation ({approx}172 nm), even at a significantly higher electrical energy deposition than realized by pulsed excitation. Simulation and experimental results predict discharge efficiencies around 60%. Lamp efficacy above 74 lm W{sup -1} has been achieved. VUV emission and loss mechanisms are investigated extensively and the performance of burst and pulsed waveforms is compared both theoretically and experimentally.
Beleznai, Sz; Mihajlik, G.; Maros, I.; Balázs, L.; Richter, P.
2010-01-01
The application of a high frequency (~2.5 MHz) burst (amplitude-modulated sinusoidal) excitation voltage waveform is investigated for driving a fluorescent dielectric barrier discharge (DBD) light source. The excitation waveform presents a novel method for generating spatially stable homogeneous Xe DBD possessing a high conversion efficiency from electrical energy to VUV Xe_{2}^{\\ast} excimer radiation (~172 nm), even at a significantly higher electrical energy deposition than realized by pulsed excitation. Simulation and experimental results predict discharge efficiencies around 60%. Lamp efficacy above 74 lm W-1 has been achieved. VUV emission and loss mechanisms are investigated extensively and the performance of burst and pulsed waveforms is compared both theoretically and experimentally.
Waveform Retracking and Emulation Experiment Analysis of Synthetic Aperture Radar Altimeter
ZHAI Zhenhe
2017-02-01
Full Text Available Based on the synthetic aperture radar(SAR convolution model, the convolution computation formula about the derivative of three parameters of time migration, rise time and amplitude are deduced. The SAR waveform retracking is completed using numerical integration and Fourier transform. Besides, the echo waveform under SAR model is generated using the simulation orbit, troposphere, ionosphere and tide model. The comparison shows that the shape of echo waveform under SAR model is the same as that of CryoSat-2 1 Hz SAR. The experiments show that the accuracy of SAR altimeter retracking is about 5 cm under the 20 Hz data(about 350 m resolution, which are improved compared with that of the traditional model.
Hinder, Ian; Boyle, Michael; Etienne, Zachariah B; Healy, James; Johnson-McDaniel, Nathan K; Nagar, Alessandro; Nakano, Hiroyuki; Pan, Yi; Pfeiffer, Harald P; Pürrer, Michael; Reisswig, Christian; Scheel, Mark A; Sperhake, Ulrich; Szilágyi, Bela; Tichy, Wolfgang; Wardell, Barry; Zenginoglu, Anıl; Alic, Daniela; Bernuzzi, Sebastiano; Bode, Tanja; Brügmann, Bernd; Buchman, Luisa T; Campanelli, Manuela; Chu, Tony; Damour, Thibault; Grigsby, Jason D; Hannam, Mark; Haas, Roland; Hemberger, Daniel A; Husa, Sascha; Kidder, Lawrence E; Laguna, Pablo; London, Lionel; Lovelace, Geoffrey; Lousto, Carlos O; Marronetti, Pedro; Matzner, Richard A; Mösta, Philipp; Mroué, Abdul; Müller, Doreen; Mundim, Bruno C; Nerozzi, Andrea; Paschalidis, Vasileios; Pollney, Denis; Reifenberger, George; Rezzolla, Luciano; Shapiro, Stuart L; Shoemaker, Deirdre; Taracchini, Andrea; Taylor, Nicholas W; Teukolsky, Saul A; Thierfelder, Marcus; Witek, Helvi; Zlochower, Yosef
2014-01-01
The Numerical-Relativity-Analytical-Relativity (NRAR) collaboration is a joint effort between members of the numerical relativity, analytical relativity and gravitational-wave data analysis communities. The goal of the NRAR collaboration is to produce numerical-relativity simulations of compact binaries and use them to develop accurate analytical templates for the LIGO/Virgo Collaboration to use in detecting gravitational-wave signals and extracting astrophysical information from them. We describe the results of the first stage of the NRAR project, which focused on producing an initial set of numerical waveforms from binary black holes with moderate mass ratios and spins, as well as one non-spinning binary configuration which has a mass ratio of 10. All of the numerical waveforms are analysed in a uniform and consistent manner, with numerical errors evaluated using an analysis code created by members of the NRAR collaboration. We compare previously-calibrated, non-precessing analytical waveforms, notably the ...
Power-Efficient Ultra-Wideband Waveform Design Considering Radio Channel Effects
Yipeng Liu
2011-04-01
Full Text Available This paper presents a power-efficient maskconstrained ultra-wideband (UWB waveform design with radio channel effects taken into consideration. Based on a finite impulse response (FIR filter, we develop a convex optimization model with respect to the autocorrelation of the filter coefficients to optimize the transmitted signal power spectrum, subject to a regulatory emission mask. To improve power efficiency, effects of transmitter radio frequency (RF components are included in the optimization of the transmitter-output waveform, and radio propagation effects are considered for obtaining the most efficient waveform at the receiver. Optimum coefficients of the FIR filter are obtained through spectral factorization of their autocorrelations. Simulation results show that the proposed method is able to maximize the transmitted UWB signal power under mask constraints set by regulatory authorities, while mitigating the power loss caused by channel attenuations.
SAR processing with non-linear FM chirp waveforms.
Doerry, Armin Walter
2006-12-01
Nonlinear FM (NLFM) waveforms offer a radar matched filter output with inherently low range sidelobes. This yields a 1-2 dB advantage in Signal-to-Noise Ratio over the output of a Linear FM (LFM) waveform with equivalent sidelobe filtering. This report presents details of processing NLFM waveforms in both range and Doppler dimensions, with special emphasis on compensating intra-pulse Doppler, often cited as a weakness of NLFM waveforms.
Codesign of Beam Pattern and Sparse Frequency Waveforms for MIMO Radar
Chaoyun Mai
2015-01-01
Full Text Available Multiple-input multiple-output (MIMO radar takes the advantages of high degrees of freedom for beam pattern design and waveform optimization, because each antenna in centralized MIMO radar system can transmit different signal waveforms. When continuous band is divided into several pieces, sparse frequency radar waveforms play an important role due to the special pattern of the sparse spectrum. In this paper, we start from the covariance matrix of the transmitted waveform and extend the concept of sparse frequency design to the study of MIMO radar beam pattern. With this idea in mind, we first solve the problem of semidefinite constraint by optimization tools and get the desired covariance matrix of the ideal beam pattern. Then, we use the acquired covariance matrix and generalize the objective function by adding the constraint of both constant modulus of the signals and corresponding spectrum. Finally, we solve the objective function by the cyclic algorithm and obtain the sparse frequency MIMO radar waveforms with desired beam pattern. The simulation results verify the effectiveness of this method.
Range determination for generating point clouds from airborne small footprint LiDAR waveforms.
Qin, Yuchu; Vu, Tuong Thuy; Ban, Yifang; Niu, Zheng
2012-11-05
This paper presents a range determination approach for generating point clouds from small footprint LiDAR waveforms. Waveform deformation over complex terrain area is simulated using convolution. Drift of the peak center position is analyzed to identify the first echo returned by the illuminated objects in the LiDAR footprint. An approximate start point of peak in the waveform is estimated and adopted as the indicator of range calculation; range correction method is proposed to correct pulse widening over complex terrain surface. The experiment was carried out on small footprint LiDAR waveform data acquired by RIEGL LMS-Q560. The results suggest that the proposed approach generates more points than standard commercial products; based on field measurements, a comparative analysis between the point clouds generated by the proposed approach and the commercial software GeocodeWF indicates that: 1). the proposed approach obtained more accurate tree heights; 2). smooth surface can be achieved with low standard deviation. In summary, the proposed approach provides a satisfactory solution for range determination in estimating 3D coordinate values of point clouds, especially for correcting range information of waveforms containing deformed peaks.
Wang, Kun; Matthews, Thomas; Anis, Fatima; Li, Cuiping; Duric, Neb; Anastasio, Mark A.
2016-01-01
Ultrasound computed tomography (USCT) holds great promise for improving the detection and management of breast cancer. Because they are based on the acoustic wave equation, waveform inversion-based reconstruction methods can produce images that possess improved spatial resolution properties over those produced by ray-based methods. However, waveform inversion methods are computationally demanding and have not been applied widely in USCT breast imaging. In this work, source encoding concepts are employed to develop an accelerated USCT reconstruction method that circumvents the large computational burden of conventional waveform inversion methods. This method, referred to as the waveform inversion with source encoding (WISE) method, encodes the measurement data using a random encoding vector and determines an estimate of the sound speed distribution by solving a stochastic optimization problem by use of a stochastic gradient descent algorithm. Both computer-simulation and experimental phantom studies are conducted to demonstrate the use of the WISE method. The results suggest that the WISE method maintains the high spatial resolution of waveform inversion methods while significantly reducing the computational burden. PMID:25768816
Wang, Kun; Matthews, Thomas; Anis, Fatima; Li, Cuiping; Duric, Neb; Anastasio, Mark A
2015-03-01
Ultrasound computed tomography (USCT) holds great promise for improving the detection and management of breast cancer. Because they are based on the acoustic wave equation, waveform inversion-based reconstruction methods can produce images that possess improved spatial resolution properties over those produced by ray-based methods. However, waveform inversion methods are computationally demanding and have not been applied widely in USCT breast imaging. In this work, source encoding concepts are employed to develop an accelerated USCT reconstruction method that circumvents the large computational burden of conventional waveform inversion methods. This method, referred to as the waveform inversion with source encoding (WISE) method, encodes the measurement data using a random encoding vector and determines an estimate of the sound speed distribution by solving a stochastic optimization problem by use of a stochastic gradient descent algorithm. Both computer simulation and experimental phantom studies are conducted to demonstrate the use of the WISE method. The results suggest that the WISE method maintains the high spatial resolution of waveform inversion methods while significantly reducing the computational burden.
Wang Wen-qin
2015-02-01
Full Text Available The waveforms used in Multiple-Input Multiple-Output (MIMO Synthetic Aperture Radar (SAR should have a large time-bandwidth product and good ambiguity function performance. A scheme to design multiple orthogonal MIMO SAR Orthogonal Frequency Division Multiplexing (OFDM chirp waveforms by combinational sparse matrix and correlation optimization is proposed. First, the problem of MIMO SAR waveform design amounts to the associated design of hopping frequency and amplitudes. Then a iterative exhaustive search algorithm is adopted to optimally design the code matrix with the constraints minimizing the block correlation coefficient of sparse matrix and the sum of cross-correlation peaks. And the amplitudes matrix are adaptively designed by minimizing the cross-correlation peaks with the genetic algorithm. Additionally, the impacts of waveform number, hopping frequency interval and selectable frequency index are also analyzed. The simulation results verify the proposed scheme can design multiple orthogonal large time-bandwidth product OFDM chirp waveforms with low cross-correlation peak and sidelobes and it improves ambiguity performance.
PRABAL PRATAP; RAVINDER SINGH BHATIA; BINOD KUMAR
2016-07-01
In this paper a new design is proposed in microstrip antenna family. In this paper, a review design of microstrip antenna design using particle swarm optimization (PSO) and advanced particle swarm optimization (APSO) has been presented which optimizes the parameters and both results are compared. This technique helps antenna engineers to design, analyze, and simulate antenna efficiently and effectively. An advanced PSO driven antenna has been developed to calculate resonant frequency of slit-cut stacked equilateral triangular microstrip antenna. The paper presents simplicity, accuracy and comparison of result between PSO and APSO.
Computer simulation studies of pulsed Doppler signals from vortices
CHEN Sizhong; WANG Yuanyuan; WANG Weiqi
2001-01-01
A computer simulation method for pulsed Doppler signals from vortices was proposed to generate simulated vortex Doppler signals under various given circumstances. The relative waveforms, such as the maximum frequency waveform, the mean frequency waveform and the bandwidth waveform, were obtained using the short time Fourier analysis of those simulated signals. The relations were studied between several spectrum parameters obtained from these waveforms and given simulation conditions, such as the position and the size of the sample volume, the distance between two vortices, the free stream velocity and the maximum tangent velocity of the vortex. The sensitive parameters were found to detect vortices using the pulsed Doppler techniques.
Khanal, Prabal; Vankipuram, Akshay; Ashby, Aaron; Vankipuram, Mithra; Gupta, Ashish; Drumm-Gurnee, Denise; Josey, Karen; Tinker, Linda; Smith, Marshall
2014-10-01
Advanced Cardiac Life Support (ACLS) is a series of team-based, sequential and time constrained interventions, requiring effective communication and coordination of activities that are performed by the care provider team on a patient undergoing cardiac arrest or respiratory failure. The state-of-the-art ACLS training is conducted in a face-to-face environment under expert supervision and suffers from several drawbacks including conflicting care provider schedules and high cost of training equipment. The major objective of the study is to describe, including the design, implementation, and evaluation of a novel approach of delivering ACLS training to care providers using the proposed virtual reality simulator that can overcome the challenges and drawbacks imposed by the traditional face-to-face training method. We compare the efficacy and performance outcomes associated with traditional ACLS training with the proposed novel approach of using a virtual reality (VR) based ACLS training simulator. One hundred and forty-eight (148) ACLS certified clinicians, translating into 26 care provider teams, were enrolled for this study. Each team was randomly assigned to one of the three treatment groups: control (traditional ACLS training), persuasive (VR ACLS training with comprehensive feedback components), or minimally persuasive (VR ACLS training with limited feedback components). The teams were tested across two different ACLS procedures that vary in the degree of task complexity: ventricular fibrillation or tachycardia (VFib/VTach) and pulseless electric activity (PEA). The difference in performance between control and persuasive groups was not statistically significant (P=.37 for PEA and P=.1 for VFib/VTach). However, the difference in performance between control and minimally persuasive groups was significant (P=.05 for PEA and P=.02 for VFib/VTach). The pre-post comparison of performances of the groups showed that control (P=.017 for PEA, P=.01 for VFib/VTach) and
On the Predictability of Computer simulations: Advances in Verification and Validation
Prudhomme, Serge
2014-01-06
We will present recent advances on the topics of Verification and Validation in order to assess the reliability and predictability of computer simulations. The first part of the talk will focus on goal-oriented error estimation for nonlinear boundary-value problems and nonlinear quantities of interest, in which case the error representation consists of two contributions: 1) a first contribution, involving the residual and the solution of the linearized adjoint problem, which quantifies the discretization or modeling error; and 2) a second contribution, combining higher-order terms that describe the linearization error. The linearization error contribution is in general neglected with respect to the discretization or modeling error. However, when nonlinear effects are significant, it is unclear whether ignoring linearization effects may produce poor convergence of the adaptive process. The objective will be to show how both contributions can be estimated and employed in an adaptive scheme that simultaneously controls the two errors in a balanced manner. In the second part of the talk, we will present novel approach for calibration of model parameters. The proposed inverse problem not only involves the minimization of the misfit between experimental observables and their theoretical estimates, but also an objective function that takes into account some design goals on specific design scenarios. The method can be viewed as a regularization approach of the inverse problem, one, however, that best respects some design goals for which mathematical models are intended. The inverse problem is solved by a Bayesian method to account for uncertainties in the data. We will show that it shares the same structure as the deterministic problem that one would obtain by multi-objective optimization theory. The method is illustrated on an example of heat transfer in a two-dimensional fin. The proposed approach has the main benefit that it increases the confidence in predictive
G. R. Odette; G. E. Lucas
2005-11-15
This final report on "In-Service Design & Performance Prediction of Advanced Fusion Material Systems by Computational Modeling and Simulation" (DE-FG03-01ER54632) consists of a series of summaries of work that has been published, or presented at meetings, or both. It briefly describes results on the following topics: 1) A Transport and Fate Model for Helium and Helium Management; 2) Atomistic Studies of Point Defect Energetics, Dynamics and Interactions; 3) Multiscale Modeling of Fracture consisting of: 3a) A Micromechanical Model of the Master Curve (MC) Universal Fracture Toughness-Temperature Curve Relation, KJc(T - To), 3b) An Embrittlement DTo Prediction Model for the Irradiation Hardening Dominated Regime, 3c) Non-hardening Irradiation Assisted Thermal and Helium Embrittlement of 8Cr Tempered Martensitic Steels: Compilation and Analysis of Existing Data, 3d) A Model for the KJc(T) of a High Strength NFA MA957, 3e) Cracked Body Size and Geometry Effects of Measured and Effective Fracture Toughness-Model Based MC and To Evaluations of F82H and Eurofer 97, 3-f) Size and Geometry Effects on the Effective Toughness of Cracked Fusion Structures; 4) Modeling the Multiscale Mechanics of Flow Localization-Ductility Loss in Irradiation Damaged BCC Alloys; and 5) A Universal Relation Between Indentation Hardness and True Stress-Strain Constitutive Behavior. Further details can be found in the cited references or presentations that generally can be accessed on the internet, or provided upon request to the authors. Finally, it is noted that this effort was integrated with our base program in fusion materials, also funded by the DOE OFES.
Darrah, T.; Moortgat, J.; Poreda, R. J.; Muehlenbachs, K.; Whyte, C. J.
2015-12-01
Although hydrocarbon production from unconventional energy resources has increased dramatically in the last decade, total unconventional oil and gas recovery from black shales is still less than 25% and 9% of the totals in place, respectively. Further, the majority of increased hydrocarbon production results from increasing the lengths of laterals, the number of hydraulic fracturing stages, and the volume of consumptive water usage. These strategies all reduce the economic efficiency of hydrocarbon extraction. The poor recovery statistics result from an insufficient understanding of some of the key physical processes in complex, organic-rich, low porosity formations (e.g., phase behavior, fluid-rock interactions, and flow mechanisms at nano-scale confinement and the role of natural fractures and faults as conduits for flow). Noble gases and other hydrocarbon tracers are capably of recording subsurface fluid-rock interactions on a variety of geological scales (micro-, meso-, to macro-scale) and provide analogs for the movement of hydrocarbons in the subsurface. As such geochemical data enrich the input for the numerical modeling of multi-phase (e.g., oil, gas, and brine) fluid flow in highly heterogeneous, low permeability formations Herein we will present a combination of noble gas (He, Ne, Ar, Kr, and Xe abundances and isotope ratios) and molecular and isotopic hydrocarbon data from a geographically and geologically diverse set of unconventional hydrocarbon reservoirs in North America. Specifically, we will include data from the Marcellus, Utica, Barnett, Eagle Ford, formations and the Illinois basin. Our presentation will include geochemical and geological interpretation and our perspective on the first steps toward building an advanced reservoir simulator for tracer transport in multicomponent multiphase compositional flow (presented separately, in Moortgat et al., 2015).
Effects of waveform model systematics on the interpretation of GW150914
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; E Barclay, S.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Beer, C.; Bejger, M.; Belahcene, I.; Belgin, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; E Brau, J.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; E Broida, J.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H.-P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conti, L.; Cooper, S. J.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; E Cowan, E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; E Creighton, J. D.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Davis, D.; Daw, E. J.; Day, B.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; E Dwyer, S.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fernández Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; E Gossan, S.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; E Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; E Holz, D.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, Whansun; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; E Lord, J.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lovelace, G.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; E McClelland, D.; McCormick, S.; McGrath, C.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; E Mikhailov, E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Mytidis, A.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; E Pace, A.; Page, J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Rhoades, E.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T. J.; Shahriar, M. S.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; E Smith, R. J.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; E Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tippens, T.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tse, M.; Tso, R.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; E Wade, L.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; E Zucker, M.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration; Boyle, M.; Chu, T.; Hemberger, D.; Hinder, I.; E Kidder, L.; Ossokine, S.; Scheel, M.; Szilagyi, B.; Teukolsky, S.; Vano Vinuales, A.
2017-05-01
Parameter estimates of GW150914 were obtained using Bayesian inference, based on three semi-analytic waveform models for binary black hole coalescences. These waveform models differ from each other in their treatment of black hole spins, and all three models make some simplifying assumptions, notably to neglect sub-dominant waveform harmonic modes and orbital eccentricity. Furthermore, while the models are calibrated to agree with waveforms obtained by full numerical solutions of Einstein’s equations, any such calibration is accurate only to some non-zero tolerance and is limited by the accuracy of the underlying phenomenology, availability, quality, and parameter-space coverage of numerical simulations. This paper complements the original analyses of GW150914 with an investigation of the effects of possible systematic errors in the waveform models on estimates of its source parameters. To test for systematic errors we repeat the original Bayesian analysis on mock signals from numerical simulations of a series of binary configurations with parameters similar to those found for GW150914. Overall, we find no evidence for a systematic bias relative to the statistical error of the original parameter recovery of GW150914 due to modeling approximations or modeling inaccuracies. However, parameter biases are found to occur for some configurations disfavored by the data of GW150914: for binaries inclined edge-on to the detector over a small range of choices of polarization angles, and also for eccentricities greater than ˜0.05. For signals with higher signal-to-noise ratio than GW150914, or in other regions of the binary parameter space (lower masses, larger mass ratios, or higher spins), we expect that systematic errors in current waveform models may impact gravitational-wave measurements, making more accurate models desirable for future observations.
Friedrichs, A.; Grosse-Kappenberg, S.; Happe, J. [Zentrum fuer Lern- und Wissensmanagement und Lehrstuhl Informatik im Maschinenbau ZLW/IMA der RWTH Aachen (Germany)
2005-07-01
The Centre for Learning and Knowledge Management and Department of Computer Science in Engineering of the Technical University Aachen has developed a truck driving simulator which combines a driving simulation as well as traffic flow calculations to the interactive Driving Simulator (InDriveS). In real-time the effects of the driver's behaviour on the surrounding traffic are considered and vice versa. The integrative part of InDriveS is a software-in-the-loop and hardware-in-the-loop development environment. By means of this tool, all phases of development (Analysis, Design, Modelling, Simulation, Implementation as well as Testing and Evaluation) of new vehicle technologies, e.g. Information and Assistance Systems, can be realised in consideration of the road traffic and the driver's behaviour. (orig.)
Control of ion energy and angular distributions using voltage waveform
Rauf, S.
1999-07-01
A number of plasma-aided microelectronics manufacturing processes sensitively depend on the ion characteristics at the substrate, in particular the ion energy (IEDF) and angular (IADF) distribution functions. The outcome of these processes can be much more precisely controlled if one has direct control over the IEDFs and IADFs. Past studies have explored the influence of rb bias voltage amplitude and frequency, inductive power deposition and gas pressure on the ion characteristics at the substrate. The factor that influences the ion dynamics most is however the time-dependent sheath voltage and, as demonstrated in this paper, sheath voltage can be accurately controlled using the rf bias voltage waveform. In this paper, the authors computationally examine the influence of the rf bias voltage waveform on the IEDFs and IADFs at the substrate in an inductively coupled plasma (ICP) reactor. This study has been conducted using a coupled set of the Hybrid Plasma Equipment Model (HPEM) and a circuit model, and the Plasma Chemistry Monte Carlo Simulation (PCMCS).
Guided Wave Tomography Based on Full-Waveform Inversion.
Rao, Jing; Ratassepp, Madis; Fan, Zheng
2016-02-29
In this paper, a guided wave tomography method based on Full Waveform Inversion (FWI) is developed for accurate and high resolu- tion reconstruction of the remaining wall thickness in isotropic plates. The forward model is computed in the frequency domain by solving a full-wave equation in a two-dimensional acoustic model, accounting for higher order eects such as diractions and multiple scattering. Both numerical simulations and experiments were carried out to obtain the signals of a dispersive guided mode propagating through defects. The inversion was based on local optimization of a waveform mist func- tion between modeled and measured data, and was applied iteratively to discrete frequency components from low to high frequencies. The resulting wave velocity maps were then converted to thickness maps by the dispersion characteristics of selected guided modes. The results suggest that the FWI method is capable to reconstruct the thickness map of a irregularly shaped defect accurately on a 10 mm thick plate with the thickness error within 0.5 mm.
Digby Macdonald; Brian Marx; Balaji Soundararajan; Morgan Smith
2005-07-28
The different tasks that have been carried out under the current program are as follows: (1) Theoretical and experimental assessment of general corrosion of iron/steel in borate buffer solutions by using electrochemical impedance spectroscopy (EIS), ellipsometry and XPS techniques; (2) Development of a damage function analysis (DFA), which would help in predicting the accumulation of damage due to pitting corrosion in an environment prototypical of DOE liquid waste systems; (3) Experimental measurement of crack growth rate, acoustic emission signals, and coupling currents for fracture in carbon and low alloy steels as functions of mechanical (stress intensity), chemical (conductivity), electrochemical (corrosion potential, ECP), and microstructural (grain size, precipitate size, etc) variables in a systematic manner, with particular attention being focused on the structure of the noise in the current and its correlation with the acoustic emissions; (4) Development of fracture mechanisms for carbon and low alloy steels that are consistent with the crack growth rate, coupling current data and acoustic emissions; (5) Inserting advanced crack growth rate models for SCC into existing deterministic codes for predicting the evolution of corrosion damage in DOE liquid waste storage tanks; (6) Computer simulation of the anodic and cathodic activity on the surface of the steel samples in order to exactly predict the corrosion mechanisms; (7) Wavelet analysis of EC noise data from steel samples undergoing corrosion in an environment similar to that of the high level waste storage containers, to extract data pertaining to general, pitting and stress corrosion processes, from the overall data. The work has yielded a number of important findings, including an unequivocal demonstration of the role of chloride ion in passivity breakdown on nickel in terms of cation vacancy generation within the passive film, the first detection and characterization of individual micro fracture
R. P. Martukanitz and S. Babu
2007-05-03
Laser surfacing in the form of cladding, alloying, and modifications are gaining widespread use because of its ability to provide high deposition rates, low thermal distortion, and refined microstructure due to high solidification rates. Because of these advantages, laser surface alloying is considered a prime candidate for producing ultra-hard coatings through the establishment or in situ formation of composite structures. Therefore, a program was conducted by the Applied Research Laboratory, Pennsylvania State University and Oak Ridge National Laboratory to develop the scientific and engineering basis for performing laser-based surface modifications involving the addition of hard particles, such as carbides, borides, and nitrides, within a metallic matrix for improved wear, fatigue, creep, and corrosion resistance. This has involved the development of advanced laser processing and simulation techniques, along with the refinement and application of these techniques for predicting and selecting materials and processing parameters for the creation of new surfaces having improved properties over current coating technologies. This program has also resulted in the formulation of process and material simulation tools capable of examining the potential for the formation and retention of composite coatings and deposits produced using laser processing techniques, as well as positive laboratory demonstrations in producing these coatings. In conjunction with the process simulation techniques, the application of computational thermodynamic and kinetic models to design laser surface alloying materials was demonstrated and resulted in a vast improvement in the formulation of materials used for producing composite coatings. The methodology was used to identify materials and to selectively modify microstructures for increasing hardness of deposits produced by the laser surface alloying process. Computational thermodynamic calculations indicated that it was possible to induce the
Arastoopour, Hamid [Illinois Inst. of Technology, Chicago, IL (United States); Abbasian, Javad [Illinois Inst. of Technology, Chicago, IL (United States)
2014-07-31
This project describes the work carried out to prepare a highly reactive and mechanically strong MgO based sorbents and to develop a Population Balance Equations (PBE) approach to describe the evolution of the particle porosity distribution that is linked with Computational Fluid Dynamics (CFD) to perform simulations of the CO2 capture and sorbent regeneration. A large number of MgO-based regenerable sorbents were prepared using low cost and abundant dolomite as the base material. Among various preparation parameters investigated the potassium/magnesium (K/Mg) ratio was identified as the key variable affecting the reactivity and CO2 capacity of the sorbent. The optimum K/Mg ratio is about 0.15. The sorbent formulation HD52-P2 was identified as the “best” sorbent formulation and a large batch (one kg) of the sorbent was prepared for the detailed study. The results of parametric study indicate the optimum carbonation and regeneration temperatures are 360° and 500°C, respectively. The results also indicate that steam has a beneficial effect on the rate of carbonation and regeneration of the sorbent and that the reactivity and capacity of the sorbent decreases in the cycling process (sorbent deactivation). The results indicate that to achieve a high CO2 removal efficiency, the bed of sorbent should be operated at a temperature range of 370-410°C which also favors production of hydrogen through the WGS reaction. To describe the carbonation reaction kinetics of the MgO, the Variable Diffusivity shrinking core Model (VDM) was developed in this project, which was shown to accurately fit the experimental data. An important advantage of this model is that the changes in the sorbent conversion with time can be expressed in an explicit manner, which will significantly reduce the CFD computation time. A Computational Fluid Dynamic/Population Balance Equations (CFD/PBE) model was developed that accounts for the particle (sorbent) porosity distribution and a new version of
Haas, Magali; Stephenson, Diane; Romero, Klaus; Gordon, Mark Forrest; Zach, Neta; Geerts, Hugo
2016-09-01
Many disease-modifying clinical development programs in Alzheimer's disease (AD) have failed to date, and development of new and advanced preclinical models that generate actionable knowledge is desperately needed. This review reports on computer-based modeling and simulation approach as a powerful tool in AD research. Statistical data-analysis techniques can identify associations between certain data and phenotypes, such as diagnosis or disease progression. Other approaches integrate domain expertise in a formalized mathematical way to understand how specific components of pathology integrate into complex brain networks. Private-public partnerships focused on data sharing, causal inference and pathway-based analysis, crowdsourcing, and mechanism-based quantitative systems modeling represent successful real-world modeling examples with substantial impact on CNS diseases. Similar to other disease indications, successful real-world examples of advanced simulation can generate actionable support of drug discovery and development in AD, illustrating the value that can be generated for different stakeholders.
Application of arbitrary waveform generator for noise radar
Lukin, Konstantin A.; Zemlyaniy, Oleg V.; Vyplavin, Pavlo L.; Palamarchuk, Volodymyr P.
2011-10-01
The approach, when the waveforms of different types are exploited in the same radar (waveform diversity) requires new-generation sources of initial signals. For generating of different types of waveforms in the same radar we suggest using Arbitrary Waveform Generator, that allows output any type of pre-programmed signal in real time. We have carried out preliminary experimental tests of the stepped-delay mode of UHF-band radar evaluation kit. The series of experimental testing shows efficiency AWG application in radar with variety of sounding waveforms.
Butlin, Mark; Qasem, Ahmad; Avolio, Alberto P
2012-01-01
There is increasing interest in non-invasive estimation of central aortic waveform parameters in the clinical setting. However, controversy has arisen around radial tonometric based systems due to the requirement of a trained operator or lack of ease of use, especially in the clinical environment. A recently developed device utilizes a novel algorithm for brachial cuff based assessment of aortic pressure values and waveform (SphygmoCor XCEL, AtCor Medical). The cuff was inflated to 10 mmHg below an individual's diastolic blood pressure and the brachial volume displacement waveform recorded. The aortic waveform was derived using proprietary digital signal processing and transfer function applied to the recorded waveform. The aortic waveform was also estimated using a validated technique (radial tonometry based assessment, SphygmoCor, AtCor Medical). Measurements were taken in triplicate with each device in 30 people (17 female) aged 22 to 79 years of age. An average for each device for each individual was calculated, and the results from the two devices were compared using regression and Bland-Altman analysis. A high correlation was found between the devices for measures of aortic systolic (R(2)=0.99) and diastolic (R(2)=0.98) pressure. Augmentation index and subendocardial viability ratio both had a between device R(2) value of 0.82. The difference between devices for measured aortic systolic pressure was 0.5±1.8 mmHg, and for augmentation index, 1.8±7.0%. The brachial cuff based approach, with an individualized sub-diastolic cuff pressure, provides an operator independent method of assessing not only systolic pressure, but also aortic waveform features, comparable to existing validated tonometric-based methods.
Programmable Clock Waveform Generation for CCD Readout
Vicente, J. de; Castilla, J.; Martinez, G.; Marin, J.
2006-07-01
Charge transfer efficiency in CCDs is closely related to the clock waveform. In this paper, an experimental framework to explore different FPGA based clock waveform generator designs is described. Two alternative design approaches for controlling the rise/fall edge times and pulse width of the CCD clock signal have been implemented: level-control and time-control. Both approaches provide similar characteristics regarding the edge linearity and noise. Nevertheless, dissimilarities have been found with respect to the area and frequency range of application. Thus, while the time-control approach consumes less area, the level control approach provides a wider range of clock frequencies since it does not suffer capacitor discharge effect. (Author) 8 refs.
An Advanced, Interactive, High-Performance Liquid Chromatography Simulator and Instructor Resources
Boswell, Paul G.; Stoll, Dwight R.; Carr, Peter W.; Nagel, Megan L.; Vitha, Mark F.; Mabbott, Gary A.
2013-01-01
High-performance liquid chromatography (HPLC) simulation software has long been recognized as an effective educational tool, yet many of the existing HPLC simulators are either too expensive, outdated, or lack many important features necessary to make them widely useful for educational purposes. Here, a free, open-source HPLC simulator is…
Suzanne L. Strom
2015-11-01
Full Text Available Introduction: Traditional Advanced Cardiac Life Support (ACLS courses are evaluated using written multiple-choice tests. High-fidelity simulation is a widely used adjunct to didactic content, and has been used in many specialties as a training resource as well as an evaluative tool. There are no data to our knowledge that compare simulation examination scores with written test scores for ACLS courses. Objective: To compare and correlate a novel high-fidelity simulation-based evaluation with traditional written testing for senior medical students in an ACLS course. Methods: We performed a prospective cohort study to determine the correlation between simulationbased evaluation and traditional written testing in a medical school simulation center. Students were tested on a standard acute coronary syndrome/ventricular fibrillation cardiac arrest scenario. Our primary outcome measure was correlation of exam results for 19 volunteer fourth-year medical students after a 32-hour ACLS-based Resuscitation Boot Camp course. Our secondary outcome was comparison of simulation-based vs. written outcome scores. Results: The composite average score on the written evaluation was substantially higher (93.6% than the simulation performance score (81.3%, absolute difference 12.3%, 95% CI [10.6-14.0%], p<0.00005. We found a statistically significant moderate correlation between simulation scenario test performance and traditional written testing (Pearson r=0.48, p=0.04, validating the new evaluation method. Conclusion: Simulation-based ACLS evaluation methods correlate with traditional written testing and demonstrate resuscitation knowledge and skills. Simulation may be a more discriminating and challenging testing method, as students scored higher on written evaluation methods compared to simulation.
Waveforms Measured in Confined Thermobaric Explosion
Reichenbach, H; Neuwald, P; Kuhl, A L
2007-05-04
Experiments with 1.5-g Shock-Dispersed-Fuel (SDF) charges have been conducted in six different chambers. Both flake Aluminum and TNT were used as the fuel. Static pressure gauges on the chamber wall were the main diagnostic. Waveforms for explosions in air were significantly larger than those in nitrogen - thereby demonstrating a strong thermobaric (combustion) effect. This effect increases as the confinement volume decreases and the mixture richness approaches 1.
Full-waveform inversion: Filling the gaps
Beydoun, Wafik B.
2015-09-01
After receiving an outstanding response to its inaugural workshop in 2013, SEG once again achieved great success with its 2015 SEG Middle East Workshop, “Full-waveform inversion: Filling the gaps,” which took place 30 March–1 April 2015 in Abu Dhabi, UAE. The workshop was organized by SEG, and its partner sponsors were Saudi Aramco (gold sponsor), ExxonMobil, and CGG. Read More: http://library.seg.org/doi/10.1190/tle34091106.1
Oda, Akinori; Sugawara, Hirotake; Sakai, Yosuke; Akashi, Haruaki
2000-06-01
Xe dielectric barrier discharges at different gap lengths under applied pulse voltages with trapezoidal and sinusoidal waveforms were simulated using a self-consistent one-dimensional fluid model. In both waveforms, the light output power depended not only on the amplitude of voltage waveforms but also on the discharge gap length. At the narrower discharge gap, the light output efficiency was improved by increasing the time gradient of the applied voltage when the trapezoidal pulse is applied, and by decreasing the duty ratio in the sinusoidal case. In the present simulation, we adopted a fast numerical method for calculation of electric field introducing an exact expression of the discharge current.
Time-dependent phase error correction using digital waveform synthesis
Doerry, Armin W.; Buskirk, Stephen
2017-10-10
The various technologies presented herein relate to correcting a time-dependent phase error generated as part of the formation of a radar waveform. A waveform can be pre-distorted to facilitate correction of an error induced into the waveform by a downstream operation/component in a radar system. For example, amplifier power droop effect can engender a time-dependent phase error in a waveform as part of a radar signal generating operation. The error can be quantified and an according complimentary distortion can be applied to the waveform to facilitate negation of the error during the subsequent processing of the waveform. A time domain correction can be applied by a phase error correction look up table incorporated into a waveform phase generator.
Advancement of DOE's EnergyPlus Building Energy Simulation Payment
Gu, Lixing [Florida Solar Energy Center, Cocoa, FL (United States); Shirey, Don [Florida Solar Energy Center, Cocoa, FL (United States); Raustad, Richard [Florida Solar Energy Center, Cocoa, FL (United States); Nigusse, Bereket [Florida Solar Energy Center, Cocoa, FL (United States); Sharma, Chandan [Florida Solar Energy Center, Cocoa, FL (United States); Lawrie, Linda [DHL Consulting, Bonn (Germany); Strand, Rick [Univ. of Illinois, Champaign, IL (United States); Pedersen, Curt [COPA, Panama City (Panama); Fisher, Dan [Oklahoma State Univ., Stillwater, OK (United States); Lee, Edwin [Oklahoma State Univ., Stillwater, OK (United States); Witte, Mike [GARD Analytics, Arlington Heights, IL (United States); Glazer, Jason [GARD Analytics, Arlington Heights, IL (United States); Barnaby, Chip [Wrightsoft, Lexington, MA (United States)
2011-09-30
EnergyPlus{sup TM} is a new generation computer software analysis tool that has been developed, tested, and commercialized to support DOE's Building Technologies (BT) Program in terms of whole-building, component, and systems R&D (http://www.energyplus.gov). It is also being used to support evaluation and decision making of zero energy building (ZEB) energy efficiency and supply technologies during new building design and existing building retrofits. The 5-year project was managed by the National Energy Technology Laboratory and was divided into 5 budget period between 2006 and 2011. During the project period, 11 versions of EnergyPlus were released. This report summarizes work performed by an EnergyPlus development team led by the University of Central Florida's Florida Solar Energy Center (UCF/FSEC). The team members consist of DHL Consulting, C. O. Pedersen Associates, University of Illinois at Urbana-Champaign, Oklahoma State University, GARD Analytics, Inc., and WrightSoft Corporation. The project tasks involved new feature development, testing and validation, user support and training, and general EnergyPlus support. The team developed 146 new features during the 5-year period to advance the EnergyPlus capabilities. Annual contributions of new features are 7 in budget period 1, 19 in period 2, 36 in period 3, 41 in period 4, and 43 in period 5, respectively. The testing and validation task focused on running test suite and publishing report, developing new IEA test suite cases, testing and validating new source code, addressing change requests, and creating and testing installation package. The user support and training task provided support for users and interface developers, and organized and taught workshops. The general support task involved upgrading StarTeam (team sharing) software and updating existing utility software. The project met the DOE objectives and completed all tasks successfully. Although the EnergyPlus software was enhanced
Continuous high PRF waveforms for challenging environments
Jaroszewski, Steven; Corbeil, Allan; Ryland, Robert; Sobota, David
2017-05-01
Current airborne radar systems segment the available time-on-target during each beam dwell into multiple Coherent Processing Intervals (CPIs) in order to eliminate range eclipsing, solve for unambiguous range, and increase the detection performance against larger Radar Cross Section (RCS) targets. As a consequence, these radars do not realize the full Signal-to-Noise Ratio (SNR) increase and detection performance improvement that is possible. Continuous High Pulse Repetition Frequency (HPRF) waveforms and processing enables the coherent integration of all available radar data over the full time-on-target. This can greatly increase the SNR for air targets at long range and/or with weak radar returns and significantly improve the detection performance against such targets. TSC worked with its partner KeyW to implement a Continuous HPRF waveform in their Sahara radar testbed and obtained measured radar data on both a ground vehicle target and an airborne target of opportunity. This experimental data was processed by TSC to validate the expected benefits of Continuous HPRF waveforms.
Results from Binary Black Hole Simulations in Astrophysics Applications
Baker, John G.
2007-01-01
Present and planned gravitational wave observatories are opening a new astronomical window to the sky. A key source of gravitational waves is the merger of two black holes. The Laser Interferometer Space Antenna (LISA), in particular, is expected to observe these events with signal-to-noise ratio's in the thousands. To fully reap the scientific benefits of these observations requires a detailed understanding, based on numerical simulations, of the predictions of General Relativity for the waveform signals. New techniques for simulating binary black hole mergers, introduced two years ago, have led to dramatic advances in applied numerical simulation work. Over the last two years, numerical relativity researchers have made tremendous strides in understanding the late stages of binary black hole mergers. Simulations have been applied to test much of the basic physics of binary black hole interactions, showing robust results for merger waveform predictions, and illuminating such phenomena as spin-precession. Calculations have shown that merging systems can be kicked at up to 2500 km/s by the thrust from asymmetric emission. Recently, long lasting simulations of ten or more orbits allow tests of post-Newtonian (PN) approximation results for radiation from the last orbits of the binary's inspiral. Already, analytic waveform models based PN techniques with incorporated information from numerical simulations may be adequate for observations with current ground based observatories. As new advances in simulations continue to rapidly improve our theoretical understanding of the systems, it seems certain that high-precision predictions will be available in time for LISA and other advanced ground-based instruments. Future gravitational wave observatories are expected to make precision.
Cho, Hee-Suk
2015-01-01
The phenomenological gravitational waveform models, i.e. the PhenomA, the PhenomB and the PhenomC, generate full inspiral-merger-ringdown waveforms of coalescing binary back holes (BBHs). These models are defined in the Fourier domain and thus can be used for fast matched filtering in the gravitational wave search. The PhenomA has been developed for nonspinning BBH waveforms, while the PhenomB and the PhenomC can model the nonprecessing BBH waveforms. In this work, we study the validity of the phenomenological models for nonspinning BBH searches at low masses, $m_{1,2}\\geq 4 M_{sun}$ and $m_1+m_2\\equiv M \\leq 30 M_{sun}$, with Advanced LIGO sensitivity. As our complete signal waveform model, we adopt the EOBNRv2 that is a time domain inspiral-merger-ringdown waveform model. To investigate the search efficiency of the phenomenological templates, we calculate fitting factors by exploring overlap surfaces. We find that only the PhenomC is valid to obtain the fitting factors better than 0.97 in the mass range of ...
An advanced configuration management system for full scope power plant simulators
Storm, J.; Goemann, A. [STN ATLAS Elektronik, Bremen (Germany)
1996-11-01
In August 1993 KSG Kraftwerks-Simulator-Gesellschaft, Germany, awarded a contract to STN ATLAS Elektronik for the delivery of two full scope replica training simulators for the German BWR plants Isar 1 and Philipsburg 1, known as the double simulator project S30 (S31/S32). For both projects a computer based Configuration Management System (CMS) was required to overcome deficiencies of older simulator systems in terms of limited upgrade and maintenance capabilities and incomplete documentation. The CMS allows complete control over the entire simulator system covering all software- and hardware-items and therewith exceed quality assurance requirements as defined in ISO 9000-3 which gives recommendations for software configuration management only. The system is realized under the project using the UNIX based relational database system EMPRESS and is in use as a development- and maintenance-tool to improve simulator quality and ensure simulator configuration integrity.
Adjoint Tomography of Taiwan Region: From Travel-Time Toward Waveform Inversion
Huang, H. H.; Lee, S. J.; Tromp, J.
2014-12-01
The complicated tectonic environment such as Taiwan region can modulate the seismic waveform severely and hamper the discrimination and the utilization of later phases. Restricted to the use of only first arrivals of P- and S-wave, the travel-time tomographic models of Taiwan can simulate the seismic waveform barely to a frequency of 0.2 Hz to date. While it has been sufficient for long-period studies, e.g. source inversion, this frequency band is still far from the applications to the community and high-resolution studies. To achieve a higher-frequency simulation, more data and the considerations of off-path and finite-frequency effects are necessary. Based on the spectral-element and the adjoint method recently developed, we prepared 94 MW 3.5-6.0 earthquakes with well-defined location and focal mechanism solutions from Real-Time Moment Tensor Monitoring System (RMT), and preformed an iterative gradient-based inversion employing waveform modeling and finite-frequency measurements of adjoint method. By which the 3-D sensitivity kernels are taken into account realistically and the full waveform information are naturally sought, without a need of any phase pick. A preliminary model m003 using 10-50 sec data was demonstrated and compared with previous travel-time models. The primary difference appears in the mountainous area, where the previous travel-time model may underestimate the S-wave speed in the upper crust, but overestimates in the lower crust.
Toward a practical ultrasound waveform tomography algorithm for improving breast imaging
Li, Cuiping; Sandhu, Gursharan S.; Roy, Olivier; Duric, Neb; Allada, Veerendra; Schmidt, Steven
2014-03-01
Ultrasound tomography is an emerging modality for breast imaging. However, most current ultrasonic tomography imaging algorithms, historically hindered by the limited memory and processor speed of computers, are based on ray theory and assume a homogeneous background which is inaccurate for complex heterogeneous regions. Therefore, wave theory, which accounts for diffraction effects, must be used in ultrasonic imaging algorithms to properly handle the heterogeneous nature of breast tissue in order to accurately image small lesions. However, application of waveform tomography to medical imaging has been limited by extreme computational cost and convergence. By taking advantage of the computational architecture of Graphic Processing Units (GPUs), the intensive processing burden of waveform tomography can be greatly alleviated. In this study, using breast imaging methods, we implement a frequency domain waveform tomography algorithm on GPUs with the goal of producing high-accuracy and high-resolution breast images on clinically relevant time scales. We present some simulation results and assess the resolution and accuracy of our waveform tomography algorithms based on the simulation data.
The Waveform Server: A Web-based Interactive Seismic Waveform Interface
Newman, R. L.; Clemesha, A.; Lindquist, K. G.; Reyes, J.; Steidl, J. H.; Vernon, F. L.
2009-12-01
Seismic waveform data has traditionally been displayed on machines that are either local area networked to, or directly host, a seismic networks waveform database(s). Typical seismic data warehouses allow online users to query and download data collected from regional networks passively, without the scientist directly visually assessing data coverage and/or quality. Using a suite of web-based protocols, we have developed an online seismic waveform interface that directly queries and displays data from a relational database through a web-browser. Using the Python interface to Datascope and the Python-based Twisted network package on the server side, and the jQuery Javascript framework on the client side to send and receive asynchronous waveform queries, we display broadband seismic data using the HTML Canvas element that is globally accessible by anyone using a modern web-browser. The system is used to display data from the USArray experiment, a US continent-wide migratory transportable seismic array. We are currently creating additional interface tools to create a rich-client interface for accessing and displaying seismic data that can be deployed to any system running Boulder Real Time Technology's (BRTT) Antelope Real Time System (ARTS). The software is freely available from the Antelope contributed code Git repository. Screenshot of the web-based waveform server interface
Processing Aftershock Sequences Using Waveform Correlation
Resor, M. E.; Procopio, M. J.; Young, C. J.; Carr, D. B.
2008-12-01
For most event monitoring systems, the objective is to keep up with the flow of incoming data, producing a bulletin with some modest, relatively constant, time delay after present time, often a period of a few hours or less. Because the association problem scales exponentially and not linearly with the number of detections, a dramatic increase in seismicity due to an aftershock sequence can easily cause the bulletin delay time to increase dramatically. In some cases, the production of a bulletin may cease altogether, until the automatic system can catch up. For a nuclear monitoring system, the implications of such a delay could be dire. Given the expected similarity between a mainshock and aftershocks, it has been proposed that waveform correlation may provide a powerful means to simultaneously increase the efficiency of processing aftershock sequences, while also lowering the detection threshold and improving the quality of the event solutions. However, many questions remain unanswered. What are the key parameters for achieving the best correlations between waveforms (window length, filtering, etc.), and are they sequence-dependent? What is the overall percentage of similar events in an aftershock sequence, i.e. what is the maximum level of efficiency that a waveform correlation could be expected to achieve? Finally, how does this percentage of events vary among sequences? Using data from the aftershock sequence for the December 26, 2004 Mw 9.1 Sumatra event, we investigate these issues by building and testing a prototype waveform correlation event detection system that automatically expands its library of known events as new signatures are indentified in the aftershock sequence (by traditional signal detection and event processing). Our system tests all incoming data against this dynamic library, thereby identify any similar events before traditional processing takes place. In the region surrounding the Sumatra event, the NEIC EDR contains 4997 events in the 9
Mckavitt, Thomas P., Jr.
1990-01-01
The results of an aircraft parameters identification study conducted on the National Aeronautics and Space Administration/Ames Research Center Advanced Concepts Flight Simulator (ACFS) in conjunction with the Navy-NASA Joint Institute of Aeronautics are given. The ACFS is a commercial airline simulator with a design based on future technology. The simulator is used as a laboratory for human factors research and engineering as applied to the commercial airline industry. Parametric areas examined were engine pressure ratio (EPR), optimum long range cruise Mach number, flap reference speed, and critical take-off speeds. Results were compared with corresponding parameters of the Boeing 757 and 767 aircraft. This comparison identified two areas where improvements can be made: (1) low maximum lift coefficients (on the order of 20-25 percent less than those of a 757); and (2) low optimum cruise Mach numbers. Recommendations were made to those anticipated with the application of future technologies.
Tawalbeh, Loai I; Tubaishat, Ahmad
2014-01-01
This study examined the effect of simulation on nursing students' knowledge of advanced cardiac life support (ACLS), knowledge retention, and confidence in applying ACLS skills. An experimental, randomized controlled (pretest-posttest) design was used. The experimental group (n = 40) attended an ACLS simulation scenario, a 4-hour PowerPoint presentation, and demonstration on a static manikin, whereas the control group (n = 42) attended the PowerPoint presentation and a demonstration only. A paired t test indicated that posttest mean knowledge of ACLS and confidence was higher in both groups. The experimental group showed higher knowledge of ACLS and higher confidence in applying ACLS, compared with the control group. Traditional training involving PowerPoint presentation and demonstration on a static manikin is an effective teaching strategy; however, simulation is significantly more effective than traditional training in helping to improve nursing students' knowledge acquisition, knowledge retention, and confidence about ACLS.
Digitally Recorded Impulse Voltage Waveform and its Parameters
Sato, Shuji; Ichikawa, Hironori; Saitou, Tatsunori; Harada, Tatsuya; Hanai, Masahiro
Whereas high resolution digital recorders are used in recording the impulse voltage tests in prominent accreditation laboratories worldwide, a usage of an 8 bit recorder is also allowed by IEC publication. An 8 bit recorder is, due to its nature, known to record a waveform with 0.4% vertical resolution and it has not been appreciated for determining a peak value of lightning impulse in the reference measuring system where the scale factor is often evaluated with 0.1% or less uncertainty. This paper demonstrates simulation in which an 8 bit record with an internal noise is fed into the lightning impulse parameter determination software and the computed parameters were compared with theoretical values. The results show that, if suitable software is used, errors in parameters deduced from an 8 bit record is as small as those derived from a 12 bit record, suggesting an inexpensive 8 bit recorder can replace a 12 bit in impulse voltage measurements.
Triangle/Square Waveform Generator Using Area Efficient Hysteresis Comparator
M. Drinovsky
2016-06-01
Full Text Available A function generator generating both square and triangle waveforms is proposed. The generator employs only one low area comparator with accurate hysteresis set by a bias current and a resistor. Oscillation frequency and its non-idealities are analyzed. The function of the proposed circuit is demonstrated on a design of 1 MHz oscillator in STMicroelectronics 180 nm BCD technology. The designed circuit is thoroughly simulated including trimming evaluation. It consumes 4.1 μA at 1.8 V and takes 0.0126 mm2 of silicon area. The temperature variation from -40°C to 125°C is ±1.5 % and the temperature coefficient is 127 ppm/°C.
[Breathing waveform and respiratory ring in the role of mechanical ventilation].
Zhang, Jie; Chen, Guantao
2010-03-01
To learn reading respiratory waveform and ring is a key step to good use of respirator, which will help clinicians to analyze the status of the use of respirator and real time changes in patient's lung mechanics from the changes of respiratory wave and ring, for making use of respirator reasonably, scientifically and objectively to provide advanced methods. This article only explains the physical basis of respiratory wave and ring.
The Multiple Waveform Persistent Peak (MWaPP) Retracker for SAR waveforms
Villadsen, Heidi; Andersen, Ole Baltazar; Stenseng, Lars
using CryoSat-2 20Hz SAR data, but due to the similarities between the Sentinel-3 SRAL altimeter and the SIRAL altimeter on-board CryoSat-2 an adaption of the method will be straightforward. The MWaPP retracker is based on a sub-waveform retracker, but takes the shape of adjacent waveforms into account...... before selecting the sub-waveform belonging to nadir. This is new compared to primary peak retrackers, and alleviates a lot of snagging due to off-nadir bright targets, but also topography challenges. The results from the MWaPP retracker show a significant decrease in the standard deviation of the mean...
Recent advances in numerical simulation of space-plasma-physics problems
Birmingham, T. J.
1983-01-01
Computer simulations have become an increasingly popular, important and insightful tool for studying space plasmas. This review describes MHD and particle simulations, both of which treat the plasma and the electromagnetic field in which it moves in a self consistent fashion but on drastically different spatial and temporal scales. The complementary roles of simulation, observations and theory are stressed. Several examples of simulations being carried out in the area of magnetospheric plasma physics are described to illustrate the power, potential and limitations of the approach.
Progress and new advances in simulating electron microscopy datasets using MULTEM.
Lobato, I; Van Aert, S; Verbeeck, J
2016-09-01
A new version of the open source program MULTEM is presented here. It includes a graphical user interface, tapering truncation of the atomic potential, CPU multithreading functionality, single/double precision calculations, scanning transmission electron microscopy (STEM) simulations using experimental detector sensitivities, imaging STEM (ISTEM) simulations, energy filtered transmission electron microscopy (EFTEM) simulations, STEM electron energy loss spectroscopy (EELS) simulations along with other improvements in the algorithms. We also present a mixed channeling approach for the calculation of inelastic excitations, which allows one to considerably speed up time consuming EFTEM/STEM-EELS calculations.
Advances in HYDRA and its applications to simulations of inertial confinement fusion targets
Marinak M.M.
2013-11-01
Full Text Available A new set of capabilities has been implemented in the HYDRA 2D/3D multiphysics inertial confinement fusion simulation code. These include a Monte Carlo particle transport library. It models transport of neutrons, gamma rays and light ions, as well as products they generate from nuclear and coulomb collisions. It allows accurate simulations of nuclear diagnostic signatures from capsule implosions. We apply it to here in a 3D simulation of a National Ignition Facility (NIF ignition capsule which models the full capsule solid angle. This simulation contains a severely rough ablator perturbation and provides diagnostics signatures of capsule failure due to excessive instability growth.
A real-time simulation facility for advanced digital guidance and control system research
Bryant, W. H.; Downing, D. R.; Ostroff, A. J.
1979-01-01
A real-time simulation facility built at NASA's Langley Research Center to support digital guidance and control research and development activities is examined. The unit has recently been used to develop autoland systems for VTOL. The paper describes the autoland experiment and the flight environment, the simulation facility hardware and software, and presents typical simulation data to illustrate the type of data analysis carried out during software development. Finally, flight data for a later version of the autoland system are presented to demonstrate the simulation's capability to predict overall system behavior.
Simulation Games as Advance Organizers in the Learning of Social Science Materials. Experiments 1-3.
Livingston, Samuel A.
Three classroom experiments were conducted using a simulation game, Trade and Develop, designed for classroom use with students in grade six through twelve economic geography classes. The hypotheses tested were: a simulation game will motivate students to learn subject matter related to the game, and, the game will facilitate learning by acting as…
Simulation based bayesian econometric inference: principles and some recent computational advances.
L.F. Hoogerheide (Lennart); H.K. van Dijk (Herman); R.D. van Oest (Rutger)
2007-01-01
textabstractIn this paper we discuss several aspects of simulation based Bayesian econometric inference. We start at an elementary level on basic concepts of Bayesian analysis; evaluating integrals by simulation methods is a crucial ingredient in Bayesian inference. Next, the most popular and well-
Advanced Techniques for Reservoir Simulation and Modeling of Non-Conventional Wells
Durlofsky, Louis J.; Aziz, Khalid
2001-08-23
Research results for the second year of this project on the development of improved modeling techniques for non-conventional (e.g., horizontal, deviated or multilateral) wells were presented. The overall program entails the development of enhanced well modeling and general simulation capabilities. A general formulation for black-oil and compositional reservoir simulation was presented.
Digby D. Macdonald; Brian M. Marx; Sejin Ahn; Julio de Ruiz; Balaji Soundararaja; Morgan Smith; and Wendy Coulson
2008-01-15
Various forms of general and localized corrosion represent principal threats to the integrity of DOE liquid waste storage tanks. These tanks, which are of a single wall or double wall design, depending upon their age, are fabricated from welded carbon steel and contain a complex waste-form comprised of NaOH and NaNO{sub 3}, along with trace amounts of phosphate, sulfate, carbonate, and chloride. Because waste leakage can have a profound environmental impact, considerable interest exists in predicting the accumulation of corrosion damage, so as to more effectively schedule maintenance and repair. The different tasks that are being carried out under the current program are as follows: (1) Theoretical and experimental assessment of general corrosion of iron/steel in borate buffer solutions by using electrochemical impedance spectroscopy (EIS), ellipsometry and XPS techniques; (2) Development of a damage function analysis (DFA) which would help in predicting the accumulation of damage due to pitting corrosion in an environment prototypical of DOE liquid waste systems; (3) Experimental measurement of crack growth rate, acoustic emission signals and coupling currents for fracture in carbon and low alloy steels as functions of mechanical (stress intensity), chemical (conductivity), electrochemical (corrosion potential, ECP), and microstructural (grain size, precipitate size, etc) variables in a systematic manner, with particular attention being focused on the structure of the noise in the current and its correlation with the acoustic emissions; (4) Development of fracture mechanisms for carbon and low alloy steels that are consistent with the crack growth rate, coupling current data and acoustic emissions; (5) Inserting advanced crack growth rate models for SCC into existing deterministic codes for predicting the evolution of corrosion damage in DOE liquid waste storage tanks; (6) Computer simulation of the anodic and cathodic activity on the surface of the steel samples
C.A. Brezinka (Christoph); A.M. Hagenaars (A.); J.W. Wladimiroff (Juriy); F.J. Los
1995-01-01
textabstractDoppler flow velocity waveform recording in the fetal ductus venosus and umbilical artery as well as maternal blood sampling for serum alpha-fetoprotein (MSAFP) was performed before and after transabdominal chorion villus sampling (TACVS) in 36 women of advanced maternal age (≥ 36 years)
Measurement of vehicles speed with full waveform lidar
Muzal, Michał; Mierczyk, Zygmunt; Zygmunt, Marek; Wojtanowski, Jacek; Piotrowski, Wiesław
2016-12-01
Measurement of vehicles speed by means of displacement measurement with "time of flight" lidar requires gathering of accurate information about distance to the vehicle in a set time interval. As with any pulsed laser lidar, its maximum range is limited by available incoming signal to noise ratio. That ratio determines not only maximum range, but also accuracy of measurement. For fast and precise measurements of speed of the vehicles their displacement should bee measured with centimeter accuracy. However that demand is hard to reach on long distances and poor quality of the echo signal. Improving accuracy beyond given by a single pulse probing requires emission of several probing pulses. Total displacement error will than fall with the square root of the number of executed measurements. Yet this method will not extend available distance beyond the limit set by threshold detection systems. Acquisition of the full waveform of received signals is a method that allows extension of maximum range through synchronic addition of subsequent waveforms. Doing so improves SNR by a well-known factor of square root of the number of carried additions. Disadvantage of this method is that it requires use of fast analog to digital converters for data acquisition, and simple distance calculation algorithms may not give the adequate accuracy due to relatively long sampling period of reasonable priced ADC's. In this article more advanced algorithms of distance calculations that base on ADC raw data are presented and analyzed. Practical implementation of algorithm in prototype design of laser speed gun is shown along with real life test results.
Ruhl, Hartmut [Munich Univ. (Germany). Chair for Computational and Plasma Physics
2016-11-01
Since the installation of SuperMUC phase 2 the 9216 nodes of phase 1 are more easily available for large scale runs allowing for the thin foil and AWAKE simulations. Besides phase 2 could be used in parallel for high throughput of the ion acceleration simulations. Challenging to our project were the full-volume checkpoints required by PIC that strained the I/O-subsystem of SuperMUC to its limits. New approaches considered for the next generation system, like burst buffers could overcome this bottleneck. Additionally, as the FDTD solver in PIC is strongly bandwidth bound, PSC will benefit profoundly from high-bandwidth memory (HBM) that most likely will be available in future HPC machines. This will be of great advantage as in 2018 phase II of AWAKE should begin, with a longer plasma channel further increasing the need for additional computing resources. Last but not least, it is expected that our methods used in plasma physics (many body interaction with radiation) will be more and more adapted for medical diagnostics and treatments. For this research field we expect centimeter sized volumes with necessary resolutions of tens of micro meters resulting in boxes of >10{sup 12} voxels (100-200 TB) on a regular basis. In consequence the demand for computing time and especially for data storage and data handling capacities will also increase significantly.
Simulation of fast-ion-driven Alfvén eigenmodes on the Experimental Advanced Superconducting Tokamak
Hu, Youjun; Todo, Y.; Pei, Youbin; Li, Guoqiang; Qian, Jinping; Xiang, Nong; Zhou, Deng; Ren, Qilong; Huang, Juan; Xu, Liqing
2016-02-01
Kinetic-MHD hybrid simulations are carried out to investigate possible fast-ion-driven modes on the Experimental Advanced Superconducting Tokamak. Three typical kinds of fast-ion-driven modes, namely, toroidicity-induced Alfvén eigenmodes, reversed shear Alfvén eigenmodes, and energetic-particle continuum modes, are observed simultaneously in the simulations. The simulation results are compared with the results of an ideal MHD eigenvalue code, which shows agreement with respect to the mode frequency, dominant poloidal mode numbers, and radial location. However, the modes in the hybrid simulations take a twisted structure on the poloidal plane, which is different from the results of the ideal MHD eigenvalue code. The twist is due to the radial phase variation of the eigenfunction, which may be attributed to the non-perturbative kinetic effects of the fast ions. By varying the stored energy of fast ions to change the fast ion drive in the simulations, it is demonstrated that the twist (i.e., the radial phase variation) is positively correlated with the fast ion drive.
Advances in Multi-Dimensional Simulation of Core-Collapse Supernovae
Swesty, F D; Myra, Eric S.
2005-01-01
We discuss recent advances in the radiative-hydrodynamic modeling of core collapse supernovae in multi-dimensions. A number of earlier attempts at fully radiation-hydrodynamic models utilized either the grey approximation to describe the neutrino distribution or utilized more sophisticated multigroup transport methods restricted to radial rays. In both cases these models have also neglected the O(v/c) terms that couple the radiation and matter strongly in the optically thick regions of the collapsed core. In this paper we present some recent advances that resolve some shortcomings of earlier models.
Ricci LH
2017-06-01
Full Text Available Lucas Holderegger Ricci,1 Caroline Amaral Ferraz2 1Department of Ophthalmology, School of Medicine, Laureate International Universities, São Paulo (SP, Brazil; 2Department of Ophthalmology, Federal University of São Paulo (UNIFESP, São Paulo (SP, Brazil Objective: To describe and appraise the latest simulation models for direct and indirect ophthalmoscopy as a learning tool in the medical field. Methods: The present review was conducted using four national and international databases – PubMed, Scielo, Medline and Cochrane. Initial set of articles was screened based on title and abstracts, followed by full text analysis. It comprises of articles that were published in the past fifteen years (2002–2017.Results: Eighty-three articles concerning simulation models for medical education were found in national and international databases, with only a few describing important aspects of ophthalmoscopy training and current application of simulation in medical education. After secondary analysis, 38 articles were included.Conclusion: Different ophthalmoscopy simulation models have been described, but only very few studies appraise the effectiveness of each individual model. Comparison studies are still required to determine best approaches for medical education and skill enhancement through simulation models, applied to both medical students as well as young ophthalmologists in training. Keywords: direct ophthalmoscopy, indirect ophthalmoscopy, skills, simulator, simulation models
Simulation Augmented Manoeuvring Design and Monitoring - a New Method for Advanced Ship Handling
Knud Benedict
2014-03-01
Full Text Available A fast time simulation tool box is under development to simulate the ships motion with complex dynamic models and to display the ships track immediately for the intended or actual rudder or engine manoeuvre. Based on this approach the innovative Simulation Augmented Manoeuvring Design and Monitoring - SAMMON tool box will allow for (a a new type of design of a manoeuvring plan as enhancement exceeding the common pure way point planning (b an unmatched monitoring of ship handling processes to follow the underlying manoeuvring plan. During the manoeuvring process the planned manoeuvres can be constantly displayed together with the actual ship motion and the predicted future track which is based on actual input data from the ship's sensors and manoeuvring handle positions. This SAMMON tool box is intended be used on board of real ships but it is in parallel an effective tool for training in ship handling simulators: (a in the briefing for preparing a manoeuvring plan for the whole exercise in some minutes, (b during the exercise run to see the consequences of the use of manoeuvring equipment even before the ship has changed her motion and (c in debriefing sessions to discuss potential alternatives of the students decisions by simulating fast variations of their choices during the exercises. Examples will be given for results from test trials on board and in the full mission ship handling simulator of the Maritime Simulation Centre Warnemuende.
Best waveform score for diagnosing keratoconus
Allan Luz
2013-12-01
Full Text Available PURPOSE: To test whether corneal hysteresis (CH and corneal resistance factor (CRF can discriminate between keratoconus and normal eyes and to evaluate whether the averages of two consecutive measurements perform differently from the one with the best waveform score (WS for diagnosing keratoconus. METHODS: ORA measurements for one eye per individual were selected randomly from 53 normal patients and from 27 patients with keratoconus. Two groups were considered the average (CH-Avg, CRF-Avg and best waveform score (CH-WS, CRF-WS groups. The Mann-Whitney U-test was used to evaluate whether the variables had similar distributions in the Normal and Keratoconus groups. Receiver operating characteristics (ROC curves were calculated for each parameter to assess the efficacy for diagnosing keratoconus and the same obtained for each variable were compared pairwise using the Hanley-McNeil test. RESULTS: The CH-Avg, CRF-Avg, CH-WS and CRF-WS differed significantly between the normal and keratoconus groups (p<0.001. The areas under the ROC curve (AUROC for CH-Avg, CRF-Avg, CH-WS, and CRF-WS were 0.824, 0.873, 0.891, and 0.931, respectively. CH-WS and CRF-WS had significantly better AUROCs than CH-Avg and CRF-Avg, respectively (p=0.001 and 0.002. CONCLUSION: The analysis of the biomechanical properties of the cornea through the ORA method has proved to be an important aid in the diagnosis of keratoconus, regardless of the method used. The best waveform score (WS measurements were superior to the average of consecutive ORA measurements for diagnosing keratoconus.
Preconditioning Strategies in Elastic Full Waveform Inversion.
Matharu, G.; Sacchi, M. D.
2016-12-01
Elastic full waveform inversion (FWI) is inherently more non-linear than its acoustic counterpart, a property that stems from the increased model space of the problem. Whereas acoustic media can be parametrized by density and P-wave velocity, visco-elastic media are parametrized by density, attenuation and 21 independent coefficients of the elastic tensor. Imposing assumptions of isotropy and perfect elasticity to simplify the physics, reduces the number of independent parameters required to characterize a medium. Isotropic, elastic media can be parametrized in terms of density and the Lamé parameters. The different parameters can exhibit trade-off that manifest as attributes in the data. In the context of FWI, this means that certain parameters cannot be uniquely resolved. An ideal model update in full waveform inversion is equivalent to a Newton step. Explicit computation of the Hessian and its inverse is not computationally feasible in elastic FWI. The inverse Hessian scales the gradients to account for trade-off between parameters as well as compensating for inadequate illumination related to source-receiver coverage. Gradient preconditioners can be applied to mimic the action of the inverse Hessian and partially correct for inaccuracies in the gradient. In this study, we investigate the effects of model reparametrization by recasting a regularized form of the least-squares waveform misfit into a preconditioned formulation. New model parameters are obtained by applying invertible weighting matrices to the model vector. The weighting matrices are related to estimates of the prior model covariance matrix and incorporate information about spatially variant correlations of model parameters as well as correlations between independent parameters. We compare the convergence of conventional FWI to FWI after model reparametrization.